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Abstract

In this paper we construct quantum codes over IF, by using cyclic and A-cyclic codes
overthering R = IF, +ulF, —l—uzF,, +vlF ), +uvF), +u2va +v2F,, +uv2]F,, +u2v2F,,
where v3 = v, u3 = u, uv = vu and p is an odd prime integer. Using the idempotent
decomposition method, we have given the parameters of the quantum code. Moreover,
the structure of cyclic and A-constacyclic codes over R is studied. Some quantum codes

over I, are given.

Keywords Quantum code - Cyclic code - Quasicyclic code - Gray map -
Constacyclic code

AMS subject classification 94B15 - 94B05

1 Introduction

Quantum codes play a significant role in quantum computing and quantum commu-
nication. A Quantum error-correcting code (Q ECC) is a mapping from k qubits to n
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qubits. Like the bit, the qubit is a unit element in quantum information. In a QECC, k
qubits are encoded, and the remaining n — k gbits form a redundancy used to protect
information from error [1]. Quantum error-correcting codes are used in quantum infor-
mation and quantum computing systems to reduce error. Originally quantum codes
were studied by Shor [2] and by Steane in [3]. Calderbank et al.[4] constructed a quan-
tum error-correction via codes over the field G F (4). Constructions over finite rings
were studied in [5—14] and constructions of new families of nonbinary CSS codes in
[15].

Qian et al., presented a new method to obtain self-orthogonal codes over finite
field F, from cyclic codes over the local ring Fy + ulF, where u? = 01in [16].
Qian constructed quantum error-correcting codes of arbitrary lengths from the cyclic
codes over the semi-local ring F» + vIF, where v2 = vin [5]. Subsequently, that
approach was generalized to the ring IF,, + vIF), with v2 = v in [17] by Ashraf et al.
Quantum codes over [, from cyclic codes over the finite ring Fy + ulF» 4+ vlFy + uvlF;
with u? = u, v2 = vand uv = vu in[9] by Dertli et al. Later, in [7] Ashraf et
al. constructed quantum codes from cyclic codes over IF; + ulF, + vF, + uvF,
with u? = u,v> = v,uv = vu and ¢ = p™ where p is an odd prime. Singh et
al.[18] constructed binary self-orthogonal codes over the ring Fy + uF» + u?F, with
w3 =u.In[19], quantum codes from the cyclic codes over F[u, v, w]/(v2 —1,u?—
1, w2 =1, uv — vu, vw — wo, uw — wu) was studied by Islam et al., Quantum codes

Fplu, v] L.
5 3 was studied in [20] by
<u—1,v> —v,uv —ovu >
Ashraf et al., Gao et al., constructed quantum codes using cyclic codes over the ring

Fy + vilFy + --- + v, [F; in [21]. Using the algebraic structure of constacyclic and

negacyclic codes, a few good quantum codes were construct;d in [22-26].
u,v

3—v,u§[—u,1]4v—vu
for p an odd prime. We study cyclic and constacyclic codes over that ring, and construct
QECC over I, by using a suitable Gray map. The parameters of the QECC are
determined explicitly by decomposing R into local pieces by the idempotent technique.

This paper is organized as follows: Sect. 2 is about preliminaries. In Sect. 3, a
new Gray map from F[u, v]/(v3 — v, ud —u,uv — vu) to ]F% is defined which
is bijective and distance preserving; the structure of cyclic codes is determined. We
give a construction of quantum codes using cyclic codes in Sect. 4 and present some
examples. The structure of A-constacyclic codes is determined and using (1 — 2uy)-
constacyclic codes, we construct a class of quantum codes in Sect. 5 and present some

numerical examples.

over IF, from cyclic codes over

In the present paper, we consider the semi-local ring W T of order p°,

2 Preliminaries

LetR =, +ulF), —l—usz +uF, +uvfF, —l—uszFp + UZFP +uv2Fp +u2v2Fp where
v3 = v, u® = u, uv = vu. Then R is a commutative ring with identity of cardinality
p° and characteristic p, R is not a local ring as the fact that the set of non-unit elements
in R is not a subring implies that it is not an ideal.

Consider R" as R-module. A subset C of R" is called a linear code of length n if

it is an R-submodule of R". Let x = (x1,x2,...,x,) and y = (y1, ¥2, ..., yn) € C.
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Then the inner product of x and y is defined by x - y = Zn_ x;y;. If the inner
product is zero, then x and y are orthogonal. If C is a linear codle_, then the dual code
Ct={x|x-y=0forall y e C}of C is also linear. A code C is self-orthogonal if
C C C*. C is said to be a self-dual code if C = C+.

If C is invariant under the cyclic shift operator § : R — R" by é(c1,c2,...,¢p) =
(cn, €1y .-+, Ccn—1), then the code C is called a cyclic code of length n. A code C C IF’;,
is cyclic if and only if the corresponding polynomial representation of the code forms
an ideal in the ring IF,[x]/(x" — 1). The generator polynomial of C divides x" — 1.
A code C is said to be a quasi-cyclic of index m over F), if ¢ = (c1 L2, A eC,
where ¢ is of length n for every i. y(c) = (8(c!),8(c?),...,8(c™)) € C where &
represents the cyclic shift of a code.

The Hamming weight of a codeword c¢ is the number of nonzero entries in the
codeword and is denoted by w g (c). The minimum Hamming distance of a code C is
dy(C) =min{dy(c,c') | c,c’ € Cand ¢ # ¢’} where dy(c,c’) = wy(c — ).

3 Gray map

Let R =F,[u, v]/(v3 —v,ud —u,uv — vu) =F, +ulF, + MZFP +vF, +uvF, +
u?vF, + v*F, + uv’F, + u?v?F,, where F, is a field with characteristic p. Then
the elements of R are of the form

X1 +uyr + uzm + vxo +uvyr + vu222 + vzm + uv2y3 + vzuzzs

where x1, x2, X3, ¥1, Y2, ¥3, 21, 22, 23 € ).

Letu; = 1/4u?+u) (02 +v), uy = 14> —u) (> +v), uz = 1/4W?+u) (v>—v),
ug = 1/4w?* —u)(v* —v), us = 1/2w? — u)(1 — v?), ug = 1/2w? + u)(1 — v?),
u7 =1/2(1 —u®)(v* —v), ug = 1/2(1 — u®)(v? +v), ug = (1 — u?)(1 — v?). Then
it can be easily seen that

o u| +uy+us+ug+us+ug+u+ug+ug=1;

° uiuj=0f0ri#jandul-zzuiforizl,...,9;
e R=uiR®OurR® u3R ®usR ® usR ® ugR ®u7R ® ugR ® ugR

S uFp @ uslF, ® uslfFy, ® usFp ® uslF, © ugl, @ u7lF, © uglF, ® uglF,.
The Gray map ¢ : R — F) is defined by
9
@ (Zli”l) = (1, o, 13,14, 15,16, 17, 13, l9)
i=1
where [1,0>,...,lg € Fp. It is easy to see that ¢ is a [F,-linear map and it can be
extended component-wise in the following way. Let ¢ = (cy, ¢2, ..., ¢;) € R" where

ci = Z?:l bj.uj then we can define ¢ : R" — ]F?,” by

@ Springer
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1 42 1 32 1 72 1 32
(/)(C],Cz,...,cn)Z(bl,b g ey ?,bz,bz...,bg,b3,b3..., g,b4,b4...,b2,

1 32 n pl 72 n opl 72 n pl 12 n opl 72 n
bs,bs"‘ ’bS’bG’bﬁ""’ 6’b7’b7""’b7’b8’b8’"" 8,b9,b9...,b9).

The Gray weight of a code is defined as wg(Z?zl Liu;) = wy(ly,...,1l9). So, the
Gray map ¢ is a weight preserving map from (R"”, Gray weight) to (IE‘?,", Hamming
weight).

Theorem 3.1 If C is a self-orthogonal code, then ¢(C) is also self-orthogonal.

Proof Let ¢(c), p(c’) € ¢(C). Let us take

¢ = (xju1 + yruz + z1u3 + xoug + yaus + zaue + x3u7 + y3ug + z3u9),
= (x{ul + yiuz + Z/1u3 + x§u4 + yéu5 + Z/zu(, + x§u7 + yéug + Z%ug) e C.

Then

c.c' = (xixDur + ypuz + (z1z)usz + (x2x3)us + (2yy)us + (2225)ue
+(x3x3)u7 + (y3y3)us + (2323)u9.

Since ¢ - ¢’ = 0, x1x] = y1y] = 212] = x2X) = y2y) = 2225 = X3X; = Y3y =
2325 = 0. Hence

p(O)(c") = (x1x]) + (1y) + (212) + (x2x5) + (v2y5) + (2225) + (x3x5) + (v3y5) +
(z325)

=0.

Therefore, ¢(C) is a self-orthogonal code. O

Let A; C R fori = 1,2, then
Ai@ Ay ={ar+ax|a € A} and A1 ® Ay = {(a1,a2) | a; € A;j}.

Let C be a linear code of length n over R. Define

Cj={mj e IFZ | uymy4+uomy +usms+ugmq+usms +ueme +ugms + ugmg~+
ugmg, forsomem; € C,i # j}, for j ={1,2,...,9}.
Clearly, C }s are p-ary linear codes of length n. Let C be a linear code of length n over
R and C; = {r; € R" | there exists some r{,r2,...,Fi—1,¥i+1,---,r9 € R" such
that Z?:l u;r; € C}. Then C; is a linear code of length n for 1 <i < 9. Also, C can
be expressed as C = @?zluiCi.

Corollary 3.1 Let C = @?=1“ici be a linear code of length n over R. Then the

uyM
us M

generator matrix for C is M = . , Where Mi/s (i=1,2,...,9)are generator
ugMo

matrices of the Cl-’s i=1,2,...,9), respectively.
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Corollary 3.2 Let C = @?:lu,-c,» be a linear code of length n over R. Then ¢(C) is a
[9n, Z?=1 ki, dg(C)], where Ciisaln, k;, dy (C;)]linear code over F, for1 <i <9
and dy(C) = min{dy (C;) |i=1,2,...,9}

Theorem 3.2 Let C = @?:lu,-ci be a linear code of length n over R. Then C*+ =

Proof Let a ={r; € ]FZ | there exists 1,72, ..., i1, itls-.., 9 € ]FZ such that
Z?:l uir; € C+}. Then C* has the unique expression C+ = @?zluia-. It is easy to
see C; C CJ' Ifz € Ci-,thenz-x; =Oforallx; € C;.Lets = Zg (uixi € C.
Then u1zs = u1x;1z = 0, and which 1mp11es u1z € C+. From the construction of CL,
we have z € C|. Therefore, o £ CCy.Hence, C; = (o . Then by induction we have
Cll =Cifori=2,...,9. Consequently, ct= 699 Ui CL O

Theorem 3.3 A cyclic code C over R satisfies y (¢(c)) = ¢(8(c)).

Proof Let C be acyclic code. Let y and § denote the quasi-cyclic shift and cyclic shift
operators. Let c = (c1,02, ...,cp) € C, then §(c) = (¢y,c1,...,Cn—1). Consider
ci = 23:1 b.uj where b'; is an element in IF .

e@@) = G bl s ey R e R e
NN N N NN N (RN )
andp(c) = (b}, b3, ... 00 pd e el e b b bk b
1 -1 41 -1 41 -1 ;1 -1
SRR TR N RN N SRR
This implies
yip) = O bl e ey e R e
n—2 ;n—1 n—2 ;n—1 n—2 ;n—1 n—2 ;n—1 n—2
Pt b2 it b2t VA a2
Hence y (¢(c)) = ¢(8(c)). a]

Theorem 3.4 [fC is alinear code of lengthn over R, then 9(C) = C1Q®C2®- - -QCo.

Proof Letx = (xq, x2,...,x9) € C} ®C2® -® Co where x; = (x}, x?, ..., x") €
Cifori=1,2,...,9. Smce C = €B _1iC;, is a linear code, there exists an element
a:ul(xll,xlz~ S, X )+u2(x2,x2 S, Xp) A+ +u9(x9,x9 -+, xg) € C such

that ¢(a) = x. Therefore,
C1RCQ - -®Co C ¢(C).Sincep(C) C C1QC2Q- - -QC oy, hence, we have ¢(C) =
CiIRC®- - ® Co. o

4 Construction of quantum codes from cyclic codes

Theorem 4.1 [27]/CSS Construction] Let Cy and Cy be linear codes of parame-
ters [n,ky,di] and [n, ky, d2] with Cj‘ C Cy and let d = minfwt(v) | v €
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616 K. Gowdhaman et al.

(CN\CH) U(CINC)} = min{dy, do}, thenan [[n, ki +ko—n, min{d,, d>}]] quan-
tum code exists. IfCJ‘ C C, then there exist an [[n, 2k — n, d1]] quantum code.

Theorem 4.2 The code C = 69?:1 u; Ci over R is cyclic code of length n if and only if
C1, C2, C3, Cy, Cs, Cg, C7, Cg and Cg are cyclic codes over T, of length n.

Proof Assume that C is a cyclic code over R. Let I = (l",lé, e ,lfl) e Ciforl <
i <9 where lj. € F,. Thenm; = Z?:] ujl! € R and hence (mi, ma, ... ,my,) =
> u;l' € C. Since C is cyclic, 8(my, ma, ...,my) = Y;_, u;8(") € C. There-

fore, 8(li) € C; for 1 <i <9 Hence C; is a cyclic code, for 1 <i <9.
Conversely, we assume that C; is a cyclic code, for I < i < 9. Let

(my,mo,...,my) € C where m; = Z?Zlujlij where I! = (li,lé,...,lf,) €
C;. Since C; is cyclic, 8(I') € C;. Therefore, Y7, u;6(l') € C. That is,
8(my, ma, ..., my) € C. Hence, C is cyclic. |

Corollary 4.1 Let C+ = EB?:luiCiJ‘ C R". Then C* is cyclic code if and only if
Cf‘, Cj‘, ce Cj‘ are cyclic codes over ), of length n.

The proof of this corollary is similar to that of the above theorem and we omitted.

Theorem 4.3 C is a linear code which contains its dual code if and only if so do
Ci1,Co, ..., Co.
Proof For each i, let

xi € Cl.i, then Z?zlxiu,- e CL. Since ct c C, Z?zlxiui € C and hence
x; € C;. Therefore, C;- € C; for 1 <i <9.

Conversely, let x = Z?:lxiui e C+. Forl <i <9, since X; € Cl.J- C (G, it
follows that x € C. O

Corollary 4.2 Let C = (uy fi(x), uz f2(x),...,uo fo(x)) be a cyclic code over R,
then C+ = (urhi(x), ush3(x), ..., uohg(x)) is a cyclic code over R of length
n where h?‘(x) is the reciprocal polynomial for hij(x) = x" — 1/g;(x), h;“(x) =
xdeghiNp (x=1) for 1 <i <9.

Theorem 4.4 If C is a cyclic code over R, then C = (uy f1(x), ua f2(x), ..., ug fo(x))
where fi(x) is the generator polynomial of C; foralli = 1,2,...,9.

Proof Since C = @?uiCi and C is cyclic, by Theorem 4.2, C; is also cyclic for all i
and is generated by the polynomial f;(x) for each i, which implies that,

C = ur(fi(x)) + uz(f2(x)) + u3{f3(x)) + ua{fa(x)) + us{fs(x)) + ue{ fo(x))
Fu7(f7(x)) + ug(fs(x)) + ug(fo(x)).

Therefore,
C C (u1 f1(x), uz fo(x), ..., ug fo(x)).
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Construction of quantum codes from A-constacyclic ... 617

For reverse inclusion, let g(x) = Z?=1 u;gi(x)in (uy f1(x), ..., u9 fo(x)) and f;(x)
divide g; (x). Then

(1 fi(x), uz fo(x), ..., uo fo(x)) € C

Hence,
C = (u fi(x), uzf2(x), ..., u9 fo(x))

9 9
which implies that | C |=[[/_, | C; |= p”"~%i=1%) and | ¢+ |= p&i=%). D

Note that the generator polynomial of the above cyclic code is of the form f(x) =
> u; fi (x). Since u; f; (x) = u; f (x) forall i, u; f;(x) € (f(x)) and hence f; (x)[x" —
1. This implies that there exists g;(x) € F,[x]/{x" — 1) such that f;(x)g;(x) =
x"—1 forall i =1,2,...,9.Since > u; = 1 and u; fi(x)gi(x) = u; (" — 1),
fig1(Xur+ f2(x)g2(xX)uz+- - -+ fo(x)go(x)ug = x" —1.Since u;u; = 0 fori #
Js (@1(ur + g2()uz + - - + go(x)uo) f (x) = x" — 1. Hence f(x)[x" — 1. Thus,
we have
Theorem 4.5 Let C = @?: C; be a cyclic code. If f;(x) is a generator polynomial for

Ci, 1 <i <9, then there exists a polynomial f(x) = Z?:l u; fi(x) generates C and
divides x™ — 1.

Corollary 4.3 [4] A linear cyclic code C contains its dual code if and only if x" —1 = 0(
mod f(x)f*(x)) where f(x) is the generator polynomial of C and f*(x) is the
reciprocal polynomial of f(x).

Theorem 4.6 Let C = (uy f1(x), uz fa(x), ..., u9 fo(x)) be a cyclic code of n. Then
Ct c Cifandonlyifx™ —1=0( mod f;(x)(f*);(x)) wherei =1,2,...,9.
Proof Let x" — 1 =0 mod f;(x)(f*);(x). Then Corollary 4.3 implies Cl.L Cc G,
MiCiJ‘ C u;C; and

u1Ci ®urCs @ - ®ugCy S u1C1 SurCr ® -+ ® ugCo,
ctcc.

Conversely, suppose that 69? lCiJ- - EB?ZC,-.Then CiJ- CCifori =1, ---,9.Hence,

X" —1=0( mod f;(x)(f5):i(x)). O
Corollary 4.4 Let EB?: 1C IJ‘ be a cyclic code. If hi(x) is the generator polynomial for
CI.J‘, 1 < i <9 then there exists a polynomial h(x) = 21-921 uih;(x) generates ct
and divides x" — 1.

From Theorems 4.1, 4.2 and 4.3, we have the following result on quantum codes
construction directly.

Theorem 4.7 Let C be a cyclic code over R. IfCiL C C; then there exists a quantum
error code with parameters [[9n, 2k — 9n, dg]], where dg denotes the Gray weight of
the code C and k is the dimension of ¢(C).
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618 K. Gowdhaman et al.

Theorem 4.8 [27](Quantum Singleton Bound) Let C = [[n, k,d]l, be a quantum
error-correction code. Then k + 2d < n + 2, if the equality holds, then it is MDS.

Example 4.1 Let C be a cyclic code over R = HF% with length n = 30
(v’ —v,u” —u,uv—vu)

andx30 —1 = (x+ 1D (x+4)° (2 +x+1)° (2 +4x+1)7. Let f1(x) = (2 +4x+1)
and fi(x) = (x + 1) fori =2,3,---,9, then it is easy to see that 0 -1 = 0(
mod f;(x)(f*);(x)). Then ¢ (C) is alinear code with parameters [270, 260, 2]. Hence
we obtain a quantum code [[270, 250, 2]].

Fslu.v] ) with length n = 22

(v3—v,ud—u,uv—vu
and x?? —1 = (x+1)(x +4) (0 +x* 43 +4x2 4 3x + 1) (O +2x* H 43 +x2 4+ x +4)
0 +3x* 403 +4x% + x + DO +4x* +4x3 + x2 4+ 3x + 4).

Let fi(x) = (& +x*+4x3 +4x2 +3x + 1) fori = 1,2,---,5and fi(x) =
(x5 + 3x* + 4 + 4xr + x + 1) for i = 6,7,8,9. Since x2 -1 =
0( mod f;(x)(f*)i(x)), ¢(C) is a linear code with parameters [198, 153, 2]. We
get a quantum code of parameters [[198, 108, 2]].

Example 4.2 Let C be a cyclic code over R =

Example 4.3 Let C be a cyclic code over R = 3]&% with length n = 26
(v’ —v,u’ —u,uv—vu)

and x° — 1 = (x + DB +12)3. Let fi(x) = (x+1) fori = 1,2,...,9.
Since x2° — 1 = ( mod fix)(f"i(x)), ¢(C) is a linear code with parameters
[234, 225, 2]. Thus, we obtain a quantum code with parameters [[234, 216, 2]].

Fslu,v]
(v3—v,u3—u,uv—vu

Example 4.4 Let C be a cyclic code over R =
and

B 1 = (4D P Hx+ D) O+ 2x 43 a2 x+-4) (0 FHdxt A3 £ x2 13x0+4)
GO+ x4+ 2x8 X7 +4x + X3 +3x* +4x3+3x + 1)
()clo+3)cg-|—4)c7+3x6+x5+4)c4+x3 +2x2 4+ x + 1).

Let fi(x) = (x1O4x 4+ 2x8 +x7 +4x04+ x> +3x* +4x3 +3x+ D) fori = 1,2,....5
and f; (x) = (x'04-3x% +4x7 +3x0 +x° +dx* + X3+ 2x2 4+ x + 1) fori =6,7,8,9.
Since x33 — 1 = 0( mod Fix)(f"i(x)), ¢(C) is a linear code with parameters
[297, 207, 3] and hence a Quantum code with parameters [[297, 117, 3]] is obtained.

) with length n = 33

F7[u,v]

(V30,3 —u, uv—vu) with length n =40,

-1 = @+ DE+6)>+ D)2 +3x+ D2 +4x + D*+x3 +x2+x + 1)
G+ o2 +3x + D 33 +4x2 +4x + D +3°3 +6x2 +x + 1)
(A3 a2+ 3+ D+ 43+ 6x2 4+ 60 + D(x* 4+ 613 +x2 +6x + 1)
(x* 4 6x3 + 6x2 +4x + 1).

Let fi(x) = (x* +x3 4+ 6x>+3x+1),fori =1,...,5and fi(x) = (x* +3x3 +
6x>+x+1)fori =6,...,9.Clearly x** — 1 = 0( mod f;(x)(f*);(x)) and hence
¢(C) is a linear code with parameters [360, 324, 2]. Thus, we obtain a quantum code
with parameters [[360, 288, 2]].

Example 4.5 Let C be a cyclic code over R =

Using Magma Computational Algebra System, we found a few quantum codes over
the fields 7, F5 and list them in the following table. Here n is length of a code and
fi(x) is the generating polynomial for C; wherei =1, ..., 9, [n, k, d] are parameters
for ¢(C), [[N, K, D]], is the quantum code over the field of characteristic p.
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Construction of quantum codes from A-constacyclic ... 619

n fi(x) [n,k,d] [[N, K, D]lp
0 O +axd 3+ 222 4 x +3) [378, 324, 4] [[378, 270, 4117
24 2 Hx+2)E2+2x44) [216, 180, 3] [[216, 144, 3]s
11 W22t =3 +x24x-1) [99, 54, 5] [199, 9, 5115

31 B2+ HE+2x2+x+4) (279,225, 4] [[279, 171, 4]]5
31 (4+x+x3) [279, 252, 3] [[279, 225, 3115
20 (x+3)x + D(x +4)2 [180, 144, 3] [[180, 108, 3]s
18 GO+ +oxt a3+ 2x2 4 2x + 1) [162, 108, 3] [[162, 54, 3]
16 GO+ +xt 23420+ 1) [144, 90, 3] [[144, 36, 3]]3

5 Construction of quantum codes from A-constacyclic codes

Let L = (1 — 2ug) or —1 in R, then the A-constacyclic code C over R" is defined by
whenever (eg, €1, ..., e;,—1) € Cthen (Ae,—1, €o, €1, ..., en—2) € C. We canidentify

an element in C as a polynomial representation over (xlf,[ﬂ> by the following way

) R[x] n—1
0:C—> ————Dbyb(ep,e1,....,en—1) =e€o+ex+---+e,—1x" .
(e =)
A subset C of R is said to be a A-constacyclic code if and only if the image of C is an
ideal. The generator polynomial of C is a divisor of x” — A. Note that A = 1 when
n is even A" = A when n is odd. We represent constacyclic shift(1 — 2uy) by mu,
negacyclic shift(A = —1) by n and cyclic (A = 1) shift by §.

Theorem 5.1 The linear code C = @?ZICZ- over R is a (1 — 2uy)-constacyclic code
of length n if and only if Cy is a negacyclic code and C; are all cyclic codes over I,
of length n, where k # i.

Proof Assume that C isa (1—2uy)-constacyclic code over R. Letl’ = (lé, lé, e, l,’;_l)

eCijforl <i < 9wherel; € Fp. Thenm; = Z?:l ujll.j € R. Since Cis (1 —2uy)-
constacyclic,

wlmo,ma, ... my_1) = (1 = 2u)urly_y +uol2_y +--uoly 1), ..., ul}_y +ual? 5+ - uol) ),

Since (u +uz + -+ uo) (1 — 2u) = —ug + Y3y ;24 i then (1) € Cr., 8(1') €
C; € C;, where k # i.

Hence Cy is a negacyclic code and C; are cyclic codes, where k # i.

Conversely, we assume that Cy is a negacyclic code and C; are cyclic codes, where
k #i.Let (mg,my,...,m,_1) € C where m; = m; = 23:1 ujll.j for all i where
I = (lé, li, e, l;'lfl) € C;. Since Cy is negacyclic and C; is cyclic, n(lk) e Ck
and §(I') € C;, we have ugn(*) + Z?Zl#k wid() = up (1K 08,1 ) +

n—1°

Yo i (U T ) = (1= 2w () @23
Dy @, 8 ) = (1 =2up)il} | +usl® |+ uol) ), ...,
uill +ual? 5+ -uol) ). Thatis, (1 —2ux)(mu—1, mo, ..., my—2) € C.Hence,
C is (1 — 2uy)-constacyclic. O
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Theorem 5.2 C is a A-constacyclic code if and only if C* is a A-constacyclic code.

Proof Assume that C is a A-constacyclic code of length n. Let x € C, y € C*t.

Let A(x)i)» = (X0 .-+ Xi—1, AXj, Xi41, ..., Xn—1). Since C is a A-constacyclic code,
A" e € we have (A)! ™!, y) = (A(»)} ", x) = 0 which implies A(y)! ' €
C+t. Hence C* is A-constacyclic. O

Theorem 5.3 If C is a (1 — 2uy)-constacyclic code over R, then C = {(u fi(x),

up fo(x), ..., ug fo(x)) where fi(x) is the generator polynomial for C; for all i =
1,2,...,9.
Proof Proof is similar to that of Theorem 4.4. O

Theorem5.4 Let C = @?:1Ci be a (1 — 2uy)-constacyclic code. If fi(x) is the
generator polynomial for C; for 1 < i < 9, then there exists a polynomial f(x) =
Z?:l u; fi (x) generates C and divides x" — (1 — 2uy).

Proof Let f(x) = 21'9:1 u; fi(x). Let k = 1. Since C is a (1 — 2uq)-constacyclic
code of length n, by above theorem ( fi(x)) = Cy, (fij(x)) = C; fori € {2,3,...,9},
u; f(x) € Cforallithus (f(x)) € C,hence C = (f(x)), fi(x)|[x"+1, fi(x)|x"—1.
This imples that there exist g (x), gi(x) € F,[x] such that fi(x)g1(x) = x" + 1 and
fix)gi(x) = x* — 1foralli = 2,3,...,9 and hence u; f1(x)g1(x) = u;(x" +
D, u; fi(x)gi(x) =u;(x" — 1) foralli =2,3,...,9.

Since ) u; = 1, we have f1(x)g1(x)us + f2(x)g2(x)uz + - -+ fo(x)go(x)ug =
up(x"+ D+ 0 —up)x" —1)

(g1()uy + ga(xX)uz + - - + go(x)ug) f (x) = x" — (1 —2uy) and hence f(x)|x" —
(1 — 2uy). It is shown that in a similar way fork =2, ..., 9.

Corollary 5.1 Let C = (u1 f1(x), uz fo(x), ..., ug fo(x)) be a (1 — 2uy)-constacyclic

code over R, then C+ = (urhy(x), ush3(x), ..., uohg(x)) be a(1—2uy)-constacyclic
code over R of length n where h}(x) is the reciprocal polynomial for h;i(x) = ’;n(;;‘

for1 <i <09, for some A depends on k.

Corollary 5.2 [4] A linear A-constacyclic code C contains its dual code if and only
if x™ — A =0( mod f(x)f*(x)) where f(x) is generator polynomial and f*(x) is
reciprocal of the polynomial f(x).

Theorem 5.5 Let C = (uy f1(x), uz fo(x), ..., ug fo(x)) be a (1 — 2uy)-constacyclic
of length n, and C+ C C if and only if x* — A = 0( mod fi(x) f7¥(x)) where
i=1,2,...,9.

Proof Proof is similar to Theorem 4.6. O

Theorem 5.6 Let C be a (1 — 2uy)-constacyclic code over R. IfCIJ‘ C C; then there
exists a quantum error code with parameters [[9n, 2k — 9n, dg1], where dg denote
the Gray weight of the code C and k is the dimension of ¢(C).
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Fslu,v]
3

m with
lengthn =21, x2' =1 = (x4+3)(x+5)7(x+6)7, x> +1 = (x+ 1) (x+2)" (x +4)7.

Let fi(x) = x* +3x3 +5x2 +5x +2 fi(x) = x* 4+ 4x> + 5x% + 2x + 2,
fori = 2,3,...,9. Clearly x?! — 1 = 0( mod f(x)f(x)) and x*! + 1 = 0(
mod fl-(x)fl.*(x)), for all i then ¢(C) is a linear code with parameters [189, 153, 3].
Thus, we obtain a quantum code with parameters [[189, 117, 3]]. O

Example 5.1 Let C be a (1 —2u1)-constacyclic code over R =

Fs[u,v] :
(v3—v,ud—u,uv—vu)’ with

lengthn =15, xP +1 =@+ D2 +4x+ 1), xP -1 =x - 1)>@2+x+1)°

Let fi(x) = (X2 4+4x + 1)? fi(x) = &% +4x + 1), fori = 2,3, ...,9. Clearly,
A5 — 1= 0( mod fi(x)ff(x), x5+ 1= 0( mod f;(x)f*(x)), for all i then
¢(C) is a linear code with parameters [135, 99, 3]. Thus, we obtain a quantum code
with parameters [[135, 63, 3]].

Example 5.2 Let C be a (1 —2u1)-constacyclic code over R =

Fyyfu,v] :
(v3—v,ud—u,uv—vu)’ with

length n = 21, X4l =@+ D@24+ 10x + D3 +4x2 4+ 6x + D(x3 + 6x2 4+
4x + D0 455 + 10x* +10x% + 7x + 1)(x® + 7> + 10x* + 10x% + 5x + 1),
1= x4+ 10)(x% + x + D(x3 +5x2 + 4x + 10)(x3 +7x2 + 6x + 10)(x® +
4x° + 10x* 4+ 10x2 4 6x 4+ 1)(x0 + 6x° + 10x* + 10x% + 4x + 1).

let f1(x) = x®+5x7 +10x* + 10x2 +7x + 1 fi(x) = x0 +6x7 + 10x* + 10x2 +
4x + 1, fori =2,3,...,9. Clearly x*! — 1 = 0( mod f;(x)f;(x)), x*! +1 = 0(
mod fl-(x)fl.*(x)), for all i then ¢(C) is a linear code with parameters [189, 135, 3].
Thus, we obtain a quantum code with parameters [[189, 81, 3]].

We have obtained some quantum codes by using (1 — 2u1)-constacyclic codes and
list them in the following table where 7 is the length of the code and f;(x) represents
the generator polynomial for C;. Polynomial representation in this tabular is given by
writing coefficients, for example 2, 0, 2, 3 represents 2x3 4+ 2x + 3.

Example 5.3 Let C be a (1 —2u)-constacyclic code over R =

n S1(x) fi(x) [n, k, d] [[N, K, DIlp
39 1,11,3, 11,1 1,2,3,2,1 [351,315, 3] [[351, 279, 31113
31 1,2,4,4,3,2,1 1,3,3,1,4,3,1 [279, 225, 4] [[279, 171, 4]]5
15 1,3,3,3,1 1,2,3,2,1 [135,99, 3] [[135, 63, 3]]5
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