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Abstract
The core aims of the present study are first to compute the Scaled Drought Condition Index (SDCI) by integrating Precipita-
tion Condition Index (PCI), Temperature Condition Index (TCI), and Vegetation Condition Index (VCI) for the northeast 
(NE) monsoon period during the year 2000 to 2019 in the tropical semi-arid ecosystem of Tamil Nadu (TN) state of south-
ern India. Secondly, to assess the dynamics of vulnerability to agricultural drought by using SDCI and identify the critical 
vulnerability zones in TN state. The PCI, TCI, and VCI were computed from time-series Climate Hazards Group InfraRed 
Precipitation with Station data (CHIRPS) products, Moderate Resolution Imaging Spectroradiometer (MODIS) surface 
reflectance of MOD11A2, and vegetation indices of MOD13Q1, respectively. The results explain that about 0.1, 13.0, and 
39.5% of TN state especially in the northern, NE, western, and southern zones are vulnerable to extreme, severe, and moder-
ate vulnerability to agricultural drought, respectively. In the drought year (2016), about 79.9% area of TN state experienced 
extreme vulnerability to agricultural drought. The validation of SDCI with the 3-month Standardized Precipitation Index 
(3-SPI) and Vegetation Health Index (VHI) for the dry year (2016) and wet year (2010) shows a moderate to a strong a posi-
tive correlation. It evidently shows the influence of rainfall on overall vegetation and agricultural drought. The study amply 
reveals that PCI, TCI, and VCI are the most important indices associated with agricultural drought and are clearly explained 
by the robust SDCI computed from temporal CHIRPS and MODIS datasets in the effective assessment of vulnerability to 
agricultural drought in the TN state.
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Introduction

Globally, drought is one of the extreme natural climatic haz-
ards after the floods and the most widespread natural disas-
ter that severely affects the natural ecosystems, global food 
production, and human livelihoods (Hu et al. 2019; West 
et al. 2019). In the last three decades, the drought-affected 
area has been increased by two folds (Nagarajan 2009). The 
period, frequency, and degree of droughts vary from region 

to region. It can disrupt the economic and ecological sys-
tems that affect the livelihoods of the population (Reddy 
and Singh 2016). In recent times, the impact of recurring 
droughts on crop yields has further exacerbated by climate 
change and augmented by various anthropogenic activities 
(AghaKouchak et al. 2015). In India, vulnerability to agri-
cultural drought is more because of a prolonged dry spell 
during the monsoon season (Dutta et al. 2015; Ward and 
Makhija 2018) and has an impact on groundwater and food 
security to feed 1.3 billion people. Nearly 60% of India’s 
population depends on the agricultural sector, and it con-
tributes about 17% of the gross domestic product (GDP) of 
the nation (Arjun 2013; Reddy et al. 2017). Crop stress due 
to droughts directly affect crop production and the nation’s 
overall economy (Miyan 2015; Fahad et al. 2017). Indian 
agriculture mainly depends on monsoon, especially on 
southwest (SW) monsoon (June to September) (Kumar et al. 
2013; Ray et al. 2020). However, agriculture in Tamil Nadu 
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(TN) state is mainly depends on the northeast (NE) mon-
soon (October to December), and it comprises nearly 60% 
of the state’s mean annual rainfall. The effective assessment 
of drought vulnerability needs consistent records of spatial 
information at closer intervals for a considerable period of 
time on a variety of agro-climatic variables (Kogan 2001).

Integrated remotely sensed data, and Geographic Informa-
tion System (GIS) was proven as the most reliable technique 
in the assessment of vulnerability to agricultural drought as 
remote sensing provides consistent, fine to very fine spatial 
resolution, real-time data availability, and GIS offers robust 
analytical capabilities (Reddy et al. 2020; Kumar et al. 2021; 
Sandeep et al. 2021). Time-series satellite-based inputs pro-
vide reliable datasets to study the changes in vegetation and 
the corresponding drought patterns on spatio-temporal scale 
by integrating satellite data in the GIS environment (Zam-
brano et al. 2016; Reddy et al. 2020). GIS has advantages not 
only in the generation of various thematic databases but also 
facilitates to perform spatial analysis and modeling (Reddy 
2018) in the evaluation of the intensity of drought (Belal 
et al. 2014). Several researchers reported the use of remote 
sensing technologies in monitoring the agriculture drought 
(Madadgar et al. 2017; Kumar et al. 2021; Sandeep et al. 
2021; Senamaw et al. 2021). Climate Hazards Group Infra-
Red Precipitation with Station data (CHIRPS) products and 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
data provide consistent and long-term datasets, which were 
widely used in the monitoring of droughts (Qian et al. 2016; 
Habitou et al. 2020) and assessment of vulnerability to agri-
cultural drought (Zambrano et al. 2018; Juan et al. 2019; 
Sultana Most et al., 2021). As remote sensing-based indices 
like normalized difference vegetation index (NDVI) were 
extensively used in the assessment, and monitoring of the 
dynamics of agricultural drought (Tucker et al., 2001; Fari-
datul and Ahmed, 2020; Reddy et al. 2020). Globally, many 
authors have used various indices computed from temporal 
MODIS datasets in the assessment of agriculture drought 
(Table 1).

In India, about 15.8% (52.0 Mha) and 35.4% (116.5 Mha) 
of the landmass were identified under arid and semi-arid 
climatic conditions, respectively (Sehgal et al. 1992). The 
Intergovernmental Panel on Climate Change (IPCC) has 
estimated an increasing trend of droughts in the semi-arid 
ecosystem of India (IPCC 2013). The arid and semi-arid 
ecosystems of India experienced many droughts; however, 
their frequency, duration, and intensity vary from region to 
region. The conventional approaches with ground-based 
observations alone are not sufficient to effectively assess, 
and monitor the agricultural drought (Chang et al. 2017; 
Du et al. 2018). The systematic analysis and establishment 
of the relationship among environmental parameters and 
vegetation cover are assumed of greater importance espe-
cially in arid and semi-arid regions to precisely assess and 
monitor the dynamics of agricultural droughts (Mahajan and 
Dodamani, 2016). SPI has been widely used as a robust indi-
cator in determining and monitoring the drought intensity 
(Almedeij 2014; Khan et al. 2017; Okal et al. 2020; Liu 
et al. 2021). Vegetation Condition Index (VCI) developed 
by Kogan (1990) has been used effectively in monitoring the 
vegetation water stress and provides accurate information on 
drought in different climatic regions (Quiring and Ganesh 
2010; Kundu et al. 2016). Vegetation Health Index (VHI) 
is expressed as a function of VCI (Kogan 1995) and Tem-
perature Condition Index (TCI) designates the vegetation 
health or stress (Kogan 2002), and it has a close relationship 
with soil moisture (Yan et al. 2016). VHI has been exten-
sively used in analyzing vegetative drought than other indi-
ces (Kundu et al. 2016; Gidey et al. 2018). The Normalized 
Difference Water Index (NDWI) and NDVI derived from 
MODIS data have been widely used to assess the agricultural 
drought (Sun et al. 2020). However, in India, limited stud-
ies have been reported in the assessment of vulnerability to 
agricultural drought, particularly in the semi-arid ecosystem 
by using time-series CHIRPS and MODIS datasets (Pandey 
et al. 2020, 2021). Agriculture in TN state mainly depends 
on NE monsoon, its failure or deficit rainfall triggers severe 

Table 1   Indices derived from MODIS in the assessment of agriculture drought across the globe

S. No. Indices Study area Reference

1 Visible and Shortwave Infrared Drought Index (VSDI) USA Zhang et al. (2013)
2 Vegetation Water Supply Index (VWSI) China Cai et al. (2011)
3 Integrated Surface Drought Index (ISDI) China Wu et al. (2015)
4 Land Surface Water Index (LSWI) USA Bajgain et al. (2017)
5 Modified Shortwave Infrared Perpendicular Water Stress Index (MSPSI) China Feng et al. (2013)
6 Anomaly Vegetation Condition Index (AVCI) China Yan et al. (2012)
7 Normalized Vegetation Supply Water Index (NVSWI) China Abbas et al. (2014)
8 Ratio Dryness Monitoring Index (RDMI) China Zhang et al. (2019)
9 Temperature-Vegetation Dryness Index (TVDI) China Gao et al. (2011)
10 Temperature-Vegetation-Soil Moisture Dryness Index (TVMDI) Australia Amani et al. (2017)
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agricultural drought, crop failure, water, and food shortage 
in the state (Nathan 1998). In view of this, the present study 
assumes greater importance and it is aimed firstly, to com-
pute the indices of SPI, Precipitation Condition Index (PCI), 
TCI, VCI, and VHI derived from time-series meteorological, 
CHIRPS, and MODIS datasets for NE monsoon period of 
two decades (2000 to 2019) to analyze their spatio-temporal 
variabilities. Secondly, compute the SDCI by integrating 
PCI, TCI, and VCI to monitor the spatio-temporal dynam-
ics of vulnerability to agricultural drought, and identify the 
critical zones in the TN state.

Materials and methods

Study area

TN state is located in the southern part of India lies between 
8° 00′ to 13° 30′ N. latitudes and 76° 00′ to 80° 18′ of E. 
longitudes with an area of 13.00 (Mha), and it accounts for 
3.96% of India’s total geographical area (TGA) (Fig.1a). The 
semi-arid conditions occupy about 90%, except the coastal, 
and Western Ghat region of the study area. The state has 
a tropical climate inland, and an equatorial, maritime cli-
mate in coastal regions. The mean annual temperature of 
the state ranges between 28 to 40°C in summer and 18 to 
26°C in the winter. The NE monsoon season is the state’s 
prominent rainfall season, as the state receives about 60% 
of the total mean annual rainfall during this season and the 
remaining 40% received during the SW monsoon period 
(Fig. 1b). The predominant soils in the state are red loam, 
laterite, black, alluvial, and saline soils. Red loam soils are 
present in the interior and the coastal region of TN state, 
whereas the black soils are found in NW, SE, and southern 
parts of the state (Natarajan et al. 1997). The state has about 
4.7 Mha cultivated area (36% of TGA); it includes the rain-
fed area of 2.6 Mha and it constitutes about 54% of the total 
cultivated area. The important food crops like rice, maize, 
finger millet, sorghum, and pearl millet, cash crops like cot-
ton, sugarcane, oilseeds, tea, coffee, coconut and chillies, 
and horticulture crops like bananas, mangoes, and guava is 
grown in the state.

Datasets used

The gridded daily high-resolution rainfall data (0.25° × 
0.25°) from 1990 to 2019 were downloaded from the India 
Meteorological Department (IMD) (https://​www.​imdpu​
ne.​gov.​in/) and computed the mean monthly rainfall data 
and seasonal SPI. The monthly CHIRPS version 2.0 from 
2000 to 2019 at high spatial resolution (0.05° × 0.05°), 
was used for drought characterization and obtained from 
the Climate Hazards Group of the University of California 

(https://​www.​chc.​ucsb.​edu/​data). The 16-day MODIS NDVI 
products (MOD13Q1) at a 250-m spatial resolution were 
downloaded from the Land Processes Distributed Active 
Center (LPDAAC; http://​lpdaac.​usgs.​gov/) and smoothed by 
using Savitzky-Golay (Chen et al. 2004) filter on TIMESAT 
software (Jönsson and Eklundh 2002). Subsequently, maxi-
mum value composites (MVC) were generated to minimize 
non-vegetation effects (Maisongrande et al. 2004) and used 
to compute VCI to monitor vegetation dynamics. MODIS 
8-day LST products (MOD11A2) at a 1-km resolution were 
used in the computation of TCI. The summary of datasets 
used, their time period and resolutions are shown in Table 2.

Computation of seasonal SPI

SPI was proposed by McKee et al. (1993), and it considered 
precipitation for any given time scale, and it was developed 
by using historical data to assess, and monitor the degree 
of drought for a given rain gauge station based on their SPI 
values. As a statistical technique, SPI was widely used to 
quantify the degree of wetness or dryness on multiple time 
scales. By using a long-term period of 30 years (1990 to 
2019), SPI was computed at a 3-month time scale for 174 
stations (IMD grids) and the ordinary kriging technique was 
used in ArcMap to develop the monthly rasters. The positive 
3-SPI values indicate the no-drought scenario, whereas its 
negative values designate drought conditions. McKee et al. 
(1993) classification scheme of droughts was followed to 
classify the obtained SPI values as extremely dry (−2 and 
less), severely dry (−1.5 to −1.99), moderately dry (−1.0 to 
−1.49), near normal (−0.99 to 0.99), moderately wet (1.0 
to 1.49), very wet (1.5 to 1.99), and extremely wet (2.0 and 
more).

where σ is the standard deviation for the ith station, Xij is 
the precipitation for the ith station and jth observation, Xi is 
the mean precipitation for the ith station.

Computation of PCI from CHIRPS

As an index, PCI can be computed from either ground-based 
or satellite-derived precipitation measurements. PCI detects 
the deficiency of precipitation from the climatic signal, as 
the normalized fluctuation of the precipitation derived from 
its long-term minimum and maximum (Du et al. 2013). The 
values of PCI always range from 0 to 1, as an area experi-
ences very low precipitation, the PCI value comes near or 
equal to 0, while it comes close to 1 in flooding conditions. 
The monthly PCI was computed for the period from 2000 to 
2019 during the NE monsoon season.

(1)SPI =

(

Xij − Xi

)

�
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Fig. 1a-b   a Location map of the study area depicted with standard 
false color composite (FCC) generated from near infrared (NIR), red 
and blue bands of MODIS 13Q1 product of Julian date 161 of the 

year 2019. b Distribution of mean rainfall, minimum temperature, 
and maximum temperature of northeast monsoon during the period 
from 2000 to 2019
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where CHIRPSi is the current CHIRPS, CHIRPSmax, and 
CHIRPSmin are the pixel values of precipitation, maximum, 
and minimum, respectively of the respective month from 
2000 to 2019. By using PCI, the precipitation deficit and 
surplus in the TN state were monitored (Islam and Uyeda 
2007).

Computation of TCI from LST

In the study, the thermal effect of drought was determined 
by using TCI proposed by Kogan (1997), and its values vary 
between 0 and 1. To compute TCI, the monthly LST datasets 
derived from MODIS 8-day surface reflectance composite 
(MOD11A2) were used (Wan and Li 1997). The lower val-
ues of TCI infer the severe drought condition, whereas, the 
high value denotes wet condition. The TCI values close or 
equal to 0 indicates a drought process, whereas in wet condi-
tions, it is near to 1. The monthly TCI for the NE monsoon 
period from the year 2000 to 2019 was computed by using 
the following expression.

where LSTi denotes the current month temperature, 
LSTmax and LSTmin represents the absolute maximum, and 
minimum temperatures, respectively in the respective month 
from 2000 to 2019.

Computation of VCI from NDVI

Kogan (1995) proposed VCI and demonstrated how close 
the current month's NDVI is to the long-term average meas-
ured minimum NDVI. VCI between 0 and 1 illustrates a 
very unfavorable to optimal vegetation shift. In extreme dry 
months, obviously the poor vegetation condition exhibits 
low VCI of close to or equal to 0. The VCI of 0.5 indicates 
the quality of acceptable vegetation. However, at optimal 
vegetation conditions, VCI values are close to 1 (Jain et al. 
2009).

(2)PCI =

(

CHIRPSi − CHIRPSmin

)

(

CHIRPSmax − CHIRPSmin

)

(3)TCI =

(

LSTmax − LSTi

)

(

LSTmax − LSTmin

)

where NDVIi represents the current month NDVI, 
NDVImax and NDVImin indicate the maximum and mini-
mum NDVI, respectively, which were computed by the cor-
responding pixels of the respective month from the entire 
NDVI records of the considered period (2000 to 2019).

Computation of VHI

VHI characterizes the health of the vegetation by assum-
ing that stressed conditions are linked to lower-than-normal 
NDVI and higher than normal temperature (Kogan 1997, 
2001). VHI is a resultant of the additive function of VCI and 
TCI and is expressed as follows:

where α is a parameter that quantifies the contribution of 
each factor to the overall health of vegetation. VHI values 
range from 0 to 1, and were classified into five categories: 
extreme drought (<0.1), severe drought (0.1–0.2), moder-
ate drought (0.2–0.3), mild drought (0.3–0.4), no drought 
(>0.4) (Kogan 1995). VHI is a proxy characterizing vegeta-
tion health or a combined estimation of moisture and ther-
mal conditions.

Computation of SDCI

SDCI proposed by Rhee et al. (2010) was considered as 
a multi-source and multi-date remote-sensing-derived 
index. It was calculated from three distinct scaled indi-
ces namely TCI, VCI, and PCI. For the computation of 
scaled indices, vegetation, temperature, and precipita-
tion data were obtained from NDVI, LST, and CHIRPS 
datasets, respectively. SDCI values range from 0 to 1 and 
the low SDCI values indicate the severe drought con-
dition. The SDCI categorized into five drought classes 
namely extreme drought (SDCI < 0.2), severe drought 
(0.2 ≤ SDCI < 0.3), moderate drought (0.3 ≤ SDCI < 
0.4), mild drought (0.4 ≤ SDCI < 0.5), and no drought 
(SDCI > 0.5).

(4)VCI =

(

NDVIi − NDVImin

)

(

NDVImax − NDVImin

)

(5)VHI = �VCI + (1 − �)TCI

(6)SDCI = 0.25TCI + 0.5PCI + 0.25VCI

Table 2   Datasets used in the 
study

Data set Variable Temporal coverage Temporal resolution Spatial resolution

IMD gridded data SPI 1990 to 2019 Daily 0.25° × 0.25°
MOD13Q1 VCI 2000 to 2019 16 day 250 m
MOD11A2 TCI 2000 to 2019 8 day 1000 m
CHIRPS PCI 2000 to 2019 Monthly 0.05° × 0.05°
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Pearson correlation test between SDCI with 3‑SPI 
and VHI

It was executed between SDCI, 3-SPI, and VHI to appraise 
the relationship between rainfall, soil moisture, and drought 
indices derived from meteorological and remotely sensed 
data, respectively. To perform it, the mean SDCI, 3-SPI, and 
VHI values were computed at the tehsil level (sub-district 
unit). It was conducted between monthly SDCI, VHI, and 
3-SPI (Ji and Peters 2003) to determine their relationship 
from October to December of dry and wet years. It was 
executed by using the following expression.

where Rxy is the correlation coefficient, n is the length of 
the time-series, and i is the number of the years from 2000 
to 2019 (1 to 20), whereas xi, and yi are the 3-SPI, VHI, and 
the SDCI in year i, respectively, and x, and y are the mean 
3-SPI, VHI, and the mean SDCI, respectively, from 2000 to 
2019. Galarça et al. (2010) and Figueiredo Filho and da Silva 
Júnior (2009) stated that the correlation coefficient (R) has 
values ranging from −1 to 1, where values close to 1 (R = 1) 
indicate a perfect positive correlation and values close to −1 

(7)Rxy =

∑n

i=1

�

xi − x
��

yi − y
�

�

∑n

i=1

�

xi − x
�2

�

∑n

i=1

�

yi − y
�2

(R = −1) represents the perfect negative correlation between 
the two variables. Pearson correlation coefficient “R” was 
categorized as weak (0.10 to 0.30), moderate (0.40 to 0.60), 
and strong (0.70 to 1) (Dancey and Reidy, 2006). Figure 2 
depicts the detailed methodology adopted in the study.

Results

Spatio‑temporal variability of seasonal PCI

The variability of seasonal PCI of the NE monsoon sea-
son indicates high PCI from the year 2002 to 2010 in the 
central and southern districts. In the year 2000, the severe 
drought extent was perceived with a PCI value of 0.1 to 0.2 
in southern districts and no drought scenario with PCI val-
ues of >0.4 in the coastal districts of the state. During the 
year 2000 to 2010, the higher PCI was experienced in Kan-
yakumari, Tuticorin, Tirunelveli, Virudhunagar, Tiruppur, 
Karur, Namakkal, Salem, Tiruchirappalli, Perambalur, and 
Dindigul districts. Furthermore, in 2012 and 2013, the 
high values of PCI were noticed during the NE monsoon 
season. During the year 2012, PCI values of 0.1 to 0.2 
indicate severe drought conditions in Madurai, Theni, Vir-
udhunagar, Dindigul, and parts of Tiruppur, Coimbatore, 
and Tirunelveli districts. However, the remaining districts 

Fig. 2   Flowchart of the methodology adopted in the study
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Fig. 3   Spatio-temporal pattern of SDCI during northeast monsoon (2000–2019) of TN state
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experienced moderate drought (0.2 to 0.3) to no drought 
scenario (>0.4) in the same year. In the year 2015, the 
majority of the districts in the state were under no drought 
(>0.4). In the wet year, 2010 about 83.2% of the TGA 
of TN state was under no drought (>0.4), particularly in 
Madurai, Theni, Virudhunagar, Dindigul, Tiruppur, Coim-
batore, Tirunelveli, Salem, Namakkal, Tiruchirappalli, 

and Perambalur districts. It was noticed that the moderate 
drought scenario with the PCI values of 0.2 to 0.3 was 
perceived in Tiruvallur, Kanchipuram, Chennai, Kanya-
kumari, and Tirunelveli districts. However, the remain-
ing districts experienced abnormally dry conditions with 
the PCI values of 0.3 to 0.4. In the dry year 2016, it was 
observed that the entire state was under extreme drought 

Fig. 4   a, b, c, d, e, f, g, h, i Monthly variability of 3-SPI, VHI, and SDCI in the wet year (2010) of TN state
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(PCI value of <0.1). This scarce phenomenon might hap-
pen due to the receipt of far below normal rainfall during 
the NE monsoon season.

Spatio‑temporal variability of seasonal TCI

The analysis of seasonal variability of TCI indicates the 
drought phenomenon in 2001, 2012, and 2016. In the year 
2001, extreme drought (<0.1) condition was noticed in about 
44.8% of the TGA mainly in southern districts like Kanya-
kumari, Tuticorin, Tirunelveli, and Virudhunagar districts. 
Whereas, during the same period, the higher TCI was per-
ceived in northern districts like Krishnagiri, Dharmapuri, 
Salem, and Namakkal, which experienced no drought (>0.4) 
condition. A similar drought phenomenon was observed in 
2012, where about 44% of the area was under no drought 
(>0.4) condition, 14.3% of the area under extreme drought 
(<0.1), and 11.3% of the area under severe drought (0.1 to 
0.2) condition. On the contrary, the year 2004 and 2015 were 
under favorable for agricultural practices as about 97.1% and 
92.4% of the TGA of the state was under no drought (>0.4), 
respectively. Especially, in the wet year 2010, about 99.3% 
of the TGA of TN state experienced no drought (>0.4) con-
dition. On the contrary, in the dry year of 2016, the TCI 
shows a moderate drought (0.1 to 0.2) to extreme drought 
(<0.1) conditions in about 52.4% of the TGA especially in 
the main agricultural belts of TN state like Kongu uplands 
and Cauvery delta. The districts like Krishnagiri, Dharma-
puri, Salem, Namakkal, Tiruppur, Erode, Vellore, Tiruvan-
namalai, Kanchipuram, Tiruvallur, Tiruchirappalli, Karur, 
Villupuram, Ariyalur, Perambalur, and Cuddalore were 
under lower TCI in 2016. However, some parts of southern 
districts have higher TCI values (>0.4), and it shows that 
these districts were under the minimum effect of drought. 
In some pockets, even during drought years the higher TCI 
values were observed this might be due to the availability of 
irrigation facilities, which tends to reduce moisture stress in 
the agricultural crops.

Spatio‑temporal variability of seasonal VCI

The variability of seasonal VCI between 2000 and 2019 
shows that year 2016 witnessed an extreme drought con-
dition, whereas the years 2002 and 2012 show the severe 
drought condition in the state. The year 2002 experienced 
extreme drought with VCI of <0.1 especially in the western 
part of TN state encompassing Kanchipuram, Tiruvanna-
malai, and Villupuram districts with about 12.4% of TGA. 
However, no drought (>0.4) was perceived in about 57.9% of 
TGA of the TN state. Similarly, in 2012, an extreme drought 
scenario (<0.1) was witnessed in about 10% of the state 
especially the districts of Virudhunagar, Madurai, Dindigul, 

Coimbatore, and Tiruppur, whereas no drought was noticed 
in the Vellore, Krishnagiri, Tiruvannamalai, and Villupuram 
districts of the northern region. In the wet year 2010, no 
drought condition (>0.4) was observed in about 88% of 
TN state. However, extreme drought (<0.1) condition was 
noticed in a few pockets covering about 2.6% of the TGA. In 
the year 2015, about 87.8% of the area was under no drought 
(>0.4) and 3% of TGA was under extremely drought (<0.1) 
conditions. At the same time, the extreme drought (<0.1) 
accounts for nearly 9% of the TGA of TN state spreading 
mainly in Tiruppur, Coimbatore, Ariyalur, Pudukkottai, and 
The Nilgiris districts. In the dry year of 2016, the extreme 
drought (<0.1) was noticed in the northern and western parts 
of the state mainly in Krishnagiri, Dharmapuri, Salem, Vel-
lore, Tiruvannamalai, and Tiruvallur districts covering an 
area of 54.8% of the TGA, whereas no drought (<0.1) was 
experienced in parts of Tirunelveli, Tuticorin, Virudhunagar, 
and Madurai districts and it accounts for 18.7% of the TGA 
of TN state.

Assessment of agricultural drought using SDCI

SDCI proposed by Rhee et al. (2010) was computed by 
integrating PCI, TCI, and VCI to assess the severity of vul-
nerability to agricultural drought in the study area (Fig. 3). 
The analysis of SDCI shows high variability from extreme 
drought (< 0.2) to no drought (> 0.5) conditions in two dec-
ades from the year 2000 to 2019. The results depict that 
the years 2001, 2002, 2012, and 2013 were under dry con-
ditions. In the year 2001, extreme drought was perceived 
in the southern parts, whereas, in 2002, moderate drought 
conditions mainly in northern parts were observed. In the 
years 2012 and 2013, extreme drought conditions were wit-
nessed in the SW and SE parts of TN state, respectively. 
In the dry year of 2016, about 79.9 and 16.8% of the study 
area perceived extreme drought (< 0.2) and severe drought 
(0.2 to 0.3) conditions, respectively. However, the normal 
conditions prevailed from 2005 to 2010 and 2015. In the 
wet year (2010), about 92.0% of TGA was under no drought 
in the TN state.

Monthly variability of 3‑SPI, VHI, and SDCI 
in the wet year

The monthly variability of 3-SPI, VHI, and SDCI for 
the wet year (2010) shows moderately wet to very 
wet conditions. The analysis of 3-SPI during the NE 
monsoon shows near-normal situations in Novem-
ber as compared to the wet to very wet conditions 
in October (Fig. 4a and 4b). However, in December, 
the near-normal condition was perceived in the entire 
state (Fig. 4c), except in the northern parts where the 
moderate wet condition was observed. The VHI values 
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are quite high in the state, with remarkably high val-
ues over the eastern and central region. In October 
(Fig. 4d), very low VHI (<0.1) was observed in parts 
of the Dindigul, Karur, Villupuram, and Tiruvanna-
malai districts. The higher the value of VHI, the better 

the vegetation health. It may be noted that most of the 
regions in TN state show no drought (>0.4) conditions 
during November and December (Fig. 4e and f), respec-
tively. The analysis of SDCI shows that even in the wet 
year of 2010, moderate-to-severe drought conditions 

Fig. 5   a, b, c, d, e, f, g, h, i Monthly variability of 3-SPI, VHI, and SDCI in the dry year (2016) of TN state
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were noticed in October, particularly in the Kanya-
kumari, Tirunelveli, and Tuticorin districts of TN 
state (Fig. 4g). Whereas, moderate drought conditions 
were experienced in November (Fig. 4h), particularly 
in Kanyakumari, Tirunelveli, and Tuticorin districts. 

SDCI’s analysis of December month shows no drought 
scenario (Fig. 4i). The results of monthly variability 
of 3-SPI and SDCI during the wet year clearly indicate 
the dynamics of drought and its intensity in the NE 
monsoon season.

Fig. 6   a, b, c, d, e, f Correlation between SDCI with 3-SPI and VHI in the wet year (2010) of TN state
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Monthly variability of 3‑SPI, VHI, and SDCI in the dry 
year

The monthly variability of 3-SPI shows the extent of dry 
conditions in the dry year (2016) during October, Novem-
ber, and December. In October, the extremely dry conditions 

were limited in the northern and NE regions of TN state 
(Fig. 5a). During November, the northern and eastern parts 
of TN state experienced extremely dry conditions (−2 and 
less) (Fig. 5b) and near-normal conditions in the rest of TN 
state. However, it was observed that in December, the entire 
state was under the near-normal condition (Fig. 5c) except 

Fig. 7   a, b, c, d, e, f Correlation between SDCI with 3-SPI, and VHI in the dry year (2016) of TN state
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Fig. 8:   Vulnerability zones to agricultural drought (2000-2019) in TN state
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for a few pockets of Krishnagiri and Erode districts. Analysis 
of monthly VHI shows that during the dry year of NE mon-
soon, drought appeared in the western, north western, south-
ern, and Cauvery delta regions of TN state with different 
intensities. It was noticed that due to the deficit of rainfall 
in October (Fig. 5d), severe drought (0.1–0.2) was expe-
rienced in Karur, Namakkal, Salem, Erode, Dharmapuri, 
and parts of Tiruchirappalli and Perambalur districts. The 
same trend continued in November (Fig. 5e) and December 
(Fig. 5f). Monthly analysis of SDCI indicates that drought 
was severe in October and November, and subsequently 
receded in December. In October, extreme drought (< 0.2) 
was noticed in all the districts except Madurai, Virudhu-
nagar, and Kanchipuram (Fig. 5g). Whereas, in November, 
a similar scenario was observed except in the districts of 

Tirunelveli and Tuticorin (Fig. 5h). However, in December, 
extreme drought (< 0.2) was observed in the central and the 
eastern regions of TN state (Fig. 5i). The study clearly shows 
the impact of below mean season rainfall (62.0%) during the 
dry year (2016), its impact on the variability of SDCI, and 
overall adverse crop conditions.

Discussion

Correlation of SDCI with 3‑SPI and VHI in the wet 
year

The results of SDCI were validated with an independ-
ent in situ meteorological drought index of 3-SPI and a 

Table 3   Drought affected areas 
under three drought classes 
(2000 to 2019)

Agro-climatic zones District Extreme Severe Moderate Area (in ha)

Cauvery delta zone Ariyalur 0.0 11.7 38,596.6 38,608.3
Nagapattinam 1.2 111.4 37,681.8 37,794.4
Pudukkottai 0.0 310.8 135,932.4 136,243.2
Thanjavur 0.0 41.0 59,771.3 59,812.4
Thiruvarur 0.0 0.0 8350.3 8350.3
Tiruchirappalli 0.0 1553.9 91,524.6 93,078.6

High rainfall zone Kanyakumari 806.3 112,101.2 47,515.6 160,423.2
Hilly zone The Nilgiris 6.5 10,285.4 134,548.5 144,840.3
North Eastern zone Cuddalore 0.0 838.5 117,695.5 118,534.0

Kanchipuram 3723.6 291,157.1 102,367.1 397,247.8
Tiruvallur 6010.0 241,442.5 23,139.2 27,0591.7
Tiruvannamalai 109.1 102,032.8 346,512.9 448,654.8
Vellore 2338.0 348,981.6 222,971.1 574,290.6
Villupuram 7.0 26,499.2 385,701.7 412,208.0

North Western Zone Dharmapuri 14.1 79,931.6 278,848.7 358,794.4
Krishnagiri 438.0 197,099.3 261901.9 459,439.2
Namakkal 0.0 3559.4 138,072.7 141,632.1
Salem 0.0 13,018.0 206,569.6 219,587.6

Southern zone Madurai 0.0 1741.6 203,649.3 205,390.9
Ramanathapuram 2.3 246.3 93,893.7 94,142.3
Sivaganga 0.0 11.7 91243.2 91,254.9
Tirunelveli 43.4 115,783.8 487,763.9 603,591.1
Tuticorin 0.6 5424.2 224,876.9 230,301.6
Virudhunagar 0.0 164.2 159,652.1 159,816.3

Western zone Coimbatore 126.1 91,084.8 256618.4 347,829.4
Dindigul 0.0 9411.6 245,060.6 254,472.2
Erode 0.0 656.8 65,693.9 66,350.7
Karur 0.0 340.1 43,475.4 43,815.5
Perambalur 0.0 5.9 16,102.4 16,108.3
Theni 0.0 13,657.2 196,008.6 209,665.8
Tiruppur 8.8 17,152.1 417,027.0 434,187.8
Chennai 632.1 10,162.2 64.5 10858.9

Total area (in ha) 14267.0 1694818.2 5138831.0 6847916.2
Area (in % with respect to TGA) 0.1 13.0 39.5 52.6
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combined drought index of VHI for wet the year (2010). The 
results of SDCI with 3-SPI for the wet year (2010) displays 
a strong positive correlation between SDCI and 3-SPI with 
an R value of 0.84 in October (Fig. 6a); similarly, it shows 
strong positive correlation between the SDCI with VHI of 
0.94 (Fig. 6b). During October, a strong positive correlation 
with a R value of 0.73 (Fig. 6c) was observed between SDCI 
with 3-SPI; likewise, a high-positive correlation value (0.87) 
was noticed between SDCI with VHI (Fig. 6d). In Decem-
ber, a strong positive correlation was perceived between 
SDCI and 3-SPI with a R value of 0.78 (Fig. 6e). However, 
during the same period, a moderate positive correlation was 
observed between SDCI and VHI with the R value of 0.65 
(Fig. 6f), this might be attributed to good rainfall received 
in December.

Correlation of SDCI with 3‑SPI and VHI in the dry 
year

The correlation of SDCI with 3-SPI for October in the dry 
year (2016) shows a moderate positive correlation with 
an R value of 0.57 (Fig. 7a), whereas at the same time, a 
strong positive correlation was observed between VHI and 
SDCI with an R value of 1.0 (Fig. 7b). In November, there 
was a moderate positive correlation with an R value of 
0.70 (Fig. 7c) between SDCI and 3-SPI; however, a strong 
positive correlation was observed between SDCI and VHI 
with an R value of 0.98 (Fig. 7d). Similarly, in December, 
a moderate positive correlation was noticed between SDCI 
and 3-SPI with an R value of 0.67 (Fig. 7e); nevertheless, 
it showed a very strong correlation between SDCI and VHI 
with an R value of 0.79 (Fig. 7f). The Pearson correlation 
between SDCI with 3-SPI and VHI indicates its robustness 
in the assessment of vulnerability to agricultural drought in 
time and space.

Delineation of vulnerability zones to agricultural 
drought using SDCI

The spatio-temporal pattern of agricultural drought vulner-
ability was assessed by using extreme, severe, moderate, 
mild, and no drought classes of SDCI for the period from 
2000 to 2019 (Fig. 8). However, in the study, extreme, 
severe, and moderate classes were considered to assess 
the vulnerability to agricultural drought in different agro-
climatic zones of TN state (Table 3). The detailed analy-
sis shows that approximately 0.1% of the study area is 
vulnerable to extreme drought, primarily in the districts 
of Tiruvallur, Kanchipuram, and Vellore of the NE zone. 
Whereas, in Tiruvallur, Kanchipuram, Vellore, Krishna-
giri, Dharmapuri, and Kanyakumari districts in NE, NW, 

and high rainfall zones covering about 13.0% of the area is 
under severe vulnerability to agricultural drought. About 
39.5% of TN state is under moderate vulnerability to agri-
cultural drought covering mainly Vellore, Krishnagiri, 
Dharmapuri, Tiruvannamalai, Villupuram, The Nilgiri’s, 
Salem, Coimbatore, Tiruppur, Dindigul, Theni, Madurai, 
Viruduanagar, Tuticorin, and Tirunelveli districts of NE, 
NW, western, the hilly zones and southern zones of TN 
state. Approximately 47.4% of the TN state was covered 
either under mild or no drought scenario mainly in the 
central and eastern regions of the state. However, low 
intensity of drought was perceived in Salem, Namakkal, 
Cuddalore, Ariyalur, Nagapattinam, Pudukkottai, Thanja-
vur, Thiruvarur, and Tiruchirappalli districts of the Cau-
very delta; this could be attributed to the well-established 
irrigation facilities in the delta region. The adoption of 
drought mitigation measures like adequate soil and water 
conservation measures, suitable cropping systems, and 
appropriate farm practices helps to minimize and miti-
gate the impact of droughts on agriculture especially in 
extreme, severe, and moderate intensity regions of the TN 
state.

Conclusions

The analysis of 3-SPI in the dry year 2016 depicts the mod-
erately dry (−1.0 to −1.49) to extremely dry (−2 and less) 
conditions in the central parts of TN state. Similarly, during 
the same period, SDCI also shows that about 79.9% and 
16.8% of the TN state experienced extreme, and severe 
drought conditions (0.2 to 0.3), respectively, especially in 
the central, northern, and NW regions of the TN state. A 
moderate positive correlation between SDCI and 3-SPI was 
noticed in the dry year (2016) due to below mean rainfall 
and its impact on vegetation health. In contrast, during the 
wet year (2010), almost all districts experienced extremely 
wet to near-normal conditions and about 92.8% of TGA 
of the state was under the no drought category. Analysis 
of drought variability in the wet year (2010) shows a very 
strong positive correlation between SDCI and 3-SPI, due to 
the fact of good rainfall received and its positive impact on 
vegetation. The validation of SDCI with VHI for the wet 
year (2010) and dry year (2016) shows moderate-to-strong 
positive correlation; it indicates the robustness of SDCI in 
depicting the prevailing soil moisture, vegetation health, 
and drought conditions in the state. The study clearly shows 
that the NE, northern, western, and southern zones of the 
study area are vulnerable to extreme, severe, and moderate 
agricultural drought with an area of 0.1, 13.0, and 39.5% of 
the TGA of the state, respectively. The study amply reveals 
the robustness of SDCI in the assessment of vulnerability 
to agricultural drought in the tropical semi-arid ecosystem 
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of TN state. The results obtained in the study immensely 
help to develop the strategies and policies to minimize the 
vulnerability to agriculture drought and ensure food security 
in the state.
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