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Abstract

Maternal exposure to anti-epileptic drug Valproic acid (VPA) during pregnancy increases the risk for the development of
autism spectrum disorders (ASD). In this study, we have examined whether prenatal exposure to VPA will alter expres-
sion of key genes, synaptic morphology of nerve growth factor (NGF) and Reelin expressing neurons in the cortex of male
offspring. To characterize in animal models, rat fetuses were exposed to VPA on 12.5 gestational day. The offspring of the
VPA-exposed individuals (42%) resembles ASD-related phenotype (facial malformation, crooked-like tail, flattened paw,
toenails and in-turning-ankles). Furthermore, we have observed deficit in social interaction accompanied by deregulation
in expression of genes such as Caspase-3, focal adhesion kinase (FAK), Reelin, glial fibrillary acidic protein (GFAP), pro-
liferating cell nuclear antigen (PCNA) and NGF. Subsequently, immunohistochemistry analysis revealed that exposure to
VPA alters the cytoarchitecture (area, diameter) and reduced the dendritic arborization of Reelin, NGF expressing neurons
in cortex. The compromised neurodevelopment by altered expression of Caspase-3, FAK, Reelin, GFAP, PCNA and NGF
may cause defects in neuronal architecture, synaptic formation, synaptic plasticity and neuronal communication which could
be linked with observed ASD-like phenotype and deficit social interaction.

Keywords Autism spectrum disorder - Valproic acid - Congenital malformation - Social behavior - Reelin - Neurotrophic

factor

Introduction

Autism spectrum disorder (ASD) is a complex neurodevel-
opment disorder associated with repetitive pattern of behav-
iour, deficits in reciprocal social interaction and neurocogni-
tive dysfunction (Lord et al. 2018; Manoli and State 2021).
Genetic components and environmental factors have been
linked with development of ASD (Saxena et al. 2020). Valp-
roic acid (VPA) is commonly prescribed for the treatment of
migraine headaches, partial and generalized seizure (Vajda
and Eadie 2014). Clinical studies have reported that VPA
treatment during pregnancy was linked to increased risk of
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ASD in the offspring besides marked increase in cognitive
deficits and congenital malformations (Roullet et al. 2013).
Earlier studies have reported that prenatal exposure to VPA
induced autistic-like behaviour (Nicolini and Fahnestock
2018; Miyazaki et al. 2005; Chaliha et al. 2020). In addition,
animal model studies have provided insight into the effect
of VPA exposure on molecules such as alterations in epi-
dermal growth factor receptor (Jung et al. 2008), serotonin
and serotonin receptor (Dufour-Rainfray et al. 2010), dopa-
mine receptors (Schiavi et al. 2019), expression of brain-
derived neurotropic factor (BDNF), N-methyl-p-aspartate
(NMDA) receptor (Roullet et al. 2010), neuronal migration
(Kotagiri et al. 2014), pro- and anti-apoptosis gene (Zhang
et al. 2016), activation of inflammatory cytokines (Young
et al. 2016), histone acetylation/chromatin remodeling (Ibi
et al. 2019) and DNA damage (Aboul-Fotouh 2013). These
effects are linked with induction of neurodegeneration/neu-
ronal cell death and activation of apoptosis in different brain
region including in prefrontal cortex, hippocampus and cer-
ebellum (Young et al. 2016; Aboul-Fotouh 2013; Kataoka
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«Fig. 1 The experimental schedule and offspring’s phenotype com-
parison of experimental groups. a Experimental timeline showing
the sequence of event and behavioural testing of the experimental
group animals underwent. Representative image showing facial dys-
morphism (b) flattened forehead, crooked-like tail structure (c), flat-
tened paw and toenail of malformed forelimb (left: c; right: e), align-
ment and orientation of hind limb are malformed (h), and showing
in-turning (pronated) ankles (left: f; right: g) in VPA group compared
to control

et al. 2013). Caspases-3 has been recognized as important
protease in executioner—phase of apoptosis, balancing act
of caspase fine tune the process of cellular differentiation
and proliferation (Burguillos et al. 2011), cellular remod-
eling including dendritic pruning, neurite growth (Westphal
et al. 2010), homeostatic synaptic plasticity (Li et al. 2019).
Earlier studies have showed that Reelin is a large secreted
glycoprotein that suppresses the apoptotic process and plays
an important role in neuronal migration, cytoskeleton stabil-
ity, axonal and dendritic outgrowth via multiple independ-
ent and interconnected pathways (Wasser and Herz 2017).
Furthermore, the level of Reelin alters the focal adhesion
kinase (FAK) and steroid receptor co-activator (Src) signal-
ing through the activation of glial fibrillary acidic protein
(GFAP) (Wei et al. 2011). Activated FAK and GFAP further
influence the neuronal cell adhesion, migration, proliferation
and survival (Rico et al. 2004; Watanabe et al. 2008). Addi-
tionally, FAK has several functional roles including corti-
cal basement membrane assembly, remodeling, neuronal
migration, axonal/dentritic branching and synapse forma-
tion (Wasser and Herz 2017; An et al. 2018). FAK acts as
a mediator in induction of nerve growth factor (NGF), sub-
sequently modulates structural properties of maturing neu-
ron, and the architecture of synapses (Monje et al. 2012). In
parallel cyclic adenosine monophosphate (cAMP) response
element-binding protein (CREB) target genes, including pro-
liferating cell nuclear antigen (PCNA) and NGF (Cazzalini
et al. 2014) and its expression is positively correlated. VPA
has been commonly used to generate ASD model (Nicolini
and Fahnestock 2018; Miyazaki et al. 2005; Chaliha et al.
2020). This study was designed to test whether prenatal
exposure to VPA has altered the genes involving the regula-
tion of migration, proliferation, differentiation, maintenance,
and survival of neurons and synaptic morphology of NGF
and Reelin expressing neurons in ASD-like phenotype male
offspring.

Materials and methods

Animals

Adult female Wistar rats (Rattus norvegicus, 250+ 15 g)
two or three were housed in a rectangular polypropylene

cage (43 cmx27 cm X 15 cm) with paddy husk bedding.
Animals were maintained in controlled laboratory condition
(24+2 °C, 60% relative humidity, 12 h light/dark cycle with
lights on at 07:00 h) with food and water ad libitum. They
are allowed to mate during their late pro-estrus stage of the
estrus cycle, and when the spermatozoa were observed in
the vaginal cytology is considered as gestational day—0 and
then housed in individually. All the experimental procedures
were approved by the Institutional Animal Ethics Com-
mittee of Bharathidasan University, Tiruchirappalli, India
(Approval No. BDU/IAEC/RE01/2019 dated 30 November
2019) following guidelines laid down by The Committee for
the Purpose of Control and Supervision of Experiments on
Animal (CPCSEA), Government of India, India.

Experimental grouping

Pregnant rats were randomly assigned into two groups (i)
Control dams (n=6) received single dose of 0.9% saline
[Intraperitoneally, (i.p)]; (ii) Valproic acid (VPA) group
dams (n=14) received single dose of sodium valproic acid
(i.p) (NaVPA; Sigma, MKBS5723V) on gestational day
12.5. VPA was dissolved in saline for the concentration of
250 mg/ml and the dosing volume was 2.0 ml/kg (500 mg/
kg) was adjusted according to the body weight of animal
(File and Hyde 1978).

Experimental design

The day of birth is noted as postnatal day (PND)—O0, all
the pups were periodically examined for their phenotype,
general health, body weight, food and water consumption
throughout the experimental period. For this study, 34 phe-
notypically identified pups were selected from 20 litters.
On PND-14, brain samples were processed for western blot
analysis (n=6 from each group) and immunohistochemistry
(n=3 from each group). A subset of individuals (n=8 from
each group) were tested for social interaction during their
adolescent stage (PND-30-32) (Fig. 1a).

Behavioral analysis

The three-chambered apparatus was constructed based on
the specification (Hughes et al. 2020) and social interac-
tion test (SIT) was carried out to analyze sociability. SIT
was conducted for all experimental groups during PND-
30, 31, 32. SIT was conducted for two sessions: animals
were transferred to the experimental room 1 h before SIT to
acclimatize. On PND-30 rat pups were individually placed
in the centre chamber (CC) for 5 min to habituate by clos-
ing the two doorways to Chamber 1 (C1) and Chamber 2
(C2). On PND-31, individuals were trained to interact with
stranger- 1 (ST-1) by placing in C1 and empty cylindrical
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chrome wire cage (EC) was placed in C2. After 5 min, the
two doorways were opened and the subject was allowed to
explore the apparatus and interact with ST-1 for 10 min. To
avoid the olfactory cues, the apparatus was wiped clean with
75% ethanol immediately after every behavioural test. Dur-
ing training and testing, the subject’s interaction with the
ST-1 and EC time spent in each chamber was video recorded
and analyzed.

Protein isolation

On PND-14, animals were sacrificed whole brain was rap-
idly removed and placed on an ice-cold petri dish. The
cortex region was dissected (File and Hyde 1978) and
homogenized in ice-cold homogenizing buffer with protease
inhibitor cocktail (Sigma-Aldrich, Saint Louis, MO, USA).
The homogenate was incubated in ice for 30 min, followed
by centrifuged at 4 °C (10,000xg) for 30 min. The superna-
tants were collected in a fresh tube and again centrifuged at
4° C (12,000xg) for 15 min; samples were stored as aliquots
at — 80 °C. Protein concentration was determined by Brad-
ford method (Cat#5000006; Bio-Rad laboratories Inc., USA)
using a Biophotometer Plus (Eppendorf Inc., Germany).

Western blot

Equal concentration (60 ug) of total protein was resolved
on Sodium dodecyl sulphate Polyacrylamide (SDS-PAGE)
gel (10%) and transferred to polyvinylidine difluoride
membrane (PVDF) (Millipore, IPVH00010, Burlington,
MA, USA) using Trans-Blot® Tribo™ blotting system
(BioRad Laboratories Inc, USA). After the transfer, mem-
branes were blocked with 1X TBS-T with 5% non-fat milk
for 2 h at room temperature. Membrane was incubated with
any one of the following primary antibody Caspases-3
(ABP50855,1:1000), NGF (ABP53296, 1:1000), Reelin
(AB78540, 1:1000), GFAP (ABMO0021, 1:2000), FAK (CST
3285,1:1000), PCNA (Abbkine, A01040, 1:1000), -actin
(8C47778, 1:1000) for 12 h at 4 °C. Membrane was washed
with 1XTBS-T and incubated with alkaline phosphate (ALP)
conjugated goat anti-rabbit (MERK, 62110080011730,
(1:2000) or goat anti-mouse (MERK, 621100480011730,
1:2000) secondary antibody for 5 h. 5 bromo-4-chloro-3-
indolyl phosphate di-sodium salt (BCIP) and nitro blue tetra-
zolium chloride (NBT) (Merk Life science, ES006) was used
to detect the ALP activity to following the manufacturer’s
instruction. Images were obtained by Molecular Imager and
each band trace quantity was measured (Chemi Doc XRS
system, Image Lab 2 software (2.0) Bio-Rad laboratory Inc,
USA). The trace quantity of each target gene band was nor-
malized with internal control p-actin bands, following that
fold changes were calculated by dividing normalized values
of VPA group by control group (Plaza-Bricefio et al. 2020).

@ Springer

Immunohistochemistry

Whole brain was rapidly dissected out and processed
(Mukilan et al. 2018). Embedded brain was cut into sag-
ittal position (5 um) using microtome (Weswox optic-
MT-1090 A). Sections were deparaffinized with Xylene
at 60 °C for 10 min and dehydrated with isopropanol for
15 min. Then, endogenous peroxidase activity was blocked
by incubating in a solution (10% H,0, and 10% methanol
mixed with 1X PBS) then treated with 0.1% trypsin in
0.1% CaCl, at 37 °C for 10 min. Sections were incubated
in Bovine Serum Albumin (BSA, 2.0%) for 1 h at 4 °C
to block non-specific staining. Sections were incubated
with Reelin or NGF antibody for overnight at 4 °C and
then washed with 1XPBS and incubated with anti-rabbit
Horseradish peroxidase (HRP) (SC-2030) for overnight at
4 °C. Immunodetection was done by using the chromogen,
3, 3’ diaminobenzidine (DAB) peroxidase development
kit (Vector Laboratories, Inc. USA). Counter stain was
performed by incubating in Hematoxylin for 10 min and
mounted with (DPX). Images were obtained using inverted
microscope (Nikon Ts2FL). Reelin and NGF expressing
neuron’s area and diameter was calculated using (DS-Fi3)
NIS-Element Software (from 6 neurons/sections; 4 sec-
tion/sample; n =3 from each group).

Statistics

Data were expressed as mean + standard error of the mean.
KyPlot (ver 5.0) was used to plot the values (SEM) as a
graphical representation. The unpaired ¢ test was used to
compare parametric values between groups (Sigma stat
version 11.0). The level of significant difference between
groups *P <0.05; **P <0.01; ***P <0.001.

Results

Prenatal VPA exposure induced congenital
malformation in offspring

In this study, we have observed fetus desorption (35%) in
dams exposed to VPA. 65% of dams gave live birth and out
of which 42% offspring were malformed. Range of autistic
phenotype was observed, such as a broader upper forehead
(typical facial dysmorphism related to ASD) (Fig. 1b) and
crooked-like tail deformation was commonly observed in
all individuals (Fig. 1c). In forelimb, flattened paw, toenails
are malformed relative to control (left limb: Fig. 1d; right
limb: Fig. le) and also branchydactylyl and clinodactylyl
like defect were observed. The hind limb of VPA-exposed
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group shown in-turning (pronated)-ankles (left limb: Fig. 1f;
right limb: Fig. 1g; Fig. 1h).

Prenatal VPA exposure induced social interaction
deficit in adolescent rat

We have examined whether or not prenatal VPA exposure
induces effects of ASD-like social behaviour. The sociabil-
ity of individuals was determined during their adolescent
stage. VPA-exposed individuals spent significantly less time
in the stranger chamber than the control group (¢ =33.46;
p <0.001), but there was no significant difference in time
spent at the empty cage between control and VPA group
(t=2.48; p>0.05). Whereas the control group spent sig-
nificantly more time at the stranger-1 chamber than empty
chamber [t=16.23; p <0.001], but there was no difference
in VPA group (¢r=3.11; p>0.05) (Fig. 2a). The sociability
index was significantly lower in the VPA group than the con-
trol [r=19.46; p <0.001] (Fig. 2b). Observed behavioural
data suggest that prenatal exposure to VPA induces impair-
ment in social interactions.

Exposure to VPA altered the expression of genes
involving in neuronal development

We have examined the expression status of different mol-
ecules involving neuronal maturation, differentiation and
survival during development. Caspases-3 is one among the
molecules; its expression was induced by VPA exposure
(Fig. 3a). Estimated level of Caspase-3 was significantly
higher than the control group (#=28.36; p <0.001) (Fig. 3b).
Subsequently, Caspase-3 mediated expression of FAK and
Reelin was examined. The level of FAK expression was sig-
nificantly reduced in the VPA group than the control group
(t=34.92; p<0.001) (Fig. 3c). Similarly, the level of Reelin
was significantly lower in VPA group compared to control
(t=9.04; p<0.01) (Fig. 3d). FAK has been known to alter
the expression of GFAP, as expected, the level of GFAP
was significantly lower in VPA group compared to control
(r=11.24 p<0.001) (Fig. 3e). Level of PCNA was signifi-
cantly higher in VPA-exposed group than the control group
(t=24.17; p<0.001) (Fig. 3f). Subsequently, increased level
of PCNA can further elevate the level of NGF expression.
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Fig.2 Prenatal exposure to valproic acid (VPA) impaired social inter-
action in their offspring during adolescent age. VPA-exposed rat off-
spring active contact with the Stranger-1 (a) and the sociability index

(b) was significantly low compared to control. Data are expressed in
mean+S.E.M, (n=8). **Indicate statistically significance P<0.0]
and NS (not significant) between the experimental groups
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Fig.3 Prenatal valproic acid
(VPA) exposure alters the
expression of genes involving in
regulation of neuronal develop-
ment. a Representative western
blots showing the expression
pattern of Caspase-3, Focal
adhesion kinase (FAK), glial
fibrillary acidic protein (GFAP),
proliferating cell nuclear antigen
(PCNA) and nerve growth fac-
tor (NGF). Level of Caspase-3
(b), PCNA (e) and NGF (f)
expression was elevated, but
the level of FAK (c), Reelin

(d), GFAP (g) was decreased in
VPA-exposed offspring com-
pared to control group. Data

are expressed as mean+S.E.M,
(n=06). *** Indicates significant
difference P <0.001 between
groups
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The level of NGF was significantly higher in VPA-exposed
individuals than the control (#=7.32; p <0.01) (Fig. 3g). The
observed signaling molecules suggested that exposure to
VPA suppress molecules involving in cellular development.

Prenatal VPA alter the Reelin, NGF expression
and neuronal morphology

We have observed the reduction of Reelin expression in
VPA-exposed rats’ cortex region and neurons morphologi-
cal structure were also altered (Fig. 4a, b). In control, Ree-
lin expressed neurons exhibit a polarized shape, whereas in
VPA-exposed group, Reelin expressing neuronal morphol-
ogy, axon elongation and dendritic arborization were altered
(Fig. 4c). Similarly, we have observed difference in distribu-
tion of NGF expressing neurons between control and VPA-
exposed rats. Exposure to VPA alters the distribution, den-
sity (Fig. 5a, b) and cytoarchitecture/morphology of NGF
expressing neurons, including induction of vesicle formation

Fig.4 Neuronal phenotype

of reelin expressing neuron in
cortex region of control and
valproic acid (VPA) exposed
rat offspring. Light micrograph
image (X 4) showing the reeling
expressing neurons in cortex
(a), higher magnification (X 20)
of selected region (b) and
higher magnification (X 40)

of the box in “b” (¢). Arrow
indicates VPA exposure induced
changes in cytoarchitecture,
defects in axon and dendritic
arborization of reelin express-
ing neurons. Scale bars: 20 um
(a-¢)

(Fig. 5¢). Quantitative analysis showed that Reelin, NGF
expressing neurons morphology was altered, the area of
Reelin (r=15.52; p<0.001), NGF (r=15.54; p<0.001)
(Fig. 6¢), and diameter of Reelin (r=17.48; p<0.001) and
NGF (tr=16.74; p<0.001) (Fig. 6d) expressing neuron area
was significantly less in VPA-exposed group than control.

Discussion

Earlier clinical study data showed that pregnant women
treated for epilepsy with anti-epileptic drug valporate
(500-1000 mg/day) causes congenital malformation
(10.0-14.5%) in children (Meador et al. 2008; Tomson et al.
2018; Vossler 2019). In animal models, exposure to different
doses of VPA (350-800 mg/kg) during pregnancy leads to
autistic-like features (behavioural, anatomical, physiological
and molecular) in the offspring (Roullet et al. 2013; Narita
et al. 2010; Anshu et al. 2017; Cezar et al. 2018; Elnahas
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Fig.5 Neuronal phenotype

of nerve growth factor (NGF)
expressing neuron in cortex
region of control and valproic
acid (VPA) exposed rat off-
spring. Light micrograph image
(x4) showing the distribution
pattern of NGF expressing
neurons in cortex (a), higher
magnification (X 20) of selected
region (b) and higher magni-
fication (X 40) of the box in

“b” (¢). Arrow indicates VPA
exposure induced changes in
cytoarchitecture (long arrow
shows presence of large vesicle
in neuron) defects in axon and
dendritic arborization of NGF
expressing neurons. Scale bars:
20 pm (a—c)

et al. 2022). In this study, the single dose of 500 mg/kg on
gestational day 12.5 induces congenital malformation, this
time window is comparable to human embryonic day 20-24
and critical phase for neural tube closer (Dufour-Rainfray
et al. 2010). In line with earlier reports (Rodriguez-Pinilla
et al. 2000), we have observed several malformation includ-
ing facial dysmorphism, crooked-like tail, flattened paw,
clindoactylyl, arachnodactyly and in-turning (pronated)
ankles. As described earlier (Aldridge et al. 2011), observed
facial dysmorphism in this study possibly by the imbal-
ance in coordination between face and brain development.
Exposure to the VPA during gestation has been known to
induce the defects in neural tube (Kaufman 2004) and leads
to development of crooked-like tail (Binkerd et al. 1998),
which has been known to alter the brain development and
adhesion of the neural tube. Interestingly, the observed
defects such as flattened paw, orientation and extension are
possibly associated with the VPA-induced changes in brain
development and volume (Zigler et al. 2016). The observed

@ Springer

phenotype in this study validates our experimental procedure
and indicate that further molecular and behaviour analysis
can be performed in our model. Therefore, we have con-
ducted social interaction test VPA-exposed rat exhibits less
social interaction with unfamiliar to avoid the unfamiliar
stranger. This analysis showed that, restricted exploration
to the unfamiliar rat is similar to the earlier clinical report
(Oberman et al. 2008) and ASD models (File and Hyde
1978; Narita et al. 2010). Observed behavioural impair-
ment and facial dysmorphism may be correlated with minor
physical anomalies (MAPs) reported in clinical study (Tripi
etal. 2019).

Furthermore, we have correlated the phenotype and
behavioral phenotype with genes involving neural migration,
maturation, dendritic arborization and synaptic formation
(Gilbert and Man 2017). Caspase has been known to involve
in the regulation of developmental process (Burguillos et al.
2011; Westphal et al. 2010; Li et al. 2019). Similar to our
observation, prenatal expose to VPA induces the apoptosis
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Fig.6 Representative micro-
photographs of paraffin-
embedded coronal sections
from control (left) and VPA
(right) exposed group’s cortex
sub-region. Immunolabeled
sections showing a reelin and b
NGF expressing neurons. The
area (c), diameter (d) of reelin/
NGF expressing neurons in the
cortex was significantly less in
VPA group compared to control
group. Data are expressed as
mean=+ S.E.M, (n=06). ***Indi-
cates significant difference

P <0.001 between groups. Scale
bar: 20 pm

c 109 —con
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140
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by induction and activation of Caspase-3, which mediate
defects in neural tube fusion and adhesion (Tung and Winn
2011). Furthermore, the integrated mechanism of Caspase-3
and BCL-2 receptor has been linked to the activation of Ree-
lin. In the signaling pathway, Reelin inhibits the apoptosis
process through interacting with downstream molecules
(Ohkubo et al. 2007), and play a critical role in neuronal
development, migration and lamination (Fatemi et al. 2005;
Folsom and Fatemi 2013), and also in social behaviour
(Ohkubo et al. 2007). The expression level of Reelin acti-
vates/inactivates FAK, FAK is one of the components of cell
adhesion and growth factor receptors, which critically regu-
lates neural migration, morphology, synaptic formation and
neutrite growth (Folsom and Fatemi 2013). The observed
reduction of GFAP has been known to cause imbalance in
excitatory-inhibitory circuits during early brain development
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and neuronal communication (Wei et al. 2011). Exposure
to VPA elevated level of the PCNA (Watanabe et al. 2017),
which is regulated by cytoskeletal protein and recognized
as a marker for cell proliferation. Elevated level of PCNA
further influences the expression of NGF. Our western
blot analysis showed the level of NGF expression that has
increased in VPA group compared to control. Elevated level
of NGF has been known to cause of developmental delay in
pre and postnatal period of life and considered as a potential
marker for autism (Kaufman 2004).

Furthermore, VPA exposure during development has
been known to alter programmed neurogenesis/cell death,
neuronal proliferation, migration and development (Kataoka
et al. 2013). In this study, we have observed that Reelin,
NGF expressing neurons area, diameter and dendritic arbori-
zation was reduced. Observed changes possibly either direct

@ Springer



Experimental Brain Research

effect of VPA on histone acetylation/chromatin remodeling-
mediated expression or through the complex network/inter-
action of genes during development (Roullet et al. 2013;
Kotagiri et al. 2014; Ibi et al. 2019; Kataoka et al. 2013;
Burguillos et al. 2011; Leemhuis and Bock 2011), in which
the molecules tested in this study and their interaction may
be a part.

Conclusion

In conclusion, VPA-exposed offspring shows deficit in social
interaction and alter the expression of Caspase-3, PCNA,
NGF, Reelin, FAK and GFAP genes, and cytoarchitecture
of Reelin and NGF expressing neurons in cortex. The genes
have analyzed in this study that had known to regulate pro-
grammed neurogenesis/cell death, neuronal proliferation,
migration, neuronal development, dendritic arborization
and synaptic plasticity, however, further studies required to
clearly understand the gene targets of VPA in utero and how
these changes determine the neurodevelopment.
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