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Abstract In this work, we present a method of generating a class of nonlinear ordinary differential equations
(ODEs), representing the dynamics of appropriate nonlinear oscillators, that have the characteristics of
either amplitude independent frequency of oscillations or amplitude-dependent frequency of oscillations
from the integrals of the simple harmonic oscillator equation. To achieve this, we consider the case where
the integrals are in the same form both for the linear and the nonlinear oscillators in either of the cases.
We also discuss the method of deriving the associated integrals and the general solution in harmonic form
for both the types. We demonstrate the applicability of this method up to 2N coupled first-order nonlinear
ODEs in both the cases. Further, we illustrate the theory with an example in each case.

1 Introduction

In recent years, a great deal of interest has been shown
in identifying nonlinear dynamical systems that posses
isochronous property [1–7]. The systems whose fre-
quencies of oscillations are independent of the ampli-
tudes similar to that of a linear harmonic oscillator
are being termed as isochronous systems. Isochronous
systems also occur in several physical situations, for
example, starting from the linear harmonic oscillator
to nonlinear equations like Liénard type equations.
Isochronicity phenomenon has been widely studied not
only for its impact in stability theory, but also for
its relationship with bifurcation and boundary value
problems. However, only a class of nonlinear systems
exhibits isochronous oscillations. To identify and study
the behaviour of such isochronous nonlinear dynami-
cal systems, several methods have been developed in
the literature, see, for example, Refs. [8–24]. In this
work, we present a novel method of generating non-
linear ordinary differential equations (ODEs) that have
the characteristics of isochronous behaviour. We derive
explicit general solutions and present integrals of the
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identified isochronous nonlinear systems. This class of
isochronous nonlinear oscillators can be related to linear
harmonic oscillator by introducing a nonlocal transfor-
mation in the dependent variable.

Several nonlinear dynamical systems exhibit non-
isochronous oscillations. In these oscillators, one can see
that the frequency of oscillations depends on the ampli-
tude. For example, the anharmonic oscillator equation
ẍ + c1x + c2x

3 = 0, with c1 > 0, c2 > 0, admits the
solution x(t) = Acn(ωt, k), ω =

√
c1 + c2A2, where

cn is the Jacobi elliptic function of modulus k =√
c2A2/2(c1 + c2A2). While deriving this solution we

have considered the initial conditions x(0) = A, ẋ(0) =
0 [25]. Unlike the linear harmonic oscillator equation
the angular frequency ω is now not a constant but
depends on the amplitude A. These non-isochronous
dynamical systems exhibit a variety of dynamics differ-
ing from the isochronous systems. However, a class of
non-isochronous dynamical systems also admit periodic
oscillations of harmonic type. A notable example in this
category is the Mathews–Lakshmanan nonlinear oscil-
lator equation, (1+λx2)ẍ−λxẋ2+ω2

0x = 0, where λ and
ω0 are constants [26,27]. This nonlinear/nonpolynomial
oscillator equation has the solution x(t) = A cos Ωt,
Ω = ω0/

√
1 + λA2. We have obtained this solution for

the initial conditions x(0) = A, ẋ(0) = 0 [25]. The angu-
lar frequency (Ω) is amplitude dependent and hence the
Mathews–Lakshmanan oscillator is a non-isochronous
system. Because of the amplitude dependent frequency
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property, various responses have also been exhibited for
different input conditions by the underlying dynamical
system. This kind of nonisochronicity nature can be
seen in various physical and biological systems. In par-
ticular, one finds that strong nonisochronicity produces
various synchronization patterns as well as long irregu-
lar transient phase dynamics in networks of such oscilla-
tors in the case where the long transient dynamics has
connection with the functioning of biological systems
[28–30].

Upon observing that certain non-isochronous systems
can also have periodic oscillations of harmonic type as
in the case of the above Mathews–Lakshmanan oscilla-
tor (and different from that of the anharmonic oscillator
mentioned earlier), we pose the following question. Is
it possible to generate nonlinear isochronous and non-
isochronous systems whose solutions are periodic func-
tions of harmonic type through a single method? Our
following investigation shows that one can indeed gen-
erate a class of isochronous and non-isochronous non-
linear oscillators which admits periodic solutions of har-
monic type from the known integrals of the simple har-
monic oscillator equation.

By investigating the time series plot of the harmonic
oscillator and nonlinear isochronous oscillators, we find
that both of them exhibit the same frequency of oscilla-
tions but they differ only in their amplitudes. Since the
angular frequency originates from the second integral
of the harmonic oscillator one may consider the case
where the second integral of the nonlinear systems may
also be in the same form as that of the linear harmonic
oscillator equation. Starting from this observation, we
have identified a class of nonlinear ODEs that exhibits
isochronous oscillations from the second integral of the
linear harmonic oscillator equation.

On the other hand, in non-isochronous systems there
is an interdependency between the amplitude and the
frequency of oscillations. Interestingly, in the case of
non-isochronous systems one can observe that the first
integral has the same structure as that of the harmonic
oscillator. The only difference we come across in the
integrals of nonlinear systems is that the presence of an
additional function in terms of the phase. This function
has the variables x and ẋ. By carefully examining this
function we find that it is nothing but the Hamilto-
nian. Interestingly, while deriving the general solution
from the obtained integrals the same function appears
as amplitude with a square root. This in turn estab-
lishes an interrelation between the amplitude and the
frequency of oscillations. In this way, we generate non-
isochronous systems from the known integrals of the
linear harmonic oscillator equation.

As far as our knowledge goes, the generalized ver-
sion of the Mathews–Lakshmanan oscillator equation to
2N dimensions is considered for the first time. Another
notable point is that the dynamics of the 2N -coupled
Mathews–Lakshmanan oscillator is studied for the non-
identical system parameters (i.e. ω1 �= ω2). Further, we
have presented the general solution of the 2N -coupled
Mathews–Lakshmanan oscillator equation. Also we
have studied the integrability of the modified Emden

equation with more generalized parameters which has
also not been studied previously in the literature.

We organize our work as follows. In Sect. 2, we
present the method of identifying nonlinear oscilla-
tor equations which exhibit isochronous and non-
isochronous properties. In Sect. 3, we consider the
isochronous case and discuss the method of deriving
the solution for a system of two coupled first-order
ODEs. We also extend the method of finding the solu-
tions and the integrals to 2N coupled first-order ODEs
and demonstrate it with suitable examples. In Sect.
4, we consider the non-isochronous case and present
the method of finding the solution for a system of two
coupled first-order ODEs. We prove the method with
a physically important example, namely Mathews–
Lakshmanan oscillator. Then we extend the method
to 2N -coupled first order ODEs and present the gen-
eral solution for the 2N -coupled Mathews–Lakshmanan
oscillator equation. Finally, we present our conclusions
in Sect. 5.

2 Generating nonlinear systems having
harmonic and anharmonic behaviour

Let us consider a system of two coupled first order non-
linear ODE’s of the form

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P and Q are functions of x and y and the over-
dot denotes differentiation with respect to t. We assume
that the above system of nonlinear ODEs can be con-
nected to the linear harmonic oscillator equation, that
is,

u̇ = ωv, v̇ = −ωu, (2)

where ω is the angular frequency of oscillation. Equa-
tion (2) admits an integral of the form

I1l = −ωt + arctan
( v

u

)
. (3)

Suppose the nonlinear ODE (1) also admits the same
form of integral, that is,

I1nl = −ωt + arctan(
y

x
). (4)

Equations (3) and (4) imply that v/u = y/x. To sat-
isfy this equality, we correlate the variables in the form

x =
u

h(x, y)
, y =

v

h(x, y)
, (5)

where h(x, y) is an arbitrary function of x and y.
Differentiating Eq. (5) with respect to t and substi-

tuting back (2) and (5) in the resultant equations and
simplifying them, we obtain
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P (x, y) = ωy − f(x, y)x, Q(x, y) = −ωx − f(x, y)y,

(6)

where f(x, y) = ḣ
h .

The linear harmonic oscillator Eq. (2) has another
integral (energy integral or first integral) of the form
I2l = u2 + v2. Let the nonlinear and linear ODEs (1)
and (2) have the same form of the first integral. By
equating these two integrals, we find

u2 + v2 = x2 + y2. (7)

Differentiating (7) with respect to t and replacing
ẋ = P (x, y) and ẏ = Q(x, y), we obtain

xP (x, y) + yQ(x, y) = 0. (8)

To fulfill the condition (8), we choose the following
specific forms for P and Q, namely

P (x, y) = ωf(x, y)y, Q(x, y) = −ωf(x, y)x, (9)

where f is an arbitrary function of x and y. We note
that the form considered for P and Q in (9) is only a
specific choice. One may consider other forms for P and
Q also. However, in this work, we confine our attention
only to this choice.

The nonlinear ODE (1) which has the right-hand side
of the form (6) admits isochronous behaviour whereas
the nonlinear ODEs (1) which have the right-hand side
of the form (9) exhibit non-isochronous behaviour, as
we see below in sections 3 and 4.

3 Isochronous systems

3.1 Two-coupled isochronous systems

To begin with, we focus our attention on the class of
systems described by the form (6), that is,

ẋ = ωy − f(x, y)x, ẏ = −ωx − f(x, y)y. (10)

From (10), we can deduce the following expression, that
is,

yẋ − xẏ = ω(x2 + y2). (11)

Equation (11) can be rewritten in the form

1
ω

d

dt

(
x

y

)
= 1 +

(
x

y

)2

. (12)

By introducing a new variable θ as

x

y
= tan θ. (13)

Equation (12) can be reduced to

θ̇ = ω ⇒ θ = ωt + δ, (14)

where δ is an integration constant. From (14), it is clear
that for a class of ODEs considered in (10), the angular
velocity (θ̇) or the angular frequency (ω) is nothing but
a constant.

Even though the angular frequency is a constant,
depending on the form of f(x, y), the amplitude of oscil-
lations may decay or grow and therefore one has to
identify a suitable form of f(x, y) which allows periodic
oscillations. After analyzing the outcome, we find that
whenever the function f(x, y) satisfies the condition

∫ 2π/ω

0

f(sin(ωt′ + δ), cos(ωt′ + δ))dt′ = 0 (15)

then the underlying system (10) admits an isochronous
center. In other words, whenever the function f(x, y)
satisfies the above condition, system (10) exhibits peri-
odic oscillations and the associated dynamical system
is an isochronous one. Differing from the above, the
forms which do not satisfy the condition (15) display
other types of oscillatory behaviour.

3.2 2N coupled isochronous systems

The methodology given above can be generalized to
higher order ODEs also. To demonstrate this, let us
consider a system of 2N -coupled first-order nonlinear
ODEs of the form [2]

ẋi = ωiyi − f(x, y)xi,

ẏi = −ωixi − f(x, y)yi, i = 1, 2, . . . , N, (16)

where f(x, y) = f(x1, x2, . . . , xN , y1, y2, . . . , yN ). We
note that while extending the analysis to higher order
ODEs, we restrict the function f(x̄, ȳ) which appears in
(16) to be of the same form. Multiplying the first and
second equations of (16) by yi and xi respectively, and
subtracting the resulting equations suitably, we obtain

yiẋi − xiẏi = ωi(x2
i + y2

i ), i = 1, 2, . . . , N. (17)

Dividing Eqs. (17) by y2
i , i = 1, . . . , N, and rewriting

it, we find

d

dt

( xi

ωiyi

)
= 1 +

(xi

yi

)2

, i = 1, 2, . . . , N. (18)

Upon introducing the angle variable θi = tan−1
(xi

yi

)
,

Eq. (18) becomes

θ̇i = ωi, i = 1, 2, . . . , N. (19)
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Equation (19) reveals that the angular frequency is
independent of the amplitudes of oscillations, irrespec-
tive of the form of f(x, y).

In the following, we demonstrate the existence of 2N
independent integrals for the system of equations (16).
To construct the integrals of Eq. (16), we recall

yi

xi
= cot(ωit + δi), i = 1, 2, . . . , N. (20)

From Eq. (20), we can identify N time-dependent inte-
grals which are of the form

δi = cot−1

[
yi

xi

]
− ωit, i = 1, 2, . . . , N. (21)

To determine the remaining N integrals of Eq. (16), we
proceed as follows. From Eq. (16), we can identify

xj ẋj + yj ẏj

x2
j + y2

j

=
xN ẋN + yẏN

x2
N + y2

N

. j = 1, 2, . . . , N − 1.

(22)

Rewriting Eq. (22) as d
dt

[
log(x2

j + y2
j )/2

]
= d

dt

[
log(x2

N

+y2
N )/2

]
and integrating and rewriting the resultant

integrals for j = 1, 2, · · · , N − 1, we obtain N − 1 time-
independent integrals of the form

Ij =
x2

j + y2
j

x2
N + y2

N

. j = 1, 2, . . . , N − 1. (23)

By utilizing the obtained (N−1) integrals we can reduce
the set of 2N first-order equations to a system of two
coupled first order ODEs in the variables xN and yN .
In the following, we demonstrate this.

From Eq. (20), we find

xi

yi
= tan(θi), θi = ωit + δi. (24)

Using the well-known trigonometric identities, that
is sin θi = tan θi√

1+tan2 θi
and cos θi = cot θi√

1+cot2 θi
, we can

identify

sin(ωit + δi) =
xi√

x2
i + y2

i

, (25)

cos(ωit + δi) =
yi√

x2
i + y2

i

, i = 1, 2, . . . , N.

(26)

From (25), we find

xi(t) = sin(ωit + δi)(
√

x2
i + y2

i )

=
√

Ii sin(ωit + δi)(
√

x2
N + y2

N )

=
√

Ii
sin(ωit + δi)

sin(ωN t + δN )
xN . (27)

Similarly,

yi(t) =
√

Ii
cos(ωit + δi)

cos(ωN t + δN )
yN . (28)

With the help of Eqs. (27) and (28) one can replace the
variables xi and yi, i = 1, 2, . . . N − 1, in terms of t, xN

and yN . As a result, we find

f(x, y) = f (x1, x2, . . . xN , y1, y2, . . . yN )
= f(t, xN , yN ). (29)

Now confining our attention on the last two ODEs in
(16), we find

ẋN = ωNyN − f(t, xN , yN )xN , (30)
ẏN = −ωNxN − f(t, xN , yN )yN . (31)

The above equation cannot be integrated explicitly for
an arbitrary form of f(t, xN , yN ). For particular forms
of f(t, xN , yN ), we can solve the above equation. The
theory developed above helps to identify a class of non-
linear isochronous systems and their general solution.

3.3 Examples

In the following, with appropriate choices of the func-
tion f(x, y), we demonstrate through specific exam-
ples how specific nonlinear integrable dynamical sys-
tems corresponding to N = 1, 2 and arbitrary integer
can be identified which admit isochronous oscillations.
The crucial property which we impose on the choice
of the function f(x, y) is that it should satisfy the inte-
gral condition given by Eq. (15). The condition will also
hold good when N is arbitrary, as for example in Eqs.
(30) and (31), the condition (15) will be imposed on
the form of f(t, xN , yN ), as illustrated in the examples
given below.

3.3.1 Example 1

To start with we consider the simplest case, namely
N = 2. Based on our general prescription given above,
we consider the choice

f(x, y) = a1x
q + a2y

q, (32)

where q is a positive integer and a1 and a2 are constants.
Substituting the expression x = y tan θ, with θ = ωt+δ,
the second expression in Eq. (10) can be brought to the
form

ẏ = (a1 tanq (ωt + δ) + a2)yq+1 − ω tan (ωt + δ)y.

(33)
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Fig. 1 Time series plot of
Eq. (10) (black line) for a
q = 1, b q = 2, c q = 3,
and d q = 4 show both
periodic (for q odd values)
and damped (for q even
values) oscillation.
Red/grey line is the time
series plot of equation (2).
Initial conditions and
parameter values are
x(0) = u(0) = −0.5,
y(0) = v(0) = 0.5 and
a = b = ω = 1.0

(a)

(c) (d)

(b)

Equation (33) is of Bernoulli form. The general solu-
tion of Eq. (33) reads

y(t) =
cos (ωt + δ)

(
I1 − q

∫ (
a1sin

q(ωt + δ) + a2cosq(ωt + δ)
)
dt

) 1
q

(34)

from which the expression for x(t) can be deduced as

x(t) =
sin (ωt + δ)

(
I1 − q

∫ (
a1sin

q(ωt + δ) + a2cosq(ωt + δ)
)
dt

) 1
q

.

(35)

The integral which is appearing in the denominator in
expressions Eqs. (34) and (35) can be evaluated depend-
ing on whether q is an odd or even integer.

We note here that the function given in (32) satisfies
the condition (15) only for odd values of q so that the
solution exhibits periodic behaviour. For even value of
q the function (32) does not satisfy the condition (15)
and the solution exhibits damped behaviour. In the fol-
lowing, we present the solutions for both the cases.

3.3.2 Case 1: q is an odd integer (q = 2m + 1)

For this choice, we obtain the solution x(t) and y(t) in
the form [31]

x(t) = sin (ωt + δ)

[

I1 − q(b1(t) + b2(t))

] −1
2m+1

,

y(t) = cos (ωt + δ)

[

I1 − q(b1(t) + b2(t))

] −1
2m+1

,

(36)
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with

b1(t) =
a1

ω

[ − cos τ

2m + 1

(
sin2m τ +

m−1∑

k=0

s1k sin2m−2k−2 τ

)]
,

b2(t) =
a2

ω

[
sin τ

2m + 1

(
cos2m τ +

m−1∑

k=0

s1k cos2m−2k−2 τ

)]
.

(37)

Here τ = ωt + δ and s1k = (2k+1m(m − 1) . . . (m −
k))/((2m − 1)(2m − 3) . . . (2m − 2k − 1)).

3.3.3 Case 2: q is even integer (q = 2m)

In this case, the solution (33) takes the form [31]

x(t) = sin (ωt + δ)

[

I1 − q(b3(t) + b4(t))

] −1
2m

,

y(t) = cos (ωt + δ)

[

I1 − q(b3(t) + b4(t))

] 1
2m

, (38)

where

b3(t) =
a1

ω

[− cos τ

2m

(
sin2m−1 τ +

m−1∑

k=0

s2k sin2m−2k−1 τ

)

+
(2m − 1)!!

2mm!
τ

]
,

b4(t) =
a2

ω

[
sin τ

2m

(
cos2m−1 τ +

m−1∑

k=0

s2k cos2m−2k−1 τ

)

+
(2m − 1)!!

2mm!
τ

]
. (39)

Here s2k = ((2m−1)(2m−3) . . . (2m−2k+1))/(2k(m−
1)(m − 2) . . . (m − k)).

For odd and even values of q the system (10) with
the form of f(x, y) given in (32) exhibits periodic
and damped oscillations, respectively. The solution plot
given in Figure 1 confirms the same.
Case: f(x, y) = ax + by, q = 1
For the choice f(x, y) = ax + by (a1 = a, a2 = b and

q = 1 in Eq. (32)), the coupled first order nonlinear
ODEs (1) read as

ẋ = ωy − (ax + by)x, ẏ = −ωx − (ax + by)y.

(40)

The above system is a special case of the most general
quadratic system, that was studied by Loud [33].

Rewriting Eq. (40) in second-order form, we find

ẍ + 3axẋ + a2x3 + ωx(ω − bx)

+
1

(ω − bx)
(2bẋ2 + 3abx2ẋ + a2bx4) = 0. (41)

To the best of our knowledge, the general solution of
the above generalized version of the modified Emden
equation is reported here for the first time. The general
solution of Eq. (41) is given by (vide Eqs. (34) and (35))

x(t) =
ω sin(ωt + δ)

ωI1 + a cos(ωt + δ) − b sin(ωt + δ)
,

y(t) =
ω cos(ωt + δ)

ωI1 + a cos(ωt + δ) − b sin(ωt + δ)
,

I1 : constant. (42)

By substituting f(x, y) = x in (6), we find ẋ = ωy −
x2, ẏ = −ωx − xy. Rewriting this as a single second-
order ODE in the variable x, we obtain the modified
Emden equation [32], that is ẍ + 3xẋ + x3 + ω2x = 0.
The solution of this equation can be extracted from
the Eqs. (34) and (35) by fixing q = 1 and a2 = 0.
The resultant form agrees with the one reported in the
literature [32].

For the choice q = 2 in Eq. (32), the resultant sys-
tem turns out to be a cubic system. The isochronous
cases of these systems have already been studied in the
literature, see for example Refs. [18,19].

Figure 2 shows the periodic oscillations admitted by
Eqs. (2) and (40) for two different sets of initial condi-
tions. One may note that the frequency of oscillations
of (41) is independent of the initial conditions as in
the case of the linear harmonic oscillator. However, the
amplitude of oscillations of the nonlinear system differs
from the linear one.

3.3.4 Example 2

For the case n = 2, the equation of motion can be
written in the form

ẋ1 = ω1y1 − f(x̄, ȳ)x1,

ẋ2 = ω2y2 − f(x̄, ȳ)x2,

ẏ1 = −ω1x1 − f(x̄, ȳ)y1,
ẏ2 = −ω2x2 − f(x̄, ȳ)y2, (43)

where f(x̄, ȳ) = f(x1, x2, y1, y2). To proceed further, we
assume a specific form for the function f(x, y), namely

f = a1x
q
1 + b1y

q
1 + a2x

q
2 + b2y

q
2, (44)

where q is an integer and ai’s, bi’s, i = 1, 2, are con-
stants. Now the equation of motion for q = 1 turns out
to be

ẋ1 = w1y1 − (a1x1 + b1y1 + a2x2 + b2y2)x1,

ẏ1 = −w1x1 − (a1x1 + b1y1 + a2x2 + b2y2)y1,
ẋ2 = w2y2 − (a1x1 + b1y1 + a2x2 + b2y2)x2,

ẏ2 = −w2x2 − (a1x1 + b1y1 + a2x2 + b2y2)y2,
(45)
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Fig. 2 Time series plot of
Eqs. (2) and (40) (red and
black, respectively)
exhibiting periodic
oscillations with the same
frequency with different
amplitudes for the initial
conditions a
x(0) = u(0) = − 0.5 and
y(0) = v(0) = 0.5 and b
x(0) = u(0) = − 1 and
y(0) = v(0) = 0.5.
Corresponding phase space
portraits are given in b
and d for a = b = ω = 1.0

(c) (d)

(c) (b)

where wi and ajs, bjs i = 1, 2 and j = 1, 2, 3, 4, are all
real arbitrary constants. Following the procedure dis-
cussed in the previous section with q = 1, we can iden-
tify the general solution of (45) in the form

x1(t) =
√

I1w1w2 sin θ1
G3

, y1(t) =
√

I1w1w2 cos θ1
G3

,

(46)

x2(t) =
w1w2 sin θ2

G3
, y2(t) =

w1w2 cos θ2
G3

, (47)

where θ1 = w1t + δ1, θ2 = w2t + δ2, G3 = I2w1w2 −
a1

√
I1w2 cos θ1−a2w1 cos θ2+b1

√
I1w2 sin θ1+b2w1 sin θ2.

For the choice, q = 2, we consider an equation which
is of the form

ẋ1 = w1y1 − (a1x
2
1 + b1y

2
1 + a2x

2
2 + b2y

2
2)x1,

ẏ1 = −w1x1 − (a1x
2
1 + b1y

2
1 + a2x

2
2 + b2y

2
2)y1,

ẋ2 = w2y2 − (a1x
2
1 + b1y

2
1 + a2x

2
2 + b2y

2
2)x2,

ẏ2 = −w2x2 − (a1x
2
1 + b1y

2
1 + a2x

2
2 + b2y

2
2)y2,

(48)

where wi and ajs, bjs i = 1, 2 and j = 1, 2, 3, 4, are all
real arbitrary constants. The general solution of (48)
can be identified in a straightforward manner as

x1(t) =
√

2I1w1w2 sin θ1
G4

, y1(t) =
√

2I1w1w2 cos θ1
G4

,

x2(t) =
√

2w1w2 sin θ2
G4

, y2(t) =
√

2w1w2 cos θ2
G4

,

(49)

where θ1 = w1t + δ1, θ2 = w2t + δ2, G4 =
[
2w1w2I2 +

2((a1+b1)I1w2θ1+(a2+b2)w1θ2)−(a1−b1)I1w2 sin 2θ1+

(b2 −a2)w1 sin 2θ2
] 1

2 , I1 and I2 are the integration con-
stants. The above solution leads to damped type solu-
tion which is similar to Fig. 1 for the values q = 2 and
q = 4.

3.3.5 Example 3

For 2N coupled system, we consider a specific form for
f as
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f(x, y) =
N∑

j=1

ajx
q
j + bjy

q
j , (50)

where ajs and bjs are constants. The equation of
motion becomes

ẋi = ωiyi − [ N∑

j=1

ajx
q
j + bjy

q
j

]
xi,

ẏi = −ωixi − [ N∑

j=1

ajx
q
j + bjy

q
j

]
yi, i = 1, 2, . . . , N.

(51)

For this form of f , we have to find xN and yN to
write the general solution of (51) (vide Eqs.(27) and
(28)). Equation (31) becomes

ẏN (t) = −ωN tan(ωN t + δN )yN

−
N∑

i=1

(
ajI

q
2
j

sinq(ωit + δi)
cosq(ωN t + δN )

+bjI
q
2
j

cosq(ωit + δi)
cosq(ωN t + δN )

)
yq+1

N . (52)

Equation (52) is of Bernoulli type and the general solu-
tion is given

yN (t) =
cos(ωN t + δN )

[
IN − q

∫ ∑N
j=1(ajI

q
2
j sinq(ωit + δi) + bjI

q
2
j cosq(ωit + δi))dt

] 1
q

. (53)

Substituting this back in xN = yN tan(ωN + δN ), we
find the following expression for xN (t), that is,

xN (t) =
sin(ωN t + δN )

[
IN − q

∫ ∑N
j=1(ajI

q
2
j sinq(ωit + δi) + bjI

q
2
j cosq(ωit + δi))dt

] 1
q

. (54)

Here also, the integral which is appearing in the denom-
inator can be evaluated depending on whether q is an
odd or even integer. By substituting the above form of
xN and yN in Eqs. (27) and (28), we get the general
solution of Eq. (51). Now the general solution turns out
to be

xi =
√

Ii sin(ωit + δi)
[
IN − q

∫ ∑N
j=1(ajI

q
2
j sinq(ωit + δi) + bjI

q
2
j cosq(ωit + δi))dt

] 1
q

,

yi =
√

Ii cos(ωit + δi)
[
IN − q

∫ ∑N
j=1(ajI

q
2
j sinq(ωit + δi) + bjI

q
2
j cosq(ωit + δi))dt

] 1
q

. (55)

For odd integers (q = 2m+1), the integral appearing
in the denominator can be integrated to yield

∫ N∑

j=1

(ajI
2m+1

2
j sin2m+1(ωit + δi) + bjI

2m+1
2

j

cos2m+1(ωit + δi))dt

=
N∑

j=1

aj

ωj
I

2m+1
2

j

[− cos τj

2m + 1

(
sin2m τj

+
m−1∑

k=0

s1k sin2m−2k−2 τj

)]
+

N∑

j=1

bj

ωj
I

2m+1
2

j

×
[

sin τj

2m + 1

(
cos2m τj +

m−1∑

k=0

s1k cos2m−2k−2 τj

)]
,

(56)

where τj = ωjt + δj and s1k = (2k+1m(m − 1) . . . (m −
k))/((2m − 1)(2m − 3) . . . (2m − 2k − 1)).

For even integers (q = 2m), we find
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∫ N∑

j=1

(ajI
m
j sin2m(ωit + δi) + bjI

m
j cos2m(ωit + δi))dt

=
N∑

j=1

aj

ωj
I

q
2
j

[− cos τj

2m

(
sin2m−1 τj +

m−1∑

k=0

s2k sin2m−2k−1 τj

)
+

(2m − 1)!!
2mm!

τj

]

+
N∑

j=1

bj

ωj
I

q
2
j

[
sin τj

2m

(
cos2m−1 τj +

m−1∑

k=0

s2k cos2m−2k−1 τj

)
+

(2m − 1)!!
2mm!

τj

]
,

(57)

where s2k = ((2m − 1)(2m − 3) . . . (2m − 2k +
1))/(2k(m − 1)(m − 2) . . . (m − k)). The above expres-
sions can be derived by considering the reduction for-
mulas for the integrals of sinn θ and cosn θ and they can
be written as

∫
sinn θdθ = − 1

n
sinn−1 θ cos θ +

n − 1
n

∫
sinn−2 θdθ,

∫
cosn θdθ =

1
n

cosn−1 θ cos θ +
n − 1

n

∫
cosn−2 θdθ.

4 Non-isochronous systems

In this section, we present the method of generating
nonlinear oscillators having non-isochronous property.
Differing from isochronous systems, these systems have
the property of amplitude dependent frequency of oscil-
lations. We point out below that this property essen-
tially arises from the fact that the the form of the func-
tion f(x, y) should be related to an integral of motion
and we make the simplest of choice f(x, y) = f(I),
where I = x2 + y2, the energy integral of the linear
harmonic oscillator. the details are given in the follow-
ing. To make our investigations systematic, we start
our discussion by considering a system of two coupled
first-order ODEs.

4.1 Two-coupled non-isochronous systems

In this case, the nonlinear ODEs take the form (see
Eq.(9)):

ẋ = ωf(x, y)y, ẏ = −ωf(x, y)x. (58)

From Eq. (58), we find

yẋ − xẏ

(x2 + y2)
= f(x, y)ω. (59)

Upon introducing the angle variable expression (13) in
Eq. (59), the latter equation becomes

θ̇ = Ω(x, y), (60)

where Ω = ωf(x, y). One may observe that unlike the
isochronous case, here the angular velocity is not a
constant but a function of x and y. This constraint
introduces a connection between amplitude and the fre-
quency, as we see below.

Now we analyze the structure of the form f(x, y).
Since it appears inside the phase it should be a constant.
So we can consider any form of a constant associated
with the function f(x, y) and consequently the resultant
system becomes a nonisochronous one. Obviously, the
simplest choice one can make for the function f(x, y) is
that it can be a function of an integral of motion, that
is f(x, y) = f(I). This considered integral should be
independent of t. Since we are studying a second-order
system the obvious choice is the first integral (I = H =
x2 + y2). With these arguments we choose f(x, y) =
f(H(x, y)).

To obtain the general solution of (58), we follow the
same procedure as discussed in the case of isochronous
systems. Considering H = x2+y2 and using the expres-
sion (13), we find

y2 = H − y2 tan2(Ωt + δ), (61)

from which we can fix

y =
√

H cos(Ωt + δ). (62)

Now substituting (62) in (13), we obtain

x =
√

H sin(Ωt + δ). (63)

Replacing Ω = ωf(H) in Eqs. (62) and (63), we end up
with

x(t) =
√

H sin
(
f(H)ωt + δ

)
,

y(t) =
√

H cos
(
f(H)ωt + δ

)
. (64)

The methodology given above clearly demonstrates the
interdependency between amplitude and the frequency
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of oscillations in a class of nonlinear non-isochronous
systems.

4.2 Generalization to 2N -coupled first-order
non-isochronous nonlinear equations

In this section, we generalize the results given in the
previous subsection to the system of N -coupled non-
linear oscillators of Liénard type. Here we consider the
equation of motion in the form

ẋi = f(x, y)ωiyi, ẏi = −f(x, y)ωixi, i = 1, 2, · · · , N,

(65)

where f(x, y) = f(x1, x2, . . . , xN , y1, y2, . . . , yN ). To
construct the general solution of Eq. (65), we proceed
in the following way.

From Eq. (65) we can derive the following expres-
sions, namely

yiẋi − xiẏi = ωif(x, y)(x2
i + y2

i ), i = 1, 2, ..., N.

(66)

Let us choose f(x, y) = f(H) = f(H1,H2, · · · ,HN ),
where

x2
i + y2

i = Hi, i = 1, 2, . . . (67)

Substituting the form f(x, y) = f(H) in (66), we
obtain

yiẋi − xiẏi = ωif(H)((x2
i + y2

i ), i = 1, 2, . . . , N.

(68)

Following the steps given in Sec. 5, we derive the solu-
tion of Eq. (65) in the form

xi(t) =
√

Hi sin

(

f(H)ωit + δi

)

, i = 1, 2, . . . , N,

(69)

yi(t) =
√

Hi cos

(

f(H)ωit + δi

)

, i = 1, 2, . . . , N,

(70)

where δi, i = 1, 2, 3, . . . , 2N , are integration constants.
Out of the 2N integrals, N integrals show explicit time
dependency as

δi = cot−1

[
yi

xi

]
− Ωit = cot−1

[
yi

xi

]
− f(H)ωit,

i = 1, 2, . . . , N (71)

and the remaining N integrals exhibit time indepen-
dency in the form

Hi = x2
i + y2

i , i = 1, 2, . . . , N. (72)

These 2N functionally independent integrals provide
the general solution of (65).

4.3 Examples: nonisochronous oscillators

4.3.1 Example: Mathews–Lakshmanan oscillator

To demonstrate the theory presented above, we choose
f(x, y) = [1 + λ(x2 + y2)]−

1
2 so that Eq. (58) becomes

ẋ =
ωy

√
1 + λ(x2 + y2)

, ẏ = − ωx
√

1 + λ(x2 + y2)
.

(73)

where λ and ω2 are arbitrary constants. Rewriting Eq.
(73) as a second order differential equation in x, we
obtain the celebrated Mathews–Lakshmanan oscillator
equation [26]

(1 + λx2)ẍ − λxẋ2 + ω2x = 0. (74)

The restriction λ = 0 gives harmonic oscillator equa-
tion. Eq. (74) admits the Lagrangian and Hamiltonian
structures, respectively, of the form

L =
ẋ2 − ω2x2

2(1 + λx2)
and H =

1
2
[p2(1 + λx2) +

ω2x2

(1 + λx2)
],

(75)

where the canonically conjugate momentum p is given
by p = ẋ

(1+λx2) .
During the past few years several studies have been

made to explore various physical and mathematical
properties of the nonlinear oscillator equation (74), see,
for example, Refs. [34]–[40].

The general solution of (73) can be identified from
Eq. (64) in the form

x(t) = A sin
(
(1 + λA2)−1/2ωt + δ

)
,

y(t) = A cos
(
(1 + λA2)−1/2ωt + δ

)
, (76)

where A and δ are integration constants. Here A is
related to the energy integral by H = E =

1
2wA2

1+λA2 .
In Fig. 3, we demonstrate both the harmonic oscil-

lator Eq. (2) and the nonlinear oscillator Eq. (73)
exhibiting periodic oscillations with the same ampli-
tude for identical initial conditions. However, the non-
linear oscillator Eq. (73) exhibits amplitude-dependent
frequency of oscillations. By changing the initial con-
ditions, the amplitude of the oscillations also gets
changed. Depending on the value of the amplitude A,
the frequency Ω of the nonlinear oscillator (73) also
changes. Further, this is also confirmed by the solution
given in (76), where the amplitude A is related with the
frequency Ω through the expression Ω2 = ω2

1+λA2 .
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Fig. 3 Time series plot of
equations (2) and (73) (red
and black) exhibiting
periodic oscillations with
same amplitude but with
different frequencies for
different initial conditions
a x(0) = u(0) = −0.5 and
y(0) = v(0) = 0.5 and c
x(0) = u(0) = − 1 and
y(0) = v(0) = 0.5.
Corresponding phase space
portraits are given in b
and d for λ = ω = 1.0

(c) (d)

(b)(a)

4.3.2 Example: two-coupled nonlinear
Mathews–Lakshmanan (ML) oscillator equation

Here, we consider a system of two-coupled nonlinear ML
oscillator equation whose equation of motion is given
by

ẋ1 = fw1y1, ẋ2 = fw2y2, ẏ1 = −fw1x1,

ẏ2 = −fw2x2, (77)

where f = [1 + λ(x2
1 + x2

2 + y2
1 + y2

2)]
− 1

2 . Rewriting the
above four first-order ODEs into two coupled second
order ODEs in the variables x1 and x2, we find

(1 + λ(x2
1 + x2

2))ẍ1 − λx1(ẋ2
1 +

w2
1

w2
2

ẋ2
2) + w2

1x1 = 0,

(1 + λ(x2
1 + x2

2))ẍ2 − λx2(
w2

2

w2
1

ẋ2
1 + ẋ2

2) + w2
2x2 = 0,

(78)

where λ, w1 and w2 are arbitrary parameters.
Following the procedure given in the previous section,

we find the general solution in the form

x1 =
√

H1 sin((1 + λ(H1 + H2)(−1/2))w1t + δ1),

y1 =
√

H1 cos((1 + λ(H1 + H2)(−1/2))w1t + δ1),

x2 =
√

H2 sin((1 + λ(H1 + H2)(−1/2))w2t + δ2),

y2 =
√

H2 cos((1 + λ(H1 + H2)(−1/2))w2t + δ2),
(79)

where Hi and δi, i = 1, 2, 3, 4, are integration constants.
One important point we wish to note here is that the
general solution for the coupled ML oscillators has been
given for the case w1 �= w2. In Ref. [41], the authors
have generalized the one dimensional ML oscillator to
two dimensions as well as n-dimensions by considering
the parameter w as same in all the dimensions.

4.3.3 Example: 2N -coupled nonlinear ML oscillator
equation

The equation of motion for the 2N -coupled nonlinear
ML oscillator can be written as

ẋi = f(x, y)ωiyi, ẏi = −f(x, y)ωixi, i = 1, 2, · · · , N,

(80)

where f(x, y) = f = [1 + λ(x2
1 + x2

2 + · · · + x2
N + y2

1 +
y2
2 + · · · + y2

N )]−
1
2 . Rewriting the above 2N first-order

ODEs into N -coupled second-order ODEs in the vari-
ables x1, x2, · · · , xN , we find
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(1 + λ

N∑

j=1

x2
j )ẍi − λxi

N∑

j=1

w2
i

w2
j

ẋ2
j + ω2

i xi = 0, (81)

where λ and ω2
i are arbitrary constants. Choosing

f(x, y) = f(H) = (1 + λ
∑N

i=1 Hi)−1/2, we obtain the
general solution of (81) in the form

xi(t) =
√

Hi sin

((
1 + λ

N∑

j=1

Hj

)−1/2

ωit + δi

)

,

yi(t) =
√

Hi cos

((
1 + λ

N∑

j=1

Hj

)−1/2

ωit + δi

)

,

i = 1, 2, . . . , N, (82)

where Hi and δi are the integration constants.

5 Conclusion

In this work, we have discussed a method of generat-
ing isochronous and non-isochronous nonlinear oscilla-
tors from the integrals of the simple harmonic oscil-
lator equation. By considering the integrals to be in
the same form for both the linear and nonlinear oscil-
lators, we have identified the nonlinear oscillators that
posses either isochronous and non-isochronous property
(involving harmonic functions). We then considered two
coupled first order ODEs and discussed the method of
constructing the solution for both the cases. In each
case we have also demonstrated the theory with exam-
ples. We then extended the theory to 2N coupled first
order ODEs. We have also derived the general solution
and presented the explicit forms of integrals for both
the cases. We have also given examples for each of the
cases. As far as the isochronous systems are concerned,
the value of the exponent q for the function f in Sect. 3
decides the nature of the solution which will be either
periodic or damped oscillations. The general solution
and the integrals for the 2N -coupled ML oscillator sys-
tem which possesses the non-isochronous property are
also presented for the first time in the literature.
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