ECOTOXICOLOGICAL STUDIES ON KUDUVAIYAR ESTUARY, SOUTHEAST COAST OF INDIA

Thesis submitted to BHARATHIDASAN UNIVERSITY, TIRUCHIRAPPALLI for the award of the Degree of

IN ZOOLOGY

By Mrs. B. GIJILET MARY (Reg. NO. BDU1910360068)

Under the guidance of Dr. M. SUKUMARAN, Ph.D., Assistant Professor of Zoology

POST GRADUATE AND RESEARCH DEPARTMENT OF ZOOLOGY RAJAH SERFOJI GOVT. COLLEGE (AUTONOMOUS) (Affiliated to Bharathidasan University) THANJAVUR – 613 005. TAMIL NADU, INDIA

FEBRUARY 2022

Dr. M. SUKUMARAN, M.Sc., B.Ed., Ph.D.,

Assistant Professor & Principal Investigator,

UGC Major Research Project,

P.G. & Research Department of Zoology,

Rajah Serfoji Govt. College (Autonomous),

Thanjavur - 613 005.

CERTIFICATE

This is to certify that the thesis entitled "ECOTOXICOLOGICAL STUDIES ON

KUDUVAIYAR ESTUARY, SOUTHEAST COAST OF INDIA" submitted to

Bharathidasan University, Tiruchirappalli by Mrs. B. GIJILET MARY

(Reg. NO. BDU1910360068), in partial fulfilment of the requirements for the

degree of DOCTOR OF PHILOSOPHY IN ZOOLOGY, is a record of research

work done by her during the period of study under my guidance and supervision.

I further certify that the thesis has not previously formed the basis for the award of

any degree, diploma, associateship, fellowship or other similar title.

Station: Thanjavur

Research Guide and Supervisor

Date

DECLARATION

B. GIJILET MARY do hereby declare that this thesis entitled

"ECOTOXICOLOGICAL STUDIES ON KUDUVAIYAR ESTUARY,

SOUTHEAST COAST OF INDIA" is a genuine record of research

work done by me under the scientific supervision of Dr. M. SUKUMARAN,

Assistant Professor, Rajah Serfoji Govt. College (Autonomous), Thanjavur and has

not previously formed the basis for the award of any Degree, Diploma, in

associateship in any university.

Station: Thanjavur

(Mrs. B. GIJILET MARY)

Date

RAJAH SERFOJI GOVT. COLLEGE (AUTONOMOUS)

(Affiliated to Bharathidasan University)
THANJAVUR – 613 005. TAMIL NADU, INDIA

Dr. M. SUKUMARAN, M.Sc., B.Ed., Ph.D.,

Assistant Professor & Principal Investigator, UGC Major Research Project, P.G. & Research Department of Zoology, Rajah Serfoji Govt. College (Autonomous), Thanjavur – 613 005

Email: sukukumar05@gmail.com

CERTIFICATE FOR PLAGIARISM

1	Name of the Research Scholar	Mrs. B. GIJILET MARY
2	Name of Thesis/Dissertation	ECOTOXICOLOGICAL STUDIES ON KUDUVAIYAR ESTUARY, SOUTHEAST COAST OF INDIA.
3	Course	Ph.D., Zoology
4	Name of the Supervisor	Dr. M. SUKUMARAN
5	Department/ Institution/ Research Centre	Assistant professor & Principal Investigator, Rajah Serfoji Govt. College (Autonomous), Thanjavur – 613 005
6	Acceptable minimum limit	20%
7	Percentage of similarity of content identified	2% (Copy of report attached)
8	Software used	Ouriginal
9	Place of Plagiarism checked	Bharathidasan University Library
10	Date of Verification	18.02.2022

Signature of the Supervisor

Signature of the student

Curiginal

Document Information

Analyzed document GIJILET MARY THESIS.pdf (D128216918)

Submitted 2022-02-18T06:36:00.0000000

Submitted bySrinivasa ragavan SSubmitter emailbdulib@gmail.com

Similarity 2%

Analysis address bdulib.bdu@analysis.urkund.com

Sources included in the report

W	URL: https://updatepublishing.com/journal/index.php/rrst/article/download/649/635 Fetched: 2022-02-18T06:37:07.3870000	88	1
w	URL: https://www.researchgate.net/publication/225120188_Use_of_oxidative_stress_biomarkers_in _Carcinus_maenas_to_assess_littoral_zone_contamination_in_Tunisia Fetched: 2021-09-25T17:02:00.0570000	88	1
W	URL: http://species-identification.org/species.php?species_group=crabs_of_japan&id=1711 Fetched: 2022-02-18T06:36:17.1370000	88	1
w	URL: http://www.ijirset.com/upload/2014/april/25_Toxicity.pdf Fetched: 2022-02-18T06:36:21.5400000	88	3
W	URL: https://www.idosi.org/wjz/wjz11(2)16/8.pdf Fetched: 2022-02-18T06:36:18.4330000	88	2
W	URL: https://dergipark.org.tr/tr/download/article-file/436264 Fetched: 2022-02-18T06:36:31.7000000	88	1

ACKNOWLEDGEMENT

"Use of Sesarma quadratum as a Bioindicator for Heavy metals pollution" is a global concern and this is further exacerbated when incorporating physiological, biochemical and histopathological responses in crab.

As such, I have great pleasure in expressing my deep sense of gratitude to my Research Supervisor and Guide **Dr. M. Sukumaran**, Assistant Professor, P. G. and Research Department of Zoology, Rajah Serfoji Govt. College (Autonomous), Thanjavur for his valuable guidance, constant encouragement and for his esteemed support at every stage of this study.

I wish to express my thanks to **Dr. V. Senthamil Selvi**, Principal, Rajah Serfoji Govt. College (Autonomous), Thanjavur, for providing me an opportunity and facilities to carry out my Ph.D programme.

My whole hearted thanks to **Dr. P. Mariappan**, Head, P. G. & Research Department of Zoology, Rajah Serfoji Govt. College (Autonomous), Thanjavur for his moral support and valuable suggestions.

I am very much grateful to Dr. K. M. Subburathinam, Dr. K. Rameshkumar, S. Dr. Babu. Dr. S. Sivasurian. Dr. M.Thangadurai, Dr. Μ. Murugaian, Prof. S. Ramanathan, Dr. P. Raja, Dr. M. Sundaramoorthy, Dr. S. Ravikumar, Dr. R. Ravichandran, Dr. R. Ravichelvan and Dr. Merin Emarold, Assistant Professors, P.G & Research Dept. of Zoology, Rajah Serfoji Govt. College (Autonomous), Thanjavur for their esteemed support, meticulous guidance and constant encouragement in terms of ideas and suggestions at every stage of this study.

I wish to record my hearty thanks to **Dr. M. Soundharajan** for his continuous encouragement during the period of my study.

Extending thanks to Thiruvalargal Mrs. T. Ilamathi and D. Baskaran, Laboratory Assistants, Rajah Serfoji Govt. College, Thanjavur.

My sincere thanks to the Doctoral Committee Members, **Dr. P. Mariappan**, Head, P. G. & Research Department of Zoology, Rajah Serfoji Govt. College (Autonomous), Thanjavur and **Dr. P. Thangamathi**, Assistant Professor, Department of Zoology, kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur for their valuable suggestion to complete the work.

I also dedicate my thanks to **Dr. S. Velavan**, Director, Harman Institute of Science Education and Research, Thanjavur for their kind support of this research work.

Mrs. B. GIJILET MARY.....

CHAPTER	CONTENTS		Page No.
I	INTRODUCTION		01
	1.1.	Estuarine pollution	02
	1.2.	Heavy metal pollution in estuaries	04
	1.3.	Physiography of Kuduvaiyar estuary	07
	1.4.	Ecological environment	09
	1.5	Antioxidant defense	17
	1.6	Enzymic antioxidants	18
	1.7	Non-enzymatic antioxidants	21
	1.8	Ecology of Estuarine crab	24
	1.9	The experimental animal (Estuarine crab Sesarma quadratum)	26
	1.10	Objectives of the present study	30
II	REVIE	EW OF LITERATURE	31
	2.1	The International level of physico-chemical features	31
	2.2	The National level physico-chemical features	34
	2.3	Cadmium toxicity	40
	2.4	Cd accumulation and distribution in crabs	41
	2.5	Factors influencing Cd accumulation and distribution	42
III	MATE	RIALS AND METHODS	47
	3.1	Location of Sample Collection	47
	3.2	Collection and acclimation of experimental Crab	49
	3.3	Sesarma quadratum	49
	3.4	Physico-chemical parameters	50
	3.5	Heavy metal analysis in water samples	55
	3.6	LC ₅₀ determination	56
	3.7	Subacute toxicity	57
	3.8	Preparation of Tissue Homogenate	57
	3.9	Biochemical analysis	57
	3.10	Immunological parameters of cadmium exposed crab	60
	3.11	Metabolic activity and oxidative stress	61
	3.12	Histopathological studies	65
	3.13	Statistical analysis	69
IV	RESUI	LTS	70
	4.1	Physico-chemical and Heavy metals parameters studied in the Kuduvaiyar estuary	70
	4.2	Acute toxicity studies of cadmium on <i>Sesarma</i>	81

	PUBL	ICATIONS	xivii
	REFE	RENCES	i - xivi
VI	SUMM	MARY AND CONCLUSION	145
V	DISCU	USSION	110
	4.6	Histological observation in subacute concentrations of cadmium chloride exposure in Sesarma quadratum	105
	4.5	Stress markers in subacute concentrations of cadmium chloride exposure in Sesarma quadratum	92
	4.4	Immunological parameters in subacute concentrations of cadmium chloride exposure in <i>Sesarma quadratum</i>	89
	4.3	Biochemical response in subacute concentrations of cadmium exposure in Sesarma quadratum	84
		quadratum	

LIST OF TABLES

Table. No	Title of Tables	Page No.
4.1	Physico-chemical and heavy metal analysis of	73
	Kuduvaiyar estuary, East coast of Tamil Nadu	
	(2019-2020)	
4.2	Correlation matrix $(n = 3)$ of Physico-Chemical	74
	parameters in Kuduvaiyar estuary, East coast of	
	Tamil Nadu (2019-2020)	
4.3	Toxicity of cadmium against crab as Sesarma	82
	quadratum	
4.4	LC ₅₀ value of cadmium against crab as Sesarma	82
	quadratum	
4.5	Effect of cadmium exposure (12µg/L) on protein	85
	content in crab, Sesarma quadratum	
4.6	Effect of cadmium exposure (12µg/L) on lipids	86
	content in crab, Sesarma quadratum	
4.7	Effect of cadmium exposure (12µg/L) on	88
	carbohydrate content in crab, Sesarma	
	quadratum	
4.8	Effect of cadmium exposure (12µg/L) on	90
	immunological parameters in crab, Sesarma	
	quadratum	
4.9	Effect of cadmium exposure (12µg/L) on MDA	93
	content in crab, Sesarma quadratum	
4.10	Effect of cadmium exposure (12µg/L) on	95
	superoxide dismutase (SOD) activity in crab,	
	Sesarma quadratum	
4.11	Effect of cadmium exposure (12µg/L) on	97
	catalase (CAT) activity in crab, Sesarma	
4.10	quadratum (12 d)	100
4.12	Effect of cadmium exposure (12µg/L) on	100
	Glutathione peroxidase (GPx) activity in crab,	
4.12	Sesarma quadratum	102
4.13	Effect of cadmium exposure (12µg/L) on Glutathione (GSH) content in crab, Sesarma	102
	quadratum	
4.14	Effect of cadmium exposure (12µg/L) on	104
7.17	Glutathione –S-transferase (GST) activity in	104
	crab, Sesarma quadratum	
	Ciao, sesaima quaaratum	

LIST OF FIGURES AND PLATES

1.1 Distribution of the Experimental animal 2.9 3.1 Shows the location of sample collection 3.2 Shows the Kuduvaiyar Estuary 3.3 Shows the study animal of crab Sesarma quadratum 4.1 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.2 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LCs0) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.16 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.17 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.18 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum	Figures No.	Title of Figures	Page No.
3.1 Shows the location of sample collection 3.2 Shows the Kuduvaiyar Estuary 3.3 Shows the study animal of crab Sesarma quadratum 4.1 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.2 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LCso) 4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum		Distribution of the Experimental animal	29
3.2 Shows the Kuduvaiyar Estuary 3.3 Shows the study animal of crab Sesarma quadratum 4.1 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.2 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum			
3.3 Shows the study animal of crab Sesarma quadratum 4.1 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.2 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on mmunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum		-	
4.1 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.2 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on sarbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on totalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on totalase (CAT) activity in crab, Sesarma quadratum		i i	
4.1 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.2 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on minunological parameters in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on totalase (CAT) activity in crab, Sesarma quadratum	3.3	· · · · · · · · · · · · · · · · · · ·	50
parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.2 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on totalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on totalase (CAT) activity in crab, Sesarma quadratum	4.1		75
coast of Tamil Nadu (2019-2020) 4.2 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on totalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on totalase (CAT) activity in crab, Sesarma quadratum			, .
4.2 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on munuological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on totalase (CAT) activity in crab, Sesarma quadratum		-	
parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on minunological parameters in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on totalase (CAT) activity in crab, Sesarma quadratum	4.2		76
Tamil Nadu (2019-2020) 4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 77 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 78 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 80 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 80 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 83 4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 85 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 87 4.10 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 91 4.11 Effect of cadmium exposure (12μg/L) on on immunological parameters in crab, Sesarma quadratum 94 4.12 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 96 4.13 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 98 4.15 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum		1 2	. 0
4.3 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum		=	
parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum	4.3	· · · · · · · · · · · · · · · · · · ·	77
of Tamil Nadu (2019-2020) 4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101		± •	
4.4 Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101		1 - 7	
parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101	4.4		78
Tamil Nadu (2019-2020) 4.5 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101		± •	
in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC50) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101		-	
in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC50) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101	4.5	Seasonal variations of heavy metals distribution	79
4.6 Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101			
in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020) 4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101		(2019-2020)	
4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101	4.6	Seasonal variations of heavy metals distribution	80
4.7 Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101		in Kuduvaiyar estuary, East coast of Tamil Nadu	
crab as Sesarma quadratum (determination of LC ₅₀) 4.8 Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101			
LC ₅₀) 4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101	4.7		83
4.8 Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101			
content in crab, Sesarma quadratum 4.9 Effect of cadmium exposure (12µg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101			
 4.9 Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101 	4.8		85
content in crab, Sesarma quadratum 4.10 Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101			
 4.10 Effect of cadmium exposure (12μg/L) on carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101 	4.9		87
carbohydrate content in crab, Sesarma quadratum 4.11 Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101		, ,	
 4.11 Effect of cadmium exposure (12μg/L) on immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101 	4.10		88
immunological parameters in crab, Sesarma quadratum 4.12 Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101			
 quadratum 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101 	4.11	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	91
 4.12 Effect of cadmium exposure (12μg/L) on MDA content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101 		-	
content in crab, Sesarma quadratum 4.13 Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101	4.10	1	0.4
 4.13 Effect of cadmium exposure (12μg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101 	4.12	_ : =	94
superoxide dismutase (SOD) activity in crab, Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101	4.12		0.0
Sesarma quadratum 4.14 Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101	4.13		96
4.14 Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12μg/L) on 101			
(CAT) activity in crab, Sesarma quadratum 4.15 Effect of cadmium exposure (12µg/L) on 101	4 14	•	08
4.15 Effect of cadmium exposure (12µg/L) on 101	4.14		70
	1 15		101
	4.13		101

	Sesarma quadratum	
4.16	Effect of cadmium exposure (12µg/L) on	103
	Glutathione (GSH) content in crab, Sesarma	
	quadratum	
4.1	Effect of cadmium exposure (12µg/L) on	107
	Histopathological structure of Gills of Sesarma	
	quadratum	
4.2	Effect of cadmium exposure (12µg/L) on	109
	Histopathological structure of Hepatopancreas of	
	Sesarma quadratum	

ABBREVIATIONS

ANOVA Analysis of variance

BOD Biological Oxygen Demand

CAT Catalase

CdCl₂ Cadmium Chloride

COD Chemical Oxygen Demand

DMRT Duncan's Multiple Range Test

GPx Glutathione Peroxidases

GR Glutathione Reductase

GSH Reduced Glutathione

GST Glutathione S-Transferase

Hb Haemoglobin

LC Lethal Concentration

LCM Lower Confidence Limits

MCH Mean Corpuscular Haemoglobin

MCHC Mean Corpuscular Haemoglobin Concentration

MCV Mean Corpuscular Volume

MDA Malondialdehyde

PCV Packed Cell Volume

r² R squared

ROS Reactive Oxygen Species

SOD Superoxide Dismutase

UCM Upper Confidence Limits

CH&PTER-I

INTRODUCTION

CHAPTER I

1. INTRODUCTION

India has a long coastline of 8,129 km and of this 6,000 km is rich in estuaries, creeks, brackish water, lagoons and lakes. The southeast coast of India is an important stretch of coastline, where many major rivers drain into the Bay of Bengal and they are also richer in marine fauna than the western coast of India. The Chennai coastal region is a distinctive example for numerous recreational and commercial activities that not only degrade the quality of coastal water but also pose a serious health hazard to marine biota and man (Tran *et al.*, 2002; Beiras *et al.*, 2003; Palanisamy *et al.*, 2006).

The coastal environment represents an eventual depository of wastewater discharges. Although the dynamic nature of marine environment allows rapid assimilation of such wastes via different processes (e.g. dilution, dispersal, oxidation, degradation, or sequestration into sediments), the capacity of other aquatic environment like lagoons to assimilation is restricted (Natesan and Seshan, 2010). In spite of the fact that metals occur in the ecosystem naturally by geogenic and lithogenic processes, the heavy metals of anthropogenic origin tend to be bioavailable and then toxic pollutants (Kaasalainen and Yli-Halla, 2003; Wuana and Okieimen, 2011; Abu Khatita *et al.*, 2016). When entering the aquatic environment, a significant amount of such toxic elements could become directly or indirectly in contact with humans through food webs. In specific concentration, certain heavy metals are nutritionally essential for a healthy life.

Estuarine areas are complex and highly changing environments at the interface between freshwater and marine aquatic ecosystems. Despite their environmental variability, estuaries are usually characterized by high biomass due to their strong primary production, especially when compared with marine areas. These conditions enhance the development of heterotrophic populations such as filtering molluscs. Moreover, estuaries are of special interest in ecotoxicology because they are potentially the most exposed coastal areas regarding any source of pollution (Sun *et al.*, 2012). In order to perform ecotoxicological studies, sampling strategy has to take into account the whole complexity of the estuarine ecosystem. Many environmental variables such as temperature, salinity, or suspended matter may have a great influence on physiological processes in invertebrate species.

1.1. Estuarine pollution

Our Earth is a blue planet. Water covers about seven-tenths of its surface, but most of this is salty sea water. Only 3% of Earth's water is freshwater and most of this freshwater is accessible as aquatic habitats such as rivers, lakes, ponds, dams (Bhandari, 2003). Freshwater is an estuary's lifeblood. Estuaries are semi-enclosed aquatic habitats, which have a free connection with the open sea and within which sea water is measurably diluted with freshwater from Land drainage (Pritchard, 1967).

Estuarine pollution may be defined as the human introduction to an estuary of any substances such as toxic chemicals (Heavy metals, pesticides, petroleum hydrocarbons, organotins, oil spills) and waste products that are

hazardous or potentially harmful to the estuarine ecosystem. This includes pollutants that are directly toxic to plants and animals, as well as materials that overload the estuaries capacity to assimilate wastes and thus deplete essential oxygen. Most of the estuaries themselves are bordered by dense population and industrial development that add significantly to the water pollution load.

Pollution of our aquatic bodies is among the greatest threats to our environmental health. Rivers are direct recipients of industrial wastes and municipal sewage. They also drain urban, suburban and rural areas where they collect more pollutants and litter. As they move towards the coast, they gather or join the waters of other streams. They eventually reach the sea usually via an estuary, the area where fresh and saltwater mingle. In addition to toxic chemicals and other pollutants and an abundance of oxygen-depleting organic matter, dense population are another problem for creates sewage.

The wedge of salt water characteristically underlying the layer of freshwater in an estuary tends to move sediments in an unusual way. As the denser salt water moves along the bottom toward the head of estuaries to replace water carried away freshwater surface flow, it takes with it some of the nutrients the river has brought downstream, thus dispersing them over a wide area in the estuary similarly, if the river is polluted, contaminants can be carried downstream in the fresh or brackish water surface layer, then back toward the head of the estuary after they settle out and into the deeper salt water. Valuable nutrient bearing sediments are also capable of carrying and dispersing a variety of dangerous pollutants, including pesticides and heavy

metals, such estuarine organisms are known to store and concentrate in their body tissues (Morrisey *et al.*, 2003).

1.2. Heavy metal pollution in estuaries

Estuaries are shallow open systems influenced by river inflows, mixing with coastal ocean and exchanges across the sediment and atmosphere water interfaces. Estuaries are vital links in the life histories of more than two thirds of all our commercially important crab and mussels, most of which are filter feeding animals. Toxic substances commonly found in estuaries are heavy metals and insecticides. Some heavy metals such as mercury make their way to the plant's leaves where they either directly return to the water or enter the food chain, when plant-eating organisms consume the leaves or leaf particles called detritus. Heavy metal contamination leads to bioaccumulation of the food chain and food webs of estuaries. Normally such contaminants are transported from its sources through the river system and deposited downstream (Fang *et al.*, 2001).

Since most of the metals could be mixed along with suspended solid in water and bottom sediment through sedimentation, the estuary is a potential sink for these pollutants for a long period of time. The presence of heavy metals in sediments can lead to greater environmental problems, when contaminated sediments are suspended and such metals are taken up by filter feeder crabs. Hence, consumption of such a kind of crab meat may form a significant pathway to metal contamination in the human being and eventually poses greater health risk (Abdullah *et al.*, 2007).

One aspect of ecotoxicology is to find out how toxic metals vary over space and time in and between aquatic environments such as estuarine and marine environments. Biologists including Eco toxicologists have explained about this aspect and they have attempted to measure dissolved and / or sediment concentrations. There are three major categories of metal toxicity measured in attempts to compare differences in metal pollution in aquatic habitats over space and /or over time metal concentration in water, sediment and more recently in organisms such as crustaceans, clams and mussels (Rainbow, 2006).

Dissolved concentrations of trace metals usually vary over time, particularly for example in estuaries with differentiated inputs of river and sea at different periods of tides and differential freshwater inflows reasonably (Rainbow, 2002). The physico-chemistry of the medium (water) will affect the rate of uptake of a metal from solution by living organisms such as barnacles, amphipods, clams, mussels etc., in short, the bioavailability of metals in different aquatic habitats may vary even when their total dissolved concentrations are identical for example, the uptake rates of Zn and Cd by biota from solution typically increase will decrease salinity over salinity range found in an estuary (Rainbow, 1995a).

The second common measure of metals in aquatic habitats is their concentration in the local sediments. The concentration of metals in the sediments represents metals which have been accumulated over a period of time and any measurement made does have the same potential, as dissolved

concentrations to vary over short time periods. The physico-chemical characteristics of sediments greatly affect their ability to accumulate heavy metals, so that different sediments will reach different concentrations from identical dissolved sources of metals (Bryan, 1976).

Sediments high in organic carbon content will bind more metals than those with low organic carbon and sediments with particles of high surface area will also accumulate more metals than particles of low surface area. Thus muds (small particle size, high organic content) accumulate more metals than sands (large particle size, low organic content) sediments can also be a source of trophic metals in sediment ingesting animals like crab and the trophic availability of metals in ingested sediments will also vary with the physicochemical characteristics of the sediments (Rainbow, 2007).

Biomonitors are the organisms which accumulate metals in their body organs or tissues, the accumulated metal concentration of which may be analysed to provide a relative measure of total amount of metal taken up by all routes by that organism (Phillips and Rainbow, 1994 and Abdullah *et al.*, 2007). Aquatic organisms differ in their patterns of accumulation in different types of metals. Amphipods, crustaceans, barnacles, oyster, clams, polychaetes, and mussels are good examples of biomonitors of metal pollution (Al-Madfa *et al.*, 1998; Abd Allah and Moustafa, 2002 and Otchere *et al.*, 2003). The accumulated metal concentration of an aquatic invertebrate results from metal taken up from water or sediment and food, after subtraction of any metal that has been excreted (Szefer *et al.*, 1990). As filter feeders, crabs

accumulate heavy metals in their tissues in proportion to the degree of estuarine environmental contamination. The relatively small increase in ambient metal concentration due to pollution will be reflected in measurable amounts then tissues. Therefore, they can be used as indicators of metal pollution in the estuarine environment.

1.3. Physiography of Kuduvaiyar estuary

Kuduvaiyar estuary is one of the estuaries in Tamil Nadu formed by one of the channel of Cauvery river, situated in Nagapattinam, a coastal district of Tamil Nadu, which is at Lat. 10° 76' N, long 79° 84' E/ 80 The river Cauvery rises at Talacauvery in Km/away from Thanjavur. Brahmagiri Range near Cherangala village of Kodagu (Coorg) district of The river Cauvery flows through Karnataka and Tamil Nadu Karnataka. states. The river branches into canals at Grand Anicut in Thanjavur district. One of the canals namely Vennar further divides into five channels. These are Paminiar, Koraiyar, Kilithangiyar, Maracakorayar and Valavanar. Pamaniyar and Koraiyar are joins together and extends for about 7 Km distance and joins Kuduvaiyar estuary, finally discharges their waters into the Bay of Bengal. The Kuduvaiyar estuary has a year-round connection with the sea and is subjected to sediment tides with maximum tidal amplitude of about 1m. The width of the estuary at the mouth is about 85m and the tidal flushing area extends to a distance of about 10km (Rajalakshmi and Sukumaran, 2020).

Nagapattinam district is bounded in the North by Karaikal in Puducherry state and Thiruvarur district, in the West and in the South and East by Bay of Bengal. Nagapattinam lies between Northern Latitude 10.7906 degrees and 79.8428 degrees East longitude. The district spreads over an area of 1205 sq.km.

Sandy beaches are vital coastal systems that occupy a significant part of the coastline. They are habitat for many inter-tidal flora and fauna and also are critical nesting habitats for marine turtles. About 41 river-estuarine systems have been recorded along this coastline with perennial and nonperennial flow. Among them, Adayar, Vellar, Coleroon, **Kuduvaiyar**, Agniyar, Tamirabarani, Pazhayar (Manakudy estuary) and Thengaipatinam are the major drainage systems have an estuarine characteristics with regular freshwater flow and tidal flushing (Mathur *et al.*, 2014).

Such estuaries are endowed with special types of regulation and thereby contribute towards richness of the soil by organic matter. Point Calimere, located in the Coromandel Coast, is one among the 26 Ramsar sites in India. Ramsar sites are wetlands of international importance designated under the Ramsar convention. The Kuduvaiyar mangrove form a part of the Point Calimere Ramsar site and constitute the largest mangrove forest in Tamil Nadu state. The mangrove ecosystem consists of a shallow estuary, which is fed by the tributaries of Cauvery River. The freshwater discharge is controlled by barrage operations and there is no freshwater flow into the estuary for about 60% to 70% of the period of the year. The estuary has undergone some

geomorphic changes in the past twenty years. There has been a reduction in the average depth of water and the width of the mouth has reduced (Priya *et al.*, 2014).

1.4. Ecological environment

The coastal tidal forest or mangrove ecosystem has a special association of plants and animals that develop in the intertidal zones of tropical coasts. The Kuduvaiyar estuary receives freshwater from the tributaries of river Cauvery namely Korayar and Paminiyar rivers; the inflows from other rivers such as Kilathingyar, Maraikakorayar, and Kandankurichiyar are insignificant. The fauna and flora are adapted to fluctuations in environmental conditions like water, salinity, temperature and nutrients and interact with the flow of freshwater as well as sea water.

Aquatic ecosystems are progressively coming under permanent pressure of anthropogenic pollutants and heavy metal contamination of aquatic ecosystems is a worldwide problem posing health hazards not only to the inhabitant organisms but also to the non-target populations including human beings through food chains and food webs (Jayakumar *et al.*, 2008). The aquatic environment is highly fragile, complex and diverse. It includes several distinct ecosystem types such as freshwater streams, lakes, ponds and rivers, estuaries, marine coastal and deep ocean waters that encompass many different biotic and abiotic components of unique characteristics. Coastal seas are characterized by highly productive and economically valuable ecosystems as

well as intense human activities capable of interfering with the system function and properties (Brooks, 1978).

Pollution is one of the challenging problems for environmental biologists, as hundreds of varieties of chemicals with potential harmful effects on biological organisms including human beings. These chemicals are being manufactured in large quantities and used for various purposes (Kavitha and Jagadeesan, 2003). Aquatic toxicology has been defined as the study of the effects of chemicals and other toxic agents on aquatic organisms with special emphasis on adverse or harmful effects. A toxicant is an agent that can produce an adverse response (effect) in a biological system, seriously damaging its structure or function or resulting in death. A toxicant or foreign substance (i.e., xenobiotic) may be introduced deliberately or accidentally into the aquatic ecosystem, impairing the quality of the water and making it unfavorable for aquatic life. Aquatic pollution means the introduction by humans, directly or indirectly, of substances or energy into the aquatic environment resulting in such deleterious effects as harm to living resources, hazards to human health, hindrance to aquatic activities including fishing, impairment of quality for use of water, and reduction of amenities modified from marine pollution (GESAMP,1993).

Among the various kinds of pollution, heavy metal pollution seems to be the most persistent one (Harvey *et al.*, 1974). Heavy metals such as lead, mercury, copper and cadmium etc. have known for many years to produce toxic effects on the central nervous system (Margarat and Jagadeesan, 1999).

Their presence in the environment and at working place may pose various health hazards (Rao, 1997).

The contamination of the environment by toxic substances is linked both to industrialization and to agriculture. Pollution of aquatic environments originates from atmospheric input, land runoff and seepage through land as in the case of groundwater. A wide variety of pollutants namely, physical, chemical, biological and radiological have been identified as detrimental to human health and they can affect other living organisms in the ecosystems. Pollutants like pesticides, heavy metals, hydro-carbons are generated exclusively by man and so they are called anthropogenic substances. These substances when present in high concentration become toxic to the ecosystems (Pillai, 1985).

Metals are non-biodegradable and are considered as major environmental pollutants causing cytotoxic, mutagenic and carcinogenic effects in animals (More *et al.*, 2003; Javed, 2003; Lewis *and Cohen*, 2004). Aquatic organisms have the ability to accumulate heavy metals from various sources including sediments, soil erosion and runoff, air depositions of dust and aerosol, and discharges of wastewater (Labonne *et al.*, 2001; Goodwin *et al.*, 2003). Therefore, accumulation of heavy metals in aquatic organisms can pose a long lasting effect on biogeochemical cycling in the ecosphere.

Heavy metals are being passed on into aqueous environments through industrial processes, sewage disposal, soil leaching and rainfall. The concentrations of these heavy metals are sub-lethal or lethal to aquatic organisms when the duration of exposure to these metals are prolonged (Eisler and Gardener, 1973). It is well documented that effects of heavy metals are dependent upon the physical and chemical conditions of the environment, especially water salinity, hardness, pH and dissolved oxygen and can act synergistically. Freshwater is highly vulnerable to pollution, since they act as an immediate sink for the consequence of human activities always associated with danger of accidental discharge or criminal negligence (Vutukuru, 2005). Heavy metals form a dangerous group of potentially hazardous pollutants and additional concentrations of these metals accumulate in the aquatic ecosystem as a result of land based activities (Magar and Waghmare, 2010).

Urbanization and industrialization have resulted in the environmental degradation due to chemical and solid industrial wastes (heavy metal). One of the important problems therefore faced by industries is the treatment and disposal of such wastes. The aquatic bodies are exposed to high incidence of toxicity due to heavy metal contamination (Dhakad *et al.*, 1997). Industrial processes involving the use of water are invariably, the essential source of pollution of metals. Fossil fuel combustion and cement production contribute to significant mobilization of metals. Electroplating processes and thermal power stations also generate large volumes of liquid waste containing metals. Domestic sewage is yet another source in the urban regions of the riverine system. The use of metal containing pesticides in agriculture and leaded petrol in motor vehicles results in atmospheric pollution by mercury and lead respectively. The fertilizers, fungicides and sludge release copper, zinc and

cadmium. Oil and coal particularly from some localities contain significant quantities of heavy metal. Oil is rich in vanadium, nickel, molybdenum and mercury (Nair, 1983).

The elements with atomic number greater than 20 are termed heavy metals excluding alkali metals, alkaline earth elements, lanthanides and actinides (Kopp and Kroner, 1972; Wolfe and Rice, 1972). Of all the elements present on the earth's crust H, C, N, O, Na, Mg, P, S, Cl and K constitute 99.9% of all living matter. In addition 14 elements viz B, F, Si, V, Cr, Mn, Zn, Fe, Co, Cu, Se, Mo, Sn and I are the essential trace elements including many heavy metals. Rest of the elements including heavy metals such as Hg, Pb, Cd, As, Cr not essential for the growth and development of organisms or their function in biological systems have not been established (Brooks, 1978).

The essential heavy metals have a specific role of play in living systems. Essential trace elements that exist naturally at background levels in the environment include chromium, cobalt, copper, iron, manganese, molybdenum, vanadium, strontium and zinc. However, non-essential heavy metals such as mercury, cadmium, arsenic, thallium and lead are toxic and tend to accumulate in living organisms (Wepener *et al.*, 2001; Pourang *et al.*, 2005; Ramakritinan *et al.*, 2005; Kongchum *et al.*, 2006; Ip *et al.*, 2007; Shanthi and Gajendran, 2009).

Aquatic sediments act as a sink as well as a source for contaminants. Long-term addition of contaminants can lead to sedimental concentrations that can surpass water concentrations (Ridgway and Shimmield, 2002; Zaggia *et*

al., 2007; Zhang et al., 2006; Morillo et al., 2008). Fluxes of trace elements in estuaries and coastal waters are transported to the open ocean and the original composition of seawater is altered (Horsfall and Spiff, 2002; Muthuraj and Jayaprakash, 2007). Sediment associated metals pose a direct risk to detritus and deposit feeding benthic organisms, and may also represent long-term source of contamination to higher trophic levels (Mucha et al., 2005; Morillo et al., 2008; Twining et al., 2008).

Cadmium is ubiquitous and a potent environmental pollutant that can be found in the aquatic environment through anthropogenic sources. Cadmium is toxic to crab even at low concentrations (Yilmaz *et al.*, 2004; Jarup and Akesson, 2009). Due to its long biological half-life and strong ability to accumulate in animal tissues, residual cadmium form a serious threat to the performance and survival of aquatic biota (Jones *et al.*, 2001; Rashed, 2001a; Yilmaz *et al.*, 2004; El-Naga *et al.*, 2005; Seebaugh *et al.*, 2005).

Zinc is the fourth most widely used metal in the world. Its major uses include galvanized steel for alloy production, and as an ingredient in rubber and paints. More concentrated sources of zinc to aquatic environments include urban runoff, mine drainage, municipal wastes and industrial effluents including zinc smelting, plastics and electroplating. Erosion of soil particles containing zinc is the overall source of zinc to the aquatic environment (USEPA, 1991a).

Copper is released from natural sources such as volcanoes, windblown dusts, decaying vegetation and forest fires. It is also used as a fungicide,

catalyst for organic reactions, pigment for ceramics, insecticides and preservative for cellulose materials (Khangarot and Rathore, 2003). Copper is generally used in the manufacture of chemicals, electric wires, cement, lime, plaster and concrete products, transport equipment, iron and steel products, petroleum and coal products (Baeyens, 1998). Copper enters the aquatic environment chiefly through leaching from paints on the hulls of boats and ships (Grosell *et al.*, 2007; Singh and Turner, 2009). Due to persistence in the environment and tendency to accumulate in the biota, copper poses a potential hazard to environmental and human health. It is the most poisonous heavy metal when present in excess (Welsh *et al.*, 2000; Grosell *et al.*, 2002; De Boeck *et al.*, 2006).

Lead is a naturally occurring non-essential heavy metal present in the earth's crust, rock, soil, and water. Sources of lead in marine environments include natural sources from rock weathering, riverbank and coastal erosion, and anthropogenic sources from urban and industrial emissions (Komarek *et al.*, 2008; Kelly *et al.*, 2009). Most waterborne lead is derived from mining and smelting, coal burning and cement manufacturing (WHO, 1995).

The most basic property of heavy metal is that they are bioavailable and are indestructible having toxic effects on living organisms when they exceed a certain concentration limit (MacFarlane and Burchett, 2000; Ridgway and Shimmield, 2002). Tolerance to heavy metals in metal accumulating organisms is linked to their ability to bind incoming metals, thereby controlling their intracellular availability. The binding of inappropriate metals

to metal-sensitive sites such as mitochondria is often interpreted as a failure of detoxification mechanisms and could be an indicator of metal-induced stress (Wallace *et al.*, 2003; Ballesteros *et al.*, 2009). The measurement of cellular and subcellular responses to chemical contaminants in sentinel organisms are used as bio-indicators from aquatic environments allowing early detection of biological effects as well as assessment of the extent of contamination of pollutants (Oost *et al.*, 2003; Scott and Sloman, 2004).

Heavy metals deplete glutathione and protein bound sulfhydryl groups, resulting in enhanced production of Reactive Oxygen Species (ROS) such as superoxide anion, hydrogen peroxide and hydroxyl radicals (Liu *et al.*, 2009). The sequential reduction of oxygen leads to generation of superoxide anion and hydrogen peroxide (Monferran *et al.*, 2008). Superoxide anion also rapidly reacts with nitric oxide, yielding yet another reactive species peroxynitrite. All of these ROS have the potential to trigger cellular death (Vieira *et al.*, 2009). ROS are considered as crucial mediators for the metal-triggered tissue injuries and apoptosis (Xue *et al.*, 2005; Gaitonde *et al.*, 2006; Yokouchi *et al.*, 2007; Tagawa *et al.*, 2008; Liu *et al.*, 2009).

To prevent oxidation induced damage, there must be effective antioxidant systems in the organisms. Some components of these systems involve reduced glutathione (GSH) and certain antioxidant enzymes including free radical scavenging enzymes, such as Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidases (GPx) and Glutathione Reductase (GR). Other associated enzymes are the Glyoxalase I (GI), Glyoxalase II (GII)

and Glutathione S-Transferase (GST). Under oxidative stress conditions, ROS can be reduced by GSH, with the related formation of the oxidized disulphide, oxidized glutathione (GSSG) (Hochachka and Lutz, 2001; Lushchak and Bagnyukova, 2007). Oxidative stress is also of ecological significance, particularly in the aquatic environment, which provides a sink for many pollutants that are capable of causing oxidative stress (Oliveira *et al.*, 2010). Changes in the activity of enzymes and other biomarkers are the possible tools for aquatic toxicological research (Arellano *et al.*, 2000).

1.5. Antioxidant defense

The continuous interaction of the animal physiological systems with free radicals, generated either indigenously or inhaled/ingested from exogenous sources leads to excess load of free radicals and causes cumulative damage of protein, lipid, DNA, carbohydrates and membrane, resulting in oxidative stress. Therefore, living creatures have evolved a highly complicated defense system with antioxidants, composed of enzymes and vitamins, against oxidative stress.

These defense systems are mainly classified as

(i) suppression of generation of ROS, (ii) scavenging of ROS, (iii) clearance, repairing and reconstitution of damage, and (iv) induction of antioxidant proteins and enzymes (Veena *et al.*, 2007).

Antioxidants are substances that either directly or indirectly protects cells against the adverse effects of xenobiotics, drugs, carcinogens and toxic radical reactions (Janani *et al.*, 2010). An antioxidant is a molecule capable of

slowing or preventing the oxidation of other molecules. In a biological system, they protect cells from the damage caused by unstable molecules known as free radicals. Antioxidants terminate the chain reactions by removing free radical intermediates, and inhibit other oxidation reactions by being oxidized themselves. They are believed to play a role in preventing the development of chronic diseases like cancer, heart disease, stroke, AD, RA and cataracts (Chakraborty *et al.*, 2009).

1.6. Enzymic antioxidants

Superoxide Dismutase (SOD)

SOD is a metalloprotein and is the first enzyme involved in the antioxidant defense. SOD plays an important role in protecting cells against ROS by lowering the steady state level of O₂•·. In general, there are three types of SOD, containing Mn, Fe or Cu plus Zn as prosthetic metals (Corpas *et al.*, 2006). SOD converts superoxide radicals to H₂O₂ and molecular oxygen, which, in turn, can be counteracted by catalase or GPx reactions, thereby reducing the level of cellular damage (Subash and Subramanian, 2009). SOD is widely distributed to protect such cells against the toxic effects of superoxide anion (Rao *et al.*, 2009).

The enzyme SOD is considered the first-line defense because it catalyzes the first reaction in the system harvesting oxygen-free radicals. Therefore, SOD prevents the oxidation of biological molecules, performed by the same radicals or their derivatives (Sanchez-Venegas *et al.*, 2009).

Catalase (CAT)

Catalase is an enzymatic antioxidant widely distributed in all animal tissues and the highest activity is found in the red blood cells and in the liver. CAT decomposes H₂O₂ and protects the tissue from highly toxic OH•. Therefore, the reduction in the activity of these enzymes may result in an accumulation of O₂•–radicals and H₂O₂ (Deepak *et al.*, 2007). Hence, catalase has been considered an important regulator of oxidative stress (Souza *et al.*, 2008).

Catalase, localized in peroxisomes, has two enzymatic activities, depending on the concentration of H_2O_2 . If the concentration of H_2O_2 is high, catalase acts catalytically, that is, it removes H_2O_2 by forming H_2O and O_2 (catalytic reaction). However, at a low concentration of H_2O_2 and in the presence of a suitable hydrogen donor, eg., ethanol, methanol, phenol and others, catalase acts peroxidically, removing H_2O_2 , but oxidizing its substrate (Turkseven *et al.*, 2005).

Glutathione peroxidase (GPx)

GPx is a seleno enzyme, two thirds of which (in liver) is present in the cytosol and one third in the mitochondria. It catalyzes the reaction of hydroxides with reduced glutathione to form glutathione disulphide (GSSG) and the reduction product of H₂O₂. Catalase and glutathione peroxidase activities were found to be decreased in the arthritic condition (Seufi *et al.*, 2009). GPx scavenges the highly reactive lipid hydroperoxide in the aqueous phase of cell membranes. Glutathione peroxidase catalyzes the reduction of

hydroperoxides, with glutathione (GSH) being oxidized to glutathione disulfide (GSSG). The latter is converted to glutathione by glutathione reductase in the presence of NADPH (Ayene *et al.*, 2008). Glutathione peroxidase reduces hydrogen peroxide to water, along with that the oxidation of GSH (Shieh *et al.*, 2010).

Glutathione S-Transferase (GST)

GST comprises a multigene family of proteins involved in the metabolism of many disease-causing electrophonic substrates that protects the cells against oxidative stress, and is also useful in monitoring cellular induction (Sarkar *et al.*, 2010). It consists of a large family of GSH-utilizing enzymes that play an important role in the detoxification of xenobiotics in mammalian systems (Sohini and Rana, 2007; Tabrez and Ahmad, 2011).

GSTs are suspected to have an important protective function (Polit *et al.*, 2010). The GSTs are a supergene family of dimeric enzymes that catalyze the conjugation of GSH to a variety of electrophiles, including arene oxides, unsaturated carbonyls, organic halides and other substrates (eg., by-products of ROS activity). These enzymes are ubiquitously present in living organisms. A number of chemical agents, including some antioxidants, have cancer chemopreventive properties that can induce one or more GST isozymes (Bickers and Athar, 2006).

1.7. Non-enzymatic antioxidants

Reduced glutathione

Glutathione (GSH), a tripeptide, is the most abundant intracellular free thiol and an important antioxidant (Liu and Pravia, 2010). It is believed to scavenge ROS directly or act as a substrate for other antioxidative or repair enzymes (Gao *et al.*, 2009). This most abundant, non-protein antioxidant in the cells, plays a pivotal role in the defense against oxidative stress-induced cell injury and mitochondrial damage (Lakshmidevi and Anuradha, 2010).

GSH also preserves the cellular levels of active forms of vitamin C and vitamin E (Janani *et al.*, 2010). It is an important defense mechanism against potentially toxic hydrogen peroxide by glutathione peroxidase, which reduces hydrogen peroxide to water, and along with that, the oxidation of GSH (Shieh *et al.*, 2010). Glutathione in mammalian cells maintains the intracellular thiol redox status, and detoxifies exogenous and endogenous reactive molecules. Depletion of intracellular GSH predisposes cells to proapoptotic stimuli and can also activate apoptosis in the absence of such stimuli (Valko *et al.*, 2007).

Accumulation of heavy metals in tissues mainly depends upon concentration of metals in water and exposure period; although some other environmental factors such as salinity, pH, hardness and temperature play significant roles in metal accumulation (Chowdhury and Blust, 2002; Clearwater *et al.*, 2002; Blackmore and Wang, 2003). Sex, size, composition of food, molting and biochemical or physiological changes also affect accumulation of metals in tissues (Blackmore and Wang, 2002; Luoma and

Rainbow, 2005). Mussels and crab are specific indicators of different environmental compartments in relation to their habitat and food web position, and they exhibit different rates of bioaccumulation with respect to xenobiotics (De laTorre *et al.*, 2000; Lee *et al.*, 2000; Shin and Lam, 2001; Scaps, 2002; Subathra and Karuppasamy, 2008; Kord *et al.*, 2010). Trophic transfer may be even more important than dissolved uptake in various aquatic organisms (Wang, 2002). For evaluation of an animal's potential for biomonitoring, Bioconcentration Factor (BCF) method is adequate and has been often used in studies with aquatic animals (Kahle and Zauke, 2003; Clason *et al.*, 2004; Morley, 2010).

To balance the ecosystem structure and functions several directives are being adopted over time to protect estuaries and coasts (Borja *et al.*, 2008). The environmental quality standards rely on the concentrations of contaminants as quality objectives for comparing the state of sites (Crane, 2003). The ecological integrity is judged using water or sediment in toxicity tests. In other cases, concentrations of the contaminants are used to assess the ecological status of a location (Rodriguez *et al.*, 2006; Tueros *et al.*, 2009). The toxicity tests measure the integrated responses to the possible acute or chronic effects of contaminants, on these processes (Watts and Pascoe, 2000). Test species should be sensitive enough to respond to low levels of contaminants and must be available for use from field collection throughout the year. Additionally, if biological tests are to be ecologically relevant, the species should be widespread and easily available (Richardson and Martin,

1994). Toxicity is a relative property reflecting a chemical's potential to have a harmful effect on a living organism. Toxicity tests are, therefore, used to evaluate the adverse effects of a chemical on living organisms under standardized, reproducible conditions that permit comparison with other chemicals or species tested, and comparison of similar data from different laboratories (Nascimento *et al.*, 2000).

Most commonly used stressor end points are variables related to growth performance (Becker et al., 2000; Breitholtz and Bengtsson, 2001; Sibly and Hone, 2002). The body size correlates with many ecological as well as life history traits and may thus influence the abundance of species as well as population structure and dynamics (Breitholtz and Bengtsson, 2001; Gaston et al., 2001). Growth rate has been frequently used as a measure of performance of the individual and is believed to be a more appropriate measure of toxicological effects (Jensen et al., 2001; Yang et al., 2002; Dahlhoff, 2004; Schamphelaere and Janssen, 2004). When toxicity tests are viewed within a legal context as needed to implement regulations, they are also accepted based on the ease and expense of performing them, the acquisition of irrefutable proof of harm and financial implications of the lost or threatened resource. Perhaps for those reasons, environmental risk assessment focuses on a simple and straightforward end point, lethality or survival (LC₅₀ representing the lethal concentration to 50 percent of a population). This measurement represents a baseline for toxicity (Ankley et al., 2010).

1.8. Ecology of Estuarine crab

Crabs form an important part of the mangrove and coastal ecosystem. They feed on leaf litter and other organic matter and play an important role in recycling of nutrients. Their digging behavior results in changes of surface topography, distribution of particle size and degree of aeration in both ecosystems (Harshith *et al.*, 2016). The mangrove forests are characterized by higher productivity and unique ecosystems. Crabs, the most advanced members of the phylum Arthropoda are the dominant fauna of this ecosystem because they are morphologically, physiologically and behaviorally well-adapted to their environment. True crabs belonging to the suborder brachyuran of the order Decapoda under class Crustacea show the greatest size range of all arthropods. Brachyuran crabs are the reputed decapods which form the major components of crustacean fauna in Sind mangroves. Tirmizi and Ghani (1983) have reported 16 species of crabs from Sind mangroves.

Mangroves are unique as they support tropical coastal vegetation and they support genetically diverse groups of terrestrial and aquatic organisms. They are of great ecological and economic significance in the coastal region and also helps in enhancement of water quality (Kathiresan and Bingham, 2001; Kathiresan 2003). Among the various organisms found in the region, crustaceans make up the majority. These crustaceans exhibit remarkable adaptability which has led to their exceptional evolutionary history. Among the crustaceans decapod crabs are the most predominant with them being highly active animals with complex behavioral patterns (Pradnya *et al.*, 2011).

The crabs depend on the mangroves for survival and their litter has a significant role in the detritus formation. These moves around and live in burrow. This digging activity causes alterations in the surface topography, the grain size and facilitates the aeration of soil (Pradnya *et al.*, 2011). To a greater or lesser extent, the crabs are connected between land and sea due to the presence of mangrove forests. These forests provide better habitats, plant detritus and protection from the sun, which favor the presence and development of large populations of terrestrial and semi-terrestrial detrivorous decapods crustaceans (Crane, 1947; Mann, 1972).

Estuarine crabs (Crustacea: Decapoda: Brachyura) are important elements of almost all marine coastal ecosystems, especially in tropical latitudes, where there are represented by the highest number of species (diversity) playing a significant role in the organization of coastal ecosystems (Morton and Zeng, 1982; Morton and Morton, 1983; Coldrey, 1986).

Brachyuran crabs reach their greatest diversity in tropical and temperate regions of the world (Rahman *et al.*, 2008) play an important role in the food chain and marine ecosystem. According to Chhapgar, (1991) crabs play a significant role in the fishery wealth of many nations. It is often been reported that grapsoid crabs play an important ecological role in mangrove ecosystems (Lee, 1998). The removal and processing of mangrove leaves by crabs helps to trap the energy stored in these leaves within the mangal before the tide can carry them away (Skov and Hartnoll, 2002). Furthermore, their faecal material

potentially contributes to secondary production via a coprophagous food chain (Lee, 1997; Gillikin *et al.*, 2001).

1.9. The experimental animal (Estuarine crab Sesarma quadratum) (Latreille, 1802)

The class Malacostraca is divided into five orders, with over 10,000 species; the largest is Decapoda. This order also contains the biggest and most familiar crustaceans, such as shrimp, lobsters, crayfish, and crabs.

Anatomy

The name Decapoda means 10 legs, or five pairs of legs. Most decapod's first pair is modified as large claws, called chelipeds. In front of the main legs are three pairs of small appendages used in handling food. These are called maxillipeds, the maxillipeds and five pairs of legs are the appendages of the thorax. A carapace covers the thorax, the head and thorax together are called the cephalothorax. The head has a pair of compound eyes located on eye stalks. The abdomen is large and has six pairs of biramous appendages. The last pair called uropods, which is flattened and form a tail fan. Swimmerets or pleopods make up the first five pairs. This structure applies to all decapods except for the crab where the abdomen is reduced and folded beneath the cephalothorax, this is what gives the crab its short body form.

Diet and Feeding Habits

Most decapods are predators or scavengers, but some feed on algae, and the land crabs eat fruits and leaves. The chelipeds can be used for many different activities, depending on the species. Some crabs use one large claw crushing and the small one for cutting. There are also filter feeders, such as the mole crabs, and fiddler crabs.

Respiration

Decapods have gills that project upward from near the base of the thoracic appendages and are enclosed within a protective gill chamber. The gill bailer creates a ventilating current by rapid sculling motion.

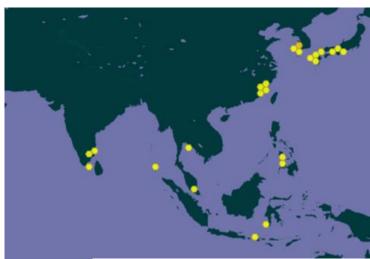
Reproduction

The reproductive organs are found in the dorsal part of the thorax. In the male there is a single pair of testes, the sperm ducts open at the base of the fifth pair of legs. In the female the oviducts open to the exterior at the base of the third pair of legs. During copulation the male assumes various positions astride the female and using the greatly modified anterior two pairs of pleopods, transfers spermatophores to the female gonopores or to a median seminal receptacle between the fourth or fifth pair of legs. Eggs are fertilized internally or on release from the oviduct. Eggs are attached to the pleopods.

Growth and Development

Most decapods hatch as a zoea, although some shrimp hatch as a nauplius. In the zoea all the thoracic appendages are present.

Aquatic ecotoxicology broadly focuses on how aquatic organisms interact with pollutants in their environment in order to determine environmental hazard and potential risks to humans. Research has produced increasing evidence on the pivotal role of aquatic invertebrates in the


assessment of the impact of pollutants on the environment. The present study aims to the use of estuarine crab *Sesarma quadratum* as an experimental test organism in aquatic ecotoxicology.

Grapsid Crab Genus Sesarma

The grapsid crab genus *Sesarma* (sensu lato) consists of more than 125 species in temperate and tropical regions of the world. Species occur in a variety of environments including intertidal marine, brackish water, freshwater, and terrestrial habitats. The genus was created by Say 1817 with *Ocypode reticulatus* (Say, 1817). Since the species assigned to the genus has been reassigned to no less than 20 other genera or subgenera.

Description

Carapace is decidedly broader than long, the dorsal surface moderately convex and uneven but generally naked and glabrous. The gastric region moderately convex and well defined; the oblique striae on either posterior lateral surface are strongly impressed but not furnished with hair. The front is broadly concave in the middle, the postfrontal ridge four-lobed, each lobe rounded. The external orbital angle is prominent and its outer margin arched, the second antero-lateral tooth is small and only shallowly separated from the former; the lateral border behind the second tooth is concave but again divergent near the posterior angle. The two oblique ridges on the dorsal surface of palm are similar to those of the former species; the ridge of upper surface of the movable finger is composed of 8-9 coarse tubercles. close to this row are about 10-12 smaller tubercles. The merus of ambulatory legs is almost twice as long as broad; therefore, it is a little narrower than in *Parasesarma pictum* (Sesarma quadratum) by Sakai, 1939.

Sesarma quadratum (Fabricius) distribution (image capture from https://www.gbif.org/species/4382756)

Fig 1.1: Distribution of the Experimental animal

OBJECTIVES

1.10. Objectives of the present study

The present work is designed to monitor the variability of heavy metals in aquatic mediums deriving from the seasonal cycle (Premonsoon, Monsoon and Post Monsoon) and the physical environment. Impact of heavy metal cadmium chloride on crab *Sesarma quadratum* was also investigated.

The main objectives of the present study are

- ➤ To monitor the physico-chemical changes in Kuduvaiyar estuary, Southeast coast of India.
- ➤ To determine the heavy metals concentrations in Kuduvaiyar estuarine water and crab.
- \triangleright To find out the LC₅₀ value through acute toxicity of cadmium chloride on the crab *Sesarma quadratum*.
- ➤ To estimate the amount of carbohydrate, protein and lipid content in cadmium chloride exposed crab, *Sesarma quadratum*.
- > To study the chronic toxicity of cadmium chloride exposed crab,

 Sesarma quadratum
- > To determine the immunological parameters of cadmium chloride exposed crab, *Sesarma quadratum*.
- > To analysis the stress markers in cadmium chloride exposed *Sesarma* quadratum
- > To investigate the enzymatic antioxidant in cadmium chloride exposed Sesarma quadratum
- > To study the non-enzymatic antioxidant in cadmium chloride exposed Sesarma quadratum
- ➤ To monitor the histological changes in Gills and Hepatopancreas of cadmium chloride exposed *Sesarma quadratum*

CHAPTER-II

REVIEW OF LITERATURE

CHAPTER II

2. REVIEW OF LITERATURE

A lot of analytical work has been carried out on natural water bodies, both freshwater and marine water, throughout the globe and as such a voluminous literature is available on the subject. In view of the objective of the present research, a critical survey of literature was carried out to gather information on various relevant aspects such as physico-chemical features and heavy metals concentrations.

2.1. The International level of physico-chemical features

Seasonal variations in water temperature of various aquatic bodies have been recorded by Welch (1952), Hannan and Young (1974) and Harshey *et al.* (1982). Jolly and Chapman (1966) made a preliminary study on effects of pollution on Farmers Creeks and Cox's river with respect to temperature. pH variations in water are widely studied worldwide. Impact of addition of sewage and industrial effluents on pH levels has been observed by Oswald (1960) while Hannan and Young (1974) and Chapman and Kimstach (1992) recorded effects of industrial discharges on the pH level of water. Wanganeo (1984), Khalique and Afser (1995), Islam and Islam (1996) and Sithik *et al.* (2009) recorded changes in pH values with addition of sewage and agricultural effluents.

Dissolved oxygen, which is a parameter of primary importance in the aquatic ecosystem by virtue of its role in both chemical as well as biological reactions, has been recorded in various water bodies throughout the world, Reid (1961), Ray et al. (1966) and Kara et al. (2004). The changes in dissolved oxygen levels in water with addition of domestic sewage, various industrial wastes and agricultural runoff have been investigated in different water bodies by Gonzalves and Joshi (1946), George et al. (1966), Jolly and Chapman (1966), De Smet and Evens (1972), Cairns et al. (1975), King (1981), Woodword (1984), Meybeck et al. (1992), Jameson and Rana (1996) and Jameel (1998) and Otieno (2008).

Mairs (1966) suggested total hardness to be a complex mixture of cations and anions while Cole (1975) recorded calcium and magnesium to account for most of the hardness. Thomson (1952), Chapman and Kimstach (1992) and Meybeck *et al.* (1992), investigated the impact of sewage and industrial effluents on the hardness values of water. Cadmium was found to be acutely toxic to rainbow trout in both soft and hard water.

Metals in water

Trace metals are considered to be major toxicants in contaminated water worldwide (Chi-Man and Jiu, 2006; Katsoyiannis and Katsoyiannis, 2006; Asonye *et al.*, 2007 and Yasuhiro *et al.*, 2007). Several studies have attempted assessing heavy metal pollution according to the distribution of particle size and to the relationship of its organic content (Hiraizumi *et al.*, 1978; Kristensen, 1982).

Heavy metal levels in many natural water bodies across the world have been investigated. Cooper *et al.* (1978) analyzed water quality of the river Tean Staff and found an increase in cadmium levels with addition of sewage.

Polprasert (1982) analyzed heavy metal levels in water of the Chao Phraya river estuary, Thailand and discussed their long term impact on the aquatic environment. Mart *et al.*, (1984) determined trace metal levels in the eastern Arctic ocean while Abaychi and Douabul (1985) determined trace metals in Shatt Al-Arab river, Iraq and indicated metal levels to be within the recommended limits.

Maroof *et al.* (1986) analyzed cadmium and zinc concentrations in drinking water supplies of Dhaka city, Bangladesh and highlighted the impact of addition of bleaching powder and pumping on zinc concentration. Jing and Wei-Wen (1988) analyzed concentrations of trace metals in the Qiantang-Jiang river and its estuary Southern China and found higher levels of metals with addition of industrial wastes. Pelig-Ba *et al.* (1991) analyzed trace metal concentrations in Borehole waters from the upper regions and the Accra plains of Ghana. Vazquez *et al.* (1998) analyzed dissolved metals in Alvarado lagoon,

Ozmen *et al.* (2004) conducted a preliminary study on heavy metal (Zn, Mn, Ni, Cu, Cr, Co and Pb) concentrations in surface water of Hazar lake and discussed the heavy metal pollution status of the lake. Emoyan *et al.* (2005) evaluated heavy metals loading of river Ijana, Nigeria and results indicated higher metal contents in winter season. Thari *et al.* (2005), in a multivariate analysis of heavy metal concentrations in soil, sediment and water in the region of Meknes (Central Morocco), compared the metal contents in water and sediment to suggest correlations between them. Abulude *et al.* (2006)

analyzed Fe, Cr, Cd, As, Ni, Co and Zn in drinking water samples in Akure, Nigeria. Adefemi *et al.* (2008) determined heavy metal (Zn, Pb, Mn, Fe, Cu,17 Co, Cr, Cd and Ni) contents in water from Ureje dam in south-western Nigeria to determine the water quality.

Impact of heavy metal inputs from various industries have been investigated in several studies. Huynh-Ngoc *et al.* (1988) determined cadmium levels in the river Rhone polluted by industrial wastes. Peerzada *et al.* (1990) studied distribution of heavy metals in Grove harbour, northern territory, Australia to find the impact of a bauxite treatment plant on the heavy metal status of water. Vazquez *et al.* (1993) investigated heavy metals to study the effects of industrial lead inputs into the San Andres lagoon, Tamaulipas, Mexico. They carried out a comparative study of several metals (Cd, Co, Cu, Fe, Mn, Ni, and Zn). Sah *et al.* (2000) conducted a study on assessment of heavy metal pollution of water in the Narayani river, Nepal contaminated by paper industry effluents. Sanayei *et al.* (2009) analyzed heavy metal levels in Zayandeh Rood river, Isfahan-Iran at seven sites to observe the influence of the industrial activities and dump of municipal waste on heavy metal concentrations in this region.

2.2. The National level physico-chemical features

Seasonal variations in water temperature of various aquatic bodies in India has been recorded by Rao (1955), Munawar (1970a), Qadri and Yousuf (1978), Swarup and Singh (1979), Goel *et al.* (1980), Patra and Nayak (1983), Bagde and Varma (1985a & b), Palharya and Malviya

(1988), Shyam Sunder (1988), Prakash (1990), Pandey et al. (1993), Kaur et al. (1995, 1996a & b and 1997), Kumar (1995a & b), Bath and Kaur (1999), Valarmathi et al. (2002), Singh and Mathur (2005), Chaurasia and Pandey (2007), Shyamala et al. (2008) and Pawar et al. (2009). Impact of contamination with industrial effluents on temperature of water in various aquatic systems have been recorded by Munawar (1970a & b), Mahadevan and Krishnaswamy (1983), Bisht (1986), Sarwar (1987), Palharya and Malviya (1988), Shah (1988), Adholia et al. (1991), Jindal and Kumar (1993), Bath (1996), Syal (1996) and Kumar and Sharma (1999) and that of contamination with sewage by Kaur et al. (2003).

Mohanty (1975) while studying physico-chemical features of the outer channel of the Chilka lake, recorded seasonal variations in pH of water. Seasonal variations in pH values have also been observed by Zutshi and Vass (1978) and Khan and Zutshi (1980), Sharma and Dhaneshwar (1986), Mishra (1988) for other water bodies. Impact of addition of sewage and industrial effluents on pH level has been observed by Singh *et al.* (1969), Seenayya (1971) and Kumar and Sharma (1979) while Trivedy and Goel (1986) and Sinha *et al.* (1991) recorded effects of industrial discharges on the pH level of water. Bansal and Khare (1990) and Mishra (1991) observed changes in pH due to addition of paper mill effluents. Singh *et al.* (1982), Sharma and Dhaneshwar (1986), Mishra (1988), Jindal and Kumar (1993), Bath (1996), Syal (1996), Narain and Chauhan (2000), Chaurasia and

Pandey (2007), Pawar *et al.* (2009) and Sithik *et al.* (2009) recorded changes in pH values with addition of sewage and agricultural effluents.

Dissolved oxygen has been recorded in various water bodies in India by Chakraboarty *et al.* (1959), Pahwa and Mahrotra (1996), Ray *et al.* (1966), Vasisht and Sharma (1975), Badola and Singh (1981), Bhowmick and Singh (1985), Shastree *et al.* (1991), Pandey *et al.* (1993) and Esmaeili and Johal (2005).

Paramasivam and Sreenivasan (1981) and Mishra (1991) carried out an investigation on effects of paper mill effluents on dissolved oxygen. The changes in dissolved oxygen levels in water with addition of domestic sewage, various industrial wastes and agricultural runoff have been investigated in different water bodies by Saxena *et al.* (1966), Mishra (1991), Kaur *et al.* (1995), Kumar (1995a & b and 1998), Bath (1996), Syal (1996), Narain and Chauhan (2000), Valarmathi *et al.* (2002), Kumar *et al.* (2003) and Prasanakumari *et al.* (2003). Sinha *et al.* (1991), Kaur *et al.* (1995 & 2003) and Syal (1996) investigated the impact of sewage and industrial effluents on the hardness values of water. Kannan (1991) provided standards depicting the nature of water on the basis of total hardness values.

Metals in water

There are several studies on heavy metal contamination of groundwater in different areas of India (Srikanth *et al.*, 1993; Bhattacharya *et al.*, 1997; Dixit *et al.*, 2004; Bhattacharjee *et al.*, 2005; Rajmohan and Elango,

2005; Ram and Singh, 2007; Lohani *et al.*, 2008. Manivasakam (1984), Mishra (1990) and Kannan (1991) studied environmental pollution and suggested an increase in metal levels due to addition of effluents from industrial units.

Koul *et al.* (1988) studied trace metal concentrations in some Kashmir Himalayan lakes and discussed seasonal trends. Paul *et al.* (1994) analyzed trace metals and lanthanides in a tropical river environment and found higher metal levels in the summer season. Analytical studies on rivers in Punjab have been conducted by Dhillon and Kaur (1996), Kaur *et al.* (2000) and PSCST (2005). Meenakumari and Nair (1996) recorded levels of trace elements in the surface waters of Cochin harbor and discussed the impact of runoff during monsoon period on metal concentrations in water.

Agarwal and Gopal (1998) analyzed the physico-chemical characteristics and heavy metals in the Ganga River at various locations of Northern plains. Govindasamy *et al.* (1998) determined seasonal variation of heavy metals in water of Puducherry coast, Bay of Bengal and observed higher cadmium content in the post monsoon season. Khan *et al.* (1998) studied trace metals in Ganges-Brahmaputra-Meghna estuary and indicated higher metal levels in the winter season.

Kaushik *et al.* (1999) determined heavy metal levels in three lentic water bodies (Motijheel, Surajkund and Ranital) of Gwalior region. Seasonally lowest and highest values of metals were recorded during summer and rainy seasons respectively in all the three water bodies. Dash *et al.* (1999) assessed

lead specification in Rushikulya surface waters, east coast of India and recorded seasonal variations of dissolved and particulate fraction of lead in upper reaches of the estuary. Aggarwal *et al.* (2000), Lokhande and Sathe (2001) studied heavy metals in various water bodies and found an increase in metal content with addition of sewage and industrial effluents.

Mandal *et al.* (2006) recorded occurrences of various metals in surface water of river Ganga in West Bengal and discussed seasonal trends in concentration of metals. Buragohain *et al.* (2009) examined seasonal variations in metal contamination of groundwater in Dhemaji district, Assam. They recorded higher concentrations of all the metals in the dry season than in the wet season.

Prahalad and Seenayya (1989) analyzed zinc and lead levels in the Husain Sagar lake of Hyderabad polluted by industrial wastes and found metal levels to be within the permissible limits. Mhatre (1991) emphasized the need of bioindicators of heavy metals pollution and their possible use in biomonitoring. Garg *et al.* (1992) analyzed trace metals in river Ganges at Kanpur to study the impact of various industrial effluents.

Trivedy et al. (2002) analyzed heavy metal pollution in the river Krishna and Koyna in Maharashtra as a result of addition of domestic, industrial wastes and agricultural runoff. Gupta et al. (2002) recorded concentration of heavy metals in waters of the area around Mandideep industrial complex to study the impact of industrial wastes.

Borole and Patil (2004) reported the effect of waste water of the sugar industry on some heavy metals in a river in Maharashtra. Hussain and Hussain (2004) evaluated the impact of textile waste water on the drinking water and ground water quality of villages close to river Kothari, Rajasthan. Joseph and Chacko (2005) investigated the distribution of dissolved and particulate heavy metals in Chitrapuzha river in Kerala, contaminated with industrial wastes.

Sandwar and Tiwari (2006) recorded monthly variations in heavy metals concentration in Ganga river water in North Bihar region which receives wastes from Barauni-Mokama industrial complex. Gowd and Govil (2008) studied distribution of heavy metals in surface water contaminated with wastes from Ranipet industrial area in Tamil Nadu and discussed health hazards especially for the people working in the tannery industries. Kar *et al.* (2008) analyzed heavy metal pollution in surface water at different stations on the river Ganga (West Bengal) to study the impact of heavy metal loaded industrial waste water.

Begum *et al.* (2009a) analyzed water, plankton and sediment of river Cauvery to study the impact of fertilizers, agricultural ashes, industrial effluents and anthropogenic wastes on heavy metal concentrations in these components.

Studies on heavy metal contamination of various water bodies to assess the water quality has been done by Jain and shrivastava (1998) in Kolar reservoir, Bhopal (M.P.), by Rani and Reddy (2003) in Hussain Sagar lake, by

Chaudhary *et al.* (2004) in the river Yamuna at Faridabad, by Pandey *et al.* (2004) in river Pandu at Kanpur, by Jain *et al.* (2004) in a coastal aquifer of Andhra Pradesh, by Sinha (2004) in Sai river at Rae Bareli, by Anitha *et al.* (2005) in Mir Alam lake, Hyderabad, by Gupta *et al.* (2005) in the surface water of lower lake, Bhopal, by Rajappa *et al.* (2010) in the groundwater of Hakinaka Taluk and by Pandey *et al.* (2010) in the Ganga river at Varanasi.

2.3. Cadmium toxicity

Cadmium (Cd) is one of the most toxic heavy metals for humans; the main source of non- occupational exposure to Cd includes smoking, air, food and water contaminated by Cd (Nagata *et al.*, 2005). In addition, herbal medicine is another source of Cd. The World Health Organization (WHO) estimates that 4 billion people or 80 percent of the world population presently use herbal medicine (Naithani *et al.*, 2010). Several articles have reported the adverse effects of these herbal preparations due to the presence of high levels of heavy metals such as Cd, lead, chromium, nickel, etc. (Naithani *et al.*, 2010). Saeed *et al.* (2010) investigated twenty five herbal products. The results revealed that the concentrations of some heavy metals, including Cd, were far greater than the permissible limits proposed by the International Regulatory Authorities for herbal drugs. Acute or chronic exposure of Cd causes respiratory distress, lung, breast and endometrial cancers, cardiovascular disorders and endocrine dysfunction (Chang *et al.*, 2009; Nagata *et al.*, 2005).

In addition, Cd is a common inorganic contaminant of coastal sediments and waters due to anthropogenic pollution and natural sources

(Ivanina *et al.*, 2010; Sokolova *et al.*, 2004). It can be accumulated in aquatic animals (e.g. crabs, shrimps, oysters and mussels) after entering through different way such as respiratory tract, digestive tract, surface penetration etc. (Dailianis and Kaloyianni, 2004; Dailianis *et al.*, 2009; Ivanina *et al.*, 2010; Wang *et al.*, 2008; Zhao *et al.*, 1995). It is seriously harmful to the growth of aquatic life and survival, resulting in decline of their populations. At the same time, as aquatic food products, these animals exposed to Cd might threaten human health.

2.4. Cd accumulation and distribution in crabs

Cd in water can be absorbed by aquatic organisms via respiratory system, digestive system and body surface without significant excretion (Rainbow and White, 1989; van Hatton *et al.*, 1989). And we can get valuable information for evaluating the level of Cd pollution in water and sediments by assaying Cd concentration in crabs.

The difference of Cd accumulation and distribution in different tissues

Experiments have confirmed that Cd absorption and accumulation by crabs had obvious differences among the various body segments. Accumulated Cd was distributed to all organs with the highest proportions of body content being found in the exoskeleton, gills, hepatopancreas and so on. The first organ in which Cd accumulates is the exoskeleton. Cd has similar chemical properties to calcium (Ca), such as the same charge number, the similar ionic radius and electronic number. Therefore, the Cd in water can replace the Ca entering the body via exoskeletons (Jennings and Rainbow, 1979). The gill is a

respiratory organ for crabs. It plays an important role in the absorption and transport of heavy metals (Silvestre *et al.*, 2005) and is the target organ of Cd in water. The hepatopancreas are detoxifying organs in crabs which can change the toxic heavy metal into non-toxic compounds and reduce the toxicity of the heavy metal in the body. Thus the Cd concentration is higher in the hepatopancreas.

2.5. Factors influencing Cd accumulation and distribution

Due to the different treatment methods, the accumulation and distribution of Cd are different in different organs. When *Carcinus maenas* was exposed to seawater at a Cd dose of 10 ppm, the midgut gland contained absorbed 10% of the total Cd, while the exoskeleton contained. When Cd was absorbed from a food source, the midgut gland contained 16.9% of the absorbed Cd whereas the exoskeleton contained only 22.2% (Jennings and Rainbow, 1979). It can be inferred that in bath experiments, the exoskeleton was in direct contact with Cd and accumulated the most Cd; in feeding regimes, the exoskeleton had the lower proportion accumulation (Bjerregaard and Depledge, 2002). In addition, *Sinopotamon yangtsekiense* had the highest concentration of Cd in the exoskeleton after acute exposure (Silvestre *et al.*, 2005), while *Eriocheir sinensis* had highest Cd concentration in the gills after chronic exposure for 30 d adding the acute exposure for 3 d (Wang *et al.*, 2003).

The environment can also affect the absorption and accumulation of Cd. An increase in the Cd concentration in the environment will result in

increased Cd accumulation. Namely, the accumulation of Cd has an obvious dose-dependent relationship (Lan *et al.*, 2001; Wang *et al.*, 2003). Ca in the water environment will prevent the absorption and accumulation of Cd because it can form a competitive relationship with Cd. Therefore, accumulated Cd in the body will be less whenever the Ca concentration in water increases (Wright, 1977). Beltrame *et al.* (2010) reported that sex, habitat, and seasonality could influence heavy-metal concentrations in the burrowing crab (*Neohelice granulata*) from a coastal lagoon in Argentina.

The influence of Cd on the enzyme activity in crabs

Small amounts of Cd can be detoxified into non-toxic substances by metallothionein in the organism (van Hatton *et al.*, 1989). Excessive Cd will damage the body, however, as it will combine with protein molecules having sulphur, hydroxyl and amino groups, and restrain some enzyme system activity. In addition, the affinity of Cd with sulfhydryl group is stronger than zinc (Zn), it can replace the enzyme-bond Zn and cause the enzyme to lose its function (Müller and Ohnesorge, 1982).

The influence of Cd on antioxidant enzymes system in crabs

One of the mechanisms for Cd toxicity to animals is the oxidative damage. On one hand, Cd can cause the body to produce excessive active oxygen. On other hand, it can change the expression and vitality of antioxidant enzymes. Antioxidant enzymes mainly include the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione enzyme turn sulfur (GST), etc. They can effectively scavenge active oxygen in the

body and avoid oxidative damage to the body (Lan *et al.*, 2010). Numerous studies have been published on the influence of Cd on antioxidant enzymes in terrestrial creatures, while reports about crabs are rare. In one study the Cd concentration was 0.025 mg/L and 0.05 mg/L in water, and SOD, CAT and GPX activities in *Charybdis japonica* could be stimulated after 0.5 d, and then reduced during the experimental period (Pan and Zhang, 2006). When crabs (*S. yangtsekiense*) were exposed with a dose range of 7.25-116.00 mg/L for 24, 48, 72 and 96 h, the activities of SOD, CAT and GPX increased initially and decreased subsequently (Wang *et al.*, 2008). After Immersing the juvenile crab *E. sinensis* in 2.0 mg/L water, the activities of SOD, CAT and GPX in hepatopancreas were all initially decreased, and then recovered to some degree during the duration of the study (Liu *et al.*, 2003). This showed that low concentration inhibited antioxidant enzymes activity while high concentration inhibited antioxidant enzymes activity.

The influence of Cd on metabolic enzymes in crabs

Glutamic-pyruvic transaminase (GPT) and glutamic-oxaloacetic transaminase (GOT) are the important aminotransferase in the protein metabolism. Low concentration of Cd stimulated the activity of GPT and GOT in *Scylla serrata* while high Cd concentrations showed apparent inhibition. The results showed the obvious dose-effect relations (Tang *et al.*, 2000). This may be because the green gland is an excretory organ with strong detoxification (Zhao *et al.*, 1995). GPT activity in serum of *E. sinensis* increased with increasing Cd concentration after poisoning. That might be

because tissues were damaged and the enzyme released into serum (Lu *et al.*, 1989). Lactic dehydrogenase (LDH) plays an important role in carbohydrate metabolism. The crab *Uca pugilator* were immersed in 2.0 mg/L water for 24 h, 48 h, LDH activity reduced in hepatopancreas and that is opposite in the abdominal muscles (Devi *et al.*,1993). Alkaline phosphatase is a kind of low-specific phosphomonoesterase which plays an important role in nucleic acid, protein and lipid metabolism. The influence of Cd on enzymatic activity in *S. serrata* also exhibited a dose-effect relationship that was similar to that observed above (Tang *et al.*, 2000).

The influence of Cd on the ultrastructure of crabs

Studies concerning the influence of Cd on the ultrastructure of crabs have appeared in the past few years. The published studies have focused on the destruction of membrane systems and morphological changes of cells, Cd can accelerate cellar lipid peroxidation and cause the accumulation of lipid peroxides. These free radicals and their reaction products, peroxides, can often cause various biological macromolecules, including DNA, to change structures and properties through chemical reactions, such as hydrogen abstraction, oxidation sulfhydryl and carbon chain destruction. Cadmium (Cd) can also decompose the unsaturated fatty acid into malondialdehyde (MAD) by peroxiding and cause biological macromolecules to crosslink into abnormal macromolecules which degrade membrane structure and alter the membrane permeability (Shukla *et al.*, 1989).

The crab *E. sinensis* were exposed to Cd, many changes appeared in the R-cell in hepatopancreas, organelles such as mitochondrial damage, endoplasmic reticulum expansion, and thinning of the cytoplasmic matrix (Lan *et al.*, 2001). Cd can partly disintegrate the mitochondrial cristae of neurosecretory cells in *E. sinensis* (Mingshen *et al.*, 2008). Whenever injected into the crab *S. yangtsekiense*, Cd resulted in damage to the membrane structure, among the organelles the mitochondria was damaged first, which suggested that mitochondria was a sensitive organelle to Cd that could be used to show the level of damage caused by Cd (Lan *et al.*, 2002).

Studies regarding the effects of Cd on ovarian development in crabs have been conducted since the 1990s. The majority of experiments showed that Cd inhibited ovarian growth, reduced hatch rates of the fertilized eggs and led to embryonic deformity. Lee *et al.* (1996) documented that Cd deformed eyespots, reduced hatching success, and inhibited growth of oocytes of *Callinectes sapidus*.

CHAPTER-III

MATERIALS AND METHODS

CHAPTER III

3. MATERIALS AND METHODS

3.1. Location of Sample Collection

Water samples and adult *Sesarma quadratum* crabs were collected from Kuduvaiyar estuary, which is situated in the South east coast, near Nagapattinam, Tamil Nadu, India (Station: Lat. 10° 45' N, Long. 79° 96' E. The Kuduvaiyar river is a tributary of the major river, 'Cauvery' of South India.

Fig 3.1: Shows the location of sample collection

Study area

The study was carried out in Kuduvaiyar estuary at Nagapattinam district in TamilNadu located along the Southeast coast of India. The Kuduvaiyar estuary is formed by the tributaries of Cauvery River and opens into an estuary on the South East coast of India. The three distinct seasons were, pre-monsoon, monsoon and post-monsoon periods. The samples were collected from five different points in the same site and were mixed together to prepare an integrated sample. The heavy metals cadmium, chromium, copper, lead and zinc were analyzed in water and crabs.

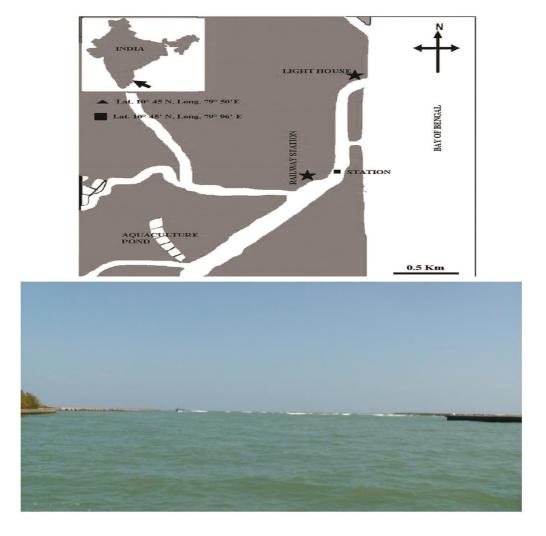


Fig 3.2: Shows the Kuduvaiyar Estuary

3.2. Collection and acclimation of experimental Crab

Sesarma quadratum crabs were collected from Kuduvaiyar estuary in

the South East coast, near Nagapattinam, Tamil Nadu, India .The crabs were

collected by hand picking with the help of the local crab collectors. The crabs

were acclimatized under laboratory conditions for 7 days prior to the start of

this experiment. Glass aquaria of 10 litre capacity, marine water were used in

this experiment. Fresh air was supplied to each aquaria through an air pump

fitted with a capillary system.

3.3. SESARMA QUADRATUM

CLASSIFICATION OF Sesarma quadratum

Sesarma quadratum (Born, 1778)

Kingdom: Animalia

Phylum: Arthropoda

Subphylum: Crustacea

Class: Malacostraca

Order: Decapoda

Infraorder: Brachyura

Family: Sesarmidae

Genus: Sesarma

Species: quadratum

49

Fig 3.3: Shows the study animal of crab Sesarma quadratum.

3.4. Physico-chemical parameters

The methods used for the analysis of various physico-chemical parameters were the same as given in Standard Methods for the examination of water (APHA, 1967, 1980; APHA-AWWA-WPCF, 1976); Golterman *et al.*,(1978) and National Environmental Engineering Research Institute (NEERI, 1986).

Measurement of temperature

This was carried out in-situ at the site of sample collection using a mobile thermometer. This was done by dipping the thermometer into the sample and recording the stable reading

pН

The pH was determined using ELICO-LI 127 pH meter. The pH of the water sample was directly determined with the electrode while the pH of the

sediment sample was determined by preparing (1:5, sediment: water) suspension in distilled water. The contents were stirred well and allowed to settle and supernatant was used to check pH.

Electrical Conductivity (EC)

To determine the soluble salts in the sediments, it is preferable to keep the sediment measured at the field condition and also measured its conductivity, to get the true picture. For this purpose saturated sediment water extract was prepared. Sediment extract is first prepared by taking 20 gms of sediment into a clean 100 ml beaker, add 50 ml of conductivity water then suspension is stirred for 30 minutes and allowed the suspension filtered by using ordinary filter paper. EC of the water samples and sediment suspension was measured by using ELICO EC-TDS meter (CM 183, "Make"-India) where electrodes directly dipped into the respective solutions for the direct display of result on a digital scale. It was reported in micro Siemens (μS). The clear supernatant used for pH was also used for EC measurement

Dissolved Oxygen (DO)

Dissolved oxygen content of the water samples was measured by using Winkler's method (modified azide method). The sample was collected in 300 ml bottle and DO was fixed on site by using 1 ml each of Manganous sulphate and Alkaline-iodide-azide. The precipitate formed was dissolved in the laboratory by using sulphuric acid and titrated with 0.025N sodium thiosulphate ($Na_2S_2O_3$) solution to a pale straw colour , added a few drops of

starch solution and continue titration for the first disappearance of blue colour.

A=Total volume of $Na_2S_2O_3$ req. N=Normality of $Na_2S_2O_3$ and 8= Eq. Wt. of Oxygen.

Chemical Oxygen Demand (COD)

COD determination was carried out with dichromate reflux method with the addition of 10 ml of 0.25 N potassium dichromate (K₂Cr₂O₇) and 30ml H₂SO₄+Ag₂SO₄ reagent in 20 ml diluted sample. The mixture was refluxed for 2h and was cooled to room temperature. The solution was then diluted to 150 ml by using distilled water and excess K₂Cr₂O₇ remained was titrated with Ferrous Ammonium Sulphate (FAS) using a ferroin indicator.

Where, A= volume of FAS used for blank(ml); B= volume of FAS used for sample(ml); N= Normality of FAS; 8= equivalent weight of oxygen.

Biological Oxygen Demand

The dilution method was followed to determine the BOD after three days at 27 °C. For the same dilution water was prepared with the addition of nutrients namely phosphate buffer, magnesium sulphate, calcium chloride and ferric chloride. The diluted sample was transferred to BOD bottles of 300 ml

capacity. After determining initial dissolved oxygen (DO), final DO was estimated from the bottles kept for incubation period for three days.

Alkalinity of Water sample

100 ml of water sample was mixed with 2-3 drops of phenolphthalein. The development of pink colour to the solution indicated the presence of alkalinity and was then titrated with 0.02 H₂SO₄ till the colour disappeared.

Alkalinity=
$$Volume of H_2SO_4 \times N \times 50 \times 1000$$
 $Volume of Sample$

Where N=Normality of H₂SO₄; 50 =volume of sample

Salinity

Salinity (PSU) was determined by Mohr Knudsen argentometric titration method, using standard solution of silver nitrate (AgNO₃) and Potassium chromate as an indicator to form silver halides, presence of excess silver ions lead to the formation of red silver chromate (reddish brown colour) the endpoint of titration)

Where V1=Volume of AgNO₃; V2=Volume of sample; N1=Normality of AgNO₃; N2=Normality of sample.

Total Hardness of Water sample

The total hardness of the water samples was determined by EDTA (Ethylenediaminetetraacetic Acid) titration method, where 50 ml of well mixed sample was mixed with 1-2 ml of Ammonia buffer solution pH 10 and

a pinch of Eriochrome black-T indicator. The contents were then titrated with 0.01N EDTA till wine red solution changes to blue.

Where C=volume of EDTA used for titration, D= mg of CaCO₃ equivalent to 1ml of EDTA solution.

Estimation of Ammonia

Ammonia present in the water sample was quantified spectrophotometrically after treating with Nessler's reagent. The quantity of the ammonia in the sample was estimated from a standard graph and expressed in mg/l. Anhydrous ammonium chloride was used to prepare standard ammonium solution.

Estimation of Nitrate

Hundred ml of water sample was taken in a conical flask and added 2 ml of naphthylamine and 2 ml of H₂SO₄ solution. The content was mixed thoroughly. Development of pink colour indicated the presence of nitrate. The colour intensity of the solution was read out in the Spectronic-21 at 530 nm against blank. The amount of nitrate was estimated by comparing the reading of the test solution with the reading of the known volume standard solution.

Estimation of Chlorides

Five drops of potassium chromate indicator were added to 50ml of sample and titrated with silver nitrate solution till the sample turned brick red. The chlorides are expressed in mg/l.

Estimation of Sulphates

Filtered the water sample through Whatman filter paper and 50ml of filtered water sample was taken into a conical flask containing not more than 10mg/ml sulphate. Added 0.15gm of barium chloride and mixed for 30 minutes using a magnetic stir. Measured the absorbance in a Photoelectric colorimeter against distilled water blank at 420nm and compared with the standard curve. The sulphates are expressed in mg/l.

Estimation of Fluoride

Added sequentially to the 5ml volumetric flasks, 3.5ml of THF solution, 0.1ml of working solution, 1.3ml of sample and 0.1ml of NaH₂PO₄-NaOH Buffer. Mix the content of the flask thoroughly. After 10min, measure the absorbance at 600nm using THF-water (7:3 v/v) solution as the reference. The fluoride is expressed in mg/l.

3.5. Heavy metal analysis in water samples

Bioconcentration of heavy metals (Cd, Cu, Cr, Pb, Ni, Hg, Zn) in water samples collected in different seasons were measured by pre concentration methodology described by Abdullah *et al.* (2007). Estuarine water samples were filtered through a 0.45 μ m membrane filter before being acidified with conc. Nitric acid in plastic bottles. The levels of metals concentrated in water were expressed as μ gL⁻¹.

Estimation of Sodium

The estimation for sodium was carried out using Systronics mediflame 127 – flame photometer.

Preparation of stock solutions

Sodium stock solution was prepared by dissolving 2.542g NaCl in 1 liter of distilled water. It contains 1mg Na per ml. Stock solution was diluted to give four solutions containing 10, 5, 2.5 and 1 ppm of sodium ions.

Procedure

For sodium the flame intensity corresponding to the concentration of stock solution was noted using appropriate filters. The results were plotted in a graph. The flame intensity of the sample was noted. The concentration of sodium was calculated from the graph.

3.6. LC₅₀ determination

After acclimation, healthy crabs of *Sesarma quadratum* were chosen for the LC₅₀ determination of cadmium by static renewable bioassay. Crabs were not fed during the experimental period. Various concentrations (5, 10, 15, 20 and 25μg/L) of the test solutions were prepared from cadmium chloride stock solutions. A group of 10 laboratory acclimatized crabs of a particular species having the same weight, size and age were introduced into each test concentration of cadmium. Triplicates and appropriate controls were maintained for each concentration. LC₅₀ values were calculated as per Speeman-Kerber's methods (1931). Toxicity tests were conducted in accordance with the method recommended by Sprague (1973). Median lethal concentrations of 96 h were calculated by Finney's (1971) probit analysis using SPSS Ver.20 Log₁₀ Base calculation.

3.7. Subacute toxicity

Chronic toxicity tests were carried out with the sub-lethal concentrations of cadmium chloride based on the 96 hour LC₅₀ value. Crabs divided into four groups including group I served as control, group II to IV cadmium chloride (12µg/L) exposed for 10, 20 and 30 days experiment. After the end of the experiment, haemolymph and separation of haemocytes and preparation of serum, gills, muscles and hepatopancreas collected for various biochemical parameters.

3.8. Preparation of Tissue Homogenate

Crabs exposed to sublethal concentrations of cadmium chloride were sacrificed and the gills, muscles and hepatopancreas were dissected out, washed with ice-cold physiological saline. The required amount was weighed and homogenized using a Teflon homogenizer. Tissue homogenate was prepared in 0.1 M Tris HCl buffer (pH 7.4) and used for the estimation of various biochemical parameters, antioxidant enzymes activity and oxidative stress markers were measured in freshly prepared samples.

3.9. Biochemical analysis

Estimation of total protein

Protein was estimated by the method of Lowry et al. (1951).

Reagents

1. Alkaline copper reagent:

Solution A: 2% sodium carbonate in 0.1N NaOH.

Solution B: 0.5% copper sulphate in 1% sodium potassium tartarate.

50ml of solution A was mixed with 1ml of solution B just before use.

2. Folin's phenol reagent (commercial reagent, 1:2 dilution)

3. Bovine serum albumin (BSA).

Procedure To 0.1ml sample, 0.9ml of water and 4.5ml of alkaline copper

reagent were added and kept at room temperature for 10min. Then 0.5 ml of

Folin's phenol reagent was added and the color developed was read after

20min at 640 nm.

The level of protein was expressed as mg/gm tissues.

Estimation of total lipids

Total lipids in tissues were estimated by the method of Folch et al

(1957).

Reagents:

1. Chloroform: methanol mixture, 2:1 ratio

Procedure:

Known volume of 10% homogenate was taken and to the 10ml of

chloroform, methanol mixture (2:1 v/v) was added. This was kept at room

temperature overnight. At the end of this period, further 5ml of chloroform:

methanol mixture was added. This was centrifuged. Three layers were formed

and the lower chloroform layer was collected. This layer was taken in a

preweighed vial and evaporated in the oven at 40°C. When the organic mixture

was evaporated, the weight was taken. The weight of lipids was then

calculated.

Total lipids were expressed as mg/gm tissue.

58

Estimation of Carbohydrates

Total carbohydrates and free glucose were determined by a modified procedure of the perchloric acid/anthrone method Carroll *et al.*, (1956) and Mendel *et al.*, (1954). In this method, hot ethanol was used to extract soluble sugars from a ground sample of tissues. The supernatant was poured into a flask for later sugar determination. The remaining residue was washed two times with 52% perchloric acid to solubilize and extract carbohydrates. Which is determined by the anthrone method.

Estimation of total carbohydrate

Carbohydrate estimated by the method of Hedge and Hofreiter (1962) method

Reagents

- 1. 2.5N HCl
- Anthrone Reagent: Dissolve 200mg anthrone in 100ml of ice cold 95%
 H₂SO₄.
- 3. Standard glucose: 100mg/100ml distilled water

Procedure

Known volume of homogenate hydrolysed by boiling water bath for three hours with 5ml of 2.5N HCl and cool. Neutralize it with solid sodium carbonate until the effervescence ceases. The solution is made up to 100ml and centrifuge and takes 0.5ml for analysis. 4ml of anthrone reagent was added and heated for eight minutes in a boiling water bath and cooled rapidly and read at 630nm.

The values were expressed as mg/g wet weight

3.10. Immunological parameters of cadmium exposed crab

Total haemocyte count

The total number of haemocytes (THC) in haemolymph was determined by use of a haemocytometer. Haemocytes in a mixture of 20 μ L of diluted haemolymph and trypan blue (Sigma, T-6164; 0.05% trypan blue in TBS; 50 mM Tris; 370 mM NaCl; pH 8.4), were enumerated by use of a haemocytometer under a light microscope at a magnification of 40×10 .

Phenoloxidase assay

Activity of phenoloxidase in haemolymph plasma was assessed by use of the procedure of Asokan *et al.* (1997). Briefly, 100 IL of plasma were mixed with an equal volume of Tris buffered saline (TBS; 50 mM Tris; 370 mM NaCl; pH 8.4) and incubated for 15 min at 22 C. After incubation, 2 mL of 1 mg mL1 L-DOPA (3,4-Dihydroxy-L-phenylalanine, Sigma Chemicals) was added and further incubated for 5 min at 22 °C. All incubations were performed in the dark. After incubation, the optical density (O.D) of samples was determined at a wavelength of 460 nm in a Shimadzu UV-1700 spectrophotometer. Values were compared to a reagent blank that contained 200 IL TBS and 2 mL L-DOPA. Protein content of plasma was by the method of Lowry *et al.* (1951). The PO activity was expressed as unit mg protein/L min/L.

Phagocytosis

Phagocytosis assays were performed on monolayers of yeast cells as targets (Thiagarajan *et al.*, 2006). A suspension of haemolymph (50 lL) was spread on a glass slide and the haemocytes were allowed to adhere to the plate

for 20 min at 25° C. After 20 min, the monolayers were gently washed with TBS, to remove unattached haemocytes and overlaid with 50 IL of 0.5% yeast cells and the glass slides were further incubated for 15 min at 25° C. After rinsing with filtered seawater, the slides were fixed with 2.5% glutaraldehyde for 5 min. Monolayers were washed with TBS, overlaid with a cover slip, and observed using phase optics of a Carl Zeiss Axioskop 2 plus microscope. Replicates were made for each crab, and three counts of approximately 200 haemocytes were made for each replicate. Results were expressed as percentage of phagocytic haemocytes

Lysosomal membrane stability

Haemolymph (100 lL) was pipetted into 0.5 mL a centrifuge tube and aliquots (10 lL) of 0.33% neutral red (Sigma) solution in TBS was added to each tube and the tube was incubated for 1 h at 10° C. Tubes were then centrifuged 200g for 5 min and washed twice in TBS. Aliquots (100 lL) of 1% acetic acid in 50% ethanol were added to all tubes. Tubes were covered with foil, incubated for 15 min at 20 °C and then the amount of neutral red in the medium determined at 550 nm. The results were expressed as O.D per mg⁻¹ mL⁻¹ haemocyte protein.

3.11. Metabolic activity and oxidative stress

Estimation of Malondialdehyde (MDA/LPO)

Malondialdehyde was estimated by the thiobarbituric acid assay method of Beuge and Aust (1978).

Reagents:

1. Trichloroacetic acid : 15%

2. Thiobarbituric acid : 0.375%

3. Hydrochloric acid : 0.25N

4. TCA-TBA-HCl reagent : Mix the reagents 1,2,3 in the ratio of 1:1:1.

5. Stock standard : 4.8mM of 1,1',3,3'-tetra methoxy propane.

6. Working standard : Stock solution was diluted to get 48nM/ml.

Procedure:

The tissue sample was combined with 2.0ml of TCA-TBA-HCl reagent and mixed thoroughly. The solution was heated for 15minutes in a boiling water bath. The flocculants centrifuged at $1000 \times g$ for 10 minutes. The absorbance of the sample was read at 535nm against a blank without sample.

Values were expressed as nmole of MDA formed/mg protein in tissues.

Assay of Superoxide dismutase (SOD)

Superoxide dismutase activity was determined by the procedure of Kakkar et al (1984).

Reagents:

1. Sodium pyrophosphate buffer: (0.025 M; pH 8.3)

2. Phenazine metho sulphate : 186 micromol/L

3. Nitroblue tetrazolium : 300 micromol/L

4. NADH : 780 micromol/L

5. KCN : 1mM

6. Glacial acetic acid

7. n-butanol

8. Chloroform

9. Ethanol

Procedure: 0.5ml of tissue sample was diluted to 1ml with water. Then 2.5ml

of ethanol and 1.5ml chloroform (all reagents chilled) were added. This mixture

was shaken for one minute at 4°C and then centrifuged. The enzyme activity in

the supernatant was determined.

The assay mixture contained 1.2ml of sodium pyrophosphate buffer,

0.01ml of phenazine methosulphate, 0.3ml of nitroblue tetrazolium, 0.2ml of

NADH, appropriately diluted enzyme preparation, 0.01ml of KCN and water in a

total volume of 3ml. Reaction was initiated by the addition of NADH. After

incubation at 30°C for 90 seconds, the reaction was stopped by the addition of

1ml glacial acetic acid. The reaction mixture was stirred vigorously and shaken

with 4ml of n-butanol. The intensity of the chromogen in the n-butanol layer was

measured at 560 nm against butanol blank. A system devoid of enzymes served as

control.

Enzyme activity was expressed as U/mg protein in tissues.

Assay of Catalase (CAT)

The activity of catalase was assayed by the method of Beers and Sizer

(1952).

Reagents:

1. Phosphate buffer

: 50 mM/L, pH: 7.0

2. Hydrogen peroxide

: 0.059 M/L in phosphate buffer pH: 7.0.

63

Procedure:

1.9 ml of distilled water and 1ml of the hydrogen peroxide reagent, as substrate was added and incubated for 4-5minutes. Added 0.1 ml of tissue sample and recorded the decrease in absorbance for 2-3minutes at 240nm.

Enzyme activity was expressed as U/mg protein in tissues.

Assay of Glutathione peroxidase (GPx)

The activity of mitochondrial glutathione peroxidase was assayed by the method of Rotruck *et al* (1973).

Reagents:

- 1. 0.32M Phosphate buffer, pH: 7.0
- 2. 0.8mM EDTA
- 3. 10mM Sodium azide
- 4. 3mM Reduced glutathione
- 5. 2.5mM H₂O₂
- 6. 10% TCA
- 7. 0.3 M Disodium hydrogen phosphate
- 8. DTNB solution (40mg of DTNB in 100ml of 1% sodium citrate)
- 9. Reduced glutathione

Procedure:

The reaction mixture consisted of 0.2ml each of EDTA, sodium azide, H_2O_2 , 0.4ml of phosphate buffer; 0.1ml of tissue sample was incubated at 37°C. The reaction was arrested by the addition of 0.5ml of TCA and the tubes were centrifuged at 2000 rpm. To 0.5ml of supernatant, 4ml of disodium hydrogen

phosphate and 0.5ml DTNB were added and the colour developed was read at 420nm immediately.

The activity of GP_X was expressed as U/mg protein in tissues.

Assay of glutathione-s-transferase (GST):

GST was assayed by the method of Habig et al (1974).

Reagents:

1. Phosphate buffer : 0.3M, pH 6.5

2. Reduced glutathione (GSH) : 30mM

3. 1-chloro-2, 4-dinitrobenzene (CDNB): 30mM

Procedure:

The reaction mixture contained 1.0 ml of phosphate buffer, 0.01ml of CDNB, 0.1 ml of sample and 0.7 ml of distilled water. This mixture was preincubated at 37°C for 5 minutes, and then the reaction was started by the addition of 0.1 ml of GSH. The change in the absorbance was read at 340 nm for 5minutes and the reaction mixture without the enzyme was used as the blank.

The enzyme activity was expressed as μ moles CDNB conjugated/ min/ mg protein.

3.12. Histopathological studies

Histological studies of gill and hepatopancreas were carried out by the method of (Ochei and Kolhatkar, 2000). The various steps involved in the preparation of tissues for histopathological studies were fixation, dehydration, clearing, impregnation, embedding, section cutting, staining and mounting

65

Fixation

In order to avoid tissue autolysis by the autosomal enzymes and to preserve the physical and chemical structure, a bit of tissue from the organ was cut and fixed in Bouin's fluid immediately after removal from the animal body. Bouin's fluid was the commonly used fixative prepared by mixing the following chemicals.

1. Picric acid (saturated) - 75 ml

2. Formaldehyde (40%) - 25 ml

3. Glacial acetic acid - 5 ml

The tissues were fixed in Bouin's fluid for about 24 hrs. The tissues were taken out and washed in tap water to remove excess of picric acid.

Dehydration

The term dehydration means the removal of water from the tissues using ethanol of varying grades. The tissues were kept in the following grades of alcohol each for an hour.

- 1. 30% alcohol
- 2. 40% alcohol
- 3. 70% alcohol
- 4. 100% alcohol

Clearing

Dealcoholization or replacement of alcohol from the tissues with a clearing agent is called clearing. Xylol was used as the clearing agent. The tissues were kept in the clearing agent till they became transparent and impregnated with xylol.

Impregnation

In this process, the clearing agent xylol was replaced by paraffin wax. The tissues were taken out of xylol and were kept in a molten paraffin embedding bath, which consists of metal posts filled with molten paraffin and maintained at about 50°C. The tissues were given three changes in the molten wax at half an hour intervals.

Embedding

The paraffin wax used for embedding should be fresh and stable in its optimum melting point at about 56°C to 58°C. A clear glass plate was smeared with glycerine. L-shape mould was placed on it to form a rectangular cavity. The paraffin wax was poured into the mould and air bubbles if any were removed by using a hot needle. Tissues were placed in the paraffin and oriented with the surface to be sectioned. Then the tissues were pressed gently towards the glass plate to make it settle uniformly with a metal pressing rod and allowed the wax to settle and solidify at room temperature. The paraffin block was kept in cold water for cooling.

Section cutting

Section cutting was done with a microtome. The excess of paraffin around the tissues was removed through trimming by leaving 0.5 cm around the tissues. Then the block was attached to the gently heated object holds. Additional support was given by some extra wax, which was applied at the sides of the block alone. To produce uniform sections, the microtome knife was adjusted to the proper angle in the knife holder with only the cutting edge

contact with the paraffin block. The tissues were cut at the size range of 5 - 7 micron thickness.

Flattening and mounting of sections

This was carried out in a tissue-floatation warm water bath. The sections were spread on a warm water bath after they were detached from the knife with the help of a hair brush. Dust free clean sides were coated with egg albumin over the whole surface. Required section was spread on the clean side and kept at room temperature.

Staining

The sections were stained as follows:

Deparaffinization with xylol for five minutes.

Dehydration through descending grades of ethyl alcohol as mentioned below

100% absolute alcohol - 2 minutes

90% absolute alcohol - 1 minute

70% absolute alcohol - 1 minute

50% absolute alcohol - 1 minute

Stain with Ehrlich's Hemetoxylin for 15-20 minutes, Wash in tap water and blowing for 10 minutes then Rinse in the distilled water and Stain with Eosin.

The Dehydration process again with ascending grades of alcohol as given below.

70% absolute alcohol - 2 minutes

90% absolute alcohol - 2 minutes

100% absolute alcohol - 1 minute

Mounting

DPX mountant was applied uniformly over a slide and stained sections were overlaid carefully on the mountant and covered with coverslip.

Observation

Slides were observed under microscope using high magnification objectives and photomicrographs were taken to find out histological changes in comparison with the control tissues.

3.14. Statistical analysis

The results were analyzed by SPSS Software ver. 25. Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P < 0.05 was considered significant. *P < 0.05, **P < 0.001 statistically significant and NS= Non significant (P > 0.05) compared with Group I (Control).

CH&PTER-IV

RESULTS

CHAPTER IV

4. RESULTS

The crab fishery in India is fast developing, and there is a vast scope for the crab meat, both national and international markets. Crabs rank third next to the shrimps and lobsters for their esteemed seafood delicacy and also the value of fishery they support (Mohammed Saved and Rajeev Rahavan, 2001). Physico-chemical characteristics of seawater play a crucial role for productive marine ecosystems and fisheries activities. The distribution of pollutants within the aquatic environment is governed by complex processes of material exchange affected by various natural and anthropogenic activities. This physicochemical approach, essential for the qualitative and quantitative assessment of pollutants in the various compartments of the environment (water and organisms) was used in this study to contribute to the assessment of the health status of the Marine ecosystem of Kuduvaiyar estuary at Nagapattinam.

4.1. Physico-chemical and Heavy metals parameters studied in the Kuduvaiyar estuary

The concentration of water quality parameters like temperature, pH, electrical conductivity, dissolved oxygen, biological oxygen demand, chemical oxygen demand, total alkalinity, salinity and total hardness were done triplicate in the laboratory as per the standard methods. Surface water temperature varied with the seasons as lowest in monsoon months (25.11°C) and highest during pre-monsoon (29.13°C). pH varied with the seasons as lowest in monsoon months (7.9) and highest during pre-monsoon (8.7) while

post monsoon pH was 8.3. Highest EC was recorded in Post monsoon (459Mscm⁻¹), lowest during monsoon (376Mscm⁻¹) while pre-monsoon 412Mscm⁻¹. Minimum dissolved oxygen was recorded during monsoon months (5.2mg/L), Maximum dissolved oxygen were recorded during pre-monsoon and post monsoon months (5.9 and 5.3mg/L respectively). COD was lowest in pre-monsoon months (22.10mg/L) and highest during postmonsoon (23.91mg/L) while monsoon COD was 23.13mg/L. BOD was lowest in monsoon months (2.34mg/L) and highest during pre-monsoon (4.57mg/L) while post monsoon BOD was 3.72mg/L.

Alkalinity varied with the seasons as lowest in monsoon months (118.37mg/L) and highest during pre-monsoon (119.25mg/L) while post monsoon Alkalinity was 118.95mg/L. Salinity was low during monsoon (23.18 PSU) and high during pre-monsoon (25.08PSU) while post monsoon salinity was 24.79PSU. The hardness was lowest in monsoon months (1637mg/L) and highest during pre-monsoon (1727mg/L) while post monsoon hardness was 1703mg/L (Table 4.1 and fig 4.1-4.3).

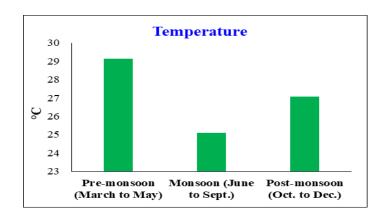
The ammonium was lowest in monsoon months (0.45mg/L) and highest during pre-monsoon (0.62mg/L) while post monsoon hardness was 0.58mg/L. The nitrate was lowest in monsoon months (32.67mg/L) and highest during pre-monsoon (38.57mg/L) while post monsoon hardness was 35.92mg/L. The sodium was lowest in monsoon months (97.51mg/L) and highest during pre-monsoon (132.49mg/L) while post monsoon hardness was 125.74mg/L. The chloride was lowest in monsoon months (213.47mg/L) and highest during pre-

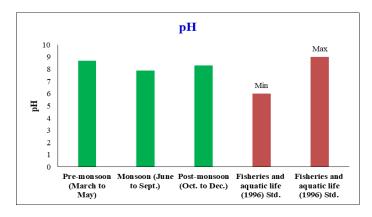
monsoon (302.28mg/L) while post monsoon hardness was 286.51mg/L. The sulphate was lowest in monsoon months (73.21mg/L) and highest during premonsoon (86.92mg/L) while post monsoon hardness was 80.65mg/L. The fluoride was lowest in monsoon months (0.54mg/L) and highest during premonsoon (0.65mg/L) while post monsoon hardness was 0.59mg/L (Table 4.1 and fig 4.3-4.4).

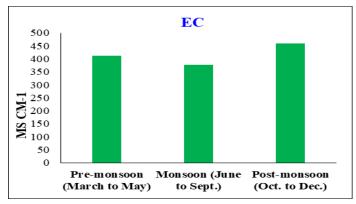
In pre-monsoon, the maximum level of cadmium (0.017mg/L) was observed followed by chromium (0.007mg/L), copper (0.004mg/L),lead (0.09mg/L), mercury (0.00005mg/L), nickel (0.03mg/L) and zinc (0.05mg/L). In monsoon, the minimum level of cadmium (0.011mg/L) was observed followed by chromium(0.005mg/L), copper(0.002mg/L), lead (0.05mg/L), mercury (0.00002mg/L), nickel (0.01mg/L) and zinc (0.02mg/L). In post monsoon, level of cadmium (0.015mg/L) was observed followed by chromium (0.006mg/L), copper (0.003mg/L), lead (0.07mg/L), mercury (0.00003mg/L), nickel (0.02mg/L) and zinc (0.04mg/L), (Table 4.1 and Fig. 4.5- 4.6).

Among the various seasons, the maximum level of cadmium was observed in pre monsoon.

Table 4.1: Physico-chemical and heavy metal analysis of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020)


Parameters			* Fisheries and aquatic life (1996) Std.	
	Pre-monsoon (March to May)	Monsoon (June to Sept.)	Post-monsoon (Oct. to Dec.)	
Temperature (°C)	29.13	25.11	27.07	-
pН	8.7	7.9	8.3	6.0-9.0
EC (MS CM ⁻¹)	412	376	459	-
DO (mg/L)	5.9	5.2	5.3	4.0-6.0
COD (mg/L)	22.10	23.13	23.91	-
BOD (mg/L O ₂)	4.57	2.34	3.72	3
Alkalinity (mg/L)	119.25	118.37	118.95	-
Salinity (PSU)	25.08	23.18	24.79	-
Hardness (mg/L)	1727	1637	1703	-
Ammonium (mg/L)	0.62	0.45	0.58	0.5
Nitrate (mg/L)	38.57	32.67	35.92	40
Sodium (mg/L)	132.49	97.51	125.74	120
Chloride (mg/L)	302.28	213.47	286.51	300
Sulphate (mg/L)	86.92	73.21	80.65	100
Fluoride (mg/L)	0.65	0.54	0.59	0.75
	Heavy me	tals (Trace eleme	nts)	
Cadmium (mg/L)	0.017	0.011	0.015	0.005
Chromium (mg/L)	0.007	0.005	0.006	0.02-0.005
Copper (mg/L)	0.004	0.002	0.003	0.001
Lead (mg/L)	0.09	0.05	0.07	0.1
Mercury (mg/L)	0.00005	0.00002	0.00003	0.00001
Nickel (mg/L)	0.03	0.01	0.02	0.01
Zinc (mg/L)	0.05	0.02	0.04	0.01


^{*} Maximum allowable concentrations of selected water quality variables for Fisheries and aquatic life uses.


Table 4.2: Correlation matrix (n = 3) of Physico-Chemical parameters in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020)

Parameters	Temperature	pН	EC	DO	COD	BOD	Alkalinity	Salinity	Hardness	Ammonium	Nitrate	Sodium	Chloride	Sulphate	Fluoride
Temperature	1														
pН	0.999	1													
EC	0.419	0.432	1												
DO	0.929	0.924	0.056	1											
COD	-0.579	-0.567	0.497	-0.838	1										
BOD	0.988	0.990	0.551	0.864	-0.450	1									
Alkalinity	0.980	0.983	0.588	0.840	-0.409	0.998	1								
Salinity	0.922	0.928	0.737	0.716	-0.219	0.970	0.980	1							
Hardness	0.961	0.965	0.652	0.793	-0.333	0.991	0.996	0.993	1						
Ammonium	0.952	0.956	0.677	0.772	-0.301	0.987	0.993	0.996	0.999	1					
Nitrate	0.997	0.998	0.484	0.900	-0.518	0.996	0.992	0.948	0.979	0.971	1				
Sodium	0.937	0.942	0.708	0.743	-0.259	0.979	0.987	0.999	0.996	0.999	0.960	1			
Chloride	0.932	0.937	0.719	0.733	-0.244	0.975	0.984	0.999	0.995	0.998	0.955	0.999	1		
Sulphate	0.997	0.998	0.476	0.904	-0.526	0.996	0.991	0.945	0.977	0.969	0.999	0.957	0.953	1	
Fluoride	0.999	0.998	0.384	0.943	-0.609	0.982	0.972	0.907	0.950	0.939	0.993	0.923	0.917	0.994	1

Correlation matrix was described for relationship between the physico-chemical parameters

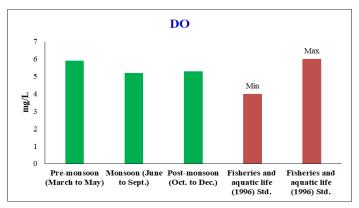
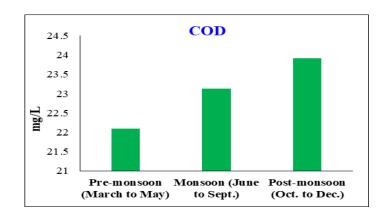
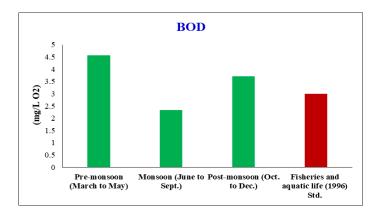
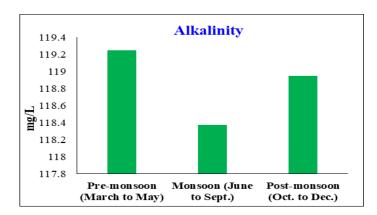





Fig. 4.1: Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020)

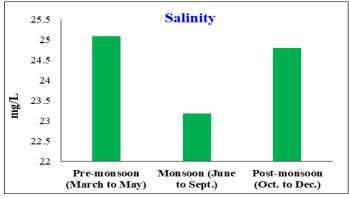
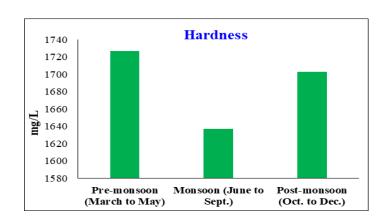
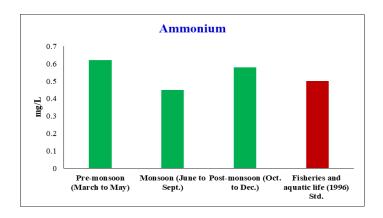




Fig. 4.2: Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020)

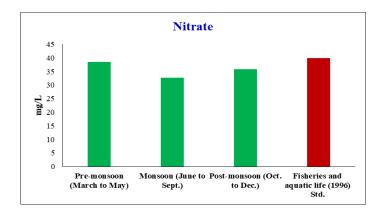
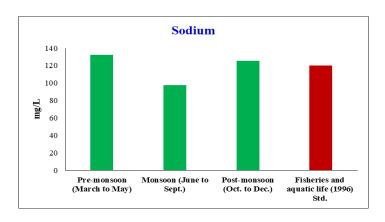
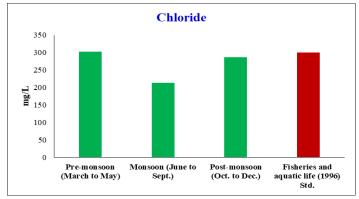
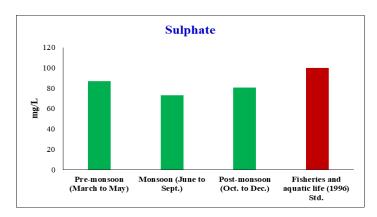





Fig. 4.3: Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020)

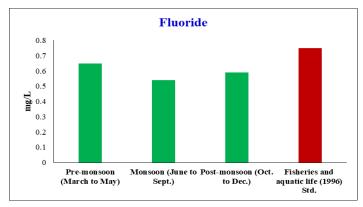


Fig. 4.4: Seasonal variations in physico-chemical parameters of Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020)

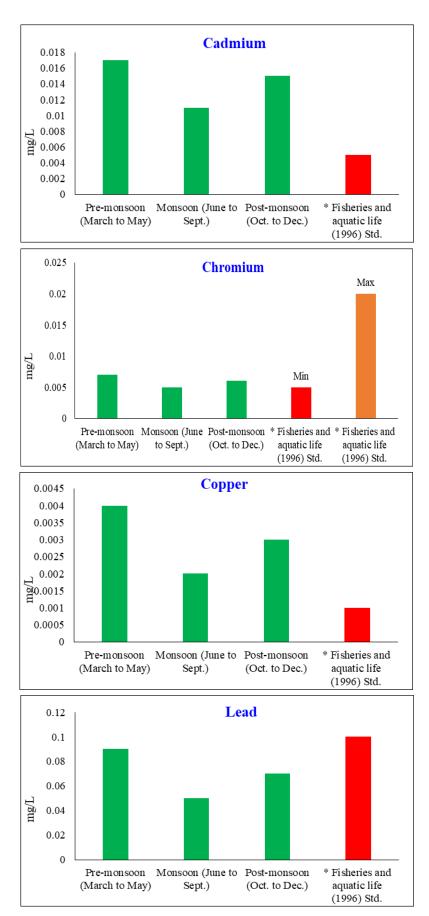
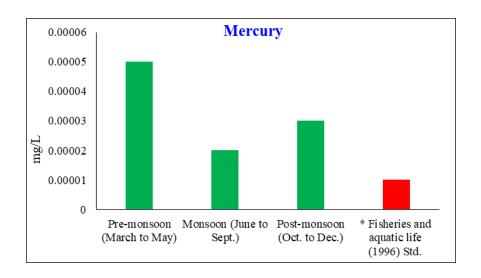
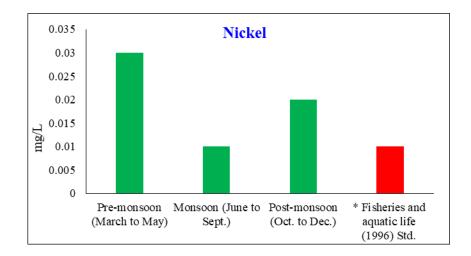




Fig. 4.5: Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020)

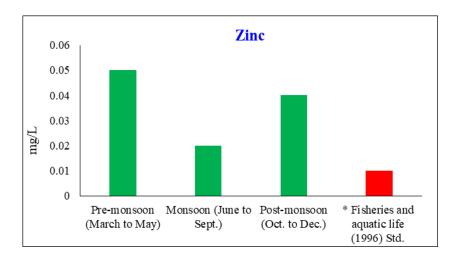
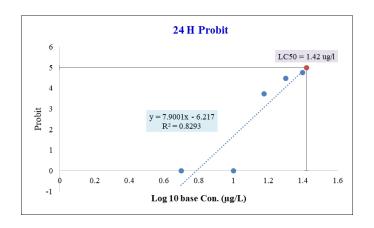


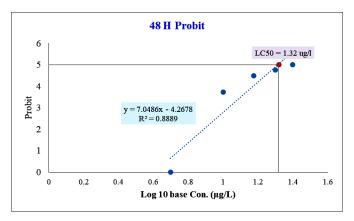
Fig. 4.6: Seasonal variations of heavy metals distribution in Kuduvaiyar estuary, East coast of Tamil Nadu (2019-2020)

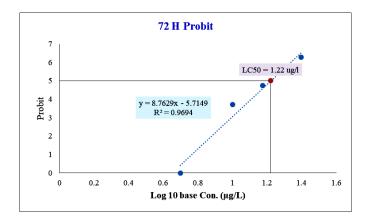
4.2. Acute toxicity studies of cadmium on Sesarma quadratum

To determine the LC₅₀ value graphs were plotted between % mortality and log concentrations of toxicant. The concentrations obtained by drawing a perpendicular line against 50% mortality and calculated their antilog value. In the present investigation, LC₅₀ of *Sesarma quadratum* at 96h was 12.30μg/L for cadmium. Results of present studies (Table 4.3 and figure 4.7), clearly indicated that the rate of mortality for any fixed time increased with increase in concentration and for a particular concentration with increase in exposure time and a regular mode of toxicant due to accumulation up to dangerous level leading to death. Table-4.3 shows the relation between the cadmium concentration and the mortality rate of *Sesarma quadratum*. The results obtained for 96 hour toxicity experiments of cadmium crabs were estimated by Finney's probit analysis method.

The observed percentage of mortality in *Sesarma quadratum* exposed to different concentration of cadmium is given in table 4.4. Figure 4.7 showed the probit line graph of the cadmium toxicity data and probit kill vs log concentrations. The 96-hr LC₅₀ study observed that *Sesarma quadratum* was significantly more susceptible to cadmium toxicity. Present 96 hours of crabs mortality were concentration (μ g/L) of cadmium-dependent R² = 0.9592.


Table 4.3: Toxicity of cadmium against crab as Sesarma quadratum


	Log Con.	# of		24 hours			48 hours			72 hours			96 hours	
Concentration (µg/L)	(µg/L)	exposed crab	# of mortality	% of mortality	Probit	# of mortality	% of mortality	Probit	# of mortality	% of mortality	Probit	# of mortality	% of mortality	Probit
5	0.69	10	0	0	0	0	0	0	0	0	0	0	0	0
10	1.00	10	0	0	0	1	10	3.72	1	10	3.72	3	30	4.48
15	1.17	10	1	10	3.72	3	30	4.48	4	40	4.75	7	70	5.52
20	1.30	10	3	30	4.48	4	40	4.75	7	70	5.52	9	90	6.28
25	1.39	10	4	40	4.75	5	50	5	9	90	6.28	10	100	7.33
Control	0	10	Nil	Nil	Nil									


Table 4.4: LC₅₀ value of cadmium against crab as Sesarma quadratum

				Chi-Square (Df = 3)		
Hours	LC50 µg/L (LCL - UCL)	Regression equation	r ² value	X ² value	Sig.	
24	26.58 (21.35 - 195.88)	y = 7.9001x - 6.217	0.8293	0.316	0.957	
48	23.58 (17.82 - 68.18)	y = 7.0486x - 4.267	0.8889	0.290	0.962	
72	16.24 (13.23 - 19.46)	y = 8.7629x - 5.714	0.9694	0.067	0.995	
96	12.30 (9.57 - 14.58)	y = 10.072x - 6.505	0.9592	0.379	0.945	

Data analyzed by SPSS ver. 20, Regression equation and r^2 value was calculated by log. Concentration vs probit value, LCL: 95% of Lower Confidence Limits, UCL: 95% of Upper Confidence Limits. Since the significance level is P > 0.050, no heterogeneity factor is used in the calculation of confidence limits.

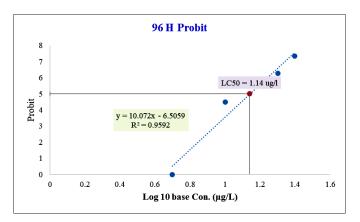


Fig. 4.7: Graphs show the toxicity of cadmium against crab as Sesarma quadratum (determination of LC50)

4.3. Biochemical response in subacute concentrations of cadmium exposure in *Sesarma quadratum*

The biochemical analysis is also known as composition of some fundamental elements like protein, lipids and carbohydrates etc. In the present study, Protein, lipids and carbohydrates were investigated in gills, muscles and hepatopancreas of control and experimental crabs as *Sesarma quadratum*. Protein, lipids and carbohydrate content were significantly decreased in gills, muscles and hepatopancreas of *Sesarma quadratum*. The decreased carbohydrate, protein and lipid contents directly proportional to the duration of the cadmium exposure.

In the observation, on 10 days exposure of CdCl₂ on Sesarma quadratum significantly decreased, the protein content in gills $(15.23\pm1.02 \text{mg/gm}),$ $(7.68\pm0.51 \text{mg/gm}),$ muscles and hepatopancreas (11.25±0.81mg/gm) as compared to control were observed. In 20 days exposure of CdCl₂ also significantly decreased of protein content in gills $(12.71\pm0.94 \text{mg/gm}),$ $(5.76\pm0.61 \text{mg/gm}),$ muscles and hepatopancreas (8.64±0.84mg/gm) as compared to control were observed. In 30 days exposure significant CdCl₂ also decrease of protein content in $muscles(9.17\pm0.71mg/gm)$ $(3.95\pm0.53 \text{mg/gm}),$ and hepatopancreas (5.30±0.92mg/gm) as compared to control were observed (Table 4.5 and Fig. 4.8). Among the various duration of exposure of CdCl₂, 30 days exposure of CdCl₂ has significant alterations were observed.

Table 4.5: Effect of cadmium exposure (12µg/L) on protein content in crab, Sesarma quadratum

	Group I	Cadmium exposed 12µg/L						
Protein (mg/100gm)	(Control)	Group II (10 th day)	Group III (20 th day)	Group IV (30 th day)				
Gills	9.29±1.76	7.68±0.51*	5.76±0.61**	3.95±0.53***				
Muscles	18.44±1.24	15.23±1.02*	12.71±0.94**	9.17±0.71***				
Hepatopancreas	14.57±0.95	11.25±0.81*	8.64±0.84**	5.30±0.92***				

Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P < 0.05 was considered significant. *P < 0.05, **P < 0.01, ***P < 0.001 statistically significant and NS= Non significant (P > 0.05) compared with Group I (Control).

In the present study protein level of Muscles > Hepatopancreas > Gills in control and experimental crab were found. The levels of protein were found to be significantly decreased in cadmium chloride exposed crab comparison with control crabs in muscles, hepatopancreas and gills.

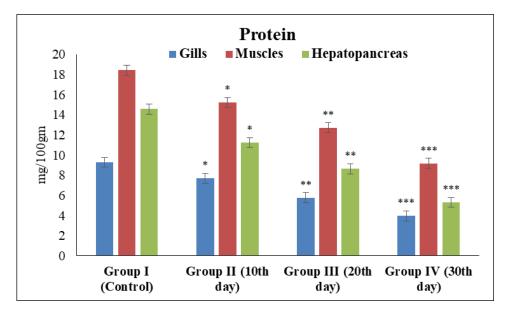


Fig. 4.8: Effect of cadmium exposure (12μg/L) on protein content in crab, Sesarma quadratum

In the observation, on 10 days exposure of CdCl₂ on *Sesarma quadratum*, significantly decreased of lipid content in gills (5.74±0.21mg/gm), muscles (3.31±0.31mg/gm) and hepatopancreas(13.24±1.17mg/gm) as compared to control were observed. In 20 days exposure of CdCl₂ also significantly decreased of lipid content in gills(3.74±0.24mg/gm),muscles (2.04±0.15mg/gm) and hepatopancreas (9.95±1.15mg/gm), as compared to control were observed. In 30 days exposure of CdCl₂ also significant decrease of lipids content in gills (2.15±0.21mg/gm), muscles (1.37±0.17mg/gm and hepatopancreas (6.49±1.05mg/gm),) as compared to control were observed (Table 4.6 and Fig. 4.9). Among the various duration of exposure of CdCl₂, 30 days exposure of CdCl₂ has significant alterations were observed.

Table 4.6: Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum

	Group I	Cadmium exposed 12μg/L						
Lipids	(Control)	Group II	Group IV					
(mg/100gm)		(10 th day)	(20 th day)	(30 th day)				
Gills	6.79±0.38	5.74±0.21*	3.74±0.24**	2.15±0.21***				
Muscles	5.24±0.29	3.31±0.31*	2.04±0.15**	1.37±0.17***				
Hepatopancreas	16.09±1.32	13.24±1.17*	9.95±1.15**	6.49±1.05***				

Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P < 0.05 was considered significant. *P < 0.05, **P < 0.01, ***P < 0.001 statistically significant and NS= Non significant (P > 0.05) compared with Group I (Control).

In the present study lipids level of Hepatopancreas > Gills > Muscles in control and experimental crab were found. The levels of lipids were found to be significantly decreased in cadmium chloride exposed crab comparison with control crabs in hepatopancreas, gills and muscle tissue.

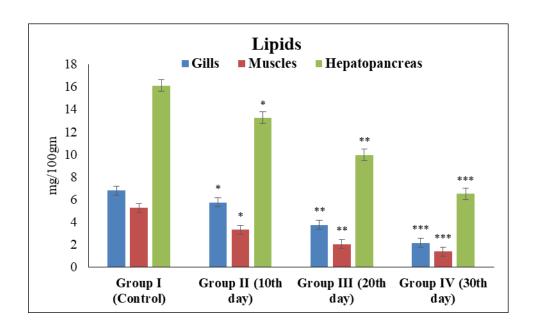


Fig. 4.9: Effect of cadmium exposure (12μg/L) on lipids content in crab, Sesarma quadratum

In the observation, on 10 days exposure of CdCl₂ on *Sesarma quadratum* significantly decreased of carbohydrate content in gills (0.97±0.11mg/gm), muscles(1.52±0.12mg/gm) and hepatopancreas (1.53±0.09mg/gm), as compared to control were observed. In 20 days exposure of CdCl₂ also significant decreased of carbohydrate content in hepatopancreas (1.16±0.13mg/gm), muscles (0.89±0.12mg/gm) and gills (0.71±0.18mg/gm) as compared to control were observed. In 30 days exposure of CdCl₂ also significant decreased of carbohydrate content hepatopancreas (0.94±0.08mg/gm), muscles (0.61±0.10mg/gm) and gills (0.54±0.09mg/gm) as compared to control were observed (Table 4.7 and Fig. 4.10). Among the various duration of exposure of CdCl₂, 30 days exposure of CdCl₂ has significant alterations were observed.

Table 4.7: Effect of cadmium exposure (12μg/L) on carbohydrate content in crab. Sesarma quadratum

	Group I	Cadmium exposed 12μg/L						
Carbohydrate	(Control)	Group II	Group III	Group IV				
(mg/100gm)		(10 th day)	(20 th day)	(30 th day)				
Gills	1.44±0.14	0.97±0.11*	0.71±0.18**	0.54±0.09***				
Muscles	1.74±0.17	1.52±0.12*	0.89±0.12**	0.61±0.10***				
Hepatopancreas	2.79±0.19	1.53±0.09*	1.16±0.13**	0.94±0.08***				

Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P < 0.05 was considered significant. *P < 0.05, **P < 0.01, ***P < 0.001 statistically significant and NS= Non significant (P > 0.05) compared with Group I (Control).

In the present study Carbohydrate level of Hepatopancreas > Muscles > Gills in control and experimental crab were found. The levels of Carbohydrate were found to be significantly decreased in cadmium chloride exposed crab comparison with control crabs in hepatopancreas, muscles and gill tissue.

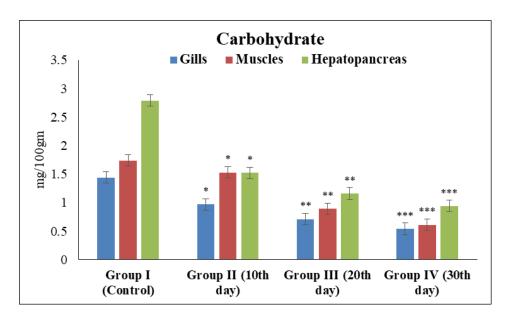
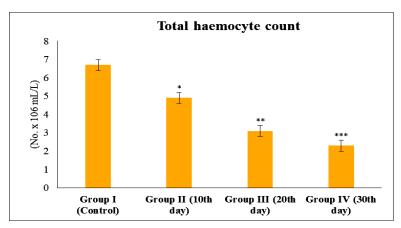


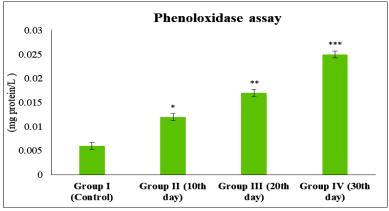
Table 4.10: Effect of cadmium exposure (12µg/L) on carbohydrate content in crab, Sesarma quadratum

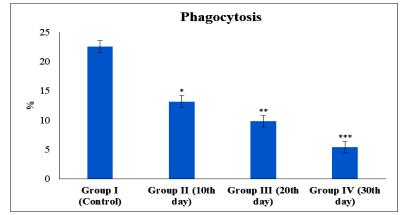
4.4. Immunological parameters in subacute concentrations of cadmium chloride exposure in *Sesarma quadratum*

Immune systems of crustaceans include both cellular and noncellular defense responses and circulating haemocytes are part of the defense against potential pathogens. Since this is an early internal defense by circulating haemocytes against pathogens, decrease in total haemocyte count (THC) or phagocytic activity (PA) due to the exposure of contaminants can impair the defensive response of the host against pathogens. In the present study to investigate the immunological parameters as total haemocyte count, phenoloxidase assay, phagocytosis and lysosomal membrane stability. The altered level of total haemocyte count, phenoloxidase assay, phagocytosis and lysosomal membrane stability were observed. The phenoloxidase activity was directly proportional to the duration of the cadmium chloride exposure.

In the observation, on 10 days exposure of CdCl₂ on *Sesarma quadratum* significant decreased of haemocyte count (4.9±0.09mg/gm), phagocytosis (13.18±1.83mg/gm) and lysosomal membrane stability (5.29±0.11mg/gm) while phenoloxidase assay was significantly increased (0.012±0.002mg/gm) as compared to control were observed. In 20 days exposure of CdCl₂ on *Sesarma quadratum* significantly decreased of haemocyte count (3.1±0.08mg/gm), phagocytosis (9.81±1.58mg/gm) and lysosomal membrane stability (3.65±0.09mg/gm) while phenoloxidase assay was significant increased (0.017±0.002mg/gm) as compared to control were observed. In 30 days exposure of CdCl₂ on *Sesarma quadratum* significant


decrease of haemocyte count (2.3±0.08mg/gm), phagocytosis (5.39±1.35mg/gm) and lysosomal membrane stability (2.17±0.010mg/gm) while phenoloxidase assay was significantly increased (0.025±0.003mg/gm) as compared to control were observed (Table 4.8 and Fig. 4.11). Among the various duration of exposure of CdCl₂, 30 days exposure of CdCl₂ has significant alterations were observed.


Table 4.8: Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum


Immunological parameters	Group I (Control)	Cadmium exposed 12µg/L					
parameters	(Control)	Group II (10 th day)	Group III (20 th day)	Group IV (30 th day)			
Total haemocyte count (No. x 10 ⁶ mL/L)	6.7±0.12	4.9±0.09*	3.1±0.08**	2.3±0.08***			
Phenoloxidase assay (mg protein/L	0.006±0.001	0.012±0.002*	0.017±0.002**	0.025±0.003***			
Phagocytosis (%)	22.53±1.76	13.18±1.83*	9.81±1.58**	5.39±1.35***			
Lysosomal membrane stability (mg mL protein/L	6.52±0.15	5.29±0.11*	3.65±0.09**	2.17±0.010***			

Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P< 0.05 was considered significant. *P<0.05, **P<0.01, ***P<0.001 statistically significant and NS= Non significant (P>0.05) compared with Group I (Control).

The levels of total haemocyte count, lysosomal membrane stability and phagocytosis were significantly decreased while phenoloxidase was significantly increased in cadmium chloride exposed crab comparison with control crabs.

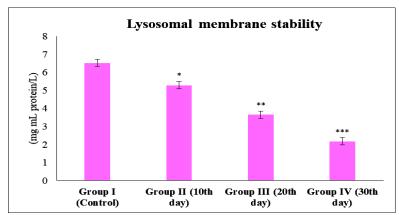


Fig. 4.11: Effect of cadmium exposure (12µg/L) on immunological parameters in crab, Sesarma quadratum

4.5. Stress markers in subacute concentrations of cadmium chloride exposure in Sesarma quadratum

Lipid peroxidation induced by metals at sub-lethal levels, which alter the physiological and biochemical characteristics of biological systems. To counter the detrimental effects of the prooxidant activity of metals, a group of antioxidant enzyme systems function in the organisms. The present study was performed to investigate lipid peroxidation product formation due to the exposure to effects of the metal namely cadmium at sub-lethal concentrations and the biological response through protective antioxidant enzyme activity in the marine crab, *Sesarma quadratum*. Variations in the activity of antioxidant enzymes have been proposed as biomarkers of pollutant mediated oxidative stress. Because oxidative stress responses are directly associated with cellular function, they may give a clear indication of the environment's local pollution status. In the present study to investigate the content of Malondialdehyde (MDA) and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S- transferase (GST). The data indicated that SOD, CAT, GPx and GST were expressed in *Sesarma quadratum* due to metal stress.

In the observation, on 10 days exposure of CdCl₂ on *Sesarma quadratum* significant increase of MDA content in serum (1.72±0.09nmole of MDA formed/mg protein in tissues), gills (11.27±1.43nmole of MDA formed/mg protein in tissues), hepatopancreas (15.32±1.83nmole of MDA formed/mg protein in tissues) and muscles (9.19±0.81nmole of MDA formed/mg protein in tissues) as compared to control were observed.

In the observation, on 20 days exposure of CdCl₂ on *Sesarma quadratum* significantly increased of MDA content in serum (1.96±0.05nmole of MDA formed/mg protein in tissues), gills (16.71±1.69nmole of MDA formed/mg protein in tissues), hepatopancreas (19.74±1.53nmole of MDA formed/mg protein

in tissues) and muscles (13.27±1.08nmole of MDA formed/mg protein in tissues) as compared to control were observed.

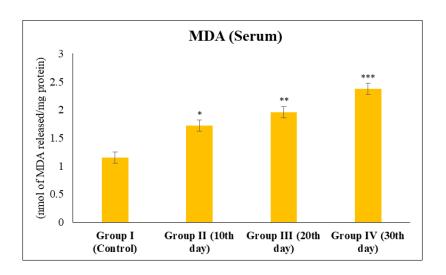

In the observation, on 30 days exposure of CdCl₂ on *Sesarma quadratum* significant increase of MDA content in serum (2.37±0.05nmole of MDA formed/mg protein in tissues), gills (19.84±1.53nmole of MDA formed/mg protein in tissues), hepatopancreas (23.64±1.27nmole of MDA formed/mg protein in tissues) and muscles (17.64±1.01nmole of MDA formed/mg protein in tissues) as compared to control were observed. Among the 10, 20 and 30 days exposure of CdCl₂, MDA content in *Sesarma quadratum* was significantly increased in 30 days exposure compared to 10 and 20 days exposure (Table 4.9 and Fig. 4. 12). Among the various duration of exposure of CdCl₂, 30 days exposure of CdCl₂ has significant alterations were observed.

Table 4.9: Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum

	Group I	Cadmium exposed 12µg/L		
MDA	(Control)	Group II (10 th day)	Group III (20 th day)	Group IV (30 th day)
Serum (nmol of MDA released/mg protein)	1.15±0.07	1.72±0.09*	1.96±0.05**	2.37±0.05***
Gills (nmol of MDA released/mg protein)	8.43±1.56	11.27±1.43*	16.71±1.69**	19.84±1.53***
Hepatopancreas (nmol of MDA released/mg protein)	9.54±1.15	15.32±1.83*	19.74±1.53**	23.64±1.27***
Muscles (nmol of MDA released/mg protein)	7.29±0.94	9.19±0.81*	13.27±1.08**	17.64±1.01***

Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P< 0.05 was considered significant. *P<0.05, **P<0.01, ***P<0.001 statistically significant and NS= Non significant (P>0.05) compared with Group I (Control).

In the present study MDA level of Hepatopancreas > Gills > Muscles > Serum in control and experimental crab were found. The levels of MDA were found to be significantly increased in cadmium chloride exposed crab comparison with control crabs in muscles, hepatopancreas, gills and serum.

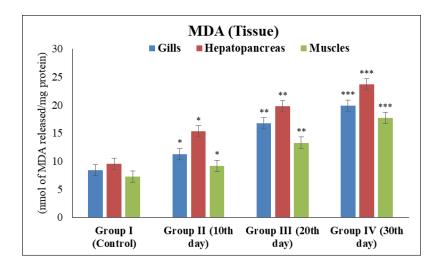


Fig. 4.12: Effect of cadmium exposure (12µg/L) on MDA content in crab, Sesarma quadratum

In the observation, on 10 days exposure of CdCl₂ on *Sesarma* quadratum significantly decreased of SOD content in serum (0.23±0.04mg protein/L), gills (0.42±0.09U/mg protein), hepatopancreas (0.74±0.18U/mg protein) and muscles (0.45±0.05U/mg protein) as compared to control were observed.

In the observation, on 20 days exposure of CdCl₂ on *Sesarma* quadratum significant decreased of SOD content in serum (0.18±0.04mg protein/L), gills (0.26±0.05U/mg protein), hepatopancreas (0.53±0.15U/mg

protein) and muscles (0.31±0.05U/mg protein) as compared to control were observed.

In the observation, on 30 days exposure of CdCl₂ on *Sesarma quadratum* significantly decreased of SOD content in serum (0.09±0.03mg protein/L), gills (0.21±0.05U/mg protein), hepatopancreas (0.39±0.11U/mg protein) and muscles (0.19±0.04U/mg protein) as compared to control were observed. Among the 10, 20 and 30 days exposure of CdCl₂, SOD content in *Sesarma quadratum* was significantly decreased in 30 days exposure compared to 10 and 20 days exposure (Table 4.10 and Fig. 4. 13). Among the various duration of exposure of CdCl₂, 30 days exposure of CdCl₂ has significant decreased activities were observed.

Table 4.10: Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum

	Group I	Cadmium exposed 12µg/L		
SOD	(Control)	Group II (10th	Group III (20th	Group IV (30th
		day)	day)	day)
Serum (mg	0.49 ± 0.05	0.23±0.04*	0.18±0.04**	$0.09\pm0.03***$
protein/L)				
Gills (U/mg	0.65±0.09	0.42±0.09*	0.26±0.05**	0.21±0.05***
protein)				
Hepatopancreas	1.19±0.21	0.74±0.18*	0.53±0.15**	0.39±0.11***
(U/mg protein)				
Muscles (U/mg	0.96±0.09	0.45±0.05*	0.31±0.05**	0.19±0.04***
protein)				

Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P< 0.05 was considered significant. *P<0.05, **P<0.01, ***P<0.001 statistically significant and NS= Non significant (P>0.05) compared with Group I (Control).

In the present study SOD level of Hepatopancreas > Muscles > Gills > Serum in control and experimental crabs were found. The levels of SOD were found to be significantly decreased in cadmium chloride exposed crab comparison with control crabs in muscles, hepatopancreas, gills and serum.

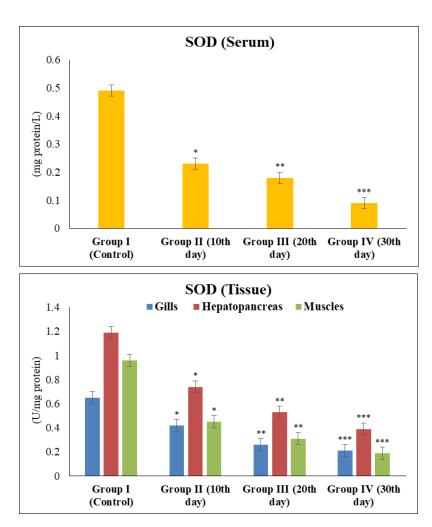
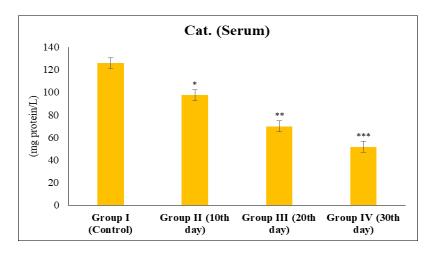


Fig. 4.13: Effect of cadmium exposure (12µg/L) on superoxide dismutase (SOD) activity in crab, Sesarma quadratum

In the observation, on 10 days exposure of $CdCl_2$ on *Sesarma quadratum* significantly decreased of catalase content in serum (97.43 \pm 4.97mg protein/L), gills (152.11 \pm 3.41 μ mol of H_2O_2 consumed/min/mg protein), hepatopancreas (267.89 \pm 8.47 μ mol of H_2O_2 consumed/min/mg protein) and muscles (218.59 \pm 7.21 μ mol of H_2O_2 consumed/min/mg protein) as compared to control were observed.


In the observation, on 20 days exposure of $CdCl_2$ on *Sesarma quadratum* significant decreased of catalase content in serum (69.85 \pm 4.82mg protein/L), gills (125.76 \pm 3.74 μ mol of H_2O_2 consumed/min/mg protein), hepatopancreas (215.01 \pm 9.05 μ mol of H_2O_2 consumed/min/mg protein) and

muscles ($186.61\pm7.65\mu\text{mol}$ of H_2O_2 consumed/min/mg protein) as compared to control were observed.

In the observation, on 30 days exposure of CdCl₂ on *Sesarma quadratum* significantly decreased of catalase content in serum (51.74±3.18mg protein/L), gill (113.76±3.28μmol of H₂O₂ consumed/min/mg protein), hepatopancreas (179.87±9.81μmol of H₂O₂ consumed/min/mg protein) and muscles (154.37±6.43μmol of H₂O₂ consumed/min/mg protein) as compared to control were observed. Among the 10, 20 and 30 days exposure of CdCl₂, catalase content in *Sesarma quadratum* was significantly decreased in 30 days exposure compared to 10 and 20 days exposure (Table 4.11 and Fig. 4. 14). Among the various duration of exposure of CdCl₂, 30 days exposure of CdCl₂ has significant decreased activities were observed.

Table 4.11: Effect of cadmium exposure (12μg/L) on catalase (CAT) activity in crab, Sesarma quadratum

	Group I	Cadmium exposed 12µg/L		
Cat.	(Control)	Group II (10th	Group III (20th	Group IV (30th
		day)	day)	day)
Serum (mg	125.74±5.13	97.43±4.97*	69.85±4.82**	51.74±3.18***
protein/L)				
Gills (µmol of	180.93±3.18	152.11±3.41*	125.76±3.74**	113.76±3.28***
H_2O_2				
consumed/min/mg				
protein)				
Hepatopancreas	351.74±11.36	267.89±8.47*	215.01±9.05**	179.87±9.81***
(µmol of H ₂ O ₂				
consumed/min/mg				
protein)				
Muscles (µmol of	295.73±7.34	218.59±7.21*	186.61±7.65**	154.37±6.43***
H_2O_2				
consumed/min/mg				
protein)				

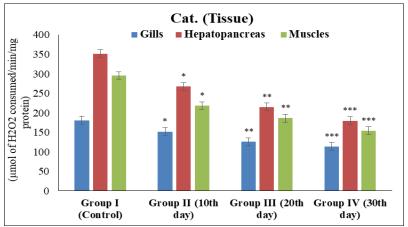


Fig. 4.14: Effect of cadmium exposure (12µg/L) on catalase (CAT) activity in crab, Sesarma quadratum

Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P< 0.05 was considered significant. *P<0.05, **P<0.01, ***P<0.001 statistically significant and NS= Non significant (P>0.05) compared with Group I (Control).

In the present study Cat. level of Hepatopancreas > Muscles > Gills > Serum in control and experimental crab were found. The levels of Catalase were found to be significantly decreased in cadmium chloride exposed crab comparison with control crabs in muscles, hepatopancreas, gills and serum.

In the observation, on 10 days exposure of CdCl₂ on *Sesarma quadratum* significant decreased of GPx content in serum (296.85±13.69μ mol GSH oxidized/min mg protein/L), gills (232.48±4.79μ mol GSH oxidized/min mg protein/L), hepatopancreas (229.47±9.53μ mol GSH oxidized/min mg protein/L) and muscles (209.48±6.21μ mol GSH oxidized/min mg protein/L) as compared to control were observed.

In the observation on 20 days exposure of CdCl₂ on *Sesarma quadratum* significant decreased of GPx content in serum (180.49 \pm 13.97 μ mol GSH oxidized/min mg protein/L), gills (196.74 \pm 4.52 μ mol GSH oxidized/min mg protein/L), hepatopancreas (185.63 \pm 7.45 μ mol GSH oxidized/min mg protein/L) and muscles (173.69 \pm 5.82 μ mol GSH oxidized/min mg protein/L) as compared to control were observed.

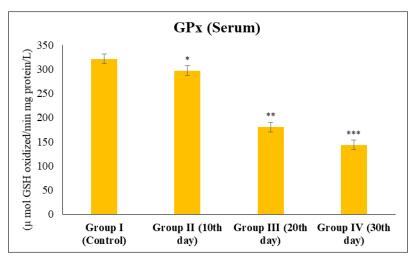

In the observation, on 30 days exposure of CdCl₂ on *Sesarma quadratum* significant decreased of GPx content in serum (143.19±11.82μ mol GSH oxidized/min mg protein/L), gills (152.47±4.76μ mol GSH oxidized/min mg protein/L), hepatopancreas (153.21±7.39μ mol GSH oxidized/min mg protein/L) and muscles (131.28±5.93μ mol GSH oxidized/min mg protein/L) as compared to control were observed. Among the 10, 20 and 30 days exposure of CdCl₂, GPx content in *Sesarma quadratum* was significantly decreased in 30 days exposure compared to 10 and 20 days exposure (Table 4.12 and Fig. 4. 15). Among the various duration of exposure of CdCl₂, 30 days exposure of CdCl₂ has significant decreased activities were observed.

Table 4.12: Effect of cadmium exposure (12μg/L) on Glutathione peroxidase (GPx) activity in crab, Sesarma quadratum

	Group I	Cadmium exposed 12µg/L		
GPx	(Control)	Group II (10 th	Group III (20th	Group IV (30th
		day)	day)	day)
Serum (μ mol GSH oxidized/min mg protein/L)	321.53±15.74	296.85±13.69*	180.49±13.97**	143.19±11.82***
Gills (μ mol GSH oxidized/min mg protein)	317.83±4.56	232.48±4.79*	196.74±4.52**	152.47±4.76***
Hepatopancreas (μ mol GSH oxidized/min mg protein)	313.52±8.76	229.47±9.53*	185.63±7.45**	153.21±7.39***
Muscles (μ mol GSH oxidized/min mg protein)	256.81±5.97	209.48±6.21*	173.69±5.82**	131.28±5.93***

Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P< 0.05 was considered significant. *P<0.05, **P<0.01, ***P<0.001 statistically significant and NS= Non significant (P>0.05) compared with Group I (Control).

In the present study GPx level of Serum > Gills > Hepatopancreas > Muscles in control and experimental crab were found. The levels of GPx were found to be significantly decreased in cadmium chloride exposed crab comparison with control crabs in muscles, hepatopancreas, gills and serum.



Fig. 4.15: Effect of cadmium exposure (12μg/L) on Glutathione peroxidase (GPx) activity in crab, Sesarma quadratum

In the observation, on 10 days exposure of CdCl₂ on *Sesarma* quadratum significant decreased of GSH content in serum (4.23±0.17μg.mg protein/L), gills (3.94±0.17μg.mg protein), hepatopancreas (5.12±0.51μg.mg protein) and muscles (4.31±0.64μg.mg protein) as compared to control were observed.

In the observation, on 20 days exposure of CdCl₂ on *Sesarma* quadratum significant decreased of GSH content in serum (2.78±0.19μg.mg protein/L), gills (1.67±0.21μg.mg protein), hepatopancreas (3.21±0.54μg.mg

protein) and muscles (2.94±0.56µg.mg protein) as compared to control were observed.

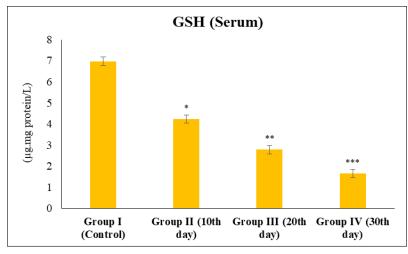

In the observation, on 30 days exposure of CdCl₂ on *Sesarma quadratum* significant decreased of GSH content in serum (1.65±0.21μg.mg protein/L), gills (0.83±0.19μg.mg protein), hepatopancreas (1.32±0.49μg.mg protein) and muscles (1.34±0.43μg.mg protein) as compared to control were observed. Among the 10, 20 and 30 days exposure of CdCl₂, GSH content in *Sesarma quadratum* was significantly decreased in 30 days exposure compared to 10 and 20 days exposure (Table 4.13 and Fig. 4.16). Among the various duration of exposure of CdCl₂, 30 days exposure of CdCl₂ has significant decreased content was observed.

Table 4.13: Effect of cadmium exposure (12µg/L) on Glutathione (GSH) content in crab, Sesarma quadratum

	Group I	Cadmium exposed 12µg/L		
GSH	(Control)	Group II (10 th	Group III (20th	Group IV (30th
		day)	day)	day)
Serum (µg.mg protein/L)	6.97±0.21	4.23±0.17*	2.78±0.19**	1.65±0.21***
Gills (μg/mg protein)	5.28±0.25	3.94±0.17*	1.67±0.21**	0.83±0.19***
Hepatopancreas (µg/mg protein)	7.47±0.74	5.12±0.51*	3.21±0.54**	1.32±0.49***
Muscles (μg/mg protein)	6.73±0.41	4.31±0.64*	2.94±0.56**	1.34±0.43***

Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P < 0.05 was considered significant. *P < 0.05, **P < 0.01, ***P < 0.001 statistically significant and NS= Non-significant (P > 0.05) compared with Group I (Control).

In the present study GSH level of Hepatopancreas > Serum > Muscles > Gills in control and experimental crab were found. The levels of GSH were found to be significantly decreased in cadmium chloride exposed crab comparison with control crabs in muscles, hepatopancreas, gills and serum.

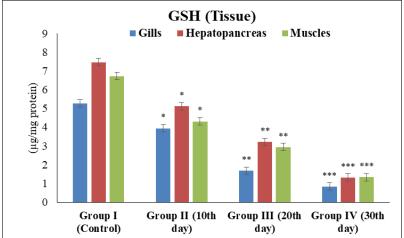


Table 4.16: Effect of cadmium exposure (12μg/L) on Glutathione (GSH) content in crab, Sesarma quadratum

In the observation, on 10 days exposure of CdCl₂ on *Sesarma* quadratum significant increase of GST content in serum (15.94±0.42mg protein/L), gills (32.19±2.17U/mg protein), hepatopancreas (53.18±1.96U/mg protein) and muscles (47.63±1.29U/mg protein) as compared to control were observed.

In the observation, on 20 days exposure of CdCl₂ on *Sesarma* quadratum significant increase of GST content in serum (21.79±0.35mg protein/L), gills (43.96±2.95U/mg protein), hepatopancreas (72.19±2.28U/mg

protein) and muscles (62.01±1.95U/mg protein) as compared to control were observed.

In the observation, on 30 days exposure of CdCl₂ on *Sesarma quadratum* significant increase of GST content in serum (24.61±0.31mg protein/L), gills (37.65±1.74U/mg protein), hepatopancreas (81.43±2.11U/mg protein) and muscles (70.85±1.78U/mg protein) as compared to control were observed. Among the 10, 20 and 30 days exposure of CdCl₂, GST content in *Sesarma quadratum* was significantly increased in 30 days exposure compared to 10 and 20 days exposure (Table 4.14 and Fig. 4.17). Among the various duration of exposure of CdCl₂, 30 days exposure of CdCl₂ has significant decreased activities were observed.

Table 4.14: Effect of cadmium exposure (12μg/L) on Glutathione – S-transferase (GST) activity in crab, Sesarma quadratum

	Group I	Cadmium exposed 12μg/L		
GST	(Control)	Group II (10th	Group III (20th	Group IV (30th
		day)	day)	day)
Serum (mg protein/L)	11.29±0.31	15.94±0.42*	21.79±0.35**	24.61±0.31***
Gills (U/mg protein)	20.74±2.69	32.19±2.17*	43.96±2.95**	37.65±1.74***
Hepatopancreas (U/mg protein)	42.97±2.19	53.18±1.96*	72.19±2.28**	81.43±2.11***
Muscles (U/mg protein)	31.18±1.48	47.63±1.29*	62.01±1.95**	70.85±1.78***

Values were expressed as Mean \pm SD for three experiments in each group and significant differences between mean values were determined by One Way Analysis of Variance (ANOVA) followed by Tukey HSD test. P < 0.05 was considered significant. *P < 0.05, **P < 0.01, ***P < 0.001 statistically significant and NS= Non-significant (P > 0.05) compared with Group I (Control).

In the present study GST level of Hepatopancreas > Muscles > Gills > Serum in control and experimental crab were found. The levels of GST were found to be significantly increased in cadmium chloride exposed crab comparison with control crabs in muscles, hepatopancreas, gills and serum.

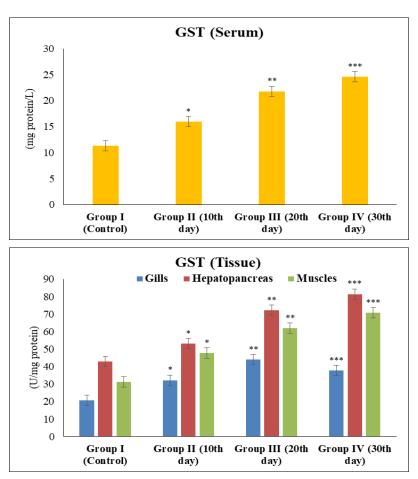
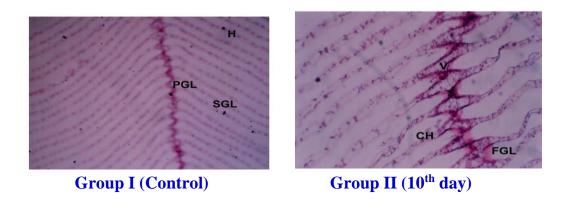


Fig. 4.17: Effect of cadmium exposure (12μg/L) on Glutathione –Stransferase (GST) activity in crab, Sesarma quadratum

4.6. Histological observation in subacute concentrations of cadmium chloride exposure in *Sesarma quadratum*


Histopathological studies help in understanding the stress caused to the animal exposed to pollution. This is a universal method for the assessment of the impact of xenobiotics on the tissues of animals. The ability of any tissue to regulate its normal physiological function is extensively related to its structural integrity. Any damage to the tissues usually results in altered and frequently abnormal metabolic activities. Hence there is a need to study the histopathological changes in gills and hepatopancreas of *Sesarma quadratum*

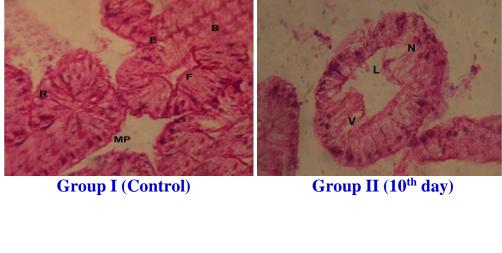
in response to cadmium exposure. Moderate alterations were observed in the gills followed by hepatopancreas of *Sesarma quadratum* (Plate 4.1 and 4.2).

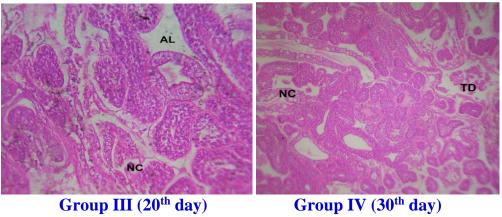
Histology of gills

The gills of *Sesarma quadratum* are formed of a number of lamellae or broad flattened plates arranged serially in pairs along a control gill stem. The central axis of gill tissue is the primary gill lamellae (PGL) and it further divides into secondary gill lamellae (SGL) or filaments. The control gill exhibits a thin layer of cuticle covering the entire outer surface. Underlying the cuticle is a continuous layer of epithelial cells; at irregular intervals pillar cells join the lamellae. The distal part of the lamella is expanded. The epithelial cells of the lamellae are continued as the lining of the gill stem and large connective tissue cells compose the chief support of the gill stem (Plate 4.1 Group I (Control)).

In the observation of gills in 10 days exposure of cadmium showed the following changes were seen as congestion of haemocytes and fusion of gill lamellae (Plate 4.1 Group II-10 day's exposure). In the observation of gills in 20 days exposure of cadmium showed the following changes were seen as abnormal gill tips, accumulation of haemocytes and disintegration of the epithelium (Plate 4.1 Group II-20 days exposure). In the observation of gills in 30 days exposure of cadmium showed the following changes were seen as an accumulation of haemocytes and disintegration of the epithelium (Plate 4.1 Group III-30 days exposure).

Note: H – Haemocyte; RGL – Ruptured Gill Lamellae; PGL – Primary Gill Lamellae; SGL – Secondary Gill Lamellae; CH – Congestion of Haemocytes; FGL – Fusion of Gill Lamellae; AGT – Abnormal Gill Tips; AH – Accumulation of Haemocytes; DE – Disintegration of Epithelium; AH – Accumulation of Haemocytes; DE – Disintegration of Epithelium.


Plate 4.1: Effect of cadmium exposure (12µg/L) on Histopathological structure of Gills of Sesarma quadratum


Histology of Hepatopancreas

In the control crab the yellowish-brown tissue of the hepatopancreas occupied much of the cephalothoracic cavity. The histology of control crab exhibited the well-organized glandular tubular structure. Histologically, the tubules consisted of an epithelium composed of four cell types E-cells (embryonic), the F-cells (fibrillar), the B cells (blister like), and the R-cells (resorptive). The E-cells, which were generally among the smallest of the hepatopancreatic cell types, were undifferentiated polyhedral cells. They had high nucleo-cytoplasmic ratio, and were concentrated in the distal tip of the tubules, which is the area of proliferation. The F-cells, which appeared striated due to extensively developed rough endoplasmic reticulum, were tall columnar epithelial cells with basally situated nuclei. They are secretory in function and present in the mediodistal, and medioproximal portions of the tubules. The Bcells, which are secretory and excretory in function and have a single large vacuole with compressed basal nuclei, were the largest of hepatopancreatic cell types seen mainly in the proximal areas of the tubules. The R-cells, the most abundant of the four cell types, had multi-vacuolated cytoplasm and are storage in nature. They were seen in the mediodistal and proximal areas of the tubules (Plate 4.2 Group I (Control)).

In the observation of hepatopancreas in 10 days exposure of cadmium showed the following changes were seen as mild alteration in lumen, vacuole and necrosis (Plate 4.2 Group II-10 day's exposure). In the observation of hepatopancreas in 20 days exposure of cadmium showed the following

changes were seen as abnormal lumen and necrotic cells (Plate 4.2 Group III-20 days exposure). In the observation of hepatopancreas in 30 days exposure of cadmium showed the following changes were seen as tissue debris and necrotic cells (Plate 4.2 Group IV- 30 days exposure).

Note: E – Embryonic Cells; F – Fibrillar Cells; B – Secretory Cells; MP – Peritrophic Membrane; R – Absorptive Cells; TD – Tissue Debris; NC – Necrotic Cells; AL – Abnormal Lumen; NC – Necrotic Cells; L – Lumen; V – Vacuole; N – Necrosis.

Plate 4.2: Effect of cadmium exposure (12µg/L) on Histopathological structure of Hepatopancreas of Sesarma quadratum

CHAPTER-V

DISCUSSION

CHAPTER V

5. DISCUSSION

Estuaries are semi-enclosed coastal bodies of water which have a free connection with the open sea and within which sea water measurably diluted with freshwater from land drainage (Pritchard, 1967; Cross and Williams, 1981 and Nixon *et al.*, 2004). Estuaries may be classified in different ways. At the simplest level, there are two types of estuaries-river mouth estuaries and lagoons estuaries. Estuaries and then associated wetlands serve as storm buffers that absorb wave energy and rising tidal waters during storms.

The estuarine environment is a complex blend of continuously changing habitats. Unlike freshwater bodies like lakes and rivers, estuaries can produce a wide range in the values of physical and chemical parameters that will be recorded and frequent changes occur in these values both with tidal and meteorological events. In streams, rivers and lakes, water quality parameters are more likely to fluctuate within a well-defined range largely determined by rainfall and season and these values are often homogeneous throughout the water body (Bouillon *et al.*, 2001). In an estuary, in contrast these parameters can change abruptly in time and space depending on the study locations (sampling sites) and may or may not reflect general conditions throughout the estuary.

Two key phenomena that control physical and chemical parameters are tidal oscillation and stratification (vertical and horizontal) (Chugh, 1961; Quasim and Gopinathan 1969; Murthy and Henry 1983; Lanzoni and

Seminara 1998; Sadhuram *et al.*, 2005 Meenakshi Chatterjee *et al.*, 2013) tidal oscillations are the net transport for water (as well as sediments and contaminants) out of an estuary with tidal flow and river flow. Stratification is layering of the estuary generally associated with the inflow of dense salt water at depth and the outflow of more buoyant freshwater at the surface. Layering can also occur when seasonal heating causes a sharp differential or thermocline (interface where temperature changes rapidly with depth) so that the warm surface layer is isolated from the cold bottom layer.

Biological processes such as primary production and decomposition can modify the physico-chemical conditions which the biological interrelationship such as reproduction, recruitment and predator–prey cycles can modify the community structure. The latter in turn can have further consequences for the modification of physico-chemical characteristics of estuaries (De Jonge *et al.*, 2002).

Physico-chemical parameters

Seasonal variations of different environmental features in the estuarine system which is chiefly controlled by the spectacular region of the rainfall during monsoon. Thus making the year divisible as mentioned earlier into three distinct seasons namely pre monsoon (March to May), monsoon (June to September) and post monsoon (October to December).

Monthly variations in physico-chemical parameters viz., atmospheric and surface water temperature, pH, EC, dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand (BOD), alkalinity, salinity,

hardness, ammonium, nitrate, sodium, chloride, sulphate and fluoride in Kuduvaiyar estuarine waters were recorded for a period of 2019 to 2020.

Seasonal variations of physical characters in Kuduvaiyar estuary

The light penetration into the water column depends upon the clarity of water, depth and the nature of sediment as observed by Ouasim, (1978). One of the changing conditions brought about by the monsoon in tropical estuaries was found to be as a factor of light (Ouasim, 1978) and it is very interesting to examine the fluctuation in the other environmental factors (Biological) which are controlled by the light penetration in the water. The seasonal pattern recorded in the present study is in conformity with the earlier reports from Cochin backwaters (Ouasim *et al.*, 1968 and 1969 and Gupta *et al.*, 1980), Netravati Gurupur estuary (Bhat and Gupta, 1980), Ashtamudi estuary (Nair *et al.*, 1984), Vellar estuary (Thangaraj, 1984) and Coleroon estuary (Prabha Devi, 1986).

Statistical analysis revealed that a positive correlation was observed for light penetration with gross and net primary production. Therefore, it may be inferred that the influence of light on biotic factors are appreciable. However, Yoo and Lee (1980) have not stressed the importance of light as a limiting factor in determining the diatom standing crop even though the correlation was statistically significant. The light penetration depth was high during summer which possessed clear water and shallow bottom, during monsoon due to high turbidity caused by heavy soil erosion from the surrounding mangrove swamp area and clay nature of the substratum.

In the present study, the variation in temperature, pH, salinity, dissolved oxygen, total hardness, total alkalinity, electrical conductivity, dissolved oxygen (DO), biological oxygen demand (BOD) and chemical oxygen demand (COD) were done triplicate in the laboratory as per the standard methods.

Temperature is a universal factor of importance in the study of aquatic ecosystems. There are documents that measure the effect of temperature on the growth of phytoplankton in the laboratory (Hulburt and Guillard, 1968). But, there are few evidence to show the importance of effects of temperature on the production, abundance and distribution of organisms in the shallow ecosystems. Veliea (1984) suggested that temperature may be more important as a covariate with other factors than an independent factor.

In the present study, the variation in atmospheric temperature is found to be associated with the time of collection of water samples and the rainfall during the period. The surface water temperature closely followed the atmospheric temperature. In Kuduvaiyar estuary, the highest atmospheric temperature (29.13°C) was recorded during pre-monsoon while lowest atmospheric temperature in the monsoon (25.11°C) and post monsoon (27.07°C). Similar findings were also recorded by Ravichelvan *et al.* (2015) and Eshwaralal and Angadi (2002).

The variations in water and atmospheric temperature were very narrow and sometimes no such variation was observed. Day (1951) suggested that in shallow estuaries with wide intertidal flats, solar radiation and evaporation causes marked temperature changes. Throughout the study period, the higher

atmospheric and water temperature was observed during summer and premonsoon and lower temperature during monsoon and post-monsoon periods.

Quasim and Sengupta (1981) reported from Mandovi and Zuari estuaries of Goa that seasonal changes of temperature in water of mid depth of the six stations should increase thereafter at some stations. Bhat and Gupta (1980) and Gupta *et al.* (1980) from Ashtamudi estuary recorded higher water temperature during pre-monsoon and lower temperature during monsoon period. Thus the present findings favor the earlier reports on the fluctuations of water temperature on the estuaries.

pH refers to a scale of intensity of acidity or alkalinity. This is regarded as a measure of concentration of H⁺ ions in water. It is one of the important indicators of water quality and is of great importance to living systems because both cell structure and function can be affected by even small changes in pH (Weber and Stun, 1963). Low pH in water is caused by acids, acid-generated salts, and dissolved carbon dioxide. Low pH values give water acidic, acidic-sour taste and kill small microorganisms. High pH is from carbonates, bicarbonates, hydroxides, phosphates, silicates and borates and a very high value of pH makes water strongly alkaline and bitter in taste making it unfit for human consumption. The acidic (low pH) groundwater is corrosive and can dissolve metals, especially copper from pipes and pumps. The corrosion can shorten the economic life of plumbing and hot water cylinders and in some cases, the dissolved metals in the water may cause illness (Banerji, 1999 and Mahesha *et al.*, 2004).

The pH of the water showed alkaline range throughout the period of study. Seasonal average values of pH were always towards the alkaline condition in the study area. The pH varied with the seasons as lowest in monsoon months (7.9) and highest during pre-monsoon (8.7) while post monsoon pH was 8.3. Our findings are in concordance with Mohan Raj *et al.* (2013) and Ravichelvan *et al.* (2015).

The pH was higher during the summer season while it was low during the monsoon period due to the uptake of CO₂ by the photosynthesizing organisms, especially phytoplankton and planktonic cyanobacteria from the seawater could have increased the pH level during the summer season (Subramanian and Mahadevan, 1999). The low pH observed during the monsoon season is due to the influence of freshwater influx and dilution of seawater, reduction of salinity and temperature and decomposition of organic matter (Kannan, 1980).

The highest value may be due to the Industrial effluent because it contained many chemicals, salts and dissolved solids (Mishra and Saksena, 1993). Higher EC indicates the presence of a high amount of dissolved inorganic substances in ionized form (Murhekar, 2011). Domestic Effluent also showed moderate to high value of EC. Electrical Conductance in monsoon was found below detection limit because it is diluted water and in diluted water presence of ions and chemicals is in minute quantity so; EC is found below the detection limit. In the present study, highest EC was recorded

during post monsoon (459Mscm⁻¹) and lowest during monsoon (376Mscm⁻¹) while Pre monsoon EC was 412Mscm⁻¹.

Oxygen dissolved in water is usually referred to as dissolved oxygen. It is an index of physical and biological processes going on in water. Dissolved oxygen is also an important factor for the dissolution of inorganic substances in water (NEERI, 1998). Generally, unpolluted surface waters are more saturated with dissolved oxygen than ground waters due to natural aeration. A rapid fall of dissolved oxygen level in drinking waters is one of the first indications of organic pollution.

DO is one of the most important parameters to check the water quality. The presence of oxygen is essential for the survival of aquatic life in water. The DO level in water depends on the physical, chemical and biological activities in the water body. Generally variation in concentration of DO is largely governed by photosynthesis, respiration, mineralization and decomposition activities in water (Chanu and Devi, 2008). Good potable water should have the level of saturated DO at 7 - 9 mg/L at 30° C. As the DO level falls, undesirable odour, taste and colour appear which reduce the acceptability of water (Garg *et al*, 2007). Increase in DO is related to decrease in temperature or decrease in DO is related to higher temperature as solubility of O_2 decreases with increase in temperature (Dwivedi and Sonar, 2004).

Oxygen is dissolved in most waters in varying concentrations. The solubility of oxygen depends on temperature, pressure and salinity of water. The low DO values may be due to discharge of waste water into the water

body demanding more oxygen and it indicates deterioration of water quality (Achuthan Nair *et al*, 2005).

The present investigation showed minimum dissolved oxygen was recorded during monsoon months (5.2mg/L), maximum dissolved oxygen were recorded during pre-monsoon and post monsoon months (5.9 and 5.3mg/L respectively). Similar observations were drawn by Ravichelvan *et al.* (2015) and Sahu *et al.*, (2000).

Chemical Oxygen Demand (COD) is a measure of pollution in aquatic ecosystems. It estimates the carbonaceous factor of organic matter. In the present study COD was lowest in pre-monsoon months (22.10mg/L) and highest during monsoon (23.13mg/L) and post monsoon (23.91mg/L).

Biological Oxygen Demand (BOD) is the amount of oxygen required by the living organisms engaged in the utilization and ultimate destruction or stabilization of organic water. It is a very important indicator of the pollution status of a water body. In the conducted experiments, BOD was high in Domestic and Industrial Effluent due to high organic load and excessive growth of total microorganisms (Kandhasamy and Santhaguru, 1994). In the present study, BOD was lowest in monsoon months (2.34mg/L) and highest during pre-monsoon (4.57mg/L) while post monsoon BOD was 3.72mg/L.

This may be as a result of escape of organic matter (organic) into the river mostly from faecal waste deposition by the surrounding urban area and human settlements. Control Sample revealed BOD value below detection limit, because it was distilled water and had no organic load. Highest COD

values were found in Domestic Effluent which may be due to the incessant inflow of sewages from urban areas (Mishra *et al.*, 1990).

The alkalinity of water is its capacity to neutralize acids. Alkalinity of water is a measure of weak acid present in it and of the cations balanced against them (Singh *et al.*, 2010). Total alkalinity is the total concentration of bases in water, usually bicarbonates and carbonates (Ouyang *et al.*, 2006). In the present study, alkalinity varied with the seasons as lowest in monsoon months (118.37mg/L) and highest during pre-monsoon (119.25mg/L) while post monsoon alkalinity was 118.95mg/L. Total alkalinity depends on the concentration of the substance which would raise the pH of the water. High levels of alkalinity indicate the presence of strongly alkaline industrial waste water and sewage in the estuary (Safari *et al.*, 2012). The degradation of plants, living organisms and organic waste in the estuary might also be one of the reasons for increase in carbonate and bicarbonate levels; it shows an increase in alkalinity value (Wang *et al.*, 2006). Our results agree with the earlier report (Mohan Raj *et al.*, 2013).

Salinity is considered to be the prime factor among the most important environmental parameters that control the dynamic situation of the estuarine environment. Salinity at both stations showed high values during the summer season due to less rainfall, decreased freshwater inflow and rise in temperature of the estuary and low during the monsoon season due to high rainfall and land runoff. In the present study, salinity was low during monsoon (23.18 PSU) and high during pre-monsoon (25.08 PSU) while post monsoon salinity was

24.79PSU. Minimum salinity was recorded during monsoon and slowly built up during post-monsoon and attained its maximum during summer.

Salinity is one of the important factors which profoundly influence the abundance and distribution of the fauna and flora in the estuarine environment which in turn depends on the inflow of freshwater and the prevailing temperature. During the monsoon season low salinity was recorded due to heavy rainfall and large quantities of freshwater inflow. Thus, the variations in salinity were mainly influenced by the rainfall and entry of freshwater (Sasinayar and Gowda, 1999).

However, the freshwater inflow into the estuary and constant evaporation of the estuarine water together with mixing of sea water into the estuary are the important factors that influenced the distribution of salinity in Kuduvaiyar estuary. The present observation of high salinity during postmonsoon and low salinity during monsoon periods is in conformity with the earlier reports from different estuaries of India (Ramamirtham and Jayaraman, 1983; Michael, 1970; Sreenivasan and Pillai, 1972; Haridas *et al.*, 1973; Santhanam *et al.*, 1975; Thangaraj *et al.*, 1984 and Nair *et al.*, 1984).

The capacity of water to absorb oxygen depends upon temperature and salinity (Kinne, 1964). The increasing tendency of oxygen at stations perhaps related to the freshwater flow in the river during the rainy season. The dissolved oxygen concentration was associated with phytoplankton density. In general, high concentrations of dissolved oxygen always tend to result in

higher gross and net primary production during summer and pre-monsoon period.

Total hardness is the parameter of water quality used to describe the effect of dissolved minerals (mostly Ca and Mg), determining suitability of water for domestic, industrial and drinking purposes attributed to presence of bicarbonates, sulphates, chloride and nitrates of calcium and magnesium. High values of hardness are probably due to regular addition of large quantities of detergents used by the nearby residential localities into lakes which drain into estuaries. In the present study, hardness was lowest in monsoon months (1637mg/L) and highest during pre-monsoon (1727mg/L) while post monsoon hardness was 1703mg/L. Present finding is in agree with Mohan Raj *et al.* (2013).

Seasonal variations in the chemical characters in Kuduvaiyar estuary

The marine environment. as a complex system, is influenced by various physical, chemical and biological processes. The open ocean is more stable compared to the near shore waters, where the interaction with the terrestrial zone is more effective in bringing about variations in different physico-chemical parameters. Hence a thorough knowledge of hydrography is indispensable to estimate the quality of the its influence on biological fertility. Physical environment and parameters play an important role in the biochemistry of the water body. Subtle changes in physical conditions can have profound effects on the water quality of the study system, which may in turn affect the spatial

and temporal distribution of nutrients and biological communities. Additionally, changes in physical ocean process can affect weather patterns and climatic variability (Poonam and Rahul, 2012).

The quality of water in any ecosystem provides significant information about the available resources for supporting life in that ecosystem. Good quality of water resources depends on a large number of physico-chemical parameters and biological characteristics. So, monitoring of these parameters is essential to identify the magnitude and source of any pollution load (Thirupathaiah *et al.* 2012). The present study involves the analysis of water described by its physico-chemical parameters as ammonium, nitrate, sodium, chloride, sulphate and fluoride.

The ammonium was lowest in monsoon months (0.45mg/L) and highest during pre-monsoon (0.62mg/L) while post monsoon hardness was 0.58mg/L. The nitrate was lowest in monsoon months (32.67mg/L) and highest during pre-monsoon (38.57mg/L) while post monsoon 35.92mg/L. The sodium was lowest in monsoon months (97.51mg/L) and highest during pre-monsoon (132.49mg/L) while post monsoon 125.74mg/L. The chloride was lowest in months (213.47 mg/L)highest during monsoon and pre-monsoon (302.28mg/L) while post monsoon 286.51mg/L. The sulphate was lowest in monsoon months (73.21mg/L) and highest during pre-monsoon (86.92mg/L) while post monsoon 80.65mg/L. The fluoride was lowest in monsoon months (0.54mg/L) and highest during pre-monsoon (0.65mg/L) while postmonsoon 0.59 mg/L .

Ammonia is toxic to aquatic organisms, even in very low concentrations. It may be contributed by the natural materials such as proteins, peptides, nucleic acids, urea and the compounds in the form of azide, hydrazine, hydroxylamine, nitrate, nitrite, oxime and semicarbazone (Jameel, 1998). Decomposition from the organic matter in the sediments could also lead to increase in its concentration (Shrihari and Venkatesa, 1994). Even though the exact reason is not correctly known, it is interesting to note that in contrast to nitrate and ammonia was more during the pre-monsoon period. The relatively low concentration during the monsoon can be attributed to intense photosynthesis by algae, which removes ammonia in water bodies (John Hargreaves and Craig Tucker, 2004).

Chloride in the form of chloride (Cl-) ion is one of the major inorganic anions in water and wastewater. Chloride exists in all natural waters; the concentrations vary very widely and reach a maximum in sea water. In the present study chloride level within the limit in post monsoon and monsoon while slightly increased in pre-monsoon as compared with Fisheries and aquatic life standard. This difference could result from the no negligible contribution of chemicals and in particular in the waste water discharged at these sites. High chloride concentrations in the water may also be associated with the presence of sodium in drinking water. Elevated concentration levels of sodium may have an adverse health effect on normal healthy persons. Along the sea coast chloride may be present in high concentration because of

leakage of salt water into the sewage system. It also may be increased by industrial processes.

Fluorine is presented in aquatic ecosystems as fluoride (F–). However, in volcanic emissions, marine aerosols and weathering of minerals some of its natural sources are present (Camargo, 2003). Its extremity is used in the production of some industrial products such as, fertilizers, graphite, semiconductors, and alumina electrolysis (El-Said and Draz, 2010). High levels of fluoride in ecosystems are harmful for aquatic organisms, animals and particularly humans. In the present study fluoride level in pre-monsoon, Post- monsoon and monsoon within the limit as compared with Fisheries and aquatic life standards.

Sodium is the most abundant cation in seawater. Sodium is a soft, silvery-white, highly reactive metal that is never found in nature in an uncombined state. Sodium, an alkali-metal element, has a strong tendency to exist in the ionic form (Kelly et al., 2012). In biological systems and even in solids such as sodium chloride, sodium remains distinctly separate as the sodium ion. Sodium is the most abundant of the alkali elements and constitutes 2.6 percent of the Earth's crust. Compounds of sodium are widely distributed in nature. Weathering of salt deposits and contact of water with igneous rock provide natural sources of sodium. Toxic symptoms of sodium poisoning include general involvement of the central nervous system with increase in sensitivity, muscle twitching, tremors, cerebral and pulmonary oedema, and stupor. (WHO, 1996). In the present study fluoride level in pre-monsoon, Post-

monsoon and monsoon within the limit as compared with Fisheries and aquatic life standards.

Nitrate content is an excellent parameter to judge organic pollution and it represents the highest oxidized form of nitrogen and a vital nutrient for growth, reproduction and the survival of organisms. Nitrate level less than 0.5ml/l will not pollute the water bodies. Under normal conditions nitrate content in the water surface occurs in trace amounts but the value is enhanced by the inputs of other sources (Bilger and Atkinson, 1997). The presence of nitrates in the water samples is suggestive of some bacterial action and bacterial growth. These findings support the observations (Majumder *et al.*, 2006).

The results of the study concluded that fresh water contaminant influx from the adjacent river; rainy seasons and industrial wastes are the main source of chemical contaminant in this estuary.

Heavy metal content of water

In recent years, pollution of marine environments by heavy metal has become a national and international problem. Then there was 'Itai itai' disease caused by the consumption of foods contaminated by cadmium from Niigata in Japan. The term heavy metal is a loose one. It includes transition metals like cadmium, chromium, copper, lead, mercury, nickel and zinc. Of these, the most toxic metallic pollutants are mercury, lead, zinc and copper. Heavy metals occur naturally in the marine environment. In addition, these heavy metals enter the aquatic systems by direct discharges via industrial and urban

effluents, surface runoff and indirectly from aerial fallout (Nammalwar, 1983).

In India, use of heavy metal fungicides in agriculture is increasing as seed-dressing. agents. Antifouling properties of mercury compounds are yet used in pulp mills, industrial and domestic sewage wastes from various sources are now a threat to the survival of fishes and other organisms. The common feature of these metals is that they are all relatively toxic even at fairly low concentrations and are readily concentrated by aquatic organisms and plants. The seriousness of heavy metal contamination is further compounded by the fact that they are generally water-soluble, non-degradable, vigorous oxidizing agents and are strongly bonded to many biochemicals inhibiting their functions (Nammalwar, 1983).

The present study pre-monsoon, maximum level of cadmium (0.017mg/L) was observed followed by chromium (0.007mg/L), copper (0.004mg/L), lead (0.09mg/L), mercury (0.00005mg/L), nickel (0.03mg/L) and zinc (0.05mg/L). In monsoon, the level of cadmium (0.011mg/L) was observed followed by chromium (0.005mg/L), copper (0.002mg/L), lead (0.05mg/L), mercury (0.00002mg/L), nickel (0.01mg/L) and zinc (0.02mg/L). In post monsoon, the lowest level of cadmium (0.015mg/L) was observed followed by chromium (0.006mg/L), copper (0.003mg/L), lead (0.07mg/L), mercury (0.00003mg/L), nickel (0.02mg/L) and zinc (0.04mg/L).

Trace elements are found in natural water bodies at varying concentrations. The most potentially dangerous of these elements are heavy

metals. Body levels of essential metals such as copper, chromium, nickel and zinc can be regulated by some decapod crustaceans at concentration below a threshold level. Accumulation of these metals only begins after the organisms are faced with high concentration in the surrounding medium (Rainbow and White, 1989), but body levels of nonessential metals such as cadmium and lead were not found to be regulated by crustacean (Pastor, 1988). Heavy metal concentrations in aquatic ecosystems are usually monitored by measuring its concentration in water, sediments and biota (Camusso *et al.*, 1995). Water is an important sink for various pollutants such as heavy metals (Eimers *et al.*, 2001; Ikem *et al.*, 2003) and also plays an important role in the assessment of heavy metal contamination (Clements and Newman, 2002).

The marine pollution is mainly contributed by industrial discharges, urban storm-water runoff, municipal wastes, agricultural drainages and other anthropogenic waste can results in heavy metal, pesticides, aliphatic and aromatic compounds, phthalate esters, nutrients, and organic waste pollutants in marine environments. These pollutants cause undesirable changes in the physico-chemical or biological factors of the ecosystem, which in turn directly or indirectly affect the ecological balance of the environment. Among these innumerable contaminants, pollution by heavy metals in aquatic environment has become a global phenomenon because of its toxicity and persistence for several decades in the aquatic environment (Cheung and Wang, 2008). In the current study to investigate the metal pollutants present in the Kuduvaiyar estuary.

Acute toxicity studies of Cadmium chloride on crab Sesarma quadratum

Acute toxicity caused by various toxicants on marine animals can be evaluated by quantitative parameters like survival or mortality of test animals and sensitivity of different crabs species to toxicants. Toxicity in crab is the culmination of a series of events involving various physical, chemical and biological processes. Toxicity studies measure a response of an organism to biologically active substances (Spear, 1981) and are useful in determining water quality. The wide variation in sensitivity of different species to different heavy metals depends on various factors like age, sex, weight, physical stage of the animal and presence or absence of enzyme system that can detoxify the pollutants (Nagaratnamma and Ramamurti, 1981).

Toxicity tests are important in assessing the response of organisms exposed to pollutants compared to a control. Bioassay tests have been used to evaluate the toxicity level of contaminants for aquatic organisms. There have been many types of toxicity assays employed to characterize the potential effects of all types of toxicants and validity of these tests are standardized and established by ISO or OECD (Nunes *et al.*, 2008). The biological responses induced by toxicants are different among living organisms and it depends on their sensitivity to toxicants. The practice of an array of bioassays involving many indicator species at different trophic levels is a highly effective and vital method for analyzing environmental threats to the aquatic ecosystem.

Thus, an attempt was made in the current study to evaluate the 96 hours LC₅₀ values of Cadmium chloride on marine crab *Sesarma quadratum*.

Cadmium is a common inorganic contaminant of coastal sediments and waters due to anthropogenic pollution and natural sources (Ivanina *et al.*, 2008, 2010). Cd in water can be absorbed by aquatic organisms via respiratory system, digestive system and body surface without significant excretion (Rainbow & White, 1989).

In the present investigation, they were analyzed by SPSS 20 to obtain a number of cumulative mortality and lethal concentrations. LC₅₀ of Sesarma quadratum at 96hr was 12.30mg/L for cadmium. The mortality at any fixed time, increased with the increase in concentration and for a particular concentration mortality increased with the increase in exposure time due to accumulation of toxicants to a dangerous level leading to death.

Biochemical response in subacute concentrations of cadmium chloride exposure in Sesarma quadratum

Measurement of biochemical parameter is commonly used as a diagnostic tool in aquatic toxicology and bio monitoring. Biochemical biomarkers have been used in order to prevent irreversible damage in whole organisms, communities and ecosystems (López-Barea and Pueyo, 1998). The impact of a number of contaminants on aquatic ecosystems can be assessed by the measurement of their external levels in the surrounding water or sediments, or by determining some biochemical parameters in bivalves and other organisms that respond specially to the degree and type of contamination (Nicholson and Lam, 2005).

Biochemical approach has been advocated to provide an early warning of potentially harmful changes in stressed bivalves. Analysis of chemical substances in tissues and body fluids, toxic metabolites, enzyme activities and other biochemical variables have frequently been used in documenting the toxin interaction with biological systems. Tissues reflect the physiological state of an animal because they are the products of intermediate metabolism (Artacho *et al.*, 2007).

Proteins are the most abundant intracellular macromolecules and constitute over half the dry weight of most organisms. They occupy a central position in the architecture and functioning of living matter. They are intimately connected with all phases of chemical and Physical activity that constitutes the life of the cell. Therefore they are essential to cell structure and cell function. The interplay between enzymatic and non-enzymatic proteins governs metabolic harmony (Lehinger, 1984). They are also involved in major physiological events to maintain the homeostasis of the cell. Therefore, the assessment of the protein content can be considered as a diagnostic tool to determine the physiological process of the cell (Kapil and Ragothaman, 1999).

In the observation, on 10 days exposure of CdCl₂ on *Sesarma quadratum* significant decrease of protein content in muscles (15.23±1.02 mg/gm), hepatopancreas (11.25±0.81mg/gm) and gills (7.68±0.51mg/gm) as compared to control were observed. In 20 days exposure of CdCl₂ also significant decrease of protein content in muscles (12.71±0.94mg/gm), hepatopancreas (8.64±0.84mg/gm) and gills (5.76±0.61mg/gm) as compared

to control were observed. In 30 days exposure of CdCl₂ also significant decreased of protein content muscles (9.17±0.71mg/gm), hepatopancreas (5.30±0.92mg/gm) and gills (3.95±0.53mg/gm) as compared to control were observed.

In the observation, on 10 days exposure of CdCl₂ on *Sesarma quadratum* significant decrease of lipid content in hepatopancreas (13.24±1.17mg/gm), gills (5.74±0.21mg/gm) and muscles (3.31±0.31mg/gm) as compared to control were observed. In 20 days exposure of CdCl₂ also significant decrease of lipid content in hepatopancreas (9.95±1.15mg/gm), gills (3.74±0.24mg/gm) and muscles (2.04±0.15mg/gm) as compared to control were observed. In 30 days exposure of CdCl₂ also significant decrease of lipid content hepatopancreas (6.49±1.05mg/gm), gills (2.15±0.21mg/gm) and muscles (1.37±0.17mg/gm) as compared to control were observed.

In the observation on 10 days exposure of CdCl₂ on Sesarma quadratum significant decrease of carbohydrate content in hepatopancreas $(1.53\pm0.09 \text{mg/gm})$, muscles $(1.52\pm0.12 \text{mg/gm})$ and gills $(0.97\pm0.11 \text{mg/gm})$ as compared to control were observed. In 20 days exposure of CdCl₂ also significant decrease of carbohydrate content in hepatopancreas $(1.16\pm0.13 \text{mg/gm})$, muscles $(0.89\pm0.12 \text{mg/gm})$ and gills $(0.71\pm0.18 \text{mg/gm})$ as compared to control were observed. In 30 days exposure of CdCl₂ also significant of carbohydrate decrease content in hepatopancreas $(0.94\pm0.08 \text{mg/gm})$, muscles $(0.61\pm0.10 \text{mg/gm})$ and gills $(0.54\pm0.09 \text{mg/gm})$ as compared to control were observed.

Protein content was significantly decreased in cadmium chloride exposed crab than control crab due to the higher toxicity of mercuric chloride. When an animal is under toxic stress, diversification of energy occurs to accomplish the impending energy demand and hence the protein level is depleted. The depletion of total protein content may be due to breakdown of protein into free amino acid (Neff, 1985).

A plausible explanation for such depletion of the protein levels in the tissues of test crabs might be due to the enhanced proteolytic activity in these organs under heavy metal stress. The depletion in the tissue protein might be due to the diversification of energy to accomplish the impending energy demands when the animals are under toxic stress. The decreased protein concentrations might also be attributed to the necrosis of cells and consequent impairment in protein synthesis machinery. Metal causes adverse effects on the lysosomal membrane as stabilizers and release nucleases and proteases thereby affecting the RNA and protein metabolism. Subsequently, the lower rate of protein synthesis depends on the reduced availability of ATP or an increased activity of proteolytic lysosomal enzymes (Jana and Choudhari 1984).

The depletion of total protein suggests an increased proteolysis and possible utilization of the products of their degradation for metabolic purpose. The decreased protein level during exposure to pollutants may be due to increased catabolism and decreased anabolism of proteins as reported in freshwater bivalve *Parrysia corrugata* (Deshmukh and Lomte 1998). Heavy

metal-induced biochemical alteration in rohu and catla has been reported by Neha *et al.*, (2004) and Ilavazhahan *et al.*, (2012), In addition to this impairment of protein metabolism on metal exposure has also been reported (Shoba Rani *et al.*, 2001; De Smet and Blust, 2007).

Carbohydrates form an important biochemical constituent of an animal tissue which acts as primary and immediate source of energy. Heavy metal-induced biochemical alteration in aquatic organism has been reported by Neha *et al.*, (2004) and Ilavazhahan *et al.*, (2012). In addition to this impaired carbohydrate metabolism on metal exposure has also been reported (Sunita Rani *et al.*, 2015; De Smet and Blust, 2007).

The depletion of carbohydrate content may be due to its rapid utilization to meet the reduced energetic efficiency under the impact of Hg and Zn. Carbohydrate metabolism is broadly divided into anaerobic glycolysis in which breakdown of glucose or glycogen occurs and the aerobic citric acid cycle in which oxidation of acetyl co-A into ATP and CO₂ occurs (Nelson and Cox 2005).

As a consequence of hypoxia, the metabolic pathway is shifted from aerobiosis to anaerobiosis and a strong suppression of the specific activities of enzymes involved in citric acid cycle. These conditions might have depleted the carbohydrate levels in the crab exposed to Hg in order to meet the increased energy demands as carbohydrates form the major source of energy under stressful conditions (Hochachka and Somero, 1984). Carbohydrate metabolism is not considered to be a major energy source in crab (Walton and

Cowey, 1982), but its importance increases during hypoxia because of activation of anaerobic glycolysis. This may explain the observed depletion of the carbohydrate levels in test crab during the later stages of exposure as a result of increased demand of these molecules to provide energy for the cellular biochemical processes under hypoxic conditions induced by Hg.

Lipids are important indicators of health and normal metabolic state of any animal. Lipids constitute the rich alternate energy reserves and its calorific value is twice as that of carbohydrates and proteins and the mobilisation of lipid reserves may be due to the high energy demands to counter the toxic stress (Reddy and Rao, 1989).

The concentrations of the lipids decreased in all the tissues significantly with the progress of exposure period irrespective of exposure concentrations. Lipid depletion in tissues may be due to its utilization for energy during detoxification mechanism, stress and starvation. The decrease in lipid content may be linked with the oxidation of polyunsaturated fatty acids found in aquatic tissues into aldehydes, free fatty acids, ketones, and peroxides (Horner, 1992; Mahboob *et al.*, 2004). The mechanism of decrease in lipids might be due to its conversion into carbohydrates and proteins during metal stress. Significant decrease in lipid has been noted in muscles, liver, gills and the whole body of *Oreochromis mossambicus* exposed to metals (Sunita Rani *et al.*, 2015).

Pollutants induce cellular machinery that has altered the levels of biochemical constituents in crabs. The potency of toxicity of the compounds

differs in relation to the tissues, biomolecules and duration of exposure. Pollutants are responsible for cellular disorganization of the internal tissues system that in turn affects storage metabolism (Somaraj *et al.*, 2005).

The alterations in the biochemical constituents of crab during exposure to toxicants imposes stress that leads to rapid mobilization of energy yielding biomolecules to generate energy required by the stressed animals to combat the erratic and rapid movements and high respiratory rates (Saravanan *et al.*, 2003).

Immunological parameters in subacute concentrations of cadmium chloride exposure in Sesarma quadratum

The immune system of crab is physiologically similar to that of higher vertebrates, despite certain differences. In contrast to higher vertebrates, fish are free-living organisms from early embryonic stages of life and depend on their innate immune system for survival (Rombout *et al.*, 2005). In recent years, the increasing consumer concern about the residues of antibiotics, hormones, growth promoters, are the danger of development of antibiotic resistant strains has led to the use of immunostimulants in aquaculture. By definition, immunostimulants are substances that can enhance the nonspecific defense mechanisms as well as specific immune response if the treatment is followed by infection or vaccination (Anderson, 1995). Many natural and synthetic substances have been reported that potentiate the fish immune system and increase disease resistance (Logambal and Michael, 1997, Hemapriya, 1997, Venkatalakshmi and Michael ,2000, Logambal *et al.*, 2000.

and Sudhakaran et al., 2006). The search for new immunostimulants continues as an attempt to improve intensive crab farming.

Nonspecific immunity is a fundamental defense mechanism in aquatic animals. In addition, it plays a key role in the acquired immune response and homeostasis through a system of receptor proteins. These receptor proteins identify molecular patterns that are typical of pathogenic microorganisms, including polysaccharides, lipopolysaccharide (LPS), peptidoglycan bacterial DNA, viral RNA and other molecules that are not normally on the surface of multicellular organisms. This response is divided into physical barriers and cellular and humoral immune responses. These immunological parameters include growth inhibitors, lytic enzymes, the classic complement pathways, the alternative and lectin pathway, agglutinins and precipitins (opsonins and primary lectins), antibodies, cytokines, chemokines and antibacterial peptides. Various internal and external factors can influence innate immune response parameters. Temperature changes, stress management and density may have suppressive effects on this type of responses, while several food additives and immunostimulants can enhance their efficiency (Magnadottir, 2006, 2010).

In the observation on 10 days exposure of CdCl₂ on *Sesarma* quadratum significant decreased of haemocyte count (4.9±0.09mg/gm), phagocytosis (13.18±1.83mg/gm) and lysosomal membrane stability (5.29±0.11mg/gm) while phenoloxidase assay was significant increased (0.012±0.002mg/gm) as compared to control were observed. In 20 days exposure of CdCl₂ on *Sesarma quadratum* significant decreased of haemocyte

count (3.1±0.08mg/gm), phagocytosis (9.81±1.58mg/gm) and lysosomal membrane stability (3.65±0.09mg/gm) while phenoloxidase assay was significant increased (0.017±0.002mg/gm) as compared to control were observed. In 30 days exposure of CdCl₂ on *Sesarma quadratum* significant decreased of haemocyte count (2.3±0.08mg/gm), phagocytosis (5.39±1.35mg/gm) and lysosomal membrane stability (2.17±0.010mg/gm) while phenoloxidase assay was significant increased (0.025±0.003mg/gm) as compared to control were observed.

Phagocytosis is one of the most important processes in poikilothermic animals because it is the process that is least influenced by temperature (Blazer, 1991; Lange and Magnadottir, 2003; Magnadottir et al., 2005). The main cells involved in phagocytosis in fish are neutrophils and macrophages (Secombes and Fletcher, 1992). These cells remove bacteria mainly by the production of reactive oxygen species during a respiratory burst. In addition, neutrophils possess myeloperoxidase in their cytoplasmic granules, which in the presence of halide and hydrogen peroxide kills bacteria by halogenation of the bacterial cell wall. Moreover, these cells have lysozymes and other hydrolytic enzymes in their lysosomes (Fischer *et al.*, 2006). Similarly, macrophages can produce nitric oxide in mammals and can be as potent as antibacterial agents, peroxynitrites and hydroxyl groups (Secombes and Fletcher, 1992).

Lysozyme is a bacteriolytic enzyme that is widely distributed throughout the body and is part of the nonspecific defence mechanisms in

most animals. In salmonids, lysozyme has been detected in serum, secretions, mucous membranes and tissues rich in leukocytes, mainly the kidney and intestine (Grinde *et al.*, 1988; Lie *et al.*, 1989). Apparently, the main sources of lysozyme are monocytes/ macrophages and neutrophils. However, recent studies have detected this enzyme in the granules of the eosinophilic granular cells of the intestine (Sveinbjornsson *et al.*, 1996). The bactericidal action of this enzyme involves the hydrolysis of the peptidoglycan of bacterial cell walls resulting in cell lysis. Lysozyme was initially associated with the defence against Gram-positive bacteria, but has been found to lyse Gram-negative bacteria as well. Furthermore, this enzyme is known to trigger an opsonin of the complement system and phagocytic cells (Magnadottir, 2006).

Stress markers in subacute concentrations of cadmium chloride exposure in Sesarma quadratum

All aerobic organisms produce free radicals as a side product during the reduction of molecular oxygen by mitochondria (Siman-Tov *et al.* 2011). Free radicals play an essential role in maintaining the physiological conditions of the body. Oxidative stress is induced by excess accumulation of the reactive oxygen and nitrogen species (RONS) that can be able to damage basic components for cell function and survival. Oxidative stress is defined as the condition occurring when the physiological balance between oxidants and antioxidants is disrupted in favor of the former with potential damage for the organism (Vignini 2011). One of the mechanisms of heavy metal toxicity is the contaminant-stimulated production of reactive oxygen and nitrogen species' (ROS and RNS), which leads to oxidative damage/stress. Therefore, antioxidant defense indices and/ or

products of cellular oxidative damage, such as proteins, lipids and nucleic acids (Dovzhenko *et al.* 2005; Valavanidis *et al.* 2006; Belcheva *et al.* 2011) and the ability of cells to counteract the effects of ROS and RNS (Regoli, 2000) serve as pollution biomarkers for assessing the quality of the aquatic environments. Among cell damaging processes caused by ROS, lipid peroxidation in biological membranes has received much attention. Laboratory and field investigations have demonstrated the usefulness of lipid peroxidation products as indicators of pollution-induced cellular damage (Dovzhenko *et al.* 2005; Belcheva *et al.* 2011).

Malondialdehyde (MDA) is the major aldehyde resulting from the peroxidation of biological membrane polyunsaturated fatty acid. MDA, a secondary product of lipid peroxidation, is used as an indicator of tissue damage by a series of chain reactions (Ray and Husain, 2002). The study of lipid peroxidation is attracting much attention in recent years due to its role in disease process membrane lipids are particularly susceptible to lipid peroxidation due to the presence of polyunsaturated fatty acids. It has been implicated in the pathogenesis of a number of diseases and clinical conditions. Experimental and clinical evidence suggests that aldehyde products of lipid peroxidation can also act as bioactive molecules in physiological and pathological conditions. It is now generally accepted that lipid peroxidation and its product play an important role in liver, kidney, heart and brain toxicity (Lakshmi *et al.*, 2005).

In the present study, the MDA content in serum and different body tissues viz. gills, hepatopancreas and muscles of 10, 20 and 30days of cadmium treated *Sesarma quadratum were* investigated. Among the 10, 20 and 30 days exposure of CdCl₂, MDA content in *Sesarma quadratum* was

significantly increased in 30 days exposure compared to 10 and 20 days exposure.

The mechanisms of the toxicity of Cd were not completely understood by Stohs and Bagchi (1995), and the antioxidant enzymatic responses observed in organisms due to Cd exposure may depend on the species, metal concentration, and duration of exposure. Cd readily interacts with sulfhydryl groups of amino acids, proteins, and enzymes. Differences in the antioxidant response between the hepatopancreas and gills may be related to different physiological functions of these tissues. The hepatopancreas involved in digestion to neutralize large amounts of toxicants that are ingested by the organism, and is the major site of metal accumulation (Pipe *et al.*, 1999). In contrast, the gills are located in the ventilated mantle cavity and directly interact with the marine environment. Furthermore, as the gill epithelium is very thin, gills are frequent target organs of environmental pollutants (Rajalakshmi and Mohandas, 2005).

In the present study, the SOD activity in serum and different body tissues viz. gills, hepatopancreas and muscles of 10, 20 and 30days of cadmium treated *Sesarma quadratum* investigated. Among the 10, 20 and 30 days exposure of CdCl₂, SOD content in *Sesarma quadratum* was significantly decreased in 30 days exposure compared to 10 and 20 days exposure.

SOD catalyzes the dismutation of two superoxide anions (O₂ – and OH) to molecular oxygen and hydrogen peroxide (Fridovich, 1998). GPx and CAT catalyze the conversion of hydrogen peroxide to water. MDA is regarded as a

useful biomarker for measuring the level of oxidative stress (Nesto *et al.*, 2007). Thus GPx is able to reduce tissue injury by removing H₂O₂ (Almeida *et al.*, 2007).

In the present study, the catalase activity in serum and different body tissues viz. gills, hepatopancreas and muscles of 10, 20 and 30days of cadmium treated *Sesarma quadratum* investigated. Among the 10, 20 and 30 days exposure of CdCl₂, catalase content in *Sesarma quadratum* was significantly decreased in 30 days exposure compared to 10 and 20 days exposure.

In the present study, the GPx activity in serum and different body tissues viz. gills, hepatopancreas and muscles of 10, 20 and 30days of cadmium treated *Sesarma quadratum* investigated. Among the 10, 20 and 30 days exposure of CdCl₂, GPx content in *Sesarma quadratum* was significantly decreased in 30 days exposure compared to 10 and 20 days exposure.

In the present study, the GSH content in serum and different body tissues viz. gills, hepatopancreas and muscles of 10, 20 and 30days of cadmium treated *Sesarma quadratum* investigated. Among the 10, 20 and 30 days exposure of CdCl₂, GSH content in *Sesarma quadratum* was significantly decreased in 30 days exposure compared to 10 and 20 days exposure.

In the present study, the GST activity in serum and different body tissues viz. gills, hepatopancreas and muscles of 10, 20 and 30days of cadmium treated *Sesarma quadratum* investigated. Among the 10, 20 and 30

days exposure of CdCl₂, GST content in *Sesarma quadratum* was significantly decreased in 30 days exposure compared to 10 and 20 days exposure.

Our results are in accordance with other studies, concerning the induction of peroxidative processes in crabs exposed to metals (Viarengo *et al.*, 1990). Moreover, the results of the present study is in accordance with previous studies, regarding the possible ability of heavy metals, such as zinc and cadmium to induce ROS production and oxidative damage to macromolecules, such as DNA (Regoli, 2000), proteins and lipids (Livingstone, 2001).

Histological observation in subacute concentrations of cadmium chloride exposure in *Sesarma quadratum*

Histopathological investigations have long been recognized to be reliable biomarkers of stress in organisms (Van der Oost, Beyer and Vermeulen, 2003). Histopathological changes have been widely used as biomarkers in the evaluation of the health of organisms exposed to contaminants, both in the laboratory and field studies. One of the great advantages of using histopathological biomarkers in environmental monitoring is that this category of biomarkers allows examining specific target organs, including gills, hepatopancreas, kidney and liver, that are responsible for vital functions, such as respiration, excretion and the accumulation and biotransformation of xenobiotics in the aquatic animals (Gernhoferer *et al.*, 2001). Hence there is a need to study the histopathological changes in the gill and hepatopancreas of *Sesarma quadratum* in response to cadmium exposure.

The lifting of the epithelium, oedema, epithelial necrosis, fusion of adjacent secondary lamellae and haemorrhage at primary lamellae were observed in the gills of the crab examined 10, 20 and 30 days of exposure. Epithelial necrosis and rupture of gill epithelium are direct deleterious effects of the irritants. The animal's defense responses are excessive mucus secretion. Lifting of the epithelium, lamellar fusion and club shaped lamellae could be protective in that it diminishes the amount of vulnerable gill surface area (Richmonds and Dutta, 1989).

The histopathological changes of gills can result in hypoxia, respiratory failure problems with ionic and acid-base balance (Alazemi *et al.*, 1996). Similar observations were made by Victor *et al.* (1985) in gill pathology and haemocyte responses in the *Macrobrachium idea* exposed to mercuric chloride. Patil and Kaliwal (1989) also observed that the degree of damage to gill tissue increases according to the concentration and period of exposure of zinc in *Macrobrachium hendersoni*. Changes in the gill surfaces and increased mucus production are consistent with observed histological effects such as hyperplasia, necrosis and lamellar aneurysms in the exposed crab with response to sub lethal concentrations of cadmium.

In the present study, the hepatopancreas showed changes in the F and B cells exposed to cadmium in 10 days showed cells were found clumped and intercellular spaces invisible in the medium concentration, and a general degeneration, loss of tubules structures, vacuolation and star shape of lumen and necrosis of cells in 30 days exposure of cadmium in *Sesarma quadratum*.

The star shape of the lumen was partially lost due to morphological changes of the tubular epithelial cells, because some cells decreased in height from a normal columnar height to a low cuboidal form. In the present study, one of the most evident changes is a proliferation of B-cells in the different days of cadmium exposure in crabs, indicating a high rate of excretion from the hepatopancreas. The accumulation and elimination of the xenobiotic entering the hepatopancreatic tubules are perhaps affected by a large number of F-cells converting into B-cells.

Previous studies on the hepatopancreas at different biological levels such as the structure, development, physiology, metabolism, and biochemistry concluded that this digestive organ possesses several functions, including absorption, digestion, storage, and secretion (Caceci *et al.*, 1988). Krishnamoorthy and Subramonian (1996) also reported changes such as elongation of hepatopancreatic cells, and shrunken cells in *Macrobrachium lamarrg* exposed to low (0.0065 ppm), and high (0.0215ppm) concentrations of copper. Destructive and deteriorative changes in the hepatopancreas and gills were observed in *Penaeus indicus* exposed to Zn at a low concentration of 100 ppb (Viswanathan and Manisseri, 1995). The noted histopathological changes in the hepatopancreas may be due to the accumulation of the pesticides since this organ is the center of storage, metabolism and detoxification.

Abnormal infiltration of hemocytes in the interstitial sinuses noted in the hepatopancreas of test animals suggest that the mechanism of cellular/ host defense was in operation to neutralize the tissue damage caused by cadmium and since hemocytes are the most important form of cellular defense in crustaceans (Bodhipaksha and Weeks-Perkins, 1994). The formation of necrotic hepatopancreatic tubules recorded in test crabs indicates the fact that the distortion, disintegration and death of cells occurred in the hepatopancreas of *Sesarma quadratum* exposed to the highest sublethal concentration of cadmium. Therefore cadmium toxicity affects the normal integrity and causes tissue damage in the body tissues of *Sesarma quadratum*.

CHAPTER-VI

SUMMARY AND CONCLUSION

CHAPTER VI

6. SUMMARY AND CONCLUSION

6.1 SUMMARY

Estuarine areas are complex and highly changing environments at the interface between freshwater and marine aquatic ecosystems. Despite their environmental variability, estuaries are usually characterized by high biomass due to their strong primary production, especially when compared with marine areas. These conditions enhance the development of heterotrophic populations. Moreover, estuaries are of special interest in ecotoxicology because they are potentially the most exposed coastal areas regarding any source of pollution. Worldwide chronic contamination of estuaries by inorganic toxicants (e.g., heavy metals), hydrocarbons, or persistent organic pollutants and its effect on estuarine organisms have retained much attention to date. Seasonal changes in the nature and level of contaminants found in these areas may occur, and some toxic substances may be present at higher levels at some critical periods for estuarine organisms.

Crustaceans are useful as integrating sentinels of exposure to certain contaminants. The crab (*Sesarma quadratum*) is a useful sentinel, due to its biological and ecological characteristics. Crabs are important in the estuarine food web because they are not only predators, but also scavengers and prey themselves. Also, they are economically important as food for humans. The purpose of this study was to biomonitoring heavy metals Hg, Cd, Cr, Cu, Ni, Pb and Zn on water associated with crab from Kuduvaiyar estuary is situated

in the Southeast coast, near Nagapattinam, India. The environmental quality of a stretch of Kuduvaiyar estuary and the coastal water of the East coast of Tamil Nadu, assessed by the use of physicochemical parameters. In the present study to assess the Ecotoxicological studies in estuarine crab *Sesarma quadratum* in Kuduvaiyar estuary, Southeast coast of India.

From the experimental studies, the following were obtained Hydro-biological studies:

The analysis carried out in hydrobiological parameters (temperature, pH, electrical conductivity, dissolved oxygen, biological oxygen demand, chemical oxygen demand, total alkalinity, salinity and total hardness) allowed to make a diagnostic about the physico-chemical health of this estuarine ecosystem. They revealed a real disturbance of the physical characteristics of this ecosystem and particularly at the site of Kuduvaiyar estuary at Nagapattinam.

Hydro-chemical studies:

Water samples were collected from different seasons (Pre-monsoon, monsoon and post monsoon) and analyzed varied chemical parameters as ammonium, nitrate, sodium, chloride, sulphate and fluoride. Among the various seasons, the maximum level observed in pre-monsoon is followed by ammonium, nitrate, sodium, chloride, sulphate and fluoride. Results of the study concluded that chemical characteristics of this ecosystem has distressed at the site of Kuduvaiyar estuary at Nagapattinam.

Heavy metals analysis

Heavy metals such as cadmium, chromium, copper, lead, mercury, nickel and zinc in water were investigated in different seasons and significant alterations were observed.

*Toxicity bioassays: LC*₅₀/96h determination.

Crab samples were exposed to different concentrations (5, 10, 15, 20 and 25µg/L) of toxicants as cadmium for 96h and their cumulative mortality was calculated in 12 hours of intervals. Results were analysed by SPSS 20 to obtain a number of cumulative mortality and lethal concentrations. LC50 of Sesarma quadratum at 96hr was 12.30mg/L for cadmium was observed. The acute toxicity values obtained in this study strongly suggest negative effects on survival as Cadmium concentration increased. The cause for mortality is due to the toxicity of metal toxicants and it depends primarily on duration of exposure and concentration combinations.

Biochemical studies

Protein, carbohydrate and lipids were investigated in cadmium exposure tissues of gills, hepatopancreas and foot muscle of crab as *Sesarma quadratum*. Protein, carbohydrate and lipid content were significantly decreased in gills, hepatopancreas and muscle of *Sesarma quadratum*. The decreased protein, carbohydrate and lipid content depends the duration of the cadmium exposure.

Immunological parameters

The present study was to investigate the immunological parameters such as total haemocytes, phagocytosis, phenoloxidase and lysosomal membrane stability. To reduce the level of total haemocyte count and the immune functions were observed. Phenoloxidase activity was directly proportional to the duration of the cadmium chloride exposure.

Oxidative stress markers

Oxidative stress markers as Malondialdehyde (MDA) highly increased during the experimental period, antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S- transferase (GST) evaluated in cadmium exposed to *Sesarma quadratum*. Significant alterations were observed in oxidative stress markers, which are useful indicators to understand the physiological state of crab under stress when exposed to cadmium toxicants.

Histological studies

Histopathological changes in gills and hepatopancreas of *Sesarma* quadratum examined in response to cadmium exposure. Moderate alterations were observed in the gills followed by hepatopancreas of *Sesarma quadratum* Therefore cadmium toxicity affects the normal integrity and causes tissue damage in the body tissues of *Sesarma quadratum*.

6.2 CONCLUSION

Overall studies indicated that accumulation of heavy metals in water and organs of Sesarma quadratum from Kuduvaiyar estuary, East coast of Tamil Nadu slightly higher than the standard values. The experimental data presented in this report demonstrate that exposure of the crab S. quadratum to Cd causes drastic changes in biochemical, immunological, antioxidant and stress related parameters. Considering all of the biomarkers investigated in this study, it was concluded that the detoxification system of S. quadratum is interactive and complex. The detoxification of Cd metal in organs of Sesarma quadratum produced the free radicals of oxygen as a Cd mediated toxicity and stress in S. quadratum. The implication of this finding is to reduce the consumption of Sesarma quadratum from the coastal water of Kuduvaiyar estuary helps to avoid the various health hazards induced by heavy metals.

The following suggestions to maintain the health of the Kuduvaiyar estuary:

- 1. To stop the discharges of waste from the fish/prawn export factories.
- 2. Over-dumping of spoiled fishes and meat waste should be prohibited.
- 3. The improper recycling of the industrial effluents and domestic waste water mix with the sea water should be avoided.
- 4. Reduce the use of chemical fertilizers and pesticides and to increase the use of biofertilizers.
- 5. Scientific monitoring of heavy metal concentration in water and crustaceans must be undertaken periodically throughout the year.

REFERENCES

REFERENCES

- Abaychi, J. K., & Douabul, A. A. Z. (1985). Trace metals in Shatt Al-Arab river, Iraq. *Water Res*, 19(4), 457-462.
- AbdAllah, A. T., & Moustafa, M. A. (2002). Accumulation of Lead and Cadmium in the Marine Prosobranch *Nerita saxtilis*, Chemical Analysis, Light and Electron microscopy. *Environ. Poll, 116*, 185-191.
- Abdullah bin., Habeeballah bin., & Abdullah Juma. (2007). The Effects of *Lepidium* sativum Seeds on Fracture-Induced Healing in Rabbits, *Med. Gen. Med*, 9(2), 23.
- Abdullah, M. H., Sidi, J., & Aris, A. Z., (2007). Heavy metals (Cd, Cu, Cr, Pb and Zn) in *Meretrix meretrix*, water and sediments from estuaries in Sabah, North Borneo. *Int. J. Env & Sci. Edn*, 2(3), 69 74.
- Abu Khatita, A. M. A., de Wall, H., & Koch, R. (2016). Anthropogenic particle dispersions in topsoils of the Middle Nile Delta: a preliminary study on the contamination around industrial and commercial areas in Egypt. *Environ. Earth Sci*, 75(3), 1-19.
- Abulude, F. O., LawaI, L. O., Ehikhamen, G., Adesanya, W. O., & Ashafa, S. L., (2006). Chemical composition and functional properties of some prawns from the coastal area of Ondo State, Nigeria. *Elec. J. Environ. Agric. Food Chem.* (*EJEAFChe*), 5, 1235-1239.
- Achuthan Nair, G., Premkumar, K., Al Mariami, M. A., & Bohjuari, J. A. (2005). Assessment of well water quality of Benghazi, Libya. Indian. *J. Envi. Prot*, 25(6), 481-489.
- Adefemi, S. O., Asaolu, S. S., & Olaofe, O. (2008). Determination of heavy metals in *Tilapia mossambicus* fish, associated water and sediment from Ureje dam in south-western Nigeria. *Res. J. Environ.*, 2, 151-155.
- Adholia, U. N., Shrivastava, V., Chakravarty, A., Vyas, A., & Jacob, M. (1991). Hydrography of Mansarovar reservoir, Bhopal. Proc. Nat. Symp. *Planning for Environ. Sus. Dev., New Delhi*.
- Agarwal, A. K., & Gopal, K. (1998). Physico-chemical characteristics and heavy metals in Ganga river at various locations of Northern plains. *Indian J. Environ. & Ecoplan.*, 1(1&2), 39-42.

- Aggarwal, T. R., Singh, K. N., & Gupta, A. K. (2000). Impact of sewage containing domestic water and heavy metals on the chemistry of Varuna river water. *Poll. Res.*, 19(3), 491-494.
- Alazemi, B. M., Lewis, J.W., & Andrews, E. B., (1996). Gill damage in the freshwater fish *Gnathonemus ptersii* (Family: Mormyridae) exposed to selected pollutants: an ultra structural study. Environ. *Technol.*, 17, 225-238.
- Al-Madfa, H., Abdel-Moati, M. A. R., & Al-Gimaly, F. H. (1998). *Pinctada radiata* (Pearl Oyster): A Bioindicator for Metal Pollution Monitoring in the Qatari Waters (Arabian Gulf). *Bull. Environ. Contam. Toxicol.*, 60, 245-251.
- Almeida, B., Buttner, S., & Ohlmeier, S. (2007). NO-mediated apoptosis in yeast. *J Cell Sci* 120, 3279–3288.
- Anderson, J. J. (1995). Orally dosed genistein from soy and prevention of cancellous bone loss in two ovariectomized rat models. *J Nutr*, 125, 799S.
- Anitha, G., Chandrasekhar, S. V. A., & Bandela, N. N. (2005). Limnological studies of Mir Alam lake, Hyderabad. *Poll. Res.*, 24(3), 681-687.
- Ankley, G. T., Bennett, R. S., Erickson, R. J., Hoff, D. J., Hornung, M. W., Johnson, R. D., Mount, R. D., Nichols, J. W., Russom, C. L., Schmeider, P. K., Serrano, J. A., Tietge, J. E., & Villeneuve, D. L. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. *Environ. Toxicol. Chem.*, 29, 730-741.
- APHA. (1967). Standard methods for the examination of water and wastewater including sediments and sludge, 12th edition, APHA Washington, D.C.
- APHA. (1980). Standard methods for the examination of water and wastewater APHA- AWWA- WPCF, 15th ed., 1980. Washington D.C.
- APHA-AWWA-WPCF. (1976). Standard methods for the examination of water and wastewater. *American Public Health Association New York*.
- Arellano, J. M., Blasco, J., Ortiz, J. B., Da'Silva, D. C., Navarro, A., Del-Pino, M. J. S., & Sarasquete, C. (2000). Accumulation and Histopathological effects of copper in gills and liver of *Senegales sole*, *Solea senegalensis* and Toad fish, *Halobatrachus didactylus*. *Ecotoxicol*. *Environ*. *Restor.*, 3(1), 22-28.

- Artacho, P., Soto-Gamboa, M., Verdugo, C., & Nespolo, R. F. (2007). Blood biochemistry reveals malnutrition in black-necked swans (*Cygnus melanocoryphus*) living in a conservation priority area. *Comp. Biochem. Physiol.*, 146, 283-290.
- Asokan, R., Arumugam, M., & Mullainadhan, P. (1997). Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel *Perna viridis* Linnaeus. *Developmental & Comparative Immunology*, 21(1), 1-12.
- Asonye, C. C., Okolie, N. P., Okenwa, E. E., & Iwuanyanwu, U. G. (2007). Some physico-chemical characteristics and heavy metal profiles of Nigerian rivers, streams and waterways. *Afr. J. of Biotechnol.*, 6(5), 617-624.
- Ayene, I. S., Biaglow, J. E., Kachur, A. V., Stamato, T. D., & Koch, C. J. (2008). Mutation in G6PD gene leads to loss of cellular control of protein glutathionylation: mechanism and implication. *Journal of cellular biochemistry*, 103(1), 123-135.
- Badola, S. P., & Singh, H. R. (1981). Hydrobiology of the river Alaknanda of the Garhwal Himalaya. *Indian J. Ecol.*, 8(2), 269-276.
- Baeyens, W. F. J. (1998). Evolution of trace metal concentrations in the Scheldt estuary (1978-1995). A comparison with estuarine and ocean levels. *Hydrobiol*, *366*, 157-167.
- Bagde, V. S., & Varma, A. K. (1985a). Physico-chemical characteristics of water of J. N. U. lake at New Delhi. *Indian J. Ecol.*, 12(1), 151-156.
- Bagde, V. S., & Varma, A. K. (1985b). Limnological studies on J. N. U. lake, New Delhi, *India. Buli. Bot. Soc. Sagar.*, 32, 16-23.
- Ballesteros, M. L., Durando, P. E., Nores, M. L., Diaz, M. P., Bistoni, M. A., & Wunderlin, D. A. (2009). Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of *Jenynsia multidentata* (Anablepidae: Cyprinodontiformes). *Environ. Poll.*, 157, 1573-1580.
- Banerji, S. K. (1999). "Environmental Chemistry", 2nd edition. *Prentice-hall of India, New Delhi*.
- Bansal, S., & Khare, G. K. (1990). River pollution due to paper industry- A case study. *Ind. J. of Environ. Pric.*, 10(4), 281-283.
- Bath, K. S. (1996). Limnological studies on the Harike wetland ecosystem. *Ph.D. thesis, Punjabi University, Patiala*.

- Bath, K. S., & Kaur, H. (1999). Physico-chemical characteristics of water of Buddha-Nallah (Ludhiana, Punjab). *Indian J. Environ. Sci.*, 3(1), 27-30.
- Becker, W. M., Kleinsmith, L. J., & Hardin, J. (2000). The World of the Cell, (4th Ed.). *The Benjamin Cummings Publishing Company, San Francisco*, 376-404.
- Beers, R., & Sizer, I. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. *Journal of Biological Chemistry*, 195, 133.
- Begum, A., Ramaiah, M., Harikrishna Khan, I., & Veena, K., (2009a). Heavy metal pollution and chemical profile of Cauvery river water. *J. Chemistry*, 6(1), 47-52.
- Beiras, R., Bellas, J., Fernandez, Z., Lorenzo, J. I., & Garcia, A. C. (2003). Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula) metal concentrations in seawater, sediments and mussels (*Mytilus galloprovincialis*) versus embryo-larval bioassays using *Paracentrotus lividus* and *Ciana intestinalis. Mar. Environ. Res*, 56, 531-553.
- Belcheva, N. N., Zakhartsev, M. V., Dovzhenco, N. V., Zhukovskaya, A. F., Kavun, V. Y., & Chelomin, V. P. (2011). Anthropogenic pollution stimulates oxidative stress in soft tissues of mussel *Crenomytilus grayanus*. *Ocean Sci J*, 46:85–94.
- Beltrame, M. O., De Marco, S. G., & Marcovecchio, J. E. (2010). Influences of sex, habitat, and seasonality on heavy-metal concentrations in the burrowing crab (*Neohelice granulata*) from a coastal lagoon in Argentina. *Archives of environmental contamination and toxicology*, 58(3), 746-756.
- Bhandari, B., (2003). Module I Let Us Keep our Wetland Healthy. Japan, IGES.
- Bhat, B. V., & Gupta, T. R. C. (1980). Distribution of meroplankton in Nethravati–Gurupur estuary, Mangalore. *Paper presented at the symposium on coastal Aquaculture, Cochin.*
- Bhattacharjee, S., Chakravarty, S., Maity, S., Dureja, V., & Gupta, K. K. (2005). Metal contents in the groundwater of Sahebgunj district, Jharkhand, India, with special reference to arsenic. *Chemosphere*, 58, 1203-1217.
- Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic-contaminated groundwater in alluvial aquifers from the Delta Plains, eastern India: Options for safe drinking water supply. *Int. J.Water Res. Develop.*, 13(1), 79-92.

- Bhowmick, B. N., & Singh, A. K. (1985). Phytoplankton population in relation to physico-chemical factors of river Ganga at Patna. *Indian J. Ecol.*, 13(1), 138-145.
- Bickers, D. R., & Athar, M. (2006). Oxidative stress in the pathogenesis of skin disease. *Journal of Investigative Dermatology*, 126(12), 2565-2575.
- Bilger, R. W., & Atkinson, M. J. (1997). Limnol. Oceanogn, 49(2), 279-289.
- Bisht, K. L. (1986). Impact of environmental parameters on biota of the river Pinder of Garhwal Himalaya. *In Fish and their environment (Haridwar), India*, 91-95.
- Bjerregaard, P., & Depledge, M. (2002). Trace metal concentrations and contents in the tissues of the shore crab *Carcinus maenas*: effects of size and tissue hydration. *Marine Biology*, 141(4), 741-752.
- Blackmore, G., & Wang, W. X. (2002). Uptake and efflux of Cd and Zn by the green mussel *P. viridis* after metal pre-exposure. *Environ. Sci. Technol.*, *36*, 989-995.
- Blackmore, G., & Wang. W. X. (2003). Inter-population differences in Cd, Cr, Se, and Zn accumulation by the green mussel *Perna viridis* acclimated at different salinities. *Aqua. Toxicol.*, 62, 205-218.
- Blazer, V. S. (1991). Piscine macrophage function and nutritional influences: a review. *Journal of Aquatic Animal Health*, 3(2), 77-86.
- Bodhipaksha, N., & Weeks-Perkins, B. A. (1994). The effects of methyl parathion on phagocytosis and respiratory burst activity of tiger shrimp (*Penaeus monodon*) phagocytes. *In "Modulators of fish immune responses*, 1, 11-22.
- Borja, A., Bricker, S. B., Dauer, D. M., Demetriades, N. T., Ferreira, J. G., Forbes, A. T., Hutchings, P., Jia, X., Kenchington, R., Marques, J. C., & Zhu. C. (2008). Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. *Mar. Poll. Bull.*, 56, 1519-1537.
- Born, I. (1778). Index rerum naturalium Musei Cæsarei Vindobonensis. Pars I.ma. Testacea. Verzeichniß der natürlichen Seltenheiten des k. k. Naturalien Cabinets zu Wien. Erster Theil. *Schalthiere*, *1*(40), 1-458.
- Borole, D. O., & Patil, P. R. (2004). Studies on physico-chemical parameters and concentrations of heavy metals in sugar industry. *Poll. Res.*, 23(1), 83-86.

- Bouillon, S., Frankignoulle, M., Dehairs, F., Verlimirov, B., Eiler, A., Etcheber, H., Abril, G., & Borges, A. V. (2001). Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India). during premonsoon. *Global. Biogeochemical Cycles*. 17(4), 114.
- Breitholtz, M., & Bengtsson, B. E. (2001). Oestrogens have no hormonal effect on the development and reproduction of the harpacticoid copepod *Nitocra spinipes*. *Mar. Poll. Bull.*, 42, 879-886.
- Brooks, R. R. (1978). In Environmental Chemistry, J.O.M. Bockris (ed.) Plenum, New York. 434.
- Bryan, G. W. (1976). Some aspects of heavy metal tolerance in aquatic organisms. In lockwood (Eds.). Effects of pollutants on aquatic organisms. *A.P.M. Cambridge University Press.* 7-34.
- Buragohain, M., Bhuyan, B., & Sarma, H. P. (2009). Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, *India. Environ. Monit. Assess.*, 170, 345-351.
- Caceci, T., Neck, K.F., Lewis, D.H. and Sis, R.F. 1988. Ultrastructure of the hepatopancreas of the pacific white shrimp, Penaeus vannamei (Crustacea: Decapoda). *J. Mar. Biol. Assoc. UK*, 68, 323-337.
- Cairns, J. J., Heath, A. G., & Parker, B. C. (1975). The effects of temperature upon the toxicity of chemicals to aquatic organisms. *Hydrobiologia*, 47, 135-171.
- Camargo, J. A. (2003). Fluoride toxicity to aquatic organisms: a review *Chemosphere*, 50, 251-264.
- Camusso, M., Vigano, L., & Balestrini, R. (1995). Bioconcentration of trace metals in rainbow trout: a field study. *Ecotoxicology and environmental safety*, 31(2), 133-141.
- Carroll, N. V., Longley, R. W., & Roe, J. H. (1956) .Glycogen determination in liver and muscle by use of anthrone reagent. *J Biol Chem*, 220, 583–93.
- Chakraboarty, R. D., Roy, P., & Singh, S. B. (1959). A quantitative study of the plankton and physico-chemical conditions of the river Yamuna at Allahabad in 154-1955. *Indian J. Fish*, 6(1), 186-203.
- Chakraborty, P., Kumar, S., Dutta, D., & Gupta, V. (2009). Role of antioxidants in common health diseases. *Research Journal of Pharmacy and Technology*, 2(2), 238-244.

- Chang, X., Jin, T., Chen, L., Nordberg, M., & Lei, L. (2009). Metallothionein I isoform mRNA expression in peripheral lymphocytes as a biomarker for occupational cadmium exposure. *Experimental biology and medicine*, 234(6), 666-672.
- Chanu E. K., & Devi G. A. (2008). Physicochemical characteristics in relation to pollution of water of Iril river, Manipur, India. *Ind. J. Envi. and Ecoplann*, 15(1-2), 225-228.
- Chapman, D., & Kimstach, V. (1992). The selection of water quality variables in water quality assessment. (Ed.) Chapman, D., *Chapman and Hall. London, N. York, Tokyo*.
- Chaudhary, S., & Anuradha Sastry, K. V. (2004). Pollution of river Yamuna at Faridabad (Haryana). *Poll. Res.*, 23(4), 749-756.
- Chaurasia, M., & Pandey, G. C. (2007). Study of physico-chemical characteristics of some water ponds of Ayodhya-Faizabad. *Ind. J. Env. Proc.*, 27(11), 1019-1023.
- Cheung, M. S., & Wang, W. X. (2008). Analyzing biomagnification of metals in different marine food webs using nitrogen isotopes. *Marine pollution bulletin*, 56(12), 2082-2088.
- Chhapgar, B. F. (1991). Seashore life of India (Vol. 3). World Wide Fund for Nature India.
- Chi-Man, L., & Jiu, J. J. (2006). Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in Mid-Levels area, Hong Kong. *Water Research*, 40(4), 753-767.
- Chowdhury, M. J., & Blust, R. (2002). Bioavailability of waterborne strontium to the common carp, *Cyprinus carpio*, in complexing environments. *Aquat. Toxicol.*, 58, 215-227.
- Chugh, R. S. (1961). Tides in Hooghly River; *Hydrol. Sci. J.* 6(2): 10–26.
- Clason, B., Gulliksen, B., & Zauke, G. P. (2004). Assessment of two-compartment models as predictive tools for the bioaccumulation of trace metals in the amphipod *Gammarus oceanicus* Segerstrale. 1947 from Grunnfjord (Northern Norway). *Sci. Total Environ*, 323, 227-241.

- Clearwater, S. J., Farag, A. M., & Meyer, J. S. (2002). Bioavailability and toxicity of diet borne copper and zinc to fish. *Comp. Biochem. Physiol. Part C, Toxicol. Pharmacol*, *132*, 269-313.
- Clements, W. H., & Newman, M. C. (2002). *Community Ecotoxicology, Wiley, UK*, 336.
- Coldrey, J. (1986). *The Crab on the Seashore*. Gareth Stevens Pub.
- Cole, G. A. (1975). Text book of Immunology. The C. V. Mosby company, Saint Louis.
- Cooper, V. A., Solbe, J. F., & De, L. G. (1978). The fish populations and water quality of the river Tean Staffs. Water Research Centre, Marlow, Bucks. hostathion insecticide contamination and/or gamma irradiation. *J. Egypt. German Soc. Zoo.*, 18, 153 175.
- Corpas, F. J., Fernández-Ocaña, A., Carreras, A., Valderrama, R., Luque, F., Esteban, F. J., & Barroso, J. B. (2006). The expression of different superoxide dismutase forms is cell-type dependent in olive (*Olea europaea* L.) leaves. *Plant and cell physiology*, *47*(7), 984-994.
- Crane, J. O. C. E. L. Y. N. (1947). Eastern Pacific Expeditions of the New York Zoological Society. XXXVIII. Intertidal brachygnathous crabs from the West Coast of Tropical America with special reference to ecology. *Zoologica*, *32*, 69-95.
- Crane, M. (2003). Proposed development of Sediment Quality Guidelines under the European Water Framework Directive: A critique. *Toxicol. Lett.*, *142*, 195-206.
- Cross, R. D., & Williams, D. L. (1981). Proceedings of the national symposium on fresh water in flow to estuaries. *U.S. Fish & wildlife service. Office of Biological services, Biological service program.* No. FWS/OBS 81, 04.
- Dahlhoff, E. P. (2004). Biochemical indicators of stress and metabolism: Applications for marine ecological studies. *Annu. Rev. Physiol.*, 66, 183-207.
- Dailianis, S., & Kaloyianni, M. (2004). Cadmium induces both pyruvate kinase and Na+/H+ exchanger activity through protein kinase C mediated signal transduction, in isolated digestive gland cells of *Mytilus galloprovincialis* (L.). *Journal of experimental biology*, 207(10), 1665-1674.

- Dailianis, S., Patetsini, E., & Kaloyianni M. (2009). The role of signaling molecules on actin glutathionylation and protein carbonylation induced by cadmium in haemocytes of mussel *Mytilus galloprovincialis* (Lmk). *The Journal of Experimental Biology*, 212, 3612-3620.
- Dash, D. R., Das, S. L., Patro, S. K., & Sahu, B. K. (1999). Lead speciation in Rushikulya surface waters, East Coast of India. *Poll. Res.*, 18(3), 223-229.
- Day, K. L. (1951). Seasonal variation of water quality parameters in Ennore estuary with respect to industrial and domestic sewage, *Int. J. of Cur. Res.*, 33(3), 209–218.
- De Smet, W. H. O., & Evens, F. M. J. C. (1972). A hydrobiological study of the polluted river Lieve (Ghent, Belgium). *Hydrobiologia*, 31(1), 91-154.
- De Boeck, G., Ven, K. V., Hattink, J., & Blust, R. (2006). Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. *Aquat. Toxicol.*, 80, 92-100.
- De Jonge, V. N., Elliott, M., & Orive, E. (2002). Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. *Hydrobiologia*, 475(476), 1–19.
- De laTorre, F. R., Ferrari, L., & Salibian, A. (2000). Long-term *in situ* toxicity bioassays of the Reconquista River (Argentina) water with *Cyprinus carpio* as sentinel organism. *Wat. Air Soil Poll.*, 121, 205-215.
- De Smet, H., & Blust, R. (2007). Stress responses and changes in protein metabolism in carp, *Cyprinus carpio* during cadmium exposure. *Ecotoxi. Envir. Saf.*, 48, 255-260.
- Deepak, D. K., Yeligar, V. C., Nayak, S. S., Ghosh, T., Rajalingam, R., Sengupta, P., & Maity, T. K. (2007). Evaluation of hepatoprotective and antioxidant activity of *Ichnocarpus frutescens* (Linn.) R. Br. on paracetamol-induced hepatotoxicity in rats. *Tropical Journal of Pharmaceutical Research*, 6(3), 755-765.
- Deshmukh, R., & Lomte, A. (1998). Effect of heavy metal (CuSO₄) on protein activity of fresh water bivalve, *Parrysia corrugata*. *Journal of Ecotoxicology Monitoring*, 16(3), 704-708.

- Devi, M., Reddy, P. S., & Fingerman, M. (1993). Effect of cadmium exposure on lactate dehydrogenase activity in the hepatopancreas and abdominal muscle of the fiddler crab, *Uca pugilator*. *Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology*, 106(3), 739-742.
- Dhakad, N. K., Sharma, G. D., & Kavita, S. Jain. (1997). Effect of chromium chloride on behaviour and morphology of fresh water Teleost *Heteropneustes fossilis* (Bloch). Recent advances in fresh water biology. *Anmol. Publications, New delhi, India. 1*, 113-118.
- Dhillon, S. S., & Kaur, H. (1996). Analytical studies on the aquatic ecosystem of Punjab. Final Technical Report. *PSCST*, *Chandigarh*.
- Dixit, R. C., Varma, S. R., Notnaware, V., & Thacker, N. P. (2004). Heavy metals contamination in surface and groundwater supply of an urban city. *Indian J. Environ. Health*, 45, 107-112.
- Dovzhenko NV, Kurilenko AV, Belcheva NN, Chelomin VP (2005) Cadmiuminduced oxidative stress in the bivalve mollusk Modiolus modiolus. Russ J Mar Biol 31:309–313
- Dwivedi, P., & Sonar, S. (2004). Evaluation of physico-chemical characteristics in Makroda Reservoir around rono hills Dist. Papum pare, Arunachal Pradesh, *Poll. Res.*, 23(3), 569-572.
- Eimers, M. C., Evans, R. D., & Welbourn, P. M. (2001). Cadmium accumulation in the freshwater isopod *Asellus racovitzai*: the relative importance of solute and particulate sources at trace concentrations. *Environmental Pollution*, 111(2), 247-253.
- Eisler, R., & Gardner, G. R. (1973). Acute toxicity to an estuarine teleost of mixtures of Cadmium, Copper and Zinc salts. *J. Exp. Biol.*, *15*, 394-407.
- El-Naga, A. E. H., El-Moselhy, K. M., & Hamed, M. A. (2005). Toxicity of cadmium and copper and their effect on some biochemical parameters of marine fish *Mugil seheli*. *Egypt J. Aquat. Res.*, *31*, 60-71.
- El-Said, G. F., & Draz, S. E. O. (2010). Physicochemical and geochemical characteristics of raw marine sediment used in fluoride removal *J. Environ. Sci. Health A*, 45, 1601-1615.
- Emoyan, O. O., Ogban, F. E., & Akarah, E. (2005). Evaluation of heavy metals loading of river Ijana in Ekpan- Warri, Nigeria. *J. Appl. Sci. Environ. Mgt.*, *10*(2), 121-127.

- Eshwaralal, S., & Angadi, S. B. (2002). Primary productivity of two freshwater bodies of Gulbarga, India, *Nature environment and pollution technology*, 1, 151-157.
- Esmaeili, H. R., & Johal, M. S. (2005). Study of physico-chemical parameters of water of Gobindsagar resercior, India. In; M. S. Johal (ed.) Proceedings of the National Seminar "New Trends in Fishery Development in India". *Punjab University, Chandigarh, Feb. 16-16*, 173-177.
- Fang, Z. Q., Cheung, R. Y. H., & Wong, M. H. (2001). Heavy metal concentrations in edible bivalves and gastropods available in major markets of the Pearl River Delta. *Journal of Environmental Sciences*, *13*(2), 210-217.
- Finney, D. J. (1971). Probit Analysis. Cambridge University Press, New York, USA, 337.
- Fischer, U., Utke, K., Somamoto, T., Köllner, B., Ototake, M., & Nakanishi, T. (2006). Cytotoxic activities of fish leucocytes. *Fish & shellfish immunology*, 20(2), 209-226.
- Folch, J., Less., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. *J. Biol. Chem*, 226, 497-509.
- Fridovich, I. (1998). Oxygen toxicity: a radical explanation. *J. Exp. Biol*, 210, 1 203-1 209.
- Gaitonde, D., Sarkar, A., Kaisary, S., Silva, C. D., Dias, C., Rao, D. P., Ray, D., Nagarjan, R., De sousa, S. N., Sarker, S., & Patill, D. (2006). Acetylcholinesterase activities in marine snail (*Cronia contracta*) as a biomarker of neurotoxic contaminants along the Goa coast, West coast of India. *Ecotoxicol.*, 15(4), 353-358.
- Gao, L. P., Cheng, M. L., Chou, H. J., Yang, Y. H., Ho, H. Y., & Chiu, D. T. Y. (2009). Ineffective GSH regeneration enhances G6PD-knockdown Hep G2 cell sensitivity to diamide-induced oxidative damage. *Free radical biology and medicine*, 47(5), 529-535.
- Garg, D., Singh, R. V., & Goyal, S. (2007). Studies on the status of drinking water quality of Bharatpur area in Rajasthan. *Indian. J.Environ and Ecoplan*, *512*, 55-71.
- Garg, N., Mathur, N., Modak, D. P., Singh, K. P., Murthy, R. C., Ahmed, S., Chandra, S. V., & Ray, P. K. (1992). Trace metals trend analysis in river Ganges at Kanpur. *Environ. Int.*, 18, 297-305.

- Gaston, K. J., Chown, S. L., & Mercer, R. D. (2001). The animal species-body size distribution of Marion Island. *PNAS*. 98, 14493-14496.
- George, M. G., Quasin, S. Z., & Siddiqi, (1996). A limnological survey of river Kali with reference to fish mortality. *Env. Hlth.*, 8(4), 262-269.
- Gernhofer, M., Pawet, M., Schramm, M., Müller, E., & Triebskorn, R. (2001). Ultrastructur-al biomarkers as tools to characterize the health status of fish in contaminated streams. *Journal of Aquatic Ecosystem, Stress and Recovery*, 8, 241-260.
- GESAMP. (1993). Report of the 34th session. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, Working Group on the evaluation of the hazards of harmful substances carried by ships. *EHS* 34/12, 14p + 7 Annexes.
- Gillikin, D. P., De Grave, S., & Tack, J. F. (2001). The occurrence of the semi-terrestrial shrimp *Merguia oligodon* (De Man, 1888) in Neosarmatium smithi H. Milne Edwards, 1853 burrows in Kenyan mangroves. *Crustaceana*, 74(5), 505-507.
- Goel, P. K., Gopal, B., & Trivedi, R. K. (1980). Imapet of sewage on freshwater ecosystem Part II. Physico chemical characteristics of water and their seasonal changes. *Int. J. Ecol. Env. Sci.* 6, 97-116.
- Golterman, H. L., Beattie, D. M., & Vijverberg, J. (1978). An introduction to the limnology of the Friesian lakes. *Hydrobiologia*, 58(1), 49-64.
- Gonzalves, E. A., & Joshi, D. B., (1946). Freshwater algae near Bombay. The seasonal Succession of algae in tank of Bandra. *J. Bom. Nat. Hist. Soc.*, 46(1), 154-176.
- Goodwin, T. H., Young, A., Holmes, M., Old, G., Hewitt, N., Leeks, G., Packman, J., & Smith, B. (2003). The temporal and spatial variability of sediment transport and yields within the Bradford Beck Catchment, West Yorkshire. *Science of the Total Environment, 314, 475-494*.
- Govindasamy, C., Roy, A. G. V., & Jayapaul, A. (1998). Seasonal variation of heavy metals in water and zooplankton of Pondicherry coast, Bay of Bengal. *Int. J. Eco. Environ. Sci.*, 24, 141-146.
- Gowd, S. S., & Govil, P. K. (2008). Distribution of heavy metals in surface water of Ranipet industrial area in Tamil Nadu, India. *Environ. Monitor. Assess.*, 136, 197-207.

- Grinde, B., Jollès, J., & Jollès, P. (1988). Purification and characterization of two lysozymes from rainbow trout (*Salmo gairdneri*). European Journal of Biochemistry, 173(2), 269-273.
- Grosell, M., Blanchard, J., Brix, K.V., & Gerdes, R. (2007). Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. *Aquat. Toxicol.*, 84, 162-172.
- Grosell, M., Nielsen, C., & Bianchini, A. (2002). Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. *Comp. Biochem. Physiol. C.*, 133, 287-303.
- Gupta, 1. S., Kemp, A., Myere, D. K., & Chen, K. Y. (1980). Partitioning of trace metals in selective chemical fractions of near shore sediments. *Environ. Lett. 10*, 129-158.
- Gupta, D. C., Peters, E., & Yadava, R. N. (2002). Concentration of heavy toxic metals in waters of the area around Mandideep industrial complex and its impact on human health. In: Ecology of Polluted Waters, Eds. *Arvind Kumar*, *A.P.H. Publishing House*, *Delhi. 1*.
- Gupta, S. K., Dixit, S., & Tiwari, S. (2005). Assessment of heavy metals in surface water of lower lake, Bhopal, *India. Poll. Res.*, 24(4), 805-808.
- Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. *Journal of biological Chemistry*, 249(22), 7130-7139.
- Hannan, H. H., & Young, W. J. (1974). The influence of a deep storage reservoir on the physico-chemical limnology of the central Texas river. *Hydrobiologia*, 44(2-3), 177-207.
- Hannan, H. H., & Young, W. J. (1974). The influence of a deep-storage reservoir on the physicochemical limnology of a central Texas river. *Hydrobiologia*, 44(2), 177-207.
- Haridas, P. (1973). Annual variation in Zooplankton from a polluted coastal environment. Mahasagar, *Bull. Natn. Inst. Oceanogr. 13*, 239 248.
- Harshey, D. K., Patil, S. G., & Singh, D. F. (1982). Limnological studies on a tropical fresh water fish tank of Jabalpur India. *Geobios New Reports*, 1(2), 98-102.

- Harshith, U. P., Apoorva, M. D., Precilla, D. S., & Anita, D. D. (2016). Crabs diversity in mangrove and coastal ecosystems. *Proceeding Lake*. wgbis.ces.iisc.ernet.in
- Harvey, G. R., Micklas, W., & Bown, B. T. (1974). Observations on the distribution of chlorinated hydrocarbons in Atlantic ocean organisms. *J. Mar. Res.*, 32, 103-118.
- Hedge, J. E., & Hofreiter, B. T. (1962). In: carbohydrate chemistry 17 (Eds whistle R.L and Be Miller JN) Academic press New York.
- Hemapriya, V. S. (1997). Immunostimulatory effect of leaf extracts of few medicinal plants in *Oreochromis mossambicus* (Peters) (Doctoral dissertation, MSc thesis. The American College, Madurai).
- Hiraizumi, Y., Manabe, T., & Nishimura, H. (1978). Some regular patterns in the distribution of sediment contamination in the coastal waters along Japan. *Oceanogr. Soc. Japan, 34*, 222-232.
- Hochachka, P. W., & Lutz, P.L. (2001). Mechanism, origin and evolution of anoxia tolerance in animals. *Comp. Physiol. Biochem. Mol. Biol.*, 130, 435-459.
- Hochachka, P. W., & Somero, G. (1984). Biochemical Adaptation. *Princeton University Press, Princeton, New Jersey*.
- Horner, W. F. A. (1992). Preservation of fish by curing: fish processing technology. *London Chapman & Hall.*, 65-71.
- Horsfall, M., & Spiff, A. (2002). Distribution and partitioning of trace metals in sediments of the lower reaches of the New Calabar river, Port Harcourt, Nigeria. *Environ. Monitor. Assess.*, 78, 309-326.
- Hulburt, E. M., & Guillard, R. R. L. (1968). The relationship of the distribution of the diatom Skeletonema tropicum to temperature. Ecology, 49, 337–339.
- Hussain, I., & Hussain, J. (2004). Study on the impact of textile wastewater on the groundwater quality of villages close to river Kothari, Rajasthan (India). *Poll. Res.*, 23(3), 477-481.
- Huynh-Ngoc, L., Whitehead, N. E., & Oregioni, B. (1988). Cadmium in the Rhone River. Water Research, UK environment from human activities. *Sci. Total Environ.*, *57*, 129-150.

- Ikem, A., Egiebor, N. O., & Nyavor, K. (2003). Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern USA. *Water, Air, and Soil Pollution*, 149(1), 51-75.
- Ilavazhahan M., Tamilselvi, R., & Sujatha, L. B. (2012). Biochemical Alteration in The muscle, Liver, Kidney and Brain of a FreshWater Fish, Catla catla (Ham.) Exposure of a Heavy Metal Toxicant Ferrous Sulphate. *Biomed. & Pharmacol. J.*, 5(2), 261-272.
- Ip, C. C. M., Li, X. D., Zhang, G., Wai, O. W. H., & Li, Y. S. (2007). Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal areas, South China. *Env. Poll.*, 147, 311-323.
- Islam, M. F., & Islam, S. (1996). Surface water quality of water bodies of Chalan Beel area in Nator district, Bangladesh. *J. Buul. Env. Sci.*, 14, 1-3.
- Ivanina, A. V., Cherkasov, A. S., & Sokolova, I. M. (2008). Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, *Crassostrea virginica* Gmelin. *The Journal of Experimental Biology*, 211, 577-586,
- Ivanina, A. V., Eilers, S., Kurochkin, I. O., Chung, J. S., Techa, S., Piontkivska, H., & Sokolova, I. M. (2010). Effects of cadmium exposure and intermittent anoxia on nitric oxide metabolism in eastern oysters, *Crassostrea virginica*. *Journal of Experimental Biology*, 213(3), 433-444.
- Jain, C. K., Kumar, S., & Rao, Y. R. S. (2004). Trace element contamination in a coastal aquifer of Andhra Pradesh. *Poll. Res.*, 23(1), 13-23.
- Jain, P., & Shrivastava, R. (1998). Heavy metal contamination in Kolar reservoir, Bhopal district (M.P.). *J. Natcon.*, 10(1), 93-95.
- Jameel, A. A. (1998). Physico-chemical studies in Uyyakandan channel water of river Cauvery. *Poll. Res.*, 17(2), 111-114.
- Jameson, J., & Rana, B. C. (1996). Pollution status of the river complex Sabarmati at Kheda region of Gujarat I. Physico-chemical characters. *Poll. Res.*, 15(1), 53-55.
- Jana, S.S., & Choudhari, M. A. (1984). Synergistic effect of heavy metal pollutants on senescence in submerged aquatic plants. *Water Air Soil Pollution*, *21*, 351-357.

- Janani, P., Sivakumari, K., Geetha, A., Ravisankar, B., & Parthasarathy, C. (2010). Chemopreventive effect of bacoside A on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. *Journal of cancer research and clinical* oncology, 136(5), 759-770.
- Jarup, L., & Akesson, A. (2009). Current status of cadmium as an environmental health problem. *Toxicol. Appl. Pharmacol.*, 238, 201-208.
- Javed, M. (2003). Relationships among water, sediments and plankton for the uptake and accumulation of metals in the river Ravi. *Indus J. Plant Sci.*, 2(4), 326-331.
- Jayakumar, P., Jothivel, N., & Paul, V. I. (2008). Heavy metals induced alterations in the acid phosphatase activity in the edible freshwater mussel *Lamellidens marginalis* (Lamarck). *The Int. J.Toxicol.*, 5(2).
- Jennings, J. R., & Rainbow, P. S. (1979). Studies on the uptake of cadmium by the crab *Carcinus maenas* in the laboratory. I. Accumulation from seawater and a food source. *Marine Biology*, 50(2), 131-139.
- Jensen, A., Forbes, V. E., & Parker, E. D. (2001). Variation in cadmium uptake, feeding rate, and life-history effects in the gastropod *Potamopyrgus antipodarum*: Linking toxicant effects on individuals to the population level. *Environ. Toxicol. Chem.*, 20, 2503-2513.
- Jindal, R., & Kumar, R. (1993). Limnology of a freshwater pond of Nalagarh.

 1. Physico-chemical complexes. In: Advances in Limnology. Shastree,
 N.K. (ed.) *Narendra Publishing House, Delhi*, 107-112.
- Jing H. W., & Wei-Wen. (1988). Transformation kinetics of diphasic aluminosilicate gels. *Journal of the American Ceramic Society*, 71(7), 581-587.
- John Hargreaves, A., & Craig Tucker, S. (2004). Managing Ammonia in Fish Ponds. Southern Regional Aquaculture Centre, Publication No. 4603.
- Jolly, V. H., & Chapman, V. A. (1966). A preliminary biological study of the effects of pollution on farmers creek and cox's river, *New South Whales*. *Hydrobiologia*, 27, 160-187.
- Jones, I., Kille, P., & Sweeney, G. (2001). Cadmium delays growth hormone expression during rainbow trout development. *J. Fish Biol.*, *59*, 1015-1022.

- Joseph, P. V., & Chacko, J. (2005). Distribution of dissolved and particulate heavy metals in Chitrapuzha- A tropical tidal river, Kerala, *India. Poll. Res.*, 24(3), 513-521.
- Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. *Environ. Poll*, 126(2), 225-233.
- Kahle, J., & Zauke. G. P. (2003). Bioaccumulation of trace metals in the Antarctic amphipod *Orchomene plebs*: Evaluation of toxicokinetic models. *Mar. Environ. Res.*, 55, 359-384.
- Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectrophotometric assay of SOD. *Indian Journal of Biochemistry and Biophysics*, 21, 130-132.
- Kandhasamy, M., & Santhaguru, K. (1994). "Influence of sewage on physicochemical characteristics of the river Vaigai," *J. Ecobiol*, 6(4), 315-317.
- Kannan, K. (1991). Fundamentals of Environmental Pollution. S. Chand and company Ltd., New Delhi.
- Kannan, L. (1980). Hydro biological studies in nearshore and estuarine water of Porto Novo (India) with special reference to diatom. *Ph.D. Thesis, Annamalai University*.
- Kapil Manoj., & Ragothaman, G (1999). Mercury, copper and cadmium induced changes in the protein levels in muscle tissue of an edible estuarine fish, *Bolephthalmu sdussumeri* (Cu). *J. Environ. Biol.* 20 (3): 231-234.
- Kar, D., Surr, P., Mandal, S. K., Saha, T., & Kole, R. K. (2008). Assessment of heavy metal pollution in surface water. *Int. J. Environ. Sci. Tech.*, 5(1), 119-124.
- Kara, Y., Kara, I., & Basaran, D. (2004). Investigation of some physical and chemical parameters of water in Lake Isykli in Denizli, Turkey. *International J. Agricul. Biol.*, 6(2), 275-277.
- Kathiresan, K. (2003). Polythene and plastics-degrading microbes from the mangrove soil. *Revista de biologia tropical*, *51*(3-4), 629-633.
- Kathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems.

- Katsoyiannis, I. A., & Katsoyiannis, A. A. (2006). Arsenic and other metal contamination of groundwaters in the industrial area of Thessaloniki, Northern Greece. *Environ. Monit. Assess.*, 123, 1-3.
- Kaur, H., Dhillon, S. S., Bath, K. S., & Mander, G. (1996a) Abiotic and biotic components of a freshwater pond of Patiala (Punjab). Poll. Res, *15*(3), 253-256.
- Kaur, H., Dhillon, S. S., Bath, K. S., & Mander, G. (1996b). Abiotic and biotic components of a freshwater pond of Patiala (Punjab). *Poll. Res.*, 15(3), 253-256.
- Kaur, H., Dhillon, S. S., Kaur, N., & Bath, K. S. (1995). Physico-chemical characteristics of freshwater ecosystems prevailing in and around Patiala (Punjab). *Environ. & Ecol.*, 13(3), 523-528.
- Kaur, H., Syal, J., & Dhillon, S. S. (2003). Impact of fertilizer factory wastes on physico-chemical and biological features of Satluj River. In: Aquatic ecosystems. (Ed.), Kumar, A., A. P. H. Publishing Corporation, New Delhi, 71-81.
- Kaur, H., Dhillon, S. S., Bath, K. S., & Mander, G. (1997). A statistical approach to inter-relationship between protozoans and physico-chemical factors at Harike reservoir (Punjab-India). *Ind. J. Env. Sci.*, 1(1), 47-50.
- Kaur, H., Dhillon, S. S., Mander, G., & Bath, K. S. (2000). Occurrence of heavy metals in water and sediment of the river Satluj in Punjab. In: Pollution and Biomonitoring of Indian Rivers. ABD Publishers, Jaipur, India, By: Dr. R. K. Trivedy.
- Kaushik, S., Sahu, B. K., Lawania, R. K., & Tiwari, R. K. (1999). Occurrence of heavy metals in lentic water of Gwalior region. *Poll. Res.*, 18(2), 137-140.
- Kavitha, A. V., & Jagadeesan, G. (2003). *In vivo* studies on the role of Tribulus terrestris extract on mercury intoxicated mice Mus musculus Large intestine A histological survey. *Ind. J. Exp. Zool.*, *6*, 213-219.
- Kelly WR, Panno SV, Hackley K (2012) The sources, distribution, and trends of chloride in the waters of Illinois Bulletin B-74 Illinois state water survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois.

- Kelly, A. E., Reuer, M. K., Goodkin, N. F., & Boyle, E. A. (2009). Lead concentrations and isotopes in corals and water near Bermuda, 1780-2000. *Eart. Planeta. Sci. Lett.*, 283, 93-100.
- Khalique, A., & Afser, M. R. (1995). Physico-chemical analysis of river Ganges at Farakka. *Biojournal*, 7(1-2), 101-105.
- Khan, M. A., & Zutshi, D. P. (1980). Primary productivity and trophic status of a Kashmir Himalayan lake. *Hydrobiologia*, 68, 3-8.
- Khan, Y. S. A., Hussain, M. S., Hossain, S. M. G., & Hallimuzzaman, A. H. M. (1998). An environmental assessment of trace metals in Ganges-Brahamputra-Meghna estuary. *J. Rem. Sens. Environ.*, 2, 103-117.
- Khangarot, B. S., & Rathore, R. S. (2003). Effects of copper on respiration, reproduction, and some biochemical parameters of water Flea *Daphnia magna* straus. *Bull. Environ. Contam. Toxicol.*, 70, 112-117.
- King, J. M. (1981). The distribution of invertebrate communities a small South African River. *Hydrobiologia*, 83, 43-65.
- Kinne, O. (1964). The effects of temperature and salinity on marine and brackish water animals II: Salinity and Temperature. Salinity Combinations. *Oceanogr. Mar. Biol. Ann. Rev.*, 2, 281 339.
- Komarek, M., Ettler, V., Chrastny, V., & Mihaljevic, M. (2008). Lead isotopes in environmental sciences: A review. *Environ. Int.*, *34*, 562-577.
- Kongchum, M., Devai, I., De'Laune, R. D., & Jugsujinda, A. (2006). Total mercury and methylmercury in freshwater and salt marsh soils of the Mississippi river deltaic plain. *Chemos.*, 63, 1300-1303.
- Kopp, J. F., & Kroner, R. C. (1972). Trace metals in water of the United States. Federal water pollution control Administration, U.S. Department of the Interior, *Cincinnati, Ohis*.
- Kord, B., Mataji, A., &Babaie, S. (2010). Pine (*Pinus eldarica* Medw.) needles as an indicator for heavy metals pollution. *Int. J. Environ. Sci. Tech.*, 7(1), 79-84.
- Koul, V. K., Zutshi, D. P., & Dubey, K. P. (1988). Trace metal concentrations in some Kashmir Himalayan lakes. *Water, Air, Soil Poll.*, *39*, 237-245.

- Krishnamoorthy, P., & Subramanian, P. (1996). Effect of sub lethal doses of copper on the hepatopancreas of the freshwater prawn, *Macrobrachium lamarrei* Geobio, 23(1), 16-18.
- Kristensen, P. (1982). Time-dependent variation of mercury in a stream sediment and the effect upon mercury content in *Gammarus pulex* (L.). *Water Research*, 16, 759-764.
- Kumar, A. (1995a). Some limnological aspects of freshwater tropical wetland of Santhal Pargana (Bihar) *India. J. Environ & Poll.*, 2 (3), 137-141.
- Kumar, A. (1995b). Studies on pollution in river Mayurakshi in South Bihar, *India. J. Environ. & Poll.*, 2 (1), 21-26.
- Kumar, A. (1998). Diversification of phytoplankton and its correlation with certain physico-chemical characteristics of the river Mayurakshi in tribal zone of Bihar. *International Journal of Ecology and Environmental Sciences*, 24, 215-224.
- Kumar, A., & Sharma, R. K. (1999). Physico-chemical characteristics of river Sengar in distt.- Etawah (UP). *Ind. J. Env. Sci.*, 3(2): 201-203.
- Kumar, B. A., Choudhury, A., & Mitra, A. (2003). Seasonal distribution of nutrients and its biological importance in upper stretch of Gangetic West Bengal. In: Aquatic ecosystems. (Ed.), Kumar, A., A. P. H. Publishing Corporation, New Delhi, 29-36.
- Kumar, K. S., & Sharma, T. V. S. (1979). Faunal (phytal) affinity in two fresh water ponds with diverse ecological stresses in Viziangarama, India. *Geobios.*, *6*, 347-348.
- Labonne, M., Basin, S., Othman, D., & Luck, J. (2001). Lead isotopes in muscles as tracers of metal sources and water movements in a lagoon (Thau Basin, S. France). *Chemical Geology*, 181, 181-191.
- Lakshmi Devi, S., & Anuradha, C. V. (2010). Mitochondrial damage, cytotoxicity and apoptosis in iron-potentiated alcoholic liver fibrosis: amelioration by taurine. *Amino acids*, *38*(3), 869-879.
- Lakshmi, B., Tilak, J. C., Adhikari, S., Devasagayam, T. P. S., & Janardhanan, K. K. (2005). Inhibition of lipid peroxidation induced by Gamma-radiation and AAPH in rat liver and brain mitochondria by mushrooms. *Curr Sci*, 88(3), 484-488.

- Lan, W., Haifeng, S., & Chunyuan, L. (2002). Effects of cadmium on spermatogenesis in freshwater crab (*Sinopotamon yangtsekiense*). *Dong wu xue bao. Acta Zoologica Sinic*, 48(5), 677-684.
- Lan, W., Xiuqing, Y., Qian, W., & Dingxing, W. (2001). The accumulation of Cd~(2+) and the effect on est in five tissues and organs of *Eriocheir sinensis*. *Dong wu xue bao*. *Acta Zoologica Sinica*, 47, 96-100.
- Lan, W., Yongquan, L., Bo, Y., Na, L., & Qian, W. (2010). Effect of cadmium on SOD and POD isozyme in tissues of freshwater crab *Sinopotamon henanense*. *Chemical Geology*, *181*, 181-191
- Lange, S., & Magnadóttir, B. (2003). Spontaneous haemolytic activity of Atlantic halibut (*Hippoglossus hippoglossus* L.) and sea bass (*Dicentrarchus labrax*) serum. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, 136(1), 99-106.
- Lanzoni, S., & Seminara, G. (1998). On tide propagation in convergent estuaries. *Journal of Geophysical Research: Oceans*, 103(C13), 30793-30812.
- Latreille, P. A. (1802). Histoire naturelle, générale et particulière, des Crustacés et des Insectes. *Paris*, 3, 467.
- Lee, B. G., Grimscom, S. B., Lee, J. S., Choi, H. J., Koh, C. H., Luoma, S. N., & Fisher, N. S. (2000). Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. *Sci.*, 287, 282-284.
- Lee, R. F., O'Malley, K., & Oshima, Y. (1996). Effects of toxicants on developing oocytes and embryos of the blue crab, *Callinectes sapidus. Marine environmental research*, 42(1-4), 125-128.
- Lee, S. Y. (1997). Potential trophic importance of the faecal material of the mangrove sesarmine crab *Sesarma messa*. *Marine ecology progress series*, 159, 275-284.
- Lee, S. Y. (1998). Ecological role of grapsid crabs in mangrove ecosystems: a review. *Marine and freshwater research*, 49(4), 335-343.
- Lehinger, A. L. (1984). In: Biochemistry 3 rd ed., Kalyani Publisher, Ludhiana, New Delhi.
- Lewis, J. A., & Cohen, S. M. (2004). Addressing lead toxicity: Complexation of lead II with thiopyrone and hydroxypyridine O, S mixed chelators. *Inorg. Chem.*, 43, 6534-6536.

- Lie, O., Evensen, O., Sorensen, A., & Froysadal, E. (1989). Study on lysozyme activity in some ¢sh species. *Diseases of Aquatic Organisms*, 6,1-5.
- Liu, J., Qu, W., & Kadiiska, M. B. (2009). Role of oxidative stress in cadmium toxicity and carcinogenesis. *Toxicol. Appl. Pharmacol.*, 238, 209-214.
- Liu, R. M., & Pravia, K. G. (2010). Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. *Free Radical Biology and Medicine*, 48(1), 1-15.
- Liu, X., Zhou, Z., & Chen, L. (2003). Effect of cadmium on antioxidant enzyme activities of the juvenile *Eriocheir sinensis*. *Marine sciences/Haiyang Kexue*, 27(8), 59-62.
- Livingstone, D. R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. *Mar Pollut Bull*, 42, 656–666.
- Lo pez-Barea, J., & Pueyo, C. (1998). Mutagen content and metabolic activation of promutagens by molluscs as biomarkers of marine pollution. *Mut. Res.*, 399, 3-15.
- Logambal, S. M., & Michael, R. D. (1997). Azadirachtin-An immunostimulant in *Oreochromis mossa* mbicus (Peters). Abstract. In *National workshop on fish and shellfish health management. CIFA, Bhubaneswar, India.*
- Logambal, S. M., Venkatalakshmi, S., & Dinakaran Michael, R. (2000). Immunostimulatory effect of leaf extract of *Ocimum sanctum* Linn. in *Oreochromis mossambicus* (Peters). *Hydrobiologia*, 430(1), 113-120.
- Lohani, M., Singh, A., Rupainwar, D. C., & Dhar, D. N. (2008). Seasonal variations of heavy metal contamination in river Gomti of Lucknow city region. *Environ. Monit. Assess.*, 147, 253-263.
- Lokhande, R. S., & Sathe, C. N. (2001). Monitoring and assessment of heavy metal contents in the industrial effluents from Ambarnath M. I. D. C. area (Maharashtra). *Poll. Res.*, 20(2), 239-243.
- Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin's reagent. *Journal of Biological Chemistry*, 193, 265-276.
- Lu, J. R., Lai, W., & Du, N. S. (1989). Effects of cadmium on ultrastructure of R-cell in hepatopancreas and serum glutamic-pyruvic transaminase (SGPT) activity of *Eriocheir sinensis*. *Journal of Ocean University of Qingdao*, 19(2), 62-68.

- Luoma, S. N., & Rainbow, P.S. (2005). Why is metal bioaccumulation so variable. Biodynamics as a unifying concept. *Environ. Sci. Technol.*, *39*, 1921-1931.
- Lushchak, V. I., & Bagnyukova, T. V. (2007). Hypoxia induces oxidative stress in tissues of a goby, the rotan *Perccottus glenii*. *Comp. Biochem. Physiol. Part B. Biochem. Mol. Biol.*, 148(4), 390-397.
- Mac Farlane, G. R., & Burchett, M. D. (2000). Cellular distribution of Cu, Pb and Zn in the grey mangrove *Avicennia marina* (Frorsk.) Vierh. *Aquat. Bot.*, 68, 45-59.
- Magar, R. S., & Waghmare, V. N. (2010). Impact of selected heavy metals on oxygen consumption by the fish *Channa punctatus*. *J. Ecobiol.*, 27(2), 109-113.
- Magnadóttir, B. (2006). Innate immunity of fish (overview). Fish & shellfish immunology, 20(2), 137-151.
- Magnadottir, B. (2010). Immunological control of fish diseases. *Marine biotechnology*, 12(4), 361-379.
- Magnadóttir, B., Lange, S., Gudmundsdottir, S., Bøgwald, J., & Dalmo, R. A. (2005). Ontogeny of humoral immune parameters in fish. *Fish & Shellfish Immunology*, 19(5), 429-439.
- Mahadevan, A., & Krishnaswamy, S. (1983). A quality profile of river Vaigai (S. India). *Indian J. Environ. Hlth.*, 25(4), 288-299.
- Mahboob, S., Liaquat, F., Liaquat, S., Hassan, M., & Rafique, M., (2004). Proximate composition of meat and dressing losses of wild and farmed *Labeo rohita* (Rohu). *Pakistan Journal of Zoology*, *36*, 39-43.
- Mahesha Nagaraja Naik., & Rajendra Prasad, N. R. (2004). Physico-Chemical characteristics of bore well water in Arsikere taluk, Hussan. *IJEP*, 24(12), 897-904.
- Mairs, D. F. (1966). A total alkalinity atlas for marine lake waters. *Limnol. Oceanogr.*, 11, 68-72.
- Majumder, S., Gupta, S., Saha, R. N., Datta, J. K., & Mondal, N. (2006). Eutrophication potential of municipal sewage of Burdwan town, West Bengal, India. *Pollution Research*, 25(2), 298.

- Mandal, S. K., Saha, T., Kole, S., Maiti, D., Kole, R. K., & Das, D. K. (2006). Occurrence of various metals in surface water of river Ganga in west Bengal-Their toxicity and ecological impact. *Poll. Res.*, 25(3), 609-612.
- Manivasakam, N. (1984). Environmental pollution. National Book Trust, India. 58. Mann, K. H. (1972). Macrophyte production and detritus food chains in coastal waters. *Mem. Ist. Ital. Idrobiol.*, 29, 353-383.
- Margarat, A., & Jagadeesan, G. (1999). Effect of mercuric chloride and the influence of pencillamine on acetylcholinesterase (ACHE) activity in mice. *Poll. Res.*, *18*, 293-296.
- Maroof, F. B. A., Hadi, D. A., Khan, A. H. and Chowdhury, A. H. (1986) Cadmium and zinc concentrations in drinking water supplies of Dhaka city, Bangladesh. *The Science of the Total Environment*, 53: 233-238.
- Mart, L., Nürnberg, H. W., & Rützel, H. (1984). Comparative studies on cadmium levels in the North Sea, Norwegian Sea, Barents Sea and the eastern Arctic Ocean. In *Environmental Research and Protection* (pp. 201-209). Springer, Berlin, Heidelberg.
- Mathur, V. B., Sivakumar, K., Johnson, J. A., Gopi, G. V., Prakash, S., Deepak Apte., & Suvarna Raju. (2014). Capacity Needs Assessment for participatory management of coastal and marine protected areas in India with special reference to Forest Sector and Youth: Situation and Conceptual Analysis. CMPA Technical Series No. 39. Indo-German Biodiversity Programme, GIZ-India, New Delhi. P75.
- Meenakshi Chatterjee., Shankar. D., & Sen, G. K. (2013). Tidal variations in the Sundarbans estuarine system, *India J. Earth Syst. Sci.*, 122(4), 899-933.
- Meenakumari, B., & Nair, N. B. (1996). Trace elements in the surface waters of Cochin harbour. *J. Environ. Biol.*, 17(1), 33-37.
- Mendel, B., Kemp, A., & Myere, D. K. (1954). A colorimetric micro method for the determination of glucose. *Biochem J*, 56, 639–45.
- Meybeck, M., Friedrich, G., Thomas, R., & Chapman, D. (1992). Rivers. In: Water Quality Assessments (Ed.) *Chapman, D. Chapman and Hall, London, New York, Tokyo*, 239-316.
- Mhatre, G. N. (1991). Bioindicators and biomonitoring of heavy metals. *J. Environ. Biol.*, 201-209.

- Michael, G. S. (1970). Hydrography and circulation off the west coast of India during the southwest monsoon, 1987. *J. Mar. Res.* 48, 359-378.
- Mingshen, L. W. K. X. G., & Xiongfei, M. S. G. (2008). Acute toxicity of Cd~(2+) to the Chinese Mitten Crab (*Eriocheir sinensis*). *Hebei Fisheries*, 02.45-50.
- Mishra S.R., & Saksena, D. N. (1993). "Planktonic fauna in relation to physicochemical characteristics of Gauri Tank at Bhind, M. P. India," *Advanus in limnology Narenda Publishing house, New Delhi*, 57-61.
- Mishra, K. D. (1991). Impact of sewage and industrial pollution on physico-chemical characteristics of water in river Betwa at Vidisha, Madhya Pradesh. *Ind. J. Env. Health*, 25, 288-299.
- Mishra, K. K. (1988). Nutrient management in freshwater lakes. *Ind. J. Env. Proc.*, 9(5), 358-361.
- Mishra, P. C. (1990). Fundamentals of air and water pollution. *Ashish Publishing House*. *New Delhi*.
- Mohammed Saved & Rajeev Rahavan P. (2001). Mud crab-culture and fattening techniques, status and prospects. *Seafood Exp. J*, 32(11), 25-29.
- Mohan Raj, V., Padmavathy, S., & Sivakumar, S. (2013). Water quality Parameters and its influences in the Ennore estuary and near Coastal Environment with respect to Industrial and Domestic sewage. *Int. Res. J. Environment Sci*, 2(7), 20-25.
- Mohanty, S. K. (1975) Some observations on the physico-chemical features of the outer channel of the Chilka lake during 1971-73. *Bull. of the deptt. of Marine Sci.*, 8(1): 69-89.
- Monferran, M.V., Pesce, S. F., Cazenave, J., & Wunderlin, D. A. (2008). Detoxification and antioxidant responses in diverse organs of *Jenynsia multidentata* experimentally exposed to 1, 2- and 1, 4-dichlorobenzene. *Environ. Toxicol.*, 23, 184-192.
- More, R. P. A., Medesani, D. A. & Rodriguez, E. M. (2003). Inhibition of molting by cadmium in the crab *Chasmagnathus granulata* (Decapoda; Brachyura). *Aquat. Toxicol.*, 64: 155-164.
- Morillo, J., Usero, J., & Rojas, R. (2008). Fractionation of metals and as in sediments from a biosphere reserve (*Odiel salt marshes*) affected by acidic mine drainage. *Environ. Monitor. Assess.*, 139, 329-337.

- Morley, N. J. (2010). Interactive effects of infectious diseases and pollution in aquatic mollusks. *Aquat. Toxicol.*, *96*, 27-36.
- Morrisey, D. J., Turner, S. J., Mills, G. N., Williamson, R. B., & Wise, B. E. (2003). Factor affecting the distribution of benthic macrofauna in estuaries contaminated by urban runoff. *Marine Environmental Research*, *55*(2), 113-136.
- Morton, B., & Morton, J. (1983). The seashore ecology of Hong Kong. *Hong Kong University Press*, (Vol. 1).
- Morton, B., & Zeng, C. K. (1982). The marine flora and fauna of Hong Kong and Southern China; proceedings of the first International Marine Biological Workshop, Hong Kong, 18 April-10 May 1980. v. 1: Introduction and taxonomy.-v. 2: Ecology, morphology, behaviour and physiology.
- Mucha, A. P., Vasconcelos, M. T. S. D., & Bordalo, A. A. (2005). Spatial and seasonal variations of the macrobenthic community and metal contamination in the Douro estuary (Portugal). *Mar. Environ. Res.*, 60, 531-550.
- Müller, L., & Ohnesorge, F. K. (1982). Different response of liver parenchymal cells from starved and fed rats to cadmium. *Toxicology*, 25(2-3), 141-150.
- Munawar, M. (1970a). Limnological studies on freshwater ponds of Hyderabad. I. The Biotope. *Hydrobiologia*, *35*, 127-162.
- Munawar, M. (1970b). Limnological studies on freshwater ponds of Hyderabad. II. Biocenose. *Hydrobiologia*, *36*(1), 105-128.
- Murhekar, G. K. H. (2011). "Assessment of physico-chemical status of ground water samples in Akot city," *Research Journal of Chemical Sciences*, 1(4), 117-124.
- Murthy, T. S., & Henry, R. F. (1983). Tides in the Bay of Bengal. *J. Geophy. Res.*, 88, 6069 6076.
- Muthuraj, S., & Jayaprakash, M. (2007). Distribution and enrichment of trace metals in marine sediments of Bay of Bengal, off Ennore, southeast coast of India. *Environ. Geol.*, 56(1), 207-217.
- Nagaratnamma, R., & Ramamurthi, R. (1981). Comparative evaluation of methyl parathion toxicity to some selected freshwater organisms. *Current Science*, 50, 334-335.

- Nagata, C., Nagao, Y., Shibuya, C., Kashiki, Y., & Shimizu, H. (2005). Urinary cadmium and serum levels of estrogens and androgens in postmenopausal Japanese women. *Cancer Epidemiology and Prevention Biomarkers*, 14(3), 705-708.
- Nair, G. A., Vijaya, M., Balakrishnan, N. N., & Suryanarayanan Radhakrishnan, S. (1984). Effect of titanium effluents on the peripheral haematology of *Anabas testudineus*. *Proc Ind Nat Sci Acad.*, *50*, 355 558.
- Nair, K.V. K. (1983). Metals as marine pollutants. Trans. *Indian. Ins. Metals.* 37(6), 657-664.
- Naithani, V., Pathak, N., & Chaudhary, M. (2010). Evaluation of heavy metals in two major ingredients of Ampucare. *International Journal of Pharmaceutical Sciences and Drug Research*, 2(2), 137-141.
- Nammalwar, P. (1983). Heavy metals pollution in the marine environment. *Science Reporter*, 20(3), 158-160.
- Narain, S., & Chauhan, R. (2000). Water quality status of river complex Yamuna at Panchnada (distt.: Etawah, U. P., India). I. An integrated management approach. *Poll. Res.*, 19(3), 357-364.
- Nascimento, I. A., Smith, D. H., Gomes, M. G. S., Santos, G. V., & Pereira, S. A. (2000). Ecotoxicological diagnosis of Aratu Bay, Bahia, Brazil: A new approach to validate a reactive short-term toxicity end-point by comparison with intertidal benthic activity. *Aquat. Ecosyst. Heal. Manag.*, *3*(4), 449-458.
- Natesan, U., & Seshan, B. R., (2010). Vertical profile of heavy metal concentration in core sediments of Buckingham canal, Ennore. *Indian Journal of Geo-Marine Sciences*, 40(1), 83-97.
- NEERI. (1986). Manual on Water and Waste Water Analysis, *NEERI publication*, *Nagpur*, P.P. 32.
- NEERI. (1998). Introduction of Environmental Economics into Decision Making for Sustainable Development: Air Media Project Report Submitted to IGIDR under Capacity 21 Project, Nagpur, India.
- Neff, J. M. (1985). Use of biochemical measurement to detect pollutant mediated damage to fish. *ASTM Spec. Tech. Publ.*, 854, 154-183.

- Neha, B., Venkhede, G. N., & Dhande, R. R. (2004). Heavy metal induced biochemical alterations in the freshwater fish *Labeo rohita*. *J. Ecotox. And Environ. Monit.*, 14(1), 1-7.
- Nelson, D. L., & Cox, M. M. (2005). Lehninger Principles of Biochemistry. 4th edn. *W.H. Freeman and Company, New York.*
- Nesto, N., Bertoldo, M., Nasci, C., & Da Ros, L. (2007). Spatial and temporal variation of biomarkers in mussel (*Mytilus galloprovincialis*) from the Lagoon of Venice, Italy. *Mar. Environ. Res*, 58, 287–291.
- Nicholson, S., & Lam, P. K. S. (2005). Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel *Perna viridis* (Mytilidae: Bivalvia). *Environment International*, *31*(1):212-132.
- Nixon, S. W., Olsen, S. B., Buckley, E., & Fulweiler, R. (2004). The importance of hydrobiological variables to estuarine management. *University of Rhode Island, Graduate School of Oceanography*.
- Nunes, B., Gaio, A. R., Carvalho, F., & Guilhermino, L. (2008). Behaviour and biomarkers of oxidative stress in *Gambusia holbrooki* after acute exposure to widely used pharmaceuticals and a detergent. *Ecotoxicology and environmental safety*, 71(2), 341-354.
- Ochei, J., & Kolhatkar, A. (2000). Medical Laboratory Science, Theory and Practice, *Tata McGraw-Hill Publishing Company Limited, New Delhi*, 276-287.
- Oliveira, M., Ahmad, I., Maria, V. L., Pacheco, M., & Santos, M. A. (2010). Monitoring pollution of coastal lagoon using *Liza aurata* kidney oxidative stress and genetic endpoints: An integrated biomarker approach. *Ecotoxicol.*, 19, 643-653.
- Oost, V. R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. *Environ. Toxicol. Pharmacol.*, 13(2), 57-149.
- Oswald, W. J. (1960). Light conversion efficiency of algal growth in sewage. *J. San.*, *Eng. Div. Amer. Soc. Civil Engr.*, 86, 71.
- Otchere, F. A., Joiris, C., & Holsbeek, L. (2003). Mercury in the bivalves *Anadara* senilis, *Perna perna* and *Crassostrea tulipa* from Ghana. *Sci. Total Environ.*, 304, 369-375.

- Otieno, D. S. (2008). Determination of some physic chemical parameters of the Nairobi river, Kenya. *J. Appl. Aci. Environ. Manage.*, 12(1), 57-62.
- Ouasim, S. Z. (1978). Distribution of chlorophyll 'a' in the Indian Ocean. *Indian J. Mar. Sci.*, 7, 258 262.
- Ouasim, S. Z., Bhattathiri, P. M. A., & Abidi, S. A. H., (1968). Solar radiation and its penetration in a tropical estuary. *J. Exp. Mar. Biol. Ecol.* Z, 87 103.
- Ouasim, S. Z., Wellershaus, S., Bhattathiri, P. M. A., & Abidi, S. A. H. (1969). Organic production in a tropical estuary. *Proc. Indian Acad. Sci*, 69, 51 94.
- Ouyang, Y., Kizza, P. N., Wu Q. T., Shinde, D., & Huang, C. H. (2006). Assessment of seasonal variations in surface water quality, Wat. Res, 40, 3800-3810.
- Ozmen, H., Külahçı, F., Çukurovalı, A., & Doğru, M. (2004). Concentrations of heavy metal and radioactivity in surface water and sediment of Hazar Lake (Elazığ, Turkey). *Chemosphere*, 55(3), 401-408.
- Pahwa, D. V., & Mehrotra, S. V. (1996). Observations on fluctuations in the abundance of plankton in relation to certain hydrobiological condition of river Ganga. *Proc. Nat. Acad. Sci.*, 36(2), 157-189.
- Palanisamy, S., Neelamani, S., Yu-Hwan, A., Philip, L., & Gi-Hoon, H. (2006). Assessment of the levels of coastal marine pollution of Chennai city, Southern India 2006. *Wat. Resour .Manage*, 27(1), 1187-1206.
- Palharya, J. P., & Malviya, S. (1988) Pollution of Narmada river at Hoshangabad in M. P. and suggested measures for control. In: Ecology and Pollution of Indian Rivers (Ed.) Trivedy. R. K., Asian Publishing House. *New Delhi*, 55-85.
- Pan, L., & Zhang, H. (2006). Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*, 144(1), 67-75.
- Pandey, B. N., Kumar, K., Lal, A. K., & Das, P. K. L. (1993). A preliminary study on the physico-chemical quality of water of the river Koshi at Purnia. *J. Ecobiol.*, 5(3), 237-239.
- Pandey, J., Shubhashish, K., & Pandey, R. (2010). Heavy metal contamination of Ganga river at Varanasi in relation to atmospheric deposition. *Tropical Ecology*, 51, 365-373.

- Pandey, R. K., Arya, R. K., Verma, A., & Misra, S. K. (2004) Distribution of heavy metals in the waste water of river Pandu at Kanpur. *Poll. Res.*, 23(2), 335-342.
- Paramavsivam, M., & Sreenivasan, A. (1981). Changes in algal flora due to pollution in Cauvery river. *Indian J. Environ. Hlth.*, 23(3), 222-238.
- Pastor, A., Medina, J., Del Ramo, J., Torreblanca, A., Diaz-Mayans, J., & Hernandez, F. (1988). Determination of lead in treated crayfish Procambarus clarkii: Accumulation in different tissues. *Bull. Environ. Contam. Toxicol.*; (United States), 41(3).
- Patil, H.S. and Kaliwal, M.B., 1989. Histopathological effects of zinc on the gills of prawn Macrobrachium hendersoni. Z. Angew. Zoo1., 761:505-510.
- Patra, A. K., & Nayak, L. D. (1983). Diurnal rhythm in certain physico-chemical factors in river Hirakud. *Geobios New Reports*, 2(1), 87-89.
- Paul, A. C., Parameswaran, M., & Pillai, K. C. (1994). Trace metals and lanthanides in a tropical river environment. *Water, Air and Soil Pollution*, 74, 141-153.
- Pawar, S. K., Pulle, J. S., Shendge, K. M., Pentewar, M. S., & Itkapalle, A. P. (2009). Physico-chemical studies of Panshewadi dam water in Kandhar Taluka district Nanded (M. S.) *India. Shodh, Samiksha aur Mulyankan*, 2(6), 817-818.
- Peerzada, N., Mcmorrow, L., Skiliros, S., Guinea, M., & Ryan, P. (1990). Distribution of heavy metals in Gove harbour, Northern territory, Australia. *The Science of the Total Environment*, 92, 1-12.
- Pelig-Ba, K. B., Biney, C. A., & Antwi, L. A. (1991). Trace metal concentrations in Borehole waters from the upper regions and the Accra plains of Ghana. *Water, Air and Soil Pollution, 59*, 333-345.
- Phillips, D. J. H., & Rainbow, P. S. (1994). Biomonitoring of trace aquatic contaminants. *Elsevier Appl. Sci. London, New York, 347*.
- Pillai, K. C. (1985). Heavy metals in Aquatic environment. In water pollution and management. *C.K. Varshney* (ed) *Wiley Eastern limited, New Delhi*, 74-93.
- Pipe, R, K., Coles, J. A., Carissan, F. M. M., & Ramanathan, K. (1999). Copper induced immunomodulation in the marine mussel, *Mytilus edulis. Aquat. Toxicol*, 46, 43-54.

- Polit, S. E., Drążkiewicz, M., & Krupa, Z. (2010). Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. *Acta Physiologiae Plantarum*, *32*(1), 169-175.
- Polprasert, C. (1982). Heavy metal pollution in the Chao Phraya river estuary, Thailand. *Water Research*, *16*, 775-784.
- Poonam, B., & Rahul, K. (2012). Status of seawater quality at few industrially important coasts of Gujarat (India) off Arabian Sea. *Indian Journal of Geo-Marine Sciences*, 41(1), 90-97.
- Pourang, N., Dennis, J. H., & Ghourchian, H. (2005). Distribution of heavy metals in *Penaeus semisulcatus* from Persian Gulf and possible role of metallothionein in their redistribution during storage. *Environ. Monitor. Assess.*, 100, 71-88.
- Prabha Devi, L. (1986). Hydrobiological studies in tidal zone of the coleroon estuary. *Ph.D.*, *Thesis*, *Annamalai University*, 241.
- Pradnya Bandekar, D., & Kakati, K. N. V. (2011). Biodiversity of crabs in Karwar mangrove environment, West Coast of India. *Recent Research in Science and Technology*, 3(4).
- Prahalad, A. K., & Seenayya, G. (1989). Physico-chemical interactions and bioconcentration of zinc and lead in the industrially polluted Hussainsagar lake, Hyderabad, India. *Environ. Poll.*, *58*, 139-154.
- Prakash, V. (1990). Seasonal variations in abiotic factors at some fresh water impoundments of Jodhpur, *India. J. Curr. Biosci.*, *3*, 95-97.
- Prasannakumari, A. A., Devi, G. T., & Sukeskumar, C. P. (2003). Surface water quality of river Neyyar, Thiruvanan tha puran, Kerala. *Poll. Res.*, 22(4), 515-525.
- Pritchard, D. W. (1967). What is an estuary? Physical view point. In: estuaries (Ed. G.H. Lauff). For the advancement of science, Washington, D. C. 52–63.
- Priya, V. B., Sivakumar, K., Johnson, J. A., Gopi, G. V., Prakash, S., Deepak Apte., & Suvarna Raju. (2014). Capacity Needs Assessment for participatory management of coastal and marine protected areas in India with special reference to Forest Sector and Youth: Situation and Conceptual Analysis. CMPA Technical Series No. 39. Indo-German Biodiversity Programme, *GIZ-India, New Delhi.* 75.
- PSCST. (2005). Heavy metals in rivers. *Newsletter*, 3(1), 1-8.

- Qadri, M. Y., & Yousuf, A. R., (1978). Seasonal variations in the physico-chemical factors of a subtropical lake of Kashmir. *J. Inland fish Soc. India.* 10(2), 89-96.
- Quasim, S. Z., & Gopinatham, C. K. (1969). Tidal cycle and the environmental features of Cochin backwater (A tropical estuary) proc. *Indian Acad.Sci.*, 69, 336-348.
- Quasim, S. Z., & Sengupta, R. (1981). Environmental characteristics of the Mandovi and Zuari river system in Goa. In: *Asian Jr. of Microbial. Biotech & Env. Sci.*, I(1-2), 121-125.
- Rahman, M. A., Rahman, M. M., Ahmed, A. T. A., Mollah, A. R., & Hossain, M. A. (2008). A survey on the diversity of freshwater crabs in some wetland ecosystems of Bangladesh. *International Journal of Sustainable Crop Production (IJSCP)*, 3, 10-17.
- Rainbow, P. S. (1995a). Biomonitoring of heavy metal availability in the marine environment. *Mar. Poll. Bull.*, 31: 183-192.
- Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what ? *Environ. Poll.*, 120, 497-507.
- Rainbow, P. S. (2006). Biomonitoring of trace metals in estuarine and marine environments. *Aus. J. Ecotoxicol.*, 12: 107-122.
- Rainbow, P. S. (2007). Trace metal bioaccumulation: Models, metabolic availability and toxicity. *Environ. Int.*, *33*, 576-582.
- Rainbow, P. S., & White, S. L. (1989). Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle. *Hydrobiologia*, 174(3), 245–262.
- Rajalakshmi, R., & Sukumaran, M., (2020). Analysis of Physiochemical Parameters to Evaluate the water quality in Kuduvaiyar Estuary, South East coast of India. *High Technology Letters*, 29(9), 868-876.
- Rajalakshmi, S., Mohandas A., (2005). Copper-induced changes in tissue enzyme activity in a freshwater mussel. Ecotoxicol. Environ. Saf. 62, 140-143.
- Rajappa, B., Manjappa, S., & Puttaiah, E. T. (2010). Monitoring of heavy metal concentration in groundwater of Hakinaka Taluk, India. *Contemporary Engineering Sciences*, *3*(4), 183-190.

- Rajmohan, N., & Elango, L. (2005). Distribution of iron, manganese, zinc and atrazine in groundwater in parts of Palar and Cheyyar river basins, South India. *Environ. Monit. Assess.*, 107, 115-131.
- Ram, P., & Singh, A. K. (2007). Studies on distribution of heavy metals in Ganga water and its bed sediments along the Patna stretch. *J. Environ. Sci. and Eng.*, 49(3), 211-214.
- Ramakritinan, C. M., Kumaraguru, A. K., & Balasubramanian, M. P. (2005). Impact of distillery effluent on carbohydrate metabolism of freshwater fish, *Cyprinus carpio. Ecotoxicol.*, *14*, 693-707.
- Ramamirtham, C. P., & Jayaraman, R. (1983). Some aspects of the hydrograpical of the backwaters around Willington Island (Cochin). *J. Mar. Biol. Ass. India*, 5(2), 170 171.
- Rani, P. S., & Reddy, P. M., (2003). Preliminary studies on metal concentration on *Hussain Sagar Lake*. *Poll. Res.*, 22(3), 377-380.
- Rao, C. B. (1955) On the distribution of algae in group of six small ponds. II. *Algae periodicity*. *J. Ecol.*, *43*, 291-308.
- Rao, D. B., Kiran, C. R., Madhavi, Y., Rao, P. K., & Rao, T. R. (2009). Evaluation of antioxidant potential of *Clitoria ternata* L. and *Eclipta prostrata* L.28:35-42.
- Rao, M. V. (1997). Mercury and its effects on mammalian systems. A critical review. *Indian J. Environ. Toxicol.* 7, 3-11.
- Rashed, M. N. (2001a). Cadmium and lead levels in fish (*Tilapia nilotica*) tissues as biological indicator for lake water pollution. *Environ. Monit. Assess.*, 68(1), 75-89.
- Ravichelvan, R., Ramu, S., & Anandaraj, T. (2015). Seasonal variations of water quality parameters in south east coastal waters of Tamil Nadu, India. *Int. J. Modn. Res. Revs*, *3*(10), 826-829.
- Ray, G., & Husain, S. A. (2002). Oxidants, antioxidants and carcinogenesis. *Indian J Exp Biol*, 40(11), 1213-1232.
- Ray, P., Singh, S. B., & Sehgal, K. L. (1966). A study of some aspects of ecology of river Ganga and Yamuna at Allahabad (U. P.) in 1958-59. *Proc. Nac. Acad. Sci. India*, 36(3), 235-272.

- Reddy, M. S., & Rao, K. V. R. (1989). *In vivo* modification of lipid metabolism in response to phosphamidon, methylparathion and lindane exposure in the penaeid prawn, *Metapenaeus monoceros*. *Bulletin of Environmental Contamination Toxicology*, 43, 603-610.
- Regoli F (2000) Total oxyradical scavenging capacity (TOSC) in polluted and translocated mussels: a predictive biomarker of oxidative stress. *Aquat Toxicol* 50:351–361.
- Reid, G. K. (1961). Ecology of Inland water and Estuaries. 2th Edition. *Van Nostrand Reinhold Publishing Corporation, New York*, 375.
- Richardson, B. J., & Martin. M. (1994). Marine and estuarine toxicity testing: A way to go? Additional sitings from northern and southern hemisphere perspectives. *Mar. Poll. Bull.*, 28, 138-142.
- Richmonds, C., & Dutta, H. M., (1989). Histopathological changes induced by malathion in the gills of the bluegill *Lepomis macrochirus*. Bull. Environ. *Contam. Toxicol*, 43, 123-130.
- Ridgway, J., & Shimmield. G. (2002). Estuaries as repositories of historical contamination and their impact on shelf seas. *Estua. Coas. Shelf Sci.*, 55, 903-928.
- Rodriguez, J. G., Tueros, I., Borja, A., Belzunce, M. J., Franco, J., Solaun, O., Valencia, V., & Zuazo, A. (2006). Maximum likelihood mixture estimation to determine metal background values in estuarine and coastal sediments within the European Water Framework Directive. *Sci. Tot. Environ.*, *370*, 278-293.
- Rombout, J. H. W. M., Huttenhuis, H. B. T., Picchietti, S., & Scapigliati, G. (2005). Phylogeny and ontogeny of fish leucocytes. *Fish & shellfish immunology*, 19(5), 441-455.
- Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: biochemical roles as components of glutathione peroxidase. *Sci*, 179, 588-590.
- Sadhuram, Y., Sarma, V., Ramana Murthy, T. V., & Prabhakara Rao, B. (2005). Seasonal variability of physic-chemical characteristics of the Haldia channel of Hooghly estuary, India. *J. Earth Syst. Sci.*, 114, 37–49.
- Saeed, M., Muhammad, N., Khan, H., & Khan, S. A. (2010). Analysis of toxic heavy metals in branded Pakistani herbal products. *J Chem Soc Pak*, 32(4), 471.

- Safari, D., Mulongo, G., Byarugaba, D., & Tumwesigye, W. (2012). Impact of Human Activities on the Quality of Water in Nyaruzinga Wetland of Bushenyi District Uganda, *Int. Res. J. Environment Sci*, 1(4), 1-6.
- Sah, J. P., Sah, S. K., Acharya, P., Pant, D., & Lance, V. A. (2000). Assessment of water pollution in the Narayani river, Nepal. *Int. J. Eco. Environ. Sci.*, 26, 235-252.
- Sahu, B. K., Rao, R. J., Behara, S. K., & Pandit, R. K. (2000). Effect of pollution on the dissolved oxygen concentration of the river Ganga at Kanpur. In: Pollution and biomonitoring of Indian rivers (Ed.: R. K. Trivedy). *ABD Publication, Jaipur, India*, 168-170.
- Sakai, T. (1939). Studies on the crabs of Japan. IV. Brachygnatha, Brachyrhyncha, *Yokendo Co., Tokyo.* 365-741.
- Sanayei, Y., Ismail, N., & Talebi, S. M. (2009). Determination of heavy metals in Zayandeh Rood River, Isfahan –Iran. *World Applied Sciences Journal*, 6(9), 1209-1214.
- Sánchez-Venegas, J. R., Dinamarca, J., Moraga, A. G., & Gidekel, M. (2009). Molecular characterization of a cDNA encoding Cu/Zn superoxide dismutase from Deschampsia antarctica and its expression regulated by cold and UV stresses. *BMC research notes*, 2(1), 1-7.
- Sandwar, B. B., & Tiwari, A. K. (2006). Monthly variation in heavy metals concentration in Ganga river water in north Bihar region around Barauni-Mokama industrial complex and their correlation study. *Poll. Res.*, 25(4), 693-700.
- Santhanam, R., Ramanathan, N., Venkataramanugen, K., & Jagathesan, G. (1975). Phytoplankton of Indian seas. *Daya publishing Co., Delhi, India.*
- Saravanan, T. S., Aneez Mohammed, M., & Sundaramorthy, M. (2003). Fresh water fishes as indicators of river pollution. *J. Environ. Biol.*, 24(4), 381-289.
- Sarkar, A., Dash, S., Barik, B. K., Muttigi, M. S., Kedage, V., Shetty, J. K., & Prakash, M. (2010). Copper and ceruloplasmin levels in relation to total thiols and GST in type 2 diabetes mellitus patients. *Indian journal of clinical biochemistry*, 25(1), 74-76.
- Sarwar, S. G. (1987). Species composition and seasonal variation of periphyton on *Ceratophyllum demersum* in Waskur lake, Kashmir. *Geobios New Reports*, 6(2), 114-115.

- Sasinayar, G., & Gowda, G. (1999). Studies on phytoplankton pigments in a tropical coastal lagoon. *Indian J. Fish.*, 46(2), 215-220.
- Saxena, K. L., Chakrabarti, R. N., Khan, A. Q., Chattopadhya, S. N., & Chandra, H. (1966). Pollution status of river Gangas near Kanpur. *Environ. Hlth.*, 8(4), 270-285.
- Say, T. (1817). An account of the Crustacea of the United States. *Journal of the Academy of natural Sciences of Philadelphia*, 1, 65-80.
- Scaps, P. (2002). A review of the biology, ecology and potential use of the common ragworm *Hediste diversicolor* (O.F. Muller) (Annelida: Polychaeta). *Hydrobiol.*, 470, 203-218.
- Schamphelaere, K. A. C., & Janssen, C. R. (2004). Bioavailability and chronic toxicity of zinc to juvenile rainbow trout: Comparisons with other fish species and development of a biotic ligand model. *Environ. Sci. Technol.*, 38, 6201-6209.
- Scott, G. R., & Sloman, K. A. (2004). The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity. A review. *Aquat. Toxicol.*, 68, 369-392.
- Secombes, C. J., & Fletcher, T. C. (1992). The role of phagocytes in the protective mechanisms of fish. *Annual Review of Fish Diseases*, 2, 53-71.
- Seebaugh, D. R., Goto, D., & Wallace, W. G. (2005). Bioenhancement of cadmium transfer along a multi level food chain. *Mar. Environ. Res.*, 59(5), 473-491.
- Seenayya, G. (1971). Ecological studies in the plankton of certain fresh water ponds of Hyderabad, India. I. Physico-chemical complexes. *Hydrobiologia*, *37*, 7-31.
- Seufi, A. M., Ibrahim, S. S., Elmaghraby, T. K., & Hafez, E. E. (2009). Preventive effect of the flavonoid, quercetin, on hepatic cancer in rats via oxidant/antioxidant activity: molecular and histological evidence. *Journal of Experimental & Clinical Cancer Research*, 28(1), 1-8.
- Shah, A. R. (1988). Physico-chemical aspects of pollution in river Jhelum (Kashmir) during 1981-83. In Ecology and Pollution of Indian Rivers (Ed.) Trivedy. R. K., *Asian Publishing House. New Delhi*, 163-207.

- Shanthi, V., & Gajendran, N. (2009). The impact of water pollution on the socioeconomic status of the stakeholders of Ennore Creek, Bay of Bengal (India): Part I. *Indian Journal of Science and Technology*, 2(3), 66-79.
- Sharma, V. P., & Dhaneshwar, R. S. (1986). Significance of pH in the environment. *Ind. J. Env. Proc.*, 6(4), 272-274.
- Shastree, N. K., Islam, M. S., Pathak, S., & Afshan, M. (1991). Studies on the physico-chemical dimensions of the lentic hydrosphere of Ravindra Sarovar (Gaya). In: Current trends in limnology I.(Ed.) Shastree, N. K. (ed.) *Narendra Publishing House, Delhi*, 133-152.
- Shieh, P. C., Chen, Y. O., Kuo, D. H., Chen, F. A., Tsai, M. L., Chang, I. S., & Pan, M. H. (2010). Induction of apoptosis by [8]-shogaol via reactive oxygen species generation, glutathione depletion, and caspase activation in human leukemia cells. *Journal of agricultural and food chemistry*, 58(6), 3847-3854.
- Shin, S. L., & Lam, A. (2001). Effects of heavy metal accumulation on the 96-hr LC₅₀ values in Tench *Tinca tinca* L., 1758. *Turk. J. Vet. Anim. Sci.*, 29: 139-144.
- Shoba Rani, A., Sudharsan, R. Reddy, T.N. and T.N. Raju. (2001). Effect of arsenite on certain aspect of protein metabolism in the freshwater teleost, *Tilapia mossambica*. *J. Environ. Bio.*, 22(2), 101-104.
- Shrihari, S., & Venkatesa, N. (1994). Seasonal variations in physico-chemical characteristics of Thengaithittu estuary, Puducherry, South East-Coast of India., *Indian J. Environ. Protec*, 1, 19-21.
- Shukla, G. S., Hussain, T., Srivastava, R. S., & Chandra, S. V. (1989). Glutathione peroxidase and catalase in liver, kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal. *Industrial health*, 27(2), 59-69.
- Shyam Sunder, (1988). Monitoring the water quality of river Jhelum, Kashmir. In :Ecology and Pollution of Indian Rivers (Ed.) Trivedy. R. K., *Asian Publishing House. New Delhi*, 131-161.
- Shyamala, R., Shanthi, M., & Lalitha, P. (2008). Physico-chemical of borewell water samples of Telungupalayam area in Coimbatore district Tamilnadu, India. *E. J. Chem.*, *5*(4), 924-929.
- Sibly, R. M., & Hone, J. (2002). Population growth rate and its determinants: An overview. *Philos. T. Roy. Soc. Lond.*, *357*, 1153-1170.

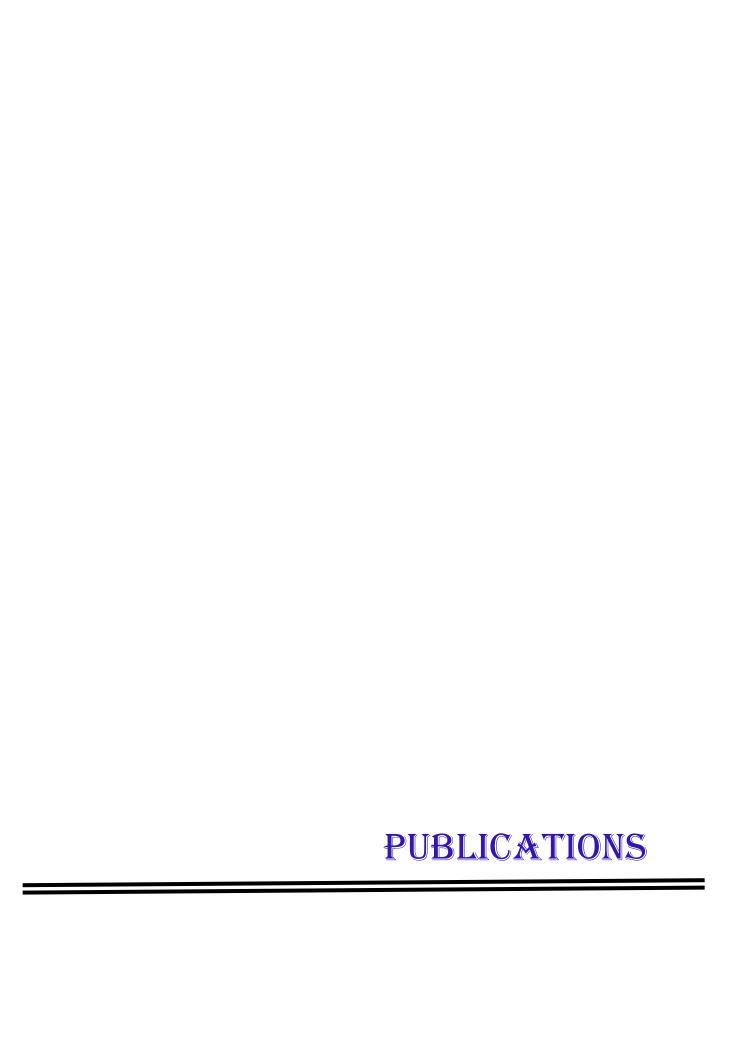
- Silvestre, F., Trausch, G., & Devos, P. (2005). Hyper-osmoregulatory capacity of the Chinese mitten crab (*Eriocheir sinensis*) exposed to cadmium; acclimation during chronic exposure. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*, 140(1), 29-37.
- Siman-Tov T., Gadoth, N. (2011). Free radicals in epilepsy. In: Gadoth N, Go "bel HH (eds) Oxidative stress and free radical damage in neurology. Oxidative stress in applied basic research and clinical practice. *Humana Press, Totowa*, 153–167.
- Singh, H. R., Badola, S. P., & Dobriyal, A. K. (1982). Ecology of the river Nayar of Garhwal Himalaya. *Uttar Pradesh J. Zool.*, 2, 72-76.
- Singh, K. S., Singh, S. K. S., & Yadav, R. P. (2010). Toxicological and biochemical alteration of cypermethrin (synthetic Pyrethroids) against freshwater teleost *Colisa fasciatus* at different seasons. *World J. Zool.* 5(7), 25-32.
- Singh, N., & Turner, A. (2009). Trace metals in antifouling paint particles and their heterogeneous contamination of coastal sediments. *Mar. Poll. Bull.*, *58*, 559-564.
- Singh, R. P., & Mathur, P. (2005). Investigation of variations in physicochemical characteristics of a fresh water reservoir of Ajmer city, Rajasthan. *Int. J. Env. Sci.*, *9*, 57-61.
- Singh, V. P., Saxena, P. N., Tiwari, A., Lonsane, B. K., Khan, M. A., & Arora, I. (1969). Algal flora of sewage Uttar Pradesh in relation to physico-chemical variables. *Environ. Hlth.*, 11, 208-219.
- Sinha, A. K., Srivastava, R. K., Diwivedi, A., & Pande, D. P. (1991). Sediment characteristics of river Ganga at Shuklagani (Unnao), Gagasso (Rae-Bareli) and Phakhama (Allahabad). *Proc. Nat. Conf. on Aq. Sci. in India, New Delhi*
- Sinha, D. K. (2004). Level of some heavy metals in waters from Sai river at Rae Bareli India for the premonsoon period and after the onset of monsoon. *Poll. Res.*, 23(1), 113-116.
- Sithik, A. M. A., Thirumaran, G., Arumugam, R., Kannan, R. R. R., & Anantharaman, P. (2009). Physico-chemical parameters of holy place Agnitheertham and Kothandaramar Temple; Southeast coast of India. *American-Eurasian J. of Sci. Res.*, 4(2), 108-116.

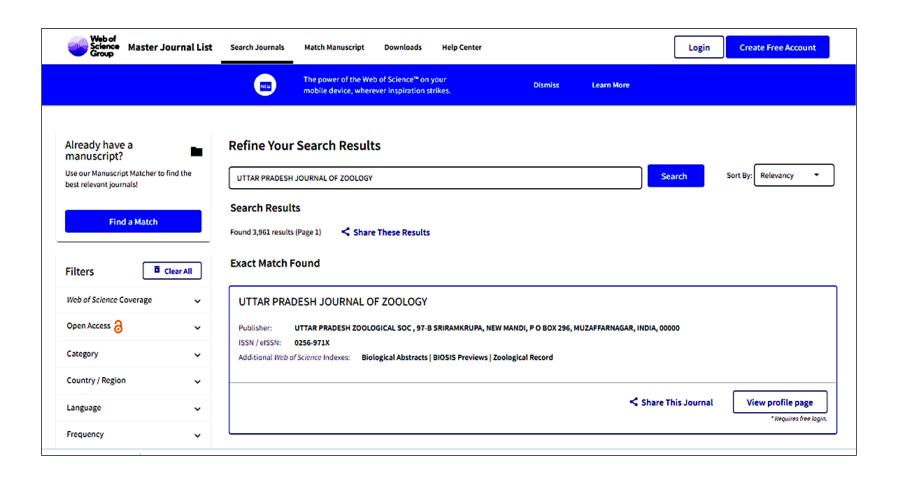
- Skov, M. W., & Hartnoll, R. G. (2002). Paradoxical selective feeding on a low-nutrient diet: why do mangrove crabs eat leaves?. *Oecologia*, 131(1), 1-7.
- Sohini, V. S., & Rana, S. (2007). Protective effect of ascorbic acid against oxidative stress induced by inorganic arsenic in liver and kidney of rat. *Aquat. Toxicol.*, 63, 361-365.
- Sokolova, I. M., Evans, S., & Hughes, F. M. (2004). Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. *Journal of Experimental Biology*, 207(19), 3369-3380.
- Somaraj, R., Ranjith Singh, A., & Pushparah, A. (2005). Pesticide induced impairment on the carbohydrate metabolism in the fish *Mystus vittatus*. *J. Curr. Sci.*, 7(2), 551-576.
- Souza, A., Kurien, B. T., Rodgers, R., Shenoi, J., Kurono, S., Matsumoto, H., & Scofield, R. H. (2008). Detection of catalase as a major protein target of the lipid peroxidation product 4-HNE and the lack of its genetic association as a risk factor in SLE. *BMC Medical Genetics*, *9*(1), 1-8.
- Spear, P. A. (1981). Zinc in the aquatic environment: chemistry, distribution, and toxicology NRCC. Associate Committee on Scientific Criteria for Environmental Quality, 17589.
- Speeman-Kerber, G. (1931). Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. *Naunyn-Schmiedebergs Archiv für experimentelle pathologie und pharmakologie*, 162(4), 480-483.
- Sprague, J. D. (1973). The ABC of Pollution Assays using Fish, Biological Methods for Assessment of Water Quality, *A.S.T.M. STP*, *528*, 6-30.
- Sreenivasan, A., & Pillai, K. V. N. (1972). Hydrology of Pulicat lake. *Semi. Maricult. Mech. Fishing, Proc., Madras,* 60 65.
- Srikanth, R., Rao, A. M., Kumar, C. S., & Khanum, A. (1993). Lead, cadmium, nickel, and zinc contamination of ground water around Hussain Sagar Lake, Hyderabad, India. *Bull. Environ. Contam. Toxicol.*, 50(1), 138-143.
- Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. *Free Radical Bio. Med*, *18*, 321-326.

- Subash, S., & Subramanian, P. (2009). Morin a flavonoid exerts antioxidant potential in chronic hyperammonemic rats: a biochemical and histopathological study. *Molecular and cellular biochemistry*, 327(1), 153-161.
- Subathra, S., & Karuppasamy, R. (2008). Bioaccumulation and depuration pattern of copper in different tissues of *Mystus vittatus*, related to various size groups. *Arch. Environ. Contam. Toxicol.*, *54*, 236-244.
- Subramanian, B., & Mahadevan, M. (1999). Seasonal and diurnal variation of Hydro biological characters of coastal waters of Chennai (Madras) Bay of Bengal. *Indian J. Mar. Sci.* 28, 429-433.
- Sudhakaran, D. S., Srirekha, P., Devasree, L. D., Premsingh, S., & Michael, R. D. (2006). Immunostimulatory effect of *Tinospora cordifolia* Miers leaf extract in *Oreochromis mossambicus*.
- Sun, J., Wang, M. H., & Ho, Y. S. (2012). A historical review and bibliometric analysis of research on estuary pollution. *Mar. Pollut. Bull, 64,* 13–21.
- Sunita Rani., Gupta, R. K., & Manju Rani. (2015). Heavy Metal Induced Toxicity in Fish with Special Reference to Zinc and Cadmium. *International Journal of Fisheries and Aquatic Studies*, 3(2), 118-123.
- Sveinbjornsson, B., Olsen, R., Seternes, O. M., & Seljelid, R. (1996). Macrophage cytotoxicity against murine meth A sarcoma involves nitric oxide-mediated apoptosis. *Biochemical and biophysical research communications*, 223(3), 643-649.
- Swarup, K., & Singh, S. R. (1979). Limnological studies of Suraha lake (Ballia). I. Variations in the water quality. *J. Inland fish Soc. India.* 2(1), 22-23.
- Syal, J. (1996). Present ecological status of river Satluj in and around Nangal (Punjab). *Ph.D. thesis, Punjabi University, Patiala*.
- Szefer, P., Szefer, K., & Skwarzec, B. (1990). Distribution of trace metals in some representative fauna of the Southern Baltic. *Mar. Pollut. Bull.* 21, 60-62.
- Tabrez, S., & Ahmad, M. (2011). Some enzymatic/nonenzymatic antioxidants as potential stress biomarkers of trichloroethylene, heavy metal mixture, and ethyl alcohol in rat tissues. Environmental toxicology, 26(2), 207-216.
- Tagawa, Y., Hiramatsu, N., Kasai, A., Hayakawa, K., Okamura, M., Yao, J., & Kitamura, M. (2008). Inductions of apoptosis by cigarette smoke via ROS-dependent ER stresses and CHOP. Free Radic Biol. Med., 45: 50-59.

- Tang, H., Li, S. J., Wang, G. Z., & Weng, W. H. (2000). Effects of Cu[^] 2[^]+, Zn[^] 2[^]+, Cd[^] 2[^]+ on Three Metabolic Enzymes of the Larval Crab of Scylla serrata. *Journal-xiamen university natural science*, *39*(4), 525-528.
- Thangaraj, C. S. (1984). Ecobiology of the marine zone of the Vellar estuary. *Ph.D.*, *Thesis, Annamalai University*, 192.
- Thari, M., Benyaich, F., Bounakhla, M., Bilal, E., Gruffat, J. J., Moutte, J., & Garcia, D. (2005). Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (central Morocco). *Environ. Monitor. Assess.*, 102, 405-417.
- Thiagarajan, R., Gopalakrishnan, S., & Thilagam, H. (2006). Immunomodulation of the marine green mussel *Perna viridis* exposed to sub-lethal concentrations of Cu and Hg. *Archives of environmental contamination and toxicology*, *51*(3), 392-399.
- Thirupathaiah, M., Samatha, C. H., & Sammaiah, C. (2012). Analysis of water quality using physico-chemical parameters in lower Manair reservoir of Karimnagar district, Andhra Pradesh. *International Journal of Environmental Sciences*, 3(1), 172-180.
- Thomson, L. M. (1952). Soils and soil fertility. *Mc Graw Hill, N. York, London*, 230.
- Tirmizi, N. M. (1983). Mangrove fauna (invertebrates) of Karachi-Sind Coast Pakistan Agricultural Research Council, Res. Rept. No. 1 Marine Collection Centre, *University of Karachi*, 66.
- Tirmizi, N. M., & Ghani, N. (1983). Economic importance of shell fish in mangroves. In 22nd National Conference, Karachi.
- Tran, K. C., Euan, J., & Isla, M. L. (2002). Public perception of development issues: Impact of water pollution on a small coastal community. *Oce. Coas. Manage*, 45, 405-420.
- Trivedy, R. K., & Goel, P. K. (1986). Chemical and biological methods for water pollution studies. *Environmental Publications, Karad*.
- Trivedy, R. K., Khatavkar, S. D., & Arjugade, B. L. (2002). Heavy metal pollution in the River Krishna and Koyana in Maharashtra, India. In: Ecology of polluted Waters, Eds. Arvind Kumar, *A.P.H. Publishing House, Delhi. 1*

.


- Tueros, I., Borja, A., Larreta, J., Rodriguez, J. G., Valencia, V., & Millan. E. (2009). Integrating long-term water and sediment pollution data, in assessing chemical status within the European Water Framework Directive. *Mar. Poll. Bull*, 58, 1389-1400.
- Turkseven, S., Kruger, A., Mingone, C. J., Kaminski, P., Inaba, M., Rodella, L. F., & Abraham, N. G. (2005). Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes. *American Journal of Physiology-Heart and Circulatory Physiology*, 289(2), H701-H707.
- Twining, J., Creighton, N., Hollins, S., & Szymczak, R. (2008). Probabilistic risk assessment and risk mapping of sediment metals in Sydney Harbour embayments. *Hum. Ecol. Risk Assess.*, 14, 1202-1225.
- USEPA, (U.S. Environmental Protection Agency). (1991a). Guidelines Establishing Test Procedures for the Analysis of Pollutants, Analytical Methods for Biological Pollutants in Ambient Water; Final Rule. *U.S. Federal Register-40 CFR Part.*, 136(68), 139.
- Valarmathi, S., Azariah, J., & Govindasamy, C. (2002). Seasonal variation of physico-chemical parameters in estuarine and coastal water samples of Madras coast, Bay of Bengal, *India. Poll. Res.*, 21(2), 177-185.
- Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. *Ecotoxicol Environ Saf*, 64, 178–189.
- Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. *The international journal of biochemistry & cell biology*, *39*(1), 44-84.
- Van der Oost R.; Beyer J. & Vermeulen N.P.E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. *Environ. Toxicol. Pharmacol*, 13, 57-149.
- Van Hattum, B., De Voogt, P., Van den Bosch, L., Van Straalen, N. M., Joosse, E. N. G., & Govers, H. (1989). Bioaccumulation of cadmium by the freshwater isopod *Asellus aquaticus* (L.) from aqueous and dietary sources. *Environmental Pollution*, 62(2-3), 129-151.
- Vasisht, H. S., & Sharma, K. (1975). Ecology of a typical urban pond in Ambala city of Haryana. *Indian. J. Ecol.*, 2(1), 79-86.


- Vazquez, G. F., Diaz, R. A., Salvador, L. G., & Sharma, V. K. (1998). Dissolved metals in Alvarado lagoon, Mexico. *Envir. Int.*, 24(7), 721-727.
- Vazquez, G. F., Delgado, H. D., & De La Huerta, C. J. (1993). Trace and heavy metals in San Andres Lagoon, Tamaulipas, Mexico. *Environ. Int.*, 19, 71-77.
- Veena, K., Shanthi, P., & Sachdanandam, P. (2007). Therapeutic efficacy of Kalpaamruthaa on reactive oxygen/nitrogen species levels and antioxidative system in mammary carcinoma bearing rats. *Molecular and cellular biochemistry*, 294(1), 127-135.
- Veliea, I. (1984). Marine ecological processes. Springer verlag, New York, 546.
- Viarengo, A., Canesi, L., Pertica, M., Poli, G., Moore, M. N., & Orunesu, M. (1990). Heavy metal effects on lipid peroxidation in the tissues of *Mytilus galloprovincialis* Lam. *Comp Biochem Physiol*, 97, 37–42
- Victor, B., Mahalingam, S. and Sarojini, R., 1985. Cytopathological effects of cadmium on the freshwater prawn Macrobrachium idea. Ind. J. Fish., 32(4), 478-80.
- Vieira, L. R., Gravato, C., Soares, A. M. V. M., Morgado, F., & Guilhermino, L. (2009). Acute effects of copper and mercury on the estuarine fish *Pomatoschistus microps*: Linking biomarkers to behaviour. *Chemos.*, 76, 1416-1427.
- Vignini, A. (2011). Stroke and oxidative stress. In: Gadoth N, Go "bel HH (eds) Oxidative stress and free radical damage in neurology. Oxidative stress in applied basic research and clinical practice. Humana Press, Totowa, 137–152.
- Viswanathan, S., & Manisseri, M. K. (1995). Histopathological studies on Zinc toxicity in *Penaeus indicus* H. *CMFRI No*, 61, 25-29.
- Vutukuru, S. S. (2005). Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemical profiles of the Indian major carp, *Labeo rohita*. *Int. J. Environ. Res. Public Health*, 2(3), 456-462.
- Wallace, W. G., Lee, B. G., & Luoma, S. N. (2003). Subcellular compartmentalization of Cd and Zn in two bivalves. Significance of metalsensitive fractions (MSF) and biologically detoxified metal (BDM). *Mar. Ecol. Progr. Ser.*, 249, 183-197.

- Walton, M. J., & Cowey, C. B. (1982). Aspects of intermediary metabolism in salmonid fish. *Comparative Biochemistry and Physiology*, 738, 59-79.
- Wang, L., Yan, B., Liu, N., Li, Y., & Wang, Q. (2008). Effects of cadmium on glutathione synthesis in hepatopancreas of freshwater crab, *Sinopotamon yangtsekiense*. *Chemosphere*, 74(1), 51-56.
- Wang, Q., Wang, L., Xi, Y. Y., Yang, X. Q., & Wang, D. X. (2003). The Acute Toxcity and Accumulation of Cd[^] 2[^]+ in freshwater Crab Sinopotamon yangtsekiense. Journal-shanxi university natural science edition, 26(2), 176-178.
- Wang, W. X. (2002). Interactions of trace metals and different marine food chains. *Mar. Ecol. Prog. Ser.*, 243, 295-309.
- Wang, Y. S., Lou, Z. P., Sun, C. C., Wu, M. L., & Han, S. H. (2006). Multivariate statistical analysis of water quality and phytoplankton characteristics in Daya Bay, China, from 1999 to 2002. *Oceanologia*, 48(2).
- Wanganeo, A. (1984) Primary production characteristics of a Himalayan lake in Kashmir. *Int. Revue Ges. Hydrobiol.*, 69(1), 79-90.
- Watts, M. M., & Pascoe, D. (2000). A comparative study of *Chironomus riparius* Meigen and *Chironomus tentans* Fabricius (Diptera: Chironomidae) in aquatic toxicity tests. *Arch. Environ. Contam. Toxicol.*, 39, 299-306.
- Weber, W. J., & Stun Jr, W. (1963). Mechanism of hydrogen ion buffering in natural waters. *J. Amer. Water Works Association*, 55, 1553–1555.
- Welch, P. S. (1952), Limnology, 2nd Ed. Mc Graw Hill Book Co., New York.
- Welsh, P. G., Lipton, J., Podrabsky, T. L., & Chapman, G. A. (2000). Relative importance of calcium and magnesium in hardness-based modification of copper toxicity. *Environ. Toxicol. Chem.*, 19, 1624-1631.
- Wepener, V., Vuren, J. H. J. V., & Du-Preez, H. H. (2001). Uptake and distribution of a copper, iron and zinc mixture in gill, liver and plasma of a freshwater teleost, *Tilapia sparrmanii*. *Wat. SA.*, 27(1), 99-108.
- WHO (1996) Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information, World Health Organization, Geneva.
- WHO. (1995). Environmental health criteria 85: Lead-environmental aspects. World Health Organization, Geneva.

- Wolfe, D. A., & Rice, T. R. (1972). Cycling of elements of estuaries Fish. *Bull.*, 70(3), 959-972.
- Woodword, G. M. (1984). Pollution control in the Humber estuary. *Water Poll. Cont.*, 83(1), 82-90.
- Wright, D. A. (1977). The effect of calcium on cadmium uptake by the shore crab. *Carcinus* maenas. *Journal of Experimental Biology*, 67(1), 163-173.
- Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. *International Scholarly Research Notices*, 2011.
- Xue, X., Piao, J. H., Nakajima, A., Komazawa, S. S., Kojima, Y., Mori, K., Yagita, H., Okumura, K., Harding, H., & Nakano, H. (2005). Tumor necrosis factor-a (TNF-a) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNF-a. *J. Biol. Chem.*, 280, 33917-33925.
- Yang, S., Wu, R. S. S., & Kong, R. Y. C. (2002). Physiological and cytological responses of the marine diatom *Skeletonema costatum* to 2, 4-dichlorophenol. *Aquat. Toxicol.*, 60, 33-41.
- Yasuhiro, S., Duong, V. T., Daigo, S., Doan, C., & Yoshito, K. (2007). Arsenic and other metal contamination of groundwater in the Mekong River Delta, Vietnam. *J. Health Sci.*, 53(3), 344-346.
- Yilmaz, M., Gul, A., & Karakose, E. (2004). Investigation of acute toxicity and the effect of cadmium chloride (CdCl₂·H₂O) metal salt on behavior of the guppy (*Poecilia reticulata*). *Chemos.*, *56*, 375-380.
- Yokouchi, M., Hiramatsu, N., Hayakawa, K., Kasai, A., Takano, Y., Yao, J., & Kitamura, M. (2007). Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response. *Cell Death Differ.*, 14, 1467-1474.
- Yoo, K. I., & Lee, J. W. (1980). Environmental studies of the Jinhae Bay, 2. Environmental parameters in relation to phytoplankton population dynamics. *J. O Ceanol. Soc. Kar*, *14*, 62 65.
- Zaggia, L., Rosso, J., & Zonta, R. (2007). Sulphate reduction in the sediment of the Venice canals (Italy). *Mar. Poll. Bull.*, 55, 415-424.

- Zhang, H., He, P. J., Shao, L. M., Feng, J. H., & Cao, Q. K. (2006). Leaching behavior of Pb and Zn in air pollution control residues and their modeling prediction. *J. Environ. Sci*, 18(3): 583-586.
- Zhao, W., Wei, H., Jia, J., & Lu, D. (1995). Effects of cadmium on transaminase activities and structures of tissues in freshwater giant prawn (*Macrobrachium rosenbergii*). J. Fish. China/Shuichan Xuebao, 19(1), 21-27.
- Zutshi, D. P., & Vass, K. K. (1978). Limnological studies on Dal lake-chemical features [India]. *Indian Journal of Ecology (India)*.

UTTAR PRADESH JOURNAL OF ZOOLOGY

42(22): 195-202, 2021 *ISSN: 0256-971X*

PHYSICO-CHEMICAL ANALYSIS OF KUDUVAIYAR ESTUARINE WATER OF SOUTH EAST COAST OF INDIA

B. GIJILET MARY^{1#} AND M. SUKUMARAN^{1†*}

¹Department of Zoology, Rajah Serfoji Govt. College (Autonomous) (Affiliated to Bharathidasan University), Thanjavur – 613 005 Tamil Nadu, India.

AUTHORS' CONTRIBUTIONS

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

Editor(s):

(1) Osama Anwer Saeed, University of Anbar, Iraq. Reviewers:

(1) P.V.Krishna, Acharya Nagarjuna University, India.

(2) Ballet Tiama Guy Nicaise, Nangui Abrogoua University, Côte d'Ivoire.

Received: 27 August 2021 Accepted: 01 November 2021 Published: 09 November 2021

Original Research Article

ABSTRACT

A study has been undertaken to enlighten the water quality parameters of coastal water of Kuduvaiyar estuary and Kuduvaiyar east coast was selected as the reference site. The concentration of water quality parameters like pH, DO, Ammonium, Nitrate, BOD, Sodium, Chloride, Sulphate and Fluoride were done in the laboratory as per the standard methods compared with Fisheries and aquatic life standard value. The reason for choosing the coastal water level due to the continuous discharge of agricultural, domestic sewage and industrial effluent in the estuary. The present baseline information of the physicochemical properties of water would form a useful tool for further ecological assessment and monitoring of Kuduvaiyar estuarine water of South East coast of India. The conclusion of the present study is that physico-chemical parameters influence the Ichthyofaunal diversity and Kuduvaiyar estuary are not extremely pollutant but at the same time there is a possibility of gradual addition of pollutants in due course. It reveals that the estuarine environment is largely influenced by the annual cycle of monsoon.

Keywords: Physicochemical parameters; fisheries and aquatic life standard value; kuduvaiyar estuary.

1. INTRODUCTION

Estuarine and coastal areas are complex and dynamic aquatic environments. India has a long coastline of 8,129 km and of this 6,000 km is rich in estuaries, creeks, brackish water, lagoons and lakes. The

southeast coast of India is an important stretch of coastline, where many major rivers drain into the Bay of Bengal and they are also richer in marine fauna and flora [1]. Agricultural, industrial and urban activities are considered to be major sources of addition of nutrients to aquatic ecosystems posing a big threat to

^{*} Research Scholar.

[†] Research Supervisor.

^{*}Corresponding author: Email: sukukumar05;@gmail.com;

fish stocks [2]. Eutrophication is of great environmental distress, leading to diverse problems such as toxic algal blooms, loss of oxygen, fish mortalities and eventually loss of biodiversity [3,4]. The impacts vary from relatively minor to major disruptions due to bioaccumulation and biomagnification processes [5,6].

Estuaries, the main contributors of fisheries in India, suffer from severe damage which receive large amounts of contaminants due to increased industrialization and urbanization along the coastal areas by continuous discharge of domestic sewage and industrial effluents. Overloading of the estuaries with contaminants for a longer period of time has resulted in the significant buildup of pollutants with a resulting impact on water properties [7,8]. Paramisivam and Kannan [9] and Rajalakshmi and Sukumaran [10] reported that factors related to water quality such as temperature, pH, salinity, dissolved oxygen, total organic carbon and nutrients are particularly important for determining the biota and ecosystem functions in coastal waters. Hence, the present study was therefore undertaken with a view to provide much needed information on the water quality parameters in the coastal water of Kuduvaiyar estuary and Kuduvaiyar east coast was selected as the reference site.

2. MATERIALS AND METHODS

2.1 Location of Sample Collection

water sample was collected Kuduvaiyarestuary, Nagapattinam, Tamil Nadu, India. The present study was carried out for the Kuduvaiyarestuary. During the study period (2019-2020), samples of water were collected fortnightly; the data were pooled seasonally to understand the seasonal effect. The Kuduvaiyar estuary is formed by the tributaries of Cauvery river and opens into an estuary on the South East coast of India. The three distinct seasons were pre-monsoon, monsoon and post-monsoon periods. The samples were collected from five different points of each site and were mixed together to prepare an integrated sample. The water pH were analyzed immediately on the spot after collection. whereas the analyses of DO. Ammonium, Nitrate, BOD, Sodium, Chloride, Sulphate and Fluoride were done in the laboratory as per the standard methods compare with Fisheries and aquatic life standard value (1996).

2.2 Physiochemical Parameter

The methods used for the analysis of various physicochemical parameters were the same as given in Standard Methods for the Examination of water [11-13]; Golterman et al., [14] and National Environmental Engineering Research Institute [15].

3. RESULTS AND DISCUSSION

Pollution of the aquatic environment and its effects on the living resources, especially the fishery resources, has assumed considerable interest as well as importance in recent times. Most of the rivers which discharge large quantities of water into the coastal marine environment are polluted and these pollutants obviously end up in the inshore coastal waters. The vast marine environment has long been used as a site for the disposal of wastes. In some cases the polluted material is discharged directly into the sea and in other cases the pollutant reaches the rivers and Estuaries and finally ends up in the sea. Estuaries, the important contributors of fisheries in India, suffer from severe loss of fish production due to increased industrialization and urbanization along the coastal zone by continuous discharge of industrial effluents [7]. Rainfall is the most important cyclic phenomenon in tropical countries as it brings important changes in the hydrographical characteristics of the marine and estuarine environments. Under the influence of a variety of interrelated biotic and abiotic structural compounds and intensive chemical, physical and biological processes, estuaries are highly variable systems [16]. Data on the range of atmospheric and pH, DO, Ammonium, Nitrate. water BOD, Sodium, Chloride, Sulphate and Fluoride are given in Table 1.

pH of water is an important environmental factor, the fluctuation of pH is linked with chemical changes, species composition and life processes. It is generally considered as an index for suitability of the environment [17]. Ellis [18] has observed that a pH range of 6.7 to 8.4 is suitable for the growth of Aquatic biota. In Kuduvaiyar estuary pH ranged from (7.9 to 8.7) indicating slight alkaline nature of water. pH varied with the seasons as lowest in monsoon months (7.9) and highest during pre monsoon (8.7) while post monsoon pH was 8.3 (Fig. 1). Our findings are in concordance with Mohan Raj et al. [19] and Ravichelvan et al. [20]. From the present study the pH result indicating slight alkaline nature which could be due to solutes, shows buffering action, i.e. H⁺ ions are compensated with OH ions. It has been mentioned that the increasing pH appears to be associated with increasing use of alkaline detergents in residential areas and alkaline material from wastewater in industrial areas [21].

Table 1. Physico-chemical analysis of Kuduvaiyar estuary water of east coast of Tamil Nadu (2019-2020)

Parameters	Season	*Fisheries and aquatic		
	Pre-monsoon	Monsoon (June	Post-monsoon	life (1996) Std.
	(March to May)	to Sept.)	(Oct. to Dec.)	
pН	8.7	7.9	8.3	6.0-9.0
DO (mg/L)	5.9	5.2	5.3	4.0-6.0
Ammonium	0.62	0.45	0.58	0.5
(mg/L)				
Nitrate (mg/L)	38.57	32.67	35.92	40
BOD (mg/L	4.57	2.34	3.72	3
O_2)				
Sodium	132.49	97.51	125.74	120
(mg/L)				
Chloride	302.28	213.47	286.51	300
(mg/L)				
Sulphate	86.92	73.21	80.65	100
(mg/L)				
Fluoride	0.65	0.54	0.59	0.75
(mg/L)				

^{*} Maximum allowable concentrations of selected water quality variables for Fisheries and aquatic life uses. DO: Dissolved oxygen; BOD: Biological oxygen demand

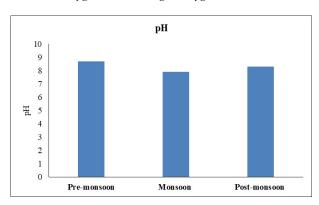


Fig. 1. pH of Kuduvaiyar estuary water of east coast of Tamil Nadu

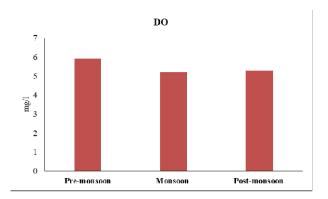


Fig. 2. DO of Kuduvaiyar estuary water of east coast of Tamil Nadu

The value of dissolved oxygen is remarkable in determining the water quality criteria of an aquatic ecosystem. The Dissolved oxygen is the regulator of metabolic activities of organisms and thus governs metabolisms of the biological community as a whole and also acts as an indicator of trophic status of the water body [22]. Maximum dissolved oxygen was recorded during pre-monsoon months (5.9mg/l) which might be due to the cumulative effect of higher wind velocity coupled with heavy rainfall. This could also be because of freshwater mixing from Kuduvaiyar estuary and low metabolic rate of organisms. Minimum dissolved oxygen was recorded (Fig. 2) during post monsoon and monsoon months (5.3 and 5.2 mg/l respectively) due to high temperature, availability of huge quantities of untreated domestic sewage with enriched inorganic reductant and high metabolic rate of organisms. Similar observations were drawn by Ravichelvan et al. [20] and Sahu et al., [23]. Dissolved oxygen is the regulator of metabolic activities of organisms and thus governs metabolisms of the biological community as a whole and also acts as indicator of trophic status of the water body [22].

Tarzwell [24] has suggested that a minimum of 3 mgl⁻ 1 dissolved oxygen is necessary for healthy fish and other aquatic life. The present study showed minimum values of dissolved oxygen during monsoon and post monsoon which are not sufficient for most of the aquatic organisms. Interestingly even when DO was much below the optimum level, the rotifers were present in abundance indicating their wide range of tolerance. One of the reasons for the fatality of many teleosts observed during monsoon in Kuduvaiyar estuary might be the low level of dissolved oxygen. Dissolved oxygen is the most important indicator of the health of a water body and its capacity to support a balanced aquatic ecosystem of plants and animals. Waste water containing organic pollutants depletes the dissolved oxygen and may lead to impact benthic communities by producing acute changes in their distribution, abundance, and diversity of species [25]. The lower dissolved oxygen also implies the estuaries polluted that were more downstream.

Biological Oxygen Demand (BOD) is the amount of oxygen required by the living organisms engaged in the utilization and ultimate destruction or stabilization of organic water. It is a very important indicator of the pollution status of a water body. In the conducted experiments, BOD was high in Domestic and Industrial Effluent due to high organic load and excessive growth of total microorganisms [26]. This may be as a result of escape of organic matter (organic) into the river mostly from faecal waste deposition by the surrounding urban area and human settlements. Control Sample revealed BOD value below detection limit, because it was distilled water and had no organic load. In the present study BOD was lowest in monsoon months (2.34 mg/l) and highest during pre-monsoon (4.57mg/l) while post monsoon BOD was 3.72 mg/l (Fig. 3).

In the present study ammonium, nitrate, sodium, chloride, sulphate and fluoride were lowest in monsoon months (0.45, 32.67, 97.51, 213.47, 73.21 and 0.54mg/l) and highest during pre-monsoon (0.62, 38.57, 132.49, 302.28, 86.92 and 0.65mg/l) while post monsoon months were 0.58, 35.92, 125.74, 286.51, 80.65 and 0.59mg/l (Fig. 4 to 9). The observed parameters were compared with Fisheries and aquatic life (1996) Standard value for aquatic organisms.

Sulphate (SO₄²⁻) concentrations in water are the results of natural weathering of minerals, atmospheric deposition, and industrial discharges along with agricultural run-off and sewage [27]. The burning of fossil fuels, particularly high-sulphur coal and diesel, is also a major source of sulphur to the atmosphere which and precipitation could serve as a source of sulphate content of aquatic ecosystem. Sulphates are of concern because the unpleasant odour it gives to the waste water and corrosion problem due to the reduction of sulphates to hydrogen sulphideunder anaerobic conditions.

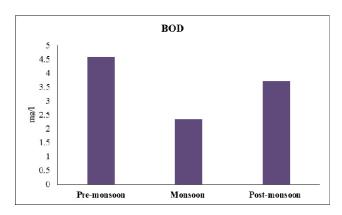


Fig. 3. BOD of Kuduvaiyar estuary water of east coast of Tamil Nadu

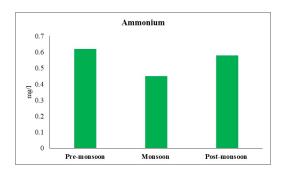


Fig. 4. Ammonium of Kuduvaiyar estuary water of east coast of Tamil Nadu

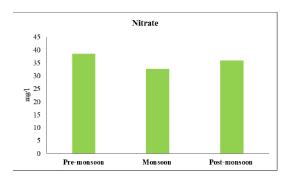


Fig. 5. Nitrate of Kuduvaiyar estuary water of east coast of Tamil Nadu

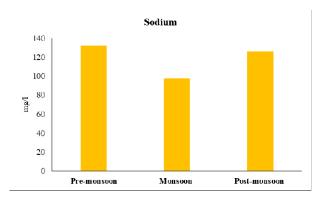


Fig. 6. Sodium of Kuduvaiyar estuary water of east coast of Tamil Nadu

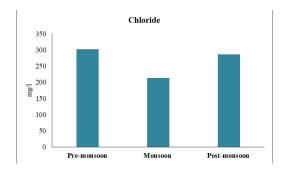


Fig. 7. Chloride of Kuduvaiyar estuary water of east coast of Tamil Nadu

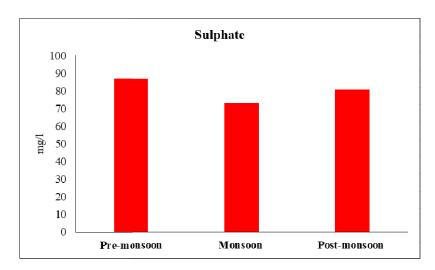


Fig. 8. Sulphate of Kuduvaiyar estuary water of east coast of Tamil Nadu

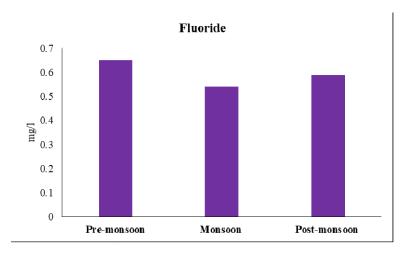


Fig. 9. Fluoride of Kuduvaiyar estuary water of east coast of Tamil Nadu

Because of the great reactivity, it is difficult to find fluorine in its elemental state and exists either as inorganic fluorides or as organic fluoride compounds (e.g., freons). In the global environment, inorganic fluorides are much more abundant than organic fluoride compounds. The major natural sources of inorganic fluorides are weathering of fluoride minerals and volcanic eruptions [28]. However, the increased presence of FI in the Kuduvaiyar estuary than the reference site might be the result of anthropogenic activities including the industrial and urban runoff especially due to its proximity to the industrial complex. Rajalakshmi and Sukumaran [10] workers have reported that activities involving aluminium smeltering, discharge of fluoridated municipal waters, manufacturing of brick, ceramics, glass and fluoride chemicals, may cause significant increases in the fluoride concentration of surface waters.

4. CONCLUSION

Among the entire parameters investigated, exhibited significant variations in Kuduvaiyar estuarine water information The present baseline of physicochemical properties of water would form a useful tool for further ecological assessment and monitoring of Kuduvaiyar estuarine water of South East coast of India. The conclusion of the present study is that physico-chemical parameters influence the Ichthyofaunal diversity and Kuduvaiyar estuary are not extremely pollutant but at the same time there is a possibility of gradual addition of pollutants in due course. It reveals that the estuarine environment is largely influenced by the annual cycle of monsoon.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Rajkumar JSI, John Milton MC, Ambrose T. Seasonal variation of water quality parameters in Ennore estuary with respect to industrial and domestic sewage, Int. J. of Cur. Res. 2011;33 (3):209–218.
- Kucuksezgin FA, Kontas O, Altay E, Uluturhan DE. Assessment of marine pollution in Izmir Bay; Nutrient heavy metal and total hydrocarbon concentrations. Environ. Int. 2006;32:41-51.
- Yadav A, Gopesh A, Pandey RS, Rai DK, Sharma B. Fertilizer industry effluent induced biochemical changes in freshwater teleost Channa striatus (Bloch). Bull. Environ. Contam. Toxicol. 2007;79:588-595.
- Zaggia L, Rosso J, Zonta R. Sulphate reduction in the sediment of the Venice canals (Italy). Mar. Poll. Bull. 2007;55:415-424.
- Altun O, Melek Türker Saçan, Ayten Kimiran Erdem. Water quality and heavy metal monitoring in water and sediment samples of the Küçükçekmece Lagoon, Turkey (2002– 2003). Environ Monit Assess. 2009;151:345– 362.
- Unlu MY, Topçuoğlu S, Anıl YD. Radioecology of the Küçükçekmece Lagoon. ÇNAEM report no. 2007;175:1–94.
- 7. Padmini E, Thendral Hepsibha B, Shanthalin Shellomith AS. Lipid alteration as stress markers in grey mullets (Mugil cephalus Linnaeus) caused by industrial effluents in Ennore estuary (oxidative stress in fish), Aquaculture. 2004;5:115-118.
- 8. Muthusamya SK, Sivakumarb A, Shanmugasundharamc M Jayaprakashd. Appraisal on water chemistry of Manakudy estuary, south west coast, India. Acta Ecologica Sinica. 2021;41(5):463-478.
- 9. Paramisivam S, Kannan L. Physico-chemical characteristics of Muthupettai mangrove environment, Southeast coast of India, Int. J. Ecol. Environ. Sci. 2005;31:273–278.
- 10. Rajalakshmi R, Sukumaran M. Analysis of physiochemical parameters to evaluate the water quality in kuduvaiyar estuary, southeast coast of india. Technology Letters. 2020;26(9):868-892.
- 11. APHA. Standard methods for the examination of water and waste water including sediments

- and sludge, 12th edition, APHA Washington, D.C; 1967.
- APHA. Standard methods for the examination of water and wastewater APHA, AWWA, WPCF, 15th edn, 1980. Washington D.C; 1980.
- 13. APHA-AWWA-WPCF. Standard method for the examination of water and wastewater. American Public Health Association New York; 1976.
- 14. Golterman HL. Methods for chemical analysis of freshwater. IBP. Handbook No.8 and Oxford. Blackpond Scientific. 1969;178.
- NEERI. Manual on Water and Waste Water Analysis, NEERI publication, Nagpur P.P. 1986;32.
- 16. Madhupratap M. Status and strategy of zooplankton of tropical Indian estuaries: A Review, Bulletin of Plankton society of Japan. 1987;34(1):65-81.
- Rani J, Anita Kannagi, Shanthi V. Correlation of total heterotrophic bacterial load in relation with hydrographical features of Pazhayakayal estuary, Tuticorin, India., J. Environ. Biol. 2012;3:769-773.
- 18. Ellis M. Detection and measurement of stream pollution, United States Fish Commission Bulletins. 1937;22,367-437.
- 19. Mohan Raj V, Padmavathy S, Sivakumar S. Water quality Parameters and its influences in the Ennore estuary and near Coastal Environment with respect to Industrial and Domestic sewage. Int. Res. J. Environment Sci. 2013;2(7):20-25.
- Ravichelvan R, Ramu S, Anandaraj T. Seasonal variations of water quality parameters in south east coastal waters of Tamil Nadu, India. Int. J. Modn. Res. Revs. 2015;3(10):826-829.
- Chang H. Spatial analysis of water quality trends in the Han River Basin, South Korea, Water Research, 2008;42(13):3285-3304.
- 22. Saksena DN, Kaushik S. Trophic status and habitat ecology of entomofauna of three water bodies at Gwalior, Madhya Pradesh. In: Perspective in entomological research (Ed.: O.P.Agrawal) Scientific Publishers, Jodhpur; 1994.
- Sahu BK, Rao RJ, Behara SK, Pandit RK. Effect of pollution on the dissolved oxygen concentration of the river Ganga at Kanpur. In: Pollution and biomonitoring of Indian rivers (Ed.: R.K.Trivedy). ABD Publication, Jaipur, India. 2000;168-170.
- 24. Tarzwell CM. In: Biological problems in water pollution. U.S. Department of Health Education and Welfare. P.H.S. 1957;246-272.

- Raffaelli DG. Interactions between macroalgal mats and invertebrates in the Ythan estuary, Aberdeen shire, Scotland, Helg. Mar. Res. 2000;54:71-79.
- 26. Kandhasamy M, Santhaguru K. Influence of sewage on physico-chemical characteristics of the river Vaigai. J. Ecobiol. 1994;6(4): 315-317.
- 27. Davies TD. Sulphate toxicity to the aquatic moss,Fontinalisantipyretica. Chemosphere. 2007;66:444-451.
- 28. Jothivel N, Paul. Comparative physicochemical analysis of Uppanar estuary and killai back water from Tamilnadu coast with special reference to their nutrient status. International Journal of Current Research. 2014; 6(12):11218-11225.

© Copyright MB International Media and Publishing House. All rights reserved.

UTTAR PRADESH JOURNAL OF ZOOLOGY

42(22): 232-236, 2021 ISSN: 0256-971X

ACUTE TOXICITY STUDIES OF CADMIUM ON CRAB Sesarma quadratum (Decapoda)

B. GIJILET MARY^{1#} AND M. SUKUMARAN^{1/*}

¹Department of Zoology, Rajah Serfoji Govt. College (Autonomous), (Affiliated to Bharathidasan University), Thanjavur – 613 005 Tamil Nadu, India.

AUTHORS' CONTRIBUTIONS

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

Editor(s):

- (1) Dr. Ana Cláudia Correia Coelho, University of Trás-os-Montes and Alto Douro, Portugal. Reviewers:
- (1) Yudha Trinoegraha Adiputra, University of Lampung, Indonesia.

(2) Fagbuaro Omotayo, Ekiti State University, Nigeria.

Received: 25 August 2021 Accepted: 05 November 2021 Published: 11 November 2021

Original Research Article

ABSTRACT

An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. Estuaries form a transition zone between river environments and maritime environments and are an example of an ecotone. Since many species of crustaceans inhabit estuaries, numerous studies have aimed at examining the bioaccumulation and effects of various toxicants in these animals. Heavy metals can accumulate in the tissues of aquatic organisms and cause a range of hazardous effects to all organisms through biomagnifications. The aimed of this study was to investigate the acute toxicity effects of cadmium on the crab (Sesarma quadratum). Crab samples were exposed to different concentrations $(5, 10, 15, 20 \text{ and } 25 \mu \text{g/L})$ of cadmium for 96h and their cumulative mortality was calculated in 24 hours intervals. Results were analyzed by SPSS 20 to obtain a number of cumulative mortality and lethal

Keywords: Sesarma quadratum; LC_{50} ; cadmium; acute toxicity; heavy metal pollution.

1. INTRODUCTION

Crabs are generally covered with a thick exoskeleton, composed primarily of highly mineralized chitin and armed with a pair of chelae (claws). Crabs vary in size from the pea crab, a few millimeters wide. Crab is packed with protein, which is important for building and maintaining muscle. Crab also contains high levels of omega-3 fatty acids, vitamin B12, and

selenium. These nutrients play vital roles in improving general health while helping prevent a variety of chronic conditions. The omega-3 fatty acids in crab provide many benefits related to heart health. These important nutrients may help lower triglycerides, reduce blood clotting, and make it less likely that you'll develop an irregular heartbeat. Many of the nutrients found in crab, including vitamin B12 and folate, help reduce the risk of vitamin deficiency

*Research Scholar

[†]Research Supervisor

^{*}Corresponding author: Email sugukumar05@gmail.com

anemia. Estuaries and coastal zones receive pollutant inputs from both specific and nonspecific sources, especially such ecosystems as seaports, cities, or other industrialized coastal areas that receive chronic inputs of metals. Since many species of crustaceans inhabit estuaries, numerous studies have aimed at examining the bioaccumulation and effects of various toxicants in these animals [1,2]. Metals are substances with high electrical conductivity, malleability and luster that voluntarily lose their electrons to form cations. They are found naturally in the earth's crust and their compositions vary among different localities, resulting in spatial variations of metal concentrations. Metal distribution in the atmosphere is determined by the properties of the given metal and by various environmental factors [3]. Heavy metals enter the surroundings by natural means and through human activities. The contamination of natural aquatic resources with heavy metals released from industrial, domestic and other anthropogenic activities has become a matter of concern over the past few decades [4]. Harmful effects of these heavy metals on aquatic organisms can be detected by performing toxicity tests that allow establishing a dose-response relationship [5,6] which help society in predicting acute and chronic effects on aquatic fauna as well as in regulating toxic chemical discharges into the water bodies [7]. No toxicity work recording cadmium was carried out in this crab. This work was aimed to find out the acute toxicity of cadmium (Cd) on the crab Sesarma quadratum.

2. MATERIALS AND METHODS

2.1 Collection and Acclimation of Experimental Crab

Sesarma quadratum crabs (Fig. 1) were collected from Kuduvaiyar estuary situated in the Southeast coast, near Nagapattinam, Tamil Nadu, India (Station: Lat 10° 45' N, Long 79° 96' E. The Kuduvaiyarriver is a tributary of the major river, 'Cauvery' of South India. The Crab were acclimatized under laboratory conditions for 7 days prior to the start of this experiment. Glass aquaria of 10 liter marine water capacity were used in this experiment. Fresh air was supplied to each aquaria through an air pump fitted with a capillary system.

2.2 LC₅₀ Determination

After acclimation, healthy crab of *Sesarma quadratum* were chosen for the LC_{50} determination of cadmium by static renewable bioassay. Crabs were not fed during the experimental period. Various concentrations (5, 10, 15, 20 and $25\mu g/L$) of the test

solutions were prepared from cadmium chloride stock solutions. A group of 10 laboratory acclimatized crabs of a particular species having the same weight, size and age were introduced into each test concentration of cadmium. Triplicates and appropriate controls were maintained for each concentration. LC_{50} values were calculated as per Spearman-Karber methods [8,9]. Toxicity tests were conducted in accordance with the method recommended by Sprague [10]. Median lethal concentrations of 96h were calculated by Finney [11] probit analysis using SPSS Ver.20 Log₁₀ Base calculation.

Fig. 1. Sesarma quadratum

3. RESULTS AND DISCUSSION

Acute lethal toxicity bioassays are useful for providing a measurement of the relative toxicity of substances, for assessing the sensitivity of the species' different stages of life to a particular substance, and for determining concentrations of chronic toxicity so as to assess water quality criteria. Moreover, mixed toxicity bioassays provide information on the global effects of mixtures present in environments and allow evaluation of the magnitude of the effects by determining additive, synergistic, and/ or antagonistic responses.

To determine the LC₅₀ value graphs were plotted between % mortality and log concentrations of toxicant. The concentrations obtained by drawing a perpendicular line against 50% mortality and calculated their antilog value. In the present investigation, LC50 of Sesarma quadratumat 96 hrs was 12.30µg/L for cadmium. Results of present studies (Table 1. and Fig. 2.) clearly indicated that the rate of mortality for any fixed time increased with increase in concentration and for a particular concentration with increase in exposure time and a regular mode of toxicant due to accumulation up to dangerous levels leading to death. Table 1. showed the relation between the cadmium concentration and the mortality rate of Sesarma quadratum. The results obtained for 96 hours of toxicity experiments of cadmium crabs were estimated by Finney's probit analysis method.

The observed percentage of mortality of *Sesarma quadratum* for cadmium for different concentrations was given in Table 1. Fig. 2 showed the probit line graph of the cadmium toxicity data and probit kill vs log concentrations. The 96h LC₅₀ study observed that *Sesarma quadratum* was significantly more susceptible to cadmium toxicity. Present 96 hours of crabs mortality were concentration (μ g/L) of cadmium-dependent R² = 0.9592.

Data analyzed by SPSS ver. 20, Regression equation and r^2 value was calculated by log. Concentration vs probit value, LCL: 95% of Lower Confidence Limits, UCL: 95% of Upper Confidence Limits. Since the significance level is P > 0.050, no heterogeneity factor is used in the calculation of confidence limits.

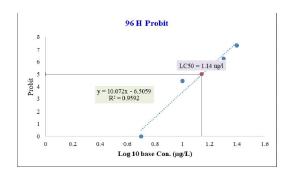


Fig. 2. 96 Hours of LC₅₀values of cadmiumon estuarine crab *Sesarma quadratum*

Acute toxicity caused by various toxicants on estuarine animals can be evaluated by quantitative parameters like survival or mortality of test animals and sensitivity of different crabs species to toxicants.

Toxicity in crab is the culmination of a series of events involving various physical, chemical and biological processes. Toxicity studies measure a response of an organism to biologically active substances [12] and are useful in determining water quality. The wide variation in sensitivity of different species to different heavy metals depends on various factors like age, sex, weight, physical stage of the animal and presence or absence of enzyme system that can detoxify the pollutants [13].

Cd is a common inorganic contaminant of coastal sediments and waters due to anthropogenic pollution and natural sources [14,15]. It can be accumulated in aquatic animals (e.g. crabs, shrimps, oysters and mussels) after entering through different ways such as respiratory tract, digestive tract, surface penetration etc. [16]. Cd in water can be absorbed by aquatic organisms via respiratory system, digestive system and body surface without significant excretion [17].

Studies concerning the influence of Cd on the ultrastructure of crabs have appeared in the past few years. The published studies have focused on the destruction of membrane systems and morphologic changes of cells. Cd can accelerate cellar lipid peroxidation and cause the accumulation of lipid peroxides. These free radicals and their reaction products, peroxides, can often cause various biological macromolecules, including DNA, to change structures and properties through chemical reactions, such as hydrogen abstraction, oxidation sulfhydryl and carbon chain destruction. Cd can also decompose the unsaturated fatty acid into malondialdehyde (MAD) by peroxiding and cause biological macromolecules to crosslink into abnormal macromolecules which degrade membrane structure and alter the membrane permeability [18].

Table 1. Toxicity of cadmium on crab Sesarma quadratum
--

Concentration	Log Con. (μg/L)	Number of exposed crab	96 hours		
(µg/L)			Number of mortality	% of mortality	Probit
5	0.69	10	0	0	0
10	1.00	10	3	30	4.48
15	1.17	10	7	70	5.52
20	1.30	10	9	90	6.28
25	1.39	10	10	100	7.33
Control		10	Nil	Nil	Nil
		LC ₅₀ value			
	LC ₅₀ value (μg/L)			Chi-Square (Df = 3)	
96 Hours	LC_{50}	LCL	UCL	X ² value	Sig.
	12.30	9 57	14 58	0 379	0 945

Studies regarding the effects of Cd on ovarian development in crabs and shrimps have been conducted since the 1990s. The majority of experiments showed that Cd inhibited ovarian growth, reduced hatch rates of the fertilized eggs and led to embryonic deformity. Reddy *et al.* [19] found Cd could inhibit 5-HT-induced ovarian maturation in the red swamp crayfish, *Procambarus clarkia*. Lee et al. [20] documented that Cd deformed eyespots, reduced hatching success, and inhibited growth of oocytes of *Callinectes sapidus*. Naqvi et al. [21] reported that *P. clarkia* treated with Cd hatched 48 eggs with a hatching rate of only 17%.

4. CONCLUSION

The present study was an attempt to find the effect of cadmium toxicity on crab *Sesarma quadratum*. The 96h LC50 study observed that Sesarma quadratumwas significantly more susceptible to cadmium toxicity. Present 96 hours of crabs mortality were concentration (μ g/L) of cadmium-dependent. The toxicity study on crabs will be very useful to provide a future understanding of ecological impact.

ETHICAL APPROVAL

As per international standard or university standard ethical approval has been collected and preserved by the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Weis J, Cristini A, Rao K. Effects of pollutants on molting and regeneration in crustacea. American Zoologist. 1992;32:495– 500.
- 2. Weis J, Weis P. Effects of contaminants from chromated copper arsenate-treated lumber on benthos. Arch. Environ. Contam. Toxicol. 1994;26:103–109.
- 3. Khlifi Rim, Hamza-ChaffaiAmel. Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: A review. Toxicology and Applied Pharmacology. 2010;248:71-88.
- Waqar K, Ahmad I, Kausar R, TabassumT, Muhammad A. Use of bioremediated sewage effluent for fish survival. Int J Agric Biol. 2013;15:988-992.
- Akter MS, Ahmed K, Akhand AA, Islam M. Acute toxicity of arsenic and mercury to fresh

- water climbing perch, Anabas testudineus (Bloch). World J Zool. 2008;3:13-18.
- Javed M. Chronic effects of nickel and cobalt on fish growth. Int. J Agric Biol. 2013;15:575-579
- 7. APHA, AWWA, WPCP. Standard methods for the examination of water and wastewater. 21 st Ed. American Public Health Association, Washington, DC; 2005.
- 8. Spearman C. The method of "Right and Wrong Cases" (Constant Stimuli) without Gauss's Formula British Journal of Psychology. 1908;2:227–242.
- Karber G. Beitragzurkollektiven Behandlungpharmakologischer Reihenversuche. Archive of Experiment Pathology and Pharmakology. 1931;162:480– 483.
- Sprague JD. The ABC of pollution assays using fish, biological methods for assessment of water quality, A.S.T.M. STP. 1973;528:6-30.
- Finney DJ. Probit analysis. Cambridge University Press, New York, USA. 1971;337.
- Spear PA. Zinc in the aquatic environment: chemistry, distribution, and toxicology NRCC Associate Committee on Scientific Criteria for Environmental Quality.1981;17589.
- 13. Nagaratnamma R, Ramamurthi R. Comparative evaluation of methyl parathion toxicity to some selected freshwater organisms. Current Science. 1981;50:334-335.
- Ivanina AV, Cherkasov AS, Sokolova IM. Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, *Crassostreavirginica* Gmelin. The Journal of Experimental Biology. 2008;211:577-586.
- 15. Ivanina AV, Eilers S, Kurochkin IO, et al. Effects of cadmium exposure and intermittent anoxia on nitric oxide metabolism in eastern oysters, *Crassostreavirginica*. The Journal of Experimental Biology. 2010;213:433-444.
- 16. Dailianis S, Patetsini E, Kaloyianni M. The role of signalling molecules on actin glutathionylation and protein carbonylation induced by cadmium in haemocytes of mussel *Mytilusgalloprovincialis* (Lmk). The Journal of Experimental Biology. 2009; 212:3612-3620.
- 17. Rainbow PS, White SL. Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle. Hydrobiologia. 1989;174(3):245–262.
- 18. Shukla GS, Hussain T, Srivastava RS, et al. Glutathione peroxidase and catalase in liver, kidney, testis and brain regions of rats

- following cadmium exposure and subsequent withdrawal. Industrial Health. 1989;27(2):59-69.
- 19. Reddy PS, Tuberty SR, Fingerman M. Effects of cadmium and mercury on ovarian maturation in the red swamp crayfish, *Procambarus clarkii*. Ecotoxicology and Environmental Safety. 1997;37(1):62-65.
- 20. Lee RF, O'Malley K, Oshima Y. Effects of toxicants on developing oocytes and embryos
- of the blue Crab, *Callinectes sapidus*. Marine Environmental Research. 1996;42(1-4):125-128
- 21. Naqvi SM, Howell RD. Toxicity of cadmium and lead to juvenile red swamp crayfish, *Procambarusclarkii*, and effects on fecundity of adults. Bulletin of Environmental Contamination and Toxicology. 1993; 51(2):303–308.

© Copyright MB International Media and Publishing House. All rights reserved.