ORIGINAL ARTICLE

Comprehensive metabolite profiling and therapeutic potential of black gram (*Vigna mungo*) pods: conversion of biowaste to wealth approach

Manikandan Arumugam¹ · Dinesh Babu Manikandan¹ · Sujitha Mohan¹ · Arun Sridhar¹ · Srinivasan Veeran¹ · Sudharshini Jayaraman¹ · Thirumurugan Ramasamy¹

Received: 11 March 2022 / Revised: 9 May 2022 / Accepted: 11 May 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022, corrected publication 2022

Abstract

The risk faced by the drug-resistant pathogens, research, and development for viable alternative medicine is gaining traction. This study aims to utilize agricultural waste beneficially, by investigating the methanol, ethanol, acetone, ethyl acetate, petroleum ether, and hexane extracts of black gram pods by gas chromatography-mass spectrometry (GC-MS), and Fourier transform infrared (FT-IR) analysis to identify metabolites and functional groups and to evaluate its antibacterial and antibiofilm potential on various fish disease-causing drug resistant pathogens like Aeromonas hydrophila, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Numerous compounds were identified as major peak area percentage by GC-MS analysis based on the polarity. Methanolic and ethanolic extracts of black gram pods showed higher phenolic and tannin content compared to other solvents, these results correlate with antioxidant potential. IC₅₀ values of both 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) by the methanolic extracts possessed 933.807 and 976.285 µg/mL respectively. All the extracts possessed potential antibiofilm activity against A. hydrophila, K. pneumoniae, P. aeruginosa, and S. aureus in a dose-dependent manner. This study clearly shows that phenolic content is the major source for the inhibition of bacterial cell adherence (biofilm) against pathogens. Extraction in highly polar solvents exhibited higher content of phenols and tannins as compared to non-polar solvents. Findings of the current study support black gram pods as an excellent alternative medicine against fish disease-causing pathogens. It is proved in this study that the biowaste black gram pods could be recycled for the welfare of humans as well as for the growth of the country's economy.

Keywords Black gram pods · Antioxidant · Antibacterial · GC-MS · Tannin and phenolic content

1 Introduction

Metabolites comprise aromatic rings with hydroxyl groups that are known as phenolic and flavonoid compounds [1]. Hydroxyl radicals of phytochemicals can directly exhibit antioxidant activity through the phenolic substances, which are excellent electron donors [2]. Both edible and non-edible portions of plants contain considerable amounts of phenolic compounds [3]. Plant products possess high phenolics, and thus fruits, herbs, vegetables, and other plant materials are

increasingly being used in industrial phenolic extraction. Using important horticultural crops that are also human food resources for phenolic production or extraction poses significant legal and cultural concerns [4]. For emerging and developing countries, this would be a very expensive endeavor. Increased phenolic production might divert important fruits and vegetables from the food supply. Bioactive phenolic metabolites could also be synthesized or extracted from agro-industry wastes. Every year, large quantities of these materials such as seeds, peels, pods, and husks are created as wastes and are either inadequately collected or left to decompose on the ground [5–7]. These materials are gaining more attention as readily available and inexpensive renewable sources for the synthesis of value-added compounds [8]. Numerous investigations have shown that bioactive compounds may be recovered from food processing or plant

Published online: 24 May 2022

[☐] Thirumurugan Ramasamy ramthiru72@bdu.ac.in

Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India

harvesting by-products such as banana peels [9], cauliflower wastes [10], garlic husks [11], and broccoli wastes [12].

The disease outbreaks are the most common difficulty in the process of freshwater fish farming [13]. Aeromonas hydrophila, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae are the most diseasecausing pathogens in freshwater fish. Antibiotics are widely used to treat diseases in fish farming [14, 15]. Rasul and Majumdar. [16] reported that long-term usage and unsuitable dosages of antibiotics may have negative impacts on environmental consequences. To overcome these limitations, natural phytochemicals isolated from plant materials could be an excellent alternative to antibiotics [17, 18]. Plantbased metabolites evolved to act as ligands for a diverse set of molecular targets, resulting in a high level of molecular promiscuity [19]. This multi-target characteristic is critical for phenols with antibacterial potential and synergistic effects with conventional antibiotics [20]. Black gram (BG) (Vigna mungo) is an Indian-originated fast-growing warmseason legume belonging to the Fabaceae family and genus Vigna. India is the world's largest source of BG, accounting for 70% of global gross domestic production [21]. BG is mainly cultivated in Tamil Nadu (southern part of India) and it has diversified biological properties like nutritive, bulk enhancer, diuretic, and aphrodisiac [22]. As a consequence, a massive chunk of black gram pods (BGP) is disposed in landfills. Phenolic acids may be found in a wide range of plant-based meals, with the largest amounts found in seeds, fruit peels, husks, shells, pods, and vegetable leaves. They are often found in combined forms such as amides, esters, or glycosides that are rarely seen in free form [23]. These phenolic acids are non-flavonoid polyphenolic compounds that can be further classified as hydroxybenzoic acid and hydroxycinnamic acid derivatives [24, 25]. Most phenolic acids found in legumes are associated with cellulose, protein, lignin, or smaller biomolecules like sugar, quinic acid, and maleic acid via ester, ether, or acetyl bonds which are released through alkali, acid, and enzymatic hydrolysis [26]. Black gram seed husks and pods have greater levels of phytohormone C-glycosyl flavones such as vitexin and isovitexin, which have anticancer properties by protecting DNA and blood platelets from lipid peroxidation [27]. Approximately 2–3 kg of pods yielded 1 kg of black gram (from crop protection guide, Tamil Nadu Agricultural University, Tamil Nadu, India). Production-related factors like seed weight, number of seeds per pod, and seed indices have a big impact on seed yield/plant [28]. Since various solvents produce extracts with varying antioxidant activity, the ability of extracts to prevent lipid oxidation may vary [29]. To our knowledge, no previous research has been conducted to evaluate black gram pods (BGP) or their features. Therefore, the present study is conducted to investigate the chemical composition of the various extracts of black gram pods by

using GC-MS and FT-IR for the identification of metabolites, and functional groups respectively and to analyze its total phenolics, total tannins, and in-vitro antioxidant, antibacterial and biofilm inhibitory potential.

2 Materials and methods

2.1 Collection of black gram pod wastes and preparation of extracts

Black gram pod (BGP) wastes were collected from Nemmeli village (10°55′04.0″N 79°37′16.0″E) in Tiruvarur district, Tamil Nadu, India. The black gram pods were harvested, and shade dried at 37 °C before being coarsely pulverized. The powder was sieved with 0.2-mm sieve plates and stored at -20 °C for later use. The extracts were made from powdered BGP using a cold maceration procedure with six solvents (10:90 W/V): petroleum ether, methanol, ethyl acetate, ethanol, acetone, and hexane [30]. The solvents chosen for this study depend on the nature of the bioactive metabolites, type, and part of the plant [31]. Moreover, based on the polarity, these solvents used for this study are from least polar to higher polar. Non-polar solvents such as hexane (0.009) and petroleum ether (0.117) were used in non-polar compound extraction, whereas polar solvents such as methanol (0.762) and ethanol (0.654) were utilized in polar compound extraction. And the mid-polar solvents (partially polar/non-polar) like acetone (0.355) and ethyl acetate (0.228) were used to extrude mid-polar compounds [32]. The filtrate was collected via Whatman No. 1 filter paper prior to getting concentrated at around 40 °C in a rotary vacuum evaporator under lower pressure until agglomerates were obtained. To remove superfluous solvents, the extracts were dried and stored at 4 °C for future investigations.

2.2 Primary Phytochemical analysis

Steroids A total of 250 mL conc. H_2SO_4 was added slowly after 0.5 mL crude extract was combined with 2 mL chloroform. The layer formed by H_2SO_4 turned yellow coloured green fluorescence, whereas the upper layer turned red indicating the presence of steroids [33].

Terpenoids A total of 2 mL chloroform was added to 1 mL crude extract. Then 2 mL of conc. H₂SO₄ was cautiously added and gently shaken. The presence of a reddish-brown steroidal ring demonstrates the existence of terpenoids [33].

Reducing Sugar In a test tube, 2 mL of the extract solution was added to 5 mL equal volumes of Fehling's solutions I and II and heated for 2 min in a water bath. The prevalence

of reducing sugars was shown by the brick-red precipitate [34].

Alkaloids Various extracts were filtered after being mixed with 2 mL dilute Hydrochloric acid. And in 2 mL of filtrate, few drops of Hager's reagent were added. The presence of bright yellow precipitate indicated that the test was positive [35–37].

Flavonoids A total of 2–3 mL of extract filtrate was treated with a piece of magnesium ribbon along with 1 mL of conc. HCl. The presence of flavonoids was detected by the pinkred/crimson colouring of the solution [38].

Saponins In a test tube, 1 mL of crude extract was combined with 5 mL of distilled water and violently shaken for 30 s. The existence of saponins was determined by the production of stable foam formation [33].

Tannin The occurrence of tannins was determined by mixing 1 mL of the extract with few drops of freshly produced ferric chloride (5%) and observing the development of a bright blue or bright green colour [33].

Phenol Few drops of 5% lead acetate were added to 1 mL of crude extract, and the formation of yellow-coloured precipitate showed the existence of phenol [39].

Anthraquinones Five milligrams (5 mg) of the powdery extract was warmed in a water bath for 5 min with 10% HCl. After that, it was filtered and cooled down. To the filtrate, an equal volume of CHCl₃ was added followed by few drops of 10% NH₃, and then the mixture was gently heated. The appearance of pink colour confirmed the presence of anthraquinones [34].

2.3 Characterization of the BGP extracts

2.3.1 FT-IR analysis

The KBr pellet method was employed to investigate the functional groups associated with the BGP extracts using a Fourier transform infrared (FT-IR) spectrophotometer (Perkin Elmer, USA) in spectra of 4000–500 cm¹.

2.3.2 GC-MS analysis of BGP extracts

Gas chromatography—mass spectrometry examination of BGP extracts was performed using a Shimadzu (QP2020) coupled with a mass spectrometer. A 30 m long, 0.25 mm inner diameter, and 0.25 mm film thickness SH-Rxi-5Sil-MS capillary column covered with 100% polydimethylsiloxane was adopted. The oven temperature was fixed at 50 °C initially, and then

steadily increased to 280 °C at a rate of 6 °Cmin⁻¹, with a final hold time of 2 min. The temperature of the injector was 250 °C. At a pressure of 68.1 kPa, helium was used as the gas phase, with a flow rate of 1.2 mL/min and a linear velocity of 39.7 cm/s. In total, 100 μ L of extracts was dissolved in the appropriate solvents and filtered through a syringe filter (0.25 μ m) to remove contaminants. The prepared sample was also put into GC with a 1:10 split ratio. At 70 eV, the mass spectrum was obtained via electron ionization. The ion source was applied at 200 °C constantly. To interpret the metabolites, the mass spectrum of each chemical detected in extract was interpreted and matched with reference spectra in the NIST 2005 MS collection [40]. The overall average area to total area ratio was used to calculate the relative % of each compound.

2.4 In vitro antioxidant activity

2.4.1 DPPH scavenging assay

The efficacy of BGP extracts to scavenge free radicals was investigated by exposing it to 2, 2-diphenyl-1-picrylhydrazyl (DPPH) using the Brand-Williams et al. [41] technique. In 96-well plate, 100 μ L of BGP extracts were prepared at 200, 400, 600, 800, and 1000 μ g/mL concentrations. The standard used was ascorbic acid (Vitamin-C). Each well acquired 100 μ L of freshly prepared DPPH (1 mM) suspension. The solution was placed in the dark and incubated at 37 °C for 30 min. The shift in a hue of the solution from violet to yellow indicated that reactive oxygen species had been banished, and it was measured at 517 nm in Synergy HT Multimode Reader (Biotek, Winooski, USA). Following that, the percentage of scavenging capability of the BGP extracts was calculated using the following equation.

$$\%Scavenging = [Ac - As \div Ac] \times 100 \tag{1}$$

where Ac is the absorbance value of control, and As is the absorbance value of the sample (BGP extracts).

2.4.2 ABTS radical scavenging assay

The antioxidant capabilities of several BGP extracts were determined using the ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) radical's cationic decolorization experiment [42]. In total, 7 mM ABTS was prepared in ethanol and blended with 88 mL potassium persulphate solution (140 mM) at dark room temperature (RT) condition, and the reaction mixture was incubated for 14 h. For each experiment, the ABTS solution was diluted in ethanol (1:89 v/v) to yield an absorbance of 734 nm. Then, 100 μ L of different solvent extract concentrations (200, 400, 600, 800, and 1000 μ g/mL) were mixed with 2.0 mL of ABTS⁺ solution, accordingly. Then the reaction was incubated for

10 min before the absorption was assessed at 734 nm. Vitamin C was used as the reference. The formula was utilized to calculate the scavenging potential (1).

2.5 Determination of total phenol and total tannin content of the BGP extracts

The total phenolic content (TPC) of the BGP extract was measured using the modified Klompong and Benjakul technique [43]. A total of 100 μL of extract were mixed with 900 μL of deionized water. Then, 500 μL of Folin-phenol Ciocalteu's reagent was added to the mixture. Following a 5-min incubation period, 10 mL of 7.5% Na₂CO₃ solution was mixed properly and incubated for 30 min at RT. The absorbance was measured at 750 nm using a UV visible spectrophotometer Synergy HT Multimode Reader (Biotek, Winooski, USA). The total phenolic content of extracts was expressed as milligram gallic acid equivalent (GAE)/100 g using gallic acid as the standard.

The total tannin content (TTC) of the different BGP extracts was investigated using the Folin-Ciocalteu phenol reagent as examined by Amorim et al. [44]. In total, $100~\mu L$ of the extract was blended with 8.3 mL of double-distilled water in a test tube, and then 0.5 mL of Folin-Ciocalteu phenol reagent was added and kept at RT for 5 min. A total of 1 mL of 35% Na_2CO_3 solution was added to the test tube. The mixture was incubated at $25\pm2~^{\circ}C$ for 30 min after being well shaken. The absorbance was measured at 725 nm. As a blank, double distilled water was used. The total tannin content of the extracts was calculated using tannic acid as a reference and represented as milligram tannic acid equivalent (TAE)/100 g.

2.6 Assessment of antibacterial efficacy

2.6.1 Agar well diffusion method

The antibacterial effect of BGP extracts was tested using the agar well diffusion method [45] against *A. hydrophila*, *P. aeruginosa*, *S. aureus*, and *K. pneumoniae* fish microbial pathogens. These strains were obtained from Microbial Type Culture Collection (MTCC), Chandigarh, India. A standard antibiotic, streptomycin (1 mg/mL), was used to calculate the inhibition zones. Inoculating a loopful of each tested bacteria in a 10 mL nutrient broth medium yielded the working culture, which was then cultured at 37 °C for 24 h. The agar plates were prepared with cultured pathogens. The BGP extracts were diluted in DMSO at doses of 250, 500, 750, and 1000 µg/mL in a sequential manner and loaded in wells formed in agar well plates and incubated overnight.

The diameter of inhibition zones was used to determine antibacterial activity.

2.6.2 Determination of minimum inhibitory concentration

A sterile 96-well microtiter plate with resazurin as a cell growth indicator was used to determine the minimum inhibitory concentration (MIC) values for all BGP extracts [46]. By transferring 100 µL of nutrient broth in a 96-well microtiter plate, the experiment was carried out in a sterilized laminar airflow chamber. The first two rows were served as checkpoint. In the third row of the plate, a volume of 100 μL of various extracts (10 mg/mL) in 10% (v/v) DMSO was added, and serial dilutions were performed. Ten microliters of bacterial inoculum (10⁶ CFU/mL) was added to each well and followed by 10 µL of resazurin solution (10 mg/ mL). The microtiter plate was then gently wrapped in an aluminium wrapper to prevent bacterial culture dehydration, and the plates were incubated for 24 h at RT in an incubator. The wells were visually checked for color change and shifts from purple to pink or colorlessness were deemed positive. The MIC value was established by identifying the lowest concentration of extract at which color change occurred. To establish the average MIC value of the BGP extracts, all experiments were performed in triplicate.

2.6.3 Effects on growth of the various BGP extracts on microbial cultures

Using the modified procedure of Qayyum et al. [47], the growth of *A. hydrophila*, *P. aeruginosa*, *S. aureus*, and *K. pneumoniae* was investigated by comparing both MIC and sub MIC concentrations of BGP extract. Microbial cultures were loaded into tubes overnight to obtain final inoculum of 10^6 CFU mL⁻¹, followed by the addition of extracts depending on the MIC and sub-MIC values obtained and incubated at 37 °C. Growth was measured by a UV—visible spectrophotometer (Synergy HT Multimode Reader, Bioteck instrument, Winooski, VT, USA) by reading at 600 nm every 2 h for 24 h. The effect of the BGP extracts on bacterial growth was studied in triplicates with untreated microbial culture as a control.

2.6.4 Inhibition of biofilm formation and development

Various BGP extracts were tested for their ability to prevent cell attachments (Antibiofilm) using a slightly modified approach by Lewis Oscar et al. [48]. Solvent extracts concentrations vary from 200 to 1000 µg/mL were used for antibiofilm evaluation against *A. hydrophila*, *P. aeruginosa*, *S. aureus*, and *K. pneumoniae*. Each well of a 96-well microtiter plate was loaded with 100 µL

of BGP extracts and an equal volume of bacterial culture $(10^6 \text{ CFU mL}^{-1})$ (total volume in each well was 200 µL). In blank wells, 200 µL of Mueller Hinton Broth (MHB) without bacterial inoculum was added. To allow the cells to adhere to the surface, the plates were cloaked loosely with parafilm. The plates were incubated at 37 °C for 8 h without agitation. Following incubation, the contents of each well were removed. To eliminate non-adherent cells of the microtiter plates, wells were washed thrice with sterilized distilled water before being oven-dried for 45 min at 60 °C. The adhered wells were stained with 200 μL of 1% crystal violet and incubated at RT for 15 min to confirm the biofilm formation. To eradicate the unabsorbed dye, the plates were washed thrice with sterilized distilled water. A total of 150 µL of 99% ethanol was added to the wells to remove the discoloration. Finally, 100 µL of the de-stained solution from the cultured plate was transferred to a new plate and its absorbance was read at 590 nm using a microplate reader (Synergy HT Multimode Reader, Biotek instrument, Winooski, VT, USA). Each experiment was performed in triplicates. The percentage of inhibition was calculated by using Eq. (1).

2.7 Statistical analyses

The data were analyzed with SPSS 16.0 software and expressed as the mean \pm standard error of the mean (SEM) (SPSS, Chicago, IL, USA). A one-way analysis of variance (ANOVA) was used to compare the triplicate results. A p < 0.05 was used to evaluate the significant differences between the experimental and control groups followed by Duncan's Multiple Range (DMRT) as a post hoc test. Origin Pro 9.0 (OriginLab corp., Northampton, US) was used to create the graphs, which were then rendered using Graphpad prism (GraphPad Software, San Diego, CA, USA).

Table 1 Primary phytochemical screening of various extracts of Black gram pods

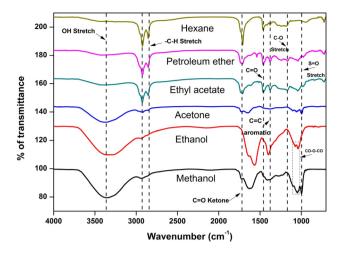
S. No	Name of the phytochemicals	Methanol	Ethanol	Hexane	Acetone	Petroleum ether	Ethyl acetate
01	Steroids	-	-	-	+	-	-
02	Terpenoids	+	+	-	+	+	+
03	Reducing Sugar	+	+	-	+	-	+
04	Alkaloids	+	+	+	-	-	-
05	Flavonoids	+	+	-	+	-	-
06	Saponins	+	+	+	+	+	+
07	Phenolics	+	+	+	+	+	+
08	Tannins	+	+	+	+	+	+
09	Anthraquinone	-	-	-	-	-	-

⁽⁺ present,—absent)

3 Results and discussion

3.1 Primary phytochemical screening

Phenols, tannins, saponins, alkaloids, flavonoids, reducing sugars, terpenoids, and steroids of various BGP extracts through primary phytochemical screening were shown in Table 1. All of the extracts contain phenols and tannins, whereas methanol, ethanol, and acetone extracts contain flavonoids. Methanol, ethanol, and hexane extracts include alkaloids, whereas terpenoids are present in all solvent extracts except hexane. Metabolites have a wide range of functions, including structural application, signal transduction control, communication processes, and the formation of photonic structures via complex molecular identity [49]. Antioxidant, anti-diabetic, anti-inflammatory, neuroprotective, anti-cancer, and gut microbiota-modifying properties were demonstrated by phenolic compounds of the plants [50]. Alkaloids isolated from various plants and seafood solid wastes possess antimicrobial activity and their various approaches confirmed the drug-targeted discovery [51]. Flavonoids can alter the key cellular enzymatic functions due to their anti-inflammatory, anti-oxidative, and anti-carcinogenic properties [52]. Tannins are used to heal wounds and may have antimicrobial, antiseptic, anti-inflammatory, and other cardio-protective properties [53]. Because of their possible antioxidant effects, flavonoids are utilized to treat cancer [54]. These bioactive compounds are found in most extracts naturally and have been demonstrated to have multiple bioactivities such as antioxidants, antibacterial and antiinflammatory against human diseases [55, 56]. Secondary metabolites are used by plants to defend themselves against diseases. As a result, they have the ability to prevent the proliferation of particular microbes partially or totally. This type of activity is likely to extend to animal and human diseases as well [57].



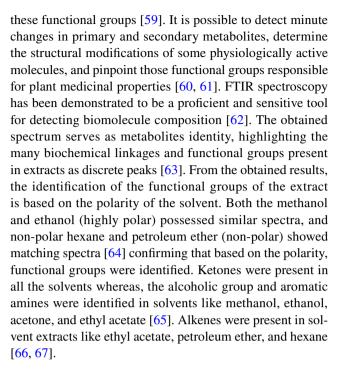
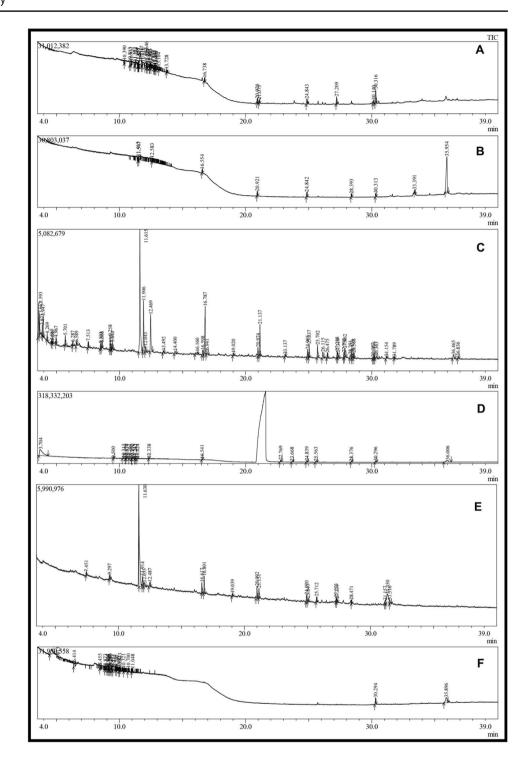

Fig. 1 FT-IR spectrum of black gram pod extracts

Table 2 Functional group of BGP extracts spectral peaks obtained through FT-IR analysis

S. No	Wavelength (cm ⁻¹)	Peak assignment	Functional group
1	3391.11	ОН	Alcohols and phenols
2	2886	С–Н	Alkenes
3	1603.15	C = O	Ketones
4	1482.57	N–H	Amide and amines
5	1398	C = C	Aromatic amines
6	1046	CO-O-CO (-C-H bend)	Anhydrides Alkane
7	1040	CO-O-CO (C-N)	Aromatic amines
8	1034.43	C-N	Aliphatic amines
9	1037.06	S = O	Sulfoxide
10	921.75	О–Н	Carboxylic acids
11	765.51	С–Н	Fatty acids and proteins
12	652.11	C–Br	Alkyl halides

3.2 FT-IR analysis

FT-IR spectroscopy has been used to detect the probable functional groups present in the various BGP extracts. Figure 1 shows the IR spectrum of extracts acquired in the range from 4000 to 500 cm⁻¹. Methanol, ethanol, and acetone extracts had a strong peak with high-intensity bands due to the polarity. The peak assignment and its functional groups were given in Table 2. The presence of the various spectrums indicated phytochemical metabolites like phenols, alkaloids, tannins, saponins, and flavonoids. The functional groups reported vibrational modes could be fragmentation linked to the basis of metabolites composition [58]. These findings were linked to the extracts' antioxidant and antibacterial capabilities owing to the existence of



3.3 GC-MS analysis of BGP extracts

GC-MS chromatogram detected the existence of metabolites in various BGP extracts were shown in Fig. 2. In this study, around 120 bioactive compounds were identified including hexane (20), acetone (30), petroleum ether (20), methanol (20), ethyl acetate (10), and ethanol (50). Major peak area (%) obtained compounds in hexane extracts were diacetone alcohol (66.44%) used as a pheromone compound in the cosmetics production [68], tetratetracontane (14.45%), a potential antibacterial [69] and antifungal agent [70]; acetone extracts were azulene (23.42%) acts as the anti-inflammatory agent [71]; anti-cancer activity [72]; anti-microbial property [73], 3,7,11,15-tetramethyl-2-hexadecen-1-OL (8.65%) possess anti-bacterial activity [74], methyl palmitate (4.29%) shows antimicrobial agent [75], -5-nonadecene (4.48%) exhibits anti-bacterial activity [76]; petroleum ether extract was 1-isopropoxy-2-propanol (14.44%) no biological reports available, methyl propyl ether (6.95%) no biological reports available, 3,7,11,15-tetramethyl-2-hexadecen-1-OL (4.74%) possess anti-bacterial activity [74]; tetracontane (14.52%) exhibits anti-fungal, anti-inflammatory property [77]; methanol extracts were naphthalene (38.25%) possess carcinogenic activity [78]; 1-hexadecene (8.29%) and cholesterol (14.76%) involve in homeostasis [79]; cholest-5-en-3-ol (3beta)- and propanoate (2.75%) no biological reports available, and methyl palmitate (1.35%) shows antimicrobial agent [75]; ethyl acetate extracts were tetratetracontane (68.40%), a potential antibacterial [69] and antifungal agent [70]; 1-hexadecene (3.27%); ethanol extracts were naphthalene (24.22%) possess carcinogenic activity

Fig. 2 GC-MS chromatogram of the various black gram pod extracts. A acetone, B ethyl acetate, C ethanol, D hexane, E methanol, F petroleum ether

[78]; 5-hydroxymethylfurfural (6.91%) exhibits antibacterial [80] and antifungal activity [81]; heptadecane (4.47%) shows antibacterial and antioxidant activity [82]; hexadecane (8.80%) possess antibacterial activity [83], respectively. These compounds are from many chemical classes, and most of them have been reported to have significant biological activity. These bioactive compounds have various functions like anti-basal activity, anti-microbial, antioxidants,

anti-fungal, anti-inflammatory, and larvicidal. Multiple agents like an anti-microtubule agent, antibiofilm agent, anti-virulence agent, anti-Alzheimer's agent, anti-proliferative agent, and essential body metabolites (Tables 3, 4, 5, 6, 7, and 8). This discrepancy in bioactive compounds could be due to the compounds' volatility or the extraction solvent [84]. The GC–MS results from the various BGP extracts revealed that they all contained essentially the same

Table 3 GC-MS analysis of BGP hexane extract. (- Not available) (Boldface compounds have higher peak area %)

S. No	Name of the compound	Molecular formula	Molecular weight	Retention time	Peak area (%)	Biological applications
1	Diacetone alcohol	$C_6H_{12}O_2$	116.16	3.704	66.44	Pheromone compound [87]
2	3,7-Dimethyloctan-1-ol	$C_{10}H_{22}O$	158.28	9.500	1.30	Odorant binding protein [88]
3	3-Decylsulfinyltetrahydrothio- phene-4-ol 1,1-dioxide	$C_{14}H_{28}O_4S_2$	324.5	10.315	0.90	Drug/therapeutic agent [89]
4	Butyronitrile	C_4H_7N	69.11	10.490	0.58	Antioxidant activity [90]; antimicrobial activity [91]
5	2,2-Difluorocycloheptan- 1-one	$C_7H_{10}F_2O$	148.15	10.574	0.57	Synthetic used for drug optimization [92]
6	Butyronitrile	C_4H_7N	69.11	10.761	0.24	Anti-oxidant activity [90]; anti- microbial activity [91]
7	Butyronitrile	C_4H_7N	69.11	10.952	0.26	Anti-oxidant activity [90]; anti- microbial activity [91]
8	Butyronitrile	C_4H_7N	69.11	10.990	1.04	Anti-oxidant activity [90]; anti- microbial activity [91]
9	2,2-Difluorocycloheptan- 1-one	$C_7H_{10}F_2O$	148.15	11.213	0.39	Synthetic used for drug optimization [92]
10	Diallyl oxalate	$C_8H_{10}O_4$	170.16	11.262	0.57	Anti-oxidant, anti-obesity and hepatoprotective property [93]
11	Butyronitrile	C_4H_7N	69.11	11.424	1.09	Anti-oxidant activity [90]; anti- microbial activity [91]
12	Butyronitrile	C_4H_7N	69.11	12.338	0.40	Anti-oxidant activity [90]; anti- microbial activity [91]
13	9-Octadecene	$C_{18}H_{36}$	252.5	16.541	1.13	Anti-dermatophytic activity [94]
14	1-O-Ethyl 2-O-propan-2-yl benzene-1,2-dicarboxylate	$C_{13}H_{16}O_4$	236.26	22.769	2.68	-
15	Phthalic acid, ethyl pentyl ester	$C_{15}H_{20}O_4$	264.32	23.668	1.09	Anti-microbial activity [95]
16	1-Heptadecene	$C_{17}H_{34}$	238.5	24.839	2.14	Repellant [96]
17	Phthalic acid, ethyl pentyl ester	$C_{15}H_{20}O_4$	264.32	25.563	1.77	Anti-microbial activity [95]
18	1-Nonadecene	$C_{19}H_{38}$	266.5	28.376	1.16	Anti-oxidant [97]; Anti-bacterial [98]
19	3,7,11,15-Tetramethyl-2-hexadecen-1-OL	$C_{20}H_{40}O$	296.5	30.296	1.81	Anti-inflammatory, anti-oxidant [99]; anti-microbial [100]; larvicidal activity [101]
20	Tetratetracontane	$C_{44}H_{90}$	619.2	36.006	14.45	Anti-babesial, anti-oxidant [102] and anti-inflammatory activity [103]

compound, which is attributable to the solvents' polarity [85, 86].

3.4 In vitro antioxidant potential

3.4.1 DPPH-scavenging assay

The antioxidant potential of several BGP extracts was revealed in this investigation. The ability of the different BGP extracts to effectively eliminate free radicals was identified based on the determination of the IC_{50} value (Table 9, Fig. 3a). Obtained IC_{50} value of ascorbic acid (94.65 µg/mL) followed by methanol (933.80 µg/mL), ethanol (1163.43 µg/mL), ethyl acetate (1145.65 µg/mL),

acetone (1231.39 µg/mL), hexane (1330.32 µg/mL), and petroleum ether (1634.17 µg/mL). These findings are in accordance with the interaction between phenolic components and antioxidant ability of extracts. By regulating the generation of free radicals, the antioxidant defense system is important for managing a variety of chronic diseases [168]. The phenolic compounds are more soluble in polar solvents; hence they have a higher amount of phenol during extraction [169, 170]. The antioxidant concentration and efficacy are proportional to the amount of color change [171]. The phenolic concentration of the methanolic extract is greater, which can contribute hydrogen to a free radical to scavenge. In recent years, extensive research on the pharmacological actions of plant metabolites has

 Table 4 GC-MS analysis of BGP Acetone extract. (- Not available) (Boldface compounds have higher peak area %)

S. No	Name of the compound	Molecular Formula	Molecular Weight	Retention time	Peak area (%)	Biological Applications
1	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	10.390	1.28	Synthetic used for drug optimization [92]
2	2-(4-Acetamidosulfanylphenyl)- 2-[[(2S)-2-aminopropanoyl] amino]acetic acid	$C_{13}H_{17}N_3O_4S$	311.36	10.813	4.31	-
3	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	10.937	3.16	Synthetic used for drug optimization [92]
4	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	11.187	3.53	Synthetic used for drug optimization [92]
5	Butylamine	$C_4H_{11}N$	73.14	11.274	1.97	Anti-hypersensitive activity & Capping agent for nanoparticles synthesis [104]
6	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	11.457	1.49	Synthetic used for drug optimization [92]
7	Propiolic acid	$C_3H_2O_2$	70.05	11.495	1.27	Anti-hypertensive activity [105]
8	3-Decylsulfinyltetrahydrothio- phene-4-ol 1,1-dioxide	$C_{14}H_{28}O_4S_2$	324.5	11.527	125	Drug/therapeutic agent [83]
9	Azulene	$C_{10}H_{8}$	128.17	11.646	23.42	Cosmetic agent [106]
10	Azulene	$C_{10}H_{8}$	128.17	11.747	4.20	Cosmetic agent [106]
11	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	11.810	0.20	Synthetic used for drug optimization [92]
12	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	12.077	6.53	Synthetic used for drug optimization [92]
13	3-Decylsulfinyltetrahydrothio- phene-4-ol 1,1-dioxide	$\mathrm{C}_{14}\mathrm{H}_{28}\mathrm{O}_4\mathrm{S}_2$	324.5	12.176	2.45	Drug/therapeutic agent [89]
14	3-Decylsulfinyltetrahydrothio- phene-4-ol 1,1-dioxide	$C_{14}H_{28}O_4S_2$	324.5	12.247	3.26	Drug/therapeutic agent [89]
15	Butyronitrile	C_4H_7N	69.11	12.387	1.67	Anti-oxidant activity [90]; anti-microbial activity [91]
16	Bromocyclopropane	C_3H_5Br	120.98	12.425	2.96	-
17	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	12.500	0.26	Synthetic used for drug optimization [92]
18	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	12.725	2.12	Synthetic used for drug optimization [92]
19	3-Decylsulfinyltetrahydrothio- phene-4-ol 1,1-dioxide	$\mathrm{C}_{14}\mathrm{H}_{28}\mathrm{O}_4\mathrm{S}_2$	324.5	12.797	2.01	Drug/therapeutic agent [89]
20	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	12.835	2.12	Synthetic used for drug optimization [89]
21	Butyronitrile	C ₄ H ₇ N	69.11	12.908	3.04	Anti-oxidant activity [90]; anti-microbial activity [91]
22	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	13.104	0.96	Synthetic used for drug optimization [92]
23	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	13.728	0.42	Synthetic used for drug optimization [92]
24	Tetradecane	$C_{14}H_{30}$	198.39	16.738	2.20	Dermal irritant [107]
25	1-Pentadecene	$C_{15}H_{30}$	210.40	20.920	2.19	Pheromone compound also used insect repellent [108]
26	Hexadecane	$C_{16}H_{34}$	226.44	21.075	1.91	Induces hyper Keratinization in tested rodents [109]
27	Z-5-Nonadecene	$C_{19}H_{38}$	266.5	24.843	4.48	Anti-oxidant activity [110];
28	Methyl palmitate	$C_{17}H_{34}O_2$	270.5	27.209	4.29	Anti-radical activity [111]; Anti-cancer activity [112]
29	8,11,14-Docosatrienoic acid, methyl ester	$C_{23}H_{40}O_2$	348.6	30.140	2.40	-

Table 4 (continued)

S. No	Name of the compound	Molecular Formula	Molecular Weight	Retention time	Peak area (%)	Biological Applications
30	3,7,11,15-Tetramethyl-2-hexadecen-1-OL	$C_{20}H_{40}O$	296.5	30.316	8.65	Anti-inflammatory, anti- oxidant [99]; anti-microbial [100]; larvicidal activity [101]

Table 5 GC-MS analysis of BGP Petroleum ether extract. (- Not available) (Boldface compounds have higher peak area %)

S. No	Name of the compound	Molecular formula	Molecular weight	Retention time	Peak area (%)	Biological applications
1	1-Isopropoxy-2-propanol	$C_6H_{14}O_2$	118.17	4.613	14.44	Anti-microtubule activity [113]
2	Methyl propyl ether	$C_4H_{10}O$	74.12	6.414	6.95	Anti-oxidant [114]; anti-proliferative activity [114]
3	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	8.455	3.93	Synthetic used for drug optimization [92]
4	Butyronitrile	C ₄ H ₇ N	69.11	8.873	3.79	Anti-oxidant activity [90]; anti- microbial activity [91]
5	4-Methyl-1,3-thiazol-2(3H)-one	C ₄ H ₅ NOS	115.16	9.054	6.10	-
6	Butyronitrile	C_4H_7N	69.11	9.100	2.63	Anti-oxidant activity [90]; anti- microbial activity [91]
7	2,5-Dimethylpyrazine	$C_6H_8N_2$	108.14	9.160	3.28	-
8	Butyronitrile	C ₄ H ₇ N	69.11	9.247	3.25	Anti-oxidant activity [90]; anti- microbial activity [91]
9	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	9.299	6.92	Synthetic used for drug optimization [92]
10	3-Decylsulfinyltetrahydrothio- phene-4-ol 1,1-dioxide	$C_{14}H_{28}O_4S_2$	324.5	9.413	4.25	Drug/therapeutic agent [89]
11	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	9.533	10.84	Synthetic used for drug optimization [92]
12	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	9.720	3.36	Synthetic used for drug optimization [92]
13	3-Decylsulfinyltetrahydrothio- phene-4-ol 1,1-dioxide	$C_{14}H_{28}O_4S_2$	324.5	9.797	1.70	Drug/therapeutic agent [89]
14	Butyronitrile	C_4H_7N	69.11	9.982	1.61	Anti-oxidant activity [90]; anti- microbial activity [91]
15	2,2-Difluorocycloheptan-1-one	$C_7H_{10}F_2O$	148.15	10.033	1.68	Synthetic used for drug optimization [92]
16	Butyronitrile	C_4H_7N	69.11	10.321	1.03	Anti-oxidant activity [90]; anti- microbial activity [91]
17	Diallyl oxalate	$\mathrm{C_8H_{10}O_4}$	170.16	10.700	2.58	Anti-oxidant, anti-obesity and hepatoprotective property [93]
18	1,1-Difluoro-2-(trans-1-propenyl)cyclopropane	$C_6H_8F_2$	118.12	11.048	2.41	-
19	3,7,11,15-Tetramethyl-2-hexadecen-1-OL	$C_{20}H_{40}O$	296.5	30.294	4.74	Anti-inflammatory, anti-oxidant [99]; anti-microbial [100]; larvicidal activity [101]
20	Tetracontane	$C_{40}H_{82}$	563.1	35.896	14.52	Anti-oxidant and anti-microbial property [115]

linked the presence of antioxidants such as flavonoids, isoflavones, flavones, anthocyanin, catechin, and isocatechin to the main protective impact of secondary metabolites [172, 173]. Our data found a strong association between phenolic chemicals and antioxidant capability. Multiple hydroxyl functional groups found in phenolics, and flavonoids are thought to be responsible for their biological and antioxidant properties [174–176]. Phenolic substances also boost antioxidant enzyme activity, which has an indirect effect on the quantity of damaging oxygen radicals

Table 6 GC-MS analysis of BGP Methanol extract. (- Not available) (Boldface compounds have higher peak area %)

S. No	Name of the compound	Molecular formula	Molecular weight	Retention time	Peak area (%)	Biological applications
1	2-Ethylhexanol	C ₈ H ₁₈ O	130.23	7.451	1.10	-
2	Undecane	$C_{11}H_{24}$	156.31	9.297	1.76	Anti-allergic and anti-inflam- matory agent [116]
3	Naphthalene	$C_{10}H_{8}$	128.17	11.630	38.25	Anti-alzheimer's agent [117]
4	Dodecane	$C_{12}H_{26}$	170.33	11.914	5.44	Skin irritant [118]
5	Decanal	$C_{10}H_{20}O$	156.26	12.055	2.81	Electroencephalographic activity [119]; anti-microbial agent [120]
6	5-Hydroxymethylfurfural	$C_6H_6O_3$	126.11	12.487	2.54	Anti-biofilm, Anti-virulence activity [121]
7	1-Hexadecene	$C_{16}H_{32}$	224.42	16.617	3.77	Anti-microbial, anti-oxidant property [122]
8	Hexadecane	$C_{16}H_{34}$	226.44	16.801	6.03	Induces hyper Keratinization in tested rodents [109]
9	Pentadecane	$C_{15}H_{32}$	212.41	19.039	1.13	Anti-fungal activity [123]; hypertensive activity [124]
10	1-Hexadecene	$C_{16}H_{32}$	224.42	20.992	4.52	Anti-microbial, anti-oxidant property [122]
11	Hexadecane	$C_{16}H_{34}$	226.44	21.151	3.06	Induces hyper Keratinization in tested rodents [109]
12	1-Octadecene	$C_{18}H_{36}$	252.5	24.920	2.52	Anti-fouling property [125]
13	2,6,10-Trimethyltetradecane	C ₁₇ H ₃₆	240.5	25.047	1.63	-
14	Neophytadiene	$C_{20}H_{38}$	278.5	25.712	1.68	Anti-microbial property [126]
15	Methyl palmitate	$C_{17}H_{34}O_2$	270.5	27.273	1.35	Anti-radical activity [111]; Anti-cancer activity [127]
16	1,1'-Sulfonylbis(3,5-dibromo- 4-(2,3-dibromopropoxy) benzene)	$C_{18}H_{14}Br_8O_4S$	965.6	27.334	1.67	-
17	1-Docosene	$C_{22}H_{44}$	308.6	28.471	1.01	Anti-cancer activity [128]; anti-oxidant activity [129]
18	(4As,7aS)-3- Methylhexahydrocyclopenta[e] [1,3]oxazin-2(3H)-one	$C_8H_{13}NO_2$	155.19	31.157	2.21	-
19	Cholesterol	C ₂₇ H ₄₆ O	386.7	31.350	14.76	Essential body metabolite for humans, animals, plants, and other organism [130]
20	Cholest-5-en-3-ol (3beta)-, propanoate	$C_{30}H_{50}O_2$	442.7	31.510	2.75	Essential body metabolite for humans, animals, plants, and other organism [130]

in living cells. Radical processes, such as DNA damage and superoxide anion generation, can also serve as a prooxidant in large quantities [177, 178]. The methanolic extract of the BGP has more potent antioxidant activity than the other extracts, which is proportional to phenolic concentration among the extracts [179–182]. The major metabolites of BGP extract acts as the antioxidant agents are 1-Hexadecene [183]; Tetracontane [184, 185]; 1-Nonadecene [186]. According to Urbaniak et al. [187], the extracts' proton-donating capacity stabilizes free radicals in the presence of numerous hydroxyl groups, resulting in improved DPPH scavenging action.

3.4.2 ABTS radical scavenging assay

ROS inhibition was probably an adaptable mechanism to low levels of mitochondrial dysfunction. Such an adaptive response could be affected by a quick increase in antioxidant defense leads to a reduction in ROS [188]. Several BGP extracts were investigated for ABTS radicals scavenging activity (Fig. 3b). The IC₅₀ value was used to determine the scavenging ability of the different BGP extracts (Table 9). In the ABTS experiment, the plant extracts can decrease cations. According to Michalak [189], the potential of BGP phytochemical constituents to scavenge free radicals and

Table 7 GC-MS analysis of BGP ethyl acetate extract. (- Not available) (Boldface compounds have higher peak area %)

S. No	Name of the compound	Molecular formula	Molecular weight	Retention time	Peak area (%)	Biological Applications
1	Cyanoacetic acid	C ₃ H ₃ NO ₂	85.06	11.463	3.71	Anti-tumour activity [131]
2	Butyronitrile	C_4H_7N	69.11	11.547	7.78	Anti-oxidant activity [90]; anti- microbial activity [91]
3	Butyronitrile	C_4H_7N	69.11	12.583	2.19	Anti-oxidant activity [90]; anti- microbial activity [91]
4	1-Pentadecene	$C_{15}H_{30}$	210.40	16.554	2.62	Pheromone compound also used as insect repellent [108]
5	1-Hexadecene	$C_{16}H_{32}$	224.42	20.921	3.27	Anti-microbial, anti-oxidant property [132]
6	1-Heptadecene	$C_{17}H_{34}$	238.5	24.842	3.87	Repellant [96]
7	1-Nonadecene	$C_{19}H_{38}$	266.5	28.393	2.42	Anti-oxidant [97]; Anti-bacterial [98]
8	3,7,11,15-Tetramethyl- 2-hexadecen-1-OL	$C_{20}H_{40}O$	296.5	30.313	3.05	Anti-inflammatory, anti-oxidant [99]; anti-microbial [100]; larvicidal activity [101]
9	Nonacosanal	$C_{29}H_{58}O$	422.8	33.391	2.68	Anti-cancer activity [133]
10	Tetratetracontane	$C_{44}H_{90}$	619.2	35.954	68.40	Anti-babesial, anti-oxidant [102]; anti-inflammatory activity [103]

prevent oxidation processes may be linked to their chemical composition, which includes hydroxyl groups and unsaturated bonds. Ascorbic acid (205.65 µg/mL) possesses least IC₅₀ value than methanol (976.28 µg/mL), ethanol (1057.57 μg/mL), ethyl acetate (1292.32 μg/mL), acetone (1338.74 µg/mL), hexane (1592.8 µg/mL), and petroleum ether (1413.70 µg/mL). These findings correlate with the phenol content of the methanolic extract, which is presently higher than other extracts [190]. Phenolics include one or more aromatic rings with many hydroxyl groups, so they can absorb free radicals [191, 192]. Total phenolic content was attributed to the occurrence of phenoxyl radicals with resonance stabilisation in the majority of extracts and antioxidant activity [193-195]. The BGP extracts possess antioxidant capability due to the presence of the metabolites like tetratetracontane [196, 197] and methyl linolelaidate [198].

3.5 Determination of total phenol and total tannin content of the BGP extracts

3.5.1 Total phenol content

The polarity of the solvents may alter the extraction of the phenol component. According to our results data, higher phenolic content was obtained in methanol (39.37 mg/GAE g), followed by ethanol (30 mg/GAE g), acetone (12.25 mg/GAE g), ethyl acetate (4.83 mg/GAE g), petroleum ether (3.43 mg/GAE g), and hexane (3.37 mg/GAE g) given in Fig. 4b. The total phenol content found in different extracts of BGP was reported in Table 10 and it was determined by the regression equation (y = 0.0037x + 0.121, $r^2 = 0.965$) of the Gallic acid

equivalent (GAE) given in Fig. 4a by our investigation. Phenolic acids, flavonoids, and anthocyanins are the main components of total phenol content (TPC). Furthermore, differences in total phenol (TP) extraction operations, which included organic solvent, extraction time, temperatures, and auxiliary procedures (e.g., ultrasounds) in certain cases, or prior treatments such as irradiation or lyophilization, could be partially to censure for these disparities [199]. Plant extracts contain phenolic compounds, which are natural antioxidants that scavenge free radicals and reduce oxidative stress [200, 201]. Due to genetic and environmental conditions, the plant's phenolic content might fluctuate [202, 203]. The variation in phenol contents depends on the polarity of the extraction solvent [204]. The variances can be attributed to differences in solvent polarity, which selectively recover distinct hydrophobic or hydrophilic phenolic metabolites in the sample, emphasizing the necessity of researching and determining the best solvent for each sample [205] even though, no previous research has been performed on the phenolic profile of the various extracts of black gram pod wastes. While comparing with fresh tissues, the extracts have the greatest average of total phenolics, carotenoids, and total ascorbic acid. The oxidation of phenols by phenol oxidases and the polymerization of free phenols cause the phenol content of the extracts to decrease [206]. As they are more inclined to the synthesis of phenolic compounds, the outer parts of plants and fruits have a significant quantity of phenols [207]. The selection of solvents is the major criterion for efficient extraction [208]. Compounds identified in both methanol and ethanol solvents possessed higher volumes than those in the other solvents used in this study. This

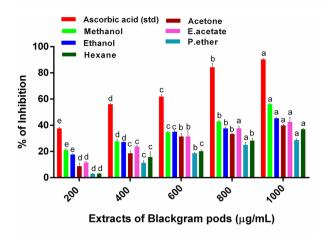
 Table 8 GC-MS analysis of BGP Ethanol extract. (- Not available) (Boldface compounds have higher peak area %)

S. No	Name of the compound	Molecular formula	Molecular weight	Retention time	Peak area (%)	Biological applications
1	2-Butylsulfanyl-1,1-diethoxy- 2-butene	$C_{12}H_{24}O_2S$	232.38	3.593	4.34	-
2	Furfural	$C_5H_4O_2$	96.08	3.662	2.52	Nematicidal [134]; Insecticidal activity in plants and animals; biodegrading material [135]
3	Dimethyl sulfoxide	C ₂ H6OS	78.14	3.873	1.39	Anti-oxidant activity [136]
4	1,1-Diethoxy-3-heptanone	$C_{11}H_{22}O_3$	202.29	3.947	3.54	-
5	Isoamyl acetate	$C_7H_{14}O_2$	130.18	4.269	0.83	Anti-microbial agent [137]
6	2-Isopropoxyethanol	$C_5H_{12}O_2$	104.15	4.615	0.33	Hemolytic activity [138]
7	Benzoic acid, 3-methyl-, tert- butyldimethylsilyl ester	$C_{14}H_{22}O_2Si$	250.41	4.686	0.23	Anti-microbial activity [139]
8	2-Propenoic acid, 3-ethoxy-3-[(trimethylsilyl)oxy]-, ethyl ester	$C_{10}H_{20}O_4Si$	232.35	4.967	0.67	-
9	1,1-Diethoxy-3-methylbutane	$C_9H_{20}O_2$	160.25	5.701	1.34	Odor active compound [140]
10	Phenol	C ₆ H ₅ OH	94.11	6.287	0.46	Anti-microbial property [141]
11	Ethylene glycol diacetate	$C_6H_{10}O_4$	146.14	6.589	0.51	Biodiesel [142]
12	2-Ethylhexanol	$C_8H_{18}O$	130.23	7.513	0.77	Non-genotoxic carcinogen, per- oxisome proliferator [143]
13	Acetophenone	C ₈ H ₈ O	120.15	8.503	0.78	Fumigant [144]; natural flavor compound [145]
14	1,1,3-Triethoxypropane	$C_9H_2OO_3$	176.25	8.608	0.58	Odorant [146]
15	1,1,3-Triethoxybutane	$C_{10}H_{22}O_3$	190.28	9.258	1.56	Odorant [146]
16	Dodecane	$C_{12}H_{26}$	170.33	9.333	0.45	Skin irritant [147]
17	Nonanal	$C_9H_{18}O$	142.24	9.440	1.03	Anti-fungal activity [110]
18	Naphthalene	$C_{10}H_{8}$	128.17	11.615	24.22	Anti-alzheimer's agent [117]
19	Dodecane	$C_{12}H_{26}$	170.33	11.906	9.00	Skin irritant [147]
20	Decanal	$C_{10}H_{20}O$	156.26	12.045	1.18	Electroencephalographic activity [119], anti-microbial agent [120]
21	5-Hydroxymethylfurfural	$C_6H_6O_3$	126.11	12.469	6.91	Anti-biofilm, Anti-virulence activity [121]
22	Nonanoic acid	$C_9H_{18}O_2$	158.24	13.492	0.52	Skin irritant [148]
23	2-Ethyl-4-hydroxy-5-methyl-3(2H)-furanone	$C_7H_{10}O_3$	142.15	14.400	0.76	Food flavoring agent [149]
24	Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-trimethyl- pentyl ester	$C_{12}H_{24}O_3$	216.32	16.160	0.97	-
25	1-Hexadecene	$C_{16}H_{32}$	224.42	16.598	1.11	Anti-microbial, anti-oxidant property [132]
26	Hexadecane	$C_{16}H_{34}$	226.44	16.787	8.80	Induces hyper Keratinization in tested rodents [109]
27	2,4,7,9-Tetramethyl-5-decyne-4,7-diol	$\mathrm{C}_{14}\mathrm{H}_{26}\mathrm{O}_2$	226.35	16.941	0.79	Anti-foaming agent [150]
28	Heptadecane	$C_{17}H_{36}$	240.5	19.020	0.40	Anti-inflammation [151]; Anti-bactericidal [152]
29	1-Nonadecene	$C_{19}H_{38}$	266.5	20.974	1.28	Anti-oxidant [97]; Anti-bacterial [98]
30	Heptadecane	$C_{17}H_{36}$	240.5	21.137	4.47	Anti-inflammation [151]; Anti-bactericidal [152]
31	Octadecane	$C_{18}H_{38}$	254.5	23.137	0.37	Anti-fungal agent for plant and human pathogens [153]
32	1-Octadecene	$C_{18}H_{36}$	252.5	24.905	1.14	

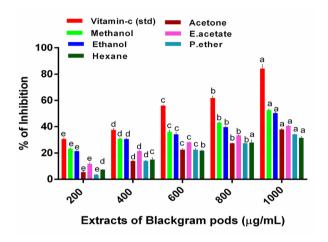
Table 8 (continued)

S. No	Name of the compound	Molecular formula	Molecular weight	Retention time	Peak area (%)	Biological applications
33	Heptadecane	C ₁₇ H ₃₆	240.5	25.037	1.78	Anti-inflammation [151]; Anti-bactericidal [152]
34	Neophytadiene	$C_{20}H_{38}$	278.5	25.702	1.73	Anti-microbial property [126]; larvicidal activity [154]; anti- fungal activity [155]
35	Bis(2-ethylhexyl) phthalate	$C_{24}H_{38}O4$	390.6	26.115	1.24	Anti-mutagenic activity [156]
36	3,7,11,15-Tetramethyl-2-hexadecen-1-OL	$C_{20}H_{40}O$	296.5	26.475	0.82	Anti-inflammatory, anti-oxidant [99]; anti-microbial [100]; larvicidal activity [101]
37	Methyl palmitate	$C_{17}H_{34}O_2$	270.5	27.258	0.93	Anti-radical activity [111], Anti-cancer activity [112]
38	1,1'-Sulfonylbis(3,5-dibromo- 4-(2,3-dibromopropoxy) benzene)	$\mathrm{C}_{18}\mathrm{H}_{14}\mathrm{Br}_{8}\mathrm{O}_{4}\mathrm{S}$	965.6	27.319	1.03	-
39	Dibutyl phthalate	$C_{16}H_{22}O_4$	278.34	27.792	0.82	Plasticizer [157]
40	Palmitic acid	$C_{16}H_{32}O_2$	256.42	27.862	1.61	Anti-inflammatory activity [158] Anti-cancer activity [159]
41	Anthraquinone	$C_{14}H_8O_2$	208.21	28.291	0.80	Anti-proliferative activity [160, 161]
42	1-Hexadecanol	$C_{16}H_{34}O$	242.44	28.459	1.17	Anti-allergic and anti-histaminic activity [162]
43	Octadecane	C ₁₈ H ₃₈	254.5	28.568	0.83	Anti-fungal agent for plant and human pathogens [153]
44	Methyl linolelaidate	$C_{19}H_{34}O_2$	294.5	30.087	0.26	Anti-oxidant [163]
45	Methyl petroselinate	$C_{19}H_{36}O_2$	296.5	30.194	0.52	Anti-microbial activity [164]
46	3,7,11,15-Tetramethyl-2-hexadecen-1-OL	$C_{20}H_{40}O$	296.5	30.363	0.79	Anti-inflammatory, anti-oxidant [99]; anti-microbial [100]; larvicidal activity [101]
47	Oleic acid	$C_{18}H_{34}O_2$	282.5	31.154	0.32	Anti-schistosomal activity [165]; anti-inflamatory [166]
48	7-Hexylicosane	$C_{26}H_{54}$	366.7	31.789	0.32	Anti-diabetic activity [167]
49	Hexadecanoic acid ((3E,7E)-(1S,2R)-2-hydroxy-1-hydroxymethyl-16-methyl-heptadeca-3,7-dienyl)-amide	C ₃₅ H ₆₇ NO ₃	549.9	36.465	1.22	-
50	Bis(2-ethylhexyl) phthalate	$C_{24}H_{38}O_4$	390.6	36.836	0.55	Anti-mutagenic activity [156]

 $\textbf{Table 9} \ \ \textbf{The IC}_{50} \ \text{value of different extracts of black gram pods against DPPH and ABTS}$


$\overline{IC_{50} (\mu g/mL)}$	Target	Positive Control	Methanol extract	Ethanol extract	Acetone extract	Ethyl acetate extract	Hexane extract	Petroleum ether extract
	DPPH	94.65	933.80	1163.43	1231.39	1145.65	1330.32	1634.12
	ABTS	205.65	976.28	1.057.57	1338.74	1292.32	1592.80	1413.70

is due to extraction efficiency favoring the highly polar solvents and also the black gram pods contain high-level polar compounds that are capable of dissolving in high polar solvents [209]. These results are in accordance with the estimation of total phenol and total tannin content of the solvents extraction [210].


3.5.2 Total tannin content

As a result of this study, higher amounts of tannins were found in methanolic extracts (9.20 mg/TAE g) followed by ethanol (7.02 mg/TAE g), ethyl acetate (4.18 mg/TAE g), petroleum ether (3.99 mg/TAE g), acetone (3.42 mg/TAE g), and hexane (2.56 mg/TAE g) showing the range of results

a DPPH Radical scavenging activity of different extracts of black gram pods

b ABTS Radical scavenging activity of different extracts of black gram pods

Fig. 3 a DPPH Radical scavenging activity of different extracts of black gram pods. **b** ABTS Radical scavenging activity of different extracts of black gram pods

achieved in this investigation (Fig. 4d, Table 10) which was determined by the regression equation (y = 0.0294x + 1.143, $r^2 = 0.981$) of the tannic acid equivalent (TAE) given in Fig. 4c in our investigation. Even though both methanol and ethanol are polar solvents, they have different polarities as 0.762 and 0.654 respectively [32]. Tannin content was found higher in methanol than in ethanol because tannins have the ability to bind proteins leading to protein shrinkage and serving as astringents. Tannins have the capacity to directly destroy the bacterial cell wall, precipitate bacterial proteins, and cause bacterial death [211]. Tannins play a key role in the production of various nutraceuticals with different flavors [212]. Tannins are typically found in the bark of evergreen trees and owing to the combination of high polyphenols, they are a rich source of antibacterial and antioxidant properties [213]. Tannins are important chemicals with anti-phlogistic properties as well as cyclooxygenase-1 inhibitory activity and they may have anti-inflammatory benefits due to their anti-phlogistic characteristics [214–216]. The cyclooxygenase (COX) produces prostaglandins and lipoxygenase (LOX) with the help of arachidonic acid (AA) leads to the formation of leukotrienes and lipoxins. According to Cloutier and Guernsey [217], tannins induce arachidonic acid which induces prostaglandins through COX enzymes. COX 1 is present in all the cells that produce prostaglandins and affects blood flow and muscle proliferation. COX-2 enzyme, an essential component of the inflammatory cascade, is involved in the production of prostaglandins, which mediate pain and inflammation by increasing vascular permeability, allowing the extravasations of proinflammatory cells, proteins, and enzymes that mediate the reactions that lead to edema. Prostaglandins also make pain fibres more sensitive to mechanical and chemical stimuli [218, 219]. Tannins have a higher binding tendency with metallic ions and other molecules [220, 221]. Park et al. [222] reported that tannins modulate the inflammatory cytokines and inhibit the prostaglandins resulting in their anti-phlogistics property.

3.6 Assessment of antibacterial efficacy

3.6.1 Agar well diffusion method

The antibacterial potential was investigated with the various BGP extracts by the agar well diffusion method. These solvent extracts were compared to each other against tested microbes. Pseudomonas aeruginosa, Staphylococcus aureus, and Aeromonas hydrophila are the most widespread bacterial infections that cause severe mortality and morbidity in aquaculture [223-227]. Hemorrhagic septicemia, splenomegaly, abdominal distension, gill destruction, a clogged kidney, and a crumbly liver are all symptoms of these infections in L. rohita. Recently, Klebsiella pneumoniae was also identified as the pathogenic bacteria to fish particularly Labeo rohita and Cyprinus carpio. It has got various virulence genes that adopt bacterial pathogenesis [228, 229]. The bioactive compounds obtained with methanolic extracts were determined to be the most efficient antibacterial agents, according to our findings. Methanol had a much larger zone of inhibition than the other solvent extracts, whereas the other solvent extracts had small zones in a concentration-dependent manner due to polarity variations (Tables 11, 12, 13 14, 15, and 16). Efforts to develop plant-based antibacterial drugs have been stepped up in recent decades [230]. The antibacterial activity of the solvents rises as the polarity of the solvents increases [231, 232]. The most sensitive bacteria were A. hydrophila, P. aeruginosa, and S. aureus, whereas K. pneumoniae was the most resistant to all extracts tested

Fig. 4 Standard graph of a) gallic acid equivalents, b) quantitative analysis of the total phenolic content and standard graph of c) tannic acid equivalents, d) quantitative analysis of the total tannin content present in the various extracts of black gram pods

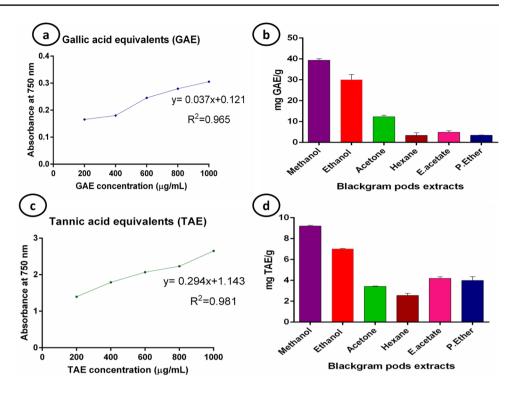


Table 10 Total phenol content and Total tannin content of the Black gram pod extracts

S. No	Solvent extracts	Total phenol content (mg/GAE g)	Total tannin content (mg/ TAE g)
01	Methanol	39.37 ± 1.35	9.20 ± 0.11
02	Ethanol	30.01 ± 4.45	7.02 ± 0.05
03	Acetone	12.25 ± 1.30	3.42 ± 0.04
04	Ethyl acetate	4.83 ± 1.31	4.18 ± 0.26
05	Petroleum ether	3.43 ± 0.16	3.99 ± 0.63
06	Hexane	3.37 ± 2.15	2.56 ± 0.33

in this study. Gram-positive and Gram-negative bacteria differ in their susceptibility due to architectural variances specifically variances in membrane permeability [233, 234]. The Gram-positive bacteria cell's several layers of peptidoglycan create a resistant structure that prevents the bioactive compounds in the extracts from penetrating, but

Gram-negative cell walls are made up of single or double layers of peptidoglycan, making them more susceptible to extracting secondary metabolites [235, 236]. Both gram-positive and gram-negative bacteria have a structure and composition that inhibits the drug from reaching the cytoplasmic membrane [237]. Major metabolites identified through GC-MS analysis of BGP extracts, such as butyronitrile, 3,7,11,15-tetramethyl-2-hexadecen-1-OL, phenol, 5-hydroxy methyl furfural, neophytadiene, isoamyl acetate, heptadecene, and 1-hexadecene could rupture the outer membrane and release lipopolysaccharides [238] through ion motive force [239] in the bacteria's membrane, these metabolites have the tendency to adhere the cytoplasmic membrane, causing membrane leakage, membrane integrity loss, and damage to the outer membrane vesicles (OMVs) [240]. DNA malfunction and the drug's inhibitory potential will be harmed as the electron density in DNA is altered. Plant phenolic compounds effectively metabolize the epithelium of harmful bacteria [241]. Methanol

Table 11 Antibacterial activity of the BGP methanol extract against tested microorganisms. Each result represents the mean \pm standard error of the mean (n=3), and different superscript letters indicate a significant difference between the groups (p < 0.05). "-" indicates no activity.

S. No	Zone of inhibition (mm)								
	Extracts	Control	250 (μg/mL)	500 (μg/mL)	750 (μg/mL)	1000 (μg/mL)			
01	Aeromonas hydrophila	17.33 ± 1.52^{a}	-	10.16 ± 0.76^{d}	11.66 ± 1.52 ^{bc}	13.66 ± 1.52^{b}			
02	Pseudomonas aeruginosa	20.50 ± 0.56^{a}	-	$11.50 \pm 1.80^{\circ}$	14.66 ± 1.52^{b}	16.50 ± 0.52^{b}			
03	Staphylococcus aureus	18.33 ± 3.21^{a}	-	10.83 ± 1.25^{b}	11.66 ± 1.52^{b}	14.33 ± 2.08^{b}			
04	Klebsiella pneumoniae	18.33 ± 1.52^{a}	-	10.33 ± 1.04^{c}	11.33 ± 1.15^{c}	15.16 ± 1.32^{b}			

Table 12 Antibacterial activity of the BGP ethanol extract against tested microorganisms. Each result represents the mean \pm standard error of the mean (n=3), and different superscript letters indicate a significant difference between the groups (p < 0.05). "-" indicates no activity.

S. No	Zone of inhibition (mm)								
	Extracts	Control	250 (µg/mL)	500 (μg/mL)	750 (μg/mL)	1000 (μg/mL)			
01	Aeromonas hydrophila	17.19 ± 1.04^{a}	-	8.35 ± 1.32^{c}	11.33 ± 0.57 ^b	15.33 ± 1.52^{a}			
02	Pseudomonas aeruginosa	19.33 ± 1.15^{a}	-	9.66 ± 0.57^{d}	12.83 ± 0.76^{c}	15.59 ± 0.86^{b}			
03	Staphylococcus aureus	19.29 ± 2.64^{a}	-	8.52 ± 0.86^{d}	11.5 ± 0.56^{c}	16.52 ± 1.32^{b}			
04	Klebsiella pneumoniae	19.16 ± 1.04^{a}	-	8.33 ± 1.52^{d}	$11.83 \pm 0.76^{\circ}$	15.16 ± 1.60^{b}			

Table 13 Antibacterial activity of the BGP acetone extract against tested microorganisms. Each result represents the mean \pm standard error of the mean (n=3), and different superscript letters indicate a significant difference between the groups (p < 0.05). "-" indicates no activity.

S. No	Zone of inhibition (mm)								
	Extracts	Control	250 (μg/mL)	500 (μg/mL)	750 (μg/mL)	1000 (μg/mL)			
01	Aeromonas hydrophila	17.16 ± 1.04^{a}	-	$9.5 \pm 0.86^{\circ}$	13.29 ± 1.32 ^b	16.52 ± 1.60^{a}			
02	Pseudomonas aeruginosa	20.33 ± 2.08^{a}	-	10.16 ± 1.04^{d}	13.04 ± 1.04^{c}	16.66 ± 0.57^{b}			
03	Staphylococcus aureus	18.66 ± 1.60^{a}	-	9.83 ± 0.76^{d}	13.33 ± 1.15^{c}	16.5 ± 0.85^{b}			
04	Klebsiella pneumoniae	18.16 ± 0.76^{a}	-	9.83 ± 0.76^{d}	$13.5 \pm 0.52^{\circ}$	15.83 ± 0.76^{b}			

Table 14 Antibacterial activity of the BGP ethyl acetate extract against tested microorganisms. Each result represents the mean \pm standard error of the mean (n=3), and different superscript letters indicate a significant difference between the groups (p < 0.05). "-" indicates no activity.

S. No	Zone of inhibition (mm)								
	Extracts	Control	250 (µg/mL)	500 (μg/mL)	750 (μg/mL)	1000 (μg/mL)			
01	Aeromonas hydrophila	19.33 ± 0.57 ^a	-	-	12.16±0.76°	15.5 ± 0.56^{b}			
02	Pseudomonas aeruginosa	20.5 ± 1.32^{a}	-	-	$12.83 \pm 1.25^{\circ}$	16.5 ± 1.32^{b}			
03	Staphylococcus aureus	20.33 ± 1.32^{a}	-	-	$12.83 \pm 1.25^{\circ}$	16.16 ± 0.76^{b}			
04	Klebsiella pneumoniae	19.66 ± 0.57^{a}	-	-	12.5 ± 1.32^{c}	16.16 ± 1.04^{b}			

Table 15 Antibacterial activity of the BGP hexane extract against tested microorganisms. Each result represents the mean \pm standard error of the mean (n=3), and different superscript letters indicate a significant difference between the groups (p < 0.05). "-" indicates no activity.

S. No	Zone of inhibition (mm)								
	Extracts	Control	250 (µg/mL)	500 (μg/mL)	750 (μg/mL)	1000 (μg/mL)			
01	Aeromonas hydrophila	19.16 ± 0.76^{a}	-	-	$11.83 \pm 1.04^{\circ}$	14.5 ± 0.56^{b}			
02	Pseudomonas aeruginosa	19.5 ± 0.86^{a}	-	-	13.5 ± 0.56^{c}	15.33 ± 1.52^{b}			
03	Staphylococcus aureus	20.33 ± 1.52^{a}	-	-	12.5 ± 0.86^{c}	15.16 ± 0.76^{b}			
04	Klebsiella pneumoniae	19.16 ± 0.76^{a}	-	-	$12.16 \pm 0.76^{\circ}$	15.16 ± 0.76^{b}			

Table 16 Antibacterial activity of the BGP petroleum ether extract against tested microorganisms. Each result represents the mean \pm standard error of the mean (n=3), and different superscript letters indicate a significant difference between the groups (p < 0.05). "-" indicates no activity.

S. No	Zone of inhibition (mm)								
	Extracts	Control	250 (µg/mL)	500 (μg/mL)	750 (μg/mL)	1000 (μg/mL)			
01	Aeromonas hydrophila	18.56 ± 1.52^{a}	-	-	13.35 ± 1.32^{c}	15.83 ± 0.76^{b}			
02	Pseudomonas aeruginosa	19.52 ± 1.32^{a}	-	-	$13.83 \pm 0.76^{\circ}$	16.66 ± 1.32^{b}			
03	Staphylococcus aureus	20.16 ± 1.25^{a}	-	-	14.57 ± 0.76^{c}	16.5 ± 0.56^{b}			
04	Klebsiella pneumoniae	18.66 ± 1.52^{a}	-	-	$13.03 \pm 0.76^{\circ}$	17.56 ± 0.5^{b}			

extract has the strongest antibacterial efficacy against all the microorganisms tested, which is due to the extraction of soluble metabolites by the solvent [242, 243].

3.6.2 Determination of minimum inhibitory concentration

Identification of minimum inhibitory concentrations (MIC) of various BGP extracts using the resazurin dye technique is shown in Table 17. Methanol and ethanol extracts had potential MIC values at 250 µg/mL against all the investigated bacteria, but the other extracts possessed bacterial inhibition at 500 µg/mL. Resazurin reduction could be accomplished by live bacterial cells. The extracts' inhibitory activity was aided by the incorporation of long-chain free fatty acids like oleic acid, palmitic acid, and linolenic acid. Enoyl-acyl reductase is a bacterial carrier protein involved in fatty acid production [244]. But the extracts have the tendency to inhibit bacterial growth by reducing the carrier protein reductase formation [245–247]. The presence of unsaturated fatty acids in the BGP extracts was confirmed in the GC-MS analysis in this investigation, which yielded similar results. The polarity of the molecule is important because it determines how it enters the organism's membrane, causing growth disruption [78]. The extracts' antibacterial action is dominated by phenols, which are followed by aldehydes, ketones, alcohols, ethers, and hydrocarbons [248]. The anti-microbial property of the BGP extracts is based on the metabolites present in the extracts able to bind the membrane of the bacterial cell through hydrogen bonding and hydrophobic interactions [249]. Thus, it alters the membrane permeability and allows the metabolites and molecules present in the extracts to inside the bacterial cell [250]. Because Gram-negative bacteria have a thicker cell wall than Gram-positive bacteria, they are more resistant to crude extracts, oils, and their metabolites [251]. The transmembrane hydrophilic protein called porin doesn't allow the hydrophobic metabolites [252]. Another possible aspect of the bacterial growth inhibition is inhibiting the ATPase activity, in that the electron transport chain creates protons which required for the ATP synthesis. These protons pass through the membrane by efflux pump to the cytoplasm and maintain its pH [253]. The metabolites like 1-nonadecane [254], heptadecene [255], isoamyl acetate [256], and phenol [257] in both polar and non-polar extracts of the black gram pods disrupt the proton motive force and cause the depletion of the ATP synthesis by damaging the mitochondria [258]. Phenols operate as a proton donor/acceptor, which could contribute to antimicrobial action [259, 260]. The existence of different bioactive components in BGP extracts and their various fractions, such as saponins, phenolics, and flavonoids, could contribute to the antibacterial activity's diversity [261].

3.6.3 Effects on growth of the various BGP extracts on microbial cultures

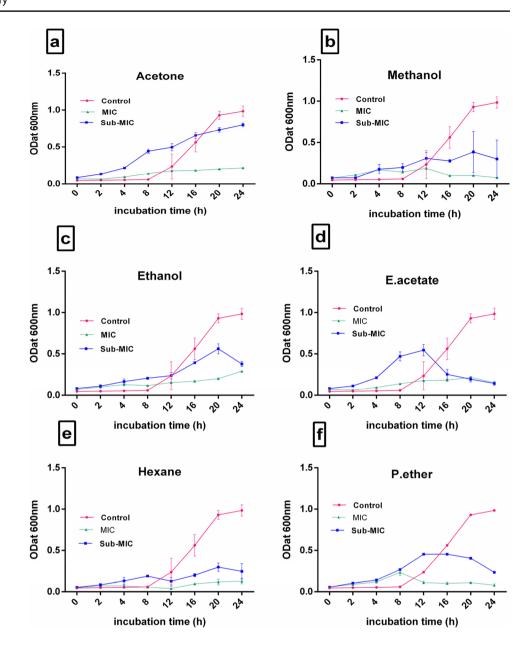
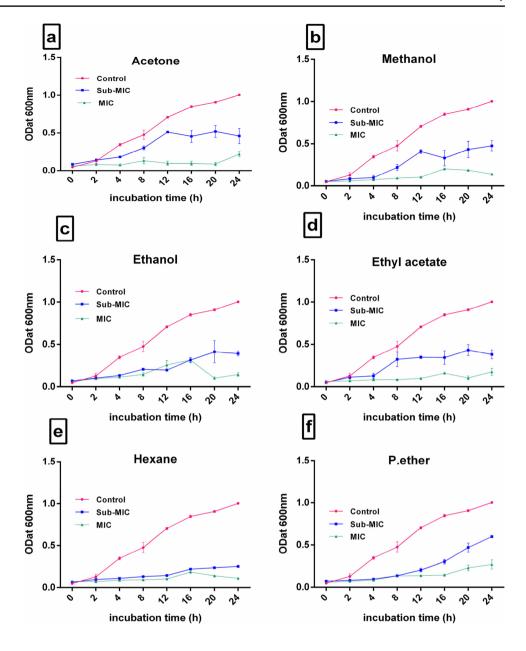

The influence of different extracts on the growth of A. hydrophila, P. aeruginosa, K. pneumoniae, and S. aureus is depicted in Figs. 5, 6, 7, and 8 based on the obtained data. In vitro level of sensitivity or resistance of various bacterial strains to administered drug is defined by the minimal inhibitory concentration (MIC). The ability to accurately measure MIC has a substantial impact on the therapeutic method chosen, which impacts the efficacy of infection treatment [262]. And sub-MIC is half of the MIC that is used to determine the inhibitory potential of the drug at ½ minimal inhibitory concentrations [263]. Several studies were conducted to evaluate the antibacterial efficacy of the extracts at both MIC and sub-MIC levels [264–267]. Similarly, in this study, the efficacy of the black gram pod extracts was evaluated on bacterial growth analysis at determined MIC and sub-MIC (1/2 MIC) in Table 17. The results revealed that at sub-MIC level, the BGP extracts did not show any inhibitory activity in all the prepared extracts. However, at the MIC level, growth was completely stopped. This study shows that several BGP extracts can suppress the growth of the examined microbial cultures at the MIC level, but not at the Sub-MIC level. The hydrophobic compounds in the extracts were in direct contact with the studied microorganisms, causing the inhibitory effect [268]. The MIC value found in this study corresponds

Table 17 Minimum inhibitory concentration (MIC) and sub-minimal inhibitory concentration (sub-MIC) values of the Black gram pod extracts against the tested microorganisms

Solvent used for	A. hydroj	A. hydrophila		P. aeruginosa		S. aureus		K. pneumoniae	
Black gram pods extracts	MIC (μg/mL)	Sub-MIC (μg/mL)	MIC (μg/mL)	Sub-MIC (μg/mL)	MIC (μg/mL)	Sub-MIC (μg/mL)	MIC (μg/mL)	Sub- MIC (µg/ mL)	
Methanol	250	125	250	125	250	125	250	125	
Ethanol	250	125	250	125	250	125	500	250	
Acetone	500	250	250	125	250	125	500	250	
Ethyl acetate	500	250	500	250	500	250	500	250	
Hexane	500	250	500	250	500	250	500	250	
Petroleum Ether	500	250	500	250	500	250	500	250	

Fig. 5 Growth curves of Aeromonas hydrophila under the influence of various extracts of black gram pods (a-acetone, b-methanol, c-ethanol, d-ethyl acetate, e-hexane and f-petroleum ether)

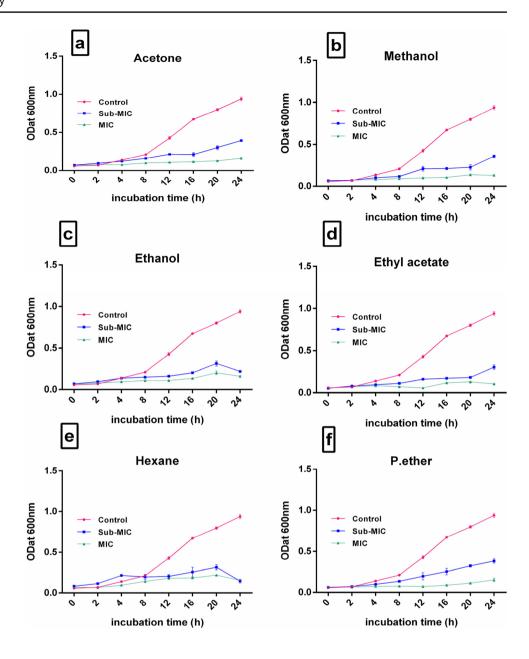
to the bacterial growth curve analysis, which revealed inhibition in both polar and non-polar crude extracts of the BGP [269]. Bacterial cell membranes are involved in various functions like adhesion, conductivity, and signaling. When the cell is exposed to the drugs/antibiotics, it generates free radicals and causes damage to the membrane [270]. Simultaneously, when the membrane permeability of the cell increases, it leads to the reduction of ion gradients, loss of proteins involved in various mechanisms, and inhibition of cellular metabolism [271]. Esters of phenolic acids like hydroxybenzoic, hydroxyphenylacetic, and hydroxycinnamic acids have potential antioxidant activity and are proportionate to the number of hydroxyl groups in a molecule that is hampered by hydrophobic interactions from their carboxyl group. While comparing to the hydroxybenzoic acid, both


the hydroxyphenylacetic and hydroxycinnamic acids possess higher proton-donating ability leading to an increase in the antioxidant potential [272]. Generally, the electron donors driven proton motive force leads to mitochondrial ROS [273].

3.6.4 Inhibition of biofilm formation and development by BGP extracts

Solvents play an important role in extracting a certain component from plants; the type of compound retrieved from the plants will be determined by the composition of the solvent. As a result, a variety of solvents were utilized to extract bioactive compounds from the plants [274]. When compared to other solvents, the extraction done in alcoholic solvents

Fig. 6 Growth curves of *Pseudomonas aeruginosa* under the influence of various extracts of black gram pods (a-acetone, b-methanol, c-ethanol, d-ethyl acetate, e-hexane, and f-petroleum ether)

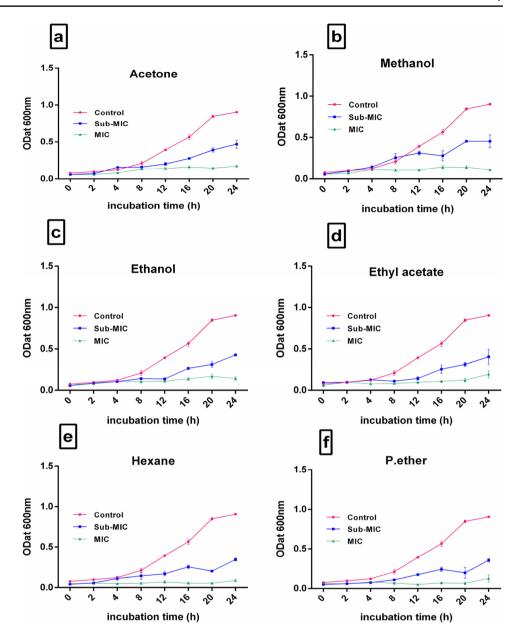


yielded highly encouraging results. Extraction of the same type of plants in different solvents has distinct sorts of activity against biofilm [275]. The bacterial community is embedded in the polymer matrix and associates various risk problems in human life due to the reduced susceptibility of the tested bacteria in the form of biofilms [276]. Several studies had failed to confirm the susceptibility of antimicrobial agents in the form of biofilm. This study was conducted to identify a susceptible range of various BGP extracts as an antibiofilm agent; 1000 μg/mL showed better results by inhibiting the biofilm formation (Fig. 9a–d). Antibacterial drugs have the ability to suppress or destroy biofilm formation hold promise for minimising microbial colonisation of surfaces, epithelial mucosa, and matrix formation [277]. Compared to polar, non-polar solvents possessed lower anti-biofilm activity because of interference

by the extracts on the ability of these microbes to adhere to the surfaces. Plant-based extracts have been found to disrupt bacteria biofilm development by mechanisms like disrupting microbial membrane structures and blocking peptidoglycan synthesis [278]. *Pseudomonas aeruginosa* produces a quorumsensing regulating virulence factors such as protease, elastase, and chitinase [279]. These enzymes affect the host cell proteins and induce the bacterial growth and formation of biofilm. The extracts of BGP inhibit the production of enzymes on a dosedependent manner and reduce the biofilm formation [280]. In *Aeromonas hydrophila*, the exo-proteases and exo-polysaccharide production by ahyR1. The BGP extracts have the tendency to act on the ahyR1 and cause the production of C4-HSL. And it may block the quorum sensing [281] by inhibiting the proton motive force linked to the motility activity-dependent efflux

Fig. 7 Growth curves of *Klebsiella pneumoniae under* the influence of various extracts of black gram pods (**a**-acetone, b-methanol, **c**-ethanol, **d**-ethyl acetate, **d**-acetone, **e**-hexane and **f**-petroleum ether)

pump in the biofilm formation [282]. Similarly in *Klebsiella pneumoniae*, AHL (acyl homoserinelactones) an autoinducer for the production of exopolysaccharides that generates virulence factors for the formation of biofilm, the compounds in the BGP extracts block the biosynthesis of autoinducers by degrading the specific enzymes or preventing its interactions with the receptors [283]. Staphyloxanthin is a pigment found in *Staphylococcus aureus* that works as a redox toxin, stimulating the production of biofilm matrix by increasing extracellular DNA [284]. The biofilm inhibitory activity of metabolites has been linked to modulation of bacterial cell–cell communication [285], interference with surface hydrophobicity, motility, and charge [286], and dysregulation of biofilm-related genes [287]. We anticipated that metabolites of BGP extracts reduce staphyloxanthin synthesis, resulting in a reduction of biofilm


formation in *S. aureus*. Moreover, when the concentration of the BGP extracts increases; the inhibiting potential was also increased. This could be a promising strategy to minimize the microbial colonization of intestinal mucosa, which leads to infections; consequently, this study proved the inhibitory potential of the BGP extracts against aquatic pathogens like *A. hydrophila*, *K. pneumoniae*, *S. aureus*, and *P. aeruginosa*.

4 Conclusion

According to a qualitative phytochemical study, plant-based extracts are advantageous due to the presence of phytochemicals such as phenols, tannins, saponins, flavonoids, and alkaloids. This study revealed the identification of bioactive metabolites

Fig. 8 Growth curves of Staphylococcus aureus under the influence of various extracts of black gram pods (a-acetone, b-methanol, c-ethanol, d-ethyl acetate, e-hexane and f-petroleum ether)

from the agricultural waste of black gram pods. FT-IR and GC-MS were used to identify and confirm functional groups and bioactive metabolites present in the black gram pods. The presence of key metabolites such as tetratetracontane, butyronitrile, cholesterol, tetracontane, 2,2-difluorocycloheptan-1-one, 3,7,11,15-tetramethyl-2-hexadecen-1-OL, and diacetone alcohol in BGP extract suggests that it has a higher antioxidant, agonist to treat cancer, and antibacterial potential. Methanolic

extract was found to be a better antioxidant and antibacterial agent than other extracts against the tested microorganisms. The study findings showed a wealth of information about agricultural waste BGP which can be used to combat pathogens in aquatic disease control. Furthermore, this groundbreaking research promotes the use of biowaste as a possible conversion of drug sources in the pharmaceutical industry.

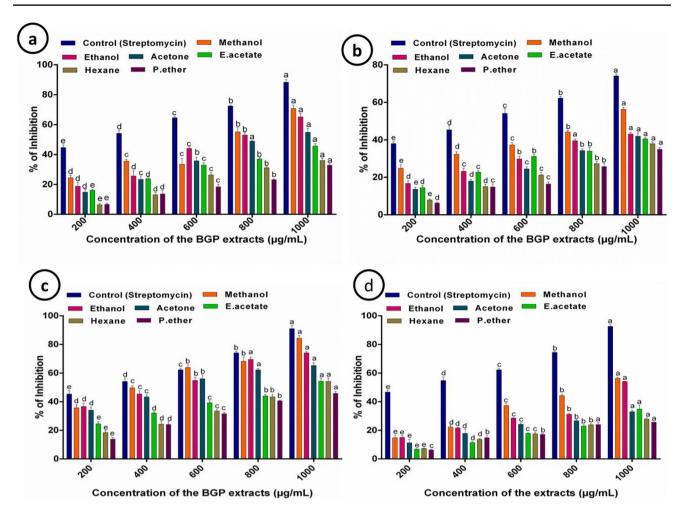


Fig. 9 Inhibition of biofilm formation of various extracts of BGP against a A. hydrophila, b K. pneumoniae, c S. aureus, d P. aeruginosa

Author contribution Manikandan Arumugam: investigation, methodology, formal analysis, writing—original draft, writing—review and editing. Dinesh Babu Manikandan: investigation, resources, data curation. Sujitha Mohan: resources, data curation. Arun Sridhar: formal analysis, data curation, writing—review and editing. Sudharshini Jayaraman: resources, data curation. Srinivasan Veeran: formal analysis, data curation. Thirumurugan Ramasamy: conceptualization, project administration, supervision, validation, visualization, writing—review and editing.

Funding The first author Manikandan Arumugam is grateful to Bharathidasan University for providing University Research Fellowship (Ref. No. 026525/URF/DIR-RES/2020 dt: 04.01.2020). The authors are thankful to UGC-SAP-DRS-II (F.3–9/2013[SAP-II], Department of Science and Technology-Fund for Improvement of Science and Technology Infrastructure (DST-FIST) Level-I (stage-II) (Ref. No. SR/FST/LSI-647/2015(C) Date.11.08.2016) and Department of Science and Technology Promotion of University Research and Scientific Excellence (DST PURSE Phase—II) (Ref. No. SR/PURSE PHASE 2/16(G) /& 16(C) Date. 21.02.2017) of the Department of Animal Science, Bharathidasan University for the instrumentation facility. The authors also thank "RUSA, 2.0-Biological Sciences, Bharathidasan University".

Declarations

Conflict of interest The authors declare no competing interests.

References

- Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5(3):93. https://www.mdpi.com/2305-6320/5/3/93#
- Bendary E, Francis RR, Ali HM, Sarwat MI, El Hady S (2013) Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann Agric Sci 58(2):173–181. https://doi.org/10.1016/j.aoas.2013.07.002
- Shahidi F, Varatharajan V, Oh WY, Peng H (2019) Phenolic compounds in agri-food by-products, their bioavailability and health effects. J Food Bioact 5(1):57–119

- Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747. https://doi.org/10.1093/ajcn/79.5.727
- Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A (2020) Bioactive phenolic compounds from agri-food wastes: an update on green and sustainable extraction methodologies. Front nutr 7:60. https://doi.org/10.3389/fnut.2020.00060
- Shirahigue LD, Ceccato-Antonini SR (2020) Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Ciência Rural. 50. https://doi.org/10.1590/0103-8478cr20190857
- Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS (2017) Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour Bioprocess 4(1):1–4. https://doi. org/10.1186/s40643-017-0148-6
- Vijayalaxmi S, Jayalakshmi SK, Sreeramulu K (2015) Polyphenols from different agricultural residues: extraction, identification and their antioxidant properties. J Food sci Technol 52(5):2761–2769. https://doi.org/10.1007/s13197-014-1295-9
- Kraithong S, Issara U (2021) A strategic review on plant byproduct from banana harvesting: A potentially bio-based ingredient for approaching novel food and agro-industry sustainability. J Saudi Soc Agric Sci 20(8):530–543. https://doi.org/10. 1016/j.jssas.2021.06.004
- Dey D, Richter JK, Ek P, Gu BJ, Ganjyal GM (2021) Utilization of food processing by-products in extrusion processing: a review. Front sustain food syst 304. https://doi.org/10.3389/fsufs.2020.603751
- Kallel F, Driss D, Chaari F, Belghith L, Bouaziz F, Ghorbel R, Chaabouni SE (2014) Garlic (*Allium sativum* L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Ind Crops Prod 62:34–41. https://doi.org/10.1016/j.indcrop.2014. 07.047
- Aires A, Carvalho R, Saavedra MJ (2017) Reuse potential of vegetable wastes (broccoli, green bean and tomato) for the recovery of antioxidant phenolic acids and flavonoids. Int J Food Sci 52(1):98–107. https://doi.org/10.1111/ijfs.13256
- Lafferty KD, Harvell CD, Conrad JM, Friedman CS, Kent ML, Kuris AM, Powell EN, Rondeau D, Saksida SM (2015) Infectious diseases affect marine fisheries and aquaculture economics. Ann Rev Mar Sci 7:471–496. https://doi.org/10.1146/annur ev-marine-010814-015646
- Schar D, Klein EY, Laxminarayan R, Gilbert M, Van Boeckel TP (2020) Global trends in antimicrobial use in aquaculture. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-78849-3
- Miranda CD, Godoy FA, Lee MR (2018) Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front microbiol 9:1284. https://doi.org/10.3389/ fmicb.2018.01284
- Rasul MG, Majumdar BC (2017) Abuse of antibiotics in aquaculture and it's effects on human, aquatic animal and environment.
 Haya Saudi J Life Sci 2(3):81–88. https://doi.org/10.21276/haya
- Lillehoj H, Liu Y, Calsamiglia S, Fernandez-Miyakawa ME, Chi F, Cravens RL, Oh S, Gay CG (2018) Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res 49(1):1–8. https://doi.org/10.1186/s13567-018-0562-6
- AlSheikh HM, Sultan I, Kumar V, Rather IA, Al-Sheikh H, Tasleem Jan A, Haq QM (2020) Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics 9(8):480. https://doi.org/10.3390/antib iotics9080480
- Garagounis C, Delkis N, Papadopoulou KK (2020) Unraveling the roles of plant specialized metabolites: using synthetic biology to design molecular biosensors. New Phytol 231(4):1338–1352. https://doi.org/10.1111/nph.17470

- Álvarez-Martínez FJ, Rodríguez JC, Borrás-Rocher F, Barrajón-Catalán E, Micol V (2021) The antimicrobial capacity of *Cistus salviifolius* and *Punica granatum* plant extracts against clinical pathogens is related to their polyphenolic composition. Sci Rep reports 11(1):1–2. https://doi.org/10.1038/s41598-020-80003-y
- https://angrau.ac.in/downloads/AMIC/BLACKGRAM/20OUT LOOK/20REPORT/20-/20January/20to/20May/202021.pdf
- Girish TK, Pratape VM, Rao UP (2012) Nutrient distribution, phenolic acid composition, antioxidant and alpha-glucosidase inhibitory potentials of black gram (*Vigna mungo* L) and its milled by-products. Int Food Res J 46(1):370–7. https://doi.org/ 10.1016/j.foodres.2011.12.026
- Kumar N, Goel N (2019) Phenolic acids: natural versatile molecules with promising therapeutic applications. Appl Biotechnol Rep 24:e00370. https://doi.org/10.1016/j.btre.2019.e00370
- Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2(5):270–278. https://doi.org/10.4161/oxim.2.5.9498
- Harborne JB (1973) Phenolic compounds. InPhytochemical methods 33–88. Springer, Dordrecht. https://doi.org/10.1007/ 978-94-009-5921-7_2
- Amarowicz R, Pegg RB (2019) Natural antioxidants of plant origin. Adv Food Nutr Res 90:1–81. https://doi.org/10.1016/bs.afnr. 2019.02.011
- Girish TK, Kumar KA, Rao UP (2016) C-Glycosylated flavonoids from black gram husk: protection against DNA and erythrocytes from oxidative damage and their cytotoxic effect on HeLa cells. Toxicol Rep 3:652–663. https://doi.org/10.1016/j.toxrep.2016.08. 006
- Somta P, Chen J, Yimram T, Yundaeng C, Yuan X, Tomooka N, Chen X (2020) QTL mapping for agronomic and adaptive traits confirmed pleiotropic effect of mog Gene in black gram [Vigna mungo (L.) Hepper]. Front genet 635. https://doi.org/10.3389/ fgene.2020.00635
- Sowndhararajan K, Kang SC (2013) Free radical scavenging activity from different extracts of leaves of *Bauhinia vahlii* Wight & Arn. Saudi j biol sci 20(4):319–325. https://doi.org/10.1016/j. sibs.2012.12.005
- Abubakar AR, Haque M (2020) Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci 12(1):1. https://doi.org/10.4103/ 2Fjpbs.JPBS_175_19
- Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6(4):42
- 32. Abubakar AR, Haque M (2020) Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci 12(1):1
- Roghini R, Vijayalakshmi K (2018) Phytochemical screening, quantitative analysis of flavonoids and minerals in ethanolic extract of *Citrus paradisi*. Int J Pharm Sci & Res 9(11):4859– 4864. https://doi.org/10.13040/IJPSR.0975-8232.9(11).4859-64
- 34. Ayoola GA, Coker HA, Adesegun SA, Adepoju-Bello AA, Obaweya K, Ezennia EC, Atangbayila TO (2008) Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop J Pharm Res 7(3):1019–1024. https://doi.org/10.4314/tjpr.v7i3. 14686
- 35. Pandey A, Tripathi S (2014) Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J Pharmacogn Phytochem 2(5).
- Yadav RN, Agarwala M (2011) Phytochemical analysis of some medicinal plants. J Phytol 3(12).
- Thangaraj P (2019) Pharmacological assays of plant-based natural products. Springer

- Kumar GS, Jayaveera KN, Kumar CK, Sanjay UP, Swamy BM, Kumar DV (2007) Antimicrobial effects of Indian medicinal plants against acne-inducing bacteria. Trop J Pharm Res 6(2):717–723. https://doi.org/10.4314/tjpr.v6i2.14651
- Tepal P (2016) Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of *Musa paradisiaca*. Malaysian J Anal Sci 20(5):1181–1190
- Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured publishing corporation, Carol Stream
- Brand-Williams W, Cuvelier ME, Berset CL (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology 28(1):25–30. https://doi.org/10.1016/ S0023-6438(95)80008-5
- 42. Parimelazhagan T (2015) Pharmacological assays of plant-based natural products. Springer
- Klompong V, Benjakul S (2015) Antioxidative and antimicrobial activities of the extracts from the seed coat of Bambara groundnut (*Voandzeia subterranea*). RSC Adv 5(13):9973–9985. https://doi.org/10.1039/C4RA10955D
- 44. Amorim EL, Nascimento JE, Monteiro JM, Peixoto Sobrinho TJ, Araújo TA, Albuquerque UP (2008) A simple and accurate procedure for the determination of tannin and flavonoid levels and some applications in ethnobotany and ethnopharmacology. Functional Ecosystems and Communities 2(1):88–94
- Buszewski B, Railean-Plugaru V, Pomastowski P, Rafińska K, Szultka-Mlynska M, Golinska P, Wypij M, Laskowski D, Dahm H (2018) Antimicrobial activity of biosilver nanoparticles produced by a novel *Streptacidiphilus durhamensis* strain. J Microbiol Immunol Infect 51(1):45–54. https://doi.org/10.1016/j.jmii. 2016.03.002
- Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre platebased antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4):321–324. https:// doi.org/10.1016/j.ymeth.2007.01.006
- 47. Qayyum S, Oves M, Khan AU (2017) Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS ONE 12(8):e0181363. https://doi.org/10.1371/journal.pone.0181363
- LewisOscar F, Nithya C, Bakkiyaraj D, Arunkumar M, Alharbi NS, Thajuddin N (2017) Biofilm inhibitory effect of *Spirulina* platensis extracts on bacteria of clinical significance. Proc Natl Acad Sci India Sect B Biol Sci 87(2):537–544. https://doi.org/ 10.1007/s40011-015-0623-9
- 49. Shaham-Niv S, Rencus-Lazar S, Gazit E (2021) Metabolite medicine offers a path beyond lists of metabolites. Commun Chem 4(1):1–5. https://doi.org/10.1038/s42004-021-00551-w
- Jiang Y, Fang Z, Leonard W, Zhang P (2021) Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. J Funct foods 77:104340. https://doi.org/10.1016/j.jff.2020.104340
- Singh S, Negi T, Sagar NA, Kumar Y, Tarafdar A, Sirohi R, Sindhu R, Pandey A (2022) Sustainable processes for treatment and management of seafood solid waste. Sci Total Environ 152951https://doi.org/10.1016/j.scitotenv.2022.152951
- 52. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J (2020) Flavonoids as anticancer agents. Nutrients 12(2):457. https://www.mdpi.com/2072-6643/12/2/457#
- 53. Prasathkumar M, Raja K, Vasanth K, Khusro A, Sadhasivam S, Sahibzada MU, Gawwad MR, Al Farraj DA, Elshikh MS (2021) Phytochemical screening and in vitro antibacterial, antioxidant, anti-inflammatory, anti-diabetic, and wound healing attributes of *Senna auriculata* (L.) Roxb. leaves. Arabian Journal of Chemistry 14(9):103345. https://doi.org/10.1016/j.arabjc.2021.103345

- Feng XL, Zhan XX, Zuo LS, Mo XF, Zhang X, Liu KY, Li L, Zhang CX (2021) Associations between serum concentration of flavonoids and breast cancer risk among Chinese women. Eur J Nutr 60(3):1347–1362. https://doi.org/10.1007/ s00394-020-02331-z
- Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB (2019) Bioactive compounds and bioactivities of ginger (*Zingiber officinale* Roscoe). Foods 8(6):185. https://www.mdpi.com/2304–8158/8/6/185#
- Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S, RamaKrishna S, Berto F (2020) Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 9(12):1309. https://www.mdpi.com/2076–3921/9/12/1309#
- Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin AA, Ikryannikova LN (2020) Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics?. Antibiotics 9(4):170. https://www.mdpi.com/2079-6382/9/4/170#
- Aguilar-Villalva R, Molina GA, España-Sánchez BL, Díaz-Peña LF, Elizalde-Mata A, Valerio E, Azanza-Ricardo C, Estevez M (2021) Antioxidant capacity and antibacterial activity from *Annona cherimola* phytochemicals by ultrasound-assisted extraction and its comparison to conventional methods. Arab J Chem 14(7):103239. https://doi.org/10.1016/j.arabjc.2021. 103239
- Ntshanka NM, Ejidike IP, Mthunzi FM, Moloto MJ, Mubiayi KP (2020) Investigation into the phytochemical profile, antioxidant and antibacterial potentials of *Combretum molle* and *Acacia mearnsii* leaf parts. Biomed Pharmacol J 13(4):1683–94. https://doi.org/10.13005/bpj/2043
- Devi G, Sudhakar K, Vasupradaa AP, Sravya V, Manasa V, Yasaswini E (2021) Medicinal plants in india and it's antioxidant potential—a review. Revistageintec-gestaoinovacao e tecnologias 11(4):1397–405
- Kaushik B, Sharma J, Kumar P, Shourie A (2021) Phytochemical properties and pharmacological role of plants: secondary metabolites. Biosci Biotechnol Res Asia 18(1):23. https://doi.org/10.13005/bbra/2894
- Pakkirisamy M, Kalakandan SK, Ravichandran K (2017) Phytochemical screening, GC-MS, FT-IR analysis of methanolic extract of *Curcuma caesia* Roxb (Black Turmeric). Pharmacogn. J 9(6).
- Thummajitsakul S, Samaikam S, Tacha S, Silprasit K (2020) Study on FTIR spectroscopy, total phenolic content, antioxidant activity and anti-amylase activity of extracts and different tea forms of *Garcinia schomburgkiana* leaves. LWT 134:110005. https://doi.org/10.1016/j.lwt.2020.110005
- 64. Jisieike CF, Betiku E (2020) Rubber seed oil extraction: effects of solvent polarity, extraction time and solid-solvent ratio on its yield and quality. Biocatal Agric Biotechnol 24:101522
- Bobby MN, Wesely EG, Johnson M (2012) FT-IR studies on the leaves of *Albizia lebbeckbenth*. Int J Pharm Pharm Sci 4(3):293–296
- Ricci A, Olejar KJ, Parpinello GP, Kilmartin PA, Versari A (2015) Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl Spectrosc Rev 50(5):407–442
- Antony Sandosh T, Paul John Peter M, Yesu Raj J (2013) Phytochemical analysis of *Stylosanthes fruticosa* using UV-VIS, FTIR and GC-MS. Res J Chem Sci 3(11):14–23
- Slaga TJ, Snyder PW (2020) Safety Assessment of Diacetone Alcohol as Used in Cosmetics.
- Sheoran N, Nadakkakath AV, Munjal V, Kundu A, Subaharan K, Venugopal V, Rajamma S, Eapen SJ, Kumar A (2015) Genetic analysis of plant endophytic *Pseudomonas putida* BP25

- and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol Res 173:66–78
- Prabukumar S, Rajkuberan C, Ravindran K, Sivaramakrishnan S (2015) Isolation and characterization of endophytic fungi from medicinal plant *Crescentia cujete* L. and their antibacterial, antioxidant and anticancer properties. Int J Pharm Pharm Sci 7(11):316–321
- Srivastava JK, Pandey M, Gupta S (2009) Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sci 85(19–20):663–669
- Uehara M, Minemura H, Ohno T, Hashimoto M, Wakabayashi H, Okudaira N, Sakagami H (2018) In vitro antitumor activity of alkylaminoguaiazulenes. In vivo 32(3):541–547
- Nagai Y, Suzuki A, Katsuragi H, Shinkai K (2018) Effect of antimicrobial photodynamic therapy (aPDT) on the sterilization of infected dentin in vitro. Odontology 106(2):154–161
- Nithya M, Ragavendran C, Natarajan D (2018) Antibacterial and free radical scavenging activity of a medicinal plant *Solanum xan-thocarpum*. Int J Food Prop 21(1):313–327
- Pinto ME, Araújo SG, Morais MI, Sa NP, Lima CM, Rosa CA, Siqueira EP, Johann S, Lima LA (2017) Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An Acad Bras Ciênc 89:1671–1681
- Ikeda MA, Nakamura H, Sawada K (2021) Long-chain alkenes and alkadienes of eight lichen species collected in Japan. Phytochemistry 189:112823
- Arora S, Meena S (2017) GC-MS Profiling of *Ceropegia bul-bosa* Roxb. var. bulbosa, an endangered plant from Thar Desert, Rajasthan. J Pharm Innov 6(11):568–573
- Lim YH, Oo CW, Koh RY, Voon GL, Yew MY, Yam MF, Loh YC (2020) Synthesis, characterization, and anti-cancer activity of new chalcone derivatives containing naphthalene and fluorine moieties. Drug Dev Res 81(8):994–1003
- Wang Y, Yutuc E, Griffiths WJ (2021) Cholesterol metabolism pathways—are the intermediates more important than the products? FEBS J 288(12):3727–3745
- 80. Arias KS, Climent MJ, Corma A, Iborra S (2016) Chemicals from biomass: synthesis of biologically active furanochalcones by claisen–schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones. Top Catal 59(13):1257–1265
- 81. Gürler HN, Coban HB, Turhan I (2022) Investigation of the inhibitory effects of furfural and hydroxymethylfurfural on the production of *Aspergillus nigerinulinase* and modeling of the process. Biomass Convers. Biorefin 1–13.
- Muniyappan J, Varadharajan V, Namadevan P (2019) Biochemical screening and determination of bioactive components of commercially cultured pacific white shrimp *Penaeus vannamei*. Pharmacogn. Res 11(2).
- Kumaresan S, Senthilkumar V, Stephen A, Balakumar BS (2015)
 GC-MS analysis and pass-assisted prediction of biological activity spectra of extract of *Phomopsis sp.* isolated from *Andrographis paniculata*. World J Pharm Res 4:1035–1053
- Ngo TV, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV (2017)
 Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of *Salacia chinensis* L. J Food Qual. https://doi.org/10.1155/2017/9305047
- Wakeel A, Jan SA, Ullah I, Shinwari ZK, Xu M (2019) Solvent polarity mediates phytochemical yield and antioxidant capacity of *Isatis tinctoria*. PeerJ 7:e7857. https://doi.org/10.7717/peerj. 7857
- Nawaz H, Shad MA, Rehman N, Andaleeb H, Ullah N (2020) Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (*Phaseolus vulgaris*) seeds. Braz J Pharm Sci 56https://doi.org/10.1590/s2175-9790201900 0417129

- 87. Whitehead AT (1986) Electroantennogram responses by mountain pine beetles, Dendroctonusponderosae Hopkins, exposed to selected semiochemicals. J chem ecol 12(7):1603–1621. https://doi.org/10.1007/BF01020267
- Pevsner J, Hou V, Snowman AM, Snyder SH (1990) Odorant-binding protein. Characterization of ligand binding. J boil chem 265(11):6118–25. https://doi.org/10.1016/S0021-9258(19) 39300-7
- 89. National Center for Biotechnology Information (2021). PubChem substance record for SID 135255760, 69663–11–2, Source: ChemIDplus. Retrieved September 21, 2021 from https://pubchem.ncbi.nlm.nih.gov/substance/135255760.
- Naguib YM (1998) A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal Biochem 265(2):290–298. https://doi.org/10.1006/abio. 1998.2931
- Sahiner N, Yasar AO (2013) The generation of desired functional groups on poly (4-vinyl pyridine) particles by post-modification technique for antimicrobial and environmental applications. J Colloid Interface Sci 402:327–333. https://doi.org/10.1016/j.jcis. 2013.03.032
- Herasymchuk M, Melnykov KP, Yarmoliuk DV, Serhiichuk D, Rotar V, Pukhovoi T, Kuchkovska YO, Holovach S, Volochnyuk DM, RyabukhinSV GOO (2021) last of the gem-Difluorocycloalkanes 2: synthesis of fluorinated cycloheptane building blocks. Eur J Org Chem 47:6561–6569. https://doi.org/10.1002/ejoc. 202001530
- Annamalai S, Mohanam L, Raja V, Dev A, Prabhu V (2017) Antiobesity, antioxidant and hepatoprotective effects of Diallyl trisulphide (DATS) alone or in combination with Orlistat on HFD induced obese rats. Biomed Pharmacother 93:81–87. https://doi. org/10.1016/j.biopha.2017.06.035
- Thekkangil A, Suchithra TV (2020) Antidermatophytic lead compounds from *Streptomycetes albidoflavus* STV1572a against Tinea infections by Tricophyton mentagrophytes. Microbpathog 142:104037. https://doi.org/10.1016/j.micpath.2020.104037
- Diurno MV, Piscopo E, Mazzoni O, Calignano A (1991) Studies on heterocyclic compounds: 1, 3-thiazolidin-4-one derivatives. V. Pharmacological activity of substituted 2-phenyl-3-(N, N-dimethylaminoprophyl)-1, 3-thiazolidin-4-one. BollettinodellaSocietàitaliana di biologiasperimentale 67(12):1067–72
- Snyder JC, Antonious GF, Thacker R (2011) A sensitive bioassay for spider mite (*Tetranychus urticae*) repellency: a double bond makes a difference. Exp Appl Acarol 55(3):215–224. https://doi. org/10.1007/s10493-011-9472-2
- Skanda S, Vijayakumar BS (2021) Antioxidant and anti-inflammatory metabolites of a soil-derived fungus Aspergillus arcoverdensis SSSIHL-01. Curr Microbiol 8(4):1317–1323. https://doi.org/10.1007/s00284-021-02401-3
- 98. Balachandar R, Karmegam N, Saravanan M, Subbaiya R, Gurumoorthy P (2018) Synthesis of bioactive compounds from vermicast isolated actinomycetes species and its antimicrobial activity against human pathogenic bacteria. Microbpathog 121:155–165. https://doi.org/10.1016/j.micpath.2018.05.027
- Chansiw N, Chotinantakul K, Srichairatanakool S (2019) Antiinflammatory and antioxidant activities of the extracts from leaves and stems of *Polygonum odoratum* Lour. Anti-Inflamm Anti-Allergy Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents) 18(1):45–54. https://doi.org/10.2174/1871523017666181109144548
- Yu J, Lei J, Yu H, Cai X, Zou G (2004) Chemical composition and antimicrobial activity of the essential oil of *Scutellaria barbata*. Phytochemistry 65(7):881–884. https://doi.org/10.1016/j.phyto chem.2004.02.005
- Karthi S, Uthirarajan K, Manohar V, Venkatesan M, Chinnaperumal K, Vasantha-Srinivasan P, Krutmuang P (2020) Larvicidal

- enzyme inhibition and repellent activity of red mangrove *Rhiz-ophora mucronata* (Lam.) leaf extracts and their biomolecules against three medically challenging arthropod vectors. Molecules 25(17):3844. https://www.mdpi.com/1420–3049/25/17/3844#
- 102. Guz L, Adaszek Ł, Wawrzykowski J, Ziętek J, Winiarczyk S (2019) In vitro antioxidant and antibabesial activities of the extracts of *Achillea millefolium*. Polish journal of veterinary sciences 369-76https://doi.org/10.24425/pjvs.2019.129230
- 103. Ko EY, Cho SH, Kang K, Kim G, Lee JH, Jeon YJ, Kim D, Ahn G, Kim KN (2017) Anti-inflammatory activity of hydrosols from *Tetragonia tetragonoides* in LPS-induced RAW 264.7 cells. EXCLI J 16:521. https://doi.org/10.17179/2Fexcli2011-121
- 104. Jain S, Verma S, Singh SP, Sharma SN (2019) An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection. Biosens Bioelectron 127:135–141. https://doi.org/10.1016/j. bios.2018.12.008
- 105. Wu S, Zhao W, Yu Z, Liu J (2022) Antihypertensive effect and underlying mechanism of tripeptide NCW on spontaneously hypertensive rats using metabolomics analysis. Food Funct. https://doi.org/10.1039/D1FO03924E
- 106. Park SI, Lee KW, Park S, Shin MS (2021) In vitro biological activities of azulene, guaiazulene, and sodium guaiazulene sulfonate and its application to formulations through PEG-PCL micelles. Review of International Geographical Education Online 11(8):2084–2091
- 107. Muhammad F, Monteiro-Riviere NA, Riviere JE (2005) Comparative in vivo toxicity of topical JP-8 jet fuel and its individual hydrocarbon components: identification of tridecane and tetradecane as key constituents responsible for dermal irritation. Toxicologic Pathology 33(2):258–66. https://doi.org/10.1080/2F01926230590908222
- 108. Đukić N, Andrić G, Glinwood R, Ninkovic V, Andjelković B, Radonjić A (2021) The effect of 1-pentadecene on *Tribolium* castaneum behaviour: repellent or attractant? Pest Manag Sci 77(9):4034–4039. https://doi.org/10.1002/ps.6428
- 109. Kuroda Y, Ono N, Akaogi J, Nacionales DC, Yamasaki Y, Barker TT, Reeves WH, Satoh M (2006) Induction of lupusrelated specific autoantibodies by non-specific inflammation caused by an intraperitoneal injection of n-hexadecane in BALB/c mice. Toxicology 218(2-3):186-196. https://doi.org/ 10.1016/j.tox.2005.10.011
- 110. Zhang XX, Sun JY, Niu LX, Zhang YL (2017) Chemical compositions and antioxidant activities of essential oils extracted from the petals of three wild tree peony species and eleven cultivars. Chem Biodivers 14(11):e1700282
- 111. Wang YN, Wang HX, Jin YS, Bu CY, Cheng J, Zhao LL, Shi GL (2010) Assessment of the contact toxicity of methyl palmitate on *Tetranychus viennensis* (Acari: Tetranychidae). J Econ Entomol 103(4):1372–1377. https://doi.org/10.1603/EC09128
- 112. Breeta RD, Grace VM, Wilson DD (2021) Methyl palmitate—a suitable adjuvant for Sorafenib therapy to reduce in vivo toxicity and to enhance anti-cancer effects on hepatocellular carcinoma cells. Basic Clin Pharmacol Toxicol 128(3):366–378. https://doi.org/10.1111/bcpt.13525
- 113. Janik ME, Bane SL (2002) Synthesis and antimicrotubule activity of combretatropone derivatives. Bioorg Med Chem 10(6):1895–1903. https://doi.org/10.1016/S0968-0896(02) 00052-4
- 114. Ibrahim SR, Mohamed GA, Zayed MF, Ross SA (2017) 8-Hydrox-yirilone 5-methyl ether and 8-hydroxyirilone, new antioxidant and α-amylase inhibitors isoflavonoids from *Iris germanica* rhizomes. Bioorg Chem 70:192–198. https://doi.org/10.1016/j.bioorg.2016. 12.010
- Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR (2017) GC-MS based metabolite profiling,

- antioxidant and antimicrobial properties of different solvent extracts of Malaysian *Plectranthus amboinicus* leaves. Evid Based Complement Alternat Med. https://doi.org/10.1155/2017/15176
- Choi D, Kang W, Park T (2020) Anti-allergic and anti-inflammatory effects of Undecane on mast cells and keratinocytes. Molecules 25(7):1554. https://www.mdpi.com/1420-3049/25/7/ 1554#
- 117. Umar T, Gusain S, Raza MK, Shalini S, Kumar J, Tiwari M, Hoda N (2019) Naphthalene-triazolopyrimidine hybrid compounds as potential multifunctional anti-Alzheimer's agents. Bioorg. Med. Chem 27(14):3156–66. https://www.sciencedirect.com/science/article/pii/S0968089619302238#!
- 118. Babu RJ, Chatterjee A, Singh M (2004) Assessment of skin irritation and molecular responses in rat skin exposed to nonane, dodecane and tetradecane. Toxicol Lett 153(2):255–266. https://doi.org/10.1016/j.toxlet.2004.04.036
- Kim M, Sowndhararajan K, Choi HJ, Park SJ, Kim S (2019) Olfactory stimulation effect of aldehydes, nonanal, and decanal on the human electroencephalographic activity, according to nostril variation. Biomedicines 7(3):57. https://www.mdpi.com/ 2227-9059/7/3/57#
- Rideout D, Jaworski J, Dagnino R Jr (1988) Environment-selective synergism using self-assembling cytotoxic and antimicrobial agents. Biochem Pharmacol 37(23):4505–4512. https://doi.org/10.1016/0006-2952(88)90666-1
- 121. Vijayakumar K, Ramanathan T (2020) Musa acuminata and its bioactive metabolite 5-Hydroxymethylfurfural mitigates quorum sensing (las and rhl) mediated biofilm and virulence production of nosocomial pathogen Pseudomonas aeruginosa in vitro. J Ethnopharmacol 246:112242. https://doi.org/10.1016/j.jep.2019. 112242
- 122. Mou Y, Meng J, Fu X, Wang X, Tian J, Wang M, Peng Y, Zhou L (2013) Antimicrobial and antioxidant activities and effect of 1-hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus *Berkleasmium sp.* Dzf12. Molecules 18(12):15587–99. https://www.mdpi.com/1420–3049/18/12/15587#
- Laokor N, Juntachai W (2021) Exploring the antifungal activity and mechanism of action of Zingiberaceae rhizome extracts against *Malassezia furfur*. J Ethnopharmacol 279:114354. https://doi.org/10.1016/j.jep.2021.114354
- 124. Adedapo AD, Ajayi AM, Ekwunife NL, Falayi OO, Oyagbemi A, Omobowale TO, Adedapo AA (2020) Antihypertensive effect of Phragmanthera incana (Schum) Balle on NG-nitro-L-Arginine methyl ester (L-NAME) induced hypertensive rats. J Ethnopharmacol 257:112888. https://doi.org/10.1016/j.jep.2020.112888
- Venault A, Huang WY, Hsiao SW, Chinnathambi A, Alharbi SA, Chen H, Zheng J, Chang Y (2016) Zwitterionic modifications for enhancing the antifouling properties of poly (vinylidene fluoride) membranes. Langmuir 32(16):4113–4124. https://doi.org/ 10.1021/acs.langmuir.6b00981
- 126. Ceyhan-Güvensen, N. and Keskin, D (2016) Chemical content and antimicrobial properties of three different extracts of *Men-tha pulegium* leaves from Mugla Region, Turkey. J Environ Biol, 37(6):341–1346. https://hdl.handle.net/20.500.12809/2303
- 127. Breeta RD, Grace VM, Wilson DD (2021) Methyl Palmitate—A suitable adjuvant for Sorafenib therapy to reduce in vivo toxicity and to enhance anti-cancer effects on hepatocellular carcinoma cells. Basic & Clinical Pharmacology & Toxicology 128(3):366–78. https://onlinelibrary.wiley.com/journal/17427843
- 128. Swantara MD, Rita WS, Suartha N, Agustina KK (2019) Anticancer activities of toxic isolate of *Xestospongia testudinaria* sponge. Veterinary World 12(9):1434. https://doi.org/10.14202/ 2Fvetworld.2019.1434-1440

- 129. Cheng MC, Chang WH, Chen CW, Li WW, Tseng CY, Song TY (2015) Antioxidant properties of essential oil extracted from *Pinus morrisonicola* hay needles by supercritical fluid and identification of possible active compounds by GC/MS. Molecules 20(10):19051–65. https://www.mdpi.com/1420-3049/20/10/19051#
- Urata K, Takaishi N (2001) Cholesterol as synthetic building blocks for artificial lipids with characteristic physical, chemical and biological properties. Eur J Lipid Sci Technol 103(1):29–39. https://doi.org/10.1002/1438-9312(200101)103:1/3C29::AID-EJLT29/3E3.0.CO;2-O
- 131. El-Hawash SA, Abdel Wahab AE, El-Demellawy MA (2006) Cyanoacetic acid hydrazones of 3-(and 4-) Acetylpyridine and some derived ring systems as potential antitumor and anti-HCV agents. Archiv der Pharmazie: An Int J Pharma Med Chem 339(1):14–23. https://doi.org/10.1002/ardp.200500161
- 132. Mou Y, Meng J, Fu X, Wang X, Tian J, Wang M, Peng Y, Zhou L (2013) Antimicrobial and antioxidant activities and effect of 1-hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus *Berkleasmium sp.* Dzf12. Molecules. https://www.mdpi.com/1420–3049/18/12/15587#
- Soares D, Duarte LP, Cavalcanti AD, Silva FC, Braga AD, Lopes MT, Takahashi JA, Vieira-Filho SA (2017) Psychotriaviridis: chemical constituents from leaves and biological properties. An Acad Bras Ciênc 89:927–938. https://doi.org/10.1590/0001-3765201720160411
- 134. Abdelnabby H, Wang Y, Xiao X, Wang G, Yang F, Xiao Y (2016) Impact of direct and indirect application of rising furfural concentrations on viability, infectivity and reproduction of the rootknot nematode, Meloidogyne incognita in *Pisum sativum*. Microb Pathog 96:26–34. https://doi.org/10.1016/j.micpath.2016.04.015
- 135. Ran H, Zhang J, Gao Q, Lin Z, Bao J (2014) Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphothecaresinae ZN1. Biotechnol Biofuels 7(1):1–12. https://doi.org/10.1186/1754-6834-7-51
- 136. Sanmartín-Suárez C, Soto-Otero R, Sánchez-Sellero I, Méndez-Álvarez E (2011) Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants. J pharmacol toxicol methods 63(2):209–215. https://doi.org/10.1016/j.vascn.2010.10.004
- Ando H, Kurata A, Kishimoto N (2015) Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J Appl Microbiol 118(4):873– 880. https://doi.org/10.1111/jam.12764
- Pomierny B, Starek A, Krzyżanowska W, Starek-Świechowicz B, Smaga I, Pomierny-Chamioło L, Regulska M, Budziszewska B (2013) Potential neurotoxic effect of ethylene glycol ethers mixtures. Pharmacol Rep 65(5):1415–1421. https://doi.org/10.1016/ S1734-1140(13)71501-9
- Beulah GG, Soris PT, Mohan VR (2018) GC-MS determination of bioactive compounds of *Dendrophthoe falcata* (LF) Ettingsh: An epiphytic plant. Int J Health Sci Res 8:261–269
- 140. Xiang XF, Lan YB, Gao XT, Xie H, An ZY, Lv ZH, Duan CQ, Wu GF (2020) Characterization of odor-active compounds in the head, heart, and tail fractions of freshly distilled spirit from Spine grape (Vitis davidiiFoex) wine by gas chromatography-olfactometry and gas chromatography-mass spectrometry. Int Food Res J 137:109388. https://doi.org/10.1016/j.foodres.2020.109388
- 141. Fillat A, Gallardo O, Vidal T, Pastor FI, Díaz P, Roncero MB (2012) Enzymatic grafting of natural phenols to flax fibres: development of antimicrobial properties. Carbohydr Polym 87(1):146–152. https://doi.org/10.1016/j.carbpol.2011.07.030
- 142. Hurley MD, Ball JC, Wallington TJ, Toft A, Nielsen OJ, Bertman S, Perkovic M (2007) Atmospheric chemistry of a model biodiesel fuel, CH3C (O) O (CH2) 2OC (O) CH3: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the

- presence and absence of NO x. J Phys Chem 111(13):2547–2554. https://doi.org/10.1021/jp0667341
- 143. Keller BJ, Liang D, Thurman RG (1991) 2-Ethylhexanol uncouples oxidative phosphorylation in rat liver mitochondria. Toxical Lett 57(1):113–120. https://doi.org/10.1016/0378-4274(91) 90125-P
- 144. Boukaew S, Prasertsan P (2018) Inhibitory effects of acetophenone or phenylethyl alcohol as fumigant to protect soybean seeds against two aflatoxin-producing fungi. J Food Sci Technol 55(12):5123–5132. https://doi.org/10.1007/s13197-018-3458-6
- 145. Hilton MD, Cain WJ (1990) Bioconversion of cinnamic acid to acetophenone by a pseudomonad: microbial production of a natural flavor compound. Appl Environ Microbiol 56(3):623–627. https://doi.org/10.1128/aem.56.3.623-627.1990
- 146. Ledauphin J, Guichard H, Saint-Clair JF, Picoche B, Barillier D (2003) Chemical and sensorial aroma characterization of freshly distilled calvados. 2. Identification of volatile compounds and key odorants. J Agric Food Chem 51(2):433–42. https://doi.org/10.1021/jf020373e
- Babu RJ, Chatterjee A, Singh M (2004) Assessment of skin irritation and molecular responses in rat skin exposed to nonane, dodecane and tetradecane. Toxicol Lett 153(2):255–266. https://doi.org/10.1016/j.toxlet.2004.04.036
- Wahlberg JE, Wrangsjö K, Hietasalo A (1985) Skin irritancy from nonanoic acid. Contact Dermatitis 13(4):266–269. https://doi.org/ 10.1111/j.1600-0536.1985.tb02561.x
- 149. Bampidis V, Azimonti G, Bastos MDL, Christensen H, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B (2019) Safety and efficacy of eight compounds belonging to different chemical groups when used as flavourings for cats and dogs. EFSA J 17(3):e05649. https://doi.org/10.2903/j.efsa.2019. 5649
- 150. Vincze K, Gehring M, Braunbeck T (2014) (Eco) toxicological effects of 2, 4, 7, 9-tetramethyl-5-decyne-4, 7-diol (TMDD) in zebrafish (*Danio rerio*) and permanent fish cell cultures. Environ Sci Pollut Res 21(13):8233–8241. https://doi.org/10.1007/s11356-014-2806-y
- 151. Kim DH, Park MH, Choi YJ, Chung KW, Park CH, Jang EJ, An HJ, Yu BP, Chung HY (2013) Molecular study of dietary heptadecane for the anti-inflammatory modulation of NF-kB in the aged kidney. PLoS ONE 8(3):e59316. https://doi.org/10.1371/journal.pone.0059316
- 152. Gao W, Chai C, He Y, Li F, Hao X, Cao F, Gu L, Liu J, Hu Z, Zhang Y (2019) Periconiastone A, an antibacterial ergosterol with a pentacyclo [8.7. 0.01, 5.02, 14.010, 15] heptadecane system from *Periconia sp.* TJ403-rc01. Org Lett 21(20):8469–72. https://doi.org/10.1021/acs.orglett.9b03270
- 153. Abubacker MN, Devi PK (2015) In vitro antifungal potentials of bioactive compounds heptadecane, 9-hexyl and ethyl iso-allocholate isolated from *Lepidagathis cristata* Wild.(Acanthaceae) leaf. Br Med Bull 3(3):336–43
- 154. Aboaba SA, Aiyelaagbe OO, Ekundayo O (2010) Chemical composition, toxicity and larvicidal activity of the essential oil from the whole plant of *Acalypha segetalis* from South-West Nigeria. Nat Prod Commun 5(3):1934578X1000500328. https://doi.org/10.1177/2F1934578X1000500328
- 155. Marongiu B, Piras A, Porcedda S, Falconieri D, Maxia A, Frau MA, Gonçalves MJ, Cavaleiro C, Salgueiro L (2013) Isolation of the volatile fraction from *Apium graveolens* L.(Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: chemical composition and antifungal activity. Nat Prod Res 27(17):1521 7. https://doi.org/10.1080/14786419.2012.725402
- 156. Cruz-Ramirez SG, Lopez-Saiz CM, Rosas-Burgos EC, Cinco-Moroyoqui FJ, Velazquez C, Hernandez J, Burgos-Hernandez A (2016) Antimutagenic activity of bis (2-ethylhexyl) phthalate

- isolated from octopus (*Paraoctopus limaculatus*). Toxicol Lett 259:S197–S198. https://doi.org/10.1016/j.toxlet.2016.07.470
- 157. Rushing B, Wooten A, Shawky M, Selim MI (2016) Comparison of LC–MS and GC–MS for the analysis of pharmaceuticals and personal care products in surface water and treated wastewaters. Current Trends in Mass Spectrometry 14(3):8–14
- Korbecki J, Bajdak-Rusinek K (2019) The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res 68(11):915–932. https://doi.org/ 10.1007/s00011-019-01273-5
- 159. Kim BR, Kim HM, Jin CH, Kang SY, Kim JB, Jeon YG, Park KY, Lee IS, Han AR (2020) Composition and antioxidant activities of volatile organic compounds in radiation-bred Coreopsis cultivars. Plants 9(6):717. https://www.mdpi.com/2223-7747/9/6/717#
- 160. Balachandran C, Emi N, Arun Y, Yamamoto N, Duraipandiyan V, Inaguma Y, Okamoto A, Ignacimuthu S, Al-Dhabi NA, Perumal PT (2016) In vitro antiproliferative activity of 2, 3-dihydroxy-9, 10-anthraquinone induced apoptosis against COLO320 cells through cytochrome c release caspase mediated pathway with PI3K/AKT and COX-2 inhibition. Chem Biol Interact 249:23–35. https://doi.org/10.1016/j.cbi.2016.02.016
- 161. Hofmann J, Ueberall F, Posch L, Maly K, Herrmann DB, Grunicke H (1989) Synergistic enhancement of the antiproliferative activity of cis-diamminedichloroplatinum (II) by the ether lipid analogue BM41440, an inhibitor of protein kinase C Lipids 24(4):312–317. https://doi.org/10.1007/BF02535169
- 162. Vikhe S, Nirmal S (2018) Antiallergic and antihistaminic actions of Ceasalpiniabonducella seeds: Possible role in treatment of asthma. J ethnopharmacol 216:251–258. https://doi. org/10.1016/j.jep.2017.12.007
- 163. Amato ME, Ballistreri FP, Pappalardo A, Tomaselli GA, Toscano RM, Sfrazzetto GT (2013) Selective oxidation reactions of natural compounds with hydrogen peroxide mediated by methyltrioxorhenium. Molecules 18(11):13754–68. https://www.mdpi.com/1420-3049/18/11/13754#
- 164. Satmi FR, Hossain MA (2016) In vitro antimicrobial potential of crude extracts and chemical compositions of essential oils of leaves of *Mentha piperita* L native to the Sultanate of Oman. Pacific Science Review A: J Nat Sci Res 18(2):103–6. https:// doi.org/10.1016/j.psra.2016.09.005
- 165. de Oliveira RN, Campos PM, Pinto RM, Mioduski J, Santos RD, Justus B, de Paula JD, Klein T, Boscardin PM, Corrêa SD, Allegretti SM (2021) The promising antischistosomal activity of oleic acid-loaded polymeric nanocapsules for oral administration. J Drug Deliv Sci Technol 63:102429. https://doi.org/10.1016/j.jddst.2021.102429
- 166. Pegoraro NS, Camponogara C, Cruz L, Oliveira SM (2021) Oleic acid exhibits an expressive anti-inflammatory effect in croton oil-induced irritant contact dermatitis without the occurrence of toxicological effects in mice. J Ethnopharmacol 267:113486. https://doi.org/10.1016/j.jep.2020.113486
- 167. Kadan S, Saad B, Sasson Y, Zaid H (2016) In vitro evaluation of anti-diabetic activity and cytotoxicity of chemically analysed *Ocimum basilicum* extracts. Food Chem 196:1066–1074. https://doi.org/10.1016/j.foodchem.2015.10.044
- 168. Soni V, Raizada P, Singh P, Cuong HN, Rangabhashiyam S, Saini A, Saini RV, Van Le Q, Nadda AK, Le TT, Nguyen VH (2021) Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: a review. Environ Res 202:111622. https://doi.org/10.1016/j.envres.2021.111622
- 169. Truong DH, Nguyen DH, Ta NT, Bui AV, Do TH, Nguyen HC (2019) Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual. https://doi. org/10.1155/2019/8178294

- Jahromi SG (2019) Extraction techniques of phenolic compounds from plants. Plant physiological aspects of phenolic compounds 1–8.
- 171. Munteanu IG, Apetrei C (2021) Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci 22(7):3380. https://www.mdpi.com/1422-0067/22/7/3380#
- Johari MA, Khong HY (2019) Total phenolic content and antioxidant and antibacterial activities of *Pereskia bleo*. Adv Pharmacol Sci. https://doi.org/10.1155/2019/7428593
- 173. Ezealigo US, Joshua PE, Ononiwu CP, Agbo MO, Asomadu RO, Ogugua VN (2020) Total phenolic and flavonoid content and in vitro antioxidant activity of methanol extract and solvent fractions of *Desmodium ramosissimum* G. Don Med Sci Forum 2(1):15. https://doi.org/10.3390/CAHD2020-08594
- Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview.
 Journal of nutritional science 5https://doi.org/10.1017/jns.2016.41
- 175. Minatel IO, Borges CV, Ferreira MI, Gomez HA, Chen CY, Lima GP (2007) Phenolic compounds: functional properties, impact of processing and bioavailability. Phenolic Compd Biol Act 8:1–24
- Kumar N, Goel N (2019) Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep 24:e00370
- 177. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, TsouhFokou PV, Azzini E, Peluso I, Prakash Mishra A (2020) Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol 11:694. https://doi.org/10.3389/fphys.2020.00694
- 178. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E (2021) The chemistry of reactive oxygen species (ROS) revisited: out-lining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci 22:4642
- 179. Zhao HX, Zhang HS, Yang SF (2014) Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Sci Hum 3:183–190. https://doi.org/10. 1016/j.fshw.2014.12.005
- 180. Teixeira TS, Vale RC, Almeida RR, Ferreira TP, Guimarães LG (2017) Antioxidant potential and its correlation with the contents of phenolic compounds and flavonoids of methanolic extracts from different medicinal plants. Rev Virtual Quim 9:1546–1559
- 181. Aadesariya MK, Ram VR, Dave PN (2017) Evaluation of antioxidant activities by use of various extracts from *Abutilon pan*nosum and *Grewia tenax* leaves in the kachchh region. MOJFPT 1:97–112
- 182. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N (2019) Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 8:96. https://doi.org/10.3390/plants8040096
- 183. Mou Y, Meng J, Fu X, Wang X, Tian J, Wang M, Peng Y, Zhou L (2013) Antimicrobial and antioxidant activities and effect of 1-hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus *Berkleasmium sp.* Dzf12. Molecules 18(12):15587–15599
- 184. Hamid AA, Aliyu MA, Abubakar LZ, Mukadam AA, Shehu A, Egharevba G, Adisa MJ, Ajibade SO, Zubair AO, Fagbohun EO (2017) *Thaumatococcus daniellii* leaves: its chemical compositions, antioxidant and antimicrobial activities. IFE J Sci 19(2):409–416
- 185. Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR (2017) GC-MS based metabolite profiling, anti-oxidant and antimicrobial properties of different solvent extracts of Malaysian *Plectranthus amboinicus* leaves. Evid Based Complementary Altern Med
- Heng YW, Ban JJ, Khoo KS, Sit NW (2020) Biological activities and phytochemical content of the rhizome hairs of *Cibotium barometz* (Cibotiaceae). Ind Crops Prod 153:112612

- Urbaniak A, Kujawski J, Czaja K, Szelag M (2017) Antioxidant properties of several caffeic acid derivatives: a theoretical study. Comptes Rendus Chimie 20:1072–1082. https://doi.org/10.1016/j. crci.2017.08.003
- 188. Thaulow J, Song Y, Lindeman LC, Kamstra JH, Lee Y, Xie L, Aleström P, Salbu B, Tollefsen KE (2020) Epigenetic, transcriptional and phenotypic responses in Daphnia magna exposed to low-level ionizing radiation. Environ Res 190:109930
- Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530
- Cosme P, Rodríguez AB, Espino J, Garrido M (2020) Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 12:1263
- Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J Funct Foods 18:820–897
- Noreen H, Semmar N, Farman M, McCullagh JS (2017) Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant *Coronopus didymus*. Asian Pac j trop Med 10:792–801. https://doi.org/10.1016/j.apjtm.2017.07.024
- 193. Apak R, Özyürek M, Güçlü K, Çapanoğlu E (2016) Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 64:997–1027. https://doi.org/10.1021/acs.jafc. 5b04739
- 194. Sadoun UA, Al-Ali ZS, Haddad AM (2021) Extraction of phenolic compounds from Iraqi Coriandrum Sativum L. and loaded on copolymeric hydrogels and examine there as drug delivery system and antioxidant. In J Phys Confe Ser 2063:012001
- 195. Echegaray N, Domínguez R, Cadavez VA, Bermúdez R, Purriños L, Gonzales-Barron U, Hoffman E, Lorenzo JM (2021) Influence of the production system (Intensive vs. extensive) at farm level on proximate composition and volatile compounds of portuguese lamb meat. Foods 10:1450
- 196. Ertas A, Yilmaz MA, Firat M (2015) Chemical profile by LC–MS/MS, GC/MS and antioxidant activities of the essential oils and crude extracts of two Euphorbia species. Nat Prod Res 29(6):529–534
- 197. Sinan KI, Etienne OK, Stefanucci A, Mollica A, Mahomoodally MF, Jugreet S, Rocchetti G, Lucini L, Aktumsek A, Montesano D, Ak G (2021) Chemodiversity and biological activity of essential oils from three species from the Euphorbia genus. Flavour Fragr J 36(1):148–158
- Ogundajo A, Ashafa AT (2017) Phytochemical compositions and in vitro assessments of antioxidant and antidiabetic potentials of fractions from *Ehretia cymosa* Thonn. Pharmacogn Mag 13(Suppl 3):S470
- Kaurinovic B, Vastag D (2019) Flavonoids and phenolic acids as potential natural antioxidants. London, UK: IntechOpen 1–20
- Mansoori A, Singh N, Dubey SK, Thakur TK, Alkan N, Das SN, Kumar A (2020) Phytochemical characterization and assessment of crude extracts from *Lantana camara* L. for antioxidant and antimicrobial activity. Front Agron 16. https://doi.org/10.3389/ fagro.2020.582268
- Li Y, Kong D, Fu Y, Sussman MR, Wu H (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 148:80–89. https://doi.org/10.1016/j.plaphy.2020.01.006
- Kabtni S, Sdouga D, BettaibRebey I, Save M, Trifi-Farah N, Fauconnier ML, Marghali S (2020) Influence of climate variation on phenolic composition and antioxidant capacity of *Medicago minima* populations. Sci Rep 10:1–5. https://doi.org/10.1038/ s41598-020-65160-4
- Venkatesan T, Choi YW, Kim YK (2020) Impact of different extraction solvents on phenolic content and antioxidant potential

- of *Pinus densiflora* bark extract. Biomed Res Int 29:2019. https://doi.org/10.1155/2019/3520675
- Grgić J, Šelo G, Planinić M, Tišma M, Bucić-Kojić A (2020) Role
 of the encapsulation in bioavailability of phenolic compounds.
 Antioxidants 9:923. https://doi.org/10.3390/antiox9100923
- Sánchez-Mundo ML, Escobedo-Crisantes VM, Mendoza-Arvizu S, Jaramillo-Flores ME (2016) Polymerization of phenolic compounds by polyphenol oxidase from bell pepper with increase in their antioxidant capacity. CyTA-J Food 14:594–603. https://doi. org/10.1080/19476337.2016.1181672
- Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV (2016) An overview on the role of dietary phenolics for the treatment of cancers. Nutr J 15:1–6. https://doi.org/10.1186/s12937-016-0217-2
- Singh AP, Kumar S (2018) Applications of tannins in industry, tannins-structural properties, biological properties and current knowledge. InTech Open, London
- 208. Ngo TV, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV (2017) Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of *Salacia chinensis* L. J Food Qual
- 209. Truong DH, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC (2019) Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual
- Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju YH (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of *Limnophila aromatica*. J Food Drug Anal 22(3):296–302
- Moonmun D, Majumder R, Lopamudra A (2017) Quantitative phytochemical estimation and evaluation of antioxidant and antibacterial activity of methanol and ethanol extracts of *Heliconia rostrata*. Indian J Pharm Sci 79(1):79–90
- Burlacu E, Nisca A, Tanase C (2020) A comprehensive review of phytochemistry and biological activities of Quercus species. Forests 11:904. https://doi.org/10.3390/f11090904
- Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as antiinflammatory agents. Proc Nutr Soc 69:273–278. https://doi.org/ 10.1017/S002966511000162X
- Shah SM, Sadiq A, Shah SM, Ullah F (2014) Antioxidant, total phenolic contents and antinociceptive potential of *Teucrium stocksianum* methanolic extract in different animal models.
 BMC Complement Med Ther 14:1–7. https://doi.org/10.1186/1472-6882-14-181
- 215. Narayanankutty A, Sasidharan A, Job JT, Rajagopal R, Alfarhan A, Kim YO, Kim HJ (2021) Mango ginger (*Curcuma amada* Roxb.) rhizome essential oils as source of environmental friendly biocides: comparison of the chemical composition, antibacterial, insecticidal and larvicidal properties of essential oils extracted by different methods. Environ Res 202:111718. https://doi.org/10.1016/j.envres.2021.111718
- Saryono S, Warsinah W, Isworo A, Efendi F (2018) Anti-inflammatory effect of date seeds (*Phoenix dactylifera* L) on carrageenan-induced edema in rats. Trop J Pharm Res 12:2455–2461
- Cloutier MM, Guernsey L (1996) Tannin stimulates arachidonic acid release from bovine tracheal epithelial cells. Am J Physiol -Lung Cell Mol Physiol 270(4):L613–L618
- 218. Yam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R (2018) General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int J Mol Sci 19(8):2164
- 219. Figurová D, Tokárová K, Greifová H, Knížatová N, Kolesárová A, Lukáč N (2021) Inflammation, it's regulation and antiphlogistic effect of the cyanogenic glycoside amygdalin. Molecules 26(19):5972

- Xie L, Roto AV, Bolling BW (2012) Characterization of ellagitannins, gallotannins, and bound proanthocyanidins from California almond (*Prunus dulcis*) varieties. J Agric Food Chem 60(49):12151–12156
- 221. Nunes CDR, Barreto Arantes M, de Faria M, Pereira S, Leandro da Cruz L, de Souza PM, Pereira de Moraes L, Vieira IJC, Barros de Oliveira D (2020) Plants as sources of anti-inflammatory agents. Molecules 25(16):3726
- Park M, Cho H, Jung H, Lee H, Hwang KT (2014) Antioxidant and anti-inflammatory activities of tannin fraction of the extract from black raspberry seeds compared to grape seeds. J Food Biochem 38(3):259–270
- Ashaduzzaman RLBS (2019) Identification and Artificial Infestation of Staphylococcus aureus Isolated from Diseased Fish, Labeo rohita
- 224. Nayak SK, Dash JP, Dutta P (2021) Biotechnological interventions in developing vaccines against Aeromonas infection in aquaculture. In Biotechnological Advances in Aquaculture Health Management. Springer, Singapore 79–100
- 225. Nath A, Nayak SK, Behera M, Mohanta L (2021) Assessment of immune responses in Indian major carp, *Labeo rohita* against multiple antigenic components of three bacterial fish pathogens; *Aeromonas hydrophila*, *Pseudomonas aeruginosa* and *Staphylo-coccus aureus*. Aquac Res 52(7):3449–3459
- 226. Wang E, Chen X, Liu T, Wang K (2022) Effect of dietary *Ficus carica* polysaccharides on the growth performance, innate immune response and survival of crucian carp against *Aeromonas hydrophila* infection. Fish Shellfish Immunol 120:434–440
- 227. Divya D, Beulah G, Govinda Rao K, Sravya MVN, Simhachalam G, Sai Krishna M, Sampath Kumar NS (2022) Bioactivity of Excoecaria agallocha leaf extract against Pseudomonas aeruginosa infection in Labeo rohita. J Appl Aquac 1–19
- 228. Oliveira RV, Peixoto PG, Ribeiro DDC, Araujo MC, do Santos CTB, Hayashi C, Pedreira MM, Pelli A (2014) Klebsiella pneumoniae as a main cause of infection in Nishikigoi Cyprinus carpio (carp) by inadequate handling. Brazilian J Vet Pathol 7(2):86–88
- 229. Das A, Acharya S, Behera BK, Paria P, Bhowmick S, Parida PK, Das BK (2018) Isolation, identification and characterization of Klebsiella pneumoniae from infected farmed Indian Major Carp Labeo rohita (Hamilton 1822) in West Bengal, India. Aquaculture 482:111–116
- 230. Rauf A, Nawaz H, Shad MA (2018) Effect of solvent polarity and extraction time on in vitro antioxidant properties of *Brassica* oleracea Convar Capitata Var L. seeds. Pak J Pharm Sci 31
- Dyrda G, Boniewska-Bernacka E, Man D, Barchiewicz K, Słota R (2019) The effect of organic solvents on selected microorganisms and model liposome membrane. Mol Biol Rep 46:3225–3232. https://doi.org/10.1007/s11033-019-04782-y
- 232. Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, Karmakar S, Sen T (2015) Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents. Springerplus 4:1–4. https://doi.org/10.1186/s40064-015-1476-7
- 233. Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI (2017) Synergy between active efflux and outer membrane diffusion defines rules of antibiotic permeation into Gram-negative bacteria. MBio 8(5):e01172-e1217. https://doi.org/10.1128/mBio.01172-17
- Stefanović OD (2018) Synergistic activity of antibiotics and bioactive plant extracts: a study against Gram-positive and Gramnegative bacteria. Bacterial Pathogenesis and Antibacterial Control 23:23

 –48
- Górniak I, Bartoszewski R, Króliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 18:241–272. https://doi.org/10.1007/s11101-018-9591-z
- Das S, Barman S, Teron R, Bhattacharya SS, Kim KH (2020)
 Secondary metabolites and anti-microbial/anti-oxidant profiles

- in *Ocimum spp.*: Role of soil physico-chemical characteristics as eliciting factors. Environ Res 188:109749. https://doi.org/10.1016/j.envres.2020.109749
- Gao Y, van Belkum MJ, Stiles ME (1999) The outer membrane of Gram-negative bacteria inhibits antibacterial activity of brochocin-C. Appl Environ Microbiol 65(10):4329–4333
- 238. Wang Y, Wang J, Bai D, Wei Y, Sun J, Luo Y, Zhao J, Liu Y (1862) Wang Q (2020) Synergistic inhibition mechanism of pediocin PA-1 and L-lactic acid against *Aeromonas hydrophila*. Biochim Biophys Acta Biomembr 10:18334
- 239. Nicholls DG (2013) Bioenergetics. Academic Press
- Toyofuku M, Nomura N, Eberl L (2019) Types and origins of bacterial membrane vesicles. Nat Rev Microbiol 17(1):13–24
- Ibrahim, Kebede A (2020) In vitro antibacterial activities of methanol and aqueous leave extracts of selected medicinal plants against human pathogenic bacteria. Saudi J Biol Sci 27(9):2261– 2268. https://doi.org/10.1016/j.sjbs.2020.06.047
- 242. Nigussie D, Davey G, Legesse BA, Fekadu A, Makonnen E (2021) Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complement Altern Med 21:1. https://doi.org/10.1186/s12906-020-03183-0
- 243. Yang L, Liu Y, Sternberg C, Molin S (2010) Evaluation of enoylacyl carrier protein reductase inhibitors as *Pseudomonas aeruginosa* quorum-quenching reagents. Molecules 15:780–792. https://doi.org/10.3390/molecules15020780
- Yao J, Ericson ME, Frank MW, Rock CO (2016) Enoyl-acyl carrier protein reductase I (FabI) is essential for the intracellular growth of *Listeria monocytogenes*. Immun 84:3597–3607. https://doi.org/10.1128/IAI.00647-16
- Khameneh B, Iranshahy M, Soheili V, Bazzaz BS (2019) Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control 8:1–28. https://doi.org/10.1186/s13756-019-0559-6
- Mohiuddin SG, Hoang T, Saba A, Karki P, Orman MA (2020) Identifying metabolic inhibitors to reduce bacterial persistence. Front Microbiol 11:472. https://doi.org/10.3389/fmicb.2020. 00472
- Basavegowda N, Baek KH (2021) Synergistic antioxidant and antibacterial advantages of essential oils for food packaging applications. Biomolecules 11:1267. https://doi.org/10.3390/biom1 1091267
- Tchaikovskaya ON, Basyl OK, Sultimova NB (2005) Protonacceptor and proton-donor properties of phenol and its substitutes. Russ Phys J 48:1245–1250. https://doi.org/10.1007/ s11182-006-0054-4
- 249. Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, Oulahal N, Degraeve P, Bordes C (2019) Antibacterial properties of polyphenols: characterization and QSAR (Quantitative structure–activity relationship) models. Front Microbiol 10:829. https://doi.org/10.3389/fmicb.2019.00829
- 250. Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M, Hatab SR (2018) Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol 9:1639
- Górniak I, Bartoszewski R, Króliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 18(1):241–272
- 252. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49(6):2474–2478
- Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264(5157):382–388

- Vasconcelos NG, Croda J, Simionatto S (2018) Antibacterial mechanisms of cinnamon and its constituents: a review. Microb Pathog 120:198–203
- Makajanma MM, Taufik I, Faizal A (2020) Antioxidant and antibacterial activity of extract from two species of mosses: Leucobryum aduncum and Campylopus schmidii. Biodivers J Bio Divers 21(6)
- 256. OuldBellahcen T, Cherki M, Sánchez JAC, Cherif A, El Amrani A (2019) Chemical composition and antibacterial activity of the essential oil of *Spirulina platensis* from Morocco. J Essent Oil-Bear Plants 22(5):1265–1276
- Cao S, Du R, Zhao F, Xiao H, Han Y, Zhou Z (2019) The mode of action of bacteriocin CHQS, a high antibacterial activity bacteriocin produced by *Enterococcus faecalis* TG2. Food Control 96:470–478
- Lucchini JJ, Corre J, Cremieux A (1990) Antibacterial activity of phenolic compounds and aromatic alcohols. Res Microbiol 141(4):499–510
- Usta J, Kreydiyyeh S, Barnabe P, Bou-Moughlabay Y, Nakkash-Chmaisse H (2003) Comparative study on the effect of cinnamon and clove extracts and their main components on different types of ATPases. Hum Exp Toxicol 22(7):355–362
- Othman L, Sleiman A, Abdel-Massih RM (2019) Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front Microbiol 10:911. https://doi.org/10.3389/fmicb.2019. 00911
- Sasirekha B, Megha DM, Chandra MS, Soujanya R (2015) Study on effect of different plant extracts on microbial biofilms. Asian J Biotechnol 7:1–2
- Kowalska-Krochmal B, Dudek-Wicher R (2021) The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens 10(2):165
- Sharifi A, Mohammadzadeh A, Salehi TZ, Mahmoodi P, Nourian, A (2021) Cuminum cyminum L. essential oil: a promising antibacterial and antivirulence agent against multidrug-resistant Staphylococcus aureus. Front Microbiol 12
- 264. Yang B, Lei Z, Zhao Y, Ahmed S, Wang C, Zhang S, Fu S, Cao J, Qiu Y (2017) Combination susceptibility testing of common antimicrobials in vitro and the effects of sub-MIC of antimicrobials on *Staphylococcus aureus* biofilm formation. Front Microbiol 8:2125
- 265. Shi N, Gao Y, Yin D, Song Y, Kang J, Li X, Zhang Z, Feng X, Duan J (2019) The effect of the sub-minimal inhibitory concentration and the concentrations within resistant mutation window of ciprofloxacin on MIC, swimming motility and biofilm formation of *Pseudomonas aeruginosa*. Microb pathog 137:103765
- Moradi F, Hadi N, Bazargani A (2020) Evaluation of quorumsensing inhibitory effects of extracts of three traditional medicine plants with known antibacterial properties. New Microbes New Infect 38:100769
- 267. Mohammadi Pelarti S, Karimi Zarehshuran L, Babaeekhou L, Ghane M (2021) Antibacterial, anti-biofilm and anti-quorum sensing activities of Artemisia dracunculus essential oil (EO): a study against Salmonella enterica serovar Typhimurium and Staphylococcus aureus. Arch Microbiol 203(4):1529–1537
- Othman M, San Loh H, Wiart C, Khoo TJ, Lim KH, Ting KN (2011) Optimal methods for evaluating antimicrobial activities from plant extracts. J Microbiol Methods 84:161–166. https://doi.org/10.1016/j.mimet.2010.11.008
- Daneshfar A, Ghaziaskar HS, Homayoun N (2008) Solubility of gallic acid in methanol, ethanol, water, and ethyl acetate. J Chem Eng Data 53:776–778. https://doi.org/10.1021/je700633w
- 270. Skulachev VP (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett 397(1):7–10

- 271. Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev
- Jacobo-Velázquez DA, Cisneros-Zevallos L (2009) Correlations
 of antioxidant activity against phenolic content revisited: a new
 approach in data analysis for food and medicinal plants. J Food
 Sci 74(9):R107–R113
- 273. Len JS, Koh WSD, Tan SX (2019) The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep 39(8)
- 274. Galanakis CM, Goulas V, Tsakona S, Manganaris GA, Gekas V (2013) A knowledge base for the recovery of natural phenols with different solvents. Int J Food Prop 16:382–396. https://doi.org/10.1080/10942912.2010.522750
- 275. Stefanović OD, Tešić JD, Čomić LR (2015) Melilotus albus and Dorycniumherbaceum extracts as source of phenolic compounds and their antimicrobial, antibiofilm, and antioxidant potentials. J Food Drug Anal 23:417–424. https://doi.org/10.1016/j.jfda.2015. 01 003
- 276. Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A (2011) Antibacterial activity of Thymoquinone, an active principle of *Nigella sativa* and its potency to prevent bacterial biofilm formation. BMC Complement Altern Med 11:1–6. https://doi.org/10. 1186/1472-6882-11-29
- Bavington C, Page C (2005) Stopping bacterial adhesion: a novel approach to treating infections. Respir 72(4):335–344
- Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, Wyllie SG (2000) The mode of antimicrobial action of the essential oil of *Melaleuca alternifolia* (tea tree oil). J Appl Microbiol 88(1):170–175
- 279. Adonizio A, Kong KF, Mathee K (2008) Inhibition of quorum sensing-controlled virulence factor production in *Pseudomonas* aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 52(1):198–203
- 280. Husain FM, Ahmad I, Al-Thubiani AS, Abulreesh HH, AlHazza IM, Aqil F (2017) Leaf extracts of *Mangifera indica* L. Inhibit quorum sensing–regulated production of virulence factors and biofilm in test bacteria. Front Microbiol 8:727
- Zhao M, Li W, Liu K, Li H, Lan X (2019) C4-HSL aptamers for blocking qurom sensing and inhibiting biofilm formation in *Pseu-domonas aeruginosa* and its structure prediction and analysis. PLoS ONE 14(2):e0212041
- Amaral L and Molnar J (2012) Inhibitors of efflux pumps of Gram-negative bacteria inhibit quorum sensing. Open J Pharmacol 2(1)
- Cadavid E, Echeverri F (2019) The search for natural inhibitors of biofilm formation and the activity of the autoinductor C6-AHL in *Klebsiella pneumoniae* ATCC 13884. Biomol 9(2):49
- Scoffone VC, Trespidi G, Chiarelli LR, Barbieri G, Buroni S
 (2019) Quorum sensing as antivirulence target in cystic fibrosis pathogens. Int J Mol Sci 20(8):1838
- 285. Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoidsJ. Appl Microbiol 109(2):515–527
- 286. Monte J, Abreu AC, Borges A, Simões LC, Simões M (2014) Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens 3(2):473–498
- 287. Kim YG, Lee JH, Gwon G, Kim SI, Park JG, Lee J (2016) Essential oils and eugenols inhibit biofilm formation and the virulence of *Escherichia coli* O157: H7. Sci Rep 6(1):1–11

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

