Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/4120
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMuthugurupackiam, K-
dc.contributor.authorPandiaraj, P-
dc.contributor.authorGurusamy, R-
dc.contributor.authorMuthuselvam, I-
dc.date.accessioned2024-05-30T18:16:15Z-
dc.date.available2024-05-30T18:16:15Z-
dc.date.issued2024-05-30-
dc.identifier.issn2078-8665-
dc.identifier.issn2411-7986-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/4120-
dc.description.abstractConsider a simple graph 𝐺 = (𝑉, 𝐸) on 𝑙 vertices and π‘š edges together with a total β„Ž – labeling 𝜌: 𝑉(𝐺) βˆͺ 𝐸(𝐺) β†’ {1,2,3, … , β„Ž}. Then ρ is called (π‘Ž, 𝑑)–total edge irregular labeling if there exists a one-to-one correspondence, say πœ“: 𝐸(𝐺) β†’ {π‘Ž, π‘Ž + 𝑑, π‘Ž + 2𝑑, … + π‘Ž + (π‘š βˆ’ 1)𝑑} defined by πœ“(𝑒𝑣) = 𝜌(𝑒) + 𝜌(𝑣) + 𝜌(𝑒𝑣) for all 𝑒𝑣 ∈ 𝐸(𝐺), where π‘Ž β‰₯ 3, 𝑑 β‰₯ 2. Also, the value πœ“(𝑒𝑣) is said to be the edge weight of 𝑒𝑣. The (π‘Ž, 𝑑) βˆ’total edge irregularity strength of the graph G is indicated by (π‘Ž, 𝑑) βˆ’ 𝑑𝑒𝑠(𝐺) and is the least β„Ž for which G admits (π‘Ž, 𝑑) – edge irregular h-labeling. In this article, (π‘Ž, 𝑑) βˆ’ 𝑑𝑒𝑠(𝐺) for some common graph families are examined. In addition, an open problem (3,2)– 𝑑𝑒𝑠(𝐾_(π‘š, 𝑛) ), π‘š, 𝑛 > 2 is solved affirmatively.en_US
dc.language.isoenen_US
dc.publisherBharathidasan Universityen_US
dc.subject(π‘Ž, 𝑑) – Irregular labeling, Edge irregular labeling, Irregular labeling, Irregularity strength, Total edge irregular labeling.en_US
dc.titleFurther Results on (a, d) -total Edge Irregularity Strength of Graphsen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
File Description SizeFormat 
8545-Article+Text-93860-103573-10-20240130.pdf1.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.