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Abstract
The risk faced by the drug-resistant pathogens, research, and development for viable alternative medicine is gaining trac-
tion. This study aims to utilize agricultural waste beneficially, by investigating the methanol, ethanol, acetone, ethyl acetate, 
petroleum ether, and hexane extracts of black gram pods by gas chromatography-mass spectrometry (GC–MS), and Fourier 
transform infrared (FT-IR) analysis to identify metabolites and functional groups and to evaluate its antibacterial and anti-
biofilm potential on various fish disease-causing drug resistant pathogens like Aeromonas hydrophila, Klebsiella pneu-
moniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Numerous compounds were identified as major peak area 
percentage by GC–MS analysis based on the polarity. Methanolic and ethanolic extracts of black gram pods showed higher 
phenolic and tannin content compared to other solvents, these results correlate with antioxidant potential. IC50 values of both 
2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) by the metha-
nolic extracts possessed 933.807 and 976.285 µg/mL respectively. All the extracts possessed potential antibiofilm activity 
against A. hydrophila, K. pneumoniae, P. aeruginosa, and S. aureus in a dose-dependent manner. This study clearly shows 
that phenolic content is the major source for the inhibition of bacterial cell adherence (biofilm) against pathogens. Extrac-
tion in highly polar solvents exhibited higher content of phenols and tannins as compared to non-polar solvents. Findings 
of the current study support black gram pods as an excellent alternative medicine against fish disease-causing pathogens. 
It is proved in this study that the biowaste black gram pods could be recycled for the welfare of humans as well as for the 
growth of the country’s economy.
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1  Introduction

Metabolites comprise aromatic rings with hydroxyl groups 
that are known as phenolic and flavonoid compounds [1]. 
Hydroxyl radicals of phytochemicals can directly exhibit 
antioxidant activity through the phenolic substances, which 
are excellent electron donors [2]. Both edible and non-edible 
portions of plants contain considerable amounts of phenolic 
compounds [3]. Plant products possess high phenolics, and 
thus fruits, herbs, vegetables, and other plant materials are 

increasingly being used in industrial phenolic extraction. 
Using important horticultural crops that are also human 
food resources for phenolic production or extraction poses 
significant legal and cultural concerns [4]. For emerging 
and developing countries, this would be a very expensive 
endeavor. Increased phenolic production might divert impor-
tant fruits and vegetables from the food supply. Bioactive 
phenolic metabolites could also be synthesized or extracted 
from agro-industry wastes. Every year, large quantities of 
these materials such as seeds, peels, pods, and husks are cre-
ated as wastes and are either inadequately collected or left to 
decompose on the ground [5–7]. These materials are gaining 
more attention as readily available and inexpensive renew-
able sources for the synthesis of value-added compounds 
[8]. Numerous investigations have shown that bioactive 
compounds may be recovered from food processing or plant 
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harvesting by-products such as banana peels [9], cauliflower 
wastes [10], garlic husks [11], and broccoli wastes [12].

The disease outbreaks are the most common difficulty 
in the process of freshwater fish farming [13]. Aeromonas 
hydrophila, Pseudomonas aeruginosa, Staphylococcus 
aureus, and Klebsiella pneumoniae are the most disease-
causing pathogens in freshwater fish. Antibiotics are widely 
used to treat diseases in fish farming [14, 15]. Rasul and 
Majumdar. [16] reported that long-term usage and unsuit-
able dosages of antibiotics may have negative impacts on 
environmental consequences. To overcome these limitations, 
natural phytochemicals isolated from plant materials could 
be an excellent alternative to antibiotics [17, 18]. Plant-
based metabolites evolved to act as ligands for a diverse set 
of molecular targets, resulting in a high level of molecular 
promiscuity [19]. This multi-target characteristic is criti-
cal for phenols with antibacterial potential and synergistic 
effects with conventional antibiotics [20]. Black gram (BG) 
(Vigna mungo) is an Indian-originated fast-growing warm-
season legume belonging to the Fabaceae family and genus 
Vigna. India is the world’s largest source of BG, accounting 
for  70% of global gross domestic production [21]. BG is 
mainly cultivated in Tamil Nadu (southern part of India) and 
it has diversified biological properties like nutritive, bulk 
enhancer, diuretic, and aphrodisiac [22]. As a consequence, 
a massive chunk of black gram pods (BGP) is disposed in 
landfills. Phenolic acids may be found in a wide range of 
plant-based meals, with the largest amounts found in seeds, 
fruit peels, husks, shells, pods, and vegetable leaves. They 
are often found in combined forms such as amides, esters, 
or glycosides that are rarely seen in free form [23]. These 
phenolic acids are non-flavonoid polyphenolic compounds 
that can be further classified as hydroxybenzoic acid and 
hydroxycinnamic acid derivatives [24, 25]. Most phenolic 
acids found in legumes are associated with cellulose, pro-
tein, lignin, or smaller biomolecules like sugar, quinic acid, 
and maleic acid via ester, ether, or acetyl bonds which are 
released through alkali, acid, and enzymatic hydrolysis 
[26]. Black gram seed husks and pods have greater levels 
of phytohormone C-glycosyl flavones such as vitexin and 
isovitexin, which have anticancer properties by protect-
ing DNA and blood platelets from lipid peroxidation [27]. 
Approximately 2–3 kg of pods yielded 1 kg of black gram 
(from crop protection guide, Tamil Nadu Agricultural Uni-
versity, Tamil Nadu, India). Production-related factors like 
seed weight, number of seeds per pod, and seed indices have 
a big impact on seed yield/plant [28]. Since various solvents 
produce extracts with varying antioxidant activity, the abil-
ity of extracts to prevent lipid oxidation may vary [29]. To 
our knowledge, no previous research has been conducted to 
evaluate black gram pods (BGP) or their features. Therefore, 
the present study is conducted to investigate the chemical 
composition of the various extracts of black gram pods by 

using GC–MS and FT-IR for the identification of metabo-
lites, and functional groups respectively and to analyze its 
total phenolics, total tannins, and in-vitro antioxidant, anti-
bacterial and biofilm inhibitory potential.

2 � Materials and methods

2.1 � Collection of black gram pod wastes 
and preparation of extracts

Black gram pod (BGP) wastes were collected from Nem-
meli village (10°55′04.0″N 79°37′16.0″E) in Tiruvarur 
district, Tamil Nadu, India. The black gram pods were har-
vested, and shade dried at 37 °C before being coarsely pul-
verized. The powder was sieved with 0.2-mm sieve plates 
and stored at − 20 °C for later use. The extracts were made 
from powdered BGP using a cold maceration procedure with 
six solvents (10:90 W/V): petroleum ether, methanol, ethyl 
acetate, ethanol, acetone, and hexane [30]. The solvents 
chosen for this study depend on the nature of the bioac-
tive metabolites, type, and part of the plant [31]. Moreover, 
based on the polarity, these solvents used for this study are 
from least polar to higher polar. Non-polar solvents such as 
hexane (0.009) and petroleum ether (0.117) were used in 
non-polar compound extraction, whereas polar solvents such 
as methanol (0.762) and ethanol (0.654) were utilized in 
polar compound extraction. And the mid-polar solvents (par-
tially polar/non-polar) like acetone (0.355) and ethyl acetate 
(0.228) were used to extrude mid-polar compounds [32]. 
The filtrate was collected via Whatman No. 1 filter paper 
prior to getting concentrated at around 40 °C in a rotary 
vacuum evaporator under lower pressure until agglomerates 
were obtained. To remove superfluous solvents, the extracts 
were dried and stored at 4 °C for future investigations.

2.2 � Primary Phytochemical analysis

Steroids  A total of 250 mL conc. H2SO4 was added slowly 
after 0.5 mL crude extract was combined with 2 mL chlo-
roform. The layer formed by H2SO4 turned yellow coloured 
green fluorescence, whereas the upper layer turned red indi-
cating the presence of steroids [33].

Terpenoids  A total of 2 mL chloroform was added to 1 mL 
crude extract. Then 2 mL of conc. H2SO4 was cautiously 
added and gently shaken. The presence of a reddish-brown 
steroidal ring demonstrates the existence of terpenoids [33].

Reducing Sugar  In a test tube, 2 mL of the extract solution 
was added to 5 mL equal volumes of Fehling’s solutions I 
and II and heated for 2 min in a water bath. The prevalence 
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of reducing sugars was shown by the brick-red precipitate 
[34].

Alkaloids  Various extracts were filtered after being mixed 
with 2 mL dilute Hydrochloric acid. And in 2 mL of filtrate, 
few drops of Hager’s reagent were added. The presence of 
bright yellow precipitate indicated that the test was positive 
[35–37].

Flavonoids  A total of 2–3 mL of extract filtrate was treated 
with a piece of magnesium ribbon along with 1 mL of conc. 
HCl. The presence of flavonoids was detected by the pink-
red/crimson colouring of the solution [38].

Saponins  In a test tube, 1 mL of crude extract was combined 
with 5 mL of distilled water and violently shaken for 30 s. 
The existence of saponins was determined by the production 
of stable foam formation [33].

Tannin  The occurrence of tannins was determined by mix-
ing 1 mL of the extract with few drops of freshly produced 
ferric chloride (5%) and observing the development of a 
bright blue or bright green colour [33].

Phenol  Few drops of 5% lead acetate were added to 1 mL 
of crude extract, and the formation of yellow-coloured pre-
cipitate showed the existence of phenol [39].

Anthraquinones  Five milligrams (5 mg) of the powdery 
extract was warmed in a water bath for 5 min with 10% 
HCl. After that, it was filtered and cooled down. To the fil-
trate, an equal volume of CHCl3 was added followed by few 
drops of 10% NH3, and then the mixture was gently heated. 
The appearance of pink colour confirmed the presence of 
anthraquinones [34].

2.3 � Characterization of the BGP extracts

2.3.1 � FT‑IR analysis

The KBr pellet method was employed to investigate the 
functional groups associated with the BGP extracts using a 
Fourier transform infrared (FT-IR) spectrophotometer (Per-
kin Elmer, USA) in spectra of 4000–500 cm1.

2.3.2 � GC–MS analysis of BGP extracts

Gas chromatography–mass spectrometry examination of BGP 
extracts was performed using a Shimadzu (QP2020) coupled 
with a mass spectrometer. A 30 m long, 0.25 mm inner diam-
eter, and 0.25 mm film thickness SH-Rxi-5Sil-MS capillary 
column covered with 100% polydimethylsiloxane was adopted. 
The oven temperature was fixed at 50 °C initially, and then 

steadily increased to 280 °C at a rate of 6 °Cmin−1, with a 
final hold time of 2 min. The temperature of the injector was 
250 °C. At a pressure of 68.1 kPa, helium was used as the 
gas phase, with a flow rate of 1.2 mL/min and a linear veloc-
ity of 39.7 cm/s. In total, 100 µL of extracts was dissolved in 
the appropriate solvents and filtered through a syringe filter 
(0.25 µm) to remove contaminants. The prepared sample was 
also put into GC with a 1:10 split ratio. At 70 eV, the mass 
spectrum was obtained via electron ionization. The ion source 
was applied at 200 °C constantly. To interpret the metabolites, 
the mass spectrum of each chemical detected in extract was 
interpreted and matched with reference spectra in the NIST 
2005 MS collection [40]. The overall average area to total area 
ratio was used to calculate the relative % of each compound.

2.4 � In vitro antioxidant activity

2.4.1 � DPPH scavenging assay

The efficacy of BGP extracts to scavenge free radicals was 
investigated by exposing it to 2, 2-diphenyl-1-picrylhydrazyl 
(DPPH) using the Brand-Williams et al. [41] technique. In 
96-well plate, 100 µL of BGP extracts were prepared at 200, 
400, 600, 800, and 1000 µg/mL concentrations. The stand-
ard used was ascorbic acid (Vitamin-C). Each well acquired 
100 µL of freshly prepared DPPH (1 mM) suspension. The 
solution was placed in the dark and incubated at 37 °C for 
30 min. The shift in a hue of the solution from violet to 
yellow indicated that reactive oxygen species had been ban-
ished, and it was measured at 517 nm in Synergy HT Multi-
mode Reader (Biotek, Winooski, USA). Following that, the 
percentage of scavenging capability of the BGP extracts was 
calculated using the following equation.

where Ac is the absorbance value of control, and As is the 
absorbance value of the sample (BGP extracts).

2.4.2 � ABTS radical scavenging assay

The antioxidant capabilities of several BGP extracts were 
determined using the ABTS (2,2′-azino-bis (3-ethylbenzo-
thiazoline-6-sulfonic acid)) radical’s cationic decoloriza-
tion experiment [42]. In total, 7 mM ABTS was prepared 
in ethanol and blended with 88 mL potassium persulphate 
solution (140 mM) at dark room temperature (RT) condi-
tion, and the reaction mixture was incubated for 14 h. For 
each experiment, the ABTS solution was diluted in ethanol 
(1:89 v/v) to yield an absorbance of 734 nm. Then, 100 µL 
of different solvent extract concentrations (200, 400, 600, 
800, and 1000 µg/mL) were mixed with 2.0 mL of ABTS+ 
solution, accordingly. Then the reaction was incubated for 

(1)%Scavenging = [Ac − As ÷ Ac] × 100
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10 min before the absorption was assessed at 734 nm. Vita-
min C was used as the reference. The formula was utilized 
to calculate the scavenging potential (1).

2.5 � Determination of total phenol and total tannin 
content of the BGP extracts

The total phenolic content (TPC) of the BGP extract was 
measured using the modified Klompong and Benjakul tech-
nique [43]. A total of 100 µL of extract were mixed with 
900 µL of deionized water. Then, 500 µL of Folin-phenol 
Ciocalteu’s reagent was added to the mixture. Following a 
5-min incubation period, 10 mL of 7.5% Na2CO3 solution 
was mixed properly and incubated for 30 min at RT. The 
absorbance was measured at 750 nm using a UV visible 
spectrophotometer Synergy HT Multimode Reader (Biotek, 
Winooski, USA). The total phenolic content of extracts was 
expressed as milligram gallic acid equivalent (GAE)/100 g 
using gallic acid as the standard.

The total tannin content (TTC) of the different BGP 
extracts was investigated using the Folin-Ciocalteu phenol 
reagent as examined by Amorim et al. [44]. In total, 100 µL 
of the extract was blended with 8.3 mL of double-distilled 
water in a test tube, and then 0.5 mL of Folin-Ciocalteu phe-
nol reagent was added and kept at RT for 5 min. A total of 
1 mL of 35% Na2CO3 solution was added to the test tube. The 
mixture was incubated at 25 ± 2 °C for 30 min after being well 
shaken. The absorbance was measured at 725 nm. As a blank, 
double distilled water was used. The total tannin content of the 
extracts was calculated using tannic acid as a reference and 
represented as milligram tannic acid equivalent (TAE)/100 g.

2.6 � Assessment of antibacterial efficacy

2.6.1 � Agar well diffusion method

The antibacterial effect of BGP extracts was tested using 
the agar well diffusion method [45] against A. hydrophila, 
P. aeruginosa, S. aureus, and K. pneumoniae fish micro-
bial pathogens. These strains were obtained from  Micro-
bial Type Culture Collection (MTCC), Chandigarh, India. 
A standard antibiotic, streptomycin (1 mg/mL), was used to 
calculate the inhibition zones. Inoculating a loopful of each 
tested bacteria in a 10 mL nutrient broth medium yielded the 
working culture, which was then cultured at 37 °C for 24 h. 
The agar plates were prepared with cultured pathogens. The 
BGP extracts were diluted in DMSO at doses of 250, 500, 
750, and 1000 µg/mL in a sequential manner and loaded in 
wells formed in agar well plates and incubated overnight.  

The diameter of inhibition zones was used to determine anti-
bacterial activity.

2.6.2 � Determination of minimum inhibitory concentration

A sterile 96-well microtiter plate with resazurin as a cell 
growth indicator was used to determine the minimum inhibi-
tory concentration (MIC) values for all BGP extracts [46]. 
By transferring 100 µL of nutrient broth in a 96-well micro-
titer plate, the experiment was carried out in a sterilized 
laminar airflow chamber. The first two rows were served as 
checkpoint. In the third row of the plate, a volume of 100 
µL of various extracts (10 mg/mL) in 10% (v/v) DMSO was 
added, and serial dilutions were performed.  Ten microlit-
ers of bacterial inoculum (106 CFU/mL) was added to each 
well and followed by 10 µL of resazurin solution (10 mg/
mL). The microtiter plate was then gently wrapped in an 
aluminium wrapper to prevent bacterial culture dehydration, 
and the plates were incubated for 24 h at RT in an incubator. 
The wells were visually checked for color change and shifts 
from purple to pink or colorlessness were deemed positive. 
The MIC value was established by identifying the lowest 
concentration of extract at which color change occurred. To 
establish the average MIC value of the BGP extracts, all 
experiments were performed in triplicate.

2.6.3 � Effects on growth of the various BGP extracts 
on microbial cultures

Using the modified procedure of Qayyum et al. [47], the 
growth of A. hydrophila, P. aeruginosa, S. aureus, and K. 
pneumoniae was investigated by comparing both MIC and 
sub MIC concentrations of BGP extract. Microbial cultures 
were loaded into tubes overnight to obtain final inoculum of 
106 CFU mL−1, followed by the addition of extracts depend-
ing on the MIC and sub-MIC values obtained and incubated 
at 37 °C. Growth was measured by a UV—visible spectro-
photometer (Synergy HT Multimode Reader, Bioteck instru-
ment, Winooski, VT, USA) by reading at 600 nm every 2 h 
for 24 h. The effect of the BGP extracts on bacterial growth 
was studied in triplicates with untreated microbial culture 
as a control.

2.6.4 � Inhibition of biofilm formation and development

Various BGP extracts were tested for their ability to 
prevent cell attachments (Antibiofilm) using a slightly 
modified approach by Lewis Oscar et al. [48]. Solvent 
extracts concentrations vary from 200 to 1000 µg/mL 
were used for antibiofilm evaluation against A. hydroph-
ila, P. aeruginosa, S. aureus, and K. pneumoniae. Each 
well of a 96-well microtiter plate was loaded with 100 µL 
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of BGP extracts and an equal volume of bacterial culture 
(106 CFU mL−1) (total volume in each well was 200 µL). 
In blank wells, 200 µL of Mueller Hinton Broth (MHB) 
without bacterial inoculum was added. To allow the cells 
to adhere to the surface, the plates were cloaked loosely 
with parafilm. The plates were incubated at 37 °C for 
8 h without agitation. Following incubation, the contents 
of each well were removed. To eliminate non-adherent 
cells of the microtiter plates, wells were washed thrice 
with sterilized distilled water before being oven-dried for 
45 min at 60 °C. The adhered wells were stained with 200 
µL of 1% crystal violet and incubated at RT for 15 min to 
confirm the biofilm formation. To eradicate the unab-
sorbed dye, the plates were washed thrice with sterilized 
distilled water. A total of 150 µL of 99% ethanol was 
added to the wells to remove the discoloration. Finally, 
100 µL of the de-stained solution from the cultured plate 
was transferred to a new plate and its absorbance was 
read at 590 nm using a microplate reader (Synergy HT 
Multimode Reader, Biotek instrument, Winooski, VT, 
USA). Each experiment was performed in triplicates. The 
percentage of inhibition was calculated by using Eq. (1).

2.7 � Statistical analyses

The data were analyzed with SPSS 16.0 software and 
expressed as the mean ±  standard error of the mean 
(SEM) (SPSS, Chicago, IL, USA). A one-way analysis 
of variance (ANOVA) was used to compare the triplicate 
results. A p < 0.05 was used to evaluate the significant 
differences between the experimental and control groups 
followed by Duncan’s Multiple Range (DMRT) as a post 
hoc test. Origin Pro 9.0 (OriginLab corp., Northampton, 
US) was used to create the graphs, which were then ren-
dered using Graphpad prism (GraphPad Software, San 
Diego, CA, USA).

3 � Results and discussion

3.1 � Primary phytochemical screening

Phenols, tannins, saponins, alkaloids, flavonoids, reducing 
sugars, terpenoids, and steroids of various BGP extracts 
through primary phytochemical screening were shown in 
Table 1. All of the extracts contain phenols and tannins, 
whereas methanol, ethanol, and acetone extracts contain 
flavonoids. Methanol, ethanol, and hexane extracts include 
alkaloids, whereas terpenoids are present in all solvent 
extracts except hexane. Metabolites have a wide range of 
functions, including structural application, signal transduc-
tion control, communication processes, and the formation 
of photonic structures via complex molecular identity [49]. 
Antioxidant, anti-diabetic, anti-inflammatory, neuroprotec-
tive, anti-cancer, and gut microbiota–modifying properties 
were demonstrated by phenolic compounds of the plants 
[50]. Alkaloids isolated from various plants and seafood 
solid wastes possess antimicrobial activity and their vari-
ous approaches confirmed the drug-targeted discovery [51]. 
Flavonoids can alter the key cellular enzymatic functions 
due to their anti-inflammatory, anti-oxidative, and anti-car-
cinogenic properties [52]. Tannins are used to heal wounds 
and may have antimicrobial, antiseptic, anti-inflammatory, 
and other cardio-protective properties [53]. Because of their 
possible antioxidant effects, flavonoids are utilized to treat 
cancer [54]. These bioactive compounds are found in most 
extracts naturally and have been demonstrated to have multi-
ple bioactivities such as antioxidants, antibacterial and anti-
inflammatory against human diseases [55, 56]. Secondary 
metabolites are used by plants to defend themselves against 
diseases. As a result, they have the ability to prevent the 
proliferation of particular microbes partially or totally. This 
type of activity is likely to extend to animal and human dis-
eases as well [57].

Table 1   Primary phytochemical 
screening of various extracts of 
Black gram pods

(+ present,—absent)

 S. No Name of the phy-
tochemicals

Methanol Ethanol Hexane Acetone Petroleum 
ether

Ethyl acetate

01 Steroids - - -  +  - -
02 Terpenoids  +   +  -  +   +   + 
03 Reducing Sugar  +   +  -  +  -  + 
04 Alkaloids  +   +   +  - - -
05 Flavonoids  +   +  -  +  - -
06 Saponins  +   +   +   +   +   + 
07 Phenolics  +   +   +   +   +   + 
08 Tannins  +   +   +   +   +   + 
09 Anthraquinone - - - - - -
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3.2 � FT‑IR analysis

FT-IR spectroscopy has been used to detect the probable 
functional groups present in the various BGP extracts. 
Figure 1 shows the IR spectrum of extracts acquired in 
the range from 4000 to 500 cm−1. Methanol, ethanol, and 
acetone extracts had a strong peak with high-intensity bands 
due to the polarity. The peak assignment and its functional 
groups were given in Table 2. The presence of the vari-
ous spectrums indicated phytochemical metabolites like 
phenols, alkaloids, tannins, saponins, and flavonoids. The 
functional groups reported vibrational modes could be frag-
mentation linked to the basis of metabolites composition 
[58]. These findings were linked to the extracts’ antioxi-
dant and antibacterial capabilities owing to the existence of 

these functional groups [59]. It is possible to detect minute 
changes in primary and secondary metabolites, determine 
the structural modifications of some physiologically active 
molecules, and pinpoint those functional groups responsible 
for plant medicinal properties [60, 61]. FTIR spectroscopy 
has been demonstrated to be a proficient and sensitive tool 
for detecting biomolecule composition [62]. The obtained 
spectrum serves as metabolites identity, highlighting the 
many biochemical linkages and functional groups present 
in extracts as discrete peaks [63]. From the obtained results, 
the identification of the functional groups of the extract 
is based on the polarity of the solvent. Both the methanol 
and ethanol (highly polar) possessed similar spectra, and 
non-polar hexane and petroleum ether (non-polar) showed 
matching spectra [64] confirming that based on the polarity, 
functional groups were identified. Ketones were present in 
all the solvents whereas, the alcoholic group and aromatic 
amines were identified in solvents like methanol, ethanol, 
acetone, and ethyl acetate [65]. Alkenes were present in sol-
vent extracts like ethyl acetate, petroleum ether, and hexane 
[66, 67].

3.3 � GC–MS analysis of BGP extracts

GC–MS chromatogram detected the existence of metabolites 
in various BGP extracts were shown in Fig. 2. In this study, 
around 120 bioactive compounds were identified including 
hexane (20), acetone (30), petroleum ether (20), methanol 
(20), ethyl acetate (10), and ethanol (50). Major peak area 
(%) obtained compounds in hexane extracts were diacetone 
alcohol (66.44%) used as a pheromone compound in the 
cosmetics production [68], tetratetracontane (14.45%), a 
potential antibacterial [69] and antifungal agent [70]; ace-
tone extracts were azulene (23.42%) acts as the anti-inflam-
matory agent [71]; anti-cancer activity [72]; anti-microbial 
property [73], 3,7,11,15-tetramethyl-2-hexadecen-1-OL 
(8.65%) possess anti-bacterial activity [74], methyl palmi-
tate (4.29%) shows antimicrobial agent [75], -5-nonadecene 
(4.48%) exhibits anti-bacterial activity [76]; petroleum ether 
extract was 1-isopropoxy-2-propanol (14.44%) no biological 
reports available, methyl propyl ether (6.95%) no biological 
reports available, 3,7,11,15-tetramethyl-2-hexadecen-1-OL 
(4.74%) possess anti-bacterial activity [74]; tetracontane 
(14.52%) exhibits anti-fungal, anti-inflammatory property 
[77]; methanol extracts were naphthalene (38.25%) pos-
sess carcinogenic activity [78]; 1-hexadecene (8.29%) and 
cholesterol (14.76%) involve in homeostasis [79]; cholest-
5-en-3-ol (3beta)- and propanoate (2.75%) no biological 
reports available, and methyl palmitate (1.35%) shows 
antimicrobial agent [75]; ethyl acetate extracts were tetra-
tetracontane (68.40%), a potential antibacterial [69] and anti-
fungal agent [70]; 1-hexadecene (3.27%); ethanol extracts 
were naphthalene (24.22%) possess carcinogenic activity 

Fig. 1   FT-IR spectrum of black gram pod extracts

Table 2   Functional group of BGP extracts spectral peaks obtained 
through FT-IR analysis

S. No Wavelength
(cm−1)

Peak assignment Functional group

1 3391.11 OH Alcohols and phenols
2 2886 C–H Alkenes
3 1603.15 C = O Ketones
4 1482.57 N–H Amide and amines
5 1398 C = C Aromatic amines
6 1046 CO–O–CO

(–C–H bend)
Anhydrides Alkane

7 1040 CO–O–CO
(C–N)

Aromatic amines

8 1034.43 C-N Aliphatic amines
9 1037.06 S = O Sulfoxide
10 921.75 O–H Carboxylic acids
11 765.51 C–H Fatty acids and proteins
12 652.11 C–Br Alkyl halides
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[78]; 5-hydroxymethylfurfural (6.91%) exhibits antibacte-
rial [80] and antifungal activity [81]; heptadecane (4.47%) 
shows antibacterial and antioxidant activity [82]; hexade-
cane (8.80%) possess antibacterial activity [83], respectively. 
These compounds are from many chemical classes, and most 
of them have been reported to have significant biological 
activity. These bioactive compounds have various func-
tions like anti-basal activity, anti-microbial, antioxidants, 

anti-fungal, anti-inflammatory, and larvicidal. Multiple 
agents like an anti-microtubule agent, antibiofilm agent, 
anti-virulence agent, anti-Alzheimer’s agent, anti-prolif-
erative agent, and essential body metabolites (Tables 3, 4, 
5, 6, 7, and 8). This discrepancy in bioactive compounds 
could be due to the compounds’ volatility or the extraction 
solvent [84]. The GC–MS results from the various BGP 
extracts revealed that they all contained essentially the same 

Fig. 2   GC–MS chromatogram 
of the various black gram pod 
extracts. A acetone, B ethyl 
acetate, C ethanol, D hexane, E 
methanol, F petroleum ether
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compound, which is attributable to the solvents’ polarity 
[85, 86].

3.4 � In vitro antioxidant potential

3.4.1 � DPPH‑scavenging assay

The antioxidant potential of several BGP extracts was 
revealed in this investigation. The ability of the differ-
ent BGP extracts to effectively eliminate free radicals was 
identified based on the determination of the IC50 value 
(Table 9, Fig. 3a). Obtained IC50 value of ascorbic acid 
(94.65 µg/mL) followed by methanol (933.80 µg/mL), 
ethanol (1163.43 µg/mL), ethyl acetate (1145.65 µg/mL), 

acetone (1231.39 µg/mL), hexane (1330.32 µg/mL), and 
petroleum ether (1634.17 µg/mL). These findings are in 
accordance with the interaction between phenolic com-
ponents and antioxidant ability of extracts. By regulating 
the generation of free radicals, the antioxidant defense 
system is important for managing a variety of chronic dis-
eases [168]. The phenolic compounds are more soluble in 
polar solvents; hence they have a higher amount of phenol 
during extraction [169, 170]. The antioxidant concentra-
tion and efficacy are proportional to the amount of color 
change [171]. The phenolic concentration of the metha-
nolic extract is greater, which can contribute hydrogen to a 
free radical to scavenge. In recent years, extensive research 
on the pharmacological actions of plant metabolites has 

Table 3   GC–MS analysis of BGP hexane extract. (- Not available) (Boldface compounds have higher peak area %) 

S. No Name of the compound Molecular formula Molecular weight Retention time Peak area (%) Biological applications

1 Diacetone alcohol C6H12O2 116.16 3.704 66.44 Pheromone compound [87]
2 3,7-Dimethyloctan-1-ol C10H22O 158.28 9.500 1.30 Odorant binding protein [88]
3 3-Decylsulfinyltetrahydrothio-

phene-4-ol 1,1-dioxide
C14H28O4S2 324.5 10.315 0.90 Drug/therapeutic agent [89]

4 Butyronitrile C4H7N 69.11 10.490 0.58 Antioxidant activity [90]; anti-
microbial activity [91]

5 2,2-Difluorocycloheptan-
1-one

C7H10F2O 148.15 10.574 0.57 Synthetic used for drug optimi-
zation [92]

6 Butyronitrile C4H7N 69.11 10.761 0.24 Anti-oxidant activity [90]; anti-
microbial activity [91]

7 Butyronitrile C4H7N 69.11 10.952 0.26 Anti-oxidant activity [90]; anti-
microbial activity [91]

8 Butyronitrile C4H7N 69.11 10.990 1.04 Anti-oxidant activity [90]; anti-
microbial activity [91]

9 2,2-Difluorocycloheptan-
1-one

C7H10F2O 148.15 11.213 0.39 Synthetic used for drug optimi-
zation [92]

10 Diallyl oxalate C8H10O4 170.16 11.262 0.57 Anti-oxidant, anti-obesity and 
hepatoprotective property [93]

11 Butyronitrile C4H7N 69.11 11.424 1.09 Anti-oxidant activity [90]; anti-
microbial activity [91]

12 Butyronitrile C4H7N 69.11 12.338 0.40 Anti-oxidant activity [90]; anti-
microbial activity [91]

13 9-Octadecene C18H36 252.5 16.541 1.13 Anti-dermatophytic activity [94]
14 1-O-Ethyl 2-O-propan-2-yl 

benzene-1,2-dicarboxylate
C13H16O4 236.26 22.769 2.68 -

15 Phthalic acid, ethyl pentyl 
ester

C15H20O4 264.32 23.668 1.09 Anti-microbial activity [95]

16 1-Heptadecene C17H34 238.5 24.839 2.14 Repellant [96]
17 Phthalic acid, ethyl pentyl 

ester
C15H20O4 264.32 25.563 1.77 Anti-microbial activity [95]

18 1-Nonadecene C19H38 266.5 28.376 1.16 Anti-oxidant [97];
Anti-bacterial [98]

19 3,7,11,15-Tetramethyl-2-hexa-
decen-1-OL

C20H40O 296.5 30.296 1.81 Anti-inflammatory, anti-oxidant 
[99]; anti-microbial [100]; 
larvicidal activity [101]

20 Tetratetracontane C44H90 619.2 36.006 14.45 Anti-babesial, anti-oxidant 
[102] and anti-inflammatory 
activity [103]
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Table 4   GC–MS analysis of BGP Acetone extract. (- Not available) (Boldface compounds have higher peak area %) 

S. No Name of the compound Molecular Formula Molecular Weight Retention time Peak area (%) Biological Applications

1 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 10.390 1.28 Synthetic used for drug 
optimization [92]

2 2-(4-Acetamidosulfanylphenyl)-
2-[[(2S)-2-aminopropanoyl]
amino]acetic acid

C13H17N3O4S 311.36 10.813 4.31 -

3 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 10.937 3.16 Synthetic used for drug 
optimization [92]

4 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 11.187 3.53 Synthetic used for drug 
optimization [92]

5 Butylamine C4H11N 73.14 11.274 1.97 Anti-hypersensitive activity 
& Capping agent for nano-
particles synthesis [104]

6 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 11.457 1.49 Synthetic used for drug 
optimization [92]

7 Propiolic acid C3H2O2 70.05 11.495 1.27 Anti-hypertensive activity 
[105]

8 3-Decylsulfinyltetrahydrothio-
phene-4-ol 1,1-dioxide

C14H28O4S2 324.5 11.527 125 Drug/therapeutic agent [83]

9 Azulene C10H8 128.17 11.646 23.42 Cosmetic agent [106]
10 Azulene C10H8 128.17 11.747 4.20 Cosmetic agent [106]
11 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 11.810 0.20 Synthetic used for drug 

optimization [92]
12 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 12.077 6.53 Synthetic used for drug 

optimization [92]
13 3-Decylsulfinyltetrahydrothio-

phene-4-ol 1,1-dioxide
C14H28O4S2 324.5 12.176 2.45 Drug/therapeutic agent [89]

14 3-Decylsulfinyltetrahydrothio-
phene-4-ol 1,1-dioxide

C14H28O4S2 324.5 12.247 3.26 Drug/therapeutic agent [89]

15 Butyronitrile C4H7N 69.11 12.387 1.67 Anti-oxidant activity [90]; 
anti-microbial activity [91]

16 Bromocyclopropane C3H5Br 120.98 12.425 2.96 -
17 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 12.500 0.26 Synthetic used for drug 

optimization [92]
18 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 12.725 2.12 Synthetic used for drug 

optimization [92]
19 3-Decylsulfinyltetrahydrothio-

phene-4-ol 1,1-dioxide
C14H28O4S2 324.5 12.797 2.01 Drug/therapeutic agent [89]

20 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 12.835 2.12 Synthetic used for drug 
optimization [89]

21 Butyronitrile C4H7N 69.11 12.908 3.04 Anti-oxidant activity [90]; 
anti-microbial activity [91]

22 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 13.104 0.96 Synthetic used for drug 
optimization [92]

23 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 13.728 0.42 Synthetic used for drug 
optimization [92]

24 Tetradecane C14H30 198.39 16.738 2.20 Dermal irritant [107]
25 1-Pentadecene C15H30 210.40 20.920 2.19 Pheromone compound also 

used insect repellent [108]
26 Hexadecane C16H34 226.44 21.075 1.91 Induces hyper Keratinization 

in tested rodents [109]
27 Z-5-Nonadecene C19H38 266.5 24.843 4.48 Anti-oxidant activity [110];
28 Methyl palmitate C17H34O2 270.5 27.209 4.29 Anti-radical activity [111];

Anti-cancer activity [112]
29 8,11,14-Docosatrienoic acid, 

methyl ester
C23H40O2 348.6 30.140 2.40 -
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linked the presence of antioxidants such as flavonoids, iso-
flavones, flavones, anthocyanin, catechin, and isocatechin 
to the main protective impact of secondary metabolites 
[172, 173]. Our data found a strong association between 
phenolic chemicals and antioxidant capability. Multiple 

hydroxyl functional groups found in phenolics, and fla-
vonoids are thought to be responsible for their biological 
and antioxidant properties [174–176]. Phenolic substances 
also boost antioxidant enzyme activity, which has an indi-
rect effect on the quantity of damaging oxygen radicals 

Table 4   (continued)

S. No Name of the compound Molecular Formula Molecular Weight Retention time Peak area (%) Biological Applications

30 3,7,11,15-Tetramethyl-2-hexade-
cen-1-OL

C20H40O 296.5 30.316 8.65 Anti-inflammatory, anti-
oxidant [99]; anti-microbial 
[100]; larvicidal activity 
[101]

Table 5   GC–MS analysis of BGP Petroleum ether extract. (- Not available) (Boldface compounds have higher peak area %) 

S. No Name of the compound Molecular formula Molecular weight Retention time Peak area (%) Biological applications

1 1-Isopropoxy-2-propanol C6H14O2 118.17 4.613 14.44 Anti-microtubule activity [113]
2 Methyl propyl ether C4H10O 74.12 6.414 6.95 Anti-oxidant [114]; anti-prolif-

erative activity [114]
3 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 8.455 3.93 Synthetic used for drug optimi-

zation [92]
4 Butyronitrile C4H7N 69.11 8.873 3.79 Anti-oxidant activity [90]; anti-

microbial activity [91]
5 4-Methyl-1,3-thiazol-2(3H)-

one
C4H5NOS 115.16 9.054 6.10 -

6 Butyronitrile C4H7N 69.11 9.100 2.63 Anti-oxidant activity [90]; anti-
microbial activity [91]

7 2,5-Dimethylpyrazine C6H8N2 108.14 9.160 3.28 -
8 Butyronitrile C4H7N 69.11 9.247 3.25 Anti-oxidant activity [90]; anti-

microbial activity [91]
9 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 9.299 6.92 Synthetic used for drug optimi-

zation [92]
10 3-Decylsulfinyltetrahydrothio-

phene-4-ol 1,1-dioxide
C14H28O4S2 324.5 9.413 4.25 Drug/therapeutic agent [89]

11 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 9.533 10.84 Synthetic used for drug optimi-
zation [92]

12 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 9.720 3.36 Synthetic used for drug optimi-
zation [92]

13 3-Decylsulfinyltetrahydrothio-
phene-4-ol 1,1-dioxide

C14H28O4S2 324.5 9.797 1.70 Drug/therapeutic agent [89]

14 Butyronitrile C4H7N 69.11 9.982 1.61 Anti-oxidant activity [90]; anti-
microbial activity [91]

15 2,2-Difluorocycloheptan-1-one C7H10F2O 148.15 10.033 1.68 Synthetic used for drug optimi-
zation [92]

16 Butyronitrile C4H7N 69.11 10.321 1.03 Anti-oxidant activity [90]; anti-
microbial activity [91]

17 Diallyl oxalate C8H10O4 170.16 10.700 2.58 Anti-oxidant, anti-obesity and 
hepatoprotective property [93]

18 1,1-Difluoro-2-(trans-1-prope-
nyl)cyclopropane

C6H8F2 118.12 11.048 2.41 -

19 3,7,11,15-Tetramethyl-2-hexa-
decen-1-OL

C20H40O 296.5 30.294 4.74 Anti-inflammatory, anti-oxidant 
[99]; anti-microbial [100]; 
larvicidal activity [101]

20 Tetracontane C40H82 563.1 35.896 14.52 Anti-oxidant and anti-microbial 
property [115]
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in living cells. Radical processes, such as DNA damage 
and superoxide anion generation, can also serve as a pro-
oxidant in large quantities [177, 178]. The methanolic 
extract of the BGP has more potent antioxidant activity 
than the other extracts, which is proportional to phenolic 
concentration among the extracts [179–182]. The major 
metabolites of BGP extract acts as the antioxidant agents 
are 1-Hexadecene [183]; Tetracontane [184, 185]; 1-Non-
adecene [186]. According to Urbaniak et al. [187], the 
extracts’ proton-donating capacity stabilizes free radicals 
in the presence of numerous hydroxyl groups, resulting in 
improved DPPH scavenging action.

3.4.2 � ABTS radical scavenging assay

ROS inhibition was probably an adaptable mechanism to 
low levels of mitochondrial dysfunction. Such an adaptive 
response could be affected by a quick increase in antioxidant 
defense leads to a reduction in ROS [188]. Several BGP 
extracts were investigated for ABTS radicals scavenging 
activity (Fig. 3b). The IC50 value was used to determine the 
scavenging ability of the different BGP extracts (Table 9). 
In the ABTS experiment, the plant extracts can decrease 
cations. According to Michalak [189], the potential of BGP 
phytochemical constituents to scavenge free radicals and 

Table 6   GC–MS analysis of BGP Methanol extract. (- Not available) (Boldface compounds have higher peak area %) 

S. No Name of the compound Molecular formula Molecular weight Retention time Peak area (%) Biological applications

1 2-Ethylhexanol C8H18O 130.23 7.451 1.10 -
2 Undecane C11H24 156.31 9.297 1.76 Anti-allergic and anti-inflam-

matory agent [116]
3 Naphthalene C10H8 128.17 11.630 38.25 Anti-alzheimer’s agent [117]
4 Dodecane C12H26 170.33 11.914 5.44 Skin irritant [118]
5 Decanal C10H20O 156.26 12.055 2.81 Electroencephalographic 

activity [119]; anti-micro-
bial agent [120]

6 5-Hydroxymethylfurfural C6H6O3 126.11 12.487 2.54 Anti-biofilm, Anti-virulence 
activity [121]

7 1-Hexadecene C16H32 224.42 16.617 3.77 Anti-microbial, anti-oxidant 
property [122]

8 Hexadecane C16H34 226.44 16.801 6.03 Induces hyper Keratinization 
in tested rodents [109]

9 Pentadecane C15H32 212.41 19.039 1.13 Anti-fungal activity [123]; 
hypertensive activity [124]

10 1-Hexadecene C16H32 224.42 20.992 4.52 Anti-microbial, anti-oxidant 
property [122]

11 Hexadecane C16H34 226.44 21.151 3.06 Induces hyper Keratinization 
in tested rodents [109]

12 1-Octadecene C18H36 252.5 24.920 2.52 Anti-fouling property [125]
13 2,6,10-Trimethyltetradecane C17H36 240.5 25.047 1.63 -
14 Neophytadiene C20H38 278.5 25.712 1.68 Anti-microbial property 

[126]
15 Methyl palmitate C17H34O2 270.5 27.273 1.35 Anti-radical activity [111];

Anti-cancer activity [127]
16 1,1’-Sulfonylbis(3,5-dibromo-

4-(2,3-dibromopropoxy)
benzene)

C18H14Br8O4S 965.6 27.334 1.67 -

17 1-Docosene C22H44 308.6 28.471 1.01 Anti-cancer activity [128]; 
anti-oxidant activity [129]

18 (4As,7aS)-3-
Methylhexahydrocyclopenta[e]
[1,3]oxazin-2(3H)-one

C8H13NO2 155.19 31.157 2.21 -

19 Cholesterol C27H46O 386.7 31.350 14.76 Essential body metabolite for 
humans, animals, plants, 
and other organism [130]

20 Cholest-5-en-3-ol (3beta)-, 
propanoate

C30H50O2 442.7 31.510 2.75 Essential body metabolite for 
humans, animals, plants, 
and other organism [130]
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prevent oxidation processes may be linked to their chemical 
composition, which includes hydroxyl groups and unsatu-
rated bonds. Ascorbic acid (205.65  µg/mL) possesses 
least IC50 value than methanol (976.28 µg/mL), ethanol 
(1057.57 µg/mL), ethyl acetate (1292.32 µg/mL), acetone 
(1338.74 µg/mL), hexane (1592.8 µg/mL), and petroleum 
ether (1413.70 µg/mL). These findings correlate with the 
phenol content of the methanolic extract, which is presently 
higher than other extracts [190]. Phenolics include one or 
more aromatic rings with many hydroxyl groups, so they 
can absorb free radicals [191, 192]. Total phenolic content 
was attributed to the occurrence of phenoxyl radicals with 
resonance stabilisation in the majority of extracts and anti-
oxidant activity [193–195]. The BGP extracts possess anti-
oxidant capability due to the presence of the metabolites like 
tetratetracontane [196, 197] and methyl linolelaidate [198].

3.5 � Determination of total phenol and total tannin 
content of the BGP extracts

3.5.1 � Total phenol content

The polarity of the solvents may alter the extraction of 
the phenol component. According to our results data, 
higher phenolic content was obtained in methanol 
(39.37  mg/GAE g), followed by ethanol (30  mg/GAE 
g), acetone (12.25 mg/GAE g), ethyl acetate (4.83 mg/
GAE g), petroleum ether (3.43 mg/GAE g), and hexane 
(3.37 mg/GAE g) given in Fig. 4b. The total phenol con-
tent found in different extracts of BGP was reported in 
Table 10 and it was determined by the regression equa-
tion (y = 0.0037x + 0.121, r2 = 0.965) of the Gallic acid 

equivalent (GAE) given in Fig. 4a by our investigation. 
Phenolic acids, flavonoids, and anthocyanins are the main 
components of total phenol content (TPC). Furthermore, 
differences in total phenol (TP) extraction operations, 
which included organic solvent, extraction time, tem-
peratures, and auxiliary procedures (e.g., ultrasounds) in 
certain cases, or prior treatments such as irradiation or 
lyophilization, could be partially to censure for these dis-
parities [199]. Plant extracts contain phenolic compounds, 
which are natural antioxidants that scavenge free radicals 
and reduce oxidative stress [200, 201]. Due to genetic 
and environmental conditions, the plant’s phenolic con-
tent might fluctuate [202, 203]. The variation in phenol 
contents depends on the polarity of the extraction solvent 
[204]. The variances can be attributed to differences in 
solvent polarity, which selectively recover distinct hydro-
phobic or hydrophilic phenolic metabolites in the sample, 
emphasizing the necessity of researching and determining 
the best solvent for each sample [205] even though, no pre-
vious research has been performed on the phenolic profile 
of the various extracts of black gram pod wastes. While 
comparing with fresh tissues, the extracts have the greatest 
average of total phenolics, carotenoids, and total ascorbic 
acid. The oxidation of phenols by phenol oxidases and the 
polymerization of free phenols cause the phenol content of 
the extracts to decrease [206]. As they are more inclined 
to the synthesis of phenolic compounds, the outer parts 
of plants and fruits have a significant quantity of phenols 
[207]. The selection of solvents is the major criterion for 
efficient extraction [208]. Compounds identified in both 
methanol and ethanol solvents possessed higher volumes 
than those in the other solvents used in this study. This 

Table 7   GC–MS analysis of BGP ethyl acetate extract. (- Not available) (Boldface compounds have higher peak area %) 

S. No Name of the compound Molecular formula Molecular weight Retention time Peak area (%) Biological Applications

1 Cyanoacetic acid C3H3NO2 85.06 11.463 3.71 Anti-tumour activity [131]
2 Butyronitrile C4H7N 69.11 11.547 7.78 Anti-oxidant activity [90]; anti-

microbial activity [91]
3 Butyronitrile C4H7N 69.11 12.583 2.19 Anti-oxidant activity [90]; anti-

microbial activity [91]
4 1-Pentadecene C15H30 210.40 16.554 2.62 Pheromone compound also used 

as insect repellent [108]
5 1-Hexadecene C16H32 224.42 20.921 3.27 Anti-microbial, anti-oxidant 

property [132]
6 1-Heptadecene C17H34 238.5 24.842 3.87 Repellant [96]
7 1-Nonadecene C19H38 266.5 28.393 2.42 Anti-oxidant [97];

Anti-bacterial [98]
8 3,7,11,15-Tetramethyl-

2-hexadecen-1-OL
C20H40O 296.5 30.313 3.05 Anti-inflammatory, anti-oxidant 

[99]; anti-microbial [100]; 
larvicidal activity [101]

9 Nonacosanal C29H58O 422.8 33.391 2.68 Anti-cancer activity [133]
10 Tetratetracontane C44H90 619.2 35.954 68.40 Anti-babesial, anti-oxidant [102]; 

anti-inflammatory activity [103]
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Table 8   GC–MS analysis of BGP Ethanol extract. (- Not available) (Boldface compounds have higher peak area %) 

S. No Name of the compound Molecular formula Molecular weight Retention time Peak area (%) Biological applications

1 2-Butylsulfanyl-1,1-diethoxy-
2-butene

C12H24O2S 232.38 3.593 4.34 -

2 Furfural C5H4O2 96.08 3.662 2.52 Nematicidal [134]; Insecticidal 
activity in plants and animals; 
biodegrading material [135]

3 Dimethyl sulfoxide C2H6OS 78.14 3.873 1.39 Anti-oxidant activity [136]
4 1,1-Diethoxy-3-heptanone C11H22O3 202.29 3.947 3.54 -
5 Isoamyl acetate C7H14O2 130.18 4.269 0.83 Anti-microbial agent [137]
6 2-Isopropoxyethanol C5H12O2 104.15 4.615 0.33 Hemolytic activity [138]
7 Benzoic acid, 3-methyl-, tert-

butyldimethylsilyl ester
C14H22O2Si 250.41 4.686 0.23 Anti-microbial activity [139]

8 2-Propenoic acid, 3-ethoxy-
3-[(trimethylsilyl)oxy]-, 
ethyl ester

C10H20O4Si 232.35 4.967 0.67 -

9 1,1-Diethoxy-3-methylbutane C9H20O2 160.25 5.701 1.34 Odor active compound [140]
10 Phenol C6H5OH 94.11 6.287 0.46 Anti-microbial property [141]
11 Ethylene glycol diacetate C6H10O4 146.14 6.589 0.51 Biodiesel [142]
12 2-Ethylhexanol C8H18O 130.23 7.513 0.77 Non-genotoxic carcinogen, per-

oxisome proliferator [143]
13 Acetophenone C8H8O 120.15 8.503 0.78 Fumigant [144]; natural flavor 

compound [145]
14 1,1,3-Triethoxypropane C9H20O3 176.25 8.608 0.58 Odorant [146]
15 1,1,3-Triethoxybutane C10H22O3 190.28 9.258 1.56 Odorant [146]
16 Dodecane C12H26 170.33 9.333 0.45 Skin irritant [147]
17 Nonanal C9H18O 142.24 9.440 1.03 Anti-fungal activity [110]
18 Naphthalene C10H8 128.17 11.615 24.22 Anti-alzheimer’s agent [117]
19 Dodecane C12H26 170.33 11.906 9.00 Skin irritant [147]
20 Decanal C10H20O 156.26 12.045 1.18 Electroencephalographic activ-

ity [119], anti-microbial agent 
[120]

21 5-Hydroxymethylfurfural C6H6O3 126.11 12.469 6.91 Anti-biofilm, Anti-virulence 
activity [121]

22 Nonanoic acid C9H18O2 158.24 13.492 0.52 Skin irritant [148]
23 2-Ethyl-4-hydroxy-5-methyl-

3(2H)-furanone
C7H10O3 142.15 14.400 0.76 Food flavoring agent [149]

24 Propanoic acid, 2-methyl-, 
3-hydroxy-2,4,4-trimethyl-
pentyl ester

C12H24O3 216.32 16.160 0.97 -

25 1-Hexadecene C16H32 224.42 16.598 1.11 Anti-microbial, anti-oxidant 
property [132]

26 Hexadecane C16H34 226.44 16.787 8.80 Induces hyper Keratinization in 
tested rodents [109]

27 2,4,7,9-Tetramethyl-5-decyne-
4,7-diol

C14H26O2 226.35 16.941 0.79 Anti-foaming agent [150]

28 Heptadecane C17H36 240.5 19.020 0.40 Anti-inflammation [151];
Anti-bactericidal [152]

29 1-Nonadecene C19H38 266.5 20.974 1.28 Anti-oxidant [97];
Anti-bacterial [98]

30 Heptadecane C17H36 240.5 21.137 4.47 Anti-inflammation [151];
Anti-bactericidal [152]

31 Octadecane C18H38 254.5 23.137 0.37 Anti-fungal agent for
plant and human
pathogens [153]

32 1-Octadecene C18H36 252.5 24.905 1.14 -
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is due to extraction efficiency favoring the highly polar 
solvents and also the black gram pods contain high-level 
polar compounds that are capable of dissolving in high 
polar solvents [209]. These results are in accordance with 
the estimation of total phenol and total tannin content of 
the solvents extraction [210].

3.5.2 � Total tannin content

As a result of this study, higher amounts of tannins were 
found in methanolic extracts (9.20 mg/TAE g) followed by 
ethanol (7.02 mg/TAE g), ethyl acetate (4.18 mg/TAE g), 
petroleum ether (3.99 mg/TAE g), acetone (3.42 mg/TAE g), 
and hexane (2.56 mg/TAE g) showing the range of results 

Table 8   (continued)

S. No Name of the compound Molecular formula Molecular weight Retention time Peak area (%) Biological applications

33 Heptadecane C17H36 240.5 25.037 1.78 Anti-inflammation [151];
Anti-bactericidal [152]

34 Neophytadiene C20H38 278.5 25.702 1.73 Anti-microbial property [126]; 
larvicidal activity [154]; anti-
fungal activity [155]

35 Bis(2-ethylhexyl) phthalate C24H38O4 390.6 26.115 1.24 Anti-mutagenic activity [156]
36 3,7,11,15-Tetramethyl-2-hexa-

decen-1-OL
C20H40O 296.5 26.475 0.82 Anti-inflammatory, anti-oxidant 

[99]; anti-microbial [100]; 
larvicidal activity [101]

37 Methyl palmitate C17H34O2 270.5 27.258 0.93 Anti-radical activity [111],
Anti-cancer activity [112]

38 1,1’-Sulfonylbis(3,5-dibromo-
4-(2,3-dibromopropoxy)
benzene)

C18H14Br8O4S 965.6 27.319 1.03 -

39 Dibutyl phthalate C16H22O4 278.34 27.792 0.82 Plasticizer [157]
40 Palmitic acid C16H32O2 256.42 27.862 1.61 Anti-inflammatory activity 

[158]
Anti-cancer activity [159]

41 Anthraquinone C14H8O2 208.21 28.291 0.80 Anti-proliferative activity [160, 
161]

42 1-Hexadecanol C16H34O 242.44 28.459 1.17 Anti-allergic and anti-hista-
minic activity [162]

43 Octadecane C18H38 254.5 28.568 0.83 Anti-fungal agent for
plant and human
pathogens [153]

44 Methyl linolelaidate C19H34O2 294.5 30.087 0.26 Anti-oxidant [163]
45 Methyl petroselinate C19H36O2 296.5 30.194 0.52 Anti-microbial activity [164]
46 3,7,11,15-Tetramethyl-2-hexa-

decen-1-OL
C20H40O 296.5 30.363 0.79 Anti-inflammatory, anti-oxidant 

[99]; anti-microbial [100]; 
larvicidal activity [101]

47 Oleic acid C18H34O2 282.5 31.154 0.32 Anti-schistosomal activity 
[165]; anti-inflamatory [166]

48 7-Hexylicosane C26H54 366.7 31.789 0.32 Anti-diabetic activity [167]
49 Hexadecanoic acid ((3E,7E)-

(1S,2R)-2-hydroxy-1-hy-
droxymethyl-16-methyl-hep-
tadeca-3,7-dienyl)-amide

C35H67NO3 549.9 36.465 1.22 -

50 Bis(2-ethylhexyl) phthalate C24H38O4 390.6 36.836 0.55 Anti-mutagenic activity [156]

Table 9   The IC50 value of different extracts of black gram pods against DPPH and ABTS

IC50 (µg/mL) Target Positive Control Methanol extract Ethanol extract Acetone extract Ethyl acetate 
extract

Hexane extract Petroleum 
ether 
extract

DPPH 94.65 933.80 1163.43 1231.39 1145.65 1330.32 1634.12
ABTS 205.65 976.28 1.057.57 1338.74 1292.32 1592.80 1413.70
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achieved in this investigation (Fig. 4d, Table 10) which was 
determined by the regression equation (y = 0.0294x + 1.143, 
r2 = 0.981) of the tannic acid equivalent (TAE) given in 
Fig. 4c in our investigation. Even though both methanol 
and ethanol are polar solvents, they have different polarities 
as 0.762 and 0.654 respectively [32]. Tannin content was 
found higher in methanol than in ethanol because tannins 
have the ability to bind proteins leading to protein shrink-
age and serving as astringents. Tannins have the capacity to 
directly destroy the bacterial cell wall, precipitate bacterial 
proteins, and cause bacterial death [211]. Tannins play a 
key role in the production of various nutraceuticals with 
different flavors [212]. Tannins are typically found in the 
bark of evergreen trees and owing to the combination of high 
polyphenols, they are a rich source of antibacterial and anti-
oxidant properties [213]. Tannins are important chemicals 

with anti-phlogistic properties as well as cyclooxygenase-1 
inhibitory activity and they may have anti-inflammatory ben-
efits due to their anti-phlogistic characteristics [214–216]. 
The cyclooxygenase (COX) produces prostaglandins and 
lipoxygenase (LOX) with the help of arachidonic acid 
(AA) leads to the formation of leukotrienes and lipoxins. 
According to Cloutier and Guernsey [217], tannins induce 
arachidonic acid which induces prostaglandins through COX 
enzymes. COX 1 is present in all the cells that produce pros-
taglandins and affects blood flow and muscle proliferation. 
COX-2 enzyme, an essential component of the inflamma-
tory cascade, is involved in the production of prostaglan-
dins, which mediate pain and inflammation by increasing 
vascular permeability, allowing the extravasations of pro-
inflammatory cells, proteins, and enzymes that mediate the 
reactions that lead to edema. Prostaglandins also make pain 
fibres more sensitive to mechanical and chemical stimuli 
[218, 219]. Tannins have a higher binding tendency with 
metallic ions and other molecules [220, 221]. Park et al. 
[222] reported that tannins modulate the inflammatory 
cytokines and inhibit the prostaglandins resulting in their 
anti-phlogistics property.

3.6 � Assessment of antibacterial efficacy

3.6.1 � Agar well diffusion method

The antibacterial potential was investigated with the 
various BGP extracts by the agar well diffusion method. 
These solvent extracts were compared to each other against 
tested microbes. Pseudomonas aeruginosa, Staphylococ-
cus aureus, and Aeromonas hydrophila are the most wide-
spread bacterial infections that cause severe mortality and 
morbidity in aquaculture [223–227]. Hemorrhagic septice-
mia, splenomegaly, abdominal distension, gill destruction, 
a clogged kidney, and a crumbly liver are all symptoms of 
these infections in L. rohita. Recently, Klebsiella pneu-
moniae was also identified as the pathogenic bacteria to 
fish particularly Labeo rohita and Cyprinus carpio. It has 
got various virulence genes that adopt bacterial patho-
genesis [228, 229]. The bioactive compounds obtained 
with methanolic extracts were determined to be the most 
efficient antibacterial agents, according to our findings. 
Methanol had a much larger zone of inhibition than the 
other solvent extracts, whereas the other solvent extracts 
had small zones in a concentration-dependent manner due 
to polarity variations (Tables 11, 12, 13 14, 15, and 16). 
Efforts to develop plant-based antibacterial drugs have 
been stepped up in recent decades [230]. The antibacte-
rial activity of the solvents rises as the polarity of the 
solvents increases [231, 232]. The most sensitive bacteria 
were A. hydrophila, P. aeruginosa, and S. aureus, whereas 
K. pneumoniae was the most resistant to all extracts tested 

Fig. 3   a DPPH Radical scavenging activity of different extracts of 
black gram pods. b ABTS Radical scavenging activity of different 
extracts of black gram pods
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in this study. Gram-positive and Gram-negative bacteria 
differ in their susceptibility due to architectural variances 
specifically variances in membrane permeability [233, 
234]. The Gram-positive bacteria cell’s several layers of 
peptidoglycan create a resistant structure that prevents the 
bioactive compounds in the extracts from penetrating, but 

Gram-negative cell walls are made up of single or dou-
ble layers of peptidoglycan, making them more suscepti-
ble to extracting secondary metabolites [235, 236]. Both 
gram-positive and gram-negative bacteria have a structure 
and composition that inhibits the drug from reaching the 
cytoplasmic membrane [237]. Major metabolites identi-
fied through GC–MS analysis of BGP extracts, such as 
butyronitrile, 3,7,11,15-tetramethyl-2-hexadecen-1-OL, 
phenol, 5-hydroxy methyl furfural, neophytadiene, isoa-
myl acetate, heptadecene, and 1-hexadecene could rupture 
the outer membrane and release lipopolysaccharides [238] 
through ion motive force [239] in the bacteria’s membrane, 
these metabolites have the tendency to adhere the cyto-
plasmic membrane, causing membrane leakage, membrane 
integrity loss, and damage to the outer membrane vesicles 
(OMVs) [240]. DNA malfunction and the drug’s inhibitory 
potential will be harmed as the electron density in DNA 
is altered. Plant phenolic compounds effectively metabo-
lize the epithelium of harmful bacteria [241]. Methanol 

Fig. 4   Standard graph of a) 
gallic acid equivalents, b) 
quantitative analysis of the total 
phenolic content and standard 
graph of c) tannic acid equiva-
lents, d) quantitative analysis of 
the total tannin content present 
in the various extracts of black 
gram pods

Table 10   Total phenol content and Total tannin content of the Black 
gram pod extracts

S. No Solvent extracts Total phenol con-
tent (mg/GAE g)

Total tannin 
content (mg/
TAE g)

01 Methanol 39.37 ± 1.35 9.20 ± 0.11
02 Ethanol 30.01 ± 4.45 7.02 ± 0.05
03 Acetone 12.25 ± 1.30 3.42 ± 0.04
04 Ethyl acetate 4.83 ± 1.31 4.18 ± 0.26
05 Petroleum ether 3.43 ± 0.16 3.99 ± 0.63
06 Hexane 3.37 ± 2.15 2.56 ± 0.33

Table 11   Antibacterial activity of the BGP methanol extract against tested microorganisms. Each result represents the mean ± standard error of 
the mean (n = 3), and different superscript letters indicate a significant difference between the groups (p < 0.05). “-” indicates no activity.

S. No Zone of inhibition (mm)

Extracts Control 250 (µg/mL) 500 (µg/mL) 750 (µg/mL) 1000 (µg/mL)

01 Aeromonas hydrophila 17.33 ± 1.52a - 10.16 ± 0.76d 11.66 ± 1.52bc 13.66 ± 1.52b

02 Pseudomonas aeruginosa 20.50 ± 0.56a - 11.50 ± 1.80c 14.66 ± 1.52b 16.50 ± 0.52b

03 Staphylococcus aureus 18.33 ± 3.21a - 10.83 ± 1.25b 11.66 ± 1.52b 14.33 ± 2.08b

04 Klebsiella pneumoniae 18.33 ± 1.52a - 10.33 ± 1.04c 11.33 ± 1.15c 15.16 ± 1.32b
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Table 12   Antibacterial activity of the BGP ethanol extract against tested microorganisms. Each result represents the mean ± standard error of the 
mean (n = 3), and different superscript letters indicate a significant difference between the groups (p < 0.05). “-” indicates no activity.

S. No Zone of inhibition (mm)

Extracts Control 250 (µg/mL) 500 (µg/mL) 750 (µg/mL) 1000 (µg/mL)

01 Aeromonas hydrophila 17.19 ± 1.04a - 8.35 ± 1.32c 11.33 ± 0.57b 15.33 ± 1.52a

02 Pseudomonas aeruginosa 19.33 ± 1.15a - 9.66 ± 0.57d 12.83 ± 0.76c 15.59 ± 0.86b

03 Staphylococcus aureus 19.29 ± 2.64a - 8.52 ± 0.86d 11.5 ± 0.56c 16.52 ± 1.32b

04 Klebsiella pneumoniae 19.16 ± 1.04a - 8.33 ± 1.52d 11.83 ± 0.76c 15.16 ± 1.60b

Table 13   Antibacterial activity of the BGP acetone extract against tested microorganisms. Each result represents the mean ± standard error of the 
mean (n = 3), and different superscript letters indicate a significant difference between the groups (p < 0.05). “-” indicates no activity.

S. No Zone of inhibition (mm)

Extracts Control 250 (µg/mL) 500 (µg/mL) 750 (µg/mL) 1000 (µg/mL)

01 Aeromonas hydrophila 17.16 ± 1.04a - 9.5 ± 0.86c 13.29 ± 1.32b 16.52 ± 1.60a

02 Pseudomonas aeruginosa 20.33 ± 2.08a - 10.16 ± 1.04d 13.04 ± 1.04c 16.66 ± 0.57b

03 Staphylococcus aureus 18.66 ± 1.60a - 9.83 ± 0.76d 13.33 ± 1.15c 16.5 ± 0.85b

04 Klebsiella pneumoniae 18.16 ± 0.76a - 9.83 ± 0.76d 13.5 ± 0.52c 15.83 ± 0.76b

Table 14   Antibacterial activity of the BGP ethyl acetate extract against tested microorganisms. Each result represents the mean ± standard error 
of the mean (n = 3), and different superscript letters indicate a significant difference between the groups (p < 0.05). “-” indicates no activity.

S. No Zone of inhibition (mm)

Extracts Control 250 (µg/mL) 500 (µg/mL) 750 (µg/mL) 1000 (µg/mL)

01 Aeromonas hydrophila 19.33 ± 0.57a - - 12.16 ± 0.76c 15.5 ± 0.56b

02 Pseudomonas aeruginosa 20.5 ± 1.32a - - 12.83 ± 1.25c 16.5 ± 1.32b

03 Staphylococcus aureus 20.33 ± 1.32a - - 12.83 ± 1.25c 16.16 ± 0.76b

04 Klebsiella pneumoniae 19.66 ± 0.57a - - 12.5 ± 1.32c 16.16 ± 1.04b

Table 15   Antibacterial activity of the BGP hexane extract against tested microorganisms. Each result represents the mean ± standard error of the 
mean (n = 3), and different superscript letters indicate a significant difference between the groups (p < 0.05). “-” indicates no activity.

S. No Zone of inhibition (mm)

Extracts Control 250 (µg/mL) 500 (µg/mL) 750 (µg/mL) 1000 (µg/mL)

01 Aeromonas hydrophila 19.16 ± 0.76a - - 11.83 ± 1.04c 14.5 ± 0.56b

02 Pseudomonas aeruginosa 19.5 ± 0.86a - - 13.5 ± 0.56c 15.33 ± 1.52b

03 Staphylococcus aureus 20.33 ± 1.52a - - 12.5 ± 0.86c 15.16 ± 0.76b

04 Klebsiella pneumoniae 19.16 ± 0.76a - - 12.16 ± 0.76c 15.16 ± 0.76b

Table 16   Antibacterial activity of the BGP petroleum ether extract against tested microorganisms. Each result represents the mean ± standard 
error of the mean (n = 3), and different superscript letters indicate a significant difference between the groups (p < 0.05). “-” indicates no activity.

S. No Zone of inhibition (mm)

Extracts Control 250 (µg/mL) 500 (µg/mL) 750 (µg/mL) 1000 (µg/mL)

01 Aeromonas hydrophila 18.56 ± 1.52a - - 13.35 ± 1.32c 15.83 ± 0.76b

02 Pseudomonas aeruginosa 19.52 ± 1.32a - - 13.83 ± 0.76c 16.66 ± 1.32b

03 Staphylococcus aureus 20.16 ± 1.25a - - 14.57 ± 0.76c 16.5 ± 0.56b

04 Klebsiella pneumoniae 18.66 ± 1.52a - - 13.03 ± 0.76c 17.56 ± 0.5b
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extract has the strongest antibacterial efficacy against all 
the microorganisms tested, which is due to the extraction 
of soluble metabolites by the solvent [242, 243].

3.6.2 � Determination of minimum inhibitory concentration

Identification of minimum inhibitory concentrations (MIC) 
of various BGP extracts using the resazurin dye technique 
is shown in Table 17. Methanol and ethanol extracts had 
potential MIC values at 250 µg/mL against all the inves-
tigated bacteria, but the other extracts possessed bacterial 
inhibition at 500 µg/mL. Resazurin reduction could be 
accomplished by live bacterial cells. The extracts’ inhibitory 
activity was aided by the incorporation of long-chain free 
fatty acids like oleic acid, palmitic acid, and linolenic acid. 
Enoyl-acyl reductase is a bacterial carrier protein involved 
in fatty acid production [244]. But the extracts have the ten-
dency to inhibit bacterial growth by reducing the carrier 
protein reductase formation [245–247]. The presence of 
unsaturated fatty acids in the BGP extracts was confirmed 
in the GC–MS analysis in this investigation, which yielded 
similar results. The polarity of the molecule is important 
because it determines how it enters the organism’s mem-
brane, causing growth disruption [78]. The extracts’ anti-
bacterial action is dominated by phenols, which are followed 
by aldehydes, ketones, alcohols, ethers, and hydrocarbons 
[248]. The anti-microbial property of the BGP extracts is 
based on the metabolites present in the extracts able to bind 
the membrane of the bacterial cell through hydrogen bond-
ing and hydrophobic interactions [249]. Thus, it alters the 
membrane permeability and allows the metabolites and 
molecules present in the extracts to inside the bacterial cell 
[250]. Because Gram-negative bacteria have a thicker cell 
wall than Gram-positive bacteria, they are more resistant to 
crude extracts, oils, and their metabolites [251]. The trans-
membrane hydrophilic protein called porin doesn’t allow 
the hydrophobic metabolites [252]. Another possible aspect 
of the bacterial growth inhibition is inhibiting the ATPase 
activity, in that the electron transport chain creates protons 
which required for the ATP synthesis. These protons pass 

through the membrane by efflux pump to the cytoplasm and 
maintain its pH [253]. The metabolites like 1-nonadecane 
[254], heptadecene [255], isoamyl acetate [256], and phenol 
[257] in both polar and non-polar extracts of the black gram 
pods disrupt the proton motive force and cause the depletion 
of the ATP synthesis by damaging the mitochondria [258]. 
Phenols operate as a proton donor/acceptor, which could 
contribute to antimicrobial action [259, 260]. The existence 
of different bioactive components in BGP extracts and their 
various fractions, such as saponins, phenolics, and flavo-
noids, could contribute to the antibacterial activity’s diver-
sity [261].

3.6.3 � Effects on growth of the various BGP extracts 
on microbial cultures

The influence of different extracts on the growth of A. 
hydrophila, P. aeruginosa, K. pneumoniae, and S. aureus is 
depicted in Figs. 5, 6, 7, and 8 based on the obtained data. 
In vitro level of sensitivity or resistance of various bacterial 
strains to administered drug is defined by the minimal inhib-
itory concentration (MIC). The ability to accurately measure 
MIC has a substantial impact on the therapeutic method cho-
sen, which impacts the efficacy of infection treatment [262]. 
And sub-MIC is half of the MIC that is used to determine the 
inhibitory potential of the drug at ½ minimal inhibitory con-
centrations [263]. Several studies were conducted to evaluate 
the antibacterial efficacy of the extracts at both MIC and 
sub-MIC levels [264–267]. Similarly, in this study, the effi-
cacy of the black gram pod extracts was evaluated on bacte-
rial growth analysis at determined MIC and sub-MIC (½ 
MIC) in Table 17. The results revealed that at sub-MIC level, 
the BGP extracts did not show any inhibitory activity in all 
the prepared extracts. However, at the MIC level, growth 
was completely stopped. This study shows that several BGP 
extracts can suppress the growth of the examined microbial 
cultures at the MIC level, but not at the Sub-MIC level. The 
hydrophobic compounds in the extracts were in direct con-
tact with the studied microorganisms, causing the inhibitory 
effect [268]. The MIC value found in this study corresponds 

Table 17   Minimum inhibitory 
concentration (MIC) and 
sub-minimal inhibitory 
concentration (sub-MIC) 
values of the Black gram pod 
extracts against the tested 
microorganisms

Solvent used for 
Black gram pods 
extracts

A. hydrophila P. aeruginosa S. aureus K. pneumoniae

MIC
(µg/mL)

Sub-MIC 
(µg/mL)

MIC
(µg/mL)

Sub-MIC 
(µg/mL)

MIC
(µg/mL)

Sub-MIC 
(µg/mL)

MIC
(µg/mL)

Sub-
MIC (µg/
mL)

Methanol 250 125 250 125 250 125 250 125
Ethanol 250 125 250 125 250 125 500 250
Acetone 500 250 250 125 250 125 500 250
Ethyl acetate 500 250 500 250 500 250 500 250
Hexane 500 250 500 250 500 250 500 250
Petroleum Ether 500 250 500 250 500 250 500 250



Biomass Conversion and Biorefinery	

1 3

to the bacterial growth curve analysis, which revealed inhibi-
tion in both polar and non-polar crude extracts of the BGP 
[269]. Bacterial cell membranes are involved in various 
functions like adhesion, conductivity, and signaling. When 
the cell is exposed to the drugs/antibiotics, it generates 
free radicals and causes damage to the membrane [270]. 
Simultaneously, when the membrane permeability of the 
cell increases, it leads to the reduction of ion gradients, loss 
of proteins involved in various mechanisms, and inhibition 
of cellular metabolism [271]. Esters of phenolic acids like 
hydroxybenzoic, hydroxyphenylacetic, and hydroxycinnamic 
acids have potential antioxidant activity and are proportion-
ate to the number of hydroxyl groups in a molecule that is 
hampered by hydrophobic interactions from their carboxyl 
group. While comparing to the hydroxybenzoic acid, both 

the hydroxyphenylacetic and hydroxycinnamic acids pos-
sess higher proton-donating ability leading to an increase 
in the antioxidant potential [272]. Generally, the electron 
donors driven proton motive force leads to mitochondrial 
ROS [273].

3.6.4 � Inhibition of biofilm formation and development 
by BGP extracts

Solvents play an important role in extracting a certain com-
ponent from plants; the type of compound retrieved from the 
plants will be determined by the composition of the solvent. 
As a result, a variety of solvents were utilized to extract bio-
active compounds from the plants [274]. When compared 
to other solvents, the extraction done in alcoholic solvents 

Fig. 5   Growth curves of 
Aeromonas hydrophila under 
the influence of various extracts 
of black gram pods (a-acetone, 
b-methanol, c-ethanol, d-ethyl 
acetate, e-hexane and f-petro-
leum ether)
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yielded highly encouraging results. Extraction of the same 
type of plants in different solvents has distinct sorts of activity 
against biofilm [275]. The bacterial community is embedded 
in the polymer matrix and associates various risk problems in 
human life due to the reduced susceptibility of the tested bac-
teria in the form of biofilms [276]. Several studies had failed 
to confirm the susceptibility of antimicrobial agents in the 
form of biofilm. This study was conducted to identify a sus-
ceptible range of various BGP extracts as an antibiofilm agent; 
1000 µg/mL showed better results by inhibiting the biofilm for-
mation (Fig. 9a–d). Antibacterial drugs have the ability to sup-
press or destroy biofilm formation hold promise for minimis-
ing microbial colonisation of surfaces, epithelial mucosa, and 
matrix formation [277]. Compared to polar, non-polar solvents 
possessed lower anti-biofilm activity because of interference 

by the extracts on the ability of these microbes to adhere to 
the surfaces. Plant-based extracts have been found to disrupt 
bacteria biofilm development by mechanisms like disrupting 
microbial membrane structures and blocking peptidoglycan 
synthesis [278]. Pseudomonas aeruginosa produces a quorum-
sensing regulating virulence factors such as protease, elastase, 
and chitinase [279]. These enzymes affect the host cell proteins 
and induce the bacterial growth and formation of biofilm. The 
extracts of BGP inhibit the production of enzymes on a dose-
dependent manner and reduce the biofilm formation [280]. In 
Aeromonas hydrophila, the exo-proteases and exo-polysaccha-
ride production by ahyR1. The BGP extracts have the tendency 
to act on the ahyR1 and cause the production of C4-HSL. And 
it may block the quorum sensing [281] by inhibiting the proton 
motive force linked to the motility activity-dependent efflux 

Fig. 6   Growth curves of Pseu-
domonas aeruginosa under the 
influence of various extracts of 
black gram pods (a-acetone, 
b-methanol, c-ethanol, d-ethyl 
acetate, e-hexane, and f-petro-
leum ether) 
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pump in the biofilm formation [282]. Similarly in Klebsiella 
pneumoniae, AHL (acyl homoserinelactones) an autoinducer 
for the production of exopolysaccharides that generates viru-
lence factors for the formation of biofilm, the compounds in 
the BGP extracts block the biosynthesis of autoinducers by 
degrading the specific enzymes or preventing its interactions 
with the receptors [283]. Staphyloxanthin is a pigment found in 
Staphylococcus aureus that works as a redox toxin, stimulating 
the production of biofilm matrix by increasing extracellular 
DNA [284]. The biofilm inhibitory activity of metabolites has 
been linked to modulation of bacterial cell–cell communica-
tion [285], interference with surface hydrophobicity, motility, 
and charge [286], and dysregulation of biofilm-related genes 
[287]. We anticipated that metabolites of BGP extracts reduce 
staphyloxanthin synthesis, resulting in a reduction of biofilm 

formation in S. aureus. Moreover, when the concentration of 
the BGP extracts increases; the inhibiting potential was also 
increased. This could be a promising strategy to minimize 
the microbial colonization of intestinal mucosa, which leads 
to infections; consequently, this study proved the inhibitory 
potential of the BGP extracts against aquatic pathogens like 
A. hydrophila, K. pneumoniae, S. aureus, and P. aeruginosa.

4 � Conclusion

According to a qualitative phytochemical study, plant-based 
extracts are advantageous due to the presence of phytochemicals 
such as phenols, tannins, saponins, flavonoids, and alkaloids. 
This study revealed the identification of bioactive metabolites 

Fig. 7   Growth curves of 
Klebsiella pneumoniae under 
the influence of various extracts 
of black gram pods (a-acetone, 
b-methanol, c-ethanol, d-ethyl 
acetate, d-acetone, e-hexane and 
f-petroleum ether)
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from the agricultural waste of black gram pods. FT-IR and 
GC–MS were used to identify and confirm functional groups 
and bioactive metabolites present in the black gram pods. The 
presence of key metabolites such as tetratetracontane, butyroni-
trile, cholesterol, tetracontane, 2,2-difluorocycloheptan-1-one, 
3,7,11,15-tetramethyl-2-hexadecen-1-OL, and diacetone alco-
hol in BGP extract suggests that it has a higher antioxidant, 
agonist to treat cancer, and antibacterial potential. Methanolic 

extract was found to be a better antioxidant and antibacterial 
agent than other extracts against the tested microorganisms. 
The study findings showed a wealth of information about agri-
cultural waste BGP which can be used to combat pathogens 
in aquatic disease control. Furthermore, this groundbreaking 
research promotes the use of biowaste as a possible conversion 
of drug sources in the pharmaceutical industry.

Fig. 8   Growth curves of 
Staphylococcus aureus under 
the influence of various extracts 
of black gram pods (a-acetone, 
b-methanol, c-ethanol, d-ethyl 
acetate, e-hexane and f-petro-
leum ether)
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