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RESEARCH ARTICLE

Aquaporin 9 regulates Leydig cell steroidogenesis in diabetes

Arun Kannana, Lezy Flora Mariajoseph-Antonya, Antojenifer Panneerselvama, Chithra Loganathana,
Diwakar Kiduva Jothiramana, Kumarasamy Anbarasub, and Chidambaram Prahalathana

aMolecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University,
Tiruchirappalli, India; bMicrobial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University,
Tiruchirappalli, India

ABSTRACT
Diabetes mellitus induced hyperglycemia increases oxidative stress, which contributes to
impairment of male reproductive function. Aquaporins (AQPs) belong to a transmembrane
protein superfamily containing 13 isoforms (AQP0-12), differentially expressed in various
organs, and play a pivotal role in male reproductive function. In the current study, we inves-
tigated the relationship between AQPs and testicular steroidogenesis under hyperglycemia
in vivo and in vitro. The effect of high glucose on the role of AQPs in Leydig cell steroido-
genesis was analyzed in diabetic rats (in-vivo) and LC540 rat Leydig cells (in vitro) via
enzyme assays, quantitative RT-PCR, siRNA knock down and western blotting. AQP 9 was
significantly up-regulated in STZ-induced diabetic rat testis and high glucose treated LC540
cells. Further, oxidative stress marker nuclear factor erythroid 2-related factor 2 (Nrf2) expres-
sion was decreased with impaired testicular steroidogenesis under hyperglycemia. Knock-
down of AQP 9 resulted in increased Nrf2 expression and thus increased testicular steroido-
genesis in hyperglycemia. Diabetes-associated hyperglycemia induced oxidative stress is a
widely proven cause for diabetes-related male infertility. Our results collectively suggest that
AQP 9 impairs testicular steroidogenesis via the regulation of oxidative stress in diabetes.

Abbreviations: AQPs: Aquaporins; RT-PCR: Real Time Polymerase Chain Reaction; STZ:
Streptozotocin; Nrf2: Nuclear factor erythroid 2-related factor 2; DM: Diabetes Mellitus; SOD:
Superoxide dismutase; CAT: Catalase; LPO: Lipid Peroxidation; 3b-HSD: 3b-hydroxysteroid
dehydrogenase; 17b-HSD: 17b-hydroxysteroid dehydrogenase; StAR: Steroidogenic Acute
Regulatory Protein
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Introduction

Diabetes mellitus (DM) is a multifactorial metabolic
disorder characterized by hyperglycemia, resulting
from defects in insulin secretion, insulin action, or
both (American Diabetes Association 2013). The
prevalence of diabetes globally was 425 million people
in 2017 and is estimated to rise by 629 million in
2045 (Saeedi et al. 2019). In United States, one in five
adults and one in four young adults are prediabetic,
providing an unfavorable condition for the develop-
ment of diabetic complications, either macrovascular
or microvascular such as diabetic nephropathy, retin-
opathy, neuropathy, cardiovascular diseases and sexual
dysfunction, which can be prevented if diabetes is
managed at early stages (Ahmad 2016; Papatheodorou
et al. 2016; Khalil 2017; Maresch et al. 2018; Andes
et al. 2020; Barkabi-Zanjani et al. 2020; Song et al.

2020). The widespread increase in DM worldwide
affects young individuals in the reproductive age
group as there is a rise in the number of childhood
and adolescent males with DM (Nagarathna et al.
2020). Hyperglycemia increases oxidative stress, which
contributes to the impairment of insulin function/
secretion and further, plays a pivotal role in the
impairment of male reproductive function
(Newsholme et al. 2019; Lei et al. 2020). Recently, the
diffusion of H2O2 across the plasma membrane to the
extracellular fluid has also been regarded as a poten-
tial ROS elimination pathway (Sies 2014).

Aquaporins (AQPs) belong to a transmembrane
protein superfamily containing 13 isoforms (AQP0-
12), differentially expressed in various organs and tis-
sues involved in fluid absorption and/or excretion,
energy metabolism, solute diffusion across transmem-
brane, cellular trafficking, biological functions and
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plays a vital role in preserving the cellular environ-
ment (Azad et al. 2021). Alteration in the expression,
function and/or regulation of AQPs affects patho-
physiology of various clinical conditions viz edema,
cataract, obesity, cell mobility, wound healing,
Sj€ogren’s syndrome, cancer, diabetes, metabolic disor-
ders and reproductive function (Wang et al. 2015; da
Silva and Soveral 2017; Dajani et al. 2018; Ala et al.
2021; Mirabella et al. 2021; Ribeiro et al. 2021). AQPs
differential expression and distribution in the efferent
ductules and in the epididymal segments of crypt-
orchid canines suggests their involvement in luminal
microenvironment modifications (Squillacioti et al.
2021). Recent studies suggest that, AQPs have a great
potential for diagnostics and a target for therapy in
diseases of altered water homeostasis (Dajani et al.
2018; Ichiyama et al. 2018; Meli et al. 2018; Su et al.
2020; Clarke-Bland et al. 2022)

Alterations in plasma osmolality and fluid body
volume disturbs the water metabolism, which may
give rise to adverse pathological conditions. AQPs
expression is susceptible to modification, since stress
response involves changes in cell volume and/or
movement of specific solutes. Oxidative stress pro-
motes detrimental changes during spermatogenesis,
epididymal maturation, and sperm capacitation lead-
ing to infertility is also strongly associated with altered
expression of AQPs in the male reproductive physi-
ology and function (Calamita et al. 2001; Huang et al.
2006; Chauvigne et al. 2015; Pellavio and Laforenza
2021). Moreover, AQPs are also involved in the regu-
lation of steroidogenesis and regulates steroid hor-
mones in developing epididymis, maintaining male
fertility (Oliveira et al. 2005; Shannonhouse
et al. 2014).

Despite many treatment strategies available,
patients with diabetes still develop associated compli-
cations; thus, it is necessary to understand the
molecular mechanisms to prevent diabetic complica-
tions. The wide distribution of AQPs in male repro-
ductive tissues emphasizes that water permeability is
crucial in maintaining male fertility; hence we
intended to investigate the role of AQPs in testicular
steroidogenesis in diabetes.

Results

Effect of hyperglycemia on oxidative stress

STZ is an antibiotic extracted from Streptomyces ach-
romogenes is a diabetogenic tool to induce hypergly-
caemia in laboratory studies. In the present study,
STZ administered diabetic animals showed a remark-
able decrease in body weight along with a significant
increase in serum glucose levels compared to control
animals. However, body weight was significantly
increased (p< 0.01), and glucose levels were dramatic-
ally decreased (p< 0.0001) on insulin treatment com-
pared to diabetic animals (Figure 1A,B).
Hyperglycemia determines an imbalance in the con-
sumption of antioxidant enzymes, which are predom-
inantly represented by the enzymes superoxide
dismutase (SOD), catalase (CAT) and lipid peroxida-
tion (LPO). The activities of enzymatic antioxidants,
ROS levels and LPO of control and experimental
groups of rat testis are represented in Figure 2A–D.
The activities of SOD and CAT were significantly
decreased in the testis of STZ-induced diabetic rats
with a significant increase in ROS. The LPO levels
were found to be significantly increased in diabetic
rats and the addition of exogenous inducers such as

Figure 1. Effect of hyperglycemia. (A) Body weight of rats received citrate buffer (Control), diabetes (DM) and diabetes rats with
insulin treatment (DMþ INS) were recorded at 0th day and after 4weeks; (B) Effect of hyperglycemia on serum glucose levels of
control rats (Control), diabetes (DM) and diabetes treated with insulin (DMþ INS) were measured before the start of experiment
(0th day and after administration of STZ at 1st, 2nd, 3rd and 4th weeks). Values represent mean± S.D (n¼ 6). Values are statistic-
ally significant at �p< 0.05, ��p< 0.01, ���p< 0.001, ����p< 0.0001 and #indicates comparison between DMþ INS and DM
##p< 0.01, ####p< 0.0001.
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H2O2, ascorbate and FeSO4 further increased LPO lev-
els than basal in diabetic animals. Further, on insulin
treatment SOD and CAT activity were increased with
a significant decrease in LPO and ROS compared to
the DM group.

Effect of hyperglycemia on expression of
aquaporins (AQPs) in vivo and in vitro

The expression of various AQP isoforms in the testis
and Leydig cells were examined using RT-PCR. The
total RNA extracted from the testis and Leydig cells
contained gene transcripts for a variety of AQPs,
including AQP 0, 1, 3, 4, 5, 6,7, 8, 9, 11, and 12
(Figure 3A–K). The transcript for AQP 2 was not
detected either in the testis or Leydig cells and AQP10
was not analyzed as it is a pseudo gene. To determine
whether experimental hyperglycemia in vivo or
in vitro alters the expression of AQPs in the diabetic
testis and Leydig cells, we compared the levels of gene
transcripts for AQPs with diabetes and diabetes with
insulin treated age-matched control animals. AQP 0
did not have any expression changes in diabetes or
insulin-treated testis compared to controls further,
AQP 3 and 4 were significantly decreased in diabetic
testis compared to controls with a p-value less than

0.01. However, on insulin treatment, AQP3 and 4
were increased compared to DM. Our experimental
results indicate a significant increase of AQPs 1, 7, 8,
9, 11, 12 in diabetic testis compared to controls and a
significant decrease on insulin treatment compared to
DM. AQPs 5 and 6 were significantly increased in
diabetic testis compared to controls but on insulin
treatment, AQP 5 remained unaltered with AQP 6
being downregulated. Specifically, AQP 9 was
increased 36-fold compared to controls, on insulin
treatment significantly reduced to DM with p-values
less than 0.0001.

In our experiment, we did not find any expression
of AQP 0 in LC540 rat Leydig cells and AQP isoforms
1, 3, 4, 7, 8, 9, 11, 12 were significantly increased with
different glucose concentrations compared to normal
glucose (5.5mM). However, AQPs 5 and 6 did not
show any significant changes with different glucose
concentrations and also with mannitol, but AQP 6
was significantly decreased in 1mM glucose compared
to 5.5mM glucose (Figure 4A–J). Moreover, AQPs 1,
4, 9, 12 did not show any significant expression
changes on treatment with 30mM mannitol compared
to 5.5mM glucose, surprisingly AQP 3 was found to
be significantly downregulated on mannitol treatment
compared to control 5.5mM glucose. Furthermore,

Figure 2. Effect of hyperglycemia on oxidative stress markers. (A) SOD, (B) CAT, (C) ROS and (D) LPO activity in rat testis (LPO
was tested at basal level and also with the inducers FeSO4, Ascorbate and H2O2). Enzyme activity for SOD is expressed as unit/mg
protein; where one unit is equal to the amount of enzyme required to inhibit auto oxidation of pyrogallol by 50% per minute;
CAT is expressed as unit/mg protein; where one unit is equal to moles of H2O2 consumed per minute; ROS is expressed as DCF
fluorescence/min/mg protein; lipid peroxidation is expressed as unit/mg protein; where one unit is equal to nmoles of MDA
formed. Values represent mean± S.D (n¼ 6). Values are statistically significant at �p< 0.05, ��p< 0.01, ���p< 0.001
and ����p< 0.0001.
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AQPs 7, 8 and 11 were significantly upregulated on
mannitol treatment compared to normal glucose.
Although AQP 9 was significantly increased to five-
fold in high glucose (30mM glucose) compared to
controls, we didn’t observe any significant alteration
on mannitol treatment which suggests that high glu-
cose induces the expression of AQP 9. Overall, our
results indicate that AQP 9 is significantly increased
in-vivo and in-vitro compared to other isoforms
under hyperglycemia. Hence, we intended to study
the role of AQP 9 in testicular steroidogenesis under
hyperglycemia.

Effect of hyperglycemia on in-vivo and in-vitro
expression of AQP9, nrf-2 and testicular
steroidogenesis

Steroid hormones regulate essential physiological
processes and are associated with various pathological
conditions, finely regulated by rate-limiting steroido-
genic enzymes 3b-HSD and 17b-HSD. We analyzed
the steroidogenic enzymatic activity of both 3b-HSD
and 17b-HSD, which were significantly decreased in
diabetes testis compared to controls, however, on
insulin treatment (DMþ INS), enzyme activities were

Figure 3. Effect of hyperglycemia on aquaporins gene expression. RNA levels in diabetic rat testis and also with insulin treat-
ment (in vivo) were measured by RT-PCR, (A–K). All the results were normalized with b-actin. Values represent mean± SD (n¼ 6)
(�p< 0.05, ��p< 0.01, ���p< 0.001 and ����p< 0.0001).

Figure 4. Effect of glucose on aquaporins gene expression. RNA levels in LC540 Leydig cells (in-vitro) treated with different con-
centrations of glucose (1mM glucose, 5.5mM glucose, 20mM glucose, 30mM glucose, 30mM mannitol) were measured by RT-
PCR (A–J). All the results were normalized with b-actin. Values represent mean± SD (n¼ 3) (�p< 0.05, ��p< 0.01, ���p< 0.001
and ����p< 0.0001).

216 A. KANNAN ET AL.



increased compared to DM group but were not signifi-
cant as shown in Figure 5A,B. The testosterone levels
of the rats observed were dramatically decreased in dia-
betes group compared with those of the control group
and insulin treatment significantly increased the serum
testosterone levels (Figure 5C). Our results indicate that
insulin treatment promotes the enzyme activity of 3b-
HSD and 17b-HSD increasing serum testosterone. In
the present study, the expressions of StAR, 3b-HSD
and 17b-HSD were markedly downregulated in the
DM group as compared with those in the control
group. Surprisingly, insulin treatment resulted in sig-
nificant upregulation in the expressions of StAR, 3b-
HSD and 17b-HSD compared to the DM group
(Figure 6A). Furthermore, in vitro expression of these
key enzymes were studied in LC540 rat Leydig cells
treated with different concentrations of glucose. Our
results indicated that on treatment with 20mM and
30mM glucose StAR, the enzymes 3b-HSD and 17b-
HSD were significantly decreased compared to 5.5mM
treated control. There were no significant changes on
treatment with 30mM mannitol as osmotic stress con-
trol compared to 5.5mM glucose treated normal con-
trol as shown in the Figure 6B.

AQP 9 protein expression was significantly increased
in-vivo in response to hyperglycemia compared to con-
trols, however insulin treatment was significantly
decreased compared to the DM group as shown in the
Figure 6C. Moreover, in-vitro results also confirmed
the same with significant increase in AQP 9 protein
expression on high glucose treatment as shown in
Figure 6D compared with 5.5mM glucose.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is
a transcription factor regulating antioxidant response
elements, decrease oxidative stress response associated
with hyperglycemia and increases insulin sensitivity
(Rahimi et al. 2021). Our in vivo results show a

significant decrease of Nrf2 protein expression in the
DM group compared to controls but on insulin treat-
ment the expression was found to increase signifi-
cantly with p ˂ 0.01 and p ˂ 0.001, respectively, as
shown in the Figure 6C. In vitro Nrf2 protein expres-
sion was also analyzed with different concentrations
of glucose and mannitol as an osmotic control. The
expression was significantly decreased at 30mM glu-
cose concentration and mannitol did not show any
significant changes compared to 5.5mM glucose con-
centration with p-value (p ˂ 0.01), as shown in Figure
6D. Our results indicate significant changes in enzym-
atic activity and gene expression of 3b-HSD and 17b-
HSD, the key players in testosterone synthesis. We
did investigate the protein expression of the key
enzymes in testosterone secretion and the steroido-
genic genes (3b-HSD and 17b-HSD) were found to be
decreased significantly in the DM group along with
steroid transport protein StAR compared to control.
On treatment with insulin, StAR, 3b-HSD and 17b-
HSD were significantly increased compared to DM
group rats as shown in the Figure 6C with p values (p
˂ 0.01). In vitro experiments with different concentra-
tions of glucose treatment on LC540 Leydig cells sig-
nificantly decreased the protein expression of StAR,
3b-HSD and 17b-HSD compared to 5.5mM normal
glucose but on treatment with mannitol did not have
any significant changes compared to normal 5.5mM
glucose as shown in the Figure 6D.

Effect of AQP 9 knockdown on testicular
steroidogenesis under hyperglycemia

We investigated the effect of AQP 9 knockdown on
steroidogenic protein expression. The transfection of
siRNA caused an almost 60% reduction in AQP 9
mRNA and protein levels in LC540 cells compared to

Figure 5. Effect of hyperglycemia on 3b-HSD and 17b-HSD enzyme activity and serum testosterone levels. (Control, DM,
DMþ INS) enzyme activity expressed as units/mg protein, whereas for (A) 3b-HSD one unit is equal to nmoles of NADH formed
per minute and for (B) 17b-HSD one unit is equal to nmoles of NADPH oxidized per minute. (C) Effect of hyperglycemia on serum
testosterone levels of diabetes rats (Control, DM, DMþ INS). Values represent mean± SD (n¼ 6) (�p< 0.05, ��p< 0.01,���p< 0.001 and ����p< 0.0001).
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their respective controls as shown (Figure 7A,B). To
confirm the role of AQP 9 on steroidogenesis, AQP 9
and NC siRNA transfected LC540 rat Leydig cells
were treated with high glucose (30mM) and the
expression of Nrf2, StAR and steroidogenic proteins
were determined by western blotting. Our results
demonstrated that AQP 9 knockdown significantly
upregulated the protein levels of Nrf2, StAR, 3b-HSD
and 17b-HSD in high glucose treated Leydig cells
(Figure 7C). Thus, our results confirm that AQP 9
knockdown restores the expression of Nrf2, StAR and
steroidogenic proteins (3b-HSD and 17b-HSD) in
high glucose treated Leydig cells.

Discussion

Chronic hyperglycemia arising from glucose dysme-
tabolism owing to insulin resistance and pancreatic
dysfunction has been linked to the complications asso-
ciated with diabetes (Wolpin et al. 2013). Moreover,

oxidative stress, hormonal modulation, impaired cellu-
lar pathways and altered testicular glucose metabolism
have been implicated in the pathophysiology of tes-
ticular dysfunction in diabetes (Alves et al. 2013; Rato
et al. 2013; Maresch et al. 2017). In the present study,
body weight of diabetic rats was reduced along with a
significant increase in serum glucose levels indicating
severe hyperglycemia on STZ exposure. Further, treat-
ment with insulin significantly increased body weight
and decreased serum glucose levels indicating this
effect is only due to hyperglycemia and our results
were consistent with previous studies (Wang-Fischer
and Garyantes 2018; Faisal Lutfi et al. 2021; Guven
et al. 2021). A causative link among hyperglycemia,
mitochondrial ROS generation, oxidative stress and
the development of complications has been suggested
to play a key role in the pathogenesis of diabetes
(Kassab and Piwowar 2012). Moreover, the primary
cause of hyperglycemia is due to excessive formation
of ROS and simultaneously deteriorating antioxidant

Figure 6. Effect of hyperglycemia on steroidogenesis. (A) In-vivo gene expression of StAR, steroidogenic genes 3b-HSD and 17b-HSD
in diabetic rat testis was assessed using Real time PCR. (B) Effect of hyperglycemia on in vitro gene expression of StAR, steroidogenic
genes 3b-HSD and 17b-HSD on LC540 rat Leydig cells treated with different concentrations of glucose using Real time PCR. (C) Effect
of hyperglycemia on in vivo protein expression of AQP9; Nrf-2, StAR and steroidogenic genes (3b-HSD and 17b-HSD) in diabetic rat
testis. (D) Effect of hyperglycemia on in-vitro protein expression of AQP9; Nrf2, StAR and steroidogenic genes (3b-HSD and 17b-HSD) in
LC540 rat Leydig cells treated with different concentrations of glucose. All the results were normalized with b-actin (In vivo n¼ 6 &
In vitro n¼ 3). Values represent mean±SD (�p< 0.05, ��p< 0.01, ���p< 0.001 and ����p< 0.0001).
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defense mechanism which leads to development of
insulin resistance, increased lipid peroxidation, and
cellular damage (Rehman and Akash 2017).

On the other hand, hyperglycemia induces testicu-
lar damage, impairs spermatogenesis, decreases sperm
count by inducing large quantities of ROS including
in the sperms, epididymis, and testes, leading to apop-
tosis induction. Earlier studies have shown that,
hyperglycemia associated oxidative stress affecting
SOD, CAT, LPO and GSH induced diabetic complica-
tions in different organs like liver, heart, kidney, pan-
creas, brain and testis (Singh et al. 2013; Yu and
Huang 2015). Following severe hyperglycemia in our
study, major radical scavenging enzymes SOD and
catalase were reduced and increased ROS formation
with enhanced lipid peroxidation. These changes lead
to antioxidant imbalance; thereby affects steroidogene-
sis in diabetic rats and our results were consistent
with the earlier studies (Singh et al. 2013; Yu and
Huang 2015; Dludla et al. 2017; Malekiyan et al. 2019;
Nna et al. 2019; Shoorei et al. 2019).

AQPs functional involvement in the transport of
ROS is the key factor in dysfunctions underlying oxi-
dative stress related disease physiology and patho-
physiology (Yusupov et al. 2019). Recent discoveries
suggest that, AQPs may play an important role in fat
accumulation and regulation of oxidative stress, the
two crucial aspects of diabetes and metabolic

syndrome (Galli et al. 2021). AQP 3 and 5 expressed
in cancerous tissues in response to oxidative stress
plays an important role in cell survival and cancer
progression (Milkovic and Gasparovic 2021; Wang
et al. 2021). Moreover, under hyperglycemia, AQP 5
in eye lens controls ROS accumulation prevents cata-
ractogenesis and also regulates diabetes induced dry
mouth, hyposalivation, or xerostomia altering the
antioxidant imbalance (Lee et al. 2020; Varadaraj and
Kumari 2020). Increased AQP 8 expression induced
by extracellular oxidative stress in retinal pigment epi-
thelial cells is involved in pathology of diabetic retin-
opathy and age-related macular degeneration
(Schnabel et al. 2020). In obese patients, AQP 9 pre-
vents excessive lipid accumulation and the subsequent
aggravation of hyperglycemia in response to AQP 3
glycerol reflux (Hou et al. 2018). Earlier studies have
shown that, AQP 9 knockout mice showed decreased
plasma glucose levels (Rojek et al. 2007; Jelen et al.
2011; Spegel et al. 2015). In liver, AQP 9 expression
was found to be increased in both type 1 and type 2
diabetes but the expression was decreased with the
circulating insulin levels (Carbrey et al. 2003; Hou
et al. 2018). Following oxidative stress in our studies,
we did analyze the expression changes of AQP iso-
forms under hyperglycemia. To the best of our know-
ledge, our study is the first to report differential
expression of AQPs 0–12 in diabetes rats (in vivo) and

Figure 7. Effect of AQP 9 knockdown on Leydig cell steroidogenesis. Figures (A) and (B) are representative image to show AQP
9 knockdown in LC540 cells. (C) Effect of AQP 9 knockdown under hyperglycemia on protein expression of AQP 9, Nrf2, StAR and
steroidogenic genes (3b-HSD and 17b-HSD) normalized with b-actin as internal control. Values represent mean± SD (n¼ 3)
(�p< 0.05, ��p< 0.01, ���p< 0.001 and ����p< 0.0001).
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LC540 Leydig cells (in vitro). AQP 9 was found to be
significantly upregulated both in vivo and in vitro indi-
cating that hyperglycemia regulates AQP 9 expression.
AQPs 1, 8 and 9 expression in testis is found to be cell
specific and their expression appear to be regulated by
androgens (Badran and Hermo 2002). Oxidative stress
induced AQP 9 and 12 in retina aids in lactic acidosis,
preventing subretinal edema (Hollborn et al. 2012).
Aqp9 Gene Deletion Enhances Retinal Ganglion Cell
(RGC) death and dysfunction induced by optic nerve
crush (Carbrey et al. 2003; Mori et al. 2020). It is clear
from the earlier reports that, AQPs are involved in
maintaining oxidative stress and involved in the patho-
physiology of diabetic complications. Furthermore,
elimination of hydrogen peroxide and ROS accumula-
tion affects oxidative stress and in turn regulates AQPs
(3, 7, 8 and 11) involved in sperm volume regulation,
swelling and tail bending affecting motility (Pellavio
and Laforenza 2021). Aquaporin water channels
expressed in the male reproductive tract plays an
important role in lumen fluid secretion of seminiferous
tubules occurring during testis development and the
fluid movements during spermatogenesis, sperm con-
centration and maturation.

Nuclear factor erythroid 2-related factor 2 (Nrf2)
signaling pathway is the key regulatory process main-
taining oxidative stress and prevents diabetic compli-
cations of multiple organs regulating antioxidant
imbalance (Guo et al. 2021; Li et al. 2021; Mathur
et al. 2021; Zhang et al. 2021). A recent study has
shown that early brain injury after subarachnoid hem-
orrhage in rats, via activation of Nrf2 and inhibition
of AQP4 reduced oxidative stress preventing injury
(Zhang et al. 2020, 2021). Nrf2 plays a critical role in
the long-term recovery of permanent cerebral ische-
mic damage and contribute to neuro protection. The
reactive gliosis and regulation of transmembrane
water channel AQP 4 confers neuro protection via
Nrf2 (Liu et al. 2019). Upregulation of Nrf2 in testis
suppressed oxidative stress and lowered lipid peroxi-
dation. This in turn is shown to ameliorate antioxi-
dant imbalance preventing the impairment of
spermatogenesis and steroidogenesis (Nna et al. 2020;
Arab et al. 2021; Khalil et al. 2021; Nasiri et al. 2021).
We observed a significant decrease in Nrf2 expression
in STZ exposed diabetic rats as shown in earlier stud-
ies (Zhao et al. 2016; Pan et al. 2017). Similarly, a sig-
nificant decrease in Nrf2 expression was observed in
high glucose treated LC540 Leydig cells and this could
be due to oxidative stress following hyperglycemia.
Nrf2 knockout mice exhibited significant diabetes-
induced loss in testicular weight and sperm count, as

well as increased testicular apoptotic cell death com-
pared to wild-type mice indicating its crucial role in
maintaining fertility (Pan et al. 2017).

A proven feature of DM is the reduction in male
fertility, in terms of semen parameters, sperm struc-
tures and testosterone deficiency (Pitteloud et al.
2005; Condorelli et al. 2018). The steroidogenic
enzyme activities 3b-HSD and 17b-HSD were found
to be decreased in diabetic rat testis. Steroid acute
regulatory protein (StAR) transfers cholesterol from
the outer to the inner mitochondrial membrane,
which in turn mediates synthesis of key testosterone
regulating enzymes 3b-HSD and 17b-HSD. 3b-HSD is
a steroidogenic enzyme in rat Leydig cells that cataly-
ses the oxidative conversion of pregnenolone to pro-
gesterone and 17b-HSD aids in the conversion of
androstenedione to testosterone, the main rate-limit-
ing enzymes. Further, in vivo and in vitro gene and
protein expression analysis indicated a significant
decrease in key steroidogenic enzymes 3b-HSD and
17b-HSD along with StAR. This in turn, decreased
testosterone in diabetic rats in concurrence with ear-
lier studies (Nna et al. 2019; Shoorei et al. 2019). It
has also been reported earlier that silencing AQP 11
increased 3b-HSD gene expression and other sperm-
atogenesis related genes (Shannonhouse et al. 2014).
However, the involvement of AQPs and Nrf2 in regu-
lation of male fertility cannot be denied. We hypothe-
size that impairment of testicular steroidogenesis
could be due to AQP 9 regulating Nrf2 therefore, we
knocked down AQP 9 and interestingly we observed a
significant increase in Nrf2, StAR 3b-HSD and 17b-
HSD protein expression. Thus, we conclude that
hyperglycaemia induced oxidative stress upregulates
AQP 9 expression and in turn downregulates Nrf2
leading to impaired testicular steroidogenesis.

Conclusion

Diabetes associated hyperglycemia induced oxidative
stress is a widely proven cause for male infertility.
Although studies address the role of AQPs in sperm-
atogenesis, only handful of studies are available to
show the role of AQPs in steroidogenesis. Our study
showed that, hyperglycemia induced oxidative stress
and, in turn, upregulated AQP 9 resulted in impaired
testicular steroidogenesis. Further, the knock down of
AQP 9 significantly upregulated Nrf2 thereby reduc-
ing oxidative stress and upregulating the expression of
steroidogenic proteins. However, more studies are
required to further understand the molecular
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mechanisms behind AQP 9 mediated regulation of
steroidogenesis under hyperglycemia.

Materials and methods

Chemicals

Streptozotocin (STZ) and cell culture reagents were
purchased from HiMedia Laboratories Pvt. Ltd.,
Mumbai, India. All the other chemicals used were of
analytical grade obtained from Sigma Chemicals
Company, Saint Louis, MO, USA, HiMedia
Laboratories Pvt. Ltd., and Sisco Research Laboratories
Pvt. Ltd., Mumbai, India.

Experimental animals

Adult male albino rats of Wistar strain weighing
200 ± 25 g (10–12weeks old) were used in this study.
The animals were maintained under standard condi-
tions of humidity, temperature (25 ± 2 �C) and light
(12 h light/dark). The animals were housed in large
spacious cages bedded with husk and fed with a
standard pellet diet with free access to water. The ani-
mals were randomly divided into three groups with
six animals each and citrate buffer treated animals
served as controls (Group I; control), Group II (DM)
animals received intraperitoneal (i.p) injection of
60mg/kg body weight Streptozotocin (STZ) dissolved
in 0.1M Citrate buffer. Group III (DMþ INS) animals
received intraperitoneal (i.p) injection with 60mg/kg
body weight STZ dissolved in 0.1M Citrate buffer
along with 2U/kg b.w of Insulin subcutaneously
(Lantus; Sanofi-Aventis, France) after 48 h on alternate
days for 4weeks. The serum glucose levels of control,
DM and DMþ INS were measured before the start of
experiment (0th day) and after administration of STZ
at 1st, 2nd, 3rd and 4th weeks by tail vein bleed, using
ONE TOUCH Select glucometer (Life Scan, Europe).
The serum glucose levels higher than 200mg/dl were
considered diabetic (Qinna and Badwan 2015). The
animals were sacrificed with overdose of ketamine
intramuscularly after the study period of 4weeks and
the organs isolated were stored at �80 0C until the
experiment. The serum testosterone levels were esti-
mated by using enzyme immunoassay test kit (Alpco
Diagnostics, USA) as per manufacturer protocol.

Cell culture and transfection

The LC-540 rat Leydig cells were purchased from
National Centre for Cell Science (NCCS, Pune). Rat
testis Leydig cells (LC-540) were cultured in a

humidified atmosphere containing 5% CO2 in a com-
plete medium composed of MEM Eagle (Earle’s BSS)
supplemented with 2mM L-glutamine, 0.1mM non-
essential amino acids (NEAA), 1mM sodium pyruvate,
100U/mL penicillin, 100mg/mL streptomycin, and
10% fetal bovine serum (Sadasivam et al. 2015). To
determine the effect of experimental hyperglycaemia on
AQPs expression in LC540 rat Leydig cells, the growth
medium was replaced by serum free medium and cells
were exposed to different concentrations of glucose
(1mM, 5.5mM, 20mM and 30mM) of which 5.5mM
served as control and 30mM mannitol as an osmotic
control for 24h. For the AQP 9 knockdown experi-
ment, LC540 cells were transfected with AQP 9 siRNA
(Eurogentec, Belgium) or Silencer negative control
(Sigma Aldrich, USA). siRNAs were obtained as
annealed oligos and transfected at a final concentration
of 60nM. The transfection of siRNA was performed
using lipofectamine RNAiMAX reagent according to
the manufacturer’s protocol (Invitrogen, Thermo Fisher
Scientific, Inc.) (Hattori et al. 2017).

Preparation of tissue homogenate and cell extract

Briefly, cell extracts from LC540 cells and the tissue
homogenate from testes were prepared in lysis buffer
(10mM Tris, pH 8.0, 140mM NaCl, 5mM MgCl2,
0.2mM EDTA, 0.5% NonidetP-40, 20% glycerol,
1mM phenylmethylsulfonylfluoride, protease and
phosphatases inhibitors). The cell extract/tissue hom-
ogenate was centrifuged and the supernatant was used
for further analyses.

Estimation of protein

The total protein from the tissue extracts was esti-
mated accorrding to Lowry et al. (Lowry et al. 1951).
Briefly, 0.1mL of the diluted tissue homogenate was
made up to 1mL with water. To this, 4.5mL of alka-
line copper reagent (2% Na2CO3 in 0.1N NaOH was
mixed with 0.5% CuSO4 containing 1% sodium potas-
sium tartrate in the ratio of 50:1) was added, mixed
and allowed to stand at room temperature for 20min.
Later, 0.5mL of Folin’s Ciocalteau reagent was added
and shaken well. The blue colour complex formed was
measured at 640 nm after 15min against the blank
with biospectrometer basic (Eppendorf, Germany).

Assay of enzymatic antioxidant - superoxide
dismutase (SOD)

The enzyme was assayed according to the method of
Marklund and Marklund (Marklund and Marklund
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1974). The degree of inhibition of auto-oxidation of
pyrogallol, in an alkaline pH by SOD was used as a
measure of the enzyme activity. The enzyme activity
is defined as units/mg protein, where one unit is equal
to the amount of enzyme required to inhibit auto oxi-
dation of pyrogallol by 50%. The assay was performed
and the absorbance was read at 470 nm at different
time intervals in an ELISA iMARKTM microplate
reader (Bio-Rad, USA).

Assay of enzymatic Antioxidant - Catalase (CAT)

The activity of catalase was assayed by the method of
Sinha (Sinha 1972). The assay is based on the fact
that chromic acetate is formed reducing dichromate
in acetic acid in the presence of H2O2. The chromic
acetate thus formed was measured at 610 nm in an
ELISA iMARKTM microplate reader (Bio-Rad, USA).
The activity of catalase was expressed as mmoles of
H2O2 consumed/min/mg protein.

Assay of lipid peroxidation (LPO)

Thiobarbituric acid (TBA) was used to estimate LPO
following the procedure of Hogberg et al. (Hogberg
et al. 1974). The intensity of oxidative stress is pro-
portional to the malondialdehyde (MDA) formed, an
end product of peroxidation of lipids. MDA reacts
with TBA to generate a coloured product that absorbs
at 532 nm was read in an ELISA iMARKTM microplate
reader (Bio-Rad, USA). The ferrous sulphate and
ascorbate induced LPO system contained 10mM fer-
rous sulphate and 0.2mM ascorbate as inducers
(Devasagayam and Tarachand 1987). The lipid perox-
ides were expressed as nmoles of MDA formed/
mg protein.

Estimation of 3b -hydroxysteroid dehydrogenase
(3b-HSD)

The activity of testicular 3b-HSD was measured by
the method of Shivanandappa and Venkatesh
(Shivanandappa and Venkatesh 1997). The assay buf-
fer containing 0.1M Tris HCl (pH 7.8), 500 mM
NADþ, 0.08% iodonitrotetrazolium chloride in 1%
Tween 20 and 0.1mM pregnenolone was made up to
a final volume of 3mL. To which 50 mL of the enzyme
was added and incubated at 37 �C for 60min. And
then, 2mL of phthalate buffer was added to stop the
reaction. The mixture was centrifuged at 3000 rpm for
20min and the supernatant was read at 490 nm with
Biospectrometer basic (Eppendorf, Germany). The

activity of 3b-HSD was calculated from the standard
curve of NADH and expressed as nmoles of NADH
formed/min/mg protein.

Estimation of 17b-hydroxy steroid dehydrogenase
(17b-HSD)

The activity of testicular 17b-HSD was determined by
the method described previously (HU 1974). Briefly,
the reaction mixture was prepared with 100mL of
LC540 cell lysate, 200mL of 0.5 mM NADPH, to a final
volume of 3mL 100 mM phosphate buffer (pH 7.4).
The reaction was initiated by the addition of 100mL
of 0.8 mM androsten-3,17-dione and the decrease in
absorbance of NADPH was followed at 340 nm at
20 sec intervals for 5min with Biospectrometer basic
(Eppendorf, Germany). The enzymatic activity of 17b-
HSD was given as nmoles of NADPH oxidized/min/
mg protein.

Extraction of RNA and analysis of the gene
expression by quantitative real time polymerase
chain reaction (qRT-PCR)

Briefly, the total RNA from testes and LC540 cells
were isolated according to instructions from the RNA
isolation kit (One step RNA TRIzol Reagent; Biobasic
Inc., Markham Ontario, Canada). First-strand cDNA
synthesis was performed using the iScript cDNA syn-
thesis kit Bio-Rad Laboratories, Inc., USA) following
the manufacturer’s protocol. The real-time amplifica-
tion of the cDNA was achieved using SSO Advanced
Universal SYBR Green Supermix according to the
manufacturer’s protocol (Bio-Rad Laboratories, Inc.,
USA). The Insta Q96 Himedia Real-Time PCR (RT-
PCR) (HiMedia Laboratories Pvt. Ltd., Mumbai,
India) was used to analyse the gene expression with
specific sets of primers used for target of primers
genes are given in Table 1. Fold differences in target
genes expression were calculated using the formula
2DDCt. The expression of target genes were normalized
with respective internal controls.

Western blot analysis

Proteins from cell extract/tissue homogenate were sep-
arated by SDS-PAGE and subsequently electroblotted
onto nitrocellulose membranes. Membranes were
blocked for 1 h at room temperature in 1� TTBS
(20mM Tris, pH 7.4, 150mM NaCl, 0.1% Triton X-
100) supplemented with 5% non-fat dry milk. After
blocking, membranes were incubated overnight at
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4 �C, with specific primary antibodies listed in Table
2. Membranes were washed four times for 10min in
TTBS and subsequently incubated for 3 h at room
temperature with a secondary alkaline phosphatase-
conjugated antibody and the proteins were visualized
using 5-Bromo-4-chloro-3-indolyl phosphate (BCIP/
NBT) chromogen substrate (Sigma Chemicals
Company, Saint Louis, MO Inc., USA). Lab image
platform ver 2.1 software by Kapelan Bio-Imaging
GmbH was used for densitometric analysis. The
expression of each target protein were normalized
with corresponding internal control.

Data analysis

The values are expressed as mean ± standard deviation
(SD). Graph pad Prism 9.0 software was used to
determine the differences between the groups assessed
by one-way ANOVA. Inter-group comparisons were
performed using Tukey’s multiple comparisons test.
Values were considered significant at p ˂ 0.05.

Ethics approval for animal study

Experimental animals were handled according to uni-
versity and institution legislation, regulated by the
committee for the purpose of Control and Supervision
of Experiments on Animals (CPCSEA), Ministry of

Social justice and Empowerment, Government of
India (BDU/IAEC/P04/2018).
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Table 1. Primer sequences for target gene – real time PCR.
Gene Sense (5’-3’) Antisense (5’-3’)

AQP 0 GCTCCTGCTATCCTCACCAG CAGCTTTTACAGGGCCTGAG
AQP 1 CTTACCTCCAGGACCCTTCC TAGCTCATCCACACGTGCTC
AQP 2 GCTGTCAATGCTCTCCACAA GGAGCAACCGGTGAAATAGA
AQP 3 AGCAGATCTGAGTGGGCAGT CTTGGGCTTAAGAGGGGAAC
AQP 4 CGGTTCATGGAAACCTCACT CATGCTGGCTCCGGTATAAT
AQP 5 TCTGGGTAGGGCCTATTGTG CAGCTCGATGGTCTTCTTCC
AQP 6 GTCAACGTGGTCCACAACAG TGCAAACTTCCCAACAATGA
AQP 7 GCAGGTGGAGAACTGTTGGT TGTGTTCATGCCTAGGGACA
AQP 8 TGGAACCTGGAACTCCTTTG AGTACGCATGGACTGGGTTC
AQP 9 CTCAGTCCCAGGCTCTTCAC ATGGCTCTGCCTTCATGTCT
AQP 11 TTTGGGCACCTTTCAAACTC GAATGAGCCTTTTCCAGCAG
AQP 12 GGGAGCTCAGCGAACTACAC AGGATTGAAGAAGGCAGACG
Steroidogenic Acute Regulatory Protein (StAR) AGCCAGCAGGAGAATGGAGAT CACCTCCAGTCGGAACACCTT
3b- Hydroxysteroid Dehydrogenase (3b-HSD) AACTGGTCTTCAGGTCACCAAGAA GTCCCCTGCACCTTGTTCA
17b- Hydroxysteroid Dehydrogenase (17b-HSD) CCTTTGGCTTTGCCATGAGA CAATCCATCCTGCTCCAACCT
b-Actin AAGATCATTGCTCCTCCTG AAAGAAAGGGTGTAAAACGC

Table 2. Primary and secondary antibodies used for western blotting (source and dilutions).
Antibody details Cat.no Dilution

AQP 9 Antibody (H-40); Rabbit polyclonal antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) SC-28623 1:500
Anti-StAR Antibody (StAR) (D-2); Mouse monoclonal antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) SC-166821 1:200
Anti-3b-HSD Antibody (3b-HSD) (37-2); Mouse monoclonal antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) SC-100466 1:500
Anti-17b-HSD Antibody (17b-HSD) (A-5); Mouse monoclonal antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) SC-376719 1:200
Anti-b-Actin Antibody (b-actin) (AC-15); Mouse monoclonal antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) SC-69879 1:500
Rabbit Anti-Nrf2, NFE2L2; polyclonal antibody (Bioassay Technology Laboratory, China) BT-AP02152 1:200
Goat Anti-Mouse IgG H&L Alkaline Phosphatase; Secondary antibody (Abcam, Cambridge, UK) ab97020 1:5000
Goat Anti-Rabbit IgG H&L Alkaline Phosphatase; Secondary antibody (Abcam, Cambridge, UK) ab6722 1:2000
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