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Abstract In this paper, we investigate the occurrence
of superextreme spiking (SES) oscillations and mul-
tistability behavior in a memristor-based Hindmarsh—
Rose neuron model. The presence of SES oscillations
has been identified as arising due to the occurrence of an
interior crisis. As the membrane current 7 (¢), consid-
ered as the control parameter is varied, the system tran-
sits from bounded chaotic spiking (BCS) oscillations to
SES oscillations. These transitions are captured numer-
ically using geometrical representations like time series
plots, phase portraits and inter-spikes interval return
maps. The characterization of SES from the BCS oscil-
lations is made using statistical tools such as phase shift
analysis and probability density distribution function.
The multistability nature has been observed using bifur-
cation analysis and confirmed by the Lyapunov expo-
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nents for two different sets of initial conditions. The
numerical simulations are substantiated through real-
time hardware experiments realized through a nonlin-
ear circuit constructed using an analog model of the
memristor.

Keywords Hindmarsh—Rose neuron model - Memris-
tor - Superextreme spikes - Multistability - Electronic
circuit

1 Introduction

In the past few decades, a large number of researchers
have started investigating neuronal models because of
the fact that neuronal dynamics has impacted greatly
the developments in artificial intelligence and biologi-
cal systems. In particular, they have turned their atten-
tion towards spiking and bursting oscillations (BOs)
in neuronal systems. Many mathematical models have
been developed by different researchers to study these
spiking and BOs. Examples of these are the Hodgkin—
Huxley (HH) [1], Morris—Lecar (ML) [2], FitzHugh—
Nagumo (FHN) [3], Hindmarsh—Rose (HR) [4,5] and
Izhikevich (IZ) [6]. Though these models have been
successful to a certain extent in explaining many
aspects of neuronal behavior, they have many limita-
tions as well. For instance, the HH neuron model, which
explains with considerable depth, the ionic processes
and electrical currents on the membrane surfaces, it
is not ideal for specific applications owing to difficul-
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ties in calculations [1]. The FHN model is a simple
model, in fact it is a simplified version of the HH neu-
ron model. In spite of its simplicity, it fails to explain
bursting patterns in the neurons [3]. On the other hand,
the HR neuron model, which is based on the FHN
model, is fairly successful in explaining a wide range
of dynamical events and neuronal activities [5]. For
example, using the HR neuron model, noise-induced
torus bursting oscillations [7], noise-induced spiking-
bursting transition [8] and complex dynamics in dis-
continuous magnetic induction [9] have been studied.
Very recently, a memristor-based HR model showing
up rich dynamical behaviors such as coexistence attrac-
tors [10], multi-scroll hidden attractors [11] and hid-
den coexisting asymmetric behaviors [12] has been
reported. In addition, the electrical activity of time-
delay memristive neurons studied with Gaussian white
noise disrupts [ 13], phase noise-induced coherence res-
onance [14] and hidden dynamics in a fractional-order
memristive HR model [15] have also been reported.

From a different perspective, the spiking oscillations
can be considered as sort of extreme events exhibited
by neurons. Extreme events (EEs) are found to occur
in dynamical systems, when any one of the observ-
ables or dynamical state variables takes on an abnor-
mally large variations in magnitudes when compared
to the normal states [16-20]. They have been reported
in coupled system of bursting neurons [21], in intermit-
tent large amplitude bursting in HR model [22]. Moti-
vated by the aforementioned studies, we report a mem-
ristive Hindmarsh-Rose (HR) system, that exhibits
superextreme spiking (SES) oscillations and multista-
bility states which can model the spiking activities of
the neurons. We have carried out numerical simula-
tions and real-time hardware experiments to support
our claim.

The rest of this work is structured as follows. In
Sect. 2, the proposed memristor-based HR neuron
model and its linear stability analysis are given. In
Sect. 3, the emergence of periodic and chaotic spik-
ing oscillations, are reported. While the mechanism
of the existence of the extreme spikes is discussed in
Sect. 4, the multistability of spikes is briefly discussed
in Sect. 5. The real time hardware experimental obser-
vations using an analog circuits are detailed in Sect. 6.
The experimental results are found to be in complete
conformity to those obtained from numerical studies.
Finally in Sect. 7, the conclusions of our investigations
are summarized.
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2 Memristive Hindmarsh—Rose neuron model

The Hindmarsh—-Rose (HR) model of neurons is a two-
dimensional one, reported by Hindmarsh and Rose
in the year 1982 [4]. It simulates the variations in
membrane potential, recovery time and spike length
activities in neuronal dynamics. In the year 1984,
the Hindmarsh and Rose reported an improved three-
dimensional HR neuron model [5] for investigating
the bursting activity and large amplitude spikes in the
neurons. In this paper, we present a memristor-based
Hindmarsh—Rose model for the neurons. Memristors
are two terminal devices that exhibit a pinched hystere-
sis characteristics in the charge-flux plane when excited
by an alternating excitations. Its existence was first pos-
tulated by the circuit theorist Leon O. Chua based on
axiomatic considerations in 1971 [23] and was first dis-
covered in nano-scale devices in 2008 by scientists at
the Hewlett-Packard labs [24]. Ever since this discov-
ery, different analog models of memristors [25,28-30]
and many fabrications of it in the nano-scale [28] have
been reported.

The memristive HR neuron model discussed here
uses a flux-controlled memristor [25]. A flux-controlled
memristor can be described by

i = W(®)w (1)

where W(®) = k® denotes the memductance.
The memristive HR model [12] can be described by a
set of three coupled first-order differential equations,

)&:y—ax3+bx2—l+kcbx
j}:c—dxz—y
b = x. (2)

where x, y and ® are the dynamical state variables rep-
resenting the membrane potential, spiking amplitude,
and magnetic flux, respectively. k®x is the external
electromagnetic induction, in which k is the electro-
magnetic strength. The constants a, b, ¢, d and k are
system parameters and / is the membrane input cur-
rent. While all the constants are kept fixed, the current
1 is taken as the system control parameter to study the
dynamics.

For linear stability analysis, we set up the Jacobian
matrix from the Eq. (2) and find the characteristic equa-
tion as,

—Bax?+2bx +k® 1 kx
J = —2dx -1 0 |. 3)
1 0 0
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Fig. 1 (Online Color) The nullclines of memristive HR neuron
model of Eq. (2) for specified control parameter / = 1.013. The x
nullclines (X = 0) represented by red color curve and y nullclines
(y = 0) represented by green color curve. The unstable (US)
equilibrium point is located by a black dot

PR3+ grr +rai4kx =0. 4)
where

p = _17
g = (=3ax® 4 2bx — 2dx + k® — 1),
r = (=3ax’ + 2bx — 2dx + kx + k®).

From the Eq. (4), the eigenvalues are given as,

A = —1.096 + 0.0,
A3 = 0.016 =+ i0.094. 5)

To study the dynamics of the system defined by
Eq. (2), we fix the values for parameters as a =
1.0, b =3.13, ¢ = 1.0, d = 5.0and k = 1.0. Pertain-
ing to these parametric values, we obtain three different
eigenvalues for Eq. (4), namely (A1, A2.3) as given in
Eq. (5). The positive and complex conjugate eigenval-
ues (A2 3) show the presence of an unstable equilibrium
point for the system of Eq. (2). This is found using the
XPPAUT-AUTO simulation [29]. Here, we have plot-
ted nullcline curves in the (x — y) plane for typical
membrane input current / = 1.013 as shown in Fig. 1.
In Fig. 1, the red and green color curves represent the x
nullcline and y nullcline, respectively. Here, the inter-
section of x and y nullclines indicates the unstable (US)
equilibrium point, (black dot online).
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Fig. 2 (Online Color) a One parameter bifurcation diagram in
the (I — ynin) plane and its corresponding b largest Lyapunov
exponents in the (/ — L E ) plane for the range of control param-
eter [ € (0.1, 2.5). Here, the red dotted lines separates periodic
spikes (PS), bounded chaotic spikes (BCS), superextreme spikes
(SES) and periodic windows (PW)

3 Numerical and statistical studies

The numerical investigations on the memristive HR
neuron model of Eq. (2) are examined in this sec-
tion. The system parameters are set as mentioned in
Sect. 2. The system of Eq. (2) is integrated by the
well-known RK4 method for the initial conditions
(x,y,®) = (—1.0, —2.0, —3.0) with step size 0.01.
By decreasing the control parameter, / in the range
of I € (0.1, 2.5), we find the system transits from
periodic behavior to chaos to large amplitude spiking
behavior and then back to chaos and periodicity. This is
seen clearly in the one parameter bifurcation diagram
(Fig. 2a) in the (I — yui,) plane and its corresponding
Lyapunov exponents spectra (Fig. 2b)inthe (/ —LE| 2)
plane.

3.1 Periodic spiking oscillations

In our investigations, we found that the system exhibits
spiking oscillations of different periods as the control
parameter, I is decreased. Looking at the bifurcation
diagram (Fig. 2a) in the (I — yni,) plane, we find that
the system exhibits period-1 spiking oscillations (PS)
for I € (2.5, 2.29), period-2 spiking oscillations (P, S)
for I € (2.28, 2.0), period-3 spiking oscillations (P3S)
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for the 7 € (1.99, 1.54) and period-6 spiking oscilla-
tions (PgS) for I € (1.53, 1.42). These inferences are
corroborated in the corresponding Lyapunov exponents
spectrum in (Fig. 2b) in the (/ — LE} ) plane. The
typical time series, (y(#)) and the corresponding phase
portraits in the (x — y) planes for the periodic spiking
oscillations are shown in Fig. 3a—d. The periodicity of
the spiking oscillation can be verified by the regular dis-
tribution of points in the return maps of (Fig. 3iii) and
the negative values of the Lyapunov exponents in these
regions (Fig. 2b). The bifurcation diagram, Fig. 2a also
depicts bounded chaotic spiking (BCS) and superex-
treme spiking (SES) oscillations of the system. These
are dealt with in the subsequent sections that follows.

3.2 Bounded chaotic spiking (BCS) oscillations

When the membrane input current (/) is decreased
in the range of I €(1.37, 1.02), the system exhibits
bounded chaotic spiking (BCS) oscillations. This is
seen in Fig. 2a The time series y(¢) for the BCS oscil-
lations is plotted for the control parameter / = 1.2 as
shown in Fig. 4a(i). The chaoticity is reflected in the
unpredictable amplitudes of the spikes. To differenti-
ate spiking oscillations as being bounded chaotic or
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extreme or superextreme, the threshold value for the
amplitude of the state variable y(¢) is determined by
the relation

Hy = (P,) +no, (6)

where (P,) is the time-average of negative peaks of
y(t), o is its standard deviation and n is an arbi-
trary integer [16,30,31]. Generally, for extreme spiking
oscillations the integer can be any value in the range
4 < n < 8 while for superextreme spiking oscillations
the integer is specified as n > 8. For our system of
Eq. (2), we have assumed n = 4 for extreme spiking
and calculated the threshold value as H; = —21.31.
This is indicated by the (red color dashed line) in the
time plot of y(¢) in Fig. 4a(i). As the chaotic spiking
amplitudes do not exceed this threshold limit, namely
H; = —21.31, we can say that the spiking is a bounded
chaotic one. As an additional measure of confirmation,
we have plotted the probability distribution function
(PDF) in the (P,,—PDF) plane for the same variable
y(t) for the same value of the control parameter, I =
1.2 in Fig. 4a(ii). From this figure, we find that there
are no events exceeding the threshold amplitude (Hy),
shown in this case by the red color vertical line. This
also confirms that the oscillations are bounded chaotic
spiking (BCS) oscillations.
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3.3 Superextreme spiking oscillations

when the value of control parameter, / is gradually
decreased in the range I €(1.019, 0.864), we find that
the bounded chaotic oscillations give way to superex-
treme spiking (SES) oscillations. The superextreme
spiking oscillations arise due to an interior crisis. The
sudden expansion of the state variable y,;, in the
bifurcation diagram of Fig. 2a in this regime, clearly
proves the existence of superextreme spiking oscilla-
tions. From the Fig. 2a, we have chosen a specific
value of control parameter, / = 1.013, and we have
plotted the time series for y(z), refer in Fig. 4b(i). We
find the superextreme spiking oscillations occurring for
this control parameter. To identify superextreme spik-
ing oscillations, we set the integer value asn = 9in Eq.
(6) and calculate the threshold as H; = —43.15. This
is indicated by pink color horizontal line in the time
series plot of y(¢) variable in Fig. 4b(i). As the spik-
ing amplitudes exceed this threshold value, we confirm
that the oscillations are superextreme spiking oscilla-
tions. Also, we identify the extreme spiking oscillations
and we set the integer value as n = 4 in Eq. (6) and
calculate the threshold as H; = —31.17. This is indi-
cated by red color horizontal line in the time series
plot of y(¢) variable in Fig. 4b(i). Similar to the case
of bounded chaotic spiking oscillations, we provide an
additional confirmation using the probability distribu-
tion function (PDF) plot in the Fig 4b(ii). Here, the
threshold for superextreme spiking oscillations is indi-
cated by the vertical dashed line in pink color and we
find a definite probability of spiking events beyond this
threshold, thereby lending credit to our assertion that
the spiking is superextreme oscillations.

3.4 Phase slips analysis

The bounded chaotic spiking (BCS) and superextreme
spiking (SES) oscillations can be differentiated using
phase slips analysis. For that, we have calculated the
instantaneous phase difference (A¢) between the phase
values of the variable y(#) and the electromagnetic
induction (®). The time series for the variable y(r)
for the control parameter (I =1.2) is plotted in Fig. Sa
and its corresponding phase slips diagram is plotted in
Fig. 5b. While the time series, y(¢) shows the absence of
large amplitude spikes, the phase slips diagram shows
changes in phase only in small integral multiples of 7.
On the other hand, similar time series and phase slips
diagram plotted for superextreme spiking oscillations
for (I =1.013) in Figs. 6a and b, respectively, shows
the large amplitude spiking oscillations as well as large
values of phase slips of the order of a few hundreds
(Ap =nl100,n=1,2,3.).

3.5 Return maps

Further, we have calculated the return map as an addi-
tional tool for differentiating bounded chaotic spiking
(BCS) from the superextreme (SES) oscillations. For
this, we first calculate the inter-spike interval (ISI),
that is, the time that has elapsed between two succes-
sive spikes. Then, using this ISI value, we calculate
the corresponding discrete times, say (n) and (n + 1).
Using the values of y(¢) variable at these instances,
namely (y,) and (y,+1) we have plotted the return maps
in the (y, — yn+1) plane. The phase portraits in the
(x — y) plane and the corresponding return map in the
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Fig. 5 (Online Color) Numerically obtained a the time series,
y(t) and its corresponding b phase slips in the (A¢ — ¢) plane of
BCS oscillations for the control parameter value, / =1.2
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Fig. 6 (Online Color) Numerically obtained a the time series,
y(t) and its corresponding b phase slips in the (A¢ — ¢) plane of
SES oscillations for the control parameter value / =1.013

(¥n — Yn+1) plane for the BCS attractor are plotted in
Fig. 7a(i) and a(ii) for the value of control parameter
value I =1.2. Similarly, the phase portrait of SES attrac-
tor in the (x — y) plane and its corresponding return map
in the (y, — yn+1) plane for I = 1.013 are plotted in
Figs. 7b(i) and b(ii), respectively. The random and long
range distribution of points representing the ISI of the
SES attractor in Fig. 7b(ii) when compared to the short
range and apparently regular distribution of ISI points
in Fig. 7a(ii), once again confirms the existence of SES
oscillations in the memristor-based HR neuron model.

In addition, by decreasing the value of control
parameter, / further, we have also observed the follow-
ing transitions after the SES oscillations in the bifurca-
tion diagram of Fig. 2. In the range of control param-
eter, I €(0.863, 0.788), the system exhibits periodic
window (PW) spiking oscillations. It then transit into

@ Springer

Fig. 7 (Online Color) Phase portraits of the a(i) BCS attractor
for 1 = 1.2 and b(i) SES attractor for / = 1.013 in the (x — y)
plane and their corresponding return maps a(ii) and b(ii) in the
(Yn — Yu+1) planes

Fig.8 (Online Color) The phase portrait of extreme spiking (ES)
oscillations in the (x — y) plane for / = 1.013, superimposed on
the x and y nullclines. The interior crisis points (ICPs) are located
by black dots and the unstable equilibrium point by black circle

the ES oscillations for / €(0.787, 0.676) and BCS for
I €(0.675, 0.268). Finally, it settles down to periodic
spiking (PS) oscillations for I €(0.267, 0.1).

4 Mechanism of extreme spikes

The presence of superextreme spiking in this memris-
tive HR neuron model of Eq. (2), can be attributed to
the occurrence of an interior crisis. This can be pic-
turized by plotting the phase portrait in the (x — y)
plane superimposed on the nullcline plots as shown in
Fig. 8. For the values of the current higher than a crit-
ical value, say /=1.370, the system exhibits bounded
chaotic spikings. If the control parameter is reduced
below this critical value to say /=1.013, an unstable
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periodic orbits collides with a chaotic spiking orbits,
causing a huge blowup in the amplitude of the oscil-
lations. These points of intersection are called as the
interior crisis points (ICPs) and are shown in Fig. 8.
The unstable fixed point is shown by the intersection
of x and y nullclines. When the ICPs lie close to the y—
nullcline, the amplitude of variable x () will be blown
up, while the amplitude of y(¢) variable will be blown
up, if the ICPs lie close to the x — nullcline. From the
Fig. 8, we find that the ICPs lie close to the x — null-
cline and consequently the amplitude of y(¢) variable
is blown up as the phase trajectory winds its way in the
phase space.

5 Multistability

Multistability refers to the coexistence of multiple
asymptotic stable states of dynamical system for a
given set of parameters. It offers a significant deal of
diversity in terms of dynamics, as each attractor reflects
a different dynamical state of the system. Here, the ini-
tial conditions play a significant role in the choice of
the ultimate asymptotic state that a multistable sys-
tem can take [32]. In particularly, the multistability
in memristor-based neuron models were reported in
[11,12]. In this section, we explore the multistability
nature of our system, namely the memristive HR neu-
ron model, Eq. (2). For studying this, we fix the system
parameters as (@ = 1.0, b = 3.13, ¢ = 1.0, d =
5.0, k = 1.0) and vary the control parameter / in
the range of / € (0.1, 2.5) and construct the bifur-
cation diagram and its Lyapunov exponents, shown in
(Figs. 9a and b), respectively, for two different initial
conditions. The bifurcation diagram of Fig. 9a, shows
two distinct bifurcation curves, one represented by red
color dots and the other by blue color dots pertaining
to the two distinct initial conditions (—1, —2, —3) and
(1, 2, 3), respectively. We have identified two distinct
behaviors, namely the bounded chaotic spiking oscilla-
tions (BCS) oscillations for the initial conditions (—1,
—2, —3) and period-3 spiking oscillations for the initial
conditions (1, 2, 3) from the one parameter bifurcation
diagram of Fig. 9a.

The corresponding phase portraits in the (x — y)
plane is shown in Fig. 10 a(i) and time series of y(¢)
variable for these two cases for the control parameter,
I = 1.31 are shown in Fig. 10 a(i), 10 a(ii), respec-
tively. The BCS attractor represented by blue color

0.04 T T T T
0.02 |- (-1,-2,-3) N
5
—
(b) = (1,2,3)
2001 | | N |
0.1 0.5 1 1.5 2 2.5

1

Fig. 9 (Online color) a Bifurcation diagram for the multistabil-
ity in the (ypin — I) plane for the two different initial conditions
(—1, =2, —3) (blue color dots) and (1, 2, 3) (red color dots). b
The largest Lyapunov exponents in the (/ — A;) plane

phase trajectories and period-3 spiking oscillations are
represented by red color ones. The Lyapunov expo-
nent spectrum (L E1) (positive for the blue colored BCS
attractor) and (negative for red colored period-3 spik-
ing oscillations) in Fig. 10, confirms the chaotic and
periodic nature of the attractors.

6 Experimental observations

Finally, we present the experimental investigations of
the memristor-based Hindmarsh——Rose (HR) neuron
model of Eq. (2). The experimental circuit shown in
Fig. 11 contains operational amplifiers (UA 741), ana-
log multipliers (AD 633), resistors, and capacitors. The
DC +12 V programmable power supply (U8031A)
is used for this circuit operation and the output volt-
ages v1, vy, v3 are the voltages of capacitors Ci, Cp
and Cs, respectively. For further details of the cir-
cuit (Fig. 11), see in Ref. [12]. The data acquisition
of the output voltages was made using the mixed sig-
nal oscilloscope (MSO—X3014A) and the resolution
is 100 MHz, 4 GSa/s (Fig. 12).
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1 1
4500 4550 4600 4650 4700

Fig. 10 (Online Color) a Phase portraits of coexisting attractors
in the (x — y) plane for /=1.31 and the two different initial condi-
tions. a(i) Time series of bounded chaotic spiking oscillations for

Fig.11 (Online Color) Schematic circuit diagram of memristor-
based Hindmarsh——Rose (HR) neuron model of Eq. (2). Here,
the red colored portion of the circuit represents the realization of
memristor (M)

In our experimental studies, we had fixed the circuit
parameters as C; = C; = C3 = 10 nF, Ry, Ry, R3, Rs,
Rs, Rs, Rog, Rjo=10 K2, R4 = 243 @, R7 = 1.5 K,
Ri1 =106 ©, Rj2 =55 @, Ri3 =100 €, Rec =97.8
K2, and had kept the variable resistor R; as a control
parameter. When this control parameter R; was varied
in the range of Ry €(1 K2, 100 K€2), we had observed
periodic spiking and superextreme spiking oscillations,
namely period 1 spikes for R; €(5.08 K2, 7.77 KQ2),
period 2 spikes for R; €(7.78 K2, 21.54 K2), period
3 spikes for R; €(21.55 K€, 23.62 K€2) and period
6 spikes for Ry €(23.63 K2, 41.5 K2). These exper-
imental observations are summarized in Fig. 13. On
varying the value of control parameter R; further, we
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initial conditions (—1, —2, —3) and a(ii) time series of period-3
spiking oscillations for initial conditions (1, 2, 3)

Fig. 12 (Online Color) Snap of the experimental arrangement
for the memristor-based Hindmarsh——Rose (HR) neuron model
of Eq. (2)

observed the bounded chaotic spiking oscillations for
R; €(41.6 K, 42.2 KQ) and superextreme spiking
oscillations for R; €(42.3 K2, 44.38 K2) as are shown
in Fig. 14.

To characterize the behavior of the system and dif-
ferentiate the BCS oscillations from the SES oscil-
lations, we used the same statistical tool employed
in our numerical studies, namely the probability dis-
tribution function using time series data of the vari-
able vy (¢) acquired using the mixed signal oscilloscope
(MSO). The calculated probability distribution func-
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Fig. 13 (Online Color) (i) The experimental time series of the
voltage v, () across the capacitor C and (ii) the corresponding
the typical phase portraits in the (v; — vp) plane capturing the
period doubling cascade exhibited by the system as the control
parameter, Ry is varied. We find in this figure a period 1 spikes
for R; =5.08 K2, b period 2 spikes for R; =7.78 K, ¢ period
3 spikes for R; = 21.55 K2 and d period 6 spikes for R; =
23.63 KQ

Fig. 14 (Online Color) (i) The experimental time series of the
voltage va (1) (x-axis: 500 ms/div, y-axis: 100 mV/div) across the
capacitor C3 and (ii) the corresponding the typical phase portraits
in the (v; — vp) plane (x-axis: 60 mV/div, y-axis: 100 mV/div)
capturing a bounded chaotic spiking (BCS) oscillations for R; =
41.6 K2 and b superextreme spiking (SES) oscillations for Ry
=42.36 K<, respectively

tion (PDF) is plotted in the (P, —PDF) plane as shown
in Fig. 15 for both BCS and SES oscillations. From the
Fig. 15a, the red color dashed line represents the thresh-
old value H; = (1 + no) = —3.768 withn = 4. We
find that the amplitude of the bounded chaotic spik-
ing (BCS) oscillations are well below this threshold

0 0

10 @) ™ 5 S\ 10
2 ' -2

E 10 Hs =-3.768 | 10
~ 10t | ; 10
10° 3 106

.10 6 -3 0
Pn

Fig. 15 (Online Color) The probability distribution function
(PDF) of the experimental time series of the variable v, () drawn
for a bounded chaotic spikes for R; =41.6 K2 having the thresh-
old level as H; = —3.768 (red color dashed line) and b superex-
treme spikes for R; = 42.36 K2 having the threshold level as
Hs = (i + no) =-7.498, with n = 9, shown in pink color and
threshold level Hy; = (u + no) =-4.069, with n = 4, shown in
red color, for extreme spiking

level. In Fig. 15b, the red color dashed line represents
Hy = (u+ no) = —4.069 with n = 4, for extreme
spiking oscillations, and the pink color dashed line
represents Hy = (u +no) = —7.498 withn = 9
for superextreme spiking (SES) oscillations. Naturally
for the amplitudes exceeding these levels, we find the
extreme spiking ES oscillations and the superextreme
spiking oscillations SES occurring in the system.

7 Conclusion

In our work, we have investigated numerically the
dynamics of the memristor-based Hindmarsh—Rose
(HR) neuron model and have identified the presence
of superextreme oscillations and multistable states in it.
We have found out that the superextreme spiking (SES)
oscillations arise due to an interior crisis. We have
observed the SES oscillations geometrically using time
series plots, phase portraits and return maps. Also, con-
firmed the presence of SES oscillations and differenti-
ated them from bounded chaotic spiking (BCS) oscilla-
tions using the statistical tools namely, phase slips anal-
ysis and probability distribution functions (PDFs). That
the system exhibits multistability has been observed by
drawing the bifurcation diagrams, Lyapunov exponent
spectrum, time series plots and phase portraits for two
different sets of initial conditions. Further, we have
substantiated our numerical results with experimen-
tal investigations using an analog circuit model of the
memristor. We have used mixed storage oscilloscope
(MSO—X3014A) for data acquisition. We hope that
the methodologies used in our studies and the exper-
tise gained in our experimental investigations can be
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profitably used to develop mathematical models and
an analog nonlinear circuits for many neuronal systems
and understand the underlying causes for their varied
dynamics.
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