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PREFACE

The field of soliton research has been started in recent times from the work

of E. Fermi, J. Pasta and S. Ulam through their investigation of the famous

anharmonic lattice problem in early 1950s. The energy of the fundamen-

tal mode returns after every recurrence time. This result has stimulated

various research problems in different areas, ranging from statistical me-

chanics of nonlinear oscillators, nonlinear normal modes and integrable

systems, and so on. The continuum limit of the above anharmonic lattice

problem leads to the very celebrated Korteweg de-Vries equation and it

admits solitary wave solutions. The beauty of this solitary wave solution is

that the amplitude of the wave is directly proportional to the velocity. This

means that the higher amplitude waves move faster than the lower am-

plitude counterparts. This special kind of waves undergo elastic collision

and so M. Kruskal and N. Zabusky termed these waves as solitons. Later

such solitons were observed in different fields, including plasma physics,

Bose–Einstein condensation and nonlinear optics, etc.

Optical solitons have been initially identified in nonlinear optical fibers

by Hasegawa and Tappert in both the anomalous and normal dispersion

regimes. Wave propagation in nonlinear optical fibers is governed by the

standard nonlinear Schroedinger equation and its generalizations. Un-

til the paper by R. Radhakrishnan, M. Lakshmanan, J. Hietarinta (Phys.

Rev. E 56, 2213 (1997)) appeared, people thought that solitons can admit

only shape preserving collisions. The shape changing collision property of

vector solitons associated with integrable coupled nonlinear Schrödinger

equations lead to the construction of optical logic gates (optical comput-

ing applications) and soliton switches. This is all possible through the

linear fractional transformations associated with the vector soliton colli-

sions. Very surprisingly, we noticed that the vector solitons studied so
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far in the literature have identical wave numbers in their individual com-

ponents (degenerate solitons). Then the obvious questions we got in our

mind was what happens if nonidentical wave numbers are characterizing

the nature of vector solitons? What kind of collision behaviour do they

exhibit? We have initially identified the existence of such vector solitons

in two coupled nonlinear Schrödinger equations and their collision prop-

erties and then extended the studies to other related systems. Through

our series of works, we have studied the properties of this new class of

solitons, namely nondegenerate solitons. This thesis is a summary of the

results of our studies on nondegenerate solitons on various coupled non-

linear Schrödinger equations.

In Chapter I, we have given a general introduction to solitons and, in

particular, solitons in nonlinear optical systems. Chapter II deals with the

existence and collision behaviour of nondegenerate solitons in two cou-

pled nonlinear Schroedinger system/Manakov system. In Chapter III, the

role of four wave mixing effect on nondegenerate vector solitons has been

studied using generalized coupled nonlinear Schroedinger system. Chap-

ter IV elaborates the nature of nondegenerate solitons and their collision

dynamics in two component long wave – short wave resonance interac-

tion (LSRI) system familiarly named as Yajima - Oikawa system. In Chap-

ter V, we have studied the existence of nondegenerate solitons in mixed

two coupled nonlinear Schroedinger system, coherently coupled nonlin-

ear Schroedinger system and N-coupled nonlinear Schroedinger system.

Finally we summarize the results and mention some of the future direc-

tions in Chapter VI.

TIRUCHIRAPPALLI R. RAMAKRISHNAN

15 FEBRUARY 2022
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1

Chapter 1
Introduction

1.1 Nonlinear dynamical systems and solitons

The behaviour of physical systems in nature can be well understood by
studying their underlying dynamics. Dynamics is the study of change of
the state of a physical system as time evolves. According to Newton’s laws
of motion, any future state of the dynamical system can be predicted with
enough accuracy when the force acting on the system is exactly identified
and initial conditions are appropriately specified. Based on the types of
forces acting on the system, one can classify the dynamics as linear or non-
linear. Linear dynamics is a branch of science of systems which deal with
linear forces whereas nonlinear dynamics encompasses systems that are
acted upon by nonlinear forces [1]. Nonlinear systems are realized in all
branches of sciences including physical, chemical and biological sciences,
and they are especially important in the understanding of the interesting
problem of wave phenomena. A wave is a disturbance which carries en-
ergy from one place to another. Examples include water waves, sound
waves, electromagnetic waves and so on which we experience in our daily
life. Any wave phenomena can be mathematically modelled using linear or
nonlinear partial differential equations. Linear differential equations obey
linear superposition principle but the nonlinear differential equations do
not obey it.

In the study of nonlinear wave propagation, the observation of the great
wave of translation in the Union Canal connecting the cities of Edinburgh
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and Glasgow in Scottland by a Victorian Naval Architect John Scott Russel
(1834) has played a crucial role. While stopping of a boat (when riding on
a horse-back), he observed the water lump which originated in that canal
travels a large distance without changing its shape and velocity. Based on
further experiments, he proposed that the velocity of the lump of water is
directly proportional to its amplitude. The higher amplitude water lumps
move faster than the lower amplitude lumps. Later in 1895, two Dutch
physicists Korteweg and de Vries have deduced the dynamical equation
for the above water wave of translation which is now famously known as
the Korteweg-de Vries equation (KdV equation)[2].

In 1965, Norman Zabuski and Martin Kruskal [3] obtained the same
KdV equation in the continuum limit of nonlinear lattice of anharmonic
oscillators to explain the famous Fermi-Pasta-Ulam (FPU) phenomenon
[4]. This KdV equation is a nonlinear dispersive type partial differential
equation in (1+1) dimensions. The dispersion property makes the wave to
spread out because each Fourier component in the wave travels with dif-
ferent velocities, whereas the nonlinearity steepens the wave. In the case
of KdV equation, there is an exact balance between the nonlinearity and
dispersion which makes this equation to admit localized wave solutions,
namely solitary waves. These solitary waves are often called solitons when
they retain their identity even under collision with similar kind of waves.
Mathematically, solitons are the solutions of integrable nonlinear partial
differential equations and also certain coupled nonlinear ordinary differen-
tial equations. This integrability nature of the differential equations can be
examined through two methods (among several others), namely Painlevé
singularity structure analysis and Lax formalism. Painlevé analysis en-
sures the existence of solutions of nonlinear differential equations with-
out movable critical point singularities whereas the Lax method provides
the possibility of writing the nonlinear equation into a linear eigen value
problem and a corresponding linear time evolution equation through a
Lax pair. Existence of such stable nonlinear waves are also identified in
several branches of physics like shallow/deep water waves in hydrody-
namics, light pulse propagation in nonlinear optics, matter waves in con-
densed matter physics in the form of Bose-Einstein Condensation, nonlin-
ear waves in plasma physics and even in biophysics. It is very important
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to understand the underlying structures of nonlinear waves and their dy-
namics within the framework of integrable/non-integrable nonlinear wave
models.

1.2 Solitons in nonlinear optical systems

1.2.1 Linear Effects

In optics, in general, an optical pulse or a beam has a natural tendency to
spread while it propagates in a linear medium because the Fourier compo-
nents of the pulse or the beam start to travel with distinct velocities. The
spreading occurs in the temporal domain because of the material disper-
sion while in the spatial domain it is due to diffraction. In some cases,
the spreading takes place due to the combined effects of dispersion and
diffraction. The spreading of velocities is called group velocity disper-
sion (GVD). This dispersion occurs due to material dispersion or waveg-
uide dispersion. In multimode fibers, along with the intramodal disper-
sion which we mentioned above, intermodal dispersions also occurs. This
dispersion may cause attenuation of information or loss in the energy of
pulses.

1.2.2 Nonlinear Effects

The invention of LASER is one of the most important milestones in the
history of scientific devolepment, because it has very interesting proper-
ties like coherence, high intensity, high directionality and strict monochro-
maticity. This high intense electromagnetic field of the LASER can be able
to induce some peculiar and useful properties in the medium in which
it propagates. One such important phenomenon is the one which can be
induced due to change of polarization of the medium. Nonlinearity in op-
tical systems may be easily understood by learning the change of polariza-
tion of the medium due to the strength of applied electromagnetic field. In
the linear limit or with low intensity light, the polarization of the medium
only depends on the first order suceptibility, ~PL = ε0χ~E. In the case of high
intensity light like LASER’s, the total polarization is no longer dependent
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only on the first order suceptibility but it also depends on its higher orders,
~PT = ~PL + ~PNL. In optical fibers the second order suceptibility is zero due
to the centre of symmetry exhibited by silica (SiO2), so the lowest higher
order nonlinearity is third order suceptibility and the main role of χ(3) is to
change the refractive index of the medium as proportional to the intensity
of light. This intensity dependant refractive index is responsible for the op-
tical Kerr effect. The underlying nonlinear effect eventually induces a self
phase shift during the propagation of optical pulse and the phenomenon is
known as self phase modulation (SPM). In multimode fibers or even in sin-
gle mode fibers, due to birefringence property the given light pulse splits
into two parts as ordinary and extraordinary rays. Thus there is a pos-
sibility of interaction between the two copropagating fields. As a result,
nonlinear phase shift is induced by the copropagating fields. This phe-
nomenon is called cross phase modulation (XPM). Very interstingly one
more additional nonlinearity occurs due to the optical Kerr effect and it
is called four wave mixing (FWM) in which two different frequency com-
ponents (say ν1 and ν2) generate two additional frequency components
(ν3=2ν1-ν2 and ν4=2ν2-ν1) by refractive index modulation. These additional
frequency components can amplify the already existing frequency compo-
nents. Practically this parametric amplification process yeilds low power
signals due to the lack of phase matching conditions.

However, a stable localized wave packet forms when this linear effect
is balanced by the nonlinear response of the medium. Such a stable light
wave envelope is known as the optical soliton. Optical soliton can be fur-
ther classified as (i) spatial soliton, (ii) temporal soliton and (iii) spatio-
temporal soliton depending on the nature of formation mechanism [5].
The evolution of optical soliton, whether it is a spatial or temporal one,
in (1 + 1)-dimensional setting is described by the ubiquitous nonlinear
Schrödinger (NLS) equation. For instance, the dimensionless NLS equa-
tion, derived from the Maxwell’s equations under slowly varying envelope
approximation, for the optical field propagation in a single mode optical
fiber turns out to be [6]

iqz − sgn(K”)qtt + 2|q|2q = 0, K′′ =
( ∂2K

∂ω2

)
ω=ω0

=
1
v2

g
. (1.1)
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In the temporal soliton case, where the soliton evolution is confined
along the optical fiber, q(z, t) is the complex wave amplitude and the inde-
pendent variables z and t denote normalized distance along the fiber and
retarded time, respectively. Also qz = ∂q

∂z and qtt =
∂2q
∂t2 . Here, the sign of

the group velocity dispersion (GVD) or simply the coefficient of the second
derivative in time, in Eq. (1.1), characterizes the nature of the fiber disper-
sion. If K′′ < 0, then the dispersion is anomalous whereas the dispersion is
normal for K′′ > 0. The nonlinearity in Eq. (1.1) arises due to the self phase
modulation (SPM), where the intensity of light induces a change in the re-
fractive index of the medium ∆n(I) = n0(ω) + n2|E|2 = n0 + n2 I, where
n0 refers to the linear refractive index and n2 is the nonlinear refractive
index of the medium due to Kerr effect, which gives rise to an intensity-
dependent phase modulation. On the other hand, the spatial soliton is a
self-trapped optical beam that guides itself by inducing a waveguide dur-
ing the stable propagation in a photorefractive medium without diffrac-
tion. Here, the diffraction is exactly balanced by the nonlinearly induced
self-focusing effect. In this context, the independent variables, z and t in
Eq. (1.1), correspond to transverse spatial coordinates. Since this thesis will
focus on the theoretical aspects of vector bright solitons of certain coupled
integrable field models that emerge in optical fiber systems, one can find a
detailed discussion on the development and advancement of both spatial
and spatio-temporal solitons in the interesting review articles by Chen et
al [7] and by Malomed et al [8], respectively.

In 1973, Hasegawa and Tappert theoretically demonstrated that the
lossless fibers can admit bright soliton structure, which exhibits an in-
tensity maximum in the time domain when the GVD regime is anomalous
[9]. They have also shown that the dark soliton, with the intensity min-
imum or dip on a constant wave background field, arises in the normal
GVD regime [10]. After this theoretical work, in 1980, Mollenauer and his
coworkers succeeded experimentally in observing the optical soliton in a
fiber [11]. These discoveries clearly demonstrated how an abstract math-
ematical concept can turn into a practical use. Both these theoretical and
experimental works have opened up a new possibility of using the ultra-
short optical pulses in long distance communication applications [12]. On
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the other hand, the mathematical interest in understanding the analyti-
cal structure of the underlying integrable models intensified after the NLS
equation was solved by Zakharov and Shabat through a more sophisticated
inverse scattering transform (IST) method [13], developed earlier by Gard-
ner et al. for the celebrated Korteweg-de Vries equation [14]. Now, it is
well known that the NLS equation (1.1) is a completely integrable infinite
dimensional Hamiltonian system having special mathematical properties
like an infinite number of conserved quantities and Lax pair [15]. We note
that in [13] the authors had derived a double-pole solution, which has re-
cently received attention in the theory of rogue-waves for describing the
Peregrine breather on the zero background field of the NLS equation [16],
by considering the merging of two simple poles in the complex plane. The
interesting fact of the temporal bright solitons of the scalar NLS equation
is that they exhibit particle-like elastic collision.

Apart from the above fundamental aspects, in 1983, Gordon had pre-
dicted that when two or more light pulses propagate in a nonlinear optical
fiber, they exert forces, either attractive or repulsive, on their neighbors
[17]. This has been experimentally verified by Mitschke and Mollenauer
in [18]. Such a study brought out a special kind of soliton state, namely
bound soliton state or soliton molecule [19]. A soliton molecule is a bound
soliton state that can be formed when two solitons persist at a stable equi-
librium separation distance, where the interaction force is zero among the
individuals. Such a stable equilibrium manifests as this bound state struc-
ture, reminiscent of a diatomic molecule in chemical physics. The binding
force arises between the constituents of the soliton composite due to the
Kerr nonlinearity [17, 18] and the detailed mechanism can be found in
Ref. [20]. This special kind of soliton state has been extensively stud-
ied in non-dispersion managed fibers [21–27]. Recently, the existence of
soliton molecules in dispersion-managed fiber [19] and their usefulness
in optical telecommunications with enhanced data carrying capacity have
been pointed out [28, 29]. However, in order to elevate the transmission
capacity of the optical telecommunication systems, it is necessary to con-
sider multichannel bit-parallel wavelength fiber networks and wavelength
division multiplexing schemes, where the light pulses propagate in multi
channels simultaneously. In fact, practically even in a single mode fiber
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the bending and strains or birefringence induce two orthogonal polar-
ization modes. To pursue this kind of practical applications, one has to
essentially understand the problem of intermodal interaction of solitons.
Therefore the contribution of the interaction of copropagating modes must
be taken into account. In fact, there is no surprise other than the stan-
dard elastic collision of the bright solitons in single mode optical fibers.
In contrast to this, the bright soliton structure in two mode fibers or in a
single mode fiber with birefringence property or even in multimode fibers
display rich propagation and collisional properties. Due to these fascinat-
ing features and intriguing collision dynamics, vector solitons (which are
solutions of coupled NLS type equations) are receiving intense attention
among researchers. Apart from the several interesting properties, vector
solitons have also been found in a variety of applications, including soli-
ton based optical computing [30, 31], multi-level optical communication
with enhanced bit-rate transmission [32], soliton based signal processing
systems [33] and so on.

Vector solitons are fascinating nonlinear objects in which a given soli-
ton is split among two or more components. In other words, a vector
soliton with two or more polarization components coupled together main-
tains its shape during propagation. Such vector solitons are also named
as multicolour solitons. The dynamics of vector solitons is usually under-
standable within the framework of coupled nonlinear Schrödinger (CNLS)
equations. In general, the CNLS equations are non-integrable and they
become integrable for specific choices of parameters [34]. Therefore, math-
ematically vector solitons arise as solutions of the CNLS equations. Like in
the scalar NLS equation, the optical vector solitons are formed due to an
exact balance between the dispersion/diffraction and the self-phase mod-
ulation and cross-phase modulation. This interesting class of optical soli-
tons has been first predicted by Manakov in 1974, where he has derived the
one-soliton solution and made an asymptotic analysis for the two-soliton
solution through the IST method, by introducing a set of two CNLS equa-
tions for the nonlinear interaction of the two orthogonally polarized optical
waves in birefringent fibers [35]. The Manakov system is essentially an in-
tegrable system, where the strength of the nonlinear interactions within
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and between the components are equal. Vector optical solitary wave prop-
agation in birefringent fiber has been first theoretically studied by Menyuk
by considering a pair of non-integrable CNLS equations [36]. Very inter-
estingly Lakshmanan along with Radhakrishnan and Hietarinta theoreti-
cally predicted that the bright solitons of the Manakov model exhibit novel
energy sharing collision through intensity redistribution [37]. They have
explicitly demonstrated this fascinating collision scenario by analysing the
two bright soliton solution derived through the Hirota bilinear method.
Then this study has been extended to N-CNLS equations by Kanna and
Lakshmanan in [38], where there is a lot of exciting possibilities for the
occurrence of energy redistribution among the N-modes that have been
reported. This theoretical development was experimentally verified in [39–
41] and subsequently, it gave rise to the possibility of constructing all op-
tical logic gates [30, 31, 42–44]. The discovery of photorefractive solitons
[45–48] and the subsequent experimental developments [49–52] have sub-
stantially enriched our knowledge on vector solitons. It is known that a
set of N-CNLS equations describes the beam propagation in a Kerr-like
photorefractive medium [53–56]. Further, the experimental studies on vec-
tor solitons in photorefractive media as well as in dispersive media during
the past three decades demand investigation of physical and mathematical
aspects of CNLS equations even more rigorously.

It is very important to point out there exist many types of vector soli-
tons that have been reported so far for both integrable and non-integrable
CNLS type equations. For instance, in the non-integrable cases, a tempo-
ral light pulse composed of orthogonally polarized components propagate
with common group velocity and it is called group velocity-locked soliton
[57]. On the other hand, if the two polarization components of the soliton
are locked in phase, then such a vector soliton has been called a phase-
locked soliton [58], whereas for the polarization-locked vector soliton [59],
the relative phase between the components is locked at ±π

2 but across the
pulse, and the polarization state profile is not uniform. However, the cor-
responding profile is invariant with propagation. Apart from the above,
other types of vector solitary waves have been reported in birefringent
fibers [60–63] and in saturable nonlinear medium [64, 65], where the sta-
bility of multi-hump solitons has been reported. In the integrable cases,
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bright-bright solitons [35, 37, 38, 66], bright-dark or dark-bright solitons
[67–71] and dark-dark solitons [72, 73] were documented in the context of
nonlinear optics and their novel properties in multicomponent BECs have
also been investigated considerably [74]. In a photorefractive medium,
partially coherent solitons or soliton complexes were identified in the N-
CNLS system, and their special properties were revealed by Akhmediev
and his collaborators in [32, 53–56]. Apart from the above, during the last
decade, a large volume of work has been dedicated to the temporal optical
solitons (both theoretically and experimentally) by considering the fiber
lasers, which has been reported as a very useful nonlinear system to study
the dynamics and formation of temporal optical solitons [75]. There ex-
ist different types of optical solitons in dissipative systems too and their
various properties have been explored in [76].

From the above studies on vector solitons, especially in integrable cou-
pled nonlinear Schrödinger models, we have identified that there exists
a degeneracy in the structure of the bright solitons as we have explained
below in Section 1.4. That is, the solitons in two-mode fibers or in multi-
mode fibers propagate with identical wave numbers. In order to avoid this
degeneracy, we introduce two non-identical propagation constants appro-
priately in the structure of the fundamental bright solitons of the 2-CNLS
equation to start with. Consequently, the degeneracy is removed and it
leads to a new class of fundamental bright solitons, namely nondegenerate
fundamental vector bright solitons [77]. For the first time, we have shown
that such an inclusion of additional distinct propagation constants brings
out a general form of vector bright soliton solution to the several integrable
CNLS systems [78, 79], namely Manakov system or 2-CNLS system, mixed
2-CNLS system (with one mode in the anomalous dispersion regime and
the other mode in the normal dispersion regime), 2-component coherently
coupled NLS system, generalized CNLS system, and 2-component long-
wave short-wave resonance interaction system [79]. We note that very re-
cently the nondegenerate solitons have also been studied in other contexts
as well. For instance, in multi-component BECs [80] using the Darboux
transformation method, in coupled Fokas-Lenells system [81] and in AB-
system [82] such nondegenerate solitons have been identified. We also
note that multi-valley dark nondegenerate soliton has been studied in the
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context of multicomponent repulsive BECs [83]. In this thesis, we critically
study, the existence and their salient novel features of the general form
of nondegenerate vector bright solitons in the above class of 2-component
nonlinear Schrödinger systems. Then we also critically analyse their novel
collision properties with the Manakov system as an example. Further, we
also discuss in detail the corresponding already known degenerate vector
bright solitons and their intriguing collisional properties. Additionally, we
also illustrate the multi-hump nature of the nondegenerate fundamental
bright solitons in N-CNLS system [84].

1.3 Derivation of CNLS equations and other in-

tegrable CNLS type models

In general, the interaction between two or more co-propagating optical
modes is governed by the coupled nonlinear Schrödinger family of equa-
tions. The derivation of one such CNLS equations starts from the Maxwell’s
equations for electromagnetic wave propagation in a dielectric medium,

∇2~E− 1
c2

∂2~E
∂t2 = −µ0

∂2~P
∂t2 , (1.2)

where ~E(~r, t) is the electric field, ~P(~r, t) is the induced polarization,
µ0 is the permeability of free space and c is the velocity of light. The
induced polarization ~P(~r, t) contains both a linear part and a nonlinear
part. That is ~P(~r, t) = ~PL(~r, t)+ ~PNL(~r, t). The linear and nonlinear induced
polarizations can be further written as

~PL(~r, t) = ε0

∫ +∞

−∞
χ(1)(t− t′)~E(~r, t′)dt′, (1.3a)

~PNL(~r, t) = ε0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
χ(3)(t− t1, t− t2, t− t3)~E(~r, t1)~E(~r, t2)~E(~r, t3)dt1dt2dt3.(1.3b)

Here, ε0 is the permitivity of the free space and χ(j) is the jth order su-
ceptibility tensor of rank (j + 1) [6, 85]. For elliptically birefringent fibers,
the electric field ~E(~r, t) can be written as
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~E(~r, t) =
1
2

(
ê1E1(z, t) + ê2E2(z, t)

)
e−iω0t + c.c. (1.4)

In the above, the variables z and t denote the direction of propagation
and retarded time, respectively and c.c stands for complex conjugation.
The orthonormal vectors ê1 and ê2 are expressed as, ê1 = x̂+irŷ√

1+r2 and ê2 =
rx̂−iŷ√

1+r2 , where r is a measure of the extent of ellipticity and x̂ and ŷ are
unit polarization vectors along x and y directions, respectively. In Eq.
(1.4), E1 and E2 are complex amplitudes of the polarization components at
frequency ω0. The nonlinear polarization can be obtained by substituting
the expression of the electric field ~E(~r, t) from Eq. (1.4) in Eqs. (1.3a)
and (1.3b). The electric-field components are written under slowly varying
approximation as

Ej(z, t) = Fj(x, y)Qj(z, t)eiK0jz, j = 1, 2, (1.5)

where Fj(x, y) are the fiber distribution function in the transverse di-
rections x and y and K0j, j = 1, 2, are the propagation constants for the
two modes. By doing so, the following coupled equations are obtained for
Qj(z, t):

iQ1,z +
i

vg1
Q1,t −

k′′

2
Q1,tt + µ(|Q1|2 + B|Q2|2)Q1 = 0, (1.6)

iQ2,z +
i

vg2
Q2,t −

k′′

2
Q2,tt + µ(|Q1|2 + B|Q2|2)Q2 = 0. (1.7)

Here, k′′ =
(

∂2k
∂ω2

)
ω=ω0

accounts for the group velocity dispersion, µ

is the nonlinearity coefficient and vg1 and vg2 are the group velocities of
the two co-propagating modes, respectively. The constant B = 2+2 sin2 θ

2+cos2 θ
is

the cross-phase modulation coupling parameter, where θ is the angle of
ellipticity which varies between 0 and π

2 . Here, we have assumed that the
fiber is having a strong birefringent nature. Under three sets of consecutive
transformations (detailed derivation can be found in [85]), we obtain the
following dimensionless 2-CNLS equation with the integrability restriction
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B = 1 [34], which is obtained from the Painlevé analysis,

iq1,z + q1,tt + 2µ(|q1|2 + |q2|2)q1 = 0, (1.8)

iq2,z + q2,tt + 2µ(|q1|2 + |q2|2)q2 = 0. (1.9)

The above set of CNLS equations constitute the completely integrable
system introduced by Manakov to describe the propagation of an intense
electromagnetic pulse in a birefringent fiber [35]. The system (1.8)-(1.9)
is well discussed in nonlinear optics and in other areas of physics. In
this thesis, we also wish to consider another 2-CNLS equation which is
a variant of the Manakov system, namely the mixed coupled nonlinear
Schrödinger system or Zakharov and Schulman system [66, 86]. One can
write both the mixed CNLS equation and Manakov equation in a unified
form as given below:

iqj,z + qj,tt + 2
(

σ1|q1|2 + σ2|q2|2
)

qj = 0, j = 1, 2. (1.10)

In Eq. (1.10), σ1 and σ2 are the strength of the SPM and cross-phase
modulation (XPM) nonlinearities. If σ1 = σ2 = +1, the above equation
becomes the Manakov equation (focusing type 2-CNLS equations), where
the two optical fields q1 and q2 propagate in the anomalous dispersion
regimes [35], whereas for σ1 = σ2 = −1, they propagate in the normal dis-
persion regimes or in other words, the resultant model (1.10) turns out to
be the defocusing Manakov system [72]. For the other choice, σ1 = +1 and
σ2 = −1, the system (1.10) becomes the mixed-CNLS system [66], in which
the SPM is positive and the XPM is negative in both the modes, where
the first mode q1 is propagating in the anomalous dispersion regime while
the second mode q2 is propagating in the normal dispersion regime. Both
the focusing and defocusing Manakov models also find applications in at-
tractive and repulsive multicomponent BECs [74]. We note that the soliton
trapping and daughter wave (shadow) formation have been reported [87]
using the bright soliton solutions of the Manakov system. Radhakrish-
nan and Lakshmanan have derived the dark-dark soliton solution [72] and
Sheppard and Kivshar have obtained bright-dark soliton solution [68] to
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the above system. In the latter case, the authors have pointed out the exis-
tence of breathing bound states. Further, it has been shown that the mixed
CNLS system models the electromagnetic pulse propagation in isotropic
and homogeneous nonlinear left handed materials [88]. By taking into
account the electron-phonon interaction and in the long-wavelength ap-
proximation, the mixed-CNLS system can also be obtained as the modified
Hubbard model (Lindner-Fedyanin system) [89–91]. The mixed CNLS sys-
tem is also realized in two species BECs for a suitable choice of interspecies
and intraspecies interactions [92]. We point out that the IST method and
Darboux transformation method have been rigorously developed to ob-
tain the bright-bright, dark-dark and bright-dark soliton solutions of the
multicomponent focusing, defocusing and mixed CNLS systems [93–105].

Next, we consider the two-component coherently coupled nonlinear
Schrödinger equation, which arises due to the coherent effects of the cou-
pling among the copropagating optical fields. In general, an ultrashort
pulse propagation in non-ideal weakly birefringent multimode fibers and
optical beam propagation in low anisotropic Kerr type nonlinear media are
described by the following two-component non-integrable CCNLS system,
[5, 106, 107];

iq1,z + δq1,tt − µq1 + (|q1|2 + σ|q2|2)q1 + λq2
2q∗1 = 0, (1.11)

iq2,z + δq2,tt + µq2 + (σ|q1|2 + |q2|2)q2 + λq2
1q∗2 = 0. (1.12)

The above equation also appears in isotropic Kerr-type nonlinear gy-
rotropic medium [108]. In the above q1 and q2 are two coherently coupled
orthogonally polarized modes, z and t are the propagation direction and
transverse direction, respectively, µ is the degree of birefringence, σ and λ

are the incoherent and coherent coupling parameters, respectively, and δ

is the group velocity dispersion. The nonlinearities arise in Eq. (1.11) and
Eq. (1.12) due to SPM (|qj|2qj, j = 1, 2), XPM (σ|qk|2qj, j, k = 1, 2, j 6= k)
and four-wave mixing effect ( λq2

kq∗j , j, k = 1, 2, j 6= k). Equations (1.11) and
(1.12) are shown to be integrable for a specific choice of system parameters
(δ, µ, σ and λ) [107] and soliton solutions were derived by linearly super-
posing the soliton solutions of the two nonlinear Schrödinger equations
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through a transformation. The corresponding integrable two-component
CCNLS system (2-CCNLS system) is

iq1,z + q1,tt + γ(|q1|2 + 2|q2|2)q1 − γq2
2q∗1 = 0, (1.13)

iq2,z + q2,tt + γ(2|q1|2 + |q2|2)q2 − γq2
1q∗2 = 0. (1.14)

Interestingly, Kanna et al [109] have derived the fundamental and two
bright soliton solutions of (1.13), (1.14) and its multicomponent version
[110] by developing a non-standard Hirota bilinearization procedure. They
have classified the fundamental bright soliton as incoherently coupled soli-
ton (ICS) and coherently coupled soliton (CCS) based on a condition on the
parameters in the auxiliary function. A novel double-hump soliton profile
arises in these CCNLS systems due to the coherent coupling among the
two copropagating optical fields. Further, they have also demonstrated a
fascinating energy switching collision during the interaction of ICS and
CCS [109, 110]. We remark that the CCNLS type equations are useful in
studying the dynamics of solitons in spinor BECs and coherently coupled
BECs [111–113]also. A similar type of CCNLS equation has been identified
in the context of spinor BEC and is shown to be integrable [114–116].

Next, we wish to examine the bright soliton solutions of the general
coupled nonlinear Schrödinger (GCNLS) system [117], namely

iq1,z + q1,tt + 2(a|q1|2 + c|q2|2 + bq1q∗2 + b∗q∗1q2)q1 = 0, (1.15)

iq2,z + q2,tt + 2(a|q1|2 + c|q2|2 + bq1q∗2 + b∗q∗1q2)q2 = 0. (1.16)

In the above GCNLS equations, a and c account for the strength of
the SPM and XPM nonlinearities whereas the complex parameter b in the
phase dependent terms, bq1q∗2 + b∗q∗1q2, describes the four-wave mixing
effect that arises in multichannel communication systems [6]. When a = c
and b = 0 the system (1.15)-(1.16) reduces to the Manakov system (or Eq.
(1.10) with σ1 = σ2 = +1). Then, if a = −c and b = 0 the GCNLS system
becomes the mixed-CNLS model.

This GCNLS system has received considerable attention recently in
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both mathematical and physical aspects [117–120]. The integrability prop-
erties of the system (1.15) and (1.16) have been studied in [117] in which
the N-soliton solution was obtained through the Riemann-Hilbert method.
The GCNLS system is shown to be integrable through Weiss-Tabor-Carnevale
(WTC) Painlevé test [118]. In [119], bright and dark-soliton solutions were
obtained through the Hirota bilinear method. By relating the GCNLS sys-
tem with the Manakov and Makhankov vector models using a transforma-
tion (q1 = ψ1 − b∗ψ2 and q2 = aψ2), the authors in [120] have constructed
bright-bright, dark-dark and a quasibreather-dark soliton solutions.

Finally, for our investigation, we also wish to take into account the
following coupled nonlinear Schrödinger type equations, namely the two-
component long-wave short-wave resonance interaction system,

iS(1)
t + S(1)

xx + LS(1) = 0, iS(2)
t + S(2)

xx + LS(2) = 0, Lt =
2

∑
l=1

(|S(l)|2)x. (1.17)

In the above, S(l)’s, l = 1, 2, are short-wave (SW) components, L is the
long-wave (LW) component and suffixes x and t denote partial derivatives
with respect to spatial and temporal coordinates, respectively. The above
LSRI system arises whenever the phase velocity of the low-frequency long-
wave matches with the group velocity of the high-frequency short-waves
[121, 122]. In Eq. (1.17), the formation of soliton in the SW components is
due to the exact balance between its dispersion by the nonlinear interac-
tion of the LW with the SW. At the same time, the formation and evolution
of the soliton in the LW components is determined by the self-interaction
of the SWs. The above LSRI system (1.17) has considerable physical rel-
evance in nonlinear optics [123–126], plasma physics [127, 128], hydrody-
namics [122, 129–133] and BECs [134–136]. The LSRI system originally
arose from the pioneering study of nonlinear resonant interaction of the
plasma waves by Zakharov [121], where generalized Zakharov equations
were deduced to describe Langmuir waves. Such generalized Zakharov
equations were reduced to (1 + 1)-dimensional Yajima-Oikawa equation
for describing the one-dimensional two-layer fluid flow [128] for which
soliton solutions were obtained through the IST method. Benney has also
derived a single-component LSRI system for modelling the dynamics of



16 1.4. Motivation of the present thesis

short capillary gravity waves and gravity waves in deep water [122]. Af-
ter these works, there have been a large amount of work in the direction
of LSRI involving (1 + 1) and (2 + 1)-dimensional single component and
multi-component cases [137–154]. In nonlinear optics, the single compo-
nent LSRI system was deduced from the coupled nonlinear Schrödinger
equations describing the interaction of two optical modes under small am-
plitude asymptotic expansion [123]. In the negative refractive index media,
the LSRI process has been investigated [124]. We wish to point out that the
bright soliton solutions for the general multi-component LSRI system have
been derived through the Hirota bilinear method [138]. In this thesis, we
have demonstrated two types of energy sharing collisions for two different
choices of nonlinearity coefficients. Considering the collisions of solitons
in these cases one finds that the solitons appearing in the LW component
always exhibit elastic collision whereas the solitons in the SW components
always undergo energy sharing collisions.

1.4 Motivation of the present thesis

As we have pointed out in Section 1.2, the fundamental (even higher or-
der) bright soliton solutions which have been already reported for the inte-
grable coupled nonlinear Schrödinger family of equations are degenerate.
Here, by degenerate, we mean that the fundamental bright soliton nature
is characterized by a single wave number in all the modes or components.
The presence of identical wave number in all the modes restricts the mo-
tion as well as the structure of the fundamental bright soliton in most
of the CNLS type equations. Thus, the bright solitons propagate in all
the modes with identical velocity apart from the distinct polarization vec-
tor constants. Such a constrained motion always persists in most of the
fundamental bright soliton solutions of various CNLS systems. As a con-
sequence of this degeneracy, a single-hump structure only emerges in the
fundamental bright soliton profile. In order to demonstrate this clearly, in
the following, we consider the fundamental bright soliton solution of the
Manakov system:
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qj =
α
(j)
1 eη1

1 + eη1+η∗1+R ≡ Ajk1Reiη1I sech(η1R +
R
2
), j = 1, 2. (1.18)

Here Aj’s are the unit polarization vectors, Aj =
α
(j)
1

(|α1|2+|β1|2)1/2 , j = 1, 2,
the wave variable η1 (= η1R + iη1I), η1R = k1R(t − 2k1Iz), η1I = k1It +
(k2

1R − k2
1I)z and eR = (|α1|2+|β1|2)

(k1+k∗1)
2 . From the above expression for the one-

soliton solution, it is evident that the fundamental soliton is described
by only one complex wave number k1. Consequently, the single-hump
soliton propagates in the two modes, q1 and q2, with identical velocity
v = 2k1I . A similar situation always persists in the other coupled field
models mentioned above and their generalizations. For instance, the N-
component Manakov type system [38], the mixed N-CNLS system [66],
the GCNLS system [117, 119], and the multi-component LSRI system [128,
138] are such cases. However, in contrast to such cases, the coherent cou-
pling among the copropagating optical fields induces a special type of
double-hump vector bright soliton in the CCNLS system [109, 110]. In this
four wave mixing physical situation also the coherently coupled soliton is
governed by an identical propagation constant in all the modes. Therefore
it is clear that the above mentioned degeneracy in propagation constants
always persist in all the previously reported vector bright solitons.

In order to differentiate the above class of vector bright solitons from
more general fundamental solitons, we classify them as degenerate and
nondegenerate solitons based on the absence or presence of more than
one wave numbers in the multi-component soliton solution. We call the
solitons which propagate in all the modes with identical wave number
as degenerate vector solitons whereas the solitons with nonidentical wave
numbers as nondegenerate vector solitons. From the above literature, it
is clear that the vector bright solitons with identical wave numbers have
been well understood. However, the studies on solitons with non-identical
propagation constants in all the modes have not been considered until re-
cently. Therefore one would like to investigate the role of additional wave
number(s) on the vector bright soliton structures and collision scenario



18 1.5. Methodology

as well. With this motivation, we plan to look for a class of fundamen-
tal soliton solutions, in a more general form, which possesses more than
one distinct propagation constants. Recently, we have successfully iden-
tified such a general class of fundamental vector bright soliton solutions
for a wide class of physically important CNLS type equations using the
Hirota bilinear method. In this thesis, we elaborately describe the novel
properties, including the various collision properties, associated with the
nondegenerate vector bright solitons of the Manakov system by deriving
their analytical forms through the bilinearization method. Then we point
out the existence of such nondegenerate solitons in other coupled systems,
namely N-CNLS system, mixed 2-CNLS system, 2-CCNLS system, GCNLS
system and two-component LSRI system. In these systems, we also spec-
ify how the degenerate bright soliton solution arises as a special case of
the nondegenerate soliton solution and point out their fascinating energy
sharing collisions.

1.5 Methodology

The present work is mainly concerned with theoretical calculations and
we have carried out the above mentioned objectives by using the following
analytical techniques.

(i) Hirota bilinearization method:

The standard Hirota bilinear method is adopted to bring out the ex-
act analytical form of the nondegenerate fundamental vector solitons
in all the CNLS family of systems mentioned above except for the
CCNLS system and to derive the higher-order nondegenerate soliton
solutions in the Manakov system, the GCNLS system and the 2-LSRI
system. The standard Hirota bilinear procedure has the following
steps.

• First one has to bilinearize the given coupled nonlinear partial
differential equations using the dependant variable transforma-
tions which comes as a result of Painleve’ singularity structure
analysis.
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• Then for the unkown functions present in the bilinear forms of
the associated coupled nonlinear partial differential equations,
one needs to substitue suitable power series expansion with a
small expansion parameter.

• Collecting the various powers of the small expansion parame-
ter leads to a set of linear coupled partial differential equations,
where the lowest order partial differential equations are of ho-
mogenous type while the higher orders are of inhomogenous
types.

• Now one can consider the admissible seed solutions, for the
lowest-order linear partial differential equations, as the starting
solution.Then proceeding in a standard way, solving the suc-
cessive inhomogeneous linear partial differential equations, we
deduce the full series solution.

• Explicit forms of the complex or real functions which appeared
in the bilinear transformations constitue the soliton solution of
the given coupled nonlinear partial differential equation.

(ii) Nonstandard bilinearization procedure:

It is known that to derive the soliton solutions for the CCNLS system
one has to adopt the non-standard Hirota bilinearization procedure
rather than considering the standard bilinearization procedure. Since
to get the nontrivial solutions as well as to make the number of bilin-
ear equations to be equal to the number of unknown functions it is
very much essential to introduce an appropriate number of auxiliary
variables to get the correct bilinear forms of the CCNLS system. Once
the bilinearization is achieved we assume the more general form of
admissible seed solutions for the lowest-order linear PDEs and then
perform the calculations in the standard way.

(iii) Asymptotic analysis:

Asymptotic analysis is used to investigate the collision dynamics of
nondegenerate solitons. By using this analysis, we deduce the ex-
plicit forms of individual nondegenerate solitons at the asymptotic
limits z (or t)→ ±∞. To do so, we have incorporated the asymptotic
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behaviour of the wave variables in the obtained two-soliton solution
and from which we have deduced the asymptotic forms of individ-
ual solitons. Then based on the obtained asymptotic forms we have
analyzed the collision among the two nondegenerate solitons and the
collision scenario between degenerate and nondegenerate solitons.

1.6 Plan of the present thesis

Our original findings are presented in the next four chapters (chapter 2 to
chapter 5). In the final Chapter 6, a summary of results obtained in the
present thesis along with the possible future directions are given.

Chapter 2: Nondegenerate solitons in Manakov system

In this chapter, we show that the Manakov equation can admit a more
general class of nondegenerate vector solitons, associated with distinct
wave numbers, besides the already known energy exchanging solitons cor-
responding to identical wave numbers. To bring out these details, we de-
rive the exact forms of such vector one-, two- and three-soliton solutions
through Hirota bilinear method and they are rewritten in more compact
forms using Gram determinants. The presence of distinct wave numbers
allows the nondegenerate fundamental soliton to admit various profiles
such as double-hump, flat-top and single-hump structures. We explain the
formation of double-hump structure in the fundamental soliton when the
relative velocity of the two modes tends to zero. More critical analysis
shows that the nondegenerate fundamental solitons can undergo three-
types of collision scenarios: (i) shape preserving collision, (ii) shape alter-
ing collision and (iii) shape changing collision, for appropriate parametric
choices. However, they belong to elastic collision only. Then we observe
the coexistence of degenerate and nondegenerate solitons in the Manakov
system when the wave numbers are restricted appropriately in the ob-
tained two-soliton solution. In such a situation we find the degenerate
soliton induces shape changing behavior of nondegenerate soliton during
the collision process. By performing suitable asymptotic analysis we ana-
lyze the consequences that occur in each of the collision scenario. Finally
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we point out that the previously known class of energy exchanging vector
bright solitons, with identical wave numbers, turns out to be a special case
of the newly derived nondegenerate solitons.

Chapter 3: Nondegenerate solitons in GCNLS system

We investigate the role of the four-wave mixing effect on the structure
of nondegenerate vector solitons and their collision dynamics. For this
purpose, we consider the generalized coupled nonlinear Schrödinger (GC-
NLS) system, which describes the evolution and nonlinear interaction of
the two optical modes. The fundamental, as well as higher-order nonde-
generate vector soliton solutions, are derived through the Hirota bilinear
method and their forms are rewritten in a compact way using Gram deter-
minants. Very interestingly, we find that the presence of four-wave mixing
effect provokes the breathing vector soliton state in both the optical modes.
Such breather formation is not possible in the fundamental vector solitons
of the Manakov system. Then, we observe that the nondegenerate solitons
in the GCNLS system undergo, in general, novel shape changing collision
when the four-wave mixing effect strength is strong enough. On the other
hand, for the weak four-wave mixing effect they undergo mere shape pre-
serving (or shape altering) collision. Further, we analyze the degenerate
soliton collision induced novel shape shaping property of nondegenerate
vector soliton by deriving the partially nondegenerate two-soliton solu-
tion. We believe that the results reported in this chapter will be useful in
nonlinear optics for manipulating light by light through collision.

Chapter 4: Nondegenerate solitons in two-component LSRI system

In this chapter, we study the dynamics of an interesting class of nonde-
generate vector solitons in the long wave-short wave resonance interaction
(LSRI) system. The model that we consider here describes the nonlin-
ear interaction of the long-wave and two-short waves and it generically
appears in several physical settings. To derive this class of nondegener-
ate vector soliton solutions we adopt the Hirota bilinear method with the
more general form of admissible seed solutions with nonidentical distinct



22 1.6. Plan of the present thesis

propagation constants. We express the resultant fundamental as well as
multi-soliton solutions in a compact way using Gram-determinants. The
general fundamental vector soliton solution possesses several interesting
properties. For instance, the double-hump or a single-hump profile struc-
ture including a special flattop profile form results in when the soliton
propagates in all the components with identical velocities. Interestingly, in
the case of nonidentical velocities, the soliton number is increased to two in
the long-wave (LW) component, while a single-humped soliton propagates
in the two short-wave (SW) components. We establish through a detailed
analysis that the nondegenerate multi-solitons in contrast to the already
known vector solitons (with identical wave numbers) can undergo three
types of elastic collision scenarios: (i) shape preserving, (ii) shape altering,
and (iii) a novel shape changing collision, depending on the choice of the
soliton parameters. Very importantly, the later shape changing behaviour
of the nondegenerate vector solitons is observed in the long-wave mode
also, along with corresponding changes in the short-wave modes, and this
nonlinear phenomenon has not been observed in the already known vec-
tor solitons. In addition, we point out the coexistence of nondegenerate
and degenerate solitons simultaneously along with the associated physical
consequences. We also indicate the physical realizations of these general
vector solitons in nonlinear optics, hydrodynamics, and Bose-Einstein con-
densates.

Chapter 5: Existence of nondegenerate solitons in other coupled non-
linear Schrödinger family of systems

We investigate the existence of nondegenerate vector solitons in cer-
tain class of physically important CNLS systems. In particular N-CNLS
system, mixed 2-CNLS system and two-component CCNLS system are
considered. Very interestingly, the obtained nondegenerate fundamental
vector soliton solutions admits novel geometrical structurs. For example,
in N-CNLS system, it admits multi-humped intensity profiles. This specific
property is illustrated by considering the nondegenerate soliton solutions
for 3 and 4-CNLS systems. In addition, we also point out the existence
of a special class of partially nondegenerate soliton solutions by imposing
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appropriate restrictions on the wavenumbers in the already obtained com-
pletely nondegenerate soliton solution. Such class of soliton solutions can
also exhibit multi-hump profile structures. The stability analysis associ-
ated with the nondegenerate fundamental soliton of the 3-CNLS system
is examined. The numerical results confirm the stability of triple-humped
profile nature against perturbations of 5% and 10% white noise. The multi-
hump nature of nondegenerate fundamental soliton solution will be useful
in multi-level optical communication applications with enhanced flow of
data in multi-mode fibers. In the mixed 2-CNLS system, the nondegener-
ate fundamental soliton always admits a singularity due to the presence
of defocusing nonlinearity of the system. Finally, we briefly discuss the
properties of nondegenerate vector solitons in the 2-CCNLS system.

Chapter 6: Summary and Future works

In this chapter, a summary of the important results of our investigations
is given. Also possible future works along the direction of the above study
are also suggested.
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Chapter 2
Nondegenerate solitons in
Manakov system

2.1 Introduction

Coupled nonlinear Schrödinger (CNLS) equations are the fundamental dy-
namical models for representing the propagation of optical field in multi-
mode optical fibers. As discussed earlier, CNLS equations consist of self
phase and cross phase modulation effects unlike the scalar NLS equa-
tion which has only the self phase modulation nonlinearity. Among the
various CNLS equations, the simplest one is the two coupled nonlinear
Schrödinger system which describes the optical pulse propagation in two
mode optical fibers or birefringence fibers. This system of two coupled
nonlinear Schrödinger equations is not integrable in general except for
very special choices of parameters. One such integrable case is the Man-
akov system. This celebrated Manakov system is of the form,

iq1,z + q1,tt + 2
(
|q1|2 + |q2|2

)
q1 = 0,

iq2,z + q2,tt + 2
(
|q1|2 + |q2|2

)
q2 = 0. (2.1)

Here qj, j = 1, 2, are the complex wave envelops which propagate in
the two mode optical fiber, z and t denote the normalized distance and
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retarded time, respectively. It is very important to understand the prop-
erties of nondegenerate solitons in such simplest coupled field model like
the Manakov system. We present the results of our investigations on the
system (2.1) in this chapter.

This chapter is structured as follows: In Sec. 2.2, we discuss the Hirota
bilinearization procedure in order to derive nondegenerate soliton solu-
tions of Eq. (2.1). Using this procedure we obtain nondegenerate one- and
two-soliton solutions and also identify the coexistence of nondegenerate
and degenerate solitons in Sec. 2.3.1 and Sec. 2.3.2, respectively. In Sec.
2.3.3, we discuss various collision properties of nondegenerate solitons.
Sec. 2.3.4 and Sec. 2.3.5 deal with the collision between nondegenerate
solitons and degenerate solitons. We recover the degenerate one- and two-
soliton solutions from the nondegenerate one- and two-soliton solutions
by suitably restricting the wave numbers and then study the underlying
collision dynamics in Sec. 2.3.6. We point out the possible experimental
realization of nondegenerate solitons in Sec. 2.3.7. In Sec. 2.4 we provide
the stability analysis for nondegenerate double hump solitons under per-
turbation. Gram determinant form of nondegenerate three-soliton solution
is given in Sec. 2.5.

2.2 Hirota Bilinearization of Manakov system

To derive the nondegenerate soliton solutions for the Manakov system we
adopt the same Hirota bilinear procedure that has been already used to
get degenerate vector bright soliton solutions but with appropriate form
of initial seed solutions. We point out later how such a simple form of new
seed solutions will produce remarkably new physically important class of
soliton solutions. In general, the exact soliton solutions of Eq. (2.1) can
be obtained by introducing the bilinearizing transformation, which can be
identified from the singularity structure analysis of Eq. (2.1) [34] as

qj(z, t) =
g(j)(z, t)

f (z, t)
, j = 1, 2, (2.2)

to Eq. (2.1). This results in the following set of bilinear forms of Eq.
(2.1),
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(iDz + D2
t )g(j) · f = 0, j = 1, 2, (2.3a)

D2
t f · f = 2

2

∑
n=1

g(n)g(n)∗. (2.3b)

Here g(j)’s are complex functions whereas f is a real function and ∗
denotes complex conjugation. The Hirota’s bilinear operators Dz and Dt

are defined [155] by the expressions,

Dm
z Dn

t (a · b) =
(

∂

∂z
− ∂

∂z′

)m(
∂

∂t
− ∂

∂t′

)n

a(z, t)b(z′, t′)∣∣z=z′, t=t′
.

Substituting the standard expansions for the unknown functions g(j)

and f ,

g(j) = εg(j)
1 + ε3g(j)

3 + ..., j = 1, 2,

f = 1 + ε2 f2 + ε4 f4 + ..., (2.4)

in the bilinear Eqs. (2.3a)-(2.3b) one can get a system of linear partial
differential equations (PDEs). Here ε is a formal series expansion param-
eter. The set of linear PDEs arises after collecting the coefficients of same
powers of ε. By solving these linear PDEs recursively (at an appropriate
order of ε), the resultant associated explicit forms of g(j)’s and f constitute
the soliton solutions to the underlying system (2.1). We note that the trun-
cation of series expansions (2.4) for the nondegenerate soliton solutions is
different from degenerate soliton solutions. This is essentially due to the
general form of seed solutions assigned to the lowest order linear PDEs.
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2.3 A new class of nondegenerate soliton solu-

tions

To study the role of additional wave numbers on the structural, propaga-
tional and collisional properties of nondegenerate soliton, it is very much
important to find the exact analytical form of it systematically. In this sec-
tion by exploiting the procedure described above we intend to construct
nondegenerate one- and two-soliton solutions which can be generalized
to arbitrary N-soliton case. In principle this is possible because of the
existence of nondegenerate N-soliton solution ensured by the complete in-
tegrability property of Manakov Eq. (2.1). Then we point out the possibil-
ity of coexistence of degenerate and nondegenerate solitons by imposing
certain restriction on the wave numbers in the obtained nondegenerate
two-soliton solution. Further we also point out the possibility of deriving
this partially nondegenerate two-soliton solution through Hirota bilinear
method. We note that to avoid too many mathematical details we pro-
vide the final form of solutions only since the NDS solution construction
process is a lengthy one.

2.3.1 Nondegenerate fundamental soliton solution

In order to deduce the exact form of nondegenerate one-soliton solution
we consider two different seed solutions for the two modes as

g(1)1 = α
(1)
1 eη1 , g(2)1 = α

(2)
1 eξ1 , (2.5)

where η1 = k1t + ik2
1z and ξ1 = l1t + il2

1z, to the following linear PDEs

ig(j)
1z + g(j)

1tt = 0, j = 1, 2. (2.6)

In (2.5) the complex parameters α
(j)
1 , j = 1, 2, are arbitrary. The above

equations arise in the lowest order of ε. The presence of two distinct com-
plex wave numbers k1 and l1 (k1 6= l1, in general) in the seed solutions (2.5)
makes the final solution as nondegenerate one. This construction proce-
dure is different from the standard one that has been followed in earlier
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works on degenerate vector bright soliton solutions [37, 38] where identical
seed solutions of Eq. (2.1) (solutions (2.5) with k1 = l1 and distinct α

(j)
1 ’s,

j = 1, 2) have been used as starting seed solutions for Eq. (2.6). We note
that such degenerate seed solutions only yield degenerate class of vector
bright soliton solutions [37, 38, 77].

With the starting solutions (2.5) we allow the series expansions (2.4) to
terminate by themselves while solving the system of linear PDEs. From
this recursive process, we find that the expansions (2.4) get terminated
for the nondegenerate fundamental sliton solution as, g(j) = εg(j)

1 + ε3g(j)
3

and f = 1 + ε2 f2 + ε4 f4. The explicit expressions of g(j)
1 , g(j)

3 , f2 and f4

constitute a general form of new fundamental one-soliton solution to Eq.
(2.1) as

q1 =
g(1)1 + g(1)3
1 + f2 + f4

= (α
(1)
1 eη1 + eη1+ξ1+ξ∗1+∆(1)

1 )/D1

q2 =
g(2)1 + g(2)3
1 + f2 + f4

= (α
(2)
1 eξ1 + eη1+η∗1+ξ1+∆(2)

1 )/D1. (2.7)

Here D1 = 1 + eη1+η∗1+δ1 + eξ1+ξ∗1+δ2 + eη1+η∗1+ξ1+ξ∗1+δ11 ,

e∆(1)
1 =

(k1−l1)α
(1)
1 |α

(2)
1 |2

(k1+l∗1 )(l1+l∗1 )
2 , e∆(2)

1 = − (k1−l1)|α(1)1 |2α
(2)
1

(k1+k∗1)
2(k∗1+l1)

,

eδ1 =
|α(1)1 |2

(k1+k∗1)
2 , eδ2 =

|α(2)1 |2
(l1+l∗1 )

2 and eδ11 =
|k1−l1|2|α(1)1 |2|α

(2)
1 |2

(k1+k∗1)
2(k∗1+l1)(k1+l∗1 )(l1+l∗1 )

2 .

In the above one-soliton solution two distinct complex wave numbers,
k1 and l1, occur in both the expressions of q1 and q2 simultaneously. This
confirms that the obtained solution is nondegenerate. We also note that
the solution (2.7) can be rewritten in a more compact form using Gram
determinants as
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g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0 eη1

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1 eξ1

−1 0 |α(1)1 |2
(k1+k∗1)

0 0

0 −1 0 |α(2)1 |2
(l1+l∗1 )

0

0 0 −α
(1)
1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.8a)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0 eη1

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1 eξ1

−1 0 |α(1)1 |2
(k1+k∗1)

0 0

0 −1 0 |α(2)1 |2
(l1+l∗1 )

0

0 0 0 −α
(2)
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.8b)

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1

−1 0 |α(1)1 |2
(k1+k∗1)

0

0 −1 0 |α(2)1 |2
(l1+l∗1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.8c)

The above Gram determinant forms satisfy the bilinear Eqs. (2.3a) and
(2.3b) as well as Manakov Eq. (2.1).

To investigate the various properties associated with the above funda-
mental soliton solution, we rewrite Eq. (2.7) as

q1 = eiη1I e
∆(1)1 +ρ1

2 {cosh(ξ1R +
φ1R

2
) cos(

φ1I
2

) + i sinh(ξ1R +
φ1R

2
) sin(

φ1I
2

)}/D2, (2.9a)

q2 = eiξ1I e
∆(2)1 +ρ2

2 {cosh(η1R +
φ2R

2
) cos(

φ2I
2

) + i sinh(η1R +
φ2R

2
) sin(

φ2I
2

)}/D2, (2.9b)

where D2 = e
δ11
2 cosh(η1R + ξ1R + δ11

2 ) + e
δ1+δ2

2 cosh(η1R − ξ1R + δ1−δ2
2 ),
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η1R = k1R(t− 2k1Iz), η1I = k1It + (k2
1R − k2

1I)z, ξ1R = l1R(t− 2l1Iz), ξ1I =

l1It + (l2
1R − l2

1I)z, ρj = log α
(j)
1 , j = 1, 2. Here, φ1R, φ1I , φ2R and φ2I are real

and imaginary parts of φ1 = ∆(1)
1 − ρ1 and φ2 = ∆(2)

1 − ρ2, respectively,
and also k1R, l1R, k1I and l1I are the real and imaginary parts of k1 and l1,

respectively. From the above, we can write φ1R = 1
2 log |k1−l1|2|α(2)1 |4

|k1+l∗1 |2(l1+l∗1 )
4 , φ1I =

1
2 log (k1−l1)(k∗1+l1)

(k∗1−l∗1 )(k1+l∗1 )
, φ2R = 1

2 log |l1−k1|2|α(1)1 |4
|k1+l∗1 |2(k1+k∗1)

4 and φ2I = 1
2 log (l1−k1)(k1+l∗1 )

(l∗1−k∗1)(k
∗
1+l1)

.
The profile structures of solution (2.9a)-(2.9b) are described by the four
complex parameters k1 , l1 and α

(j)
1 , j = 1, 2.

For the nondegenerate fundamental soliton in the first mode, the am-
plitude, velocity and central position are found from Eq. (2.9a) as 2k1R, 2l1I

and φ1R
2l1R

, respectively. Similarly for the soliton in the second mode they are

found from Eq. (2.9b) as 2l1R, 2k1I and φ2R
2k1R

, respectively. Note that α
(j)
1 ,

j = 1, 2, are related to the unit polarization vectors of the nondegenerate
fundamental solitons in the two modes. They constitute different phases
for the nondegenerate soliton in the two modes as A1 = (α

(1)
1 /α

(1)∗
1 )1/2

and A2 = (α
(2)
1 /α

(2)∗
1 )1/2.

To explain the various properties associated with solution (2.9a)-(2.9b)
further we consider two physically important special cases where the imag-
inary parts of the wave numbers k1 and l1 are either identical with each
other (k1I = l1I) or nonidentical with each other (k1I 6= l1I). Physically this
implies that the former case corresponds to solitons in the two modes trav-
elling with identical velocities v1 = v2 = 2k1I but with k1 6= l1 whereas the
latter case corresponds to solitons which propagate in the two modes with
non-identical velocities v1 6= v2. In the identical velocity case, the quantity
φjI , j = 1, 2 becomes zero in (2.9a)-(2.9b) when k1I = l1I . This results in the
following expression for the fundamental soliton propagating with single
velocity, v1,2 = 2k1I , in the two modes,

q1 = eiη1I e
∆(1)1 +ρ1

2 cosh(ξ1R +
φ1R

2
)/D2,

q2 = eiξ1I e
∆(2)1 +ρ2

2 cosh(η1R +
φ2R

2
)/D2, (2.10)

where D2 = e
δ11
2 cosh(η1R + ξ1R + δ11

2 ) + e
δ1+δ2

2 cosh(η1R − ξ1R + δ1−δ2
2 )
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with η1R = k1R(t− 2k1Iz), η1I = k1It + (k2
1R − k2

1I)z, ξ1R = l1R(t− 2k1Iz),
ξ1I = k1It + (l2

1R − k2
1I)z. Note that the constants that appear in the above

solution becomes equivalent to the one that appear in the solution (2.9a)-
(2.9b) after imposing the condition k1I = l1I in it. The solution (2.10)
admits four types of symmetric profiles (satisfying appropriate conditions
on parameters, see below) and also their corresponding asymmetric pro-
files. The symmetric profiles are: (i) double-humps in both the modes
(or a double-hump in q1 mode and a M-type double-hump in q2 mode),
(ii) a flat-top in one mode and a double-hump in the other mode, (iii) a
single-hump in the first mode and a double-hump in the second mode (or
vice versa), (iv) single-humps in both the modes. The corresponding four
types of asymmetric wave profiles can be obtained by tuning the real parts
of wave numbers k1 and l1 and the arbitrary complex parameters α

(j)
1 ’s,

j = 1, 2.
To illustrate the symmetric and asymmetric nature of the nondegener-

ate soliton in the identical velocity case we fix k1I = l1I = 0.5 in Figs. 2.1
and 2.2. The symmetric profiles are displayed in Fig. 2.1. The asymmetric
profiles are depicted in Fig. 2.2 for the values of parameters indicated in
Fig. 2.2. From Figs. 2.1 and 2.2 we observe that the transition which occurs
from double-hump to single-hump is through a special flat-top profile. The
flat-top profile has been considered as an intermediate soliton state. It is
noted that flattop soliton is also observed in a complex Ginzburg-Landau
equation [156]. In Ref. [77] we have discussed symmetric and asymmetric
nature of solution (2.10) by incorporating the condition k1R < l1R sup-
plementary material of [77]. However to exhibit the generality of these
structures, in the present thesis, we discuss these properties for k1R > l1R.
It should be pointed out here that in Ref. [80] the authors have derived
this solution in the context of multi-component BEC using Darboux trans-
formation and they have classified density profiles as we have reported in
Ref. [77] for k1R < l1R in the context of nonlinear optics. They have also
studied the stability of double-hump soliton using Bogoliubov-de Gennes
excitation spectrum.

The symmetric nature of all the four cases can be confirmed by find-
ing the extremum points of the nondegenerate one-soliton solution (2.10).
For instance, to show that the double-hump soliton profile displayed in
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Figure 2.1: Various symmetric intensity profiles of nondegenerate fun-
damental soliton: While (a) denotes double-hump solitons in both the
modes (b) and (c) represent flat-top-double-hump solitons and single-
hump-double-hump solitons, respectively. Single-hump solitons in both
the modes are illustrated in (d). The parameter values of each figures
are: (a): k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, α

(1)
1 = 0.45 + 0.45i, α

(2)
1 =

0.49 + 0.45i. (b): k1 = 0.425 + 0.5i, l1 = 0.3 + 0.5i, α
(1)
1 = 0.44 + 0.51i,

α
(2)
1 = 0.43 + 0.5i. (c): k1 = 0.55 + 0.5i, l1 = 0.333 + 0.5i, α

(1)
1 = 0.5 + 0.5i,

α
(2)
1 = 0.5 + 0.45i. (d): k1 = 0.333 + 0.5i, l1 = −0.316 + 0.5i, α

(1)
1 =

0.45 + 0.5i, α
(2)
1 = 0.5 + 0.5i.

Fig. 2.1(a) is symmetric, we find the corresponding local maximum and
minium points by applying the first derivative test ({|qj|2}t = 0) and the
second derivative test ({|qj|2}tt < 0 or > 0) to the expression of |qj|2,
j = 1, 2, at z = 0. For the first mode, the three extremal points are iden-
tified, namely t1 = −0.9, t2 = 5.5 and t3 = 11.9. We find another set of
three extremal points for the second mode, namely t4 = −1.2, t5 = 5.5
and t6 = 12.2 by setting {|q2|2}t = 0. The points t1 and t3 correspond to
the maxima (at which {|q1|2}tt < 0) of the double hump soliton whereas
t2 corresponds to the minimum of the double hump soliton. Similarly
the extremal points t4 and t6 represent the maxima and t5 corresponds
to the minimum of the double hump soliton in the q2 mode. In the first
component the two maxima t1 and t3 are symmetrically located about the
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Figure 2.2: Various asymmetric intensity profiles of nondegenerate fun-
damental soliton: Figures (a), (b), (c) and (d) represent each of fig-
ures asymmetric intensity profiles as against the symmetric profiles of
Figs.2.1(a)-(d). The corresponding parameter values of each figures are:
(a): k1 = 0.333 + 0.5i,l1 = 0.315 + 0.5i, α

(1)
1 = 0.65 + 0.45i, α

(2)
1 =

0.49 + 0.45i. (b): k1 = 0.425 + 0.5i,l1 = 0.3 + 0.5i, α
(1)
1 = 0.5 + 0.51i,

α
(2)
1 = 0.43 + 0.5i. (c): k1 = 0.55 + 0.5i,l1 = 0.333 + 0.5i, α

(1)
1 = 1.2 + 0.5i,

α
(2)
1 = 0.5 + 0.45i. (d): k1 = 0.333 + 0.5i,l1 = −0.22 + 0.5i, α

(1)
1 = 0.45 + 3i,

α
(2)
1 = 0.5 + 0.5i.

minimum point t2. This can be easily confirmed by finding the difference
between t2 and t1 and t3 and t2, that is t2 − t1 = 6.4 = t3 − t2. This is
true for the second component also, that is t5 − t4 = 6.7 = t6 − t5. This
implies that the two maxima t4 and t6 are located symmetrically from the
minimum point t5. Then the magnitude (|q1|2) of each hump (of the dou-
ble hump soliton) corresponding to the maxima t1 is equal to 0.051 and t3

is equal to 0.051. In the second mode, the magnitude (|q2|2) correspond-
ing to t4 is equal to 0.054 and t6 is equal to 0.054. This confirms that the
magnitude of each hump of double hump soliton in both the modes are
equal. Therefore it is evident that the double hump soliton drawn in Fig.
2.1(a) is symmetric. One can easily verify from the Figs. 2.1(c) and 2.1(d)
that the single-hump soliton is symmetric about the local maximum point
(and checking the half widths as well). As far as the flat-top soliton case is
concerned, we have confirmed that the first derivative {|qj|2}t very slowly
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tends to zero near the corresponding maximum for certain number of t val-
ues. This also confirms that the presence of almost flatness and symmetric
nature of the one-soliton.

We also derive the conditions analytically to corroborate the symmet-
ric and asymmetric nature of soliton solution (2.10) in another way. For
this purpose, we intend to calculate the relative separation distance ∆t12

between the minima of the two components (modes)

∆t12 = t̄1 − t̄2 = (t− t1)− (t− t2),

=
φ1R

2l1R
− φ2R

2k1R
. (2.11)

If the above quantity ∆t12 = 0 then the solution (2.10) exhibits symmet-
ric profiles otherwise it admits asymmetric profiles. The explicit form of
relative separation distance turns out to be

∆t12 =
1

2l1R
log

(k1R − l1R)|α(2)1 |2
4l2

1R(k1R + l1R)
− 1

2k1R
log

(l1R − k1R)|α(1)1 |2
4k2

1R(k1R + l1R)
. (2.12)

We have explicitly calculated the relative separation distance values and
confirmed the displayed profiles in Fig. 2.1 and 2.2 are symmetric and
asymmetric, respectively. For instance, the ∆t12 value corresponding to the
symmetric double-hump soliton in both the modes (Fig. 2.1(a)) is 0.002
(to get the perfect zero value one has to fine tune the parameters suitably)
and for asymmetric double-hump solitons the value is equal to 0.6493. The
above calculated values reaffirm that the obtained figures are symmetric in
Fig. 2.1(a) and asymmetric in Fig. 2.2(a). Similarly one can easily confirm
the symmetric and asymmetric nature of other profiles in Figs. 2.1 and 2.2
also.

In addition to the above, for the general nonidentical velocity case
(k1I 6= l1I), v1 6= v2, the distinct wave numbers k1 and l1 influence drasti-
cally the propagation of nondegenerate solitons in the two modes. If the
relative velocity (∆v12 = v1 − v2) of the solitons between the two modes
is large, then there is a node created in the structure of the fundamental
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Figure 2.3: Node formation in the nonidentical velocity case. The pa-
rameter values are k1 = 1 + 1.5i,l1 = 1.5 + 0.5i, α

(1)
1 = 1.5 + 0.5i,

α
(2)
1 = 0.45 + 0.5i.

Figure 2.4: Double-hump formation in the profile structure of nonde-
generate fundamental soliton: (a) and (b) represent the node formation
in soliton profiles. (c) and (d) denote the emergence of double-hump in
both the modes. The corresponding parameter values for (a) and (b) are:
k1 = 0.65− 0.85i, l1 = 0.78− 0.5i, α

(1)
1 = 1 and α

(2)
1 = 0.5; For figures (c)

and (d) the values are chosen as k1 = 0.65− 0.8i, l1 = 0.78− 0.8i, α
(1)
1 = 1

and α
(2)
1 = 0.5.

solitons of both the modes [80]. This is due to the cross phase modula-
tion between the modes. In this situation the intensity of the fast moving
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soliton (v1 = 2l1I > 0) in the first mode starts to decrease and it gets com-
pletely suppressed after z = 0. At the same value of z the fast moving
soliton reappears in the second mode after a finite time. Similarly this fact
is true in the case of slow moving soliton (v2 = 2k1I < 0) as well. Con-
sequently the intensity of solitons is unequally distributed among the two
modes. This is clearly demonstrated in Fig. 2.3 and Figs. 2.4(a)-2.4(b).
On the otherhand, if the relative velocity tends to zero (∆v12 → 0), then
the total intensity, Itotal = |q1|2 + |q2|2, of nondegenerate solitons starts to
get distributed equally among the two components. As a consequence of
this, a double-hump profile starts to emerge in each of the modes as dis-
played in Fig. 2.4(c)-2.4(d). At perfect zero relative velocity (∆v12 = 0), the
double-hump fundamental soliton emerges completely in both the modes.
As we have already pointed out in [77] the nondegenerate soliton solution
exhibits symmetric and asymmetric profiles in the nonidentical velocity
case also but the relative velocity of the solitons should be minimum. We
have not displayed their plots here for brevity.

Recently we found that the occurence of multi-humps depends on the
number of distinct wave numbers and modes [78] apart from the nonlin-
earities. In the present two component case, the resultant nondegenerate
fundamental soliton solution (2.9a)-(2.9b) yields only a double-hump soli-
ton. However a triple-hump soliton and a quadruple hump soliton are
also observed in the cases of 3 and 4 component Manakov system cases,
respectively. For the N-component case one may expect a more compli-
cated profile, as mentioned in the case of theory of incoherent solitons
[157, 158], involving N-number of humps which are characterized by 2N-
complex parameters. Very recently we have also reported the existence of
nondegenerate fundamental solitons and their various novel profile struc-
tures in other integrable coupled NLS type systems [79] as well. It should
be pointed out that the multi-hump nature of nondegenerate fundamen-
tal soliton is somewhat analogous to partially coherent solitons/soliton
complexes [53, 55] where such partially coherent solitons can be obtained
when the number of modes is equal to the number of degenerate vector
soliton solution [37, 43]. We also note here that the 2-partially coherent
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soliton can be deduced from the double-humped nondegenerate funda-
mental soliton (2.9a)-(2.9b) in the Manakov system by imposing the re-
strictions α

(1)
1 = eη10 , α

(2)
1 = −eη20 , k1 = k1R, l1 = k2R, k1I = l1I = 0, where

η10 and η20 are real constants, in solution (2.7) [43]. The soliton complex
reported in [159] is a special case of nondegenerate fundamental soliton
solution (2.7) when the parameters k1 and l1 are chosen as real constants
and α

(1)
1 = α

(2)
1 = 1.

2.3.2 Nondegenerate two-soliton solution

To get the nondegenerate two-soliton solution of Manakov Eq. (2.1) we
proceed with the procedure given in the previous subsection along with
the following seed solutions, g(1)1 = α

(1)
1 eη1 + α

(1)
2 eη2 and g(2)1 = α

(2)
1 eξ1 +

α
(2)
2 eξ2 , ηj = k jt + ik2

j z and ξ j = ljt + il2
j z, j = 1, 2. We find that the series

expansions for g(j), j = 1, 2, and f get terminated as g(j) = εg(j)
1 + ε3g(j)

3 +

ε5g(j)
5 + ε7g(j)

7 and f = 1 + ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8. Here we assume
that all the k j’s and lj’s, j = 1, 2, are distinct. The explicit forms of the
obtained unknown functions in the truncated series expansions constitute
the following nondegenerate two-soliton solution and it can be expressed
using Gram determinants in the following way:

g(N) =

∣∣∣∣∣∣∣∣∣∣
A I φ

−I B 0T

0 CN 0

∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣ A I

−I B

∣∣∣∣∣∣ , N = 1, 2. (2.13)

Here the matrices A and B are of the order (4× 4) defined as

A =

Amm′ Amn

Anm Ann′

, B =

κmm′ κmn

κnm κnn′

, m, m′, n, n′ = 1, 2.

The various elements of the matrix A can be obtained from the following,

Amm′ =
e

ηm+η∗
m′

(km+k∗
m′ )

, Amn = eηm+ξ∗n
(km+l∗n)

, Ann′ =
e

ξn+ξ∗
n′

(ln+l∗
n′ )

, Anm = eη∗n+ξm

(k∗n+lm)
, m, m′, n, n′ =

1, 2. The elements of the matrix B are κmm′ =
ψ†

mσψm′
(k∗m+km′ )

, κmn = ψ†
mσψ′n

(k∗m+kn)
, κnm =

ψ
′†
n σψm

(l∗n+km)
, κnn′ =

ψ
′†
n σψ′n′

(l∗n+ln′ )
. In the latter, the column matrices are defined as
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ψj =

α
(1)
j

0

, ψ′j =

 0

α
(2)
j

, j = m, m′, n, n′ = 1, 2, ηj = k jt + ik2
j z and

ξ j = ljt + il2
j z, j = 1, 2. The other matrices in Eq. (2.13) are defined as φ =(

eη1 eη2 eξ1 eξ2

)T
, C1 = −

(
α
(1)
1 α

(1)
2 0 0

)
, C2 = −

(
0 0 α

(2)
1 α

(2)
2

)
,

0 =
(

0 0 0 0
)

and σ = I is a (4× 4) identity matrix. The presence of

eight arbitrary complex parameters k j, lj, α
(j)
1 and α

(j)
2 , j = 1, 2, define the

profile shapes of the nondegenerate two solitons and their interesting col-
lision scenarios. In addition to the above, we also find that the Manakov
system also admits degenerate and nondegenerate solitons simultaneously
under the wave numbers restriction k1 = l1 (or k2 = l2) but k2 6= l2 (or
k1 6= l1). Such a special kind of partially nondegenerate two-soliton so-
lution can be deduced by fixing the latter wave number restriction in the
completely nondegenerate two-soliton solution (2.13). This partially non-
degenerate soliton solution can also be derived through the Hirota bilinear
method. To derive this solution one has to assume the following seed so-
lutions, g(1)1 = α

(1)
1 eη1 + α

(1)
2 eη2 and g(2)1 = α

(2)
1 eη1 + α

(2)
2 eξ2 , ηj = k jt + ik2

j z
and ξ2 = l2t + il2

2z, j = 1, 2, in the solution construction process. The re-
sultant coexistence soliton solution and its dynamics are characterized by
only seven complex parameters k j, l2, α

(j)
1 and α

(j)
2 , j = 1, 2.

2.3.3 Various types of collision dynamics of nondegenerate

solitons

In order to understand the interesting collision properties associated with
the nondegenerate solitons, one has to analyze the asymptotic forms of
the complete nondegenerate two-soliton solution (2.13) of the Manakov
equation. By doing so, we observe that the nondegenerate solitons in gen-
eral exhibit three types of collision scenarios, namely shape preserving,
shape altering and shape changing collision behaviours, for either of the
two cases (i) Equal velocities: k1I = l1I , k2I = l2I and (ii) Unequal veloci-
ties: k1I 6= l1I , k2I 6= l2I . To facilitate the understanding of these collision
properties, here we present the asymptotic analysis for the case of equal
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velocities only and it can be performed for unequal velocities case also in
a similar manner.

2.3.3.1 Asymptotic analysis

We perform a careful asymptotic analysis for the nondegenerate two soli-
ton solution (2.13) in order to understand the interaction dynamics of the
nondegenerate solitons completely. We deduce the explicit expressions for
the individual solitons at the aymptotic limits z → ±∞. To explore this,
we consider as a typical example k jR, ljR > 0, j = 1, 2, k1I > k2I , l1I > l2I ,
k1I = l1I and k2I = l2I , that corresponds to head-on collision between the
two nondegenerate solitons. In this situation the two fundamental soli-
tons S1 and S2 are well separated and subsequently the asymptotic forms
of the individual nondegenerate solitons can be deduced from the solu-
tion (2.13) by incorporating the following asymptotic nature of the wave
variables ξ jR = ljR(t− 2ljIz) and ηjR = k jR(t− 2k jIz), j = 1, 2, in it. The
wave variables ηjR and ξ jR behave asymptotically as (i) Soliton 1 (S1): η1R,
ξ1R ' 0, η2R, ξ2R → ∓∞ as z∓∞ and (ii) Soliton 2 (S2): η2R, ξ2R ' 0, η1R,
ξ1R → ∓∞ as z±∞. Correspondingly these results lead to the following
asymptotic expressions of nondegenerate individual solitons.

(a) Before collision: z→ −∞

Soliton 1: In this limit, the asymptotic forms of q1 and q2 are deduced
from the two soliton solution (2.13) for soliton 1 as below:

q1 '
2A1−

1 k1Reiη1I cosh(ξ1R + φ−1 )[
a11 cosh(η1R + ξ1R + φ−1 + φ−2 + c1) +

1
a∗11

cosh(η1R − ξ1R + φ−2 − φ−1 + c2)
] , (2.14a)

q2 '
2A1−

2 l1Reiξ1I cosh(η1R + φ−2 )[
a12 cosh(η1R + ξ1R + φ−1 + φ−2 + c1) +

1
a∗12

cosh(η1R − ξ1R + φ−2 − φ−1 + c2)
] . (2.14b)
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Here, a11 =
(k∗1−l∗1 )

1
2

(k∗1+l1)
1
2

, a12 =
(k∗1−l∗1 )

1
2

(k1+l∗1 )
1
2

, φ−1 = 1
2 log (k1−l1)|α(2)1 |2

(k1+l∗1 )(l1+l∗1 )
2 ,

φ−2 = 1
2 log (l1−k1)|α(1)1 |2

(k∗1+l1)(k1+k∗1)
2 , A1−

1 = [α
(1)
1 /α

(1)∗
1 ]1/2 and A1−

2 = i[α(2)1 /α
(2)∗
1 ]1/2.

In the latter, superscript (1−) represents soliton S1 before collision and
subscript (1, 2) denotes the two modes q1 and q2 respectively.

Soliton 2: The asymptotic expressions for soliton 2 in the two modes
before collision turn out to be

q1 '
2k2R A2−

1 ei(η2I+θ−1 ) cosh(ξ2R + ϕ−1 )[
a21 cosh(η2R + ξ2R + ϕ−1 + ϕ−2 + c3) +

1
a∗21

cosh(η2R − ξ2R + ϕ−2 − ϕ−1 + c4)
] , (2.15a)

q2 '
2l2R A2−

2 ei(ξ2I+θ−2 ) cosh(η2R + ϕ−2 )[
a22 cosh(η2R + ξ2R + ϕ−1 + ϕ−2 + c3) +

1
a∗22

cosh(η2R − ξ2R + ϕ−2 − ϕ−1 + c4)
] . (2.15b)

In the above, a21 =
(k∗2−l∗2 )

1
2

(k∗2+l2)
1
2

, a22 =
(k∗2−l∗2 )

1
2

(k2+l∗2 )
1
2

, c3 = 1
2 log (k∗2−l∗2 )

(l2−k2)
,

c4 = 1
2 log (k2−l2)(k∗2+l2)

(l2−k2)(k2+l∗2 )
, ϕ−1 = 1

2 log (k2−l2)|α(2)2 |2
(k2+l∗2 )(l2+l∗2 )

2 +Ψ1, Ψ1 = 1
2 log |k1−l2|2|l1−l2|4

|k1+l∗2 |2|l1+l∗2 |4
,

ϕ−2 = 1
2 log (l2−k2)|α(1)2 |2

(k∗2+l2)(k2+k∗2)
2 + Ψ2, Ψ2 = 1

2 log |k2−l1|2|k1−k2|4
|k2+l∗1 |2|k1+k∗2 |4

,

eiθ−1 =
(k1−k2)(l1−l2)(l∗1+l2)(k2−l1)

1
2 (k1+k∗2)(k

∗
2+l1)

1
2

(k∗1−k∗2)(l1+l∗2 )(l
∗
1−l∗2 )(k

∗
2−l∗1 )

1
2 (k∗1+k2)(k2+l∗1 )

1
2

, A2−
1 = [α

(1)
2 /α

(1)∗
2 ]1/2,

A2−
2 = [α

(2)
2 /α

(2)∗
2 ]1/2, eiθ−2 =

(l1−l2)(k1−l2)
1
2 (k1+l∗2 )

1
2 (l1+l∗2 )

(k∗1−l∗2 )
1
2 (l∗1−l∗2 )(k

∗
1+l2)

1
2 (l∗1+l2)

. Here, superscript

(2−) refers to soliton S2 before collision.

(b) After collision: z→ +∞

Soliton 1: The asymptotic form for soliton 1 after collision is deduced
as,

q1 '
2k1R A1+

1 ei(η1I+θ+1 ) cosh(ξ1R + φ+
1 )[

a11 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) +
1

a∗11
cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2)

] , (2.16a)

q2 '
2l1R A2+

1 ei(ξ1I+θ+2 ) cosh(η1R + φ+
2 )[

a12 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) +
1

a∗12
cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2)

] . (2.16b)
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Here, φ+
1 = φ−1 + ψ1, ψ1 = 1

2 log |k2−l1|2|l1−l2|4
|k2+l∗1 |2|l1+l∗2 |4

, φ+
2 = φ−2 + ψ2,

ψ2 = 1
2 log |k1−l2|2|k1−k2|4

|k1+l∗2 |2|k1+k∗2 |4
, eiθ+1 =

(k1−k2)(k1−l2)
1
2 (k∗1+k2)(k∗1+l2)

1
2

(k∗1−k∗2)(k
∗
1−l∗2 )

1
2 (k1+k∗2)(k1+l∗2 )

1
2

,

eiθ+2 =
(l1−l2)(k2−l1)

1
2 (k2+l∗1 )

1
2 (l∗1+l2)

(k∗2−l∗1 )
1
2 (l∗1−l∗2 )(k

∗
2+l1)

1
2 (l1+l∗2 )

, A1+
1 = [α

(1)
1 /α

(1)∗
1 ]1/2 and

A1+
2 = [α

(2)
1 /α

(2)∗
1 ]1/2, in which superscript (1+) denotes soliton S1 after

collision.

Soliton 2: The expression for soliton 2 after collision deduced from the
two soliton solution is

q1 '
2A1+

2 k2Reiη2I cosh(ξ2R + ϕ+
1 )[

a21 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + c3) +
1

a∗21
cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + c4)

] , (2.17a)

q2 '
2A2+

2 l2Reiξ2I cosh(η2R + ϕ+
2 )

[a22 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + c3) +
1

a∗22
cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + c4)

] , (2.17b)

where ϕ+
1 = 1

2 log (k2−l2)|α(2)2 |2
(k2+l∗2 )(l2+l∗2 )

2 , ϕ+
2 = 1

2 log (l2−k2)|α(1)2 |2
(k∗2+l2)(k2+k∗2)

2 ,

ϕ+
3 = 1

2 log |k2−l2|2|α(1)2 |2|α
(2)
2 |2

|k2+l∗2 |2(k2+k∗2)
2(l2+l∗2 )

2 , ϕ+
4 = 1

2 log |α
(1)
2 |2(l2+l∗2 )

2

|α(2)2 |2(k2+k∗2)
2
,

A2+
1 = [α

(1)
2 /α

(1)∗
2 ]1/2 and A2+

2 = i[α(2)2 /α
(2)∗
2 ]1/2. In the latter, superscript

(2+) represents soliton S2 after collision.
In the above, ηjI = k jIt+(k2

jR− k2
jI)z, ξ jI = ljIt+(l2

jR− l2
jI)z, j = 1, 2, and

that the phase terms ϕ−j , j = 1, 2, can also be rewritten as ϕ−1 = ϕ+
1 + Ψ1,

ϕ−2 = ϕ+
2 + Ψ2. The above asymptotic analysis clearly shows that there is a

definite drastic alteration in the phase terms only. It can be identified from
the following relations among the phase terms before and after collisions.
That is,

φ+
1 = φ−1 + ψ1, φ+

2 = φ−2 + ψ2, ϕ+
1 = ϕ−1 −Ψ1, ϕ+

2 = ϕ−2 −Ψ2. (2.18)

The above relations imply that the initial structures of the nondegener-
ate two solitons are preserved except for the phase terms. From this, we
infer that they undergo either shape preserving collision with zero phase
shift or shape changing collision with a finite phase shift. In addition to
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this, a special shape altering collision can also occur with a small phase
shift. The zero phase shift condition, deduced from Eq. (2.18), turns out to
be

φ+
j = φ−j , ϕ+

j = ϕ−j , j = 1, 2. (2.19)

In order to follow the above condition, the additional phase constants
ψ′js and Ψj’s should be maintained as zero. That is,

ψ1 =
1
2

log
|k2 − l1|2|l1 − l2|4
|k2 + l∗1 |2|l1 + l∗2 |4

= 0, ψ2 =
1
2

log
|k1 − l2|2|k1 − k2|4
|k1 + l∗2 |2|k1 + k∗2 |4

= 0. (2.20)

Ψ1 =
1
2

log
|k1 − l2|2|l1 − l2|4
|k1 + l∗2 |2|l1 + l∗2 |4

= 0, Ψ2 =
1
2

log
|k2 − l1|2|k1 − k2|4
|k2 + l∗1 |2|k1 + k∗2 |4

= 0. (2.21)

From the above, we deduce the following criterion, corresponding to
the conditions (2.19), for the occurrence of shape preserving collision with
zero phase shift,

|k2 + l∗1 |2
|k2 − l1|2

| − |k1 + l∗2 |2
|k1 − l2|2

= 0. (2.22)

As a result, whenever the conditions (2.19) or equivalently the criterion
(2.22), are satisfied the nondegenerate bright solitons exhibit shape pre-
serving collision with a zero phase shift. Otherwise, they undergo shape
altering and shape changing collisions, as discussed in the following. Fur-
ther, the shape changing (and altering) collision scenario also belongs to
the elastic collision as we describe below.

The above analysis clearly demonstrates that during the collision pro-
cess the initial phase of each of the soliton gets changed. The total phase
shift of soliton S1 in the two modes after collision becomes

∆Φ1 = (φ+
1 + φ+

2 )− (φ−1 + φ−2 ) = ψ1 + ψ2

=
1
2

log
|k2 − l1|2|l1 − l2|4|k1 − l2|2|k1 − k2|4
|k2 + l∗1 |2|l1 + l∗2 |4|k1 + l∗2 |2|k1 + k∗2|4

. (2.23)
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Figure 2.5: Shape preserving collision of two symmetric double-hump
solitons - The energy does not get exchanged among the nondegen-
erate solitons during the collision process. The parameter values are
k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, k2 = 0.315− 2.2i, l2 = 0.333− 2.2i,
α
(1)
1 = 0.45 + 0.45i, α

(1)
2 = 0.49 + 0.45i, α

(2)
1 = 0.49 + 0.45i and α

(2)
2 =

0.45 + 0.45i.

Similarly the total phase shift suffered by soliton S2 in the two modes
is

∆Φ2 = (ϕ+
1 + ϕ+

2 )− (ϕ−1 + ϕ−2 ) = −(Ψ1 + Ψ2)

= −1
2

log
|k1 − l2|2|l1 − l2|4|k2 − l1|2|k1 − k2|4
|k1 + l∗2 |2|l1 + l∗2 |4|k2 + l∗1 |2|k1 + k∗2 |4

= −(ψ1 + ψ2) = −∆Φ1. (2.24)

From the above expressions, we conclude that the phases of all the soli-
tons are mainly influenced by the wave numbers k j and lj, j = 1, 2, and not

by the complex parameters α
(j)
1 ’s and α

(j)
2 ’s, j = 1, 2. This peculiar prop-

erty of nondegenerate solitons is different in the case of degenerate vector
bright solitons [37, 38], see also Section. 2.3.6 below, where the complex
parameters α

(j)
1 ’s and α

(j)
2 ’s, associated with polarization constants, play a

crucial role in shifting the position of solitons after the collision.
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2.3.3.2 Elastic collision: shape preserving, shape

altering and shape changing collisions

From the above asymptotic analysis, we observe that the intensities of non-
degenerate solitons S1 and S2 in the two modes are the same before and af-
ter collision in the equal velocities case, k1I = l1I and k2I = l2I . To confirm
this, we calculate the transition intensities (using the expressions for the

transition amplitudes Ti
j =

Ai+
j

Ai−
j

, i, j = 1, 2), |T1
1 |2 =

|A1+
1 |2

|A1−
1 |2

, |T1
2 |2 =

|A1+
2 |2

|A1−
2 |2

,

|T2
1 |2 =

|A2+
1 |2

|A2−
1 |2

and |T2
2 |2 =

2|A2+
2 |2

2|A2−
2 |2

. The various expressions deduced for

the different Ai
j’s previously confirm that the transition intensities are uni-

modular. That is, |Tl
j |2 = 1, j, l = 1, 2. Thus, the collision scenario that

occurs among the nondegenerate solitons, in general, is always elastic. So,
the nondegenerate solitons, for k1I = l1I , k2I = l2I , (but k1 6= l1, k2 6= l2)
corresponding to two distinct wave numbers in general undergo elastic
collision without any intensity redistribution between the modes q1 and
q2. However, it is clear from Eq. (2.18), the changes that occur in the
phase terms do alter the structure of the nondegenerate solitons during
the collision scenario. Consequently, there is a possibility of shape alter-
ing and shape changing collisions occurring, without violating the uni-
modular conditions of transition intensities, in the equal velocities case,
apart from the earlier mentioned shape preserving collision. A typical
shape-preserving collision is displayed in Figure 2.5, in which we set two
well separated symmetric double-hump soliton profiles as initial profiles in
both the modes at z = −10. The initial structures of the two double-hump
solitons are preserved after the collision. It is evident from the dashed red
curves drawn at z = +10 in Figure 2.5. In addition to this, we have also
verified that the wave parameters k j and lj, j = 1, 2, that are given in the
caption of Figure 2.5, satisfy the zero phase shift criterion (2.22). The ob-
tained numerical value from Eq. (2.22) is equal to −0.0064 (nearly equal to)
0. This value physically implies that during the collision the two double-
humped nondegenerate bright solitons pass through one another without
a phase shift and emerge from the collision unaltered in shape, amplitude
and velocity. This remarkable property has not been observed earlier in
the cases of scalar NLS bright solitons as well as in the degenerate vector
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Figure 2.6: Shape preserving collision between a symmetric double-
hump soliton and an asymmetric double-hump soliton: The parame-
ter values are k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, k2 = 0.315 − 2.2i,
l2 = 0.333− 2.2i, α

(1)
1 = 0.45+ 0.45i, α

(1)
2 = 2.49+ 2.45i, α

(2)
1 = 0.49+ 0.45i

and α
(2)
2 = 0.45 + 0.45i.

bright solitons [37, 38]. Very interestingly, a similar zero phase shift shape
preserving collision also occurs even when the symmetric double-hump
soliton interacts with an asymmetric double-hump soliton. Such collision
is illustrated in Figure 2.6.

In this case, the total intensity of each soliton is conserved which can
be verfied from the relations |Al−

j |2 = |Al+
j |2, j, l = 1, 2. In addition to

this, the total intensity in each of the modes is also conserved, that is
|A1−

j |2 + |A2−
j |2 = |A1+

j |2 + |A2+
j |2 = constant.

Then, we also come across another type of elastic collision, namely
shape altering collision for certain sets of parametric choices again with
k1I = l1I and k2I = l2I . To demonstrate such collision scenario in Fig-
ure 2.7, we fix the parameter values as k1 = 0.425 + 0.5i, l1 = 0.3 + 0.5i,
k2 = 0.3 − 2.2i, l2 = 0.425 − 2.2i, α

(1)
1 = α

(2)
2 = 0.5 + 0.5i and α

(1)
2 =

α
(2)
1 = 0.45 + 0.5i. From this figure, one can observe that a symmetric

(or asymmetric) flattop soliton collides with an asymmetric (or symmetric)
double-hump soliton in the q1 (or q2) component. As a result, the symmet-
ric flattop profile in the q1 mode gets modified slightly as the asymmetric
flattop profile and slightly asymmetric double-hump soliton S−2 becomes
symmetric double-hump soliton. Similarly, while the symmetric double-
hump soliton S−1 in the q2 mode changes slightly into an asymmetric struc-
ture, the asymmetric flattop soliton S−2 becomes symmetric. As we have
pointed out earlier, this kind of shape alteration essentially arises in the
structures of nondegenerate bright solitons is due to the phase conditions
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Figure 2.7: A typical shape altering collision is displayed in the top pan-
els. Their corresponding shape preserving nature is brought out in the
bottom panels after taking a pair of postion shifts, (z′ = z − ψ1

2l1Rk1I
=

12.3053, z′ = z − ψ2
2k1Rk1I

= 12.27) and (z′ = z + Ψ1
2l2Rk2I

= 12.0614,
z′ = z + Ψ2

2k2Rk2I
= 12.0694) in the expressions (2.16a)-(2.16b) of soliton

1 and the expressions (2.17a)-(2.17b) of soliton 2, respectively.

(2.18). However, the shape preserving nature of the nondegenerate soli-
tons can be brought out by taking appropriate position shifts based on
the expressions (2.16a)-(2.16b) and (2.17a)-(2.17b). For example, the ex-
pressions (2.16a) and (2.16b) of soliton 1 after collision exactly coincides
with the expressions (2.14a) and (2.14b) after substituting z′ = z− ψ1

2l1Rk1I

and z′ = z− ψ2
2k1Rk1I

, respectively, in it. Similarly, for the soliton 2, the ex-
pressions (2.17a)-(2.17b) exactly matches with the expressions (2.15a) and
(2.15b) after taking the position shifts z′ = z + Ψ1

2l2Rk2I
and z′ = z + Ψ2

2k2Rk2I
,

respectively. Correspondingly the shapes of the nondegenerate solitons
are preserved. A typical example of this transition is illustrated in Figures
2.7 (c) and (d), where the initial profiles are retained after taking the shifts
in the positions of solitons. This is also true in the case of shape changing
collision. Here, we have not displayed the shape changing collision and
their corresponding position shift plots for brevity.
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2.3.4 Collision between nondegenerate and degenerate soli-

tons

In this sub-section, we discuss the collision among the degenerate and
nondegenerate solitons admitted by the two-soliton solution (2.13) of the
Manakov system (2.1) in the partial nondegenerate limit k1 = l1 and k2 6=
l2. The following asymptotic analysis assures that there is a definite energy
redistribution occurs among the modes q1 and q2.

2.3.4.1 Asymptotic analysis

To elucidate this new kind of collision behaviour, we analyze the par-
tially nondegenerate two-soliton solution (2.13) in the asymptotic limits
z → ±∞. The resultant action yields the asymptotic forms corresponding
to degenerate and nondegenerate solitons. To obtain the asymptotic forms
for the present case we incorporate the asymptotic nature of the wave vari-
ables ηjR = k jR(t− 2kI jz) and ξ2R = l2R(t− 2l2Iz), j = 1, 2, in the solution
(2.13). Here the wave variable η1R corresponds to the degenerate soliton
and η2R, ξ2R correspond to the nondegenerate soliton. In order to find the
asymptotic behaviour of these wave variables we consider the parametric
choice as k1R, k2R, l2R > 0, k1I > 0, k2I , l2I < 0, k1I > k2I , k1I > l2I . For
this choice, the wave variables behave asymptotically as follws: (i) degen-
erate soliton S1: η1R ' 0, η2R,ξ2R → ∓∞ as z → ∓∞ (ii) nondegenerate
soliton S2: η2R, ξ2R ' 0, η1R → ±∞ as z → ±∞. By incorporating these
asymptotic behaviours of wave variables in the solution (2.13), we deduce
the following asymptotic expressions for degenerate and nondegenerate
solitons.

(a) Before collision: z→ −∞

Soliton 1: In this limit, the asymptotic form for the degenerate soliton
deduced from the partially nondegenerate two soliton solution (2.13) is
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qj '


A1−

1

A1−
2

 k1Reiη1I sech(η1R +
R
2
), j = 1, 2, (2.25)

where A1−
j = α

(j)
1 /(|α(1)1 |2 + |α

(2)
1 |2)1/2, j = 1, 2, R = ln (|α(1)1 |2+|α

(2)
1 |2)

(k1+k∗1)
2 .

Here, in A1−
j the superscript 1− denotes soliton S1 before collision and

subscript j refers to the mode number.

Soliton 2: The asymptotic expressions for the nondegenerate soliton S2

which is present in the two modes before collision are obtained as

q1 '
2k2R A2−

1
D

(
eiξ2I+Λ1 cosh(η2R +

Φ21 − ∆21

2
) + eiη2I+Λ2 cosh(ξ2R +

λ2 − λ1

2
)

)
, (2.26a)

q2 '
2l2R A2−

2
D

(
eiη2I+Λ7 cosh(ξ2R +

Γ21 − γ21

2
) + eiξ2I+Λ6 cosh(η2R +

λ7 − λ6

2
)

)
, (2.26b)

D = eΛ5 cosh(η2R − ξ2R +
λ3 − λ4

2
) + eΛ3 cosh(i(η2I − ξ2I) +

ϑ12 − ϕ21

2
)

+eΛ4 cosh(η2R + η3R +
λ5 − R

2
).

Here, A2−
1 = [α

(1)
2 /α

(1)∗
2 ]1/2, A2−

2 = [α
(2)
2 /α

(2)∗
2 ]1/2. In the latter the su-

perscript 2− denote nondegenerate soliton S2 before collision. The various
other constants appearing in Eq. (2.26a-2.26b) are defined below.

(b) After collision: z→ +∞

Soliton 1: The asymptotic forms for degenerate soliton S1 after collision
deduced from the solution (2.13) (with k1 = l1 and k2 6= l2) as,

qj '


A1+

1

A1+
2

 ei(η1I+θ+j )k1R sech(η1R +
R′ − ς22

2
), j = 1, 2, (2.27)
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where A1+
1 = α

(1)
1 /(|α(1)1 |2 + χ|α(2)1 |2)1/2, A1+

2 = α
(2)
1 /(|α(1)1 |2χ−1 +

|α(2)1 |2)1/2,

χ = (|k1− l2|2|k1 + k∗2|2)/(|k1− k2|2|k1 + l∗2 |2), eiθ+1 =
(k1−k2)(k∗1+k2)(k1−l2)

1
2 (k∗1+l2)

1
2

(k∗1−k∗2)(k1+k∗2)(k
∗
1−l∗2 )

1
2 (k1+l∗2 )

1
2

,

eiθ+2 =
(k1−k2)

1
2 (k∗1+k2)

1
2 (k1−l2)(k∗1+l2)

(k∗1−k∗2)
1
2 (k1+k∗2)

1
2 (k∗1−l∗2 )(k1+l∗2 )

. Here 1+ in A1+
1 refers to degenerate

soliton S1 after collision.

Soliton 2: Similarly the expression for the nondegenerate soliton, S2,
after collision deduced from the two soliton solution (2.13) (with k1 = l1
and k2 6= l2) is

q1 '
2k2R A2+

1 eiη2I cosh(ξ2R + Λ22−ρ1
2 )[ (k∗2−l∗2 )

1
2

(k∗2+l2)
1
2

cosh(η2R + ξ2R + ς22
2 ) +

(k2+l∗2 )
1
2

(k2−l2)
1
2

cosh(η2R − ξ2R + R3−R6
2 )

] , (2.28a)

q2 '
2l2R A2+

2 eiξ2I cosh(η2R +
µ22−ρ2

2 )[ (k∗2−l∗2 )
1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + ς22
2 ) +

(k∗2+l2)
1
2

(k2−l2)
1
2

cosh(η2R − ξ2R + R3−R6
2 )

] . (2.28b)

where ρj = log α
(j)
2 , j = 1, 2, A2+

1 = [α
(1)
2 /α

(1)∗
2 ]1/2, A2+

2 = i[α(2)2 /α
(2)∗
2 ]1/2.

The explicit expressions of all the undefined constants are given below.
The various constants which arise in the asymptotic analysis of collision
between degenerate and nondegenerate solitons.
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eΛ1 =
iα(1)1 (k1 − k2)

1
2 (k1 − l2)

1
2 (k∗1 + k2)

1
2 (k1 + k∗1)(k2 + l∗2 )

1
2 |k1 + l∗2 |2

α
(1)
2 (k∗1 − l∗2 )

1
2 (k∗2 − l∗2 )

1
2

eR∗5+
R3−R6

2 ,

eΛ2 =
(k1 − k2)

1
2 (k∗2 + l2)

1
2 (k1 + k∗2)Λ̂1Λ̂2

(k∗1 − k∗2)
1
2 (k∗2 − l∗2 )

1
2 (k∗1 + k2)

, eΛ3 =
|α(1)1 ||α

(2)
1 |(k1 + k∗1)(k2 + k∗2)(l2 + l∗2 )

|k2 − l2|
,

eΛ4 = (|α(1)1 |2 + |α
(2)
1 |2)1/2(|α(1)1 |2|k1 − k2|2|k1 + l∗2 |2 + |α

(2)
1 |2|k1 − l2|2|k1 + k∗2 |2)1/2,

eΛ5 =
|k2 + l∗2 |
|k2 − l2|

(|α(1)1 |2|k1 + l∗2 |2 + |α
(2)
1 |2|k1 − l2|2)1/2(|α(1)1 |2|k1 − k2|2 + |α(2)1 |2|k1 + k∗2 |2)1/2,

eΛ6 =
(k1 − l2)

1
2 (k2 + l∗2 )

1
2 (k1 + l∗2 )Λ̂3Λ̂4

(k∗1 − l∗2 )
1
2 (k∗2 − l∗2 )

1
2 (k∗1 + l2)

, Λ̂1 = (|α(1)1 |2(k1 − k2)− |α(2)1 |2(k∗1 + k2))
1/2,

eΛ7 =
α
(2)
1 (k1 − k2)

1
2 (k1 − l2)

1
2 (k∗1 + l2)

1
2 (k1 + k∗1)(k

∗
2 + l2)

1
2 |k1 + k∗2 |2

α
(2)
2 (k∗1 − k∗2)

1
2 (k∗2 − l∗2 )

1
2

eR∗2+
R6−R3

2 ,

Λ̂2 = (|α(1)1 |2(k1 − k2)|k1 + l∗2 |2 − |α
(2)
1 |2|k1 − l2|2(k∗1 + k2))

1/2,

Λ̂4 = (|α(1)1 |2|k1 − k2|2(k∗1 + l2)− |α(2)1 |2(k1 − l2)|k1 + k∗2 |2)1/2,

Λ̂3 = (|α(2)1 |2(k1 − l2)− |α(1)1 |2(k∗1 + l2))1/2,

e
Φ21−∆21

2 =
|α(1)2 |(k1 − k2)(k∗2 − k∗1)

1
2 (k2 − l2)

1
2

(k1 + k∗2)(k2 + k∗2)(k2 + k∗1)
1
2 (k∗2 + l2)

1
2

, e
λ2−λ1

2 =
|α(2)2 ||k1 − l2|(k2 − l2)

1
2 Λ̂2

(k2 + l∗2 )
1
2 |k1 + l∗2 |2(l2 + l∗2 )Λ̂1

,

e
λ5−R

2 =
|k1 − k2||k1 − l2||k2 − l2|Λ̂5

|k1 + k∗2 |2|k1 + l∗2 |2|k2 + l∗2 |(|α
(1)
1 |2 + |α

(2)
1 |2)1/2

e
R3+R6

2 ,

e
ϑ12−ϕ21

2 =
(k2 − k1)

1
2 (k∗1 − l∗2 )

1
2 (k∗2 + l2)

1
2

(k2 + l∗2 )
1
2 (k∗2 − k∗1)

1
2 (k1 − l2)

1
2

e
R∗2+R5−(R2+R∗5 )

2 , e
λ3−λ4

2 =
|k1 − k2|Λ̂6|k1 + l∗2 |2e

R3−R6
2

|k1 + k∗2 |2|k1 − l2|Λ̂7
,

e
Γ21−γ21

2 =
(k2 − l2)

1
2 (k1 − l2)(k∗1 − l∗2 )

1
2

(k2 + l∗2 )
1
2 (k1 + l∗2 )(k

∗
1 + l2)

1
2

e
R6
2 , e

λ7−λ6
2 =

(k1 − k2)(k2 − l2)
1
2 Λ̂4

|k1 + k∗2 |2(k∗2 + l2)
1
2 Λ̂3

e
R3
2 ,

Λ̂5 = (|α(1)1 |2|k1 − k2|2|k1 + l∗2 |2 + |α
(2)
1 |2|k1 − l2|2|k1 + k∗2 |2)1/2,

e
R′−ς22

2 =
|k1 − k2||k1 − l2|Λ̂5

|k1 + k∗2 |2|k1 + l∗2 |2(k1 + k∗1)
, e

ς22
2 =

|k2 − l2|
|k2 + l∗2 |

e
R3+R6

2 , e
R3−R6

2 =
|α(1)2 |(l2 + l∗2 )

|α(2)2 |(k2 + k∗2)
,

Λ̂6 = (|α(1)1 |2|k1 − k2|2 + |α(2)1 |2|k1 + k∗2 |2)1/2, Λ̂7 = (|α(1)1 |2|k1 + l∗2 |2 + |α
(2)
1 |2|k1 − l2|2)1/2,

e
Λ22−ρ1

2 =
(k2 − l2)

1
2

(k2 + l∗2 )
1
2

e
R6
2 , e

µ22−ρ2
2 =

(l2 − k2)
1
2

(k∗2 + l2)
1
2

e
R3
2 , eR1 =

|α(1)1 |2
(k1 + k∗1)

2 , eR2 =
α
(1)
1 α

(1)∗
2

(k1 + k∗2)
2 ,

eR3 =
|α(1)2 |2

(k2 + k∗2)
2 , eR4 =

|α(2)1 |2
(k1 + k∗1)

2 , eR5 =
α
(2)
1 α

(2)∗
2

(k1 + l∗2 )
2 , eR6 =

|α(2)2 |2
(l2 + l∗2 )

2 .
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2.3.5 Degenerate soliton collision induced shape changing

scenario of nondegenerate soliton

The coexistence of nondegenerate and degenerate solitons can be realized
from the partially nondegenerate limit of the soliton solution (2.13) (with
k1 = l1 and k2 6= l2). Such coexisting solitons undergo a novel collision
property, that has been illustrated in Figure. 2.8. From this figure, one can
observe that the intensity of the degenerate soliton S1 is enhanced after
collision in the q1 mode and it gets suppressed in the q2 mode. As we ex-
pected, like in the complete degenerate case [37, 43], the degenerate soliton
undergoes energy redistribution among both the modes. In this case, the
polarization vectors, Al

j = α
(j)
l /(|α(1)1 |2 + |α

(2)
1 |2)1/2, l, j = 1, 2, play a cru-

cial role in changing the shape of the degenerate solitons under collision,
where the intensity redistribution occurs between the modes q1 and q2. As
we have pointed out below in the next subsection, the shape preserving
collision arises in the pure degenerate case when the polarization param-

eters obey the condition, α
(1)
1

α
(1)
2

=
α
(2)
1

α
(2)
2

, where α
(j)
i ’s, i, j = 1, 2, are complex

parameters related to the polarization vectors as given above. However,
this collision property is not true in the case of nondegenerate solitons as
we have depicted in Figure. 2.8. As a result, the nondegenerate soliton S2

switches its asymmetric double-hump profile into a single-hump profile
along with a phase shift. In addition, we also noticed from the asymp-
totic expressions (2.26a)-(2.26b) and (2.28a)-(2.28b) the asymmetric double-
hump profile of nondegenerate soliton gets transformed into another form
of an asymmetric double-hump profile when it interacts with a degenerate
soliton for a specific choice of parameter values. In the nondegenerate case,
the relative separation distances (or phases) are in general not preserved
during the collision. Therefore the mechanism behind the occurrence of
shape preserving and shape changing collisions in the nondegenerate soli-
tons is quite new. These novel collision properties can be understood from
the corresponding asymptotic analysis given in the previous subsection.
The analysis reveals that energy redistribution occurs between the modes
q1 and q2. In order to confirm the shape changing nature of this interest-
ing collision scenario we obtain the following expression for the transition
amplitudes,
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Figure 2.8: Shape changing collision between degenerate and nondegen-
erate soliton: k1 = l1 = 1 + i, k2 = 1− i, l2 = 1.5− 0.5i, α

(1)
1 = 0.8 + 0.8i,

α
(2)
2 = 0.6 + 0.6i, α

(1)
2 = 0.25 + 0.25i, α

(2)
1 = 1 + i.

T1
1 =

(|α(1)1 |2 + |α
(2)
1 |2)1/2

(|α(1)1 |2 + χ|α(2)1 |2)1/2
, T1

2 =
(|α(1)1 |2 + |α

(2)
1 |2)1/2

(|α(1)1 |2χ−1 + |α(2)1 |2)1/2
. (2.29)

In general, the transition amplitudes are not equal to unity. If the quan-
tity Tl

j is not unimodular (for this case the constant χ 6= 1) then the degen-
erate and nondegenerate solitons always exhibit shape changing collision.
The standard elastic collision can be recovered when χ = 1. One can
calculate the shift in the positions of both degenerate and nondegenerate
solitons after collision from the asymptotic analysis. This new kind of
collision property has not been observed in the degenerate vector bright
solitons of the Manakov system [37, 43].

2.3.6 Degenerate bright solitons and their shape changing/energy

redistribution collision in Manakov system

The already reported degenerate vector one-bright soliton solution of the
Manakov system (2.1) can be deduced from the one-soliton solution (2.7)
by imposing the condition k1 = l1 in it. The forms of qj given in Eq. (2.7)
degenerate into the standard bright soliton form [37, 43]

qj =
α
(j)
1 eη1

1 + eη1+η∗1+R , j = 1, 2, (2.30)

which can be rewritten as
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Figure 2.9: Degenerate one-soliton of the Manakov equation: The values
of the parameters are k1 = 0.3 + 0.5i, α

(1)
1 = 1.5 + 1.5i, α

(2)
1 = 0.5 + 0.5i.

qj = k1R Âjeiη1I sech(η1R +
R
2
), (2.31)

where η1R = k1R(t− 2k1Iz), η1I = k1It+(k2
1R− k2

1I)z, Âj =
α
(j)
1√

(|α(1)1 |2+|α
(2)
1 |2)

,

eR =
(|α(1)1 |2+|α

(2)
1 |2)

(k1+k∗1)
2 , j = 1, 2.

Note that the above fundamental bright soliton always propagates in
both the modes q1 and q2 with the same velocity 2k1I . The polarization
vectors (Â1, Â2)

† have different amplitudes and phases, unlike the case of
nondegenerate solitons where they have only different unit phases. The
presence of a single wave number k1 in the solution (2.31) restricts the
degenerate soliton to have a single-hump form only. A typical profile of
the degenerate soliton is shown in Figure 2.9. As already pointed out in
[37, 43] the amplitude and central position of the degenerate vector bright
soliton are obtained as 2k1R Âj, j = 1, 2 and R

2k1R
, respectively.

2.3.6.1 Degenerate two-soliton solution and its en-

ergy sharing collision

Further, the degenerate two-soliton solution can be deduced from the non-
degenerate two-soliton solution (2.13) by applying the degenerate limits
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k1 = l1 and k2 = l2. Such degenerate two-soliton solution of the Man-
akov system is obtained in [37]. The two-soliton solution can be compactly
written in terms of Gram determinants as

qj =
g(j)

f
, j = 1, 2, (2.32a)

where

g(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 1 0 eη1

A21 A22 0 1 eη2

−1 0 B11 B12 0

0 −1 B21 B22 0

0 0 −α
(j)
1 −α

(j)
2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 1 0

A21 A22 0 1

−1 0 B11 B12

0 −1 B21 B22

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.32b)

in which Aij =
eηi+η∗j

ki + k∗j
, and Bij = κji =

(
α
(1)
j α

(1)∗
i + α

(2)
j α

(2)∗
i

)
(k j + k∗i )

, i, j =

1, 2. The above degenerate bright two-soliton solution is characterized by
six arbitrary complex parameters k1, k2, α

(j)
1 and α

(j)
2 , j = 1, 2.

By fixing the wave numbers as ki = li, i = 1, 2, ..., N, the N degenerate
vector bright soliton solution can be recovered from the nondegenerate
N-soliton solutions. In passing we also note that the nondegenerate one-
soliton solution (2.7) can arise when we fix the parameters α

(1)
2 = α

(2)
1 = 0

in Eqs. (2.32a) and (2.32b) and rename the constants k2 as l1 and α
(2)
2

as α
(2)
1 in the resultant solution. We also note that the above degenerate

two-soliton solution (2.32a)-(2.32b) can also be rewritten from the Gram
determinant forms of nondegenerate two-soliton solution (2.13).

As reported in [37, 38, 43], the degenerate fundamental solitons (ki = li,
i = 1, 2) in the Manakov system undergo shape changing collision due to
the intensity redistribution among the modes. The energy redistribution
occurs in the degenerate case because of the polarization vectors of the
two modes combine with each other in a specific way. This shape chang-
ing collision illustrated in Figure 2.10 where the intensity redistribution
occurs because of the enhancement of soliton S1 in the first mode and
the corresponding suppression of the intensity of the same soliton in the
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Figure 2.10: Shape changing collision of degenerate two-solitons: k1 =

l1 = 1 + i, k2 = l2 = 1.51− 1.51i, α
(1)
1 = 0.5 + 0.5i, α

(1)
2 = α

(2)
1 = α

(2)
2 = 1.

second mode.
To hold the conservation of energy between the modes, the intensity of

the soliton S2 gets suppressed in the first mode and it is enhanced in the
second mode. The standard elastic collision occurs (as already noted) for

the very special choice of parameters, namely α
(1)
1

α
(1)
2

=
α
(2)
1

α
(2)
2

[37, 38].

2.3.7 Possible experimental realization of nondegenerate

solitons

To experimentally observe the nondegenerate vector solitons (single hump/
double hump solitons) in the Manakov system one may adopt the mutual-
incoherence method that has been used to observe the multi-hump multi-
mode solitons experimentally (Ref. [52]). The Manakov solitons (degen-
erate solitons) can also be observed by the same experimental procedure
with appropriate modifications (Ref. [39]). In the following, we briefly
envisage how the procedure is given in Ref. [52] can be redesigned to gen-
erate the double-humped nondegenerate soliton as it has been discussed
in our work [78].

To observe the nondegenerate vector solitons experimentally it is es-
sential to consider two laser sources with different properties so that the
wavelength of the second laser beam is different from the first one. Us-
ing polarizing beam splitters, each one of the laser beams can be split into
ordinary and extraordinary beams. The extraordinary beam coming out
from the first source can be further split into two individual fields F11 and
F12 by allowing it to fall on a beam splitter. These two fields are nothing
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but the reflected and transmitted extraordinary beams coming out from
the beam splitter. The intensities of these two fields are different. Simi-
larly, the second beam which is coming out from the second source can
also be split into two fields F21 and F22 by passing through another beam
splitter. The intensities of these two fields are also different. As a result,
one can generate four fields that are incoherent to each other. To set the
incoherence in phase among these four fields one should allow them to
travel a sufficient distance before the coupling is performed. The fields
F11 and F12 now become nondegenerate two individual solitons in the first
mode whereas F21 and F22 form another set of two nondegenerate solitons
in the second mode. The coupling between the fields F11 and F21 can be
performed by combining them using another beam splitter. Similarly, by
suitably locating another beam splitter, one can combine the fields F12 and
F22, respectively. After appropriate coupling is performed the resultant
optical field beams can now be focused through two individual cylindri-
cal lenses and the output may be recorded in an imaging system, which
consists of a crystal and CCD camera. The collision between the nondegen-
erate two-solitons in both the modes can now be seen from the recorded
images.

To observe the elastic collision between double-humped nondegener-
ate solitons, one must make arrangements to vanish the mutual coherence
property between the solitons F11 and F12 in the first mode q1 and F21 and
F22 in the second mode q2 (Ref. [39]). The four optical beams are now com-
pletely independent and incoherent with one another. The collision angle
at which the nondegenerate solitons interact should be sufficiently large
enough. Under this situation, no energy exchange is expected to occur
between the nondegenerate solitons of the two modes. This experimental
procedure can also be used to realize multi-humped nondegenerate vector
solitons in N-CNLS system but with appropriate modification in the initial
conditions.
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Figure 2.11: Numerical plots of shape preserving collision of nondegen-
erate symmetric double hump solitons with 10% and 20% white noise as
perturbations: (a) and (b) denote the elastic collision of two symmetric
double hump solitons without perturbation. (c) and (d) denote the col-
lision with 10% white noise. (e) and (f) represent the collision with 20%
strong white noise as perturbation.

2.4 Numerical stability analysis corresponding to

Figs. 2.5 under perturbation

In this section, we wish to point out the stability nature of the obtained
nondegenerate soliton solutions numrerically using Crank-Nicolson pro-
cedure even under the addition of suitable white noise or Gaussian noise
to the initial conditions. Specifically we consider the shape preserving col-
lision of symmetric double hump solitons discussed in Figs. 2.5. For this
purpose, we have considered the Manakov system (2.1) with the initial
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conditions,

qj(0, t) = [1 + Aζ(t)]qj,0(t), j = 1, 2. (2.33)

In the above, qj,0’s, j = 1, 2, are the initial conditions obtained from the
nondegenerate two-soliton solution Eqs. (2.13) at z = −10. Here A is the
amplitude of the white noise and ζ(t) represents the noise or fluctuation
function. The white noise was created by generating random numbers in
the interval [−1, 1]. To fix the initial conditions in the numerical algorithm,
we consider the same complex parameter values which are given for the
figures 2.5 in Sec. IV. We also consider the space and time step sizes, re-
spectively, as dz = 0.1 and dt = 0.001 in the numerical algorithm. To study
the collision scenario of double-hump solitons (Figs. 2.11(a) and 2.11(b))
under perturbation we fix the domain ranges for t and z as [−45, 45] and
[−10, 10], respectively.

First, we consider 10% (A = 0.1) of random perturbation on the in-
tial solution of Manakov system. For this strength of perturbation, we
do not observe any significant change in the profile as well as in the dy-
namics of the nondegenerate solitons apart from a slight change, which is
insignificant, in the amplitudes of double-hump solitons after the collision.
This is illustrated in Figs. 2.11(c) and 2.11(d). Then we study the stabil-
ity with 20% white noise (A = 0.2), which is a stronger perturbation, for
the double-hump solitons. Such a study is demonstrated in Figs. 2.11(e)
and 2.11(f). The numerical analysis shows that the double-hump soliton
profiles still survive after the collision under as strong as 20% perturbation
apart from a slight distortion in the amplitudes. This ensures the stability
of nondegenerate solitons against perturbations of the above type of noise.

Similarly we have also verified the stability of nondegenerate solitons
with Gaussian noise perturbation as well.
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2.5 Nondegenerate three-soliton solution

The explicit form of nondegenerate three-soliton solution of Eq. (2.1) can
be deduced by proceeding with the Eqs. (2.4) using the series represen-
tation upto orders ε11 for g(N) and ε12 for f . Then the solution can be
expressed using Gram determinant in the following way:

g(N) =

∣∣∣∣∣∣∣∣∣∣
A I φ

−I B 0T

0 CN 0

∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣ A I

−I B

∣∣∣∣∣∣ , N = 1, 2. (2.34a)

Here the matrices A and B are of the order (6× 6) defined as

A =

Amm′ Amn

Anm Ann′

 , B =

κmm′ κmn

κnm κnn′

 , m, m′, n, n′ = 1, 2, 3. (2.34b)

The various elements of matrix A are obtained from the following,

Amm′ =
eηm+η∗m′

(km + k∗m′)
, Amn =

eηm+ξ∗n

(km + l∗n)
, (2.34c)

Ann′ =
eξn+ξ∗n′

(ln + l∗n′)
, Anm =

eη∗n+ξm

(k∗n + lm)
, m, m′, n, n′ = 1, 2, 3. (2.34d)

The elements of matrix B is defined as

κmm′ =
ψ†

mσψm′

(k∗m + km′)
, κmn =

ψ†
mσψ′n

(k∗m + ln)
, κnm =

ψ
′†
n σψm

(l∗n + km)
, κnn′ =

ψ
′†
n σψ′n′

(l∗n + ln′)
. (2.34e)

In (2.34e) the column matrices are ψj =

α
(1)
j

0

, ψ′j =

 0

α
(2)
j

, j =

m, m′, n, n′ = 1, 2, 3, ηj = k jt + ik2
j z and ξ j = ljt + il2

j z, j = 1, 2, 3. The other
matrices in Eq. (2.34a) are defined below:

φ =
(

eη1 eη2 eη3 eξ1 eξ2 eξ3

)T
, C1 = −

(
α
(1)
1 α

(1)
2 α

(1)
3 0 0 0

)
, C2 =
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−
(

0 0 0 α
(2)
1 α

(2)
2 α

(2)
3

)
, 0 =

(
0 0 0 0 0 0

)
and σ = I is a (6× 6)

identity matrix.

2.6 Conclusion

We have derived the nondegenerate one- and two- soliton solution of Man-
akov system using the standard Hirota bilinearization method. Such new
class of solitons admits novel profile structure namely double hump soli-
ton structure which is not possible in its degenerate soliton version. The
double hump formation of nondegenerate solitons is explained using the
relative velocities of the modes of the solitons. The coexistence of degen-
erate and nondegenerate solitons simultaneously in both the modes was
identified by imposing wave number restrictions on the nondegenerate
two-soliton solution. Then we have elaborated an interesting interaction
dynamics of the nondegenerate solitons. Especially they undergo shape
preserving, shape altering and shape changing collision behaviours. How-
ever all these three types of collisions are classified under elastic collision
based on our detailed asymptotic analysis. They also undergo energy shar-
ing interactions for appropriate choice of parameters. We have recaptured
the degenerate one- and two-soliton solutions from our more general non-
degenerate one- and two-soliton solutions by imposing constraints on their
wave numbers. Also we have shown the energy sharing interactions be-
tween the degenerate solitons. Further we have pointed out the possibility
of realizing nondegenerate Manakov solitons experimentally, and then the
numerical stability of the nondegenerate two-solitons was studied under
perturbation. At the end, nondegenerate three-soliton solution has been
given in the Gram determinant form.
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Chapter 3
Nondegenerate solitons in general
coupled nonlinear Schrödinger
system

3.1 Introduction

In the previous chapter, we have studied the existence and collision proper-
ties of the nondegenerate vector bright solitons in the celebrated Manakov
system. In the present chapter, we intend to investigate the role of four-
wave mixing effect on the structure of the nondegenerate vector solitons
and their collision dynamics. For this purpose, we consider the general-
ized coupled nonlinear Schrödinger (GCNLS) system,

iq1,z + q1,tt + 2(a|q1|2 + c|q2|2 + bq1q∗2 + b∗q∗1q2)q1 = 0,

iq2,z + q2,tt + 2(a|q1|2 + c|q2|2 + bq1q∗2 + b∗q∗1q2)q2 = 0. (3.1)

which in general describes the evolution and nonlinear interaction of
the two optical modes. As we have pointed out in the first chapter, the
GCNLS system contains the additional phase dependent terms, (bq∗1q2 +

b∗q1q∗2)qj, j = 1, 2, which arise essentially because of the four-wave mixing
effect. The complex constant b represents the strength of the four-wave
mixing effect. By taking into account this nonlinearity, as well as SPM
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and XPM, we aim to derive the fundamental as well as higher-order non-
degenerate vector soliton solutions through the Hirota bilinear method.
In addition to this, we also obtain a special type of two-soliton solution,
which contains both degenerate and nondegenerate solitons simultane-
ously, namely partially nondegenerate two-soliton solution. It can be de-
duced by imposing a condition on the wave numbers in the completely
nondegenerate two-soliton solution. Then we analyze the effect of FWM
parameter b on the structures of nondegenerate vector bright solitons and
their dynamics. Very interestingly, we find that the presence of four-wave
mixing effect provokes the breathing vector soliton state in both the optical
modes. Such breather formation is not possible in the fundamental vector
solitons of the Manakov system (2.1). Then, we observe that the nonde-
generate solitons in the GCNLS system undergo, in general, novel shape
changing collision when the four-wave mixing effect strength is strong
enough. On the other hand, for the weak four-wave mixing effect they
undergo mere shape preserving or shape altering collision. Further, we
also analyze the degenerate soliton collision induced novel shape changing
property of nondegenerate vector solitons using the partially nondegener-
ate two-soliton solution.

The plan of this chapter is given as follows: In Section 3.2, we present
the fundamental as well as the higher-order nondegenerate soliton solu-
tions of the system (3.1) in Gram determinant forms in a compact man-
ner apart from pointing out the complete degenerate two-soliton solution.
Then in this section we also analyze the properties of nondegenerate fun-
damental soliton with special attention to FWM parameter b. Section 3.3
deals with the investigation of novel collision scenarios of nondegenerate
solitons with appropriate asymptotic analysis. In Section 3.4, we analyze
the degenerate soliton collision induced novel shape changing collision
property of the nondegenerate soliton. Then, in this section we also indi-
cate the collision properties of the degenerate solitons.

3.2 Nondegenerate vector soliton solutions

To derive the non-degenerate soliton solutions, we adopt again the well
known Hirota bilinear method, in which the considered coupled nonlinear



3.2. Nondegenerate vector soliton solutions 65

evolution equation (3.1) should be written in the so-called bilinear form.

To do so, the bilinear transformation, namely qj(z, t) = g(j)(z,t)
f (z,t) , j = 1, 2,

is introduced in Eqs. (3.1). As a result, the following bilinear forms are
obtained. That is,

(iDz + D2
t )g(j) · f = 0, j = 1, 2, (3.2a)

D2
t f · f = 2(ag(1)g(1)∗ + cg(2)g(2)∗ + bg(1)g(2)∗ + b∗g(1)∗g(2)). (3.2b)

In the above, g(j)(z, t)’s are complex functions and f (z, t) is a real func-
tion. Before proceeding further, one has to substitute the series expansions,
g(j) = εg(j)

1 + ε3g(j)
3 + ..., and f = 1+ ε2 f2 + ε4 f4 + ..., of the unknown func-

tions g(j) and f in the appropriate places of the above bilinear forms and
deduce a system of linear partial differential equations (PDEs) at various
orders of ε. Solving the resultant set of linear PDEs sucessively one can
arrive at either the degenerate or non-degenerate multi-soliton solutions of
Eqs. (3.1) under appropriate choices of initial seed solutions.

3.2.1 Nondegenerate fundamental vector soliton solution

To obtain the nondegenerate fundamental soliton solution of Eq. (3.1), we
start with the general form of seed solutions, g(1)1 = α

(1)
1 eη1 , g(2)1 = α

(2)
1 eξ1 ,

η1 = k1t + ik2
1z and ξ1 = l1t + il2

1z, k1 6= l1, as the starting solutions to the
lowest order linear PDEs, ig(j)

1z + g(j)
1tt = 0, j = 1, 2. We remark here that

the previously known class of fundamental vector soliton solution of the
GCNLS system (3.1) can be obtained by considering the restricted form of
the seed solutions, g(1)1 = α

(1)
1 eη1 , g(2)1 = α

(2)
1 eη1 , η1 = k1t + ik2

1z, , which
can be easily deduced from the above general choice with k1 = l1. Then,
by following the standard procedure of the Hirota method, we arrive at
the nondegenerate fundamental bright soliton solution of the system (3.1)
as
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q1 =
(
α
(1)
1 eη1 + eη1+η∗1+ξ1+∆(1)

1 + eη1+ξ1+ξ∗1+∆(1)
2
)
/D, (3.3)

q2 =
(
α
(2)
1 eξ1 + eη1+η∗1+ξ1+∆(2)

1 + eη1+ξ1+ξ∗1+∆(2)
2
)
/D, (3.4)

D = 1 + eη1+η∗1+δ1 + eη∗1+ξ1+δ2 + eη1+ξ∗1+δ∗2 + eξ1+ξ∗1+δ3 + eη1+η∗1+ξ1+ξ∗1+δ4 .

Here,

e∆(1)
1 =

b∗(k1−l1)|α(1)1 |2α
(2)
1

(k1+k∗1)(k
∗
1+l1)2 , e∆(1)

2 =
c(k1−l1)α

(1)
1 |α

(2)
1 |2

(k1+l∗1 )(l1+l∗1 )
2 , e∆(2)

1 = − a(k1−l1)|α(1)1 |2α
(2)
1

(l1+k∗1)(k1+k∗1)
2 ,

e∆(2)
2 = − b(k1−l1)α

(1)
1 |α

(2)
1 |2

(l1+l∗1 )(k1+l∗1 )
2 , eδ1 =

a|α(1)1 |2
(k1+k∗1)

2 , eδ2 =
b∗α(1)∗1 α

(2)
1

(k∗1+l1)2 , eδ3 =
c|α(2)1 |2
(l1+l∗1 )

2 ,

eδ4 =
|k1−l1|2|α(1)1 |2|α

(2)
1 |2
[

ac|(k1+l∗1 )|2−|b|2(k1+k∗1)(l1+l∗1 )
]

(k1+k∗1)
2|k1+l∗1 |4(l1+l∗1 )

2 . The nature of the above

solution is described by four arbitrary complex parameters, k1, l1, α
(j)
1 ,

j = 1, 2, and three system parameters a, c and b. The solution (3.3)-(3.4)
is non-singular for

(
ac|(k1 + l∗1 )|2 − |b|2(k1 + k∗1)(l1 + l∗1 )

)
> 0, for which

the strength of SPM and XPM should be always positive (a, c > 0). For
b = 0, the solution (3.3)-(3.4) exactly coincides with the nondegenerate
fundamental bright soliton solution of the Manakov system and mixed 2-
CNLS system by further fixing a = c = 1 and a = −c = 1, respectively,
in it. The previously reported three-parameter vector soliton solution of
the GCNLS system (3.1) [119] arises as a special case when we impose the
restriction k1 = l1 in the above four-parameter solution (3.3)-(3.4). As a re-
sult, the explicit form of the three-parameter bright soliton solution turns
out to be

qj =
α
(j)
1 eη1

1 + eη1+η∗1+R ≡ k1R Âjeiη1I sech(η1R +
R
2
), j = 1, 2, (3.5)

where η1 = k1t + ik2
1z = η1R + iη1I = [k1R(t− 2k1Iz)] + i[k1It + (k2

1R −
k2

1I)z], the unit polarization vectors are Âj = α
(j)
1 /[a|α(1)1 |2 + c|α(2)1 |2 +

bα
(1)
1 α

(2)∗
1 + b∗α(1)∗1 α

(2)
1 ]

1
2 , eR =

(a|α(1)1 |2+c|α(2)1 |2+bα
(1)
1 α

(2)∗
1 +b∗α(1)∗1 α

(2)
1 )

(k1+k∗1)
2 , the am-

plitude of the two modes are k1R Âj, the velocity of the degenerate soli-
ton is 2k1I and the central position of the soliton is found to be R

2k1R
=
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1
k1R

log (a|α(1)1 |2+c|α(2)1 |2+bα
(1)
1 α

(2)∗
1 +b∗α(1)∗1 α

(2)
1 )

1
2

(k1+k∗1)
. The above degenerate bright soli-

ton solution always admits single-hump ‘sech’ soliton profile.
To bring out the special properties associated with the solution (3.3)-

(3.4) further, we rewrite it as follows:

q1 =
2k1R

D1

(
c11eiη1I cosh(ξ1R + φ1) + c21eiξ1I [cosh(η1R + φ2 − φ1 + c2)

+ sinh(η1R + φ2 − φ1 + c2)]

)
, (3.6)

q2 =
2l1R

D1

(
c12eiξ1I cosh(η1R + φ2) + c22eiη1I [cosh(ξ1R − (φ2 − φ1) + c2)

+ sinh(ξ1R − (φ2 − φ1) + c2)]

)
, (3.7)

D1 = Λ1 cosh(η1R + ξ1R + φ2 + φ1 + c1) + cosh(η1R − ξ1R + φ2 − φ1 + c2)

+Λ2[cosh φ3 cos(η1I − ξ1I) + i sinh φ3 sin(η1I − ξ1I)].

Here, η1R = k1R(t − 2k1Iz), ξ1R = l1R(t − 2l1Iz), η1I = k1It + (k2
1R −

k2
1I)z, ξ1I = l1It+(l2

1R− l2
1I)z, φ1 = 1

2 log c(k1−l1)|α(2)1 |2
(k1+l∗1 )(l1+l∗1 )

2 , φ2 = 1
2 log a(l1−k1)|α(1)1 |2

(k∗1+l1)(k1+k∗1)
2 ,

φ3 = 1
2 log bα

(1)
1 α

(2)∗
1 (k∗1+l1)2

b∗α(1)∗1 α
(2)
1 (k1+l∗1 )

2
, c11 = [

α
(1)
1 (k1−l1)

aα
(1)∗
1 (k1+l∗1 )

]1/2, c21 = 1
2 [

b∗α(2)1 (k1−l1)
a(k∗1+l1)2 ], c12 =

[
α
(2)
1 (l1−k1)

cα
(2)∗
1 (k∗1+l1)

]1/2, c22 = 1
2 [

bα
(1)
1 (l1−k1)

c(k1+l∗1 )
2 ], c1 = 1

2 log (k∗1−l∗1 )[ac|k1+l∗1 |2−|b|2(k1+k∗1)(l1+l∗1 )]
ac(l1−k1)|k1+l∗1 |2

,

c2 = 1
2 log (k1−l1)(k∗1+l1)

(l1−k1)(k1+l∗1 )
, Λ1 =

|k1−l1|[ac|k1+l∗1 |2−|b|2(k1+k∗1)(l1+l∗1 )]
1/2

(ac)1/2|k1+l∗1 |2
, and Λ2 =

|b|(k1+k∗1)(l1+l∗1 )
(ac)1/2|k1+l∗1 |2

. The presence of additional wave number k1 or l1 provides
the additional degree of freedom to the motion as well as the structure of
the soliton in the two modes q1 and q2. For instance, the following two
possibilities are always allowed. The solitons in the two modes can prop-
agate either with equal velocities: v1 = v2, v1 = 2k1I , v2 = 2l1I or with
unequal velocities: v1 6= v2. As we describe below, these two choices re-
veal the new geometrical structures associated with the solution (3.3)-(3.4)
of the GCNLS system (3.1).
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Figure 3.1: The role of FWM effect on the double-hump soliton structure
of the nondegenerate one-soliton solution is demonstrated by fixing the
parameter values as k1 = 0.333− 0.5i, l1 = 0.315− 0.5i, k2 = 0.315 + 2.2i,
l2 = 0.333+ 2.2i, α

(1)
1 = 0.45+ 0.45i, α

(1)
2 = 2.49+ 2.45i, α

(2)
1 = 0.49+ 0.45i

and α
(2)
2 = 0.45 + 0.45i. The strength of FWM for each of the figures.

(a1)-(a2): b = 0, (b1)-(b2): b = 0.5 + 0.5i and (c1)-(c2): b = 1.

3.2.1.1 Role of FWM effect on one-soliton solution

The nondegenerate fundamental soliton solution (3.3)-(3.4) with v1 = v2

admits double-hump profile when the FWM effect is zero. Such profiles
are displayed in Figs. 3.1(a1) and (a2) for b = 0 and a = c = 1. However,
the symmetric nature of such intensity profiles disappears and the asym-
metric double-hump profiles emerge in both the modes q1 and q2 when we
incorporate the FWM effect (b 6= 0) along with the real part of k1 is slightly
greater than the real part of l1 (k1R > l1R). Such a profile transition is
displayed in Figs. 3.1(b1) and (b2). Further, increasing the value of b, we
find that the first-hump is completely suppressed in both the modes and
the second-hump only persists throughout the evolution with an enhance-
ment in the amplitude or intensity, which is illustrated in Figs. 3.1(c1) and
(c2).

Interestingly, we also find that the presence of the FWM parameter gen-
erates the breathing state in the structure of nondegenerate fundamental
soliton of the GCNLS system (3.1). It can be identified from the expres-
sions (3.6)-(3.7) with v1 = v2, where periodic functions explicitly appear
because of FWM parameter b. Such the novel breathing state is depicted
in Figs. (3.2) and (3.3), where the oscillations occur along the propagation
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Figure 3.2: Breather formation with strong FWM effect is demonstrated
by fixing the parameter values as a = c = 1, b = 0.5 + 0.5i, k1 = 1 + 0.5i,
l1 = 0.5 + 0.5i, α

(1)
1 = 0.65, and α

(2)
1 = 1 + i.

direction z only. From these figures, we observe that the strong breathing
nature appears when the FWM effect is high enough (see Fig. (3.2)) along
with a parameteric condition k1R >> l1R, in which case the value of k1R

should be considerably larger than l1R. On the other hand, for a weak
strength of the FWM effect, the small oscillations appear in the intensity
peaks only (see Fig. (3.3)). The period of oscillation is calculated as

T =
2π

ω
=

2π

(k2
1R − l2

1R)
. (3.8)

The above expression shows that the period of oscillation mainly de-
pends on the real parts of the wave numbers k1 and l1 apart from the
influence of the FWM nonlinearity. This type of special property has not
been observed in the degenerate counterparts, where the real part of the
single wave number k1 is responsible for the amplitude of the degener-
ate vector bright soliton of Eq. (3.1) accompanying the unit polarization
vectors. For completeness, in Fig. 3.4, we also demonstrate the breathing
soliton state by considering the mixed type nonlinearity a = 1, c = −1.
However, the singularity essentially arises in the breathing state because
of the negative sign of the XPM nonlinearity.

Next, we consider the solution (3.3)-(3.4) with unequal velocities: v1 6=
v2. In this situation, it admits two types of two-soliton like collision pat-
terns as we have illustrated in Figs. (3.5) and (3.6). In these figures, two
distinct single-hump profiles at different positions start to interact at z = 0.
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Figure 3.3: Breathing state is demonstrated for the low strength of FWM
effect. The parameter values are the same as in Fig. 3.2 except now
b = 0.15 + 0.15i.

Figure 3.4: Singular breathing state is demonstrated for the strong
strength of FWM effect. The parameter values are b = 0.5 + 0.5i,
k1 = 1.3 + 0.5i, l1 = −0.5 + 0.5i, α

(1)
1 = 0.65, and α

(2)
1 = i.

As a result, these interaction patterns appear due to the exchange of inten-
sities among the modes. This kind of switching of intensities among the
waveguides could be relevant to optical switching applications.

3.2.2 Completely/partially nondegenerate two-soliton solu-

tion

Depending on the choices of seed solutions, consideration along with the
following conditions on the wave numbers, namely (i) k1 6= l1 , k2 6= l2,
(ii) k1 = l1 and k2 6= l2 (or k1 6= l1 and k2 = l2), and (iii) k1 = l1 and
k2 = l2, the GCNLS system (3.1) also admits three-types of two-soliton
solutions, namely (i) completely nondegenerate two-soliton solution, (ii)
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Figure 3.5: Nondegenerate fundamental soliton with unequal-velocity
by fixing the parameter values as k1 = 0.333 − 0.5i, l1 = 0.315 − 0.5i,
k2 = 0.315 + 2.2i, l2 = 0.333 + 2.2i, α

(1)
1 = 0.45 + 0.45i, α

(1)
2 = 2.49 + 2.45i,

α
(2)
1 = 0.49 + 0.45i and α

(2)
2 = 0.45 + 0.45i.

Figure 3.6: Nondegenerate fundamental soliton with unequal-velocity
by fixing the parameter values as k1 = 0.333 − 0.5i, l1 = 0.315 − 0.5i,
k2 = 0.315 + 2.2i, l2 = 0.333 + 2.2i, α

(1)
1 = 0.45 + 0.45i, α

(1)
2 = 2.49 + 2.45i,

α
(2)
1 = 0.49 + 0.45i and α

(2)
2 = 0.45 + 0.45i.

partially nondegenerate two-soliton solution, and (iii) completely degen-
erate two-soliton solution, respectively. For instance, the two-soliton solu-
tion, with the complete nondegeneracy property, is obtained as a result of
finding the unknown functions in the truncated series expansions, g(j) =

εg(j)
1 + ε3g(j)

3 + ε5g(j)
5 + ε7g(j)

7 , j = 1, 2, and f = 1+ ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8.
To get the explicit forms of the unknown functions that are present in the
latter series expansions, we assume the initial solutions as

g(1)1 = α
(1)
1 eη1 + α

(1)
2 eη2 and g(2)1 = α

(2)
1 eξ1 + α

(2)
2 eξ2 , (3.9)

ηj = k jt + ik2
j z, ξ j = ljt + il2

j z, j = 1, 2.

Here, the wave numbers k j and lj and the constants α
(j)
1 and α

(j)
2 , j =
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1, 2, are in general complex. We find that the other unknown functions,
g(j)

9 , g(j)
11 , j = 1, 2, f10, f12 and etc., all exactly vanish. The remaining

non-vanishing functions constitute the nondegenerate two-soliton solu-
tion, which is rewritten using the Gram determinants in the following
way:

g(s) =

∣∣∣∣∣∣∣∣∣∣
A I φ

−I B 0T

0 Cs 0

∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣ A I

−I B

∣∣∣∣∣∣ , s = 1, 2, (3.10a)

where the other elements in the above determinants are defined as given
below:

A =



eη1+η∗1
(k1+k∗1)

eη1+η∗2
(k1+k∗2)

eη1+ξ∗1
(k1+l∗1 )

eη1+ξ∗2
(k1+l∗2 )

eη2+η∗1
(k2+k∗1)

eη2+η∗2
(k2+k∗2)

eη2+ξ∗1
(k2+l∗1 )

eη2+ξ∗2
(k2+l∗2 )

eξ1+η∗1
(l1+k∗1)

eξ1+η∗2
(l1+k∗2)

eξ1+ξ∗1
(l1+l∗1 )

eξ1+ξ∗2
(l1+l∗2 )

eξ2+η∗1
(l2+k∗1)

eξ2+η∗2
(l2+k∗2)

eξ2+ξ∗1
(l2+l∗1 )

eξ2+ξ∗2
(l2+l∗2 )


, (3.10b)

B =



aα
(1)
1 α

(1)∗
1

(k1+k∗1)
aα

(1)
2 α

(1)∗
1

(k2+k∗1)
b∗α(2)1 α

(1)∗
1

(l1+k∗1)
b∗α(2)2 α

(1)∗
1

(l2+k∗1)
aα

(1)
1 α

(1)∗
2

(k1+k∗2)
aα

(1)
2 α

(1)∗
2

(k2+k∗2)
b∗α(2)1 α

(1)∗
2

(l1+k∗2)
b∗α(2)2 α

(1)∗
2

(l2+k∗2)
bα

(1)
1 α

(2)∗
1

(k1+l∗1 )
bα

(1)
2 α

(2)∗
1

(k2+l∗1 )
cα

(2)
1 α

(2)∗
1

(l1+l∗1 )
cα

(2)
2 α

(2)∗
1

(l2+l∗1 )
bα

(1)
1 α

(2)∗
2

(k1+l∗2 )
bα

(1)
2 α

(2)∗
2

(k2+l∗2 )
cα

(2)
1 α

(2)∗
2

(l1+l∗2 )
cα

(2)
2 α

(2)∗
2

(l2+l∗2 )


, (3.10c)

φ =
(

eη1 eη2 eξ1 eξ2

)T
, C1 = −

(
α
(1)
1 α

(1)
2 0 0

)
,

C2 = −
(

0 0 α
(2)
1 α

(2)
2

)
, 0 =

(
0 0 0 0

)
,

and I is a (4× 4) identity matrix. The above solution consists of eight
arbitrary complex parameters k j, lj, α

(j)
1 and α

(j)
2 , j = 1, 2. The profile

shapes of the nondegenerate solitons and their various novel collision sce-
narios are governed by these eight nontrivial soliton parameters and the
three system parameters a, c and b.

Further, we wish to point out that the GCNLS system (3.1) also admits
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another class of two-soliton solution containing both degenerate and non-
degenerate vector solitons simultaneously. This additional possibility al-
ways exists in the newly derived two-soliton solution (3.10a)-(3.10c). Such
possibility arises by restricting the sets of wave numbers as k1 = l1 and
k2 6= l2 or k1 6= l1 and k2 = l2 in Eq. (3.10a)-(3.10c). Here, we have consid-
ered the former choice. By doing so, the seed solutions (3.9) get reduced
as

g(1)1 = α
(1)
1 eη1 + α

(1)
2 eη2 and g(2)1 = α

(2)
1 eη1 + α

(2)
2 eξ2 , (3.11)

ηj = k jt + ik2
j z, ξ2 = l2t + il2

2z, j = 1, 2.

With the above choice of initial solutions one can also derive the partial
nondegenerate two-soliton solution through the Hirota bilinear method.
We obtain the following form of the partial nondegenerate two-soliton so-
lution as a final product. However, the resultant form is the same as the
one given in Eq. (3.10a)-(3.10c) except the following changes that occur in
the elements of matrices A, B and φ:

A =



eη1+η∗1
(k1+k∗1)

eη1+η∗2
(k1+k∗2)

eη1+η∗1
(k1+k∗1)

eη1+ξ∗2
(k1+l∗2 )

eη2+η∗1
(k2+k∗1)

eη2+η∗2
(k2+k∗2)

eη2+η∗1
(k2+k∗1)

eη2+ξ∗2
(k2+l∗2 )

eη1+η∗1
(k1+k∗1)

eη1+η∗2
(k1+k∗2)

eη1+η∗1
(k1+k∗1)

eη1+ξ∗2
(k1+l∗2 )

eξ2+η∗1
(l2+k∗1)

eξ2+η∗2
(l2+k∗2)

eξ2+η∗1
(l2+k∗1)

eξ2+ξ∗2
(l2+l∗2 )


, (3.12a)

φ =
(

eη1 eη2 eη1 eξ2

)T
, (3.12b)

B =



aα
(1)
1 α

(1)∗
1

(k1+k∗1)
aα

(1)
2 α

(1)∗
1

(k2+k∗1)
b∗α(2)1 α

(1)∗
1

(k1+k∗1)
b∗α(2)2 α

(1)∗
1

(l2+k∗1)
aα

(1)
1 α

(1)∗
2

(k1+k∗2)
aα

(1)
2 α

(1)∗
2

(k2+k∗2)
b∗α(2)1 α

(1)∗
2

(k1+k∗2)
b∗α(2)2 α

(1)∗
2

(l2+k∗2)
bα

(1)
1 α

(2)∗
1

(k1+k∗1)
bα

(1)
2 α

(2)∗
1

(k2+k∗1)
cα

(2)
1 α

(2)∗
1

(k1+k∗1)
cα

(2)
2 α

(2)∗
1

(l2+k∗1)
bα

(1)
1 α

(2)∗
2

(k1+l∗2 )
bα

(1)
2 α

(2)∗
2

(k2+l∗2 )
cα

(2)
1 α

(2)∗
2

(k1+l∗2 )
cα

(2)
2 α

(2)∗
2

(l2+l∗2 )


. (3.12c)

The structural and the interaction properties associated with this inter-
esting class of solution are described by seven complex parameters k j, l2,
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α
(j)
1 , and α

(j)
2 , j = 1, 2.

We also wish to point out that one can capture the already known com-
pletely degenerate two-soliton solution of the GCNLS system (3.1) from
the nondegenerate two-soliton solution (3.10a)-(3.10c) for the wave num-
ber choices k1 = l1 and k2 = l2. The resultant forms again coincide with
the one given in Eq. (3.10a)-(3.10c) except for the following changes that
occur in the elements of matrices A, B and φ:

A =



eη1+η∗1
(k1+k∗1)

eη1+η∗2
(k1+k∗2)

eη1+η∗1
(k1+k∗1)

eη1+η∗2
(k1+k∗2)

eη2+η∗1
(k2+k∗1)

eη2+η∗2
(k2+k∗2)

eη2+η∗1
(k2+k∗1)

eη2+η∗2
(k2+k∗2)

eη1+η∗1
(k1+k∗1)

eη1+η∗2
(k1+k∗2)

eη1+η∗1
(k1+k∗1)

eη1+η∗2
(k1+k∗2)

eη2+η∗1
(k2+k∗1)

eη2+η∗2
(k2+k∗2)

eη2+η∗1
(k2+k∗1)

eη2+η∗2
(k2+k∗2)


, (3.13a)

φ =
(

eη1 eη2 eη1 eη2

)T
, (3.13b)

B =



aα
(1)
1 α

(1)∗
1

(k1+k∗1)
aα

(1)
2 α

(1)∗
1

(k2+k∗1)
b∗α(2)1 α

(1)∗
1

(k1+k∗1)
b∗α(2)2 α

(1)∗
1

(k2+k∗1)
aα

(1)
1 α

(1)∗
2

(k1+k∗2)
aα

(1)
2 α

(1)∗
2

(k2+k∗2)
b∗α(2)1 α

(1)∗
2

(k1+k∗2)
b∗α(2)2 α

(1)∗
2

(k2+k∗2)
bα

(1)
1 α

(2)∗
1

(k1+k∗1)
bα

(1)
2 α

(2)∗
1

(k2+k∗1)
cα

(2)
1 α

(2)∗
1

(k1+k∗1)
cα

(2)
2 α

(2)∗
1

(k2+k∗1)
bα

(1)
1 α

(2)∗
2

(k1+k∗2)
bα

(1)
2 α

(2)∗
2

(k2+k∗2)
cα

(2)
1 α

(2)∗
2

(k1+k∗2)
cα

(2)
2 α

(2)∗
2

(k2+k∗2)


. (3.13c)

The above solution contains only six complex parameters, k j, α
(j)
1 , α

(j)
2 ,

j = 1, 2. Obviously, it is less general than the nondegenerate two-soliton
solution (3.10a)-(3.10c) given above.

3.2.3 Nondegenerate N-soliton solution

By generalizing the procedure given above along with the more general
form of seed solutions,

g(1)1 =
N

∑
j=1

α
(1)
j eηj , g(2)1 =

N

∑
j=1

α
(2)
j eξ j , (3.14)
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where ηj = k jx + ik2
j t, ξ j = ljx + il2

j t, j = 1, 2, ..., N, we arrive the non-
degenerate N-soliton solution of the GCNLS system (3.1). The following
general forms of matrices A, B, I, φ and Cs, s = 1, 2, which are defined
below, constitute the N-soliton solution. They are defined as follows:

A =

Amm′ Amn

Anm Ann′

 , B =

Kmm′ Kmn

Knm Knn′

 , m, m′, n, n′ = 1, 2, ..., N, (3.15)

φ =
(

eη1 eη2 . . eηN eξ1 eξ2 . . eξN

)T
,

C1 = −
(

α
(1)
1 α

(1)
2 . . α

(1)
N 0 0 . . 0

)
,

C2 = −
(

0 0 . . 0 α
(2)
1 α

(2)
2 . . α

(2)
N

)
, 0 =

(
0 0 . . . 0

)
,

where

Amm′ =
eηm+η∗m′

(km + k∗m′)
, Amn =

eηm+ξ∗n

(km + l∗n)
, Ann′ =

eξn+ξ∗n′

(ln + l∗n′)
, Anm =

eη∗n+ξm

(k∗n + lm)
,

Kmm′ =
aα

(1)∗
m α

(1)
m′

(km + k∗m′)
, Kmn =

b∗α(1)∗m α
(2)
n

(k∗m + ln)
, Knn′ =

cα
(2)∗
n α

(2)
n′

(ln + l∗n′)
, Knm =

bα
(2)∗
n α

(1)
m

(kn + l∗m)
,

and I is a (N × N) identity matrix. The resultant N-soliton solution
contains 4N-complex parameters, k j, lj, α

(j)
1 , and α

(j)
2 , j = 1, 2, ..., N.

3.3 Collision dynamics of nondegenerate solitons

We find that the nondegenerate solitons of the GCNLS system (3.1) display
interesting collision properties depending on the strength of the FWM ef-
fect along with further choices of the velocity conditions. We observe that
they exhibit two types of collision scenarios, namely novel shape changing
collision and mere shape preserving or shape altering collision for equal
velocities k1I = l1I , k2I = l2I . The novel shape changing collision essen-
tially occurs among two nondegenerate breathing soliton states when the
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FWM effect is strong. However, for low strengths of FWM effect we en-
counter a mere shape preserving collision. To explain these collision prop-
erties we again perform appropriate asymptotic analysis, as we have done
earlier for the Manakov case. Such interesting collision properties can be
analyzed by obtaining the asymptotic forms from the two-soliton solution
(3.10a)-(3.10c).

To do so, we consider the parametric choices k jR, ljR > 0, j = 1, 2,
k1I > k2I , l1I > l2I , k1I = l1I and k2I = l2I , which correspond to the case
of a head-on collision between the two breathing nondegenerate solitons.
In this situation these two breathing solitons S1 and S2 are well separated
and subsequently the asymptotic forms of the individual solitons can be
deduced from the solution (3.10a)-(3.10c) by incorporating the asymptotic
nature of the wave variables ηjR = k jR(t− 2k jIz) and ξ jR = ljR(t− 2ljIz),
j = 1, 2, in it. The wave variables ηjR and ξ jR behave asymptotically as (i)
Soliton 1 (S1): η1R, ξ1R ' 0, η2R, ξ2R → ∓∞ as z ∓∞ and (ii) Soliton 2
(S2): η2R, ξ2R ' 0, η1R, ξ1R → ∓∞ as z±∞. Correspondingly these results
lead to the asymptotic forms of nondegenerate individual solitons as given
below.

(a) Before collision: z→ −∞

Soliton 1: In this limit, the asymptotic forms of breathing nondegener-
ate soliton states are deduced from the two soliton solution (3.10a)-(3.10c)
as below:

q1 =
1

D−1

(
c1−

11 eiη1I cosh(ξ1R + φ1−
1 ) + c1−

21 eiξ1I [cosh η1R + sinh η1R]

)
, (3.16)

q2 =
1

D−1

(
c1−

12 eiξ1I cosh(η1R + φ1−
2 ) + c1−

22 eiη1I [cosh ξ1R + sinh ξ1R]

)
, (3.17)

D−1 = Λ1−
1 cosh(η1R + ξ1R + φ1−

3 ) + Λ1−
2 cosh(η1R − ξ1R + φ1−

4 )

+Λ1−
3 [cosh φ1−

5 cos(η1I − ξ1I) + i sinh φ1−
5 sin(η1I − ξ1I)].

In the above, φ1−
1 = 1

2 log c(k1−l1)|α(2)1 |2
(l1+l∗1 )

2(k1+l∗1 )
, φ1−

2 = 1
2 log a(l1−k1)|α(1)1 |2

(k1+k∗1)
2(k∗1+l1)

, φ1−
3 =
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φ1−
1 +φ1−

2 + 1
2 log

(k∗1−l∗1 )
[

ac|k1+l∗1 |2−|b|2(k1+k∗1)(l1+l∗1 )
]

ac(l1−k1)|k1+l∗1 |2
, φ1−

4 = 1
2 log a|α(1)1 |2(l1+l∗1 )

2

c|α(2)1 |2(k1+k∗1)
2
,

φ1−
5 = 1

2 log bα
(1)
1 α

(2)∗
1 (k∗1+l1)2

b∗α(1)∗1 α
(2)
1 (k1+l∗1 )

2
, c1−

11 = [
c|α(2)1 |2(k1−l1)
(k1+l∗1 )(l1+l∗1 )

]1/2, c1−
21 = 1

2 [
b∗α(2)1 |α

(1)
1 |2(k1−l1)

(k1+k∗1)(k
∗
1+l1)2 ],

c1−
12 = [

aα
(2)
1 |α

(1)
1 |2(l1−k1)

(k∗1+l1)(k1+k∗1)
]1/2, c1−

22 = 1
2 [

bα
(1)
1 |α

(2)
1 |2(l1−k1)

(k1+l∗1 )
2(l1+l∗1 )

], Λ1−
2 = λ1 =

[ ac|α(1)1 |2|α
(2)
1 |2

(k1+k∗1)(l1+l∗1 )

]
,

Λ1−
1 =

λ1|k1−l1|[ac|k1+l∗1 |2−|b|2(k1+k∗1)(l1+l∗1 )]
1/2

(ac)1/2|k1+l∗1 |2
, and Λ1−

3 =
|b||α(1)1 ||α

(2)
1 |

|k1+l∗1 |2
.

Soliton 2: In this limit, the asymptotic forms of q1 and q2 are deduced
from the two soliton solution (3.10a)-(3.10c) for soliton 2 as below:

q1 =
1

D−2

(
c2−

11 eiη2I cosh(ξ2R + φ2−
1 ) + c2−

21 eiξ2I cosh(η2R + φ2−
2 )

)
, (3.18)

q2 =
1

D−2

(
c2−

22 eiξ2I cosh(η2R + φ2−
7 ) + c2−

12 eiη2I cosh(ξ2R + φ2−
6 )

)
, (3.19)

D−2 = Λ2−
1 cosh(η2R + ξ2R + φ2−

3 ) + Λ2−
2 cosh(η2R − ξ2R + φ2−

4 )

+Λ2−
3 [cosh φ2−

5 cos(η2I − ξ2I) + i sinh φ2−
5 sin(η2I − ξ2I)].

Here,

φ2−
1 = 1

2 log
c|k1−l2|2(k2−l2)|l1−l2|4|α(2)2 |2

[
ac|k1+l∗1 |2(k2+l∗1 )|k1+l∗2 |2(k2+l∗2 )−|b|2(k1+k∗1)(k

∗
1+k2)

]
|k1+l∗2 |4(l∗1+l2)2(k2+l∗2 )

2(l1+l∗2 )
2(l2+l∗2 )

2
[

ac|k1+l∗1 |2(k2+l∗1 )−|b|2(k1+k∗1)(k
∗
1+k2)(l1+l∗1 )

] ,

φ2−
2 = 1

2 log
|k1−k2|4|k2−l1|2(k2−l2)

[
|b|2(k1+k∗1)|k1+k∗2 |2(k2+k∗2)(l1+l∗1 )(l

∗
1+l2)−ac(k1+l∗1 )(k2+l∗1 )

]
ac(l2−k2)|k1+k∗2 |4(k∗2+l2)|k2+l∗1 |4

,

φ2−
3 = φ2−

1 + φ2−
2 + d−1 , d−1 = 1

2 log (k∗2−l∗2 )λ2
ac(l2−k2)λ3

, λ3 =
[
ac|k1 + l∗1 |2|k2 +

l∗1 |2(k∗1 + l2)(k∗2 + l2)−|b|2(l1 + l∗1 )(l
∗
1 + l2)

][
ac|k1 + l∗1 |2(k2 + l∗1 )|k1 + l∗2 |2(k2 +

l∗2 )− |b|2(k1 + k∗1)(k
∗
1 + k2)

]
, λ2 =

[
ac|k1 + l∗1 |2(k2 + l∗1 )− |b|2(k1 + k∗1)(k

∗
1 +

k2)(l1 + l∗1 )
][

ac(k∗1 + l2)|k1 + l∗1 |2 − |b|2(k1 + k∗1)(l1 + l∗1 )(l
∗
1 + l2)

][
|b|4(k1 +

k∗1)|k1 + k∗2|2(k2 + k∗2)(l1 + l∗1 )|l1 + l∗2 |2(l2 + l∗2 ) + a2c2|k1 + l∗1 |2|k2 + l∗1 |2|k2 +

l∗2 |2 − ac|b|2
]
, φ2−

4 = φ2−
2 − φ2−

1 + d−2 , d−2 = 1
2 log (k2−l2)λ4(k∗2+l2)2

(l2−k2)λ5
, λ4 =[

ac|k1 + l∗1 |2|k2 + l∗1 |2− |b|2(l1 + l∗1 )
][

ac|k1 + l∗1 |2(k∗1 + l2)− |b|2(k1 + k∗1)(l1 +
l∗1 )(l

∗
1 + l2)

][
ac|k1 + l∗1 |2(k2 + l∗1 )|k1 + l∗2 |2(k2 + l∗2 )− |b|2(k1 + k∗1)(k

∗
1 + k2)

]
,

λ5 =
[
ac|k1 + l∗1 |2|k1 + l∗2 |2 − |b|2(k1 + k∗1)

][
ac|k1 + l∗1 |2(k2 + l∗1 )− |b|2(k1 +

k∗1)(k
∗
1 + k2)(l1 + l∗1 )

]
, φ2−

5 =
b(k1−k2)

2(k2−l1)(k∗1−l∗2 )(l1−l2)2(k1+k∗2)
2(k∗2+l1)2λ6

b∗(k∗1−k∗2)
2(k∗2−l∗1 )(k1−l2)(l1−l2)2λ7

, λ6 =

(k∗1 + l2)2(k∗2 + l2)2(l∗1 + l2)2[|b|2(k1 + k∗1)(k
∗
1 + k2)(l1 + l∗1 )(l1 + l∗2 )− ac(k∗1 +

l1)
]
, λ7 =

[
|b|2(k1 + k∗1)(k1 + k∗2)(l1 + l∗1 )(l

∗
1 + l2) − ac(k1 + l∗1 )

]
, φ2−

6 =
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1
2 log a(l2−k2)|α(1)2 |2|k1−k2|4|k2−l1|2λ8

(k∗2+l2)(k2+k∗2)
2|k1+k∗2 |4|k2+l∗1 |4(k∗2+l2)λ8

, λ7 =
[
ac|k1 + l∗1 |2|k2 + l∗1 |2(k∗1 + l2)(k∗2 +

l2)− |b|2(l1 + l∗1 )(l
∗
1 + l2)

]
, λ8 =

[
ac|k1 + l∗1 |2(k∗1 + l2)− |b|2(k1 + k∗1)(l1 +

l∗1 )(l
∗
1 + l2)

]
, φ2−

7 = 1
2 log c(k2−l2)|α(1)2 |2|(k1−l2)|2|l1−l2|4λ9

ac(k2+l∗2 )(k2+k∗2)
2(k∗1+l1)(l1+l∗1 )λ10

, λ9 =
[
|b|2(k1 +

k∗1)(k
∗
1 + k2)(l1 + l∗1 )|l1 + l∗2 |2(l2 + l∗2 ) − ac(k∗1 + l1)(k∗1 + l2)

]
, λ10 = (k∗1 +

l2)2)(k1 + l∗2 )
2|l1 + l∗2 |4(l2 + l∗2 )

2(k∗1 − l∗1 )(k2 + l∗2 ),

c2−
11 =

c(k1−k2)
2(k2−l1)|k1−l2||l1−l2|2(k2−l2)

1
2 |α(1)1 |2|α

(2)
1 |2|α

(2)
2 |α

(1)
2 |k1−l1|2λ11

(k1+k∗1)
2(k2+k∗1)

2|k1+l∗1 |4(k2+l∗1 )
2(l1+l∗1 )

2|k1+l∗2 |2|l1+l∗2 |2(k2+l∗2 )(l2+l∗2 )
, λ11 =

[
ac|k1 +

l∗1 |2(k2 + l∗1 )−|b|2(k1 + k∗1)(k
∗
1 + k2)(l1 + l∗1 )

] 1
2
[
ac|k1 + l∗1 |2(k2 + l∗1 )|k1 + l∗2 |2(k2 +

l∗2 )− |b|2(k1 + k∗1)(k
∗
1 + k2)

]
,

c2−
21 =

b∗c|k1−k2|2|k1−l1|2|k2−l1|(k1−l2)(k2−l2)(l1−l2)2|α(1)1 |2|α
(2)
1 |2|α

(1)
2 |α

(2)
2 λ12

(k1+k∗1)|k1+k∗2 |2(k∗1+l1)2(k1+l∗1 )(k2+k∗2)|k2+l∗1 |2(l1+l∗1 )
2(k∗1+l2)2(k∗2+l2)(l∗1+l2)2 , λ12 =[

|b|2(k1 + k∗1)|k∗1 + k2|2(k2 + k∗2)(l1 + l∗1 )(l
∗
1 + l2) − ac(k1 + l∗1 )(k2 + l∗1 )

] 1
2 ,

c2−
12 =

ab(k1−k2)
2|k1−l1|2(k∗1−l∗1 )(k2−l1)|k1−l2|(k2−l2)|l1−l2|2|α(1)1 |2|α

(2)
1 |2α

(1)
2 |α

(2)
2 |λ13

(k1+k∗1)
2(k∗1+k2)2(k∗1+l1)(k1+l∗1 )

2(k2+l∗1 )
2(l1+l∗1 )|k1+l∗2 |2|l1+l∗2 |2(k2+k∗2)(l2+l∗2 )

, λ13 =[
|b|2(k1 + k∗1)(k

∗
1 + k2)(l1 + l∗1 )|l1 + l∗2 |2(l2 + l∗2 )− ac(k∗1 + l1)(k∗1 + l2)

] 1
2 , c2−

22 =

a|k1−k2|2|k1−l2|2|k2−l1|(k1−l2)(k2−l2)(l1−l2)2|α(1)1 |2|α
(2)
1 |2|α

(1)
2 |α

(2)
2 λ14

(k1+k∗1)
2|k1+k∗2 |2|k1+l∗1 |4(l1+l∗1 )

2(k∗1+l2)2(k2+k∗2)(l
∗
1+l2)2|k2+l∗1 |2(k∗2+l2)

, λ14 =
[
|b|2(k1 +

k∗1)(l1 + l∗1 )(l
∗
1 + l2)− ac|k1 + l∗1 |2(k∗1 + l2)

][
ac|k1 + l∗1 |2|k2 + l∗1 |2(k∗1 + l2)(k∗2 +

l2)− |b|2(l1 + l∗1 )(l
∗
1 + l2)

]
.

(b) After collision: z→ +∞

Soliton 1: In this limit, the asymptotic forms of q1 and q2 are deduced
from the two soliton solution (3.10a)-(3.10c) for soliton 1 as below:

q1 =
1

D+
1

(
c1+

11 eiη1I cosh(ξ1R + φ1+
1 ) + c1+

21 eiξ1I cosh(η1R + φ1+
2 )

)
, (3.20)

q2 =
1

D+
1

(
c1+

12 eiη1I cosh(ξ1R + φ1+
6 ) + c1+

22 eiξ1I cosh(η1R + φ1+
7 )

)
, (3.21)

D+
1 = Λ1+

1 cosh(η1R + ξ1R + φ1+
3 ) + Λ1+

2 cosh(η1R − ξ1R + φ1+
4 )

+Λ1+
3 [cosh φ1+

5 cos(η1I − ξ1I) + i sinh φ1+
5 sin(η1I − ξ1I)].

φ1+
1 = 1

2 log c(k1−l1)|k2−l1|2|l1−l2|4|α(2)1 |2∆1
(k1+l∗1 )

2|k2+l∗1 |4(l1+l∗1 )
2|l1+l∗2 |4∆2

, ∆1 =
[
ac|k2 + l∗1 |2(k1 + l∗1 )|k2 +

l∗2 |2(k1 + l∗2 )− |b|2(k1 + k∗2)(k2 + k∗2)
]
, ∆2 =

[
ac|k2 + l∗2 |2(k1 + l∗2 )− |b|2(k1 +
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k∗2)(k2 + k∗2)(l2 + l∗2 )
]
, φ1+

2 = 1
2 log ||4(k1−l1)|k1−l2|2|α(1)1 |2∆3

c(k1+k∗1)
2|k1+k∗2 |4(k2+k∗2)(k

∗
1+l1)2|k∗1+l2|4|(k2+l∗2 )|2

,

∆3 =
[
|b|2(k1 + k∗1)|k1 + k∗2|2(k2 + k∗2)(l1 + l∗2 )(l2 + l∗2 ) − ac(k1 + l∗2 )(k2 +

l∗2 )
]
, φ1+

3 = φ1+
1 +φ1+

2 + c+1 , c+1 =
∆4

[
ac|k2+l∗2 |2(k1+l∗2 )−|b|2(k1+k∗2)(k2+k∗2)(l2+l∗2 )

]
ac∆5|k2+l∗1 |2(k1+l∗1 )|k2+l∗2 |2(k1+l∗2 )−|b|2(k1+k∗2)(k2+k∗2)

,

∆4 =
[
ac(k∗2 + l1)|k2 + l∗2 |2 − |b|2(k2 + l∗2 )(l1 + l∗2 )(l2 + l∗2 )

]
, ∆5 =

[
ac(k∗1 +

l1)(k∗2 + l1)|k1 + l∗2 |2|k2 + l∗2 |2− |b|2(l1 + l∗2 )(l2 + l∗2 )
]
, φ1+

4 = φ1+
2 −φ1+

1 + c+2 ,

c+2 = 1
2 log

[
ac|k1+l∗2 |2|k2+l∗2 |2−|b|2(l2+l∗2 )

]
∆6

∆7

[
ac|k2+l∗1 |2|k2+l∗2 |2−|b|2

] , ∆6 =
[
ac(k∗2 + l1)(k∗2 + l2)(k2 +

l∗2 )− |b|2(k2 + k∗2)(l1 + l∗2 )(l2 + l∗2 )
][

ac|k2 + l∗2 |2(k1 + l∗2 )− |b|2(l2 + l∗2 )(k1 +

k∗2)(k2 + k∗2)
]
, ∆7 =

[
ac(k∗1 + l1)(k∗2 + l1)|k∗1 + l2|2|k∗2 + l2|2−|b|2(l1 + l∗2 )(l2 +

l∗2 )
][

ac|k2 + l∗1 |2|k2 + l∗2 |2(k1 + l∗1 )(k1 + l∗2 )− |b|2(k1 + k∗2)(k2 + k∗2)
]
, φ1+

5 =

1
2 log b(k1−k2)

2(k∗2−l∗1 )(k1−l2)(l∗1−l∗2 )
2α

(1)
1 α

(2)∗
1 ∆8

b∗(k∗1−k∗2)
2(k2−l1)(k∗1−l∗2 )(l1−l2)2α

(1)∗
1 α

(2)
1 ∆9

, ∆8 =
[
|b|2(k1 + k∗2)(k2 + k∗2)(l

∗
1 +

l2)(l2 + l∗2 )− ac(k∗2 + l2)
]
(k∗1 + k2)

2(k∗1 + l1)2(k∗2 + l1)2, ∆9 =
[
|b|2(k∗1 + k2)(k∗2 +

k2)(l∗1 + l2)(l∗2 + l2)− ac(k2 + l∗2 )
]
(k1 + k∗2)

2(k1 + l∗1 )
2(k2 + l∗1 )

2,

φ1+
6 = 1

2 log a|k1−k2|4(k1−l1)|k1−l2|2|α(1)1 |2∆11
(k1+k∗1)

2|k1+k∗2 |4(k∗1+l1)2(k∗1+l2)2(k1+l∗2 )
2∆12

, ∆11 =
[
ac(k∗1 + l1)(k∗2 +

l1)|k∗1 + l2|2|k2 + l∗2 |2 − |b|2(l1 + l∗2 )(l2 + l∗2 )
]
, ∆12 =

[
ac(k∗2 + l1)|k∗2 + l2|2 −

|b|2(k2 + l∗2 )(l1 + l∗2 )(l2 + l∗2 )
]
, φ1+

7 = 1
2 log (k1−l1)|k2−l1|2|l1−l2|4(k∗2−l∗2 )|α

(2)
1 |2∆13

(k1+l∗1 )
2|k2+l∗1 |4(l1+l∗1 )

2(k∗2+l2)(l2+l∗2 )∆14

∆14 = a(k∗1 − k∗2)
2|l1 + l∗2 |4,

c1+
11 =

c(k1−k2)
2(k1−l2)(k1−l1)|k2−l2|2|k2−l1||l1−l2|2α

(1)
1 |α

(2)
1 ||α

(1)
2 |2|α

(2)
2 |2∆15

(k1+k∗2)
2(k2+k∗2)

2(k∗2+l2)2(k1+l∗2 )
2(l1+l∗2 )

2(l2+l∗2 )
2(k∗2+l1)(k1+l∗1 )(k2+l∗1 )(l1+l∗1 )|l1+l∗2 |2

,

∆15 =
[
ac|k2 + l∗2 |2(k1 + l∗2 )−|b|2(k1 + k∗2)(k2 + k∗2)(l2 + l∗2 )

][
ac|k2 + l∗1 |2(k1 +

l∗1 )(k
∗
2 + l2)(k1 + l∗2 )(k2 + l∗2 )− |b|2(k1 + k∗2)(k2 + k∗2)

]
,

c1+
21 =

b∗c|k1−k2|2(k1−l1)(k2−l1)(k2−l2)(k1−l2)(l1−l2)2(k∗1−l∗2 )(k
∗
2−l∗2 )|α

(1)
1 |α

(2)
1 |α

(1)
2 |2|α

(2)
2 |2∆15

(k1+k∗1)|k1+k∗2 |2(k2+k∗2)(k
∗
2+l1)2(k∗1+l1)|k1+l∗2 |2(k∗2+l2)2(k2+l∗2 )(l1+l∗2 )

2(l2+l∗2 )
2 ,

∆16 =
[
|b|2(k1 + k∗1)|k1 + k∗2|2(k2 + k∗2)(l1 + l∗2 )(l2 + l∗2 ) − ac(k1 + l∗2 )(k2 +

l∗2 )
]
, c1+

12 =
ab(k1−k2)

2(k1−l1)|k2−l1|(k1−l2)|k2−l2|2|l1−l2|2(k∗2−l∗2 )α
(1)
1 |α

(2)
1 ||α

(1)
2 |2|α

(2)
2 |2∆17

(k1+k∗2)
2(k2+k∗2)

2|k∗2+l1|2(k1+l∗1 )(l1+l∗1 )(k
∗
2+l2)|l1+l∗2 |2(k2+l∗2 )

2(l2+l∗2 )
2(k1+l∗2 )

2 ,

∆17 =
[
|b|2(k1 + k∗2)(k2 + k∗2)(l1 + l∗1 )|l∗1 + l2|2(l2 + l∗2 )− ac(k∗2 + l1)(k∗2 + l2)

]
,

c1+
22 =

a|k1−k2|2(k1−l1)(k2−l1)|k1−l2|(k2−l2)(l1−l2)2|α(1)1 ||α
(2)
1 ||α

(1)
2 |2|α

(2)
2 |2∆18

(k1+k∗1)|k1+k∗2 |2(k2+k∗2)
2(k∗1+l1)(k∗2+l1)2|k1+l∗2 |2|k2+l∗2 |4(l1+l∗2 )

2(l2+l∗2 )
2 , ∆18 =

[
ac(k∗2 +

l1)|k2 + l∗2 |2−|b|2(k2 + k∗2)(l1 + l∗2 )(l2 + l∗2 )
][

ac(k∗1 + l1)(k∗2 + l1)(k∗1 + l2)(k∗2 +
l2)(k1 + l∗2 )(k2 + l∗2 )− |b|2(l1 + l∗2 )(l2 + l∗2 )

]
.

Soliton 2: In this limit, the asymptotic forms of q1 and q2 are deduced
from the two soliton solution (3.10a)-(3.10c) for soliton 2 as below:
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Figure 3.7: Interaction between two breathing nondegenerate soliton
states is demonstrated by fixing the parameter values as a = c = 1,
b = 0.6 + 0.6i, k1 = 1.5 + 0.5i, l1 = 0.45 + 0.5i, k2 = 0.5− i, l2 = 1.3− i,
α
(1)
1 = 0.55, α

(1)
2 = 0.5 + 0.5i, α

(2)
1 = 0.45 + 0.45i, and α

(2)
2 = 1 + i.

q1 =
1

D+
2

(
c1+

11 eiη2I cosh(ξ2R + φ2+
1 ) + c2+

21 eiξ2I [cosh η2R + sinh η2R]

)
, (3.22)

q2 =
1

D+
2

(
c2+

12 eiξ2I cosh(η2R + φ2+
2 ) + c2+

22 eiη2I [cosh ξ2R + sinh ξ2R]

)
, (3.23)

D+
2 = Λ2+

1 cosh(η2R + ξ2R + φ2+
3 ) + Λ2+

2 cosh(η2R − ξ2R + φ2+
4 )

+Λ2+
3 [cosh φ2+

5 cos(η2I − ξ2I) + i sinh φ2+
5 sin(η2I − ξ2I)].

In the above, φ2+
1 = 1

2 log c(k2−l2)|α(2)2 |2
(l2+l∗2 )

2(k2+l∗2 )
, φ2+

2 = 1
2 log a(l2−k2)|α(1)2 |2

(k2+k∗2)
2(k∗2+l2)

, φ2+
3 =

φ2+
1 +φ2+

2 + 1
2 log

(k∗2−l∗2 )
[

ac|k2+l∗2 |2−|b|2(k2+k∗2)(l2+l∗2 )
]

ac(l2−k2)|k2+l∗2 |2
, φ2+

4 = 1
2 log a|α(1)2 |2(l2+l∗2 )

2

c|α(2)2 |2(k2+k∗2)
2
,

φ2+
5 = 1

2 log bα
(1)
2 α

(2)∗
2 (k∗2+l2)2

b∗α(1)∗2 α
(2)
2 (k2+l∗2 )

2
, c2+

11 = [
c|α(2)1 |2(k2−l2)
(k2+l∗2 )(l2+l∗2 )

]1/2, c2+
21 = 1

2 [
b∗α(2)2 |α

(1)
2 |2(k2−l2)

(k2+k∗2)(k
∗
2+l2)2 ],

c2+
12 = [

aα
(2)
2 |α

(1)
2 |2(l2−k2)

(k∗2+l2)(k2+k∗2)
]1/2, c2+

22 = 1
2 [

bα
(1)
2 |α

(2)
2 |2(l2−k2)

(k2+l∗2 )
2(l2+l∗2 )

], Λ2+
2 = λ2 =

[ ac|α(1)2 |2|α
(2)
2 |2

(k2+k∗2)(l2+l∗2 )

]
,

Λ2+
1 =

λ2|k2−l2|[ac|k2+l∗2 |2−|b|2(k2+k∗2)(l2+l∗2 )]
1/2

(ac)1/2|k2+l∗2 |2
, and Λ2+

3 =
|b||α(1)2 ||α

(2)
2 |

|k2+l∗2 |2
.

The above analysis clearly indicates that there are definite changes in
the asymptotic forms of the nondegenerate solitons. The profile change of
a given soliton S1 (or S2) during the collision can be confirmed from the
changes that occur in both the constants, c1±

jk , c2±
jk , j, k = 1, 2, and as well

as from the phases, φ1±
j , φ2±

j , j = 1, 2, 3, 4, 5. This implies that the struc-
tures of the nondegenerate solitons are not preserved during the collision
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Figure 3.8: The collision among the two double-hump solitons is demon-
strated for low strength of FWM effect. To draw this figure we fix the
parameter values as a = c = 1, b = 0.15 + 0.15i, k1 = 0.333 + 1.5i,
l1 = 0.315 + 1.5i, k2 = 0.315 + 2.2i, l2 = 0.333 + 2.2i, α

(1)
1 = 0.6, α

(1)
2 = 0.6,

α
(2)
1 = 0.45i, and α

(2)
2 = 0.45i.

process. However, the period of oscillation, Tj =
2π

k2
jR−l2

jR
, j = 1, 2, remains

constant during the entire evolution process. A typical shape changing
collision is demonstrated in Fig. 3.7. From this figure, we observe that the
two breathing nondegenerate solitons are well separated and their struc-
tures definitely get drastically varied during the collision. The intensity
of breathing nondegenerate soliton, say S1, is enhanced in both the modes
q1 and q2 whereas the reverse, that is suppression of intensity, is occurs
for soliton S2. For strong FWM effect, such shape changing collision hap-
pens among the two breathing soliton states. It is difficult to calculate
transition intensities in order to characterize this shape changing collision.
However, a mere shape preserving collision or shape altering collision is
observed for low strengths of FWM paramater b. This collision scenario
is demonstrated in Fig. 3.8, where the two asymmetric double-hump soli-
tons preserve their structures after collision. In this situation, the phase
terms and all the constants do not contribute significantly in the collision
dynamics.
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Figure 3.9: Degenerate soliton collision induced Type-I shape changing
behaviour of the breathing nondegenerate soliton state is illustrated by
fixing the parameter values as a = c = 1, b = 0.6 + 0.6i, k1 = 1.5 + 0.5i,
l1 = 0.45 + 0.5i, k2 = 1.5− 0.5i, l2 = 1.5− 0.5i, α

(1)
1 = 0.55, α

(1)
2 = 0.5 +

0.5i, α
(2)
1 = 0.45 + 0.45i, and α

(2)
2 = 1 + i.

3.4 Degenerate soliton collision induced shape

changing property of nondegenerate soliton

In this section, we discuss the collision between degenerate and nonde-
generate solitons admitted by the partially nondegenerate two-soliton so-
lution (3.12a)-(3.12c) of the GCNLS system (3.1) in the partial nondegener-
ate limit k1 = l1 and k2 6= l2. The following asymptotic analysis ensures
that there is a definite energy redistribution occurs among the modes q1

and q2. As a consequence, we observe two types of shape changing col-
lisions. We call them as Type-I and Type-II shape changing collisions. In
Type-I shape changing collision, the intensity of the nondegenerate soliton
S2 is enhanced in both the modes whereas in Type-II shape changing col-
lision it is reversed. That is the intensity of the nondegenerate soliton S2 is
suppressed in both the components. During these kinds of collisions, the
degenerate soliton S1 loses (or gains) energy to (or from) the nondegen-
erate soliton. To characterize these collision scenario, we perform suitable
asymptotic analysis, as given below, and obtain the asymptotic forms for
both the solitons S1 and S2. To do so, we incorporate the asymptotic na-
ture of the wave variables ηjR = k jR(t − 2kI jz) and ξ2R = l2R(t − 2l2Iz),
j = 1, 2, in the solution (3.12a)-(3.12c). Here also the wave variable η1R

corresponds to the degenerate soliton S1 and η2R, ξ2R correspond to the
nondegenerate soliton S2. In order to find the asymptotic behaviours of



3.4. Collision between nondegenerate and degenerate solitons 83

Figure 3.10: Degenerate soliton collision induced Type-II shape changing
behaviour of the breathing nondegenerate soliton state is illustrated by
fixing the parameter values as a = c = 1, b = 0.6 + 0.6i, k1 = 1.5− 0.5i,
l1 = 0.45− 0.5i, k2 = 1.5 + 0.5i, l2 = 1.5 + 0.5i, α

(1)
1 = 0.55, α

(1)
2 = 0.5 +

0.5i, α
(2)
1 = 0.45 + 0.45i, and α

(2)
2 = 1 + i.

these wave variables, we consider the parametric choice as k1R, k2R, l2R > 0,
k1I > 0, k2I , l2I < 0, k1I > k2I , k1I > l2I . For this choice, the wave vari-
ables behave asymptotically as follws: (i) degenerate soliton S1: η1R ' 0,
η2R,ξ2R → ∓∞ as z → ∓∞ (ii) nondegenerate soliton S2: η2R, ξ2R ' 0,
η1R → ±∞ as z → ±∞. By incorporating these asymptotic behaviours
of wave variables in the solution (3.12a)-(3.12c), we deduce the following
asymptotic expressions for both the degenerate and nondegenerate soli-
tons.

(a) Before collision: z→ −∞

Soliton 1: In this limit, the asymptotic form for the degenerate soli-
ton deduced from the partially nondegenerate two soliton solution (3.12a)-
(3.12c) is

qj '


A1−

1

A1−
2

 k1Reiη1I sech(η1R + φ−), j = 1, 2, (3.24)

where A1−
j = α

(j)
1 /(a|α(1)1 |2 + c|α(2)1 |2 + bα

(1)
1 α

(2)∗
1 + b∗α(1)∗1 α

(2)
1 )1/2, j =

1, 2, φ− = 1
2 ln (a|α(1)1 |2+c|α(2)1 |2+bα

(1)
1 α

(2)∗
1 +b∗α(1)∗1 α

(2)
1 )

(k1+k∗1)
2 . Here, in A1−

j the super-
script 1− denotes soliton S1 before collision and subscript j refers to the
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mode number.

Soliton 2: The asymptotic expressions for the nondegenerate soliton S2

which is present in the two modes before collision are obtained as

q1 =
1
D

(
µ11eiη2I cosh(ξ2R + ϕ2−

1 ) + µ21eiξ2I cosh(η2R + ϕ2−
2 )

)
, (3.25)

q2 =
1
D

(
µ22eiξ2I cosh(η2R + ϕ2−

7 ) + µ12eiη2I cosh(ξ2R + ϕ2−
6 )

)
, (3.26)

D = λ2−
1 cosh(η2R + ξ2R + φ2−

3 ) + λ2−
2 cosh(η2R − ξ2R + φ2−

4 )

+λ2−
3 [cosh φ2−

5 cos(η2I − ξ2I) + i sinh φ2−
5 sin(η2I − ξ2I)].

In the above, ϕ2−
1 = 1

2 log |k1−l2|2(k2−l2)|α(2)2 |2χ1
(k∗1+l2)2(k1+l∗2 )

2(k2+l∗2 )
2(l2+l∗2 )

2χ2
, χ1 =

[
ac(k1 −

k2)|k1 + l∗2 |2(k2 + l∗2 )|α
(1)
1 |2− c(k∗1 + k2)|k1− l2|2(k2 + k∗2)α

(2)
1 (b∗α(1)∗1 + cα

(2)
1 )+

b(k2 − k1)α
(1)
1

]
, χ2 =

[
a|α(1)1 |2(k1 − k2) − b∗α(1)∗1 α

(2)
1 (k∗1 + k2) + bα

(1)
1 (k1 −

k2)α
(2)
1 − c|α(2)1 |2(k∗1 + k2)

]
, ϕ2−

2 = 1
2 log |k1−k2|2(k2−l2)|α(1)2 |2

(k1+k∗1)|k1+k∗2 |4(k2+k∗2)
2(k∗2+l2)2α

(2)
1 (b∗α(1)∗1 +cα

(2)∗
1 )

,

ϕ2−
3 = 1

2 log |k1−k2|2|k1−l2|2|k2−l2|2|α(1)2 |2|α
(2)
2 |2

|k1+k∗2 |4(k2+k∗2)
2(k∗1+l2)2|k∗2+l2|4(k1+l∗2 )

2(l2+l∗2 )
2χ3

, χ3 = a|α(1)1 |2 + c|α(2)1 |2 +

bα
(1)
1 α

(2)∗
1 + b∗α(1)∗1 α

(2)
1 , ϕ2−

4 = 1
2 log |α(1)2 |2|k1+l∗2 |4(l2+l∗2 )

2χ4

|k1+k∗2 |4(k2+k∗2)
2|k1−l2|2|α(2)2 |2χ5

, χ4 =
[
ac|k1 +

k∗2|2 − |b|2(k1 + k∗1)(k2 + k∗2)|α
(2)
1 |2

]
, χ5 =

[
ac|k1 + l∗2 |2|α

(1)
1 |2 + cα

(2)
1 |k1 −

l2|2(b∗α(1)∗1 + cα
(2)∗
1 ) + bα

(1)
1 (−b∗(k1 + k∗1)(l2 + l∗2 ) + c|k1 − l2|2α

(2)∗
1 )

]
,

ϕ2−
5 = 1

2 log (k1−k2)(k∗1−l∗2 )α
(1)
2 α

(2)∗
2 (k1+k∗2)

2(k∗1+l2)2(k∗2+l2)2χ6

(k∗1+k2)2(k1+l∗2 )
2(k2+l∗2 )

2(k∗1−k∗2)(k1−l2)α
(1)∗
2 α

(2)
2 χ7

, χ6 =
[
|b|2(k∗1 + k2)(k1 +

l∗2 )α
(2)
1 α

(1)∗
1 + aα

(2)
1 α

(1)∗
1 (b(k1 − k2)(k∗1 − l∗2 )α

(1)
1 − c(k1 + k∗1)(k2 + l∗2 )α

(2)
1 ) +

b(k1− k2)(k∗1− l∗2 )(bα
(1)
1 + cα

(2)
1 )α

(1)
2 α

(2)∗
2
]
, χ7 = b∗(k∗1− k∗2)(k1− l2)α

(1)∗
1 (aα

(1)
1 +

b∗α(2)1 ) + |b|2α
(2)
1

[
(k1 + k∗2)(k

∗
1 + l2)α

(1)
1 − ac(k1 + k∗1)(k

∗
2 + l2)α

(1)
1 + b∗c(k∗1 −

k∗2)(k1 − l2)
]
, ϕ2−

6 = 1
2 log |k1−l2|2(k2−l2)|α(2)2 |2

(k1+k∗1)|k1+l∗2 |4(k2+l∗2 )
2(l2+l∗2 )

2(aα
(1)∗
1 +bα

(2)∗
1 )

,

ϕ2−
7 = 1

2 log (k2−l2)|α(1)2 |2χ8
|k1+k∗2 |4(k2+k∗2)

2(k∗2+l2)2χ9
, χ9 =

[
− a|α(1)1 |2(k∗2 + l2)+ b∗α(1)∗1 α

(2)
1 (k1−

l2)− bα
(1)
1 α

(2)∗
1 (k∗1 + l2) + c(k1− l2)|α(2)1 |2

]
, χ8 =

[
a2|k1− k2|4(k∗1 + l2)(k∗2 +

l2)|α(1)1 |2
]
, µ11 =

(k1−k2)|k1−l2|(k∗2−l∗2 )
1
2 (χ1χ2)

1
2

(k1+k∗1)(k
∗
1+k2)(k∗1+l2)2(k1+l∗2 )(k2+l∗2 )(l2+l∗2 )

,

µ21 =
χ

1
2
3 |k1−l2|(k2−l2)(b∗α

(1)∗
1 +cα

(2)∗
1 )

(k1+k∗1)|k1+k∗2 |2(k2+k∗2)(k
∗
1+l2)2(k∗2+l2)

, µ12 =
(k1−k2)|k1−l2|(k2−l2)|α(2)2 |(aα

(1)∗
1 +bα

(2)∗
1 )

(k1+k∗1)(k
∗
1+k2)2(k∗1+l2)(k1+l∗2 )(k2+l∗2 )(l2+l∗2 )

,
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µ22 =
√

χ8χ9(k1−l2)(k2−l2)|α(1)2 |α
(2)
2

(k1+k∗1)
2(k∗1+k2)2(k1+k∗2)(k2+k∗2)(k

∗
1+l2)(k∗2+l2)

,

λ2−
1 =

√
χ3|k1−k2||k1−l2||k2−l2||α(1)2 ||α

(2)
2 |

(k1+k∗1)
2|k1+k∗2 |2(k2+k∗2)|k1+l∗2 |2|k2+l∗2 |2(l2+l∗2 )

,

λ2−
2 =

√
χ4χ5|α(1)2 ||k1−l2|

(k1+k∗1)
2|k1+k∗2 |2(k2+k∗2)(l2+l∗2 )(k

∗
1+l2)2 , and λ2−

3 =
|k1−k2||k1−l2||α(1)2 ||α

(2)
2 |

(k1+k∗1)
2|k1+k∗2 |2|k1+l∗2 |2|k2+l∗2 |2

.

(b) After collision: z→ +∞

Soliton 1: The asymptotic forms for degenerate soliton S1 after collision
are deduced from the solution (3.12a)-(3.12c) as,

qj '


A1+

1

A1+
2

 ei(η1I+θ+j )k1Rsech(η1R + φ+), j = 1, 2, (3.27)

where A1+
1 = Λ̂1√

Λ̂3Λ̂4
, A1+

2 = Λ̂2√
Λ̂3Λ̂4

, φ+ = 1
2 log |k1−k2|2|k1−l2|2Λ̂4

(k1+k∗1)
2|k1+k∗2 |4|k1+l∗2 |4|α

(1)
2 |2Λ̂3

,

Λ̂4 =
[
ac|k2 + l∗2 |2 − |b|2(k2 + k∗2)(l2 + l∗2 )

]
, Λ̂1 = (k1 − k2)

[
ac(k1 + l∗2 )|k2 +

l∗2 |2− |b|2(k1 + k∗2)(k2 + k∗2)(l2 + l∗2 )α
(1)
1 − b∗c(k2 + k∗2)(k1− l2)(k∗2− l∗2 )(k2 +

l∗2 α
(2)
1 )
]
, Λ̂3 = a|k1− k2|2|α(1)1 |2

[
ac|k1 + l∗2 |2|k2 + l∗2 |2−|b|2(l2 + l∗2 )

(
k1k2(k∗1 +

k∗2 + l2 − l∗2 ) + l2l∗2 (k1 + k∗1 + k2 + k∗2) + k∗1k∗2(k1 + k2 − l2 + l∗2 )
)]

+ b∗(k∗1 −

k∗2)(k1− l2)α
(1)∗
1 α

(2)
1

[
ac(k2 + l∗2 )

(
k1l2(k∗1 + k∗2 + k2− l2)+ k2l∗2 (k1 + k∗1 + l2 +

k∗2) + k∗1k∗2(k1 − k2 + l2 + l∗2 )
)
− |b|2(k∗1 + k2)(k∗2 + k2)(k1 + l∗2 )(l

∗
2 + l2)

]
+

b(k1 − k2)(k∗1 − l∗2 )α
(1)
1 α

(2)∗
1

[
ac(k∗2 + l2)

(
k∗1l∗2 (k1 + k2 − l2 + k∗2) + k∗2l2(k1 +

k∗1 + k2 + l∗2 ) + k1k2(k∗1 − k∗2 + l2 + l∗2 )
)
− |b|2(k1 + k∗2)(k2 + k∗2)(k

∗
1 + l2)(l2 +

l∗2 )
]
+ c|k1− l2|2|α(2)1 |2

[
ac|k1 + k∗2|2|k2 + l∗2 |2− |b|2(k2 + k∗2)

(
k∗1l∗2 (k1− k2 +

k∗2 + l2)+ k1l2(k∗1 + k2− k∗2 + l∗2 )+ k2k∗2(k1 + k∗1 + k2 + k∗2)
)]

, Λ̂2 =

[
ab(k1−

k2)(k∗2 + l2)(k∗2− l∗2 )(l2 + l∗2 )α
(1)
1 +(k1− l2)α

(2)
1

[
ac(k1 + k∗2)|k2 + l∗2 |2−|b|2(k2 +
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k∗2)(k1 + l∗2 )(l2 + l∗2 )
]]

, eiθ+1 =
(k1−k2)

1
2 (k∗1+k2)(k1−l2)

1
2 (k∗1+l2)

(k∗1−k∗2)
1
2 (k1+k∗2)(k

∗
1−l∗2 )

1
2 (k1+l∗2 )

,

eiθ+2 =
(k1−k2)

1
2 (k∗1+k2)(k1−l2)

1
2 (k∗1+l2)

(k∗1−k∗2)
1
2 (k1+k∗2)(k

∗
1−l∗2 )

1
2 (k1+l∗2 )

. Here 1+ in A1+
j , j = 1, 2, refers to de-

generate soliton S1 after collision.

Soliton 2: Similarly the expression for the nondegenerate soliton, S2,
after collision deduced from the two soliton solution (3.12a)-(3.12c) is

q1 =
1
D

(
d11eiη2I cosh(ξ2R + ϕ1) + d21eiξ2I [cosh η2R + sinh η2R]

)
, (3.28)

q2 =
1
D

(
d12eiξ2I cosh(η2R + ϕ2) + d22eiη2I [cosh ξ2R + sinh ξ2R]

)
, (3.29)

D = Λ1 cosh(η2R + ξ2R + φ3) + Λ2 cosh(η2R − ξ2R + φ4)

+Λ3[cosh φ5 cos(η2I − ξ2I) + i sinh φ5 sin(η2I − ξ2I)].

Here, ϕ1 = 1
2 log c(k2−l2)|α(2)2 |2

(l2+l∗2 )
2(k2+l∗2 )

, ϕ2 = 1
2 log a(l2−k2)|α(1)2 |2

(k2+k∗2)
2(k∗2+l2)

, ϕ3 = ϕ1 + ϕ2 +

1
2 log

(k∗2−l∗2 )
[

ac|k2+l∗2 |2−|b|2(k2+k∗2)(l2+l∗2 )
]

ac(l2−k2)|k2+l∗2 |2
, ϕ4 = 1

2 log a|α(1)2 |2(l2+l∗2 )
2

c|α(2)2 |2(k2+k∗2)
2
,

ϕ5 = 1
2 log bα

(1)
2 α

(2)∗
2 (k∗2+l2)2

b∗α(1)∗2 α
(2)
2 (k2+l∗2 )

2
, d11 = [

c|α(2)2 |2(k2−l2)
(k2+l∗2 )(l2+l∗2 )

]1/2, d21 = 1
2 [

b∗α(2)2 |α
(1)
2 |2(k2−l2)

(k2+k∗2)(k
∗
2+l2)2 ],

d12 = [
aα

(2)
2 |α

(1)
2 |2(l2−k2)

(k∗2+l2)(k2+k∗2)
]1/2, d22 = 1

2 [
bα

(1)
2 |α

(2)
2 |2(l2−k2)

(k2+l∗2 )
2(l2+l∗2 )

], Λ2 =
[ ac|α(1)2 |2|α

(2)
2 |2

(k2+k∗2)(l2+l∗2 )

]1/2,

Λ1 =
Λ2|k2−l2|[ac|k2+l∗2 |2−|b|2(k2+k∗2)(l2+l∗2 )]

1/2

(ac)1/2|k2+l∗2 |2
, and Λ3 =

|b||α(1)2 ||α
(2)
2 |

|k2+l∗2 |2
.

The above results confirm the energy redistribution that occurs among
the two modes q1 and q2. Such a novel collision property is displayed
in Figs 3.9 and 3.10. From figure 3.9, that is in Type-I collision, one can
observe that the intensity of the degenerate soliton S1 is suppressed after
collision in both the modes. In contrast to this, the intensity of the breath-
ing nondegenerate soliton S2 gets enhanced in both the modes q1 and q2.
In addition to the latter case, we also noticed that the nondegenerate soli-
ton loses its energy when it interacts with a degenerate soliton in Type-II
collision, which is illustrated in Fig. 3.10. In the nondegenerate case, the
phases, ϕ2−

j , j = 1, 2, ..., 7 and the constants µjk, j, k = 1, 2 are in general not



3.4. Collision between nondegenerate and degenerate solitons 87

Figure 3.11: Manakov type shape changing collision among the two de-
generate solitons.

Figure 3.12: Mixed type shape changing collision among the two degen-
erate solitons.

preserved during the collision. Consequently, the shape of the nondegen-
erate soliton is changed into another form of breather with low oscillations.
One can confirm it from Fig. 3.10. To characterize these collision scenarios,
we obtain the expression for the transition amplitudes,

T1
1 =

Λ̂1χ3

α
(1)
1

√
Λ̂3Λ̂4

, T1
2 =

Λ̂2χ3

α
(2)
1

√
Λ̂3Λ̂4

. (3.30)

In general, the above expressions are not equal to unity. If the quan-
tity Tl

j is not unimodular then the degenerate and nondegenerate solitons
always exhibit shape changing collision. These new kind of collision prop-
erties have not been observed in the Manakov case as well as in the degen-
erate vector bright solitons of the GCNLS system [119].

Next, for completeness, we illustrate the two types of pure degenerate
soliton collisions for two different choices of SPM and XPM coefficients, (i)
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a, c > 0, and (ii) a > 0, c < 0, for arbitrary values of FWM b values. In
Fig. 3.11 we demonstrate the first type of degenerate two-soliton collision
for the parametric choices a = c = b = 1, k1 = 1− 0.5i, k2 = 0.5 + 0.5i,
α
(1)
1 = 0.5− 0.5i, α

(2)
1 = 0.8+ 0.25i, α

(1)
2 = 0.5+ 0.5i, α

(2)
1 = 0.9. It is evident

from this figure that the degenerate soliton S1 undergoes an enhancement
in its intensity while the soliton S2 gets suppressed in the q1 mode and the
reverse process takes place in the q2 mode. This type of shape changing
collision behaviour is not possible in the single component NLS system
but it is similar to the one observed in the Manakov case. Another type
of shape-changing collision among the two degenerate solitons is depicted
in Fig. 3.12 for a = b = 1 and c = −1 with other parameters same as the
one fixed in Fig. 3.11, where a given degenerate soliton shows same type
of shape change in both the modes.

3.5 Conclusion

In this chapter, we have systematically derived the nondegenerate one-
and two-soliton solutions for the general coupled nonlinear Schrödinger
system using the standard Hirota bilinearization method. The role of four
wave mixing nonlinear effect on vector nondegenerate Manakov type soli-
tons has been understood by analysing the obtained nondegenerate soli-
tons. The nondegenerate one- and two-soliton solutions of GCNLS system
have been given in a compact way using the Gram determinant forms.
Due to the effect of four wave mixing nonlinearity on vector nondegener-
ate solitons of Manakov type, they exhibit breathing behaviour in both the
modes. We have given the N-soliton solution for the GCNLS system by
generalizing the one and two nondegenerate solitons. Also the nondegen-
erate solitons of the GCNLS system have shown very interesting collision
properties. In general they undergoes shape changing collision when the
strength of four wave mixing nonlinear parameter is high enough. Further
they undergo shape altering or mere shape preserving interaction when
the strength of four wave mixing nonlinearity is low. We have deduced the
partially nondegenerate two-soliton solution from the pure nondegenerate
two-solitons by fixing the wave numbers appropriately. In such a case,
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we have analysed the degenerate soliton collision induced shape chang-
ing collision of nondegenerate soliton. Then the well studied degenerate
solitons have been regained by making the wave numbers identical in the
one and two nondegenerate solitons of the GCNLS system and then their
interaction properties are identified.
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Chapter 4
Nondegenerate solitons in two
component long-wave short-wave
resonance interaction system

4.1 Introduction

As we have pointed out in the earlier chapters, the study of nonlinear wave
interactions is very important and interesting in various field of physics
such as plasma physics, hydrodynamics, nonlinear optics and so on. In
these areas, nonlinear wave interactions have been observed under various
physical situations. One such important wave interaction has been iden-
tified in hydrodynamics under the so called resonance conditions. Reso-
nance is a natural phenomenon which occurs in both linear and nonlinear
dynamical systems under special conditions on the frequencies [1]. This
parametric process has been widely observed ranging from simple har-
monic motion in mechanical systems to more complicated ultra-short pulse
dynamics in optical systems. In this connection, the interaction among
the nonlinear waves induces one such fascinating resonance phenomenon
called the long-wave short-wave resonance interaction (LSRI) modelled by
a set of coupled nonlinear Schrödinger type equations (4.1). Soliton forma-
tion essentially takes place in the evolution equations of SWs, that is the
first two of the equations in Eq. (4.1) below, due to the interplay between
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the nonlinearities and their corresponding dispersions, namely second or-
der spatial derivative terms. The nonlinearities arise in these equations
while the long-wave interacts with the short-waves. At the same time,
the self interaction of the SWs defines the soliton formation in the long-
wave evolution equation as specified by the last of the equations in Eq.
(4.1). Physically the system (4.1) appears whenever the phase velocity of
the long-wave (vp,LW) almost matches with the group velocity of the short-
waves (vg,SW = dω

dk ). This resonance condition is called Zakharov-Benny
condition. Later this LSRI process has been reported in the nonlinear op-
tics context also, especially in an optical fibers. In this chapter, we intend
to derive a more general form of bright soliton solutions for the following
LSRI model, namely two component long-wave short-wave resonance in-
teraction system/two component Yajima-Oikawa system.

The plan of this chapter is as follows: In Section 4.2, we present the non-
degenerate one- and two-soliton solutions of the system (4.1) apart from
pointing out the existence of partially nondegenerate soliton solution. In
this section, we also discuss the various properties associated with the non-
degenerate fundamental solitons of Eqn. (4.1). Section 4.3 deals with the
investigation of the three types of elastic collision scenarios with appro-
priate asymptotic analysis and suitable graphical demonstrations. The de-
generate soliton collision induced novel shape changing properties of the
nondegenerate soliton is analysed in Section 4.4. In Section 4.5, we point
out that the degenerate one- and two-soliton solutions can be captured as
a limiting case of the nondegenerate one- and two-soliton solutions under
appropriate wave number restrictions. Then we bring out the energy shar-
ing collision of degenerate solitons. Finally in section 4.6, we have given
the analytical form of nondegenerate three-soliton solution using the Gram
determinant form.

4.2 Nondegenerate soliton solutions

We have pointed out in chapter 1, that the two component long-wave short-
wave resonance interaction system can be written as,
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iS(1)
t + S(1)

xx + LS(1) = 0, iS(2)
t + S(2)

xx + LS(2) = 0, Lt =
2

∑
l=1

(|S(l)|2)x. (4.1)

In the above, L is the long-wave and S(l)’s, l = 1, 2, are the short-waves.
The suffixes x and t denote partial derivatives with respect to the spatial
and temporal coordinates, respectively.

We construct the nondegenerate multi-soliton solution by bilineariz-
ing Eq. (4.1) through the dependent variable transformations, S(l)(x, t) =
g(l)(x,t)

f (x,t) , l = 1, 2, L = 2 ∂2

∂x2 ln f (x, t). This action yields the following bilinear
forms of Eq. (4.1),

D1g(l) · f = 0, l = 1, 2, D2 f · f =
2

∑
n=1
|g(n)|2, (4.2)

where D1 ≡ iDt + D2
x and D2 ≡ DxDt. Here Dt and Dx are the Hirota

bilinear operators defined by [155]

Dm
x Dn

t (a · b) =
(

∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n

a(x, t)b(x′, t′)∣∣x=x′, t=t′

In principle, the soliton solutions (with vanishing boundary condition
S(l) → 0, l = 1, 2 and L → 0 as x → ±∞) of Eq. (4.1) can be de-
rived by solving a system of linear partial differential equations (PDEs),
which appear at various orders of ε while substituting the series expan-
sions g(l) = εg(l)1 + ε3g(l)3 + ..., l = 1, 2, f = 1 + ε2 f2 + ε4 f4 + .... in the
bilinear forms (4.2). The explicit forms of the functions g(l)’s and f lead to
various soliton solutions to the underlying LSRI system (4.1).

4.2.1 Nondegenerate one-soliton solution

To derive the nondegenerate fundamental soliton solution we start with
the more general form of seed solutions,

g(1)1 = α
(1)
1 eη1 , g(2)1 = α

(2)
1 eξ1 , η1 = k1x + ik2

1t, ξ1 = l1x + il2
1t, (4.3)
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where α
(l)
1 ’s, k1 and l1 are arbitrary complex constants, for the lowest order

linear PDEs,
ig(1)1,t + g(1)1,xx = 0, ig(2)1,t + g(2)1,xx = 0. (4.4)

From the above, one can notice that the functions g(1) and g(2) consid-
ered in Eq. (4.3) are two distinct solutions. This is because of the inde-
pendent nature of the two linear PDEs specified above in Eq. (4.4) and so
their solutions should be expressed in general in terms of two independent
functions as given in Eq. (4.3) above with arbitrary wave numbers k1, l1,
where in general k1 6= l1. The general forms of the seed solutions with dis-
tinct propagation constants will bring out a physically meaningful class of
fundamental soliton solutions as we describe below. Such a possibility has
not been considered so far in the literature for the (1+ 1)-dimensional inte-
grable two component LSRI system as far as our knowledge goes except in
our earlier papers [77–79, 84, 160]. What has been considered so far is only
the restricted class of seed solutions, that is the wave number restricted
seed solutions, namely g(1)1 = α

(1)
1 eη1 , g(2)1 = α

(2)
1 eη1 , η1 = k1x + ik2

1t (one
can get this set of seed solutions straightforwardly by setting the condition
k1 = l1 in (4.3)). Even such restricted seed solutions have been shown to
yield interesting energy sharing collision properties of solitons [161]. So
what we emphasize here is that the vector bright solitons reported so far
in the literature are achieved by considering such a limited class of seed
solutions only. With the general forms of seed solutions (4.3), we solve the
following system of linear inhomogeneous partial differential equations:

O(ε0) : 0 = 0, O(ε2) : D2(1 · f2 + f2 · 1) = g(1)1 g(1)∗1 + g(2)1 g(2)∗1 , (4.5)

O(ε3) : D1g(l)3 · 1 = −D1g(l)1 · f2, (4.6)

O(ε4) : D2(1 · f4 + f4 · 1) = −D2 f2 · f2 + g(1)1 g(1)∗3 + g(1)3 g(1)∗1 + g(2)1 g(2)∗3 + g(2)3 g(2)∗1 , (4.7)

O(ε5) : D1g(l)5 · 1 = −D1(g(l)1 · f4 + g(l)3 · f2), l = 1, 2, (4.8)

O(ε6) : D2(1 · f6 + f6 · 1) = −D2( f4 · f2 + f2 · f4) + g(1)1 g(1)∗5 + g(1)3 g(1)∗3 + g(1)5 g(1)∗1

+g(2)1 g(2)∗5 + g(2)3 g(2)∗3 + g(2)5 g(2)∗1 , (4.9)

and etc. By doing so, we find the explicit forms of the unknown
functions f2, g(l)3 , l = 1, 2, and f4 as f2 = eη1+η∗1+R1 + eξ1+ξ∗1+R2 , g(1)3 =
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eη1+ξ1+ξ∗1+∆1 , g(2)3 = eξ1+η1+η∗1+∆2 , f4 = eη1+η∗1+ξ1+ξ∗1+R3 , where

eR1 =
|α(1)1 |2

2i(k1+k∗1)
2(k1−k∗1)

, eR2 =
|α(2)1 |2

2i(l1+l∗1 )
2(l1−l∗1 )

,e∆1 =
iα(1)1 |α

(2)
1 |2(l1−k1)

2(k1+l∗1 )(l1−l∗1 )(l1+l∗1 )
2 ,

e∆2 =
iα(2)1 |α

(1)
1 |2(k1−l1)

2(k∗1+l1)(k1−k∗1)(k1+k∗1)
2 , eR3 = − |α(1)1 |2|α

(2)
1 |2|k1−l1|2

4|k1+l∗1 |2(k1−k∗1)(l1−l∗1 )(k1+k∗1)
2(l1+l∗1 )

2 . We
note that the right hand sides of all the remaining linear PDEs identically
vanish upon substitution of the obtained functions g(l)1 , g(l)3 , l = 1, 2, f2

and f4. Consequently, one can take g(l)5 = g(l)7 = ... = 0, l = 1, 2, and
f6 = f8 = ... = 0. Thus in the series all g(l)i = 0 for i ≥ 5 and all
f j = 0, j ≥ 6. Therefore, ultimately the series converges at the O(ε3)

in the function g(l)(x, t) while the series terminates at the O(ε4) in f (x, t):
g(l) = εg(l)1 + ε3g(l)3 , l = 1, 2, f = 1+ ε2 f2 + ε4 f4. We also note that the small
parameter ε can be fixed as 1 (as it can be subsumed with the parameters
α
(1)
1 and α

(2)
1 ), without loss of generality. Thus the above procedure makes

the infinite expansion to terminate with a finite number of terms only and
hence the solution can be summed up into an exact one. Finally, the resul-
tant explicit forms of the unknown functions constitute the nondegenerate
fundamental soliton solution for the system (4.1), which reads as,

S(1)(x, t) =
g(1)1 + g(1)3
1 + f2 + f4

=
α
(1)
1 eη1 + eη1+ξ1+ξ∗1+∆1

1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3
, (4.10)

S(2)(x, t) =
g(2)1 + g(2)3
1 + f2 + f4

=
α
(2)
1 eξ1 + eξ1+η1+η∗1+∆2

1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3
, (4.11)

L(x, t) = 2
∂2

∂x2 ln(1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3). (4.12)

Using Gram determinants [162, 163], we can rewrite the above soliton

solution in a more compact form as S(1) = g(1)
f , S(2) = g(2)

f , L = 2 ∂2

∂x2 ln f ,
where



96 4.2. Nondegenerate soliton solutions

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0 eη1

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1 eξ1

−1 0 |α(1)1 |2
2i(k2

1−k∗21 )
0 0

0 −1 0 |α(2)1 |2
2i(l2

1−l∗21 )
0

0 0 −α
(1)
1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.13)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0 eη1

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1 eξ1

−1 0 |α(1)1 |2
2i(k2

1−k∗21 )
0 0

0 −1 0 |α(2)1 |2
2i(l2

1−l∗21 )
0

0 0 0 −α
(2)
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.14)

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1

−1 0 |α(1)1 |2
2i(k2

1−k∗21 )
0

0 −1 0 |α(2)1 |2
2i(l2

1−l∗21 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.15)

We find that the above forms of Gram determinants satisfy the two
component LSRI system (4.1) as well as the bilinear equations (4.2). In
order to analyse the various special properties of the nondegenerate one-
soliton solution of Eq. (4.1), we obtain the following expression for the
one-soliton solution by rewriting Eqs. (4.10)-(4.12) in hyperbolic forms,

S(1) =
4k1R
√

k1I A1ei(η1I+
π
2 )[cosh(ξ1R + ϕ1R) cos ϕ1I + i sinh(ξ1R + ϕ1R) sin ϕ1I ][

a11 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) +
1

a∗11
cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)

] , (4.16)

S(2) =
4l1R
√

l1I A2ei(ξ1I+
π
2 )[cosh(η1R + ϕ2R) cos ϕ2I + i sinh(η1R + ϕ2R) sin ϕ2I ][

a12 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) +
1

a∗12
cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)

] , (4.17)

L =
4k2

1R cosh(2ξ1R + 2ϕ1 + c4) + 4l2
1R cosh(2η1R + 2ϕ2 + c3) +

1
2 eR′3−(

R1+R2+R3
2 )

[Λ cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) + Λ−1 cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)]2
, (4.18)

eR′3 = 4(k1R + l1R)
2eR3 + 4(k1R − l1R)

2eR1+R2 ,
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where a11 =
(k∗1−l∗1 )

1
2

(k∗1+l1)
1
2

, a12 =
(k∗1−l∗1 )

1
2

(k1+l∗1 )
1
2

, Λ = 1
2 log |k1−l1|

|k1+l∗1 |
, c1 = 1

2 log (k∗1−l∗1 )
(l1−k1)

,

c2 = 1
2 log (k1−l1)(k∗1+l1)

(l1−k1)(k1+l∗1 )
, c3 = 1

2 log (l∗1−k∗1)(k
∗
1+l1)

(k1+l∗1 )(l1−k1)
, c4 = 1

2 log (k∗1−l∗1 )(k1+l∗1 )
(k∗1+l1)(k1−l1)

,

η1R = k1R(x− 2k1It), η1I = k1I x + (k2
1R − k2

1I)t, ξ1R = l1R(x− 2l1It), ξ1I =

l1I x + (l2
1R − l2

1I)t, A1 = [α
(1)
1 /α

(1)∗
1 ]1/2, A2 = i[α(2)1 /α

(2)∗
1 ]1/2, and the other

constants can be calculated using the constants that are defined below Eqs.
(4.10)-(4.12). Here, ϕ1R, ϕ2R, ϕ1I and ϕ2I are real and imaginary parts of
ϕ1 = ∆1−ρ1

2 and ϕ2 = ∆2−ρ2
2 , eρl = α

(l)
1 , l = 1, 2, respectively and k1R, l1R, k1I

and l1I denote the real and imaginary parts of k1 and l1, respectively. The
four arbitrary complex parameters, α

(l)
1 ’s, l = 1, 2, k1 and l1, determine the

structure of the nondegenerate fundamental soliton solution (4.16)-(4.18)
of the two component LSRI system (4.1).

In general, the amplitudes of the soliton in the short-wave components
are 4k1R

√
k1I A1 and 4l1R

√
l1I A2, respectively, and their velocities in their

respective SW components are 2k1I and 2l1I . On the other hand, the
amplitude and the velocity of the soliton in the LW component mainly
depend on the real and imaginary parts of both the wave numbers k1

and l1, respectively. From the above, one can easily notice that the am-
plitudes of the SW components explicitly depend on the velocity of the
soliton. This interesting amplitude dependent velocity property is analo-
gous to the property of the Korteweg-de Vries (KdV) soliton of the form
u(x, t) = c

2sech2
√

c
2 (x − ct). Here c is the velocity of the KdV soliton [1,

164]. Consequently, like the degenerate bright solitons, the taller nonde-
generate solitons also travel faster than the smaller ones, as pointed out in
Section 5 and in Ref. [161]. We note that the nondegenerate fundamental
soliton in the Manakov system does not possess this velocity-dependent
amplitude property [77, 78]. The solution (4.16)-(4.18) shows both regular
and singular behaviour. The singularity property of the solution is deter-
mined by the quantities eR1 , eR2 and eR3 . The regular soliton solution arises
for the case when both k1I and l1I < 0. In this case, the quantities, eR1 , eR2

and eR3 > 0 whereas the solution (4.16)-(4.18) displays singularity for k1I

and/or l1I > 0.
The nondegenerate one-soliton solution (4.16)-(4.18) is classified as fol-

lows depending on the choice of the velocity conditions:



98 4.2. Nondegenerate soliton solutions

|S(1) 2

|S(2) 2

|L|

(a)

-30 0 30

0

0.15

x

|S
(1

,2
)

2
,
|L
|

|S(1) 2

|S(2) 2

|L|

(b)

-25 0 25

0

0.25

x

|S
(1

,2
)

2
,
|L
|

|S(1) 2

|S(2) 2

|L|

(c)

-20 0 20

0

0.28

x

|S
(1

,2
)

2
,
|L
|

|S(1) 2

|S(2) 2

|L|

(d)

-15 0 15

0

0.4

x

|S
(1

,2
)

2
,
|L
|

|S(1) 2

|S(2) 2

|L|

(e)

-15 0 15

0

0.65

x

|S
(1

,2
)

2
,
|L
|

Figure 4.1: Five types of symmetric profiles of the nondegenerate funda-
mental soliton solution (4.16)-(4.18) with k1I = l1I or (4.19)-(4.21): While
(a) represents double-hump profiles in all the components, (b) denotes
double-hump profiles in S(1) and L components and a flattop profile in
S(2) componenet, (c) indicates double-hump profiles in S(1) and L com-
ponents and a single-hump profile in S(2) componenet, (d) represents
double-hump in S(1) component, single-hump in S(2) component and a
flattop profile in L componnet and (e) denotes double-hump profile in
S(1) and single-hump profiles in both S(2) and L components. The pa-
rameter values of each one of the cases are as follows: (a) k1 = 0.25− 0.5i,
l1 = 0.315− 0.5i, α

(1)
1 = 0.5+ 0.5i and α

(2)
1 = 0.45+ 0.5i. (b) k1 = 0.3− 0.5i,

l1 = 0.425 − 0.5i, α
(1)
1 = 0.43 + 0.55i and α

(2)
1 = 0.45 + 0.45i. (c)

k1 = 0.315− 0.5i, l1 = 0.5− 0.5i, α
(1)
1 = 0.5 + 0.5i and α

(2)
1 = 0.45 + 0.45i.

(d) k1 = 0.315 − 0.5i, l1 = 0.545 − 0.5i, α
(1)
1 = 0.5 + 0.5i and α

(2)
1 =

0.45 + 0.5i. (e) k1 = 0.315− 0.5i, l1 = 0.65− 0.5i, α
(1)
1 = 0.5 + 0.5i and

α
(2)
1 = 0.45 + 0.5i.
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(i) For k1I = l1I , we designate the one-soliton solution as (1, 1, 1)-soliton
solution, where all the components (S(1), S(2), L) consist of only one soliton
with double-hump or flattop or single-hump structured profile.
(ii) On the other hand, we refer the solution (4.16)-(4.18) with k1I 6= l1I as
(1, 1, 2)-soliton solution, where both the short-wave components S(1) and
S(2) possess one humped localized structures only while the long-wave
component contains two single-hump structured profiles like the 2-soliton
solution of the NLS equation. We will discuss each one of these cases
separately in the following.

In the equal velocity case, the soliton in the SW components propa-
gates with identical velocities but with different amplitudes. For this case,
the imaginary parts of ϕj’s are equal to zero. That is, ϕjI = 0, j = 1, 2.
This property reduces the solution (4.16)-(4.18) into the following form of
(1, 1, 1)-soliton solution,

S(1) =
4k1R
√

k1I A1ei(η1I+
π
2 ) cosh(ξ1R + ϕ1R)[

b1 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) +
1
b1

cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)
] , (4.19)

S(2) =
4l1R
√

k1I A2ei(ξ1I+
π
2 ) cosh(η1R + ϕ2R)[

b1 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) +
1
b1

cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)
] , (4.20)

L =
4k2

1R cosh(2ξ1R + 2ϕ1 + c4) + 4l2
1R cosh(2η1R + 2ϕ2 + c3) + 4(k2

1R − l2
1R)

[b1 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) + b−1
1 cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)]2

, (4.21)

where b1 = (k1R−l1R)
1
2

(k1R+l1R)
1
2

, η1R = k1R(x − 2k1It), η1I = k1I x + (k2
1R − k2

1I)t,

ξ1R = l1R(x− 2k1It), ξ1I = k1I x + (l2
1R − k2

1I)t.
From the above solution, we find a relation between the short-wave

components and the long-wave component and it turns out to be

|S(1)|2 + |S(2)|2 = −2k1I L. (4.22)

The latter relation confirms that the above type of linear superposition
of intensities of the two short-wave components accounts for the formation
of interesting soliton structure in the long-wave component. The special
solutions (4.19)-(4.21) with the condition k1R < l1R admits five types of
symmetric profiles which we have displayed in figure 4.1. The symmetric
profiles are classified as follows: (i) Double-humps in all the components,
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(ii) double-humps in S(1) and long-wave components and a flattop in the
S(2) component, (iii) double-humps in S(1) and long-wave components and
a single-hump in the S(2) component, (iv) double-hump in S(1) component,
single-hump in S(2) component and a flattop profile in the long-wave com-
ponent and (v) double-hump in S(1) component and single-humps in both
the S(2) and long-wave components. In order to demonstrate all the above
five cases we fix k1I = l1I = −0.5 < 0 in figure 4.1. From figure 4.1, one
can observe that the transition which occurs from double-hump to single-
hump or from single-hump to double-hump is through a special flattop
profile. The corresponding asymmetric profiles are illustrated in figure 4.2
for the parameter values as specified there. This can be achieved by tun-
ing either the real parts of the wave numbers k1 and l1 or by tuning the
complex parameters α

(l)
1 ’s. One can also bring out a double-hump and a

flattop profile in the S(1) (S(2) and L as well) component by considering
another possibility, namely k1I = l1I < 0 and k1R > l1R.

Further, one can confirm the symmetric and asymmetric nature of the
(1, 1, 1) solution (4.19)-(4.21), by finding the extremum points as we have
analyzed the profile nature of the nondegenerate soliton solution in the
Manakov system [78]. In the following, we explain this analysis for the
symmetric double-hump soliton profile, displayed in figure 4.1(a), of the
LSRI system (4.1): First, we find the local maximum and minimum points
by applying the first derivative test ({|S(j)|2}x = 0, {|L|}x = 0) and the
second derivative test ({|S(j)|2}xx, {|L|}xx < 0 or > 0) to the expressions of
|S(j)|2, j = 1, 2, and |L|, at t = 0. As a result, for the first SW component,
three extremal points are identified, namely x1 = −1.4, x2 = 4.3 and x3 =

9.99. Then we found another set of three extremal points, x4 = 0.6, x5 = 4.3
and x6 = 8.09, for the second SW component. We also identified another
set of three extremal points, x7 = −0.6, x8 = 4.29 and x9 = 9.2, for the
LW component by setting {|L|}x = 0. While the points x2, x5 and x8

correspond to minima, the points, (x1, x3), (x4, x6), and (x7, x9) correspond
to maximum points. In all the components, the minimum points x2, x5 and
x8 are located at equal distances from the two maximum points (x1, x3), (x4,
x6) and (x7, x9), respectively. This can be easily confirmed by finding their
differences. For instance, in the S(1)-component, x1− x2 = −5.7 = x2− x3.
This is true for both the SW component S(2) and the LW component L
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also. That is for S(2): x4 − x5 = −3.7 ≈ x5 − x6 = −3.79 and for L:
x7 − x8 = −4.89 ≈ x8 − x9 = −4.91. Then the intensity, |S(1)|2, of each
hump, of the double-hump soliton, corresponding to maxima x1 and x3

are equal to 0.078. Similarly, in the second SW component, the magnitude
of the intensity corresponding to the maximum points x4 and x6 are equal
to 0.086. We also obtain the magnitudes corresponding to the maxima
x7 and x8 are equal to 0.154. The above analysis confirms that the double-
hump soliton profiles displayed in figure 4.1(a) are symmetric. In addition,
one can also verify the symmetric nature of the single-hump soliton about
the local maximum point and checking the half widths as well. For the
flat-top soliton case, we have confirmed that the first derivative {|S(l)|2}x,
l = 1, 2, and {|L|}x, very slowly tends to zero, for a certain number of
x values, near the corresponding maximum. This also confirms that the
presence of almost flatness and symmetric nature of the one-soliton. By
following the above procedure, one can also verify the asymmetric nature
of the solution (4.19)-(4.21).

Next, we consider the (1, 1, 2)-soliton solution, that is the solution (4.16)-
(4.18) with k1I 6= l1I . In this situation, the soliton in the two short-wave
components (as well as in the long-wave component) propagate with dis-
tinct velocities as we have displayed in figure 4.3. As it is evident from
this figure that distinct single-humped one-soliton structures always oc-
cur in each of the short-wave components and they propagate from +x
to −x direction (but with different localizations). However, surprisingly
the two single-hump structured solitons of the SW component emerge in
the LW component and they interact like the two soliton solution of the
scalar NLS case. Each of the single-humped structures of the soliton in
the SW components S(1) and S(2) interact through the LW component as
dictated by the nonlinearity of the LW component. This special nonlinear
phenomenon occurs because of the nondegeneracy property of the fun-
damental soliton solution (4.16)-(4.18) of the LSRI system (4.1). To the
best of our knowledge, this special kind of phenomenon has not been
observed earlier in the present (1 + 1)-dimensional two-component LSRI
system and its multicomponent version. A similar kind of soliton nature
is also observed in the Wronskian solutions, derived by Ohta et al., for the
two-component (2 + 1)-dimensional LSRI system [142]. Although we have
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Figure 4.2: Panels (a), (b), (c), (d) and (e) denote asymmetric profiles
corresponding to the symmetric profiles of Fig. 4.1(a)-4.1(e) with k1I =
l1I . The parameter values of each of the cases are as follows: (a) k1 =

0.25 − 0.5i, l1 = 0.315 − 0.5i, α
(1)
1 = 0.5 + i and α

(2)
1 = 0.45 + 0.5i. (b)

k1 = 0.3− 0.5i, l1 = 0.425− 0.5i, α
(1)
1 = 0.3 + 0.55i and α

(2)
1 = 0.45 + 0.45i.

(c) k1 = 0.315− 0.5i, l1 = 0.5− 0.5i, α
(1)
1 = 0.15 + 0.5i and α

(2)
1 = 0.45 +

0.45i. (d) k1 = 0.315 − 0.5i, l1 = 0.545 − 0.5i, α
(1)
1 = 0.38 + 0.5i and

α
(2)
1 = 0.45 + 0.5i. (e) k1 = 0.315− 0.5i, l1 = 0.65− 0.5i, α

(1)
1 = 0.25 + 0.5i

and α
(2)
1 = 0.45 + 0.5i.

graphically demonstrated the (1, 1, 2) and (2, 2, 4) soliton solutions in [142],
the complete analysis of such soliton solutions and their associated many
novel results are still missing in the literature. We have systematically an-
alyzed the (1, 1, 2) and (2, 2, 4) soliton solutions of the (2 + 1)-dimensional
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multicomponent LSRI system by expressing their exact analytical forms
in terms of Gram determinants and the results will be published else-
where. Moreover, it is shown in Ref. [144] that the Wronskian solutions
(N, M, N + M) reported in [142] have also been deduced from the degen-
erate soliton solutions (m, m, m). However, the dynamical properties of the
Wronskian solutions, as graphically illustrated in [142], are distinct from
the degenerate soliton solutions as explained in [144]. We point out that the
double-hump soliton profile emerges in all the components when the rel-
ative velocity 2(l1I − k1I) tends to zero. In other words, the double-hump
formation will occur if l1I ≈ k1I .

To experimentally generate the nondegenerate vector solitons one may
consider three channels of nonlinear dispersive medium or triple mode
nonlinear optical fiber [142], where the two light pulses are in the anoma-
lous dispersion regime and the remaining pulse is in the normal disper-
sion regime. By introducing the intermodal interactions in such a way one
can make the short-wave modes (anamalous dispersion regime) to interact
with the long-wave mode (normal dispersion regime). In this situation, it
is essential to consider two laser sources of different characters so that the
frequency of the first laser beam is different from the second one. By send-
ing the extraordinary mutual incoherent optical beam, coming out from
both the sources, to the short-wave channels along with the appropriate
coupling on the long-wave channel, it is possible to create the nondegen-
erate solitons. In this situation, the group velocities vg = dω

dk of the optical
beam in the short-wave channels should be equal to the phase velocity vp

of the long-wave channel. Under this resonance condition, the nondegen-
erate solitons in the short-wave optical modes can be created and made
to interact with the soliton in the long-wave mode. In the fluid dynamics
context also one can observe the nondegenerate solitons by considering a
three-layer system [165] of homogeneous fluids having different densities.
In this circumstance, it is possible to achieve the problem of resonance in-
teraction of a long interfacial wave and a short surface waves. By a proper
choice of the various densities and layer thicknesses, one may tune the
three-layer system to a resonant condition whereby the group velocity of
the shorter surface waves and the phase velocity of the longer interfacial
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wave are nearly equal. Thus, all of the physics relevant to the nondegener-
ate solitons can be identified from this simple three-layer fluid system. On
the other hand, it is also possible to create the nondegenerate solitons in
spinor BECs by tuning the hyperfine states of the 87Rb atoms [166] when-
ever the group velocities of the short-waves are equal to the phase velocity
of the long-wave.

Figure 4.3: Nondegenerate one-soliton (1, 1, 2) with unequal velocities.
The parameter values are k1 = 0.25− 0.5i, l1 = 0.2− 2i, α

(1)
1 = 0.45 + 0.5i

and α
(2)
1 = 0.5 + 0.5i.

4.2.2 Completely nondegenerate two-soliton solution

To construct the completely nondegenerate two-soliton solution, we con-
sider the seed solutions of the following forms,

g(1)1 = α
(1)
1 eη1 + α

(1)
2 eη2 , η1 = k1x + ik2

1t, η2 = k2x + ik2
2t,

g(2)1 = α
(2)
1 eξ1 + α

(2)
2 eξ2 , ξ1 = l1x + il2

1t, ξ2 = l2x + il2
2t, (4.23)

for Eqs. (4.4). Here we treat the four arbitrary constants k1, k2, l1 and l2
as distinct from one another, in general, apart from the other four distinct
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complex constants α
(l)
1 and α

(l)
2 , l = 1, 2. For the two-soliton solution,

we find that the above seed solutions terminate the series expansions as
g(l) = εg(l)1 + ε3g(l)3 + ε5g(l)5 + ε7g(l)7 , l = 1, 2, f = 1 + ε2 f2 + ε4 f4 + ε6 f6 +

ε8 f8, while solving the resulting inhomogeneous linear partial differential
equations recursively. The explicit Gram determinat forms of g(l)’s and f
can be written as

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ C1 0′ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0

Anm Ann′ 0 I

−I 0 κmm′ κmn

0 −I κnm κnn′

∣∣∣∣∣∣∣∣∣∣∣∣∣
,(4.24)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ 0′ C2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.25)

The various elements are defined as

Amm′ =
eηm+η∗m′

(km + k∗m′)
, Amn =

eηm+ξ∗n

(km + l∗n)
, Ann′ =

eξn+ξ∗n′

(ln + l∗n′)
, Anm =

eη∗n+ξm

(k∗n + lm)
,

κmm′ =
ψ†

mσψm′

2i(k2
m − k∗2m′)

, κmn =
ψ†

mσψ′n
2i(l2

m − k∗2n )
, κnm =

ψ
′†
n σψm

2i(k2
n − l∗2m )

, κnn′ =
ψ
′†
n σψ′n′

2i(l2
n − l∗2n′ )

,

m, m′, n, n′ = 1, 2.

The other elements are defined below:

φ1 =
(

eη1 eη2

)T
, φ2 =

(
eξ1 eξ2

)T
, ψj =

(
α
(1)
j 0

)T
, ψ′j =

(
0 α

(2)
j

)T
,
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0′ =
(

0 0
)

, I = σ =

 1 0

0 1

, 0 =

 0 0

0 0

 and CN = −
(

α
(N)
1 α

(N)
2

)
,

j, N = 1, 2. Note that in the above the g(j)’s are (9× 9) determinants and
f is a (8× 8) determinant. The collision dynamics and the structure of the
nondegenerate two-solitons are characterized by eight arbitrary complex
constants, α

(j)
1 , α

(j)
2 , k j and lj, j = 1, 2. The singularity of the two-soliton so-

lution mainly depends on the function f . To get the non-singluar solution,
the function f should be positive definite ( f > 0). This restricts the imag-
inary parts of the wave numbers, k jI and ljI , j = 1, 2 as negative. That is
k jI , ljI < 0. Further, the complete nondegenerate two-soliton solution (4.24)
and (4.25) is classified as (2, 2, 2)-soliton solution (k jI = ljI , j = 1, 2) and
(2, 2, 4)-soliton solution (k jI 6= ljI , j = 1, 2). We have also given the com-
pletely nondegenerate three-soliton solution in section 2.6 for the system
(4.1) using the Gram-determinants.
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Figure 4.4: Elastic collision: Shape preserving collision with zero phase
shift among the two symmetric double-hump solitons for the parameter
values k1 = 0.333− 0.5i, l1 = 0.32− 0.5i, k2 = 0.333− 1.2i, l2 = 0.32− 1.2i,
α
(1)
1 = 0.45 + 0.5i, α

(2)
1 = 0.45 + 0.55i, α

(1)
2 = 0.45 + 0.45i and α

(2)
2 =

0.45 + 0.515i.

4.2.3 Partially nondegenerate soliton solution

We next deduce partially nondegenerate soliton solution from the com-
plete nondegenerate two-soliton solution by imposing the wave number
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restriction k1 = l1 (or k2 = l2) in Eqs. (4.24) and (4.25). Due to this re-
striction, the wave variables ξ1 and η1 are no longer independent and they
get restricted as ξ1 = η1 , while ξ2 and η2 continue to be distinct and
independent. The Gram determinant forms of g(l)’s and f are the same
both for the partially nondegenerate soliton solution and for the complete
nondegenerate two-soliton solution except that they differ in the following
constituents, Amn, Anm, Ann′ , κmn, κnm, κnn′ and φ2. Their explicit forms for
the present case are given below:

Amn : A11 =
eη1+η∗1

(k1 + k∗1)
, A12 =

eη1+ξ∗2

(k1 + l∗2 )
, A21 =

eη2+η∗1

(k2 + k∗1)
, A22 =

eη2+ξ∗2

(k2 + l∗2 )
,

Anm : A11 =
eη1+η∗1

(k1 + k∗1)
, A12 =

eη∗1+ξ2

(k∗1 + l2)
, A21 =

eη∗2+η1

(k∗2 + k1)
, A22 =

eη∗2+ξ2

(k∗2 + l2)
,

Ann′ : A11 =
eη1+η∗1

(k1 + k∗1)
, A12 =

eξ1+ξ∗2

(l1 + l∗2 )
, A21 =

eξ2+η∗1

(l2 + k∗1)
, A22 =

eξ2+ξ∗2

(l2 + l∗2 )
,

κmn : κ11 =
ψ†

1σψ′1
2i(k2

1 − k∗21 )
, κ12 =

ψ†
1σψ′2

2i(k2
1 − k∗22 )

, κ21 =
ψ†

2σψ′1
2i(l2

2 − k∗21 )
, κ22 =

ψ†
2σψ′2

2i(l2
2 − k∗22 )

,

κnm : κ11 =
ψ
′†
1 σψ1

2i(k2
1 − k∗21 )

, κ12 =
ψ
′†
1 σψ2

2i(k2
1 − l∗22 )

, κ21 =
ψ
′†
2 σψ1

2i(k2
2 − k∗21 )

, κ22 =
ψ
′†
2 σψ2

2i(k2
2 − l∗22 )

,

κnn′ : κ11 =
ψ
′†
1 σψ′1

2i(k2
1 − k∗21 )

, κ12 =
ψ
′†
1 σψ′2

2i(k2
1 − l∗22 )

, κ21 =
ψ
′†
2 σψ′1

2i(l2
2 − k∗21 )

, κ22 =
ψ
′†
2 σψ′2

2i(l2
2 − l∗22 )

,(4.26)

and φ2 =
(

eη1 eξ2

)T
. The above new class of solution permits both

degenerate and nondegenerate solitons, simultanously leading to the for-
mation of coexistence phenomenon in the present LSRI system (4.1). It
is interesting to note that the coexistence phenomenon has also been dis-
cussed in the context of rogue waves [167]. The above partially nondegen-
erate soliton solution is described by seven arbitrary complex parameters,
α
(l)
1 , α

(l)
2 , k j, l, j = 1, 2 and l2. Further, in order to get the regular (nonsin-

gular) solution one has to fix the condition k jI < 0, j = 1, 2 and l2I < 0.
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Figure 4.5: Elastic collision: Shape preserving collision with zero phase
shift between the symmetric and asymmetric double-hump solitons. The
parameter values are given in the main text.

4.3 Various types of collision dynamics of non-

degenerate solitons

In this section, we analyze several interesting collision properties of the
nondegenerate solitons of the system (4.1). To study the collision dynam-
ics, it is essential to analyse the form of each of the solitons in the two
soliton solution in the long time limits t → ±∞. It can be done by per-
forming appropriate asymptotic analysis of the completely nondegenerate
two-soliton solution (4.24) and (4.25). From the analysis, we find that the
nondegenerate solitons exhibit three types of collisions, namely shape pre-
serving, shape altering and a novel shape changing collision dynamics for
the cases of (i) equal velocities: k jI = ljI , j = 1, 2 and (ii) unequal veloci-
ties: k jI 6= ljI , j = 1, 2. Very interestingly, we find that the shape altering
and shape changing collision scenarios belong to elastic collision which is
confirmed through the following asymptotic analysis. Additionally, we ob-
serve a shape changing collision for the partially equal velocities (k1I = l1I ,
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k2I 6= l2I) case also. In this section, we describe the asymptotic analysis
for equal velocities case only and it can be extended to unequal velocities
cases as well in a similar manner. We note that the singularity condition,
k jI < 0 and ljI < 0, enforces the two nondegenerate solitons to propagate
in the same direction. Thus, the nondegenerate solitons in the system (4.1)
always undergo overtaking collision. From this, it can be understood that
the positive type of nonlinearity of the system (4.1) does not permit any
head-on collision among the nondegenerate solitons.

4.3.1 Asymptotic analysis

We carry out an asymptotic analysis of the two-soliton solution (4.24) and
(4.25) by considering the parametric choices, k jI = ljI < 0, k jR, ljR > 0,
j = 1, 2, k1I > k2I and l1I > l2I , which corresponds to the overtaking colli-
sion of two symmetric double-hump solitons. For other choice of parame-
ters, similar analysis can be carried out without much difficulty. In order
to deduce the asymptotic forms of nondegenerate solitons in the long time
regimes, we incorporate the asymptotic behaviour of the wave variables
ηjR = k jR(x− 2k jIt) and ξ jR = ljR(x− 2ljIt), j = 1, 2, in the solution (4.24)
and (4.25). For the above parametric choices corresponding to overtaking
collision, the wave variables behave asymptotically as (i) Soliton 1 (S1): η1R,
ξ1R ' 0, η2R, ξ2R → ±∞ as t±∞ and (ii) Soliton 2 (S2): η2R, ξ2R ' 0, η1R,
ξ1R → ±∞ as t∓∞. Substituting these results in Eqs. (4.24) and (4.25), we
derive the following asymptotic forms of nondegenerate individual soli-
tons.

(a) Before collision: t→ −∞

Soliton 1: For soliton 1, we obtain the asymptotic forms of S(l), l = 1, 2
and L from the two-soliton solution (4.24) and 4.25) as
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S(1) ' 4A1−
1 k1R

√
k1Ieiη1I cosh(ξ1R + φ−1 )[

a11 cosh(η1R + ξ1R + φ−1 + φ−2 + c1) +
1

a∗11
cosh(η1R − ξ1R + φ−2 − φ−1 + c2)

] ,

S(2) ' 4A1−
2 l1R

√
l1Ieiξ1I cosh(η1R + φ−2 )[

a12 cosh(η1R + ξ1R + φ−1 + φ−2 + c1) +
1

a∗12
cosh(η1R − ξ1R + φ−2 − φ−1 + c2)

] ,

L(x, t) ' 4
f 2

(
(k2

1R − l2
1R) + l2

1R cosh(2η1R + 2φ−2 + c3) + k2
1R cosh(2ξ1R + 2φ−1 + c4)

)
,

f = b1 cosh(η1R + ξ1R + φ−1 + φ−2 + c1) + b−1
1 cosh(η1R − ξ1R + φ−2 − φ−1 + c2). (4.27)

Here, A1−
1 = i[α(1)1 /α

(1)∗
1 ]1/2 and A1−

2 = i[α(2)1 /α
(2)∗
1 ]1/2. In the latter,

superscript (1−) represents soliton S1 before collision and subscripts (1, 2)
denote the two short-wave components S(1) and S(2), respectively.

Soliton 2: In this limit, the asymptotic expressions for soliton 2 in the
two SW components and the long-wave component turn out to be

S(1) ' 4k2R A2−
1
√

k2Iei(η2I+θ−1 ) cosh(ξ2R + ϕ−1 )[
a21 cosh(η2R + ξ2R + ϕ−1 + ϕ−2 + d1) +

1
a∗21

cosh(η2R − ξ2R + ϕ−2 − ϕ−1 + d2)
] ,

S(2) ' 4l2R A2−
2
√

l2Iei(ξ2I+θ−2 ) cosh(η2R + ϕ−2 )[
a22 cosh(η2R + ξ2R + ϕ−1 + ϕ−2 + d1) +

1
a∗22

cosh(η2R − ξ2R + ϕ−2 − ϕ−1 + d2)
] ,

L(x, t) ' 4
f 2

(
(k2

2R − l2
2R) + l2

1R cosh(2η2R + 2ϕ−1 + d3) + k2
2R cosh(2ξ2R + 2ϕ−2 + d4)

)
,

f = b2 cosh(η2R + ξ2R + ϕ−1 + ϕ−2 + d1) + b−1
2 cosh(η2R − ξ2R + ϕ−2 − ϕ−1 + d2). (4.28)

In the above, a21 =
(k∗2−l∗2 )

1
2

(k∗2+l2)
1
2

, 1
a∗21

=
(k2+l∗2 )

1
2

(k2−l2)
1
2

, a22 =
(k∗2−l∗2 )

1
2

(k2+l∗2 )
1
2

, 1
a∗22

=
(k∗2+l2)

1
2

(k2−l2)
1
2

,

eiθ−1 =
(k1−k2)(k1+k2)

1
2 (k1+k∗2)(k2−l1)

1
2 (k1−k∗2)(k

∗
2+l1)

1
2

(k∗1−k∗2)(k
∗
1+k2)(k∗1+k∗2)

1
2 (k∗2−l∗1 )

1
2 (k∗1−k2)

1
2 (k2+l∗1 )

1
2

,

eiθ−2 =
(l1−l2)(k1−l2)

1
2 (k1+l∗2 )

1
2 (l1+l∗2 )(l1+l2)

1
2 (l1−l∗2 )

1
2

(k∗1−l∗2 )
1
2 (l∗1−l∗2 )(k

∗
1+l2)

1
2 (l∗1+l2)(l∗1+l∗2 )

1
2 (l∗1−l2)

1
2

,

A2−
1 = [α

(1)
2 /α

(1)∗
2 ]1/2 , A2−

2 = [α
(2)
2 /α

(2)∗
2 ]1/2, b2 = (k2R−l2R)

1
2

(k2R+l2R)
1
2

, d1 = 1
2 log (k∗2−l∗2 )

(k2−l2)
,

d2 = 1
2 log (k∗2+l2)

(k2+l∗2 )
, d3 = 1

2 log (k∗2−l∗2 )(k2+l∗2 )
(k∗2+l2)(k2−l2)

and d4 = 1
2 log (k∗2−l∗2 )(k

∗
2+l2)

(k2+l∗2 )(k2−l2)
.

Here, superscript (2−) refers to soliton 2 (S2) before collision.
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(b) After collision: t→ +∞

Soliton 1: We have deduced the following asymptotic forms of for soli-
ton 1 in S(l), l = 1, 2 and L from the two soliton solution (4.24) and 4.25)
after collision as below:

S(1) ' 4A1+
1 k1R

√
k1Iei(η1I+θ+1 ) cosh(ξ1R + φ+

1 )[
a11 cosh(η1R + ξ1R + φ+

1 + φ+
2 + c1) +

1
a∗11

cosh(η1R − ξ1R + φ+
2 − φ+

1 + c2)
] ,

S(2) ' 4A1+
2 l1R

√
l1Iei(ξ1I+θ+2 ) cosh(η1R + φ+

2 )[
a12 cosh(η1R + ξ1R + φ+

1 + φ+
2 + c1) +

1
a∗12

cosh(η1R − ξ1R + φ+
2 − φ+

1 + c2)
] ,

L(x, t) ' 4
f 2

(
(k2

1R − l2
1R) + l2

1R cosh(2η1R + 2φ+
2 + c3) + k2

1R cosh(2ξ1R + 2φ+
1 + c4)

)
,

f = b1 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) + b−1
1 cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2). (4.29)

Here, eiθ+1 =
(k1−k2)(k1−l2)

1
2 (k∗1+k2)(k∗1+l2)

1
2 (k1+k2)

1
2 (k∗1−k2)

1
2

(k∗1−k∗2)(k
∗
1−l∗2 )

1
2 (k1+k∗2)(k1+l∗2 )

1
2 (k∗1+k∗2)

1
2 (k1−k∗2)

1
2

, A1+
1 = i[α(1)1 /α

(1)∗
1 ]1/2,

A1+
2 = i[α(2)1 /α

(2)∗
1 ]1/2 and eiθ+2 =

(l1−l2)(k2−l1)
1
2 (k2+l∗1 )

1
2 (l∗1+l2)(l1+l2)

1
2 (l∗1−l2)

1
2

(k∗2−l∗1 )
1
2 (l∗1−l∗2 )(k

∗
2+l1)

1
2 (l1+l∗2 )(l

∗
1+l∗2 )

1
2 (l1−l∗2 )

1
2

.

In the latter, superscript (1+) represents soliton S1 after collision and sub-
scripts (1, 2) denote the two SW components S(1) and S(2), respectively.

Soliton 2: The asymptotic expressions for soliton 2 in S(l), l = 1, 2 and
L after collision turn out to be

S(1) ' 4k2R A2+
1
√

k2Ieiη2I cosh(ξ2R + ϕ+
1 )[

a21 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + d1) +
1

a∗21
cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + d2)

] ,

S(2) ' 4l2R A2+
2
√

l2Ieiξ2I cosh(η2R + ϕ+
2 )[

a22 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + d1) +
1

a∗22
cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + d2)

] ,

L(x, t) ' 4
f 2

(
(k2

2R − l2
2R) + l2

1R cosh(2η2R + 2ϕ+
1 + d3) + k2

2R cosh(2ξ2R + 2ϕ+
2 + d4)

)
,

f = b2 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + d1) + b−1
2 cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + d2). (4.30)

Here, A2+
1 = i[α(1)2 /α

(1)∗
2 ]1/2, A2+

2 = i[α(2)2 /α
(2)∗
2 ]1/2. The phase con-

stants, φ−j , φ+
j , ϕ−j , ϕ+

j , j = 1, 2, appearing above are related as follows:
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φ+
1 = φ−1 + ψ1, φ+

2 = φ−2 + ψ2, ϕ+
1 = ϕ−1 −Ψ1, ϕ+

2 = ϕ−2 −Ψ2, (4.31)

where

ψ1 = ln
|k2 − l1||l1 − l2|2|l1 + l2|
|k2 + l∗1 ||l1 + l∗2 |2|l1 − l∗2 |

, ψ2 = ln
|k1 − k2|2|k1 + k2||k1 − l2|
|k1 + k∗2 |2|k1 − k∗2 ||k1 + l∗2 |

,

Ψ1 = ln
|k1 − l2||l1 − l2|2|l1 + l2|
|k1 + l∗2 ||l1 + l∗2 |2|l1 − l∗2 |

, Ψ2 = ln
|k2 − l1||k1 − k2|2|k1 + k2|
|k2 + l∗1 ||k1 + k∗2 |2|k1 − k∗2 |

, (4.32)

φ−1 =
1
2

ln
(k1 − l1)|α(2)1 |2

2i(k1 + l∗1 )(l1 + l∗1 )
2(l1 − l∗1 )

, φ−2 =
1
2

ln
(l1 − k1)|α(1)1 |2

2i(k∗1 + l1)(k1 + k∗1)
2(k1 − k∗1)

,

ϕ+
1 =

1
2

ln
(k2 − l2)|α(2)2 |2

2i(k2 + l∗2 )(l2 + l∗2 )
2(l2 − l∗2 )

, ϕ+
2 =

1
2

ln
(k2 − l2)|α(1)2 |2

2i(k∗2 + l2)(k2 + k∗2)
2(k2 − k∗2)

.

From the above, one can easily observe that the phase terms only get
changed during the collision process. As we have pointed above, the
phases of each of the solitons also get changed during the collision dy-
namics. The total phase shift of soliton S1 in both the SW components is
calculated as

∆Φ1 = φ+
1 + φ+

2 − (φ−1 + φ−2 )

= log
|k2 − l1||l1 − l2|2|l1 + l2||k1 − l2||k1 − k2|2|k1 + k2|
|k2 + l∗1 ||l1 + l∗2 |2|l1 − l∗2 ||k1 + l∗2 ||k1 + k∗2 |2|k1 − k∗2 |

. (4.33)

Similarly the total phase shift experienced by soliton S2 in the SW com-
ponents are given by

∆Φ2 = ϕ+
1 + ϕ+

2 − (ϕ−1 + ϕ−2 )

= − log
|k2 − l1||l1 − l2|2|l1 + l2||k1 − l2||k1 − k2|2|k1 + k2|
|k2 + l∗1 ||l1 + l∗2 |2|l1 − l∗2 ||k1 + l∗2 ||k1 + k∗2 |2|k1 − k∗2 |

= −∆Φ1. (4.34)

Here, the subscript 1 and 2 in ∆Φ denote the soliton number. The total
phase shifts obtained for the SW components are the same for the LW
component.



4.3. Various types of collision dynamics of nondegenerate solitons 113

t=-20

t=20

S1
-

S2
-

S1
+

S2
+

(a1)

-90 0 90

0

0.25

x

|S
(1
)

2

S1
-

S2
-

S1
+

S2
+(a2)

-90 0 90

0

0.25

x

|S
(2
)

2

(b2)

S1
-S1

+

S2
-S2

+

-90 0 90

0

0.25

x

|S
(2
)

2

(b3) S1
-S1

+

S2
-

S2
+

-90 0 90

0

0.17

x

|L
|

S1
-

S2
-

S1
+

S2
+

(a3)

-90 0 90

0

0.17

x

|L
|

(b1)

S1
-S1

+

S2
-

S2
+

-90 0 90

0

0.25

x

|S
(1
)

2

Figure 4.6: The column figures (a1)-(a3) represent the shape altering col-
lision of two symmetric double-hump solitons S−1 and S−2 at t = −10
(blue dotted curves) into S+1 and S+2 at t = +10 (red curves) and the col-
umn figures (b1)-(b3) denote their corresponding shape preserving na-
ture which is brought out after taking appropriate time shifts. The dotted
black curves in (b1)-(b3) refer to the solitons before collision at t = −20,
and the solitons after incorporating the appropriate finite time shifts are
represented by the solid red curves. To bring back the shape preserv-
ing nature of solitons after collision we have taken the following time
shifts based on Eq. (4.38): For solitons S1 and S2 the time shifts are per-
formed respectively as (short wave S(1): t′ = 18.6525, short wave S(2):
t′ = 18.5791) and (S(1): t′ = 20.4559, S(2): t′ = 20.4266). As far as the LW
component is concerned one has to combinedly take the shifts for soliton
S+1 (t′ = 18.6525, t′ = 18.5791) and soliton S+2 (t′ = 20.4559, t′ = 20.4266)
in the LW component expressions (4.28) and (4.29), respectively.
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4.3.2 Elastic collision: Shape-preserving, shape-altering and

shape-changing collisions

The asymptotic analysis of equal velocities case (k1I = l1I and k2I = l2I)

reveals that the transition intensities, |Tl
j |2 =

|Al+
j |2

|Al−
j |2

= 1, l, j = 1, 2, (where

Al±
j ’s are defined in the above asymptotic analysis) always remain unimod-

ular. Consequently, the corresponding collision among the nondegenerate
solitons is always elastic in the equal velocities case. Thus, the expressions
of the individual solitons should be invariant in the asymptotic time lim-
its t → ±∞ leading to the preservation of shapes of the nondegenerate
solitons. As a result, the asymptotic expression (4.27) of soliton 1 before
collision should coincide with the form (4.29). Further, to hold the elastic
collision nature, the asymptotic form (4.28) of soliton 2 must also agree
with Eq. (4.30). However, in view of Eq. (4.31), this is not true. Since the
phase terms dramatically get varied during this collision scenario. This
phase variation significantly influences the structure of the nondegenerate
solitons. Therefore, to maintain the structure, the phase terms should obey
the following condition:

φ+
j = φ−j , ϕ+

j = ϕ−j , j = 1, 2. (4.35)

The above implies that the additional phase terms, ψj and Ψj, j = 1, 2,
are equal to zero. That is

ψ1 = ln
|k2 − l1||l1 − l2|2|l1 + l2|
|k2 + l∗1 ||l1 + l∗2 |2|l1 − l∗2 |

= 0, ψ2 = ln
|k1 − k2|2|k1 + k2||k1 − l2|
|k1 + k∗2 |2|k1 − k∗2 ||k1 + l∗2 |

= 0, (4.36)

Ψ1 = ln
|k1 − l2||l1 − l2|2|l1 + l2|
|k1 + l∗2 ||l1 + l∗2 |2|l1 − l∗2 |

= 0, Ψ2 = ln
|k2 − l1||k1 − k2|2|k1 + k2|
|k2 + l∗1 ||k1 + k∗2 |2|k1 − k∗2 |

= 0. (4.37)

Physically this indicates that the nondegenerate fundamental solitons
undergo shape preserving collision (or elastic collision) without a phase
shift. Such a zero phase shift criterion is calculated from the above expres-
sions (4.36) and (4.37) as

|k2 + l∗1 |
|k2 − l1|

− |k1 + l∗2 |
|k1 − l2|

= 0. (4.38)
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From the above, we infer that the two nondegenerate solitons pass
through one another with zero phase shift whenever the criterion (4.38)
(or equivalently from the phase condition Eq. (4.35)), is fulfilled by the
wave numbers. This remarkable new property is not possible in the de-
generate counterpart and even in the scalar nonlinear Schrödinger equa-
tion. A typical shape preserving collision with zero phase shift is demon-
strated in figure 4.4. From figure 4.4, one can easily recognize that that
the two symmetric double-hump solitons S1 and S2 are located along the
lines η1R = k1R(x − 2k1It) ' 0, ξ1R = k1R(x − 2k1It) ' 0 and η2R =

k2R(x − 2k2It) ' 0, ξ2R = k2R(x − 2k2It) ' 0, respectively. Around x = 0
they start to interact and pass through one another with almost zero phase
shift. We have numerically verified this from Eq. (4.38) by calculating the
value as −0.0006. It ensures that the structures (as well as phases) of the
nondegenerate solitons remain constant throughout this collision process.
A similar shape preserving collision scenario among the two asymmetric
double-hump solitons is illustrated in figure 4.5 for the parameter values
k1 = 0.25 − 0.5i, l1 = 0.315 − 0.5i, k2 = 0.25 − 1.2i, l2 = 0.315 − 1.2i,
α
(1)
1 = 0.5 + 0.5i, α

(2)
1 = 0.45 + 0.5i, α

(1)
2 = 1 + i and α

(2)
2 = 0.45 + 0.5i.

In general, the phase constants φ+
j , φ−j , ϕ+

j and ϕ−j , j = 1, 2, do not
agree with the condition (4.35) in the equal velocities case. Under this
circumstance, the nondegenerate solitons undergo either shape altering
collision or shape changing collision without infringing the unimodular
transition intensities condition. Therefore, depending on the nature of
the changes in the phase terms, the nondegenerate solitons experience
slight alteration or drastic reshaping during the collision process. A typ-
ical shape altering collision is depicted in figures 4.6(a1)-(a3). To draw
the figures 4.6(a1)-(a3), we fix the soliton parameters as k1 = 0.25− 0.5i,
l1 = 0.315 − 0.5i, k2 = 0.31 − 1.5i, l2 = 0.28 − 1.5i, α

(1)
1 = 0.5 + 0.5i,

α
(2)
1 = 0.45 + 0.5i, α

(1)
2 = 0.45 + 0.5i and α

(2)
2 = 0.55 + 0.55i. Then these

figures show that the symmetric nature of double-hump solitons in all the
three components get altered slightly into asymmetric forms after collision.
However, this shape alteration can be undone, without loss of generality,
by making appropriate shifts in time,
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(
t′ = t− ψ1

2l1Rk1I
, t′ = t− ψ2

2k1Rk1I

)
and

(
t′ = t +

Ψ1

2l2Rk2I
, t′ = t +

Ψ2

2k2Rk2I

)
(4.39)

in the wave variables ξ1R and η1R for soliton 1 and ξ2R and η2R for
soliton 2 in the expressions (4.29) and (4.30), respectively. After effecting
these time shifts in the respective asymptotic expressions, we find that the
asymptotic expressions of the two nondegenerate solitons becomes iden-
tical except for unit phase factors. As a consequence, the shapes of the
nondegenerate solitons are conserved asymptotically with zero phase shift
thereby confirming the elastic nature of the collision. This shape preserv-
ing nature is graphically illustrated in figure 4.6(b1)-(b3).

Moreover, for k1I = l1I and k2I = l2I , the nondegenerate solitons also
exhibit a novel shape changing interaction again without violating the
unity condition of the transition intensities. Very interestingly, as it is
evident from Eq. (4.31), the shape changing occurs not only in the two
short-wave components but it is also observed in the long-wave compo-
nent as well. We display such non-trivial shape changing collision in fig-
ure 4.7(a1)-(a3) as an example, where the symmetric structure of the flattop
soliton S2 in the S(1) component and symmetric double-hump solitons in
both the S(2) and L components are altered drastically as indicated by the
red curves at t = 25. To display this figure 4.9(a1)-(a3), the parameter
values are fixed as k1 = 0.315 − 0.5i, l1 = 0.5 − 0.5i, k2 = 0.45 − 1.2i,
l2 = 0.315− 1.2i, α

(1)
1 = 0.5 + 0.5i, α

(2)
1 = 0.45 + 0.45i, α

(1)
2 = 0.45 + 0.4i

and α
(2)
2 = 0.65 + 0.65i. This type of shape changing collision has not

been observed earlier in the degenerate case [161]. However, as we have
performed the analysis in the above case of shape altering collision, the
present shape changing collision also belongs to the case of elastic colli-
sion. Thus the shape preserving nature can be retrieved by shifting the
time as per Eq. (4.39). This elastic collision scenario after taking the time
shifts is demonstrated in figure 4.7(b1)-(b3). Therefore, what we empha-
size here is that the collision scenario among the nondegenerate solitons
is always elastic regardless of the zero phase shift criterion (4.38). Further,
we also demonstrate the shape changing collision in the partial velocity
case k1I = l1I and k2I 6= l2I in figure 4.8 for the parameter values as given
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Figure 4.7: The column figures corresponding to (a1)-(a3) demonstrate
shape changing collisions among the nondegenerate solitons whereas the
figures (b1)-(b3) illustrate their corresponding shape preserving nature
which is brought out after effecting the time shifts (S(1): t′ = 22.5772, S(2):
t′ = 21.962) and (S(1): t′ = 26.3074, S(2): t′ = 26.0926) in the expressions
(4.29) and (4.30) of both the solitons S1 and S2, respectively. For solitons
in the LW component, one has to take the time shifts (t′ = 22.5772, t′ =
21.962) and (t′ = 26.3074, t′ = 26.0926) combinedly in Eqs. (4.29) and
(4.30), respectively. In figures (b1)-(b3) black dotted curves denote the
solitons before collision at t = −25 and the red solid line curves represent
the solitons after collision with time shifts t′.

in the figure caption.
In addition to the above, the elastic collision does occur in the case of

(2, 2, 4)-soliton solution (unequal velocities: k1I 6= l1I and k2I 6= l2I) for the
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Figure 4.8: Shape changing collision of nondegenerate solitons in the
partially equal velocity case (k1I = l1I and k2I 6= l2I): The values are
k1 = 0.315− 0.5i, l1 = 0.545− 0.5i, k2 = 0.315− i, l2 = 0.545− 1.5i, α

(1)
1 =

0.5 + 0.5i, α
(2)
1 = 0.45 + 0.45i, α

(1)
2 = 0.5 + 0.5i and α

(2)
2 = 0.45 + 0.45i.

general choice of wave parameters. We illustrate such a collision process in
figure 4.9 for the parameters given in the figure caption. From figure 4.9,
it is clear that each interaction picture of the two single-humped solitons
in both the SW components S(1) and S(2) reappears through the LW com-
ponent. The interesting fact of this collision scenario is the structures of
all the solitons do not get altered throughout the collision process thereby
confirming the elastic collision.

4.4 Collision between nondegenerate and degen-

erate solitons: Two types of shape changing

collisions

Here, we discuss the collision dynamics of nondegenerate two-soliton so-
lution (4.24) and (4.25) under the partially nondegenerate limit k1 = l1
and k2 6= l2. The resultant solution of the LSRI system (4.1) describes the
coexistence of nondegenerate and degenerate solitons. It is of interest to
study the dynamics of nondegenerate soliton in the presence of degen-
erate soliton and vice versa. In order to explore the underlying collision
dynamics we perform an asymptotic analysis for the two-soliton solution
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Figure 4.9: Elastic collision among the two nondegenerate soliton in the
unequal velocities case, k1I 6= l1I and k2I 6= l2I . The parameter values are
k1 = 0.315− 0.5i, l1 = 0.545− i, k2 = 0.315− 1.8i, l2 = 0.545− 2.5i, α

(1)
1 =

0.5 + 0.5i, α
(2)
1 = 0.45 + 0.45i, α

(1)
2 = 0.5 + 0.5i and α

(2)
2 = 0.45 + 0.45i.

(4.24) and (4.25) with the wave number restriction k1 = l1 and k2 6= l2. By
doing so, we find that the nondegenerate soliton undergoes two types of
shape changing collisions. Here, we define such shape changing collisions.
(i) Type-I shape changing collision is observed for the velocity condition
k2I = l2I , where the initial profile structure of the nondegenerate soliton, in
all the components, is either drastically changing into an asymmetric form
or the initial profile structure is completely reshaped into another profile.
(ii) Type-II shape changing collision is observed for the velocity choice
k2I 6= l2I , where the two single-hump structured nondegenerate solitons
are merged into a single-hump soliton in both the SW components while
the shape of the nondegenerate soliton is preserved in the LW component.
In both the collision scenarios, the degenerate soliton exhibits the usual
energy exchange collision property as described in [161].
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4.4.1 Asymptotic analysis

In order to explore the degenerate bright soliton collision induced shape
changing behaviours of the nondegenerate soliton, we intend to analyze
the partial nondegenerate two-soliton solution (4.24) and (4.25) with the
elements of the Gram determinants given in Eq. (4.26) in the asymp-
totic limits t → ±∞. In these limits, the resultant action provides the
forms corresponding to degenerate and nondegenerate solitons. As we
have pointed out in the earlier sub-section 3.1, to obtain the asymptotic
forms for the present case one has to incorporate the asymptotic nature of
the wave variables ηjR = k jR(t− 2kI jz) and ξ2R = l2R(t− 2l2Iz), j = 1, 2, in
the partially nondegenerate soliton solution. Here we note that the wave
variable η1R represents the degenerate soliton and η2R, ξ2R correspond to
the nondegenerate soliton. To find the asymptotic behaviour of the above
wave variables, we consider as a typical example the parametric choices,
k jR, l2R > 0, k jI , l2I < 0, j = 1, 2, k1I > k2I , l2I . For this choice, the wave
variables behave asymptotically as follows: (i) degenerate bright soliton
S1: η1R ' 0, η2R, ξ2R → ±∞ as t → ±∞ (ii) nondegenerate fundamental
soliton S2: η2R, ξ2R ' 0, η1R → ±∞ as t → ∓∞. By incorporating these
asymptotic behaviours of the wave variables in the solution (4.24)-(4.25)
with Eq. (4.26), we deduce the following asymptotic expressions for the
nondegenerate and degenerate solitons.

(a) Before collision: t→ −∞

Soliton 1: The asymptotic form of the degenerate soliton deduced from
the partially nondegenerate soliton solution is

S(l) '
 A1−

1

A2−
1

 2k1R
√

k1Iei(η1I+
π
2 )sech(η1R + ψ−), l = 1, 2, (4.40)

L ' 2k2
1Rsech2(η1R + ψ−). (4.41)

where Al−
1 = α

(l)
1 /(|α(1)1 |2 + |α

(2)
1 |2)1/2, l = 1, 2, ψ− = R

2 = 1
2 ln (|α(1)1 |2+|α

(2)
1 |2)

2i(k1+k∗1)
2(k1−k∗1)

.

Here, in Al−
1 the subscript 1 denotes degenerate soliton S1 and superscript
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l− refers to the SW components before collision.

Soliton 2: The asymptotic forms of the nondegenerate soliton S2, which
is present in both the short-wave components as well as in the long-wave
component, before collision are obtained as

S(1) ' 1
D1

(
eiη2I e

µ1+µ3
2 cosh(ξ2R +

µ3 − µ1

2
) + eiξ2I e

µ2+µ4
2 cosh(η2R +

µ4 − µ2

2
)

)
, (4.42)

S(2) ' 1
D1

(
eiη2I e

ν1+ν3
2 cosh(ξ2R +

ν3 − ν1

2
) + eiξ2I e

ν2+ν4
2 cosh(η2R +

ν4 − ν2

2
)

)
, (4.43)

L ' 1
D2

1

(
e

µ5+µ6+µ7+µ8
2

[
(k2 + k∗2)

2 cosh(ξ2 + ξ∗2 +
(µ7 + µ8)− (µ5 + µ6)

2
)

+(l2 + l∗2 )
2 cosh(η2 + η∗2 +

(µ6 + µ8)− (µ5 + µ7)

2
)
]
+

1
2

eµ′8

+e
µ5+µ8+µ9+µ10

2
[
(k∗2 + l2)2 cosh(η1 + ξ∗1 +

(µ8 + µ10)− (µ5 + µ9)

2
)

+(k2 + l∗2 )
2 cosh(ξ2 + η∗2 +

(µ8 + µ9)− (µ5 + µ10)

2
)
]

+e
µ6+µ7+µ9+µ10

2
[
(k2 − l2)2 cosh(η∗2 − ξ∗2 +

(µ6 + µ9)− (µ7 + µ10)

2
)

+(k∗2 − l∗2 )
2 cosh(η2 − ξ2 +

(µ6 + µ10)− (µ9 + µ7)

2
)
])

, (4.44)

D1 = e
µ5+µ8

2 cosh(η2R + ξ2R +
µ8 − µ5

2
) + e

µ9+µ10
2 cosh(i(η2I − ξ2I) +

µ10 − µ9

2
)

+e
µ6+µ7

2 cosh(η2R − ξ2R +
µ6 − µ7

2
). (4.45)

Here, A1−
2 = [α

(1)
2 /α

(1)∗
2 ]1/2, A2−

2 = [α
(2)
2 /α

(2)∗
2 ]1/2. In the latter, the

superscript l−, l = 1, 2, denotes the SW components S(1) and S(2) before
collision and the subscript 2 refers the nondegenerate soliton S2.

(b) After collision: t→ +∞

Soliton 1: In this limit, the asymptotic forms for the degenerate soliton
S1 after collision are deduced as
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S(l) '
 A1+

1

A1+
2

 2k1R
√

k1Iei(η1I+θ+l +π
2 )k1Rsech(η1R + ψ+), l = 1, 2, (4.46)

L ' 2k2
1Rsech2(η1R + ψ+). (4.47)

where A1+
1 = α

(1)
1 /(|α(1)1 |2 + χ|α(2)1 |2)1/2, A2+

1 = α
(1)
1 /(|α(1)1 |2χ−1 +

|α(2)1 |2)1/2,
χ = (|k1− l2|2|k1 + k∗2|2|k1 + l2|2|k1− k∗2|2)/(|k1− k2|2|k1 + l∗2 |2|k1 + k2|2|k1−
l∗2 |2),
eiθ+1 =

(k1−k2)(k∗1+k2)(k1−l2)
1
2 (k∗1+l2)

1
2 (k1+k2)

1
2 (k∗1+k2)

(k∗1−k∗2)(k1+k∗2)(k
∗
1−l∗2 )

1
2 (k1+l∗2 )

1
2 (k∗1+k∗2)

1
2 (k1+k∗2)

,

eiθ+2 =
(k1−k2)

1
2 (k∗1+k2)

1
2 (k1−l2)(k∗1+l2)(k1+l2)

1
2 (k∗1−l2)

1
2

(k∗1−k∗2)
1
2 (k1+k∗2)

1
2 (k∗1−l∗2 )(k1+l∗2 )(k

∗
1+l∗2 )

1
2 (k1−l∗2 )

1
2

and ψ+ = 1
2 ln |k1−k2|2|k1−l2|2Λ̂3

2i(k1−k∗1)(k1+k1∗)2|k1−k∗2 |2|k1−l∗2 |2|k1+l∗2 |2
. Here, l+ in Al+

1 , l = 1, 2,
refers to SW components after collision and the subscript 1 denotes the de-
generate soliton S1.

Soliton 2: Similarly the asymptotic expression for the nondegenerate
soliton S2 after collision deduced from the soliton solution (4.24) and (4.25)
with the elements given in Eq. (4.26) is

S(1) ' 4k2R
√

k2I A2+
1 ei(η2I+

π
2 ) cosh(ξ2R + λ1

2 )[
a21 cosh(η2R + ξ2R + λ2

2 ) + 1
a∗21

cosh(η2R − ξ2R + λ3
2 )
] , (4.48)

S(2) ' 4l2R
√

l2I A2+
2 ei(ξ2I+

π
2 ) cosh(η2R + λ4

2 )[
a22 cosh(η2R + ξ2R + λ2

2 ) + 1
a∗22

cosh(η2R − ξ2R + λ3
2 )
] , (4.49)

L ' 4
D2

2

(
k2

2R cosh(2ξ2R +
λ4 + λ3 − λ2

2
) +

1
2

eλ′4−(
λ4+λ2+λ3

2 )

+l2
2R cosh(2η2R +

λ2 + λ4 − λ3

2
)

)
, (4.50)

D2 = e
λ4
2 cosh(η2R + ξ2R +

λ4

2
) + e

λ2+λ3
2 cosh(η2R − ξ2R +

λ2 − λ3

2
),

eλ′4 = 4(k2R + l2R)
2eλ4 + 4(k2R − l2R)

2eλ2+λ3 , (4.51)



4.4. Collision between nondegenerate and degenerate solitons 123

where λ1 = ln (k2−l2)|α(2)2 |2
2i(l2−l∗2 )(l2+l∗2 )

2(k2+l∗2 )
, λ2 = ln |k2−l2|2|α(1)2 |2|α

(2)
2 |2

(2i)2|k2+l∗2 |2(k2−k∗2)(l2−l∗2 )(k2+k∗2)
2(l2+l∗2 )

2 ,

λ3 = ln |α(1)2 |(l2−l∗2 )(l2+l∗2 )
2

|α(2)2 |(k2−k∗2)(k2+k∗2)
2
, λ4 = ln (l2−k2)|α(1)2 |2

2i(k2−k∗2)(k2+k∗2)
2(k∗2+l2)

,

A1+
2 = [α

(1)
2 /α

(1)∗
2 ]1/2, A2+

2 = i[α(2)2 /α
(2)∗
2 ]1/2.

The explicit forms of all the other constants are given below.

eµ1 =
i(k1 − k2)α

(1)
2 Λ̂1

2(k1 − k∗1)(k1 + k∗1)
2(k∗1 − k2)(k∗1 + k2)2 , eµ2 =

i(k1 − l2)α
(1)
1 α

(2)∗
1 α

(2)
2

2(k1 + k∗1)(k
∗
1 − l2)(k∗1 + l2)2 ,

eµ3 =
i(k1 − k2)(k2 − l2)|k1 − l2|2α

(1)
2 |α

(2)
2 |2Λ̂2eR4

2(k1 − k∗1)(k1 + k∗1)
2(k∗1 − k2)(k∗1 + k2)2|k1 − l∗2 |2|k1 + l∗2 |4(k2 + l∗2 )

,

eµ4 = − i(k1 − k2)
2(k1 + k2)(k∗1 − k∗2)(k1 − l2)(k2 − l2)α

(1)
1 α

(2)∗
1 α

(2)
2 eR5

2(k1 + k∗1)(k
∗
1 + k2)(k1 − k∗2)(k

∗
1 − l2)(k∗2 + l2)(k∗1 + l2)2 ,

eµ5 =
Λ̂4

2i(k1 − k∗1)(k1 + k∗1)
2 , eµ6 =

i|k1 − k2|2Λ̂5eR5

2(k1 − k∗1)(k1 + k∗1)
2|k1 − k∗2 |2|k1 + k∗2 |4

,

eµ7 = − i|k1 − l2|2Λ̂6eR4

2(k1 − k∗1)(k1 + k∗1)
2|k1 − l∗2 |2|k1 + l∗2 |4

, Λ̂4 =
(
|α(1)2 |2 + |α

(2)
2 |2

)
,

eµ8 = − i|k1 − k2|2|k1 − l2|2|k2 − l2|2Λ̂3eR4+R5

2(k1 − k∗1)(k1 + k∗1)
2|k1 − k∗2 |2|k1 + k∗2 |4|k1 − l∗2 |2|k1 + l∗2 |4|k2 + l∗2 |2

,

eµ9 = − (k∗1 − k∗2)(k1 − l2)α
(1)
1 α

(2)∗
1 α

(1)∗
2 α

(2)
2

4(k1 + k∗1)(k1 − k∗2)(k1 + k∗2)
2(k∗1 − l2)(k∗1 + l2)2(k∗2 + l2)

,

eµ10 = − (k1 − k2)(k∗1 − l∗2 )α
(1)∗
1 α

(2)
1 α

(1)
2 α

(2)∗
2

4(k1 + k∗1)(k
∗
1 − k2)(k∗1 + k2)2(k1 − l∗2 )(k1 + l∗2 )

2(k2 + l∗2 )
,

eν1 =
i(k1 − k2)α

(1)∗
1 α

(2)
1 α

(1)
2

2(k1 + k∗1)(k
∗
1 − k2)(k∗1 + k2)2 , eν2 =

i(k1 − l2)α
(2)
2 Λ̂7

2(k1 − k∗1)(k1 + k∗1)
2(k∗1 − l2)(k∗1 + l2)2 ,

eν3 =
i(k1 − k2)(k1 − l2)2(k2 − l2)(k1 + l2)(k∗1 − l∗2 )α

(1)∗
1 α

(2)
1 α

(1)
2 eR4

2(k1 + k∗1)(k
∗
1 − k2)(k∗1 + k2)2(k∗1 + l2)(k1 − l∗2 )(k1 + l∗2 )

2(k2 + l∗2 )
,

eν4 = − i|k1 − k2|2(k1 − l2)(k2 − l2)α
(2)
2 Λ̂8eR5

2(k1 − k∗1)(k1 + k∗1)
2|k1 − k∗2 |2|k1 + k∗2 |4(k∗1 − l2)(k∗1 + l2)2(k∗2 + l2)

,

Λ̂1 =
(
$12|α(1)1 |2 + $̂∗12|α

(2)
1 |2

)
, Λ̂2 =

(
$12|γ̄12|2|α(1)1 |2 + $̂∗12|γ12|2|α(2)1 |2

)
,

Λ̂3 =
(
|$12|2|γ̄12|2|α(1)1 |2 + |$̂∗12|2|γ12|2|α(2)1 |2

)
, Λ̂5 =

(
|$12|2|α(1)1 |2 + |$̂∗12|2|α

(2)
1 |2

)
,

Λ̂6 =
(
|γ̄12|2|α(1)1 |2 + |γ12|2|α(2)1 |2

)
, Λ̂7 =

(
γ̄12|α(1)1 |2 + γ12|α(2)1 |2

)
,

Λ̂8 =
(
|$12|2γ̄12|α(1)1 |2 + |$̂∗12|2γ12|α(2)1 |2

)
, $12 = (k2

1 − k2
2), $̂12 = (k2

1 − k∗22 ),

γ12 = (k2
1 − l2

2), ¯γ12 = (k2
1 − l∗22 ).
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Figure 4.10: Type-I shape changing collision between degenerate soliton
and nondegenerate soliton: To draw this figure the parameter values are
fixed as follows: k1 = l1 = 0.8− 0.5i, k2 = 0.315− 1.2i, l2 = 0.5− 1.2i,
α
(1)
1 = 0.5, α

(2)
1 = 0.8, α

(1)
2 = 0.5 + 0.5i and α

(2)
2 = 0.45 + 0.45i.

Figure 4.11: Type-II shape changing collision between degenerate soliton
and nondegenerate soliton: To illustrate this collision we fix the complex
parameter values as follows: k1 = l1 = 1− 0.5i, k2 = 0.35− 1.8i, l2 =

0.5− i, α
(1)
1 = 1, α

(2)
1 = 0.7, α

(1)
2 = 0.8 and α

(2)
2 = 0.6.
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4.4.2 Degenerate soliton collision induced shape changing

property of nondegenerate soliton

As we have defined earlier, the coexisting solitons (both degenerate and
nondegenerate) undergo Type-I and Type-II shape changing collisions cor-
responding to two distinct velocity conditions k2I = l2I and k2I 6= l2I ,
respectively. In both these collision scenarios, the degenerate bright soli-
ton strongly affects the structure of nondegenerate soliton as it is ensured
from the above asymptotic analysis. As a result, the initial structure of
the nondegenerate soliton S2 is varied to a different of geometrical struc-
ture. A typical Type-I shape changing collision is depicted in figure 4.10
for k2I = l2I . In figure 4.10, it is true that the degenerate soliton S1 under-
goes energy sharing collision among the two SW components only while
it interacts with the nondegenerate soliton S2 as it has been shown in the
pure degenerate case [161].

In the long-wave component, we observe elastic collision only when the
degenerate soliton even collides with another class of asymmetric double-
humped nondegenerate soliton. During such enegy sharing collision of the
degenerate soliton, the polarization constants of SW components Al−

1 =

α
(l)
1 /(|α(1)1 |2 + |α

(2)
1 |2)1/2, l = 1, 2, change into A1+

1 = α
(1)
1 /(|α(1)1 |2 +χ|α(2)1 |2)1/2,

A2+
1 = α

(2)
1 /(|α(1)1 |2χ−1 + |α(2)1 |2)1/2, where χ = (|k1 − l2|2|k1 + k∗2|2|k1 +

l2|2|k1 − k∗2|2)/(|k1 − k2|2|k1 + l∗2 |2|k1 + k2|2|k1 − l∗2 |2). Meanwhile, the am-
plitude of the soliton S1 in the long-wave component remains unchanged
except for a finite phase shift. In contrast to the degenerate soliton S1,
the profile structure of the nondegenerate fundamental soliton S2 gets dra-
matically altered during the collision processes as it is evident from figure
4.10. From figure 4.10, one can observe that the initial set of asymmetric
double-hump profiles in the short-wave component S(1) and in the long-
wave component L get transformed into another set of asymmetric double-
hump profiles with a finite phase shift. However, in the second short-wave
component, the soliton S2 switches its asymmetric flattop profile into a
single-hump profile with an enhancement of energy along with a phase
shift. From the asymptotic forms, we identify that the relative separation
distance or the phase terms are not maintained during this special kind of
interaction.
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Next, we display the Type-II shape-changing collision in figure 4.11 for
k2I 6= l2I , where the degenerate soliton S1 undergoes usual energy shar-
ing collision as expected. However, the nondegenerate soliton S2 exhibits
unusual collision property. From figure 4.11, one can immediately notice
that two single-hump solitons appear in the two short-wave components
S(l), l = 1, 2, under the velocity condition k2I 6= l2I apart from the appear-
ance two similar solitons in the long-wave component. We do not come
across the appearance of such two single-hump solitons in the short-wave
components in the case of one-soliton, where a single-hump profile only
emerged in both the S(l) components at k1I 6= l1I (one can confirm this
from figure 4.3). We also notice that the small amplitude soliton structure,
in both the SW components, disappears after colliding with the degenerate
soliton S1 whereas the energy of the larger amplitude soliton is enhanced
further. In other words, the two single-humped structures, in both the SW
components, are merged during the collision. After the collision, they get
combined into a single-hump soliton. However, very interestingly the two
single-humped nondegenerate structure in the LW component propagates
without any distortion thereby confirming the elastic collision nature. To
characterize both Type-I and Type-II shape changing collisions, one can
calculate the corresponding transition amplitudes. For both the collision
scenarios, the explicit forms of the transition amplitudes turn out to be

T1
1 =

(|α(1)1 |2 + |α
(2)
1 |2)1/2

(|α(1)1 |2 + χ|α(2)1 |2)1/2
, T2

1 =
(|α(1)1 |2 + |α

(2)
1 |2)1/2

(|α(1)1 |2χ−1 + |α(2)1 |2)1/2
, (4.52)

where χ = (|k1− l2|2|k1 + k∗2|2|k1 + l2|2|k1− k∗2|2)/(|k1− k2|2|k1 + l∗2 |2|k1 +

k2|2|k1− l∗2 |2). In general, the value of χ is not equal to one. Consequently
the transition amplitudes T1

1 and T2
1 are not unimodular. In this situation,

one always comes across shape changing collision. The standard elastic
collision can occur when χ = 1, where the quantities T1

1 and T2
1 are equal

to unity. We point out that one can also calculate explicitly the position
shift that occurred during the collision between the degenerate and non-
degenerate solitons. We wish to emphasize here that to the best of our
knowledge the collision scenarios discussed above have not been reported
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elsewhere in the literature for the (1+1)-dimensional two component LSRI
system (4.1).
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|L|
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Figure 4.12: Single-humped degenerate fundamental soliton: k1 = 0.5−
0.5i, α

(1)
1 = 0.5 and α

(2)
1 = 1.

4.5 Degenerate soliton solutions and their colli-

sion dynamics

Here, we provide the minimal details about the already known class of de-
generate soliton solutions and the underlying collision property, reported
in Ref. [161] for Eq. (4.1), in order to clearly distinguish the correspond-
ing dynamics from the dynamics of nondegenerate soliton solution (4.10)-
(4.12) presented in this paper. The energy exchanging collision exhibiting
degenerate fundamental bright soliton solution can be extracted from the
nondegenerate one-soliton solution Eqs. (4.10)-(4.12) by imposing the re-
striction k1 = l1 in it. As a consequence of this constraint, the seed solu-
tions (4.3) get restricted as g(1)1 = α

(1)
1 eη1 , g(2)1 = α

(2)
1 eη1 , η1 = k1x + ik2

1t.
This results in the degenerate one-soliton solution of the form,

S(l) = 2Alk1R
√

k1Iei(η1I+
π
2 )sech(η1R +

R
2
), L = 2k2

1Rsech2(η1R +
R
2
). (4.53)

Here, Al =
α
(l)
1√

|α(1)1 |2+|α
(2)
1 |2

, l = 1, 2, eR = − (|α(1)1 |2+|α
(2)
1 |2)

16k2
1Rk1I

, η1R = k1R(x−

2k1It), η1I = k1I x + (k2
1R − k2

1I)t. In contrast to the nondegenerate soliton,
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the above degenerate soliton always propagates in all the components with
identical velocity 2k1I . This is because of the presence of a single complex
wave number k1 in the solution (4.53). It leads to single-hump profiles only
in all the three components as we have shown in figure 4.12. The ampli-
tudes of the degenerate soliton in the SW components and the long-wave
component are 2Alk1R

√
k1I and 2k2

1R, respectively. The central position of
the soliton (for all the components) is R

2 .
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Figure 4.13: Energy sharing collision of two degenerate solitons: k1 =

1.5− 0.5i, k2 = 2− 2i, α
(1)
1 = 2.5, α

(2)
1 = 1.2, α

(1)
2 = 0.9 and α

(2)
2 = 0.6.

The degenerate two-soliton solution of the system (4.1) was reported in
Ref. [161] by considering the seed solutions

g(l)1 = α
(l)
1 eη1 + α

(l)
2 eη2 , ηj = k jx + ik2

j t, l, j = 1, 2. (4.54)

On the other hand, it can be captured from the nondegenerate two-
soliton solution (4.24) and (4.25) by imposing the restrictions k1 = l1 and
k2 = l2. The resultant Gram determinat forms of the degenerate two-
soliton solution contains the following elements in Eqs. (4.23),

Amm′ =
eηm+η∗m′

(km + k∗m′)
= Amn = Anm = Ann′ , φ1 = φ2 =

(
eη1 eη2

)T
,

κmm′ =
ψ†

mσψm′

2i(k2
m − k∗2m′)

= κmn = κnm = κnn′ , m, m′, n, n′ = 1, 2. (4.55)
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The other elements are the same as the ones defined in Eqs. (4.24) and
(4.25). In general, the degenerate N-soliton solution is a special case of
our nondegenerate vector N-soliton solution under the restrictions, ki = li,
i = 1, 2, ..., N. We wish to remark here that obviously any one soliton solu-
tion will be a special case of the two-soliton solution, under the appropriate
specialization of the parameters. The nondegenerate fundamental soliton
solution (4.10)-(4.12) turns out be a special case of the nondegenerate two-
soliton solution (4.24) and (4.25) with α

(1)
2 = α

(2)
2 = 0. Similarly, the degen-

erate fundamental soliton solution (4.53) is a special case of the degenerate
two-soliton case under the restriction α

(1)
2 = α

(2)
2 = 0. In passing, we note

that very special parametric choice turns out to be the present fundamen-
tal one soliton solution (one soliton solution presented in Eqs. (4.10)-(4.12)
can be deduced from the degenerate two-soliton solution (4.55) too under
the restriction α

(1)
2 = α

(2)
1 = 0 after renaming the resultant constants α

(2)
2

as α
(2)
1 and k2 as l1). However, as it is evident from our discussion, the

properties of the nondegenerate fundamental soliton solution (4.10)-(4.12)
are entirely distinct from the interacting degenerate two-soliton solution
reported in Ref. [161].

As we have pointed in the previous sub-section 4.2 and by the authors
of Ref. [161], the degenerate solitons of the LSRI system (4.1) undergo
collision with energy redistribution among the short-wave components.
Such a typical collision scenario is displayed in figure 4.13 as an example.
From this figure, one can easily observe that the energy of the soliton S2

is enhanced in the S(1) component and it gets suppressed in the S(2) com-
ponent. In order to preserve the conservation of energy in both the SW
components, the energy of the soliton S1 is suppressed in the S(1) compo-
nent and it gets enhanced in the S(2) component. However, the degenerate
solitons in the long-wave component always undergoes elastic collision.
The elastic collision is brought out in all the components by fixing the pa-

rameters as α
(1)
1

α
(1)
2

=
α
(2)
1

α
(2)
2

[161].
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4.6 Nondegenerate three-soliton solution

The three-soliton solution of the system (4.1) is given below:

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ C1 0′ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0

Anm Ann′ 0 I

−I 0 κmm′ κmn

0 −I κnm κnn′

∣∣∣∣∣∣∣∣∣∣∣∣∣
,(4.56)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ 0′ C2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.57)

The various elements of the above Gram determinants are defined as

Amm′ =
eηm+η∗m′

(km + k∗m′)
, Amn =

eηm+ξ∗n

(km + l∗n)
, Ann′ =

eξn+ξ∗n′

(ln + l∗n′)
, Anm =

eη∗n+ξm

(k∗n + lm)
, (4.58)

κmm′ =
ψ†

mσψm′

2i(k2
m − k∗2m′)

, κmn =
ψ†

mσψ′n
2i(l2

m − k∗2n )
, κnm =

ψ
′†
n σψm

2i(k2
n − l∗2m )

, κnn′ =
ψ
′†
n σψ′n′

2i(l2
n − l∗2n′ )

,

m, m′, n, n′ = 1, 2, 3.

The other elements are defined below:
φ1 =

(
eη1 eη2 eη3

)T
, φ2 =

(
eξ1 eξ2 eξ3

)T
, ψj =

(
α
(1)
j 0

)T
, ψ′j =

(
0 α

(2)
j

)T
, 0′ =

(
0 0 0

)
, I = σ =


1 0 0

0 1 0

0 0 1

, 0 =


0 0 0

0 0 0

0 0 0


and CN = −

(
α
(N)
1 α

(N)
2 α

(N)
3

)
, j = 1, 2, 3, N = 1, 2. We remark that the
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degenerate three-soliton solution can be obtained from the above nonde-
generate three-soliton solution when k j = lj, j = 1, 2, 3. In general, mathe-
matically to obtain the degenerate N-soliton solution from the nondegen-
erate N-soliton solution one needs to impose N number of restrictions on
the wave bumbers k j = lj, j = 1, 2, ..., N.

4.7 Conclusion

In this chapter we have derived nondegenerate fundamental soliton so-
lutions of the LSRI equations by adopting the Hirota bilinearization pro-
cedure. This general type of soliton solutions have been given in Gram
determinant form for compactness. Symmetric and asymmetric profile
structures of LSRI nondegenerate solitons have been demonstrated ana-
lytically and graphically. Very complicated nondegenerate two-soliton so-
lutions of the two component LSRI system have been obtained. Also we
mentioned the possibility of coexistence of nondegenerate and degenerate
solitons which we called partially nondegenerate soltions. Various inter-
esting collision behaviours (i) between nondegenerate solitons (ii) between
nondegenerate and degenerate solitons have been studied in detail by the
tedious asymptotic analysis. As a result of this analysis, we identified that
the nondegenerate solitons exhibit three types of interaction behaviours,
namely shape preserving interaction with zero phase shift, shape altering
and shape changing interactions with finite phase shifts. These shape al-
tering and shape changing interactions can also be understood as elastic
interactions by taking appropriate time shifts in the asymptotic forms of
the nondegenerate two-soliton solutions. In the partially nondegenerate
soliton limits, two types of shape changing and energy sharing interaction
have been observed. At the end, the already known class of degenerate
solitons have been deduced as a subclass of our newly derived nondegen-
erate solitons and its profile structures, and collision properties have been
mentioned briefly.
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Chapter 5
Existence of Nondegenerate
solitons in other coupled nonlinear
Schrödinger family of systems

5.1 Introduction

In the second chapter we have studied the properties and collision dynam-
ics of nondegenerate solitons in the Manakov system in which shape pre-
serving, shape altering and shape changing collisions have been identified.
Then we have confirmed through systematic asymptotic analysis that all
these three types of collsions come under elastic collision scenario, except
in the cases where degenerate solitons are involved. In Chapter 3, the effect
of four wave mixing nonlinearity on the nondegenerate Manakov solitons
have been analyzed. Very interestingly in chapter 4, the nondegenerate
solitons in the two component long-wave short-wave resonance interac-
tion system have been studied through the Hirota bilinearization method,
where all the above mentioned three types of collision nature have been
captured under appropriate wave number restrictions. Further the coex-
istence of degenerate and nondegenerate soliton solution simultaneously
in the LSRI system is also identified. Now it is very curious to know the
analytical structures and collision behaviours of nondegenerate solitons in
other coupled systems like the mixed two coupled nonlinear Schrödinger
system, N- coupled nonlinear Schrödinger system and coherently coupled
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nonlinear Schrödinger system. In this chapter we explore some of these
aspects.

This chapter is framed as follows: In section 5.2, we briefly present the
nondegenerate bright solitons and their profile nature of mixed 2-CNLS
system. Then the generalization of nondegenerate bright solitons admitted
by N-CNLS system of Manakov type is presented in section 5.3. Also the
Gram determinant solutions are deduced for the N = 3 and N = 4 cases
for demonstration. Then numerical stability of triple hump nondegener-
ate solitons against white noise is presented in section 5.4, nondegenerate
soliton solution in 2-CCNLS system is presented using the nonstandard
Hirota bilinearization technique.

5.2 Nondegenerate and degenerate bright solitons

in mixed 2-CNLS system

This section is essentially devoted to show the existence of nondegenerate
fundamental bright solitons in the mixed 2-CNLS system or Eq. (1.10) with
σ1 = +1 and σ2 = −1. Then the equations take the form,

iq1,z + q1,tt + 2
(
|q1|2 − |q2|2

)
q1 = 0 (5.1)

iq2,z + q2,tt + 2
(
|q1|2 − |q2|2

)
q2 = 0

In this section, we also point out how the degenerate fundamental
bright soliton can be captured from the obtained nondegenerate one-soliton
solution and indicate its energy sharing collision. In order to write down
the analytical form of nondegenerate fundamental soliton solution, one
has to follow the same procedure that has been adopted to derive such a
solution in the case of the Manakov system. Since the solution construc-
tion methodology has been extensively described in Refs. [77–79] and in
chapter 2, here we immediately present the explicit form of nondegenerate
fundamental soliton solution of the mixed 2-CNLS system. It reads as
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q1 =
g(1)1 + g(1)3
1 + f2 + f4

=
1
D
(α

(1)
1 eη1 + eη1+ξ1+ξ∗1+∆(1)

1 ), (5.2)

q2 =
g(2)1 + g(2)3
1 + f2 + f4

=
1
D
(α

(2)
1 eξ1 + eη1+η∗1+ξ1+∆(2)

1 ). (5.3)

Here D = 1 + eη1+η∗1+δ1 + eξ1+ξ∗1+δ2 + eη1+η∗1+ξ1+ξ∗1+δ11 ,

e∆(1)
1 = − (k1−l1)α

(1)
1 |α

(2)
1 |2

(k1+l∗1 )(l1+l∗1 )
2 , e∆(2)

1 =
(k1−l1)|α(1)1 |2α

(2)
1

(k1+k∗1)
2(k∗1+l1)

, eδ1 =
|α(1)1 |2

(k1+k∗1)
2 , eδ2 = − |α(2)1 |2

(l1+l∗1 )
2

and eδ11 = − |k1−l1|2|α(1)1 |2|α
(2)
1 |2

(k1+k∗1)
2|k1+l∗1 |2(l1+l∗1 )

2 . Like in the Manakov system, the two

complex parameters α
(j)
1 ’s, j = 1, 2, and the two wave numbers k1, and

l1 describes the behaviour of the above general form of one-soliton solu-
tion (5.2)-(5.3). By rewriting the solution (5.2)-(5.3) in hyperbolic form, as
it has been done in Eqs. (2.9a) and (2.9b), we find the amplitude, veloc-
ity and central position of the soliton in the first mode is 2k1R, 2k1I and

φ1
2l1R

= 1
2l1R

log (l1−k1|α(2)1 |2)
(k1+l∗1 )(l1+l∗1 )

2 , respectively. In the second mode, the ampli-
tude, velocity and central position of the soliton are defined by 2l1R, 2l1I

and φ2
2k1R

= 1
2k1R

log (k1−l1|α(1)1 |2)
(k∗1+l1)(k1+k∗1)

2 , respectively. In the mixed 2-CNLS system
too, the nondegenerate fundamental soliton propagates in the two modes
either with identical velocity (v1 = v2 = 2k1I) or with non-identical veloc-
ity (v1 = 2k1I 6= v2 = 2l1I) depending on the restriction on the imaginary
parts of the wave numbers k1 and l1. The solution (5.2)-(5.3) always shows
singular behaviour due to the presence of negative sign in the constant
terms eδ2 and eδ11 except for k1 = l1. This negative sign essentially arises
because of the presence of defocusing nonlinearity of the mixed CNLS sys-
tem. The singularity nature of the solution (5.2)-(5.3) is depicted in Figure
5.1 with the parameter values k1 = 1.25+ 0.45i, l1 = −0.5+ 0.45i, α

(1)
1 = 0.3

and α
(2)
1 = i. We note that the singular nature of the soliton has been re-

cently discussed in the context of singular optics [168]. The nondegenerate
higher order bright solitons can also be obtained in a similar way and one
can analyse their collision dynamics.

By imposing the limit k1 = l1 in the solution (5.2)-(5.3), one can cap-
ture following degenerate fundamental vector bright soliton solution of the
mixed 2-CNLS system, qj = k1R Âjeiη1I sech(η1R + R

2 ), where η1R = k1R(t−
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Figure 5.1: The singular double-hump profiles of the nondegenerate one-
soliton solution (5.2)-(5.3) of the mixed 2-CNLS system.

2k1Iz), η1I = k1It + (k2
1R − k2

1I)z, Âj =
α
(j)
1√

(|α(1)1 |2−|α
(2)
1 |2)

, eR =
(|α(1)1 |2−|α

(2)
1 |2)

(k1+k∗1)
2 ,

j = 1, 2. The latter degenerate bright soliton solution always admits the
non-singular single-hump intensity profile when |α(1)1 | > |α

(2)
1 |. The de-

generate multi-soliton solutions and their interesting collision property
have been already discussed in [66]. The two-soliton solution of the mixed
2-CNLS system can be easily obtained by replcing Bij as Bij = κji =(

α
(1)
j α

(1)∗
i − α

(2)
j α

(2)∗
i

)
(k j + k∗i )

, i, j = 1, 2 in the degenerate two-soliton solution

(2.32a)-(2.32a) of the Manakov system. However, here we indicate the spe-
cial collision dynamics exhibited by the degenerate bright solitons only
through a graphical demonstration as we illustrated below in Figure 5.2
for the parametric choice k1 = 1− i, k2 = 1.7 + I, α

(1)
1 = 1 + i, α

(1)
2 = 1− i,

α
(2)
1 = 0.5 + 0.3i and α

(2)
2 = 0.7. From Figure 5.2, we identify that during

the collision process of the degenerate two bright solitons S1 and S2 in the
present mixed 2-CNLS system, the intensity of the soliton S1 is enhanced
in all the modes. In contradiction to this, the intensity of the other soliton
S2 is suppressed in both the modes. Therefore, such a special property of
enhancement of the intensity of a given soliton always occurs in the mixed
2-CNLS system. One may find the details of energy conservation in Ref.
[66]. Additionally, we also observe the amplitude dependent phase shifts
in each of the modes. This energy sharing collision is quite different from
the shape changing collision of the Manakov system. The collision scenario
is depicted in Figure 5.2 can be viewed as a signal amplification process, in
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which the soliton S1 refers as a signal wave and the soliton S2 represents
as a pump wave. During this amplification process, there is no external
amplification medium is employed and is without the introduction of any
noise [66]. We point out that the standard NLS soliton-like collision can be

recovered by imposing the restriction α
(1)
1

α
(1)
2

=
α
(2)
1

α
(2)
2

.

Figure 5.2: Energy sharing collision of degenerate two bright solitons of
the mixed 2-CNLS system [66].

5.3 Nondegenerate solitons in N-CNLS system

We intend to investigate the multi-hump nature of nondegenerate fun-
damental solitons in the following system of multi-component nonlinear
Schrödinger equations,

iqj,z + qj,tt + 2
N

∑
p=1
|qp|2qj = 0, j = 1, 2, ..., N, (5.4)

by deriving their analytical forms through Hirota bilinear method. Equa-
tion (5.4) describes the optical pulse propagation in N-mode optical fibers
[6] and it describes the incoherent light beam propagation in photorefrac-
tive medium [53] and so on. In the above, qj’s are complex wave envelopes
propagating in N-optical modes and z and t represent the normalized dis-
tance and retarded time, respectively. We note that for N = 2 in Eq. (5.4),
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we have studied the collision and stability properties of the nondegener-
ate solitons [78] and also we have identified their existence in other inte-
grable nonlinear Schrödinger family of equations by revealing their analyt-
ical forms [79]. To derive the exact form of the nondegenerate fundamental
soliton solution for the N-CNLS sytem, we bilinearize Eq. (5.4) through the

dependent variable transformation, qj(z, t) = g(j)(z,t)
f (z,t) , j = 1, 2, ..., N where

g(j)’s are in general complex functions and f is a real function. Substitu-
tion of this transformation in Eq. (5.4) brings out the following bilinear
forms: (iDz + D2

t )g(j) · f = 0 and D2
t f · f = 2(∑N

n=1 g(n) · g(n)∗). Here Dz

and Dt are the usual Hirota bilinear operators [155]. Then we consider the
standard Hirota series expansions g(j) = εg(j)

1 + ε3g(j)
3 + ..., j = 1, 2, ..., N

and f = 1 + ε2 f2 + ε4 f4 + ... in the solution construction process.
To obtain the nondegenerate fundamental soliton solution of Eq. (5.4)

we consider the general forms of N-seed solutions, g(j) = α
(j)
1 eηj , ηj =

k jt + ik2
j z, where α

(j)
1 and k j, j = 1, 2, ..., N are complex parameters and

are nonidentical in general to the N-independent linear partial differential
equations, ig(j)

1,z + g(j)
1,tt = 0, j = 1, 2, ..., N, which arise at the lowest order

of ε. With such general choices of seed solutions, we proceed to solve the
resulting inhomogeneous linear partial differential equations successively
in order to deduce the full series solution upto g(j)

2N−1 in g(j) and f2N in
f . By combining the obtained forms of the unknown functions as per the
series expansions we find a rather complicated form of the nondegenerate
fundamental soliton solution for the N-CNLS equation. However, we have
managed to rewrite it in a more compact form using the following Gram
determinants [162, 163],

g(N) =

∣∣∣∣∣∣∣∣∣∣
A I φ

−I B 0T

0 CN 0

∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣ A I

−I B

∣∣∣∣∣∣ , (5.5)

where the elements of the matrices A and B are
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Aij =
eηi+η∗j

(ki + k∗j )
, Bij = κji =

ψ†
i σψj

(k∗i + k j)
, CN = −

(
α
(1)
1 , α

(2)
1 , . . . , α

(N)
1

)
,

ψj =
(

α
(1)
1 , α

(2)
1 , . . . , α

(j)
1

)T
, φ =

(
eη1 , eη2 , . . . , eηn

)T
, j, n = 1, 2, .., N.

In the above, g(N) and f are ((22N) + 1) and (22N)th order determi-
nants, T represents the transpose of the matrices ψj and φ, † denotes trans-
pose complex conjugate, σ = I is an (n × n) identity matrix, φ denotes (n
× 1) column matrix, 0 is a (1 × n) null matrix, CN is a (1 × n) row matrix
and ψ represents a (n × 1) column matrix. In the above expressions, for
the nondegenerate fundamental soliton solution the elements κji’s do not
exist (κji = 0) in the square matrix B when j 6= i. Also for a given set of N
and j values the corresponding elements only exist and all the other ele-
ments are equal to zero in CN and ψj matrices (we have demonstrated the
latter clearly for the 3-component case below). We have verified the valid-
ity of the nondegenerate fundamental soliton solution (5.5) by substituting
it in the bilinear equations of Eq. (5.4) along with the following deriva-
tive formula of the determinants, ∂M

∂x = ∑1≤i,j≤n
∂ai,j
∂x

∂M
∂ai,j

= ∑1≤i,j≤n
∂ai,j
∂x ∆i,j,

where ∆i,j’s are the cofactors of the matrix M, the bordered determinant
properties and the elementary properties of the determinants [155]. This
action yields a pair of Jacobi identities and thus their occurrence confirms
the validity of the obtained soliton solution. Multi-hump profile nature is a
special feature of the obtained nondegenerate fundamental soliton solution
(5.5). Such multi-hump structures and their propagation are characterized
by 2N arbitrary complex wave parameters. The funamental nondegenerate
soliton admits a very interesting N-hump profile in the present N-CNLS
system. In this system, in general, the nondegenerate solitons propagate
with different velocities in different modes but one can make them to prop-
agate with identical velocity by restricting the imaginary parts of all the
wave numbers k j, j = 1, 2, ..., N, to be equal. Interestingly, in 1976, Nogami
and Warke have obtained soliton solution for the multicomponent CNLS
system [169]. We note that their soliton solution corresponds to the so
called partially coherent soliton (PCS) which can be checked after replac-
ing the function ej = exp(k jx) by ej =

√
2k jaj exp(k j x̄j), where x̄j = x− xj,
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aj = Πj 6=icij, cij =
ki+kj
|ki−kj| and k j’s are real constants, in their solution [55].

Since, the stationary N-PCS solution arises from our solution (5.5) under
the parametric restrictions α

(j)
1 = eηj0 , j = 1, 3, 4, ..., N and α

(2)
1 = −eη20 , (ηj0:

real), k j = k jR, k jI = 0, j = 1, 2, ..., N, the solution of Nogami and Warke
[169] and its time dependent version are essentially special cases of our
general solution (5.5).

It is interesting to note that if we set all the wavenumbers k j, j =

1, 2, ..., N, as identical, k j = k1, j = 1, 2, ..., N, which corresponds to the

seed solutions getting restricted as g(j) = α
(j)
1 eη1 , η1 = k1t + ik2

1z, for all
j = 1, 2, ..., N, in the fundamental soliton solution (5.5), the resultant form
gets reduced to the following degenerate soliton (DS) solution for Eq. (5.4)
[37] [38] as

(q1, q2, q3, ..., qN)
T = (A1, A2, A3, ..., AN)

T k1Reiη1I sech
(

η1R +
R
2

)
, (5.6)

where η1R = k1R(t− 2k1Iz), Aj = α
(j)
1 /∆ and ∆ = ((∑N

j=1 |α
(j)
1 |2))1/2.

Here α
(j)
1 , k1, j = 1, 2, ..., N, are arbitrary complex parameters. Further,

k1R Aj gives the amplitude of the jth mode, R
2 (=

1
2 log ∆

(k1+k∗1)
2 ) denotes the

central position of the soliton and 2k1I is the soliton velocity [38]. It is evi-
dent that the degenerate soliton solution (5.6) always admits single-hump
structure. Using this single peak intensity or power profile as signal in
binary coding one cannot improve higher bit-rate in information transmis-
sion as pointed out in [19] whereas this class of degenerate solitons in-
terestingly exhibit energy exhanging collision leading to the construction
of all optical logic gates [44]. To enhance the bit-rate multi-hump pulses
with symmetric and asymmetric profiles, as we describe below for 3 and
4-CNLS systems as examples, can be useful for optical communication.

In order to show the multi-hump nature of the nondegenerate soliton,
here we demonstrate such special feature in the case of 3-CNLS and 4-
CNLS systems. To start with, we consider the three coupled nonlinear
Schrödinger equation (N = 3 in Eq. (5.4)). To get the nondegenerate
fundamental soliton solution for this system, we consider the solutions,
g(1)1 = α

(1)
1 eη1 , g(2)1 = α

(2)
1 eη2 and g(3)1 = α

(3)
1 eη3 as seed solutions to the
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lowest order linear PDEs. These general form of seed solutions termi-
nates the series expansions as g(j) = εg(j)

1 + ε3g(j)
3 + ε5g(j)

5 , j = 1, 2, 3 and
f = 1 + ε2 f2 + ε4 f4 + ε6 f6. By rewriting the explicit forms of the obtained
unknown functions in terms of Gram determinants we get the resultant
forms similar to the one (Eq. (5.5)) reported above for the N-component
case. We find that for the 3-CNLS system the matrices A and B are consti-
tuted by the elements, Aij and Bij, i, j = 1, 2, 3 and also the other matrices

CN, ψj and φ are deduced as C1 =
(

α
(1)
1 0 0

)
, C2 =

(
0 α

(2)
1 0

)
,

C3 =
(

0 0 α
(3)
1

)
, ψ1 =

(
α
(1)
1 0 0

)T
, ψ2 =

(
0 α

(2)
1 0

)T
,

ψ3 =
(

0 0 α
(3)
1

)T
and φ =

(
eη1 eη2 eη3

)T
.

From the resultant Gram-determinant forms, we deduce the follow-
ing triple-humped nondegenerate fundamental soliton solution for the 3-
CNLS system,

q1 =
1
f

eiη1I

(
e

∆51+ρ11
2 cosh(η2R + η3R +

φ1

2
) + e

∆11+∆21
2 cosh(η2R − η3R +

φ2

2
)

)
,

q2 =
1
f

eiη2I

(
e

∆52+ρ12
2 cosh(η1R + η3R +

ψ1

2
) + e

∆12+∆22
2 cosh(η1R − η3R +

ψ2

2
)

)
,

q3 =
1
f

eiη3I

(
e

∆53+ρ13
2 cosh(η1R + η2R +

χ1

2
) + e

∆13+∆23
2 cosh(η1R − η2R +

χ2

2
)

)
,

f = e
δ7
2 cosh(η1R + η2R + η3R +

δ7

2
) + e

δ1+δ6
2 cosh(η1R − η2R − η3R +

δ1 − δ6

2
)

+ e
δ2+δ5

2 cosh(η2R − η1R − η3R +
δ2 − δ5

2
) + e

δ3+δ4
2 cosh(η3R − η1R − η2R +

δ3 − δ4

2
), (5.7)

where ηjR = k jR(t− 2k jIz), j = 1, 2, 3, φ1 = ∆51 − ρ11, φ2 = ∆11 − ∆21,

ψ1 = ∆52 − ρ12, ψ2 = ∆12 − ∆22, χ1 = ∆53 − ρ13, χ2 = ∆13 − ∆23, ρ1j = α
(j)
1 ,

j = 1, 2, 3, and the other constants given above are eδ1 =
|α(1)1 |2

Λ11
, eδ2 =

|α(2)1 |2
Λ22

, eδ3 =
|α(3)1 |2

Λ33
, e∆11 =

α
(1)
1 $12
λ12

eδ2 , e∆21 =
α
(1)
1 $13
λ13

eδ3 , e∆12 = − α
(2)
1 $13
λ∗12

eδ1 ,

e∆22 =
α
(2)
1 $23
λ23

eδ3 , e∆13 = − α
(3)
1 $13
λ∗13

eδ1 , e∆23 = − α
(3)
1 $23
λ∗23

eδ2 , eδ4 = |$12|2
|λ12|2 eδ1+δ2 ,

eδ5 = |$13|2
|λ13|2 eδ1+δ3 , eδ6 = |$23|2

|λ23|2 eδ2+δ3 , eδ7 = |$12|2|$13|2|$23|2
|λ12|2|λ13|2|λ23|2 eδ1+δ2+δ3 , e∆51 =

α
(1)
1 $12$13|$23|2
λ12λ13|λ23|2 eδ2+δ3 , e∆52 = − α

(2)
1 $12|$13|2$23
λ∗12|λ13|2λ23

eδ1+δ3 , e∆53 =
α
(3)
1 |$12|2$13$23
|λ12|2λ∗13λ∗23

eδ1+δ2 ,
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Λ11 = (k1 + k∗1)
2, Λ22 = (k2 + k∗2)

2, Λ33 = (k3 + k∗3)
2, $12 = (k1 − k2),

$13 = (k1 − k3), $23 = (k2 − k3), λ12 = (k1 + k∗2), λ13 = (k1 + k∗3) and λ23 =

(k2 + k∗3). The above nontrivial soliton solution is described by six arbi-
trary complex parameters, α

(j)
1 , k j, j = 1, 2, 3. As a specific example, we can

easily check that such multi-parameter solution admits a novel asymmetric
triple-hump profile when we fix the velocity as k1I = k2I = k3I = 0.5. The
other parameter values are chosen as k1R = 0.53, k2R = 0.5, k3R = 0.45,
α
(1)
1 = 0.65 + 0.65i, α

(2)
1 = 0.45 − 0.45i and α

(3)
1 = 0.35 + 0.35i. In Fig.

5.3 (a), we display the asymmetric triple-hump profiles in all the compo-
nents for the above choice of parameter values. It is important to note that
for the specific choice of parameter values, the solution (5.7) also exhibits
symmetric triple-hump soliton profile. The symmetric and asymmetric na-
ture of solution (5.7) can be identified by calculating the following relative
separation distances between the solitons of the modes,

∆t12 = t1 − t2 =
1
2

log
|α(1)1 |2(k3R − k1R)(k2R + k3R)k2

2R

|α(2)1 |2(k2R − k3R)(k1R + k3R)k2
1R

, (5.8)

∆t13 = t1 − t3 =
1
2

log
|α(1)1 |2(k1R − k2R)(k2R + k3R)k2

3R

|α(3)1 |2(k2R − k3R)(k1R + k2R)k2
1R

, (5.9)

∆t23 = t2 − t3 =
1
2

log
|α(2)1 |2(k2R − k1R)(k1R + k3R)k2

3R

|α(3)1 |2(k1R − k3R)(k1R + k2R)k2
2R

. (5.10)

It is evident from Eqs. (5.8)-(5.10) the solution (5.7), with k1I = k2I =

k3I , always admits asymmetric triple-hump profiles when ∆t12 = ∆t13 =

∆t23 6= 0. In contrast to this, almost symmetric (not perfect symmetric)
triple-hump profile arises in all the modes when the soliton parameters
obey the condition, ∆t12 = ∆t13 = ∆t23 → 0. The double node (or multi-
node) formation occurs when the relative velocities among the solitons of
the modes, qj’s j = 1, 2, 3, do not tend to zero. Such node formation is
demonstrated in Fig. 5.4 for the unequal velocity case (of the modes) in
the present 3-CNLS system. We wish to point out here that the triple peak
power profiles obeying the above relative separation distance condition,
both symmetric and asymmetric, could be useful in the launching of the
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initial signal in binary coding scheme. In the practical situation the ini-
tial profiles can vary their shape due to fiber’s loss and nonlinear higher
order effects. This situation cannot be avoided in a fiber. However, the
solution (5.7) retains the fundamental property, namely the triple-hump
soliton profile, of the nondegenerate soliton during the evolution along
the fiber.
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Figure 5.3: (a) denotes triple-hump profiles of nondegenerate funda-
mental soliton in the 3-CNLS system and (b) is its corresponding single-
humped degenerate soliton profile. (c) represents a quadruple-humped
nondegenerate soliton profiles in 4-CNLS system. The specific values of
the soliton parameters are given in the text.

It is interesting to note that when we impose the condition k1 = k2 = k3

in the solution (5.7), it turns out to be a single-humped degenerate funda-
mental soliton for the 3-CNLS system. This can be seen from Fig. 5.3 (b)
for the values k1 = k2 = k3 = 1 + i, α

(1)
1 = 0.65 + 0.65i, α

(2)
1 = 0.45− 0.45i

and α
(3)
1 = 0.35 + 0.35i. We note that the 3-partially coherent soliton or

multi-soliton complexes arise from the nondegenerate fundamental soli-
ton solution (5.7) of the 3-CNLS system when the soliton parameters are
fixed as α

(1)
1 = eη10 , α

(2)
1 = −eη20 , α

(3)
1 = eη30 , k1 = k1R, k2 = k2R, k3 = k3R

and k jI = 0, j = 1, 2, 3, where ηj0, j = 1, 2, 3, are considered as real con-
stants [32, 38]. Next we illustrate the multi-hump nature of nondegenerate
soliton in the 4-CNLS system. To obtain such solution one has to proceed
with the analysis for the N = 4 case, as we have described in the above
3-component case. For brevity, we do not give the details of the final solu-
tion due to its complex nature. However, one can easily deduce the form
of the solution from the soliton solution of the N-component case, Eq.
(5.5), as given above. The final solution contains eight arbitrary complex
parameters, namely α

(j)
1 and k j, j = 1, 2, 3, 4. These parameters play a sig-

nificant role in determining the profile nature of the underlying soliton in
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the 4-component case. In general, the nondegenerate one-soliton solution
in the 4-CNLS system exhibits asymmetric quadruple-hump profile in all
the modes. Such novel quadruple-hump profile is displayed in Fig. 5.3(c)
for the parameter values k1 = 0.48 + 0.5i, k2 = 0.5 + 0.5i, k3 = 0.53 + 0.5i,
k4 = 0.55 + 0.5i, α

(1)
1 = 0.65 + 0.65i, α

(2)
1 = 0.55− 0.55i, α

(3)
1 = 0.45 + 0.45i

and α
(4)
1 = 0.35− 0.35i.

Figure 5.4: Double-node formation in the unequal velocities case in the
profile of nondegenerate fundamental soliton in 3-CNLS system. The
parameter values are k1 = 0.55 + 0.35i, k2 = 0.5 + 0.5i, k3 = 0.45 + 0.8i
α
(1)
1 = 0.65 + 0.65i, α

(2)
1 = 0.45− 0.45i and α

(3)
1 = 0.35 + 0.35i.

We have verified the asymmetric quadruple-hump profile nature by
calculating the relative separation distance, ∆t12 = ∆t13 = ∆t14 6= 0. How-
ever we do not present their explicit forms due to size limitation of the
letter article. It is evident from Figs. 5.3 (a) and (c) that the nondegenerate
soliton (in 3, 4 and also in the arbitrary N (> 4) CNLS systems) exhibits
multi-hump nature. This multi-peak nature can increase the bit-rate in
coding the information. Consequently it can help to uplift the flow of data
in fiber. In the present 4-CNLS system case also multi-node forms when
the relative velocities of the solitons among the modes do not tend to zero.
One can also recover the already known degenerate soliton solution by
fixing the condition k1 = k2 = k3 = k4 in the final form of nondegenerate
soliton solution of the 4-CNLS system. In the following, we further report
the fact that the N-CNLS system can also admit very interesting partially
nondegenerate soliton solution when the wavenumbers are restricted suit-
ably. Such partial nondegenerate soliton solutions also exhibit multi-hump
profiles (but less than N in number). For instance, here we demonstrate
their existence for the 3 and 4-CNLS systems and this procedure can be
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generalized to the N-component case in principle. For the 3-component
case, the partially nondegenerate soliton solution can be obtained by im-
posing the condition, k1 = k2 (or k1 = k3 or k2 = k3), on the wave numbers
in the solution (5.7). This restriction reduces the asymmetric triple-hump
profile, as depicted in Fig. 5.3 (a), into the asymmetric double-hump in-
tensity profile as displayed in Fig. 5.5 (a) for the choice of parameters
k1 = k2 = 0.5 + 0.5i, k3 = 0.45 + 0.5i, α

(1)
1 = 0.65 + 0.65i, α

(2)
1 = 0.45− 0.45i

and α
(3)
1 = 0.35 + 0.35i. The partially NDS double-hump profile is de-

scribed by the following explicit form of solution, deduced from solution
(5.7),

q1 =
1
f

eiη1I e
∆21+ρ11

2 cosh(η3R +
∆21 − ρ11

2
), q3 =

1
f

eiη3I e
∆+ρ13

2 cosh(η1R +
∆− ρ13

2
),

q2 =
1
f

eiη1I

(
1
2
[cosh(2η1R − η3R + ∆12) + sinh(2η1R − η3R + ∆12)]

+e
∆22+ρ12

2 cosh(η3R +
∆22 − ρ12

2
)

)
,

f = e
δ̄1
2 cosh(η1R + η3R +

δ̄1

2
) + e

δ̄2+δ3
2 cosh(η1R − η3R +

δ̄2 − δ3

2
). (5.11)

In the above eδ̄1 = eδ5 + eδ6 , eδ̄2 = eδ1 + eδ2 , e∆ = e∆13 + e∆23 , η1 = η2 =

k1t + ik2
1z, η3 = k3t + ik2

3z and the other constants are deduced from the
constants of the solution (5.7) by imposing the condition k1 = k2 in them.
We point out that one can get the degenerate soliton solution by imposing
the restriction further on the wavenumbers, that is as we mentioned above
k1 = k2 = k3 leads to completely degenerate soliton solution.

It is important to note that partially nondegenerate soliton solution of
the 3-CNLSE can exhibit only upto double hump profile in all the three
modes due to the degeneracy among the modes and the nature of this
solution is controlled by five arbitrary complex parameters.

Similarly, for the 4-CNLS equation, partially nondegenerate soliton so-
lution can be deduced from the solution (5.5) of N-component case. How-
ever, due to the complex nature of the resultant solution we do not present
the expression here. Very interestingly such solution provides the fol-
lowing three possibilities: (i). k1 = k2, (ii). k1 = k2 = k3 and (iii)
k1 = k2 = k3 = k4. The quadruple-hump soliton profile of the 4-CNLS
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Figure 5.5: (a) denotes double-humped profile of the partially nondegen-
erate one soliton solution of 3-CNLS system. (b) and (c) represent triple
and double-humped profiles of partially nondegenerate soliton solution
of 4-CNLS system when the conditions k1 = k2 and k1 = k2 = k3 on
wavenumbers are imposed, respectively.

system becomes a triple-hump profile when we consider the first possi-
bility, k1 = k2. This triple-humped partially nondegenerate soliton solu-
tion is diplayed in Fig. 5.5(b) for k1 = k2 = 0.55 + 0.5i, k3 = 0.5 + 0.5i,
k4 = 0.45 + 0.5i, α

(1)
1 = 0.65 + 0.65i, α

(2)
1 = 0.55− 0.55i, α

(3)
1 = 0.45 + 0.45i

and α
(4)
1 = 0.35− 0.35i. In contrast to the latter, we observe that the double-

hump soliton profile emerges while considering the second possibility,
k1 = k2 = k3, in the full nondegenerate form of solution of the 4-CNLS
system. Such double-humped partially NDS solution profile is depicted
in Fig. 5.5(c) for the values k1 = k2 = k3 = 0.55 + 0.5i, k4 = 0.45 + 0.5i,
α
(1)
1 = 0.35 + 0.35i, α

(2)
1 = 0.45 + 0.45i, α

(3)
1 = 0.55 + 0.55i and α

(4)
1 =

0.65− 0.65i. The final possibilty, k1 = k2 = k3 = k4, corresponds to com-
plete degeneracy. This choice brings out the completely degenerate soliton
solution for the 4-CNLS system. In general, for the N-component case,
one would expect N − 1 possibilities of choices of wave numbers. Out of
these choices a single-humped complete degenerate soliton solution (5.6)
arises if all the wavenumbers are equal, k1 = k2 = ... = kn, whereas the
partial nondegeneracy appears from out of the remaining N − 2 possibili-
ties. Such partial nondegeneracy would bring out multi-hump profiles as
we have illustrated above for the 3 and 4 component cases.

We also wish to point out the stability nature of the triple-humped
nondegenerate fundamental soliton solution (5.7) of the 3-CNLS system
as an example. In order to do this, we consider the Crank-Nicolson nu-
merical algorithm [170] with different percentages of white noise as per-
turbations to the initial profiles. The initial profiles are considered in the
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Figure 5.6: Numerical plots for the asymmetric nondegenerate triple
hump soliton profile with 5% of white noise as perturbation. Top panel
denotes the triple-hump profile of 3-dimensional surface plot and the
bottom panel represents the corresponding density plots. The soliton pa-
rameters correspond to Fig. 5.3(a).

numerical analysis as qj(−100, t) = [1 + Aζ(t)]qj,−100(t), j = 1, 2, 3, where
qj,−100(t), j = 1, 2, 3, are the initial profiles obtained from the solution (5.7)
at z = −100. Here, A is the amplitude of the white noise which is gen-
erated from the random numbers in the interval [−1, 1] and ζ(t) is the
noise function. The space and time step sizes are fixed in the numeri-
cal calculation, respectively, as dz = 0.1 and dt = 0.2. We also fix the
domain range values for both t and z as [−100, 100]. The triple-hump pro-
file nature survives during the evolution even for 5% and 10% of white
noise perturbations except for minor changes in the amplitude part. This
is clearly demonstrated in figures 5.6 and 5.7. These figures ensure the
stability of triple-humped nondegenerate soliton against perturbations of
white noise. One can extend this analysis for even longer ranges of time
and space without much difficulty. Similarly, we have also confirmed the
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Figure 5.7: Numerical plots for the asymmetric nondegenerate triple
hump soliton profile with 10% of white noise as perturbation.

stability of asymmetric quadruple-hump nondegenerate soliton of the 4-
CNLS system as well.

5.4 Nondegenerate soliton solutions of CCNLS

system

Two coherently coupled nonlinear Schrödinger equations reads as follows,

iq1,z + q1,tt + γ(|q1|2 + 2|q2|2)q1 − γq2
2q∗1 = 0, (5.12)

iq2,z + q2,tt + γ(2|q1|2 + |q2|2)q2 − γq2
1q∗2 = 0.

In order to deduce the appropriate nondegenerate soliton solution to

(5.13), we introduce the bilinear transformation qj =
g(j)(z,t)

f (z,t) with an aux-
iliary function s(z, t) [109, 110, 168]. It results in the following bilinear
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equations

D1g(j) · f = γg(j)∗ · s, D2 f · f = 2γ
2

∑
j=1
|g(j)|2, s · f =

2

∑
j=1

(g(j))2, (5.13)

wher D1 ≡ iDz + D2
t and D2 ≡ D2

t . We follow the procedure described
in [109, 110] for the degenerate case but now with the seed solutions
g(1)1 = α1eη1 , g(2)1 = β1eξ1 , η1 = k1t + ik2

1z, ξ1 = l1t + il2
1z. While doing so,

the series expansions get truncated as g(j) = εg(j)
1 + ε3g(j)

3 + ε5g(j)
5 + ε7g(j)

7 ,
f = 1+ ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8 and s = ε2s2 + ε4s4 + ε6s6. By substituting
the obtained forms of the unknown functions in the truncated series ex-
pansions, we get the following general form of nondegenerate coherently
coupled fundamental soliton solution of 2-CCNLS system (5.13),

q1 =
1
f

(
α1eη1 + e2η1+η∗1+∆11 + eη∗1+2ξ1+∆12 + eη1+ξ1+ξ∗1+∆13 + eη1+2(η∗1+ξ1)+∆14

+eη1+2(ξ1+ξ∗1)+∆15 + e2η1+η∗1+ξ1+ξ∗1+∆16 + e2(η1+ξ1+ξ∗1)+η∗1+∆17

)
,

q2 =
1
f

(
β1eξ1 + e2ξ1+ξ∗1+∆21 + eξ∗1+2η1+∆22 + eξ1+η1+η∗1+∆23 + eξ1+2(ξ∗1+η1)+∆24

+eξ1+2(η∗1+η1)+∆25 + e2ξ1+ξ∗1+η1+η∗1+∆26 + e2(η1+η∗1+ξ1)+ξ∗1+∆27

)
,

f = 1 + eη1+η∗1+δ1 + eξ1+ξ∗1+δ2 + e2(η1+η∗1 )+δ3 + e2(η1+ξ∗1)+δ4 + e2(ξ1+η∗1 )+δ5

+e2(ξ1+ξ∗1)+δ6 + e(η1+η∗1+ξ1+ξ∗1)+δ7 + e2(η1+η∗1 )+ξ1+ξ∗1+ν1

+e2(ξ1+ξ∗1)+η1+η∗1+ν2 + e2(η1+η∗1+ξ1+ξ∗1)+ν3 . (5.14)

The various constants which appear in the above solution are given by
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e∆11 =
γα1|α1|2

2κ11
, e∆12 =

γα∗1 β2
1

2θ∗21
, e∆13 =

γα1|β1|2ρ1

θ1l11
, e∆14 =

γ2ρ2
1α∗1 β2

1|α1|2
4κ11θ∗41

,

e∆15 =
γ2ρ2

1α1|β1|4
4l2

11θ2
1

, e∆16 =
γ2ρ2

1ρ∗1α1|α1|2|β1|2
2κ11l11θ2

1θ∗1
, e∆17 =

γ3ρ4
1ρ∗1

2α1|α1|2|β1|4
8κ11l2

11θ4
1θ∗1

2 ,

e∆21 =
γβ1|β1|2

2l11
, e∆22 =

γα2
1β∗1

2θ2
1

, e∆23 = −γ|α1|2β1ρ1

θ∗1κ11
, e∆24 =

γ2ρ2
1α2

1|β1|2α∗1
4l11θ4

1
,

e∆25 =
γ2ρ2

1|α1|4β1

4κ2
11θ∗21

, e∆26 = −γ2ρ2
1ρ∗1 β1|α1|2|β1|2
2κ11l11θ1θ∗21

, e∆27 =
γ3ρ4

1ρ∗21 β1|α1|4|β1|2
8κ2

11l11θ2
1θ∗41

,

eδ1 =
γ|α1|2

κ11
, eδ2 =

γ|β1|2
l11

, eδ3 =
γ2|α1|4

4κ2
11

, eδ4 =
γ2α2

1β∗21

4θ4
1

, eδ5 =
γ2α∗21 β2

1

4θ∗41
,

eδ6 =
γ2|β1|4

4l2
11

, eδ7 =
γ2|ρ1|2|α1|2|β1|2

κ11l11|θ1|2
, eν1 =

γ3|ρ1|4|α1|4|β1|2
4κ2

11l11|θ1|4
,

eν2 =
γ3|ρ1|4|α1|2|β1|4

4κ11l2
11|θ1|2

, eν3 =
γ4|ρ1|8|α1|4|β1|4

16κ2
11l2

11|θ1|8
, l11 = (l1 + l∗1 )

2,

θ1 = (k1 + l∗1 ), ρ1 = (k1 − l1), κ11 = (k1 + k∗1)
2.

The auxiliary function is obtained as s = α2
1e2η1 + β2

1e2ξ1 + e2η1+ξ1+ξ∗1+φ1 +

e2ξ1+η1+η∗1+φ2 + e2(η1+η∗1+ξ1)+φ3 + e2(η1+ξ∗1+ξ1)+φ4 , eφ1 =
γρ2

1α2
1|β1|2

θ2
1 l11

, eφ2 =
γρ2

1β2
1|α1|2

θ∗21 κ11
,

eφ3 =
γ2ρ4

1β2
1|α1|4

4θ∗41 κ2
11

, eφ4 =
γ2ρ4

1α2
1|β1|4

4θ4
1 l2

11
. The already reported degenerate coher-

ently coupled fundamental one-soliton solution [109, 110] of Eq. (5.13) is
obtained by restricting k1 = l1 in Eq. (5.14). This leads to

q1 = α1eη1+e2η1+η∗1+∆11

1+eη1+η∗1+δ1+e2(η1+η∗1 )+δ2
, q2 = β1eη1+e2η1+η∗1+∆12

1+eη1+η∗1+δ1+e2(η1+η∗1 )+δ2
, e∆11 =

γα∗1(α
2
1+β2

1)
2κ11

,

e∆12 =
γβ∗1(α

2
1+β2

1)
2κ11

, eδ1 = γ(|α1|2+|β1|2)
κ11

, eδ2 =
γ2|α2

1+β2
1|2

4κ2
11

. The auxiliary function

is reduced as s = (α2
1 + β2

1)e
2η1 .

From the solution (5.14), it is easy to identify that the shape of the non-
degenerate coherently coupled fundamental soliton (5.14) is also governed
by two arbitrary complex parameters α1 and β1 and two distinct complex
wave numbers k1 and l1. The solution (5.14) admits various novel pro-
files , such as a quadruple-hump, a triple-hump, a double-hump and a
single-hump profiles under appropriate restrictions on the wave parame-
ters. This is due to the presence of additional wave number and the four
wave mixing effect. As an example, we display a nontrivial breathing type
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Figure 5.8: Breathing type triple-hump profile of nondegenerate soliton
in the CCNLS system.

triple-hump shaped soliton profiles in Fig. 5.8 for the parameters γ = 2,
k1 = 0.21 + 0.5i, l1 = 0.29 + 0.5i, α1 = 0.95 + 0.5i and β1 = 0.97 − i.
By tuning the relative separation distance it is also possible to separate a
single-hump and a double-hump from this triple-hump profile. However,
a distinct double-hump profile only occurs in the degenerate case. This
is due to the presence of a single wave number apart from two arbitrary
constants α1 and β1. A typical degenerate flattop soliton in q1 component
and a double-hump profile in q2 component is illustrated in Fig. 5.9 for
γ = 2, k1 = l1 = 0.5 + 0.5i, α1 = 0.72 + 0.5i and β1 = 0.5− 0.42i.

Figure 5.9: Flattop-double-hump profiles of degenerate solitons in the
CCNLS system.
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5.5 Conclusion

In this chapter we have deduced the nondegenerate one-soliton solution
for the mixed 2-CNLS system using the Hirota bilinearization technique.
The singular nature of the nondegenerate double hump solitons due to the
presence of defocusing nonlinearity has been identified. The non-singular
degenerate solitons under appropriate α parameter condition has been re-
tained. Further the nondegenerate Manakov solitons have been general-
ized to N-CNLS system which interestingly admits N-humped soliton pro-
file. This has been demonstrated with 3-CNLS (triple hump solitons) and
4-CNLS (quadraple hump solitons) systems. Also the stability of the triple
hump nondegenerate solitons has been studied using Crank-Nicolson nu-
merical algorithm against 5 percent and 10 percent white noise as pertur-
bation. Finally the nondegenerate fundamental solitons for 2- coherently
coupled nonlinear Schrödinger system have been derived through a non-
standard Hirota bilinearization procedure and their breathing nature have
been deduced.
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Chapter 6
Summary and Future works

6.1 Summary of the thesis

In this present thesis, we have systematically analysed the new class of
solitons, namely nondegenerate solitons in coupled nonlinear Schrödinger
family of systems. Initially, we have started with the derivation of some
of the coupled nonlinear Schrödinger family of systems which have more
physical importance. We have derived nondegenerate solitons using Hi-
rota bilinearization procedure which is the direct method to construct soli-
ton solutions. Here nondegenerate solitons have been derived with more
general form of seed solutions having nonidentical wave numbers for the
bilinear equations. As a result we have obtained more general class of
soliton solutions which exhibit interestingly multihump profile structures
which are not possible in the already known class of soltions in the stud-
ied coupled systems. We have also recaptured the already known class
of solitons with appropriate restriction on wave numbers. We designated
the later as degenerate solitons. Apart from the completely nondegenerate
and degenerate solitons, partially nondegenerate solitons have also been
identified with suitable wave number constraint. This set of partially non-
degenerate solitons allows the coexistence of nondegenerate and degener-
ate solitons simultaneously in all the components. As a result of our work,
we understand that the partially coherent solitons can be derived from our



154 6.2. Conclusions of the thesis

more general solutions with further constraints on the wave numbers. Sin-
gularity of solitons and breathing nature of solitons have also been identi-
fied with appropriate nonlinearities in the coupled nonlinear Schrödinger
models. Following the above, interesting collision dynamics have been
studied between nondegenerate solitons, and nondegenerate and degen-
erate solitons. Systematic asymptotic analysis have been carried out for
all these collision scenarios. The role of polarization unit vectors have
been clearly understood in the energy redistribution between the coupled
modes through our detailed analysis. We strongly believe that our stud-
ies on nondegenerate solitons in coupled Schrödinger equations may open
new doors in the theory of solitons. Further this may be very much use-
ful in soliton based optical communications with enhanced data carrying
capacity. In the following we summarize the concrete results which we
have obtained from our series of works on nondegenerate solitons and
then point out some of the future directions along similar lines.

6.2 Conclusions of the thesis

1. We have derived a general form of nondegenerate one-, two- and
three-soliton solutions for the Manakov model through Hirota bilin-
earization method. Such new class of solitons admit various interest-
ing profile structures. The double-hump formation is elucidated by
analysing the relative velocities of the modes of the solitons. Then
we have pointed out the coexistence of degenerate and nondegen-
erate solitons in the Manakov system by imposing a wave number
restriction on the obtained two soliton solution. Then we have elu-
cidated that the nondegenerate bright solitons possess novel colli-
sion properties. In particular, they exhibit shape preserving, shape
altering and shape changing collisions. However, by performing a
careful asymptotic analysis, we found that all these three types of
collision scenarios can be viewed as an elastic collision. For appropri-
ate choices of parameters, they also exhibit energy sharing collision
properties. Further, we have demonstrated that the degenerate vector
bright solitons of Manakov system can be captured by imposing ap-
propriate constraints on the wave numbers. In addition to the above,
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we have also explained the intriguing energy sharing collisions that
occur between the degenerate vector bright solitons through graphi-
cal demonstration and analytical calculations. We have also verified
the stability nature of double hump solitons even during collision
using Crank-Nicolson numerical method.

2. In this chapter, we have investigated the role of the four-wave mix-
ing effect on the structure of nondegenerate vector solitons and their
collision dynamics. The fundamental, as well as higher-order non-
degenerate vector soliton solutions, are derived through the Hirota
bilinearization method and their forms are rewritten in a compact
way using Gram determinants. Very interestingly, we found that
the presence of four-wave mixing effect induced the breathing vec-
tor soliton state in both the optical modes. Then, we have observed
that the nondegenerate solitons in the GCNLS system undergoes, in
general, novel shape changing collision when the four-wave mixing
effect strength is strong enough. On the other hand, for weak four-
wave mixing effect they undergoes mere shape preserving (or shape
altering) collision. Further, we have also analyzed the degenerate
soliton collision induced novel shape changing property of nonde-
generate vector soliton by deriving the partially nondegenerate two-
soliton solution. We believe that the results reported in this chap-
ter will be useful in nonlinear optics for manipulating light by light
through collision.

3. We have derived the nondegenerate one-,two- and three-soliton so-
lutions through the Hirota bilinear method for the two component
long-wave short-wave resonance interaction system. The obtained
soliton solutions are represented by Gram determinant forms. We
have shown that the appearance of an additional wave number in the
fundamental soliton solution brings out novel geometrical structures
under the condition k1I = l1I . In addition, for k1I 6= l1I , the soliton
number is increased by one in the long-wave component. The reason
for the creation of additional soliton in the long-wave component is
that the solitons in the two short-wave components nonlinearly in-
teract among themselves through the LW component. Further, we
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have observed that the nondegenerate solitons undergo three types
of collisions, namely shape preserving with a zero phase shift, shape
altering and shape changing collisions with finite phase shifts. The
mechanism of the nonpreserving nature of phase terms or relative
separation distances induces these novel shape altering and shape
changing collision scenarios. However, they can be viewed as elastic
collision only by taking time shifts in the asymptotic forms of non-
degenerate solitons. Surprisingly, such type of collision property has
not been observed in the degenerate counterpart though they belong
to elastic collision only. Besides the above, the emergence of a coexist-
ing nonlinear phenomenon in the two component LSRI system is also
explored. We found that the existence of a partially nondegenerate
soliton solution, which is a special case of the completely nondegen-
erate two-soliton solution, is responsible for the appearance of such a
nonlinear phenomenon, where the nondegenerate soliton simultane-
ously exists with the degenerate soliton. We have noticed that the ex-
plicit appearance of degenerate soliton induces two types of interest-
ing shape changing and energy sharing properties of nondegenerate
soliton. Finally, we recovered the energy exchanging solitons from
the nondegenerate solitons under degenerate limits. The present
study on nondegenerate solitons of long-wave short-wave resonance
interaction system will be useful in hydrodynamics, plasma physics,
nonlinear optics and Bose-Einstein condensates.

4. We have pointed out the singularity nature of nondegenerate funda-
mental soliton in mixed 2- coupled nonlinear Schrödinger equations.
we have also reported the existence of nondegenerate fundamen-
tal soliton solution for the N-coupled nonlinear Schrödinger equa-
tions. This new class of solitons exhibit multi-hump nature among
all the modes. The existence of such special multi-humped profiles
is demonstrated explicitly by considering the nondegenerate soliton
solution for the 3 and 4 component cases. Very interestingly we have
also shown the existence of partially nondegenerate soliton solutions
by restricting the wave numbers suitably. The already known energy
exchanging degenerate class of vector bright solitons is shown as a
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sub-case by imposing specific restriction on the wave numbers. Fi-
nally, the stability of multi-humped nondegenerate fundamental soli-
ton has also been verified numerically. We believe that the existence
of multi-peak power nature in the nondegenerate fundamental soli-
ton in multi-mode optical fibers may be relevant to increase the data
stream in multi-level optical communication applications. Then the
nondegenerate one soliton solution for 2- coherently coupled non-
linear Schrödinger equations have been derived using nonstandard
Hirota bilinear procedure and breathing type triple hump and flat
top soliton profiles were obtained.

6.3 Future works

1. We have studied the properties of fundamental nondegenerate soli-
ton solutions and their two-solitons collision dynamics for focussing
type 2-coupled nonlinear Schrödinger system/Manakov system, Gen-
eral coupled nonlinear Schrödinger system, 2-component long-wave
short-wave Resonance Interaction system. Two-soliton collision dy-
namics of CNLS generalizations, namely 3, 4 and N-coupled equa-
tions are still open problems. Also one can study the collision dy-
namics of higher order solitons of the above mentioned systems.

2. It is a quite obvious question that what kind of effects will nonde-
generate solitons show for other higher order nonlinear effects and
their higher dimensional counterparts.

3. Nondegenerate solitons study in artificial materials like negative in-
dex materials will be of great interest due to their fascinating prop-
erties and potential applications.

4. In this present work we have constructed only the bright soliton so-
lutions. One can derive dark soliton solutions also in appropriate
cases. This work can be further extended to other interesting local-
ized structures, namely breather and rogue wave solutions through
already known systematic procedures.
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5. One can also extend this study to other physically important sys-
tems like coupled Radhakrishnan-Kundu-Lakshmanan system, cou-
pled Lakshmanan-Porsezian-Daniel system and some of the coupled
real equations.

6. Mathematically this problem may be studied for more general class
of initial conditions through a sophisticated Riemann–Hilbert prob-
lem approach.

7. Also in the next step, one can extend this study using numerical and
experimental techniques which can suggest more useful results for
the application purpose.
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Nondegenerate Solitons in Manakov System
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It is known that the Manakov equation which describes wave propagation in two mode optical fibers,
photorefractive materials, etc., can admit solitons which allow energy redistribution between the modes on
collision that also leads to logical computing. In this Letter, we point out that the Manakov system can
admit a more general type of nondegenerate fundamental solitons corresponding to different wave
numbers, which undergo collisions without any energy redistribution. The previously known class of
solitons which allows energy redistribution among the modes turns out to be a special case corresponding
to solitary waves with identical wave numbers in both the modes and traveling with the same velocity. We
trace out the reason behind such a possibility and analyze the physical consequences.

DOI: 10.1103/PhysRevLett.122.043901

The discovery of solitons has created a new pathway to
understand the wave propagation in many physical systems
with nonlinearity [1]. In particular, the existence of optical
solitons in nonlinear Kerr media [2] provoked the inves-
tigation on solitons from different perspectives, particularly
from the applications point of view. By generalizing the
waves propagating in an isotropic medium [3] to an aniso-
tropic medium, a pair of coupled equations for orthogonally
polarized waves has been obtained by Manakov [4,5] as

iqjz þ qjtt þ 2
X2
p¼1

jqpj2qj ¼ 0; j ¼ 1; 2; ð1Þ

where qj, j¼1, 2, describe orthogonally polarized complex
waves. Here the subscripts z and t represent the normalized
distance and retarded time, respectively. Equation (1) also
appears in many physical situations such as single optical
field propagation in birefringent fibers [6], self-trapped
incoherent light beam propagation in a photorefractive
medium [7–9], and so on. The generalization of Eq. (1) to
arbitrary N waves is useful to model optical pulse propa-
gation in multimode fibers [10]. It has been identified [4]
that the polarization vectors of the solitons change when
orthogonally polarized waves nonlinearly interact with
each other, leading to an energy exchange interaction
between the modes [11]. The experimental observation
of the latter has been demonstrated in Refs. [12–14]. The
shape-changing collision property of such waves, which
we designate here as a degenerate polarized soliton
propagating with identical velocity and wave number in
the two modes, gave rise to the possibility of constructing
logic gates leading to all-optical computing at least in a
theoretical sense [15–17]. Energy-sharing collisions
among the optical vector solitons have been explored
[16] by constructing multisoliton solutions explicitly to

the multicomponent nonlinear Schrödinger equations.
Furthermore, it has been shown that the multisoliton
interaction process satisfies the Yang-Baxter relation
[18]. It is clear from these studies that the shape-changing
collision that occurs among the solitons with identical wave
numbers in all the modes has been well understood.
However, to our knowledge, studies on solitons with
nonidentical wave numbers in all the modes have not been
considered so far. Consequently, one would like to explore
the role of such an additional wave number(s) on the soliton
structures and collision scenario as well.
In the contemporary studies, a new class of multihump

solitons has been identified in different physical situations. In
birefringent dispersive nonlinear media, asymmetric double-
hump–single-hump frozen states have been obtained [19].
Double-hump structure has been observed for the Manakov
equation by considering two soliton solutions [20,21]. The
first experimental observation of multihump solitons was
demonstratedwhen the self-trapped incoherentwave packets
propagate in a dispersive nonlinear medium [22]. These
unusual solitons have been found in various nonlinear
coupled fieldmodels [23]. The stability ofmultihumpoptical
solitons has also been investigated in the case of a saturable
nonlinear medium [24]. It is reported that in such a medium
both two- and three-hump solitons do not survive after
collision. N-self-trapped multihumped partially coherent
solitons have also been explored in a photorefractivemedium
[25]. The coherent coupling between copropagating fields
also gives rise to double-hump solitons in the coherently
coupled nonlinear Schrödinger system [26]. In addition to the
above, the dynamics of multihump structured solitons have
also been studied in certain dissipative systems [27–30].
A double-humpphase-lockedhigher-order vector soliton has
been observed, and its dynamics has been investigated in
mode-locked fiber lasers [27,28]. Similarly in deployed fiber
systems and fiber laser cavities, double-hump solitons have
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been observed during the buildup process of soliton mole-
cules [31,32].
Motivated by the above, in this Letter, we present a new

class of generalized soliton solutions for the Manakov
model, exhibiting various interesting structures under
general parametric conditions. A fundamental double-
hump soliton (as well as other structures described below)
sustains its shape even after a collision with another similar
soliton. This behavior is in contrast to the one which exists
in saturable nonlinear media, where two and three humps
do not survive after a collision. The soliton solutions
presented in this Letter also have both symmetric and
asymmetric natures analogous to the partially coherent
solitons in a photorefractive medium. Under a specific
parametric restriction on wave numbers, they degenerate
into the standard Manakov solitons exhibiting shape-
changing collisions [11,16].
To explore the new family of soliton solutions for

Eq. (1), we consider the bilinear forms of Eq. (1) as
ðiDzþD2

t ÞgðjÞf¼0, j¼1, 2, and D2
t ff¼2

P
2
n¼1g

ðnÞgðnÞ�,
which are obtained through the dependent variable trans-
formations qj ¼ gðjÞ=f, j ¼ 1, 2. Here Dz and Dt are the
well-known Hirota bilinear operators [33], and gðjÞðz; tÞ are
complex functions, whereas f is a real function, and �
denotes complex conjugation. In principle, multisoliton
solutions of Eq. (1) can be constructed by solving recur-
sively the system of linear partial differential equations

which results by substituting the series expansions gðjÞ ¼
ϵgðjÞ1 þ ϵ3gðjÞ3 þ � � � and f ¼ 1þ ϵ2f2 þ ϵ4f4 þ � � � for the
unknown functions gðjÞ and f in the bilinear forms. Here ϵ
is a formal expansion parameter.
Considering two different seed solutions for gð1Þ1 and gð2Þ1

as αð1Þ1 eη1 and αð2Þ1 eξ1 , respectively, where η1 ¼ k1tþ ik21z,

ξ1 ¼ l1tþ il21z, and α
ðjÞ
1 , j ¼ 1, 2, k1 and l1 are, in general,

independent complex wave numbers, to the resultant linear

partial differential equations ðiDzþD2
t ÞgðjÞ1 1¼0, j ¼ 1, 2,

which arise in the lowest order of ϵ, the series expansion

gets terminated as gðjÞ¼ϵgðjÞ1 þϵ3gðjÞ3 and f¼1þϵ2f2þϵ4f4.
The explicit forms of the unknown functions present in the
truncated series expansions constitute a new fundamental
one soliton solution to Eq. (1) in the form

q1 ¼ ðαð1Þ1 eη1 þ eη1þξ1þξ�
1
þΔð1Þ

1 Þ=D1;

q2 ¼ ðαð2Þ1 eξ1 þ eη1þη�
1
þξ1þΔð2Þ

1 Þ=D1; ð2Þ

where D1 ¼ 1þ eη1þη�
1
þδ1 þ eξ1þξ�

1
þδ2 þ eη1þη�

1
þξ1þξ�

1
þδ11 ,

eδ1 ¼ ½jαð1Þ1 j2=ðk1 þ k�1Þ2�, eδ2 ¼ ½jαð2Þ1 j2=ðl1 þ l�1Þ2�, eδ11 ¼
f½jk1 − l1j2jαð1Þ1 j2jαð2Þ1 j2�=½ðk1 þ k�1Þ2ðk�1 þ l1Þðk1 þ l�1Þðl1þ
l�1Þ2�g, eΔ

ð1Þ
1 ¼ f½ðk1 − l1Þαð1Þ1 jαð2Þ1 j2�=½ðk1 þ l�1Þðl1 þ l�1Þ2�g,

and eΔ
ð2Þ
1 ¼ −f½ðk1 − l1Þjαð1Þ1 j2αð2Þ1 �=½ðk1 þ k�1Þ2ðk�1 þ l1Þ�g.

From the above, it is evident that the fundamental solitons

propagating in the two modes are characterized by four

arbitrary complex parameters k1, l1, and αðjÞ1 , j ¼ 1, 2.
These nontrivial parameters determine the shape, ampli-
tude, width, and velocity of the solitons which propagate in
the Kerr media or photorefractive media. The amplitudes of
the solitons that are present in the two modes q1 and q2 are
governed by the real parts of the wave numbers k1 and l1,
whereas velocities are described by the imaginary parts of

them. Note that αðjÞ1 , j ¼ 1, 2, are related to the unit
polarization vectors of the solitons in the two modes.
To identify certain special features of the obtained four

complex parameter family of soliton solution (2), we first
consider (for simplicity of analysis) the special case where
the imaginary parts of the wave numbers k1I ¼ l1I but with
k1R ≠ l1R. The latter case yields at least the following four
different symmetric wave profiles, apart from similar
asymmetric wave profiles, from solution (2) by incorpo-
rating the condition k1R < l1R with further conditions and
with suitable choices of parameters (examples given in

Ref. [34]): (i) single-hump–single-hump soliton, αð1Þ1R >

αð2Þ1R and αð1Þ1I ¼ αð2Þ1I ; (ii) double-hump–single-hump soliton,

αð1Þ1R ¼ αð2Þ1R and αð1Þ1I < αð2Þ1I ; (iii) double-hump-flattop sol-

iton, αð1Þ1R ¼ αð2Þ1R and αð1Þ1I ≈ αð2Þ1I ; (iv) double-hump–double-
hump soliton, αð1Þ1R > αð2Þ1R and αð1Þ1I ¼ αð2Þ1I . Similar condi-
tions can be given for k1R > l1R also. We have not listed the
asymmetric wave profiles here for brevity, which also
exhibit the properties discussed below. A similar classi-
fication can be made for the case k1I ≠ l1I, so that the
solitons propagate in the two modes with different veloc-
ities and exhibit similar interaction properties. These will be
discussed separately.
To illustrate the symmetric case, we display only the

intensity profile of the double-hump soliton in Fig. 1. We
call the solitons that have two distinct wave numbers in
both the modes as in Eq. (2) nondegenerate solitons (which
can exist as different profiles as described above), while the
solitons which have identical wave numbers in all the
modes (which exist only in single-hump form) are des-
ignated as degenerate solitons. In particular, in the special
case when k1 ¼ l1, the forms of qj given in Eq. (2)
degenerate into the standard bright soliton form [4,11]

qj ¼
αðjÞ1 eη1

1þ eη1þη�
1
þR ; j ¼ 1; 2; ð3Þ

which can be rewritten as

qj ¼ k1RÂjeiη1Isech

�
η1R þ R

2

�
; ð4Þ

where η1R ¼ k1Rðt − 2k1IzÞ, η1I ¼ k1Itþ ðk21R − k21IÞz,
Âj ¼ f½αðjÞ1 �=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjαð1Þ1 j2 þ jαð2Þ1 j2Þ

q
g,
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eR ¼ ½ðjαð1Þ1 j2 þ jαð2Þ1 j2Þ=ðk1 þ k�1Þ2�, and j ¼ 1, 2. Note
that the above fundamental bright soliton always prop-
agates in both the modes q1 and q2 with the same velocity
2k1I . The polarization vectors ðÂ1; Â2Þ† have different
amplitudes and phases, unlike the nondegenerate case

where they have only different phases ½A1¼ðαð1Þ1 =αð1Þ�1 Þ1=2;
A2¼ðαð2Þ1 =αð2Þ�1 Þ1=2�† [vide Eq. (2)] but the same unit
amplitude. We call the above type of soliton (3) or (4) a
degenerate soliton [35].
In order to understand the collision dynamics of the

soliton solution of the kind (2), it is essential to construct
the corresponding two-soliton solution. In the latter case,
the series expansion for qj, j ¼ 1, 2, gets terminated as

gðjÞ ¼ ϵgðjÞ1 þ ϵ3gðjÞ3 þ ϵ5gðjÞ5 þ ϵ7gðjÞ7 and f ¼ 1þ ϵ2f2 þ
ϵ4f4 þ ϵ6f6 þ ϵ8f8. The obtained explicit forms of gðjÞ and
f, j ¼ 1, 2, in the above truncated expansions constitute the
nondegenerate two-soliton solution of Eq. (1), which
reduces to the known form given in Ref. [11] for
ki ¼ li, i ¼ 1, 2. The complicated profiles of the present
nondegenerate two-soliton solution are governed by eight

arbitrary complex parameters kj, lj, α
ðjÞ
1 , and αðjÞ2 , j ¼ 1, 2

(see Supplemental Material [34]).
To study the collision dynamics between the nondegen-

erate two solitons, as an example, we again confine
ourselves to the case of symmetric double-hump solitons
by fixing the imaginary parts of the wave numbers as
kiI ¼ liI, i ¼ 1, 2. For other types also, a similar analysis
has been carried out. By carefully examining the behavior
of the obtained nondegenerate two-soliton solution in the
asymptotic regimes, z → �∞, we find that the phases of
the fundamental nondegenerate double-hump solitons in
both the modes change during the collision process, while
the intensities remain unchanged. This can be verified by
defining the transition amplitudes as Tl

j ¼ ðAlþ
j =Al−

j Þ,
j ¼ 1, 2 and l ¼ 1, 2, where subscript j represents the
mode and superscript l� denote the nondegenerate soliton
numbers 1 and 2 designated as S1 and S2, respectively, in
the asymptotic regimes z → �∞.
In the nondegenerate double-hump soliton case, the

amplitudes of the solitons S1 and S2 in the first mode

(2k1RA1−
1 , f½ðk1−k2Þðk2−l1Þ1=2ðk1þk�2Þðk�2þl1Þ1=2�=½ðk�1−

k�2Þðk�2−l�1Þ1=2ðk�1þk2Þðk2þl�1Þ1=2�g2k2RA1−
2 ) before a

collision change to (f½ðk1− k2Þðk1 − l2Þ1=2ðk�1þ k2Þ×
ðk�1þ l2Þ1=2�=½ðk�1 − k�2Þðk�1− l�2Þ1=2ðk1þ k�2Þðk1þ l�2Þ1=2�g×
2k1RA

1þ
1 , 2k2RA

1þ
2 ) after a collision, where A1�

1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½αð1Þ1 =αð1Þ

�
1 �

q
and A1�

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½αð1Þ2 =αð1Þ

�
2 �

q
. Similarly in the

second component, the amplitudes of the solitons S1 and S2
are (2l1RA2−

1 , f½ðl1 − l2Þðk1 − l2Þ1=2ðl1 þ l�2Þðk1 þ l�2Þ1=2�=
ðl�1 − l�2Þðk�1 − l�2Þ1=2ðk�1 þ l2Þ1=2ðl�1 þ l2Þg2l2RA2−

2 ) before
a collision which change to (f½ðl1 − l2Þðl1 − k2Þ1=2 ×
ðl�1 þ l2Þðk2 þ l�1Þ1=2�=½ðl�1 − l�2Þðk�2 − l�1Þ1=2ðl1 þ l�2Þ×
ðk�2 þ l2Þ1=2�g2l1RA2þ

1 , 2l2RA
2þ
2 ) after a collision, where

A2�
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½αð2Þ1 =αð2Þ

�
1 �

q
and A2�

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½αð2Þ2 =αð2Þ

�
2 �

q
. However,

the intensity redistribution does not occur among the modes
of the solitons, which can be confirmed by taking the
absolute squares of the transition amplitudes which turn
out to be unity, that is, jTl

jj2 ¼ 1. This shows that, in the
nondegenerate case, ki ≠ li, i ¼ 1, 2, the polarization
vectors do not contribute to intensity redistribution among
the modes. Consequently, the double-hump solitons in each
mode exhibit a shape-preserving collision corresponding to
an elastic nature. This is illustrated in Fig. 2 for the
parameter values given there by actually plotting the
two-soliton solution (given in Supplemental Material
[34]). From this figure, it is easy to identify that the
intensity or energy of the double-hump solitons in the two
modes propagates without change after a collision with
another double-hump soliton except for a phase shift.
A similar scenario exists generally for all other cases of
ki ≠ li, i ¼ 1, 2, the details of which will be published
elsewhere. We also find that the phases of the soliton
S1 in the two modes change from (f½Δ11 − ρ1�=2g,
f½γ11 − ρ2�=2g) to (f½Δ51 −Φ22�=2g, f½γ51 − χ22�=2g) dur-
ing the collision process, while the phases of soliton S2
change from (f½Δ15 − Θ11�=2g, f½γ15 − ν11�=2g) to
(f½Λ22 − ρ̂1�=2g, f½μ22 − ρ̂2�=2g) after a collision. Here

ρj ¼ log αðjÞ1 , ρ̂j ¼ log αðjÞ2 , j ¼ 1; 2, Δ11, γ11, Δ51, γ51,
Δ15, Θ11, γ15, ν11, Λ22 and μ22 are constants (see [34]).

FIG. 1. Nondegenerate symmetric double-hump one soliton in
the two modes: (a) and (b) denote the intensities of the
components q1 and q2, respectively. The parameters are chosen

as k1 ¼ 0.316þ 0.5i, l1 ¼ 0.333þ 0.5i, αð1Þ1 ¼ 0.49þ 0.45i,

and αð2Þ1 ¼ 0.45þ 0.45i.

FIG. 2. Nondegenerate solitons exhibiting shape-preserving
collisions: (a) and (b) denote the elastic collision of two
symmetric double-hump solitons for the parametric values
k1 ¼ 0.333þ 0.5i, k2 ¼ 0.3–2.2i, l1 ¼ 0.3þ 0.5i, l2 ¼ 0.333–

2.2i, αð1Þ1 ¼0.45þ0.45i, αð1Þ2 ¼0.49þ0.45i, αð2Þ1 ¼ 0.49þ 0.45i,

and αð2Þ2 ¼ 0.45þ 0.45i.
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In addition to the above, we have also observed a similar
shape-preserving collision in the case of a symmetric
single-hump soliton when it collides with another identical
soliton. The flattop soliton also preserves its structure
when it collides with a symmetric double-hump soliton.
However, while testing the stability property of a double-
hump soliton interacting with a single-hump soliton, we
come across a slightly different collision scenario. During
this interaction process, the symmetric double-hump sol-
iton experiences a strong perturbation due to the collision
with the symmetric single-hump soliton. The result of their
collision is reflected only in a change in the shape of the
symmetric double-hump soliton into a slightly asymmetric
form but without a change in energy. However, the
symmetric single-hump soliton does not undergo any
change (see [34]).
In contrast to the nondegenerate case, the nonlinear

superposition of degenerate fundamental solitons (ki ¼ li,
i ¼ 1, 2) in the Manakov system exhibits an interesting
shape-changing collision due to intensity redistribution
among the modes as shown in Ref. [11]. The intensity
redistribution occurs in the degenerate case due to the
arbitrary polarization vectors in the two modes getting
mixed up, which is illustrated in Fig. 3, where the intensity
redistribution occurs because of the enhancement or sup-
pression of intensity in any one of the modes in either one
of the degenerate solitons with a corresponding suppression
or enhancement of intensity of the same soliton; see Eq. (4)
[11]. To hold the energy conservation between the two
modes, the intensities of the two solitons S1 and S2 change
appropriately. It is well known that the degenerate soliton
or Manakov soliton [Eq. (3)] reported in Refs. [10,11], in
general, exhibits a shape-changing collision through energy
redistribution among the modes (except for the very special

case ½αð1Þ1 =αð1Þ2 � ¼ ½αð2Þ1 =αð2Þ2 � [10,16], where elastic colli-
sion occurs). We have also verified the elastic nature of a
double-hump soliton collision using the Crank-Nicolson
method [36].
We also further wish to point out that, considering the

notion dissipative solitons, they also exhibit an elastic
collision property. However, this collision scenario, for
example, in a fiber laser cavity, is entirely different from the

one that occurs in our present case. In the fiber laser cavity,
during the collision between the soliton pair (bound state or
doublet) and single-soliton state (singlet), the single soliton
destroys the bound state, but another pair is formed that
moves away with the same velocity, leaving one of the
solitons of the previously moving pair in rest [37,38].
During this collision scenario, the energy or momentum is
not conserved in the dissipative system (fiber laser cavity).
To bring the above elastic collision, it is essential to set up
the binding energy of solitons to be nonzero, and the
difference in velocities of the pair and the singlet is fixed
and must be the same before and after collision [37,38].
Also, no explicit analytical form of such a dissipative
soliton is available for a direct analysis.
In principle, one can construct the N-soliton solution of

the nondegenerate type to the Manakov system by follow-
ing the procedure given above. For the N-nondegenerate
soliton, the power series expansion should be of the form

gðjÞ ¼ P
2N−1
n¼1 ϵ2n−1gðjÞ2n−1 and f ¼ 1þP

2N
n¼1 ϵ

2nf2n. The
shape of the profile will be determined by the 4N complex
parameters which are present in the N-soliton solution. The
degenerate soliton solutions can be recovered from the
nondegenerate N-soliton solution by fixing the wave
numbers as ki ¼ li, i ¼ 1; 2;…; N. The symmetric profile
of the multinondegenerate soliton can be obtained by fixing
the imaginary parts as kiI ¼ liI, i ¼ 1; 2;…; N. We also
point out that the symmetric and asymmetric cases of the
nondegenerate soliton solution given in Eq. (2) can be
compared with a partially incoherent soliton in a photo-
refractive medium [25]. The profile of the partially coherent
soliton is determined by only three real parameters for
N ¼ 2 as a special case of the degenerate soliton [10,16]
(Manakov case), whereas in the present nondegenerate
case, the profiles of the single soliton are governed by four
complex parameters. In the incoherent limit (the number of
modes is infinity), the shape of the partially coherent
soliton can be arbitrary, since the number of parameters
involved in the underlying analytical form is N-free real
parameters. However, in the incoherent limit, the presence
of 2N free complex parameters in the nondegenerate
fundamental one soliton would bring in more complex
shapes than the above-mentioned partially coherent soliton
reported in the photorefractive medium.
To observe the existence of nondegenerate solitons (2)

experimentally, one may consider the mutual-incoherence
procedure given in Refs. [12,22] with two different laser
sources of different characters (instead of a single laser
source). Using polarizing beam splitters, the extraordinary
beams coming out from the two laser sources can be further
split into four individual incoherent fields. These four fields
can act as two nondegenerate individual solitons in the two
modes. Furthermore, the collision angle must be large
enough to observe the elastic collision between these two
nondegenerate solitons in both the modes [12,13]. The
experimental procedure with a single laser can be used to

FIG. 3. Degenerate solitons exhibiting a shape-changing colli-
sion: (a) and (b) denote the energy-sharing collision in the two
modes for the parametric values k1 ¼ l1 ¼ 1þ i, k2 ¼ l2 ¼
1.51 − 1.5i, αð1Þ1 ¼ 0.5þ 0.5i, and αð1Þ2 ¼ αð2Þ1 ¼ αð2Þ2 ¼ 1.
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observe the Manakov solitons and multimode multihump
solitons that arise in a dispersive nonlinear medium [12,22].
Finally, it is essential to point out the application of our

above-reported soliton solutions. Our results open up a new
possibility to investigate nondegenerate solitons in both
integrable and nonintegrable systems and will give rich
coherent structures when the four-wave-mixing phenome-
non is taken into account. Our studies can also be extended
to fiber arrays and multimode fibers where the pulse
propagation is described by Manakov-type equations.
Experimental observations of Manakov solitons in
AlGaAs planar wave guides [13] and multihump solitons
in the multimode self-induced wave guides [22] give the
impression that our results will be important to an inter-
action of the optical field in coupled field models.
The shape-preserving collision which occurs among the
nondegenerate solitons can be used for the optical com-
munication process. The double-hump nature of the non-
degenerate solitons can be useful for the information
process as described in the concept of a soliton molecule
[31]. As far as the degenerate soliton is concerned, it has
already been shown that it is useful in the computation
process [15,16]. We note that under the appropriate con-
ditions, namely, k1I ≈ k2I and l1I ≈ l2I , the nondegenerate
solitons reported in the present conservative system can be
seen as the soliton molecule observed in the deployed fiber
systems and in fiber laser cavities [31,32,39–42].
In conclusion, we have shown that the Manakov model

under a general physical situation admits interesting non-
degenerate solitons exhibiting shape-preserving collisions,
thereby leading to explain the interaction of the elastic
nature of a light-light interaction under general initial
conditions. The fascinating energy-sharing collisions
exhibiting the nonlinear superposition of degenerate multi-
solitons can be extracted from the nondegenerate soliton
solutions under the specific physical restrictions, which
leads to the construction of optical logic gates [15].
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S.1. NONDEGENERATE TWO SOLITON SOLUTION

To explore the nondegenerate two-soliton solution of Manakov system, we adopt the Hirota’s

bilinear method which we have discussed in the main text. We find that the Hirota’s series expan-

sion gets truncated for the nondegenerate two-soliton solution as

g(j) = εg
(j)
1 + ε3g

(j)
3 + ε5g

(j)
5 + ε7g

(j)
7 , j = 1, 2,

f = 1 + ε2f2 + ε4f4 + ε6f6 + ε8f8. (1)

The following nondegenerate two soliton solution of Manakov system can be obtained by finding

the unknown functions that are present in the above series expansions,

qj =
g(j)

f
, j = 1, 2,

where the explicit forms of g(j) and f are given by

g(1) =
2∑
j=1

α
(1)
j eηj + eη1

( 2∑
i,j=1

eξi+ξ
∗
j +∆ij + eη

∗
1+η2+∆13 + eξ1+ξ∗1+ξ2+ξ∗2+∆14

)
+eη2

( 2∑
i,j=1

eξi+ξ
∗
j +Λij + eη1+η∗2+∆31 + eξ1+ξ∗1+ξ2+ξ∗2+∆41

)
+eη1+η2+η∗1

( 2∑
i,j=1

eξi+ξ
∗
j +Θij + eξ1+ξ∗1+ξ2+ξ∗2+∆15

)
+eη1+η2+η∗2

( 2∑
i,j=1

eξi+ξ
∗
j +Φij + eξ1+ξ∗1+ξ2+ξ∗2+∆51

)
, (2a)

g(2) =
2∑
j=1

α
(2)
j eξj + eξ1

( 2∑
i,j=1

eηi+η
∗
j +γij + eξ

∗
1+ξ2+γ13 + eη1+η∗1+η2+η∗2+γ14

)
+eξ2

( 2∑
i,j=1

eηi+η
∗
j +µij + eξ1+ξ∗2+γ31 + eη1+η∗1+η2+η∗2+γ41

)
+eξ1+ξ2+ξ∗1

( 2∑
i,j=1

eηi+η
∗
j +νij + eη1+η∗1+η2+η∗2+γ15

)
+eξ1+ξ2+ξ∗2

( 2∑
i,j=1

eηi+η
∗
j +χij + eη1+η∗1+η2+η∗2+γ51

)
, (2b)

2



f = 1 + eη1+η∗1
(
eδ1 +

2∑
i,j=1

eξi+ξ
∗
j +δij + eξ1+ξ∗1+ξ2+ξ∗2+δ13

)
+ eη

∗
1+η2

(
eδ2

+
2∑

i,j=1

eξi+ξ
∗
j +ϑij + eξ1+ξ∗1+ξ2+ξ∗2+δ14

)
+ eη1+η∗2

(
eδ

∗
2 +

2∑
i,j=1

eξi+ξ
∗
j +ϕij

+eξ1+ξ∗1+ξ2+ξ∗2+δ15
)

+ eη2+η∗2
(
eδ3 +

2∑
i,j=1

eξi+ξ
∗
j +ςij + eξ1+ξ∗1+ξ2+ξ∗2+δ16

)
+eη1+η∗1+η2+η∗2

( 2∑
i,j=1

eξi+ξ
∗
j +φij + eδ17 + eξ1+ξ∗1+ξ2+ξ∗2+δ18

)
+

2∑
i,j=1

eξi+ξ
∗
j +ψij

+eξ1+ξ∗1+ξ2+ξ∗2+δ19 (2c)

The constants that are present in the above two-soliton solution are given below,

e∆11 =
%11α

(1)
1 α

(2)
1 α

(2)∗
1

τ11l11

, e∆21 =
%12α

(1)
1 α

(2)∗
1 α

(2)
2

τ11l21

, e∆12 =
%11α

(1)
1 α

(2)
1 α

(2)∗
1

τ12l12

,

e∆22 =
%12α

(1)
1 α

(2)
2 α

(2)∗
2

τ12l22

, eΛ11 =
%21α

(1)
2 α

(2)
1 α

(2)∗
1

τ21l11

, eΛ21 =
%22α

(1)
2 α

(2)
2 α

(2)∗
1

τ21l21

,

eΛ12 =
%21α

(1)
2 α

(2)
1 α

(2)∗
2

τ22l12

, eΛ22 =
%22α

(1)
2 α

(2)
2 α

(2)∗
2

τ22l22

, e∆13 =
θ2

1α
(1)
1 α

(1∗)
1 α

(1)
2

κ21κ11

,

e∆31 =
θ2

1α
(1)
1 α

(1)
2 α

(1)∗
2

κ12κ22

, eγ11 =
−%11α

(1)
1 α

(1∗)
1 α

(2)
1

τ ∗11κ11

, eγ21 =
−%21α

(1)∗
1 α

(2)
1 α

(1)
2

τ ∗11κ21

,

eγ12 =
−%11α

(1)
1 α

(2)
1 α

(1)∗
2

τ ∗21κ12

, eγ22 =
−%21α

(1)
2 α

(1)∗
2 α

(2)
1

τ ∗21κ22

, eµ11 =
−%12α

(1)
1 α

(1)∗
1 α

(2)
2

τ ∗12κ11

,

eµ21 =
−%22α

(1)∗
1 α

(1)
2 α

(2)
2

τ ∗12κ21

, eµ12 =
−%12α

(1)
1 α

(1)∗
2 α

(2)
2

τ ∗22κ12

, eµ22 =
−%22α

(1)
2 α

(1)∗
2 α

(2)
2

τ ∗22κ22

,

eγ13 =
θ2

2α
(2)
1 α

(2)∗
1 α

(2)
2

l11l21

, eγ31 =
θ2

2α
(2)
1 α

(2)∗
2 α

(2)
2

l12l22

, eδ1 =
α

(1)
1 α

(1)∗
1

κ11

, eδ2 =
α

(1)
2 α

(1)∗
1

κ21

,

eΘ11 =
θ2

1%11%
∗
11%21α

(1)
1 α

(1)∗
1 α

(2)
1 α

(2)∗
1 α

(1)
2

κ11κ21τ11τ ∗11τ21l11

, eΘ21 =
θ2

1%12%
∗
11%22α

(1)
1 α

(1)∗
1 α

(2)∗
1 α

(1)
2 α

(2)
2

κ11κ21τ11τ ∗12τ21l21

,

eΘ12 =
θ2

1%11%
∗
12%21α

(1)
1 α

(1)∗
1 α

(2)
1 α

(1)
2 α

(2)∗
2

κ11κ21τ12τ ∗11τ22l12

, eΘ22 =
θ2

1%12%
∗
12%22α

(1)
1 α

(1)∗
1 α

(1)
2 α

(2)∗
2 α

(2)
2

κ11κ21τ12τ ∗12τ22l22

,

eΦ11 =
θ2

1%11%
∗
21%21α

(1)
1 α

(2)∗
1 α

(2)
1 α

(1)∗
2 α

(1)
2

κ12κ22τ11τ ∗21τ21l11

, eΦ21 =
θ2

1%12%
∗
21%22α

(1)
1 α

(2)∗
1 α

(1)
2 α

(1)∗
2 α

(2)
2

κ12κ22τ11τ ∗22τ21l21

,

eΦ12 =
θ2

1%11%21%
∗
22α

(1)
1 α

(2)
1 α

(1)
2 α

(1)∗
2 α

(2)∗
2

κ12κ22τ12τ ∗21τ22l12

, eΦ22 =
θ2

1%12%22%
∗
22α

(1)
1 α

(1)
2 α

(1)∗
2 α

(2)
2 α

(2)∗
2

κ12κ22τ12τ ∗22τ22l22

,

e∆14 =
θ2

2θ
2∗
2 %11%12α

(1)
1 α

(2)
1 α

(2)∗
1 α

(2)
2 α

(2)∗
2

τ11τ12l11l12l21l22

, e∆41 =
θ2

2θ
2∗
2 %21%22α

(2)
1 α

(2)∗
1 α

(1)
2 α

(2)
2 α

(2)∗
2

τ21τ22l11l12l21l22

,

eν11 =
−θ2

2%11%
∗
11%12α

(1)
1 α

(1)∗
1 α

(2)
1 α

(2)∗
1 α

(2)
2

κ11l11τ11τ ∗11τ
∗
12l21

, eν21 =
−θ2

2%21%
∗
11%22α

(1)∗
1 α

(2)
1 α

(2)∗
1 α

(1)
2 α

(2)
2

κ21τ21τ ∗11τ
∗
12l11l21

,

3



eν12 =
−θ2

2%11%
∗
21%12α

(1)
1 α

(2)∗
1 α

(2)
1 α

(1)∗
2 α

(2)
2

κ12τ11τ ∗21τ
∗
22l11l21

, eν22 =
−θ2

2%21%
∗
21%22α

(2)
1 α

(2)∗
1 α

(1)
2 α

(1)∗
2 α

(2)
2

κ22τ21τ ∗21τ
∗
22l11l21

,

eχ11 =
−θ2

2%11%
∗
12%12α

(1)
1 α

(1)∗
1 α

(2)
1 α

(2)∗
2 α

(2)
2

κ11τ ∗11τ
∗
12τ12l12l22

, eχ21 =
−θ2

2%21%
∗
12%22α

(1)
2 α

(1)∗
1 α

(2)
1 α

(2)∗
2 α

(2)
2

κ21τ ∗11τ
∗
12τ22l12l22

,

eχ12 =
−θ2

2%11%
∗
22%12α

(1)
1 α

(1)∗
2 α

(2)
1 α

(2)∗
2 α

(2)
2

κ12τ ∗21τ
∗
22τ12l12l22

, eχ22 =
−θ2

2%21%
∗
22%22α

(1)
2 α

(1)∗
2 α

(2)
1 α

(2)∗
2 α

(2)
2

κ22τ ∗21τ
∗
22τ22l12l22

,

eγ14 =
θ2

1θ
2∗
1 %11%21α

(1)
1 α

(2)
1 α

(1)∗
1 α

(1)
2 α

(1)∗
2

τ ∗11τ
∗
21κ11κ12κ21κ22

, eγ41 =
θ2

1θ
2∗
1 %12%22α

(1)
1 α

(1)
2 α

(1)∗
1 α

(1)∗
2 α

(2)
2

τ ∗12τ
∗
22κ11κ12κ21κ22

,

e∆15 =
θ2

1θ
2
2θ

2∗
2 %11%21%12%22%

∗
11%
∗
12α

(1)
1 α

(1)∗
1 α

(2)
1 α

(2)∗
1 α

(1)
2 α

(2)
2 α

(2)∗
2

κ11κ21τ11τ ∗11τ21τ12τ ∗12τ22l11l12l21l22

, eδ3 =
|α(1)

2 |2

κ22

,

e∆51 =
θ2

1θ
2
2θ

2∗
2 %11%21%12%22%

∗
21%
∗
22α

(1)
1 α

(2)∗
1 α

(2)
1 α

(1)∗
2 α

(1)
2 α

(2)
2 α

(2)∗
2

κ12κ22τ11τ ∗21τ21τ12τ ∗22τ22l11l12l21l22

, eψ11 =
|α(2)

1 |2

l11

,

eγ15 =
θ2

1θ
2
2θ

2∗
1 %11%21%12%22%

∗
21%
∗
12α

(1)
1 α

(1)∗
1 α

(2)
1 α

(2)∗
1 α

(1)
2 α

(2)
2 α

(1)∗
2

κ11κ21κ12κ22τ11τ ∗11τ21τ ∗12τ
∗
22τ
∗
21l11l21

, eψ21 =
α

(2)∗
1 α

(2)
2

l21

,

eγ51 =
θ2

1θ
2
2θ

2∗
1 %11%21%12%22%

∗
22%
∗
12α

(1)
1 α

(1)∗
1 α

(2)
1 α

(1)∗
2 α

(1)
2 α

(2)
2 α

(2)∗
2

κ11κ21κ12κ22τ22τ ∗11τ12τ ∗12τ
∗
22τ
∗
21l12l22

, eψ12 =
α

(2)
1 α

(2)∗
2

l12

,

eδ18 =
θ2

1θ
2
2θ

2∗
1 θ

2∗
2 %11%21%12%22%

∗
11%
∗
12%
∗
21%
∗
22|α

(1)
1 |2|α

(2)
1 |2|α

(1)
2 |2|α

(2)
2 |2

κ11κ21κ12κ22|τ11|2|τ12|2|τ21|2|τ22|2l11l21l12l22

, eψ22 =
|α(2)

2 |2

l22

,

eδ11 =
|%11|2|α(1)

1 |2|α
(2)
1 |2

κ11|τ11|2l11

, eδ21 =
%12%

∗
11α

(1)
1 α

(1)∗
1 α

(2)
2 α

(2)∗
1

κ11τ11τ ∗12l21

, eδ12 =
%11%

∗
12α

(1)
1 α

(1)∗
1 α

(2)
1 α

(2)∗
2

κ11τ ∗11τ12l12

,

eδ22 =
|%12|2|α(1)

1 |2|α
(2)
2 |2

κ11|τ12|2l22

, eϑ11 =
%21%

∗
11α

(1)∗
1 |α(2)

1 |2α
(1)
2

κ21τ ∗11τ21l11

, eϑ21 =
%22%

∗
11α

(1)∗
1 α

(2)∗
1 α

(1)
2 α

(2)
2

κ21τ ∗12τ21l21

,

eϑ12 =
%21%

∗
12α

(1)∗
1 α

(2)
1 α

(1)
2 α

(2)∗
2

κ21τ ∗11τ22l12

, eϑ22 =
%22%

∗
12α

(1)∗
1 α

(2)
2 α

(1)
2 α

(2)∗
2

κ21τ ∗12τ22l22

, eϕ11 =
%11%

∗
21α

(1)
1 α

(2)
1 α

(2)∗
1 α

(1)∗
2

κ12τ ∗21τ11l11

,

eϕ21 =
%12%

∗
21α

(1)
1 α

(2)∗
1 α

(1)∗
2 α

(2)
2

κ12τ ∗22τ11l21

, eϕ12 =
%11%

∗
22α

(1)
1 α

(2)
1 α

(2)∗
2 α

(1)∗
2

κ12τ ∗21τ12l12

, eϕ22 =
%12%

∗
22α

(1)
1 α

(2)
2 α

(2)∗
2 α

(1)∗
2

κ12τ ∗22τ12l22

,

eς11 =
%21%

∗
21α

(2)
1 α

(2)∗
1 α

(1)
2 α

(1)∗
2

κ22τ ∗21τ21l11

, eς21 =
%22%

∗
21α

(2)∗
1 α

(1)∗
2 α

(1)
2 α

(2)
2

κ22τ ∗22τ21l21

, eς12 =
%21%

∗
22α

(2)
1 α

(2)∗
2 α

(1)
2 α

(1)∗
2

κ22τ ∗21τ22l12

,

eς22 =
%22%

∗
22α

(2)
2 α

(2)∗
2 α

(1)
2 α

(1)∗
2

κ22τ ∗22τ22l22

, eδ17 =
θ2

1θ
2∗
1 |α

(1)
1 |2|α

(1)
2 |2

κ12κ21κ11κ22

, eδ19 =
θ2

2θ
2∗
2 |α

(2)
1 |2|α

(2)
2 |2

l12l21l11l22

,

eφ11 =
θ2

1θ
2∗
1 %11%21%

∗
11%
∗
21|α

(1)
1 |2|α

(2)
1 |2|α

(1)
2 |2

κ12κ21κ11κ22|τ11|2|τ21|2l11

, eφ21 =
θ2

1θ
2∗
1 %12%22%

∗
11%
∗
21|α

(1)
1 |2α

(2)∗
1 |α(1)

2 |2α
(2)
2

κ12κ21κ11κ22τ11τ21τ ∗12τ
∗
22l21

,

eφ12 =
θ2

1θ
2∗
1 %11%21%

∗
12%
∗
22|α

(1)
1 |2α

(2)
1 |α

(1)
2 |2α

(2)∗
2

κ12κ21κ11κ22τ ∗11τ
∗
21τ12τ22l12

, eφ22 =
θ2

1θ
2∗
1 %12%22%

∗
12%
∗
22|α

(1)
1 |2|α

(2)
2 |2|α

(1)
2 |2

κ12κ21κ11κ22|τ12|2|τ22|2l22

,

eδ13 =
θ2

2θ
2∗
2 %11%12%

∗
11%
∗
12|α

(1)
1 |2|α

(2)
1 |2|α

(2)
2 |2

κ11l11l21l12l22|τ11|2|τ12|2
, eδ14 =

θ2
2θ

2∗
2 %21%22%

∗
11%
∗
12α

(1)∗
1 |α(2)

1 |2α
(1)
2 |α

(2)
2 |2

κ21l11l21l12l22τ ∗11τ
∗
12τ21τ22

,

eδ15 =
θ2

2θ
2∗
2 %11%12%

∗
21%
∗
22α

(1)
1 |α

(2)
1 |2α

(1)∗
2 |α(2)

2 |2

κ12l11l21l12l22τ ∗21τ
∗
22τ11τ12

, eδ16 =
θ2

2θ
2∗
2 %21%22%

∗
21%
∗
22|α

(2)∗
1 |2|α(1)

2 |2|α
(2)
2 |2

κ22l11l21l12l22τ ∗21τ
∗
22τ21τ22

,

4



θ1 = (k1 − k2), θ2 = (l1 − l2), %nm = (kn − lm), τnm = (kn + l∗m),

lnm = (ln + l∗m)2, κnm = (kn + k∗m)2, n,m = 1, 2.

S.2. DEGENERATE TWO SOLITON SOLUTION

In the limit, k1 = l1 and k2 = l2, the above given nondegenerate two-soliton solution is reduced

to the following standard degenerate two-soliton solution [1], that is

qj(t, z) =
α

(j)
1 eη1 + α

(j)
2 eη2 + eη1+η∗1+η2+δ1j + eη1+η2+η∗2+δ2j

1 + eη1+η∗1+R1 + eη1+η∗2+δ0 + eη
∗
1+η2+δ∗0 + eη2+η∗2+R2 + eη1+η∗1+η2+η∗2+R3

, (3)

where j = 1, 2, ηj = kj(t+ ikjz), eδ0 = k12
k1+k∗2

, eR1 = k11
k1+k∗1

, eR2 = k22
k2+k∗2

,

eδ1j =
(k1−k2)(α

(j)
1 k21−α(j)

2 k11)

(k1+k∗1)(k∗1+k2)
, eδ2j =

(k2−k1)(α
(j)
2 k12−α(j)

1 k22)

(k2+k∗2)(k1+k∗2)
,

eR3 = |k1−k2|2
(k1+k∗1)(k2+k∗2)|k1+k∗2 |2

(k11k22 − k12k21) and kil =
µ

∑2
n=1 α

(n)
i α

(n)∗
i

(ki+k∗l )
, i, l = 1, 2, µ = +1.

The energy-sharing collision of the above degenerate two-soliton solution was studied in [1].

S.3. ASYMPTOTIC ANALYSIS: SHAPE PRESERVING COLLISION OF DOUBLE-HUMP SOLI-

TON

To study the interaction between nondegenerate solitons, we carefully perform the asymptotic

analysis for the nondegenerate two soliton solution (2a)-(2c). Here, we present the asymptotic

analysis for the shape preserving collision that occur between the double-hump solitons. To ex-

plore this, we consider the choice of wave parameters as k1R > l1R, k2R < l2R, k1I > k2I ,

l1I > l2I , k1R > k2R, l1R < l2R, k1I = l1I and k2I = l2I . Under this parametric choice, we deduce

the following asymptotic forms corresponding to two individual double-hump solitons in both the

modes before and after collision can be given as follows.

Before collision: z → −∞

Soliton 1: In this limit, the asymptotic forms deduced from the two soliton solution for soliton 1

in both the modes before collision,

q1 =
2A1−

1 k1Re
iη1I cosh(ξ1R + φ1

2
)[ (k∗1−l∗1)

1
2

(k∗1+l1)
1
2

cosh(η1R + ξ1R + δ11
2

) +
(k1+l∗1)

1
2

(k1−l1)
1
2

cosh(η1R − ξ1R + δ1−ψ11

2
)
] , (4a)

q2 =
2A2−

1 l1Re
iξ1I cosh(η1R + +φ2

2
)[ i(k∗1−l∗1)

1
2

(k1+l∗1)
1
2

cosh(η1R + ξ1R + δ11
2

) +
(k∗1+l1)1/2

(l1−k1)1/2
cosh(η1R − ξ1R + δ1−ψ11

2
)
] . (4b)
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Here, φ1 = ∆11 − ρ1, φ2 = γ11 − ρ2, ρj = logα
(j)
1 .

Soliton 2: The asymptotic expressions for the soliton 2 in the two modes before collision turn out

to be,

q1 =
2k2RA

1−
2 (k1 − k2)(k2 − l1)

1
2 (k1 + k∗2)(k∗2 + l1)

1
2 eiη2I cosh(ξ2R + ϕ1

2
)

(k∗1 − k∗2)(k∗2 − l∗1)
1
2 (k∗1 + k2)(k2 + l∗1)

1
2 Γ1

, (5a)

q2 =
2l2RA

2−
2 (l1 − l2)(k1 − l2)

1
2 (k1 + l∗2)

1
2 (l1 + l∗2)eiξ2I cosh(η2R + ϕ2

2
)

(k∗1 − l∗2)
1
2 (l∗1 − l∗2)(k∗1 + l2)

1
2 (l∗1 + l2)Γ2

. (5b)

In the above,

Γ1 =
[(k∗2 − l∗2)

1
2

(k∗2 + l2)
1
2

cosh(η2R + ξ2R +
δ18 − δ11

2
) +

(k2 + l∗2)
1
2

(k2 − l2)
1
2

cosh(η2R − ξ2R +
φ11 − δ15

2
)
]
,

Γ2 =
[(k∗2 − l∗2)

1
2

(k1 + l∗2)
1
2

cosh(η2R + ξ2R +
δ18 − δ11

2
) +

(k∗2 + l2)
1
2

(k2 − l2)
1
2

cosh(η2R − ξ2R +
φ11 − δ15

2
)
]
,

ϕ1 = ∆15 −Θ11, ϕ2 = γ15 − ν11.

After collision: z → +∞

Soliton 1: The asymptotic forms for soliton 1 after collision deduced as,

q1 =
2k1RA

1+
1 (k1 − k2)(k1 − l2)

1
2 (k∗1 + k2)(k∗1 + l2)

1
2 eiη1I cosh(ξ1R + φ̂1

2
)

(k∗1 − k∗2)(k∗1 − l∗2)
1
2 (k1 + k∗2)(k1 + l∗2)

1
2 Γ3

, (6a)

q2 =
2l1RA

2+
1 (l1 − l2)(k2 − l1)

1
2 (k2 + l∗1)

1
2 (l∗1 + l2)eiξ1I cosh(η1R + φ̂2

2
)

(k∗2 − l∗1)
1
2 (l∗1 − l∗2)(k∗2 + l1)

1
2 (l1 + l∗2)Γ4

. (6b)

Here,

Γ3 =
[(k∗1 − l∗1)

1
2

(k∗1 + l1)
1
2

cosh(η1R + ξ1R +
δ18 − ϕ12

2
) +

(k1 + l∗1)
1
2

(k1 − l1)
1
2

cosh(η1R − ξ1R +
φ22 − δ15

2
)
]
,

Γ4 =
[(k∗1 − l∗1)

1
2

(k1 + l∗1)
1
2

cosh(η1R + ξ1R +
δ18 − ϕ12

2
) +

(k∗1 + l1)
1
2

(k1 − l1)
1
2

cosh(η1R − ξ1R +
φ22 − δ15

2
)
]
,

φ̂1 = ∆51 − Φ22, φ̂2 = γ51 − χ22.

Soliton 2: The expression for soliton 2 after collision deduced from the two soliton solution is,

q1 =
2A1+

2 k2Re
iη2I cosh(ξ2R + ϕ̂1

2
)[ (k∗2−l∗2)

1
2

(k∗2+l2)
1
2

cosh(η2R + ξ2R + ς22
2

) +
(k2+l∗2)

1
2

(k2−l2)
1
2

cosh(η2R − ξ2R + δ3−ψ22

2
)
] , (7a)

q2 =
2A2+

2 l2Re
iξ2I cosh(η2R + + ϕ̂2

2
)[ i(k∗2−l∗2)

1
2

(k2+l∗2)
1
2

cosh(η2R + ξ2R + ς22
2

) +
(k∗2+l2)

1
2

(l2−k2)
1
2

cosh(η2R − ξ2R + δ3−ψ22

2
)
] , (7b)
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FIG. 1. Stability of double hump solitons-alteration of shape of the symmetric double hump soliton in both

the modes: (a) and (b) denote the symmetric double hump soliton present in both the modes before collision.

(c) and (d) exhibit that a slight asymmetry occur in the double hump soliton profiles (though the individual

energies in each modes remains constant) after collision with symmetric single hump solitons. Note that

the single hump soliton retains it shape. The parameter values are k1 = 0.55 + 0.5i, l1 = 0.333 + 0.5i,

k2 = −0.33 + 0.5i, l2 = −0.55 − 0.5i, α(1)
1 = 0.5 + 0.5i, α(1)

2 = −0.45 + 0.5i, α(2)
1 = 0.45 + 0.5i and

α
(2)
2 = −0.5 + 0.5i.

where ϕ̂1 = Λ22−ρ̂1, ϕ̂2 = µ22−ρ̂2, ρ̂j = logα
(j)
2 , ηjR = kjR(t−2kjIz), ηjI = kjIt+(k2

jR−k2
jI)z,

ξjR = ljR(t−2ljIz), ξjI = ljIt+ (l2jR− l2jI)z, j = 1, 2, and other constants appearing in the above

asymptotic expressions are given in two soliton solution.

S.4. ALTERATION IN THE SHAPE OF THE SYMMETRIC DOUBLE HUMP SOLITON WHILE

INTERACTING WITH A SYMMETRIC SINGLE HUMP SOLITON (WITHOUT CHANGE IN

ENERGIES)

In the above, we have analysed the shape preserving collision that occurs between the two

double-hump solitons [2]. However, we also come across a slightly different collision scenario

while testing the stability property of a symmetric double hump soliton interacting with a sym-

metric single hump soliton through analytical and numerical analysis. To analyse this, we allow

the double- hump soliton to interact with a symmetric single-hump soliton. As we have demon-

7
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FIG. 2. Symmetric single-hump-single-hump soliton: Parameter values are k1 = −0.3+0.5i, l1 = 0.333+

0.5i, α(1)
1 = 0.5 + 0.5i and α(2)

1 = 0.45 + 0.5i.
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FIG. 3. Symmetric double-hump-single-hump soliton: Parameter values are k1 = 0.333 + 0.5i, l1 =

0.55 + 0.5i, α(1)
1 = 0.5 + 0.45i and α(2)

1 = 0.5 + 0.5i.

strated in Fig. 1 in this supplement, by choosing appropriate initial conditions from our explicit

analytical two-soliton solution, we locate these two solitons initially at well defined separation

distance. Both the symmetric double-hump and single-hump solitons propagate steadily until

they get disturbed by each other. During this interaction process, the double-hump soliton in

both the modes alone experiences a strong perturbation due to the collision with the symmetric

single-hump soliton. The result of their collision is reflected only in changing the shape of the

symmetric double-hump soliton slightly into an asymmetric form. However, the energies of both

the double-hump and single-hump solitons do not change after collision. We also confirm this

collision scenario by carrying out a detailed asymptotic analysis as has been done for the double-

hump soliton earlier and calculating the transition amplitudes and conservation of energy. We will

present a detailed analysis of the above dynamics in the extended version. We also note that if

one sets a slight asymmetry in the intensity profile of the double-hump soliton in both the modes

for suitable choice of initial conditions, the asymmetric double-hump becomes symmetric when it

collides with the symmetric single-hump soliton, again without change in energy.
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FIG. 4. Symmetric double-hump-flattop soliton: Parameter values are k1 = 0.35+ 0.5i, l1 = 0.499+ 0.5i,

α
(1)
1 = 0.5 + 0.51i and α(2)

1 = 0.5 + 0.5i.
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FIG. 5. Symmetric double-hump-double-hump soliton: Parameter values are k1 = 0.316 + 0.5i, l1 =

0.333 + 0.5i, α(1)
1 = 0.49 + 0.45i and α(2)

1 = 0.45 + 0.45i.

S.5. SYMMETRIC SOLITON PROFILES OF NONDEGENERATE ONE SOLITON

We display all the four symmetric wave profiles of nondegenerate one soliton of Manakov

system in Figs. (2)-(5) for appropriate choice of parameters as given in the corresponding figure

captions.
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In this paper, we report a more general class of nondegenerate soliton solutions, associated with two 
distinct wave numbers in different modes, for a certain class of physically important integrable two com-
ponent nonlinear Schrödinger type equations through bilinearization procedure. In particular, we consider 
coupled nonlinear Schrödinger (CNLS) equations (both focusing as well as mixed type nonlinearities), 
coherently coupled nonlinear Schrödinger (CCNLS) equations and long-wave-short-wave resonance in-
teraction (LSRI) system. We point out that the obtained general form of soliton solutions exhibit novel 
profile structures than the previously known degenerate soliton solutions corresponding to identical wave 
numbers in both the modes. We show that such degenerate soliton solutions can be recovered from the 
newly derived nondegenerate soliton solutions as limiting cases.
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1. Introduction

Solitons are localized nonlinear pulses which arise in various nonlinear dispersive media due to the precise balance between nonlinear-
ity and dispersion [1]. Such nonlinear entities remarkably exhibit energy retaining property during collision process for example in scalar 
nonlinear Schrödinger (NLS) equation where the fundamental soliton corresponding to intensity is always in a single-hump structure (sech 
function) characterized by a single wave number [2]. Similar to scalar soliton, the fascinating energy sharing collision exhibiting funda-
mental multicomponent/vector soliton [3,4] in certain integrable coupled nonlinear Schrödinger systems is also described by identical 
wave numbers in all the modes apart from distinct complex polarization vector constants [3,4]. As a consequence of this, a single-hump 
structure only occurs in most of the fundamental vector bright soliton solutions of various CNLS systems.

For instance Manakov type N-CNLS equations [4], mixed N-CNLS equations [5], long-wave-short-wave resonance interaction (LSRI) 
system [6], etc. are such cases. In contrast to such cases, the coherent coupling among the copropagating optical fields induces a special 
type of double-hump vector bright soliton in multicomponent CCNLS systems [7,8]. In this four wave mixing physical situation also the 
coherently coupled soliton governed by the same wave number arises in all the modes [7,8]. Therefore it is clear that the above mentioned 
degeneracy in wave numbers always persists in the previously reported vector bright solitons too [3–8].

Based on the nature of the presence of wave numbers in the multicomponent soliton solution we classify them as degenerate and 
nondegenerate in the present paper. We call the solitons which propagate in all the modes with identical wave numbers as degenerate 
vector solitons whereas the solitons with nonidentical wave numbers as nondegenerate vector solitons [9]. In this context we also note 
that the terminology nondegenerate solitons has been used in a different context for multi-solitons where the individual constituent 
solitons travel with distinct velocities in the case of scalar equations such as the Korteweg-deVries, sine-Gordon and NLS equations [10]. 
Then in these cases multi-solitons moving with a single velocity have been referred as degenerate solitons. This is different from our case 
where we designate solitons with distinct wave numbers in different modes as nondegenerate solitons [9]. In Refs. [7] and [8] one of 
the present authors and his collaborators have also already discussed these terminologies to classify the coherently coupled solitons as 
degenerate and nondegenerate based on their intensities: When the coherently coupled solitons possess the same intensity profile in both 
the components q1 and q2, they are named as degenerate while the solitons with distinct intensity profiles in the q1 and q2 components 
are referred as nondegenerate solitons [7,8]. In contrast, in the present context, the vector solitons already reported in the literature are 
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designated as degenerate class of solitons. In this letter, we intend to show that the above mentioned coupled systems can admit more 
general class of nondegenerate soliton solutions as in the case of Manakov model reported recently by us [9] which also finds applications 
in multicomponent Bose-Einstein condensates [11]. Very specifically we derive such new class of soliton solutions for the two component 
version of CNLS equations, CCNLS equations and LSRI system one by one as we describe below. Their collision property will be reported 
separately. The procedure we adopt in this work is essentially based on the Hirota’s bilinearization method [9,12], while such solutions 
can also be derived using Darboux transformation method [11] or other methods like symmetry based approach [13], etc.

2. Nondegenerate bright soliton solutions of CNLS system

To start with, we consider the following coupled nonlinear Schrödinger equations,

iq j,z + q j,tt + 2
2∑

l=1

σl|ql|2q j = 0, j = 1,2, (1)

where q j , j = 1, 2 represent the complex wave amplitudes, with suffices denoting usual partial derivatives. The well known Manakov 
system [14] arises from Eq. (1) when σ1 = σ2 = 1, whereas for σ1 = σ2 = −1 and σ1 = −σ2 = 1 turn out to be the defocusing and mixed 
type CNLS systems, respectively. These systems admit bright-bright soliton solutions [3,4], dark-dark/bright-dark soliton solutions [15,16]
and bright-bright/bright-dark/dark-dark soliton solutions [5,17–19], respectively, as well as breather and rogue wave type solutions and 
nonlinear interference patterns [20]. All the above three types of CNLS equations are physically important integrable systems and appear 
in many physical situations [5,16].

To derive the nondegenerate bright one-soliton solutions for both the focusing and mixed type CNLS equations as well as to demon-

strate the procedure for similar systems, we consider Eq. (1) with the following bilinearizing transformations q j(z, t) = g( j)(z,t)
f (z,t) , j = 1, 2. 

Here g( j) and f are in general complex and real functions, respectively. Substituting the above transformations in Eq. (1), we obtain the 
bilinear forms of it as

D1 g( j) · f = 0, j = 1,2, D2 f · f = 2
2∑

l=1

σl g
(l)g(l)∗, (2)

where D1 ≡ iDz + D2
t and D2 ≡ D2

t . The Hirota bilinear operators Dz and Dt are defined as [12]

Dm
z Dn

t G · F =
(

∂

∂z
− ∂

∂z′

)m(
∂

∂t
− ∂

∂t′

)n

G(z, t) · F (z, t)|z=z′,t=t′ . (3)

By solving the bilinear equations (3) systematically along with the series expansions,

g( j) = εg( j)
1 + ε3 g( j)

3 + ..., f = 1 + ε2 f2 + ε4 f4 + ..., (4)

for the unknown functions g( j) and f , we obtain the more general form of nondegenerate soliton solutions for Eq. (1) with appropriate 
nontrivial seed solutions. While constructing the new class of one soliton solution for Eq. (1), we find that the above series expansions get 
truncated as g( j) = εg( j)

1 + ε3 g( j)
3 and f = 1 + ε2 f2 + ε4 f4, by considering the following set of distinct initial seed solutions, g(1)

1 = α1eη1 , 
g(2)

1 = β1eξ1 , η1 = k1t + ik2
1z, ξ1 = l1t + il21z, for the lowest order linear partial differential equations (PDEs), ig( j)

1,z + g( j)
1,tt = 0, j = 1, 2. In 

addition to the latter PDEs we obtain a system of PDEs for the unknown functions g( j)
3 , f2 and f4, as follows:

O (ε) : D1 g( j)
1 · 1 = 0, O (ε2) : D2(1 · f2 + f2 · 1) = 2(σ1 g(1)

1 g(1)∗
1 + σ2 g(2)

1 g(2)∗
1 )

O (ε3) : D1(g( j)
3 · 1 + g( j)

1 · f2) = 0, O (ε5) : D1(g( j)
3 · f2 + g( j)

1 · f4) = 0,

O (ε4) : D2(1 · f4 + f4 · 1 + f2 · f2) = 2[σ1(g(1)
1 g(1)∗

3 + g(1)
3 g(1)∗

1 ) + σ2(g(2)
1 g(2)∗

3 + g(2)
3 g(2)∗

1 )]
O (ε6) : D2( f2 · f4 + f4 · f2) = 2(σ1 g(1)

3 g(1)∗
3 + σ2 g(2)

3 g(2)∗
3 ),

O (ε7) : D1 g( j)
3 · f4 = 0, O (ε8) : D2 f4 · f4 = 0, j = 1,2. (5)

The above system of PDEs admits the following solutions:

g(1)
3 = eη1+ξ1+ξ∗

1 +	11 , g(2)
3 = eξ1+η1+η∗

1+	12 , f2 = eη1+η∗
1+δ1 + eξ1+ξ∗

1 +δ2 ,

f4 = eη1+η∗
1+ξ1+ξ∗

1 +δ11 , e	11 = α1|β1|2(k1 − l1)σ2

(k1 + l∗1)(l1 + l∗1)2
, e	12 = β1|α1|2(l1 − k1)σ1

(k∗
1 + l1)(k1 + k∗

1)
2
,

eδ1 = |α1|2σ1

(k1 + k∗
1)

2
, eδ2 = |β1|2σ2

(l1 + l∗1)2
, eδ11 = |α1|2|β1|2|k1 − l1|2σ1σ2

|k1 + l∗1|2(l1 + l∗1)2(k1 + k∗
1)

2
. (6)

Note that the other unknown functions in the series expansions (4) are found to be zero. Hence the explicit expressions of g( j)
3 , f2 and f4

constitute the more general form of nondegenerate fundamental soliton solution of CNLS Eq. (1) as

q1 = α1eη1 + eη1+ξ1+ξ∗
1 +	11

1 + eη1+η∗
1+δ1 + eξ1+ξ∗

1 +δ2 + eη1+η∗
1+ξ1+ξ∗

1 +δ11
,

q2 = β1eξ1 + eξ1+η1+η∗
1+	12

η1+η∗+δ1 ξ1+ξ∗+δ2 η1+η∗+ξ1+ξ∗+δ11
, (7)
1 + e 1 + e 1 + e 1 1
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Fig. 1. Nondegenerate symmetric double-hump and single-hump soliton profiles in Manakov system.

Fig. 2. Nondegenerate singular double-hump soliton profiles in mixed CNLS system.

Fig. 3. Degenerate single-hump soliton profiles in Manakov system.

which is exactly of the same form as given for the Manakov equation in [9], except that in the various constants σ1 and σ2 appear 
explicitly as given in (6).

From the above, one can immediately conclude that the obtained solution is nondegenerate because of the fact that distinct wave 
numbers k1 and l1 are simultaneously present in both the expressions of q1 and q2. The solution (7) becomes nondegenerate one bright 
soliton solution of the Manakov system [9] if we fix σ1 = σ2 = 1 and for the choice σ1 = −σ2 = 1, the solution (7) is the nondegenerate 
fundamental soliton solution of the mixed CNLS system. In both the cases the shape of the nondegenerate soliton is described by four 
nontrivial complex parameters α1, β1, k1 and l1. Note that α1 and β1 are related to the polarization vectors, k1R and l1R represent the 
amplitudes while l1I and k1I denote the velocities of the solitons of the two modes q1 and q2, respectively.

The distinct wave numbers give rise to two physical situations by restricting the imaginary parts of them. By doing so, we find 
that the fundamental soliton propagates in the two modes either with identical velocities (k1I = l1I ) or with non-identical velocities 
(k1I �= l1I ) but with (k1R �= l1R ). In the former case the nondegenerate soliton corresponding to the Manakov system admits four distinct 
nonsingular forms of asymmetric and symmetric profiles which include a single-hump, a double-hump and flattop profiles as we have 
shown in Ref. [9]. For the Manakov system, we display typical double-hump and single-hump profiles in Fig. 1 for the parameter values 
k1 = 0.333 + 0.5i, l1 = 0.55 + 0.5i, α1 = 0.5 + 0.45i and β1 = 0.5 + 0.5i. In contradiction to the Manakov system, the nondegenerate 
fundamental soliton in the mixed CNLS always shows singular behaviour for arbitrary choice of parameter values, except when k1 = l1. 
The singularity nature of double-hump soliton profile in this mixed CNLS case is illustrated in Fig. 2 for k1 = 1.2 + 0.5i, l1 = −0.5 + 0.5i, 
α1 = 0.3 and β1 = i. The singularity naturally arises because of the defocusing nonlinearity of the mixed CNLS system.

If we impose k1 = l1 in Eq. (7), the forms of nondegenerate fundamental soliton reduces to the following degenerate bright soliton 

solution, q j = α
( j)
1 eη1

1+eη1+η∗
1+R ≡ A jk1R eiη1I sech(η1R + R

2 ), j = 1, 2 for the Manakov system as well as mixed CNLS system. Here the unit 

polarization vectors, A1 = α1
(σ1|α1|2+σ2|β1|2)1/2 , A2 = β1

(σ1|α1|2+σ2|β1|2)1/2 , η1R = k1R(t −2k1I z), η1I = k1I t +(k2
1R −k2

1I )z and eR = (σ1|α1|2+σ2|β1|2)

(k1+k∗
1)2 . 

The amplitude, velocity and the central position of the degenerate fundamental soliton are A jk1R , 2k1I and R
2k1R

, respectively. It is an 
obvious fact that the degenerate bright soliton solution contains a single complex wave number k1 which allows single-hump profile 
only. The degenerate fundamental soliton profile of the Manakov system is demonstrated in Fig. 3 for k1 = 1.1 + 0.5i, α1 = 1 + 0.5i and 
β1 = 0.5 + 0.5i. Similarly for the mixed CNLS system the non-singular degenerate soliton is shown in Fig. 4 for k1 = 1 + 0.5i, α1 = 1 and 
β1 = 0.5. As shown in Ref. [5], the singularity occurs in the degenerate soliton solution of mixed CNLS case when |β1| > |α1|.
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Fig. 4. Degenerate non-singular single-hump soliton profiles in mixed CNLS system.

3. Nondegenerate soliton solutions of CCNLS system

Now, we consider the following system of two coupled nonlinear Schrödinger equations with coherent coupling among the two co-
propagating fields q1 and q2,

iq1,z + q1,tt + γ (|q1|2 + 2|q2|2)q1 − γ q2
2q∗

1 = 0,

iq2,z + q2,tt + γ (2|q1|2 + |q2|2)q2 − γ q2
1q∗

2 = 0. (8)

The terms inside the brackets in Eq. (8) correspond to incoherent coupling (self-phase modulation and cross-phase modulation) between 
the copropagating fields and the terms q2

2q∗
1 and q2

1q∗
2 correspond to the coherent coupling among the copropagating fields q1 and q2. 

We note that due to the coherent coupling effect even the degenerate fundamental soliton that is present in the underlying system 
admits double-hump and flattop profiles apart from the single-hump profile under appropriate parametric choices [7,8]. Very interestingly 
such degenerate coherently coupled soliton undergoes energy switching collision when it interacts with degenerate incoherently coupled 
soliton [7,8]. Equation (8) has also been shown to admit breather and rogue wave type solutions too [21,22]. Therefore it is interesting to 
investigate what will happen when the coherently coupled fundamental soliton is characterized by two different wave numbers.

In order to deduce the appropriate nondegenerate soliton solution to (8), we introduce the bilinear transformation q j = g( j)(z,t)
f (z,t) with 

an auxiliary function s(z, t) [7,8,23]. It results in the following bilinear equations

D1 g( j) · f = γ g( j)∗ · s, D2 f · f = 2γ

2∑
j=1

|g( j)|2, s · f =
2∑

j=1

(g( j))2, (9)

where D1 ≡ iDz + D2
t and D2 ≡ D2

t . We follow the procedure described in [7,8] for the degenerate case but now with the seed solutions 
g(1)

1 = α1eη1 , g(2)
1 = β1eξ1 , η1 = k1t + ik2

1z, ξ1 = l1t + il21z. While doing so, the series expansions get truncated as g( j) = εg( j)
1 + ε3 g( j)

3 +
ε5 g( j)

5 +ε7 g( j)
7 , f = 1 +ε2 f2 +ε4 f4 +ε6 f6 +ε8 f8 and s = ε2s2 +ε4s4 +ε6s6. By substituting the obtained forms of the unknown functions 

in the truncated series expansions, we get the following general form of nondegenerate coherently coupled fundamental soliton solution 
of 2-CCNLS system (8),

q1 = 1

f

(
α1eη1 + e2η1+η∗

1+	11 + eη∗
1+2ξ1+	12 + eη1+ξ1+ξ∗

1 +	13 + eη1+2(η∗
1+ξ1)+	14

+ eη1+2(ξ1+ξ∗
1 )+	15 + e2η1+η∗

1+ξ1+ξ∗
1 +	16 + e2(η1+ξ1+ξ∗

1 )+η∗
1+	17

)
,

q2 = 1

f

(
β1eξ1 + e2ξ1+ξ∗

1 +	21 + eξ∗
1 +2η1+	22 + eξ1+η1+η∗

1+	23 + eξ1+2(ξ∗
1 +η1)+	24

+ eξ1+2(η∗
1+η1)+	25 + e2ξ1+ξ∗

1 +η1+η∗
1+	26 + e2(η1+η∗

1+ξ1)+ξ∗
1 +	27

)
,

f = 1 + eη1+η∗
1+δ1 + eξ1+ξ∗

1 +δ2 + e2(η1+η∗
1)+δ3 + e2(η1+ξ∗

1 )+δ4 + e2(ξ1+η∗
1)+δ5

+e2(ξ1+ξ∗
1 )+δ6 + e(η1+η∗

1+ξ1+ξ∗
1 )+δ7 + e2(η1+η∗

1)+ξ1+ξ∗
1 +ν1

+e2(ξ1+ξ∗
1 )+η1+η∗

1+ν2 + e2(η1+η∗
1+ξ1+ξ∗

1 )+ν3 . (10)

The various constants which appear in the above solution are given by

e	11 = γ α1|α1|2
2κ11

, e	12 = γ α∗
1β2

1

2θ∗2
1

, e	13 = γ α1|β1|2ρ1

θ1l11
, e	14 = γ 2ρ2

1α∗
1β2

1 |α1|2
4κ11θ

∗4
1

,

e	15 = γ 2ρ2
1α1|β1|4

4l211θ
2
1

, e	16 = γ 2ρ2
1ρ∗

1α1|α1|2|β1|2
2κ11l11θ

2
1 θ∗

1

, e	17 = γ 3ρ4
1ρ∗

1
2α1|α1|2|β1|4

8κ11l211θ
4
1 θ∗

1
2

,

e	21 = γ β1|β1|2
2l

, e	22 = γ α2
1β∗

1

2θ2
, e	23 = −γ |α1|2β1ρ1

θ∗κ
, e	24 = γ 2ρ2

1α2
1 |β1|2β∗

1

4l θ4
,

11 1 1 11 11 1
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Fig. 5. Breathing type triple-hump profile of nondegenerate soliton in the CCNLS system.

Fig. 6. Flattop-double-hump profiles of degenerate solitons in the CCNLS system.

e	25 = γ 2ρ2
1 |α1|4β1

4κ2
11θ

∗2
1

, e	26 = −γ 2ρ2
1ρ∗

1β1|α1|2|β1|2
2κ11l11θ1θ

∗2
1

, e	27 = γ 3ρ4
1ρ∗2

1 β1|α1|4|β1|2
8κ2

11l11θ
2
1 θ∗4

1

,

eδ1 = γ |α1|2
κ11

, eδ2 = γ |β1|2
l11

, eδ3 = γ 2|α1|4
4κ2

11

, eδ4 = γ 2α2
1β∗2

1

4θ4
1

, eδ5 = γ 2α∗2
1 β2

1

4θ∗4
1

,

eδ6 = γ 2|β1|4
4l211

, eδ7 = γ 2|ρ1|2|α1|2|β1|2
κ11l11|θ1|2 , eν1 = γ 3|ρ1|4|α1|4|β1|2

4κ2
11l11|θ1|4

,

eν2 = γ 3|ρ1|4|α1|2|β1|4
4κ11l211|θ1|4

, eν3 = γ 4|ρ1|8|α1|4|β1|4
16κ2

11l211|θ1|8
, l11 = (l1 + l∗1)2,

θ1 = (k1 + l∗1), ρ1 = (k1 − l1), κ11 = (k1 + k∗
1)

2.

The auxiliary function is obtained as s = α2
1e2η1 + β2

1 e2ξ1 + e2η1+ξ1+ξ∗
1 +φ1 + e2ξ1+η1+η∗

1+φ2 + e2(η1+η∗
1+ξ1)+φ3 + e2(η1+ξ∗

1 +ξ1)+φ4 , eφ1 =
γρ2

1 α2
1 |β1|2

θ2
1 l11

, eφ2 = γρ2
1 β2

1 |α1|2
θ∗2

1 κ11
, eφ3 = γ 2ρ4

1 β2
1 |α1|4

4θ∗4
1 κ2

11
, eφ4 = γ 2ρ4

1 α2
1 |β1|4

4θ4
1 l211

. The already reported degenerate coherently coupled fundamental 

one-soliton solution [7,8] of Eq. (8) is obtained by restricting k1 = l1 in Eq. (10). This leads to q1 = α1eη1 +e2η1+η∗
1+	11

1+eη1+η∗
1+δ1 +e2(η1+η∗

1 )+δ2
, q2 =

β1eη1 +e2η1+η∗
1+	12

1+eη1+η∗
1+δ1 +e2(η1+η∗

1 )+δ2
, e	11 = γα∗

1 (α2
1+β2

1 )

2κ11
, e	12 = γ β∗

1 (α2
1+β2

1 )

2κ11
, eδ1 = γ (|α1|2+|β1|2)

κ11
, eδ2 = γ 2|α2

1+β2
1 |2

4κ2
11

. The auxiliary function is reduced as 

s = (α2
1 + β2

1 )e2η1 .
From the solution (10), it is easy to identify that the shape of the nondegenerate coherently coupled fundamental soliton (10) is also 

governed by two arbitrary complex parameters α1 and β1 and two distinct complex wave numbers k1 and l1. The solution (10) admits 
various novel profiles, such as a quadruple-hump, a triple-hump, a double-hump, a flattop and a single-hump profiles under appropriate 
restrictions on the wave parameters. This is due to the presence of additional wave number and the four wave mixing effect. As an 
example, we display a nontrivial breathing type triple-hump shaped soliton profiles in Fig. 5 for the parameters γ = 2, k1 = 0.21 + 0.5i, 
l1 = 0.29 + 0.5i, α1 = 0.95 + 0.5i and β1 = 0.97 − i. By tuning the relative separation distance it is also possible to separate a single-hump 
and a double-hump from this triple-hump profile. However, a distinct double-hump profile only occurs in the degenerate case. This is 
due to the presence of a single wave number apart from two arbitrary constants α1 and β1. A typical degenerate flattop soliton in q1
component and a double-hump profile in q2 component is illustrated in Fig. 6 for γ = 2, k1 = l1 = 0.5 + 0.5i, α1 = 0.72 + 0.5i and 
β1 = 0.5 − 0.42i.

4. Nondegenerate soliton solution of LSRI system

Finally we intend to derive the nondegenerate fundamental soliton solution for the following long-wave short-wave resonance interac-
tion system, namely the 2-component Yajima-Oikawa system [24] with general form of nonlinearity,

i S(1)
t + S(1)

xx + L S(1) = 0, i S(2)
t + S(2)

xx + L S(2) = 0, Lt =
2∑

σl(|S(l)|2)x. (11)

l=1
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Fig. 7. Nondegenerate asymmetric double-hump soliton profiles in the two short-wave components and the long-wave component.

In the above, S(l) ’s, l = 1, 2, are short-wave components and L is the long-wave component and suffices denote partial derivatives, while 
σl ’s are arbitrary real parameters. Further σl = +1, σl = −1, l = 1, 2, and σ1 = −σ2 = 1 correspond to positive, negative and mixed 
positive-negative nonlinearities. Both nondegenerate and degenerate solitons arise in the present short-wave components also due to 
the balance between their dispersion and nonlinear interactions of the short-waves with a long-wave. In contrast to the previous case, 
the formation of nondegenerate and degenerate solitons arises in the long-wave component due to the interaction of the short-wave 
components. In the present 2-component LSRI system also the solitons in the short-wave components as well as long-wave component 
are degenerate characterized by a single wave number. To overcome this degeneracy we take the modified form of seed solutions, involving 
two distinct wave numbers, in the nondegenerate soliton solution construction process. We note that the above LSRI system admits rogue 
wave solutions also [25].

To construct the nondegenerate one-soliton solution we again bilinearize Eq. (11) through the following transformations, S(l)(x, t) =
g(l)(x,t)

f (x,t) , l = 1, 2, L = 2 ∂2

∂x2 ln f (x, t). We obtain the following bilinear forms:

D1 g(l) · f = 0, l = 1,2, D2 f · f =
2∑

n=1

σn|g(n)|2, (12)

where D1 ≡ iDt + D2
x and D2 ≡ Dx Dt . With the modified forms of seed solutions g(1)

1 = α1eη1 , g(2)
1 = β1eξ1 , η1 = k1x + ik2

1t , ξ1 = l1x + il21t , 
we find that the series expansions which are given in [6] get terminated as g(l) = εg(l)

1 + ε3 g(l)
3 , f = 1 + ε2 f2 + ε4 f4. The explicit forms 

of the unknown functions lead to the following nondegenerate fundamental soliton solution,

S(1) = g(1)
1 + g(1)

3

1 + f2 + f4
= α1eη1 + eη1+ξ1+ξ∗

1 +μ11

1 + eη1+η∗
1+R1 + eξ1+ξ∗

1 +R2 + eη1+η∗
1+ξ1+ξ∗

1 +R3
,

S(2) = g(2)
1 + g(2)

3

1 + f2 + f4
= β1eξ1 + eξ1+η1+η∗

1+μ12

1 + eη1+η∗
1+R1 + eξ1+ξ∗

1 +R2 + eη1+η∗
1+ξ1+ξ∗

1 +R3
,

L = 2

f 2

(
(k1 + k∗

1)
2eη1+η∗

1+R1 + (l1 + l∗1)2eξ1+ξ∗
1 +R2 + eη1+η∗

1+ξ1+ξ∗
1 +R4

+ (l1 + l∗1)2e2(η1+η∗
1)+ξ1+ξ∗

1 +R1+R3 + (k1 + k∗
1)

2eη1+η∗
1+2(ξ1+ξ∗

1 )+R2+R3

)
,

f = (1 + eη1+η∗
1+R1 + eξ1+ξ∗

1 +R2 + eη1+η∗
1+ξ1+ξ∗

1 +R3), (13)

where

eμ11 = iα1|β1|2σ2(l1 − k1)

2(k1 + l∗1)(l1 − l∗1)(l1 + l∗1)2
, eμ12 = iβ1|α1|2σ1(k1 − l1)

2(k∗
1 + l1)(k1 − k∗

1)(k1 + k∗
1)

2
, eR1 = |α1|2σ1

2i(k1 + k∗
1)

2(k1 − k∗
1)

,

eR2 = |β1|2σ2

2i(l1 + l∗1)2(l1 − l∗1)
, eR3 = − |α1|2|β1|2|k1 − l1|2σ1σ2

4|k1 + l∗1|2(k1 − k∗
1)(l1 − l∗1)(k1 + k∗

1)
2(l1 + l∗1)2

,

eR4 = −2(k1 + k∗
1)(l1 + l∗1)(eR1+R2 − eR3) + ((k1 + k∗

1)
2 + (l1 + l∗1)2)(eR1+R2 + eR3).

The nondegenerate fundamental soliton in the 2-component LSRI system is also governed by four non-trivial arbitrary complex pa-
rameters α1, β1, k1 and l1. The amplitudes of the nondegenerate fundamental solitons in the short-wave components are 4k1R A1

√
k1I , 

4l1R A2
√

l1I . Here A1 = −i
√

α1√
σ1α

∗
1

, A2 = −i
√

β1√
σ2β∗

1
are unit polarization vectors of the two short-wave components. In the present case the veloc-

ity of the nondegenerate fundamental soliton is characterized by the imaginary parts of the wave numbers k1 and l1. Very interestingly 
in the present LSRI system, the nondegenerate fundamental soliton exhibits amplitude dependent velocity property like the KdV-soliton. 
The degenerate soliton also possesses this unusual property [6]. As a consequence of this property the taller nondegenerate soliton will 
propagate faster than the shorter one. To get the regular solution the quantities eR1 , eR2 and eR3 in (13) should be positive. To achive 
this, we fix k1I , l1I < 0, k1I , l1I > 0 and k1I < 0, l1I > 0 for the positive (σl > 0), negative (σl < 0) and mixed type (σ1 = 1, σ2 = −1) 
nonlinearities, respectively. In all the three cases, we observe that the nondegenerate fundamental soliton in the present system admits 
double-hump profiles similar to nondegenerate soliton of Manakov system. We depict asymmetric double-hump profiles of nondegenerate 
one-soliton in Fig. 7 for the parameters k1 = 0.3 − 0.5i, l1 = 0.35 − 0.5i, α1 = 0.8, β1 = 0.5 and σ1 = σ2 = 1.
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Fig. 8. Degenerate single-hump soliton profiles in both the short-wave components and the long-wave component.

We recover degenerate soliton solution of Eq. (11) by substituting the limit k1 = l1 in Eq. (13). This results in the following degenerate 
fundamental soliton forms: S(l) = 2Alk1R

√
k1I ei(η1I + π

2 ) sech(η1R + R
2 ), L = 2k2

1R sech2(η1R + R
2 ), l = 1, 2. Here A1 = α1

(σ1|α1|2+σ2|β1|2)1/2 , 

A2 = β1
(σ1|α1|2+σ2|β1|2)1/2 , η1R = k1R(x + 2k1I t), η1I = k1I x + (k2

1R − k2
1I )t , eR = −(σ1|α1|2+σ2|β1|2)

16k2
1R k1I

. As discussed in [6], the degenerate soliton in 
both the short-wave components and the long-wave component admits only a single-hump profile. A typical graph of such single-hump 
profile is shown in Fig. 8 for k1 = 0.5 − 0.5i, α1 = 0.5, β1 = 0.35 and σ1 = σ2 = 1.

5. Conclusion

In this work, we have thus derived more general forms of nondegenerate fundamental bright solitons corresponding to non-identical 
wave-numbers for certain physically important integrable coupled systems. In particular we have considered the two component version 
of the Manakov system, mixed CNLS system, coherently coupled NLS system and long-wave short-wave resonance interaction system. We 
find that the obtained nondegenerate bright soliton solution admits various novel structures compared to the corresponding degenerate 
counterparts. The interesting collision dynamics of such nondegenerate solitons will be presented elsewhere.
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Nondegenerate solitons and their collisions in Manakov systems
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Recently, we have shown that the Manakov equation can admit a more general class of nondegenerate vector
solitons, which can undergo collision without any intensity redistribution in general among the modes, associated
with distinct wave numbers, besides the already-known energy exchanging solitons corresponding to identical
wave numbers. In the present comprehensive paper, we discuss in detail the various special features of the
reported nondegenerate vector solitons. To bring out these details, we derive the exact forms of such vector
one-, two-, and three-soliton solutions through Hirota bilinear method and they are rewritten in more compact
forms using Gram determinants. The presence of distinct wave numbers allows the nondegenerate fundamental
soliton to admit various profiles such as double-hump, flat-top, and single-hump structures. We explain the
formation of double-hump structure in the fundamental soliton when the relative velocity of the two modes tends
to zero. More critical analysis shows that the nondegenerate fundamental solitons can undergo shape-preserving
as well as shape-altering collisions under appropriate conditions. The shape-changing collision occurs between
the modes of nondegenerate solitons when the parameters are fixed suitably. Then we observe the coexistence
of degenerate and nondegenerate solitons when the wave numbers are restricted appropriately in the obtained
two-soliton solution. In such a situation we find the degenerate soliton induces shape-changing behavior of
nondegenerate soliton during the collision process. By performing suitable asymptotic analysis we analyze the
consequences that occur in each of the collision scenario. Finally, we point out that the previously known class
of energy-exchanging vector bright solitons, with identical wave numbers, turns out to be a special case of
nondegenerate solitons.

DOI: 10.1103/PhysRevE.102.042212

I. INTRODUCTION

The propagation of light pulses in optical Kerr media is
still one of the active areas of research in nonlinear optics [1].
In particular, the fascinating dynamics of light in multimode
fibers and fiber arrays has stimulated the investigation of
temporal multicomponent or vector solitons over different as-
pects, especially from the applications point of view [2]. In the
nonlinear optics context, temporal vector solitons are formed
due to the balance between dispersion and Kerr nonlinear-
ity. Mathematically these vector solitons are nothing but the
solutions of certain integrable coupled nonlinear Schrödinger
family of equations. There exist many types of vector solitons
which have been reported so far in the literature and their
dynamics have also been investigated in various physical sit-
uations. For instance, bright-bright solitons [3–5], bright-dark
solitons [6–9], and dark-dark solitons [6,10] are some of the
solitons which have been investigated in these systems. These
vector solitons have also received considerable attention in
other areas of science including Bose-Einstein condensates
(BECs) [11,12], biophysics [13], plasma physics [14], and so
on. Apart from the above, partially coherent solitons or soli-
ton complexes have been reported in self-induced multimode
waveguide system [15,16], while polarization-locked solitons
and phase-locked solitons in fiber lasers [17] and dissipative
vector solitons in certain dissipative systems [18–20] have
also been analyzed in the literature.

*Corresponding author: lakshman@cnld.bdu.ac.in

From the above studies on vector solitons we have noted
that the intensity profiles of multicomponent solitons reported,
especially in the integrable coupled nonlinear Schrödinger
systems, are defined by identical wave numbers in all the
components. We call these vector solitons as degenerate class
of solitons. As a consequence of degeneracy in the wave num-
bers, single-hump structured intensity profiles only emerge
in these systems in general [21]. In the coherently coupled
system even degenerate fundamental soliton can also admit
double-hump profile when the four wave mixing process is
taken into account [22,23]. However, in this case one cannot
expect more than a double-hump profile. Very interestingly,
our theoretical [3,4] and other experimental [24–26] stud-
ies confirm that the degenerate vector solitons undergo in
general energy redistribution among the modes during the
collision, except for the special case of polarization param-
eters satisfying specific restrictions, for example in the case

of two component Manakov systems as α
(1)
1

α
(1)
2

= α
(2)
1

α
(2)
2

, where

α
( j)
i ’s, i, j = 1, 2, are complex numbers related to the polar-

ization vectors. By exploiting the fascinating shape-changing
collision scenario of degenerate Manakov solitons, it has
been theoretically suggested that the construction of optical
logic gates is indeed possible, leading to all optical com-
puting [27,28]. We also note that logic gates have been
implemented using two stationary dissipative solitons of com-
plex Ginzburg-Landau equation [29].

Recently in Refs. [30–32] it has been reported that multi-
hump structured dispersion managed solitons or double-hump
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intensity profile of soliton molecule may be useful for appli-
cation in optical communications because they may provide
alternative coding schemes for transmitting information with
enhanced data-carrying capacity. Multihump solitons have
also been identified in the literature in various physical sit-
uations [33–39]. They have been observed experimentally
in a dispersive nonlinear medium [36]. Theoretically frozen
double-hump states have been predicted in birefringent dis-
persive nonlinear media [33,34]. These solitons have been
found in various nonlinear coupled field models also [37].
In the case of saturable nonlinear medium, stability of
double- and triple-hump optical solitons has also been investi-
gated [38]. Multihumped partially coherent solitons have also
been investigated in photorefractive medium [15]. In addition
to the above, the dynamics of double-hump solitons have also
been studied in mode-locked fiber lasers [17–20]. A double-
hump soliton has been observed during the buildup process
of soliton molecules in deployed fiber systems and fiber laser
cavities [30,40].

From the above studies, we observe that the various prop-
erties associated with the degenerate vector bright solitons of
many integrable coupled field models have been well under-
stood. However, to our knowledge, studies on fundamental
solitons with nonidentical wave numbers in all the modes
have not been considered so far and multihump structure
solitons have also not been explored in the integrable cou-
pled nonlinear Schrödinger type systems except in our recent
work [41,42] and that of Qin et al. [43] on the following
Manakov system [44,45]:

iq jz + q jtt + 2
2∑

p=1

|qp|2q j = 0, j = 1, 2, (1)

where qj , j = 1, 2, describe orthogonally polarized complex
waves in a birefringent medium. Here the subscripts z and t
represent normalized distance and retarded time, respectively.
Based on the above studies we are motivated to look for
a class of fundamental solitons that possesses nonidentical
wave numbers as well as multihump profiles, which are useful
for optical soliton-based applications. We have successfully
identified such a class of solitons in Ref. [41]. We call the
fundamental solitons with nonidentical wave numbers as non-
degenerate vector solitons [21,41]. Surprisingly, this class of
vector bright solitons exhibit multihump structure (double-
hump soliton arises in the present Manakov system and one
can also observe N-hump soliton in the case of N-coupled
Manakov type system) which may be useful for transmit-
ting information in a highly packed manner. Therefore it
is very important to investigate the role of additional wave
number(s) on this class of fundamental soliton structures and
collision scenario as well, which were briefly discussed in
Ref. [41]. In the present comprehensive version we discuss
the various properties associated with the nondegenerate soli-
tons in a detailed manner by finding their exact analytical
forms through Hirota bilinearization method. Then we discuss
how the presence of additional distinct wave numbers and
the cross phase modulation (|q1|2 + |q2|2)q j , j = 1, 2, among
the modes bring out double-hump profile in the structure
of nondegenerate fundamental soliton. We find that the
nondegenerate solitons undergo shape-preserving collision

generally, as reported by us in Ref. [41], and shape-altering
and shape-changing collisions for specific parametric values.
Further, we figured out the coexistence of degenerate and non-
degenerate solitons in the Manakov system. Such coexisting
solitons undergo shape-changing collision scenarios leading
to useful soliton-based signal amplification application. Fi-
nally, we show that the degenerate class of vector solitons
reported in Refs. [3,4] can be deduced from the obtained
nondegenerate one- and two-soliton solutions.

The structure of the paper is organized as follows: In
Sec. II, we discuss the Hirota bilinear procedure in order to
derive nondegenerate soliton solutions for Eq. (1). Using this
procedure we obtained nondegenerate one- and two-soliton
solutions in Gram-determinant forms and also identified the
coexistence of degenerate and nondegenerate solitons in
Sec. III. In Sec. IV we discuss the various collision properties
of nondegenerate solitons. Section V deals with the collision
between degenerate and nondegenerate solitons. In Sec. VI
we recovered the degenerate one- and two-soliton solutions
from the nondegenerate one- and two-soliton solutions by
suitably restricting the wave numbers and in Sec. VII we point
out the possible experimental observations of nondegenerate
solitons. In Sec. VIII we summarize the results and discuss
possible extension of this work. Finally, in Appendix A we
present the three-soliton solution in Gram-determinant forms
for completion while in Appendix B we discuss about certain
asymptotic forms of solitons. In Appendix C, we introduce
explicit forms of certain parameters appearing in the text.
Finally, in Appendix D we discuss the numerical stability
analysis of nondegenerate solitons under different strength of
white noise as perturbation.

II. BILINEARIZATION

To derive the nondegenerate soliton solutions for the Man-
akov system we adopt the same Hirota bilinear procedure
that has been already used to get degenerate vector bright
soliton solutions but with appropriate form of initial seed
solutions. We point out later how such a simple form of seed
solutions will produce a physically important class of soliton
solutions. In general, the exact soliton solutions of Eq. (1) can
be obtained by introducing the bilinearizing transformation,
which can be identified from the singularity structure analysis
of Eq. (1) [46] as

q j (z, t ) = g( j)(z, t )

f (z, t )
, j = 1, 2, (2)

to Eq. (1). This results in the following set of bilinear forms
of Eq. (1):

(
iDz + D2

t

)
g( j) f = 0, j = 1, 2, (3a)

D2
t f f = 2

2∑
n=1

g(n)g(n)∗. (3b)

Here g( j)’s are complex functions, whereas f is a
real function and ∗ denotes complex conjugation. The
Hirota’s bilinear operators Dz and Dt are defined [47]
by the expressions Dm

z Dn
t (ab) = ( ∂

∂z − ∂
∂z′ )m( ∂

∂t − ∂
∂t ′ )n

a(z, t )b(z′, t ′)|z=z′, t=t ′ . Substituting the standard expansions
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for the unknown functions g( j) and f ,

g( j) = εg( j)
1 + ε3g( j)

3 + . . . , j = 1, 2,

f = 1 + ε2 f2 + ε4 f4 + . . . , (4)

in the bilinear Eqs. (3a) and (3b) one can get a system of linear
partial differential equations (PDEs). Here ε is a formal series
expansion parameter. The set of linear PDEs arises after col-
lecting the coefficients of same powers of ε. By solving these
linear PDEs recursively (at an appropriate order of ε), the
resultant associated explicit forms of g( j)’s and f constitute
the soliton solutions to the underlying system (1). We note that
the truncation of series expansions (4) for the nondegenerate
soliton solutions is different from degenerate soliton solutions.
This is essentially due to the general form of seed solutions
assigned to the lowest order linear PDEs.

III. A NEW CLASS OF NONDEGENERATE
SOLITON SOLUTIONS

To study the role of additional wave numbers on the
structural, propagational, and collisional properties of non-
degenerate soliton, it is very important to find the exact
analytical form of it systematically. In this section by ex-
ploiting the procedure described above we intend to construct
nondegenerate one- and two-soliton solutions which can be
generalized to an arbitrary N-soliton case (for N = 3, see
Appendix A). In principle this is possible because of the
existence of a nondegenerate N-soliton solution ensured by
the complete integrability property of the Manakov equation
[Eq. (1)]. Then we point out the possibility of coexistence of
degenerate and nondegenerate solitons by imposing certain
restriction on the wave numbers in the obtained nondegen-
erate two-soliton solution. Further, we also point out the
possibility of deriving this partially nondegenerate two-soliton
solution through Hirota bilinear method. We note that to avoid
too many mathematical details we provide the final form of
solutions only since the nondegenerate soliton solution con-
struction process is a lengthy one.

A. Nondegenerate fundamental soliton solution

In order to deduce the exact form of nondegenerate one-
soliton solution we consider two different seed solutions for
the two modes as

g(1)
1 = α

(1)
1 eη1 , g(2)

1 = α
(2)
1 eξ1 , (5)

where η1 = k1t + ik2
1z and ξ1 = l1t + il2

1 z, to the following
linear PDEs:

ig( j)
1z + g( j)

1tt = 0, j = 1, 2. (6)

In (5) the complex parameters α
( j)
1 , j = 1, 2, are arbitrary.

The above equations arise in the lowest order of ε. The
presence of two distinct complex wave numbers k1 and l1
(k1 �= l1, in general) in the seed solutions (5) makes the final
solution a nondegenerate one. This construction procedure is
different from the standard one that has been followed in ear-
lier works on degenerate vector bright soliton solutions [3,4]
where identical seed solutions of Eq. (1) [solutions (5) with
k1 = l1 and distinct α

( j)
1 ’s, j = 1, 2] have been used as starting

seed solutions for Eq. (6). We note that such degenerate seed

solutions only yield degenerate class of vector bright soliton
solutions [3,4,41].

With the starting solutions (5) we allow the series ex-
pansions (4) to terminate by themselves while solving the
system of linear PDEs. From this recursive process, we find
that the expansions (4) get terminated for the nondegener-
ate fundamental soliton solution as g( j) = εg( j)

1 + ε3g( j)
3 and

f = 1 + ε2 f2 + ε4 f4. The explicit expressions of g( j)
1 , g( j)

3 , f2,
and f4 constitute a general form of fundamental one-soliton
solution to Eq. (1) as

q1 = g(1)
1 + g(1)

3

1 + f2 + f4
= [

α
(1)
1 eη1 + eη1+ξ1+ξ∗

1 +�
(1)
1

]/
D1

(7)

q2 = g(2)
1 + g(2)

3

1 + f2 + f4
= [

α
(2)
1 eξ1 + eη1+η∗

1+ξ1+�
(2)
1

]/
D1.

Here D1 = 1 + eη1+η∗
1+δ1 + eξ1+ξ∗

1 +δ2 + eη1+η∗
1+ξ1+ξ∗

1 +δ11 ,

e�
(1)
1 = (k1−l1 )α(1)

1 |α(2)
1 |2

(k1+l∗1 )(l1+l∗1 )2 , e�
(2)
1 = − (k1−l1 )|α(1)

1 |2α(2)
1

(k1+k∗
1 )2(k∗

1 +l1 ) , eδ1 = |α(1)
1 |2

(k1+k∗
1 )2 ,

eδ2 = |α(2)
1 |2

(l1+l∗1 )2 , and eδ11 = |k1−l1|2|α(1)
1 |2|α(2)

1 |2
(k1+k∗

1 )2(k∗
1 +l1 )(k1+l∗1 )(l1+l∗1 )2 . In the

above one-soliton solution two distinct complex wave
numbers, k1 and l1, occur in both the expressions of q1 and
q2 simultanously. This confirms that the obtained solution
is nondegenerate. We also note that the solution (7) can
be rewritten in a more compact form using Gram deter-
minants as

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
1

(k1+l∗1 ) 1 0 eη1

eξ1+η∗
1

(l1+k∗
1 )

eξ1+ξ∗
1

(l1+l∗1 ) 0 1 eξ1

−1 0 |α(1)
1 |2

(k1+k∗
1 ) 0 0

0 −1 0 |α(2)
1 |2

(l1+l∗1 ) 0

0 0 −α
(1)
1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
1

(k1+l∗1 ) 1 0 eη1

eξ1+η∗
1

(l1+k∗
1 )

eξ1+ξ∗
1

(l1+l∗1 ) 0 1 eξ1

−1 0 |α(1)
1 |2

(k1+k∗
1 ) 0 0

0 −1 0 |α(2)
1 |2

(l1+l∗1 ) 0

0 0 0 −α
(2)
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (8a)

f =

∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
1

(k1+l∗1 ) 1 0

eξ1+η∗
1

(l1+k∗
1 )

eξ1+ξ∗
1

(l1+l∗1 ) 0 1

−1 0 |α(1)
1 |2

(k1+k∗
1 ) 0

0 −1 0 |α(2)
1 |2

(l1+l∗1 )

∣∣∣∣∣∣∣∣∣∣∣∣
. (8b)

The above Gram-determinant forms satisfy the bilinear
Eqs. (3a) and (3b) as well as Manakov Eq. (1).

To investigate the various properties associated with the
above fundamental soliton solution, we rewrite Eq. (7) as

q1 = eiη1I e
�

(1)
1 +ρ1

2

{
cosh

(
ξ1R + φ1R

2

)
cos

(φ1I

2

)

+ i sinh
(
ξ1R + φ1R

2

)
sin

(φ1I

2

)}/
D2, (9a)
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q2 = eiξ1I e
�

(2)
1 +ρ2

2

{
cosh

(
η1R + φ2R

2

)
cos

(φ2I

2

)

+ i sinh
(
η1R + φ2R

2

)
sin

(φ2I

2

)}/
D2, (9b)

where D2 = e
δ11

2 cosh(η1R + ξ1R + δ11
2 ) + e

δ1+δ2
2 cosh(η1R −

ξ1R + δ1−δ2
2 ), η1R = k1R(t − 2k1I z), η1I = k1I t + (k2

1R − k2
1I )z,

ξ1R = l1R(t − 2l1I z), ξ1I = l1I t + (l2
1R − l2

1I )z, ρ j = log α
( j)
1 ,

j = 1, 2. Here φ1R, φ1I , φ2R, and φ2I are real and imaginary
parts of φ1 = �

(1)
1 − ρ1 and φ2 = �

(2)
1 − ρ2, respectively,

and k1R, l1R, k1I , and l1I are the real and imaginary
parts of k1 and l1, respectively. From the above, we can

write φ1R = 1
2 log |k1−l1|2|α(2)

1 |4
|k1+l∗1 |2(l1+l∗1 )4 , φ1I = 1

2 log (k1−l1 )(k∗
1 +l1 )

(k∗
1 −l∗1 )(k1+l∗1 ) ,

φ2R = 1
2 log |l1−k1|2|α(1)

1 |4
|k1+l∗1 |2(k1+k∗

1 )4 , and φ2I = 1
2 log (l1−k1 )(k1+l∗1 )

(l∗1 −k∗
1 )(k∗

1 +l1 ) . The
profile structures of solution (9a) and (9b) are described by
the four complex parameters k1, l1, and α

( j)
1 , j = 1, 2. For

the nondegenerate fundamental soliton in the first mode,
the amplitude, velocity, and central position are found from
Eq. (9a) as 2k1R, 2l1I , and φ1R

2l1R
, respectively. Similarly, for the

soliton in the second mode they are found from Eq. (9b) as
2l1R, 2k1I , and φ2R

2k1R
, respectively. Note that α

( j)
1 , j = 1, 2, are

related to the unit polarization vectors of the nondegenerate
fundamental solitons in the two modes. They constitute
different phases for the nondegenerate soliton in the two
modes as A1 = (α(1)

1 /α
(1)∗
1 )1/2 and A2 = (α(2)

1 /α
(2)∗
1 )1/2.

To explain the various properties associated with so-
lution (9a) and (9b) further we consider two physically
important special cases where the imaginary parts of the wave
numbers k1 and l1 are either identical with each other (k1I =
l1I ) or nonidentical with each other (k1I �= l1I ). Physically,
this implies that the former case corresponds to solitons in
the two modes traveling with identical velocities v1 = v2 =
2k1I but with k1 �= l1, whereas the latter case corresponds to
solitons which propagate in the two modes with nonidentical
velocities v1 �= v2. In the identical velocity case, the quantity
φ jI , j = 1, 2 becomes zero in (9a) and (9b) when k1I = l1I .
This results in the following expression for the fundamental
soliton propagating with single velocity, v1,2 = 2k1I , in the
two modes,

q1 = eiη1I e
�

(1)
1 +ρ1

2 cosh

(
ξ1R + φ1R

2

)/
D2,

(10)
q2 = eiξ1I e

�
(2)
1 +ρ2

2 cosh

(
η1R + φ2R

2

)/
D2,

where D2 = e
δ11

2 cosh(η1R + ξ1R + δ11
2 ) + e

δ1+δ2
2 cosh(η1R −

ξ1R + δ1−δ2
2 ) with η1R = k1R(t − 2k1I z), η1I = k1I t + (k2

1R −
k2

1I )z, ξ1R = l1R(t − 2k1I z), and ξ1I = k1I t + (l2
1R − k2

1I )z.
Note that the constants that appear in the above solution
becomes equivalent to the one that appears in the solution (9a)
and (9b) after imposing the condition k1I = l1I in it. The
solution (10) admits four types of symmetric profiles
(satisfying appropriate conditions on parameters, see below)
and also their corresponding asymmetric profiles. The
symmetric profiles are as follows: (i) double-humps in both
the modes (or a double-hump in q1 mode and a M-type
double-hump in q2 mode), (ii) a flat-top in one mode and a

double-hump in the other mode, (iii) a single-hump in the first
mode and a double-hump in the second mode (or vice versa),
and (iv) single-humps in both the modes. The corresponding
four types of asymmetric wave profiles can be obtained by
tuning the real parts of wave numbers k1 and l1 and the
arbitrary complex parameters α

( j)
1 ’s, j = 1, 2.

To illustrate the symmetric and asymmetric nature of the
nondegenerate soliton in the identical velocity case we fix
k1I = l1I = 0.5 in Figs. 1 and 2. The symmetric profiles are
displayed in Fig. 1. The asymmetric profiles are depicted in
Fig. 2 for the values of parameters indicated in Fig. 2. From
Figs. 1 and 2 we observe that the transition which occurs
from double-hump to single-hump is through a special flat-top
profile. The flat-top profile has been considered as an inter-
mediate soliton state. It is noted that flat-top soliton is also
observed in a complex Ginzburg-Landau equation [48]. In
Ref. [41] we have discussed symmetric and asymmetric nature
of solution (10) by incorporating the condition k1R < l1R [42].
However, to exhibit the generality of these structures, in the
present paper, we discuss these properties for k1R > l1R. It
should be pointed out here that in Ref. [43] the authors have
derived this solution in the context of multicomponent BEC
using Darboux transformation and they have classified density
profiles as we have reported in Ref. [41] for k1R < l1R in
the context of nonlinear optics. They have also studied the
stability of double-hump soliton using Bogoliubov-de Gennes
excitation spectrum.

The symmetric nature of all the four cases can be con-
firmed by finding the extremum points of the nondegenerate
one-soliton solution (10). For instance, to show that the
double-hump soliton profile displayed in Fig. 1(a) is symmet-
ric, we find the corresponding local maximum and minium
points by applying the first derivative test ({|qj |2}t = 0) and
the second derivative test ({|qj |2}tt < 0 or >0) to the expres-
sion of |q j |2, j = 1, 2, at z = 0. For the first mode, the three
extremal points are identified, namely t1 = −0.9, t2 = 5.5,
and t3 = 11.9. We find another set of three extremal points for
the second mode, namely t4 = −1.2, t5 = 5.5, and t6 = 12.2
by setting {|q2|2}t = 0. The points t1 and t3 correspond to the
maxima (at which {|q1|2}tt < 0) of the double-hump soliton,
whereas t2 corresponds to the minimum of the double-hump
soliton. Similarly, the extremal points t4 and t6 represent the
maxima and t5 corresponds to the minimum of the double-
hump soliton in the q2 mode. In the first component the two
maxima t1 and t3 are symmetrically located about the min-
imum point t2. This can be easily confirmed by finding the
difference between t2 and t1 and t3 and t2, that is, t2 − t1 =
6.4 = t3 − t2. This is true for the second component also, that
is, t5 − t4 = 6.7 = t6 − t5. This implies that the two maxima t4
and t6 are located symmetrically from the minimum point t5.
Then the magnitude (|q1|2) of each hump (of the double-hump
soliton) corresponding to the maxima t1 is equal to 0.051
and t3 is equal to 0.051. In the second mode, the magnitude
(|q2|2) corresponding to t4 is equal to 0.054 and t6 is equal
to 0.054. This confirms that the magnitude of each hump of
double-hump soliton in both the modes are equal. Therefore
it is evident that the double-hump soliton drawn in Fig. 1(a)
is symmetric. One can easily verify from Figs. 1(c) and 1(d)
that the single-hump soliton is symmetric about the local
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FIG. 1. Various symmetric intensity profiles of nondegenerate fundamental soliton: While (a) denotes double-hump solitons in both the
modes, (b) and (c) represent flat-top-double-hump solitons and single-hump-double-hump solitons, respectively. Single-hump solitons in both
the modes are illustrated in (d). The parameter values of each figures are as follows: (a) k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, α

(1)
1 = 0.45 +

0.45i, α(2)
1 = 0.49 + 0.45i. (b) k1 = 0.425 + 0.5i, l1 = 0.3 + 0.5i, α(1)

1 = 0.44 + 0.51i, α(2)
1 = 0.43 + 0.5i. (c) k1 = 0.55 + 0.5i, l1 = 0.333 +

0.5i, α
(1)
1 = 0.5 + 0.5i, α

(2)
1 = 0.5 + 0.45i. (d) k1 = 0.333 + 0.5i, l1 = −0.316 + 0.5i, α

(1)
1 = 0.45 + 0.5i, α

(2)
1 = 0.5 + 0.5i.

maximum point (and checking the half widths as well). As far
as the flat-top soliton case is concerned, we have confirmed
that the first derivative {|q j |2}t very slowly tends to zero near

the corresponding maximum for certain number of t values.
This also confirms that the presence of almost flatness and
symmetric nature of the one-soliton.

FIG. 2. Various asymmetric intensity profiles of nondegenerate fundamental soliton: Panels (a), (b), (c), and (d) represent each of figures
asymmetric intensity profiles as against the symmetric profiles of Figs. 1(a)–1(d). The corresponding parameter values of each figures are
as follows: (a) k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, α

(1)
1 = 0.65 + 0.45i, α

(2)
1 = 0.49 + 0.45i; (b) k1 = 0.425 + 0.5i, l1 = 0.3 + 0.5i, α

(1)
1 =

0.5 + 0.51i, α
(2)
1 = 0.43 + 0.5i; (c) k1 = 0.55 + 0.5i, l1 = 0.333 + 0.5i, α

(1)
1 = 1.2 + 0.5i, α

(2)
1 = 0.5 + 0.45i; (d) k1 = 0.333 + 0.5i, l1 =

−0.22 + 0.5i, α
(1)
1 = 0.45 + 3i, α

(2)
1 = 0.5 + 0.5i.
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We also derive the conditions analytically to corroborate
the symmetric and asymmetric nature of soliton solution (10)
in another way. For this purpose, we intend to calculate the
relative separation distance �t12 between the minima of the
two components (modes)

�t12 = t̄1 − t̄2 = (t − t1) − (t − t2), = φ1R

2l1R
− φ2R

2k1R
. (11)

If the above quantity �t12 = 0, then the solution (10) exhibits
symmetric profiles otherwise it admits asymmetric profiles.

The explicit form of relative separation distance turns out
to be

�t12 = 1

2l1R
log

(k1R − l1R)
∣∣α(2)

1

∣∣2

4l2
1R(k1R + l1R)

− 1

2k1R
log

(l1R − k1R)
∣∣α(1)

1

∣∣2

4k2
1R(k1R + l1R)

. (12)

We have explicitly calculated the relative separation dis-
tance values and confirmed the displayed profiles in Figs. 1
and 2 are symmetric and asymmetric, respectively. For in-
stance, the �t12 value corresponding to the symmetric double-
hump soliton in both the modes [Fig. 1(a)] is 0.002 (to get the
perfect zero value one has to fine tune the parameters suit-
ably) and for asymmetric double-hump solitons the value is
equal to 0.6493. The above calculated values reaffirm that the
obtained figures are symmetric in Fig. 1(a) and asymmetric in
Fig. 2(a). Similarly, one can easily confirm the symmetric and
asymmetric nature of other profiles in Figs. 1 and 2 also.

In addition to the above, for the general nonidentical ve-
locity case (k1I �= l1I ), v1 �= v2, the distinct wave numbers k1

and l1 influence drastically the propagation of nondegenerate
solitons in the two modes. If the relative velocity (�v12 =
v1 − v2) of the solitons between the two modes is large, then
there is a node created in the structure of the fundamental
solitons of both the modes [43]. This is due to the cross
phase modulation between the modes. In this situation the
intensity of the fast-moving soliton (v1 = 2l1I > 0) in the first
mode starts to decrease and it gets completely suppressed
after z = 0. At the same value of z the fast-moving soliton
reappears in the second mode after a finite time. Similarly,
this fact is true in the case of slow-moving soliton (v2 =
2k1I < 0) as well. Consequently, the intensity of solitons is
unequally distributed among the two modes. This is clearly
demonstrated in Fig. 3 and Figs. 4(a)–4(b). On the other hand,
if the relative velocity tends to zero (�v12 → 0), then the
total intensity, Itotal = |q1|2 + |q2|2, of nondegenerate solitons
starts to get distributed equally among the two components.
As a consequence of this, a double-hump profile starts to
emerge in each of the modes as displayed in Figs. 4(c)–4(d).
At perfect zero relative velocity (�v12 = 0), the double-hump
fundamental soliton emerges completely in both the modes.
As we have already pointed out in Ref. [41] the nondegenerate
soliton solution exhibits symmetric and asymmetric profiles in
the nonidentical velocity case also but the relative velocity of
the solitons should be minimum. We have not displayed their
plots here for brevity.

Recently, we found that the occurrence of multihumps
depends on the number of distinct wave numbers and

− 10 0 10
− 3

0

3

t

z

q1
2

− 10 0 10
− 3

0

3

t

z

q2
2

(a) (b)

FIG. 3. Node formation in the nonidentical velocity case. The pa-
rameter values are k1 = 1 + 1.5i, l1 = 1.5 + 0.5i, α

(1)
1 = 1.5 + 0.5i,

α
(2)
1 = 0.45 + 0.5i.

modes [49] apart from the nonlinearities. In the present two-
component case, the resultant nondegenerate fundamental
soliton solution (9a) and (9b) yields only a double-hump
soliton. However, a triple-hump soliton and a quadruple-
hump soliton are also observed in the cases of three- and
four-component Manakov system cases, respectively. For
the N-component case one may expect a more complicated
profile, as mentioned in the case of theory of incoherent
solitons [50,51], involving N-number of humps which are
characterized by 2N-complex parameters. These results will
be published elsewhere. Very recently we have also reported
the existence of nondegenerate fundamental solitons and their
various profile structures in other integrable coupled NLS
type systems [21] as well. It should be pointed out that
the multihump nature of nondegenerate fundamental soli-
ton is somewhat analogous to partially coherent solitons
or soliton complexes [15,16] where such partially coher-
ent solitons can be obtained when the number of modes
is equal to the number of degenerate vector soliton solu-
tion [3,52]. We also note here that the two-partially coherent

FIG. 4. Double-hump formation in the profile structure of nonde-
generate fundamental soliton: Panels (a) and (b) represent the node
formation in soliton profiles. Panels (c) and (d) denote the emergence
of double-hump in both the modes. The corresponding parameter
values for (a) and (b) are k1 = 0.65 − 0.85i, l1 = 0.78 − 0.5i, α(1)

1 =
1, and α

(2)
1 = 0.5. For panels (c) and (d) the values are chosen as

k1 = 0.65 − 0.8i, l1 = 0.78 − 0.8i, α
(1)
1 = 1, and α

(2)
1 = 0.5.
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soliton can be deduced from the double-humped nondegen-
erate fundamental soliton (9a) and (9b) in the Manakov
system by imposing the restrictions α

(1)
1 = eη10 , α

(2)
1 = −eη20 ,

k1 = k1R, l1 = k2R, k1I = l1I = 0, where η10 and η20 are real
constants, in solution (7) [52]. The soliton complex reported
in Ref. [53] is a special case of nondegenerate fundamental
soliton solution (7) when the parameters k1 and l1 are chosen
as real constants and α

(1)
1 = α

(2)
1 = 1.

B. Nondegenerate two-soliton solution

In order to investigate the collision dynamics of nonde-
generate soliton of the form (7), it is essential to derive the
expression for the corresponding two-soliton solution. To con-
struct it, we consider the seed solutions as g(1)

1 = α
(1)
1 eη1 +

α
(1)
2 eη2 and g(2)

1 = α
(2)
1 eξ1 + α

(2)
2 eξ2 , η j = k jt + ik2

j z and ξ j =
l jt + il2

j z, j = 1, 2, for Eqs. (6). By proceeding with the pro-
cedure given in the previous subsection along with these seed
solutions we find that the series expansions for g( j), j = 1, 2,
and f get terminated as g( j) = εg( j)

1 + ε3g( j)
3 + ε5g( j)

5 + ε7g( j)
7

and f = 1 + ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8. The other unknown
functions, g( j)

9 , g( j)
11 , f10, f12, and so on, are found to be identi-

cally zero. We further note here that the termination of these
perturbation series occurs at the order of ε3 in g( j)’s and at the
level of ε4 in f for deriving the degenerate two-soliton solu-
tion. The resulting explicit forms of the unknown functions in
the truncated series expansions constitute the following non-
degenerate two-soliton solution, in Gram-determinant form,
to Eq. (1):

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+ξ∗
1

(k1+l∗1 )
eη1+ξ∗

2

(k1+l∗2 ) 1 0 0 0 eη1

eη2+η∗
1

(k2+k∗
1 )

eη2+η∗
2

(k2+k∗
2 )

eη2+ξ∗
1

(k2+l∗1 )
eη2+ξ∗

2

(k2+l∗2 ) 0 1 0 0 eη2

eξ1+η∗
1

(l1+k∗
1 )

eξ1+η∗
2

(l1+k∗
2 )

eξ1+ξ∗
1

(l1+l∗1 )
eξ1+ξ∗

2

(l1+l∗2 ) 0 0 1 0 eξ1

eξ2+η∗
1

(l2+k∗
1 )

eξ2+η∗
2

(l2+k∗
2 )

eξ2+ξ∗
1

(l2+l∗1 )
eξ2+ξ∗

2

(l2+l∗2 ) 0 0 0 1 eξ2

−1 0 0 0 |α(1)
1 |2

(k∗
1 +k1 )

α
(1)∗
1 α

(1)
2

(k∗
1 +k2 ) 0 0 0

0 −1 0 0 α
(1)
1 α

(1)∗
2

(k∗
2 +k1 )

|α(1)
2 |2

(k2+k∗
2 ) 0 0 0

0 0 −1 0 0 0 |α(2)
1 |2

(l∗1 +l1 )
α

(2)∗
1 α

(2)
2

(l∗1 +l2 ) 0

0 0 0 −1 0 0 α
(2)
1 α

(2)∗
2

(l∗2 +l1 )
|α(2)

2 |2
(l∗2 +l2 ) 0

0 0 0 0 −α
(1)
1 −α

(1)
2 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (13a)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+ξ∗
1

(k1+l∗1 )
eη1+ξ∗

2

(k1+l∗2 ) 1 0 0 0 eη1

eη2+η∗
1

(k2+k∗
1 )

eη2+η∗
2

(k2+k∗
2 )

eη2+ξ∗
1

(k2+l∗1 )
eη2+ξ∗

2

(k2+l∗2 ) 0 1 0 0 eη2

eξ1+η∗
1

(l1+k∗
1 )

eξ1+η∗
2

(l1+k∗
2 )

eξ1+ξ∗
1

(l1+l∗1 )
eξ1+ξ∗

2

(l1+l∗2 ) 0 0 1 0 eξ1

eξ2+η∗
1

(l2+k∗
1 )

eξ2+η∗
2

(l2+k∗
2 )

eξ2+ξ∗
1

(l2+l∗1 )
eξ2+ξ∗

2

(l2+l∗2 ) 0 0 0 1 eξ2

−1 0 0 0 |α(1)
1 |2

(k∗
1 +k1 )

α
(1)∗
1 α

(1)
2

(k∗
1 +k2 ) 0 0 0

0 −1 0 0 α
(1)
1 α

(1)∗
2

(k∗
2 +k1 )

|α(1)
2 |2

(k2+k∗
2 ) 0 0 0

0 0 −1 0 0 0 |α(2)
1 |2

(l∗1 +l1 )
α

(2)∗
1 α

(2)
2

(l∗1 +l2 ) 0

0 0 0 −1 0 0 α
(2)
1 α

(2)∗
2

(l∗2 +l1 )
|α(2)

2 |2
(l∗2 +l2 ) 0

0 0 0 0 0 0 −α
(2)
1 −α

(2)
2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (13b)

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+ξ∗
1

(k1+l∗1 )
eη1+ξ∗

2

(k1+l∗2 ) 1 0 0 0

eη2+η∗
1

(k2+k∗
1 )

eη2+η∗
2

(k2+k∗
2 )

eη2+ξ∗
1

(k2+l∗1 )
eη2+ξ∗

2

(k2+l∗2 ) 0 1 0 0

eξ1+η∗
1

(l1+k∗
1 )

eξ1+η∗
2

(l1+k∗
2 )

eξ1+ξ∗
1

(l1+l∗1 )
eξ1+ξ∗

2

(l1+l∗2 ) 0 0 1 0

eξ2+η∗
1

(l2+k∗
1 )

eξ2+η∗
2

(l2+k∗
2 )

eξ2+ξ∗
1

(l2+l∗1 )
eξ2+ξ∗

2

(l2+l∗2 ) 0 0 0 1

−1 0 0 0 |α(1)
1 |2

(k∗
1 +k1 )

α
(1)∗
1 α

(1)
2

(k∗
1 +k2 ) 0 0

0 −1 0 0 α
(1)
1 α

(1)∗
2

(k∗
2 +k1 )

|α(1)
2 |2

(k2+k∗
2 ) 0 0

0 0 −1 0 0 0 |α(2)
1 |2

(l∗1 +l1 )
α

(2)∗
1 α

(2)
2

(l∗1 +l2 )

0 0 0 −1 0 0 α
(2)
1 α

(2)∗
2

(l∗2 +l1 )
|α(2)

2 |2
(l∗2 +l2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (13c)
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In the above, the eight arbitrary complex parameters k j , l j , α
( j)
1 , and α

( j)
2 , j = 1, 2, define the profile shapes of the nonde-

generate solitons and their various interesting collision scenarios. By generalizing the above given procedure, the nondegenerate
N-soliton solution of the Manakov system can be obtained. To derive the N-nondegenerate soliton solution, the power series
expansion should be as in the following form: g( j) = ∑2N−1

n=1 ε2n−1g( j)
2n−1 and f = 1 + ∑2N

n=1 ε2n f2n. The 4N complex parameters,
which are present in the N-soliton solution, determine the shape of the N-solitons. In Appendix A, we have given the three-soliton
solution form explicitly using the Gram determinants.

C. Partially nondegenerate two-soliton solution

To show the possibility of occurrence of degenerate and nondegenerate solitons simultanously in the Manakov system (1),
we restrict the wave numbers k1 and l1 (or k2 and l2) as k1 = l1 (or k2 = l2) but k2 �= l2 (or k1 �= l1) in the obtained completely
nondegenerate two-soliton solution (13a)–(13c). As a consequence of this restriction, the wave variables η1 and ξ1 automatically
get restricted as ξ1 = η1. By imposing such a restriction in the fully nondegenerate two-soliton solution (13a)–(13c) we deduce
the following form of partially nondegenerate two-soliton solution as

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
2

(k1+l∗2 ) 1 0 0 0 eη1

eη2+η∗
1

(k2+k∗
1 )

eη2+η∗
2

(k2+k∗
2 )

eη2+η∗
1

(k2+k∗
1 )

eη2+ξ∗
2

(k2+l∗2 ) 0 1 0 0 eη2

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
2

(k1+l∗2 ) 0 0 1 0 eη1

eξ2+η∗
1

(l2+k∗
1 )

eξ2+η∗
2

(l2+k∗
2 )

eξ2+η∗
1

(l2+k∗
1 )

eξ2+ξ∗
2

(l2+l∗2 ) 0 0 0 1 eξ2

−1 0 0 0 |α(1)
1 |2

(k∗
1 +k1 )

α
(1)∗
1 α

(1)
2

(k∗
1 +k2 ) 0 0 0

0 −1 0 0 α
(1)
1 α

(1)∗
2

(k∗
2 +k1 )

|α(1)
2 |2

(k2+k∗
2 ) 0 0 0

0 0 −1 0 0 0 |α(2)
1 |2

(k∗
1 +k1 )

α
(2)∗
1 α

(2)
2

(k∗
1 +l2 ) 0

0 0 0 −1 0 0 α
(2)
1 α

(2)∗
2

(l∗2 +k1 )
|α(2)

2 |2
(l∗2 +l2 ) 0

0 0 0 0 −α
(1)
1 −α

(1)
2 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (14a)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
2

(k1+l∗2 ) 1 0 0 0 eη1

eη2+η∗
1

(k2+k∗
1 )

eη2+η∗
2

(k2+k∗
2 )

eη2+η∗
1

(k2+k∗
1 )

eη2+ξ∗
2

(k2+l∗2 ) 0 1 0 0 eη2

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
2

(k1+l∗2 ) 0 0 1 0 eη1

eξ2+η∗
1

(l2+k∗
1 )

eξ2+η∗
2

(l2+k∗
2 )

eξ2+η∗
1

(l2+k∗
1 )

eξ2+ξ∗
2

(l2+l∗2 ) 0 0 0 1 eξ2

−1 0 0 0 |α(1)
1 |2

(k∗
1 +k1 )

α
(1)∗
1 α

(1)
2

(k∗
1 +k2 ) 0 0 0

0 −1 0 0 α
(1)
1 α

(1)∗
2

(k∗
2 +k1 )

|α(1)
2 |2

(k2+k∗
2 ) 0 0 0

0 0 −1 0 0 0 |α(2)
1 |2

(k∗
1 +k1 )

α
(2)∗
1 α

(2)
2

(k∗
1 +l2 ) 0

0 0 0 −1 0 0 α
(2)
1 α

(2)∗
2

(l∗2 +k1 )
|α(2)

2 |2
(l∗2 +l2 ) 0

0 0 0 0 0 0 −α
(2)
1 −α

(2)
2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (14b)

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
2

(k1+l∗2 ) 1 0 0 0

eη2+η∗
1

(k2+k∗
1 )

eη2+η∗
2

(k2+k∗
2 )

eη2+η∗
1

(k2+k∗
1 )

eη2+ξ∗
2

(k2+l∗2 ) 0 1 0 0

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
2

(k1+l∗2 ) 0 0 1 0

eξ2+η∗
1

(l2+k∗
1 )

eξ2+η∗
2

(l2+k∗
2 )

eξ2+η∗
1

(l2+k∗
1 )

eξ2+ξ∗
2

(l2+l∗2 ) 0 0 0 1

−1 0 0 0 |α(1)
1 |2

(k∗
1 +k1 )

α
(1)∗
1 α

(1)
2

(k∗
1 +k2 ) 0 0

0 −1 0 0 α
(1)
1 α

(1)∗
2

(k∗
2 +k1 )

|α(1)
2 |2

(k2+k∗
2 ) 0 0

0 0 −1 0 0 0 |α(2)
1 |2

(k∗
1 +k1 )

α
(2)∗
1 α

(2)
2

(k∗
1 +l2 )

0 0 0 −1 0 0 α
(2)
1 α

(2)∗
2

(l∗2 +k1 )
|α(2)

2 |2
(l∗2 +l2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (14c)

The above class of solution (14a)–(14c) can be derived through Hirota bilinear method with the following seed solutions,
g(1)

1 = α
(1)
1 eη1 + α

(1)
2 eη2 and g(2)

1 = α
(2)
1 eη1 + α

(2)
2 eξ2 , η j = k jt + ik2

j z and ξ2 = l2t + il2
2 z, j = 1, 2, for Eqs. (6). Such coexistence
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of degenerate and nondegenerate solitons and their dynamics are characterized by seven complex parameters k j , l2, α( j)
1 , and α

( j)
2 ,

j = 1, 2. The interesting collision behavior of the coexisting degenerate and nondegenerate solitons is discussed in Sec. V.

IV. VARIOUS SHAPE-PRESERVING AND
SHAPE-CHANGING COLLISIONS OF

NONDEGENERATE SOLITONS

The several interesting collision properties associated with
the nondegenerate solitons can be explored by analyzing the
asymptotic forms of the two-soliton solution (13a)–(13c) of
Eq. (1). By doing so, we observe that the nondegenerate
solitons undergo three types of collision scenarios. For either
of the two cases (i) equal velocities (k1I = l1I , k2I = l2I ) and
(ii) unequal velocities (k1I �= l1I , k2I �= l2I ), the nondegen-
erate two solitons undergo shape-preserving, shape-altering,
and shape-changing collision behaviors. Here we present the
asymptotic analysis for the case of shape-preserving collision
only and it can be carried out for other cases also in a similar
manner.

A. Asymptotic analysis

In order to study the interaction dynamics of nondegenerate
solitons completely, we perform a careful asymptotic analysis

for the nondegenerate two-soliton solution (13a)–(13c) and
we deduce the explicit forms of individual solitons at the
limits z → ±∞. To explore this, we consider k jR, l jR > 0,
j = 1, 2, k1I > k2I , l1I > l2I , k1I = l1I , and k2I = l2I , which
corresponds to the case of a head-on collision between the
two symmetric nondegenerate solitons. In this situation the
two symmetric fundamental solitons S1 and S2 are well sepa-
rated and subsequently the asymptotic forms of the individual
solitons can be deduced from the solution (13a)–(13c) by
incorporating the asymptotic nature of the wave variables
η jR = k jR(t − 2k jI z) and ξ jR = l jR(t − 2l jI z), j = 1, 2, in it.
The wave variables η jR and ξ jR behave asymptotically as (i)
soliton 1 (S1): η1R, ξ1R � 0, η2R, ξ2R → ∓∞ as z ∓ ∞ and (ii)
soliton 2 (S2): η2R, ξ2R � 0, η1R, ξ1R → ∓∞ as z ± ∞. Cor-
respondingly, these results lead to the following asymptotic
forms of nondegenerate individual solitons.

(a) Before collision: z → −∞
Soliton 1: In this limit, the asymptotic forms of q1 and

q2 are deduced from the two-soliton solution (13a)–(13c) for
soliton 1 as follows:

q1 � 2A1−
1 k1Reiη1I cosh(ξ1R + φ−

1 )[
(k∗

1 −l∗1 )
1
2

(k∗
1 +l1 )

1
2

cosh(η1R + ξ1R + φ−
3 ) + (k1+l∗1 )

1
2

(k1−l1 )
1
2

cosh(η1R − ξ1R + φ−
4 )

] , (15a)

q2 � 2A1−
2 l1Reiξ1I cosh(η1R + φ−

2 )[
(k∗

1 −l∗1 )
1
2

(k1+l∗1 )
1
2

cosh(η1R + ξ1R + φ−
3 ) + (k∗

1 +l1 )1/2

(k1−l1 )1/2 cosh(η1R − ξ1R + φ−
4 )

] . (15b)

Here φ−
1 = 1

2 log (k1−l1 )|α(2)
1 |2

(k1+l∗1 )(l1+l∗1 )2 , φ−
2 = 1

2 log (l1−k1 )|α(1)
1 |2

(k∗
1 +l1 )(k1+k∗

1 )2 , φ−
3 = 1

2 log |k1−l1|2|α(1)
1 |2|α(2)

1 |2
|k1+l∗1 |2(k1+k∗

1 )2(l1+l∗1 )2 , φ−
4 = 1

2 log |α(1)
1 |2(l1+l∗1 )2

|α(2)
1 |2(k1+k∗

1 )2 , A1−
1 =

[α(1)
1 /α

(1)∗
1 ]1/2 and A1−

2 = i[α(2)
1 /α

(2)∗
1 ]1/2. In the latter, superscript (1−) represents soliton S1 before collision and subscripts

1 and 2 denote the two modes q1 and q2, respectively.
Soliton 2: The asymptotic expressions for soliton 2 in the two modes before collision turn out to be

q1 � 2k2RA2−
1 ei(η2I +θ−

1 ) cosh(ξ2R + ϕ−
1 )[

(k∗
2 −l∗2 )

1
2

(k∗
2 +l2 )

1
2

cosh(η2R + ξ2R + ϕ−
3 ) + (k2+l∗2 )

1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + ϕ−
4 )

] , (16a)

q2 � 2l2RA2−
2 ei(ξ2I +θ−

2 ) cosh(η2R + ϕ−
2 )[

(k∗
2 −l∗2 )

1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + ϕ−
3 ) + (k∗

2 +l2 )
1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + ϕ−
4 )

] . (16b)

In the above,

ϕ−
1 = 1

2
log

(k2 − l2)
∣∣α(2)

2

∣∣2

(k2 + l∗
2 )(l2 + l∗

2 )2
+ 1

2
log

|k1 − l2|2|l1 − l2|4
|k1 + l∗

2 |2|l1 + l∗
2 |4 ,

ϕ−
2 = 1

2
log

(l2 − k2)
∣∣α(1)

2

∣∣2

(k∗
2 + l2)(k2 + k∗

2 )2
+ 1

2
log

|k2 − l1|2|k1 − k2|4
|k2 + l∗

1 |2|k1 + k∗
2 |4 ,

ϕ−
3 = 1

2
log

|k2 − l2|2
∣∣α(1)

2

∣∣2∣∣α(2)
2

∣∣2

|k2 + l∗
2 |2(k2 + k∗

2 )2(l2 + l∗
2 )2

+ 1

2
log

|k1 − k2|4|l1 − l2|4|k2 − l1|2|k1 − l2|2
|k1 + k∗

2 |4|k2 + l∗
1 |2|k1 + l∗

2 |2|l1 + l∗
2 |4 ,

ϕ−
4 = 1

2
log

∣∣α(1)
2

∣∣2
(l2 + l∗

2 )2

∣∣α(2)
2

∣∣2
(k2 + k∗

2 )2
+ 1

2
log

|k1 − k2|4|l1 + l∗
2 |4|k2 − l1|2|k1 + l∗

2 |2
|k1 + k∗

2 |4|k2 + l∗
1 |2|k1 − l2|2|l1 − l2|4 ,
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eiθ−
1 = (k1 − k2)(l1 − l2)(l∗

1 + l2)(k2 − l1)
1
2 (k1 + k∗

2 )(k∗
2 + l1)

1
2

(k∗
1 − k∗

2 )(l1 + l∗
2 )(l∗

1 − l∗
2 )(k∗

2 − l∗
1 )

1
2 (k∗

1 + k2)(k2 + l∗
1 )

1
2

, A2−
1 = [

α
(1)
2 /α

(1)∗
2

]1/2
,

eiθ−
2 = (l1 − l2)(k1 − l2)

1
2 (k1 + l∗

2 )
1
2 (l1 + l∗

2 )

(k∗
1 − l∗

2 )
1
2 (l∗

1 − l∗
2 )(k∗

1 + l2)
1
2 (l∗

1 + l2)
, A2−

2 = [
α

(2)
2 /α

(2)∗
2

]1/2
.

Here superscript (2−) refers to soliton S2 before collision.
(b) After collision: z → +∞
Soliton 1: The asymptotic forms for soliton 1 after collision deduced as

q1 � 2k1RA1+
1 ei(η1I +θ+

1 ) cosh(ξ1R + φ+
1 )[

(k∗
1 −l∗1 )

1
2

(k∗
1 +l1 )

1
2

cosh
(
η1R + ξ1R + δ18−ς22

2

) + (k1+l∗1 )
1
2

(k1−l1 )
1
2

cosh
(
η1R − ξ1R + φ22−δ16

2

)] , (17a)

q2 � 2l1RA2+
1 ei(ξ1I +θ+

2 ) cosh(η1R + φ+
2 )[

(k∗
1 −l∗1 )

1
2

(k1+l∗1 )
1
2

cosh
(
η1R + ξ1R + δ18−ς22

2

) + (k∗
1 +l1 )

1
2

(k1−l1 )
1
2

cosh
(
η1R − ξ1R + φ22−δ16

2

)] . (17b)

Here

φ+
1 = φ−

1 + 1

2
log

|k2 − l1|2|l1 − l2|4
|k2 + l∗

1 |2|l1 + l∗
2 |4 , φ+

3 = φ−
3 + 1

2
log

|k1 − k2|4|k2 − l1|2|k1 − l2|2|l1 − l2|4
|k1 + k∗

2 |4|k2 + l∗
1 |2|k1 + l∗

2 |2|l1 + l∗
2 |4 ,

φ+
2 = φ−

2 + 1

2
log

|k1 − l2|2|k1 − k2|4
|k1 + l∗

2 |2|k1 + k∗
2 |4 , φ+

4 = φ−
4 + 1

2
log

|k1 − k2|4|k2 + l∗
1 |2|k1 − l2|2|l1 + l∗

2 |4
|k1 + k∗

2 |4|k2 − l1|2|k1 + l∗
2 |2|l1 − l2|4 ,

eiθ+
1 = (k1 − k2)(k1 − l2)

1
2 (k∗

1 + k2)(k∗
1 + l2)

1
2

(k∗
1 − k∗

2 )(k∗
1 − l∗

2 )
1
2 (k1 + k∗

2 )(k1 + l∗
2 )

1
2

, eiθ+
2 = (l1 − l2)(k2 − l1)

1
2 (k2 + l∗

1 )
1
2 (l∗

1 + l2)

(k∗
2 − l∗

1 )
1
2 (l∗

1 − l∗
2 )(k∗

2 + l1)
1
2 (l1 + l∗

2 )
,

A1+
1 = [α(1)

1 /α
(1)∗
1 ]1/2 and A1+

2 = [α(2)
1 /α

(2)∗
1 ]1/2, in which superscript (1+) denotes soliton S1 after collision.

Soliton 2: The expression for soliton 2 after collision deduced from the two-soliton solution is

q1 � 2A1+
2 k2Reiη2I cosh(ξ2R + ϕ+

1 )[
(k∗

2 −l∗2 )
1
2

(k∗
2 +l2 )

1
2

cosh(η2R + ξ2R + ϕ+
3 ) + (k2+l∗2 )

1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + ϕ+
4 )

] , (18a)

q2 � 2A2+
2 l2Reiξ2I cosh(η2R + ϕ+

2 )[
i(k∗

2 −l∗2 )
1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + ϕ+
3 ) + (k∗

2 +l2 )
1
2

(l2−k2 )
1
2

cosh(η2R − ξ2R + ϕ+
4 )

] , (18b)

where ϕ+
1 = 1

2 log (k2−l2 )|α(2)
2 |2

(k2+l∗2 )(l2+l∗2 )2 , ϕ+
2 = 1

2 log (l2−k2 )|α(1)
2 |2

(k∗
2 +l2 )(k2+k∗

2 )2 ,

ϕ+
3 = 1

2 log |k2−l2|2|α(1)
2 |2|α(2)

2 |2
|k2+l∗2 |2(k2+k∗

2 )2(l2+l∗2 )2 , ϕ+
4 = 1

2 log |α(1)
2 |2(l2+l∗2 )2

|α(2)
2 |2(k2+k∗

2 )2 ,

A2+
1 = [α(1)

2 /α
(1)∗
2 ]1/2, and A2+

2 = i[α(2)
2 /α

(2)∗
2 ]1/2. In the

latter, superscript (2+) represents soliton S2 after collision.
In the above, η jR = k jR(t − 2k jI z), η jI = k jIt +

(k2
jR − k2

jI )z, ξ jR = l jR(t − 2l jI z), ξ jI = l jI t + (l2
jR − l2

jI )z,
j = 1, 2, and that the phase terms ϕ−

j , j = 1, 2, 3, 4

can also be rewritten as ϕ−
1 = ϕ+

1 + 1
2 log |k1−l2|2|l1−l2|4

|k1+l∗2 |2|l1+l∗2 |4 ,

ϕ−
4 = ϕ+

4 + 1
2 log |k1−k2|4|l1+l∗2 |4|k2−l1|2|k1+l∗2 |2

|k1+k∗
2 |4|k2+l∗1 |2|k1−l2|2|l1−l2|4 , ϕ−

2 = ϕ+
2 + 1

2 log
|k2−l1|2|k1−k2|4
|k2+l∗1 |2|k1+k∗

2 |4 , ϕ−
3 = ϕ+

3 + 1
2 log |k1−k2|4|l1−l2|4|k2−l1|2|k1−l2|2

|k1+k∗
2 |4|k2+l∗1 |2|k1+l∗2 |2|l1+l∗2 |4 .

The above asymptotic analysis clearly shows that the
shape-preserving collision always occurs among the
nondegenerate solitons whenever the phase terms obey
the conditions

φ−
j = φ+

j , ϕ−
j = ϕ+

j , j = 1, 2, 3, 4. (19)

B. Shape-preserving and -altering collisions: Elastic collision

From the above analysis, we observe that the intensities of
nondegenerate solitons S1 and S2 in the two modes are the
same before and after collision whenever the phase condi-
tions (19) are satisfied. This implies that the initial amplitudes
do not get altered after collision j = 1, 2. It is also evident

from the transition amplitude calculations, T l
j = Al+

j

Al−
j

, j, l =
1, 2, where the subscript j represents the modes and the super-
script l± denotes the nondegenerate soliton numbers 1 and 2
in the asymptotic regimes z → ±∞. Again to confirm that the
intensities of the nondegenerate solitons are preserved during
the collision process, we calculate the transition intensities
as well, |T l

j |2, l, j = 1, 2, which can be obtained by taking
the absolute squares of the transition amplitudes T l

j ’s. The
transition intensities turn out to be unimodular, that is, |T l

j |2 =
1, l, j = 1, 2. Physically this implies that the nondegenerate
solitons, for k1I = l1I , k2I = l2I , k1 �= l1, corresponding to two
distinct wave numbers undergo elastic collision without any
intensity redistribution between the modes q1 and q2 except

042212-10



NONDEGENERATE SOLITONS AND THEIR COLLISIONS … PHYSICAL REVIEW E 102, 042212 (2020)

for a finite phase shift. The latter confirms that the polariza-
tion vectors associated with the nondegenerate fundamental
solitons do not contribute to the energy redistribution among
the modes. Consequently the nondegenerate solitons in each
mode exhibit elastic collision. The total intensity of each soli-
ton is conserved which can be verfied from |Al−

j |2 = |Al+
j |2,

j, l = 1, 2. In addition to this, the total intensity in each
of the modes is also conserved |A1−

j |2 + |A2−
j |2 = |A1+

j |2 +
|A2+

j |2 = const.
During the collision process, the initial phase of each of

the soliton is also changed. The phase shift of soliton S1 in the
two modes gets modified after collision as

�1
1 = φ+

1 − φ−
1 = log

|k2 − l1||l1 − l2|2
|k2 + l∗

1 ||l1 + l∗
2 |2 ,

�1
2 = φ+

2 − φ−
2 = log

|k1 − l2||k1 − k2|2
|k1 + l∗

2 ||k1 + k∗
2 |2 .

(20)

Similarly, the phase shift suffered by soliton S2 in the two
modes are given by

�2
1 = ϕ+

1 − ϕ−
1 = log

|k1 + l∗
2 ||l1 + l∗

2 |2
|k1 − l2||l1 − l2|2 ,

�2
2 = ϕ+

2 − ϕ−
2 = log

|k2 + l∗
1 ||k1 + k∗

2 |2
|k2 − l1||k1 − k2|2 . (21)

From the above expressions we conclude that the phases of
all the solitons are mainly influenced by the wave numbers
k j and l j , j = 1, 2, and not by the complex parameters α

( j)
1 ’s

and α
( j)
2 ’s, j = 1, 2. This peculiar property of nondegenerate

solitons is different in the case of degenerate vector bright
solitons (see Sec. V below) where the complex parameters
α

( j)
1 ’s and α

( j)
2 ’s, associated with polarization constants, play a

crucial role in shifting the position of solitons after collision.
Further, to confirm that the profile shapes of the nonde-

generate solitons S1 and S2 are invariant under the above
elastic collision, we explicitly deduce the relative separation
distance between the modes of the solitons. This is similar
to the analysis which we have already discussed for the one-
soliton solution to confirm the symmetric and asymmetric
profile natures of the fundamental soliton. As a consequence
of this analysis, one would expect that the relative separation
distance values corresponding to solitons S1 and S2 before
collision should be equal to the values after collision in order
to ensure the shape-preserving nature of the collision. For this
purpose, first we deduce the following expressions for relative
separation distance for the solitons S1 and S2 before and after
collisions from the asymptotic forms as

�t1−
12 = 1

l1R
log

∣∣α(2)
1

∣∣(k1 − l1)1/2

2l1R(k1 + l∗
1 )1/2

− 1

k1R
log

(l1 − k1)1/2
∣∣α(1)

1

∣∣
2k1R(k∗

1 + l1)1/2
, (22a)

�t2−
12 = 1

l2R
log

∣∣α(2)
2

∣∣|k1 − l2|(k2 − l2)1/2|l1 − l2|2
2l2R|k1 + l∗

2 |(k2 + l∗
2 )1/2|l1 + l∗

2 |2 − 1

k2R
log

∣∣α(1)
2

∣∣|k1 − k2|2|k2 − l1|(l2 − k2)1/2

2k2R|k1 + k∗
2 |2|k2 + l∗

1 |(k∗
2 + l2)1/2

, (22b)

�t1+
12 = 1

l1R
log

∣∣α(2)
1

∣∣|k2 − l1|(k1 − l1)1/2|l1 − l2|2
2l1R|k2 + l∗

1 |(k1 + l∗
1 )1/2|l1 + l∗

2 |2 − 1

k1R
log

∣∣α(1)
1

∣∣|k1 − k2|2|k1 − l2|(l1 − k1)1/2

2k1R|k1 + k∗
2 |2|k1 + l∗

2 |(k∗
1 + l1)1/2

, (23a)

�t2+
12 = 1

l2R
log

∣∣α(2)
2

∣∣(k2 − l2)1/2

2l2R(k2 + l∗
2 )1/2

− 1

k2R
log

(l2 − k2)1/2
∣∣α(1)

2

∣∣
2k2R(k∗

2 + l2)1/2
. (23b)

To identify the profile change of a given soliton S1 (or S2) during the collision, we analytically find the total change in
relative separation distance by subtracting the quantity �t n−

12 from �t n+
12 , n = 1, 2. This results in the following expressions for

soliton S1:

�t1 = �t1+
12 − �t1−

12 = 1

l1R
log

|k2 − l1||l1 − l2|2
|k2 + l∗

1 ||l1 + l∗
2 |2 − 1

k1R
log

|k1 − l2||k1 − k2|2
|k1 + l∗

2 ||k1 + k∗
2 |2 , (24)

and for soliton S2,

�t2 = �t2+
12 − �t2−

12 = 1

l2R
log

|k1 − l2||l1 − l2|2
|k1 + l∗

2 ||l1 + l∗
2 |2 − 1

k2R
log

|k2 − l1||k1 − k2|2
|k2 + l∗

1 ||k1 + k∗
2 |2 . (25)

To demonstrate the shape-preserving collision property of
nondegenerate solitons, for the case k1I = l1I , k2I = l2I , we
start with various symmetric profiles as initial conditions.
In Figs. 5(a) and 5(b) we set two well-separated symmetric
double-hump soliton profiles as initial profiles in both the
modes. From these figures, we observe that the symmetric
nature of double-hump soliton S1 is preserved in both the
modes after collision while interacting with another symmet-
ric double-hump soliton S2 except for a finite phase shift,
which is already deduced in Eqs. (20) and (21). This can be

easily verified from the asymptotic analysis itself. Further,
in order to ensure the shape-preserving collision scenario of
symmetric double-hump solitons we explicitly compute the
numerical value of relative separation distance between the
modes of each double-hump solitons by substituting all the
parameter values in Eqs. (24) and (25). This action yields
the final values as �t1 = −0.0051 and �t2 = −0.0051 (here
we provide the values with two decimal accuracy, to get
perfect zero, one has to fine tune the parameters suitably).
The values reaffirm that symmetric profile struture of double-
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FIG. 5. Shape-preserving collision of symmetric nondegenerate
solitons. The energy does not get exchanged among the nonde-
generate solitons during the shape-preserving collision process:
Panels (a) and (b) represent collision between two symmet-
ric double-hump solitons. Panels (c) and (d) denote interaction
among flat-top and symmetric double-hump soliton. The param-
eter values: [(a) and (b)] k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i,
k2 = 0.315 − 2.2i, l2 = 0.333 − 2.2i, α

(1)
1 = 0.45 + 0.45i, α

(1)
2 =

0.49 + 0.45i, α
(2)
1 = 0.49 + 0.45i, and α

(2)
2 = 0.45 + 0.45i. [(c) and

(d)] k1 = 0.43 + 0.5i, l1 = 0.3 + 0.5i, k2 = 0.3 − 2.2i, l2 = 0.43 −
2.2i, α

(1)
1 = 0.45 + 0.5i, α

(1)
2 = 0.43 + 0.5i, α

(2)
1 = 0.43 + 0.5i, and

α
(2)
2 = 0.45 + 0.5i.

hump solitons are indeed preserved during the collision. This
ensures further that the relative separation distance values
are consistent with the shape-preserving collision condition
φ−

j = φ+
j and ϕ−

j = ϕ+
j , j = 1, 2, 3, 4, given by Eq. (19).

We also show the shape-preserving collision between flat-top
soliton and double-hump soliton occurs in Figs. 5(c) and 5(d).
The same type of collision behavior is also observed while
the symmetric single-hump soliton collides with the symmet-
ric double-hump soliton, which is illustrated in Figs. 6(a)
and 6(b). In Figs. 6(c) and 6(d) we depict the elastic collision
between two symmetric single-hump solitons. From Fig. 6, we
find that each soliton retains its structure during the collision
scenario.

Next, we illustrate the shape-preserving collision among
the asymmetric solitons. As we pointed out earlier, the nonde-
generate fundamental soliton also admits asymmetric profiles
for k1I = l1I . To bring out one more asymmetric soliton
we set k2I = l2I in the two-soliton solution (13a)–(13c). In
order to study the shape-preserving collision of such two
asymmetric solitons, first we locate asymmetric double-hump
soliton S1 along the line η1R = k1R(t − 2k1I z) � 0, ξ1R =
l1R(t − 2k1I z) � 0 and another similar kind of soliton S2 along
the line η2R = k2R(t − 2k2I z) � 0, ξ2R = l2R(t − 2k2I z) � 0.
These asymmetric structured double-hump solitons also pre-
serve their structure after collision. This is clearly depicted
in Figs. 7(a) and 7(b). To ensure the shape-preserving na-
ture of asymmetric solitons, we again explicitly calculate the
relative separation distance values for both the asymmetric
solitons S1 and S2 as �t1 = �t2 = −0.0093. These values
again confirm the shape-preserving property of the asymmet-
ric double-hump solitons and they are indeed compatible with
the shape-preserving collision condition (19). As displayed

FIG. 6. Shape-preserving collision of symmetric nondegenerate
solitons. Panels (a) and (b) denote collision between single-hump
and double-hump solitons: The values corresponding to this colli-
sion scenario are k1 = 0.55 + 0.5i, l1 = 0.333 + 0.5i, k2 = 0.333 −
2.2i, l2 = 0.55 − 2.2i, α(1)

1 = 0.45 + 0.5i, α(1)
2 = 0.43 + 0.5i, α(2)

1 =
0.43 + 0.5i, and α

(2)
2 = 0.45 + 0.5i. Panels (c) and (d) denote two

single-hump solitons interaction: The corresponding parameter val-
ues are chosen as k1 = 0.333 + 0.5i, l1 = −0.316 + 0.5i, k2 =
−0.316 − 2.2i, l2 = 0.333 − 2.2i, α(1)

1 = 0.45 + 0.51i, α(1)
2 = 0.5 +

0.5i, α
(2)
1 = 0.5 + 0.5i, and α

(2)
2 = 0.45 + 0.51i.

in Figs. 7(c) and 7(d), the asymmetric flat-top soliton also
preserves its structure when it collides with an asymmetric
double-hump soliton. In other cases also asymmetric solitons
preserve their profiles. This can be confirmed from Fig. 8.
Very interestingly, the shape-preserving collision also occurs
even when the asymmetric double-hump soliton interacts with
the symmetric double-hump soliton. This is illustrated in
Fig. 9. During this collision also the standard position shift
only occurs as a final outcome.

FIG. 7. Shape-preserving collision of asymmetric nondegener-
ate solitons. Panels (a) and (b) represent two asymmetric soliton
collision: k1 = 0.333 − 0.5i, l1 = 0.315 − 0.5i, k2 = 0.315 + 1.5i,
l2 = 0.333 + 1.5i, α

(1)
1 = 0.65 + 0.45i, α

(1)
2 = 0.49 + 0.5i, α

(2)
1 =

0.49 + 0.5i and α
(2)
2 = 0.65 + 0.45i. Panels (c) and (d) denote

asymmetric flat-top-double-hump soliton: The corresponding pa-
rameter values are chosen as (a): k1 = 0.425 − 0.5i, l1 = 0.3 −
0.5i, k2 = 0.3 + 1.5i, l2 = 0.425 + 1.5i, α

(1)
1 = 0.5 + 0.51i, α

(1)
2 =

0.43 + 0.5i, α
(2)
1 = 0.43 + 0.5i, and α

(2)
2 = 0.5 + 0.51i.
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FIG. 8. Shape-preserving collision of asymmetric nondegenerate
solitons. Panels (a) and (b) represent asymmetric single-hump and
double-hump soliton collision: k1 = 0.55 − 0.5i, l1 = 0.333 − 0.5i,
k2 = 0.333 + 1.5i, l2 = 0.55 + 1.5i, α

(1)
1 = 1.2 + 0.5i, α

(1)
2 = 0.5 +

0.45i, α
(2)
1 = 0.5 + 0.45i, and α

(2)
2 = 1.2 + 0.5i. Panels (c) and

(d) denote collision of two asymmetric single-hump solitons: The
parameter values of each figure are chosen as k1 = 0.333 − 0.5i, l1 =
−0.2 − 0.5i, k2 = −0.2 + 1.5i, l2 = 0.333 + 1.5i, α

(1)
1 = 0.45 +

3.0i, α
(1)
2 = 0.5 + 0.5i, α

(2)
1 = 0.5 + 0.5i, and α

(2)
2 = 0.45 + 3.0i.

Then, we also come across another type of elastic collision,
namely shape-altering collision for certain set of paramet-
ric choices again with k1I = l1I and k2I = l2I . We illustrate
such collision scenario in Fig. 10. We explain the pro-
file alteration in the head-on collision between slow-moving
symmetric double-hump soliton and fast-moving asymmetric
double-hump soliton as displayed in Figs. 10(a) and 10(b). To
draw this figure we fix the parametric choice as k1 = 0.41 +
0.5i, l1 = 0.305 + 0.5i, k2 = 0.305 − 2.2i, l2 = 0.41 − 2.2i,
α

(1)
1 = α

(2)
2 = 0.44 + 0.499i, and α

(1)
2 = α

(2)
1 = 0.44 + 0.5i

in solution (13a)–(13c). From this figure, we find that while
symmetric double-hump soliton S−

1 in the first mode slightly
changes into an asymmetric structure, the asymmetric double-
hump soliton S−

2 becomes symmetric. For this kind of
shape-altering collision the parameter values corresponding to
Figs. 10(a) and 10(b) are inconsistent with the condition (19),
even though the unimodular condition of transition amplitudes
is still preserved. A similar kind of profile alteration occurs
in the second mode also. This is due to the incoherent inter-
action between the modes q1 and q2. Again, a similar type
of collision property has been observed when a symmetric

FIG. 9. Shape-preserving collision between symmetric double-
hump soliton and asymmetric double-hump soliton: The parameter
values are k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, k2 = 0.315 − 2.2i,
l2 = 0.333 − 2.2i, α

(1)
1 = 0.45 + 0.45i, α

(1)
2 = 2.49 + 2.45i, α

(2)
1 =

0.49 + 0.45i, and α
(2)
2 = 0.45 + 0.45i.

FIG. 10. Shape-altering collision: Panels (a) and (b) denote
shape-altering collision between symmetric double-hump soliton and
asymmetric double-hump soliton. Panels (c) and (d) refer to collision
between symmetric flat-top and asymmetric double-hump soliton.
Panels (e) and (f) represent interaction between single-hump and
asymmetric double-hump soliton.

(or asymmetric) flat-top soliton collides with an asymmetric
(or symmetric) double-hump soliton in the q1 (or q2) compo-
nent, which is demonstrated in Figs. 10(c) and 10(d) for k1 =
0.425 + 0.5i, l1 = 0.3 + 0.5i, k2 = 0.3 − 2.2i, l2 = 0.425 −
2.2i, α

(1)
1 = α

(2)
2 = 0.5 + 0.5i and α

(1)
2 = α

(2)
1 = 0.45 + 0.5i.

In Figs. 10(e) and 10(f), we illustrate shape alteration collision
between symmetric single-hump and double-hump solitons
in both the components by fixing the parameter values
as k1 = 0.55 − 0.5i, l1 = 0.333 − 0.5i, k2 = 0.333 + 1.5i,
l2 = 0.55 + 1.5i, α

(1)
1 = α

(2)
2 = 0.5 + 0.5i, and α

(1)
2 = α

(2)
1 =

0.45 + 0.5i. In each of the modes, the collision transforms
the symmetric double-hump soliton into a slightly asymmet-
ric double-hump soliton leaving the symmetric single-hump
soliton unaltered. However, in all the above cases the energy
does not get redistributed among the modes even though the
shape of the solitons gets altered during the collision. One
can prove the unimodular nature of the transition amplitudes
in these cases by following the procedure mentioned earlier
in this section. As we pointed out earlier, the similar kind
of shape-preserving and shape-altering collisions are also ob-
served in the case of k1I �= l1I and k2I �= l2I . Here we have
not displayed their plots and their corresponding asymptotic
analysis for brevity.

Additionally, in Fig. 11, we display another type of col-
lision scenario for the velocity condition k1I = l1I , k2I �= l2I .
In this collision scenario the asymmetric double-hump soli-
tons that are present in the two modes change dramatically.
However, the single-hump solitons undergo collision without
any change in their intensity profiles. Due to the incoherent
coupling between the modes, the change occurred only in
the profile of the double-hump soliton. One can carry out an
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FIG. 11. Shape-changing collision between asymmetric double-
hump soliton and single-hump soliton: k1 = 0.333 + 0.5i, l1 =
0.315 + 0.5i, k2 = 0.315 + 2.2i, l2 = 0.433 − 2.2i, α

(1)
1 = α

(2)
2 =

0.5 + 0.5i, and α
(1)
2 = α

(2)
1 = 0.45 + 0.5i.

appropriate asymptotic analysis for this kind of collision pro-
cess also. We also note here that this kind of shape-changing
collision is not observed in the degenerate case. We remark
that elastic collision is also noticed in the case of dissipative
solitons where a new soliton pair (doublet) is formed when the
single soliton state (singlet) destroys the initial doublet state.
During this interaction, energy or momentum is not conserved
in the fiber laser cavity [54–56]. But the elastic collision ob-
served in the present conservative system is entirely different
from the above collision which has been observed in the
dissipative system. The vector solitons in dissipative systems
exhibit several interesting dynamical features, especially in
fiber lasers. Fiber lasers are very useful nonlinear systems to
study the formation and dynamics of temporal optical soli-
tons experimentally. In fact several types of solitons were
observed experimentally in fiber lasers. For instance, vector
multisoliton operation and vector soliton interaction in an
erbium-doped fiber laser [57] and a vector dark domain wall
soliton has been observed in a fiber ring laser [19]. Also vec-
tor dissipative soliton operation of erbium-doped fiber lasers
mode locked with atomic layer graphene was experimentally
investigated [58] and the coexistence of polarization-locked
and polarization rotating vector solitons in a fiber laser with a
semiconductor saturable absorber mirror have been observed
experimentally [59].

C. Shape-changing collision

Further, here we demonstrate the shape-changing collision
scenario of nondegenerate solitons for unequal velocities, that
is, k1I �= l1I and k2I �= l2I (we also note here that for appro-
priate choices of parameters for this unequal velocity case as
pointed out above both shape-preserving and shape-altering
cases do occur). During this interaction, we observe that an
intensity redistribution occurs among the modes of nonde-
generate fundamental solitons along with profile change. We
display such a collision dynamics in Figs. 12 and 13. A typ-
ical intensity redistribution phenomenon is demonstrated in
Fig. 12 when two asymmetric double-hump solitons collide
with each other. To bring out this nonlinear phenomenon we
choose the parameter values as k1 = 1.2 − 0.5i, l1 = 0.8 +
0.5i, k2 = 1.0 + 0.5i, l2 = 1.5 − 0.5i, α

(1)
1 = α

(2)
2 = 0.5 +

0.51i, and α
(1)
2 = α

(2)
1 = 0.45 + 0.5i. From Fig. 12, one can

easily observe that the profiles of asymmetric double-hump
solitons S1 and S2 change dramatically after collision, where
the initial asymmetric solitons S1 and S2 lose their identities
and reemerge with another set of asymmetric profiles. In

FIG. 12. Shape-changing collision between two asymmetric
double-hump solitons: k1 = 1.2 − 0.5i, l1 = 0.8 + 0.5i k2 = 1.0 +
0.5i, l2 = 1.5 − 0.5i, α

(1)
1 = α

(2)
2 = 0.5 + 0.5i, and α

(1)
2 = α

(2)
1 =

0.45 + 0.5i.

addition to the profile changes, there is also a finite intensity
redistribution which takes place between the two modes of the
solitons. However, the total energy of the individual solitons
as well as modes is conserved in order to hold the energy
conservation of system (1). A similar kind of collision is also
depicted in Fig. 13, where a drastic change only occurs in
the profile of asymmetric double-hump soliton but without
any change in the asymmetric single-hump soliton. This can
be witnessed in Fig. 13 by setting the values of the param-
eters as k1 = 0.36 + 0.5i, l1 = 0.3 − 0.5i, k2 = 0.5 − 2.1i,
l2 = 0.45 − 2.2i, α

(1)
1 = α

(2)
2 = 0.5 + 0.5i, and α

(1)
2 = 1.7 +

0.45i, α
(2)
1 = 0.45 + 0.5i in the solution (13a)–(13c). From

this figure one can confirm that the intensity redistribution
only occurs among the modes of the asymmetric double-hump
soliton. A detailed asymptotic analysis has been carried out in
order to ensure this peculiar intensity redistribution, which we
have given in Appendix B. We remark that the nondegenerate
solitons also exhibit shape-changing collision for the equal ve-
locity case as well with k1I = l1I and k2I = l2I for appropriate
choice of parameters, which are inconsistent with Eq. (19).

FIG. 13. Shape-changing collision between asymmetric single-
hump and double-hump solitons: k1 = 0.36 + 0.5i, l1 = 0.3 −
0.5i k2 = 0.5 − 2.1i, l2 = 0.45 − 2.2i, α

(1)
1 = α

(2)
2 = 0.5 − 0.5i,

α
(1)
2 = 1.7 + 0.45i, and α

(2)
1 = 0.45 + 0.5i.
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V. COLLISION BETWEEN NONDEGENERATE AND
DEGENERATE SOLITONS

In this section, we discuss the collision among degener-
ate and nondegenerate solitons admitted by the two-soliton
solution (13a)–(13c) of Manakov system (1) in the par-
tial nondegenerate limit k1 = l1 and k2 �= l2. The following
asymptotic analysis assures that there is a definite energy
redistribution occurs among the modes q1 and q2.

A. Asymptotic analysis

To elucidate this kind of collision behavior, we analyze
the partial nondegenerate two-soliton solution (14a)–(14c) in
the asymptotic limits z → ±∞. The resultant action yields
the asymptotic forms corresponding to degenerate and nonde-
generate solitons. As we pointed out in the shape-preserving
collision case, to obtain the asymptotic forms for the present
case we incorporate the asymptotic nature of the wave vari-
ables η jR = k jR(t − 2k jI z) and ξ2R = l2R(t − 2l2I z), j = 1, 2,
in the solution (14a)–(14c). Here the wave variable η1R corre-
sponds to the degenerate soliton and η2R, ξ2R correspond to the
nondegenerate soliton. In order to find the asymptotic behav-
ior of these wave variables we consider the parametric choice

as k1R, k2R, l2R > 0, k1I > 0, k2I , l2I < 0, k1I > k2I , k1I > l2I .
For this choice, the wave variables behave asymptotically
as follows: (i) degenerate soliton S1: η1R � 0, η2R, ξ2R →
∓∞ as z → ∓∞ (ii) nondegenerate soliton S2: η2R, ξ2R � 0,
η1R → ±∞ as z → ±∞. By incorporating these asymptotic
behaviors of wave variables in the solution (14a)–(14c), we
deduce the following asymptotic expressions for degenerate
and nondegenerate solitons.

(a) Before collision: z → −∞
Soliton 1: In this limit, the asymptotic form for the de-

generate soliton deduced from the partially nondegenerate
two-soliton solution (14a)–(14c) is

qj �
⎛
⎝A1−

1

A1−
2

⎞
⎠k1Reiη1I sech

(
η1R + R

2

)
, j = 1, 2, (26)

where A1−
j = α

( j)
1 /(|α(1)

1 |2 + |α(2)
1 |2)1/2, j = 1, 2, R =

ln (|α(1)
1 |2+|α(2)

1 |2 )
(k1+k∗

1 )2 . Here in A1−
j the superscript 1− denotes

soliton S1 before collision and subscript j refers to the mode
number.

Soliton 2: The asymptotic expressions for the nondegen-
erate soliton S2 which is present in the two modes before
collision are obtained as

q1 � 2k2RA2−
1

D

[
eiξ2I +�1 cosh

(
η2R + �21 − �21

2

)
+ eiη2I +�2 cosh

(
ξ2R + λ2 − λ1

2

)]
, (27a)

q2 � 2l2RA2−
2

D

[
eiη2I +�7 cosh

(
ξ2R + �21 − γ21

2

)
+ eiξ2I +�6 cosh

(
η2R + λ7 − λ6

2

)]
, (27b)

D = e�5 cosh

(
η2R − ξ2R + λ3 − λ4

2

)
+ e�3 cosh

[
i(η2I − ξ2I ) + ϑ12 − ϕ21

2

]

+e�4 cosh

(
η2R + η3R + λ5 − R

2

)
.

Here A2−
1 = [α(1)

2 /α
(1)∗
2 ]1/2 and A2−

2 = [α(2)
2 /α

(2)∗
2 ]1/2. In the latter the superscript 2− denote nondegenerate soliton S2 before

collision.
(b) After collision: z → +∞
Soliton 1: The asymptotic forms for degenerate soliton S1 after collision deduced from the solution (14a)–(14c) as

q j �
⎛
⎝A1+

1

A1+
2

⎞
⎠ei(η1I +θ+

j )k1R sech

(
η1R + R′ − ς22

2

)
, j = 1, 2, (28)

where A1+
1 = α

(1)
1 /(|α(1)

1 |2 + χ |α(2)
1 |2)1/2, A1+

2 = α
(1)
1 /(|α(1)

1 |2χ−1 + |α(2)
1 |2)1/2, χ = (|k1 − l2|2|k1 + k∗

2 |2)/(|k1 − k2|2|k1 +
l∗
2 |2), eiθ+

1 = (k1−k2 )(k∗
1 +k2 )(k1−l2 )

1
2 (k∗

1 +l2 )
1
2

(k∗
1 −k∗

2 )(k1+k∗
2 )(k∗

1 −l∗2 )
1
2 (k1+l∗2 )

1
2

, eiθ+
2 = (k1−k2 )

1
2 (k∗

1 +k2 )
1
2 (k1−l2 )(k∗

1 +l2 )

(k∗
1 −k∗

2 )
1
2 (k1+k∗

2 )
1
2 (k∗

1 −l∗2 )(k1+l∗2 )
. Here 1+ in A1+

1 refers to degenerate soliton S1 after

collision.
Soliton 2: Similarly the expression for the nondegenerate soliton, S2, after collision deduced from the two-soliton solu-

tion (14a)–(14c) is

q1 � 2k2RA2+
1 eiη2I cosh

(
ξ2R + �22−ρ1

2

)
[

(k∗
2 −l∗2 )

1
2

(k∗
2 +l2 )

1
2

cosh
(
η2R + ξ2R + ς22

2

) + (k2+l∗2 )
1
2

(k2−l2 )
1
2

cosh
(
η2R − ξ2R + R3−R6

2

)] , (29)

q2 � 2l2RA2+
2 eiξ2I cosh

(
η2R + μ22−ρ2

2

)
[

(k∗
2 −l∗2 )

1
2

(k2+l∗2 )
1
2

cosh
(
η2R + ξ2R + ς22

2

) + (k∗
2 +l2 )

1
2

(k2−l2 )
1
2

cosh
(
η2R − ξ2R + R3−R6

2

)] . (30)
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FIG. 14. Energy-sharing collision between degenerate and non-
degenerate soliton: k1 = l1 = 1 + i, k2 = 1 − i, l2 = 1.5 − 0.5i,
α

(1)
1 = 0.8 + 0.8i, α(2)

2 = 0.6 + 0.6i, α(1)
2 = 0.25 + 0.25i, and α

(2)
1 =

1 + i.

where ρ j = log α
( j)
2 , j = 1, 2, A2+

1 = [α(1)
2 /α

(1)∗
2 ]1/2, and

A2+
2 = i[α(2)

2 /α
(2)∗
2 ]1/2. The explicit expressions of all the con-

stants are given in Appendix C.

B. Degenerate soliton collision-induced shape-changing
scenario of nondegenerate soliton

The coexistence of nondegenerate and degenerate solitons
can be brought out from the partially nondegenerate soliton
solution (14a)–(14c). Such coexisting solitons undergo a col-
lision property that has been illustrated in Fig. 14. From this
figure, one can observe that the intensity of the degenerate
soliton S1 is enhanced after collision in the first mode and
it gets suppressed in the second mode. As we expected the
degenerate soliton undergoes energy redistribution among the
modes q1 and q2. In the degenerate soliton case, the polariza-
tion vectors, Al

j = α
( j)
l /(|α(1)

1 |2 + |α(2)
1 |2)1/2, l, j = 1, 2, play

crucial role in changing the shape of the degenerate solitons
under collision, where the intensity or energy redistribution
happens between the modes q1 and q2. As we point out in
the next section, the shape-preserving collision arises in the
pure degenerate case when the polarization parameters obey

the condition α
(1)
1

α
(1)
2

= α
(2)
1

α
(2)
2

, where α
( j)
i ’s, i, j = 1, 2, are complex

numbers related to the polarization vectors as given above.
The above collision is similar to the one which occurs in the
completely degenerate case [3,4]. However, this is not true in
the case of nondegenerate solitons. The nondegenerate asym-
metric double-hump soliton S2 exhibits a collision property
depicted in Fig. 14. In both the modes, the nondegenerate
soliton S2 experiences strong effect when it interacts with
a degenerate soliton. As a result the nondegenerate soliton
switches its asymmetric double-hump profile into single-
hump profile with an enhancement of intensity along with a
phase shift. In addition to the latter case, we also noticed that
the nondegenerate soliton loses its asymmetric double-hump
profile into another form of asymmetric double-hump profile
when it interacts with a degenerate soliton. In the nonde-
generate case, the relative separation distances (or phases)
are in general not preserved during the collision. These col-
lision properties can be understood from the corresponding
asymptotic analysis given in the previous subsection. The
asymptotic analysis reveals that energy redistribution occurs
between modes q1 and q2. In order to confirm the shape-
changing nature of this interesting collision process we obtain

the following expression for the transition amplitudes:

T 1
1 =

[∣∣α(1)
1

∣∣2 + |α(2)
1 |2]1/2

[∣∣α(1)
1

∣∣2 + χ
∣∣α(2)

1

∣∣2]1/2 ,

(31)

T 1
2 =

[∣∣α(1)
1

∣∣2 + ∣∣α(2)
1

∣∣2]1/2

[∣∣α(1)
1

∣∣2
χ−1 + ∣∣α(2)

1

∣∣2]1/2 .

In general, the transition amplitudes are not equal to unity.
If the quantity T l

j is not unimodular (for this case the con-
stant χ �= 1), then the degenerate and nondegenerate solitons
always exhibit shape-changing collision. The standard elastic
collision can be recovered when χ = 1. One can calculate the
shift in the positions of both degenerate and nondegenerate
solitons after collision from the asymptotic analysis. This kind
of collision property has not been observed in the degener-
ate vector bright solitons of the Manakov system [3,4]. The
property of enhancement of intensity in both the components
of nondegenerate soliton is similar to the one observed ear-
lier in the mixed coupled nonlinear Schrödinger system [60].
The amplification process of a single-humped nondegenerate
soliton in both the modes can be viewed as an application
for signal amplification where the degenerate soliton acts as
a pumping wave.

VI. DEGENERATE VECTOR BRIGHT SOLITON
SOLUTIONS AND THEIR COLLISION DYNAMICS

The already reported degenerate vector one-bright soliton
solution of Manakov system (1) can be deduced from the one-
soliton solution (7) by imposing k1 = l1 in it. The forms of q j

given in Eq. (7) degenerates into the standard bright soliton
form [3,44]

q j = α
( j)
1 eη1

1 + eη1+η∗
1+R

, j = 1, 2, (32)

which can be rewritten as

qj = k1RÂ je
iη1I sech

(
η1R + R

2

)
, (33)

where η1R = k1R(t − 2k1I z), η1I = k1I t + (k2
1R − k2

1I )z, Â j =
α

( j)
1√

(|α(1)
1 |2+|α(2)

1 |2 )
, eR = (|α(1)

1 |2+|α(2)
1 |2 )

(k1+k∗
1 )2 , and j = 1, 2. Note that the

above fundamental bright soliton always propagates in both
the modes q1 and q2 with the same velocity 2k1I . The polariza-
tion vectors (Â1, Â2)† have different amplitudes and phases,
unlike the case of nondegenerate solitons where they have
only different phases. The presence of single wave number
k1 in the solution (33) restricts the degenerate soliton to have
a single-hump form only. A typical profile of the degener-
ate soliton is shown in Fig. 15. As already pointed out in
Refs. [3,4] the amplitude and central position of the degen-
erate vector bright soliton are obtained as 2k1RÂ j , j = 1, 2,
and R

2k1R
, respectively.

Further, the degenerate two-soliton solution can be de-
duced from the nondegenerate two-soliton solution (13a)–
(13c) by applying the degenerate limits k1 = l1 and k2 = l2.
This results in the following standard degenerate two-soliton
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solution [3], that is,

q j (t, z) = α
( j)
1 eη1 + α

( j)
2 eη2 + eη1+η∗

1+η2+δ1 j + eη1+η2+η∗
2+δ2 j

1 + eη1+η∗
1+R1 + eη1+η∗

2+δ0 + eη∗
1+η2+δ∗

0 + eη2+η∗
2+R2 + eη1+η∗

1+η2+η∗
2+R3

, (34)

where j = 1, 2, η j = k j (t + ik jz), eδ0 = k12
k1+k∗

2
, eR1 =

k11
k1+k∗

1
, eR2 = k22

k2+k∗
2
, eδ1 j = (k1−k2 )(α( j)

1 k21−α
( j)
2 k11 )

(k1+k∗
1 )(k∗

1 +k2 ) , eδ2 j =
(k2−k1 )(α( j)

2 k12−α
( j)
1 k22 )

(k2+k∗
2 )(k1+k∗

2 ) , eR3 = |k1−k2|2
(k1+k∗

1 )(k2+k∗
2 )|k1+k∗

2 |2 (k11k22 −
k12k21), and kil = μ

∑2
n=1 α

(n)
i α

(n)∗
i

(ki+k∗
l ) , i, l = 1, 2, μ = +1. The N

degenerate vector bright soliton solution can be recovered
from the nondegenerate N-soliton solutions by fixing the
wave numbers as ki = li, i = 1, 2, . . . , N . In passing we also
note that the nondegenerate fundamental soliton solution
(7) can arise when we fix the parameters α

(1)
2 = α

(2)
1 = 0

in Eq. (34) and rename the constants k2 as l1 and α
(2)
2 as

α
(2)
1 in the resultant solution. We also note that the above

degenerate two-soliton solution (34) can also be rewritten
using Gram determinants from the Gram-determinant forms
of nondegenerate two-soliton solution (13a)–(13c).

As reported in Refs. [3,4], the degenerate fundamental
solitons (ki = li, i = 1, 2) in the Manakov system un-
dergo shape-changing collision due to intensity redistribution
among the modes. The energy redistribution occurs in the
degenerate case because of the polarization vectors of the two
modes combine with each other. This shape-changing colli-
sion illustrated in Fig. 16 where the intensity redistribution
occurs because of the enhancement of soliton S1 in the first
mode and the corresponding intensity of the same soliton is
suppressed in the second mode. To hold the conservation of
energy between the modes the intensity of the solitons S2

gets suppressed in the first mode and it is enhanced in the
second mode. The standard elastic collision has already been
brought out in the degenerate case for the very special case
α

(1)
1

α
(1)
2

= α
(2)
1

α
(2)
2

[4,52].

VII. POSSIBLE EXPERIMENTAL OBSERVATIONS OF
NONDEGENERATE SOLITONS

To experimentally observe the nondegenerate vector soli-
tons (single-hump or double-hump solitons) one may adopt

FIG. 15. Degenerate one-soliton: The values are k1 = 0.3 + 0.5i,
α

(1)
1 = 1.5 + 1.5i, and α

(2)
1 = 0.5 + 0.5i.

the mutual-incoherence method which has been used to
observe the multihump multimode solitons experimentally
(see Ref. [36]). The Manakov solitons (degenerate solitons)
can also be observed by the same experimental procedure
with appropriate modifications (see Ref. [24]). In the fol-
lowing, we briefly envisage how the procedure given in
Ref. [36] can be modified to generate the single-hump or
double-hump soliton (nondegenerate soliton) discussed in
our work.

To generate the nondegenerate vector solitons it is essential
to consider two laser sources of different characters, so that
the wavelength of the first laser beam is different from the sec-
ond one. Using polarizing beam splitters, each one of the laser
beams can be split into ordinary and extraordinary beams. The
extraordinary beam coming out from the first source can be
further split into two individual fields F11 and F12 by allowing
it to fall on a beam splitter. These two fields are nothing but
the reflected and transmitted extraordinary beams coming out
from the beam splitter. The intensities of these two fields are
different. Similarly, the second beam which is coming out
from the second source can also be split into two fields F21 and
F22 by passing through another beam splitter. The intensities
of these two fields are also different. As a result one can
generate four fields that are incoherent to each other. To set
the incoherence in phase among these four fields one should
allow them to travel sufficient distance before coupling is
performed. The fields F11 and F12 now become nondegenerate
two individual solitons in the first mode whereas F21 and F22

form another set of two nondegenerate solitons in the second
mode. The coupling between the fields F11 and F21 can be
performed by combining them using another beam splitter.
Similarly, by suitably locating another beam splitter, one can
combine the fields F12 and F22, respectively. After appropriate
coupling is performed the resultant optical field beams can
now be focused through two individual cylindrical lenses and
the output may be recorded in an imaging system, which
consists of a crystal and charge-coupled device camera. The
collision between the nondegenerate two solitons in both the
modes can now be seen from the recorded images.

To observe the elastic collision between nondegenerate
solitons (single-hump or double-hump solitons), one must
make arrangements to vanish the mutual coherence property

FIG. 16. Shape-changing collision of degenerate two-solitons:
k1 = l1 = 1 + i, k2 = l2 = 1.51 − 1.51i, α

(1)
1 = 0.5 + 0.5i, and

α
(1)
2 = α

(2)
1 = α

(2)
2 = 1.
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between the solitons F11 and F12 in the first mode q1 and F21

and F22 in the second mode q2 (see Ref. [24]). The four optical
beams are now completely independent and incoherent with
one another. The collision angle at which the nondegenerate
solitons interact should be sufficiently large enough. Under
this situation, no energy exchange is expected to occur be-
tween the nondegenerate solitons of the two modes.

VIII. CONCLUSION

From the present study, we point out a few applications
of our above reported soliton solutions. The shape-preserving
collision property of the nondegenerate solitons can be used
for optical communication applications. The nondegenerate
solitons of Manakov system can be seen as a soliton molecule
when k1I ≈ k2I and l1I ≈ l2I . Therefore, as explained in
the context of soliton molecule, the double-hump (or
multihump) structure of the nondegenerate solitons can
be useful for sending information of densely packed
data [30]. Degenerate soliton collision-induced enhancement
of intensity property of nondegenerate soliton is considered
as signal amplification application. Recently the various
properties associated with soliton molecule have been
explored in the literature [30,31,40,61,62]. Also a breather
wave molecule has been identified in Ref. [63]. The
interesting collision property of degenerate soliton has already
been shown that it is useful for optical computing [28,52]. Our
results provide the possibility to investigate nondegenerate
type solitons in both integrable and nonintegrable systems.
The present study can also be extended to fiber arrays and
multimode fibers where Manakov-type equations describe
the pulse propagation. Recently we have investigated the
dynamics of nondegenerate solitons in the N-coupled system
and the results will be published elsewhere.

We have derived a general form of nondegenerate one-,
two-, and three-soliton solutions for the Manakov model
through the Hirota bilinear method. This class of solitons
admits various interesting profile structures. The double-
hump formation is elucidated by analyzing the relative
velocities of the modes of the solitons. Then we have
pointed out the coexistence of degenerate and nonde-
generate solitons in the Manakov system by imposing a
wave-number restriction on the obtained two-soliton solu-
tion. We have found that nondegenerate solitons undergo
shape-preserving, shape-altering, and shape-changing col-
lision scenarios for both equal velocities and unequal
velocities cases. However, for the partially equal veloc-
ity case, we have demonstrated shape-changing collision.
By performing appropriate asymptotic analysis, the shape-
changing collision has been explained while the degenerate
soliton interacts with the nondegenerate soliton. Finally,
we recovered the well-known energy exchanging collision
exhibiting degenerate soliton solutions from these non-
degenerate one- and two-soliton solutions. We have also
verified the stability nature of double-hump solitons even
during collision using the Crank-Nicolson method as ex-
plained in Appendix D. It is also very interesting to
investigate many possibilities of collision dynamics us-
ing a three-soliton solution as deduced in Appendix A.

Now we are investigating what will happen when (i) two
degenerate solitons interact with a nondegenerate soliton
and (ii) two nondegenerate solitons collide with a degen-
erate soliton, and so on. The results will be published
elsewhere.
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APPENDIX A: THREE-SOLITON SOLUTION

The explicit form of nondegenerate three-soliton solution
of Eq. (1) can be deduced by proceeding with the Eqs. (4)
using the series representation up to orders ε11 for g(N ) and
ε12 for f . Then the solution can be expressed using Gram
determinant in the following way:

g(N ) =
∣∣∣∣∣∣

A I φ

−I B 0T

0 CN 0

∣∣∣∣∣∣, f =
∣∣∣ A I
−I B

∣∣∣, N = 1, 2.

(A1a)

Here the matrices A and B are of the order (6 × 6) defined as

A =
(Amm′ Amn

Anm Ann′

)
,

B =
(
κmm′ κmn

κnm κnn′

)
, m, m′, n, n′ = 1, 2, 3. (A1b)

The various elements of matrix A are obtained from the fol-
lowing,

Amm′ = eηm+η∗
m′

(km + k∗
m′ )

, Amn = eηm+ξ∗
n

(km + l∗
n )

, (A1c)

Ann′ = eξn+ξ∗
n′

(ln + l∗
n′ )

, Anm = eη∗
n+ξm

(k∗
n + lm)

, m, m′, n, n′ = 1, 2, 3.

(A1d)

The elements of matrix B is defined as

κmm′ = ψ†
mσψm′

(k∗
m + km′ )

, κmn = ψ†
mσψ ′

n

(k∗
m + ln)

,

κnm = ψ ′†
n σψm

(l∗
n + km)

, κnn′ = ψ ′†
n σψ ′

n′

(l∗
n + ln′ )

. (A1e)

In (A1e) the column matrices are ψ j = (α
(1)
j
0

), ψ ′
j =

(
0

α
(2)
j

), j = m, m′, n, n′ = 1, 2, 3, η j = k jt + ik2
j z, and ξ j =

l jt + il2
j z, j = 1, 2, 3. The other matrices in Eq. (A1a) are

defined below:
φ = (eη1 eη2 eη3 eξ1 eξ2 eξ3 )T , C1 = −(α(1)

1 α
(1)
2 α

(1)
3

0 0 0), C2 = −(0 0 0 α
(2)
1 α

(2)
2 α

(2)
3 ), 0 = (0 0 0 0 0 0), and

σ = I is a (6 × 6) identity matrix.
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APPENDIX B: ASYMPTOTIC ANALYSIS OF SHAPE-CHANGING COLLISION OF NONDEGENERATE SOLITONS IN THE
UNEQUAL VELOCITY CASE: k1I �= l1I AND k2I �= l2I

To carry out the asymptotic analysis for the shape-changing collision we fix the parameters as k1I < k2I , l1I > l2I , k jR, l jR > 0,
j = 1, 2, and k1I �= l1I , k2I �= l2I . For this choice the nondegenerate two-soliton solution (13a)–(13c) reduces to the following
asymptotic forms:

(a) Before collision: z → −∞
Soliton 1: (η1R, ξ1R � 0, η2R → +∞, ξ2R → −∞)

q1 � 2A1−
1 k1Rei(η1I +θ1−

1 ) cosh(ξ1R + ψ−
1 )[

(k∗
1 −l∗1 )

1
2

(k∗
1 +l1 )

1
2

cosh(η1R + ξ1R + ψ−
3 ) + (k1+l∗1 )

1
2

(k1−l1 )
1
2

cosh(η1R − ξ1R + ψ−
4 )

] , (B1a)

q2 � 2A1−
2 l1Rei(ξ1I +θ1−

2 ) cosh(η1R + ψ−
2 )[

(k∗
1 −l∗1 )

1
2

(k1+l∗1 )
1
2

cosh(η1R + ξ1R + ψ−
3 ) + (k∗

1 +l1 )1/2

(k1−l1 )1/2 cosh(η1R − ξ1R + ψ−
4 )

] . (B1b)

Here ψ−
1 = 1

2 log (k1−l1 )|k2−l1|2|α(2)
1 |2

(k1+l∗1 )|k2+l∗1 |2(l1+l∗1 )2 , ψ−
2 = 1

2 log (l1−k1 )|k1−k2|4|α(1)
1 |2

(k∗
1 +l1 )|k1+k∗

2 |4(k1+k∗
1 )2 , eiθ1−

1 = (k1−k2 )(k∗
1 +k2 )

(k∗
1 −k∗

2 )(k1+k∗
2 ) , ψ−

4 =
1
2 log |k1−k2|4|k2+l∗1 |2|α(1)

1 |2(l1+l∗1 )2

|α(2)
1 |2|k1+k∗

2 |4|k2−l1|2(k1+k∗
1 )2 , ψ−

3 = 1
2 log |k1−k2|4|k1−l1|2|k2−l1|2|α(2)

1 |2|α(1)
1 |2

|k1+k∗
2 |4|k1+l∗1 |2|k2+l∗1 |2(k1+k∗

1 )2(l1+l∗1 )2 , eiθ1−
2 = (k2−l1 )

1
2 (k∗

2 +l1 )
1
2

(k∗
2 −l∗1 )

1
2 (k2+l∗1 )

1
2

, A1−
1 = [α(1)

1 /α
(1)∗
1 ]1/2,

and A1−
2 = i[α(2)

1 /α
(2)∗
1 ]1/2.

Soliton 2: (η2R, ξ2R � 0, η1R → −∞, ξ1R → +∞)

q1 � 2k2RA2−
1 ei(η2I +θ2−

1 ) cosh(ξ2R + χ−
1 )[

(k∗
2 −l∗2 )

1
2

(k∗
2 +l2 )

1
2

cosh(η2R + ξ2R + χ−
3 ) + (k2+l∗2 )

1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + χ−
4 )

] , (B2a)

q2 � 2l2RA2−
2 ei(ξ2I +θ2−

2 ) cosh(η2R + χ−
2 )[

(k∗
2 −l∗2 )

1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + χ−
3 ) + (k∗

2 +l2 )
1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + χ−
4 )

] . (B2b)

In the above,

χ−
1 = 1

2
log

|l1 − l2|4(k2 − l2)
∣∣α(2)

2

∣∣2

|l1 + l∗
2 |4(k2 + l∗

2 )(l2 + l∗
2 )2

, χ−
2 = 1

2
log

|k2 − l1|2(l2 − k2)(l2 + l∗
1 )2

∣∣α(1)
2

∣∣2

|k2 + l∗
1 |2(k∗

2 + l2)(k2 + k∗
1 )2(k2 + k∗

2 )2
,

eiθ2−
1 = (k2 − l1)

1
2 (k∗

2 + l1)
1
2

(k∗
2 − l∗

1 )
1
2 (k2 + l∗

1 )
1
2

, eiθ2−
2 = (l1 − l2)(l1 + l∗

2 )

(l∗
1 − l∗

2 )(l∗
1 + l2)

, A2−
1 = [

α
(1)
2

/
α

(1)∗
2

]1/2
,

χ−
3 = 1

2
log

|l1 − l2|4|k2 − l1|2|k2 − l2|2
∣∣α(1)

2

∣∣2∣∣α(2)
2

∣∣2

|l1 + l∗
2 |4|k2 + l∗

1 |2|k2 + l∗
2 |2(k2 + k∗

2 )2(l2 + l∗
2 )2

, A2−
2 = [

α
(2)
2

/
α

(2)∗
2

]1/2
,

χ−
4 = 1

2
log

|k2 − l1|2|l1 + l∗
2 |4∣∣α(1)

2

∣∣2
(l2 + l∗

2 )2

∣∣α(2)
2

∣∣2|k2 + l∗
1 |2|l1 − l2|4(k2 + k∗

2 )2
.

(b) After collision: z → +∞
Soliton 1: (η1R, ξ1R � 0, η2R → −∞, ξ2R → +∞)

q1 � 2k1RA1+
1 ei(η1I +θ1+

1 ) cosh(ξ1R + ψ+
1 )[

(k∗
1 −l∗1 )

1
2

(k∗
1 +l1 )

1
2

cosh(η1R + ξ1R + ψ+
3 ) + (k1+l∗1 )

1
2

(k1−l1 )
1
2

cosh(η1R − ξ1R + ψ+
4 )

] , (B3a)

q2 � 2l1RA2+
1 ei(ξ1I +θ1+

2 ) cosh(η1R + ψ+
2 )[

(k∗
1 −l∗1 )

1
2

(k1+l∗1 )
1
2

cosh(η1R + ξ1R + ψ+
3 ) + (k∗

1 +l1 )
1
2

(k1−l1 )
1
2

cosh(η1R − ξ1R + ψ+
4 )

] . (B3b)

Here

ψ+
1 = 1

2
log

|l1 − l2|4(k1 − l1)
∣∣α(2)

1

∣∣2

|l1 + l∗
2 |4(k1 + l∗

1 )(l1 + l∗
1 )2

, ψ+
2 = 1

2
log

|k1 − l2|2(l1 − k1)
∣∣α(1)

1

∣∣2

|k1 + l∗
2 |2(k∗

1 + l1)(k1 + k∗
1 )2

,

eiθ1+
1 = (k1 − l2)

1
2 (k∗

1 + l2)
1
2

(k∗
1 − l∗

2 )
1
2 (k1 + l∗

2 )
1
2

, eiθ1+
2 = (l1 − l2)(l∗

1 + l2)

(l∗
1 − l∗

2 )(l1 + l∗
2 )

, A1+
1 = [

α
(1)
1

/
α

(1)∗
1

]1/2
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ψ+
3 = 1

2
log

|k1 − l1|2|k1 − l2|2|l1 − l2|4
∣∣α(1)

1

∣∣2∣∣α(2)
1

∣∣2

|k1 + l∗
1 |2|k1 + l∗

2 |2|l1 + l∗
2 |4(k1 + k∗

1 )2(l1 + l∗
1 )2

, A1+
2 = [

α
(2)
1

/
α

(2)∗
1

]1/2

ψ+
4 = 1

2
log

|k1 − l2|2|l1 + l∗
2 |4∣∣α(1)

1

∣∣2
(l1 + l∗

1 )2

∣∣α(2)
1

∣∣2|k1 + l∗
2 |2|l1 − l2|4(k1 + k∗

1 )2
.

Soliton 2: (η2R, ξ2R � 0, η1R → +∞, ξ1R → −∞)

q1 � 2A1+
2 k2Rei(η2I +θ2+

1 ) cosh(ξ2R + χ+
1 )[

(k∗
2 −l∗2 )

1
2

(k∗
2 +l2 )

1
2

cosh(η2R + ξ2R + χ+
3 ) + (k2+l∗2 )

1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + χ+
4 )

] , (B4a)

q2 � 2A2+
2 l2Rei(ξ2I +θ2+

2 ) cosh(η2R + χ+
2 )[

i(k∗
2 −l∗2 )

1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + χ+
3 ) + (k∗

2 +l2 )
1
2

(l2−k2 )
1
2

cosh(η2R − ξ2R + χ+
4 )

] , (B4b)

where χ+
1 = 1

2 log (k2−l2 )|k1−l2|2|α(2)
2 |2

(k2+l∗2 )|k1+l∗2 |2(l2+l∗2 )2 , χ+
2 = 1

2 log α
(2)
1 |k1−k2|4(k1−l1 )(k2−l1 )(k∗

1 +l2 )|α(1)
2 |2

α
(2)
2 |k1+k∗

2 |4(k∗
1 +l1 )(k∗

2 +l1 )(l2−k1 )(k2+k∗
2 )2 , eiθ2+

1 = (k1−k2 )(k1+k∗
2 )

(k∗
1 −k∗

2 )(k∗
1 +k2 ) , eiθ2+

2 =
(k1−l2 )

1
2 (k1+l∗2 )

1
2

(k∗
1 −l∗2 )

1
2 (k∗

1 +l2 )
1
2

, χ+
3 = 1

2 log |k1−k2|4|k1−l2|2|k2−l2|2|α(1)
2 |2|α(2)

2 |2
|k1+k∗

2 |4|k1+l∗2 |2|k2+l∗2 |2(k2+k∗
2 )2(l2+l∗2 )2 , A2+

1 = [α(1)
2 /α

(1)∗
2 ]1/2, χ+

4 = 1
2 log |k1−k2|4|k1+l∗2 |2|α(1)

2 |2(l2+l∗2 )2

|α(2)
2 |2|k1+k∗

2 |4|k1−l2|2(k2+k∗
2 )2 , and

A2+
2 = i[α(2)

2 /α
(2)∗
2 ]1/2.

From the above analysis, we find that the structures of individual solitons are invariant before and after collisions except for
the terms corresponding to the various phases ψ−

j , χ−
j , ψ+

j , χ+
j , j = 1, 2, 3, 4. For instance, from Eqs. (B1a) and (B3a), the

phase terms ψ−
j , j = 1, 2, 3, 4 corresponding to the first soliton in the q1 mode change into ψ+

j , j = 1, 2, 3, 4, respectively.
Similar phase changes take place in the second component of the first soliton and in the structure of the second soliton as well.
Consequently, the phase changes leads to the occurrence of shape-changing collision in the unequal velocity case. Therefore, in
general, the shape-preserving collision does not occur in the unequal velocity case. However, it can arise when the phase terms
obey the following conditions:

ψ−
j = ψ+

j , χ−
j = χ+

j , j = 1, 2, 3, 4. (B5)

Using the complicated shape-changing collision property of nondegenerate solitons we could not identify a linear fractional
transformation (as in the case of the degenerate case) in order to construct optical logic gates.

APPENDIX C: CONSTANTS WHICH APPEAR IN THE ASYMPTOTIC EXPRESSIONS IN SEC. V

The various constants which arise in the asymptotic analysis of collision between degenerate and nondegenerate solitons in
Sec. V are as follows:

e�1 = iα(1)
1 (k1 − k2)

1
2 (k1 − l2)

1
2 (k∗

1 + k2)
1
2 (k1 + k∗

1 )(k2 + l∗
2 )

1
2 |k1 + l∗

2 |2
α

(1)
2 (k∗

1 − l∗
2 )

1
2 (k∗

2 − l∗
2 )

1
2

eR∗
5+ R3−R6

2 ,

e�2 = (k1 − k2)
1
2 (k∗

2 + l2)
1
2 (k1 + k∗

2 )�̂1�̂2

(k∗
1 − k∗

2 )
1
2 (k∗

2 − l∗
2 )

1
2 (k∗

1 + k2)
, e�3 = |α(1)

1 ||α(2)
1 |(k1 + k∗

1 )(k2 + k∗
2 )(l2 + l∗

2 )

|k2 − l2| ,

e�4 = [∣∣α(1)
1

∣∣2 + ∣∣α(2)
1

∣∣2]1/2[∣∣α(1)
1

∣∣2|k1 − k2|2|k1 + l∗
2 |2 + |α(2)

1 |2|k1 − l2|2|k1 + k∗
2 |2]1/2

,

e�5 = |k2 + l∗
2 |

|k2 − l2|
[∣∣α(1)

1

∣∣2|k1 + l∗
2 |2 + ∣∣α(2)

1

∣∣2|k1 − l2|2
)1/2(∣∣α(1)

1

∣∣2|k1 − k2|2 + ∣∣α(2)
1

∣∣2|k1 + k∗
2 |2]1/2

,

e�6 = (k1 − l2)
1
2 (k2 + l∗

2 )
1
2 (k1 + l∗

2 )�̂3�̂4

(k∗
1 − l∗

2 )
1
2 (k∗

2 − l∗
2 )

1
2 (k∗

1 + l2)
, �̂1 = [∣∣α(1)

1

∣∣2
(k1 − k2) − ∣∣α(2)

1

∣∣2
(k∗

1 + k2)
]1/2

,

e�7 = α
(2)
1 (k1 − k2)

1
2 (k1 − l2)

1
2 (k∗

1 + l2)
1
2 (k1 + k∗

1 )(k∗
2 + l2)

1
2 |k1 + k∗

2 |2
α

(2)
2 (k∗

1 − k∗
2 )

1
2 (k∗

2 − l∗
2 )

1
2

eR∗
2+ R6−R3

2 ,

�̂2 = [∣∣α(1)
1

∣∣2
(k1 − k2)|k1 + l∗

2 |2 − ∣∣α(2)
1

∣∣2|k1 − l2|2(k∗
1 + k2)

]1/2
,

�̂4 = [∣∣α(1)
1

∣∣2|k1 − k2|2(k∗
1 + l2) − ∣∣α(2)

1

∣∣2
(k1 − l2)|k1 + k∗

2 |2]1/2
,

�̂3 = [∣∣α(2)
1

∣∣2
(k1 − l2) − ∣∣α(1)

1

∣∣2
(k∗

1 + l2)
]1/2

,
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e
�21−�21

2 =
∣∣α(1)

2

∣∣(k1 − k2)(k∗
2 − k∗

1 )
1
2 (k2 − l2)

1
2

(k1 + k∗
2 )(k2 + k∗

2 )(k2 + k∗
1 )

1
2 (k∗

2 + l2)
1
2

, e
λ2−λ1

2 =
∣∣α(2)

2

∣∣|k1 − l2|(k2 − l2)
1
2 �̂2

(k2 + l∗
2 )

1
2 |k1 + l∗

2 |2(l2 + l∗
2 )�̂1

,

e
λ5−R

2 = |k1 − k2||k1 − l2||k2 − l2|�̂5

|k1 + k∗
2 |2|k1 + l∗

2 |2|k2 + l∗
2 |(∣∣α(1)

1

∣∣2 + ∣∣α(2)
1

∣∣2)1/2 e
R3+R6

2 ,

e
ϑ12−ϕ21

2 = (k2 − k1)
1
2 (k∗

1 − l∗
2 )

1
2 (k∗

2 + l2)
1
2

(k2 + l∗
2 )

1
2 (k∗

2 − k∗
1 )

1
2 (k1 − l2)

1
2

e
R∗

2+R5−(R2+R∗
5 )

2 , e
λ3−λ4

2 = |k1 − k2|�̂6|k1 + l∗
2 |2e

R3−R6
2

|k1 + k∗
2 |2|k1 − l2|�̂7

,

e
�21−γ21

2 = (k2 − l2)
1
2 (k1 − l2)(k∗

1 − l∗
2 )

1
2

(k2 + l∗
2 )

1
2 (k1 + l∗

2 )(k∗
1 + l2)

1
2

e
R6
2 , e

λ7−λ6
2 = (k1 − k2)(k2 − l2)

1
2 �̂4

|k1 + k∗
2 |2(k∗

2 + l2)
1
2 �̂3

e
R3
2 ,

�̂5 = [∣∣α(1)
1

∣∣2|k1 − k2|2|k1 + l∗
2 |2 + |α(2)

1 |2|k1 − l2|2|k1 + k∗
2 |2]1/2

,

e
R′−ς22

2 = |k1 − k2||k1 − l2|�̂5

|k1 + k∗
2 |2|k1 + l∗

2 |2(k1 + k∗
1 )

, e
ς22

2 = |k2 − l2|
|k2 + l∗

2 |e
R3+R6

2 , e
R3−R6

2 =
∣∣α(1)

2

∣∣(l2 + l∗
2 )∣∣α(2)

2

∣∣(k2 + k∗
2 )

,

�̂6 = [∣∣α(1)
1

∣∣2|k1 − k2|2 + |α(2)
1 |2|k1 + k∗

2 |2]1/2
, �̂7 = [∣∣α(1)

1

∣∣2|k1 + l∗
2 |2 + ∣∣α(2)

1

∣∣2|k1 − l2|2
]1/2

,

e
�22−ρ1

2 = (k2 − l2)
1
2

(k2 + l∗
2 )

1
2

e
R6
2 , e

μ22−ρ2
2 = (l2 − k2)

1
2

(k∗
2 + l2)

1
2

e
R3
2 , eR1 =

∣∣α(1)
1

∣∣2

(k1 + k∗
1 )2

, eR2 = α
(1)
1 α

(1)∗
2

(k1 + k∗
2 )2

,

eR3 =
∣∣α(1)

2

∣∣2

(k2 + k∗
2 )2

, eR4 =
∣∣α(2)

1

∣∣2

(k1 + k∗
1 )2

, eR5 = α
(2)
1 α

(2)∗
2

(k1 + l∗
2 )2

, eR6 =
∣∣α(2)

2

∣∣2

(l2 + l∗
2 )2

.

APPENDIX D: NUMERICAL STABILITY ANALYSIS
CORRESPONDING TO FIGS. 5(a) AND 5(b) UNDER

PERTURBATION

In this Appendix, we wish to point out the stability nature
of the obtained nondegenerate soliton solutions numerically
using Crank-Nicolson procedure [64] even under the addition
of suitable white noise or Gaussian noise to the initial condi-
tions. Specifically, we consider the shape-preserving collision
of symmetric double-hump solitons discussed in Fig. 5. For
this purpose, we have considered the Manakov system (1)
with the initial conditions,

q j (−10, t ) = [1 + Aζ (t )]qj,−10(t ), j = 1, 2. (D1)

In the above, qj,−10’s, j = 1, 2, are the initial profile obtained
from the nondegenerate two-soliton solution Eqs. (13a)–
(13c) at z = −10. Here A is the amplitude of the white
noise and ζ (t ) represents the noise or fluctuation function.
The white noise was created by generating random num-
bers in the interval [−1, 1]. To fix the initial profile in the
numerical algorithm, we consider the same complex param-
eter values which are given for the Figs. 5(a) and 5(b) in
Sec. IV. We also consider the space and time step sizes,
respectively, as dz = 0.1 and dt = 0.001 in the numerical
algorithm. To study the collision scenario of double-hump
solitons [Figs. 17(a) and 17(b)] under perturbation we fix
the domain ranges for t and z as [−45, 45] and [−10, 10],
respectively.

First, we consider 10% (A = 0.1) of random perturbation
on the intial solution of the Manakov system. For this strength
of perturbation, we observe no significant change in the profile
as well as in the dynamics of the nondegenerate solitons apart

from a slight change, which is insignificant, in the amplitudes
of double-hump solitons after the collision. This is illustrated
in Figs. 17(c) and 17(d). Then we study the stability with
20% white noise (A = 0.2), which is a stronger perturbation,
for the double-hump solitons. Such a study is demonstrated

FIG. 17. Numerical plots of shape-preserving collision of nonde-
generate symmetric double-hump solitons with 10% and 20% white
noise as perturbations. Panels (a) and (b) denote the elastic collision
of two symmetric double-hump solitons without perturbation. Pan-
els (c) and (d) denote the collision with 10% white noise. Panels
(e) and (f) represent the collision with 20% strong white noise as
perturbation.
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in Figs. 17(e) and 17(f). The numerical analysis shows that
the double-hump soliton profiles still survive after the colli-
sion under as strong as 20% perturbation apart from a slight
distortion in the amplitudes. This ensures the stability of non-

degenerate solitons against perturbations of the above type of
noise.

Similarly, we have also verified the stability of nondegen-
erate solitons with Gaussian noise perturbation as well.
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Abstract
In this letter we report the existence of nondegenerate fundamental bright soli-
ton solution for coupled multi-component nonlinear Schrödinger equations of
Manakov type. To derive this class of nondegenerate vector soliton solutions,
we adopt the Hirota bilinear method with appropriate general class of seed
solutions. Very interestingly the obtained nondegenerate fundamental soliton
solution of the N-coupled nonlinear Schrödinger (CNLS) system admits multi-
hump natured intensity profiles. We explicitly demonstrate this specific property
by considering the nondegenerate soliton (NDS) solutions for 3 and 4-CNLS
systems. We also point out the existence of a special class of partially NDS solu-
tions by imposing appropriate restrictions on the wavenumbers in the already
obtained completely NDS solution. Such class of soliton solutions can also
exhibit multi-hump profile structures. Finally, we present the stability analysis
of nondegenerate fundamental soliton of the 3-CNLS system as an example.
The numerical results confirm the stability of triple-humped profile nature
against perturbations of 5% and 10% white noise. The multi-hump nature of
nondegenerate fundamental soliton solution will be useful in multi-level optical
communication applications with enhanced flow of data in multi-mode fibers.

Keywords: Hirota bilinear method, nondegenerate solitons, degenerate solitons,
vector bright solitons, coupled nonlinear Schrödinger equations

(Some figures may appear in colour only in the online journal)

Multi-level optical communication with high bit-rate data transmission is a hotly debated
topic and is a challenging task in optical communication applications. Using wavelength divi-
sion multiplexing scheme, the conventional binary data transmission approaches its limit [1],
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where the maximum data-carrying rate of the fiber is restricted by Shannon’s theorem [2] due
to channel capacity crunch. In the conventional binary data coding, the presence of light pulse
is represented by logical ‘1’ and logical ‘0’ corresponds to its absence. However, the demand
for fiber’s information carrying capacity is increasing day by day. To improve the underly-
ing technology it has been proposed that soliton assisted fiber-optic telecommunication will
play a crucial role in determining the future communication systems. Several coding schemes
have been proposed in the past to develop this technology: for example, solitons [3], which are
stable localized nonlinear wave solutions of nonlinear Schrödinger equation, are being pro-
posed as constituting a model for optical pulse propagation in fibers as natural bits for coding
the information. Recently, the existence of soliton molecules in dispersion-managed fiber [4]
has been demonstrated and their possible usefulness in optical telecommunications technology
with enhanced data carrying capacity has been pointed out [5]. Soliton molecule is a bound
soliton state which can be formed when two antiphase solitons persist at a stable equilibrium
separation distance, where the interaction force is null among the individuals. Such stable equi-
librium manifests this bound state structure, reminiscent of a diatomic molecule in condensed
matter physics. The binding force arises between the constituents of the soliton compound
due to the Kerr nonlinearity [6, 7] and the detailed mechanism can be found in reference [8].
The existence of two-pulse and three-pulse molecules complete the next level of alphabet of
symbols. Such soliton molecules allow coding of two-bits of information simultaneously in a
single time slot. In this way, the soliton molecules increase the flow of data in fibers. It should be
noted here that the initial shape (symmetric peaks with equal intensities) of soliton molecules
changes due to various losses in the fiber and its intrinsic nonlinearities. However, their fun-
damental properties do not change during the evolution. Apart from the above, the concept of
soliton molecules has been discussed earlier in detail in the context of non-dispersion managed
fiber [9–11] and in fiber lasers [12–14]. In addition to the above, multi-soliton complexes in
multimode fibers have also been discussed for increasing the bit-rate in multi-level coding of
information [15–17].

Very recently we have identified a new class of nondegenerate vector bright solitons [18],
with double-hump nature characterized by two distinct wavenumbers, for the Manakov sys-
tem [19]. Basically the Manakov system is a model for propagation of orthogonally polarized
optical waves in birefringent fiber, where the solitons undergo collision without energy redistri-
bution in general among the modes depending upon the choice of soliton parameters [18, 20].
However, they encounter shape changing collision for suitable choice of parameters whenever
they interact with themselves or when they collide with degenerate vector brights solitons, that
is solitons with single-peak intensity profile described by identical wavenumbers in both the
modes [21]. Such nondegenerate solitons (NDSs) exhibit multi-hump profiles, as we describe
below in the present letter, in the case of N-coupled nonlinear Schrödinger (CNLS) system
which may be relevant for optical communication applications. By exploiting the multi-peaks,
with different peak powers, the nature of NDSs can be made useful to code the two bits of
information as described in [1] in the next level of binary coding. To the best of our knowledge
study on NDSs in multi-mode fibers or fiber arrays is missing in the literature and their exis-
tence in multi-component nonlinear Schrödinger system and their usefulness in the context of
higher bit-rate information transmission applications have not been reported. In addition, the
underlying interesting analytical forms of NDSs and their geometrical profiles have not been
revealed so far in the literature and they need to be analysed in detail.
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In this letter, we intend to investigate the multi-hump nature of nondegenerate fundamental
solitons in the following system of multi-component nonlinear Schrödinger equations

iq j,z + q j,tt + 2
N∑

p=1

|qp|2q j = 0, j = 1, 2, . . . , N, (1)

by deriving their analytical forms through Hirota bilinear method. Equation (1) describes the
optical pulse propagation in N-mode optical fibers [22] and it describes the incoherent light
beam propagation in photorefractive medium [16] and so on. In the above, qj’s are complex
wave envelopes propagating in N-optical modes and z and t represent the normalized distance
and retarded time, respectively. We note that for N = 2 in equation (1), we have studied the
collision and stability properties of the NDSs [21] and also we have identified their existence
in other integrable nonlinear Schrödinger family of equations by revealing their analytical
forms [23]. To derive the exact form of the nondegenerate fundamental soliton solution for
the N-CNLS system, we bilinearize equation (1) through the dependent variable transforma-
tion, q j(z, t) = g( j)(z,t)

f (z,t) , j = 1, 2, . . . , N where g( j)’s are in general complex functions and f is
a real function. Substitution of this transformation in equation (1) brings out the following
bilinear forms: (iDz + D2

t )g( j) · f = 0 and D2
t f · f = 2(

∑N
n=1 g(n) · g(n)∗). Here Dz and Dt are

the usual Hirota bilinear operators [24]. Then we consider the standard Hirota series expan-
sions g( j) = εg( j)

1 + ε3g( j)
3 + · · · , j = 1, 2, . . . , N and f = 1 + ε2 f2 + ε4 f4 + · · · in the solution

construction process.
To obtain the nondegenerate fundamental soliton solution of equation (1) we consider

the general forms of N-seed solutions, g( j) = α( j)
1 eη j , η j = k jt + ik2

j z, where α( j)
1 and k j, j =

1, 2, . . . , N are complex parameters and are nonidentical in general to the N-independent linear
partial differential equations, ig( j)

1,z + g( j)
1,tt = 0, j = 1, 2, . . . , N, which arise at the lowest order

of ε. With such general choices of seed solutions, we proceed to solve the resulting inhomoge-
neous linear partial differential equations successively in order to deduce the full series solution
up to g( j)

2N−1 in g( j) and f2N in f. By combining the obtained forms of the unknown functions as
per the series expansions we find a rather complicated form of the nondegenerate fundamental
soliton solution for the N-CNLS equation. However, we have managed to rewrite it in a more
compact form using the following Gram determinants [25, 26],

g(N) =

∣∣∣∣∣∣
A I φ
−I B 0T

0 CN 0

∣∣∣∣∣∣ , f =

∣∣∣∣ A I
−I B

∣∣∣∣ , (2)

where the elements of the matrices A and B are

Ai j =
eηi+η∗j

(ki + k∗j )
, Bi j = κ ji =

ψ†
i σψ j

(k∗i + k j)
,

CN = −
(
α(1)

1 ,α(2)
1 , . . . ,α(N)

1

)
,

ψ j =
(
α(1)

1 ,α(2)
1 , . . . ,α( j)

1

)T
,

φ =
(
eη1 , eη2 , . . . , eηn

)T
, j, n = 1, 2, . . . , N.

In the above, g(N ) and f are ((22N) + 1) and (22N)th order determinants, T represents the
transpose of the matrices ψ j and φ, † denotes transpose complex conjugate, σ = I is an (n × n)
identity matrix, φ denotes (n × 1) column matrix, 0 is a (1 × n) null matrix, CN is a (1

3
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× n) row matrix and ψ represents a (n × 1) column matrix. In the above expressions, for
the nondegenerate fundamental soliton solution the elements κ ji’s do not exist (κ ji = 0) in
the square matrix B when j �= i. Also for a given set of N and j values the corresponding
elements only exist and all the other elements are equal to zero in CN and ψ j matrices (we
have demonstrated the latter clearly for the three-component case below). We have verified the
validity of the nondegenerate fundamental soliton solution (2) by substituting it in the bilin-
ear equations of equation (1) along with the following derivative formula of the determinants,
∂M
∂x =

∑
1�i, j�n

∂ai, j
∂x

∂M
∂ai, j

=
∑

1�i, j�n
∂ai, j
∂x Δi, j, where Δi, j’s are the cofactors of the matrix M,

the bordered determinant properties and the elementary properties of the determinants [24].
This action yields a pair of Jacobi identities and thus their occurrence confirms the validity
of the obtained soliton solution. Multi-hump profile nature is a special feature of the obtained
nondegenerate fundamental soliton solution (2). Such multi-hump structures and their prop-
agation are characterized by 2N arbitrary complex wave parameters. The fundamental NDS
admits a very interesting N-hump profile in the present N-CNLS system. In this system, in gen-
eral, the NDSs propagate with different velocities in different modes but one can make them
to propagate with identical velocity by restricting the imaginary parts of all the wave num-
bers k j, j = 1, 2, . . . , N, to be equal. Interestingly, in 1976, Nogami and Warke have obtained
soliton solution for the multicomponent CNLS system [29]. We note that their soliton solution
corresponds to the so called partially coherent soliton (PCS) which can be checked after replac-
ing the function e j = exp(k jx) by e j =

√
2k ja j exp(k jx̄ j), where x̄ j = x − xj, a j = Π j�=ici j,

cij =
ki+k j
|ki−k j| and kj’s are real constants, in their solution [30]. Since, the stationary N-PCS solu-

tion arises from our solution (2) under the parametric restrictionsα( j)
1 = eη j0 , j = 1, 3, 4, . . . , N

and α(2)
1 = −eη20 , (η j0: real), k j = k jR, k jI = 0, j = 1, 2, . . . , N, the solution of Nogami and

Warke [29] and its time dependent version are essentially special cases of our general
solution (2).

It is interesting to note that if we set all the wavenumbers k j, j = 1, 2, . . . , N, as identical,
k j = k1, j = 1, 2, . . . , N, which corresponds to the seed solutions getting restricted as g( j) =

α( j)
1 eη1 , η1 = k1t + ik2

1z, for all j = 1, 2, . . . , N, in the fundamental soliton solution (2), the
resultant form gets reduced to the following degenerate soliton (DS) solution for equation (1)
[27, 28] as

(q1, q2, q3, . . . , qN)T = (A1, A2, A3, . . . , AN)Tk1R eiη1I sech

(
η1R +

R
2

)
, (3)

where η1R = k1R(t − 2k1Iz), A j = α( j)
1 /Δ and Δ = ((

∑N
j=1 |α

( j)
1 |2))1/2. Here α( j)

1 , k1, j =
1, 2, . . . , N, are arbitrary complex parameters. Further, k1RAj gives the amplitude of the jth
mode, R

2 (= 1
2 log Δ

(k1+k∗1)2
) denotes the central position of the soliton and 2k1I is the soliton

velocity [28]. It is evident that the DS solution (3) always admits single-hump structure. Using
this single peak intensity or power profile as signal in binary coding one cannot improve higher
bit-rate in information transmission as pointed out in [4] whereas this class of DSs interestingly
exhibit energy exchanging collision leading to the construction of all optical logic gates [31]. To
enhance the bit-rate multi-hump pulses with symmetric and asymmetric profiles, as we describe
below for 3 and 4-CNLS systems as examples, can be useful for optical communication.

In order to show the multi-hump nature of the NDS, here we demonstrate such special fea-
ture in the case of 3-CNLS and 4-CNLS systems. To start with, we consider the three CNLS
equation (N = 3 in equation (1)). To get the nondegenerate fundamental soliton solution for
this system, we consider the solutions, g(1)

1 = α(1)
1 eη1 , g(2)

1 = α(2)
1 eη2 and g(3)

1 = α(3)
1 eη3 as seed

solutions to the lowest order linear PDEs. These general form of seed solutions terminates the
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series expansions as g( j) = εg( j)
1 + ε3g( j)

3 + ε5g( j)
5 , j = 1, 2, 3 and f = 1 + ε2 f2 + ε4 f4 + ε6 f6.

By rewriting the explicit forms of the obtained unknown functions in terms of Gram deter-
minants we get the resultant forms similar to the one (equation (2)) reported above for the
N-component case. We find that for the 3-CNLS system the matrices A and B are constituted
by the elements, Ai j and Bi j, i, j = 1, 2, 3 and also the other matrices CN , ψ j and φ are deduced

as C1 =
(
α(1)

1 0 0
)
, C2 =

(
0 α(2)

1 0
)
, C3 =

(
0 0 α(3)

1

)
, ψ1 =

(
α(1)

1 0 0
)T

, ψ2 =(
0 α(2)

1 0
)T

, ψ3 =
(
0 0 α(3)

1

)T
and φ =

(
eη1 eη2 eη3

)T
. From the resultant Gram-

determinant forms, we deduce the following triple-humped nondegenerate fundamental soliton
solution for the 3-CNLS system,

q1 =
1
f

eiη1I

(
e
Δ51+ρ11

2 cosh

(
η2R + η3R +

φ1

2

)
+ e

Δ11+Δ21
2 cosh

(
η2R − η3R +

φ2

2

))
,

q2 =
1
f

eiη2I

(
e
Δ52+ρ12

2 cosh

(
η1R + η3R +

ψ1

2

)
+ e

Δ12+Δ22
2 cosh

(
η1R − η3R +

ψ2

2

))
,

q3 =
1
f

eiη3I

(
e
Δ53+ρ13

2 cosh
(
η1R + η2R +

χ1

2

)
+ e

Δ13+Δ23
2 cosh

(
η1R − η2R +

χ2

2

))
,

f = e
δ7
2 cosh

(
η1R + η2R + η3R +

δ7

2

)
+ e

δ1+δ6
2 cosh

(
η1R − η2R − η3R +

δ1 − δ6

2

)

+ e
δ2+δ5

2 cosh

(
η2R− η1R − η3R+

δ2− δ5

2

)
+ e

δ3+δ4
2 cosh

(
η3R− η1R− η2R+

δ3 − δ4

2

)
,

(4)

where ηjR = k jR(t − 2k jIz), j = 1, 2, 3, φ1 = Δ51 − ρ11, φ2 = Δ11 −Δ21, ψ1 = Δ52 − ρ12,
ψ2 = Δ12 −Δ22, χ1 = Δ53 − ρ13, χ2 = Δ13 −Δ23, ρ1 j = logα( j)

1 , j = 1, 2, 3, and the other

constants given above are eδ1 =
|α(1)

1 |2
Λ11

, eδ2 =
|α(2)

1 |2
Λ22

, eδ3 =
|α(3)

1 |2
Λ33

, eΔ11 =
α(1)

1 
12
λ12

eδ2 , eΔ21 =

α(1)
1 
13
λ13

eδ3 , eΔ12 = −α(2)
1 
13

λ∗12

eδ1 , eΔ22 =
α(2)

1 
23
λ23

eδ3 , eΔ13 = −α(3)
1 
13

λ∗13

eδ1 , eΔ23 = −α(3)
1 
23

λ∗23

eδ2 ,

eδ4 = |
12|2
|λ12|2

eδ1+δ2 , eδ5 = |
13|2
|λ13|2

eδ1+δ3 , eδ6 = |
23|2
|λ23|2

eδ2+δ3 , eδ7 = |
12|2|
13|2|
23|2
|λ12|2|λ13|2|λ23 |2

eδ1+δ2+δ3 ,

eΔ51 =
α

(1)
1 
12
13|
23|2
λ12λ13|λ23|2

eδ2+δ3 , eΔ52 = −α
(2)
1 
12|
13|2
23

λ∗12 |λ13|2λ23
eδ1+δ3 , eΔ53 =

α
(3)
1 |
12|2
13
23

|λ12 |2λ∗13λ
∗
23

eδ1+δ2 ,

Λ11 = (k1 + k∗1)2, Λ22 = (k2 + k∗2)2, Λ33 = (k3 + k∗3)2, 
12 = (k1 − k2), 
13 = (k1 − k3),

23 = (k2 − k3), λ12 = (k1 + k∗2), λ13 = (k1 + k∗3) and λ23 = (k2 + k∗3). The above nontrivial
soliton solution is described by six arbitrary complex parameters, α( j)

1 , k j, j = 1, 2, 3. As a
specific example, we can easily check that such multi-parameter solution admits a novel
asymmetric triple-hump profile when we fix the velocity as k1I = k2I = k3I = 0.5. The other
parameter values are chosen as k1R = 0.53, k2R = 0.5, k3R = 0.45, α(1)

1 = 0.65 + 0.65i,
α(2)

1 = 0.45 − 0.45i and α(3)
1 = 0.35 + 0.35i. In figure 1(a), we display the asymmetric

triple-hump profiles in all the components for the above choice of parameter values. It is
important to note that for the specific choice of parameter values, the solution (4) also exhibits
symmetric triple-hump soliton profile. The symmetric and asymmetric nature of solution (4)

5
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Figure 1. (a) Denotes triple-hump profiles of nondegenerate fundamental soliton in the
3-CNLS system and (b) is its corresponding single-humped DS profile. (c) Represents a
quadruple-humped NDS profiles in 4-CNLS system. The specific values of the soliton
parameters are given in the text.

can be identified by calculating the following relative separation distances between the
solitons of the modes,

Δt12 = t1 − t2 =
1
2

log
|α(1)

1 |2(k3R − k1R)(k2R + k3R)k2
2R

|α(2)
1 |2(k2R − k3R)(k1R + k3R)k2

1R

, (5a)

Δt13 = t1 − t3 =
1
2

log
|α(1)

1 |2(k1R − k2R)(k2R + k3R)k2
3R

|α(3)
1 |2(k2R − k3R)(k1R + k2R)k2

1R

, (5b)

Δt23 = t2 − t3 =
1
2

log
|α(2)

1 |2(k2R − k1R)(k1R + k3R)k2
3R

|α(3)
1 |2(k1R − k3R)(k1R + k2R)k2

2R

. (5c)

It is evident from equations (5a)–(5c) the solution (4), with k1I = k2I = k3I, always admits
asymmetric triple-hump profiles when Δt12 = Δt13 = Δt23 �= 0. In contrast to this, almost
symmetric (not perfect symmetric) triple-hump profile arises in all the modes when the soliton
parameters obey the condition, Δt12 = Δt13 = Δt23 → 0. The double node (or multi-node)
formation occurs when the relative velocities among the solitons of the modes, qj’s j = 1, 2, 3,
do not tend to zero. Such node formation is demonstrated in figure 2 for the unequal velocity
case (of the modes) in the present 3-CNLS system. We wish to point out here that the triple peak
power profiles obeying the above relative separation distance condition, both symmetric and
asymmetric, could be useful in the launching of the initial signal in binary coding scheme. In
the practical situation the initial profiles can vary their shape due to fiber’s loss and nonlinear
higher order effects. This situation cannot be avoided in a fiber. However, the solution (4)
retains the fundamental property, namely the triple-hump soliton profile, of the NDS during
the evolution along the fiber. It is interesting to note that when we impose the condition k1 =
k2 = k3 in the solution (4), it turns out to be a single-humped degenerate fundamental soliton
for the 3-CNLS system. This can be seen from figure 1(b) for the values k1 = k2 = k3 = 1 + i,
α(1)

1 = 0.65 + 0.65i, α(2)
1 = 0.45 − 0.45i and α(3)

1 = 0.35 + 0.35i. We note that the three-PCS
or multi-soliton complexes arise from the nondegenerate fundamental soliton solution (4) of the
3-CNLS system when the soliton parameters are fixed as α(1)

1 = eη10 , α(2)
1 = −eη20 , α(3)

1 = eη30 ,
k1 = k1R, k2 = k2R, k3 = k3R and k jI = 0, j = 1, 2, 3, where η j0, j = 1, 2, 3, are considered as
real constants [15, 28].

Next we illustrate the multi-hump nature of NDS in the 4-CNLS system. To obtain such
solution one has to proceed with the analysis for the N = 4 case, as we have described in
the above three-component case. For brevity, we do not give the details of the final solution
due to its complex nature. However, one can easily deduce the form of the solution from the
soliton solution of the N-component case, equation (2), as given above. The final solution

6
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Figure 2. Double-node formation in the unequal velocities case in the profile of nonde-
generate fundamental soliton in 3-CNLS system. The parameter values are k1 = 0.55 +
0.35i, k2 = 0.5 + 0.5i, k3 = 0.45 + 0.8iα(1)

1 = 0.65 + 0.65i, α(2)
1 = 0.45 − 0.45i and

α(3)
1 = 0.35 + 0.35i.

contains eight arbitrary complex parameters, namely α( j)
1 and k j, j = 1, 2, 3, 4. These param-

eters play a significant role in determining the profile nature of the underlying soliton in the
four-componentcase. In general, the nondegenerateone-soliton solution in the 4-CNLS system
exhibits asymmetric quadruple-humpprofile in all the modes. Such novel quadruple-humppro-
file is displayed in figure 1(c) for the parameter values k1 = 0.48 + 0.5i, k2 = 0.5 + 0.5i, k3 =
0.53 + 0.5i, k4 = 0.55 + 0.5i, α(1)

1 = 0.65 + 0.65i, α(2)
1 = 0.55 − 0.55i, α(3)

1 = 0.45 + 0.45i
and α(4)

1 = 0.35 − 0.35i. We have verified the asymmetric quadruple-hump profile nature by
calculating the relative separation distance, Δt12 = Δt13 = Δt14 �= 0. However we do not
present their explicit forms due to size limitation of the letter article. It is evident from
figures 1(a) and (c) that the NDS (in 3, 4 and also in the arbitrary N (>4) CNLS sys-
tems) exhibits multi-hump nature. This multi-peak nature can increase the bit-rate in cod-
ing the information. Consequently it can help to uplift the flow of data in fiber. In the
present 4-CNLS system case also multi-node forms when the relative velocities of the soli-
tons among the modes do not tend to zero. One can also recover the already known DS
solution by fixing the condition k1 = k2 = k3 = k4 in the final form of NDS solution of the
4-CNLS system.

In the following, we further report the fact that the N-CNLS system can also admit very
interesting partially NDS solution when the wavenumbers are restricted suitably. Such par-
tial NDS solutions also exhibit multi-hump profiles (but less than N in number). For instance,
here we demonstrate their existence for the 3 and 4-CNLS systems and this procedure can
be generalized to the N-component case in principle. For the three-component case, the
partially NDS solution can be obtained by imposing the condition, k1 = k2 (or k1 = k3 or
k2 = k3), on the wave numbers in the solution (4). This restriction reduces the asymmet-
ric triple-hump profile, as depicted in figure 1(a), into the asymmetric double-hump inten-
sity profile as displayed in figure 3(a) for the choice of parameters k1 = k2 = 0.5 + 0.5i,
k3 = 0.45 + 0.5i, α(1)

1 = 0.65 + 0.65i, α(2)
1 = 0.45 − 0.45i and α(3)

1 = 0.35 + 0.35i. The par-
tially NDS double-humpprofile is described by the following explicit form of solution, deduced
from solution (4),

q1 =
1
f

eiη1I e
Δ21+ρ11

2 cosh

(
η3R +

Δ21 − ρ11

2

)
,

q3 =
1
f

eiη3I e
Δ+ρ13

2 cosh

(
η1R +

Δ− ρ13

2

)
,

7
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Figure 3. (a) Denotes double-humped profile of the partially nondegenerate one soliton
solution of 3-CNLS system. (b) and (c) represent triple and double-humped profiles of
partially NDS solution of 4-CNLS system when the conditions k1 = k2 and k1 = k2 = k3

on wavenumbers are imposed, respectively.

q2 =
1
f

eiη1I

(
1
2

[cosh(2η1R − η3R +Δ12) + sinh(2η1R − η3R +Δ12)]

+ e
Δ22+ρ12

2 cosh

(
η3R +

Δ22 − ρ12

2

))
,

f = e
δ̄1
2 cosh

(
η1R + η3R +

δ̄1

2

)
+ e

δ̄2+δ3
2 cosh

(
η1R − η3R +

δ̄2 − δ3

2

)
. (6)

In the above eδ̄1 = eδ5 + eδ6 , eδ̄2 = eδ1 + eδ2 , eΔ = eΔ13 + eΔ23 , η1 = η2 = k1t + ik2
1z, η3 =

k3t + ik2
3z and the other constants are deduced from the constants of the solution (4) by impos-

ing the condition k1 = k2 in them. We point out that one can get the DS solution by impos-
ing the restriction further on the wavenumbers, that is as we mentioned above k1 = k2 = k3

leads to completely DS solution. It is important to note that partially NDS solution of the
3-CNLSE can exhibit only up to double hump profile in all the three modes due to the degen-
eracy among the modes and the nature of this solution is controlled by five arbitrary complex
parameters.

Similarly, for the 4-CNLS equation, partially NDS solution can be deduced from the solu-
tion (2) of N-component case. However, due to the complex nature of the resultant solution
we do not present the expression here. Very interestingly such solution provides the following
three possibilities: (i) k1 = k2, (ii) k1 = k2 = k3 and (iii) k1 = k2 = k3 = k4. The quadruple-
hump soliton profile of the 4-CNLS system becomes a triple-hump profile when we con-
sider the first possibility, k1 = k2. This triple-humped partially NDS solution is diplayed in
figure 3(b) for k1 = k2 = 0.55 + 0.5i, k3 = 0.5 + 0.5i, k4 = 0.45 + 0.5i, α(1)

1 = 0.65 + 0.65i,
α(2)

1 = 0.55 − 0.55i, α(3)
1 = 0.45 + 0.45i and α(4)

1 = 0.35 − 0.35i. In contrast to the latter,
we observe that the double-hump soliton profile emerges while considering the second pos-
sibility, k1 = k2 = k3, in the full nondegenerate form of solution of the 4-CNLS system.
Such double-humped partially NDS solution profile is depicted in figure 3(c) for the val-
ues k1 = k2 = k3 = 0.55 + 0.5i, k4 = 0.45 + 0.5i, α(1)

1 = 0.35 + 0.35i, α(2)
1 = 0.45 + 0.45i,

α(3)
1 = 0.55 + 0.55i and α(4)

1 = 0.65 − 0.65i. The final possibility, k1 = k2 = k3 = k4, corre-
sponds to complete degeneracy. This choice brings out the completely DS solution for the
4-CNLS system. In general, for the N-component case, one would expect N − 1 possibilities
of choices of wave numbers. Out of these choices a single-humped complete DS solution (3)
arises if all the wavenumbers are equal, k1 = k2 = · · · = kn, whereas the partial nondegener-
acy appears from out of the remaining N − 2 possibilities. Such partial nondegeneracy would

8
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Figure 4. Numerical plots for the asymmetric nondegenerate triple hump soliton pro-
file with 5% of white noise as perturbation. Top panel denotes the triple-hump profile
of three-dimensional surface plot and the bottom panel represents the corresponding
density plots. The soliton parameters correspond to figure 1(a).

bring out multi-hump profiles as we have illustrated above for the three and four component
cases.

We also wish to point out the stability nature of the triple-humped nondegenerate fundamen-
tal soliton solution (4) of the 3-CNLS system as an example. In order to do this, we consider
the Crank–Nicolson numerical algorithm [32] with different percentages of white noise as
perturbations to the initial profiles. The initial profiles are considered in the numerical analysis
as q j(−100, t) = [1 + Aζ(t)]qj,−100(t), j = 1, 2, 3, where q j,−100(t), j = 1, 2, 3, are the initial
profiles obtained from the solution (4) at z = −100. Here, A is the amplitude of the white
noise which is generated from the random numbers in the interval [−1, 1] and ζ(t) is the noise
function. The space and time step sizes are fixed in the numerical calculation, respectively, as
dz = 0.1 and dt = 0.2. We also fix the domain range values for both t and z as [−100, 100]. The
triple-hump profile nature survives during the evolution even for 5% and 10% of white noise
perturbations except for minor changes in the amplitude part. This is clearly demonstrated in
figures 4 and 5. These figures ensure the stability of triple-humped NDS against perturbations
of white noise. One can extend this analysis for even longer ranges of time and space without
much difficulty. Similarly, we have also confirmed the stability of asymmetric quadruple-hump
NDS of the 4-CNLS system as well.

In this paper, we reported the existence of nondegenerate fundamental soliton solution for
the N-CNLS equation (1). This new class of solitons exhibit multi-hump nature among all
the modes. The existence of such special multi-humped profiles is demonstrated explicitly by
considering the NDS solution for the three and four component cases. Very interestingly we
have also shown the existence of partially NDS solutions by restricting the wave numbers
suitably. The already known energy exchanging degenerate class of vector bright solitons is

9
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Figure 5. Numerical plots for the asymmetric nondegenerate triple hump soliton profile
with 10% of white noise as perturbation.

shown as a sub-case by imposing specific restriction on the wave numbers. Finally, the stability
of multi-humped nondegenerate fundamental soliton has also been verified numerically. In a
subsequent work we have planned to report the interesting collision properties of these NDSs.
We believe that the existence of multi-peak power nature in the nondegenerate fundamental
soliton in multi-mode optical fibers may be relevant to increase the data stream in multi-level
optical communication applications.
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Abstract: Nonlinear dynamics of an optical pulse or a beam continue to be one of the active areas of
research in the field of optical solitons. Especially, in multi-mode fibers or fiber arrays and photore-
fractive materials, the vector solitons display rich nonlinear phenomena. Due to their fascinating and
intriguing novel properties, the theory of optical vector solitons has been developed considerably
both from theoretical and experimental points of view leading to soliton-based promising potential
applications. Mathematically, the dynamics of vector solitons can be understood from the framework
of the coupled nonlinear Schrödinger (CNLS) family of equations. In the recent past, many types of
vector solitons have been identified both in the integrable and non-integrable CNLS framework. In
this article, we review some of the recent progress in understanding the dynamics of the so called non-
degenerate vector bright solitons in nonlinear optics, where the fundamental soliton can have more
than one propagation constant. We address this theme by considering the integrable two coupled
nonlinear Schrödinger family of equations, namely the Manakov system, mixed 2-CNLS system (or
focusing-defocusing CNLS system), coherently coupled nonlinear Schrödinger (CCNLS) system, gen-
eralized coupled nonlinear Schrödinger (GCNLS) system and two-component long-wave short-wave
resonance interaction (LSRI) system. In these models, we discuss the existence of nondegenerate
vector solitons and their associated novel multi-hump geometrical profile nature by deriving their
analytical forms through the Hirota bilinear method. Then we reveal the novel collision properties of
the nondegenerate solitons in the Manakov system as an example. The asymptotic analysis shows
that the nondegenerate solitons, in general, undergo three types of elastic collisions without any
energy redistribution among the modes. Furthermore, we show that the energy sharing collision
exhibiting vector solitons arises as a special case of the newly reported nondegenerate vector solitons.
Finally, we point out the possible further developments in this subject and potential applications.

Keywords: integrable coupled nonlinear Schrödinger models; nondegenerate vector bright solitons;
degenerate vector bright solitons

1. Introduction

Solitons are stable localized nonlinear wave packets which can propagate without
distortion over long distances. After the discovery of solitons in the numerical experiments
on the Fermi–Pasta–Ulam–Tsingou anharmonic lattice problem [1,2], the field of solitons
and related nonlinear phenomena flourished and advanced by the invaluable discoveries
in nonlinear optics. The concept of solitons is not only reserved for nonlinear optics, but
it ubiquitously appears in many branches of physics, including hydrodynamics, Bose–
Einstein condensates, plasma physics, particle physics, and even astrophysics apart from
the mathematical interest in the theory of integrable nonlinear partial differential equations.
In optics, in general, an optical pulse or a beam has a natural property to spread while
it propagates in a linear medium because the Fourier components of the pulse or the
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beam start to travel with distinct velocities. The spreading occurs in the temporal domain
because of the material dispersion while in the spatial domain it is due to diffraction.
In some cases, the spreading takes place due to the combined effects of dispersion and
diffraction. However, a stable localized wave packet forms when this linear effect is
balanced by the nonlinear response of the medium. Such a stable light wave envelope is
known as the optical soliton. Optical soliton can be further classified as (i) spatial soliton,
(ii) temporal soliton and (iii) spatio-temporal soliton depending on the nature of formation
mechanism [3]. The evolution of optical soliton, whether it is a spatial or temporal one, in
(1 + 1)-dimensional setting is described by the ubiquitous nonlinear Schrödinger (NLS)
equation. For instance, the dimensionless NLS equation, derived from the Maxwell’s
equations under slowly varying envelope approximation, for the optical field propagation
in a single mode optical fiber turns out to be [4].

iqz − sgn(K′′)qtt + 2|q|2q = 0, K′′ =
( ∂2K

∂ω2

)
ω=ω0

=
1
v2

g
. (1)

In the temporal soliton case, where the soliton evolution is confined along the op-
tical fiber, q(z, t) is the complex wave amplitude and the independent variables z and t
denote normalized distance along the fiber and retarded time, respectively. In addition,

qz =
∂q
∂z and qtt =

∂2q
∂t2 . Here, the sign of the group velocity dispersion (GVD) or simply the

coefficient of the second derivative in time, in Equation (1), characterizes the nature of the
fiber dispersion. If K′′ < 0, then the dispersion is anomalous whereas the dispersion is
normal for K′′ > 0. The nonlinearity in Equation (1) arises due to the self phase modulation
(SPM), where the intensity of light induces a change in the refractive index of the medium
∆n(I) = n0(ω) + n2|E|2 = n0 + n2 I, where n0 refers to the linear refractive index and
n2 is the nonlinear refractive index of the medium due to Kerr effect, which gives rise
to an intensity-dependent phase modulation. On the other hand, the spatial soliton is a
self-trapped optical beam that guides itself by inducing a waveguide during the stable prop-
agation in a photorefractive medium without diffraction. Here, the diffraction is exactly
balanced by the nonlinearly induced self-focusing effect. In this context, the independent
variables, z and t in Equation (1), correspond to transverse spatial coordinates. Since this
review will focus on the theoretical aspects of vector bright solitons of certain coupled
integrable field models that emerge in optical fiber systems, the readers can find a detailed
discussion on the development and advancement of both spatial and spatio-temporal
solitons in the interesting review articles by Chen et al. [5] and by Malomed et al. [6],
respectively.

In 1973, Hasegawa and Tappert theoretically demonstrated that the lossless fibers can
admit bright soliton structure, which exhibits an intensity maximum in the time domain
when the GVD regime is anomalous [7]. They have also shown that the dark soliton,
with the intensity minimum or dip on a constant wave background field, arises in the
normal GVD regime [8]. After this theoretical work, in 1980, Mollenauer and his coworkers
succeeded experimentally in observing the optical soliton in a fiber [9]. These discoveries
clearly demonstrated how an abstract mathematical concept can turn into a practical
use. Both these theoretical and experimental works have opened up a new possibility
of using the ultra-short optical pulses in long distance communication applications [10].
On the other hand, the mathematical interest in understanding the analytical structure
of the underlying integrable models intensified after the NLS equation was solved by
Zakharov and Shabat through a more sophisticated inverse scattering transform (IST)
method [11], developed earlier by Gardner et al. for the celebrated Korteweg–deVries
equation [12]. Now, it is well known that the NLS Equation (1) is a completely integrable
infinite dimensional Hamiltonian system having special mathematical properties like an
infinite number of conserved quantities and Lax pair [13]. We note that in [11] the authors
had derived a double-pole solution, which has recently received attention in the theory
of rogue-waves for describing the Peregrine breather on the zero background field of the
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NLS equation [14], by considering the merging of two simple poles in the complex plane.
The interesting fact of the temporal bright solitons of the scalar NLS equation is that they
exhibit particle-like elastic collision.

Apart from the above fundamental aspects, in 1983, Gordon had predicted that when
two or more light pulses propagate in a nonlinear optical fiber, they exert forces, either
attractive or repulsive, on their neighbors [15]. This has been experimentally verified
by Mitschke and Mollenauer in [16]. Such a study brought out a special kind of soliton
state, namely the bound soliton state or soliton molecule [17]. A soliton molecule is a
bound soliton state that can be formed when two solitons persist at a stable equilibrium
separation distance, where the interaction force is zero among the individuals. Such a stable
equilibrium manifests as this bound state structure, reminiscent of a diatomic molecule in
chemical physics. The binding force arises between the constituents of the soliton composite
due to the Kerr nonlinearity [15,16] and the detailed mechanism can be found in Ref. [18].
This special kind of soliton state has been extensively studied in non-dispersion managed
fibers [19–25]. Recently, the existence of soliton molecules in dispersion-managed fiber [17]
and their usefulness in optical telecommunications with enhanced data carrying capacity
have been pointed out [26,27]. However, in order to elevate the transmission capacity of
the optical telecommunication systems, it is necessary to consider multichannel bit-parallel
wavelength fiber networks and wavelength division multiplexing schemes, where the light
pulses propagate in multi channels simultaneously. In fact, practically even in a single mode
fiber the bending and strains or birefringence induce two orthogonal polarization modes.
To pursue this kind of practical application, one has to essentially understand the problem
of the intermodal interaction of solitons. Therefore the contribution of the interaction
of copropagating modes must be taken into account. In fact, there is no surprise other
than the standard elastic collision of the bright solitons in single mode optical fibers. In
contrast to this, the bright soliton structure in two mode fibers or in a single mode fiber with
birefringence property or even in multimode fibers display rich propagation and collisional
properties. Due to these fascinating features and intriguing collision dynamics, vector
solitons receive intense attention among researchers. Apart from the several interesting
properties, vector solitons have also been found in a variety of applications, including
soliton-based optical computing [28,29], multi-level optical communication with enhanced
bit-rate transmission [30], soliton based signal processing systems [31] and so on.

Vector solitons are fascinating nonlinear objects in which a given soliton is split among
two or more components. In other words, a vector soliton with two or more polarization
components coupled together maintains its shape during propagation. Such vector soli-
tons are also named as multicolour solitons. The dynamics of vector solitons is usually
understandable within the framework of coupled nonlinear Schrödinger (CNLS) equations.
In general, the CNLS equations are non-integrable and they become integrable for specific
choices of parameters [32]. Therefore, mathematically vector solitons arise as solutions of
the CNLS equations. Like in the scalar NLS equation, the optical vector solitons are formed
due to an exact balance between the dispersion/diffraction and the self-phase modulation
and cross-phase modulation. This interesting class of optical solitons was first predicted
by Manakov in 1974, where he derived the one-soliton solution and made an asymptotic
analysis for the two-soliton solution through the IST method, by introducing a set of two
CNLS equations for the nonlinear interaction of the two orthogonally polarized optical
waves in birefringent fibers [33]. The Manakov system is essentially an integrable system,
where the strength of the nonlinear interactions within and between the components are
equal. Vector optical solitary wave propagation in birefringent fiber was first theoretically
studied by Menyuk by considering a pair of non-integrable CNLS equations [34]. Very
interestingly one of the present authors (ML) along with Radhakrishnan and Hietarinta
theoretically predicted that the bright solitons of the Manakov model exhibit novel energy
sharing collision through intensity redistribution [35]. They explicitly demonstrated this
fascinating collision scenario by analyzing the two bright soliton solution derived through
the Hirota bilinear method. Then this study was extended to N-CNLS equations by Kanna
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and Lakshmanan in [36], where there is a lot of exciting possibilities for the occurrence
of energy redistribution among the N-modes that have been reported. This theoretical
development was experimentally verified in [37–39] and, subsequently, it gave rise to
the possibility of constructing all optical logic gates [28,29,40–42]. The discovery of pho-
torefractive solitons [43–46] and the subsequent experimental developments [47–50] have
substantially enriched our knowledge on vector solitons. It is known that a set of N-CNLS
equations describes the beam propagation in a Kerr-like photorefractive medium [51–54].
Furthermore, the experimental studies on vector solitons in photorefractive media as well
as in dispersive media during the past three decades demand investigation of physical and
mathematical aspects of CNLS equations even more rigorously.

It is very important to point out that there exist many types of vector solitons that
have been reported so far for both integrable and non-integrable CNLS type equations.
For instance, in the non-integrable cases, a temporal light pulse composed of orthogonally
polarized components propagate with common group velocity and it is called group
velocity-locked soliton [55]. On the other hand, if the two polarization components of
the soliton are locked in phase, then such a vector soliton has been called a phase-locked
soliton [56], whereas for the polarization-locked vector soliton [57], the relative phase
between the components is locked at ±π

2 but across the pulse, the polarization state profile
is not uniform. However, that profile is invariant with propagation. Apart from the above,
other types of vector solitary waves have been reported in birefringent fibers [58–61] and
in saturable nonlinear medium [62,63], where the stability of multi-hump solitons has
been reported. In the integrable cases, bright–bright solitons [33,35,36,64], bright–dark or
dark–bright solitons [65–69] and dark–dark solitons [70,71] were documented in the context
of nonlinear optics and their novel properties in multicomponent BECs have also been
investigated considerably [72]. In a photorefractive medium, partially coherent solitons
or soliton complexes were identified in the N-CNLS system, and their special properties
were revealed by Akhmediev and his collaborators in [30,51–54]. Apart from the above,
during the last decade, a large volume of work has been dedicated to the temporal optical
solitons (both theoretically and experimentally) by considering the fiber lasers, which has
been reported as a very useful nonlinear system to study the dynamics and formation of
temporal optical solitons [73]. There exist different types of optical solitons in dissipative
systems too and their various properties have been explored in [74].

From the above studies on vector solitons, especially in integrable coupled nonlinear
Schrödinger models, we have identified that there exists a degeneracy in the structure of
the bright solitons as we have explained below in Section 3. That is, the solitons in two-
mode fibers or in multi-mode fibers propagate with identical wave numbers. In order to
avoid this degeneracy, we introduce two non-identical propagation constants appropriately
in the structure of the fundamental bright solitons of the 2-CNLS equation to start with.
Consequently, the degeneracy is removed and it leads to a new class of fundamental bright
solitons, namely nondegenerate fundamental vector bright solitons [75]. For the first time,
we have shown that such an inclusion of additional distinct propagation constants brings
out a general form of vector bright soliton solution to the several integrable CNLS sys-
tems [76,77], namely the Manakov system or 2-CNLS system, mixed 2-CNLS system (with
one mode in the anomalous dispersion regime and the other mode in the normal dispersion
regime), two-component coherently coupled NLS system, generalized CNLS system, and
two-component long-wave short-wave resonance interaction system [77]. We note that very
recently the nondegenerate solitons have also been studied in other contexts as well. For
instance, in multi-component BECs [78] using the Darboux transformation method, in the
coupled Fokas–Lenells system [79] and in the AB-system [80] such nondegenerate solitons
have been identified. We also note that a multi-valley dark nondegenerate soliton has been
studied in the context of multicomponent repulsive BECs [81]. In this paper, we critically
review the existence and their salient novel features of the general form of nondegenerate
vector bright solitons in the above class of two-component nonlinear Schrödinger systems.
Then we also critically analyze their novel collision properties with the Manakov system
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as an example. Furthermore, we also discuss in detail the corresponding already known
degenerate vector bright solitons and their intriguing collisional properties. Additionally,
we also illustrate the multi-hump nature of the nondegenerate fundamental bright solitons
in the N-CNLS system [82].

The outline of this review paper is as follows. In Section 2, we quickly point out
the derivation of 2-CNLS equations in the context of multi-mode fibers and introduce
the various coupled integrable models and their physical importance. In Section 3, we
clearly distinguish how the vector bright soliton reported so far in the literature for the
integrable coupled NLS family type equations may be considered as a special case of the
fundamental nondegenerate bright soliton solution derived recently by us. In Section 4,
we discuss the nondegenerate soliton solutions of the Manakov system and analyze their
underlying novel collision dynamics. In this section, we also describe the degenerate soliton
solutions and their interesting energy sharing collision apart from mentioning the possible
experimental realization and the multi-hump nature of the nondegenerate fundamental
bright solitons in the N-CNLS system. Then in Section 5, we describe the properties and
the existence of the nondegenerate fundamental bright soliton of the mixed CNLS system.
We also discuss the collision dynamics of the degenerate solitons by pointing out their
explicit analytical forms. In Section 6, we discuss the existence of both nondegenerate and
degenerate fundamental bright solitons in the coherently coupled NLS system and point
out the energy switching collision scenario of degenerate bright solitons. Furthermore,
we illustrate the existence of the nondegenerate bright soliton in the generalized coupled
nonlinear Schrödinger system and point out its degenerate limit in Section 7. Then, in
Section 8, we also elucidate the existence of the nondegenerate soliton in the two-component
(1+1)-dimensional LSRI system. Finally, in Section 9, we summarize the results and provide
a possible future outlook.

2. Derivation of CNLS Equations and Other Integrable CNLS Type Models

In general, the interaction between two or more co-propagating optical modes is
governed by the coupled nonlinear Schrödinger family of equations. The derivation
of one such CNLS equations starts from Maxwell’s equations for electromagnetic wave
propagation in a dielectric medium,

∇2~E− 1
c2

∂2~E
∂t2 = −µ0

∂2~P
∂t2 , (2)

where ~E(~r, t) is the electric field, ~P(~r, t) is the induced polarization, µ0 is the permeability
of free space and c is the velocity of light. The induced polarization ~P(~r, t) contains both
a linear part and a nonlinear part. That is ~P(~r, t) = ~PL(~r, t) + ~PNL(~r, t). The linear and
nonlinear induced polarizations are defined as

~PL(~r, t) = ε0

∫ +∞

−∞
χ(1)(t− t′)~E(~r, t′)dt′, (3a)

~PNL(~r, t) = ε0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
χ(3)(t− t1, t− t2, t− t3)~E(~r, t1)~E(~r, t2)~E(~r, t3)dt1dt2dt3. (3b)

Here, ε0 is the permitivity of the free space and χ(j) is the jth order suceptibility tensor
of rank (j + 1) [4,83]. For elliptically birefringent fibers, the electric field ~E(~r, t) can be
written as

~E(~r, t) =
1
2

(
ê1E1(z, t) + ê2E2(z, t)

)
e−iω0t + c.c. (4)

In the above, the variables z and t denote the direction of propagation and retarded
time, respectively, and c.c stands for complex conjugation. The orthonormal vectors ê1

and ê2 are expressed as, ê1 = x̂+irŷ√
1+r2 and ê2 = rx̂−iŷ√

1+r2 , where r is a measure of the extent of
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ellipticity and x̂ and ŷ are unit polarization vectors along x and y directions, respectively.
In Equation (4), E1 and E2 are complex amplitudes of the polarization components at
frequency ω0. The nonlinear polarization can be obtained by substituting the expression
of the electric field ~E(~r, t) from Equation (4) in Equations (3a) and (3b). The electric-field
components are written under slowly varying approximation as

Ej(z, t) = Fj(x, y)Qj(z, t)eiK0jz, j = 1, 2, (5)

where Fj(x, y) are the fiber distribution function in the transverse directions x and y and
K0j, j = 1, 2 are the propagation constants for the two modes. By doing so, the following
coupled equations are obtained for Qj(z, t):

iQ1,z +
i

vg1
Q1,t −

k′′

2
Q1,tt + µ(|Q1|2 + B|Q2|2)Q1 = 0, (6a)

iQ2,z +
i

vg2
Q2,t −

k′′

2
Q2,tt + µ(|Q1|2 + B|Q2|2)Q2 = 0. (6b)

Here, k′′ =
(

∂2k
∂ω2

)
ω=ω0

accounts for the group velocity dispersion, µ is the nonlinear-
ity coefficient and vg1 and vg2 are the group velocities of the two co-propagating modes,

respectively. The constant B = 2+2 sin2 θ
2+cos2 θ

is the cross-phase modulation coupling parameter,
where θ is the angle of ellipticity which varies between 0 and π

2 . Here, we have assumed
that the fiber has a strong birefringent nature. Under three sets of consecutive transfor-
mations (detailed derivation can be found in [83]), we obtain the following dimensionless
2-CNLS equation with the integrability restriction B = 1 [32], which is obtained from the
Painlevé analysis,

iq1,z + q1,tt + 2µ(|q1|2 + |q2|2)q1 = 0, (7a)

iq2,z + q2,tt + 2µ(|q1|2 + |q2|2)q2 = 0. (7b)

The above set of CNLS equations constitutes the completely integrable system in-
troduced by Manakov to describe the propagation of an intense electromagnetic pulse in
a birefringent fiber [33]. The system (7a) and (7b) is well discussed in nonlinear optics
and in other areas of physics. In this review, we also wish to consider another 2-CNLS
equation which is a variant of the Manakov system, namely the mixed coupled nonlinear
Schrödinger system or Zakharov and Schulman system [64,84]. One can write both the
mixed CNLS equation and Manakov equation in a unified form as given below:

iqj,z + qj,tt + 2
(

σ1|q1|2 + σ2|q2|2
)

qj = 0, j = 1, 2. (8)

In Equation (8), σ1 and σ2 are the strength of the SPM and cross-phase modulation
(XPM) nonlinearities. If σ1 = σ2 = +1, the above equation becomes the Manakov equation
(focusing type 2-CNLS equations), where the two optical fields q1 and q2 propagate in
the anomalous dispersion regimes [33], whereas, for σ1 = σ2 = −1, they propagate in
the normal dispersion regimes or in other words, the resultant model (8) turns out to
be the defocusing Manakov system [70]. For the other choice, σ1 = +1 and σ2 = −1, the
system (8) becomes the mixed-CNLS system [64], in which the SPM is positive and the XPM
is negative in both the modes, where the first mode q1 is propagating in the anomalous dis-
persion regime while the second mode q2 is propagating in the normal dispersion regime.
Both the focusing and defocusing Manakov models also find applications in attractive
and repulsive multicomponent BECs [72]. We note that the soliton trapping and daughter
wave (shadow) formation have been reported [85] using the bright soliton solutions of the
Manakov system. Radhakrishnan and Lakshmanan have derived the dark–dark soliton
solution [70] and Sheppard and Kivshar have obtained bright–dark soliton solution [65]
to the above system. In the latter case, the authors have pointed out the existence of
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breathing bound states. Furthermore, it has been shown that the mixed CNLS system
models the electromagnetic pulse propagation in isotropic and homogeneous nonlinear
left handed materials [86]. By taking into account the electron–phonon interaction and in
the long-wavelength approximation, the mixed-CNLS system can also be obtained as the
modified Hubbard model (Lindner–Fedyanin system) [87–89]. The mixed CNLS system is
also realized in two species BECs for a suitable choice of interspecies and intraspecies inter-
actions [90]. We point out that the IST method and Darboux transformation method have
been rigorously developed to obtain the bright–bright, dark–dark and bright–dark soliton
solutions of the multicomponent focusing, defocusing and mixed CNLS systems [91–103].

Next, we consider the two-component coherently coupled nonlinear Schrödinger
equation, which arises due to the coherent effects of the coupling among the copropa-
gating optical fields. In general, an ultrashort pulse propagation in non-ideal weakly
birefringent multimode fibers and optical beam propagation in low anisotropic Kerr type
nonlinear media are described by the following two-component non-integrable CCNLS
system [3,104,105];

iq1,z + δq1,tt − µq1 + (|q1|2 + σ|q2|2)q1 + λq2
2q∗1 = 0, (9a)

iq2,z + δq2,tt + µq2 + (σ|q1|2 + |q2|2)q2 + λq2
1q∗2 = 0. (9b)

The above equation also appears in isotropic Kerr-type nonlinear gyrotropic medium [106].
In the above q1 and q2 are two coherently coupled orthogonally polarized modes, z and
t are the propagation direction and transverse direction, respectively, µ is the degree of
birefringence, σ and λ are the incoherent and coherent coupling parameters, respectively,
and δ is the group velocity dispersion. The nonlinearities arise in Equation (9) due to SPM
(|qj|2qj, j = 1, 2), XPM (σ|qk|2qj, j, k = 1, 2, j 6= k) and four-wave mixing effect ( λq2

kq∗j ,
j, k = 1, 2, j 6= k). Equation (9) is shown to be integrable for a specific choice of system
parameters (δ, µ, σ and λ) [105] and soliton solutions were derived by linearly superposing
the soliton solutions of the two nonlinear Schrödinger equations through a transformation.
The corresponding integrable two-component CCNLS system (2-CCNLS system) is

iq1,z + q1,tt + γ(|q1|2 + 2|q2|2)q1 − γq2
2q∗1 = 0, (10a)

iq2,z + q2,tt + γ(2|q1|2 + |q2|2)q2 − γq2
1q∗2 = 0. (10b)

Interestingly, Kanna et al. [107] have derived the fundamental and two bright soliton
solutions of (10) and its multicomponent version [108] by developing a non-standard
Hirota bilinearization procedure. They have classified the fundamental bright soliton
as incoherently coupled soliton (ICS) and coherently coupled soliton (CCS) based on a
condition on the parameters in the auxiliary function. A novel double-hump soliton profile
arises in these CCNLS systems due to the coherent coupling among the two copropagating
optical fields. Furthermore, they have also demonstrated a fascinating energy switching
collision during the interaction of ICS and CCS [107,108]. We remark that the CCNLS type
equations are useful in studying the dynamics of solitons in spinor BECs and coherently
coupled BECs [109–111] also. A similar type of CCNLS equation has been identified in the
context of spinor BEC and is shown to be integrable [112–114].

Next, we wish to examine the bright soliton solutions of the general coupled nonlinear
Schrödinger (GCNLS) system [115], namely

iq1,z + q1,tt + 2(a|q1|2 + c|q2|2 + bq1q∗2 + b∗q∗1q2)q1 = 0, (11a)

iq2,z + q2,tt + 2(a|q1|2 + c|q2|2 + bq1q∗2 + b∗q∗1q2)q2 = 0. (11b)

In the above GCNLS equations, a and c account for the strength of the SPM and XPM
nonlinearities whereas the complex parameter b in the phase dependent terms, bq1q∗2 +
b∗q∗1q2, describes the four-wave mixing effect that arises in multichannel communication
systems [4]. When a = c and b = 0 the system (11a) and (11b) reduces to the Manakov
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system (or Equation (8) with σ1 = σ2 = +1). Then, if a = −c and b = 0 the GCNLS
system becomes the mixed-CNLS model. This GCNLS system has received considerable
attention recently in both mathematical and physical aspects [115–118]. The integrability
properties of the system (11a) and (11b) have been studied in [115] in which the N-soliton
solution was obtained through the Riemann–Hilbert method. The GCNLS system is shown
to be integrable through Weiss–Tabor–Carnevale (WTC) test [116]. In [117], bright and
dark-soliton solutions were obtained through the Hirota bilinear method. By relating the
GCNLS system with the Manakov and Makhankov vector models, using a transformation
(q1 = ψ1 − b∗ψ2 and q2 = aψ2), the authors in [118] have constructed bright–bright, dark–
dark and a quasibreather–dark soliton solutions.

Finally, for our investigation, we also wish to take into account the following coupled
nonlinear Schrödinger type equations, namely the two-component long-wave short-wave
resonance interaction system,

iS(1)
t + S(1)

xx + LS(1) = 0, iS(2)
t + S(2)

xx + LS(2) = 0, Lt =
2

∑
l=1

(|S(l)|2)x. (12)

In the above, S(l)’s, l = 1, 2, are short-wave (SW) components, L is the long-wave (LW)
component and suffixes x and t denote partial derivatives with respect to spatial and tempo-
ral coordinates, respectively. The above LSRI system arises whenever the phase velocity of
the low-frequency long-wave matches with the group velocity of the high-frequency short-
waves [119,120]. In Equation (12), the formation of soliton in the SW components is due to
the exact balance between its dispersion by the nonlinear interaction of the LW with the
SW. At the same time, the formation and evolution of the soliton in the LW components is
determined by the self-interaction of the SWs. The above LSRI system (12) has considerable
physical relevance in nonlinear optics [121–124], plasma physics [125,126], hydrodynam-
ics [120,127–131] and BECs [132–134]. The LSRI system originally arose from the pioneering
study of nonlinear resonant interaction of the plasma waves by Zakharov [119], where
generalized Zakharov equations were deduced to describe Langmuir waves. Such general-
ized Zakharov equations were reduced to a (1 + 1)-dimensional Yajima–Oikawa equation
for describing the one-dimensional two-layer fluid flow [126] for which soliton solutions
were obtained through the IST method. Benney has also derived a single-component LSRI
system for modelling the dynamics of short capillary gravity waves and gravity waves in
deep water [120]. After these works, there has been a large amount of work in the direction
of LSRI involving (1 + 1) and (2 + 1)-dimensional single component and multi-component
cases [135–152]. In nonlinear optics, the single component LSRI system was deduced from
the coupled nonlinear Schrödinger equations describing the interaction of two optical
modes under small amplitude asymptotic expansion [121]. In the negative refractive index
media, the LSRI process has been investigated [122]. We wish to point out that the bright
soliton solutions for the general multi-component LSRI system have been derived through
the Hirota bilinear method [136]. In this paper, the authors have demonstrated two types of
energy sharing collisions for two different choices of nonlinearity coefficients. Considering
the collisions of solitons in these cases one finds that the solitons appearing in the LW
component always exhibit elastic collision whereas the solitons in the SW components
always undergo energy sharing collisions.

In this review, we investigate the existence of nondegenerate vector bright solitons
and their novel properties in the above described five interesting integrable coupled
field models.

3. Statement of the Problem

As we pointed out in Section 1, the fundamental (and even higher order) bright
soliton solutions which have been already reported for the integrable coupled nonlinear
Schrödinger family of equations are degenerate. Here, by degenerate, we mean that the
fundamental bright soliton nature is characterized by a single wave number in all the
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modes or components. The presence of identical wave numbers in all the modes restricts
the motion as well as the structure of the fundamental bright soliton in most of the CNLS-
type equations. Thus, the bright solitons propagate in all the modes with identical velocity
apart from the distinct polarization vector constants. Such a constrained motion always
persists in most of the fundamental bright soliton solutions of various CNLS systems. As a
consequence of this degeneracy, a single-hump structure only emerges in the fundamental
bright soliton profile. In order to demonstrate this clearly, in the following, we consider the
fundamental bright soliton solution of the Manakov system:

qj =
α
(j)
1 eη1

1 + eη1+η∗1+R ≡ Ajk1Reiη1I sech(η1R +
R
2
), j = 1, 2. (13)

Here Aj’s are the unit polarization vectors, Aj =
α
(j)
1

(|α1|2+|β1|2)1/2 , j = 1, 2, the wave

variable η1 (= η1R + iη1I), η1R = k1R(t − 2k1Iz), η1I = k1I t + (k2
1R − k2

1I)z and eR =
(|α1|2+|β1|2)
(k1+k∗1)

2 . From the above expression for the one-soliton solution, it is evident that the

fundamental soliton is described by only one complex wave number k1. Consequently,
the single-hump soliton propagates in the two modes, q1 and q2, with identical velocity
v = 2k1I . A similar situation always persists in the other coupled field models mentioned
above and their generalizations. For instance, the N-component Manakov type system [36],
the mixed N-CNLS system [64], the GCNLS system [115,117], and the multi-component
LSRI system [126,136] are such cases. However, in contrast to such cases, the coherent
coupling among the copropagating optical fields induces a special type of double-hump
vector bright soliton in the CCNLS system [107,108]. In this four wave mixing physical
situation also the coherently coupled soliton is governed by an identical propagation
constant in all the modes. Therefore, it is clear that the above mentioned degeneracy in
propagation constants always persist in all the previously reported vector bright solitons.

In order to differentiate the above class of vector bright solitons from more general
fundamental solitons, we classify them as degenerate and nondegenerate solitons based on
the absence or presence of more than one wave number in the multi-component soliton
solution. We call the solitons which propagate in all the modes with identical wave number
as degenerate vector solitons whereas the solitons with nonidentical wave numbers as
nondegenerate vector solitons. From the above literature, it is clear that the vector bright
solitons with identical wave numbers have been well understood. However, the studies
on solitons with non-identical propagation constants in all the modes have not been
considered until recently. Therefore one would like to investigate the role of additional
wave number(s) on the vector bright soliton structures and collision scenario as well. With
this motivation, we plan to look for a class of fundamental soliton solutions, in a more
general form, which possesses more than one distinct propagation constants. Recently,
we have successfully identified such a general class of fundamental vector bright soliton
solutions for a wide class of physically important CNLS type equations using the Hirota
bilinear method. In this review, we briefly describe the novel properties, including the
various collision properties, associated with the nondegenerate vector bright solitons of
the Manakov system by deriving their analytical forms through the bilinearization method.
Then we point out the existence of such nondegenerate solitons in other coupled systems,
namely the N-CNLS system, mixed 2-CNLS system, 2-CCNLS system, GCNLS system and
two-component LSRI system. In these systems, we also specify how the degenerate bright
soliton solution arises as a special case of the nondegenerate soliton solution and point out
their fascinating energy sharing collisions.

4. Nondegenerate Solitons and Their Collisions in Manakov System

To begin, we derive the nondegenerate bright soliton solutions of the Manakov system
(Equation (8) with σ1 = σ2 = 1) using the Hirota bilinear method. In order to obtain
this new class of soliton solutions, we first bilinearize the Manakov system with the
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bilinearizing transformation, qj = g(j)(z,t)
f (z,t) , j = 1, 2, where g(j)’s are complex functions

and f is a real function. It leads to the following bilinear forms of Equation (8), namely
(iDz + D2

t )g(j) · f = 0, j = 1, 2, D2
t f · f = 2 ∑2

n=1 g(n)g(n)∗, where ∗ denotes complex
conjugation. Here, the Hirota’s bilinear operators Dz and Dt are defined [153] as Dm

z Dn
t (a ·

b) =

(
∂
∂z −

∂
∂z′

)m(
∂
∂t −

∂
∂t′

)n

a(z, t)b(z′, t′)|z=z′ , t=t′ . Substituting the standard Hirota

series expansions for the unknown functions g(j) = εg(j)
1 + ε3g(j)

3 + ..., j = 1, 2, and
f = 1 + ε2 f2 + ε4 f4 + ... in the above bilinear equations, one can obtain a system of linear
partial differential equations (PDEs). Here ε is the series expansion parameter. These
linear PDEs arise after collecting the coefficients of the same powers of ε, and they can
be solved recursively for every order of ε with the general forms of seed solutions. The
resultant associated explicit expressions for g(j)’s and f constitute the soliton solutions to
the underlying Manakov system (8).

4.1. Nondegenerate Fundamental Soliton Solution of the Manakov System

The exact form of the nondegenerate fundamental soliton solution can be obtained by
considering the two different seed solutions for the two modes as

g(1)1 = α
(1)
1 eη1 , g(2)1 = α

(2)
1 eξ1 , η1 = k1t + ik2

1z, ξ1 = l1t + il2
1z, (14)

to the following lowest order linear PDEs, ig(j)
1z + g(j)

1tt = 0, j = 1, 2. In the above k1, l1,

α
(j)
1 , j = 1, 2, are distinct complex parameters. The presence of two distinct complex

wave numbers k1 and l1 (k1 6= l1, in general) in Equation (14) makes the final solution
as nondegenerate one. However, the identical seed solutions, that is the solutions (14)
with k1 = l1 but different α

(j)
1 ’s j = 1, 2, have been used so far to derive the vector bright

soliton solutions [35]. With the general forms of starting solutions (14), we allow the
series expansions of the unknown functions g(j) and f to terminate themselves while
solving the system of linear PDEs. We find that the series expansions become truncated as
g(j) = εg(j)

1 + ε3g(j)
3 and f = 1 + ε2 f2 + ε4 f4. With the explicit forms of unknown functions

g(j)
3 , f2 and f4, finally we obtain the following a new fundamental one-soliton solution for

the Manakov system,

q1 =
g(1)1 + g(1)3
1 + f2 + f4

=
1
D
(α

(1)
1 eη1 + eη1+ξ1+ξ∗1+∆(1)

1 ), (15a)

q2 =
g(2)1 + g(2)3
1 + f2 + f4

=
1
D
(α

(2)
1 eξ1 + eη1+η∗1+ξ1+∆(2)

1 ). (15b)

Here D = 1 + eη1+η∗1+δ1 + eξ1+ξ∗1+δ2 + eη1+η∗1+ξ1+ξ∗1+δ11 , e∆(1)
1 =

(k1−l1)α
(1)
1 |α

(2)
1 |

2

(k1+l∗1 )(l1+l∗1 )
2 , e∆(2)

1 =

− (k1−l1)|α
(1)
1 |

2α
(2)
1

(k1+k∗1)
2(k∗1+l1)

, eδ1 =
|α(1)1 |

2

(k1+k∗1)
2 , eδ2 =

|α(2)1 |
2

(l1+l∗1 )
2 and eδ11 =

|k1−l1|2|α
(1)
1 |

2|α(2)1 |
2

(k1+k∗1)
2(k∗1+l1)(k1+l∗1 )(l1+l∗1 )

2 . The

above one-soliton solution possesses two distinct complex wave numbers, k1 and l1, which
appear in both the expressions of q1 and q2 simultaneously. This confirms that the obtained
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soliton solution is nondegenerate. The fundamental soliton solution (15a) and (15b) can
also be rewritten using Gram determinant forms as well [154,155],

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0 eη1

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1 eξ1

−1 0 |α(1)1 |
2

(k1+k∗1)
0 0

0 −1 0 |α(2)1 |
2

(l1+l∗1 )
0

0 0 −α
(1)
1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (16a)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0 eη1

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1 eξ1

−1 0 |α(1)1 |
2

(k1+k∗1)
0 0

0 −1 0 |α(2)1 |
2

(l1+l∗1 )
0

0 0 0 −α
(2)
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (16b)

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1

−1 0 |α(1)1 |
2

(k1+k∗1)
0

0 −1 0 |α(2)1 |
2

(l1+l∗1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (16c)

The above Gram determinant forms indeed satisfy the bilinear equations as well as
the Manakov Equation (8).

To explain the properties associated with the solution (15a) and (15b), we rewrite it in
hyperbolic form as

q1 =
2k1R A1eiη1I [cosh(ξ1R + φ1R) cos φ1I + i sinh(ξ1R + φ1R) sin φ1I ][

a11 cosh(η1R + ξ1R + φ1 + φ2 + c1) +
1

a∗11
cosh(η1R − ξ1R + φ2 − φ1 + c2)

] , (17a)

q2 =
2l1R A2eiξ1I [cosh(η1R + φ2R) cos φ2I + i sinh(η1R + φ2R) sin φ2I ][

a12 cosh(η1R + ξ1R + φ1 + φ2 + c1) +
1

a∗12
cosh(η1R − ξ1R + φ2 − φ1 + c2)

] , (17b)

where a11 =
(k∗1−l∗1 )

1
2

(k∗1+l1)
1
2

, a12 =
(k∗1−l∗1 )

1
2

(k1+l∗1 )
1
2

, c1 = 1
2 log (k∗1−l∗1 )

(l1−k1)
, c2 = 1

2 log (k1−l1)(k∗1+l1)
(l1−k1)(k1+l∗1 )

,

φ1 = 1
2 log (k1−l1)|α

(2)
1 |

2

(k1+l∗1 )(l1+l1)2 , φ2 = 1
2 log (l1−k1)|α

(1)
1 |

2

(k∗1+l1)(k1+k1)2 , η1R = k1R(t − 2k1Iz), η1I = k1I t +

(k2
1R − k2

1I)z, ξ1R = l1R(t − 2l1Iz), ξ1I = l1I t + (l2
1R − l2

1I)z, A1 = [α
(1)
1 /α

(1)∗
1 ]1/2, A2 =

i[α(2)1 /α
(2)∗
1 ]1/2. Here, φ1R, φ2R, φ1I and φ2I are real and imaginary parts of φ1 and φ2,

respectively, and k1R, l1R, k1I and l1I denote the real and imaginary parts of k1 and l1,
respectively. The geometrical structure of the solution (17a) and (17b) is described by
the four complex parameters k1, l1, α

(j)
1 , j = 1, 2. The nondegenerate fundamental bright

soliton solution (17a) and (17b) either propagates with identical velocity k1I = l1I or with
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non-identical velocities k1I 6= l1I in the two modes q1 and q2. In the identical velocity case,
the quantity φjI = 0, j = 1, 2 in (17a) and (17b) when k1I = l1I . This results in the forms

q1 =
2k1R A1eiη1I cosh(ξ1R + φ1R)[

a11 cosh(η1R + ξ1R + φ1 + φ2 + c1) +
1

a∗11
cosh(η1R − ξ1R + φ2 − φ1 + c2)

] , (18a)

q2 =
2l1R A2eiξ1I cosh(η1R + φ2R)[

a12 cosh(η1R + ξ1R + φ1 + φ2 + c1) +
1

a∗12
cosh(η1R − ξ1R + φ2 − φ1 + c2)

] , (18b)

where η1R = k1R(t − 2k1Iz), η1I = k1I t + (k2
1R − k2

1I)z, ξ1R = l1R(t − 2k1Iz), ξ1I =
k1I t + (l2

1R − k2
1I)z. The amplitude, velocity and central position of the nondegenerate

fundamental soliton in the first mode are found from Equation (18a) as 2k1R, 2l1I and φ1R
l1R

, re-
spectively. Similarly they are found for the soliton in the second mode from Equation (18b)
as 2l1R, 2k1I and φ2R

k1R
, respectively. The solution (18a) and (18b) admits both the symmetric

and asymmetric profiles, including a double-hump, a flat top and a single-hump profiles.
We have displayed a combination of these three types of symmetric profiles (and their
corresponding asymmetric profiles also) in our recent paper [76]. However, here, we
display a typical novel double-hump, a flat top and a single-hump profile in Figure 1.
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2
Figure 1. Symmetric intensity profiles of nondegenerate fundamental bright soliton solution (18a)
and (18b): while (a) denotes double-hump soliton in both the modes, (b) represents a flat-top in q1

mode and a double-hump in q2 mode and (c) denotes a single-hump in q1 mode and double-hump
in q2 mode. The parameter values of each figures are: (a): k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i,
α
(1)
1 = 0.45 + 0.45i, α

(2)
1 = 0.49 + 0.45i. (b): k1 = 0.425 + 0.5i, l1 = 0.3 + 0.5i, α

(1)
1 = 0.44 + 0.51i,

α
(2)
1 = 0.43 + 0.5i. (c): k1 = 0.55 + 0.5i, l1 = 0.333 + 0.5i, α

(1)
1 = 0.5 + 0.5i, α

(2)
1 = 0.5 + 0.45i.

The symmetric and asymmetric nature of the solution (18a) and (18b) can be confirmed
by calculating either the relative separation distance between the minima of the two modes
or by finding the corresponding extremum points from it. We remark that the double-hump
formation occurs in the structure of nondegenerate one-bright soliton solution (17a) and
(17b) when the relative velocity of the solitons in the two modes tends to zero. That is
∆v = v1 − v2 = 2(l1I − k1I) → 0. One can find the various special features associated
with the obtained nondegenerate fundamental soliton solution (17a) and (17b) further in
Ref. [76].

4.2. Nondegenerate Two-Soliton Solution

To obtain the nondegenerate two-soliton solution of Manakov Equation (8) we proceed
with the procedure given in the previous subsection along with the following seed solutions,
g(1)1 = α

(1)
1 eη1 + α

(1)
2 eη2 and g(2)1 = α

(2)
1 eξ1 + α

(2)
2 eξ2 , ηj = k jt + ik2

j z and ξ j = ljt + il2
j z,

j = 1, 2. We find that the series expansions for g(j), j = 1, 2, and f are terminated as
g(j) = εg(j)

1 + ε3g(j)
3 + ε5g(j)

5 + ε7g(j)
7 and f = 1+ ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8. Here we assume

that all the k j’s and lj’s, j = 1, 2, are distinct. The explicit forms of the obtained unknown
functions in the truncated series expansions constitute the following nondegenerate two-
soliton solution and it can be expressed using Gram determinants in the following way:
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g(N) =

∣∣∣∣∣∣
A I φ

−I B 0T

0 CN 0

∣∣∣∣∣∣, f =

∣∣∣∣ A I
−I B

∣∣∣∣, N = 1, 2. (19)

Here the matrices A and B are of the order (4× 4) defined as A =

(
Amm′ Amn
Anm Ann′

)
,

B =

(
κmm′ κmn
κnm κnn′

)
, m, m′, n, n′ = 1, 2. The various elements of the matrix A can be

obtained from the following, Amm′ =
e

ηm+η∗
m′

(km+k∗
m′ )

, Amn = eηm+ξ∗n
(km+l∗n)

, Ann′ =
e

ξn+ξ∗
n′

(ln+l∗
n′ )

, Anm =

eη∗n+ξm

(k∗n+lm)
, m, m′, n, n′ = 1, 2. The elements of the matrix B are κmm′ =

ψ†
mσψm′

(k∗m+km′ )
, κmn =

ψ†
mσψ′n

(k∗m+kn)
, κnm = ψ

′†
n σψm

(l∗n+km)
, κnn′ =

ψ
′†
n σψ′n′

(l∗n+ln′ )
. In the latter, the column matrices are defined as

ψj =

(
α
(1)
j
0

)
, ψ′j =

(
0

α
(2)
j

)
, j = m, m′, n, n′ = 1, 2, ηj = k jt + ik2

j z and ξ j = ljt + il2
j z,

j = 1, 2. The other matrices in Equation (3) are defined as φ =
(
eη1 eη2 eξ1 eξ2

)T ,

C1 = −
(

α
(1)
1 α

(1)
2 0 0

)
, C2 = −

(
0 0 α

(2)
1 α

(2)
2

)
, 0 =

(
0 0 0 0

)
and σ = I is

a (4× 4) identity matrix. The presence of eight arbitrary complex parameters k j, lj, α
(j)
1

and α
(j)
2 , j = 1, 2, define the profile shapes of the nondegenerate two solitons and their

interesting collision scenarios. In addition to the above, we also find that the Manakov
system also admits degenerate and nondegenerate solitons simultaneously under the wave
number restriction k1 = l1 (or k2 = l2) but k2 6= l2 (or k1 6= l1). Such a special kind of
partially nondegenerate two-soliton solution can be deduced by fixing the latter wave
number restriction in the completely nondegenerate two-soliton solution (19). This partially
nondegenerate soliton solution can also be derived through the Hirota bilinear method. To
derive this solution one has to assume the following seed solutions, g(1)1 = α

(1)
1 eη1 + α

(1)
2 eη2

and g(2)1 = α
(2)
1 eη1 + α

(2)
2 eξ2 , ηj = k jt + ik2

j z and ξ2 = l2t + il2
2z, j = 1, 2, in the solution

construction process. The resultant coexistence soliton solution and its dynamics are
characterized by only seven complex parameters k j, l2, α

(j)
1 and α

(j)
2 , j = 1, 2.

4.3. Various Types of Collision Dynamics of Nondegenerate Solitons

In order to understand the interesting collision properties associated with the nonde-
generate solitons, one has to analyze the asymptotic forms of the complete nondegenerate
two-soliton solution (19) of the Manakov equation. By doing so, we observe that the
nondegenerate solitons in general exhibit three types of collision scenarios, namely shape
preserving, shape altering and shape changing collision behaviors, for either of the two
cases (i) Equal velocities: k1I = l1I , k2I = l2I and (ii) Unequal velocities: k1I 6= l1I , k2I 6= l2I .
To facilitate the understanding of these collision properties, here we present the asymptotic
analysis for the case of equal velocities only and it can be performed for unequal velocities
case also in a similar manner.

4.3.1. Asymptotic Analysis

We perform a careful asymptotic analysis for the nondegenerate two soliton solu-
tion (19) in order to understand the interaction dynamics of the nondegenerate solitons
completely. We deduce the explicit expressions for the individual solitons at the asymptotic
limits z → ±∞. To explore this, we consider as a typical example k jR, ljR > 0, j = 1, 2,
k1I > k2I , l1I > l2I , k1I = l1I and k2I = l2I , that corresponds to head-on collision between
the two nondegenerate solitons. In this situation, the two fundamental solitons S1 and S2
are well separated and subsequently the asymptotic forms of the individual nondegenerate
solitons can be deduced from the solution (19) by incorporating the following asymptotic
nature of the wave variables ξ jR = ljR(t− 2ljIz) and ηjR = k jR(t− 2k jIz), j = 1, 2, in it. The
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wave variables ηjR and ξ jR behave asymptotically as (i) Soliton 1 (S1): η1R, ξ1R ' 0, η2R,
ξ2R → ∓∞ as z∓∞ and (ii) Soliton 2 (S2): η2R, ξ2R ' 0, η1R, ξ1R → ∓∞ as z±∞. Corre-
spondingly, these results lead to the following asymptotic expressions of nondegenerate
individual solitons.
(a) Before collision: z→ −∞

Soliton 1: In this limit, the asymptotic forms of q1 and q2 are deduced from the two soliton
solutions (19) for soliton 1 as below:

q1 '
2A1−

1 k1Reiη1I cosh(ξ1R + φ−1 )[
a11 cosh(η1R + ξ1R + φ−1 + φ−2 + c1) +

1
a∗11

cosh(η1R − ξ1R + φ−2 − φ−1 + c2)
] , (20a)

q2 '
2A1−

2 l1Reiξ1I cosh(η1R + φ−2 )[
a12 cosh(η1R + ξ1R + φ−1 + φ−2 + c1) +

1
a∗12

cosh(η1R − ξ1R + φ−2 − φ−1 + c2)
] . (20b)

Here, a11 =
(k∗1−l∗1 )

1
2

(k∗1+l1)
1
2

, a12 =
(k∗1−l∗1 )

1
2

(k1+l∗1 )
1
2

, φ−1 = 1
2 log (k1−l1)|α

(2)
1 |

2

(k1+l∗1 )(l1+l∗1 )
2 ,

φ−2 = 1
2 log (l1−k1)|α

(1)
1 |

2

(k∗1+l1)(k1+k∗1)
2 , A1−

1 = [α
(1)
1 /α

(1)∗

1 ]1/2 and A1−
2 = i[α(2)1 /α

(2)∗

1 ]1/2. In the lat-

ter, superscript (1−) represents soliton S1 before collision and subscript (1, 2) denotes the
two modes q1 and q2, respectively.

Soliton 2: The asymptotic expressions for soliton 2 in the two modes before collision turn
out to be

q1 '
2k2R A2−

1 ei(η2I+θ−1 ) cosh(ξ2R + ϕ−1 )[
a21 cosh(η2R + ξ2R + ϕ−1 + ϕ−2 + c3) +

1
a∗21

cosh(η2R − ξ2R + ϕ−2 − ϕ−1 + c4)
] , (21a)

q2 '
2l2R A2−

2 ei(ξ2I+θ−2 ) cosh(η2R + ϕ−2 )[
a22 cosh(η2R + ξ2R + ϕ−1 + ϕ−2 + c3) +

1
a∗22

cosh(η2R − ξ2R + ϕ−2 − ϕ−1 + c4)
] . (21b)

In the above, a21 =
(k∗2−l∗2 )

1
2

(k∗2+l2)
1
2

, a22 =
(k∗2−l∗2 )

1
2

(k2+l∗2 )
1
2

, c3 = 1
2 log (k∗2−l∗2 )

(l2−k2)
, c4 = 1

2 log (k2−l2)(k∗2+l2)
(l2−k2)(k2+l∗2 )

,

ϕ−1 = 1
2 log (k2−l2)|α

(2)
2 |

2

(k2+l∗2 )(l2+l∗2 )
2 + Ψ1, Ψ1 = 1

2 log |k1−l2|2|l1−l2|4
|k1+l∗2 |2|l1+l∗2 |4

, ϕ−2 = 1
2 log (l2−k2)|α

(1)
2 |

2

(k∗2+l2)(k2+k∗2)
2 +

Ψ2, Ψ2 = 1
2 log |k2−l1|2|k1−k2|4

|k2+l∗1 |2|k1+k∗2 |4
, eiθ−1 =

(k1−k2)(l1−l2)(l∗1+l2)(k2−l1)
1
2 (k1+k∗2)(k

∗
2+l1)

1
2

(k∗1−k∗2)(l1+l∗2 )(l
∗
1−l∗2 )(k

∗
2−l∗1 )

1
2 (k∗1+k2)(k2+l∗1 )

1
2

, A2−
1 =

[α
(1)
2 /α

(1)∗
2 ]1/2, A2−

2 = [α
(2)
2 /α

(2)∗
2 ]1/2, eiθ−2 =

(l1−l2)(k1−l2)
1
2 (k1+l∗2 )

1
2 (l1+l∗2 )

(k∗1−l∗2 )
1
2 (l∗1−l∗2 )(k

∗
1+l2)

1
2 (l∗1+l2)

. Here, superscript

(2−) refers to soliton S2 before collision.

(b) After collision: z→ +∞

Soliton 1: The asymptotic form for soliton 1 after collision is deduced as,

q1 '
2k1R A1+

1 ei(η1I+θ+1 ) cosh(ξ1R + φ+
1 )[

a11 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) +
1

a∗11
cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2)

] , (22a)

q2 '
2l1R A2+

1 ei(ξ1I+θ+2 ) cosh(η1R + φ+
2 )[

a12 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) +
1

a∗12
cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2)

] . (22b)

Here, φ+
1 = φ−1 + ψ1, ψ1 = 1

2 log |k2−l1|2|l1−l2|4
|k2+l∗1 |2|l1+l∗2 |4

, φ+
2 = φ−2 + ψ2,

ψ2 = 1
2 log |k1−l2|2|k1−k2|4

|k1+l∗2 |2|k1+k∗2 |4
, eiθ+1 =

(k1−k2)(k1−l2)
1
2 (k∗1+k2)(k∗1+l2)

1
2

(k∗1−k∗2)(k
∗
1−l∗2 )

1
2 (k1+k∗2)(k1+l∗2 )

1
2

,
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eiθ+2 =
(l1−l2)(k2−l1)

1
2 (k2+l∗1 )

1
2 (l∗1+l2)

(k∗2−l∗1 )
1
2 (l∗1−l∗2 )(k

∗
2+l1)

1
2 (l1+l∗2 )

, A1+
1 = [α

(1)
1 /α

(1)∗

1 ]1/2 and A1+
2 = [α

(2)
1 /α

(2)∗

1 ]1/2, in

which superscript (1+) denotes soliton S1 after collision.

Soliton 2: The expression for soliton 2 after collision deduced from the two soliton solu-
tions is

q1 '
2A1+

2 k2Reiη2I cosh(ξ2R + ϕ+
1 )[

a21 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + c3) +
1

a∗21
cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + c4)

] , (23a)

q2 '
2A2+

2 l2Reiξ2I cosh(η2R + ϕ+
2 )

[a22 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + c3) +
1

a∗22
cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + c4)

] , (23b)

where ϕ+
1 = 1

2 log (k2−l2)|α
(2)
2 |

2

(k2+l∗2 )(l2+l∗2 )
2 , ϕ+

2 = 1
2 log (l2−k2)|α

(1)
2 |

2

(k∗2+l2)(k2+k∗2)
2 , ϕ+

3 = 1
2 log |k2−l2|2|α

(1)
2 |

2|α(2)2 |
2

|k2+l∗2 |2(k2+k∗2)
2(l2+l∗2 )

2 ,

ϕ+
4 = 1

2 log |α
(1)
2 |

2(l2+l∗2 )
2

|α(2)2 |2(k2+k∗2)
2
, A2+

1 = [α
(1)
2 /α

(1)∗
2 ]1/2 and A2+

2 = i[α(2)2 /α
(2)∗
2 ]1/2. In the latter,

superscript (2+) represents soliton S2 after collision.
In the above, ηjI = k jI t + (k2

jR − k2
jI)z, ξ jI = ljI t + (l2

jR − l2
jI)z, j = 1, 2, and the phase

terms ϕ−j , j = 1, 2, can also be rewritten as ϕ−1 = ϕ+
1 + Ψ1, ϕ−2 = ϕ+

2 + Ψ2. The above
asymptotic analysis clearly shows that there is a definite drastic alteration in the phase
terms only. It can be identified from the following relations among the phase terms before
and after collisions. That is,

φ+
1 = φ−1 + ψ1, φ+

2 = φ−2 + ψ2, ϕ+
1 = ϕ−1 −Ψ1, ϕ+

2 = ϕ−2 −Ψ2. (24)

The above relations imply that the initial structures of the nondegenerate two solitons
are preserved except for the phase terms. From this, we infer that they undergo either
shape preserving collision with zero phase shift or shape changing collision with a finite
phase shift. In addition to this, a special shape altering collision can also occur with a small
phase shift. The zero phase shift condition, deduced from Equation (24), turns out to be

φ+
j = φ−j , ϕ+

j = ϕ−j , j = 1, 2. (25)

In order to follow the above condition, the additional phase constants ψ′js and Ψj’s
should be maintained as zero. That is,

ψ1 =
1
2

log
|k2 − l1|2|l1 − l2|4
|k2 + l∗1 |2|l1 + l∗2 |4

= 0, ψ2 =
1
2

log
|k1 − l2|2|k1 − k2|4
|k1 + l∗2 |2|k1 + k∗2 |4

= 0. (26a)

Ψ1 =
1
2

log
|k1 − l2|2|l1 − l2|4
|k1 + l∗2 |2|l1 + l∗2 |4

= 0, Ψ2 =
1
2

log
|k2 − l1|2|k1 − k2|4
|k2 + l∗1 |2|k1 + k∗2 |4

= 0. (26b)

From the above, we deduce the following criterion, corresponding to the condi-
tions (25), for the occurrence of shape preserving collision with zero phase shift,

|k2 + l∗1 |2

|k2 − l1|2
| − |k1 + l∗2 |2
|k1 − l2|2

= 0. (27)

As a result, whenever the conditions (25) or equivalently the criterion (27), are satisfied
the nondegenerate bright solitons exhibit shape preserving collision with a zero phase shift.
Otherwise, they undergo shape altering and shape changing collisions, as discussed in the
following. Furthermore, the shape changing (and altering) collision scenario also belongs
to the elastic collision as we describe below.
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The above analysis clearly demonstrates that during the collision process the initial
phase of each of the soliton is changed. The total phase shift of soliton S1 in the two modes
after collision becomes

∆Φ1 = (φ+
1 + φ+

2 )− (φ−1 + φ−2 ) = ψ1 + ψ2

=
1
2

log
|k2 − l1|2|l1 − l2|4|k1 − l2|2|k1 − k2|4
|k2 + l∗1 |2|l1 + l∗2 |4|k1 + l∗2 |2|k1 + k∗2 |4

. (28a)

Similarly the total phase shift suffered by soliton S2 in the two modes is

∆Φ2 = (ϕ+
1 + ϕ+

2 )− (ϕ−1 + ϕ−2 ) = −(Ψ1 + Ψ2)

= −1
2

log
|k1 − l2|2|l1 − l2|4|k2 − l1|2|k1 − k2|4
|k1 + l∗2 |2|l1 + l∗2 |4|k2 + l∗1 |2|k1 + k∗2 |4

= −(ψ1 + ψ2) = −∆Φ1. (28b)

From the above expressions, we conclude that the phases of all the solitons are mainly
influenced by the wave numbers k j and lj, j = 1, 2, and not by the complex parameters

α
(j)
1 ’s and α

(j)
2 ’s, j = 1, 2. This peculiar property of nondegenerate solitons is different in

the case of degenerate vector bright solitons [35,36], see also Section 4.6 below, where the
complex parameters α

(j)
1 ’s and α

(j)
2 ’s, associated with polarization constants, play a crucial

role in shifting the position of solitons after the collision.

4.3.2. Elastic Collision: Shape Preserving, Shape Altering and Shape Changing Collisions

From the above asymptotic analysis, we observe that the intensities of nondegenerate
solitons S1 and S2 in the two modes are the same before and after collision in the equal
velocities case, k1I = l1I and k2I = l2I . To confirm this, we calculate the transition intensities

(using the expressions for the transition amplitudes Ti
j =

Ai+
j

Ai−
j

, i, j = 1, 2), |T1
1 |2 =

|A1+
1 |

2

|A1−
1 |2

,

|T1
2 |2 =

|A1+
2 |

2

|A1−
2 |2

, |T2
1 |2 =

|A2+
1 |

2

|A2−
1 |2

and |T2
2 |2 =

2|A2+
2 |

2

2|A2−
2 |2

. The various expressions deduced for

the different Ai
j’s previously confirm that the transition intensities are unimodular. That

is, |Tl
j |2 = 1, j, l = 1, 2. Thus, the collision scenario that occurs among the nondegenerate

solitons, in general, is always elastic. So, the nondegenerate solitons, for k1I = l1I , k2I = l2I ,
(but k1 6= l1, k2 6= l2) corresponding to two distinct wave numbers in general undergo
elastic collision without any intensity redistribution between the modes q1 and q2. However,
it is clear from Equation (24), that the changes that occur in the phase terms do alter the
structure of the nondegenerate solitons during the collision scenario. Consequently, there
is a possibility of shape altering and shape changing collisions occurring, without violating
the unimodular conditions of transition intensities, in the equal velocities case, apart from
the earlier mentioned shape preserving collision. A typical shape-preserving collision is
displayed in Figure 2, in which we set two well separated symmetric double-hump soliton
profiles as initial profiles in both the modes at z = −10. The initial structures of the two
double-hump solitons are preserved after the collision. It is evident from the dashed red
curves drawn at z = +10 in Figure 2. In addition to this, we have also verified that the
wave parameters k j and lj, j = 1, 2, that are given in the caption of Figure 2, satisfy the
zero phase shift criterion (27). The obtained numerical value from Equation (27) is equal
to −0.0064 (nearly equal to) 0. This value physically implies that during the collision the
two double-humped nondegenerate bright solitons pass through one another without a
phase shift and emerge from the collision unaltered in shape, amplitude and velocity. This
remarkable property has not been observed earlier in the cases of scalar NLS bright solitons
as well as in the degenerate vector bright solitons [35,36]. Very interestingly, a similar zero
phase shift shape preserving collision also occurs even when the symmetric double-hump
soliton interacts with an asymmetric double-hump soliton. Such collision is illustrated
in Figure 3.
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z=-10

z=10 S1
- S1

+

S2
-

S2
+

-80 0 80

0

0.05

t

|q
1

2

S1
- S1

+

S2
-

S2
+

-80 0 80

0

0.05

t

|q
2

2

Figure 2. Shape preserving collision of two symmetric double-hump solitons—the energy is not
exchanged among the nondegenerate solitons during the collision process. The parameter values

are k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, k2 = 0.315− 2.2i, l2 = 0.333− 2.2i, α
(1)
1 = 0.45 + 0.45i,

α
(1)
2 = 0.49 + 0.45i, α

(2)
1 = 0.49 + 0.45i and α

(2)
2 = 0.45 + 0.45i.

In this case, the total intensity of each soliton is conserved which can be verified from
the relations |Al−

j |
2 = |Al+

j |
2, j, l = 1, 2. In addition to this, the total intensity in each of the

modes is also conserved, that is |A1−
j |

2 + |A2−
j |

2 = |A1+
j |

2 + |A2+
j |

2 = constant.

z=-12

z=12 S1
-

S2
-

S1
+

S2
+

-80 0 80

0

0.1

t

|q
1

2 S1
-

S2
-

S1
+

S2
+

-80 0 80

0

0.1

t

|q
2

2

Figure 3. Shape preserving collision between a symmetric double-hump soliton and an asymmetric
double-hump soliton: the parameter values are k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, k2 = 0.315− 2.2i,
l2 = 0.333− 2.2i, α

(1)
1 = 0.45 + 0.45i, α

(1)
2 = 2.49 + 2.45i, α

(2)
1 = 0.49 + 0.45i and α

(2)
2 = 0.45 + 0.45i.

Then, we also come across another type of elastic collision, namely shape altering
collision for certain sets of parametric choices again with k1I = l1I and k2I = l2I . To
demonstrate this collision scenario in Figure 4, we fix the parameter values as k1 =

0.425 + 0.5i, l1 = 0.3 + 0.5i, k2 = 0.3− 2.2i, l2 = 0.425− 2.2i, α
(1)
1 = α

(2)
2 = 0.5 + 0.5i

and α
(1)
2 = α

(2)
1 = 0.45 + 0.5i. From this figure, one can observe that a symmetric (or

asymmetric) flattop soliton collides with an asymmetric (or symmetric) double-hump
soliton in the q1 (or q2) component. As a result, the symmetric flattop profile in the
q1 mode is modified slightly as the asymmetric flattop profile and slightly asymmetric
double-hump soliton S−2 becomes a symmetric double-hump soliton. Similarly, while the
symmetric double-hump soliton S−1 in the q2 mode changes slightly into an asymmetric
structure, the asymmetric flattop soliton S−2 becomes symmetric. As we pointed out earlier,
this kind of shape alteration essentially arises in the structures of nondegenerate bright
solitons is due to the phase conditions (24). However, the shape preserving nature of the
nondegenerate solitons can be brought out by taking appropriate position shifts based on
the expressions (22a) and (22b) and (23a) and (23b). For example, the expressions (22a)
and (22b) of soliton 1 after collision exactly coincide with the expressions (20a) and (20b)
after substituting z′ = z− ψ1

2l1Rk1I
and z′ = z− ψ2

2k1Rk1I
, respectively, in it. Similarly, for the

soliton 2, the expressions (23a) and (23b) exactly match with the expressions (21a) and
(21b) after taking the position shifts z′ = z + Ψ1

2l2Rk2I
and z′ = z + Ψ2

2k2Rk2I
, respectively, into

account. Correspondingly, the shapes of the nondegenerate solitons are preserved. A
typical example of this transition is illustrated in Figure 4c,d, where the initial profiles are
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retained after taking the shifts in the positions of solitons. This is also true in the case of
shape changing collision. Here, we have not displayed the shape changing collisions and
their corresponding position shift plots for brevity.

z=-12

z=12 S1
- S1

+

S2
-

(a)

-70 0 70

0

0.09

t

|q
1

2

S1
- S1

+

S2
-S2

- (b)

-70 0 70

0

0.09

t

|q
2

2

z=-12

z=12

(c)
S1
- S1

+

S2
-

S2
+

-70 0 70

0

0.09

t

|q
1

2

(d)
S1
- S1

+

S2
-

S2
+

-70 0 70

0

0.09

t
|q

2

2

Figure 4. (a–d) A typical shape altering collision is displayed in the top panels. Their corresponding
shape preserving nature is brought out in the bottom panels after taking a pair of position shifts,
(z′ = z− ψ1

2l1Rk1I
= 12.3053, z′ = z− ψ2

2k1Rk1I
= 12.27) and (z′ = z + Ψ1

2l2Rk2I
= 12.0614, z′ = z + Ψ2

2k2Rk2I
=

12.0694) in the expressions (22a) and (22b) of soliton 1 and the expressions (23a) and (23b) of soliton 2,
respectively.

4.4. Collision between Nondegenerate and Degenerate Solitons

In this sub-section, we discuss the collision among the degenerate and nondegenerate
solitons admitted by the two-soliton solution (19) of the Manakov system (8) in the partial
nondegenerate limit k1 = l1 and k2 6= l2. The following asymptotic analysis assures that
there is a definite energy redistribution occurs among the modes q1 and q2.

4.4.1. Asymptotic Analysis

To elucidate this new kind of collision behavior, we analyze the partially nondegener-
ate two-soliton solution (19) in the asymptotic limits z→ ±∞. The resultant action yields
the asymptotic forms corresponding to degenerate and nondegenerate solitons. To obtain
the asymptotic forms for the present case we incorporate the asymptotic nature of the
wave variables ηjR = k jR(t− 2kI jz) and ξ2R = l2R(t− 2l2Iz), j = 1, 2, in the solution (19).
Here the wave variable η1R corresponds to the degenerate soliton and η2R, ξ2R correspond
to the nondegenerate soliton. In order to find the asymptotic behavior of these wave
variables we consider the parametric choice as k1R, k2R, l2R > 0, k1I > 0, k2I , l2I < 0,
k1I > k2I , k1I > l2I . For this choice, the wave variables behave asymptotically as follows:
(i) degenerate soliton S1: η1R ' 0, η2R,ξ2R → ∓∞ as z → ∓∞ (ii) nondegenerate soliton
S2: η2R, ξ2R ' 0, η1R → ±∞ as z→ ±∞. By incorporating these asymptotic behaviors of
wave variables in the solution (19), we deduce the following asymptotic expressions for
degenerate and nondegenerate solitons.

(a) Before collision: z→ −∞

Soliton 1: In this limit, the asymptotic form for the degenerate soliton deduced from the
partially nondegenerate two soliton solution (19) is

qj '

A1−
1

A1−
2

k1Reiη1I sech(η1R +
R
2
), j = 1, 2, (29)

where A1−
j = α

(j)
1 /(|α(1)1 |2 + |α

(2)
1 |2)1/2, j = 1, 2, R = ln (|α(1)1 |

2+|α(2)1 |
2)

(k1+k∗1)
2 . Here, in A1−

j the

superscript 1− denotes soliton S1 before collision and subscript j refers to the mode number.
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Soliton 2: The asymptotic expressions for the nondegenerate soliton S2 which is present in
the two modes before collision are obtained as

q1 '
2k2R A2−

1
D

(
eiξ2I+Λ1 cosh(η2R +

Φ21 − ∆21

2
) + eiη2I+Λ2 cosh(ξ2R +

λ2 − λ1

2
)

)
, (30a)

q2 '
2l2R A2−

2
D

(
eiη2I+Λ7 cosh(ξ2R +

Γ21 − γ21

2
) + eiξ2I+Λ6 cosh(η2R +

λ7 − λ6

2
)

)
, (30b)

D = eΛ5 cosh(η2R − ξ2R +
λ3 − λ4

2
) + eΛ3 cosh(i(η2I − ξ2I) +

ϑ12 − ϕ21

2
)

+eΛ4 cosh(η2R + η3R +
λ5 − R

2
).

Here, A2−
1 = [α

(1)
2 /α

(1)∗
2 ]1/2, A2−

2 = [α
(2)
2 /α

(2)∗
2 ]1/2. In the latter the superscript 2−

denote nondegenerate soliton S2 before collision. The various other constants appearing in
Equation (30) are defined in the Appendix A.

(b) After collision: z→ +∞

Soliton 1: The asymptotic forms for degenerate soliton S1 after collision deduced from the
solution (19) (with k1 = l1 and k2 6= l2) as,

qj '

A1+
1

A1+
2

ei(η1I+θ+j )k1R sech(η1R +
R′ − ς22

2
), j = 1, 2, (31)

where A1+
1 = α

(1)
1 /(|α(1)1 |2 + χ|α(2)1 |2)1/2, A1+

2 = α
(2)
1 /(|α(1)1 |2χ−1 + |α(2)1 |2)1/2, χ = (|k1−

l2|2|k1 + k∗2 |2)/(|k1 − k2|2|k1 + l∗2 |2), eiθ+1 =
(k1−k2)(k∗1+k2)(k1−l2)

1
2 (k∗1+l2)

1
2

(k∗1−k∗2)(k1+k∗2)(k
∗
1−l∗2 )

1
2 (k1+l∗2 )

1
2

,

eiθ+2 =
(k1−k2)

1
2 (k∗1+k2)

1
2 (k1−l2)(k∗1+l2)

(k∗1−k∗2)
1
2 (k1+k∗2)

1
2 (k∗1−l∗2 )(k1+l∗2 )

. Here 1+ in A1+
1 refers to degenerate soliton S1 af-

ter collision.

Soliton 2: Similarly the expression for the nondegenerate soliton, S2, after collision deduced
from the two soliton solution (19) (with k1 = l1 and k2 6= l2) is

q1 '
2k2R A2+

1 eiη2I cosh(ξ2R + Λ22−ρ1
2 )[ (k∗2−l∗2 )

1
2

(k∗2+l2)
1
2

cosh(η2R + ξ2R + ς22
2 ) +

(k2+l∗2 )
1
2

(k2−l2)
1
2

cosh(η2R − ξ2R + R3−R6
2 )

] , (32a)

q2 '
2l2R A2+

2 eiξ2I cosh(η2R +
µ22−ρ2

2 )[ (k∗2−l∗2 )
1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + ς22
2 ) +

(k∗2+l2)
1
2

(k2−l2)
1
2

cosh(η2R − ξ2R + R3−R6
2 )

] . (32b)

where ρj = log α
(j)
2 , j = 1, 2, A2+

1 = [α
(1)
2 /α

(1)∗
2 ]1/2, A2+

2 = i[α(2)2 /α
(2)∗
2 ]1/2. The explicit

expressions of all the undefined constants are given in Appendix A.

4.5. Degenerate Soliton Collision Induced Shape Changing Scenario of Nondegenerate Soliton

The coexistence of nondegenerate and degenerate solitons can be realized from the
partially nondegenerate limit of the soliton solution (19) (with k1 = l1 and k2 6= l2).
Such coexisting solitons undergo a novel collision property, which has been illustrated
in Figure 5. From this figure, one can observe that the intensity of the degenerate soliton
S1 is enhanced after collision in the q1 mode and it is suppressed in the q2 mode. As
we expected, like in the complete degenerate case [35,41], the degenerate soliton under-
goes energy redistribution among both the modes. In this case, the polarization vectors,
Al

j = α
(j)
l /(|α(1)1 |2 + |α

(2)
1 |2)1/2, l, j = 1, 2, play a crucial role in changing the shape of the

degenerate solitons under collision, where the intensity redistribution occurs between the
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modes q1 and q2. As we have pointed out below in the next subsection, the shape preserv-
ing collision arises in the pure degenerate case when the polarization parameters obey

the condition, α
(1)
1

α
(1)
2

=
α
(2)
1

α
(2)
2

, where α
(j)
i ’s, i, j = 1, 2, are complex parameters related to the

polarization vectors as given above. However, this collision property is not true in the case
of nondegenerate solitons as we have depicted in Figure 5. As a result, the nondegenerate
soliton S2 switches its asymmetric double-hump profile into a single-hump profile along
with a phase shift. In addition, we also noticed from the asymptotic expressions (30a)
and (30b) and (32a) and (32b), that the asymmetric double-hump profile of nondegenerate
soliton is transformed into another form of an asymmetric double-hump profile when it
interacts with a degenerate soliton for a specific choice of parameter values. In the non-
degenerate case, the relative separation distances (or phases) are in general not preserved
during the collision. Therefore the mechanism behind the occurrence of shape preserving
and shape changing collisions in the nondegenerate solitons is quite new. These novel
collision properties can be understood from the corresponding asymptotic analysis given
in the previous subsection. The analysis reveals that energy redistribution occurs between
the modes q1 and q2. In order to confirm the shape changing nature of this interesting
collision scenario, we obtain the following expression for the transition amplitudes,

T1
1 =

(|α(1)1 |2 + |α
(2)
1 |2)1/2

(|α(1)1 |2 + χ|α(2)1 |2)1/2
, T1

2 =
(|α(1)1 |2 + |α

(2)
1 |2)1/2

(|α(1)1 |2χ−1 + |α(2)1 |2)1/2
. (33)

In general, the transition amplitudes are not equal to unity. If the quantity Tl
j is not

unimodular (for this case the constant χ 6= 1), then the degenerate and nondegenerate
solitons always exhibit shape changing collision. The standard elastic collision can be
recovered when χ = 1. One can calculate the shift in the positions of both degenerate
and nondegenerate solitons after collision from the asymptotic analysis. This new kind
of collision property has not been observed in the degenerate vector bright solitons of the
Manakov system [35,41].

Figure 5. Shape changing collision between a degenerate and nondegenerate soliton: k1 = l1 = 1 + i,
k2 = 1− i, l2 = 1.5− 0.5i, α

(1)
1 = 0.8 + 0.8i, α

(2)
2 = 0.6 + 0.6i, α

(1)
2 = 0.25 + 0.25i, α

(2)
1 = 1 + i.

4.6. Degenerate Bright Solitons and Their Shape Changing/Energy Redistribution Collision in the
Manakov System

The already reported degenerate vector one-bright soliton solution of the Manakov
system (8) can be deduced from the one-soliton solution (15a) and (15b) by imposing the
condition k1 = l1 in it. The forms of qj given in Equations (15a) and (15b) degenerate into
the standard bright soliton form [35,41]

qj =
α
(j)
1 eη1

1 + eη1+η∗1+R , j = 1, 2, (34)

which can be rewritten as

qj = k1R Âjeiη1I sech(η1R +
R
2
), (35)
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where η1R = k1R(t − 2k1Iz), η1I = k1I t + (k2
1R − k2

1I)z,

Âj =
α
(j)
1√

(|α(1)1 |2+|α
(2)
1 |2)

, eR =
(|α(1)1 |

2+|α(2)1 |
2)

(k1+k∗1)
2 , j = 1, 2. Note that the above fundamental

bright soliton always propagates in both the modes q1 and q2 with the same velocity 2k1I .
The polarization vectors (Â1, Â2)

† have different amplitudes and phases, unlike the case
of nondegenerate solitons where they have only different unit phases. The presence of
a single wave number k1 in the solution (35) restricts the degenerate soliton to have a
single-hump form only. A typical profile of the degenerate soliton is shown in Figure 6. As
already pointed out in [35,41], the amplitude and central position of the degenerate vector
bright soliton are obtained as 2k1R Âj, j = 1, 2 and R

2k1R
, respectively.

|q1
2

|q2
2

-30 0 30

0

0.08

t

|q
1,2

2

Figure 6. Degenerate one-soliton of the Manakov equation: the values of the parameters are k1 =

0.3 + 0.5i, α
(1)
1 = 1.5 + 1.5i, α

(2)
1 = 0.5 + 0.5i.

Furthermore, the degenerate two-soliton solution can be deduced from the nondegen-
erate two-soliton solution (19) by applying the degenerate limits k1 = l1 and k2 = l2. This
degenerate two-soliton solution of the Manakov system is obtained in [35]. The two-soliton
solution can be compactly written in terms of Gram determinants as

qj =
g(j)

f
, j = 1, 2, (36a)

where

g(j) =

∣∣∣∣∣∣∣∣∣∣∣

A11 A12 1 0 eη1

A21 A22 0 1 eη2

−1 0 B11 B12 0
0 −1 B21 B22 0
0 0 −α

(j)
1 −α

(j)
2 0

∣∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣∣∣
A11 A12 1 0
A21 A22 0 1
−1 0 B11 B12
0 −1 B21 B22

∣∣∣∣∣∣∣∣, (36b)

in which Aij =
eηi+η∗j

ki + k∗j
, and Bij = κji =

(
α
(1)
j α

(1)∗
i + α

(2)
j α

(2)∗
i

)
(k j + k∗i )

, i, j = 1, 2. The above

degenerate bright two-soliton solution is characterized by six arbitrary complex parameters
k1, k2, α

(j)
1 and α

(j)
2 , j = 1, 2.

By fixing the wave numbers as ki = li, i = 1, 2, ..., N, the N degenerate vector bright
soliton solution can be recovered from the nondegenerate N-soliton solutions. In passing
we, also note that the nondegenerate one-soliton solution (15a) and (15b) can arise when we
fix the parameters α

(1)
2 = α

(2)
1 = 0 in Equations (36a) and (36b) and rename the constants

k2 as l1 and α
(2)
2 as α

(2)
1 in the resultant solution. We also note that the above degenerate

two-soliton solution (36a) and (36b) can also be rewritten from the Gram determinant forms
of the nondegenerate two-soliton solution (19).

As reported in [35,36,41], the degenerate fundamental solitons (ki = li, i = 1, 2) in
the Manakov system undergo shape changing collision due to the intensity redistribution
among the modes. The energy redistribution occurs in the degenerate case because the
polarization vectors of the two modes combine with each other in a specific way. This shape
changing collision is illustrated in Figure 7 where the intensity redistribution occurs because
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of the enhancement of soliton S1 in the first mode and the corresponding suppression of
the intensity of the same soliton in the second mode. To hold the conservation of energy
between the modes, the intensity of the soliton S2 is suppressed in the first mode and it is
enhanced in the second mode. The standard elastic collision occurs (as already noted) for

the very special choice of parameters, namely α
(1)
1

α
(1)
2

=
α
(2)
1

α
(2)
2

[35,36].

Figure 7. Shape changing collision of the degenerate two-solitons: k1 = l1 = 1 + i, k2 = l2 =

1.51− 1.51i, α
(1)
1 = 0.5 + 0.5i, α

(1)
2 = α

(2)
1 = α

(2)
2 = 1.

4.7. Possible Experimental Realization of Nondegenerate Solitons

To experimentally observe the nondegenerate vector solitons (single hump/double
hump solitons) in the Manakov system, one may adopt the mutual-incoherence method that
has been used to observe the multi-hump multi-mode solitons experimentally (Ref. [50]).
The Manakov solitons (degenerate solitons) can also be observed by the same experimental
procedure with appropriate modifications (Ref. [37]). In the following, we briefly envisage
how the procedure given in Ref. [50] can be redesigned to generate the double-humped
nondegenerate soliton as it has been discussed in our work [76].

To observe the nondegenerate vector solitons experimentally, it is essential to consider
two laser sources with different properties so that the wavelength of the second laser beam
is different from the first one. Using polarizing beam splitters, each one of the laser beams
can be split into ordinary and extraordinary beams. The extraordinary beam coming out
from the first source can be further split into two individual fields F11 and F12 by allowing
it to fall on a beam splitter. These two fields are nothing but the reflected and transmitted
extraordinary beams coming out from the beam splitter. The intensities of these two fields
are different. Similarly, the second beam which is coming out from the second source can
also be split into two fields F21 and F22 by passing through another beam splitter. The
intensities of these two fields are also different. As a result, one can generate four fields
that are incoherent to each other. To set the incoherence in phase among these four fields,
one should allow them to travel a sufficient distance before the coupling is performed.
The fields F11 and F12 now become nondegenerate two individual solitons in the first
mode, whereas F21 and F22 form another set of two nondegenerate solitons in the second
mode. The coupling between the fields F11 and F21 can be performed by combining them
using another beam splitter. Similarly, by suitably locating another beam splitter, one can
combine the fields F12 and F22, respectively. After appropriate coupling is performed, the
resultant optical field beams can now be focused through two individual cylindrical lenses
and the output may be recorded in an imaging system, which consists of a crystal and CCD
camera. The collision between the nondegenerate two-solitons in both the modes can now
be seen from the recorded images.

To observe the elastic collision between double-humped nondegenerate solitons, one
must make arrangements to vanish the mutual coherence property between the solitons
F11 and F12 in the first mode q1 and F21 and F22 in the second mode q2 (Ref. [37]). The
four optical beams are now completely independent and incoherent with one another.
The collision angle at which the nondegenerate solitons interact should be sufficiently
large enough. Under this situation, no energy exchange is expected to occur between the
nondegenerate solitons of the two modes. This experimental procedure can also be used
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to realize multi-humped nondegenerate vector solitons in the N-CNLS system but with
appropriate modification in the initial conditions.

4.8. Multi-Humped Nondegenerate Fundamental Bright Soliton Solution in N-CNLS System

In this sub-section, we explore the existence of the nondegenerate fundamental bright
soliton solution for coupled multi-component nonlinear Schrödinger equations of Man-
akov type [36,82]. Here, we intend to point out the multi-hump nature of the nonde-
generate fundamental solitons in the following system of multi-component nonlinear
Schrödinger equations,

iqj,z + qj,tt + 2
N

∑
p=1
|qp|2qj = 0, j = 1, 2, ..., N. (37)

Here, straight away we provide the nondegenerate fundamental soliton solution of
the above N-CNLS system, which is derived through the Hirota bilinear method. We note
that for detailed derivation one can refer to our recent paper [82]. The nondegenerate

fundamental bright soliton solution qj =
g(j)

f , j = 1, 2, ..., N, of the N-CNLS system written
in a more compact form using the following Gram determinants

g(N) =

∣∣∣∣∣∣
A I φ
−I B 0T

0 CN 0

∣∣∣∣∣∣, f =

∣∣∣∣ A I
−I B

∣∣∣∣, (38)

where the elements of the matrices A and B are

Aij =
eηi+η∗j

(ki + k∗j )
, Bij = κji =

ψ†
i σψj

(k∗i + k j)
, CN = −

(
α
(1)
1 , α

(2)
1 , . . . , α

(N)
1

)
,

ψj =
(

α
(1)
1 , α

(2)
1 , . . . , α

(j)
1

)T
, φ =

(
eη1 , eη2 , . . . , eηn

)T , j, n = 1, 2, .., N.

In the above, g(N) and f are ((22N) + 1) and (22N)th order determinants, respectively.
When j 6= i, the elements κji in the square matrix B do not exist (κji = 0). Then, in the
above fundamental soliton solution T denotes the transpose of the matrices ψj and φ, †
represents transpose complex conjugate, σ = I is an (n × n) identity matrix, φ is a (n × 1)
column matrix, 0 is a (1 × n) null matrix, CN is a (1 × n) row matrix and ψ represents a
(n × 1) column matrix. Furthermore, for a given set of N and j values, the corresponding
elements only exist and all the other elements are equal to zero in ψj and CN matrices.
We have verified the reliability of the nondegenerate fundamental soliton solution (38) by
substituting it into the bilinear equations of the N-CNLS system along with the following

derivative formula of the determinants, ∂M
∂x = ∑1≤i,j≤n

∂ai,j
∂x

∂M
∂ai,j

= ∑1≤i,j≤n
∂ai,j
∂x ∆i,j, where

∆i,j’s are the cofactors of the matrix M, the elementary properties of the determinants
and the bordered determinant properties [153,155]. This action produces a pair of Jacobi
identities and thus their occurrence confirms the validity of the obtained soliton solution. A
multi-hump profile nature is a special feature of the obtained nondegenerate fundamental
soliton solution (38). Such multi-hump structures and their propagation are characterized
by 2N arbitrary complex wave parameters. The fundamental nondegenerate soliton admits
a very interesting N-hump profile in the present N-CNLS system. The number of peaks or
humps in the intensity profile of the nondegenerate fundamental soliton solution of the
N-CNLS system is essentially equal to the number of wave numbers or equivalently the
number of components involved. In this system, in general, the nondegenerate solitons
propagate with different velocities in different modes but one can make them propagate
with identical velocity by restricting the imaginary parts of all the wave numbers k j,
j = 1, 2, ..., N, to be equal. We wish to note that the degenerate fundamental bright
soliton solution of the N-CNLS system can be obtained by setting all the wavenumbers k j ,
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j = 1, 2, ..., N , as identical, k j = k1, j = 1, 2, ..., N. It leads to single-hump intensity profiles
only in all the modes [36]. Very interestingly, the N-CNLS system (9) also admits a special
kind of multi-humped partially nondegenerate fundamental soliton solution for a smaller
number of restrictions on the wave numbers, as we have explained in [82]. Consequently,
in this partially nondegenerate case, the number of humps is not equal to the number of
components.

In order to indicate the multi-hump nature of the nondegenerate soliton, here we
demonstrate this special feature in the case of 3-CNLS and 4-CNLS systems. As a specific
example, we can easily check that this multi-parameter solution admits a novel asymmetric
triple-hump profile in the case of the 3-CNLS system when we fix the velocity as k1I =
k2I = k3I = 0.5. The other parameter values are chosen as k1R = 0.53, k2R = 0.5, k3R = 0.45,
α
(1)
1 = 0.65 + 0.65i, α

(2)
1 = 0.45− 0.45i and α

(3)
1 = 0.35 + 0.35i. In Figure 8a, we display the

asymmetric triple-hump profiles in all the components for the above choice of parameter
values. Then, the nondegenerate one-soliton solution in the 4-CNLS system exhibits
an asymmetric quadruple-hump profile in all the modes. This novel quadruple-hump
profile is displayed in Figure 8b for the parameter values k1 = 0.48 + 0.5i, k2 = 0.5 + 0.5i,
k3 = 0.53 + 0.5i, k4 = 0.55 + 0.5i, α

(1)
1 = 0.65 + 0.65i, α

(2)
1 = 0.55− 0.55i, α

(3)
1 = 0.45 + 0.45i

and α
(4)
1 = 0.35− 0.35i. We remark that the nondegenerate fundamental soliton solution

reduces to a double-humped partially nondegenerate soliton by considering a restriction
k1 = k2 (or k2 = k3) [82].

|q1
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|q2
2

|q3
2

(a)
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Figure 8. (a) Denotes triple-hump profile of the nondegenerate fundamental soliton in the 3-CNLS
system and (b) represents a quadruple-humped nondegenerate soliton profiles in the 4-CNLS system.

In general, to derive nondegenerate N-soliton solution of the N-CNLS system, we

have to consider a more general form of the starting solutions g(j)
1 = ∑N

l,j=1 α
(j)
l eη

(j)
l , η

(j)
l =

k(j)
l t + ik(j)2

l z to the lowest order set of N linear PDEs ig(j)
1,z + g(j)

1,tt = 0, j = 1, 2, ..., N. This
choice of initial seed solutions yields a very complicated nondegenerate N-soliton solution.
We do not provide the details of this intricate form here for brevity and they will be
published elsewhere.

Figure 9. The singular double-hump profiles of the nondegenerate one-soliton solution (39a) and
(39b) of the mixed 2-CNLS system.

5. Nondegenerate and Degenerate Bright Solitons in the Mixed 2-CNLS System

This section is essentially devoted to showing the existence of nondegenerate fun-
damental bright solitons in the mixed 2-CNLS system or Equation (8) with σ1 = +1 and
σ2 = −1. In this section, we also point out how the degenerate fundamental bright soliton
can be captured from the obtained nondegenerate one-soliton solution and indicate its
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energy sharing collision. In order to write down the analytical form of the nondegenerate
fundamental soliton solution, one has to follow the same procedure that has been adopted
to derive such a solution in the case of the Manakov system. Since the solution construction
methodology has been extensively described in References [75–77] and in the earlier section,
here we immediately present the explicit form of the nondegenerate fundamental soliton
solution of the mixed 2-CNLS system. It reads as

q1 =
g(1)1 + g(1)3
1 + f2 + f4

=
1
D
(α

(1)
1 eη1 + eη1+ξ1+ξ∗1+∆(1)

1 ), (39a)

q2 =
g(2)1 + g(2)3
1 + f2 + f4

=
1
D
(α

(2)
1 eξ1 + eη1+η∗1+ξ1+∆(2)

1 ). (39b)

Here D = 1 + eη1+η∗1+δ1 + eξ1+ξ∗1+δ2 + eη1+η∗1+ξ1+ξ∗1+δ11 , e∆(1)
1 = − (k1−l1)α

(1)
1 |α

(2)
1 |

2

(k1+l∗1 )(l1+l∗1 )
2 ,

e∆(2)
1 =

(k1−l1)|α
(1)
1 |

2α
(2)
1

(k1+k∗1)
2(k∗1+l1)

, eδ1 =
|α(1)1 |

2

(k1+k∗1)
2 , eδ2 = − |α(2)1 |

2

(l1+l∗1 )
2 and eδ11 = − |k1−l1|2|α

(1)
1 |

2|α(2)1 |
2

(k1+k∗1)
2|k1+l∗1 |2(l1+l∗1 )

2 .

Like in the Manakov system, the two complex parameters α
(j)
1 ’s, j = 1, 2, and the two wave

numbers k1, and l1 describes the behavior of the above general form of the one-soliton
solution (39a) and (39b). By rewriting the solution (39a) and (39b) in hyperbolic form, as
has been done in Equations (17a) and (17b), we find that the amplitude, velocity and cen-

tral position of the soliton in the first mode is 2k1R, 2k1I and φ1
2l1R

= 1
2l1R

log (l1−k1|α
(2)
1 |

2)

(k1+l∗1 )(l1+l∗1 )
2 ,

respectively. In the second mode, the amplitude, velocity and central position of the

soliton are defined by 2l1R, 2l1I and φ2
2k1R

= 1
2k1R

log (k1−l1|α
(1)
1 |

2)

(k∗1+l1)(k1+k∗1)
2 , respectively. In the

mixed 2-CNLS system too, the nondegenerate fundamental soliton propagates in the
two modes either with identical velocity (v1 = v2 = 2k1I) or with non-identical velocity
(v1 = 2k1I 6= v2 = 2l1I) depending on the restriction on the imaginary parts of the wave
numbers k1 and l1. The solution (39a) and (39b) always shows singular behavior due to
the presence of the negative sign in the constant terms eδ2 and eδ11 except for k1 = l1. This
negative sign essentially arises because of the presence of defocusing nonlinearity of the
mixed CNLS system. The singularity nature of the solution (39a) and (39b) is depicted
in Figure 9 with the parameter values k1 = 1.25 + 0.45i, l1 = −0.5 + 0.45i, α

(1)
1 = 0.3 and

α
(2)
1 = i. We note that the singular nature of the soliton has been recently discussed in the

context of singular optics [156]. The nondegenerate higher order bright solitons can also be
obtained in a similar way and one can analyze their collision dynamics.

By imposing the limit k1 = l1 in the solution (39a) and (39b), one can capture the
following degenerate fundamental vector bright soliton solution of the mixed 2-CNLS
system, qj = k1R Âjeiη1I sech(η1R + R

2 ), where η1R = k1R(t− 2k1Iz), η1I = k1I t + (k2
1R −

k2
1I)z, Âj =

α
(j)
1√

(|α(1)1 |2−|α
(2)
1 |2)

, eR =
(|α(1)1 |

2−|α(2)1 |
2)

(k1+k∗1)
2 , j = 1, 2. The latter degenerate bright

soliton solution always admits the non-singular single-hump intensity profile when |α(1)1 | >
|α(2)1 |. The degenerate multi-soliton solutions and their interesting collision properties have
been already discussed in [64]. The two-soliton solution of the mixed 2-CNLS system can

be easily obtained by replacing Bij with Bij = κji =

(
α
(1)
j α

(1)∗
i − α

(2)
j α

(2)∗
i

)
(k j + k∗i )

, i, j = 1, 2 in the

degenerate two-soliton solution (36a) and (36b) of the Manakov system. However, here
we indicate the special collision dynamics exhibited by the degenerate bright solitons only
through a graphical demonstration as we illustrated below in Figure 10 for the parametric
choice k1 = 1− i, k2 = 1.7 + I, α

(1)
1 = 1 + i, α

(1)
2 = 1− i, α

(2)
1 = 0.5 + 0.3i and α

(2)
2 = 0.7.

From Figure 10, we identify that during the collision process of the degenerate two bright
solitons S1 and S2 in the present mixed 2-CNLS system, the intensity of the soliton S1
is enhanced in all the modes. In contradiction to this, the intensity of the other soliton
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S2 is suppressed in both the modes. Therefore, such a special property of enhancement
of the intensity of a given soliton always occurs in the mixed 2-CNLS system. One may
find the details of energy conservation in Ref. [64]. Additionally, we also observe the
amplitude dependent phase shifts in each of the modes. This energy sharing collision is
quite different from the shape changing collision of the Manakov system. The collision
scenario is depicted in Figure 10 can be viewed as a signal amplification process, in which
the soliton S1 refers as a signal wave and the soliton S2 represents as a pump wave. During
this amplification process, there is no external amplification medium is employed and is
without the introduction of any noise [64]. We point out that the standard NLS soliton-like

collision can be recovered by imposing the restriction α
(1)
1

α
(1)
2

=
α
(2)
1

α
(2)
2

.

Figure 10. Energy sharing collision of degenerate two bright solitons of the mixed 2-CNLS system [64].

6. Existence of Nondegenerate and Degenerate Bright Solitons in Two-Component
Coherently Coupled Nonlinear Schrödinger System

Now, we intend to derive a more general form of nondegenerate fundamental bright
soliton solution of the two-component CCNLS system (10). In this section, we also mention
the already known degenerate one bright soliton solution and illustrate its fascinating
energy switching collision property through a graphical demonstration. To obtain the ex-
plicit forms of the nondegenerate soliton solution, we adopt a non-standard bilinearization
procedure in which an appropriate number of auxiliary functions have been introduced
to match the number of bilinear equations with the number of bilinearizing variables.
This procedure was developed by Gilson et al. [157] for the Sasa–Satsuma higher order
nonlinear Schrödinger equations and by Kanna et al. [107,108] for the coherently coupled
nonlinear Schrödinger equations. By adopting this technique, we obtain the following

correct bilinear equations of system (10) through the bilinearizing transformation qj =
g(j)

f ,
j = 1, 2, to Equation (10) with the introduction of an auxiliary function s. The set of bilinear
equations are

D1(g(j) · f ) = γsg(j)∗, j = 1, 2, D2( f · f ) = 2γ

(
2

∑
j=1
|g(j)|2

)
, s · f =

2

∑
j=1

(g(j))2, (40)

where D1 = iDz + D2
t and D2 = D2

t . Here g(j)’s and f are complex and real functions,
respectively, ∗ denotes the complex conjugate. After the bilinearization, essentially we
follow the procedure that has been described in [107] for the degenerate case but now
with the general forms of seed solutions g(1)1 = α1eη1 , g(2)1 = β1eξ1 , η1 = k1t + ik2

1z,

ξ1 = l1t + il2
1z. While doing so, the series expansions are truncated as g(j) = εg(j)

1 + ε3g(j)
3 +

ε5g(j)
5 + ε7g(j)

7 , f = 1+ ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8 and s = ε2s2 + ε4s4 + ε6s6. By substituting
the obtained forms of the unknown functions in the appropriate places, we obtain the
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following a more general form of nondegenerate coherently coupled fundamental bright
soliton solution of the 2-CCNLS system (10),

q1(z, t) =
1
f

(
α1eη1 + e2η1+η∗1+∆11 + eη∗1+2ξ1+∆12 + eη1+ξ1+ξ∗1+∆13 + eη1+2(η∗1+ξ1)+∆14

+ eη1+2(ξ1+ξ∗1 )+∆15 + e2η1+η∗1+ξ1+ξ∗1+∆16 + e2(η1+ξ1+ξ∗1 )+η∗1+∆17

)
,

q2(z, t) =
1
f

(
β1eξ1 + e2ξ1+ξ∗1+∆21 + eξ∗1+2η1+∆22 + eξ1+η1+η∗1+∆23 + eξ1+2(ξ∗1+η1)+∆24

+ eξ1+2(η∗1+η1)+∆25 + e2ξ1+ξ∗1+η1+η∗1+∆26 + e2(η1+η∗1+ξ1)+ξ∗1+∆27

)
,

f = 1 + eη1+η∗1+δ1 + eξ1+ξ∗1+δ2 + e2(η1+η∗1 )+δ3 + e2(η1+ξ∗1 )+δ4 + e2(ξ1+η∗1 )+δ5

+e2(ξ1+ξ∗1 )+δ6 + e(η1+η∗1+ξ1+ξ∗1 )+δ7 + e2(η1+η∗1 )+ξ1+ξ∗1+ν1

+e2(ξ1+ξ∗1 )+η1+η∗1+ν2 + e2(η1+η∗1+ξ1+ξ∗1 )+ν3 . (41)

The various constants which appear in the above solution are defined by

e∆11 =
γα1|α1|2

2κ11
, e∆12 =

γα∗1 β2
1

2θ∗21
, e∆13 =

γα1|β1|2ρ1

θ1l11
, e∆14 =

γ2ρ2
1α∗1 β2

1|α1|2

4κ11θ∗41
,

e∆15 =
γ2ρ2

1α1|β1|4

4l2
11θ2

1
, e∆16 =

γ2ρ2
1ρ∗1α1|α1|2|β1|2

2κ11l11θ2
1θ∗1

, e∆17 =
γ3ρ4

1ρ∗1
2α1|α1|2|β1|4

8κ11l2
11θ4

1θ∗1
2 ,

e∆21 =
γβ1|β1|2

2l11
, e∆22 =

γα2
1β∗1

2θ2
1

, e∆23 = −γ|α1|2β1ρ1

θ∗1 κ11
, e∆24 =

γ2ρ2
1α2

1|β1|2α∗1
4l11θ4

1
,

e∆25 =
γ2ρ2

1|α1|4β1

4κ2
11θ∗21

, e∆26 = −
γ2ρ2

1ρ∗1 β1|α1|2|β1|2

2κ11l11θ1θ∗21
, e∆27 =

γ3ρ4
1ρ∗21 β1|α1|4|β1|2

8κ2
11l11θ2

1θ∗41
,

eδ1 =
γ|α1|2

κ11
, eδ2 =

γ|β1|2
l11

, eδ3 =
γ2|α1|4

4κ2
11

, eδ4 =
γ2α2

1β∗21
4θ4

1
, eδ5 =

γ2α∗21 β2
1

4θ∗41
,

eδ6 =
γ2|β1|4

4l2
11

, eδ7 =
γ2|ρ1|2|α1|2|β1|2

κ11l11|θ1|2
, eν1 =

γ3|ρ1|4|α1|4|β1|2

4κ2
11l11|θ1|4

,

eν2 =
γ3|ρ1|4|α1|2|β1|4

4κ11l2
11|θ1|2

, eν3 =
γ4|ρ1|8|α1|4|β1|4

16κ2
11l2

11|θ1|8
, l11 = (l1 + l∗1 )

2,

θ1 = (k1 + l∗1 ), ρ1 = (k1 − l1), κ11 = (k1 + k∗1)
2.

The auxiliary function s(z, t) is found to be, s = α2
1e2η1 + β2

1e2ξ1 + e2η1+ξ1+ξ∗1+φ1

+ e2ξ1+η1+η∗1+φ2 + e2(η1+η∗1+ξ1)+φ3 + e2(η1+ξ∗1+ξ1)+φ4 , eφ1 =
γρ2

1α2
1|β1|2

θ2
1 l11

, eφ2 =
γρ2

1β2
1|α1|2

θ∗21 κ11
, eφ3 =

γ2ρ4
1β2

1|α1|4
4θ∗41 κ2

11
, eφ4 =

γ2ρ4
1α2

1|β1|4
4θ4

1 l2
11

. The shape of the coherently coupled nondegenerate funda-

mental soliton solution (41) is governed by the four complex parameters k1, l1, α1 and β1.
Due to the presence of coherent coupling among the two fields q1 and q2 (or four-wave
mixing effect) and the additional wave number, the solution (41) admits rich geometrical
structures, such as a breather, a quadruple-hump, a triple-hump, a double-hump, a flattop
and a single-hump profiles under a suitable choice of parameter values. We display a
novel non-trivial breathing nondegenerate fundamental soliton profile in Figure 11. To
draw this figure, we fixed the parametric values as γ = 4, k1 = 2.5 + 0.5i, l1 = 1.65 + 0.5i,
α1 = 0.5 + 0.5i and β1 = 1− i. The breathing nature of the multi-hump profile of the non-
degenerate soliton in the present 2-CCNLS system cannot be observed in the degenerate
case [107,108], as described below. We note that one can also derive the nondegenerate
multi-soliton solutions to the 2-CCNLS system. However, the resultant expressions will be
cumbersome due to the presence of the four-wave mixing effect.
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Figure 11. The figures (a,b) denote the contour plots of the breathing non-degenerate fundamental
bright soliton of the 2-CCNLS system and the corresponding line plots are drawn for various z values
in figures (c,d).

In order to obtain the degenerate one-soliton solution, one has to impose the wave
number restriction k1 = l1 in Equation (41). This results in the following explicit degenerate
bright one-soliton solution,

q1 =
α1eη1 + e2η1+η∗1+∆1

1 + eη1+η∗1+R1 + e2η1+2η∗1+δ11
, q2 =

β1eη1 + e2η1+η∗1+∆2

1 + eη1+η∗1+R1 + e2η1+2η∗1+δ11
, (42)

where the auxiliary function is reduced to the form s = (α2
1 + β2

1)e
2η1 . Here, η1 = k1(t +

ik1z), e∆1 =
γα∗1(α

2
1+β2

1)

2(k1+k∗1)
2 , e∆2 =

γβ∗1(α
2
1+β2

1)

2(k1+k∗1)
2 , eR1 = γ(|α1|2+|β1|2)

(k1+k∗1)
2 , eδ11 =

γ2(α2
1+β2

1)(α
∗2
1 +β∗21 )

4(k1+k∗1)
4 . The

above degenerate solution (42) is characterized by only two complex parameters α1 and β1
and a single complex wave number k1. We point out that the degenerate solution (42) is
classified as a coherently coupled bright soliton and an incoherently coupled bright soliton
depending on the presence/absence of the auxiliary function s [107]. If the restriction,
α2

1 + β2
1 = 0 is imposed, where the auxiliary function s becomes zero, in the solution (42),

then the resultant solution is called ICS [107]. Due to this restriction, the coherent coupling
among the fields q1 and q2 vanishes. Under the latter restriction, the analytical form of ICS
is reduced from the solution (42) as

q1 = A1 sech(η1R +
R1

2
)eiη1I , q2 = ±q1. (43)

Here, A1 = α1
2 e−

R1
2 , R1 = log

(
2γ|α1|2
(k1+k∗1)

2

)
, η1R = k1R(t− 2k1Iz) and η1I = k1I t + (k2

1I −
k2

1R)z. From the above solution, it is evident that the ICS always admits a ‘sech’-type
intensity profile only. However, very interestingly, a novel double-hump profile arises in
the degenerate case when the auxiliary function is non-zero. That is, for α2

1 + β2
1 6= 0 the

coherent coupling among the optical fields is established. Thus, the solution (42) admits
the double-hump profile as demonstrated below in Figure 12. However, in the degenerate
case, even the presence of single wave number k1 and the four wave mixing effect can
induce only the double-hump profile apart from a flattop profile. We do not present the
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degenerate two-soliton solution of the 2-CCNLS system for brevity. However, the explicit
form of the degenerate two-soliton solution has been given in [107,108].

In addition to the above, we wish to specify the fascinating shape changing collision
of degenerate solitons in the 2-CCNLS system. Especially, we discuss the collision between
the coherently coupled soliton (42) and incoherently coupled soliton (43). As an example,
we illustrate such a novel collision scenario in Figure 13. In order to display both CCS
and ICS in this figure we choose the parametric values as γ = 2, k1 = 1.9 + i, k2 = 2.1− i,
α1 = 0.5i, α2 = 0.5 + 0.5i, β1 = 1.5 and β2 = 0.5− 0.5i. In Figure 13, we refer the soliton S1
as CCS and the soliton S2 as ICS. This figure clearly explains that the CCS S1 encounters
intensity/energy switching in all the modes. In contradiction to this, the ICS S2 undergoes
elastic collision with a finite phase shift as specified in [107]. Consequently, the CCS S1
switches its double-hump intensity profile to the single-hump profile in the first component
and it is reversed in the second component without affecting the structure of ICS S2. In
this type of energy switching collision scenario, the energy in the individual component
is not conserved. However, the total energy,

∫ +∞
−∞ (|q1|2 + |q2|2)dt, is conserved. The

detailed discussion on this collision scenario and its asymptotic analysis has been carried
out in [108]. We also note that elastic collision always occurs during the collision among
the two coherently coupled solitons and it is true in the case of collision between two
incoherently coupled solitons too. We remark that the generalization of the above outcome
for the multi-component CCNLS system has been established in [108] with exciting results.

|q1
2

|q2
2

-25 0 25

0

0.15

0.35

t

|q
1,2

2

Figure 12. A typical degenerate bright soliton profile in the 2-CCNLS system is drawn for the values
γ = 2, k1 = 0.5 + 0.5i,α1 = 0.72 + 0.5i and β1 = 0.5− 0.42i.

Figure 13. Energy switching collision between CCS and ICS in a 2-CCNLS system [107,108].

7. Fundamental Vector Bright Solitons in a GCNLS System

To construct both the nondegenerate and degenerate fundamental vector bright soliton
solutions of the GCNLS system (11a) and (11b), we consider the bilinear forms, (iDz +
D2

t )g(j) · f = 0, j = 1, 2, D2
t f · f = 2(ag(1)g(1)∗ + cg(2)g(2)∗ + bg(1)g(2)∗ + b∗g(1)∗g(2)),

which result from substituting the dependent variable transformation qj =
g(j)(z,t)

f (z,t) , j = 1, 2,

to Equations (11a) and (11b). Here g(j)’s are complex functions and f is a real function. By
following the same procedure that has been outlined in Section 4.1, we obtain the general
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form of nondegenerate fundamental bright soliton solution of the GCNLS system (11a)
and (11b) as [158]

q1 =
g(1)1 + g(1)3
1 + f2 + f4

=
1
D
(α

(1)
1 eη1 + eη1+ξ1+ξ∗1+ν11 + eη1+η∗1+ξ1+ν12), (44a)

q2 =
g(2)1 + g(2)3
1 + f2 + f4

=
1
D
(α

(1)
1 eη1 + eη1+ξ1+ξ∗1+ν21 + eη1+η∗1+ξ1+ν22), (44b)

D = 1 + eη1+η∗1+δ1 + eη1+ξ∗1+δ2 + eη∗1+ξ1+δ∗2 + eξ1+ξ∗1+δ3 + eη1+η∗1+ξ1+ξ∗1+δ4 .

Here, η1 = k1(t+ ik1z), ξ1 = l1(t+ il1z), eν11 =
c(k1−l1)α

(1)
1 |α

(2)
1 |

2

(k1+l∗1 )(l1+l∗1 )
2 , eν12 =

b∗(k1−l1)α
(2)
1 |α

(1)
1 |

2

(k1+k∗1)(l1+k∗1)
2 ,

eν21 = − b(k1−l1)α
(1)
1 |α

(2)
1 |

2

(l1+l∗1 )(k1+l∗1 )
2 , eν22 = − a(k1−l1)α

(2)
1 |α

(1)
1 |

2

(k1+k∗1)
2(l1+k∗1)

, eδ1 =
a|α(1)1 |

2

(k1+k∗1)
2 , eδ2 =

bα
(1)
1 α

(2)∗
1

(k1+l∗1 )
2 , eδ3 =

c|α(2)1 |
2

(l1+l∗1 )
2 and eδ4 =

|k1−l1|2|α
(1)
1 |

2|α(2)1 |
2(ac|k1+l∗1 |2−|b|2(k1+k∗1)(l1+l∗1 ))

(k1+k∗1)
2(k∗1+l1)2(k1+l∗1 )

2(l1+l∗1 )
2 . Under the restrictions, (a =

c = 1, b = 0) and (a = 1, c = −1, b = 0) the solution (44a) and (44b) of GCNLS system
exactly coincides with the nondegenerate one-soliton solution of the Manakov system and
mixed 2-CNLS system, respectively. In the present GCNLS system, the properties of the
nondegenerate fundamental bright soliton solution (44a) and (44b) is determined by the
four complex parameters α

(j)
1 , j = 1, 2, k1 and l1 apart from the system parameters a (SPM),

c (XMP) and b (the four wave mixing effect). The nondegenerate one-soliton solution
admits singularity whenever either one of the signs of SPM (a) and XPM (c) is negative or
if both are negative. Additionally, the condition (ac|k1 + l∗1 |2 − |b|2(k1 + k∗1)(l1 + l∗1 )) > 0
should also be maintained to obtain a regular soliton solution of the GCNLS system. The
solution exhibits a double-hump or a single-hump intensity profile for suitable choices of
parameter values. Very surprisingly, like in the case of the 2-CCNLS system, the presence
of a four-wave mixing term and an additional wave number induces breather formation in
the structure of nondegenerate fundamental soliton. A typical breathing behavior along
the z direction is displayed in Figure 14. This kind of breathing soliton is not observed in
the Manakov and mixed CNLS cases.

Figure 14. Breathing nondegenerate fundamental soliton in the GCNLS system. Here the parameters

are k1 = 1.65 + 0.5i, l1 = 0.45 + 0.5i, α
(1)
1 = 0.35 + 0.35 + i, α

(2)
1 = 0.5 + 0.5i, a = c = 1 and

b = 0.5− 0.5i.

The degenerate bright soliton solution is recovered by incorporating the limit k1 = l1 in
the solution (44a) and (44b). It leads to the following expressions of the degenerate bright soli-

ton solution [117], qj = Ajk1R sech(η1R + R1
2 )eiη1I , Aj =

α
(j)
1

(a|α(1)1 |2+c|α(2)1 |2+bα
(1)
1 α

(2)∗
1 +b∗α(1)∗1 α

(2)
1 )1/2

,

eR1 =
(a|α(1)1 |

2+c|α(2)1 |
2+bα

(1)
1 α

(2)∗
1 +b∗α(1)∗1 α

(2)
1 )

(k1+k∗1)
2 , η1R = k1R(t − 2k1Iz), η1I = k1I t + (k2

1R − k2
1I)z.

The latter expressions ensure that the degenerate fundamental soliton always admits a
single-hump profile characterized by three complex constants k1 and α

(j)
1 ’s. The degen-

erate two-soliton solution can be easily obtained by replacing the form of Bji = κij =

(aα
(1)
i α

(1)∗
j +cα

(2)
i α

(2)∗
j +bα

(1)
i α

(2)∗
j +b∗α(1)∗j α

(2)
i )

(ki+k∗j )
, i, j = 1, 2, into Equations (36a) and (36b). With ar-

bitrary values of b, the degenerate two solitons undergo two types of shape changing
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collisions corresponding to two different choices: (i) Manakov type shape changing colli-
sion for a, c > 0, (ii) a mixed 2-CNLS type shape changing collision for a > 0, c < 0. We
do not provide the corresponding collision plots for brevity. We wish to point out that
the degenerate bright solitons also undergo a special collision scenario, where the two
degenerate solitons in each of the components do not pass through each other, whereas
they bounce off each other when they start to collide. This type of bright soliton collision
scenario is referred to as soliton reflection in the literature [115,118].

8. Nondegenerate and Degenerate Bright Solitons in Two Component LSRI System

Finally, we intend to construct the nondegenerate fundamental soliton solution for
the two-component long-wave short-wave resonance interaction system, namely the two-
component Yajima–Oikawa system [77,126]. To derive the nondegenerate one-soliton
solution we again bilinearize Equation (12) through the following dependent variable

transformations, S(l)(x, t) = g(l)(x,t)
f (x,t) , l = 1, 2, L = 2 ∂2

∂x2 ln f (x, t). By doing so, we obtain
the following bilinear equations:

D1g(l) · f = 0, l = 1, 2, D2 f · f =
2

∑
n=1
|g(n)|2, (45)

where D1 ≡ iDt + D2
x and D2 ≡ DxDt. With the modified forms of seed solutions g(1)1 =

α1eη1 , g(2)1 = β1eξ1 , η1 = k1x + ik2
1t, ξ1 = l1x + il2

1t, we find that the series expansions

that are given in [77] are terminated as g(l) = εg(l)1 + ε3g(l)3 , f = 1 + ε2 f2 + ε4 f4. The
explicit forms of the unknown functions lead to the following nondegenerate fundamental
soliton solution,

S(1) =
g(1)1 + g(1)3
1 + f2 + f4

=
α1eη1 + eη1+ξ1+ξ∗1+µ11

1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3
, (46a)

S(2) =
g(2)1 + g(2)3
1 + f2 + f4

=
β1eξ1 + eξ1+η1+η∗1+µ12

1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3
, (46b)

L =
2
f 2

(
(k1 + k∗1)

2eη1+η∗1+R1 + (l1 + l∗1 )
2eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R4 ,

+ e2(η1+η∗1 )+ξ1+ξ∗1+R1+R3 + eη1+η∗1+2(ξ1+ξ∗1 )+R2+R3

)
, (46c)

f = (1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3),

where eµ11 = iα1|β1|2(l1−k1)
2(k1+l∗1 )(l1−l∗1 )(l1+l∗1 )

2 , eµ12 = iβ1|α1|2(k1−l1)
2(k∗1+l1)(k1−k∗1)(k1+k∗1)

2 , eR1 = |α1|2
2i(k1+k∗1)

2(k1−k∗1)
,

eR2 = |β1|2
2i(l1+l∗1 )

2(l1−l∗1 )
, eR3 = − |α1|2|β1|2|k1−l1|2

4|k1+l∗1 |2(k1−k∗1)(l1−l∗1 )(k1+k∗1)
2(l1+l∗1 )

2 , eR4 = −2(k1 + k∗1)(l1 +

l∗1 )(e
R1+R2 − eR3) + ((k1 + k∗1)

2 + (l1 + l∗1 )
2)(eR1+R2 + eR3). The above the nondegenerate

one-soliton solution in the two-component LSRI system is also governed by the four
arbitrary complex parameters k1, l1, α1 and β1. The solution (46a)–(46c) admits both regular
and singular solutions. To obtain the non-singular solution, the quantities eR1 , eR2 and
eR3 should be positive definite. Consequently, the imaginary parts of the wave numbers
k1 and l1 are restricted as k1I , l1I < 0. For this reason, the nondegenerate soliton in the
present LSRI system always propagates in the same direction. It has been shown in [77]
that the velocity of the soliton is described by the imaginary parts of wave numbers k1
and l1. Then, the amplitudes of the nondegenerate soliton in the short-wave components

S(1) and S(2) are found to be 4k1R A1
√

k1I and 4l1R A2
√

l1I , respectively, where A1 =
iα1/2

1
α1/2∗

1

and A2 =
iβ1/2

1
β1/2∗

1
. From the expressions for the amplitudes, we find that the nondegenerate

one-soliton in the present LSRI system (12) exhibits the amplitude-dependent velocity



Photonics 2021, 8, 258 32 of 39

property as in the KdV-soliton. The solution (46a) and (46b) exhibits double-hump, flattop
and single-hump profiles depending on the appropriate choice of parameters. A typical
asymmetric double-hump profile is illustrated in Figure 15 with the parameter values
k1 = 0.35− 0.5i, l1 = 0.315− 0.5i, α1 = 0.5 + i, β1 = 0.45 + 0.5i.

We wish to point out that the explicit compact forms of higher-order nondegenerate
soliton solutions have also been very recently obtained by us [159]. As in the Manakov
system, we also find that the nondegenerate solitons in the present two-component LSRI
system (12) also in general exhibit three kinds of elastic collisions, namely shape preserving
collision with zero phase shift and shape altering and shape changing collisions with a finite
phase shifts. Remarkably, during the shape preserving collision, the two nondegenerate
solitons pass through one another without any change in phase shift. In contrast to this
collision scenario, the alteration in phase shift leads to a change in the profile structure of
the solitons after collision. However, as we have demonstrated in the case of the Manakov
system, the shape of the solitons will be restored after considering appropriate time shifts.
In addition, the unity condition of the transition intensities also validates that both shape
altering and shape changing collisions also belong to the case of elastic collision [159]. As
in the case of the Manakov equation, here also we can identify two partially nondegenerate
solitons, when the wave numbers satisfy the condition k1 = l1 and k2 6= l2, as an example,
and the collision of the nondegenerate soliton with the degenerate soliton exhibits a novel
energy exchange collision as demonstrated in [159].

|S(1) 2
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|L|
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Figure 15. Asymmetric double-hump profile of the nondegenerate fundamental soliton in a 2-
component LSRI system.

We capture the degenerate soliton solution of Equation (12) by substituting the limit
k1 = l1 in Equation (46a–c). This results in the following degenerate fundamental soliton
forms [136]: S(l) = 2Alk1R

√
k1Iei(η1I+

π
2 ) sech(η1R + R

2 ), L = 2k2
1R sech2(η1R + R

2 ), l = 1, 2.
Here A1 = α1

(|α1|2+|β1|2)1/2 , A2 = β1
(|α1|2+|β1|2)1/2 , η1R = k1R(t + 2k1Iz), η1I = k1I t + (k2

1R −

k2
1I)z, eR = −(|α1|2+|β1|2)

16k2
1Rk1I

. The degenerate soliton always admits a single-hump profile in

both the SW components as well as in the LW component. The amplitude of the soliton
in the SW and LW components are 2Alk1R

√
k1I , 2k2

1R, respectively. Their velocity and the
central position are identified as 2k1I and R

2k1R
, respectively. From this, it is known that the

degenerate bright soliton also exhibits the amplitude-dependent velocity property, since
the velocity explicitly appears in the amplitude part of the soliton. The explicit expression
for the degenerate two bright soliton solution of the 2-LSRI system (12) can be identified
from [136].

As has been demonstrated in Ref. [136], the degenerate bright solitons undergo
energy sharing collision through energy redistribution among the SW components. We
demonstrate this energy sharing collision in Figure 16. It is evident from this figure that
the intensity of the soliton S1 is suppressed in the S(1) component after collision with
the soliton S2. In addition it is enhanced in the second SW component S(2). In order to
hold the conservation of energy, the intensity of the soliton S2 is enhanced in the S(1) SW
component and it is suppressed in the S(2) SW component. However, in the degenerate
case, the solitons in the LW component always undergo elastic collision. The standard
elastic collision can occur in both the SW components for the choice α1

α2
= β1

β2
[136].
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Figure 16. Energy sharing collision among the degenerate solitons in a 2-component LSRI system.

The parameter values are k1 = 1.5− 0.5i, k2 = 2− 2i, α
(1)
1 = 2.5, α

(2)
1 = 1.2, α

(1)
2 = 0.95 and α

(2)
2 = 0.6.

9. Summary and Outlook

In summary, we have shown that the coupled nonlinear Schrödinger family of equa-
tions, namely the Manakov system or 2-CNLS system, N-CNLS system, mixed 2-CNLS
system, 2-CCNLS system, GCNLS system and the 2-component LSRI system, can admit a
more general form of fundamental bright soliton solution with non-identical propagation
constants. In these systems, the obtained nondegenerate one-soliton solution admits novel
geometrical structures which are not possible in the degenerate counterparts. Very sur-
prisingly, the nondegenerate fundamental soliton in the N-CNLS system exhibits a novel
intricate N-hump intensity profile. Then we elucidated that the nondegenerate bright
solitons possess novel collision properties. In particular, they exhibit shape preserving,
shape altering and shape changing collisions. However, by performing a careful asymptotic
analysis, we found that all these three types of collision scenarios can be viewed as an
elastic collision. For appropriate choices of parameters, they also exhibit energy sharing
collision properties. Furthermore, we demonstrated that the degenerate vector bright
solitons of all the CNLS systems can be captured by imposing appropriate constraints on
the wave numbers. In addition to the above, we also explained the various intriguing
energy sharing collisions that occur between the degenerate vector bright solitons through
graphical demonstration and analytical calculations. From the application point of view,
the multi-hump nature of the nondegenerate solitons will be useful to enhance the flow
of data in multi-level optical communication applications. On the other hand, the energy
sharing collision properties of the degenerate vector solitons are utilized to construct all
the optical logic gates and they are also useful in optical switching device applications.

We also wish to note here that the light pulse spread naturally occurs while it prop-
agates in an optical fiber due to the intrinsic properties of the fibers. This spreading or
limitation usually occurs due to various fiber losses and fiber deformations. Practically, one
cannot completely achieve stable propagation of information in laboratories. To overcome
this difficulty a number of schemes have been proposed in the literature. Recently, the
usage of dispersion managed solitons in optical communication has also been described
to address this problem. In addition, the concept of soliton molecules and multi-soliton
complexes have also been suggested to improve the data flow in optical fibers. In view
of these facts, the multi-hump nature of the nondegenerate vector solitons is expected to
be useful in enhancing the data flow in multi-level communication applications and in
overcoming practical limitations.

Although the existence of nondegenerate vector bright solitons have been pointed
out in several CNLS families of equations, much remains to be uncovered, especially
with higher-order nonlinear effects, such as third order dispersion, self-steepening and
stimulated Raman scattering and so on. It is evident from our study that much work is
needed to study the collision properties associated with the newly derived vector solitons.
From the current level of research activity, we believe that the area of nondegenerate vector
solitons will continue to develop in future.
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Appendix A. Constants That Appear in the Asymptotic Expressions in Section 4.4.1
The various constants which arise in the asymptotic analysis of collision between

degenerate and nondegenerate solitons in Section 4.4.1 are given below.
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Abstract. In this paper, we point out that the two-component long wave-short wave
resonance interaction (LSRI) system can admit a more general form of nondegenerate
fundamental soliton solution than the one that is known in the literature and
consequently its higher-order generalized soliton solutions as well. To derive this class
of soliton solutions through the Hirota bilinear method we consider the more general
form of admissible seed solutions with nonidentical distinct propagation constants. The
resultant general fundamental soliton solution admits a double-hump or a single-hump
profile structure including a special flattop profile form when the soliton propagates in
all the components with identical velocities. Interestingly, in the case of nonidentical
velocities, the soliton number is increased to two in the long-wave (LW) component,
while a single-humped soliton propagates in the two short-wave (SW) components.
We also express the obtained nondegenerate one-, two- and three-soliton solutions in a
compact way using Gram-determinants. It is also established that the nondegenerate
solitons in contrast to the degenerate case (with identical wave numbers) can undergo
three types of elastic collision scenarios: (i) shape preserving, (ii) shape altering and
(iii) a novel shape changing collision, depending on the choice of soliton parameters.
In addition, we also point out the coexistence of nondegenerate and degenerate
solitons simultanously along with the consequences. We also indicate the physical
realizations of these general solitons in hydrodynamics, nonlinear optics and Bose-
Einstein condensates.

1. Introduction

Resonance is a natural phenomenon which occurs in both linear and nonlinear dynamical

systems under special conditions on the frequencies [1]. This parametric process has
been widely observed ranging from simple harmonic motion in mechanical systems to

more complicated ultra-short pulse dynamics in optical systems. In this sequence,

the interaction among the nonlinear waves induces one such fascinating resonance

phenomenon called the long wave-short wave resonance interaction modelled by a set

of coupled nonlinear Schrödinger type equations. In this paper, we intend to derive a

http://arxiv.org/abs/2108.13736v1
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more general form of bright soliton solutions for the following LSRI model, namely two

component long-wave short-wave resonance interaction system,

iS(1)
t + S(1)

xx + LS(1) = 0, iS(2)
t + S(2)

xx + LS(2) = 0, Lt =
2∑

l=1

(|S(l)|2)x. (1)

In the above, L is the long-wave and S(l)’s, l = 1, 2, are the short-waves. The
suffixes x and t denote partial derivatives with respect to the spatial and temporal

coordinates, respectively. Soliton formation essentially takes place in the evolution

equations of SWs, that is the first two of the equations in Eq. (1), due to the interplay

between the nonlinearities and their corresponding dispersions, namely second order

spatial derivative terms. The nonlinearities arise in these equations while the long-

wave interacts with the short-waves. At the same time, the self interaction of the SWs
defines the soliton formation in the long-wave evolution equation as specified by the

last of the equations in Eq. (1). Physically the system (1) appears whenever the phase

velocity of the long-wave (vp,LW ) almost matches with the group velocity of the short-

waves (vg,SW = dω
dk ). This resonance condition was originally derived by Zakharov in

the study on Langmuir waves in plasmas [2] and it was also derived by Benney during

the investigation on the interaction between capillary gravity waves and gravity waves

in deep water [3].
The long-wave short-wave resonance phenomenon was identified in several physical

situations. For instance, in plasma physics, the LSRI process was observed during the

nonlinear resonance interaction of an electron-plasma wave and an ion-sound wave [4]. In

Ref. [5], Yajima and Oikawa have shown that the unidirectional propagation of Langmuir

waves coupled with ion-sound waves is modelled by the single component LSRI system,

where they have established the integrability of the system by obtaining the soliton
solutions using a more sophisticated inverse scattering transform method [6]. Due to

this, the system (1) is also referred as Yajima-Oikawa (YO) system in the literature. In

the context of the fluid dynamics, the LSRI was noticed during the evolution of the short

and long capillary gravity waves in deep water [3], in uniform water depth [7] and in finite

depth-water [8]. Such a fascinating resonance phenomenon was verified experimentally

in three layer fluid flow [9]. In addition to this, the phenomenon was discussed in [10]
when ultralong equatorial Rossby waves get coupled with the short gravity waves.

The LSRI process has been reported in the nonlinear optics context also, especially

in an optical fiber, where a single component YO system is reduced from the coupled

nonlinear Schrödinger equations describing the interaction of two optical modes under

small amplitude asymptotic expansion [11]. In negative refractive index media [12], the

three-wave mixing process leads to the formation of LSRI, where two degenerate short-
waves propagate in the negative index branch while a long wave stays in the positive

index branch. It should be noted that several evolution equations and their solutions

have been obtained in nonresonant quadratic nonlinear media [13]. The dynamics of

quasi-resonant two-frequency short pulses and a long-wave is described by Eq. (1) [14]

and multicomponent version of Eq. (1) finds potential applications in spinor Bose-
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Einstein condensates (BECs) [15]. By employing a multi-scale expansion procedure, the

higher dimensional LSRI system has been derived for describing the dynamics of binary

disk-shaped BECs [16], and also to study the dynamics of bright-dark soliton complexes

in spinor BECs the YO system has been derived in [17]. Multicomponent YO type

equations have been derived in the study of magon-phonon interaction [18]. Therefore,

the system considered in the present paper is physically very important and analysing its
solutions is useful for studying this peculiar resonance property in the above described

nonlinear media.

It is important to point out that there are several nonlinear wave solutions which

have been reported in the literature for the integrable long wave-short wave resonance

interaction model and its variants [19–29, 31–37]. For the one-dimensional single

component YO system, both bright and dark soliton solutions were derived in [19].
Interestingly energy sharing collisions among the single-humped bright solitons of the

(1 + 1)-dimensional multicomponent LSRI system have been brought out in [20]. For

this system, such shape changing collision scenario is demonstrated in [21] by deriving

the mixed bright-dark soliton solutions. In this case, the authors set up bright solitons

in the two SW components in order to observe the shape changing collision. In contrast

to this, the dark soliton solutions of the multicomponent LSRI system always exhibit
elastic collision [22]. It is noted that for the two layer fluid flow the one and two-

dimensional versions of LSRI systems were obtained and bright and dark type soliton

solutions were derived [23]. Ohta et al. have deduced the two- component analogue of

the two-dimensional LSRI system by considering the nonlinear interactions of dispersive

waves on three channels and they have obtained soliton solutions in Wronskian form for

the corresponding two-dimensional model [24]. This system is shown to be integrable

through Painlevé analysis and the dromion solutions were obtained using Painlevé
truncation method [25]. Very interestingly, one of the present authors (ML) and his

collaborators demonstrated the energy sharing collisions of bright solitons in the two-

dimensional integrable versions of the multicomponent LSRI system by deriving their

explicit solutions through the Hirota bilinear method [26,27] and they have also shown

that the formation of resonant solitons in this higher-dimensional system [27]. Mixed

bright-dark soliton solutions and their collision dynamics for this (2 + 1)-dimensional
system have been studied in [28, 29]. For this system, multi-dark soliton solutions and

their elastic collision have also been studied [22]. Apart from the above studies, rogue

waves, a wave which is localized both in space and in time and appearing from nowhere

and disappearing without a trace modelled by simple lowest order rational solution [30]

and its various interesting dynamical patterns, have been reported for the LSRI system

ranging from (1 + 1) and (2 + 1)-dimensional single component to multi-component
cases [31–37].

From the above studies, we carefully identify that the fundamental bright solitons

reported so far in the literature for the two-component YO system (1) correspond to

degenerate solitons with identical wave numbers in all the components, as we have

pointed out recently in [38, 39] for the case of Manakov system and in Eq. (29) of
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section 5 of the present paper. By introducing non-identical propagation constants

appropriately we have removed the degeneracy in the structure of the fundamental

bright soliton solutions of the Manakov system. For the first time, we have shown that

such an inclusion of additional distinct propagation constants brings out a new class of

fundamental bright solitons, namely nondegenerate fundamental solitons, characterized

by non-identical wave numbers in all the modes [38]. As we have demonstrated in
[38,39], this new class of fundamental solitons for the Manakov system undergoes novel

collision properties. To the best of our knowledge, such nondegenerate solitons have

not been predicted so far in the literature for the (1 + 1)-dimensional long wave-short

wave resonance interaction system (1) and their fascinating dynamics remains to be

unravelled. With this motivation, in this paper, we aim to derive the nondegenerate

multi-soliton solutions with the general forms of seed solutions through the Hirota
bilinear method. We find that the obtained nondegenerate solitons possess remarkable

collisional properties for an appropriate choice of soliton parameters. In particular,

they exhibit shape preserving collision with a zero phase shift, and shape altering and

shape changing collisions with finite phase shifts. However, by taking the time shift in

the asymptotic expressions, we show that all these three cases belong to elastic collision

only. This special feature is not observed earlier in the degenerate counterpart. Further,
we deduce another special type of two soliton solution from the obtained completely

nondegenerate two-soliton solution. This new type of partially nondegenerate soliton

solution displays an interesting coexistence phenomenon, where the degenerate soliton

coexists with a nondegenerate soliton. This class of soliton solution undergoes two

types of shape changing collision scenarios. Finally, we point out the degenerate

fundamental and multi-bright soliton solutions can be captured from the nondegenerate

fundamental and multi-soliton solutions, respectively, under restrictions on the wave
numbers. We note that the existence of nondegenerate fundamental soliton solution for

other integrable coupled nonlinear Schrödinger systems has also been reported recently

by us using the Hirota bilinear method [40] and in Ref. [41] the nondegenerate solitons

have been discussed in the context of BEC using Darboux transformation method. Very

recently, we have shown that the nondegenerate soliton solution exhibits multihump

profile structures in N -coupled nonlinear Schrödinger system [42] as well. Further,
we have also shown that the PT -symmetric nonlocal two coupled NLS system also

admits both nondegenerate and degenerate soliton solutions [43]. It is interesting to note

that the nondegenerate solitons also have been reported in the coupled Fokas-Lenells

system [44] using Darboux transformation and in the two component AB system, [37,45]

by following our work [38].

The plan of the paper is as follows: In Section 2, we present the nondegenerate
one and two-soliton solutions of the system (1) apart from pointing out the existence of

partially nondegenerate soliton solution. In this section, we also discuss the various

properties associated with the nondegenerate fundamental soliton. Section 3 deals

with the investigation of the three types of elastic collision scenarios with appropriate

asymptotic analysis and suitable graphical demonstrations. The degenerate soliton
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collision induced novel shape changing properties of the nondegenerate soliton is

analysed in Section 4. In Section 5, we point out that the degenerate one- and two-soliton

solutions can be captured as a limiting case of the nondegenerate one- and two-soliton

solutions under appropriate wave number restrictions. In Section 6, we summarize the

results. For completeness, in Appendix A, we provide the nondegenerate three-soliton

solution in Gram determinant forms. In Appendix B, we present the explicit forms of
constants appearing in the asymptotic analysis of collision dynamics between degenerate

and nondegenerate solitons.

2. Nondegenerate soliton solutions

We construct the nondegenerate multi-soliton solution by bilinearizing Eq. (1) through

the dependent variable transformations, S(l)(x, t) = g(l)(x,t)
f(x,t) , l = 1, 2, L = 2 ∂2

∂x2 ln f(x, t).

This action yields the following bilinear forms of Eq. (1),

D1g
(l) · f = 0, l = 1, 2, D2f · f =

2∑
n=1

|g(n)|2, (2)

where D1 ≡ iDt+D2
x and D2 ≡ DxDt. Here Dt and Dx are the Hirota bilinear operators

defined by Dm
x D

n
t (a·b) =

(
∂
∂x−

∂
∂x′

)m(
∂
∂t−

∂
∂t′

)n
a(x, t)b(x′, t′)|x=x′, t=t′

[46]. In principle,

the soliton solutions (with vanishing boundary condition S(l) → 0, l = 1, 2 and L → 0

as x → ±∞) of Eq. (1) can be derived by solving a system of linear partial differential

equations (PDEs), which appear at various orders of ε while substituting the series

expansions g(l) = εg(l)1 + ε3g(l)3 + ..., l = 1, 2, f = 1+ ε2f2+ ε4f4+ .... in the bilinear forms
(2). The explicit forms of the functions g(l)’s and f lead to various soliton solutions to

the underlying LSRI system (1).

2.1. Nondegenerate one-soliton solution

To derive the nondegenerate fundamental soliton solution we start with the more general
form of seed solutions,

g(1)1 = α(1)
1 eη1 , g(2)1 = α(2)

1 eξ1 , η1 = k1x+ ik2
1t, ξ1 = l1x+ il21t, (3)

where α(l)
1 ’s, k1 and l1 are arbitrary complex constants, for the lowest order linear PDEs,

ig(1)1,t + g(1)1,xx = 0, ig(2)1,t + g(2)1,xx = 0. (4)

From the above, one can notice that the functions g(1) and g(2) considered in Eq. (3) are

two distinct solutions. This is because of the independent nature of the two linear PDEs

specified above in Eq. (4) and so their solutions should be expressed in general in terms

of two independent functions as given in Eq. (3) above with arbitrary wave numbers
k1, l1, where in general k1 %= l1. The general forms of the seed solutions with distinct

propagation constants will bring out a physically meaningful class of fundamental soliton

solutions as we describe below. Such a possibility has not been considered so far in the

literature for the (1+1)-dimensional integrable two component LSRI system as far as our



6

knowledge goes except in our earlier papers [38–40, 42, 47]. What has been considered

so far is only the restricted class of seed solutions, that is the wave number restricted

seed solutions, namely g(1)1 = α(1)
1 eη1 , g(2)1 = α(2)

1 eη1 , η1 = k1x+ ik2
1t (one can get this set

of seed solutions straightforwardly by setting the condition k1 = l1 in (3)). Even such

restricted seed solutions have been shown to yield interesting energy sharing collision

properties of solitons [20]. So what we emphasize here is that the vector bright solitons
reported so far in the literature are achieved by considering such a limited class of seed

solutions only. With the general forms of seed solutions (3), we solve the following

system of linear inhomogeneous partial differential equations:

O(ε0) : 0 = 0, O(ε2) : D2(1 · f2 + f2 · 1) = g(1)1 g(1)∗1 + g(2)1 g(2)∗1 , (5a)

O(ε3) : D1g
(l)
3 · 1 = −D1g

(l)
1 · f2, (5b)

O(ε4) : D2(1 · f4 + f4 · 1) = −D2f2 · f2 + g(1)1 g(1)∗3 + g(1)3 g(1)∗1 + g(2)1 g(2)∗3 + g(2)3 g(2)∗1 , (5c)

O(ε5) : D1g
(l)
5 · 1 = −D1(g

(l)
1 · f4 + g(l)3 · f2), l = 1, 2, (5d)

O(ε6) : D2(1 · f6 + f6 · 1) = −D2(f4 · f2 + f2 · f4) + g(1)1 g(1)∗5 + g(1)3 g(1)∗3 + g(1)5 g(1)∗1

+ g(2)1 g(2)∗5 + g(2)3 g(2)∗3 + g(2)5 g(2)∗1 , (5e)

and etc. By doing so, we find the explicit forms of the unknown functions f2, g(l)3 ,

l = 1, 2, and f4 as f2 = eη1+η∗1+R1 + eξ1+ξ∗1+R2 , g(1)3 = eη1+ξ1+ξ∗1+∆1 , g(2)3 = eξ1+η1+η∗1+∆2,

f4 = eη1+η∗1+ξ1+ξ∗1+R3 , where eR1 = |α(1)
1 |2

2i(k1+k∗1)
2(k1−k∗1)

, eR2 = |α(2)
1 |2

2i(l1+l∗1)
2(l1−l∗1)

,e∆1 =

iα(1)
1 |α(2)

1 |2(l1−k1)
2(k1+l∗1)(l1−l∗1)(l1+l∗1)

2 , e∆2 = iα(2)
1 |α(1)

1 |2(k1−l1)
2(k∗1+l1)(k1−k∗1)(k1+k∗1)

2 , eR3 = − |α(1)
1 |2|α(2)

1 |2|k1−l1|2
4|k1+l∗1 |2(k1−k∗1)(l1−l∗1)(k1+k∗1)

2(l1+l∗1)
2 .

We note that the right hand sides of all the remaining linear PDEs identically vanish

upon substitution of the obtained functions g(l)1 , g(l)3 , l = 1, 2, f2 and f4. Consequently,

one can take g(l)5 = g(l)7 = ... = 0, l = 1, 2, and f6 = f8 = ... = 0. Thus in the series
all g(l)i = 0 for i ≥ 5 and all fj = 0, j ≥ 6. Therefore, ultimately the series converges

at the O(ε3) in the function g(l)(x, t) while the series terminates at the O(ε4) in f(x, t):

g(l) = εg(l)1 + ε3g(l)3 , l = 1, 2, f = 1 + ε2f2 + ε4f4. We also note that the small parameter

ε can be fixed as 1 (as it can be subsumed with the parameters α(1)
1 and α(2)

1 ), without

loss of generality. Thus the above procedure makes the infinite expansion to terminate

with a finite number of terms only and hence the solution can be summed up into an
exact one. Finally, the resultant explicit forms of the unknown functions constitute the

nondegenerate fundamental soliton solution for the system (1), which reads as,

S(1)(x, t) =
g(1)1 + g(1)3

1 + f2 + f4
=

α(1)
1 eη1 + eη1+ξ1+ξ∗1+∆1

1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3
, (6a)

S(2)(x, t) =
g(2)1 + g(2)3

1 + f2 + f4
=

α(2)
1 eξ1 + eξ1+η1+η∗1+∆2

1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3
, (6b)

L(x, t) = 2
∂2

∂x2
ln(1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3). (6c)

Using Gram determinants [48, 49], we can rewrite the above soliton solution in a
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more compact form as S(1) = g(1)

f , S(2) = g(2)

f , L = 2 ∂2

∂x2 ln f , where

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1

(k1+k∗1)
eη1+ξ∗1

(k1+l∗1)
1 0 eη1

eξ1+η∗1

(l1+k∗1)
eξ1+ξ∗1

(l1+l∗1)
0 1 eξ1

−1 0 |α(1)
1 |2

2i(k21−k∗21 )
0 0

0 −1 0 |α(2)
1 |2

2i(l21−l∗21 )
0

0 0 −α(1)
1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7a)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1

(k1+k∗1)
eη1+ξ∗1

(k1+l∗1)
1 0 eη1

eξ1+η∗1

(l1+k∗1)
eξ1+ξ∗1

(l1+l∗1)
0 1 eξ1

−1 0 |α(1)
1 |2

2i(k21−k∗21 )
0 0

0 −1 0 |α(2)
1 |2

2i(l21−l∗21 )
0

0 0 0 −α(2)
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7b)

f =

∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1

(k1+k∗1)
eη1+ξ∗1

(k1+l∗1)
1 0

eξ1+η∗1

(l1+k∗1)
eξ1+ξ∗1

(l1+l∗1)
0 1

−1 0 |α(1)
1 |2

2i(k21−k∗21 )
0

0 −1 0 |α(2)
1 |2

2i(l21−l∗21 )

∣∣∣∣∣∣∣∣∣∣∣
. (7c)

We find that the above forms of Gram determinants satisfy the two component LSRI

system (1) as well as the bilinear equations (2). In order to analyse the various special
properties of the nondegenerate one-soliton solution of Eq. (1), we obtain the following

expression for the one-soliton solution by rewriting Eqs. (6a)-(6c) in hyperbolic forms,

S(1) =
4k1R

√
k1IA1ei(η1I+

π
2 )[cosh(ξ1R + ϕ1R) cosϕ1I + i sinh(ξ1R + ϕ1R) sinϕ1I ]

[a11 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) +
1

a∗11
cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)]

,(8a)

S(2) =
4l1R

√
l1IA2ei(ξ1I+

π
2 )[cosh(η1R + ϕ2R) cosϕ2I + i sinh(η1R + ϕ2R) sinϕ2I ]

[a12 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) +
1

a∗12
cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)]

,(8b)

L =
4k2

1R cosh(2ξ1R + 2ϕ1 + c4) + 4l21R cosh(2η1R + 2ϕ2 + c3) +
1
2e

R′

3−(
R1+R2+R3

2 )

[Λ cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) + Λ−1 cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)]2
, (8c)

eR
′

3 = 4(k1R + l1R)
2eR3 + 4(k1R − l1R)

2eR1+R2,

where a11 = (k∗1−l∗1)
1
2

(k∗1+l1)
1
2
, a12 = (k∗1−l∗1)

1
2

(k1+l∗1)
1
2
, Λ = 1

2 log
|k1−l1|
|k1+l∗1 |

, c1 = 1
2 log

(k∗1−l∗1)
(l1−k1)

, c2 =

1
2 log

(k1−l1)(k∗1+l1)
(l1−k1)(k1+l∗1)

, c3 = 1
2 log

(l∗1−k∗1)(k
∗

1+l1)
(k1+l∗1)(l1−k1)

, c4 = 1
2 log

(k∗1−l∗1)(k1+l∗1)
(k∗1+l1)(k1−l1)

, η1R = k1R(x − 2k1It),

η1I = k1Ix+(k2
1R−k2

1I)t, ξ1R = l1R(x−2l1It), ξ1I = l1Ix+(l21R−l21I)t, A1 = [α(1)
1 /α(1)∗

1 ]1/2,

A2 = i[α(2)
1 /α(2)∗

1 ]1/2, and the other constants can be calculated using the constants that
are defined below Eqs. (6a)-(6c). Here, ϕ1R, ϕ2R, ϕ1I and ϕ2I are real and imaginary

parts of ϕ1 = ∆1−ρ1
2 and ϕ2 = ∆2−ρ2

2 , eρl = α(l)
1 , l = 1, 2, respectively and k1R, l1R,

k1I and l1I denote the real and imaginary parts of k1 and l1, respectively. The four

arbitrary complex parameters, α(l)
1 ’s, l = 1, 2, k1 and l1, determine the structure of
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the nondegenerate fundamental soliton solution (8a)-(8c) of the two component LSRI

system (1).

In general, the amplitudes of the soliton in the short-wave components are

4k1R
√
k1IA1 and 4l1R

√
l1IA2, respectively, and their velocities in their respective SW

components are 2k1I and 2l1I . On the other hand, the amplitude and the velocity of the

soliton in the LW component mainly depend on the real and imaginary parts of both
the wave numbers k1 and l1, respectively. From the above, one can easily notice that the

amplitudes of the SW components explicitly depend on the velocity of the soliton. This

interesting amplitude dependent velocity property is analogous to the property of the

Korteweg-de Vries (KdV) soliton of the form u(x, t) = c
2 sech2

√
c
2 (x− ct). Here c is the

velocity of the KdV soliton [1,50]. Consequently, like the degenerate bright solitons, the

taller nondegenerate solitons also travel faster than the smaller ones, as pointed out in
Section 5 and in Ref. [20]. We note that the nondegenerate fundamental soliton in the

Manakov system does not possess this velocity-dependent amplitude property [38, 39].

The solution (8a)-(8c) shows both regular and singular behaviour. The singularity

property of the solution is determined by the quantities eR1 , eR2 and eR3 . The regular

soliton solution arises for the case when both k1I and l1I < 0. In this case, the quantities,

eR1 , eR2 and eR3 > 0 whereas the solution (8a)-(8c) displays singularity for k1I and/or
l1I > 0.

The nondegenerate one-soliton solution (8a)-(8c) is classified as follows depending

on the choice of the velocity conditions:

(i) For k1I = l1I , we designate the one-soliton solution as (1, 1, 1)-soliton solution, where

all the components (S(1), S(2), L) consist of only one soliton with double-hump or flattop

or single-hump structured profile.

(ii) On the other hand, we refer the solution (8a)-(8c) with k1I %= l1I as (1, 1, 2)-soliton
solution, where both the short-wave components S(1) and S(2) possess one humped

localized structures only while the long-wave component contains two single-hump

structured profiles like the 2-soliton solution of the NLS equation. We will discuss

each one of these cases separately in the following.

In the equal velocity case, the soliton in the SW components propagates with

identical velocities but with different amplitudes. For this case, the imaginary parts of
ϕj’s are equal to zero. That is, ϕjI = 0, j = 1, 2. This property reduces the solution

(8a)-(8c) into the following form of (1, 1, 1)-soliton solution,

S(1) =
4k1R

√
k1IA1ei(η1I+

π
2 ) cosh(ξ1R + ϕ1R)

[b1 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) +
1
b1
cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)]

, (9a)

S(2) =
4l1R

√
k1IA2ei(ξ1I+

π
2 ) cosh(η1R + ϕ2R)

[b1 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) +
1
b1
cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)]

, (9b)

L =
4k2

1R cosh(2ξ1R + 2ϕ1 + c4) + 4l21R cosh(2η1R + 2ϕ2 + c3) + 4(k2
1R − l21R)

[b1 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) + b−1
1 cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)]2

, (9c)

where b1 =
(k1R−l1R)

1
2

(k1R+l1R)
1
2
, η1R = k1R(x−2k1It), η1I = k1Ix+(k2

1R−k2
1I)t, ξ1R = l1R(x−2k1It),
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Figure 1. Five types of symmetric profiles of the nondegenerate fundamental
soliton solution (8a)-(8c) with k1I = l1I or (9a)-(9c): While (a) represents double-
hump profiles in all the components, (b) denotes double-hump profiles in S(1) and L

components and a flattop profile in S(2) componenet, (c) indicates double-hump profiles
in S(1) and L components and a single-hump profile in S(2) componenet, (d) represents
double-hump in S(1) component, single-hump in S(2) component and a flattop profile
in L componnet and (e) denotes double-hump profile in S(1) and single-hump profiles
in both S(2) and L components. The parameter values of each one of the cases are as
follows: (a) k1 = 0.25− 0.5i, l1 = 0.315− 0.5i, α(1)

1 = 0.5+ 0.5i and α
(2)
1 = 0.45+ 0.5i.

(b) k1 = 0.3 − 0.5i, l1 = 0.425 − 0.5i, α(1)
1 = 0.43 + 0.55i and α

(2)
1 = 0.45 + 0.45i.

(c) k1 = 0.315 − 0.5i, l1 = 0.5 − 0.5i, α(1)
1 = 0.5 + 0.5i and α

(2)
1 = 0.45 + 0.45i. (d)

k1 = 0.315 − 0.5i, l1 = 0.545 − 0.5i, α(1)
1 = 0.5 + 0.5i and α

(2)
1 = 0.45 + 0.5i. (e)

k1 = 0.315− 0.5i, l1 = 0.65− 0.5i, α(1)
1 = 0.5 + 0.5i and α

(2)
1 = 0.45 + 0.5i.

ξ1I = k1Ix+ (l21R − k2
1I)t.

From the above solution, we find a relation between the short-wave components

and the long-wave component and it turns out to be

|S(1)|2 + |S(2)|2 = −2k1IL. (10)

The latter relation confirms that the above type of linear superposition of intensities

of the two short-wave components accounts for the formation of interesting soliton

structure in the long-wave component. The special solutions (9a)-(9c) with the condition

k1R < l1R admits five types of symmetric profiles which we have displayed in figure 1.

The symmetric profiles are classified as follows: (i) Double-humps in all the components,
(ii) double-humps in S(1) and long-wave components and a flattop in the S(2) component,
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(iii) double-humps in S(1) and long-wave components and a single-hump in the S(2)

component, (iv) double-hump in S(1) component, single-hump in S(2) component and a

flattop profile in the long-wave component and (v) double-hump in S(1) component and

single-humps in both the S(2) and long-wave components. In order to demonstrate all the

above five cases we fix k1I = l1I = −0.5 < 0 in figure 1. From figure 1, one can observe

that the transition which occurs from double-hump to single-hump or from single-hump
to double-hump is through a special flattop profile. The corresponding asymmetric

profiles are illustrated in figure 2 for the parameter values as specified there. This can

be achieved by tuning either the real parts of the wave numbers k1 and l1 or by tuning

the complex parameters α(l)
1 ’s. One can also bring out a double-hump and a flattop

profile in the S(1) (S(2) and L as well) component by considering another possibility,

namely k1I = l1I < 0 and k1R > l1R.
Further, one can confirm the symmetric and asymmetric nature of the (1, 1, 1)

solution (9a)-(9c), by finding the extremum points as we have analyzed the profile nature

of the nondegenerate soliton solution in the Manakov system [39]. In the following, we

explain this analysis for the symmetric double-hump soliton profile, displayed in figure

1(a), of the LSRI system (1): First, we find the local maximum and minimum points by

applying the first derivative test ({|S(j)|2}x = 0, {|L|}x = 0) and the second derivative
test ({|S(j)|2}xx, {|L|}xx < 0 or > 0) to the expressions of |S(j)|2, j = 1, 2, and |L|, at
t = 0. As a result, for the first SW component, three extremal points are identified,

namely x1 = −1.4, x2 = 4.3 and x3 = 9.99. Then we found another set of three

extremal points, x4 = 0.6, x5 = 4.3 and x6 = 8.09, for the second SW component. We

also identified another set of three extremal points, x7 = −0.6, x8 = 4.29 and x9 = 9.2,

for the LW component by setting {|L|}x = 0. While the points x2, x5 and x8 correspond

to minima, the points, (x1, x3), (x4, x6), and (x7, x9) correspond to maximum points.
In all the components, the minimum points x2, x5 and x8 are located at equal distances

from the two maximum points (x1, x3), (x4, x6) and (x7, x9), respectively. This can

be easily confirmed by finding their differences. For instance, in the S(1)-component,

x1 − x2 = −5.7 = x2 − x3. This is true for both the SW component S(2) and the

LW component L also. That is for S(2): x4 − x5 = −3.7 ≈ x5 − x6 = −3.79 and for

L: x7 − x8 = −4.89 ≈ x8 − x9 = −4.91. Then the intensity, |S(1)|2, of each hump,
of the double-hump soliton, corresponding to maxima x1 and x3 are equal to 0.078.

Similarly, in the second SW component, the magnitude of the intensity corresponding

to the maximum points x4 and x6 are equal to 0.086. We also obtain the magnitudes

corresponding to the maxima x7 and x8 are equal to 0.154. The above analysis confirms

that the double-hump soliton profiles displayed in figure 1(a) are symmetric. In addition,

one can also verify the symmetric nature of the single-hump soliton about the local
maximum point and checking the half widths as well. For the flat-top soliton case, we

have confirmed that the first derivative {|S(l)|2}x, l = 1, 2, and {|L|}x, very slowly tends

to zero, for a certain number of x values, near the corresponding maximum. This also

confirms that the presence of almost flatness and symmetric nature of the one-soliton.

By following the above procedure, one can also verify the asymmetric nature of the
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solution (9a)-(9c).
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Figure 2. Panels (a), (b), (c), (d) and (e) denote asymmetric profiles corresponding
to the symmetric profiles of Fig. 1(a)-1(e) with k1I = l1I . The parameter values of
each of the cases are as follows: (a) k1 = 0.25− 0.5i, l1 = 0.315− 0.5i, α(1)

1 = 0.5 + i

and α
(2)
1 = 0.45 + 0.5i. (b) k1 = 0.3 − 0.5i, l1 = 0.425 − 0.5i, α(1)

1 = 0.3 + 0.55i and

α
(2)
1 = 0.45 + 0.45i. (c) k1 = 0.315 − 0.5i, l1 = 0.5 − 0.5i, α(1)

1 = 0.15 + 0.5i and

α
(2)
1 = 0.45 + 0.45i. (d) k1 = 0.315 − 0.5i, l1 = 0.545 − 0.5i, α(1)

1 = 0.38 + 0.5i and

α
(2)
1 = 0.45 + 0.5i. (e) k1 = 0.315 − 0.5i, l1 = 0.65 − 0.5i, α(1)

1 = 0.25 + 0.5i and

α
(2)
1 = 0.45 + 0.5i.

Next, we consider the (1, 1, 2)-soliton solution, that is the solution (8a)-(8c) with

k1I %= l1I . In this situation, the soliton in the two short-wave components (as well as

in the long-wave component) propagate with distinct velocities as we have displayed

in figure 3. As it is evident from this figure that distinct single-humped one-soliton
structures always occur in each of the short-wave components and they propagate from

+x to −x direction (but with different localizations). However, surprisingly the two

single-hump structured solitons of the SW component emerge in the LW component

and they interact like the two soliton solution of the scalar NLS case. Each of the

single-humped structures of the soliton in the SW components S(1) and S(2) interact

through the LW component as dictated by the nonlinearity of the LW component.
This special nonlinear phenomenon occurs because of the nondegeneracy property of

the fundamental soliton solution (8a)-(8c) of the LSRI system (1). To the best of our

knowledge, this special kind of phenomenon has not been observed earlier in the present

(1 + 1)-dimensional two-component LSRI system and its multicomponent version. A
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similar kind of soliton nature is also observed in the Wronskian solutions, derived by

Ohta et al., for the two-component (2+1)-dimensional LSRI system [24]. Although the

authors have graphically demonstrated the (1, 1, 2) and (2, 2, 4) soliton solutions in [24],

the complete analysis of such soliton solutions and their associated many novel results are

still missing in the literature. We have systematically analyzed the (1, 1, 2) and (2, 2, 4)

soliton solutions of the (2+ 1)-dimensional multicomponent LSRI system by expressing
their exact analytical forms in terms of Gram determinants and the results will be

published elsewhere [51]. Moreover, it is shown in Ref. [26] that the Wronskian solutions

(N,M,N + M) reported in [24] have also been deduced from the degenerate soliton

solutions (m,m,m). However, the dynamical properties of the Wronskian solutions,

as graphically illustrated in [24], are distinct from the degenerate soliton solutions as

explained in [26]. We point out that the double-hump soliton profile emerges in all the
components when the relative velocity 2(l1I − k1I) tends to zero. In other words, the

double-hump formation will occur if l1I ≈ k1I .

To experimentally generate the nondegenerate vector solitons one may consider

three channels of nonlinear dispersive medium or triple mode nonlinear optical fiber [24],

where the two light pulses are in the anomalous dispersion regime and the remaining

pulse is in the normal dispersion regime. By introducing the intermodal interactions
in such a way one can make the short-wave modes (anamalous dispersion regime) to

interact with the long-wave mode (normal dispersion regime). In this situation, it is

essential to consider two laser sources of different characters so that the frequency of the

first laser beam is different from the second one. By sending the extraordinary mutual

incoherent optical beam, coming out from both the sources, to the short-wave channels

along with the appropriate coupling on the long-wave channel, it is possible to create

the nondegenerate solitons. In this situation, the group velocities vg =
dω
dk of the optical

beam in the short-wave channels should be equal to the phase velocity vp of the long-wave

channel. Under this resonance condition, the nondegenerate solitons in the short-wave

optical modes can be created and made to interact with the soliton in the long-wave

mode. In the fluid dynamics context also one can observe the nondegenerate solitons by

considering a three-layer system [9] of homogeneous fluids having different densities. In

this circumstance, it is possible to achieve the problem of resonance interaction of a long
interfacial wave and a short surface waves. By a proper choice of the various densities and

layer thicknesses, one may tune the three-layer system to a resonant condition whereby

the group velocity of the shorter surface waves and the phase velocity of the longer

interfacial wave are nearly equal. Thus, all of the physics relevant to the nondegenerate

solitons can be identified from this simple three-layer fluid system. On the other hand,

it is also possible to create the nondegenerate solitons in spinor BECs by tuning the
hyperfine states of the 87Rb atoms [54] whenever the group velocities of the short-waves

are equal to the phase velocity of the long-wave.
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Figure 3. Nondegenerate one-soliton (1, 1, 2) with unequal velocities. The parameter
values are k1 = 0.25− 0.5i, l1 = 0.2− 2i, α(1)

1 = 0.45 + 0.5i and α
(2)
1 = 0.5 + 0.5i.

2.2. Completely nondegenerate two-soliton solution

To construct the completely nondegenerate two-soliton solution, we consider the seed

solutions of the following forms,

g(1)1 = α(1)
1 eη1 + α(1)

2 eη2 , η1 = k1x+ ik2
1t, η2 = k2x+ ik2

2t,

g(2)1 = α(2)
1 eξ1 + α(2)

2 eξ2 , ξ1 = l1x+ il21t, ξ2 = l2x+ il22t, (11)

for Eqs. (4). Here we treat the four arbitrary constants k1, k2, l1 and l2 as distinct

from one another, in general, apart from the other four distinct complex constants

α(l)
1 and α(l)

2 , l = 1, 2. For the two-soliton solution, we find that the above seed

solutions terminate the series expansions as g(l) = εg(l)1 + ε3g(l)3 + ε5g(l)5 + ε7g(l)7 , l = 1, 2,
f = 1+ε2f2+ε4f4+ε6f6+ε8f8, while solving the resulting inhomogeneous linear partial

differential equations recursively. The explicit Gram determinat forms of g(l)’s and f

can be written as

g(1) =

∣∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ C1 0′ 0

∣∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0

Anm Ann′ 0 I

−I 0 κmm′ κmn

0 −I κnm κnn′

∣∣∣∣∣∣∣∣∣
, (12a)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ 0′ C2 0

∣∣∣∣∣∣∣∣∣∣∣
. (12b)
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The various elements are defined as

Amm′ =
eηm+η∗

m′

(km + k∗
m′)

, Amn =
eηm+ξ∗n

(km + l∗n)
, Ann′ =

eξn+ξ∗
n′

(ln + l∗n′)
, Anm =

eη
∗

n+ξm

(k∗
n + lm)

,

κmm′ =
ψ†
mσψm′

2i(k2
m − k∗2

m′)
, κmn =

ψ†
mσψ

′
n

2i(l2m − k∗2
n )

, κnm =
ψ

′†
n σψm

2i(k2
n − l∗2m )

,

κnn′ =
ψ

′†
n σψ

′
n′

2i(l2n − l∗2n′ )
, m,m′, n, n′ = 1, 2.

The other elements are defined below:

φ1 =
(

eη1 eη2
)T

, φ2 =
(

eξ1 eξ2
)T

, ψj =
(
α(1)
j 0

)T
, ψ′

j =
(

0 α(2)
j

)T
,

0′ =
(

0 0
)
, I = σ =

(
1 0

0 1

)
, 0 =

(
0 0

0 0

)
and CN = −

(
α(N)
1 α(N)

2

)
,

j, N = 1, 2. Note that in the above the g(j)’s are (9 × 9) determinants and f is a

(8 × 8) determinant. The collision dynamics and the structure of the nondegenerate

two-solitons are characterized by eight arbitrary complex constants, α(j)
1 , α(j)

2 , kj and lj ,

j = 1, 2. The singularity of the two-soliton solution mainly depends on the function f .

To get the non-singluar solution, the function f should be positive definite (f > 0). This

restricts the imaginary parts of the wave numbers, kjI and ljI , j = 1, 2 as negative. That
is kjI , ljI < 0. Further, the complete nondegenerate two-soliton solution (12a) and (12b)

is classified as (2, 2, 2)-soliton solution (kjI = ljI , j = 1, 2) and (2, 2, 4)-soliton solution

(kjI %= ljI , j = 1, 2). We have also given the completely nondegenerate three-soliton

solution in Appendix A for the system (1) using the Gram-determinants.
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Figure 4. Elastic collision: Shape preserving collision with zero phase shift among
the two symmetric double-hump solitons for the parameter values k1 = 0.333 − 0.5i,
l1 = 0.32−0.5i, k2 = 0.333−1.2i, l2 = 0.32−1.2i, α(1)

1 = 0.45+0.5i, α(2)
1 = 0.45+0.55i,

α
(1)
2 = 0.45 + 0.45i and α

(2)
2 = 0.45 + 0.515i.



15

2.3. Partially nondegenerate soliton solution

We next deduce partially nondegenerate soliton solution from the complete
nondegenerate two-soliton solution by imposing the wave number restriction k1 = l1
(or k2 = l2) in Eqs. (12a) and (12b). Due to this restriction, the wave variables ξ1
and η1 are no longer independent and they get restricted as ξ1 = η1 , while ξ2 and η2
continue to be distinct and independent. The Gram determinant forms of g(l)’s and f

are the same both for the partially nondegenerate soliton solution and for the complete

nondegenerate two-soliton solution except that they differ in the following constituents,
Amn, Anm, Ann′, κmn, κnm, κnn′ and φ2. Their explicit forms for the present case are

given below:

Amn : A11 =
eη1+η∗1

(k1 + k∗
1)
, A12 =

eη1+ξ∗2

(k1 + l∗2)
, A21 =

eη2+η∗1

(k2 + k∗
1)
, A22 =

eη2+ξ∗2

(k2 + l∗2)
,

Anm : A11 =
eη1+η∗1

(k1 + k∗
1)
, A12 =

eη
∗

1+ξ2

(k∗
1 + l2)

, A21 =
eη

∗

2+η1

(k∗
2 + k1)

, A22 =
eη

∗

2+ξ2

(k∗
2 + l2)

,

Ann′ : A11 =
eη1+η∗1

(k1 + k∗
1)
, A12 =

eξ1+ξ∗2

(l1 + l∗2)
, A21 =

eξ2+η∗1

(l2 + k∗
1)
, A22 =

eξ2+ξ∗2

(l2 + l∗2)
, (13)

κmn : κ11 =
ψ†
1σψ

′
1

2i(k2
1 − k∗2

1 )
, κ12 =

ψ†
1σψ

′
2

2i(k2
1 − k∗2

2 )
, κ21 =

ψ†
2σψ

′
1

2i(l22 − k∗2
1 )

, κ22 =
ψ†
2σψ

′
2

2i(l22 − k∗2
2 )

,

κnm : κ11 =
ψ

′†
1 σψ1

2i(k2
1 − k∗2

1 )
, κ12 =

ψ
′†
1 σψ2

2i(k2
1 − l∗22 )

, κ21 =
ψ

′†
2 σψ1

2i(k2
2 − k∗2

1 )
, κ22 =

ψ
′†
2 σψ2

2i(k2
2 − l∗22 )

,

κnn′ : κ11 =
ψ

′†
1 σψ

′
1

2i(k2
1 − k∗2

1 )
, κ12 =

ψ
′†
1 σψ

′
2

2i(k2
1 − l∗22 )

, κ21 =
ψ

′†
2 σψ

′
1

2i(l22 − k∗2
1 )

, κ22 =
ψ

′†
2 σψ

′
2

2i(l22 − l∗22 )
,

and φ2 =
(

eη1 eξ2
)T

. The above new class of solution permits both degenerate

and nondegenerate solitons, simultanously leading to the formation of coexistence

phenomenon in the present LSRI system (1). It is interesting to note that the

coexistence phenomenon has also been discussed in the context of rogue waves [52].

The above partially nondegenerate soliton solution is described by seven arbitrary
complex parameters, α(l)

1 , α(l)
2 , kj, l, j = 1, 2 and l2. Further, in order to get the regular

(nonsingular) solution one has to fix the condition kjI < 0, j = 1, 2 and l2I < 0.

3. Various types of collision dynamics of nondegenerate solitons

In this section, we analyze several interesting collision properties of the nondegenerate

solitons of the system (1). To study the collision dynamics, it is essential to analyse
the form of each of the solitons in the two soliton solution in the long time limits

t → ±∞. It can be done by performing appropriate asymptotic analysis of the

completely nondegenerate two-soliton solution (12a) and (12b). From the analysis, we

find that the nondegenerate solitons exhibit three types of collisions, namely shape

preserving, shape altering and a novel shape changing collision dynamics for the cases

of (i) equal velocities: kjI = ljI , j = 1, 2 and (ii) unequal velocities: kjI %= ljI , j = 1, 2.
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Figure 5. Elastic collision: Shape preserving collision with zero phase shift between
the symmetric and asymmetric double-hump solitons. The parameter values are given
in the main text.

Very interestingly, we find that the shape altering and shape changing collision scenarios

belong to elastic collision which is confirmed through the following asymptotic analysis.

Additionally, we observe a shape changing collision for the partially equal velocities
(k1I = l1I , k2I %= l2I) case also. In this section, we describe the asymptotic analysis

for equal velocities case only and it can be extended to unequal velocities cases as well

in a similar manner. We note that the singularity condition, kjI < 0 and ljI < 0,

enforces the two nondegenerate solitons to propagate in the same direction. Thus, the

nondegenerate solitons in the system (1) always undergo overtaking collision. From this,

it can be understood that the positive type of nonlinearity of the system (1) does not
permit any head-on collision among the nondegenerate solitons.

3.1. Asymptotic analysis

We carry out an asymptotic analysis of the two-soliton solution (12a) and (12b) by

considering the parametric choices, kjI = ljI < 0, kjR, ljR > 0, j = 1, 2, k1I > k2I and
l1I > l2I , which corresponds to the overtaking collision of two symmetric double-hump

solitons. For other choice of parameters, similar analysis can be carried out without

much difficulty. In order to deduce the asymptotic forms of nondegenerate solitons in

the long time regimes, we incorporate the asymptotic behaviour of the wave variables

ηjR = kjR(x−2kjIt) and ξjR = ljR(x−2ljIt), j = 1, 2, in the solution (12a) and (12b). For

the above parametric choices corresponding to overtaking collision, the wave variables
behave asymptotically as (i) Soliton 1 (S1): η1R, ξ1R * 0, η2R, ξ2R → ±∞ as t±∞ and

(ii) Soliton 2 (S2): η2R, ξ2R * 0, η1R, ξ1R → ±∞ as t ∓∞. Substituting these results

in Eqs. (12a) and (12b), we derive the following asymptotic forms of nondegenerate
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individual solitons.

(a) Before collision: t → −∞
Soliton 1: For soliton 1, we obtain the asymptotic forms of S(l), l = 1, 2 and L from the

two-soliton solution (12a) and 12b) as

S(1) *
4A1−

1 k1R
√
k1Ieiη1I cosh(ξ1R + φ−

1 )

[a11 cosh(η1R + ξ1R + φ−
1 + φ−

2 + c1) +
1
a∗11

cosh(η1R − ξ1R + φ−
2 − φ−

1 + c2)]
,

S(2) *
4A1−

2 l1R
√
l1Ieiξ1I cosh(η1R + φ−

2 )

[a12 cosh(η1R + ξ1R + φ−
1 + φ−

2 + c1) +
1
a∗12

cosh(η1R − ξ1R + φ−
2 − φ−

1 + c2)]
,

L(x, t) *
4

f 2

(
(k2

1R − l21R) + l21R cosh(2η1R + 2φ−
2 + c3) + k2

1R cosh(2ξ1R + 2φ−
1 + c4)

)
,

f = b1 cosh(η1R + ξ1R + φ−
1 + φ−

2 + c1) + b−1
1 cosh(η1R − ξ1R + φ−

2 − φ−
1 + c2). (14)

Here, A1−
1 = i[α(1)

1 /α(1)∗

1 ]1/2 and A1−
2 = i[α(2)

1 /α(2)∗

1 ]1/2. In the latter, superscript (1−)

represents soliton S1 before collision and subscripts (1, 2) denote the two short-wave

components S(1) and S(2), respectively.

Soliton 2: In this limit, the asymptotic expressions for soliton 2 in the two SW

components and the long-wave component turn out to be

S(1) *
4k2RA

2−
1

√
k2Iei(η2I+θ−1 ) cosh(ξ2R + ϕ−

1 )

[a21 cosh(η2R + ξ2R + ϕ−
1 + ϕ−

2 + d1) +
1
a∗21

cosh(η2R − ξ2R + ϕ−
2 − ϕ−

1 + d2)]
,

S(2) *
4l2RA

2−
2

√
l2Iei(ξ2I+θ−2 ) cosh(η2R + ϕ−

2 )

[a22 cosh(η2R + ξ2R + ϕ−
1 + ϕ−

2 + d1) +
1
a∗22

cosh(η2R − ξ2R + ϕ−
2 − ϕ−

1 + d2)]
,

L(x, t) *
4

f 2

(
(k2

2R − l22R) + l21R cosh(2η2R + 2ϕ−
1 + d3) + k2

2R cosh(2ξ2R + 2ϕ−
2 + d4)

)
,

f = b2 cosh(η2R + ξ2R + ϕ−
1 + ϕ−

2 + d1) + b−1
2 cosh(η2R − ξ2R + ϕ−

2 − ϕ−
1 + d2). (15)

In the above, a21 = (k∗2−l∗2)
1
2

(k∗2+l2)
1
2
, 1

a∗21
= (k2+l∗2)

1
2

(k2−l2)
1
2
, a22 = (k∗2−l∗2)

1
2

(k2+l∗2)
1
2
, 1

a∗22
= (k∗2+l2)

1
2

(k2−l2)
1
2
, eiθ

−

1 =

(k1−k2)(k1+k2)
1
2 (k1+k∗2)(k2−l1)

1
2 (k1−k∗2)(k

∗

2+l1)
1
2

(k∗1−k∗2)(k
∗

1+k2)(k∗1+k∗2)
1
2 (k∗2−l∗1)

1
2 (k∗1−k2)

1
2 (k2+l∗1)

1
2
, eiθ

−

2 = (l1−l2)(k1−l2)
1
2 (k1+l∗2)

1
2 (l1+l∗2)(l1+l2)

1
2 (l1−l∗2)

1
2

(k∗1−l∗2)
1
2 (l∗1−l∗2)(k

∗

1+l2)
1
2 (l∗1+l2)(l∗1+l∗2)

1
2 (l∗1−l2)

1
2
,

A2−
1 = [α(1)

2 /α(1)∗

2 ]1/2 , A2−
2 = [α(2)

2 /α(2)∗

2 ]1/2, b2 = (k2R−l2R)
1
2

(k2R+l2R)
1
2
, d1 = 1

2 log
(k∗2−l∗2)
(k2−l2)

,

d2 = 1
2 log

(k∗2+l2)
(k2+l∗2)

, d3 = 1
2 log

(k∗2−l∗2)(k2+l∗2)
(k∗2+l2)(k2−l2)

and d4 = 1
2 log

(k∗2−l∗2)(k
∗

2+l2)
(k2+l∗2)(k2−l2)

. Here, super-

script (2−) refers to soliton 2 (S2) before collision.

(b) After collision: t → +∞
Soliton 1: We have deduced the following asymptotic forms of for soliton 1 in S(l),
l = 1, 2 and L from the two soliton solution (12a) and 12b) after collision as below:

S(1) *
4A1+

1 k1R
√
k1Iei(η1I+θ+1 ) cosh(ξ1R + φ+

1 )

[a11 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) +
1
a∗11

cosh(η1R − ξ1R + φ+
2 − φ+

1 + c2)]
,

S(2) *
4A1+

2 l1R
√
l1Iei(ξ1I+θ+2 ) cosh(η1R + φ+

2 )

[a12 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) +
1
a∗12

cosh(η1R − ξ1R + φ+
2 − φ+

1 + c2)]
,

L(x, t) *
4

f 2

(
(k2

1R − l21R) + l21R cosh(2η1R + 2φ+
2 + c3) + k2

1R cosh(2ξ1R + 2φ+
1 + c4)

)
,
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f = b1 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) + b−1
1 cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2). (16)

Here, eiθ
+
1 = (k1−k2)(k1−l2)

1
2 (k∗1+k2)(k∗1+l2)

1
2 (k1+k2)

1
2 (k∗1−k2)

1
2

(k∗1−k∗2)(k
∗

1−l∗2)
1
2 (k1+k∗2)(k1+l∗2)

1
2 (k∗1+k∗2)

1
2 (k1−k∗2)

1
2
, A1+

1 = i[α(1)
1 /α(1)∗

1 ]1/2, A1+
2 =

i[α(2)
1 /α(2)∗

1 ]1/2 and eiθ
+
2 = (l1−l2)(k2−l1)

1
2 (k2+l∗1)

1
2 (l∗1+l2)(l1+l2)

1
2 (l∗1−l2)

1
2

(k∗2−l∗1)
1
2 (l∗1−l∗2)(k

∗

2+l1)
1
2 (l1+l∗2)(l

∗

1+l∗2)
1
2 (l1−l∗2)

1
2
. In the latter,

superscript (1+) represents soliton S1 after collision and subscripts (1, 2) denote the

two SW components S(1) and S(2), respectively.

Soliton 2: The asymptotic expressions for soliton 2 in S(l), l = 1, 2 and L after collision
turn out to be

S(1) *
4k2RA

2+
1

√
k2Ieiη2I cosh(ξ2R + ϕ+

1 )

[a21 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + d1) +
1
a∗21

cosh(η2R − ξ2R + ϕ+
2 − ϕ+

1 + d2)]
,

S(2) *
4l2RA

2+
2

√
l2Ieiξ2I cosh(η2R + ϕ+

2 )

[a22 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + d1) +
1
a∗22

cosh(η2R − ξ2R + ϕ+
2 − ϕ+

1 + d2)]
,

L(x, t) *
4

f 2

(
(k2

2R − l22R) + l21R cosh(2η2R + 2ϕ+
1 + d3) + k2

2R cosh(2ξ2R + 2ϕ+
2 + d4)

)
,

f = b2 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + d1) + b−1
2 cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + d2). (17)

Here, A2+
1 = i[α(1)

2 /α(1)∗

2 ]1/2, A2+
2 = i[α(2)

2 /α(2)∗

2 ]1/2. The phase constants, φ−
j , φ

+
j , ϕ

−
j ,

ϕ+
j , j = 1, 2, appearing above are related as follows:

φ+
1 = φ−

1 + ψ1, φ
+
2 = φ−

2 + ψ2, ϕ
+
1 = ϕ−

1 −Ψ1, ϕ
+
2 = ϕ−

2 −Ψ2, (18a)

where

ψ1 = ln
|k2 − l1||l1 − l2|2|l1 + l2|
|k2 + l∗1||l1 + l∗2|2|l1 − l∗2|

, ψ2 = ln
|k1 − k2|2|k1 + k2||k1 − l2|
|k1 + k∗

2|2|k1 − k∗
2||k1 + l∗2|

,

Ψ1 = ln
|k1 − l2||l1 − l2|2|l1 + l2|
|k1 + l∗2||l1 + l∗2|2|l1 − l∗2|

, Ψ2 = ln
|k2 − l1||k1 − k2|2|k1 + k2|
|k2 + l∗1||k1 + k∗

2|2|k1 − k∗
2|
, (18b)

φ−
1 =

1

2
ln

(k1 − l1)|α(2)
1 |2

2i(k1 + l∗1)(l1 + l∗1)
2(l1 − l∗1)

, φ−
2 =

1

2
ln

(l1 − k1)|α(1)
1 |2

2i(k∗
1 + l1)(k1 + k∗

1)
2(k1 − k∗

1)
,

ϕ+
1 =

1

2
ln

(k2 − l2)|α(2)
2 |2

2i(k2 + l∗2)(l2 + l∗2)
2(l2 − l∗2)

, ϕ+
2 =

1

2
ln

(k2 − l2)|α(1)
2 |2

2i(k∗
2 + l2)(k2 + k∗

2)
2(k2 − k∗

2)
.

From the above, one can easily observe that the phase terms only get changed during

the collision process. As we have pointed above, the phases of each of the solitons also

get changed during the collision dynamics. The total phase shift of soliton S1 in both

the SW components is calculated as

∆Φ1 = φ+
1 + φ+

2 − (φ−
1 + φ−

2 )

= log
|k2 − l1||l1 − l2|2|l1 + l2||k1 − l2||k1 − k2|2|k1 + k2|
|k2 + l∗1||l1 + l∗2|2|l1 − l∗2||k1 + l∗2||k1 + k∗

2|2|k1 − k∗
2|
. (19a)

Similarly the total phase shift experienced by soliton S2 in the SW components are given

by

∆Φ2 = ϕ+
1 + ϕ+

2 − (ϕ−
1 + ϕ−

2 )

= − log
|k2 − l1||l1 − l2|2|l1 + l2||k1 − l2||k1 − k2|2|k1 + k2|
|k2 + l∗1||l1 + l∗2|2|l1 − l∗2||k1 + l∗2||k1 + k∗

2|2|k1 − k∗
2|

= −∆Φ1. (19b)
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Here, the subscript 1 and 2 in ∆Φ denote the soliton number. The total phase shifts

obtained for the SW components are the same for the LW component.
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Figure 6. The column figures (a1)-(a3) represent the shape altering collision of two
symmetric double-hump solitons S

−

1 and S
−

2 at t = −10 (blue dotted curves) into
S
+
1 and S

+
2 at t = +10 (red curves) and the column figures (b1)-(b3) denote their

corresponding shape preserving nature which is brought out after taking appropriate
time shifts. The dotted black curves in (b1)-(b3) refer to the solitons before collision
at t = −20, and the solitons after incorporating the appropriate finite time shifts are
represented by the solid red curves. To bring back the shape preserving nature of
solitons after collision we have taken the following time shifts based on Eq. (22):
For solitons S1 and S2 the time shifts are performed respectively as (short wave
S(1): t′ = 18.6525, short wave S(2): t′ = 18.5791) and (S(1): t′ = 20.4559, S(2):
t′ = 20.4266). As far as the LW component is concerned one has to combinedly take
the shifts for soliton S

+
1 (t′ = 18.6525, t′ = 18.5791) and soliton S

+
2 (t′ = 20.4559,

t′ = 20.4266) in the LW component expressions (16) and (17), respectively.

3.2. Elastic collision: Shape-preserving, shape-altering and shape-changing collisions

The asymptotic analysis of equal velocities case (k1I = l1I and k2I = l2I) reveals that

the transition intensities, |T l
j |2 =

|Al+
j |2

|Al−
j |2

= 1, l, j = 1, 2, (where Al±
j ’s are defined in the

above asymptotic analysis) always remain unimodular. Consequently, the corresponding
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collision among the nondegenerate solitons is always elastic in the equal velocities case.

Thus, the expressions of the individual solitons should be invariant in the asymptotic

time limits t → ±∞ leading to the preservation of shapes of the nondegenerate solitons.

As a result, the asymptotic expression (14) of soliton 1 before collision should coincide

with the form (16). Further, to hold the elastic collision nature, the asymptotic form (15)

of soliton 2 must also agree with Eq. (17). However, in view of Eq. (18a), this is not true.
Since the phase terms dramatically get varied during this collision scenario. This phase

variation significantly influences the structure of the nondegenerate solitons. Therefore,

to maintain the structure, the phase terms should obey the following condition:

φ+
j = φ−

j , ϕ
+
j = ϕ−

j , j = 1, 2. (20)

The above implies that the additional phase terms, ψj and Ψj, j = 1, 2, are equal to
zero. That is

ψ1 = ln
|k2 − l1||l1 − l2|2|l1 + l2|
|k2 + l∗1||l1 + l∗2|2|l1 − l∗2|

= 0, ψ2 = ln
|k1 − k2|2|k1 + k2||k1 − l2|
|k1 + k∗

2|2|k1 − k∗
2||k1 + l∗2|

= 0, (21a)

Ψ1 = ln
|k1 − l2||l1 − l2|2|l1 + l2|
|k1 + l∗2||l1 + l∗2|2|l1 − l∗2|

= 0,Ψ2 = ln
|k2 − l1||k1 − k2|2|k1 + k2|
|k2 + l∗1||k1 + k∗

2|2|k1 − k∗
2|

= 0. (21b)

Physically this indicates that the nondegenerate fundamental solitons undergo shape

preserving collision (or elastic collision) without a phase shift. Such a zero phase shift

criterion is calculated from the above expressions (21a) and (21b) as

|k2 + l∗1|
|k2 − l1|

−
|k1 + l∗2|
|k1 − l2|

= 0. (22)

From the above, we infer that the two nondegenerate solitons pass through one another

with zero phase shift whenever the criterion (22) (or equivalently from the phase

condition Eq. (20)), is fulfilled by the wave numbers. This remarkable new property is

not possible in the degenerate counterpart and even in the scalar nonlinear Schrödinger
equation. A typical shape preserving collision with zero phase shift is demonstrated

in figure 4. From figure 4, one can easily recognize that that the two symmetric

double-hump solitons S1 and S2 are located along the lines η1R = k1R(x − 2k1It) * 0,

ξ1R = k1R(x − 2k1It) * 0 and η2R = k2R(x − 2k2It) * 0, ξ2R = k2R(x − 2k2It) * 0,

respectively. Around x = 0 they start to interact and pass through one another

with almost zero phase shift. We have numerically verified this from Eq. (22) by
calculating the value as −0.0006. It ensures that the structures (as well as phases) of

the nondegenerate solitons remain constant throughout this collision process. A similar

shape preserving collision scenario among the two asymmetric double-hump solitons is

illustrated in figure 5 for the parameter values k1 = 0.25 − 0.5i, l1 = 0.315 − 0.5i,

k2 = 0.25− 1.2i, l2 = 0.315− 1.2i, α(1)
1 = 0.5 + 0.5i, α(2)

1 = 0.45 + 0.5i, α(1)
2 = 1 + i and

α(2)
2 = 0.45 + 0.5i.

In general, the phase constants φ+
j , φ

−
j , ϕ

+
j and ϕ−

j , j = 1, 2, do not agree with the

condition (20) in the equal velocities case. Under this circumstance, the nondegenerate

solitons undergo either shape altering collision or shape changing collision without

infringing the unimodular transition intensities condition. Therefore, depending on the
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nature of the changes in the phase terms, the nondegenerate solitons experience slight

alteration or drastic reshaping during the collision process. A typical shape altering

collision is depicted in figures 6(a1)-(a3). To draw the figures 6(a1)-(a3), we fix the

soliton parameters as k1 = 0.25−0.5i, l1 = 0.315−0.5i, k2 = 0.31−1.5i, l2 = 0.28−1.5i,

α(1)
1 = 0.5 + 0.5i, α(2)

1 = 0.45 + 0.5i, α(1)
2 = 0.45 + 0.5i and α(2)

2 = 0.55 + 0.55i. Then

these figures show that the symmetric nature of double-hump solitons in all the three
components get altered slightly into asymmetric forms after collision. However, this

shape alteration can be undone, without loss of generality, by making appropriate shifts

in time,(
t′ = t−

ψ1

2l1Rk1I
, t′ = t−

ψ2

2k1Rk1I

)
and
(
t′ = t +

Ψ1

2l2Rk2I
, t′ = t+

Ψ2

2k2Rk2I

)
(23)

in the wave variables ξ1R and η1R for soliton 1 and ξ2R and η2R for soliton 2 in

the expressions (16) and (17), respectively. After effecting these time shifts in the
respective asymptotic expressions, we find that the asymptotic expressions of the

two nondegenerate solitons becomes identical except for unit phase factors. As a

consequence, the shapes of the nondegenerate solitons are conserved asymptotically

with zero phase shift thereby confirming the elastic nature of the collision. This

shape preserving nature is graphically illustrated in figure 6(b1)-(b3). Moreover, for

k1I = l1I and k2I = l2I , the nondegenerate solitons also exhibit a novel shape changing
interaction again without violating the unity condition of the transition intensities.

Very interestingly, as it is evident from Eq. (18a), the shape changing occurs not only

in the two short-wave components but it is also observed in the long-wave component

as well. We display such non-trivial shape changing collision in figure 7(a1)-(a3) as an

example, where the symmetric structure of the flattop soliton S2 in the S(1) component

and symmetric double-hump solitons in both the S(2) and L components are altered
drastically as indicated by the red curves at t = 25. To display this figure 9(a1)-(a3),

the parameter values are fixed as k1 = 0.315 − 0.5i, l1 = 0.5 − 0.5i, k2 = 0.45 − 1.2i,

l2 = 0.315 − 1.2i, α(1)
1 = 0.5 + 0.5i, α(2)

1 = 0.45 + 0.45i, α(1)
2 = 0.45 + 0.4i and

α(2)
2 = 0.65 + 0.65i. This type of shape changing collision has not been observed earlier

in the degenerate case [20]. However, as we have performed the analysis in the above

case of shape altering collision, the present shape changing collision also belongs to the

case of elastic collision. Thus the shape preserving nature can be retrieved by shifting
the time as per Eq. (23). This elastic collision scenario after taking the time shifts

is demonstrated in figure 7(b1)-(b3). Therefore, what we emphasize here is that the

collision scenario among the nondegenerate solitons is always elastic regardless of the

zero phase shift criterion (22). Further, we also demonstrate the shape changing collision

in the partial velocity case k1I = l1I and k2I %= l2I in figure 8 for the parameter values

as given in the figure caption.
In addition to the above, the elastic collision does occur in the case of (2, 2, 4)-

soliton solution (unequal velocities: k1I %= l1I and k2I %= l2I) for the general choice of

wave parameters. We illustrate such a collision process in figure 9 for the parameters

given in the figure caption. From figure 9, it is clear that each interaction picture of the
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Figure 7. The column figures corresponding to (a1)-(a3) demonstrate shape changing
collisions among the nondegenerate solitons whereas the figures (b1)-(b3) illustrate
their corresponding shape preserving nature which is brought out after effecting the
time shifts (S(1): t′ = 22.5772, S(2): t′ = 21.962) and (S(1): t′ = 26.3074, S(2):
t′ = 26.0926) in the expressions (16) and (17) of both the solitons S1 and S2,
respectively. For solitons in the LW component, one has to take the time shifts
(t′ = 22.5772, t′ = 21.962) and (t′ = 26.3074, t′ = 26.0926) combinedly in Eqs.
(16) and (17), respectively. In figures (b1)-(b3) black dotted curves denote the solitons
before collision at t = −25 and the red solid line curves represent the solitons after
collision with time shifts t′.

two single-humped solitons in both the SW components S(1) and S(2) reappears through

the LW component. The interesting fact of this collision scenario is the structures of all

the solitons do not get altered throughout the collision process thereby confirming the

elastic collision.
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Figure 8. Shape changing collision of nondegenerate solitons in the partially equal
velocity case (k1I = l1I and k2I %= l2I): The values are k1 = 0.315 − 0.5i,
l1 = 0.545−0.5i, k2 = 0.315− i, l2 = 0.545−1.5i, α(1)

1 = 0.5+0.5i, α(2)
1 = 0.45+0.45i,

α
(1)
2 = 0.5 + 0.5i and α

(2)
2 = 0.45 + 0.45i.

Figure 9. Elastic collision among the two nondegenerate soliton in the unequal
velocities case, k1I %= l1I and k2I %= l2I . The parameter values are k1 = 0.315− 0.5i,
l1 = 0.545− i, k2 = 0.315−1.8i, l2 = 0.545−2.5i, α(1)

1 = 0.5+0.5i, α(2)
1 = 0.45+0.45i,

α
(1)
2 = 0.5 + 0.5i and α

(2)
2 = 0.45 + 0.45i.
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4. Collision between nondegenerate and degenerate solitons: Two types of

shape changing collisions

Here, we discuss the collision dynamics of nondegenerate two-soliton solution (12a) and

(12b) under the partially nondegenerate limit k1 = l1 and k2 %= l2. The resultant solution
of the LSRI system (1) describes the coexistence of nondegenerate and degenerate

solitons. It is of interest to study the dynamics of nondegenerate soliton in the presence

of degenerate soliton and vice versa. In order to explore the underlying collision

dynamics we perform an asymptotic analysis for the two-soliton solution (12a) and

(12b) with the wave number restriction k1 = l1 and k2 %= l2. By doing so, we find that

the nondegenerate soliton undergoes two types of shape changing collisions. Here, we
define such shape changing collisions. (i) Type-I shape changing collision is observed for

the velocity condition k2I = l2I , where the initial profile structure of the nondegenerate

soliton, in all the components, is either drastically changing into an asymmetric form

or the initial profile structure is completely reshaped into another profile. (ii) Type-II

shape changing collision is observed for the velocity choice k2I %= l2I , where the two

single-hump structured nondegenerate solitons are merged into a single-hump soliton in
both the SW components while the shape of the nondegenerate soliton is preserved in

the LW component. In both the collision scenarios, the degenerate soliton exhibits the

usual energy exchange collision property as described in [20].

4.1. Asymptotic analysis

In order to explore the degenerate bright soliton collision induced shape changing
behaviours of the nondegenerate soliton, we intend to analyze the partial nondegenerate

two-soliton solution (12a) and (12b) with the elements of the Gram determinants given

in Eq. (13) in the asymptotic limits t → ±∞. In these limits, the resultant action

provides the forms corresponding to degenerate and nondegenerate solitons. As we

have pointed out in the earlier sub-section 3.1, to obtain the asymptotic forms for

the present case one has to incorporate the asymptotic nature of the wave variables
ηjR = kjR(t − 2kIjz) and ξ2R = l2R(t − 2l2Iz), j = 1, 2, in the partially nondegenerate

soliton solution. Here we note that the wave variable η1R represents the degenerate

soliton and η2R, ξ2R correspond to the nondegenerate soliton. To find the asymptotic

behaviour of the above wave variables, we consider as a typical example the parametric

choices, kjR, l2R > 0, kjI , l2I < 0, j = 1, 2, k1I > k2I , l2I . For this choice, the wave

variables behave asymptotically as follows: (i) degenerate bright soliton S1: η1R * 0,
η2R, ξ2R → ±∞ as t → ±∞ (ii) nondegenerate fundamental soliton S2: η2R, ξ2R * 0,

η1R → ±∞ as t → ∓∞. By incorporating these asymptotic behaviours of the wave

variables in the solution (12a)-(12b) with Eq. (13), we deduce the following asymptotic

expressions for the nondegenerate and degenerate solitons.

(a) Before collision: t → −∞
Soliton 1: The asymptotic form of the degenerate soliton deduced from the partially
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nondegenerate soliton solution is

S(l) *

(
A1−

1

A2−
1

)
2k1R

√
k1Ie

i(η1I+
π
2 ) sech(η1R + ψ−), l = 1, 2, (24a)

L * 2k2
1R sech2(η1R + ψ−). (24b)

where Al−
1 = α(l)

1 /(|α(1)
1 |2 + |α(2)

1 |2)1/2, l = 1, 2, ψ− = R
2 = 1

2 ln
(|α(1)

1 |2+|α(2)
1 |2)

2i(k1+k∗1)
2(k1−k∗1)

. Here, in

Al−
1 the subscript 1 denotes degenerate soliton S1 and superscript l− refers to the SW

components before collision.
Soliton 2: The asymptotic forms of the nondegenerate soliton S2, which is present in

both the short-wave components as well as in the long-wave component, before collision

are obtained as

S(1) *
1

D1

(
eiη2I e

µ1+µ3
2 cosh(ξ2R +

µ3 − µ1

2
) + eiξ2Ie

µ2+µ4
2 cosh(η2R +

µ4 − µ2

2
)
)
, (25a)

S(2) *
1

D1

(
eiη2I e

ν1+ν3
2 cosh(ξ2R +

ν3 − ν1
2

) + eiξ2Ie
ν2+ν4

2 cosh(η2R +
ν4 − ν2

2
)
)
, (25b)

L *
1

D2
1

(
e

µ5+µ6+µ7+µ8
2 [(k2 + k∗

2)
2 cosh(ξ2 + ξ∗2 +

(µ7 + µ8)− (µ5 + µ6)

2
)

+(l2 + l∗2)
2 cosh(η2 + η∗2 +

(µ6 + µ8)− (µ5 + µ7)

2
)] +

1

2
eµ

′

8

+e
µ5+µ8+µ9+µ10

2 [(k∗
2 + l2)

2 cosh(η1 + ξ∗1 +
(µ8 + µ10)− (µ5 + µ9)

2
)

+(k2 + l∗2)
2 cosh(ξ2 + η∗2 +

(µ8 + µ9)− (µ5 + µ10)

2
)]

+e
µ6+µ7+µ9+µ10

2 [(k2 − l2)
2 cosh(η∗2 − ξ∗2 +

(µ6 + µ9)− (µ7 + µ10)

2
)

+(k∗
2 − l∗2)

2 cosh(η2 − ξ2 +
(µ6 + µ10)− (µ9 + µ7)

2
)]
)
, (25c)

D1 = e
µ5+µ8

2 cosh(η2R + ξ2R +
µ8 − µ5

2
) + e

µ9+µ10
2 cosh(i(η2I − ξ2I) +

µ10 − µ9

2
)

+e
µ6+µ7

2 cosh(η2R − ξ2R +
µ6 − µ7

2
). (25d)

Here, A1−
2 = [α(1)

2 /α(1)∗

2 ]1/2, A2−
2 = [α(2)

2 /α(2)∗

2 ]1/2. In the latter, the superscript l−,

l = 1, 2, denotes the SW components S(1) and S(2) before collision and the subscript 2

refers the nondegenerate soliton S2.

(b) After collision: t → +∞
Soliton 1: In this limit, the asymptotic forms for the degenerate soliton S1 after collision

are deduced as

S(l) *

(
A1+

1

A1+
2

)
2k1R

√
k1Ie

i(η1I+θ+l +π
2 )k1R sech(η1R + ψ+), l = 1, 2, (26a)

L * 2k2
1R sech2(η1R + ψ+). (26b)

where A1+
1 = α(1)

1 /(|α(1)
1 |2 + χ|α(2)

1 |2)1/2, A2+
1 = α(1)

1 /(|α(1)
1 |2χ−1 + |α(2)

1 |2)1/2, χ =

(|k1 − l2|2|k1 + k∗
2|2|k1 + l2|2|k1 − k∗

2|2)/(|k1 − k2|2|k1 + l∗2|2|k1 + k2|2|k1 − l∗2|2), eiθ
+
1 =
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(k1−k2)(k∗1+k2)(k1−l2)
1
2 (k∗1+l2)

1
2 (k1+k2)

1
2 (k∗1+k2)

(k∗1−k∗2)(k1+k∗2)(k
∗

1−l∗2)
1
2 (k1+l∗2)

1
2 (k∗1+k∗2)

1
2 (k1+k∗2)

, eiθ
+
2 = (k1−k2)

1
2 (k∗1+k2)

1
2 (k1−l2)(k∗1+l2)(k1+l2)

1
2 (k∗1−l2)

1
2

(k∗1−k∗2)
1
2 (k1+k∗2)

1
2 (k∗1−l∗2)(k1+l∗2)(k

∗

1+l∗2)
1
2 (k1−l∗2)

1
2

and ψ+ = 1
2 ln

|k1−k2|2|k1−l2|2Λ̂3

2i(k1−k∗1)(k1+k1∗)2|k1−k∗2 |2|k1−l∗2 |2|k1+l∗2|2
. Here, l+ in Al+

1 , l = 1, 2, refers to

SW components after collision and the subscript 1 denotes the degenerate soliton S1.

Soliton 2: Similarly the asymptotic expression for the nondegenerate soliton S2 after

collision deduced from the soliton solution (12a) and (12b) with the elements given in

Eq. (13) is

S(1) *
4k2R

√
k2IA

2+
1 ei(η2I+

π
2 ) cosh(ξ2R + λ1

2 )

[a21 cosh(η2R + ξ2R + λ2
2 ) +

1
a∗21

cosh(η2R − ξ2R + λ3
2 )]

, (27a)

S(2) *
4l2R

√
l2IA

2+
2 ei(ξ2I+

π
2 ) cosh(η2R + λ4

2 )

[a22 cosh(η2R + ξ2R + λ2
2 ) +

1
a∗22

cosh(η2R − ξ2R + λ3
2 )]

, (27b)

L *
4

D2
2

(
k2
2R cosh(2ξ2R +

λ4 + λ3 − λ2
2

) +
1

2
eλ

′

4−(
λ4+λ2+λ3

2 )

+ l22R cosh(2η2R +
λ2 + λ4 − λ3

2
)
)
, (27c)

D2 = e
λ4
2 cosh(η2R + ξ2R +

λ4
2
) + e

λ2+λ3
2 cosh(η2R − ξ2R +

λ2 − λ3
2

),

eλ
′

4 = 4(k2R + l2R)
2eλ4 + 4(k2R − l2R)

2eλ2+λ3 ,

where λ1 = ln (k2−l2)|α(2)
2 |2

2i(l2−l∗2)(l2+l∗2)
2(k2+l∗2)

, λ2 = ln |k2−l2|2|α(1)
2 |2|α(2)

2 |2
(2i)2|k2+l∗2 |2(k2−k∗2)(l2−l∗2)(k2+k∗2)

2(l2+l∗2)
2 , λ3 =

ln |α(1)
2 |(l2−l∗2)(l2+l∗2)

2

|α(2)
2 |(k2−k∗2)(k2+k∗2)

2
, λ4 = ln (l2−k2)|α

(1)
2 |2

2i(k2−k∗2)(k2+k∗2)
2(k∗2+l2)

, A1+
2 = [α(1)

2 /α(1)∗

2 ]1/2, A2+
2 =

i[α(2)
2 /α(2)∗

2 ]1/2. The explicit forms of all the other constants are given in Appendix

C.
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Figure 10. Type-I shape changing collision between degenerate soliton and
nondegenerate soliton: To draw this figure the parameter values are fixed as follows:
k1 = l1 = 0.8 − 0.5i, k2 = 0.315 − 1.2i, l2 = 0.5 − 1.2i, α

(1)
1 = 0.5, α

(2)
1 = 0.8,

α
(1)
2 = 0.5 + 0.5i and α

(2)
2 = 0.45 + 0.45i.
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Figure 11. Type-II shape changing collision between degenerate soliton and
nondegenerate soliton: To illustrate this collision we fix the complex parameter values
as follows: k1 = l1 = 1 − 0.5i, k2 = 0.35 − 1.8i, l2 = 0.5 − i, α(1)

1 = 1, α(2)
1 = 0.7,

α
(1)
2 = 0.8 and α

(2)
2 = 0.6.

4.2. Degenerate soliton collision induced shape changing property of nondegenerate

soliton

As we have defined earlier, the coexisting solitons (both degenerate and nondegenerate)

undergo Type-I and Type-II shape changing collisions corresponding to two distinct
velocity conditions k2I = l2I and k2I %= l2I , respectively. In both these collision scenarios,

the degenerate bright soliton strongly affects the structure of nondegenerate soliton as

it is ensured from the above asymptotic analysis. As a result, the initial structure

of the nondegenerate soliton S2 is varied to a different of geometrical structure. A

typical Type-I shape changing collision is depicted in figure 10 for k2I = l2I . In figure

10, it is true that the degenerate soliton S1 undergoes energy sharing collision among
the two SW components only while it interacts with the nondegenerate soliton S2 as

it has been shown in the pure degenerate case [20]. In the long-wave component, we

observe elastic collision only when the degenerate soliton even collides with another

class of asymmetric double-humped nondegenerate soliton. During such enegy sharing

collision of the degenerate soliton, the polarization constants of SW components

Al−
1 = α(l)

1 /(|α(1)
1 |2 + |α(2)

1 |2)1/2, l = 1, 2, change into A1+
1 = α(1)

1 /(|α(1)
1 |2 + χ|α(2)

1 |2)1/2,
A2+

1 = α(2)
1 /(|α(1)

1 |2χ−1+|α(2)
1 |2)1/2, where χ = (|k1−l2|2|k1+k∗

2|2|k1+l2|2|k1−k∗
2|2)/(|k1−

k2|2|k1+ l∗2|2|k1+ k2|2|k1− l∗2|2). Meanwhile, the amplitude of the soliton S1 in the long-

wave component remains unchanged except for a finite phase shift. In contrast to the
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degenerate soliton S1, the profile structure of the nondegenerate fundamental soliton S2

gets dramatically altered during the collision processes as it is evident from figure 10.

From figure 10, one can observe that the initial set of asymmetric double-hump profiles

in the short-wave component S(1) and in the long-wave component L get transformed

into another set of asymmetric double-hump profiles with a finite phase shift. However,

in the second short-wave component, the soliton S2 switches its asymmetric flattop
profile into a single-hump profile with an enhancement of energy along with a phase

shift. From the asymptotic forms, we identify that the relative separation distance or

the phase terms are not maintained during this special kind of interaction.

Next, we display the Type-II shape-changing collision in figure 11 for k2I %= l2I ,

where the degenerate soliton S1 undergoes usual energy sharing collision as expected.

However, the nondegenerate soliton S2 exhibits unusual collision property. From figure
11, one can immediately notice that two single-hump solitons appear in the two short-

wave components S(l), l = 1, 2, under the velocity condition k2I %= l2I apart from

the appearance two similar solitons in the long-wave component. We do not come

across the appearance of such two single-hump solitons in the short-wave components

in the case of one-soliton, where a single-hump profile only emerged in both the S(l)

components at k1I %= l1I (one can confirm this from figure 3). We also notice that the
small amplitude soliton structure, in both the SW components, disappears after colliding

with the degenerate soliton S1 whereas the energy of the larger amplitude soliton is

enhanced further. In other words, the two single-humped structures, in both the SW

components, are merged during the collision. After the collision, they get combined into

a single-hump soliton. However, very interestingly the two single-humped nondegenerate

structure in the LW component propagates without any distortion thereby confirming

the elastic collision nature. To characterize both Type-I and Type-II shape changing
collisions, one can calculate the corresponding transition amplitudes. For both the

collision scenarios, the explicit forms of the transition amplitudes turn out to be

T 1
1 =

(|α(1)
1 |2 + |α(2)

1 |2)1/2

(|α(1)
1 |2 + χ|α(2)

1 |2)1/2
, T 2

1 =
(|α(1)

1 |2 + |α(2)
1 |2)1/2

(|α(1)
1 |2χ−1 + |α(2)

1 |2)1/2
, (28)

where χ = (|k1−l2|2|k1+k∗
2|2|k1+ l2|2|k1−k∗

2|2)/(|k1−k2|2|k1+ l∗2|2|k1+k2|2|k1−l∗2|2). In
general, the value of χ is not equal to one. Consequently the transition amplitudes T 1

1

and T 2
1 are not unimodular. In this situation, one always comes across shape changing

collision. The standard elastic collision can occur when χ = 1, where the quantities T 1
1

and T 2
1 are equal to unity. We point out that one can also calculate explicitly the position

shift that occurred during the collision between the degenerate and nondegenerate

solitons. We wish to emphasize here that to the best of our knowledge the collision
scenarios discussed above have not been reported elsewhere in the literature for the

(1+1)-dimensional two component LSRI system (1).



29

|S(1) 2

|S(2) 2

|L|

-15 0 15

0

0.5

x

|S
(1
,2
)
2
,
|L
|

Figure 12. Single-humped degenerate fundamental soliton: k1 = 0.5−0.5i, α(1)
1 = 0.5

and α
(2)
1 = 1.

5. Degenerate-soliton solutions and their collision dynamics

Here, we provide the minimal details about the already known class of degenerate

soliton solutions and the underlying collision property, reported in Ref. [20] for Eq.

(1), in order to clearly distinguish the corresponding dynamics from the dynamics of
nondegenerate soliton solution (6a)-(6c) presented in this paper. The energy exchanging

collision exhibiting degenerate fundamental bright soliton solution can be extracted

from the nondegenerate one-soliton solution Eqs. (6a)-(6c) by imposing the restriction

k1 = l1 in it. As a consequence of this constraint, the seed solutions (3) get restricted as

g(1)1 = α(1)
1 eη1 , g(2)1 = α(2)

1 eη1 , η1 = k1x+ ik2
1t. This results in the degenerate one-soliton

solution of the form,

S(l) = 2Alk1R
√

k1Ie
i(η1I+

π
2 ) sech(η1R +

R

2
), L = 2k2

1R sech2(η1R +
R

2
). (29)

Here, Al = α
(l)
1

√

|α(1)
1 |2+|α(2)

1 |2
, l = 1, 2, eR = − (|α(1)

1 |2+|α(2)
1 |2)

16k21Rk1I
, η1R = k1R(x − 2k1It),

η1I = k1Ix+(k2
1R−k2

1I)t. In contrast to the nondegenerate soliton, the above degenerate
soliton always propagates in all the components with identical velocity 2k1I . This is

because of the presence of a single complex wave number k1 in the solution (29). It

leads to single-hump profiles only in all the three components as we have shown in

figure 12. The amplitudes of the degenerate soliton in the SW components and the

long-wave component are 2Alk1R
√
k1I and 2k2

1R, respectively. The central position of

the soliton (for all the components) is R
2 .

The degenerate two-soliton solution of the system (1) was reported in Ref. [20] by

considering the seed solutions

g(l)1 = α(l)
1 eη1 + α(l)

2 eη2 , ηj = kjx+ ik2
j t, l, j = 1, 2. (30)

On the other hand, it can be captured from the nondegenerate two-soliton solution
(12a) and (12b) by imposing the restrictions k1 = l1 and k2 = l2. The resultant Gram

determinat forms of the degenerate two-soliton solution contains the following elements
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Figure 13. Energy sharing collision of two degenerate solitons: k1 = 1.5 − 0.5i,
k2 = 2− 2i, α(1)

1 = 2.5, α(2)
1 = 1.2, α(1)

2 = 0.9 and α
(2)
2 = 0.6.

in Eqs. (11),

Amm′ =
eηm+η∗

m′

(km + k∗
m′)

= Amn = Anm = Ann′, φ1 = φ2 =
(

eη1 eη2
)T

,

κmm′ =
ψ†
mσψm′

2i(k2
m − k∗2

m′)
= κmn = κnm = κnn′, m,m′, n, n′ = 1, 2. (31)

The other elements are the same as the ones defined in Eqs. (12a) and (12b). In
general, the degenerate N -soliton solution is a special case of our nondegenerate vector

N -soliton solution under the restrictions, ki = li, i = 1, 2, ..., N . We wish to remark

here that obviously any one soliton solution will be a special case of the two-soliton

solution, under the appropriate specialization of the parameters. The nondegenerate

fundamental soliton solution (6a)-(6c) turns out be a special case of the nondegenerate

two-soliton solution (12a) and (12b) with α(1)
2 = α(2)

2 = 0. Similarly, the degenerate
fundamental soliton solution (29) is a special case of the degenerate two-soliton case

under the restriction α(1)
2 = α(2)

2 = 0. In passing, we note that very special parametric

choice turns out to be the present fundamental one soliton solution (one soliton solution

presented in Eqs. (6a)-(6c) can be deduced from the degenerate two-soliton solution

(31) too under the restriction α(1)
2 = α(2)

1 = 0 after renaming the resultant constants

α(2)
2 as α(2)

1 and k2 as l1). However, as it is evident from our discussion, the properties
of the nondegenerate fundamental soliton solution (6a)-(6c) are entirely distinct from

the interacting degenerate two-soliton solution reported in Ref. [20].

As we have pointed in the previous sub-section 4.2 and by the authors of Ref.

[20], the degenerate solitons of the LSRI system (1) undergo collision with energy

redistribution among the short-wave components. Such a typical collision scenario is

displayed in figure 13 as an example. From this figure, one can easily observe that the
energy of the soliton S2 is enhanced in the S(1) component and it gets suppressed in

the S(2) component. In order to preserve the conservation of energy in both the SW

components, the energy of the soliton S1 is suppressed in the S(1) component and it gets

enhanced in the S(2) component. However, the degenerate solitons in the long-wave
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component always undergoes elastic collision. The elastic collision is brought out in all

the components by fixing the parameters as α
(1)
1

α
(1)
2

= α
(2)
1

α
(2)
2

[20].

6. Conclusion

We have derived the nondegenerate one-,two- and three-soliton solutions through

the Hirota bilinear method for the two component long wave short-wave resonance

interaction system. The obtained soliton solutions are represented by Gram determinant
forms. We have shown that the appearance of an additional wave number in the

fundamental soliton solution brings out novel geometrical structures under the condition

k1I = l1I . In addition, for k1I %= l1I , the soliton number is increased by one in the

long-wave component. The reason for the creation of additional soliton in the long-

wave component is that the solitons in the two short-wave components nonlinearly

interact among themselves through the LW component. Further, we have observed that
the nondegenerate solitons undergo three types of collisions, namely shape preserving

with a zero phase shift, shape altering and shape changing collisions with finite phase

shifts. The mechanism of the nonpreserving nature of phase terms or relative separation

distances induces these novel shape altering and shape changing collision scenarios.

However, they can be viewed as elastic collision only by taking time shifts in the

asymptotic forms of nondegenerate solitons. Surprisingly, such type of collision property
has not been observed in the degenerate counterpart though they belong to elastic

collision only. Besides this, the emergence of a coexisting nonlinear phenomenon in

the two component LSRI system is also explored. We found that the existence of

a partially nondegenerate soliton solution, which is a special case of the completely

nondegenerate two-soliton solution, is responsible for the appearance of such a nonlinear

phenomenon, where the nondegenerate soliton simultaneously exists with the degenerate
soliton. We have noticed that the explicit appearance of degenerate soliton induces two

types of interesting shape changing and energy sharing properties of nondegenerate

soliton. Finally, we recovered the energy exchanging solitons from the nondegenerate

solitons under degenerate limits. The present study on nondegenerate solitons of long

wave-short wave resonance interaction system will be useful in hydrodynamics, plasma

physics, nonlinear optics and Bose-Einstein condensates.
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Appendix A. Three-soliton solution

The three-soliton solution of the system (1) is given below:

g(1) =

∣∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ C1 0′ 0

∣∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0

Anm Ann′ 0 I

−I 0 κmm′ κmn

0 −I κnm κnn′

∣∣∣∣∣∣∣∣∣
, (A.1)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ 0′ C2 0

∣∣∣∣∣∣∣∣∣∣∣
. (A.2)

The various elements of the above Gram determinants are defined as

Amm′ =
eηm+η∗

m′

(km + k∗
m′)

, Amn =
eηm+ξ∗n

(km + l∗n)
, Ann′ =

eξn+ξ∗
n′

(ln + l∗n′)
, Anm =

eη
∗

n+ξm

(k∗
n + lm)

,

κmm′ =
ψ†
mσψm′

2i(k2
m − k∗2

m′)
, κmn =

ψ†
mσψ

′
n

2i(l2m − k∗2
n )

, κnm =
ψ

′†
n σψm

2i(k2
n − l∗2m )

,

κnn′ =
ψ

′†
n σψ

′
n′

2i(l2n − l∗2n′ )
, m,m′, n, n′ = 1, 2, 3.

The other elements are defined below:

φ1 =
(

eη1 eη2 eη3
)T

, φ2 =
(

eξ1 eξ2 eξ3
)T

, ψj =
(
α(1)
j 0

)T
, ψ′

j =

(
0 α(2)

j

)T
, 0′ =

(
0 0 0

)
, I = σ =




1 0 0

0 1 0

0 0 1


, 0 =




0 0 0

0 0 0

0 0 0


 and

CN = −
(
α(N)
1 α(N)

2 α(N)
3

)
, j = 1, 2, 3, N = 1, 2. We remark that the degenerate

three-soliton solution can be obtained from the above nondegenerate three-soliton

solution when kj = lj , j = 1, 2, 3. In general, mathematically to obtain the degenerate
N -soliton solution from the nondegenerate N -soliton solution one needs to impose N

number of restrictions on the wave bumbers kj = lj, j = 1, 2, ..., N .

Appendix B. Constants which arise in the asymptotic analysis of collision

dynamics of degenerate and nondegenerate solitons

eµ1 =
i(k1 − k2)α

(1)
2 Λ̂1

2(k1 − k∗
1)(k1 + k∗

1)
2(k∗

1 − k2)(k∗
1 + k2)2

, eµ2 =
i(k1 − l2)α

(1)
1 α(2)∗

1 α(2)
2

2(k1 + k∗
1)(k

∗
1 − l2)(k∗

1 + l2)2
,

eµ3 =
i(k1 − k2)(k2 − l2)|k1 − l2|2α(1)

2 |α(2)
2 |2Λ̂2eR4

2(k1 − k∗
1)(k1 + k∗

1)
2(k∗

1 − k2)(k∗
1 + k2)2|k1 − l∗2|2|k1 + l∗2|4(k2 + l∗2)

,

eµ4 = −
i(k1 − k2)2(k1 + k2)(k∗

1 − k∗
2)(k1 − l2)(k2 − l2)α

(1)
1 α(2)∗

1 α(2)
2 eR5

2(k1 + k∗
1)(k

∗
1 + k2)(k1 − k∗

2)(k
∗
1 − l2)(k∗

2 + l2)(k∗
1 + l2)2

,
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eµ5 =
Λ̂4

2i(k1 − k∗
1)(k1 + k∗

1)
2
, eµ6 =

i|k1 − k2|2Λ̂5eR5

2(k1 − k∗
1)(k1 + k∗

1)
2|k1 − k∗

2|2|k1 + k∗
2|4

,

eµ7 = −
i|k1 − l2|2Λ̂6eR4

2(k1 − k∗
1)(k1 + k∗

1)
2|k1 − l∗2|2|k1 + l∗2|4

, Λ̂4 = (|α(1)
2 |2 + |α(2)

2 |2),

eµ8 = −
i|k1 − k2|2|k1 − l2|2|k2 − l2|2Λ̂3eR4+R5

2(k1 − k∗
1)(k1 + k∗

1)
2|k1 − k∗

2|2|k1 + k∗
2|4|k1 − l∗2|2|k1 + l∗2|4|k2 + l∗2|2

,

eµ9 = −
(k∗

1 − k∗
2)(k1 − l2)α

(1)
1 α(2)∗

1 α(1)∗
2 α(2)

2

4(k1 + k∗
1)(k1 − k∗

2)(k1 + k∗
2)

2(k∗
1 − l2)(k∗

1 + l2)2(k∗
2 + l2)

,

eµ10 = −
(k1 − k2)(k∗

1 − l∗2)α
(1)∗
1 α(2)

1 α(1)
2 α(2)∗

2

4(k1 + k∗
1)(k

∗
1 − k2)(k∗

1 + k2)2(k1 − l∗2)(k1 + l∗2)
2(k2 + l∗2)

,

eν1 =
i(k1 − k2)α

(1)∗
1 α(2)

1 α(1)
2

2(k1 + k∗
1)(k

∗
1 − k2)(k∗

1 + k2)2
, eν2 =

i(k1 − l2)α
(2)
2 Λ̂7

2(k1 − k∗
1)(k1 + k∗

1)
2(k∗

1 − l2)(k∗
1 + l2)2

,

eν3 =
i(k1 − k2)(k1 − l2)2(k2 − l2)(k1 + l2)(k∗

1 − l∗2)α
(1)∗
1 α(2)

1 α(1)
2 eR4

2(k1 + k∗
1)(k

∗
1 − k2)(k∗

1 + k2)2(k∗
1 + l2)(k1 − l∗2)(k1 + l∗2)

2(k2 + l∗2)
,

eν4 = −
i|k1 − k2|2(k1 − l2)(k2 − l2)α

(2)
2 Λ̂8eR5

2(k1 − k∗
1)(k1 + k∗

1)
2|k1 − k∗

2|2|k1 + k∗
2|4(k∗

1 − l2)(k∗
1 + l2)2(k∗

2 + l2)
,

Λ̂1 = (.12|α(1)
1 |2 + .̂∗12|α

(2)
1 |2), Λ̂2 = (.12|γ̄12|2|α(1)

1 |2 + .̂∗12|γ12|2|α
(2)
1 |2),

Λ̂3 = (|.12|2|γ̄12|2|α(1)
1 |2 + |.̂∗12|2|γ12|2|α

(2)
1 |2), Λ̂5 = (|.12|2|α(1)

1 |2 + |.̂∗12|2|α
(2)
1 |2),

Λ̂6 = (|γ̄12|2|α(1)
1 |2 + |γ12|2|α(2)

1 |2), Λ̂7 = (γ̄12|α(1)
1 |2 + γ12|α(2)

1 |2),
Λ̂8 = (|.12|2γ̄12|α(1)

1 |2 + |.̂∗12|2γ12|α
(2)
1 |2), .12 = (k2

1 − k2
2), .̂12 = (k2

1 − k∗2
2 ),

γ12 = (k2
1 − l22), γ̄12 = (k2

1 − l∗22 ). (2.1)
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