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Abstract
In this paper we construct quantum codes over Fp by using cyclic and λ-cyclic codes
over the ring R = Fp+uFp+u2Fp+vFp+uvFp+u2vFp+v2Fp+uv2Fp+u2v2Fp

where v3 = v, u3 = u, uv = vu and p is an odd prime integer. Using the idempotent
decomposition method, we have given the parameters of the quantum code. Moreover,
the structure of cyclic andλ-constacyclic codes over R is studied. Some quantumcodes
over Fp are given.

Keywords Quantum code · Cyclic code · Quasicyclic code · Gray map ·
Constacyclic code

AMS subject classification 94B15 · 94B05

1 Introduction

Quantum codes play a significant role in quantum computing and quantum commu-
nication. A Quantum error-correcting code (QECC) is a mapping from k qubits to n
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qubits. Like the bit, the qubit is a unit element in quantum information. In a QECC, k
qubits are encoded, and the remaining n − k qbits form a redundancy used to protect
information from error [1]. Quantum error-correcting codes are used in quantum infor-
mation and quantum computing systems to reduce error. Originally quantum codes
were studied by Shor [2] and by Steane in [3]. Calderbank et al.[4] constructed a quan-
tum error-correction via codes over the field GF(4). Constructions over finite rings
were studied in [5–14] and constructions of new families of nonbinary CSS codes in
[15].

Qian et al., presented a new method to obtain self-orthogonal codes over finite
field F2 from cyclic codes over the local ring F2 + uF2 where u2 = 0 in [16].
Qian constructed quantum error-correcting codes of arbitrary lengths from the cyclic
codes over the semi-local ring F2 + vF2 where v2 = v in [5]. Subsequently, that
approach was generalized to the ring Fp + vFp with v2 = v in [17] by Ashraf et al.
Quantum codes over F2 from cyclic codes over the finite ring F2 +uF2 +vF2 +uvF2
with u2 = u, v2 = v and uv = vu in[9] by Dertli et al. Later, in [7] Ashraf et
al. constructed quantum codes from cyclic codes over Fq + uFq + vFq + uvFq

with u2 = u, v2 = v, uv = vu and q = pm where p is an odd prime. Singh et
al.[18] constructed binary self-orthogonal codes over the ring F2 + uF2 + u2F2 with
u3 = u. In [19], quantum codes from the cyclic codes over Fp[u, v, w]/〈v2 − 1, u2 −
1, w2 − 1, uv − vu, vw − wv, uw − wu〉 was studied by Islam et al., Quantum codes

over Fp from cyclic codes over
Fp[u, v]

< u2 − 1, v3 − v, uv − vu >
was studied in [20] by

Ashraf et al., Gao et al., constructed quantum codes using cyclic codes over the ring
Fq + v1Fq + · · · + vrFq in [21]. Using the algebraic structure of constacyclic and
negacyclic codes, a few good quantum codes were constructed in [22–26].

In the present paper, we consider the semi-local ring Fp[u,v]
〈v3−v,u3−u,uv−vu〉 , of order p

9,

for p an odd prime.We study cyclic and constacyclic codes over that ring, and construct
QECC over Fp, by using a suitable Gray map. The parameters of the QECC are
determined explicitly by decomposing R into local pieces by the idempotent technique.

This paper is organized as follows: Sect. 2 is about preliminaries. In Sect. 3, a
new Gray map from Fp[u, v]/〈v3 − v, u3 − u, uv − vu〉 to F

9
p is defined which

is bijective and distance preserving; the structure of cyclic codes is determined. We
give a construction of quantum codes using cyclic codes in Sect. 4 and present some
examples. The structure of λ-constacyclic codes is determined and using (1 − 2uk)-
constacyclic codes, we construct a class of quantum codes in Sect. 5 and present some
numerical examples.

2 Preliminaries

Let R = Fp +uFp +u2Fp +vFp +uvFp +u2vFp +v2Fp +uv2Fp +u2v2Fp where
v3 = v, u3 = u, uv = vu. Then R is a commutative ring with identity of cardinality
p9 and characteristic p, R is not a local ring as the fact that the set of non-unit elements
in R is not a subring implies that it is not an ideal.

Consider Rn as R-module. A subset C of Rn is called a linear code of length n if
it is an R-submodule of Rn . Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ C .
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Construction of quantum codes from λ-constacyclic… 613

Then the inner product of x and y is defined by x · y =
∑n

i=1
xi yi . If the inner

product is zero, then x and y are orthogonal. If C is a linear code, then the dual code
C⊥ = {x | x · y = 0 for all y ∈ C} of C is also linear. A code C is self-orthogonal if
C ⊆ C⊥. C is said to be a self-dual code if C = C⊥.

IfC is invariant under the cyclic shift operator δ : Rn → Rn by δ(c1, c2, . . . , cn) =
(cn, c1, . . . , cn−1), then the codeC is called a cyclic code of length n.A codeC ⊆ F

n
p

is cyclic if and only if the corresponding polynomial representation of the code forms
an ideal in the ring Fp[x]/〈xn − 1〉. The generator polynomial of C divides xn − 1.
A code C is said to be a quasi-cyclic of index m over Fp if c = (c1, c2, . . . , cm) ∈ C ,
where ci is of length n for every i . γ (c) = (δ(c1), δ(c2), . . . , δ(cm)) ∈ C where δ

represents the cyclic shift of a code.
The Hamming weight of a codeword c is the number of nonzero entries in the

codeword and is denoted by wH (c). The minimum Hamming distance of a code C is
dH (C) = min{dH (c, c′) | c, c′ ∈ C and c 	= c′} where dH (c, c′) = wH (c − c′).

3 Graymap

Let R = Fp[u, v]/〈v3 − v, u3 − u, uv − vu〉 = Fp + uFp + u2Fp + vFp + uvFp +
u2vFp + v2Fp + uv2Fp + u2v2Fp, where Fp is a field with characteristic p. Then
the elements of R are of the form

x1 + uy1 + u2z1 + vx2 + uvy2 + vu2z2 + v2x3 + uv2y3 + v2u2z3

where x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ Fp.
Let u1 = 1/4(u2+u)(v2+v), u2 = 1/4(u2−u)(v2+v), u3 = 1/4(u2+u)(v2−v),

u4 = 1/4(u2 − u)(v2 − v), u5 = 1/2(u2 − u)(1 − v2), u6 = 1/2(u2 + u)(1 − v2),
u7 = 1/2(1− u2)(v2 − v), u8 = 1/2(1− u2)(v2 + v), u9 = (1− u2)(1− v2). Then
it can be easily seen that

• u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8 + u9 = 1;
• uiu j = 0 for i 	= j and u2i = ui for i = 1, . . . , 9;
• R = u1R ⊕ u2R ⊕ u3R ⊕ u4R ⊕ u5R ⊕ u6R ⊕ u7R ⊕ u8R ⊕ u9R

∼= u1Fp ⊕ u2Fp ⊕ u3Fp ⊕ u4Fp ⊕ u5Fp ⊕ u6Fp ⊕ u7Fp ⊕ u8Fp ⊕ u9Fp.

The Gray map ϕ : R → F
9
p is defined by

ϕ

(
9∑

i=1

li ui

)
= (l1, l2, l3, l4, l5, l6, l7, l8, l9)

where l1, l2, . . . , l9 ∈ Fp. It is easy to see that ϕ is a Fp-linear map and it can be
extended component-wise in the following way. Let c = (c1, c2, . . . , cn) ∈ Rn where
ci = ∑9

j=1 b
i
j u j then we can define ϕ : Rn → F

9n
p by
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ϕ(c1, c2, . . . , cn) = (b11, b
2
1, . . . , b

n
1 , b

1
2, b

2
2 . . . , bn2 , b

1
3, b

2
3 . . . , bn3 , b

1
4, b

2
4 . . . , bn4 ,

b15, b
2
5 · · · , bn5 , b

1
6, b

2
6, . . . , b

n
6 , b

1
7, b

2
7, . . . , b

n
7 , b

1
8, b

2
8, . . . , b

n
8 , b

1
9, b

2
9 . . . , bn9).

The Gray weight of a code is defined as wG(
∑9

1=1 li ui ) = wH (l1, . . . , l9). So, the
Gray map ϕ is a weight preserving map from (Rn , Gray weight) to (F9n

p , Hamming
weight).

Theorem 3.1 If C is a self-orthogonal code, then ϕ(C) is also self-orthogonal.

Proof Let ϕ(c), ϕ(c′) ∈ ϕ(C). Let us take

c = (x1u1 + y1u2 + z1u3 + x2u4 + y2u5 + z2u6 + x3u7 + y3u8 + z3u9),

c′ = (x ′
1u1 + y′

1u2 + z′1u3 + x ′
2u4 + y′

2u5 + z′2u6 + x ′
3u7 + y′

3u8 + z′3u9) ∈ C .

Then

c.c′ = (x1x
′
1)u1 + (y1y

′
1)u2 + (z1z

′
1)u3 + (x2x

′
2)u4 + (y2y

′
2)u5 + (z2z

′
2)u6

+(x3x
′
3)u7 + (y3y

′
3)u8 + (z3z

′
3)u9.

Since c · c′ = 0, x1x ′
1 = y1y′

1 = z1z′1 = x2x ′
2 = y2y′

2 = z2z′2 = x3x ′
3 = y3y′

3 =
z3z′3 = 0. Hence
ϕ(c)ϕ(c′) = (x1x ′

1)+ (y1y′
1)+ (z1z′1)+ (x2x ′

2)+ (y2y′
2)+ (z2z′2)+ (x3x ′

3)+ (y3y′
3)+

(z3z′3)= 0.
Therefore, ϕ(C) is a self-orthogonal code. �


Let Ai ⊆ R for i = 1, 2, then

A1 ⊕ A2 = {a1 + a2 | ai ∈ Ai } and A1 ⊗ A2 = {(a1, a2) | ai ∈ Ai } .

Let C be a linear code of length n over R. Define
C j = {m j ∈ F

n
p | u1m1+u2m2+u3m3+u4m4+u5m5+u6m6+u7m7+u8m8+

u9m9, for some mi ∈ C, i 	= j}, for j = {1, 2, . . . , 9}.
Clearly, C ′

j s are p-ary linear codes of length n. Let C be a linear code of length n over
R and Ci = {ri ∈ Rn | there exists some r1, r2, . . . , ri−1, ri+1, . . . , r9 ∈ Rn such
that

∑9
i=1 uiri ∈ C}. Then Ci is a linear code of length n for 1 ≤ i ≤ 9. Also, C can

be expressed as C = ⊕9
i=1uiCi .

Corollary 3.1 Let C = ⊕9
i=1uiCi be a linear code of length n over R. Then the

generator matrix for C is M =

⎛

⎜⎜⎜⎝

u1M1
u2M2

...

u9M9

⎞

⎟⎟⎟⎠, where M ′
i s (i = 1, 2, . . . , 9) are generator

matrices of the C ′
i s (i = 1, 2, . . . , 9), respectively.
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Corollary 3.2 Let C = ⊕9
i=1uiCi be a linear code of length n over R. Then ϕ(C) is a

[9n,
∑9

i=1 ki , dH (C)], where Ci is a [n, ki , dH (Ci )] linear code overFq for 1 ≤ i ≤ 9
and dH (C) = min{dH (Ci ) | i = 1, 2, . . . , 9}.
Theorem 3.2 Let C = ⊕9

i=1uiCi be a linear code of length n over R. Then C⊥ =
⊕9

i=1uiC
⊥
i .

Proof Let Ci = {ri ∈ F
n
q | there exists r1, r2, . . . , ri−1, ri+1, . . . , r9 ∈ F

n
q such that

∑9
i=1 uiri ∈ C⊥}. Then C⊥ has the unique expression C⊥ = ⊕9

i=1uiCi . It is easy to

see C1 ⊆ C⊥
1 . If z ∈ C⊥

1 , then z · x1 = 0 for all x1 ∈ C1. Let s = ∑9
i=1 ui xi ∈ C .

Then u1zs = u1x1z = 0, and which implies u1z ∈ C⊥. From the construction of C⊥,
we have z ∈ C1. Therefore, C⊥

1 ⊆ C1. Hence, C1 = C⊥
1 . Then by induction we have

C⊥
i = Ci for i = 2, . . . , 9. Consequently, C⊥ = ⊕9

i=1uiC
⊥
i . �


Theorem 3.3 A cyclic code C over R satisfies γ (ϕ(c)) = ϕ(δ(c)).

Proof LetC be a cyclic code. Let γ and δ denote the quasi-cyclic shift and cyclic shift
operators. Let c = (c1, c2, . . . , cn) ∈ C, then δ(c) = (cn, c1, . . . , cn−1). Consider
ci = ∑9

j=1 b
i
j u j where bij is an element in Fp.

ϕ(δ(c)) = (bn−1
1 , b11, . . . , b

n−2
1 , bn−1

2 , . . . , bn−2
2 , bn−1

3 , . . . , bn−2
3 , bn−1

4 , . . . , bn−2
4 , bn−1

5 , . . . ,

bn−2
5 , bn−1

6 , . . . , bn−2
6 , bn−1

7 , . . . , bn−2
7 , bn−1

8 , . . . , bn−2
8 , bn−1

9 , . . . , bn−2
9 )

and ϕ(c) = (b11, b
2
1, . . . , b

n−1
1 , b12, . . . , b

n−1
2 , b13, . . . , b

n−1
3 , b14, . . . , b

n−1
4 , b15, . . . , b

n−1
5 ,

b16, · · · , bn−1
6 , b17, . . . , b

n−1
7 , b18, . . . , b

n−1
8 , b19, . . . , b

n−1
9 )

This implies

γ (ϕ(c)) = (bn−1
1 , b11, · · · , bn−2

1 , bn−1
2 , . . . , bn−2

2 , bn−1
3 , . . . , bn−2

3 , bn−1
4 , . . . , bn−2

4 , bn−1
5 , . . . ,

bn−2
5 , bn−1

6 , . . . , bn−2
6 , bn−1

7 , . . . , bn−2
7 , bn−1

8 , . . . , bn−2
8 , bn−1

9 , . . . , bn−2
9 )

Hence γ (ϕ(c)) = ϕ(δ(c)). �

Theorem 3.4 If C is a linear code of length n over R, then ϕ(C) = C1⊗C2⊗· · ·⊗C9.

Proof Let x = (x1, x2, . . . , x9) ∈ C1 ⊗C2 ⊗· · ·⊗C9 where xi = (x1i , x
2
i , . . . , x

n
i ) ∈

Ci for i = 1, 2, . . . , 9. Since C = ⊕9
i=1uiCi , is a linear code, there exists an element

a = u1(x11 , x
2
1 · · · , xn1 ) + u2(x12 , x

2
2 · · · , xn2 ) + · · · + u9(x19 , x

2
9 · · · , xn9 ) ∈ C such

that ϕ(a) = x . Therefore,
C1⊗C2⊗· · ·⊗C9 ⊆ ϕ(C).Sinceϕ(C) ⊆ C1⊗C2⊗· · ·⊗C9, hence, we have ϕ(C) =
C1 ⊗ C2 ⊗ · · · ⊗ C9. �


4 Construction of quantum codes from cyclic codes

Theorem 4.1 [27][CSS Construction] Let C1 and C2 be linear codes of parame-
ters [n, k1, d1] and [n, k2, d2] with C⊥

2 ⊆ C1 and let d = min{wt(v) | v ∈
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616 K. Gowdhaman et al.

(C1�C⊥
2 )

⋃
(C2�C⊥

1 )} ≥ min{d1, d2}, then an [[n, k1+k2−n,min{d1, d2}]] quan-
tum code exists. If C⊥ ⊆ C, then there exist an [[n, 2k1 − n, d1]] quantum code.

Theorem 4.2 The code C = ⊕9
i=1uiCi over R is cyclic code of length n if and only if

C1,C2,C3,C4,C5,C6,C7,C8 and C9 are cyclic codes over Fp of length n.

Proof Assume that C is a cyclic code over R. Let li = (li1, l
i
2, · · · , lin) ∈ Ci for 1 ≤

i ≤ 9 where lij ∈ Fp. Then mi = ∑9
j=1 u j l

j
i ∈ R and hence (m1,m2, . . . ,mn) =

∑9
i=1 ui l

i ∈ C . Since C is cyclic, δ(m1,m2, . . . ,mn) = ∑9
i=1 uiδ(l

i ) ∈ C . There-
fore, δ(li ) ∈ Ci for 1 ≤ i ≤ 9 Hence Ci is a cyclic code, for 1 ≤ i ≤ 9.

Conversely, we assume that Ci is a cyclic code, for 1 ≤ i ≤ 9. Let
(m1,m2, . . . ,mn) ∈ C where mi = ∑9

j=1 u j l
j
i where li = (li1, l

i
2, . . . , l

i
n) ∈

Ci . Since Ci is cyclic, δ(li ) ∈ Ci . Therefore,
∑9

i=1 uiδ(l
i ) ∈ C . That is,

δ(m1,m2, . . . ,mn) ∈ C . Hence, C is cyclic. �

Corollary 4.1 Let C⊥ = ⊕9

i=1uiC
⊥
i ⊆ Rn . Then C⊥ is cyclic code if and only if

C⊥
1 ,C⊥

2 , . . . ,C⊥
9 are cyclic codes over Fp of length n.

The proof of this corollary is similar to that of the above theorem and we omitted.

Theorem 4.3 C is a linear code which contains its dual code if and only if so do
C1,C2, . . . ,C9.

Proof For each i, let
xi ∈ C⊥

i , then
∑9

i=1 xi ui ∈ C⊥. Since C⊥ ⊂ C,
∑9

i=1 xi ui ∈ C and hence
xi ∈ Ci . Therefore, C⊥

i ⊆ Ci for 1 ≤ i ≤ 9.

Conversely, let x = ∑9
i=1 xiui ∈ C⊥. For 1 ≤ i ≤ 9, since xi ∈ C⊥

i ⊆ Ci , it
follows that x ∈ C . �

Corollary 4.2 Let C = 〈u1 f1(x), u2 f2(x), . . . , u9 f9(x)〉 be a cyclic code over R,
then C⊥ = 〈u1h∗

1(x), u2h
∗
2(x), . . . , u9h

∗
9(x)〉 is a cyclic code over R of length

n where h∗
i (x) is the reciprocal polynomial for hi (x) = xn − 1/gi (x), h∗

i (x) =
xdeg(hi (x))hi (x−1) for 1 ≤ i ≤ 9.

Theorem 4.4 If C is a cyclic code over R, then C = 〈u1 f1(x), u2 f2(x), . . . , u9 f9(x)〉
where fi (x) is the generator polynomial of Ci for all i = 1, 2, . . . , 9.

Proof Since C = ⊕9
i uiCi and C is cyclic, by Theorem 4.2, Ci is also cyclic for all i

and is generated by the polynomial fi (x) for each i, which implies that,

C = u1〈 f1(x)〉 + u2〈 f2(x)〉 + u3〈 f3(x)〉 + u4〈 f4(x)〉 + u5〈 f5(x)〉 + u6〈 f6(x)〉
+u7〈 f7(x)〉 + u8〈 f8(x)〉 + u9〈 f9(x)〉.

Therefore,

C ⊆ 〈u1 f1(x), u2 f2(x), . . . , u9 f9(x)〉.
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Construction of quantum codes from λ-constacyclic… 617

For reverse inclusion, let g(x) = ∑9
i=1 ui gi (x) in 〈u1 f1(x), . . . , u9 f9(x)〉 and fi (x)

divide gi (x). Then

〈u1 f1(x), u2 f2(x), . . . , u9 f9(x)〉 ⊆ C

Hence,

C = 〈u1 f1(x), u2 f2(x), . . . , u9 f9(x)〉

which implies that | C |= ∏9
i=1 | Ci |= p9n−(

∑9
j=1 ki ), and | C⊥ |= p(

∑9
j=1 ki ). �


Note that the generator polynomial of the above cyclic code is of the form f (x) =∑
ui fi (x). Since ui fi (x) = ui f (x) for all i, ui fi (x) ∈ 〈 f (x)〉 and hence fi (x)|xn−

1. This implies that there exists gi (x) ∈ Fp[x]/〈xn − 1〉 such that fi (x)gi (x) =
xn − 1 for all i = 1, 2, . . . , 9. Since

∑
ui = 1 and ui fi (x)gi (x) = ui (xn − 1),

f1(x)g1(x)u1+ f2(x)g2(x)u2+· · ·+ f9(x)g9(x)u9 = xn−1. Since uiu j = 0 for i 	=
j, (g1(x)u1 + g2(x)u2 + · · · + g9(x)u9) f (x) = xn − 1. Hence f (x)|xn − 1. Thus,
we have

Theorem 4.5 Let C = ⊕9
i=Ci be a cyclic code. If fi (x) is a generator polynomial for

Ci , 1 ≤ i ≤ 9, then there exists a polynomial f (x) = ∑9
i=1 ui fi (x) generates C and

divides xn − 1.

Corollary 4.3 [4]A linear cyclic codeC contains its dual code if and only if xn−1 ≡ 0(
mod f (x) f ∗(x)) where f (x) is the generator polynomial of C and f ∗(x) is the
reciprocal polynomial of f (x).

Theorem 4.6 Let C = 〈u1 f1(x), u2 f2(x), . . . , u9 f9(x)〉 be a cyclic code of n. Then
C⊥ ⊆ C if and only if xn − 1 ≡ 0( mod fi (x)( f ∗)i (x)) where i = 1, 2, . . . , 9.

Proof Let xn − 1 ≡ 0 mod fi (x)( f ∗)i (x). Then Corollary 4.3 implies C⊥
i ⊆ Ci ,

uiC⊥
i ⊆ uiCi and

u1C
⊥
1 ⊕ u2C

⊥
2 ⊕ · · · ⊕ u9C

⊥
9 ⊆ u1C1 ⊕ u2C2 ⊕ · · · ⊕ u9C9,

C⊥ ⊆ C .

Conversely, suppose that⊕9
i=1C

⊥
i ⊆ ⊕9

i=Ci . ThenC⊥
i ⊆ Ci for i = 1, · · · , 9.Hence,

xn − 1 ≡ 0( mod fi (x)( f ∗)i (x)). �

Corollary 4.4 Let ⊕9

i=1C
⊥
i be a cyclic code. If hi (x) is the generator polynomial for

C⊥
i , 1 ≤ i ≤ 9 then there exists a polynomial h(x) = ∑9

i=1 ui hi (x) generates C
⊥

and divides xn − 1.

From Theorems 4.1, 4.2 and 4.3, we have the following result on quantum codes
construction directly.

Theorem 4.7 Let C be a cyclic code over R. If C⊥
i ⊆ Ci then there exists a quantum

error code with parameters [[9n, 2k − 9n, dG ]], where dG denotes the Gray weight of
the code C and k is the dimension of ϕ(C).
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618 K. Gowdhaman et al.

Theorem 4.8 [27](Quantum Singleton Bound) Let C = [[n, k, d]]q be a quantum
error-correction code. Then k + 2d ≤ n + 2, if the equality holds, then it is MDS.

Example 4.1 Let C be a cyclic code over R = F5[u,v]
〈v3−v,u3−u,uv−vu〉 with length n = 30

and x30−1 = (x+1)5(x+4)5(x2+x+1)5(x2+4x+1)5. Let f1(x) = (x2+4x+1)
and fi (x) = (x + 1) for i = 2, 3, · · · , 9, then it is easy to see that x30 − 1 ≡ 0(
mod fi (x)( f ∗)i (x)).Then ϕ(C) is a linear code with parameters [270, 260, 2].Hence
we obtain a quantum code [[270, 250, 2]].
Example 4.2 Let C be a cyclic code over R = F5[u,v]

〈v3−v,u3−u,uv−vu〉 with length n = 22

and x22−1 = (x+1)(x+4)(x5+x4+4x3+4x2+3x+1)(x5+2x4+4x3+x2+x+4)
(x5 + 3x4 + 4x3 + 4x2 + x + 1)(x5 + 4x4 + 4x3 + x2 + 3x + 4).

Let fi (x) = (x5 + x4 + 4x3 + 4x2 + 3x + 1) for i = 1, 2, · · · , 5 and fi (x) =
(x5 + 3x4 + 4x3 + 4x2 + x + 1) for i = 6, 7, 8, 9. Since x22 − 1 ≡
0( mod fi (x)( f ∗)i (x)), ϕ(C) is a linear code with parameters [198, 153, 2]. We
get a quantum code of parameters [[198, 108, 2]].
Example 4.3 Let C be a cyclic code over R = F13[u,v]

〈v3−v,u3−u,uv−vu〉 with length n = 26

and x26 − 1 = (x + 1)13(x + 12)13. Let fi (x) = (x + 1) for i = 1, 2, . . . , 9.
Since x26 − 1 ≡ ( mod fi (x)( f ∗)i (x)), ϕ(C) is a linear code with parameters
[234, 225, 2]. Thus, we obtain a quantum code with parameters [[234, 216, 2]].
Example 4.4 Let C be a cyclic code over R = F5[u,v]

〈v3−v,u3−u,uv−vu〉 with length n = 33
and
x33−1 = (x+4)(x2+x+1)(x5+2x4+4x3+x2+x+4)(x5+4x4+4x3+x2+3x+4)
(x10 + x9 + 2x8 + x7 + 4x6 + x5 + 3x4 + 4x3 + 3x + 1)
(x10 + 3x9 + 4x7 + 3x6 + x5 + 4x4 + x3 + 2x2 + x + 1).
Let fi (x) = (x10+x9+2x8+x7+4x6+x5+3x4+4x3+3x+1) for i = 1, 2, . . . , 5
and fi (x) = (x10+3x9+4x7+3x6+ x5+4x4+ x3+2x2+ x+1) for i = 6, 7, 8, 9.
Since x33 − 1 ≡ 0( mod fi (x)( f ∗)i (x)), ϕ(C) is a linear code with parameters
[297, 207, 3] and hence a Quantum code with parameters [[297, 117, 3]] is obtained.
Example 4.5 Let C be a cyclic code over R = F7[u,v]

〈v3−v,u3−u,uv−vu〉 with length n = 40,

x40 − 1 = (x + 1)(x + 6)(x2 + 1)(x2 + 3x + 1)(x2 + 4x + 1)(x4 + x3 + x2 + x + 1)
(x4 + x3 + 6x2 + 3x + 1)(x4 + 3x3 + 4x2 + 4x + 1)(x4 + 3x3 + 6x2 + x + 1)
(x4 + 4x3 + 4x2 + 3x + 1)(x4 + 4x3 + 6x2 + 6x + 1)(x4 + 6x3 + x2 + 6x + 1)
(x4 + 6x3 + 6x2 + 4x + 1).
Let fi (x) = (x4 + x3 + 6x2 + 3x + 1), for i = 1, . . . , 5 and fi (x) = (x4 + 3x3 +
6x2 + x + 1) for i = 6, . . . , 9. Clearly x40 − 1 ≡ 0( mod fi (x)( f ∗)i (x)) and hence
ϕ(C) is a linear code with parameters [360, 324, 2]. Thus, we obtain a quantum code
with parameters [[360, 288, 2]].
Using Magma Computational Algebra System, we found a few quantum codes over
the fields F7, F5 and list them in the following table. Here n is length of a code and
fi (x) is the generating polynomial forCi where i = 1, . . . , 9, [n, k, d] are parameters
for ϕ(C), [[N , K , D]]p is the quantum code over the field of characteristic p.
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n fi (x) [n, k, d] [[N , K , D]]p
42 (x6 + 4x5 + x3 + 2x2 + x + 3) [378, 324, 4] [[378, 270, 4]]7
24 (x2 + x + 2)(x2 + 2x + 4) [216, 180, 3] [[216, 144, 3]]5
11 (x5 + 2x4 − x3 + x2 + x − 1) [99, 54, 5] [[99, 9, 5]]5
31 (x3 + 2x + 4)(x3 + 2x2 + x + 4) [279, 225, 4] [[279, 171, 4]]5
31 (4 + x + x3) [279, 252, 3] [[279, 225, 3]]5
20 (x + 3)(x + 1)(x + 4)2 [180, 144, 3] [[180, 108, 3]]5
18 (x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x + 1) [162, 108, 3] [[162, 54, 3]]3
16 (x6 + x5 + x4 + 2x3 + 2x + 1) [144, 90, 3] [[144, 36, 3]]3

5 Construction of quantum codes from �-constacyclic codes

Let λ = (1 − 2uk) or −1 in R, then the λ-constacyclic code C over Rn is defined by
whenever (e0, e1, . . . , en−1) ∈ C then (λen−1, e0, e1, . . . , en−2) ∈ C .Wecan identify
an element in C as a polynomial representation over R[x]

〈xn−λ〉 by the following way

θ : C → R[x]
〈xn − λ〉 by θ(e0, e1, . . . , en−1) = e0 + e1x + · · · + en−1x

n−1.

A subset C of R is said to be a λ-constacyclic code if and only if the image of C is an
ideal. The generator polynomial of C is a divisor of xn − λ. Note that λn = 1 when
n is even λn = λ when n is odd. We represent constacyclic shift(1 − 2uk) by mu,

negacyclic shift(λ = −1) by η and cyclic (λ = 1) shift by δ.

Theorem 5.1 The linear code C = ⊕9
i=1Ci over R is a (1 − 2uk)-constacyclic code

of length n if and only if Ck is a negacyclic code and Ci are all cyclic codes over Fp

of length n, where k 	= i .

Proof Assume thatC is a (1−2uk)-constacyclic codeover R.Let li = (li0, l
i
2, . . . , l

i
n−1)

∈ Ci for 1 ≤ i ≤ 9 where lij ∈ Fp. Thenmi = ∑9
j=1 u j l

j
i ∈ R. SinceC is (1−2uk)-

constacyclic,

μ(m0,m2, . . . ,mn−1) = ((1 − 2uk)(u1l
1
n−1 + u2l

2
n−1 + · · · u9l9n−1), . . . , u1l

1
n−2 + u2l

2
n−2 + · · · u9l9n−2),

Since (u1 + u2 + · · · + u9)(1− 2uk) = −uk + ∑9
i=1,i 	=k ui , then η(lk) ∈ Ck, δ(li ) ∈

Ci ∈ Ci , where k 	= i .
Hence Ck is a negacyclic code and Ci are cyclic codes, where k 	= i .
Conversely, we assume that Ck is a negacyclic code and Ci are cyclic codes, where

k 	= i . Let (m0,m1, . . . ,mn−1) ∈ C where mi = mi = ∑9
j=1 u j l

j
i for all i where

li = (li0, l
i
1, . . . , l

i
n−1) ∈ Ci . Since Ck is negacyclic and Ci is cyclic, η(lk) ∈ Ck

and δ(li ) ∈ Ci , we have ukη(lk) + ∑9
i=1,i 	=k uiδ(l

i ) = uk(−lkn−1, l
k
0 , . . . , l

k
n−2) +

∑9
i=1,i 	=k ui (l

i
n−1, l

i
0, . . . , l

i
n−2) = (1 − 2uk)((lkn−1, l

k
0 , . . . , l

k
n−2) + (l2n−1, l

2
0 , . . . ,

l1n−2) + · · · + (l9n−1, l
9
0 , . . . , l

9
n−2)) = ((1− 2uk)(u1l1n−1 + u2l2n−1 + · · · u9l9n−1), . . . ,

u1l1n−2 +u2l2n−2 +· · · u9l9n−2). That is, (1−2uk)(mn−1,m0, . . . ,mn−2) ∈ C . Hence,
C is (1 − 2uk)-constacyclic. �
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Theorem 5.2 C is a λ-constacyclic code if and only if C⊥ is a λ-constacyclic code.

Proof Assume that C is a λ-constacyclic code of length n. Let x ∈ C , y ∈ C⊥.

Let Λ(x)iλλ = (x0, . . . , xi−1, λxi , xi+1, . . . , xn−1). Since C is a λ-constacyclic code,
Λ(x)n−1

λ ∈ C we have 〈Λ(x)n−1
λ , y〉 = 〈Λ(y)n−1

λ , x〉 = 0 which implies Λ(y)n−1
λ ∈

C⊥. Hence C⊥ is λ-constacyclic. �


Theorem 5.3 If C is a (1 − 2uk)-constacyclic code over R, then C = 〈u1 f1(x),
u2 f2(x), . . . , u9 f9(x)〉 where fi (x) is the generator polynomial for Ci for all i =
1, 2, . . . , 9.

Proof Proof is similar to that of Theorem 4.4. �


Theorem 5.4 Let C = ⊕9
i=1Ci be a (1 − 2uk)-constacyclic code. If fi (x) is the

generator polynomial for Ci for 1 ≤ i ≤ 9, then there exists a polynomial f (x) =∑9
i=1 ui fi (x) generates C and divides xn − (1 − 2uk).

Proof Let f (x) = ∑9
i=1 ui fi (x). Let k = 1. Since C is a (1 − 2u1)-constacyclic

code of length n, by above theorem 〈 f1(x)〉 = C1, 〈 fi (x)〉 = Ci for i ∈ {2, 3, . . . , 9},
ui f (x) ∈ C for all i thus 〈 f (x)〉 ⊆ C, henceC = 〈 f (x)〉, f1(x)|xn+1, fi (x)|xn−1.
This imples that there exist g1(x), gi (x) ∈ Fp[x] such that f1(x)g1(x) = xn + 1 and
fi (x)gi (x) = xn − 1 for all i = 2, 3, . . . , 9 and hence u1 f1(x)g1(x) = u1(xn +
1), ui fi (x)gi (x) = ui (xn − 1) for all i = 2, 3, . . . , 9.

Since
∑

ui = 1, we have f1(x)g1(x)u1 + f2(x)g2(x)u2 + · · · + f9(x)g9(x)u9 =
u1(xn + 1) + (1 − u1)(xn − 1)

(g1(x)u1 + g2(x)u2 +· · ·+ g9(x)u9) f (x) = xn − (1−2u1) and hence f (x)|xn −
(1 − 2u1). It is shown that in a similar way for k = 2, . . . , 9.

Corollary 5.1 Let C = 〈u1 f1(x), u2 f2(x), . . . , u9 f9(x)〉 be a (1− 2uk)-constacyclic
codeover R, thenC⊥ = 〈u1h∗

1(x), u2h
∗
2(x), . . . , u9h

∗
9(x)〉bea (1−2uk)-constacyclic

code over R of length n where h∗
i (x) is the reciprocal polynomial for hi (x) = xn−λ

gi (x)
for 1 ≤ i ≤ 9, for some λ depends on k.

Corollary 5.2 [4] A linear λ-constacyclic code C contains its dual code if and only
if xn − λ ≡ 0( mod f (x) f ∗(x)) where f (x) is generator polynomial and f ∗(x) is
reciprocal of the polynomial f (x).

Theorem 5.5 Let C = 〈u1 f1(x), u2 f2(x), . . . , u9 f9(x)〉 be a (1 − 2uk)-constacyclic
of length n, and C⊥ ⊆ C if and only if xn − λ ≡ 0( mod fi (x) f ∗

i (x)) where
i = 1, 2, . . . , 9.

Proof Proof is similar to Theorem 4.6. �


Theorem 5.6 Let C be a (1 − 2uk)-constacyclic code over R. If C⊥
i ⊆ Ci then there

exists a quantum error code with parameters [[9n, 2k − 9n, dG ]], where dG denote
the Gray weight of the code C and k is the dimension of ϕ(C).
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Example 5.1 LetC be a (1−2u1)-constacyclic code over R = F5[u,v]
〈v3−v,u3−u,uv−vu〉 with

length n = 21, x21−1 = (x+3)7(x+5)7(x+6)7, x21+1 = (x+1)7(x+2)7(x+4)7.
Let f1(x) = x4 + 3x3 + 5x2 + 5x + 2 fi (x) = x4 + 4x3 + 5x2 + 2x + 2,

for i = 2, 3, . . . , 9. Clearly x21 − 1 ≡ 0( mod f1(x) f ∗
1 (x)) and x21 + 1 ≡ 0(

mod fi (x) f ∗
i (x)), for all i then ϕ(C) is a linear code with parameters [189, 153, 3].

Thus, we obtain a quantum code with parameters [[189, 117, 3]]. �

Example 5.2 LetC be a (1−2u1)-constacyclic code over R = F5[u,v]

〈v3−v,u3−u,uv−vu〉 , with
length n = 15, x15 + 1 = (x + 1)5(x2 + 4x + 1)5, x15 − 1 = (x − 1)5(x2 + x + 1)5

Let f1(x) = (x2 + 4x + 1)2 fi (x) = (x2 + 4x + 1)2, for i = 2, 3, . . . , 9. Clearly,
x15 − 1 ≡ 0( mod f1(x) f ∗

1 (x)), x15 + 1 ≡ 0( mod fi (x) f ∗
i (x)), for all i then

ϕ(C) is a linear code with parameters [135, 99, 3]. Thus, we obtain a quantum code
with parameters [[135, 63, 3]].
Example 5.3 LetC be a (1−2u1)-constacyclic code over R = F11[u,v]

〈v3−v,u3−u,uv−vu〉 , with
length n = 21, x21 + 1 = (x + 1)(x2 + 10x + 1)(x3 + 4x2 + 6x + 1)(x3 + 6x2 +
4x + 1)(x6 + 5x5 + 10x4 +10x2 + 7x + 1)(x6 + 7x5 + 10x4 + 10x2 + 5x + 1),
x21 − 1 = (x + 10)(x2 + x + 1)(x3 + 5x2 + 4x + 10)(x3 +7x2 + 6x + 10)(x6 +
4x5 + 10x4 + 10x2 + 6x + 1)(x6 + 6x5 + 10x4 + 10x2 + 4x + 1).

let f1(x) = x6 + 5x5 + 10x4 + 10x2 + 7x + 1 fi (x) = x6 + 6x5 + 10x4 + 10x2 +
4x + 1, for i = 2, 3, . . . , 9. Clearly x21 − 1 ≡ 0( mod f1(x) f ∗

1 (x)), x21 + 1 ≡ 0(
mod fi (x) f ∗

i (x)), for all i then ϕ(C) is a linear code with parameters [189, 135, 3].
Thus, we obtain a quantum code with parameters [[189, 81, 3]].

We have obtained some quantum codes by using (1− 2u1)-constacyclic codes and
list them in the following table where n is the length of the code and fi (x) represents
the generator polynomial for Ci . Polynomial representation in this tabular is given by
writing coefficients, for example 2, 0, 2, 3 represents 2x3 + 2x + 3.

n f1(x) fi (x) [n, k, d] [[N , K , D]]p
39 1, 11, 3, 11, 1 1, 2, 3, 2, 1 [351, 315, 3] [[351, 279, 3]]13
31 1, 2, 4, 4, 3, 2, 1 1, 3, 3, 1, 4, 3, 1 [279, 225, 4] [[279, 171, 4]]5
15 1, 3, 3, 3, 1 1, 2, 3, 2, 1 [135, 99, 3] [[135, 63, 3]]5
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