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A B S T R A C T   

Archaea are a primary domain of the living kingdom, and they play an important role in biogeochemical cycles. 
Since the inclusion of new archaeal phylogenetic lineages in the universal tree, the origin and evolution history of 
this domain has been debated. To address this issue, we planned to examine the growth-associated maintenance 
energy and the proportion of nucleic acids in cell dry weight from 188 archaeal genomes. It was discovered that 
nucleotide molar fractions influenced evolutionary transmittance across archaeal phyla. At high concentrations 
of nucleotide molar fractions, minimal cell survivability of archaea was increased. Archaea’s survival fitness may 
have evolved by chemically optimizing the growth-associated maintenance energy required for nucleic acid 
polymerization. The chemical composition of macromolecules in an archaeal cell may have also acted as a 
neutral selective pressure shaping its genome dynamics and cell survivability in transient environments. The 
current hypothesis provides a new look at reduced growth fitness of archaea in a diverse range of environmental 
niches.   

1. Introduction 

The modern theory of chemical evolution assumes that on a primi
tive Earth, a mixture of simple chemicals assembled into more complex 
molecular systems, from which the first functioning cell emerged [1]. A 
general concept of chemical evolution is the formation of 
enantio-enriched biomolecules and the polymerization of simple 
monomers into information-rich networks. L-amino acids and D-sugars 
are the fundamental building blocks for two of the most important 
biological polymer networks (proteins and nucleic acids) required for all 
forms of life. Within this structural motive, the genetic code is the pri
mary source of all information required for life to exist [2]. The synthesis 
of life requires the functional integration of various subsystems such as 
self-replication, metabolism, and compartmentalization that are deemed 
essential to life. Integrating these characteristics into a single system and 
allowing it to go through Darwinian evolution should result in the 
emergence of life [3]. 

The living system is linked to the initial synthesis and evolution of 
nucleic acids, which determine a cell’s life. The chemical evolution 
process investigates the concentration of monomers and biomass re
actions that allow a cell to survive and thrive on Earth [4]. Nucleic acids 
are the only molecules capable of coding and transmitting genetic in
formation from generation to generation. DNA and RNA are types of 
nucleic acids composed of monomers called nucleotides. Nucleotides are 

not only required for the polymerization of nucleic acids, but they also 
serve as universal energy transducers in specific cellular functions. A 
cell’s growth rate is related to molar fractions of nucleotides that assort 
magnificently in various types of cells and cellular systems. However, 
the proportion of nucleotides and nucleic acids in cell dry weight varies 
greatly between organisms [5]. 

Archaea are classified into nine phyla: Euryarchaeota, Cren
archaeota, Thaumarchaeota, Nanoarchaeota, Nanohaloarchaeota, Kor
archaeota, Bathyarchaeota, Lokiarchaeota, and Unclassified archaea [6, 
7]. The availability of a large number of archaeal genomes revealed 
numerous new insights into the evolution and diversity of these organ
isms. The archaeal genomes are circular DNAs and range in size from 0.5 
to 5.8 Mbp. Several archaeal genomes are made up of multiple chro
mosomes, each replicated from multiple origins. The archaeal genome is 
found in a symbiont that derives nutrients from a host, and its small size 
(<1 Mbp) reflects the deletion of unnecessary genes. The base compo
sitions of archaeal genomes vary greatly, ranging from 28 to 66 mol.% G 
+ C [8]. Phylogenies based on genomes show the pattern of descent 
among a group of archaeal species. According to Ref. [9]; the first 
Archaea were anaerobic autotrophs that evolved on the early Earth. 
Eubacteria and archaea had both evolved independently from the uni
versal ancestor of life (progenote) [10]. 

Extremophilic bacteria and archaea use a variety of strategies to 
survive in extreme environments. Increasing the copy number of their 
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genomes could be one of the adaptive mechanisms of archaea [11]. The 
ability of archaea to thrive at high temperatures and salinity is a great 
concern to the scientific community. However, its applicability is 
limited due to differences in growth physiology and fitness. The molar 
fractional distribution of nucleotides (mmol monomer/g nucleic acid), 
growth-associated maintenance (mmol ATP/g nucleic acid), and a pro
portion of nucleic acid in cell dry weight (mmol nucleic acid/gDCW) 
were computed as evolutionary constraints to infer the growth fitness of 
archaea to sustain in extreme environments. These constraints may have 
shaped archaeal genomes, resulting in adaptation to a new environ
mental niche [12]. 

2. Materials and methods 

2.1. Dataset 

A total of 188 complete genome sequences of archaea were retrieved 
from the National Collection of Biotechnology Information (www.ncbi. 
nlm.nih.gov) in FASTA format. The DNA sequences were translated into 
RNA sequences using BioEdit v7.2 software [13]. 

2.2. Calculation of nucleotide molar fractions 

Metabolic networks are dependent on knowing the chemical 
composition (nucleic acids, proteins, carbohydrates, and lipids) of the 
cell and energetic requirements (growth maintenance energy) necessary 
to generate biomass content from metabolic precursors (nucleotides, 
amino acids, etc.) [14]. Therefore, the fractional contribution of a 
nucleotide was estimated from the genome sequences of archaea as 
described by Ref. [15]. In brief, the molar percentage was multiplied by 
the molecular weight of the nucleotide to obtain the weight of the 
nucleotide per mole nucleic acid, which was then added to obtain the 
weight of the nucleic acid per mole nucleic acid. The weight of nucle
otide per mole nucleic acid was converted to weight nucleotide per 
weight nucleic acid by multiplying by the sum of all nucleotide weights. 
The weight of a nucleotide was multiplied by the proportion of nucleic 
acids in a prokaryotic cell [16,17]. This fraction was divided by its 
molecular weight to obtain the mole nucleotide per cell dry weight. This 
molar contribution was multiplied by a factor to yield a final unit of 
mmol nucleotide per gram dry weight. Appendix 1 contains the dataset 
used to infer nucleic acid chemical evolution. 

2.3. Hierarchical cluster analysis 

Using a complete linkage method, the calculated values in the 
dataset were used for hierarchical cluster analysis. Cluster v3.0 software 
[18] was used to perform the analysis, which generated a dendrogram 
(CDT format) that was visualized in TreeView v2.0.8 software [19]. The 
One minus Pearson correlation metric (PCM) and the Euclidian distance 
metric was used to compute a distance function (EDM). The PCM was 
also used as a distance measure to determine the linear relationship 
between genomes [20]. It was calculated by dividing the covariance of 
the two variables by the product of their standard deviations. 

PCM=
cov(x, y)

σxσy  

Where cov is the convergence, σx is the standard deviation of X; σy is the 
standard deviation of y. The EDM was an exhaustive table of distance- 
square, dij between points taken by pair from a list of N points in the 
squared metric, the measure of distance-square [21]. 

EDM=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑k

i=0
(xi − yi)

2

√
√
√
√

K is the nearest neighbor measured by a distance function. Xi, is rmin 

(row minimum) and Xj, is rmax (row maximum). A heat map of this study 
was generated by ClusterVis v2.0 [22], Clustergrammer v1.0 [23], and 
Morpheus tool from Broad Institute (https://software.broadinstitute. 
org/morpheus/). SYSTAT v13.2 software was used for descriptive, 
inferential, and variance statistics (Systat Software, Inc.). 

3. Results 

The current study reconstructed a genome-scale phylogenetic tree of 
archaea from 188 complete archaeal genome sequences (Fig. 1). The 
findings of this study show that nine taxonomic classes, as well as two 
unclassified archaea, such as Thaumarchaeota, Aigarchaeota, Cren
archaeota, and Korarchaeota (TACK) superphylum (Proteoarchaeota) and 
Deep-Sea Hydrothermal Vent Euryarchaeota 2, are classified separately 
(DHVE2). TACK superphylum is associated with Archaeoglobi and 
Nitrososphaeria, whereas DHVE2 is associated with Haloarchaea. Our 
analysis revealed that mesophilic methanogenic archaea are related to 
Haloarchaea, whereas thermophilic methanogenic archaea are closely 
related to thermophilic archaea. 

The archaeal genome-scale phylogeny was nearly similar to the 
dendrogram shown in Fig. 2. This dendrogram is divided into four 
clusters, each of which contains 14 major phylogenetic lineages. An 
archaeal dendrogram is classified into three main categories based on 
the proposed evolutionary constraints: low, moderate, and high. Molar 
fractions increase the phylogeny of archaea at low nucleotide concen
trations. It suggests a process of speciation within archaeal phyla at 
certain concentrations that may have evolved chemically to produce 
nucleic acids. When nucleotide molar fractions in cells are increased, the 
conservative nature of archaeal genomes is significantly increased to 
achieve a stable lineage. A low or moderate quantity of nucleotide molar 
fractions determines evolutionary transmittance between archaeal 
phyla. It could be attributed to chemical evolutionary optimization of 
genome composition and growth-associated nucleic acid polymerization 
in a cell. 

Interestingly, the molar concentration of adenine and thymine in
creases with decreasing guanine and cytosine concentrations, indicating 
a low requirement for growth-associated maintenance during DNA 
synthesis. The proportion of nucleic acid in cell dry weight is not 
distributed evenly across archaea. During RNA synthesis, the concen
trations of adenine and cytosine increase as the concentrations of gua
nine and uracil decrease. In genome dynamics, growth-associated 
maintenance and the proportion of nucleic acid in cell dry weight are 
chemically unbiased. Under this chemical environment, the evolu
tionary forces acting on archaeal genomes drive them to diversify their 
genomes, resulting in new species or bifurcation. When the amount of 
guanine, cytosine, uracil, and ATP required for nucleic acid synthesis 
increases significantly, the concentrations of adenine and thiamine in a 
DNA molecule, adenine and cytosine in an RNA molecule, and the 
proportion of nucleic acids in cell dry weight decrease in archaeal 
genomes. 

4. Discussion 

Archaeal lineages are of a major ecological role in modern-day 
biogeochemical cycles but the genome biology of archaea is not yet 
completely understood. Genome architecture is conserved between 
bacteria and archaea. Although Archaea appear to be as old as bacteria, 
their current diversity is much lower [9]. The near-linear relationship 
between genome size and the number of encoded proteins may reflect 
efficient selection against the accumulation of nonfunctional DNA in 
archaea [24]. The current method inferred the evolutionary imprints of 
unclassified archaea implicitly. The TACK superphylum is related to the 
Asgard or Asgardarchaeota superphylum. In the phylogenetic tree, it is 
affiliated with eukaryotic cellular origins [10,25]. Some TACK and 
DHVE2 species were found to be closely related to Thermococci, 
Archaeoglobi, and Thaumarchaeota. However, the lack of antiquity of 
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archaeal fossil traces may severely affect any attempt to date the origin 
of this domain by molecular data [26]. Thus, the addition of a robust 
genome-scale phylogeny to the current approach has provided a good 
framework for reconstructing the evolutionary history of this domain. 

As its macromolecules evolved more slowly, any hyperthermophilic 
lineage retained many ancestral characteristics [27]. Herewith we 
revealed a common hyperthermophilic origin for the evolution of the 
euryarchaeal and crenarchaeal phyla, which is consistent with previous 
research [28,29]. We also deduced the evolutionary transmittance be
tween TACK and DHVE2; crenarchaeota and euryarchaeota at low 
nucleotide concentrations. It was found to be in good agreement with 

previous phylogenetic inferences [30]. It implied that the concentration 
of nucleotide molar fractions was a determinant of archaeal genome 
bifurcation into different orders and phyla. Amelioration is a funda
mental neutral selective pressure in prokaryotes that shapes intergenic 
base composition to evolutionary history and environmental adapta
tions [31,32]. The fraction of free nucleotide positions is an important 
determinant of DNA divergence over time, and it was used to explain 
differences in DNA divergence rates [33]. The mutational pressure that 
leads to nucleotide substitutions is also highly correlated with the DNA 
composition of archaeal genomes. The proportion of each type of 
nucleotide in archaeal genomes is proportional to the time required to 

Fig. 1. Ancestral states are deduced from a genome- 
scale archaeal phylogeny based on COGs in 188 
complete genome sequences. A phylogenomic tool 
included in the IMG/M v5.0 software was used to 
reconstruct the archaeal phylogenetic lineage (Chen 
et al., 2017). The phylogenetic distance between ge
nomes was reflected in the average nucleotide iden
tity and alignment fraction values. NSimScan 
(Novichkov et al., 2016) was used to scan archaeal 
genomes for nucleotide similarity in the cluster of 
orthologous groups, which was then filtered to retain 
bidirectional best hits with at least 70% sequence 
identity. Nanoarchaeum equitans is a tiny hyperther
mophilic symbiont of Ignicoccus hospitalis, a Cren
archaeote. It served as an outlier organism. The colors 
of the branches represent archaeal classes at the tree’s 
tips and inferred states at ancestral nodes. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   

Fig. 2. A dendrogram based on the molar fractional 
distribution of nucleotides (mmol monomer/g nucleic 
acid), growth-associated maintenance (mmol ATP/g 
nucleic acid), and a proportion of nucleic acid in cell 
dry weight (mmol nucleic acid/gDCW) for inferring 
the chemical evolution of nucleic acids in archaea. 
Vertical color bars (G1-G14) represent archaeal line
age sub-clades from clusters 1 to 4. (Cluster 1 is on the 
top left, Cluster 2 is on the right, Cluster 3 is on the 
bottom left, and Cluster 3 is on the bottom right). (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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replace half of the nucleotides [34]. 
In archaea, adenine and cytosine are swerving, while thymine and 

guanine are distorted [35]. Our findings show that increasing adenine 
and thymine concentrations while decreasing guanine, cytosine, and 
ATP concentrations are required for DNA synthesis. Guanine and uracil 
concentrations were directly proportional to adenine and cytosine 
concentrations in archaea for RNA polymerization. The evolutionary 
adaptation to oscillated environments determines the rate of minimal 
growth [36]. Growth-associated maintenance was chemically unbiased 
with a proportion of nucleic acid in the cell, which could significantly 
increase the archaea genome dynamic rate. Archaea chemically evolved 
in a specific cluster or lineage with more growth-associated maintenance 
energy has lower growth fitness. As a result, the molar concentration of 
nucleotides and growth-associated maintenance energy is directly pro
portional to the conservation of archaeal genome composition and 
reduced growth fitness [37]. However, there is an indirect link to amino 
acid requirements to make the proteome composition for the survival 
fitness of archaeal cells. 

The evolution of nucleic acids is of great interest for gaining a better 
understanding of genome replication machinery, lineage- and niche- 
specific adaptation, codon usage, and amino acid diversity [32]. 
Several models for studying nucleotide evolution based on substitution 
rates and frequencies have been developed [38]. A super-statistical 
model has been developed to investigate non-trivial universality in 
bacterial DNA architecture inter-nucleotide interval distributions [39]. 
In this study, the molar fraction of nucleic acids was considered as an 
evolutionary constraint to infer the growth fitness of archaea, which 
may have shaped archaeal genomes to specific environmental 
conditions. 

5. Conclusions 

Despite fossil traces and the sequence-based tree of life, the nucleo
tide molar fraction is the first reliable method for studying archaea 
genome biology and ancestry. Our proposed nucleotide constraints and 
tenancy in biomass chemical constituents are chemically converged in 
the archaeal domain. Interestingly, ATP maintenance energy (mmol/g 
nucleic acid) is inversely proportional to the molar fraction of nucleic 
acids in biomass composition (mmol/gDCW). These chemical con
straints may act as neutral selective forces on archaea genome dynamics, 
evolution, growth fitness, and cell survivability. The current approach 
also provides some progress in the taxonomic placement of unclassified 
archaea (TACK and DHVE2 groups) in modern-day archaeal lineages. 
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