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Abstract

In this article, a boundary value problem for a nonlinear system of singularly perturbed
two second order differential equations in which only the first equation is multiplied by
a small positive parameter is considered. The first component of the solution exhibits
boundary layers whereas the second component exhibits less-severe layers. A numer-
ical method composed of a classical finite difference scheme applied on a piecewise
uniform Shishkin mesh is suggested to solve the system. The method is proved to
be essentially second order convergent in the maximum norm uniformly with respect
to the perturbation parameter. Numerical illustration presented supports the proved
theoretical results.

Keywords Singular perturbation problems - Boundary layers - System of nonlinear
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Parameter-uniform convergence
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1 Introduction

Singular perturbation problems are widespread in nature. For instance, these problems
arise in various fields of applied mathematics such as fluid dynamics [1] and control
systems [14]. Systems of singularly perturbed nonlinear reaction—diffusion equations
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arise, for example, in catalytic reaction theory [2]. Classical numerical methods are
not suitable for these problems due to the multiscale behaviour of the solutions [1].

Various numerical methods for several scalar singularly perturbed nonlinear dif-
ferential equations are reported in [3—8]. Different systems of singularly perturbed
semilinear reaction—diffusion equations are solved asymptotically by Jeffries [9] and
numerically by Shishkina and Shishkin [10]. In [11], a third order uniformly con-
vergent numerical method consisting of a finite difference scheme of Hermite type
with standard central difference on a piecewise-uniform Shishkin mesh is developed
for a semilinear system of singularly perturbed second order differential equations
with same perturbation parameters. Article [12] deals with the construction of a first
order convergent numerical method for a semilinear system of singularly perturbed
differential equations with different perturbation parameters.

Recently, Manikandan and Tamilselvan [13] have developed a second order
parameter-uniform convergent numerical method for a semilinear system of singu-
larly perturbed second order differential equations of reaction—diffusion type with
different perturbation parameters.

All the singular perturbation parameters associated with a system of differential
equations need not have small magnitudes. For example, a two-time scale system in
control systems can be modeled by a system of two differential equations [14] in
which the coefficient of the highest derivative term in one equation is a very small
positive parameter whereas the coefficient of the highest derivative term in the other
equation is one. In [15], a first order convergent numerical method is constructed for
a system of singularly perturbed differential equations of reaction diffusion in which
only the first equation is multiplied by a small parameter ¢. For this same problem
a second order convergent numerical method is developed in [16]. Induced by the
works reported in [15,16], a second order convergent numerical method based on
classical finite difference operator is designed in [17] for a general system of n(n > 2)
singularly perturbed differential equations of reaction diffusion type in which only the
firstm(m < n) equations are perturbed. Motivated by [13,15-17], in the present article
an essentially second order parameter-uniform convergent computational method is
developed for a nonlinear system of singularly perturbed second order differential
equations of reaction—diffusion type.

The following system of partially singularly perturbed nonlinear differential equa-
tions is considered in this article.

Tu(x) :=—Eu’(x)+f(x,u) =0 on 2 =(0,1) )
with u(0) =B andu(l) =pn 2)

where B = (B1, B2)T and u = (w1, o) are constant vectors. Forallx € £ = [0, 1],
u(x) = (u1(x), u2()’, f(x, w) = (fi(x, w), folx, u)’ € C*(Q2 xR?). Eisa
2 x 2 diagonal matrix with diagonal elements €1, &> such that 0 < e1 < ¢ < 1. Itis
assumed that for all (x, u) € £2 x R2, the nonlinear terms satisfy

i,
MR 0k j=12amdk £ ), )
J
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2
dfi(x,u
min Z L >« > 0, for a constant «. 4)
_)661522 = 8’/ij
=1, -

The implicit function theorem together with conditions (3) and (4) ensures the
existence of a unique solution u to the problem (1)—(2) such thatu € (C 4(2))2.
Based on the magnitudes of the parameters ¢; and &, the following four cases arise.

Case (i): O<er<ey<1
Case (ii): O<e<e=1
Case (iii): O<e =& =1
Case (iv): O<e =& < 1.

(&)

Case (i) is explained in [13] in detail. The problem is unperturbed with respect to
Case (iii). The first component © alone exhibits boundary layers with respect to Case
(ii). Both the components exhibit boundary layers of same width with respect to Case
(iv). Hence the problem with respect to Case (iv) can be solved by following similar
technique which is used to solve the problem with respect to Case (ii). Thus Case (ii)
is discussed elaborately in this article. With respect to Case (ii), the problem (1)—(2)
is rewritten as follows

Tu(x) := —Eu’(x)+f(x,u)=0 on (6)
with u(0) = B andu(l) = u @)

where B = (B1, f2)T and p = (i1, uo)” are constant vectors. E is a 2 x 2 diagonal
matrix with diagonal elements ¢, 1 such that 0 < & < 1.

The reduced problem (obtained by putting ¢ = 0) corresponding to (6)—(7) is
defined by

fikx, r) =0, ®)
—r)(x) + fa(x, 1) =0, on 2, r2(0) = B2, r2(1) = 2 ©)

wherer = (r, r2)T. Conditions (3) and (4) together with the implicit function theorem
ensure the existence of a unique solution for (8)—(9). Moreover, r and its derivatives
are bounded independently of ¢. Hence,

@l <C for 1=1,2, k=0,1,2 and x € 2. (10)

Throughout the article C, C; and C3 indicate positive constants, which are free
from x, ¢ and the discretization parameter(N).
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2 Analytical results

Shishkin decomposition of the solution u of (6)—(7) is considered in the following
form
u(x) =v(x) + w(x)

where v(x) is the solution of
—Ev'(x)+f(x, v) =00n £, v(0) =r(0), v(1) =r(1) (11)
and w(x) is the solution of

—Ew'(x)+f(x,v+w)—f(x, v) =0o0n £, (12)
w(0) =u(0) —v(0), w(l) =u(l) —v(1). (13)

In the following lemma the bounds of v(x) and its derivatives are established.
Lemmal Forallx € 2,
@) <C, fori=1,2and j =0,1,2,

k
Pl <c <1 +el‘§> and [v” (x0)| < C, for k =3, 4.

Proof For convenience, v is further decomposed as follows

v=q+q
where q is the solution of
fitx, @) =0, (14)
d*g, .
SR pe =0, xe (15)
dx
¢2(0) = g2(1) =0 (16)
and q is the solution of
d2q~1 - A ~ dzél
—e— 7 T A4+ - filx, @) =7 a7
d*q . .
— ez T L& a+q) - Ll q) =0, x e, (18)

g1(0) = v1(0), q1(1) = vi(1), 2(0) = v2(0), g2(1) = vo(1). (19)
Let x € £2. Using (8) and (14),

O11(x)(G1 —r1) +012(x)(G2 —r2) =0 (20)
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and using (9) and (15),

P
- W(é?z — 1)+ 61 (x)(G1 —r1) +602(x)(G2—r) =0 (21)

d
where 0;;(x) = a—f(x X ﬁ(x)) i, j =1, 2, are intermediate values.

Using (20) in (21)

2

d 0 [}
—ﬁ(éz—r2)+(922()€) M)( —r)=o.

011(x)

Consider the linear operator,

012(x)621 (x)

Ly (x) :=—y"(x) + (6’22(x) B

) Y(x)=0 (22)

where ¥ = ¢ — rp. The operator L satisfies the maximum principle in Chapter 6 of

d*(go —

[18]. Thus, || G2 —r2 [|< C and | —(f )
X

(@2 — r2)’ (x)| = |¥/(x)| < C. Differentiating (22) with respect to x once and twice

and using the bounds of ¥, ¥’ and ¥, we get [ (x)| < C and |V (x)| < C.

Using the bound of ¢ in (20), || g1 — r1 || < C. Hence

||< C. Using the mean value theorem,

148 < ¢, fork=0,1,2,3,4and || | < C.

Differentiating (20) with respect to x once, twice, thrice and four times and using the
estimates of || qé ) I< C, k=1,2,3,4, we get

149 1< cC, fork=1,2,3,4.

From (17)—(19),

~ _ ~ dz /\1
g T 050G + 05,05 = e

(23)
+ ezl(x)QI + 922()6)6]2 =0,

611(0) =v1(0), g1 (1) =vi(1), g200) = v2(0), g2(1) = v2(1)

d2

a L
where 9;'} (x) = ﬁfl'(x, ny(x), i, j = 1,2, are intermediate values. From (23), for

i=12,

d*g; dk
||—||<c k=0,1,2, ||£||<cand
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d g 1_k
1= =c(1+677), k=34
Hence from the bounds for q and q, the required bounds of v follow. O
From (12),
—ew{ (x) + A1 (D) w(x) + A2(x)wa(x) =0, (24)
—w5 (xX) 4+ A1 (w1 (x) + A w2 (x) =0, x € 2 (25)
d fi - . .
where A;;(x) = a—(x, ¢fi (x)), i, j =1, 2, are intermediate values.
u; :

The component w is given a further decomposition

wx) =w!(x) +w(x) (26)
satisfying — E (wH"(x) + Ax)w!(x) =0, x € 2 (27)

with w! (0) = w(0), w/(1) =0 and

—EWY' @)+ Ax)W (x)=0, x e (28)
. Ai(x)  Agp(x)
r — r i p—
withw”(0) =0, w"(1) = w(1) where A(x) = |:A21(x) )»zz(x)] .
The layer functions B!, B" and B related with the solution u of (6)—(7) are defined
by
Bl(x) = e Va/VE| Br(x) = e~ (Im0V/VE,
B(x) = B'(x) + B"(x) on £2.

In the following lemma the bounds of w' and its derivatives are established. Analogous
results hold for w” and its derivatives by following similar procedure with 1 —x instead
of x.

Lemma2 Foranyx € £2,

wh(x)| <1 Bx)+Cre (1 — B()),
(wH® )| < Ce *2Bl(x), k=1,2,
|WhHP )| < Ce 2B (x), |e )P ()| < Ce™' B (x)

and

wh(x)| < Cae(1-B'(x),

|(whH)® )| < €1 Bl(x) + Cre (1 — B/ (x)), k=1,2,

l(wy)® (x)| < Ce~*k=D2Bl(x), k =3,4.
Proof From (27) we find that the defining equations for w’ are same as those in [17].
Hence the bounds of w' and its derivatives can be derived as in [17]. O
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3 The Shishkin mesh and the discrete problem

On the interval £ a piecewise uniform Shishkin mesh with N mesh-intervals is now

constructed as follows. Let 2V = {x ]}N ! then 2" = {x j}N:0~ The interval 2 is
subdivided into 3 sub-intervals as follows [0 t]U(t, 1 —=t]U(1 —7, 1]. The transition
parameter 7, separating the uniform meshes, is defined by

f_mm{4 ://__1 N} (29)

From the total N mesh points, % mesh points are placed on the outer domain
(r, 1 — t] uniformly and on each of the inner domains [0, 7] and (1 — 7, 1] a uniform
fine mesh of % mesh points is placed.

The discrete problem corresponding to (6)—(7) is defined to be

TVU(x)) = —E §?°U(x;) +f(x;, U(x;)) =0, forx; € 2V, (30)
U(xo) = u(xp) and Uxy) = ulxy). (31)

V(xjr1) — Vixj)

(DT = D)V (x))

Here §°V (x;) = , DtV (xj) = , D7Vi(xj) =
hj hj+l
Vi) —Vix — h h h — h
VD = VOG0 o Ry = MR e Mgy = Y
h; 2 2

4 Error analysis

Let ¥ and © be any two mesh functions defined on 2" . Then for any x; € 2N, we
have

(T —TVO@)(x;)
= —E§(¥ — ©)(x;) +f(xj, ¥(x;)) —f(x;, Ox)))
of
= —E§ (¥ — 0)(x;) + a—ul(xjn S(xj) (¥ — O1)(x))
of
+ a—(xj', C(x;) (W2 — ©2)(x))
uy

= (TV) (¥ — @) (x;) (32)

of
where B—(x j» &(xj)), i = 1,2, are intermediate values and (TY)’ is the Frechet
u;

derivative of the nonlinear operator TV. Since (T")’ is a linear operator, it satisfies
the discrete maximum principle presented in [17]. Hence,

-0 < C | @) Ww-0)|=C |[T"¥-T"® | on2"V. (33)
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Lemma 3 Let u be the solution of (6)—(7) and U be the solution of (30)—(31). Then,
2
IU-—u|<C (N_llnN> . (34)
Proof From (33), we have
IU-uj<C|TU-TVu]|.

Consider,
I T™Vu |=] TNu —TVU || .

Hence,
| TNa—TVNU || = || TVu |
= TNu—Tu |

=E | Pu—u")x)) |
<E( v =v"0) I+ 11 (82w —w"(x)) D).

We note that the bounds for v and w are the same as those in [17]. Hence for x; € EN,
the required result (34) follows by using the same arguments in [17] to the linear
operator (TV)’. o

5 The continuation method

System of nonlinear differential equations in (6)—(7) is modified to an artificial system
of nonlinear partial differential equations as follows.

2
e n)  p D L b utn) =0, () e 0. 1) x (0. T,
ot 9x2
u(0,7) =u(0), u(l,t) =u(l), t >0 and u(x,0) = wui;(x), 0 <x < 1.
(35)

The continuation method mentioned for a scalar nonlinear differential equation in [1]
is modified appropriately for a system of nonlinear differential equations as given
below which is used to solve (35).For j =1,...,Nandk=1,...K,

D;U(xj, i) — E8U(x;, i) +£(xj, Ulxj, 1)) = 0, (36)
U, %) =u(0), U, 1) =u(l) forall £k and

oV (37)
U(xj, 0) = i (x;) forall x; € 2

Vi) =V (xj,0)

(D} =DV (xj.10)
h; hjt1

where 83V(xj,tk) = , D;'V(xj,tk)

)

DYV (xj, ) = TEHOSEELI DrY (), gy) = LRI,
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The initial guess u;,;;(x) is taken to be u(0) + x (u(1) — u(0)). The choices of the
step size h; = ty — t—1 and the number of iterations K are determined as follows.
Define, foreachi =1, 2,

|Ui(xj, tr) — Ui (xj, tr—1)|
hy

erri(k) = 12}22(/\/ (

err(k) = ln_lalvé erri(k).

> for k=1,...,K,
(38)

The step size A, is chosen sufficiently small so that the error decreases with the increas-
ing k. Precisely, we choose &, such that

err(k) <err(k—1) forallk,1 <k <K. 39
The number of iterations K is based on the condition that
err(K) <tol (40)

where t0l is a prescribed small tolerance. Methodology given below is used to evaluate
the numerical solution for (35).

Algorithm:

Step 1: Start from fy with initial step size h; = 1.0.

Step 2: Suppose at some value of k, condition (39) is not satisfied, then leave the
present step and start from the previous step #x_1 with h; as h;/2 and then
continue halving the step size h; until finding a &; for which condition (39)
is satisfied.

Step 3: If condition (39) is satisfied at each step /,, then continue the process until
either condition (40) is satisfied or K = 100.

Step 4: If condition (40) is not satisfied, then it is assumed that the stepping process
is stalled because of the choice of a large initial step. In such a case, the entire
process is repeated from 7o by halving the initial step size h; to h; /2.

Step 5: If condition (40) is satisfied, then the final values of U(x;, tx) are taken as
the numerical approximations to the solution of the corresponding continuous
problem.

6 Numerical illustration
In order to show the efficiency and accuracy of the proposed method for the sys-

tem of partially singularly perturbed nonlinear second order differential equations, a
numerical example is presented in this section.

Example 1 Consider the BV

—Eu"(x) +f(x, u) =0, for x € (0, 1),
u(0) = (0.5,0.07 and u(1) = (0.5,0.)7
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Table 1 Values of DV, pN & CI) for o = 0.9.

€ Number of mesh points N
64 128 256 512 1024 2048

2~ 1 5.9067e—04  3.0205e—04 1.5272e—04  7.6787e—05  3.8500e—05 1.9277e—05
272 1.4046e—04  7.6773e—05  4.0060e—05  2.0453e—05 1.9277e—05  5.1930e—06
273 2.1591e—04  1.0771e—04  5.3798e—05  2.6882e—05 1.3436e—05  6.7171e—06
24 3.3474e—04  1.6711e—04  8.3488e—05  4.1729¢e—05  2.0860e—05 1.0429e—05
275 4.2400e—04  2.1180e—04 1.0584e—04  5.2903e—05  2.6447e—05 1.3222e—-05
276 4.8974e—04  2.4462e—04 1.2224e—04  6.1104e—05  3.0548e—05 1.5273e—05
277 7.3474e—04  2.6857e—04 1.3425e—04  6.7106e—05  3.3548e—05 1.6773e—05
28 1.4441e—03  3.7334e—04 1.4299e—04  7.1475e—05  3.5734e—05 1.7866e—05
279 2.6552e—03  7.3476e—04 1.8773e—04  7.4641e—05  3.7315e—05 1.8657e—05
27100 22417e—03  7.1854e—04  3.7334e—04  9.4215e—05  3.8454¢—05 1.9226e—05
2~ 2.2417e—03 1.1972e—03  5.1086e—04  2.1862e—04  7.9713e—05 1.9634e—05
2712 22417e—03 1.1972e—03  5.1086e—04  2.1862e—04  8.2674e—05  2.8328e—05
2~ 13 2.2417e—03 1.1972e—03  5.1086e—04  2.1862e—04  8.2674e—05  2.8328e—05
DN 2.6552e—03 1.1972e—03  5.1086e—04  2.1862e—04  8.2674e—05  2.8328e—05
pN 1.1492 1.2287 1.2245 1.4029 1.5452

C;V 3.1128e—01 2.7580e—01 2.3126e—01 1.9448e—01 1.4452e—01 9.7306e—02

where E = diag(e, 1) and f(x,u) = ((u1(x))’ 4 2u;(x) — sin(0.Duz(x),
U2(0))* + 2ur (1) — w1 ()"

Problem in Example 1 is solved by the continuation method constructed in Sect. 5
for a system of partially singularly perturbed nonlinear differential equations. The
tolerance ‘fol’ is taken to be 0.00001.

The e-uniform order of convergence and the e-uniform error constant are computed
using the general methodology from [1]. The notations DV, p" and C [I,V bear the same
meaning as in [1].

The maximum pointwise errors and the rate of convergence for the above BVP are
presented in Table 1. The solution of this problem for N = 128 and ¢ = 273, 279,
279, 2~ 1% s portrayed in Fig. 1.

7 Conclusion

From the table, it is evident that the maximum pointwise error (D™) decreases when
the number of mesh points (N) increases and the maximum pointwise error stabilizes
for each N as ¢ approaches zero. Further, from the table, we also observe that the
proposed method is almost second order parameter-uniform convergent. This is in
agreement with Lemma 3.

From Fig. 1 we observe that the component u; of the solution exhibits boundary
layers at both the boundaries x = 0 and x = 1 whereas the component u, remains
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Fig.3 log—log plot for the error

smooth throughout the domain. Moreover, we perceive that the component # in Fig. 1
changes very rapidly near the boundaries as ¢ approaches zero.

The decomposition of the domain [0, 1] for N = 64 and ¢ = 27! is portrayed
in Fig. 2. It is evident from Fig. 2 that, for very small values of the parameter &, the
domain [0, 1] is decomposed into sub-intervals of different lengths and the mesh is
dense near the boundaries and coarse away from the boundaries.

The Log—-log plot for the error in the suggested numerical method for the above
problem is presented in Fig. 3. From Fig. 3 we perceive that the maximum pointwise
errors are bounded by 2 (N~! In N)? which is proved in Lemma 3.
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