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Abstract
In this article, a nonlinear system of singularly perturbed differential equations aris-
ing in a two-time scale system is considered. A computational method consists of
the standard backward difference operator and a piecewise uniform Shishkin mesh
is constructed to solve the system. The computational method is proved to be first
order convergent uniformly with respect to the perturbation parameter. Numerical
experiments support the theoretical results.
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1 Introduction

Singular perturbation problems are widespread in nature. For instance, these problems
arise in various fields of applied mathematics such as fluid dynamics and control
systems [1,14]. Classical computational methods are not suitable for these problems
due to the multiscale behaviour of the solutions [1].
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A good number of non-classical numerical methods are available in literature for
different scalar singularly perturbed linear and nonlinear differential equations. In [2],
a numerical method based on a finite difference operator and a Shishkin mesh is con-
structed for a linear system of Singularly Perturbed Initial Value Problems (SPIVPs)
with a parameter ε. The same method for a linear system of SPIVPs with different
parameters is reported in [3]. Li-Bin Liu et. al. [4] have developed an adaptive moving
grid method for a linear system of SPIVPs. Numerical methods based on the backward
Euler finite difference schemewith aShishkinmesh and aBakhvalovmesh are reported
in [5] for a linear system of SPIVPs. Chandra Sekhara Rao et. al. [6] have developed
a second order numerical method based on high order difference approximation with
identity expansions technique for a linear system of two SPIVPs.

O’Malley [7] investigated the behaviour of a nonlinear system of m + n SPIVPs
in which the first m equations are unperturbed and the remaining n equations are
perturbed by a parameter ε. Balser–Kostov method is used to study the nature of
a nonlinear system of SPIVPs with a parameter ε in [8]. And in [9], a numerical
scheme based on a finite difference operator and a Shishkin mesh is developed for a
nonlinear system of two SPIVPs with different parameters. Zhongdi Cen et. al. [10]
have designed a second order hybrid finite difference scheme for a nonlinear system
of two SPIVPs with two parameters ε1 and ε2. In this work the conditions ε1 ≤ CN−1

and ε2 ≤ CN−1 are imposed on ε1 and ε2. A second order numerical method based
on a weighted monotone hybrid scheme for a nonlinear system of two SPIVPs with
two parameters is reported in [11].

Based on a mathematical model, a study of theMichaelis-Menten kinetic equations
is reported in [12]. With the aid of dimensionless quantities introduced in [13], the
equations mentioned in [12] are converted into a system of two SPIVPs in [9]. In
this system the derivative term in the first equation alone multiplied by a parameter
ε (ε << 1) and the nonlinear terms are free from ε. A mathematical model consists
of a nonlinear system of m + n SPIVPs for a two-time scale system is reported in
[14]. In this model the derivative terms in n equations are multiplied by a parameter
ε (ε << 1) and the parameter ε also occurs in the nonlinear terms. It is to be noted
that the model reported in [14] is more general than the model mentioned in [9].

The importance of singular perturbation problems in power systems are investigated
in [15,16]. A survey on singular perturbation and time-scale methods in control theory
is reported in [17,18]. Applications of singular perturbation techniques to control
problems are listed in [19,20]. Modeling of generators and their controls in power
system simulations using singular perturbations are presented in [14].

A nonlinear two-time scale system can be represented by [14]

ε
d�z
dt

= �f (t, ε, �z, �x),
d �x
dt

= �g(t, ε, �z, �x), t ∈ (t0, T ] (1)

with �z(t0) = �z0, �x(t0) = �x0 and 0 < ε << 1 (2)
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where �z and �x represent vectors of fast and slow states, respectively. The small positive
parameter, ε, determines the time scale separation of the states. By setting ε = 0 in
the above system, the reduced or degenerate system is given by

0 = �f (t, 0, �z, �x),
d �x
dt

= �g(t, 0, �z, �x), t ∈ (t0, T ], �x(t0) = �x0. (3)

In (3), the fast states are removed from the differential equations. Note that the fast
states follow the slow states and can be obtained by solving the algebraic equation
�z = �h(t, �x).

In power system simulators it is a common practice to neglect the fast network
transients. But the negligence of the fast network transients may lead to inaccuracies
if the system frequency changes substantially. Many other fast states are involved in
a power system dynamic model, for example, the states related with the generator
amortisseur windings and the states related with fast Automatic Voltage Regulators
(AVR). In many cases it is not acceptable to neglect the dynamics of the fast states. For
example, due to the phase shift they may introduce, ignoring the dynamics of the AVR
fast states can have a considerable effect on the stability of controls; and neglecting the
rates of change of the amortisseur windings states is equivalent to assuming zero amor-
tisseur currents or no amortisseurs, an approximation which implies a reduced system
damping and is clearly unsatisfactory. This fact lead to the occurrence of nonlinear
system of singular perturbation problems in two-time scale systems. Motivated by the
mathematical model reported in [14], in the present article a nonlinear system of n
SPIVPs arising in a two-time scale system is considered in which the derivative terms
in the first m (m < n) equations are multiplied by a parameter ε and the parameter ε

also occurs in the nonlinear terms.
Somenovelties of the present article are as follows: no artificial condition is imposed

on the parameter ε and the nonlinear terms are taken together with the parameter ε.The
nonlinear terms in one of the three mathematical model problems presented in Sect. 6
of this article are free from the parameter ε.Such a problem is presented to demonstrate
that the numerical method developed in the present article is also applicable to the
problems considered in [9] in which the nonlinear terms are assumed to be free from
the parameter ε. Furthermore, no mathematical technique is available in the literature
to investigate two-time scale systems. Thus the numerical method designed in this
article creates a new way to examine two-time scale systems.

For convenience, the two-time scale system represented in (1)–(2) is considered in
the following form

ε u ′
i (t) + fi (t, ε, �u ) = 0, for i = 1, ...,m, m < n, n ≥ 2,

u ′
j (t) + f j (t, ε, �u ) = 0, for j = m + 1, ..., n, on Ω = (0, 1] (4)

with uk(0) = ak, for k = 1, ..., n, 0 < ε << 1. (5)
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For all (t, �y ) ∈ Ω × R
n, the following conditions are assumed

∂ fk(t, ε, �y )

∂ul
≤ 0, for k, l = 1, ..., n and k �= l, (6)

min
t, k

(
n∑

l=1

∂ fk(t, ε, �y )

∂ul

)
≥ α > 0, for some constant α (7)

whereΩ = [0, 1].Assumptions (6) and (7) togetherwith the implicit function theorem
ensure that �u ∈ (C 2(Ω))n . The problem (4)-(5) can be written as

�T �u(t) = E �u ′(t) + �f (t, ε, �u ) = �0 on Ω with �u(0) = �a (8)

where �a = (a1, ..., an)T . For all t ∈ Ω, �u(t) = (u1(t), ..., un(t))T , �f (t, ε, �u ) =
( f1(t, ε, �u ), ..., fn(t, ε, �u ))T ∈ C2(Ω × R

n) and E is an n × n matrix such that
E = diag(ε, ..., ε, 1, ..., 1) where ε occurs m times.

Throughout the article C and C1 denote positive constants, which are independent
of t, ε and N .

2 Analytical results

The reduced problem (obtained by putting ε = 0) corresponding to (4)–(5) is defined
by

fi (t, 0, �r ) = 0, for i = 1, ...,m, (9)

r ′
j (t) + f j (t, 0, �r ) = 0, for j = m + 1, ..., n, on Ω, r j (0) = a j . (10)

Note that ri (0) = fi (0, 0, �u(0)) for i = 1, ...,m. Conditions (6) and (7) together
with the implicit function theorem ensure the existence of a unique solution for (9).
Further, the function �r and its derivatives are bounded independently of ε. Hence,

|r (k)
l (t)| ≤ C for l = 1, ..., n, k = 0, 1, 2 and t ∈ Ω. (11)

Decompose �u(t) into two components �v(t) and �w(t) such that �u(t) = �v(t) + �w(t)
where

E �v ′(t) + �f (t, ε, �v ) = �0 on Ω, �v(0) = �r(0) (12)

and

E �w ′(t) + �f (t, ε, �v + �w ) − �f (t, ε, �v ) = �0 on Ω, �w(0) = �u(0) − �v(0). (13)

Before estimating theboundsof the components �v, �w and their derivatives,we establish
the following results. Let P(t) be an n × n matrix with entries pkl(t) such that for all
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t ∈ Ω,

pkl(t) ≤ 0 for k, l = 1, ..., n, k �= l and min
t,k

(
n∑

l=1

pkl(t)

)
≥ α > 0. (14)

And let �L be a linear operator such that

�L �φ(t) = E �φ ′(t) + P(t) �φ(t), t ∈ Ω with �φ(0) = �γ (15)

where �γ is a vector constant.

Lemma 1 Let P(t) satisfy the conditions in (14). If �φ(0) ≥ �0 and �L �φ ≥ �0 on Ω then
�φ ≥ �0 on Ω.

Proof Choose k∗, t∗ such that φk∗(t∗) = min
t,k

φk(t). Suppose φk∗(t∗) < 0 then t∗ �= 0

and φ′
k∗(t∗) = 0. Let t∗ ∈ Ω. Consider,

( �L �φ)k∗(t∗) =
{

ε φ′
k∗(t∗) + ∑n

l=1 pk∗l(t∗)φl(t∗), if k∗ = 1, ...,m

φ′
k∗(t∗) + ∑n

l=1 pk∗l(t∗)φl(t∗), if k∗ = m + 1, ..., n.

Using (14), ( �L �φ)k∗(t∗) < 0, a contradiction. Hence φk∗(t∗) ≥ 0 which gives �φ ≥ �0
on Ω. 	

Lemma 2 Let P(t) satisfy the conditions in (14). Then for all t ∈ Ω,

‖ �φ(t) ‖≤ max

{
‖ �φ(0) ‖, 1

α
‖ �L �φ ‖

}
.

Proof Let M = max{‖ �φ(0) ‖, 1
α

‖ �L �φ ‖} and ��±(t) = M �e ± �φ(t) where �e =
(1, ..., 1)T .Then ��±(0) ≥ �0 and �L ��±(t) = MP(t)�e± �L �φ(t).Using (14), �L ��± ≥ �0
on Ω. Hence from Lemma 1, ��± ≥ �0 on Ω, which proves the result. 	

Lemma 3 Let conditions (6) and (7) hold. Then for all t ∈ Ω, for l = 1, ..., n,

s = 1, ...,m and 	 = m + 1, ..., n,

|v (k)
l (t)| ≤ C, for k = 0, 1, |v′′

s (t)| ≤ C ε−1 and |v′′
	 (t)| ≤ C .

Proof Decompose �v(t) further as �v(t) = �̂q(t) + �̃q(t) where

fi (t, ε, �̂q ) = 0, for i = 1, ...,m, (16)

q̂ ′
j (t) + f j (t, ε, �̂q ) = 0, for j = m + 1, ..., n and t ∈ Ω (17)

q̂ j (0) = v j (0), for j = m + 1, ..., n (18)

123



1074 M. Mariappan, A. Tamilselvan

and

ε q̃ ′
i (t) + fi (t, ε, �̂q + �̃q ) − fi (t, ε, �̂q ) = −ε q̂ ′

i (t), for i = 1, ...,m, (19)

q̃ ′
j (t) + f j (t, ε, �̂q + �̃q ) − f j (t, ε, �̂q ) = 0, for j = m + 1, ..., n, (20)

for t ∈ Ω with q̃l(0) = 0, for l = 1, ..., n. (21)

Let t ∈ Ω. Using (9) and (16), for i = 1, ...,m,

ai1(t)(q̂1(t) − r1(t)) + · · · + ain(t)(q̂n(t) − rn(t)) = 0. (22)

Using (10) and (17), for j = m + 1, ...n,

q̂ ′
j (t) − r ′

j (t) + a j1(t)(q̂1(t) − r1(t)) + · · · + a jn(t)(q̂n(t) − rn(t)) = 0 (23)

where alk(t) = ∂ fl
∂uk

(t, ε, �χ fl (t)), l, k = 1, ..., n are intermediate values. Note that

for all t ∈ Ω, akl(t) ≤ 0 for k, l = 1, ..., n, k �= l and mint,k
(∑n

l=1 akl(t)
) ≥ α > 0.

From (22), for i = 1, ...,m,

n∑
l=1

ail(t)q̂l(t) =
n∑

l=1

ail(t)rl(t) (24)

and from (23), for j = m + 1, ...n,

q̂ ′
j (t) +

n∑
l=1

a jl(t)q̂l(t) = r ′
j (t) +

n∑
l=1

a jl(t)rl(t). (25)

From (11), (24) and (25), ‖ �̂q ‖≤ C, ‖ �̂q ′ ‖ ≤ C and ‖ �̂q ′′ ‖ ≤ C . From (19), (20)
and (21), for i = 1, ...,m, j = m + 1, ..., n and for l = 1, ..., n,

ε q̃ ′
i (t) + a∗

i1(t)q̃1(t) + · · · + a∗
in(t)q̃n(t) = −ε q̂ ′

i (t) (26)

q̃ ′
j (t) + a∗

j1(t)q̃1(t) + · · · + a∗
jn(t)q̃n(t) = 0 (27)

q̃l(0) = 0 (28)

where a∗
kl(t) = ∂ fk

∂ul
(t, ε, �η fk (t)), k, l = 1, ..., n, are intermediate values. Note that

for all t ∈ Ω,

a∗
kl(t) ≤ 0 for k, l = 1, ..., n, k �= l and min

t,k

(
n∑

l=1

a∗
kl(t)

)
≥ α > 0. (29)

We now estimate the bounds of �̃q and its derivatives. From (26) to (28) and (29),
we note that �̃q satisfies a problem similar to (15). Hence using the bounds of �̂q and
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Lemma 2, ‖ �̃q ‖≤ C ε. Using the bounds of q̃k, for k = 1, ..., n in (26) and (27),
|q̃ ′

k(t)| ≤ C for k = 1, ..., n. Differentiating (26) and (27) once and using the bounds
of q̃k and q̃ ′

k for k = 1, ..., n, |q̃ ′′
i (t)| ≤ C ε−1 for i = 1, ...,m and |q̃ ′′

j (t)| ≤ C for
j = m + 1, ..., n.

From the bounds of q̂k and q̃k, k = 1, ..., n, and their derivatives the bounds on
vk, k = 1, ..., n, and their derivatives follow. 	


From (13), for i = 1, ...,m, j = m + 1, ..., n and for k = 1, ..., n,

ε w′
i (t) + si1(t)w1(t) + · · · + sin(t)wn(t) = 0,

w′
j (t) + s j1(t)w1(t) + · · · + s jn(t)wn(t) = 0, t ∈ Ω, (30)

wk(0) = uk(0) − vk(0) (31)

where skl(t) = ∂ fk
∂ul

(t, ε, �θ fk (t)), k, l = 1, 2, are intermediate values.

The layer function B(t) related with the solution �u(t) of (8) is defined by

B(t) = e−αt/ε, t ∈ Ω.

Lemma 4 Let conditions (6) and (7) hold. Then for any t ∈ Ω, for i = 1, ...,m and
j = m + 1, ..., n,

|wi (t)| ≤ C1B(t), |w j (t)| ≤ C1 ε(1 − B(t))

|w′
i (t)| ≤ C1ε

−1B(t) + C1(1 − B(t)), |w′
j (t)| ≤ C1B(t) + C1 ε(1 − B(t))

|w′′
i (t)| ≤ C1 ε−2B(t) + C1 ε−1(1 − B(t))

|w′′
j (t)| ≤ C1 ε−1B(t) + C1(1 − B(t)).

Proof Note that for all t ∈ Ω,

skl(t) ≤ 0 for k, l = 1, ..., n, k �= l and min
t,k

(
n∑

l=1

skl(t)

)
≥ α > 0. (32)

Define for i = 1, ...,m and for j = m + 1, ..., n, ψ±
i (t) = C1B(t) ± wi (t) and

ψ±
j (t) = C1ε(1 − B(t)) ± w j (t). Then ψ±

i (0) = C1 ± wi (0) for i = 1, ...,m and

ψ±
j (0) = 0 for j = m + 1, ..., n. Hence choosing C1 > C + ||�a||, �ψ±(0) ≥ �0. Now

consider,

( �L �ψ±)k(t) =
{
C1B(t)

(∑n
l=1 skl(t) − α

)
, if k = 1, ...,m

C1αB(t) + C1ε(1 − B(t))
∑n

l=1 skl(t), if k = m + 1, ..., n.
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Using (32), �L �ψ± ≥ �0 on Ω. Thus using Lemma 1, �ψ± ≥ �0 on Ω. Hence, for
i = 1, ...,m and for j = m + 1, ..., n,

|wi (t)| ≤ C1B(t) and |w j (t)| ≤ C1 ε(1 − B(t)).

Using the bounds on wk, k = 1, ..., n, the bounds on w′
k for k = 1, ..., n, follow from

(30). Differentiating (30) once and using the bounds of wk and w′
k, k = 1, .., n, the

bounds on w′′
k , k = 1, .., n, follow. 	


3 Shishkinmesh and discrete problem

On Ω , a piecewise uniform Shishkin mesh with N mesh-intervals is constructed as

follows. Let ΩN = {t j }Nj=1 then Ω
N = {t j }Nj=0. The interval Ω is subdivided into 2

sub -intervals [0, τ ] and (τ, 1] such that Ω = [0, τ ] ∪ (τ, 1]. The transition parameter
τ is defined by

τ = min

{
1

2
,

ε

α
ln N

}
.

On [0, τ ], a uniform mesh with N
2 mesh points is placed and on (τ, 1] another

uniform mesh with N
2 mesh points is placed.

The discrete IVP associated with (8) is defined to be

�T N �U (t j ) = E D− �U (t j ) + �f (t j , ε, �U (t j )) = �0, for t j ∈ ΩN (33)

�U (0) = �u(0). (34)

Here D−Ψ (t j ) = Ψ (t j ) − Ψ (t j−1)

h j
, h j = t j − t j−1.

4 Error analysis

Let �LN be a linear discrete operator such that

�LN �φ(t j ) = E D− �φ(t j ) + P(t j ) �φ(t j ), t j ∈ ΩN with �φ(0) = �γ (35)

where �γ is a vector constant and P(t) is as defined in (14).

Lemma 5 Let P(t) satisfy the conditions in (14). If �φ(0) ≥ �0 and �LN �� ≥ �0 on ΩN

then �� ≥ �0 on Ω
N
.
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Proof Choose k∗, j∗ such that Φk∗(t j∗) = min
j,k

Φk(t j ). Suppose Φk∗(t j∗) < 0 then

j∗ �= 0 and Φk∗(t j∗) − Φk∗(t j∗−1) ≤ 0. Let t j∗ ∈ ΩN . Consider,

( �LN �φ)k∗(t j∗) =

⎧⎪⎨
⎪⎩

ε D−Φk∗(t j∗) + ∑n
l=1 pk∗l(t j∗)Φl(t j∗), if k∗ = 1, ...,m

D−Φk∗(t j∗) + ∑n
l=1 pk∗l(t j∗)Φl(t j∗),

if k∗ = m + 1, ..., n.

Using (14), ( �LN �φ)k∗(t j∗) < 0, a contradiction. Hence Φk∗(t j∗) ≥ 0 which gives
�φ ≥ �0 on Ω

N
. 	


Lemma 6 Let P(t) satisfy the conditions in (14). Then for all t j ∈ Ω
N
,

‖ �φ(t j ) ‖≤ max

{
‖ �φ(0) ‖, 1

α
‖ �LN �� ‖

}
.

Proof Let K = max{‖ �φ(0) ‖, 1
α

‖ �LN �� ‖} and ��±(t j ) = K �e ± �φ(t j ). Then
��±(0) ≥ �0 and �LN ��±(t j ) = MP(t j )�e ± �LN �φ(t j ). Using (14), �LN ��± ≥ �0 on

ΩN . Hence from Lem ma 5, ��± ≥ �0 on Ω
N
, which proves the result. 	


Let �Y1 and �Y2 be any two mesh functions such that �Y1(0) = �Y2(0). For t j ∈ ΩN ,

( �T N �Y1 − �T N �Y2)(t j )

= E D−( �Y1 − �Y2)(t j ) + �f (t j , ε, �Y1(t j )) − �f (t j , ε, �Y2(t j ))

= E D−( �Y1 − �Y2)(t j ) + J ( �f , �u)

= ( �T N ) ′( �Y1 − �Y2)(t j )

(36)

where J ( �f , �u) =
(

∂ fk
∂ul

(t j , ε, �M(t j ))

)
n×n

is an intermediate value and ( �T N ) ′ is the

Frechet derivative of �T N . Since ( �T N ) ′ is linear, it satisfy Lemma 6. Hence, on ΩN

‖ �Y1 − �Y2 ‖ ≤ C ‖ ( �T N ) ′( �Y1 − �Y2) ‖ = C ‖ �T N �Y1 − �T N �Y2 ‖ . (37)

Theorem 1 Let �u be the solution of (8) and �U be the solution of (33)-(34). Then for

t j ∈ Ω
N
,

‖ �U − �u ‖ ≤ C N−1 ln N . (38)

Proof Let t j ∈ ΩN . Since �U (0) = �u(0), from (37),

‖ �U − �u ‖ ≤ C ‖ �T N �U − �T N �u ‖ . (39)
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Using (33),
‖ �T N �u(t j ) ‖=‖ ( �T N �u − �T N �U )(t j ) ‖ .

Consider,

‖ ( �T N �u − �T N �U )(t j ) ‖ = ‖ �T N �u(t j ) ‖ = ‖ ( �T N �u − �T �u )(t j ) ‖

= E ‖ (D− − D)�u(t j ) ‖

≤ E(‖ (D− − D)�v(t j ) ‖
+ ‖ (D− − D) �w(t j ) ‖)

(40)

where D = d
dt . From (40),

|( �T N �u − �T N �U )i (t j )| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε(|(D− − D)vi (t j )| + |(D− − D)wi (t j )|),
for i = 1, ...,m

|(D− − D)vi (t j )| + |(D− − D)wi (t j )|),
for i = m + 1, ..., n.

(41)

Note that for any smooth function φ,

|(D− − D)φ(t j )| ≤ max
s∈I j

|φ′′(s)| t j − t j−1

2
(42)

|(D− − D)φ(t j )| ≤ 2max
s∈I j

|φ′(s)| (43)

where I j = [t j−1, t j ]. Since t j − t j−1 ≤ 2N−1 for any choice of τ, using (42), for
i = 1, ...,m,

ε |(D− − D)vi (t j )| ≤ C ε N−1|v′′
i (s)|I j (44)

and for k = m + 1, ..., n,

|(D− − D)vk(t j )| ≤ C N−1|v′′
k (s)|I j . (45)

Hence from Lemma 3, (44) and (45), for i = 1, ...,m and for k = m + 1, ..., n,

ε|(D− − D)vi (t j )| ≤ C N−1 and |(D− − D)vk(t j )| ≤ C N−1.

Now we estimate the error in the component �w. The argument depends on whether
τ = 1

2 or τ = ε
α
ln N . If τ = 1

2 then ε−1 ≤ C ln N . In this case t j − t j−1 = N−1.

Using (42), for i = 1, ...,m,

ε |(D− − D)wi (t j )| ≤ C ε N−1|w′′
i (s)|I j (46)
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and for k = m + 1, ..., n,

|(D− − D)wk(t j )| ≤ C N−1|w′′
k (s)|I j . (47)

Hence from Lemma 4, (46) and (47), for i = 1, ...,m and for k = m + 1, ..., n,

ε|(D− − D)wi (t j )| ≤ C N−1 ln N and |(D− − D)wk(t j )| ≤ C N−1 ln N .

Now let τ = ε
α
ln N . In this case we prove the results on the sub-intervals [0, τ ] and

(τ, 1] separately. Consider t j ∈ [0, τ ]. Then t j − t j−1 = 2εN−1 ln N
α

. Hence using (42)
and Lemma 4, for i = 1, ...,m and for k = m + 1, ..., n,

ε|(D− − D)wi (t j )| ≤ C N−1 ln N and |(D− − D)wk(t j )| ≤ C N−1 ln N .

Now consider t j ∈ (τ, 1]. We proceed the proof by dividing the argument into two
cases ε ≥ N−1 and ε ≤ N−1.Consider the first case ε ≥ N−1.Using (42) and Lemma
4, for i = 1, ...,m and for k = m + 1, ..., n,

ε|(D− − D)wi (t j )| ≤ C N−1 and |(D− − D)wk(t j )| ≤ C N−1.

Consider the second case ε ≤ N−1. Using (43), Lemma 4 and the fact that B(t j−1) =
N−1, for i = 1, ...,m and for k = m + 1, ..., n,

ε|(D− − D)wi (t j )| ≤ C N−1 and |(D− − D)wk(t j )| ≤ C N−1.

Using all the above estimates in (41), for all t j ∈ Ω
N
,

‖ ( �T N �u − �T N �U )(t j ) ‖≤ C N−1 ln N . (48)

Using (48) in (39),

‖ �U − �u ‖ ≤ C N−1 ln N .

Hence the proof. 	


5 The continuationmethod

The systemof nonlinear ordinary differential equations in (8) ismodified to an artificial
system of nonlinear partial differential equations given by

E �ut (t, x) + �ux (t, x) + �f (t, ε, �u(t, x)) = �0, (t, x) ∈ (0, 1] × (0, X ],

�u(0, x) = �u(0), 0 < x ≤ X and �u(t, 0) = �uinit (t), 0 < t ≤ 1.
(49)
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The discrete problem corresponding to (49) is given by, for j = 1, . . . , N and k =
1, . . . K ,

E D−
t

�U (t j , xk) + D−
x

�U (t j , xk) + �f (t j , ε, �U (t j , xk−1)) = �0,

�U (0, xk) = �u(0) for all k and �U (t j , 0) = �uinit (t j ) for all t j ∈ Ω
N
.

(50)

The initial guess �uinit (t) is taken to be (1 − t)�u(0). The choices of hx = xk − xk−1
and K are determined as follows. Define, for k = 1, 2, . . . , K ,

ei (k) = max
1≤ j≤N

( |Ui (t j , xk) −Ui (t j , xk−1)|
hx

)

e(k) = max
i

ei (k).

(51)

The step size hx is chosen sufficiently small so that

e(k) ≤ e(k − 1) for all k, 1 < k ≤ K . (52)

The number of iterations K is chosen such that

e(K ) ≤ tol (53)

where tol is a suitably prescribed small tolerance. The following algorithm is used to
computed the numerical solution.

Start from x0 with the initial step size hx = 1.0. If, at some value of k, (52) is not
satisfied, then discard the current step and restart from xk−1 with half the step size
and continue halving the step size until finding a hx for which (52) is satisfied. If (52)
is satisfied at each step hx , then continue the process until either (53) is satisfied or
K = 100. If (53) is not satisfied, then it is assumed that the stepping process is stalled
due to a large choice of the initial step. In this case, the entire process is repeated
again from x0 with the initial step size hx/2. If (53) is satisfied, the resulting values of�U (t j , xK ) are taken as the approximations to the solution of the continuous problem.

6 Numerical illustrations

Three examples are presented in this section. In the first example the nonlinear terms
are free from ε whereas in the second and third examples ε also occurs in the nonlinear
terms. The continuation method designed in Sect. 5 is used to solve the examples.
The tolerance ′tol ′ is taken to be 0.00001. Notations DN , CN

p and pN denote the
parameter-uniform maximum pointwise error, parameter-uniform error constant and
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Table 1 Values of DN , pN and CN
p for α = 0.9.

ε Number of mesh points N

64 128 256 512 1024 2048 4096

2−2 0.0179 0.0096 0.0050 0.0026 0.0013 0.0007 0.0003

2−4 0.0272 0.0195 0.0121 0.0075 0.0046 0.0026 0.0013

2−6 0.0272 0.0195 0.0121 0.0075 0.0043 0.0025 0.0014

2−8 0.0272 0.0195 0.0121 0.0075 0.0043 0.0025 0.0014

2−10 0.0272 0.0195 0.0121 0.0075 0.0043 0.0025 0.0014

2−12 0.0272 0.0195 0.0121 0.0075 0.0043 0.0025 0.0014

2−14 0.0272 0.0195 0.0121 0.0075 0.0043 0.0025 0.0014

DN 0.0272 0.0195 0.0121 0.0075 0.0046 0.0026 0.0014

pN 0.4809 0.6832 0.7000 0.6962 0.8518 0.9072

CN
p 0.5278 0.4764 0.3738 0.2899 0.2254 0.1574 0.1057

parameter-uniform rate of convergence respectively and given by

DN = max
ε

DN
ε where DN

ε =‖ �UN − �U 2N ‖,

pN = log2
DN

D2N , CN
p = DN N p�

1 − 2−p� where p� = min
N

pN .

Example 1 Consider the IVP

ε u′
1(t) + (u1(t))3 + 2u1(t) − e−u1(t) − 0.1u2(t) + 1 = 0,

u′
2(t) + (u2(t))5 + 3u2(t) − cos(u2(t)) − u1(t) − 1 = 0, t ∈ (0, 1]

with u1(0) = 1, u2(0) = 0.

For the above IVP, the values of DN ,CN
p , pN are presented in Table 1 and a graph of

the numerical solution for ε = 2−2, 2−4, 2−6 and N = 128 is portrayed in Fig. 1.

Example 2 Consider the IVP,

ε u′
1(t) + (u1(t))5 + (2 + ε)u1(t) − e−u1(t) − u2(t) + ε = 0

u′
2(t) + (u2(t))3 + 3u2(t) + sin(u2(t)) − u1(t) + 1 − ε3 = 0, t ∈ (0, 1]

with u1(0) = 0, u2(0) = 1.

For the above IVP, the values of DN ,CN
p , pN are presented in Table 2 and a graph of

the numerical solution for ε = 2−2, 2−4, 2−6 and N = 128 is portrayed in Fig. 2.
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Fig. 1 Numerical solution of the IVP in Example 1

Table 2 Values of DN , pN and CN
p for α = 0.9.

ε Number of mesh points N

64 128 256 512 1024 2048 4096

2−2 0.0096 0.0052 0.0027 0.0014 0.0007 0.0003 0.0002

2−4 0.0167 0.0115 0.0070 0.0042 0.0026 0.0014 0.0007

2−6 0.0168 0.0114 0.0070 0.0042 0.0024 0.0014 0.0008

2−8 0.0168 0.0114 0.0070 0.0042 0.0024 0.0014 0.0008

2−10 0.0167 0.0114 0.0070 0.0042 0.0024 0.0014 0.0008

2−12 0.0167 0.0114 0.0070 0.0042 0.0024 0.0014 0.0008

2−14 0.0167 0.0114 0.0070 0.0042 0.0024 0.0014 0.0008

2−16 0.0167 0.0114 0.0070 0.0042 0.0024 0.0014 0.0008

2−18 0.0167 0.0114 0.0070 0.0042 0.0024 0.0014 0.0008

DN 0.0168 0.0115 0.0070 0.0042 0.0026 0.0014 0.0008

pN 0.5485 0.7067 0.7431 0.6913 0.8611 0.9186

CN
p 0.5202 0.5202 0.4662 0.4074 0.3690 0.2971 0.2299
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Fig. 2 Numerical solution of the IVP in Example 2

Example 3 Consider the IVP, for t ∈ (0, 1],

ε u′
1(t) + (u1(t))5 + (4 + ε)u1(t) − e−u1(t) − u2(t) − u3(t) + ε = 0

ε u′
2(t) + (u2(t))3 + 5u2(t) + sin(u2(t)) − u1(t) − εu4(t) = 0

u′
3(t) + (u3(t))7 + (5 + ε2)u3(t) − u2(t) − (1 + ε)u4(t) = 0

u′
4(t) + (u4(t))5 + 7u4(t) − u1(t) − (1 + ε3)u2(t) − u3(t) − ε5 = 0

with u1(0) = 0, u2(0) = 1, u3(0) = 1 and u4(0) = 0.

For the above IVP, the values of DN ,CN
p , pN are presented in Table 3 and a graph of

the numerical solution for ε = 2−5 and N = 128 is portrayed in Fig. 3.

7 Conclusion

From the tables, it is evident that the maximum pointwise error (DN ) decreases when
the number of mesh points (N ) increases and the maximum pointwise error stabi-
lizes for each N as ε approaches zero. Further, from the tables, we also observe that
the proposed method is almost first order parameter-uniform convergent. This is in
agreement with Theorem 1.
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Table 3 Values of DN , pN

and CN
p for α = 1.9.

ε Number of mesh points N

64 128 256 512 1024

2−2 0.0297 0.0170 0.0091 0.0047 0.0024

2−4 0.0250 0.0179 0.0110 0.0067 0.0039

2−6 0.0251 0.0179 0.0110 0.0067 0.0039

2−8 0.0251 0.0179 0.0110 0.0067 0.0039

2−10 0.0251 0.0179 0.0110 0.0067 0.0039

2−12 0.0251 0.0179 0.0110 0.0067 0.0039

2−14 0.0251 0.0179 0.0110 0.0067 0.0039

2−16 0.0251 0.0179 0.0110 0.0067 0.0039

DN 0.0297 0.0179 0.0110 0.0067 0.0039

pN 0.7026 0.7047 0.7026 0.7973

CN
p 1.4318 1.4024 1.4003 1.4003 1.3113
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0
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Fig. 3 Numerical solution of the IVP in Example 3
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We notice that the solution component u1 of �u in Figs. 1 and 2 and the components
u1 and u2 of �u in Fig. 3, representing the fast states in the two-time scale system,
exhibit initial layer in the neighbourhood of t = 0 and varies steadily as t increases
whereas the solution component u2 of �u in Figs. 1 and 2 and the components u3 and
u4 of �u in Fig. 3, representing the slow states in the two-time scale system, exhibit no
layer throughout the domain [0, 1] as reported in [14]- [20]. Moreover, we perceive
that the component u1 of �u in Figs. 1 and 2 and the components u1 and u2 of �u in
Fig. 3 changes very rapidly near t = 0 as ε approaches zero.

This means that the fast states changes rapidly near t = 0 and remains smooth
away from t = 0. On the other hand, the slow states remains smooth throughout the
domain. Thus we witness that by setting the time scale separation of the states ε = 0
in the system, fast states will be removed from the system which is not acceptable.

Note that the time step is largely determined by the fast states due to the very
small time constants related with the generators and their controls in the step-by-step
simulation of power system dynamics. Hence from the present study we deduce that
the negligence of the fast network transients in the two-time scale system will lead
to inaccuracies in the system and the degenerate system will be damping which will
produce unsatisfactory results.
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