MEDICAL AND VETERINARY ENTOMOLOGY

Biosynthesized Gold Nanoparticles Integrated Ointment Base for Repellent Activity Against *Aedes aegypti* L

Balasubramani Sundararajan¹ · Gnanasekar Sathishkumar² · Prabu kumar Seetharaman³ · Anil Kumar Moola⁴ · Saravanamoorthy Mutharasanallur Duraisamy⁵ · Al Anoud Saud Bin Mutayran⁶ · Vidya Devanathadesikan Seshadri⁶ · Adelina Thomas⁷ · Bollipo Diana Ranjitha Kumari⁸ · Sivaperumal Sivaramakrishnan³ · Eliningaya J. Kweka^{9,10} · Zhiqin Zhou¹

Received: 19 January 2021 / Accepted: 18 October 2021/Published online: 25 November 2021 © Sociedade Entomológica do Brasil 2021

Abstract

The present study focused on preparing a nano-ointment base integrated with biogenic gold nanoparticles from *Artemisia vulgaris* L. leaf extract. As prepared, nano-ointment was characterized by using Fourier-transform infrared spectroscopy, and the morphology of the nano-ointment was confirmed through a scanning electron microscope. Initially, the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide results showed nano-ointment cytocompatibility at different concentrations (20–200 µg/mL) against L929 cells. The in vitro hemolysis assay also revealed that the nano-ointment is biocompatible. Further studies confirmed that nano-ointment has repellent activity with various concentrations (12.5, 25, 50, 75, and 100 ppm). At 100 ppm concentration, the highest repellent activity was observed at 60-min protection time against the *Aedes aegypti* L. female mosquitoes. The results indicated that the increasing concentration of nano-ointment prolongs the protection time. Moreover, the outcome of this study provides an alternative nano-ointment to synthetic repellent and insecticides after successful clinical trials. It could be an eco-friendly, safer nano-bio repellent, which can protect from dengue fever mosquitoes.

Keywords Gold nanoparticles · Scanning electron microscope · L929 cells · Repellent

Edited by Rodrigo Gurgel Gonçalves

- ☐ Balasubramani Sundararajan sundarpbt87@gmail.com
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, People's Republic of China
- School of Materials and Energy, Southwest University, Chongqing, People's Republic of China
- Dept of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Dept of Biotechnology, Aditya Degree and PG College, Kakinada, Andhra Pradesh, India
- Dept of Botany, Arignar Anna Govt Arts College, Musiri, Tiruchirappalli, Tamil Nadu, India

- College of Pharmacy (Girls), Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
- School of Pharmacy, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
- Dept of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Division of Livestock and Human Diseases Vector Control, Mosquito Section, Tropical Pesticides Research Institute, Arusha, Tanzania
- Dept of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania

152 B. Sundararajan et al.

Introduction

Nanoparticles were considered the fundamental building blocks of nanotechnology. In recent years, green-synthesized gold nanoparticles (AuNPs) have been proposed as a safer tool to combat various mosquito vectors. They are particularly important in medicine, parasitology, and pest management. Especially, nanobiotechnology is a branch of the physical and chemical approaches to produce nano-sized functional materials through biological principles (Ahmad et al. 2015; MubarakAli et al. 2011). The natural methods are preferred over chemical and physical approaches because of the elimination of toxic chemicals and nonpolar solvents in the synthesis procedure, limiting their applications in clinical fields (Narayanan and Sakthivel 2010).

Moreover, the biogenic synthesis route AuNPs are considered a compatible, nontoxic, and eco-friendly method. Nanoscale particles exhibit entirely new or improved properties based on specific characteristics such as size, distribution, and morphology (Khlebtsov and Dykman 2011; Kaushik et al. 2012). The NPs possibly were applied for vector control applications such as (a) the growth of new agents with higher significant activity, decreased toxicity, and sustained release and (b) to produce and control vectors by the use of NPs with repellent, insecticidal, or larvicidal activities (Magro et al. 2019). The NPs are found with potential importance in various pharmaceutical fields to manage various life-threatening diseases (Elechiguerra et al. 2005). The medical applications of AuNPs raised significantly due to their less toxicity throughout the whole body (Crooks et al. 2001). Khater et al. (2019) reported commercial mosquito repellent prevents mosquito-host interactions, including synthetic and natural repellents, which could potentially prevent mosquito-host interactions. In previous report, eco-friendly botanical extract synthesized with various nanoparticles was used for the different vector diseases and mosquito controls (Govindarajan et al. 2016a,b; Murugan et al. 2015; Roni et al. 2015).

Artemisia vulgaris L. essential oil was reported to exhibit mosquito repellent effect against yellow fever—transmitting Aedes aegypti L. mosquito vectors (Hwang et al. 1985; Ram and Mehrotra 1995; Nentwig 2003). It was also reported that A. vulgaris showed significant insecticidal action against the stored-product insect pest Tribolium castaneum (Herbst) (Wang et al. 2006). The leaves are used as cicatrizing for cuts and wounds (Singh and Chowdhery 2002), and paste or powder of the leaves is applied to cure various skin diseases (Kapoor 2000). However, in ancient times, Egyptians used various plant essential oils (EOs) for repelling insects, medicinal benefits, beauty care, and spiritual heightening, and in literally all features of their daily life (Khater 2017). Previous studies demonstrated that another species of A.

vulgaris possess anthelmintic efficacy of crude aqueous leaf extracts of A. herba-alba (ACEA) compared to albendazole (ABZ) against the Heterakis gallinarum Schrank infected with turkey poults (Seddiek et al. 2011). Based on the reported studies, we carried out the experiments of nano-ointment base in repellent activity against the Ae. aegypti mosquitoes and performed toxicity studies by mouse dermal fibroblast (L929) cells (Divya et al. 2016). However, there is still a need for economic, commercially possible as well as environmentally clean synthesis route to synthesize AuNPs. Moreover, the integration of NPs with bioactive principles has to lead to the development of new vector control agents in biomedical applications.

Materials and methods

The AuNPs were synthesized by using leaf extract of *Artemisia vulgaris* L. and its larvicidal efficacy against the *Ae. aegypti* which was already reported elsewhere by Sundararajan and Ranjitha Kumari (2017) was evaluated. These prepared active NPs were used for the nano-ointment preparation. First, 3:2 ratio of polyethylene glycol (PEG) 3350 (3 g) and polyethylene glycol (PEG) 400 (2 g) was mixed with stearyl alcohol (5 g). Then, 1-mg biosynthesized nanoparticles were mixed with the above ointment base by using a mortar and pestle. Finally, the AuNP-bound ointment product was obtained. Nano-ointment (water-soluble bases) was prepared as per the earlier reported method (Allen and Ansel 2013). The as-prepared ointment was subjected to further characterization, toxicity evaluation, and repellent activity.

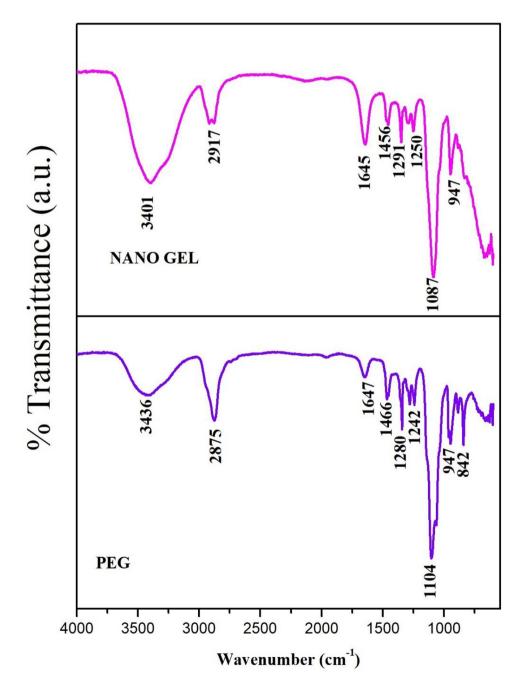
Characterization of nano-based ointment

Fourier-transform infrared spectroscopy

Fourier-transform infrared spectroscopic (FTIR) study was carried out to identify the functional group stretching of biomolecules in the nano-ointment formulation. FTIR measurements were recorded in the wavenumber ranges from 4000 to 400 cm⁻¹ using a PerkinElmer spectrometer in diffuse reflectance mode at a resolution of 4 cm⁻¹ with KBr pellets.

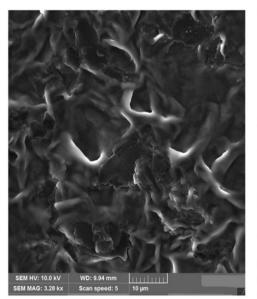
Scanning electron microscope

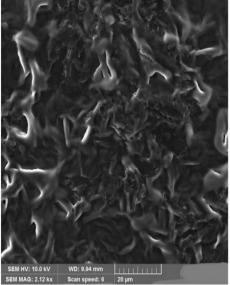
Scanning electron microscope (SEM) analysis (JEOL 6360 TESCAN 10-kV machine) characterized morphological characteristics such as the shape and nature of nano-ointment. Five microliters of the sample was placed onto the carbon-coated copper grid, and a thin film of the sample was made on the grid. The extra sample was removed by keeping the sample under an incandescent light bulb.



Cytocompatibility study

A murine fibroblast cell line (L929, NCCS Pune) was used to evaluate the cytocompatibility of formulated nano-ointment (Divya et al. 2016; Sathishkumar et al. 2016). Briefly, the cells were grown in DMEM medium appended with 10% fetal bovine serum (FBS), and antibiotic was grown in a culture flask and incubated in a $\rm CO_2$ incubator (5% $\rm CO_2$ and 37 °C) until attainment of 100% confluency. Furthermore, cell viability experiments were carried out on L929 cell lines 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as reported earlier. The L929 cells were


seeded in a 96-well plate at the density of 10,000 cells/cm². After 24 h, different samples (20–200 μ g/mL) were added and incubated in a CO₂ incubator for 24 h. Then, the medium was removed, and the cells were washed trice with PBS, and 20 μ L MTT solutions (5 mg/mL in phosphate-buffered saline (PBS)) were added to each well. Finally, DMSO was added to dissolve the formazan crystals. The optical density was measured using a Beckmann Coulter Elisa plate reader (BioTek Power Wave XS) at a wavelength of 570 nm. On the other hand, the cytotoxicity experiments for rhodamine-1, -2, and -3 and Hoechst 33,258–tagged nano-ointment systems were conducted to confirm the treatment localization


Fig. 1 FTIR spectrum analysis of nano-ointment base with polyethylene glycol

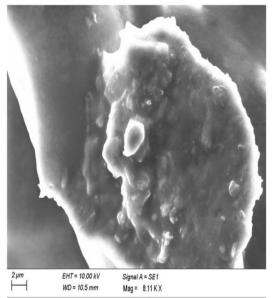


Fig. 2 SEM image analysis of nano-ointment base with different magnifications

at different depths of skin layers. Briefly, nano-ointment (20 μ L/mL)–treated cells were stained with rhodamine-1, -2, and -3 and Hoechst 33,258 (5 mg/mL) at 37 °C for 20 min. Then, it was mounted onto the glass slide using DPX for fluorescent imaging and viewed under the fluorescent microscope (Olympus-BX-51) (Divya et al. 2016).

In vitro hemolysis assay

Hemolysis assay was performed with five replicates as per the earlier report with slight modifications (Sathishkumar et al. 2016). The nano-ointment was separately suspended in 10 mM phosphate-buffered saline. Fresh blood was collected from healthy volunteers in sterile lithium heparin vacutainers. Red blood cells (RBCs) were separated by centrifugation (1500 rpm for 10 min at 4 °C), and further diluted in 20 mM buffered saline (pH 7.4) to 5% v/v solution. A sample in the range of 5 to 50 µg/mL was added to the RBC suspension with 1% Triton X-100 added to phosphate-buffered saline and further incubated at 37 °C for 2 h and slightly vortexed. The suspension was incubated at static conditions for 4 h at 37 °C. After incubation, all the samples were centrifuged (Eppendorf) at 12,000 rpm at 4 °C and supernatants were transferred to a 96-well plate. The hemolytic activity was determined by measuring the absorbance at 570 nm (Biorad microplate reader model 550, Japan). Control samples of

0% lyse (in phosphate buffer) and 100% lysis (in 1% Triton X-100) were employed in the experiment. The per cent of hemolysis was calculated as follows:

Hemolysis % =
$$\frac{\text{(sample absorbance - Negative control)}}{\text{(positive control - negative control)}} \times 100\%$$

Repellent activity

The collected healthy *A. vulgaris* leaves were washed thoroughly under the running tap water and air-shade-dried for 1 or 2 weeks at room temperature. Then, the dried leaves were used to get oil from hydrodistillation using Clevenger type of apparatus after 4 h. The essential oil thus obtained was stored in an amber color glass vial (sealed with parafilm) held at 4 °C for further experiments, and AuNP nano-ointment was evaluated at various concentrations (12, 25, 50, 75,

and 100 ppm) against the Ae. aegypti mosquito adults. Biting test time was observed for 15, 30, and 60 min through laboratory screen cages (diameter 40 cm x length 30 cm) containing 50 nulliparous, nonblood-fed, starved female mosquitoes (WHO 2009; Panneerselvam et al. 2012). Before starting the experiment, the volunteer's hands were cleanly washed with the distilled water, and both hands were covered with rubber gloves with a window $(4 \text{ cm} \times 5 \text{ cm})$ on the forearm. After applying the sample on the skin of the gloved hand, the sample was allowed to dry for 2 min. The Ae. aegypti mosquito biting test was carried out in between 8:00 A.M. and 4:00 P.M., and a total number of mosquitoes biting were recorded on the forearm after 3 min of the study period. This study was carried out starting with the biting of at least two mosquitoes. The mosquito biting percentage was calculated for each test using the following formula:

% of Biting =
$$\frac{\text{(No. of bites received by control arm - No. of bites received by the treated arm)}}{\text{No. of bites received by the control arm}} \times 100$$

Results

Preparation of nano-based ointment

Combining PEG 3350 (solid) with PEG 400 (liquid) results in a very pliable semisolid ointment. The formula may be altered to contain up to equal parts of the two ingredients for the desired composition of firmer ointment. When aqueous solutions are to be combined with bending to the base, PEG 3350 with an equal amount of stearyl alcohol is advantageous in rendering the final product firmer.

Characterization of nano-based ointment

Fourier-transform infrared spectroscopy

The FTIR analysis revealed the chemical interaction between the AuNPs and the nano-ointment bases, which is shown in Fig. 1. FTIR spectra showed that AuNPs bind with nano-ointment bases with respective characteristic peaks at 3401 cm⁻¹ (N–H stretching primary amine), 2917 cm⁻¹ (N–H stretching amine salt), 1645 cm⁻¹ (C-H stretching aromatic compound), 1456 cm⁻¹ (O–H stretching carboxylic acid), 1291 cm⁻¹ (N=O bend nitro groups), 1250 cm⁻¹ (C-O stretching aromatic ester), 1087 (C-O stretching primary alcohol), and 947 cm⁻¹ (C=C bending alkene).

Scanning electron microscope

The surface morphology of nano-ointment was studied by SEM (Fig. 2). The SEM images revealed that spherical and hexagonal particles were homogeneously distributed without any aggregation.

Cytocompatibility study Cytocompatibility of prepared nano-ointment base formulations was evaluated using MTT assay on the L929 cell line. Figure 3 shows the percentage cell viability on L929 cells against different concentrations ranging from 20 to 200 µg/mL of the prepared systems. Our results confirmed that the nano-ointment showed no toxic effect on L929 cell lines. Even in the lowest concentrations, 20 and 40 µg/mL cell viability were recorded as 97% and 95% without affecting the healthy cells. The cell viability was investigated by using a fluorescent microscope in both controls as well as treated cell lines. Microscopic images of cultured L929 cells are shown in Fig. 4b; the rhodamine-123 dye was used to assess the membrane probable potential, which accumulates within the mitochondria in a potentially dependent manner. These results proved that the nano-ointment base, when treated with L929 cells, showed very low disturbance to mitochondrial membrane potential. While seen in Fig. 4c, the Hoechst staining showed that untreated control cells have normal morphology with an undamaged round nucleus which was emitted by a weak blue fluorescence. It is exciting to note that L929 cells were treated

156 B. Sundararajan et al.

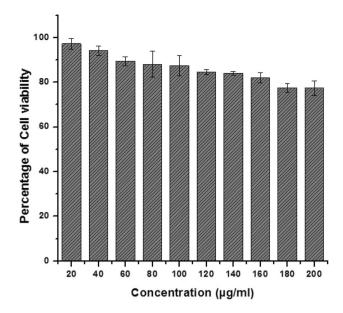


Fig. 3 Cell viability studies of nanogel systems on L929 cell line by MTT assay. All of the obtained data were expressed as mean \pm SD of the three experiments (n = 3)

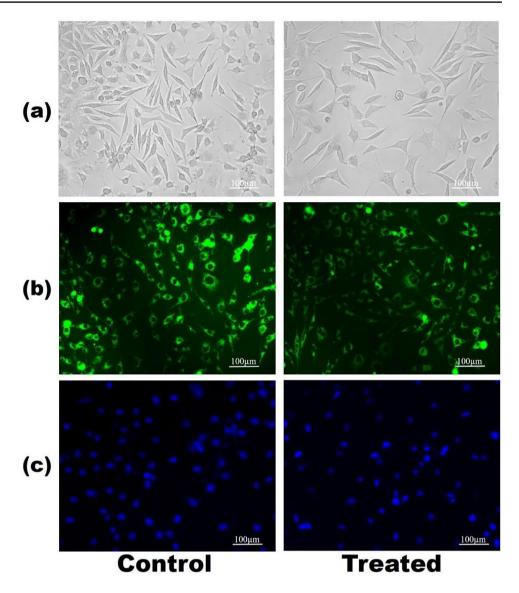
with a nano-ointment base for 24 h, and exposed murine fibroblast cells showing bright blue color emission showed a significantly less disturbance in nuclear fragmentation condensation of chromatins after a 24-h treatment.

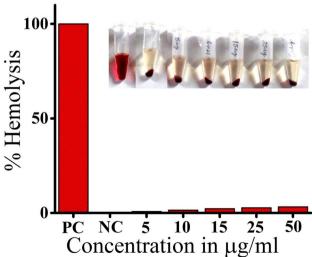
In vitro hemolysis assay

Hemocompatibility of nano-ointment was studied to measure the damage to human RBCs. Our result revealed that nano-ointment at 5 μ g/mL (0.1%) showed lower red hemoglobin compared with 50 μ g/mL (0.5%). As shown in Fig. 5, in comparison with the positive control, the hemolysis activity of nano-ointment was less considerable; it involves its insecure nature in the application. The mechanism of direct hemolysis activity for similar toxic agents originated to be nonspecific.

Repellent activity

In this study, nano-ointment base and essential oil repellent activity were carried out under the laboratory screen cage to avoid an allergic reaction to the tested person. There were differences in repellency among the essential oil and nano-ointment base repellents by *Ae. aegypti* mosquitoes. Present investigations revealed that the nano-ointment has significant repellent activity against *Ae. aegypti* mosquitoes. The highest (100 ppm) concentration of nano-ointment base and essential oil gave the highest repellent for the longest lasting period and protection against *Ae. aegypti* for 60 min (Table 1). The present study evaluates the increasing


concentrations and protection time of nano-ointment base prolonged repellent against *Ae. aegypti* mosquitoes.


Discussion

The results confirmed the conjugation of AuNPs with ointment by intermolecular hydrogen bonding and the formation of nanoparticle composites. Our products were in corroboration with the FTIR analysis of the nanoconjugates reported earlier (Tomuleasa et al. 2012). After preparation of nano-based ointment, the bond was observed in the range of 3200–3700 cm⁻¹, which was suitable to the presence of surface-bound -N and -OH groups. The peak shifted from 1647 to 1642 cm⁻¹ and represented C-H bonds' stretching vibrations from the rings. The obtained results were confirmed that the stretching vibrations of amine and the carboxylic acid-rich regions were involved in the formation of NPs and agglomeration of the composites in an ointment base. Therefore, the experimental results revealed that the flavonoid, phenolic, and terpenoid groups present in the plant extracts might be responsible for synthesis and an agglomeration of both AuNPs and ointment base. A very similar phenomenon was reported for cyclodextrin-modified nanogels, where the SEM micrographs showed that the increasing β-CD concentration decreases the size of nanogel (Khandelia et al. 2013). Nanogel particles are spherical and flat on the solid substrate after the elimination of water by evaporation. A similar study was reported by Jayakumar et al. (2012), where the cytotoxic activity of biosynthesized AuNPs from coconut water was quantified and written at a concentration of 100 µM; cell viability was observed 87% in HeLa and 85% in MCF-7 cancer cell lines. The cytotoxicity study of synthesized AuNPs from Bacopa monnieri L. leaf extract was also reported and checked the biocompatibility on HeLa and MCF-7 cell lines (Kettel 2011). Commercially available AuNPs were tested for MTT assay, and results showed that the highest concentrations range from 1 to 15 mg/mL more than 65% in Normal Human Dermal Fibroblasts (NHDF) cell lines (Babu et al. 2011). Curcumin-loaded chitin nanogels treated for skin cancer cell line showed cytotoxicity without affecting the healthy cells, which are a primary necessity for the cancer treatment modality (Mangalathillam et al., 2012). At the same time, cytotoxicity of gold nanoparticles was carried out by MTT assay and found that it reduced the viability of MDA-MB-231 cells in a dose-dependent manner at a concentration of 100 μg/mL (Babu et al. 2013). Synthesized gold nanoparticles using sodium citrate as a reducing agent and reduced viability of A549 and NCIH441 cell lines also affected the cellular proliferation where citrate acted as the capping agent (Mateo et al. 2015). Similarly, our data highly agree with a previously reported of synthesized AuNPs using by Zingiber officinale extract has been revealed the high-level

Fig. 4 Fluorescent images of L929 cells treated with nanoointment base in morphometric measurement of cell damage. a Normal view without adding dye. b Rhodamine-1, -2, -3 dye-treated. c Hoechst 33,258 dye-treated

Fig. 5 Percentage hemolysis of different concentrations of nano-ointment base (PC—positive control, NC—negative control)

compatibility with the blood cells that implement not initiate any aggregation of cells and the NPs do not appear to activate the platelets. It was conditional that the surface passivation of nanomaterials with different bioagents will develop their biocompatibility (Krishnaraj et al. 2014). In the present study, in comparison with earlier reports in Citrus plants, essential oil was reported against Ae. aegypti mosquitoes: protection time ranged from 10.0 ± 8.7 to 65.0 ± 22.9 min, biting rate ranged from 1.2 to 2.3%, and protection ranged from 98.3 to 98.8% (Kettel et al. 2011). The A. vulgaris benzene and methanol extracts were previously reported to have repellent activity against Ae. aegypti (Uboldi et al. 2009; Kumar 2011). Another study proved that the Zingiber cassumunar Roxb essential oil possess repellent activity against Culex quinquefasciatus Say (165-min protection time and 0.9% biting rate) and Ae. aegypti (90-min protection time and 0.8% biting rate) (Soonwera 2015). Chrysanthemum cinerariaefolium dry flower powdered has been used in ancient insecticide times

158 B. Sundararajan et al.

Table 1 Effect of nano-ointment base on repellent activity of Aedes aegypti L

Various concentrations (ppm)	Protection % (min)		
	15	30	60
Nano-ointment			
12.5	$55.57 \pm 2.15^{\mathrm{e}}$	43.04 ± 2.58^{d}	29.05 ± 1.16^{d}
25	41.41 ± 1.66^{d}	$32.38 \pm 2.52^{\circ}$	$23.85 \pm 5.36^{\circ}$
50	34.91 ± 1.71^{c}	23.74 ± 3.26^{b}	12.58 ± 2.30^{b}
75	23.73 ± 2.26^{b}	14.85 ± 1.71^{a}	9.98 ± 0.39^{b}
100	15.97 ± 1.58^{a}	11.21 ± 0.98^a	1.16 ± 1.04^{a}
A. vulgaris leaf essential oil			
12.5	73.03 ± 1.54^{ef}	$61.37 \pm 0.87^{\mathrm{f}}$	50.48 ± 0.42^{e}
25	66.13 ± 1.59^{d}	52.51 ± 1.85^{d}	41.60 ± 0.86^{d}
50	60.11 ± 0.64^{c}	41.76 ± 1.71^{bc}	32.99 ± 1.44 cd
75	51.29 ± 3.65^{b}	36.86 ± 1.35^{b}	22.78 ± 1.42^{b}
100	38.12 ± 3.05^{a}	20.74 ± 2.30^{a}	16.17 ± 1.57^{a}

Means in each column followed by different letters are significantly different (P<0.05, by one-way ANOVA and Duncan's Multiple Range test)

(Hwang et al. 1985). Some natural plant product plays a significant role in the development of commercial insecticide. Hence, one example shows that α -terthienyl has been used for its herbicidal activity (Amer and Mehlhorn 2006). The skin test for evaluating the repellency of catnip oil presented two primary active ingredients compounds of Z, E-nepetalactone, and E, Z nepetalactone which showed more repellent activity (Phasomkusolsil and Soonwera 2011). Earlier study information of Camellia japonica L. essential oils isolated from this compounds such as 3-career, alpha-terpinene, limonene, gamma-terpinene, terpinolene, and (-)-terpinen-4-ol against the Ae. aegypti, Aedes albopictus (Skuse) (Benner 1993) and confertifolin compound isolated from *Persicaria* hydropiper L. essential oil showed good repellent activity showed 100% adulticidal activity against Ae. albopictus (Lambert et al. 1991). The essential oil of Chromolaena odorata flowers has been reported to hold repellent activity against Ae. aegypti mosquitoe bites and two types of grain storage insects: Sitophilus zeamias Motschulsky and Tribolium castaneum (Herbst) (Zhu et al. 2006; Gu et al. 2009; Dua et al. 2008; Trongtokit, et al. 2005; Nerio et al. 2009; Caballero-Gallardo et al. 2012). In our repellent activity, the results are very promising to formulate a potent and affordable nanoointment against the dengue fever disease–transmitting Ae. aegypti mosquito. In conclusion, We are reporting for the first time that nano-ointment base exhibits excellent repellent activity against Ae. aegypti dengue fever vector. MTT results confirmed that nano-ointment exhibits no toxicity on L929 cells, and in vitro hemolysis assay revealed that nano-ointment is biocompatible with the biologically synthesized active nanoparticles and may be used for dengue vector control after repeated clinical trials. Thus, this ointment is a promising candidate for better repellent activity against the dengue fever mosquito protection time more than 60 min and it can be used in the commercial and industrial production levels.

Author Contribution B.S. and B.D.R.K. conceived of the idea of the work. B.S. developed the study, performed the wrote the main manuscript. B.S., G.S., P.S., and S.S. carried out the experiments. A.K.M., S.M., A.T., and E.J. analyzed data interpretation. A.A.S.B.M., V.D.S., and Z.Z. revised the manuscript contents. All authors discussed the results and contributed to the final manuscript.

Declarations

Conflict of Interest The authors declare no competing interests.

References

- Ahmad A, Syed F, Shah A, Khan Z, Tahir K, Khan AU, Yuan Q (2015) Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Adv 5(90):73793–73806
- Allen L, Ansel HC (2013) Ansel's pharmaceutical dosage forms and drug delivery systems. Lippincott Williams & Wilkins
- Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against *Aedes Anopheles* and *Culex* larvae (Diptera, Culicidae). Para Res 99(4):466–472
- Babu PJ, Das RK, Kumar A, Bora U (2011) Microwave-mediated synthesis of gold nanoparticles using coconut water. Inter J Gr Nanotech 3(1):13–21
- Babu PJ, Sharma P, Saranya S, Bora U (2013) Synthesis of gold nanoparticles using ethonolic leaf extract of *Bacopa monnieri* and UV irradiation. Mat Let 93:431–434
- Benner JP (1993) Pesticidal compounds from higher plants. Pest Sci 39(2):95–102
- Caballero-Gallardo K, Olivero-Verbel J, Stashenko EE (2012) Repellency and toxicity of essential oils from Cymbopogon martinii, Cymbopogon flexuosus and Lippia origanoides cultivated in Colombia against Tribolium castaneum. J St pro REs 50:62–65
- Crooks RM, Lemon BI, Sun L, Yeung L K, Zhao M (2001). Dendrimer-encapsulated metals and semiconductors: synthesis, characterization, and applications. In *Dendrimers III* (pp. 81–135). Springer Berlin Heidelberg.
- Divya G, Panonnummal R, Gupta S, Jayakumar R, Sabitha M (2016) Acitretin and aloe-emodin loaded chitin nanogel for the treatment of psoriasis. Eu J Pharm Biopharm 107:97–109
- Dua VK, Alam MF, Pandey AC, Rai S, Kaul CAK, VK, Dash AP, (2008) Insecticidal activity of *Valeriana jatamansi* (Valerianaceae) against mosquitoes. J a Mos Con Asso 24(2):315–318
- Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nano Biotech 3(1):6
- Govindarajan M, Rajeswary M, Muthukumaran U, Hoti SL, Khater HF, Benelli G (2016a) Single-step biosynthesis and characterization of silver nanoparticles using *Zornia diphylla* leaves: a potent ecofriendly tool against malaria and arbovirus vectors. J Photochem Photobio b: Bio 161:482–489
- Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016b) Onepot fabrication of silver nanocrystals using *Nicandra physalodes*: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Vet Sci Res J 107:95–101

- Gu HJ, Cheng SS, Huang CG, Chen WJ, Chang ST (2009) Mosquito larvcidal activities of extractives from black heartwood-type Cryptomeria japonica. Para Res 105(5):1455–1458
- Hwang YS, Wu KH, Kumamoto J, Axelrod H, Mulla MS (1985) Isolation and identification of mosquito repellents in *Artemisia vulgaris*. J Chem Ecol 11(9):1297–1306
- Jayakumar R, Nair A, Rejinold NS, Maya S, Nair SV (2012) Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells. Carbo Poly 87(3):2352–2356
- Kapoor LD (2000) In: CRC Handbook of ayurvedic medicinal plants. CRC Press, Boca Raton, Florida, p 53
- Kaushik R, Mann AS, Sandhu BS, Parihar VBS (2012) Green synthesis of gold nanoparticles using *Toona ciliata* methanol bark extract and their characterization. Int Res J Pharm 3(9):115–119
- Kettel MJ, Dierkes F, Schaefer K, Moeller M, Pich A (2011) Aqueous Nanogels Modified with Cyclodextrin Poly 52(9):1917–1924
- Khandelia R, Jaiswal A, Ghosh SS, Chattopadhyay A (2013) Gold nanoparticle–protein agglomerates as versatile nanocarriers for drug delivery. Small 9(20):3494–3505
- Khater HF (2017). Introductory chapter: back to the future-solutions for parasitic problems as old as the pyramids. *Natural Remedies in the Fight against Parasites*, 5–7.
- Khater HF, Selim AM, Abouelella GA, Abouelella NA, Murugan K., Vaz NP, Govindarajan M (2019). Commercial mosquito repellents and their safety concerns. In *Malaria*. Intech Open. DOI: http:// dx.doi.org/https://doi.org/10.5772/intechopen.87436.
- Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review. Chem Soc Rev 40(3):1647–1671
- Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT (2014) Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotech Rep 4:42–49
- Kumar KP, Paul W, Sharma CP (2011) Green synthesis of gold nanoparticles with *Zingiber officinale* extract: characterization and blood compatibility. Pro Biochem 46(10):2007–2013
- Lambert JDH, Campbell G, Arnason JT, Majak W (1991) Herbicidal properties of alpha-terthienyl, a naturally occurring phototoxin. Can J Pl Sci 71(1):215–218
- Magro M, Bramuzzo S, Baratella D, Ugolotti J, Zoppellaro G, Chemello G, Olivotto I, Ballarin C, Radaelli G, Arcaro B, De Liguoro M (2019) Self-assembly of chlorin-e6 on γ-Fe2O3 nanoparticles: application for larvicidal activity against *Aedes aegypti*. J Photochem Photobiol 194:21–31. https://doi.org/10.1016/j.jphotobiol.2019.03.004
- Mangalathillam S, Rejinold NS, Nair A, Lakshmanan VK, Nair SV, Jayakumar R (2012) Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanosc 4(1):239–250
- Mateo D, Morales P, Ávalos A, Haza AI (2015) Comparative cytotoxicity evaluation of different size gold nanoparticles in human dermal fibroblasts. J Exp Nanosci 10(18):1401–1417
- MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Coll Surf b Biointer 85(2):360–365
- Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Alarfaj AA (2015) Predation by Asian bullfrog tadpoles, *Hoplobatrachus tigerinus*, against the dengue vector, *Aedes aegypti*, in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res 114(10):3601–3610
- Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Advan in Coll Inter Sci 156(1):1–13
- Nentwig G (2003) Use of repellents as prophylactic agents. Parasitol Res 90:S40–S48
- Nerio LS, Olivero-Verbel J, Stashenko EE (2009) Repellent activity of essential oils from seven aromatic plants grown in Colombia

- against Sitophilus zeamais motschulsky (Coleoptera). J St pro REs 45(3):212–214
- Panneerselvam C, Murugan K, Kovendan K, Kumar PM (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of *Artemisia nilagirica* (Family: Compositae) against *Anopheles stephensi* and *Aedes aegypti*. Para Res 111(6):2241–2251
- Phasomkusolsil S, Soonwera M (2011). Comparative mosquito repellency of essential oils against *Aedes aegypti* (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). A. Pac. J. Trop. Biomed. 1(1), 113–118.
- Ram PR, Mehrotra MN (1995) Compendium of Indian medicinal plants. Publication and Information Directorate, CSIR, New Delhi 4(1985–1989):74
- Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Canale A (2015) Characterization and biotoxicity of *Hypnea musciformis*-synthesized silver nanoparticles as potential eco-friendly control tool against *Aedes aegypti* and *Plu*tella xylostella. Ecotoxicol Environ Saf 121:31–38
- Sathishkumar G, Jha PK, Vignesh V, Rajkuberan C, Jeyaraj M, Selvakumar M, Sivaramakrishnan S (2016) Cannonball fruit (*Couroupita guianensis*, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. Journal of Mol Liquids 215:229–236
- Seddiek SA, Ali MM, Khater HF, El-Shorbagy MM (2011) Anthelmintic activity of the white wormwood, *Artemisia* herba-alba against Heterakis gallinarum infecting turkey poults. J Med Plants Res 5(16):3946–3957
- Singh NP, Chowdhery HJ (2002) Biodiversity conservation in India. In: Das AP (ed) Perspective of plant biodiversity. North Bengal University, West Bengal, India, Department of Botany, pp 501–527
- Soonwera M (2015). Larvicidal and oviposition deterrent activities of essential oils against house fly (*Musca domestica* L.; Diptera: Muscidae). J. Agri. Tech. 11(3), 657–667.
- Sundararajan B, RanjithaKumari BD (2017) Novel synthesis of gold nanoparticles using *Artemisia vulgaris* L. leaf extract and their efficacy of larvicidal activity against dengue fever vector *Aedes aegypti* L. T El Med Bio 43:187–196
- Tomuleasa C, Soritau O, Orza A, Dudea M, Petrushev B, Mosteanu O, Kacso G (2012). Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J. Gastro. Liv Dis. 21(2).
- Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C (2005) Comparative repellency of 38 essential oils against mosquito bites. Phy Res 19(4):303–309
- Uboldi C, Bonacchi D, Lorenzi G, Hermanns MI, Pohl C, Baldi G, Kirkpatrick CJ (2009) Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Part Fib Tox 6(1):18
- Wang J, Zhu F, Zhou XM, Niu CY, Lei CL (2006) Repellent and fumigant activity of essential oil from *Artemisia vulgaris* to *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 42(3):339–347
- World Health Organization, Special Programme for Research, Training in Tropical Diseases, World Health Organization. Department of Control of Neglected Tropical Diseases, World Health Organization. Epidemic, & Pandemic Alert., 2009. Dengue: guidelines for diagnosis, treatment, prevention and control. WHO.
- Zhu J, Zeng X, Liu T, Qian K, Han Y, Xue S, Zhang A (2006) Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. J a Mos Con Asso 22(3):515–522

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

