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Abstract In this paper, a generalized long-wave
short-wave resonance interaction system, which
describes the nonlinear interaction between a short-
wave and a long-wave in fluid dynamics, plasma
physics and nonlinear optics, is considered. Using the
Hirota bilinear method, the general N -bright and N -
dark soliton solutions are deduced and their Gram
determinant forms are obtained.A special feature of the
fundamental bright soliton solution is that, in general,
it behaves like the Korteweg-deVries soliton. How-
ever, under a special condition, it also behaves akin
to the nonlinear Schrödinger soliton when it loses
the amplitude-dependent velocity property. The fun-
damental dark-soliton solution admits anti-dark, gray,
and completely black soliton profiles, in the short-wave
component, depending on the choice of wave param-
eters. On the other hand, a bright soliton-like pro-
file always occurs in the long-wave component. The
asymptotic analysis shows that both the bright and dark
solitons undergo an elastic collision with a finite phase
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shift. In addition to these, by tuning the phase shift
regime, we point out the existence of resonance inter-
actions among the bright solitons. Furthermore, under
a special velocity resonance condition, we bring out the
various types of bright and dark soliton bound states.
Also, by fixing the phase factor and the system param-
eter β, corresponding to the interaction between long
and short wave components, the different types of pro-
files associated with the obtained breather solution are
demonstrated.

Keywords Generalized long-wave short-wave
resonance interaction system · Bright soliton · Dark
soliton · Breather

1 Introduction

Resonance is a nonlinear phenomenon, which often
occurs when the wave numbers or frequencies of
two or more waves satisfy appropriate resonance con-
dition [1]. Such a unique physical phenomenon is
widely observed in both linear and nonlinear dynam-
ical systems. Among many, a classical example is the
long-wave short-wave resonance interaction (LSRI)
model which finds applications in fluid dynamics [2,3],
plasma physics [4,5], nonlinear optics [6–8], Bose-
Einstein condensation [9,10], and biophysics [11]. This
LSRI takes placewhen both high frequency short-wave
(SW) and low frequency long-wave (LW) obey the
Zakharov–Benney condition: the group velocity of the
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SW (vg = dω(k)/dk) must exactly or almost matches
the phase velocity of the LW (vp = ω/k). That is
vg = vp. The LSRI literature originally starts from
the theoretical investigation on Langmuir waves in
plasmawhere the generalizedZakharov equationswere
derived [4]. After this pioneering work by Zakharov,
there have been several experimental and theoretical
research activities based on the LSRI phenomenon in
different contexts ranging from lower dimensions [12–
15] to higher dimensions [16–20], with single compo-
nent [21] to multi-component [22–25,30–33]. These
studies also report the existence of several types of
nonlinear localized wave structures [21–23,26–29,34],
namely bright solitonwith a single-hump structure [21–
23,34] and bright soliton with a double-hump structure
[35], dark soliton [23–25], breathers [36], and rogue-
waves [37–41], and their novel properties have also
been exhibited there. The main focus of this paper is
to present the soliton, both bright and dark, solutions
and breather solution for the recently introduced gen-
eralized long-wave short-wave resonance interaction
(LSRI) system

i St + Sxx + (iαLx + α2L2 − βL − 2α|S|2)S = 0,

Lt = 2(|S|2)x . (1)

The system (1) has been introduced in [42], where the
authors have established the integrability of the above
systemby providing its (3×3) LaxPair. In system (1), S
(≡ S(x, t)) describes the short-wave and L (≡ L(x, t))
represents the long-wave, and suffices x and t denote
the partial derivatives with respect to spatial and evo-
lutional coordinates, respectively, and the nonlinearity
coefficientsα and β are real parameters. The nonlinear-
ities arise in Eq. (1) because of the self-interaction of
the short-wave packet, as in the case of NLS equation,
and the interaction between LW and SW. The forma-
tion of soliton in the SW component is essentially due
to the balance of its dispersion by the nonlinear inter-
actions of LW and SW and the self-interaction of the
SW. The self-interaction of the SW determines the for-
mation and evolution of soliton in the LW component.

We wish to point out that the generalized LSRI sys-
tem (1) reduces to two well-known LSRI models. For
example, the system (1) becomes the followingYajima-
Oikawa (YO for short) system for β = ±1 and α = 0
[5],

i St + Sxx ± LS = 0, Lt = 2(|S|2)x , (2)

and it turns into the Newell LSRI system,

i St + Sxx + (i Lx + L2 − 2|S|2)S = 0,

Lt = 2(|S|2)x , (3)

for β = 0 and α = 1 [43–45]. In Ref. [5], the forma-
tion and the interaction of solitons are studiedwithin the
framework of the YO-system (2) by the inverse scatter-
ing technique (IST) while the Langmuir waves coupled
with ion-acoustic waves propagating in one-direction.
An alternate long-wave short-wave model (3) has been
proposed, and the nature of the solitons is analyzed
using IST, by Newell in Ref. [43] to describe Benney’s
theory of the nonlinear interaction of long and short
waves. The present LSRI system (1) proposed in [42]
can be treated as the general one to explain the interac-
tion of long and short-waves.

From the literature,wefind that the nature of the soli-
tons, their underlying analytical forms and their inter-
action properties have not been unraveled so far for
Eq. (1). This is what it is intended to be reported in this
paper. By applying the Hirota bilinear method, multi-
bright and multi-dark-soliton solutions of the system
(1) are constructed alongwith the breather solution. An
important fact is that these multi-soliton solutions are
written in a compact way using the Gram determinants.
By doing so, we find that the fundamental bright soliton
of the present LSRI system behaves like the KdV soli-
ton since it possesses the amplitude-dependent veloc-
ity property. While imposing a special condition on the
system parameter β and the velocity of soliton, it also
acts like the NLS soliton. The existence of these prop-
erties simultaneously in the present generalized LSRI
system (1) is not possible in the other single and multi-
component YO LSRI systems [5,21,45] and in the
derivative YO or Newell LSRI system too [43,45]. Fur-
ther, very interestingly, the bright solitons undergo V
and Y-type resonance interactions by tuning the phase
shift regime. Such a possibility is not observed earlier in
the YO-system (2). In addition to these, an interesting
fact whichwe observe in the present LSRI system is the
appearance of a standing breather in the breather pat-
terns. We get the soliton in a periodic wave pattern by
tuning the background wave field. Apart from these, by
fixing the velocity resonance condition appropriately,
various types of bright and dark bound states are also
brought out.

In general, to solve any integrable nonlinear partial
differential equations (PDEs), the following analyti-
cal methods have been widely used in the soliton lit-
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Table 1 Advantages and disadvantages of the various analytical methods

Method Advantage Disadvantage

Inverse scattering trans-
form

Multi-soliton solutions can be obtained
and the Cauchy initial value problem
can be solved completely

Too technical

Darboux transformation Multi-soliton solutions can be obtained Cauchy initial value problem cannot be solved fully

Bäcklund transformation Multi-soliton solutions can be obtained Cauchy initial value problem cannot be solved fully

Hirota bilinear method Multi-soliton solutions can be obtained Cauchy initial value problem cannot be solved fully

Lie-symmetry analysis Solitary wave solutions/similarity
solutions can be obtained

Only particular solutions can be obtained

erature [1,46,47]. For instance, (1). Inverse scattering
transform, (2). Darboux transformation method, (3).
Bäcklund transformation method, (4). Hirota bilinear
method and (5). Lie-symmetry analysis. The first four
methods have been used to derive more general soliton
solutions, whereas using the last Lie symmetry analy-
sis a limited class of solitary wave solutions/similarity
solutions can be derived by reducing the given nonlin-
ear PDE into an ordinary differential equation. Each of
the methods have their own advantages and demerits.
One can derive all possible soliton solutions, including
breathers, rogue waves, bright, and dark soliton solu-
tions, using the above first four methods. However, it
is not possible to derive such solutions using the Lie
symmetry analysis, which only provides the informa-
tion about the solitary wave solutions not the general
soliton solutions.We also briefly point out these various
aspects in Table 1.

The rest of the paper is organized as follows: In
Sect. 2, the fundamental as well as the higher-order
bright soliton solutions are derived, and the various
interaction dynamics associated with the bright soli-
tons are explained in Sect. 3 with appropriate asymp-
totic analysis. The one-and two-dark-soliton solutions
are given in Sect. 4 and the various possible collision
dynamics of two-dark solitons are explained in Sect. 5.
In Sect. 6, we demonstrate the breather solution of the
system (1) and its characteristics with suitable graphi-
cal illustration. In Sect. 7, the obtained results are sum-
marized. For completeness, the N -bright and N -dark
soliton solutions are presented in Appendices A and B,
respectively.

2 Bright soliton solutions

To derive the soliton and breather solutions of the sys-
tem (1), the Hirota bilinear method, in which one has

to introduce an appropriate bilinearizing transforma-
tion in order to obtain the bilinear forms of a given
nonlinear partial differential equation, is adopted. Fol-
lowing Hirota [48], to get the bilinear forms of Eq. (1),
we introduce the bilinearizing transformations

S(x, t) = g

f
, L(x, t) = i

∂

∂x
log

f ∗

f
, g ≡ g(x, t),

f ≡ f (x, t), (4)

in it. In the above, both the unknown functions g and f
are complex functions. While doing the bilinearization
of Eq. (1), we choose α = 1, without loss of generality.
Substitution of (4) in Eq. (1) yields its corresponding
bilinear forms as given below:

(i Dt + D2
x )g · f = 0,

i(Dt + βDx ) f · f ∗ = D2
x f · f ∗,

i Dt f · f ∗ = −2gg∗, (5)

where the Hirota’s bilinear operators Dx and Dt are
defined in [48].

Substituting the standard expansions for the unknown
functions g and f ,

g = εg1 + ε3g3 + · · · ,

f = 1 + ε2 f2 + ε4 f4 + · · · , (6)

in Eq. (5), one gets a system of linear PDEs. The set
of linear PDEs arises after collecting the coefficients
of same powers of ε, which is a formal series expan-
sion parameter, and equating the terms corresponding
to each power of ε individually to zero. By solving
these linear PDEs recursively (at an appropriate order
of ε), we obtain the explicit forms of g and f . Such
explicit forms constitute the bright soliton solutions to
the underlying generalized LSRI system (1).
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Fig. 1 Fundamental bright
soliton of the generalized
LSRI system (1) is
illustrated in (a) for
k1 = 1 + 0.75i , γ1 = 1, and
β = 1. The corresponding
soliton compression graph
is depicted in (b) for the
system parameter β = −1

(a) (b)

2.1 One-soliton solution

The fundamental bright soliton solution of the system
(1) can be obtained by solving the following set of equa-
tions

D1g1 · 1 = 0, D2(1 · f ∗
2 + f2 · 1) = D2

x (1 · f ∗
2 + f2 · 1) (7a)

i Dt (1 · f ∗
2 + f2 · 1) = −2g1g

∗
1 , (7b)

along with the initial seed solution, g1 = γ1eη1 , η1 =
k1x+ik21 t . Here, D1 and D2 are defined as D1 ≡ i Dt+
D2
x , D2 ≡ i(βDx + Dt ), respectively. The explicit

forms of g1 and f2 give rise to the fundamental bright
soliton solution of the system (1). It reads as

S(x, t) = εg1
1 + ε2 f2

= γ1eη1

1 + eη1+η∗
1+δ

, (8a)

L(x, t) = i
∂

∂x
log

1 + ε2 f ∗
2

1 + ε2 f2

= i
∂

∂x
log

1 + eη1+η∗
1+δ∗

1 + eη1+η∗
1+δ

, (8b)

where eδ = |γ1|2(iβ + 2k∗
1)

(k1 + k∗
1)

2(k1 − k∗
1)
. The small parameter

ε does not contribute anything to the structure of soliton
and so one can choose it as 1, without loss of generality
(or subsume as an additional constant in the wave vari-
able η1). The profile structures of the SW and LW are
described by the two complex constants k1 and γ1 and
the system parameter β. We wish to note that the bright
soliton solution (8a)–(8b) exactly coincides with the
already reported fundamental bright soliton solution of
the derivative LSRI system [45] when β = 0. There-
fore, the fundamental bright soliton solution derived by
us for model (1) can be considered as more general. To
understand the properties of the obtained soliton solu-
tion (8a)–(8b) further, we rewrite it in hyperbolic form.
It turns out to be

S(x, t) = ASe
iη1I sech(η1R + δ

2
),

AS = k1R

(
2γ1k1I

γ ∗
1 (β − 2ik∗

1)

) 1
2

, (9a)

L(x, t) = AL
(β−2k1I )|2k1−iβ| + cosh(2η1R + δ+δ∗

2 )
,

AL = − 4k21R
|2k1 − iβ| , (9b)

where η1R = k1R(x − 2k1I t), η1I = k1I x + (k21R −
k21I )t .Here,η1R , k1R , andη1I , k1I are the real and imag-
inary parts of η1, and k1, respectively. In the above, AS

and AL represent the respective amplitudes of the soli-
ton in the SW and LW components and they propagate
from −x to +x direction with the velocity v = 2k1I .

Note that δ
2 = 1

2 log
|γ1|2(iβ+2k∗

1 )

(k1+k∗
1 )2(k1−k∗

1 )
is complex. The

central positions of the SW and LW are obtained as
δ+δ∗
4k1R

= − 1
4k1R

log
|γ1|4(iβ+2k∗

1 )(iβ−2k1)
(k1+k∗

1 )4(k1−k∗
1 )2

. A typical pro-

file of the fundamental bright soliton solution of the
system (1) is displayed in Fig. 1a. Then, we plot the
solution (9a)–(9b) in Fig. 1b with β < 0. The graph
clearly demonstrates that the soliton profiles, in both the
SWand LWcomponents, are compressed significantly.
This kind of simultaneous amplification and compres-
sion of optical pulses is indeed observed in an experi-
ment [49] and it is useful in nonlinear optics applica-
tions to generate picosecond or femtosecond pulses.

Another interesting property associated with the
fundamental bright soliton solution (9a)–(9b) of the
system (1) is the explicit appearance of soliton velocity
in the amplitude parts of both the SW and LW compo-
nents. As a result, the taller soliton will travel faster not
only in the SW component, but also in the LW compo-
nent. This special property is akin to KdV solitons [1].
We remark that this interesting property is distinct from
the property of fundamental bright soliton of the YO
system [5], where the velocity appears only in the SW
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Fig. 2 Amplitude-velocity
relation of the fundamental
bright soliton in the present
LSRI system (1) and in the
other LSRI models (2) and
(3). To draw Fig. 2a, we fix
the parameter values as
k1R = 0.5, β = 1, and
γ1 = 1. For Figs. 2b, and 2c
we consider β value as −1,
β = 0, respectively, and the
other values remain the
same as in the previous case.
For Fig. 2d we illustrate the
amplitude-velocity relation
graph for the YO system
with k1R = 0.5, and γ1 = 1

(a) (b)

(c) (d)

component. Such amplitude-dependent velocity prop-
erty of the bright soliton is illustrated in Fig. 2 for the
present generalized LSRI system (1) and the other sin-
gle component LSRI systems (2) and (3) [5,45]. For
instance, in the present LSRI system (1) with β > 0,
wefind that the amplitude AL is decreasingwith respect
to v, whereas the amplitude AS is increasing as illus-
trated in Fig. 2a. We also observe a similar scenario
for β < 0, which is illustrated in Fig. 2b. Further, for
completeness, we draw the amplitude-velocity relation
graphs for the other cases, the derivative YO system
(β = 0) [45], and the YO system α = 0, β = −1
[5,13,14], in Fig. 2c and d, respectively.

It is very important to point out that the bright soli-
ton in the generalized system also acts like the NLS
bright soliton for the choice β = 2k1I . That is the soli-
ton in the underlying system (1) no longer possesses
the amplitude-dependent velocity property. In this sit-
uation, the solution (9a)–(9b) gets reduced as

S(x, t) = (
iγ1
γ ∗
1

)1/2k1Re
iη1I sech(η1R + δ

2
),

δ

2
= 1

2
log

|γ1|2√
4ik21Rk1I

, (10a)

L(x, t) = −2k1Rsech(2η1R + δ + δ∗

2
),

δ + δ∗

2
= 1

2
log

|γ1|4
16k41Rk

2
1I

. (10b)

The latter expressions clearly indicate that the ampli-
tude of the soliton does not depend on its velocity and
the bright soliton of the form (10a)–(10b) propagates
like the NLS bright soliton with the velocity 2k1I . This
interesting property is not possible in the other single
and multi-component LSRI systems [5,21,45].

2.2 Two-soliton solution

Next, we find that the two series forms in Eq. (6) get
terminated for the two bright soliton solution of the
system (1) as g = εg1+ε3g3 and f = 1+ε2 f2+ε4 f4.
The resultant forms constitute the two-soliton solution,
and it turns out to be

S = 1

f

(
γ1e

η1 + γ2e
η2 + 
121∗eη1+η2+η∗

1

+
122∗eη1+η2+η∗
2

)
, (11a)

L = i
∂

∂x
log

f ∗

f
, (11b)

f = 1 + δ11∗eη1+η∗
1 + δ12∗eη1+η∗

2

+δ21∗eη2+η∗
1 + δ22∗eη2+η∗

2

+δ121∗2∗eη1+η∗
1+η2+η∗

2 , (11c)

δi j∗ = γiγ
∗
j (iβ + 2k∗

j )

(ki + k∗
j )
2(ki − k∗

j )
,


12i∗ = (k2 − k1)
( γ2δ1i∗

k2 + k∗
i

− γ1δ2i∗

k1 + k∗
i

)
,
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δ121∗2∗ = |k1 − k2|2
[

δ11∗δ22∗

(k1 + k∗
2)(k2 + k∗

1)

− δ12∗δ21∗

(k1 + k∗
1)(k2 + k∗

2)

]
i, j = 1, 2,

where η j = k j x + ik2j t , j = 1, 2. The above two-
soliton solution is characterized by four-arbitrary com-
plex parameters, k j and γ j , j = 1, 2 and one system
parameter β. These parameters non-trivially contribute
to the collision properties of the two bright solitons as
we explain below. We also get the explicit forms of N -
bright soliton solution of the generalized LSRI system,
which is given in Appendix A.

3 Collision dynamics of bright solitons

The interesting aspect of the generalized LSRI sys-
tem (1) is that the bright solitons associated with it
undergo different types of interactions apart from the
standard elastic collision. For example, they exhibit (i)
resonance interactions and (ii) soliton bound state or
soliton molecule for the appropriate choices of wave
parameters. First, we perform the asymptotic analysis
in order to confirm the elastic nature of collision among
the two bright solitons, then we will analyze the reso-
nance interactions and soliton bound states in detail.

3.1 Elastic collision: asymptotic analysis

To study the interaction dynamics of the solitons com-
pletely, we perform a detailed asymptotic analysis of
the two-soliton solution (11a)–(11c) and deduce the
explicit forms of the individual solitons at the limits
t → ±∞. To investigate this, we consider k j R > 0,
j = 1, 2, k1I > k2I , which corresponds to either the
case of a head-on collision or the case of an overtak-
ing collision between the two solitons (depending on
the signs of k j I ’s). However, here, we have considered
the head-on collision among the two bright solitons.
In this situation the two fundamental solitons are well
separated and subsequently the asymptotic forms of the
individual solitons can be deduced from the solution
(11a)–(11c) by incorporating the asymptotic nature of
the wave variables η j R = k j R(x − 2k j I t), j = 1, 2, in
it. The wave variables η j R’s behave asymptotically as
(1) Soliton 1: η1R � 0, η2R → ±∞ as t → ±∞ and
(2) Soliton 2: η2R � 0, η1R → ∓∞ as t → ±∞. Cor-

respondingly, these results lead to the following asymp-
totic forms of individual bright solitons.
(a) Before collision: t → −∞
Soliton 1: In this limit, the asymptotic forms of both the
SW and LW are deduced from the two-soliton solution
(11a)–(11c) for soliton 1 as given below:

S(x, t) � A1−
S eiη1I sech(η1R + φ1−

S ),

A1−
S = k1R

(
2γ1k1I

γ ∗
1 (β − 2ik∗

1)

) 1
2

, (12a)

L(x, t) � A1−
L

(β−2k1I )|2k1−iβ| + cosh(2η1R + φ1−
L )

,

A1−
L = − 4k21R

|2k1 − iβ| , (12b)

where the phase terms are given by

φ−1
S = 1

2
log

|γ1|2(iβ + 2k∗
1)

(k1 + k∗
1)

2(k1 − k∗
1)

,

φ−1
L = 1

2
log

−|γ1|4|2k1 − iβ|2
(k1 + k∗

1)
4(k1 − k∗

1)
2 .

In the latter, superscript (1−) represents the soliton 1
before collision and the suffices S and L denote the SW
and LW components, respectively.
Soliton 2: The following asymptotic forms of the soli-
ton 2 are deduced from the solution (11a)–(11c). They
read as
S(x, t) � A2−

S ei(η2I+θ2)sech(η2R + φ2−
S ),

A2−
S = k2R

(
2γ2k2I

γ ∗
2 (β − 2ik∗

2 )

) 1
2

, (13a)

L(x, t) � A2−
L

(2k2I−β)
|2k2−iβ| + cosh(2η2R + φ2−

L )
,

A2−
L = 4k22R

|2k2 − iβ| , (13b)

eiθ2 = (k1 − k2)(k1 + k∗
2 )(k1 + k2)

1
2 (k∗

2 − k1)
1
2

(k∗
1 − k∗

2 )(k
∗
1 + k2)(k∗

1 + k∗
2 )

1
2 (k2 − k∗

1 )
1
2

. (13c)

Here, the phase terms are defined as

φ2−
S = 1

2
log

|γ2|2(iβ + 2k∗
2 )|k1 − k2|4|k1 + k2|2

|k1 − k∗
2 |2|k1 + k∗

2 |4(k2 − k∗
2 )(k2 + k∗

2 )
2 ,

and φ2−
L = 1

2
log

|γ2|4(iβ + 2k∗
2 )(iβ − 2k2)|k1 − k2|8|k1 + k2|4

|k1 − k∗
2 |4|k1 + k∗

2 |8(k2 − k∗
2 )

2(k2 + k∗
2 )

4 .

In the latter, superscript (2−) represents the soliton 2
before collision.
(b) After collision: t → +∞
Soliton 1: Similarly, in this long time limit, the asymp-
totic forms of both the SW and LW are obtained as
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Fig. 3 Elastic collision
among the two bright
solitons of the system (1).
The parameter values are
k1 = 1+ i , k2 = 0.5− 0.5i ,
γ1 = 0.8, γ2 = 0.45 and
β = 1

S(x, t) � A1+
S ei(η1I +θ1)sech(η1R + φ1+

S ),

A1+
S = k1R

(
2γ1k1I

γ ∗
1 (β + 2ik∗

1 )

) 1
2

, (14a)

L(x, t) � A1+
L

(β−2k1I )|2k1−iβ| + cosh(2η1R + φ1+
L )

,

A1+
L = − 4k21R

|2k1 − iβ| , (14b)

eiθ1 = (k1 − k2)(k1 + k2)
1
2 (k∗

1 − k2)
1
2

(k∗
1 − k∗

2 )(k
∗
1 + k∗

2 )
1
2 (k1 − k∗

2 )
1
2

.

The corresponding phase terms are calculated as

φ1+
S = 1

2
log

|γ1|2|k1 − k2|4|k1 + k2|2(2k∗
1 + iβ)

(k1 − k∗
1 )(k1 + k∗

1 )
2|k1 − k∗

2 |2|k1 + k∗
2 |4

,

and φ1+
L = 1

2
log

|γ1|4|k1 − k2|8|k1 + k2|4(2k∗
1 + iβ)(−2k1 + iβ)

(k1 − k∗
1 )

2(k1 + k∗
1 )

4|k1 − k∗
2 |4|k1 + k∗

2 |8
.

In the latter, superscript (1+) represents the soliton 1
after collision. Soliton 2: For the soliton 2, the asymp-
totic expressions turn out to be

S(x, t) � A2+
S eiη2I sech(η2R + φ2+

S ),

A2+
S = k2R(

2α2k2I
α∗
2(β − 2ik∗

2)
)
1
2 , (15a)

L(x, t) � A2+
L

(β−2k2I )|2k2−iβ| + cosh(2η2R + φ2+
L )

,

A2+
L = − 4k22R

|2k2 − iβ| , (15b)

where

φ2+
S = 1

2
log

|γ2|2(iβ + 2k∗
2)

(k2 + k∗
2)

2(k2 − k∗
2)

,

and φ2+
L = 1

2
log

|γ2|4(iβ + 2k∗
2)(iβ − 2k2)

(k2 + k∗
2)

4(k2 − k∗
2)

2 .

The above asymptotic analysis shows that the ampli-
tudes of the solitons remain the same before and after
collisions. Consequently, the transition intensities are

always unimodular. That is,

|T j
S |2 = |A j+

S |2
|A j−

S |2
= 1, and

|T j
L |2 = |A j+

L |2
|A j−

L |2
= 1, j = 1, 2. (16)

It implies that the bright solitons of the generalized
LSRI system always undergo a shape preserving col-
lision, with a finite phase shift, thereby confirming the
elastic nature of the collision. Correspondingly, the
energy of each of the solitons is conserved. Such an
elastic collision is displayed in Fig. 3, where the dark-
like profile appears in the LW component essentially
because of the negative sign that arises in the ampli-
tude part. The phase shifts suffered by the solitons in
both the SW and LW components are obtained as



1
S = 1

2
log

|k1 − k2|4|k1 + k2|2
|k1 + k∗

2 |4|k1 − k∗
2 |2

= −

2
S, 

1

L = −

2
L = 2
1

S . (17)

The above implies that the two bright solitons are
located exactly opposite with each other after the colli-
sion process and their positions are mainly influenced
by the wave numbers, k j , j = 1, 2.

3.2 Resonance interactions

The bright solitons of the system (1) exhibit interesting
resonance interaction patterns for appropriately cho-
sen wave parameters. These patterns will appear in the
interaction regime during the soliton collision and they
can be viewed as an intermediate state. Such a state
essentially arises when the phase shifts due to collision
become infinity or larger value. A typical example of
resonance interaction pattern is depicted in Fig. 4 for
the parameter values k1 = 0.5+0.5i , k2 = 0.45−0.5i ,
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Fig. 4 In the top panel, the
resonance interaction
among the two bright
solitons are demonstrated
and the corresponding
space-time plots are given
in the bottom panel. They
shows that the two bright
solitons take a finite time to
interact in both the SW and
LW components

γ1 = 0.9, γ2 = 0.45. The figure shows that the interac-
tion regime gets extended and the two solitons take
larger time to interact. This is clearly distinct from
the standard collision, which is demonstrated in Fig.
3, where the interaction happens without much delay.
However, in Fig. 4 the interaction period is finite and
after that the two bright solitons split and travel with
their own velocities. One can realize that the intermedi-
ate state in the SWcomponent as zero amplitude soliton
as discussed in the case of the higher dimensional LSRI
system [23]. In contrast to this, we observe a standing
breather, like pattern that appears in the LW compo-
nent. Such pattern exists only for a shorter duration
and it is clearly different from the one that has been
widely discussed in the rogue wave theory. We wish to
note that one can also tune the interaction regime fur-
ther by setting a condition k2R ≈ k1R along with the
choice β = −1. This is illustrated in Fig. 5.

Apart from the above pattern, we also observed
another interesting interaction pattern when we fix the
condition k2R = −k1R and k2I = −k1I . We call such
a pattern as a V-Y type resonance interaction pattern
which is displayed in Fig. 6 with the parameter values
k1 = 2+1.05i , k2 = −2−1.05i , γ1 = 0.25, γ2 = 0.5,

and β = 1. From this figure, we observe that the inter-
action regime becomes infinity. This is because of the
fact that the phase shifts 

S and 

L (Eq. (17))
tend to infinity for k2 = −k1. Consequently, in the
SW component, the two bright solitons approach each
other only asymptotically and form a zero amplitude
resonant soliton, whereas in the LW component they
form a standing breather pattern which is extended up
to an infinite interaction regime.

Next, we show that the existence of different types
of bound soliton state or soliton molecule, which is
recently a hot topic in soliton theory and has potential
applications in optical telecommunications. This novel
structure essentially arises when the two solitons prop-
agate with either equal or nearly equal velocity and it
can be considered as a special case of the standard two
soliton solution (interacting soliton state). Depending
on the choice of the central position, there exist two
types of such soliton state: (i) Parallel propagation, and
(ii) Breather. We find that these bound soliton struc-
tures also exist in the generalized LSRI system (1). To
explore the bound soliton state in Eq. (1), we fix the
velocity resonance condition as v1(= 2k1I ) ≈ v2(=
2k2I ) and also k1R = k2R so that the two bright soli-
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Fig. 5 In the top panel, the
resonance interaction
among the two bright
solitons is illustrated and the
corresponding space-time
plot is demonstrated in the
bottom panel. Here, the
resonance interaction
happens, among the two
bright solitons, for a longer
time period than one in Fig.
4. This is achieved by
tuning the phase shift
regime further

Fig. 6 V and Y type
resonance interactions
among the two bright
solitons. They arise by
setting the phase shift


S = 

L → ∞. It can
be fixed by setting the
condition k2R = −k1R and
k2I = −k1I

tons can propagate with almost the same velocity and
they form a soliton molecule structure. A typical paral-
lel propagating bound soliton state is displayed in Fig.
7a1–a2. To obtain this soliton state we fix the parame-
ter values as β = 1, k1 = 0.65+ i , k2 = 0.65+ 0.99i ,
γ1 = 0.5 and γ2 = 0.35. Then to get the breathing
soliton molecule, we consider the same velocity reso-
nance condition but with k1R 	= k2R . The outcome is
depicted in Fig. 7c1–c2, where the two bright solitons
exhibit oscillatory behaviors. By fixing the parameter
values as β = 1, k1 = 2+ i , k2 = 0.5+0.995i , γ1 = 1
and γ2 = 1.35,we bring out this solitonmolecule struc-
ture. This breathing soliton molecular structure can be

easily identified by rewriting the two-soliton solution
(11a)–(11c) in hyperbolic forms. The resultant forms
will contain trigonometric functions cos(η1I −η2I ) and
sin(η1I − η2I ) in the denominator of both the expres-
sions for S(x, t) and L(x, t). Due to this fact, breath-
ing behavior emerges in the bright-soliton bound states.
Note that one can tune the oscillatory behavior in any
one of the solitons by tuning the values of γ j ’s. For
example, we control the oscillation that occurs in the
second soliton by fixing γ2 = 0.35 and keeping all
the other parameters the same as the one used in Fig.
7c1–c2. A typical graph of such bound soliton state is
illustrated in Fig. 7b1–b2. It clearly indicates that the
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Fig. 7 Top panel denotes
the parallel propagation
bound soliton state. Middle
panel represents
breathing-type bound state
where oscillation occurs in
one of the solitons and
bottom panel illustrates
breathing type-soliton state
where oscillations occur in
both the solitons

oscillation completely suppressed in the second soliton
while it still persists in the other soliton structure.

4 Dark soliton solutions

Next, to derive the dark-soliton solution, now we con-
sider the following transformations [45]

S(x, t) = τeiθ
g(x, t)

f (x, t)
, L(x, t) = i

∂

∂x
log

f ∗

f
,

θ = lx − (l2 + 2|τ |2)t. (18)

While deriving the dark-soliton solutions, one has to
consider the non-vanishing boundary condition S →
τeiθ and L → 0 when |x | → ∞, which are included in
the above transformations.Here τ is a complex constant
and l is a real constant. Substituting Eq. (18) in Eq. (1),

we arrive at the bilinear forms of Eq. (1). They read as

(i Dt + 2ilDx + D2
x )g · f = 0,

i(Dt + βDx ) f · f ∗ = D2
x f · f ∗, (19a)

i Dt f · f ∗ = 2|τ |2(| f |2 − |g|2). (19b)

By solving these bilinear equations along with series
expansions,

g(x, t) = 1 + εg1 + ε2g2 + ε3g3 + · · · ,

f (x, t) = 1 + ε f1 + ε2 f2 + ε3 f3 + · · · , (20)

we obtain the fundamental as well as multi-dark soliton
solutions as given below.
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4.1 One-dark soliton solution

The fundamental dark soliton solution of the system
(1) is obtained as

S(x, t) = τeiθ
1 + εg1
1 + ε f1

= τeiθ
1 + z1eη1+η∗

1

1 + y1eη1+η∗
1
, z1 = − p1 − il

p∗
1 + il

y1, (21a)

L(x, t) = i
∂

∂x
log

1 + y∗
1 e

η1+η∗
1

1 + y1eη1+η∗
1
, y1 = −i

iβ + 2p∗
1

p1 + p∗
1

,

(21b)

along with a constraint condition

p1R = ±
[ |τ |2(2l − β)

2p1I
− (p1I − l)2

] 1
2

. (22)

Here, η1 = p1x + i p21 t + η
(0)
1 , where p1 and η

(0)
1 are

complex constants. The above fundamental dark soli-
ton solution can be rewritten as
S(x, t) = τ

2
eiθ

[
(1 + κ) − (1 − κ) tanh(η1R + δ

2
)

]
, (23a)

L(x, t) = − 4p21R
(β − 2p1I ) + |2p1R + i(β − 2p1I )| cosh(2η1R + δ+δ∗

2 )
,

(23b)

where κ = − p1−il
p∗
1+il , e

δ = −i
iβ+2p∗

1
p1+p∗

1
, and η1R =

p1R(x−2p1I t+ η
(0)
1R
p1R

). The dark-soliton solution (23a)–
(23b) is describedby three complex constants, τ , p1 and
η

(0)
1 and two real constants, l and β. The dark-soliton

propagates in both theSWandLWcomponentswith the
velocity v = 2p1I . The solution (23a) admits an anti-
dark soliton on a constant background |τ |2 in the SW
component when p1R > 0, otherwise it admits dark (or
gray) soliton for p1R < 0. However, the solution (23b)
always exhibits bright soliton nature in the LW com-
ponent. These possibilities are demonstrated in Fig. 8.
For example, in Fig. 8a1, we display an anti-dark (SW)
and bright soliton (LW) profiles for p1 = 1 + 0.5i ,
τ = 0.5+ 0.5i , l = 1 and β = 1. From this figure, one
can observe that an anti-dark soliton is definitely dis-
tinct from the usual bright soliton because it appears on
a non-vanishing background field. Then, we illustrate
a gray soliton profile in Fig. 8a2, where the intensity
of the soliton is lower than the constant background
and it does not reach zero intensity anywhere along the
x-axis. We bring out such a gray soliton profile by fix-
ing the value of p1R as −0.5 and the other parameter
values are taken as the same as the one fixed in Fig.
8a1. We also display a dark or black-soliton profile
with minimum intensity (intensity reached to zero) in
Fig. 8a3 for p1I = 0.5. In Fig. 8b1–b3, we depict their

corresponding shape compression plots for β = −1.
We wish to remark that the dark soliton of the gener-
alized LSRI system (1) also possesses the amplitude-
dependent velocity property as the dark solitonhas been
clearly explained in the case of the derivative YO sys-
tem [45].

Further, interestingly, we also observe that the dark-
soliton solution (23a)–(23b) turns into a periodic solu-
tion for a lower values of l. In this situation, the wave
number p1 turns out to be pure imaginary so that hyper-
bolic form of the dark soliton solution becomes a peri-
odic function. Such a possibility is illustrated in Fig.
9 with different l values and β > 0. For l = 0.6,
p1 = 1.33i , τ = 0.5 + 0.5i , and β = 1, we find that
in-phase periodic waves appear in both the SW and LW
components, whereas anti-phase periodic waves occur
for l = 0.5, p1 = 1.5i (the other parameter values are
same as the one mentioned above). These examples are
displayed in Fig. 9a and b, respectively. A doubly peri-
odic wave arises in the LW component for the choice
l = 0.3 and p1 = 1.76i . An interesting fact that can
be observed from Fig. 9b and c is that in the LW com-
ponent the intensities of the periodic waves are higher
than the background field. This feature is striking con-
trast with the soliton profiles that are drawn in Fig.
8, where all the soliton profiles in the LW component
appear only in the zero background. However, we also
observe the zero background periodic wave in the LW
component. This is demonstrated in Fig. 9a. Note that
one can also observe a similar kind of periodic waves
in the case of β < 0.

4.2 Two-dark soliton solution

The two-dark soliton solution of the generalized LSRI
system (1) is derived and it reads as

S(x, t) = τeiθ
1 + εg1 + ε2g2
1 + ε f1 + ε2 f2

= τeiθ

1 + z1eη1+η∗
1 + z2eη2+η∗

2 + z12eη1+η∗
1+η2+η∗

2

1 + y1eη1+η∗
1 + y2eη2+η∗

2 + y12eη1+η∗
1+η2+η∗

2
, (24a)

L(x, t) = i
∂

∂x
log

1 + ε f ∗
1 + ε2 f ∗

2

1 + ε f1 + ε2 f2

= i
∂

∂x

log
1 + y∗

1e
η1+η∗

1 + y∗
2e

η2+η∗
2 + y∗

12e
η1+η∗

1+η2+η∗
2

1 + y1eη1+η∗
1 + y2eη2+η∗

2 + y12eη1+η∗
1+η2+η∗

2
,

(24b)
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(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 8 Various fundamental dark-soliton profiles of the system
(1) are shown. In Fig. (a1) we depict an anti-dark soliton profile,
whereas a gray soliton profile is displayed in Fig. (a2). A com-
plete black or dark soliton profile is illustrated in Fig. (a3). In all

these figures the corresponding bright soliton profile is drawn in
the LW component. The bottom panel (b1)-(b3) displays their
corresponding shape compression plots for β = −1

Fig. 9 Periodic solution of
the generalized LSRI
system (1). In (a), we
display in-phase periodic
waves, whereas anti-phase
periodic waves are
demonstrated in (b). A
doubly periodic wave is
brought out in (c)

(a) (b)

(c)

where η j = p j x + i p2j t + η
(0)
j , z j = − (p j−il)

(p∗
j+il) y j ,

y j = −i
(iβ+2p∗

j )

(p j+p∗
j )
, p j R = ±

[
|τ |2(2l−β)

2p j I
−(p j I − l)2

] 1
2

,

j = 1, 2, z12 = z1z2�12, y12 = y1y2�12, �12 =
|p1−p2|2
|p1+p2|2 . The two-dark soliton solution (24a)–(24b)

is characterized by five complex constants p j , η
(0)
j ,

j = 1, 2, τ and two real constants l andβ. These param-

eters control the dynamics as well as the structures of
two dark solitons and they also provide the possibil-
ity of obtaining three permissible collision scenarios,
namely (i) anti-dark–anti-dark solitons collision, (ii)
anti-dark–dark solitons collision, and (iii) dark-dark
solitons collision. These collision scenarios are ana-
lyzed in the subsequent section. We have also obtained
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Fig. 10 Elastic collision
dynamics of the two
anti-dark solitons is
displayed with the
parameter values
p1 = 0.51 + 0.75i ,
p2 = 0.66 + 0.25i , l = 1,
τ = 0.5 + 0.5i , and β = 1

Fig. 11 Elastic collision
dynamics between a dark
soliton and an anti-dark
soliton

N -dark soliton solution of the system (1), which is
given in Appendix B.

5 Collision dynamics of dark solitons: Asymptotic
analysis

As we have mentioned above, we came across three
types of collision scenarios between the dark-solitons.
To characterize each of them we have performed
the appropriate asymptotic analysis, from which we
deduce the explicit forms of the individual dark soli-
tons at the asymptotic time limit t → ±∞. However,
here we present the asymptotic analysis corresponding
to head-on collision among the two anti-dark solitons
only. To perform it, we consider the parametric choice,
p1R < p2R , p1I > p2I . By following the procedure
described in the case of collision among the bright soli-
tons, we also deduce the following asymptotic forms
for anti-dark solitons.

(a) Before collision: t → −∞ Soliton 1: η1R � 0,
η2R → −∞
S(x, t) = τ

2
eiθ

[
(1 + κ1) − (1 − κ1) tanh(η1R + φ1−

S )

]
, (25a)

L(x, t) = − 4p21R
(β − 2p1I ) + |2p1R + i(β − 2p1I )| cosh(2η1R + φ1−

L )
,

(25b)

where κ1 = − (p1−il)
(p∗

1+il) , φ1−
S = 1

2 log
−i(iβ+2p∗

1 )

(p1+p∗
1 )

and

φ1−
L = 1

2 log
|iβ+2p∗

1 |2
(p1+p∗

1 )
2 . In the latter, superscript (1−)

denotes the soliton 1 before collision and subscripts S
and L represent the SW and LW, respectively.
Soliton 2: η2R � 0, η1R → +∞
S(x, t) = τ

2
eiθ+�1

[
(1 + κ2) − (1 − κ2) tanh(η2R + φ2−

S )

]
, (26a)

L(x, t)

= − 4p22R
(β − 2p2I ) + |2p2R + i(β − 2p2I )| cosh(2η2R + φ2−

L )
.

(26b)

Here,

κ2 = − (p2 − il)

(p∗
2 + il)

, �1 = log
−(p1 − il)

p∗
1 + il

,

φ2−
S = 1

2
log

−i |p1 − p2|2(iβ + 2p∗
2)

|p1 + p∗
2 |2(p2 + p∗

2)
, and

φ2−
L = 1

2
log

|p1 − p2|2|iβ + 2p∗
2 |2

(p2 + p∗
2)|p1 + p∗

2 |2
.

In the above, the superscript (2−) denotes the soliton
2 before collision.
(b) After collision: t → +∞
Soliton 1: η1R � 0, η2R → +∞
S(x, t) = τ

2
eiθ+�2

[
(1 + κ1) − (1 − κ1) tanh(η1R + φ1+

S )

]
, (27a)

L(x, t) = − 4p21R
(β − 2p1I ) + |2p1R + i(β − 2p1I )| cosh(2η1R + φ1+

L )
,

(27b)

123



784 M. Kirane et al.

Fig. 12 Collision dynamics
of two dark solitons is
drawn with the values
p1 = −0.51 + 0.8i ,
p2 = −0.66 + 0.25i ,
l = 0.85, τ = 1 + i , and
β = 1

Fig. 13 Dark solitons
behave like a breather in the
periodic background field.
In (a1) and (c1) we display
bright breather-like behavior
of anti-dark soliton in the
SW component, whereas in
(b1) dark breather-like
pattern is observed in the
SW component. In contrast
to this, in all the figures
(a2), (b2) and (c2), a bright
breather-like pattern is
observed in the LW
component

where

�2 = log
−(p2 − il)

p∗
2 + il

,

φ1+
S = 1

2
log

−i |p1 − p2|2(iβ + 2p∗
1)

|p1 + p∗
2 |2(p1 + p∗

1)
,

and φ1+
L = 1

2
log

|p1 − p2|2|iβ + 2p∗
1 |2

(p1 + p∗
1)|p1 + p∗

2 |2
. (28)

In the above, the superscript (1+) denotes the soliton
1 after collision.
Soliton 2: η2R � 0, η1R → −∞

S(x, t) = τ

2
eiθ

[
(1 + κ2) − (1 − κ2) tanh(η2R + φ2+

S )

]
, (29a)

L(x, t)

= − 4p22R
(β − 2p2I ) + |2p2R + i(β − 2p2I )| cosh(2η2R + φ2+

L )
.

(29b)
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Fig. 14 The different types
of dark soliton bound states
are demonstrated. In (a1),
we display anti-dark soliton
bound state structure,
whereas in (b1) we illustrate
the existence of
anti-dark-dark solitons
bound state. Then, two
dark-solitons bound state
structure is depicted in (c1).
In addition to these bound
state structure of the SW
component, a parallel
propagating bright-solitons
bound structure always
appears in the LW
component and they are
illustrated in (a2), (b2) and
(c2). The parameter values
are: (1) a1–a2:
p1 = 0.5 + 0.45i ,
p2 = 0.5 + 0.4445i , l = 1,
τ = 0.5 + 0.5i , and β = 1.
(2) b1–b2:
p1 = −0.36 + 0.515i ,
p2 = 0.36 + 0.5i , l = 0.65,
τ = 0.5 + 0.5i , and β = 1.
(3) c1–c2:
p1 = −0.5 + 0.45i ,
p2 = −0.5 + 0.4445i ,
l = 1, τ = 0.5 + 0.5i , and
β = 1

In the above, φ2+
S = 1

2 log
−i(iβ+2p∗

2 )

p2+p∗
2

, φ2+
L =

1
2 log

|iβ+2p∗
2 |2

(p2+p∗
2 )

2 . Here, the superscript (2+) represents

the soliton 2 after collision.
The above asymptotic analysis clearly shows that the

two anti-dark solitons retain their shape during the col-
lision scenario, except for a finite phase shift, thereby
confirming the elastic nature of the collision. A typi-
cal elastic collision among the two anti-dark solitons is
depicted in Fig. 10. Then, in Fig. 11 we display the col-
lision between a dark soliton and an anti-dark solitons.
To bring out this figure we fix the parameter values as
p1 = 1+0.65i , p2 = −1.5+0.25i , l = 0.85, τ = 1+i ,
and β = 1. From Fig. 11, it is evident that the dark and
anti-dark solitons are well separated initially and their
structures are invariant under collision. A similar situ-
ation is also observed during the interaction among the
two dark solitons, and this scenario is depicted in Fig.

12. We have calculated the phase shift suffered by the
two anti-dark solitons during the collision process and
they turn out to be



1
SW = 1

2
log

|p1 − p2|2
|p1 + p∗

2 |2
= −

2

SW ,



1
LW = −

2

LW = 2
1
SW . (30)

As we pointed in the one-dark soliton case, the two-
dark soliton solution also exhibits periodic behavior
for low values of the wave number l of the background
wave τeiθ . Such a possibility is illustrated in Fig. 13.
From this figure, one can identify that the two dark
solitons do not completely change into periodic waves.
On the other hand, one of the dark/anti-dark solitons
behave like a breather in a periodic background wave
field. From Fig. 13a1–b1, we observe that an anti-dark
soliton (or a dark-soliton) in the SW component turns
into a bright breather (or dark breather)-like structure

123



786 M. Kirane et al.

Fig. 15 Breather solution
of the generalized LSRI
system (1) is illustrated for
β > 0. The parameter
values are fixed as follows:
a1–a2: φ1 = 0.5i ,
φ2 = φ∗

1 + π , l = 0.5,
τ = 0.5, and β = 1. b1–b2:
φ1 = 0.75, φ2 = φ∗

1 + π ,
l = 0.5, τ = 0.5, and
β = 0.25. c1–c2:
φ1 = 0.25 + 0.25i ,
φ2 = φ∗

1 + π , l = 0.5,
τ = 0.5, and β = 0.25

on the periodic wave background. From Fig. 13a2–b2,
we also observe a bright breather-like pattern in the
LW component. In addition to this, a breathing pattern
is observed in both the SW and LW components, which
is demonstrated in Fig. (13) c1–c2. The presence of a
dark soliton in the periodic background will be useful
in connection with the recent literature on the theory of
roguewaves in periodic backgroundwavefield [50,51].
Further, in Fig. 14, we display the three types of par-
allelly propagating dark-soliton bound states. We note
that the resonance soliton and breathing type bound
state do not exist in the dark-soliton case.

6 Breather solution

To get the breather solution, one has to consider the
same bilinear transformation (Eq. 18) that has been
used to derive the dark-soliton solution. By doing so,

we obtain the following functions g and f correspond-
ing to the breather solution of the generalized LSRI
system (1):
g = 1 + eη1+2iφ1 + eη2+2iφ2

+A12e
η1+η2+2i(φ1+φ2), (31a)

f = 1 + eη1 + eη2 + A12e
η1+η2 ,

where

A12 = 1

D

(
p21 sin(φ1 − φ2)[sin(φ1 + φ2)

− sin(φ1 − φ2)] − p22 sin(φ1 − φ2)

×[sin(φ1 + φ2) + sin(φ1 − φ2)]
−(p1 − p2)

2 cos(φ1 − φ2)

×[cos(φ1 − φ2) − cos(φ1 + φ2)]
)

,

D = −p21 sin(φ1 + φ2)

[sin(φ1 + φ2) − sin(φ1 − φ2)] − p22 sin(φ1 + φ2)

×[sin(φ1 + φ2) + sin(φ1 − φ2)]
+(p1 + p2)

2 cos(φ1 + φ2)
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Fig. 16 Breather solution
of the generalized LSRI
system (1) is illustrated for
β < 0. A singular breather
periodic in both x and t is
demonstrated in (a1)–(a2)
for φ1 = 0.5, φ2 = φ∗

1 + π ,
l = 0.5, τ = 0.5, and
β = −1. The two
interacting breathers are
illustrated in (b1)–(b2) for
φ1 = 0.35, φ2 = φ∗

1 + π ,
l = 0.5, τ = 0.5, and
β = −0.25. In c1, we find
that a stationary breather
and a moving breather are
emerging out from the SW
component. In contrast to
this, in the LW component,
a stationary breather along
with the two interacting
breathers are observed. To
display (c1)–(c2), we set the
parameter values as
φ1 = 0.35 + 0.35i ,
φ2 = φ∗

1 + π , l = 0.5,
τ = 0.5, and β = −0.25

×[cos(φ1 − φ2) − cos(φ1 + φ2)], (31b)

where η j = p j x − � j t , � j = 2lp j − p2j cot φ j ,

p1 = 1
2

(
iβ−

√
−β2 + 16|τ |2 sin2 φ1 + 8i |τ |2 sin 2φ1

)
,

p2 = 1
2

(
iβ+

√
−β2 + 16|τ |2 sin2 φ2 + 8i |τ |2 sin 2φ2

)
.

Here, p j , � j and φ j , j = 1, 2, are complex constants.
A typical singular time-periodic breather is displayed
in Fig. 15a1–a2 with the parameter values φ1 = 0.5i ,
φ2 = φ∗

1 + π , l = 0.5, τ = 0.5, and β = 1. This
figure shows that the breather obtained by us is sim-
ilar to Kuznetsov-Ma soliton [52,53] which has been
widely discussed in the context of rogue-waves. For
β = 0.25, the solution (31a)–(31b) admits two inter-
acting breathers in both the components, where one of
the breathers is stationary along x = 0. This is illus-
trated in Fig. 15b1–b2. Further, as we demonstrated in
Fig. 15c1–c2, we also come across another breather

pattern by considering the phase, φ1, as complex and
for a low positive value of β. From this pattern, we
observe that, in the SW component, the two breathers
propagate in opposite directions and they collide with
each other. The final outcome is reflected in changing
their positions. In contrast to this, in theLWcomponent,
in addition to the two interacting breathers moving in
the opposite directions, there is a stationary breather
that appears along x = 0. Furthermore, one also gets
similar breather patterns for β < 0. Such a possibility
is illustrated in Fig. 16.

7 Conclusion

In this paper, first we have derived N -bright and N -
dark soliton solutions for the generalized LSRI sys-
tem (1) through the Hirota bilinear method. Then, by
considering the fundamental bright and dark soliton
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solutions as well as their higher-order forms, we have
discussed their various propagation and collision prop-
erties in detail. The interesting aspect of the present
generalized LSRI system is that the bright soliton, in
general, behaves like KdV soliton. However, under a
special condition, it acts like the NLS soliton. Further,
we found that the dark-soliton admits three types of
dark soliton profiles. Further, the asymptotic analy-
sis confirmed that both the bright and dark solitons
always exhibit elastic collision only. In addition to
these, we also demonstrated the existence of resonant
interactions among the two bright solitons, and soli-
ton molecules. Finally, by deriving the breather solu-
tion we have illustrated the various breather patterns
graphically by tuning the phase values and a system
parameter β. The present study will be useful in fluid
dynamics, plasma physics, nonlinear optics and other
closely related disciplines of physics.
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Appendix A: N-bright soliton solution

The explicit form of N -bright soliton solution of Eq.
(1) can be expressed using Gram determinant in the
following way:

g =
∣∣∣∣∣∣
A I φT

−I B 0T

0 −C 0

∣∣∣∣∣∣ , f =
∣∣∣∣ A I
−I B

∣∣∣∣ , f ∗ =
∣∣∣∣ A

′ I
−I B∗

∣∣∣∣ ,
(A1)

The various elements of matrices A, A′ and B are
obtained from the following,

Ai j = k∗
j

(ki + k∗
j )
eηi+η∗

j , A′
i j = − ki

(ki + k∗
j )
eηi+η∗

j ,

bi j = −γ ∗
i γ j (iβ + 2k∗

j )

(k∗2
i − k2j )

,

η j = k j x + ik2j t , i, j = 1, 2, ..., N . The row matrices

in Eq. (A1) are defined below: φ = (
eη1 eη2 . . . eηN

)
,

C = (
γ1 γ2 . . . γN

)
, 0 is a N -component zero row

matrix and σ = I is a (N × N ) identity matrix. The
above N -soliton solution is characterized by (2N ) arbi-
trary complex parameters, k j and γ j , j = 1, 2 and one
system parameter β.

Appendix B: N-dark soliton solution

The N -dark soliton solution of the system (1) is given
by

g =
∣∣∣∣δ jk + i

(
iβ + 2p∗

k

p j + p∗
k

)(
p j − il

p∗
j + il

)
eη j+η∗

k

∣∣∣∣
N×N

,(B2a)

f =
∣∣∣∣δ jk − i

(
iβ + 2p∗

k

p j + p∗
k

)
eη j+η∗

k

∣∣∣∣
N×N

, (B2b)

where η j = p j x + i p2j t + η
(0)
j , j = 1, 2, ..., N ,

p j ’s and η
(0)
j ’s are complex constants. The con-

straint conditions are obtained and they turn out to be

p j R = ±
[

|τ |2(2l−β)
2p j I

− (p j I − l)2
] 1

2

, j = 1, 2, ..., N .

Here, p j R and p j I ’s are the real and imaginary parts of
p j ’s. The imaginary parts of p j ’s govern the velocity of

the solitons and η
(0)
j ’s define the phase of the solitons.
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