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Abstract
In this article, a boundary value problem for a nonlinear system of singularly perturbed
two second order differential equations inwhich only the first equation ismultiplied by
a small positive parameter is considered. The first component of the solution exhibits
boundary layers whereas the second component exhibits less-severe layers. A numer-
ical method composed of a classical finite difference scheme applied on a piecewise
uniform Shishkin mesh is suggested to solve the system. The method is proved to
be essentially second order convergent in the maximum norm uniformly with respect
to the perturbation parameter. Numerical illustration presented supports the proved
theoretical results.

Keywords Singular perturbation problems · Boundary layers · System of nonlinear
differential equations · Finite difference scheme · Shishkin mesh ·
Parameter-uniform convergence
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1 Introduction

Singular perturbation problems are widespread in nature. For instance, these problems
arise in various fields of applied mathematics such as fluid dynamics [1] and control
systems [14]. Systems of singularly perturbed nonlinear reaction–diffusion equations
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arise, for example, in catalytic reaction theory [2]. Classical numerical methods are
not suitable for these problems due to the multiscale behaviour of the solutions [1].

Various numerical methods for several scalar singularly perturbed nonlinear dif-
ferential equations are reported in [3–8]. Different systems of singularly perturbed
semilinear reaction–diffusion equations are solved asymptotically by Jeffries [9] and
numerically by Shishkina and Shishkin [10]. In [11], a third order uniformly con-
vergent numerical method consisting of a finite difference scheme of Hermite type
with standard central difference on a piecewise-uniform Shishkin mesh is developed
for a semilinear system of singularly perturbed second order differential equations
with same perturbation parameters. Article [12] deals with the construction of a first
order convergent numerical method for a semilinear system of singularly perturbed
differential equations with different perturbation parameters.

Recently, Manikandan and Tamilselvan [13] have developed a second order
parameter-uniform convergent numerical method for a semilinear system of singu-
larly perturbed second order differential equations of reaction–diffusion type with
different perturbation parameters.

All the singular perturbation parameters associated with a system of differential
equations need not have small magnitudes. For example, a two-time scale system in
control systems can be modeled by a system of two differential equations [14] in
which the coefficient of the highest derivative term in one equation is a very small
positive parameter whereas the coefficient of the highest derivative term in the other
equation is one. In [15], a first order convergent numerical method is constructed for
a system of singularly perturbed differential equations of reaction diffusion in which
only the first equation is multiplied by a small parameter ε. For this same problem
a second order convergent numerical method is developed in [16]. Induced by the
works reported in [15,16], a second order convergent numerical method based on
classical finite difference operator is designed in [17] for a general system of n(n ≥ 2)
singularly perturbed differential equations of reaction diffusion type in which only the
firstm(m < n) equations are perturbed.Motivated by [13,15–17], in the present article
an essentially second order parameter-uniform convergent computational method is
developed for a nonlinear system of singularly perturbed second order differential
equations of reaction–diffusion type.

The following system of partially singularly perturbed nonlinear differential equa-
tions is considered in this article.

Tu(x) := −E u ′′(x) + f(x, u ) = 0 on Ω = (0, 1) (1)

with u(0) = β and u(1) = μ (2)

whereβ = (β1, β2)
T andμ = (μ1, μ2)

T are constant vectors. For all x ∈ Ω = [0, 1],
u(x) = (u1(x), u2(x))T , f(x, u ) = ( f1(x, u ), f2(x, u ))T ∈ C4(Ω × R

2). E is a
2 × 2 diagonal matrix with diagonal elements ε1, ε2 such that 0 < ε1 ≤ ε2 ≤ 1. It is
assumed that for all (x,u ) ∈ Ω × R

2, the nonlinear terms satisfy

∂ fk(x, u )

∂u j
≤ 0, k, j = 1, 2 and k �= j, (3)

123



Higher order computational method for a singularly… 1353

min
x∈Ω
i=1,2

⎛
⎝

2∑
j=1

∂ fi (x,u )

∂u j

⎞
⎠ ≥ α > 0, for a constant α. (4)

The implicit function theorem together with conditions (3) and (4) ensures the
existence of a unique solution u to the problem (1)–(2) such that u ∈ (C 4(Ω))2.

Based on the magnitudes of the parameters ε1 and ε2 the following four cases arise.

Case (i): 0 < ε1 < ε2 < 1
Case (i i): 0 < ε1 < ε2 = 1
Case (i i i): 0 < ε1 = ε2 = 1
Case (iv): 0 < ε1 = ε2 < 1.

(5)

Case (i) is explained in [13] in detail. The problem is unperturbed with respect to
Case (i i i). The first component u1 alone exhibits boundary layers with respect to Case
(i i). Both the components exhibit boundary layers of same width with respect to Case
(iv). Hence the problem with respect to Case (iv) can be solved by following similar
technique which is used to solve the problem with respect to Case (i i). Thus Case (i i)
is discussed elaborately in this article. With respect to Case (i i), the problem (1)–(2)
is rewritten as follows

Tu(x) : = −E u ′′(x) + f(x, u ) = 0 on Ω (6)

with u(0) = β and u(1) = μ (7)

where β = (β1, β2)
T and μ = (μ1, μ2)

T are constant vectors. E is a 2 × 2 diagonal
matrix with diagonal elements ε, 1 such that 0 < ε < 1.

The reduced problem (obtained by putting ε = 0) corresponding to (6)–(7) is
defined by

f1(x, r ) = 0, (8)

−r ′′
2 (x) + f2(x, r ) = 0, on Ω, r2(0) = β2, r2(1) = μ2 (9)

where r = (r1, r2)T .Conditions (3) and (4) togetherwith the implicit function theorem
ensure the existence of a unique solution for (8)–(9). Moreover, r and its derivatives
are bounded independently of ε. Hence,

|r (k)
l (x)| ≤ C for l = 1, 2, k = 0, 1, 2 and x ∈ Ω. (10)

Throughout the article C,C1 and C2 indicate positive constants, which are free
from x, ε and the discretization parameter(N ).
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2 Analytical results

Shishkin decomposition of the solution u of (6)–(7) is considered in the following
form

u(x) = v(x) + w(x)

where v(x) is the solution of

− E v ′′(x) + f(x, v ) = 0 on Ω, v(0) = r(0), v(1) = r(1) (11)

and w(x) is the solution of

−E w ′′(x) + f(x, v + w ) − f(x, v ) = 0 on Ω, (12)

w(0) = u(0) − v(0), w(1) = u(1) − v(1). (13)

In the following lemma the bounds of v(x) and its derivatives are established.

Lemma 1 For all x ∈ Ω,

|v( j)
i (x)| ≤ C, for i = 1, 2 and j = 0, 1, 2,

|v(k)
1 (x)| ≤ C

(
1 + ε

1− k
2

)
and |v(k)

2 (x)| ≤ C, for k = 3, 4.

Proof For convenience, v is further decomposed as follows

v = q̃ + q̂

where q̂ is the solution of

f1(x, q̂ ) = 0, (14)

−d2q̂2
dx2

+ f2(x, q̂ ) = 0, x ∈ Ω, (15)

q̂2(0) = q̂2(1) = 0 (16)

and q̃ is the solution of

−ε
d2q̃1
dx2

+ f1(x, q̃ + q̂ ) − f1(x, q̂ ) = ε
d2q̂1
dx2

, (17)

−d2q̃2
dx2

+ f2(x, q̃ + q̂ ) − f2(x, q̂ ) = 0, x ∈ Ω, (18)

q̃1(0) = v1(0), q̃1(1) = v1(1), q̃2(0) = v2(0), q̃2(1) = v2(1). (19)

Let x ∈ Ω. Using (8) and (14),

θ11(x)(q̂1 − r1) + θ12(x)(q̂2 − r2) = 0 (20)
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and using (9) and (15),

− d2

dx2
(q̂2 − r2) + θ21(x)(q̂1 − r1) + θ22(x)(q̂2 − r2) = 0 (21)

where θi j (x) = ∂ fi
∂u j

(x, χ fi (x)), i, j = 1, 2, are intermediate values.

Using (20) in (21),

− d2

dx2
(q̂2 − r2) +

(
θ22(x) − θ12(x)θ21(x)

θ11(x)

)
(q̂2 − r2) = 0.

Consider the linear operator,

Lψ(x) := −ψ ′′(x) +
(

θ22(x) − θ12(x)θ21(x)

θ11(x)

)
ψ(x) = 0 (22)

where ψ = q̂2 − r2. The operator L satisfies the maximum principle in Chapter 6 of

[18]. Thus, ‖ q̂2 − r2 ‖≤ C and ‖ d2(q̂2 − r2)

dx2
‖≤ C . Using the mean value theorem,

|(q̂2 − r2)′(x)| = |ψ ′(x)| ≤ C . Differentiating (22) with respect to x once and twice
and using the bounds of ψ,ψ ′ and ψ ′′, we get |ψ ′′′(x)| ≤ C and |ψ(iv)(x)| ≤ C .

Using the bound of ψ in (20), ‖ q̂1 − r1 ‖≤ C . Hence

‖ q̂(k)
2 ‖≤ C, for k = 0, 1, 2, 3, 4 and ‖ q̂1 ‖≤ C .

Differentiating (20) with respect to x once, twice, thrice and four times and using the
estimates of ‖ q̂(k)

2 ‖≤ C, k = 1, 2, 3, 4, we get

‖ q̂(k)
1 ‖≤ C, for k = 1, 2, 3, 4.

From (17)–(19),

−ε
d2q̃1
dx2

+ θ∗
11(x)q̃1 + θ∗

12(x)q̃2 = ε
d2q̂1
dx2

,

−d2q̃2
dx2

+ θ∗
21(x)q̃1 + θ∗

22(x)q̃2 = 0,

q̃1(0) = v1(0), q̃1(1) = v1(1), q̃2(0) = v2(0), q̃2(1) = v2(1)

(23)

where θ∗
i j (x) = ∂ fi

∂u j
(x, η fi (x)), i, j = 1, 2, are intermediate values. From (23), for

i = 1, 2,

‖ dkq̃i
dxk

‖ ≤ C, k = 0, 1, 2, ‖ dkq̃2
dxk

‖≤ C and
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‖ dkq̃1
dxk

‖ ≤ C
(
1 + ε1−

k
2

)
, k = 3, 4.

Hence from the bounds for q̃ and q̂, the required bounds of v follow. 	

From (12),

−ε w′′
1(x) + λ11(x)w1(x) + λ12(x)w2(x) = 0, (24)

−w′′
2(x) + λ21(x)w1(x) + λ22(x)w2(x) = 0, x ∈ Ω (25)

where λi j (x) = ∂ fi
∂u j

(x, φ fi (x)), i, j = 1, 2, are intermediate values.

The component w is given a further decomposition

w(x) = w l(x) + w r (x) (26)

satisfying − E (w l)′′(x) + Λ(x)w l(x) = 0, x ∈ Ω (27)

with wl(0) = w(0), wl(1) = 0 and

− E (w r )′′(x) + Λ(x)w r (x) = 0, x ∈ Ω (28)

with w r (0) = 0, w r (1) = w(1) where Λ(x) =
[
λ11(x) λ12(x)
λ21(x) λ22(x)

]
.

The layer functions Bl , Br and B related with the solution u of (6)–(7) are defined
by

Bl(x) = e−x
√

α/
√

ε, Br (x) = e−(1−x)
√

α/
√

ε,

B(x) = Bl(x) + Br (x) on Ω.

In the following lemma the bounds ofw l and its derivatives are established. Analogous
results hold forw r and its derivatives by following similar procedurewith 1−x instead
of x .

Lemma 2 For any x ∈ Ω,

|wl
1(x)| ≤ C1 Bl(x) + C2 ε

(
1 − Bl(x)

)
,

|(wl
1)

(k)(x)| ≤ C ε−k/2Bl(x), k = 1, 2,
|(wl

1)
(3)(x)| ≤ C ε−3/2Bl(x), |ε (wl

1)
(4)(x)| ≤ C ε−1Bl(x)

and
|wl

2(x)| ≤ C2 ε
(
1 − Bl(x)

)
,

|(wl
2)

(k)(x)| ≤ C1 Bl(x) + C2 ε
(
1 − Bl(x)

)
, k = 1, 2,

|(wl
2)

(k)(x)| ≤ C ε−(k−2)/2Bl(x), k = 3, 4.

Proof From (27) we find that the defining equations for w l are same as those in [17].
Hence the bounds of w l and its derivatives can be derived as in [17]. 	
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3 The Shishkinmesh and the discrete problem

On the interval Ω a piecewise uniform Shishkin mesh with N mesh-intervals is now

constructed as follows. Let ΩN = {x j }N−1
j=1 then Ω

N = {x j }Nj=0. The interval Ω is
subdivided into 3 sub-intervals as follows: [0, τ ]∪(τ, 1−τ ]∪(1−τ, 1].The transition
parameter τ, separating the uniform meshes, is defined by

τ = min

{
1

4
,
2
√

ε√
α

ln N

}
. (29)

From the total N mesh points, N
2 mesh points are placed on the outer domain

(τ, 1− τ ] uniformly and on each of the inner domains [0, τ ] and (1− τ, 1] a uniform
fine mesh of N

4 mesh points is placed.
The discrete problem corresponding to (6)–(7) is defined to be

TNU(x j ) = −E δ2U(x j ) + f(x j , U(x j )) = 0, for x j ∈ ΩN , (30)

U(x0) = u(x0) and U(xN ) = u(xN ). (31)

Here δ2V (x j ) = (D+ − D−)V (x j )

h j
, D+V (x j ) = V (x j+1) − V (x j )

h j+1
, D−V (x j ) =

V (x j ) − V (x j−1)

h j
, h j = x j − x j−1, h j = h j+1 + h j

2
, h0 = h1

2
and hN = hN

2
.

4 Error analysis

Let � and � be any two mesh functions defined on Ω
N
. Then for any x j ∈ ΩN , we

have

(TN� − TN�)(x j )

= −E δ2(� − �)(x j ) + f(x j , �(x j )) − f(x j , �(x j ))

= −E δ2(� − �)(x j ) + ∂f
∂u1

(x j , ζ (x j ))(
1 − �1)(x j )

+ ∂f
∂u2

(x j , ζ (x j ))(
2 − �2)(x j )

= (TN ) ′(� − �)(x j ) (32)

where
∂f
∂ui

(x j , ζ (x j )), i = 1, 2, are intermediate values and (TN ) ′ is the Frechet

derivative of the nonlinear operator TN . Since (TN ) ′ is a linear operator, it satisfies
the discrete maximum principle presented in [17]. Hence,

‖ � − � ‖ ≤ C ‖ (TN ) ′(� − �) ‖= C ‖ TN� − TN� ‖ on ΩN . (33)
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Lemma 3 Let u be the solution of (6)–(7) and U be the solution of (30)–(31). Then,

‖ U − u ‖ ≤ C
(
N−1 ln N

)2
. (34)

Proof From (33), we have

‖ U − u ‖ ≤ C ‖ TNU − TNu ‖ .

Consider,
‖ TNu ‖=‖ TNu − TNU ‖ .

Hence,

‖ TNu − TNU ‖ = ‖ TNu ‖
= ‖ TNu − Tu ‖
= E ‖ (δ2u − u ′′)(x j ) ‖
≤ E (‖ (δ2v − v ′′)(x j ) ‖ + ‖ (δ2w − w ′′)(x j ) ‖).

We note that the bounds for v andw are the same as those in [17]. Hence for x j ∈ Ω
N
,

the required result (34) follows by using the same arguments in [17] to the linear
operator (TN ) ′. 	


5 The continuationmethod

System of nonlinear differential equations in (6)–(7) is modified to an artificial system
of nonlinear partial differential equations as follows.

∂u(x, t)

∂t
− E

∂2u(x, t)

∂x2
+ f(x, u(x, t)) = 0, (x, t) ∈ (0, 1) × (0, T ],

u(0, t) = u(0), u(1, t) = u(1), t ≥ 0 and u(x, 0) = uini t (x), 0 < x < 1.

(35)

The continuation method mentioned for a scalar nonlinear differential equation in [1]
is modified appropriately for a system of nonlinear differential equations as given
below which is used to solve (35). For j = 1, . . . , N and k = 1, . . . K ,

D−
t U(x j , tk) − E δ2xU(x j , tk) + f(x j , U(x j , tk−1)) = 0, (36)

U(0, tk) = u(0), U(1, tk) = u(1) for all k and

U(x j , 0) = uini t (x j ) for all x j ∈ Ω
N (37)

where δ2x V (x j , tk) = (D+
x −D−

x )V (x j ,tk )

h j
, D+

x V (x j , tk) = V (x j+1,tk )−V (x j ,tk )
h j+1

,

D−
x V (x j , tk) = V (x j ,tk )−V (x j−1,tk )

h j
, D−

t V (x j , tk) = V (x j ,tk )−V (x j ,tk−1)

ht
.
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Higher order computational method for a singularly… 1359

The initial guess uini t (x) is taken to be u(0) + x(u(1) − u(0)). The choices of the
step size ht = tk − tk−1 and the number of iterations K are determined as follows.
Define, for each i = 1, 2,

erri (k) = max
1≤ j≤N

( |Ui (x j , tk) −Ui (x j , tk−1)|
ht

)
for k = 1, . . . , K ,

err(k) = max
i=1,2

erri (k).
(38)

The step size ht is chosen sufficiently small so that the error decreases with the increas-
ing k. Precisely, we choose ht such that

err(k) ≤ err(k − 1) for all k, 1 < k ≤ K . (39)

The number of iterations K is based on the condition that

err(K ) ≤ tol (40)

where tol is a prescribed small tolerance.Methodology given below is used to evaluate
the numerical solution for (35).

Algorithm:

Step 1: Start from t0 with initial step size ht = 1.0.
Step 2: Suppose at some value of k, condition (39) is not satisfied, then leave the

present step and start from the previous step tk−1 with ht as ht/2 and then
continue halving the step size ht until finding a ht for which condition (39)
is satisfied.

Step 3: If condition (39) is satisfied at each step ht , then continue the process until
either condition (40) is satisfied or K = 100.

Step 4: If condition (40) is not satisfied, then it is assumed that the stepping process
is stalled because of the choice of a large initial step. In such a case, the entire
process is repeated from t0 by halving the initial step size ht to ht/2.

Step 5: If condition (40) is satisfied, then the final values of U(x j , tK ) are taken as
the numerical approximations to the solution of the corresponding continuous
problem.

6 Numerical illustration

In order to show the efficiency and accuracy of the proposed method for the sys-
tem of partially singularly perturbed nonlinear second order differential equations, a
numerical example is presented in this section.

Example 1 Consider the BV

−E u ′′(x) + f(x, u ) = 0, for x ∈ (0, 1),

u(0) = (0.5, 0.1)T and u(1) = (0.5, 0.1)T
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Table 1 Values of DN , pN & CN
p for α = 0.9.

ε Number of mesh points N

64 128 256 512 1024 2048

2−1 5.9067e−04 3.0205e−04 1.5272e−04 7.6787e−05 3.8500e−05 1.9277e−05

2−2 1.4046e−04 7.6773e−05 4.0060e−05 2.0453e−05 1.9277e−05 5.1930e−06

2−3 2.1591e−04 1.0771e−04 5.3798e−05 2.6882e−05 1.3436e−05 6.7171e−06

2−4 3.3474e−04 1.6711e−04 8.3488e−05 4.1729e−05 2.0860e−05 1.0429e−05

2−5 4.2400e−04 2.1180e−04 1.0584e−04 5.2903e−05 2.6447e−05 1.3222e−05

2−6 4.8974e−04 2.4462e−04 1.2224e−04 6.1104e−05 3.0548e−05 1.5273e−05

2−7 7.3474e−04 2.6857e−04 1.3425e−04 6.7106e−05 3.3548e−05 1.6773e−05

2−8 1.4441e−03 3.7334e−04 1.4299e−04 7.1475e−05 3.5734e−05 1.7866e−05

2−9 2.6552e−03 7.3476e−04 1.8773e−04 7.4641e−05 3.7315e−05 1.8657e−05

2−10 2.2417e−03 7.1854e−04 3.7334e−04 9.4215e−05 3.8454e−05 1.9226e−05

2−11 2.2417e−03 1.1972e−03 5.1086e−04 2.1862e−04 7.9713e−05 1.9634e−05

2−12 2.2417e−03 1.1972e−03 5.1086e−04 2.1862e−04 8.2674e−05 2.8328e−05

2−13 2.2417e−03 1.1972e−03 5.1086e−04 2.1862e−04 8.2674e−05 2.8328e−05

DN 2.6552e−03 1.1972e−03 5.1086e−04 2.1862e−04 8.2674e−05 2.8328e−05

pN 1.1492 1.2287 1.2245 1.4029 1.5452

CN
p 3.1128e−01 2.7580e−01 2.3126e−01 1.9448e−01 1.4452e−01 9.7306e−02

where E = diag (ε, 1) and f(x,u ) = (
(u1(x))5 + 2u1(x) − sin(0.1)u2(x),

(u2(x))3 + 2u2(x) − u1(x)
)T

.

Problem in Example 1 is solved by the continuation method constructed in Sect. 5
for a system of partially singularly perturbed nonlinear differential equations. The
tolerance ‘tol’ is taken to be 0.00001.

The ε-uniform order of convergence and the ε-uniform error constant are computed
using the general methodology from [1]. The notations DN , pN andCN

p bear the same
meaning as in [1].

The maximum pointwise errors and the rate of convergence for the above BVP are
presented in Table 1. The solution of this problem for N = 128 and ε = 2−3, 2−6,

2−9, 2−14 is portrayed in Fig. 1.

7 Conclusion

From the table, it is evident that the maximum pointwise error (DN ) decreases when
the number of mesh points (N ) increases and the maximum pointwise error stabilizes
for each N as ε approaches zero. Further, from the table, we also observe that the
proposed method is almost second order parameter-uniform convergent. This is in
agreement with Lemma 3.

From Fig. 1 we observe that the component u1 of the solution exhibits boundary
layers at both the boundaries x = 0 and x = 1 whereas the component u2 remains
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Fig. 2 Decomposition of [0, 1] for N = 64 and ε = 2−14
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Fig. 3 log–log plot for the error

smooth throughout the domain. Moreover, we perceive that the component u1 in Fig. 1
changes very rapidly near the boundaries as ε approaches zero.

The decomposition of the domain [0, 1] for N = 64 and ε = 2−14 is portrayed
in Fig. 2. It is evident from Fig. 2 that, for very small values of the parameter ε, the
domain [0, 1] is decomposed into sub-intervals of different lengths and the mesh is
dense near the boundaries and coarse away from the boundaries.

The Log–log plot for the error in the suggested numerical method for the above
problem is presented in Fig. 3. From Fig. 3 we perceive that the maximum pointwise
errors are bounded by 2 (N−1 ln N )2 which is proved in Lemma 3.
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