

Comparative assessment of organic solvent extraction on non-specific immune defences of skin mucus from freshwater fish

Arun Sridhar^{1,2} · Francisco A. Guardiola^{3,4} · Rajkumar Krishnasamy Sekar¹ · Sathiya Deepika Murugesan¹ · Sivagaami Palaniyappan¹ · Dinesh Babu Manikandan¹ · Manikandan Arumugam¹ · Thirumurugan Ramasamy¹

Received: 6 July 2021 / Accepted: 26 January 2022 / Published online: 7 February 2022 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract

Fish skin mucus secretion is an important strategy against pathogens since it contains several immune molecules that act as the first line of defence. To date, several studies have reported that the mucus composition and immune responses vary depending on the fish species, and consequently, the comparative studies on skin mucus may have beneficial applications in the field of aquaculture. Therefore, the aim of the present study was to characterize functional groups of skin mucus collected from three different freshwater fish: common carp (Cyprinus carpio), rohu (Labeo rohita), and mrigal (Cirrhinus mrigala) and compare the antibacterial activity and innate immune parameters after organic solvent (acetone and methanol) extraction. Firstly, the Fourier transform infrared (FT-IR) spectral analysis of crude skin mucus demonstrated that the three fish species showed similar functional groups. Both the organic solvent extracts from skin mucus of three fish species exhibited antibacterial activity. Interestingly, skin mucus methanol extract from mrigal showed higher antibacterial activity when it was incubated with pathogenic bacteria tested and compared to the results found in the other fish skin mucus extracts. Regarding the innate immune-related enzymes, the lysozyme exhibited higher activity in the methanol extract of mrigal fish skin mucus compared to acetone extract as well as the other extracts of skin mucus from common carp and rohu fish. Alkaline phosphatase activity was significantly higher in skin mucus methanol extracts of common carp and mrigal fish compared to the acetone extract of the same species. In the case of protease enzyme, the activity observed was significantly higher in the skin mucus methanol extract compared to acetone extracts of all the three fish species, being the highest protease activity in the methanol extract of mrigal skin mucus. Therefore, our results demonstrated that the methanol extract of skin mucus displayed higher antibacterial and innate immune-related enzymes activities compared to acetone extract. When we compared to the species, the mrigal skin mucus extracts exhibited greater activities than common carp and rohu fish. These findings suggest that the methanol extract could be useful to isolate more bioactive molecules than the acetone extract in the species studied, which could be useful for therapeutic applications in aquaculture.

Keywords Fish skin mucus · Organic solvents (acetone and methanol) · Antibacterial activity · Innate immune-related enzymes · Freshwater species

Introduction

The aquatic ecosystem possesses numerous types of microorganisms than the terrestrial and the aquatic vertebrates survive against most of them by using innate immune system as a defence mechanism (Magnadóttir 2006). The skin mucus represents the evolutionary changes and adaptations of fish to the aquatic environment (Xu et al. 2013). Therefore, the skin mucus is an important component in fish innate immunity which acts as a semipermeable biological barrier between fish and the surrounding environment. The skin mucus is secreted by goblet cells and covers the entire epithelial surfaces (van der Marel et al. 2010). Sveen et al. (2017) indicated that the number of mucus cells reflects the mucosal tissues health status (Pittman et al. 2011) and the number of skin mucus cells increases in the presence of external stressors (intrinsic and extrinsic) such as hypoxia and high nitrate (Vatsos et al. 2010), exposure of aluminium (Ledy et al. 2003), lead (Dang et al. 2019), cadmium (Xie et al. 2019), and pathogens (van der Marel et al. 2010). Guardiola et al. (2015b) recorded increased immune enzyme activities in skin mucus of gilthead sea bream (Sparus aurata) upon heavy metal (arsenic, cadmium, and mercury) exposure. The skin mucus is also involved in several functions such as respiration, osmo-regulation, communication, locomotion, and disease resistance (Shephard 1994), as well as it plays an important role in mechanical and physiological protection (Kumari et al. 2011). In addition, the skin mucus allows the exchange of nutrients, water, and gases (Esteban 2012) and can be used to detect infections and environmental impacts on fish health (Reverter et al. 2018).

Fish skin mucus is composed of water, gel forming macromolecules including mucins, glycoproteins, complement proteins, C-reactive proteins, lectins, immunoglobulin molecules, antimicrobial peptides, and various biologically active substances as innate immune factors that kill invading pathogens (Ingram 1980; Sakai et al. 2001; Nigam et al. 2012; Sridhar et al. 2021a). It also contains large molecules such as egg yolk precursors (Meucci and Arukwe 2005) together with DNA and RNA material (Livia et al. 2006; Le Vin et al. 2011; Ren et al. 2015) and serves as a storage place for the elemental components such as sex steroids, corticosteroids, and stable isotopes (Shephard 1994; Church et al. 2009; Barkowski and Haukenes 2014; Guardiola et al. 2016). Recently, Liu et al. (2019) and Fuochi et al. (2017) reported the presence of heat shock proteins and chitinases in the skin mucus of mudskipper (Boleophthalmus pectinirostris) and common stingray (Dasyatis pastinaca). Moreover, the mucosal surface provides a niche for the non-pathogenic and the co-habitant microorganisms that can act as an additional barrier to pathogens through bacteriocins, antimicrobial peptides, H2O2, and other inhibitory compounds production (Cabillon and Lazado 2019). Therefore, the composition and the characteristics of skin mucus are important to maintain the immune functions of fish (Cone 2009).

The skin mucus is continuously produced and replaced to prevent the colonization of microbes (Nagashima et al. 2003). The secretion of skin mucus is higher in freshwater species than marine species due to exchange of water across fish skin (Shephard 1994; Tort et al. 2003). The skin mucus also serves as an important biomarker of stress (Tacchi et al. 2015; Guardiola et al. 2016) and helps to carry out minimally invasive environmental monitoring in fish (Ekman et al. 2015). The composition and antimicrobial activity of skin mucus vary among fish species (Esteban 2012; Guardiola et al. 2014a). For

instance, freshwater fish striped snakehead (*Channa striatus*) skin mucus showed antibacterial activity against *Aeromonas hydrophila* (Wei et al. 2010). Rohu (*Labeo rohita*), catla (*Catla catla*), and mrigal (*Cirrhinus mrigala*) fish skin mucus exhibited different inhibition activity against *Aeromonas hydrophila*, *Pseudomonas fluorescens*, and *Edwardsiella tarda* (Dash et al. 2014). The marine teleost fish gilthead seabream (*Sparus aurata*), European sea bass (*Dicentrarchus labrax*), shi drum (*Umbrina cirrosa*), common dentex (*Dentex dentex*), and dusky grouper (*Epinephelus marginatus*) skin mucus revealed bactericidal activity against pathogenic *Vibrio harveyi*, *Vibrio anguillarum*, *Photobacterium damselae*, and non-pathogenic bacteria *Escherichia coli*, *Bacillus subtilis*, and *Shewanella putrefaciens* (Guardiola et al. 2014a).

The immune response and bactericidal activity of fish skin mucus extracts have been demonstrated by several researchers in the recent years (Hellio et al. 2002; Subramanian et al. 2008; Bragadeeswaran et al. 2011; Nigam et al. 2012; Guardiola et al. 2015a; Al-Rasheed et al. 2018). Subramanian et al. (2008) indicated that the acidic skin mucus extracts of brook trout (*Salvelinus fontinalis*), haddock (*Melanogrammus aeglefinus*), and hagfish (*Myxine glutinosa*) showed higher bactericidal activity than that of the aqueous and the organic extract. Mahadevan et al. (2019) showed that the giant mudskipper (*Periophthalmodon schlosseri*) skin mucus organic extract displayed better inhibition activity than that of the aqueous extract against several bacterial and fungal pathogens.

Common carp (Cyprinus carpio) is distributed in all continents as a most potential aquatic species for aquaculture. Rohu (Labeo rohita) inhabits tropical freshwater of India and nearby nations, while mrigal (Cirrhinus mrigala) is an indigenous fish in the inland waters of India (Sridhar et al. 2021b). These fish species are considered as an important aquatic species of Indian aquaculture. Taking into consideration of the significance of the skin mucus in fish immunity, the purpose of this study was to compare the functional groups and immune-related enzymes which play a significant role in the innate immune mechanisms. Extraction of high efficiency of proteins using single organic solvent is quicker and simpler (Lin et al. 2007; Sridhar et al. 2021c). Want et al. (2006) mentioned that the organic solvent proved to be the most efficient technique for protein removal. Acetone and methanol solvents lead to softer protein pellets that could be easily solubilized (Santa et al. 2016). Therefore, this study was aimed to achieve a better understanding of the antimicrobial functions of the skin mucus against the pathogens after eliciting the proteins with acetone and methanol in the skin mucus of the three freshwater carp species with high commercial values. In addition, the efficacy of acetone and methanol solvents was also studied by comparing the irrespective of results. This scientific way of correlating the immunological properties of these fish species skin mucus extract would aid to acquire information about the bioactive molecules that could be used in the aquaculture health management.

Materials and methods

Fish collection and maintenance

The healthy live freshwater fish: common carp (*Cyprinus carpio*; 12.18 ± 1.06 cm and 62.88 ± 6.33 g), rohu (*Labeo rohita*; 8.35 ± 0.79 cm and 32.05 ± 2.67 g) and mrigal (*Cirrhinus mrigala*; 11.17 ± 1.28 cm and 24.44 ± 2.00 g) were collected from Nathan fish farm (Thanjavur, India) and stocked in freshwater circular tanks (2,000 L) in the Aquarium

Facility at Bharathidasan University (Tiruchirappalli, India). The water temperature was maintained at 30 ± 2 °C, pH at 7.36 ± 0.11 , and the tanks were continuously aerated (0% salinity). The photoperiod was 12 h light: 12 h dark, and fish were fed with commercial pellet diet twice a day ad libitum. Fish were allowed to acclimatize for 15 days before the start of the experimental trial.

Skin mucus collection and extraction

The skin mucus was collected from three fish species (n=36 combinedly) according to the method of Subramanian et al. (2008). The fish were starved for 1 day prior to skin mucus collection. To slough off the skin mucus, the fish were transferred into a sterile polyethylene bag containing 50 mM NaCl and gently moved back and forth. Then, the fish were returned to the recovery tanks. Skin mucus samples obtained from fish were pooled (3 pools of 4 fish each), centrifuged ($1500 \times g$, 10 min, 4 °C) to remove the insoluble particles, and the supernatants were collected and separated into three parts. The first part was lyophilized and stored at -20 °C. To the second part, four volumes of prechilled acetone were added to one volume of sample according to the modified protocol of Fic et al. (2010). Similarly, prechilled methanol was added in the same ratio into the third part. Organic solvents, acetone and methanol of HPLC grade, were used without additional purification. These mixtures were incubated overnight at -20 °C, followed by centrifugation at $12,000 \times g$, 4 °C for 10 min. The resulting pellets were dissolved in 10 mM Tris–HCl buffer for further analysis. The protein concentrations of crude and organic solvent extracted skin mucus were determined by the method of Bradford (1976).

Fourier transform infrared spectral analysis

Fourier transform infrared (FT-IR) spectra were carried out for lyophilized fish skin mucus samples, and the functional groups were detected by potassium bromide (KBr) pellet technique. The dry lyophilized fish skin mucus sample of 10 mg was mixed with 100 mg of KBr, and it was compressed as a salt disc to read the spectrum in FT-IR spectrometer (Perkin Elmer, Norwalk, CT, USA). The spectra were recorded in the range of 400–4000 cm⁻¹.

Antibacterial activity

Clinical isolates of opportunistic fish pathogenic bacterium (*Aeromonas hydrophila*) and human pathogen (*Klebsiella pneumoniae*) were used to determine the antibacterial activity of acetone and methanol extracts of fish skin mucus samples. Bacteria were grown in nutrient agar (Sigma-Aldrich, Bengaluru, India) plates at 28 °C. Then fresh single colonies were diluted in 5 ml of nutrient broth (Sigma-Aldrich) and cultured for 24 h at 28 °C on an orbital incubator at 150–200 rpm. The antibacterial activity of fish skin mucus extracts was determined by using agar well diffusion method (Balouiri et al. 2016) with some modifications. Briefly, 100 μ l of bacterial inoculum [1×10⁷ CFU (colony forming unit) ml⁻¹] was spread on to the nutrient agar plates using sterile cotton swab. The wells with the diameter of 6 mm were punched in the agar plates, and 50 μ l of each solvent extract of fish skin mucus was added on to the wells. Then, the plates were incubated at 37 °C overnight. The antibiotic streptomycin (10 μ g ml⁻¹) and physiological saline (0.85% NaCl) were used as positive control and negative control, respectively. The antibacterial activity

was determined in mm by measuring the diameter of the zone of inhibition around the well including the diameter of the well using Vernier caliper. Antibacterial activity data were the average of triplicates.

Innate immune parameters

Lysozyme activity

Lysozyme activity of skin mucus extracts collected from three different fish was determined by turbidometric method as described by Ross et al. (2000) using *Micrococcus lysodeikticus* cells. Briefly, the skin mucus extract samples were diluted 1/2 with 40 mM sodium phosphate (pH 6.2) buffer and then 50 μl of sample was transferred to a 96-well plate. The *Micrococcus lysodeikticus* cells (50 μl at the concentration of 0.3 mg ml⁻¹ in 40 mM sodium phosphate buffer) were added to the mucus sample wells, and the absorbance was measured continuously at 450 nm for 50 min at 30 °C in a microplate reader (Synergy HT Multi-Mode Microplate Reader, Bio-Tek Instruments, Inc., Winooski, VT, USA). The initial rate of the reaction was used to calculate the activity. One unit of activity was defined as the amount of enzyme that catalyzed a decrease in absorbance of 0.001 min⁻¹. The quantum of lysozyme present in skin mucus was obtained from a standard curve made with hen egg white lysozyme (HEWL, Sigma-Aldrich) through serial dilutions in the above buffer. Lysozyme values were expressed as U mg⁻¹ mucus proteins.

Alkaline phosphatase activity

Alkaline phosphatase activity of skin mucus was determined by the method of Ross et al. (2000). Briefly, 50 μ l of skin mucus extracts were prepared by reconstituting in 100 mM ammonium bicarbonate buffer with 1 mM MgCl₂ (pH 7.8, 30 °C) and transferred to a 96 well plate. Equal volume (50 μ l) of 4 mM p-nitrophenol phosphate substrate was added to the wells containing skin mucus extracts. The absorbance was measured continuously at 405 nm for 30 min at 30 °C in a microplate reader (Synergy HT Multi-Mode Microplate Reader, Bio-Tek Instruments, Inc., Winooski, VT, USA). One unit of activity was defined as the amount of enzyme required to release 1 μ mol of p-nitrophenol product min⁻¹, and the activity was expressed as U mg⁻¹ mucus proteins.

Protease activity

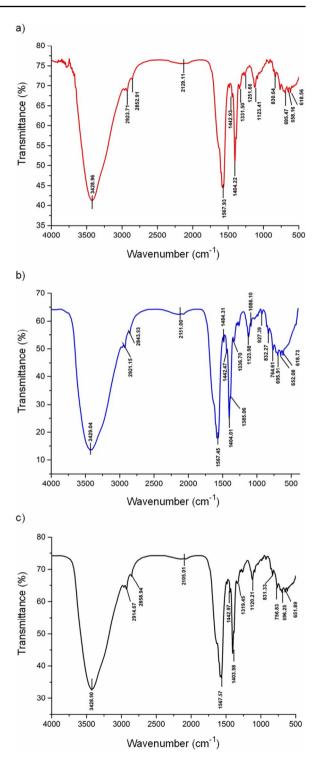
The skin mucus extract protease activity was analyzed as described previously by Ross et al. (2000) using azocaesin as substrate. Briefly, 50 μ l of skin mucus extracts were suspended in 50 μ l of 100 mM ammonium bicarbonate containing azocaesin substrate (0.35% w/v) and incubated in shaker at 30 °C for 19 h. The reaction was stopped by adding 100 μ l of 5% trichloroacetic acid (TCA). Then, the tubes were centrifuged (15,400×g for 5 min), and 100 μ l of resulting supernatant was mixed with 100 μ l of 0.5 N NaOH in a 96 well plate. The absorbance was measured at 450 nm using Synergy HT Multi-Mode Microplate Reader (Bio-Tek Instruments, Inc., Winooski, VT, USA). Skin mucus was replaced by trypsin (5 mg ml $^{-1}$, Sigma), as positive control (100% of protease activity), and by buffer, as negative control (0% activity). The percentage of trypsin activity compared to the positive control was calculated.

Statistical analyses

The experiments were conducted in triplicates, and the data were expressed as mean \pm standard error of the mean (SEM). Then, the data were analyzed by two-way ANOVA (followed by Tukey tests) to determine the differences between the acetone and the methanol extracts for the same fish species and within each extracts regarding species, respectively. Normality of the data was previously assessed using a Shapiro–Wilk test, and the homogeneity of variance was also verified by using the Levene test. Non-normally distributed data were log-transformed to perform parametric tests, while non-parametric Kruskal–Wallis test followed by a Dunn's multiple comparison test was used when the data did not meet the parametric assumptions. All statistical analyses were conducted using SPSS version 20.0 (SPSS Inc., Chicago, IL, USA). The level of significance used was P < 0.05 for all the statistical tests.

Results and discussion

Fourier transform infrared (FT-IR) spectra


Fourier transform infrared (FT-IR) spectroscopic technique yields significant information regarding the functional groups present in the substance. The composition and structural elements of fresh or dried mucus can be obtained through FT-IR spectroscopy (Skingsley, 2010). FT-IR spectra of the lyophilized skin mucus of three fish species are depicted in Fig. 1. The results revealed the characteristic functional groups present in skin mucus of each fish species studied. Interestingly, similar patterns of peaks were observed for all the three fish skin mucus samples. The FT-IR spectrum of C. carpio skin mucus (Fig. 1a) showed a peak at 3428 cm⁻¹ which indicated the presence of O-H bond. The peak at 1567 cm⁻¹ showed the presence of carboxylate groups (O = C - O - D). The peak at 1404 cm⁻¹ was the characteristic of O-H bending of carboxylic acid. The peak at 1123 cm⁻¹ was assigned to C-O stretching, and the peak at 695 cm⁻¹ could be assigned to C-Br stretching. The similar functional groups were recorded by Kumar et al. (2019) in milkfish (Chanos chanos), Asian seabass (Lates calcarifer), and grey mullet (Mugil cephalus) skin mucus. Manikantan et al. (2016) reported the presence of sulfones group based on the FT-IR absorption peaks obtained at 1120–1170 cm⁻¹ in the organic skin mucus extract of greasy grouper (Epinephelus tauvina).

The FT-IR result of *L. rohita* skin mucus (Fig. 1b) showed a peak at 3429 cm⁻¹ indicating the presence of O–H bond. The peak obtained at 1567 cm⁻¹ indicated the presence of carboxylate group (O=C-O-). Another peak at 1404 cm⁻¹ represented O–H bending of carboxylic acid. The peak obtained at 1123 cm⁻¹ showed the presence of C-O stretching. The peak at 882 cm⁻¹ was assigned to C-H bending, and the peak at 652 cm⁻¹ represented C–Br stretching. Similar FT-IR spectrum along with C–Cl stretch was observed by Mahadevan et al. (2019) in the skin mucus extract of giant mudskipper (*Periophthalmodon schlosseri*). FT-IR spectra of large scale tonguesole (*Cynoglossus arel*) and sea catfish (*Arius caelatus*) skin mucus revealed the presence of alkyl amine and/or cyclic amine with polysaccharides (Bragadeeswaran et al. 2011).

The FT-IR spectrum of the *C. mrigala* fish skin mucus sample (Fig. 1c) showed a characteristic peak at 3428 cm⁻¹ which corresponded to O-H bond. The absorption

Fig. 1 FT-IR spectral analysis of crude skin mucus of freshwater fish common carp (*Cyprinus carpio*) (a), rohu (*Labeo rohita*) (b), and mrigal (*Cirrhinus mrigala*) (c)

peak at 1567 cm⁻¹ was assigned to O=C-O – (carboxylate group). A peak at 1404 cm⁻¹ indicated O–H bending of carboxylic acid. The peak for C-O stretch corresponded at 1128 cm⁻¹, and C-H bending was at 831 cm⁻¹. The peak at 696 cm⁻¹ indicated the presence of C–Br stretching. The present results were in agreement with Waghmare et al. (2014), who observed three distinct peaks for Nile tilapia (*Oreochromis niloticus*) skin mucus representing alcohols and phenols. After analyzing the skin mucus of three brackish water fish milkfish (*C. chanos*), Asian seabass (*L. calcarifer*), and grey mullet (*M. cephalus*) in FT-IR, Kumar et al. (2019) indicated that the functional groups, viz., aldehyde, alkene, and isothiocyanate, were commonly found in all the three brackish water fish skin mucus. Moreover, in this study, the FT-IR spectra of *C. carpio*, *L. rohita*, and *C. mrigala* skin mucus revealed the presence of alcohols, cyclic alkenes, and carboxylic acids. Changes in the FT-IR absorption bands clearly indicate the alterations in the composition (Titus et al. 2019). Since the fishes studied in this experiment were from the same species, the FT-IR spectra also share identical peaks revealing their similar composition of skin mucus.

Antibacterial activity

The acetone and methanol skin mucus extracts of three fish species showed antibacterial activity against A. hydrophila and K. pneumoniae (Fig. 2). In the case of A. hydrophila, no significant variations were observed between acetone and methanol solvents in each fish species except C. mrigala where the methanol extract displayed significant antibacterial activity compared to acetone (Fig. 2a). When K. pneumoniae was incubated with the extracts, no significant variations in activity were observed between acetone and methanol in C. carpio, but higher activity was observed in the methanol extract of L. rohita and C. mrigala fish skin mucus with respect to acetone extract (Fig. 2b). The disparity in the antibacterial activity of fish skin mucus observed could be ascribed to the characteristic features of mucus secreted in each fish species (Subramanian et al. 2008). In this study, variations in the antibacterial activity of skin mucus observed against similar or different microbes might be the reason of differences in the quality and quantity of proteins and enzymes present in skin mucus of each fish species as suggested by Balasubramanian et al. (2012). In addition, levels of alkaline phosphatase, protease, cathepsin B, and lysozyme also influence the antibacterial activity of fish skin mucus (Subramanian et al. 2007; Esteban 2012; Mansouri Taee et al. 2017).

Among the solvent extracts of three fish species, significant inhibition activity was observed in the methanol extract of mrigal fish against A. hydrophila and K. pneumoniae when compared with other fish skin mucus extracts. In this way, Guardiola et al. (2015a) observed that the organic skin mucus extract of European sea bass (Dicentrarchus labrax) affected the growth of several fish pathogenic bacteria (Vibrio harveyi, Photobacterium damselae, V. anguillarum, and Shewanella putrefaciens) ranging from 43 to 70% depending on the bacterial species. In another study, the organic extract of giant mudskipper (Periophthalmodon schlosseri) skin mucus displayed better antibacterial activity than aqueous extract against human bacterial pathogens (Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Salmonella typhi, V. cholerae, Bacillus anthracis, and K. pneumoniae) and fungal strains (Candida albicans, Aspergillus flavus, Mucor sp., and Trichoderma longibriachtin) (Mahadevan et al. 2019).

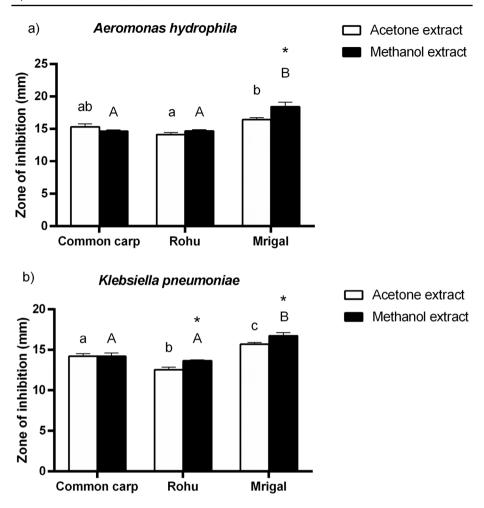


Fig. 2 Antibacterial activity in acetone and methanol extracts of skin mucus from freshwater fish common carp (*Cyprinus carpio*), rohu (*Labeo rohita*), and mrigal (*Cirrhinus mrigala*) against *Aeromonas hydrophila* (a) and *Klebsiella pneumoniae* (b). Bars represent the mean \pm SEM. Asterisks denote significant differences between acetone and methanol extracts for the same species whilst small and capital letters denote significant variations within each extracts regarding species (two-way ANOVA; P < 0.05)

Innate immune parameters

The protein concentrations present in the skin mucus of C. carpio were 3.397 ± 0.168 , 1.088 ± 0.060 , and 0.973 ± 0.045 mg ml⁻¹; L. rohita were 2.242 ± 0.103 , 0.733 ± 0.022 , and 0.680 ± 0.034 mg ml⁻¹; and C. mrigala were 2.718 ± 0.045 , 0.893 ± 0.059 , and 0.767 ± 0.036 mg ml⁻¹ for crude, acetone, and methanol extraction, respectively. The lysozyme, alkaline phosphatase, and protease activities revealed variations in the extracts of three fish species skin mucus. Lysozyme levels are considered as an important index of the innate immunity in fish and known as an antibacterial enzyme (Ellis 2001). The lysozyme activates the complement system and phagocytes (Paulsen et al. 2003; Gonzalez-Silvera et al. 2018). In the present study, the lysozyme activity was higher in the acetone extract of C. carpio and C. car

extract of *C. mrigala* showed higher lysozyme activity with respect to the acetone extract (Fig. 3a). Interestingly, the level of lysozyme activity was greater in the methanol extract from skin mucus of *C. mrigala* respect to the values found in the other methanol extract of *C. carpio* and *L. rohita* skin mucus. A low level of lysozyme activity was also reported in *L. rohita* skin mucus by Nigam et al. (2012) when compared with the other freshwater teleosts fish *C. mrigala*, *C. catla*, spotted snakehead (*Channa punctatus*), and bagrid catfish (*Rita rita*) skin mucus. The reduced skin mucus lysozyme activity was reported in *C. mrigala* than *L. rohita* by Dash et al. (2014) and indicated that the discrepanciese in lysozyme activity were also attributed to the factors such as sex, diet, maturity, and handling stress. In this study, variations in skin mucus lysozyme activity were observed on account of fish species and solvents used. The lysozyme activity of the Atlantic salmon (*Salmo salar*) and *C. carpio* skin mucus changed in stressed condition and different diets, respectively (Balfry and Iwama 2004; Hoseinifar et al. 2016).

Alkaline phosphatase, which is a lysosomal enzyme, acts as an antibacterial agent based on its hydrolytic activity. In the recent past, several authors have reported that alkaline phosphatase protects during infections and helps in skin regeneration in fish (Subramanian et al. 2007; Palaksha et al. 2008; Roosta and Hoseinifar 2016). Guardiola et al. (2014b) demonstrated the presence of alkaline phosphatase in the skin mucus of S. aurata and revealed stronger bactericidal activity. Though the accurate function of alkaline phosphatase is yet to be explained, this enzyme exhibited antimicrobial activities in skin mucus as an epithelial anti-inflammatory mechanism that detoxifies pro-inflammatory microbial compounds and suggested alkaline phosphatase is a component of innate immunity in fish that provide protection against microbes (Lallès 2019). Current results showed that the alkaline phosphatase activity (Fig. 3b) was higher in the methanol extract of C. carpio and C. mrigala skin mucus than the acetone extract. However, when we compare all the three fish skin mucus acetone and methanol extracts, alkaline phosphatase activity observed was higher in the methanol extract of L. rohita and C. mrigala. The methanol extract of three fish skin mucus showed higher activity of alkaline phosphatase than that of the acetone extract. Activity of alkaline phosphatase modifies depending on stress, season, and infections (Jung et al. 2012). Dash et al. (2014) observed higher alkaline phosphatase activity in C. mrigala and lower activity in L. rohita after comparing the innate immune parameters of skin mucus from three Indian major carps: L. rohita, C. catla, and C. mrigala. On account of growth, physiological and ecological conditions, the activity of alkaline phosphatase in freshwater fish skin mucus differ (Kumari et al. 2019). Likewise, in this study, differences in the alkaline phosphatase activity were observed among the fish species with respect to the solvents. In another study, Subramanian et al. (2007) reported the highest activity of alkaline phosphatase in the skin mucus crude extract of koi carp (C. carpio) compared with the other freshwater fish Arctic char (Salvelinus alpinus), brook trout (Salvelinus fontinalis), and striped bass (Morone saxatilis).

Other enzyme studied was the protease which plays a protective role in fish skin mucus against pathogens as a natural resistance (Ingram 1980) by cleaving the proteins of microbes and hinders the process of colonization and invasion (Guardiola et al. 2014b). Many proteases have been characterized in various fish skin mucus (Dash et al. 2018). In the present study, the methanol extract of all the three fish species skin mucus showed higher protease activity in comparison with the values obtained in the acetone extract (Fig. 3c). Interestingly, these results are in agreement with the activity of lysozyme and alkaline phosphatase. The methanol extract of skin mucus from *C. mrigala* recorded a significant higher protease activity compared to the other fish skin mucus solvents extracts. These results are supported by the findings of Nigam et al. (2012), who reported higher

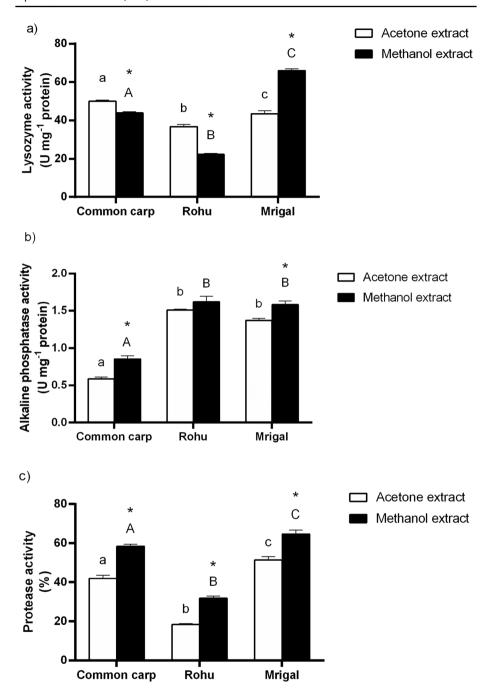


Fig. 3 Lysozyme (U mg⁻¹ protein) (a), alkaline phosphatase (U mg⁻¹ protein) (b), and protease (%) (c) activities in acetone and methanol extracts of skin mucus from freshwater fish common carp (*Cyprinus carpio*), rohu (*Labeo rohita*) and mrigal (*Cirrhinus mrigala*). Bars represent the mean \pm SEM. Asterisks denote significant differences between acetone and methanol extracts for the same species whilst small and capital letters denote significant variations within each extracts regarding species (two-way ANOVA; P < 0.05)

activity of protease in the skin mucus of *C. punctatus* and *C. mrigala*. However, the results of the present study are not in agreement with Dash et al. (2014), who indicated the higher protease level in the skin mucus of *L. rohita* and the lower level in *C. mrigala*. In this study, the differences in the protease activity among the fish species might be owing to the presence of differential proteins between the species and the organic solvent skin mucus extracts. In addition, the levels of protease in fish skin mucus vary depending on the stressors (Guardiola et al. 2016; Sanahuja et al. 2019).

Adopting protein extraction methods ranges from organic solvents to acids for profiling. Generally, the organic solvent primarily ascribing two reasons to extract proteins, i.e., decreases in protein solubility resulting from reduction of the dielectric properties of the solution and destruction of the membrane protein hydration (Cowan 1997). It displaces the water molecules around the hydrophobic regions on the protein surface, and as a result of surrounding organic solvent, hydrophobic interactions between proteins are reduced and lead to aggregation of proteins (Bueno et al. 2011). Additional advantage of organic solvent extraction is the rapid concentration of proteins (Verostek et al. 2000). Most of the hydrophilic proteins are extracted by acetone, while methanol extracts hydrophobic proteins (Arruda et al. 2019).

The methanol extract showed better result than acetone in this study might be due to the reason of acetone, which has the ability to interact with non-polar regions of proteins and reduces its activity (Mohammad-Beigi et al. 2016). In addition, acetone is more difficult in microscale due to its efficiency and the loss of proteins (Crowell et al. 2013). Acetone has higher dielectric constant than methanol and lower viscosity. These parameters change the dissociation forces and cause different protein extraction mechanism (Alzweiri et al. 2008). The recovery of Chinese hamster (*Cricetulus griseus*) ovary host cell protein was done using different solvents and showed that methanol solvent recovered more proteins than acetone and TCA (Valente et al. 2014). Current study results revealed that the methanol precipitation followed by centrifugation seems to be the most effective approach for proteins as already mentioned by Want et al. (2006). The extracellular lipase from *Pseu*domonas monteilii TKU009 retained 80% of its activity after extracting with methanol than acetone, ethanol, and isopropanol which retained 50-75% of lipase activity (Wang et al. 2009). Afkarian et al. (2010) identified that during the discovery of biomarker in urine, the methanol precipitation method yielded high protein levels than ethanol and acetonitrile. Similarly, after extracting proteins with solvents such as acetonitrile, perchloric acid, and TCA, methanol solvent was the best choice for protein extraction (Gowda and Raftery 2014). The divergence found in the enzymatic activity of fish skin mucus in this study could be attributed to the habitat, evolutionary adaptation to environmental nutritional factors (Lallès 2019; Wang et al. 2019), and phylogenetic divergence (Nigam et al. 2012). This study demonstrated that the methanol extract of C. mrigala skin mucus showed significantly higher activity in antibacterial and enzymatic analysis when compared with the acetone and methanol solvents of L. rohita and C. carpio fish skin mucus.

Conclusion

The results of the present study suggested that organic solvents, especially the methanol, which was used for the extraction of proteins from skin mucus of *C. carpio*, *L. rohita*, and *C. mrigala* aided in achieving better results in the antibacterial activity and in the innate immune-related parameters tested. Interestingly, the methanol extracted skin mucus from

C. mrigala showed higher lysozyme and protease activities and displayed significant antibacterial activity against the bacteria assayed. However, it exhibited similar activity level with L. rohita independently of the type of extract in the case of alkaline phosphatase. Therefore, further investigation on the bioactive molecules from methanol extracted fish skin mucus of mrigal fish would be useful in aquaculture to combat fish pathogens.

Acknowledgements The authors are thankful to Department of Science and Technology—Fund for Improvement of Science and Technology Infrastructure (DST-FIST) Level-I (stage-II) (Ref. No. SR/FST/LSI-647/2015 (C) Date. 11.08.2016) and Department of Science and Technology—Promotion of University Research and Scientific Excellence (DST PURSE Phase-II) (Ref. No. SR/PURSE PHASE 2/16(G)/& 16(C) Date. 21.02.2017) for the instrumentation support to Department of Animal Science, Bharathidasan University (BDU), Tiruchirappalli, Tamil Nadu, India. The first author Arun Sridhar was supported by EMBO Short-Term Fellowship (STF-8388). The authors thank "RUSA, 2.0 – Biological Sciences, Bharathidasan University".

Author contribution Arun Sridhar: Investigation, Methodology, Formal analysis, Writing—original draft, Writing—review and editing.

Francisco A. Guardiola: Methodology, Software, Formal analysis, Writing—review and editing.

Rajkumar Krishnasamy Sekar: Investigation, Resources, Data curation.

Sathiya Deepika Murugesan: Investigation, Resources.

Sivagaami Palaniyappan: Investigation, Data curation.

Dinesh Babu Manikandan: Investigation, Resources. Manikandan Arumugam: Formal analysis, Data curation.

Thirumurugan Ramasamy: Conceptualization, Project administration, Supervision, Validation, Visualization, Writing—review and editing.

Data Availability All data generated or analyzed during this study are included in this published article.

Code availability Not applicable.

Declarations

Ethics approval All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare no competing interests.

References

Afkarian M, Bhasin M, Dillon ST, Guerrero MC, Nelson RG, Knowler WC, Thadhani R, Libermann TA (2010) Optimizing a proteomics platform for urine biomarker discovery. Mol Cell Proteomics 9:2195–2204. https://doi.org/10.1074/mcp.M110.000992

Al-Rasheed A, Handool KO, Garba B, Noordin MM, Bejo SK, Kamal FM, Daud HHM (2018) Crude extracts of epidermal mucus and epidermis of climbing perch *Anabas testudineus* and its antibacterial and hemolytic activities. Egypt J Aquat Res 44:125–129. https://doi.org/10.1016/j.ejar.2018.06.002

Alzweiri M, Watson DG, Robertson C, Sills GJ, Parkinson JA (2008) Comparison of different water-miscible solvents for the preparation of plasma and urine samples in metabolic profiling studies. Talanta 74:1060–1065. https://doi.org/10.1016/j.talanta.2007.07.037

Arruda MAZ, Jesus JR, Galazzi RM (2019) Electrophoresis | gel electrophoresis: two-dimensional gel electrophoresis of proteins. In: Worsfold P, Poole C, Townshend A, Miró MBT-E of AS Third E (eds). Academic Press, Oxford, pp 493–504

- Balasubramanian S, Baby Rani P, Arul Prakash A, Prakash M, Senthilraja P, Gunasekaran G (2012) Antimicrobial properties of skin mucus from four freshwater cultivable fishes (*Catla catla, Hypophthal-michthys molitrix, Labeo rohita* and *Ctenopharyngodon idella*). African J Microbiol Res 6:5110–5120. https://doi.org/10.5897/AJMR11.532
- Balfry SK, Iwama GK (2004) Observations on the inherent variability of measuring lysozyme activity in coho salmon (*Oncorhynchus kisutch*). Comp Biochem Physiol - B Biochem Mol Biol 138:207–211. https://doi.org/10.1016/j.cbpc.2003.12.010
- Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005
- Barkowski NA, Haukenes AH (2014) Investigating the utility of measuring 11α-ketotestosterone and vitellogenin in surface mucus as an alternative to plasma samples in assessments of the reproductive axis of white bass. N Am J Aquac 76:112–118. https://doi.org/10.1080/15222055.2013.860066
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Bragadeeswaran S, Priyadharshini S, Prabhu K, Rani SRS (2011) Antimicrobial and hemolytic activity of fish epidermal mucus *Cynoglossus arel* and *Arius caelatus*. Asian Pac J Trop Med 4:305–309. https://doi.org/10.1016/S1995-7645(11)60091-6
- Bueno JS, Silva BJG, Queiroz MEC (2011) Enantioselective analysis of fluoxetine and norfluoxetine in plasma samples by protein precipitation and liquid chromatography with fluorescence detection. J Braz Chem Soc 22:1221–1228. https://doi.org/10.1590/S0103-50532011000700004
- Cabillon NAR, Lazado CC (2019) Mucosal barrier functions of fish under changing environmental conditions. Fishes 4:2. https://doi.org/10.3390/fishes4010002
- Church MR, Ebersole JL, Rensmeyer KM, Couture RB, Barrows FT, Noakes DLG (2009) Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotope analysis. Can J Fish Aquat Sci 66:1–5. https://doi.org/10.1139/F08-206
- Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61:75–85. https://doi.org/10.1016/j.addr. 2008.09.008
- Cowan DA (1997) Thermophilic proteins: stability and function in aqueous and organic solvents. Comp Biochem Physiol Part A Physiol 118:429–438. https://doi.org/10.1016/S0300-9629(97)00004-2
- Crowell AMJ, Wall MJ, Doucette AA (2013) Maximizing recovery of water-soluble proteins through acetone precipitation. Anal Chim Acta 796:48–54. https://doi.org/10.1016/j.aca.2013.08.005
- Dang M, Pittman K, Bach L, Sonne C, Hansson SV, Søndergaard J, Stride M, Nowak B (2019) Mucous cell responses to contaminants and parasites in shorthorn sculpins (*Myoxocephalus scorpius*) from a former lead-zinc mine in West Greenland. Sci Total Environ 678:207–216. https://doi.org/10.1016/j. scitotenv.2019.04.412
- Dash S, Das SK, Samal J, Thatoi HN (2018) Epidermal mucus, a major determinant in fish health: A review. Iran J Vet Res 19:72–81 . https://doi.org/10.22099/ijvr.2018.4849
- Dash S, Samal J, Thatoi H (2014) A comparative study on innate immunity parameters in the epidermal mucus of Indian major carps. Aquac Int 22:411–421. https://doi.org/10.1007/s10499-013-9649-2
- Ekman DR, Skelton DM, Davis JM, Villeneuve DL, Cavallin JE, Schroeder A, Jensen KM, Ankley GT, Collette TW (2015) Metabolite profiling of fish skin mucus: a novel approach for minimally-invasive environmental exposure monitoring and surveillance. Environ Sci Technol 49:3091–3100. https://doi.org/10.1021/es505054f
- Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839. https://doi.org/10.1016/S0145-305X(01)00038-6
- Esteban MÁ (2012) An overview of the immunological defenses in fish skin. ISRN Immunol 2012:1–29. https://doi.org/10.5402/2012/853470
- Fic E, Kedracka-Krok S, Jankowska U, Pirog A, Dziedzicka-Wasylewska M (2010) Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31:3573–3579. https://doi.org/10.1002/elps.201000197
- Fuochi V, Li Volti G, Camiolo G, Tiralongo F, Giallongo C, Distefano A, Petronio GP, Barbagallo I, Viola M, Furneri PM, Di Rosa M, Avola R, Tibullo D (2017) Antimicrobial and anti-proliferative effects of skin mucus derived from *Dasyatis pastinaca* (Linnaeus, 1758). Mar Drugs 15:342. https://doi.org/10.3390/md15110342
- Gonzalez-Silvera D, Herrera M, Giráldez I, Esteban MÁ (2018) Effects of the dietary tryptophan and aspartate on the immune response of meagre (*Argyrosomus regius*) after stress. Fishes 3:6. https://doi.org/10.3390/fishes3010006
- Gowda GAN, Raftery D (2014) Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Anal Chem 86:5433–5440. https://doi.org/10.1021/ac5005103

- Guardiola FA, Cuesta A, Abellán E, Meseguer J, Esteban MA (2014a) Comparative analysis of the humoral immunity of skin mucus from several marine teleost fish. Fish Shellfish Immunol 40:24–31. https://doi.org/10.1016/j.fsi.2014.06.018
- Guardiola FA, Cuesta A, Arizcun M, Meseguer J, Esteban MA (2014b) Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (*Sparus aurata*). Fish Shell-fish Immunol 36:545–551. https://doi.org/10.1016/j.fsi.2014.01.001
- Guardiola FA, Cuesta A, Esteban MA (2016) Using skin mucus to evaluate stress in gilthead seabream (*Sparus aurata* L.). Fish Shellfish Immunol 59:323–330. https://doi.org/10.1016/j.fsi.2016.11.005
- Guardiola FA, de Haro JP, Díaz-Baños FG, Meseguer J, Cuesta A, Esteban MÁ (2015a) Terminal carbohydrate composition, IgM level and enzymatic and bacteriostatic activity of European sea bass (*Dicentrarchus labrax*) skin epidermis extracts. Fish Shellfish Immunol 47:352–359. https://doi.org/10.1016/j.fsi.2015.09.026
- Guardiola FA, Dioguardi M, Parisi MG, Trapani MR, Meseguer J, Cuesta A, Cammarata M, Esteban MA (2015b) Evaluation of waterborne exposure to heavy metals in innate immune defences present on skin mucus of gilthead seabream (Sparus aurata). Fish Shellfish Immunol 45:112–123. https://doi.org/10.1016/j.fsi.2015.02.010
- Hellio C, Pons AM, Beaupoil C, Bourgougnon N, Le GY (2002) Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. Int J Antimicrob Agents 20:214–219. https://doi.org/10.1016/S0924-8579(02)00172-3
- Hoseinifar SH, Zoheiri F, Lazado CC (2016) Dietary phytoimmunostimulant Persian hogweed (*Heracleum persicum*) has more remarkable impacts on skin mucus than on serum in common carp (*Cyprinus carpio*). Fish Shellfish Immunol 59:77–82. https://doi.org/10.1016/j.fsi.2016.10.025
- Ingram GA (1980) Substances involved in the natural resistance of fish to infection–A review. J Fish Biol 16:23–60. https://doi.org/10.1111/j.1095-8649.1980.tb03685.x
- Jung TS, del Castillo CS, Javaregowda PK, Dalvi RS, Nho SW, Bin PS, Bin JH, Cha IS, Sung HW, Hikima J, Aoki T (2012) Seasonal variation and comparative analysis of non-specific humoral immune substances in the skin mucus of olive flounder (*Paralichthys olivaceus*). Dev Comp Immunol 38:295–301. https://doi.org/10.1016/j.dci.2012.06.005
- Kumar P, Rajeshwaran T, Priya P, Kailasam M, Biswas G, Ghoshal TK, Vijayan KK, Arasu ART (2019) Comparative immunological and biochemical properties of the epidermal mucus from three brack-ishwater fishes. Proc Natl Acad Sci India Sect B - Biol Sci 89:95–103. https://doi.org/10.1007/s40011-017-0923-3
- Kumari S, Tyor AK, Bhatnagar A (2019) Evaluation of the antibacterial activity of skin mucus of three carp species. Int Aquat Res 11:225–239. https://doi.org/10.1007/s40071-019-0231-z
- Kumari U, Nigam AK, Mittal S, Mittal AK (2011) Antibacterial properties of the skin mucus of the freshwater fishes, *Rita rita* and *Channa punctatus*. Eur Rev Med Pharmacol Sci 15:781–786
- Lallès JP (2019) Biology, environmental and nutritional modulation of skin mucus alkaline phosphatase in fish: a review. Fish Shellfish Immunol 89:179–186. https://doi.org/10.1016/j.fsi.2019.03.053
- Le Vin AL, Adam A, Tedder A, Arnold KE, Mable BK (2011) Validation of swabs as a non-destructive and relatively non-invasive DNA sampling method in fish. Mol Ecol Resour 11:107–109. https://doi.org/10.1111/j.1755-0998.2010.02909.x
- Ledy K, Giambérini L, Pihan JC (2003) Mucous cell responses in gill and skin of brown trout *Salmo trutta* fario in acidic, aluminium-containing stream water. Dis Aquat Organ 56:235–240. https://doi.org/10.3354/dao056235
- Lin CY, Wu H, Tjeerdema RS, Viant MR (2007) Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 3:55-67. https://doi.org/10.1007/ s11306-006-0043-1
- Liu H, han, Sun Q, Jiang Y ting, Fan M hua, Wang J xin, Liao Z, (2019) In-depth proteomic analysis of Boleophthalmus pectinirostris skin mucus. J Proteomics 200:74–89. https://doi.org/10.1016/j.jprot. 2019.03.013
- Livia L, Antonella P, Hovirag L, Mauro N, Panara F (2006) A nondestructive, rapid, reliable and inexpensive method to sample, store and extract high-quality DNA from fish body mucus and buccal cells. Mol Ecol Notes 6:257–260. https://doi.org/10.1111/j.1471-8286.2005.01142.x
- Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151. https://doi.org/10.1016/j.fsi.2004.09.006
- Mahadevan G, Mohan K, Vinoth J, Ravi V (2019) Biotic potential of mucus extracts of giant mudskipper *Periophthalmodon schlosseri* (Pallas, 1770) from Pichavaram, southeast coast of India. J Basic Appl Zool 80:1–7. https://doi.org/10.1186/s41936-019-0084-4

- Manikantan G, Lyla S, Khan SA, Vijayanand P, Jothi GEG (2016) Bioactive potency of epidermal mucus extracts from greasy grouper, *Epinephelus tauvina* (Forsskal, 1775). J Coast Life Med 4:510–520. https://doi.org/10.12980/jclm.4.2016j6-34
- Mansouri Taee H, Hajimoradloo A, Hoseinifar SH, Ahmadvand H (2017) Dietary myrtle (Myrtus communis L.) improved non-specific immune parameters and bactericidal activity of skin mucus in rainbow trout (Oncorhynchus mykiss) fingerlings. Fish Shellfish Immunol 64:320–324. https://doi.org/10.1016/j.fsi.2017.03.034
- Meucci V, Arukwe A (2005) Detection of vitellogenin and zona radiata protein expressions in surface mucus of immature juvenile Atlantic salmon (*Salmo salar*) exposed to waterborne nonylphenol. Aquat Toxicol 73:1–10. https://doi.org/10.1016/j.aquatox.2005.03.021
- Mohammad-Beigi H, Shojaosadati SA, Morshedi D, Mirzazadeh N, Arpanaei A (2016) The effects of organic solvents on the physicochemical properties of human serum albumin nanoparticles. Iran J Biotechnol 14:45–50. https://doi.org/10.15171/ijb.1168
- Nagashima Y, Kikuchi N, Shimakura K, Shiomi K (2003) Purification and characterization of an anti-bacterial protein in the skin secretion of rockfish Sebastes schlegeli. Comp Biochem Physiol C Toxicol Pharmacol 136:63–71. https://doi.org/10.1016/S1532-0456(03)00174-1
- Nigam AK, Kumari U, Mittal S, Mittal AK (2012) Comparative analysis of innate immune parameters of the skin mucous secretions from certain freshwater teleosts, inhabiting different ecological niches. Fish Physiol Biochem 38:1245–1256. https://doi.org/10.1007/s10695-012-9613-5
- Palaksha KJ, Shin GW, Kim YR, Jung TS (2008) Evaluation of non-specific immune components from the skin mucus of olive flounder (*Paralichthys olivaceus*). Fish Shellfish Immunol 24:479–488. https://doi.org/10.1016/j.fsi.2008.01.005
- Paulsen SM, Lunde H, Engstad RE, Robertsen B (2003) In vivo effects of β-glucan and LPS on regulation of lysozyme activity and mRNA expression in Atlantic salmon (*Salmo salar* L.). Fish Shellfish Immunol 14:39–54. https://doi.org/10.1006/fsim.2002.0416
- Pittman K, Sourd P, Ravnøy B, Espeland FIU, Oen T, Pittman A, Redmond K, Sweetman J (2011) Novel method for quantifying salmonid mucous cells. J Fish Dis 34:931–936. https://doi.org/10.1111/j. 1365-2761.2011.01308.x
- Ren Y, Zhao H, Su B, Peatman E, Li C (2015) Expression profiling analysis of immune-related genes in channel catfish (*Ictalurus punctatus*) skin mucus following *Flavobacterium columnare* challenge. Fish Shellfish Immunol 46:537–542. https://doi.org/10.1016/j.fsi.2015.07.021
- Reverter M, Tapissier-Bontemps N, Lecchini D, Banaigs B, Sasal P (2018) Biological and ecological roles of external fish mucus: a review. Fishes 3:41. https://doi.org/10.3390/fishes3040041
- Roosta Z, Hoseinifar SH (2016) The effects of crowding stress on some epidermal mucus immune parameters, growth performance and survival rate of tiger barb (*Pentius tetrazona*). Aquac Res 47:1682–1686. https://doi.org/10.1111/are.12616
- Ross NW, Firth KJ, Wang A, Burka JF, Johnson SC (2000) Changes in hydrolytic enzyme activities of naive Atlantic salmon *Salmo salar* skin mucus due to infection with the salmon louse *Lepeophtheirus salmonis* and cortisol implantation. Dis Aquat Organ 41:43–51. https://doi.org/10.3354/dao041043
- Sakai M, Taniguchi K, Mamoto K, Ogawa H, Tabata M (2001) Immunostimulant effects of nucleotide isolated from yeast RNA on carp, *Cyprinus carpio* L. J Fish Dis 24:433–438. https://doi.org/10.1046/j.1365-2761.2001.00314.x
- Sanahuja I, Fernández-Alacid L, Sánchez-Nuño S, Ordóñez-Grande B, Ibarz A (2019) Chronic cold stress alters the skin mucus interactome in a temperate fish model. Front Physiol 9:1916. https://doi.org/10.3389/fphys.2018.01916
- Santa C, Anjo SI, Manadas B (2016) Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach. Proteomics 16(13):1847–1851. https://doi.org/10.1002/pmic.201600024
- Shephard KL (1994) Functions for fish mucus. Rev Fish Biol Fish 4:401–429. https://doi.org/10.1007/ BF00042888
- Skingsley DR (2010) Investigation of mucus using fourier transform infrared spectroscopy. Spectrosc Eur 22:10–13
- Sridhar A, Manikandan DB, Marimuthu SK, Murugesan M, Ramasamy T (2021a) Methanol skin mucus extract of mrigal (*Cirrhinus mrigala*) fish peptide targeting viral particles of infectious pancreatic necrosis virus (IPNV) and infectious salmon anemia virus (ISAV): an in silico approach. Int J Pept Res Ther 27:1429–1440. https://doi.org/10.1007/s10989-021-10179-y
- Sridhar A, Manikandan DB, Palaniyappan S, Sekar RK, Ramasamy T (2021b) Correlation between three freshwater fish skin mucus antiproliferative effect and its elemental composition role in bacterial growth. Turkish J Fish Aquat Sci 21:233–244. https://doi.org/10.4194/1303-2712-v21_5_03

- Sridhar A, Krishnasamy Sekar R, Manikandan DB, Arumugam M, Veeran S, Ramasamy T (2021c) Activity profile of innate immune-related enzymes and bactericidal of freshwater fish epidermal mucus extract at different pH. Environ Sci Pollut Res 28:33914–33926. https://doi.org/10.1007/s11356-020-11173-5
- Subramanian S, MacKinnon SL, Ross NW (2007) A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B Biochem Mol Biol 148:256–263. https://doi.org/10.1016/j.cbpb.2007.06.003
- Subramanian S, Ross NW, MacKinnon SL (2008) Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comp Biochem Physiol - B Biochem Mol Biol 150:85–92. https://doi.org/10. 1016/j.cbpb.2008.01.011
- Sveen LR, Grammes FT, Ytteborg E, Takle H, Jørgensen SM (2017) Genome-wide analysis of atlantic salmon (Salmo salar) mucin genes and their role as biomarkers. PLoS ONE 12:e0189103. https://doi. org/10.1371/journal.pone.0189103
- Tacchi L, Lowrey L, Musharrafieh R, Crossey K, Larragoite ET, Salinas I (2015) Effects of transportation stress and addition of salt to transport water on the skin mucosal homeostasis of rainbow trout (Oncorhynchus mykiss). Aquaculture 435:120–127. https://doi.org/10.1016/j.aquaculture.2014.09.027
- Titus D, James Jebaseelan Samuel E, Roopan SM (2019) Nanoparticle characterization techniques. In: Shukla AK, Iravani S (eds) Micro and Nano Technologies. Elsevier, Amsterdam, Netherlands, pp 303–319
- Tort L, Balasch JC, Mackenzie S (2003) Fish immune system. A crossroads between innate and adaptive responses. Inmunologia 22:277–286
- Valente KN, Schaefer AK, Kempton HR, Lenhoff AM, Lee KH (2014) Recovery of Chinese hamster ovary host cell proteins for proteomic analysis. Biotechnol J 9:87–99. https://doi.org/10.1002/biot.201300190
- van der Marel M, Caspari N, Neuhaus H, Meyer W, Enss ML, Steinhagen D (2010) Changes in skin mucus of common carp, *Cyprinus carpio* L., after exposure to water with a high bacterial load. J Fish Dis 33:431–439. https://doi.org/10.1111/j.1365-2761.2010.01140.x
- Vatsos IN, Kotzamanis Y, Henry M, Angelidis P, Alexis MN (2010) Monitoring stress in fish by applying image analysis to their skin mucous cells. Eur J Histochem 54:e22. https://doi.org/10.4081/ejh.2010.
- Verostek MF, Lubowski C, Trimble RB (2000) Selective organic precipitation/extraction of released N-glycans following large-scale enzymatic deglycosylation of glycoproteins. Anal Biochem 278:111–122. https://doi.org/10.1006/abio.1999.4433
- Waghmare PR, Gunda NSK, Mitra SK (2014) Under-water superoleophobicity of fish scales. Sci Rep 4:7454. https://doi.org/10.1038/srep07454
- Wang H, Tang W, Zhang R, Ding S (2019) Analysis of enzyme activity, antibacterial activity, antiparasitic activity and physico-chemical stability of skin mucus derived from *Amphiprion clarkii*. Fish Shellfish Immunol 86:653–661. https://doi.org/10.1016/j.fsi.2018.11.066
- Wang SL, Lin YT, Liang TW, Chio SH, Ming LJ, Wu PC (2009) Purification and characterization of extracellular lipases from *Pseudomonas monteilii* TKU009 by the use of soybeans as the substrate. J Ind Microbiol Biotechnol 36:65–73. https://doi.org/10.1007/s10295-008-0473-z
- Want EJ, O'Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, Trauger SA, Siuzdak G (2006) Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 78:743–752. https://doi.org/10.1021/ac051312t
- Wei OY, Xavier R, Marimuthu K (2010) Screening of antibacterial activity of mucus extract of snakehead fish, *Channa striatus* (Bloch). Eur Rev Med Pharmacol Sci 14:675–681
- Xie D, Li Y, Liu Z, Chen Q (2019) Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish (*Pelteobagrus fulvidraco*). Comp Biochem Physiol Part C Toxicol Pharmacol 222:65–73. https://doi.org/10.1016/j.cbpc.2019.04.012
- Xu Z, Parra D, Gómez D, Salinas I, Zhang YA, Von Gersdorff JL, Heinecke RD, Buchmann K, LaPatra S, Oriol Sunyer J (2013) Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc Natl Acad Sci U S A 110:13097–13102. https://doi.org/10.1073/pnas.1304319110

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Arun Sridhar^{1,2} · Francisco A. Guardiola^{3,4} · Rajkumar Krishnasamy Sekar¹ · Sathiya Deepika Murugesan¹ · Sivagaami Palaniyappan¹ · Dinesh Babu Manikandan¹ · Manikandan Arumugam¹ · Thirumurugan Ramasamy¹

- ☐ Thirumurugan Ramasamy ramthiru72@bdu.ac.in
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli 620 024, India
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros Do Porto de Leixões, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal

