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Abstract: In this article, we present a novel methodology for inventory management in the pharma-
ceutical industry, considering the nature of its supply chain. Traditional inventory models often fail
to capture the particularities of the pharmaceutical sector, characterized by limited storage space,
product degradation, and trade credits. To address these particularities, using fuzzy logic, we propose
models that are adaptable to real-world scenarios. The proposed models are designed to reduce total
costs for both vendors and clients, a gap not explored in the existing literature. Our methodology
employs pentagonal fuzzy number (PEN) arithmetic and Kuhn-Tucker optimization. Additionally,
the integration of the naive Bayes (NB) classifier and the use of the Weka artificial intelligence suite
increase the effectiveness of our model in complex decision-making environments. A key finding is
the high classification accuracy of the model, with the NB classifier correctly categorizing approxi-
mately 95.9% of the scenarios, indicating an operational efficiency. This finding is complemented by
the model capability to determine the optimal production quantity, considering cost factors related
to manufacturing and transportation, which is essential in minimizing overall inventory costs. Our
methodology, based on machine learning and fuzzy logic, enhances the inventory management in
dynamic sectors like the pharmaceutical industry. While our focus is on a single-product scenario be-
tween suppliers and buyers, future research hopes to extend this focus to wider contexts, as epidemic
conditions and other applications.

Keywords: defuzzification; inventory models; Kuhn-Tucker method; non-linear programming;
pentagonal fuzzy number; pharmaceutical supply chain; Weka software

MSC: 90C90; 03E72

1. Introduction

The pharmaceutical industry, characterized by its dynamic and diverse supply chain,
faces challenges that impact public health, as well as the reputation and growth of the
companies involved [1,2]. These challenges include addressing the complexities of lot-size
modeling in fluctuating demand scenarios as in [3]. The efficiency of this supply chain,
dependent on inventory policies between suppliers and buyers (purchasers), necessitates
the optimization of operational and financial management processes [4-8], including
advancements in optimizing contribution margins in various sectors through innovative
demand modeling techniques [9].

Mathematics 2024, 12, 819. https:/ /doi.org/10.3390/math12060819

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math12060819
https://doi.org/10.3390/math12060819
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6705-5354
https://orcid.org/0000-0001-9654-7729
https://orcid.org/0000-0002-3152-1592
https://orcid.org/0000-0003-4755-3270
https://orcid.org/0000-0001-9897-8186
https://doi.org/10.3390/math12060819
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060819?type=check_update&version=1

Mathematics 2024, 12, 819

2 0f 22

Trade credit has emerged as a key financial strategy in the pharmaceutical sector,
allowing customers to purchase goods without immediate payment, so attracting new
clients and reducing unsold inventory for suppliers [10]. However, the collaborative invest-
ment of resources by suppliers and customers in reducing ordering costs, particularly in
areas like trade credit, is still relatively unexplored. There are challenges for modernized
inventory models that consider multiple factors, such as limited storage space, product
degradation, and trade credits [1,2,11,12]. Insights into these challenges are furthered by
studies on inventory management under specific conditions [13]. In response, integrated
inventory models adapted to the complexities of the pharmaceutical supply chain are
being developed. The use of fuzzy set theory can enable a more-effective management of
inventory cost uncertainties [14]. Additionally, the adoption of hybrid robust compromise
multi-criteria approaches for modeling inventory cost savings provides valuable perspec-
tives on key factors for a successful supply chain [15]. The evolving nature of demand,
with its inherent uncertainties, underscores the importance of advanced models in supply
chain optimization [16].

Innovative approaches in analyzing inventory, especially with serially dependent
random demand [17], along with the use of fuzzy logic in pandemic models [18], reflect the
evolutionary nature of inventory management and offer a means to cope with uncertainty.
Recent studies, such as those on the dynamics of pandemic models in large populations [19]
and the analysis of simultaneous epidemic models [20], improve our understanding of
decision-making in complex systems, which is relevant for the pharmaceutical supply chain.

To contextualize the contribution of the present study within the current body of
research, we have meticulously reviewed recent works on economic order quantity (EOQ)
models and their applications across various domains [21]. Previous works, such as
the sustainable supply chain for defective items with a trade credit policy and fuzzy
learning effect [22,23], as well as inventory models addressing imperfect-quality items
under various fuzzy environments [24-26], contribute to the understanding of inventory
challenges. These models, while focusing on conventional methods, often do not fully
capture the complexities and uncertainties inherent in modern supply chains. Further
studies have explored the optimization of fuzzy inventory lot-size [27] and the impacts of
learning on inventory models for deteriorating items [28], which are helpful for addressing
the dynamic nature of contemporary supply chains.

To the best of our knowledge, no research has considered fuzzy models aimed at re-
ducing total costs (TCs) for both vendors and clients in the pharmaceutical industry, stating
a gap in the related literature. To cover this gap and expanding upon prior research, which
focuses on a single commodity with one supplier and one buyer [2,29], we propose and
develop a model that incorporates novel elements such as pentagonal fuzzy number (PFN)
arithmetic for cost and consumption assessment, in combination with Kuhn-Tucker opti-
mization techniques [30]. This model aligns with advanced optimization and algorithms,
as discussed in [31], with a focus on the importance of robust and adaptable optimization
strategies in complex inventory systems. The analysis of complex data patterns and the
formulation of uncertainty can benefit from the application of advanced statistical models,
as discussed in [32]. Additionally, the integration of machine learning methods and the
utilization of the Weka software (version 3.8.6), an artificial intelligence suite for data
analysis, potentially improve the overall effectiveness of the model [33-35].

In the context of supply chain optimization, our novel model draws parallels to the
vendor-managed inventory (VMI) approach [36,37]. Unlike traditional inventory manage-
ment, VMI enhances the collaboration between suppliers and buyers by allowing suppliers
to take responsibility for managing their inventories. The VMI has been explored in
various contexts, including supply chains with consignment stock policies and learning ap-
proaches [38], as well as its influence on business performance through supplier integration
and supply chain [39]. Our research extends the conventional VMI concept by incorporat-
ing fuzzy logic to manage the dynamic and uncertain nature of the pharmaceutical supply
chain, offering a robust solution compared to traditional systems.
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The methodology used in the present research aligns with advances in intelligent
health-monitoring systems [40-43]. The usage of fuzzy logic in complex decision-making
scenarios [44] complements our methodology and highlights the applicability of this logic
in diverse domains, including inventory management [45]. This applicability is exemplified
by the role of fuzzy design in bioeconomy and industry [46], showing the importance of
advanced computational methods in operational optimization.

The scientific contributions of the present article are diverse. Firstly, our research
introduces fuzzy models that address the challenges of the pharmaceutical sector, includ-
ing the dynamic nature of supply and demand, as well as the managing of trade credits
and product degradation. These models represent a novel approach in considering both
operational and financial factors, filling a gap in the current literature. Secondly, our study
employs the innovative use of PFN arithmetic combined with Kuhn-Tucker optimization
techniques. This unique combination enables a more-effective handling of the uncertainties
inherent in the pharmaceutical supply chain. Thirdly, the integration of advanced machine
learning methods, notably the naive Bayes (NB) classifier within the Weka software, en-
hances the model capability to analyze complex inventory scenarios, thereby improving
decision-making processes. Collectively, these contributions not only advance the theoreti-
cal understanding of fuzzy logic in inventory management, but also offer practical tools for
more-efficient and adaptive supply chain strategies in the pharmaceutical industry.

The remainder of the article is organized as follows. Section 2 details the methodologi-
cal framework. In Section 3, we discuss the application of machine learning techniques and
the interpretation of results, demonstrating how these techniques analyze the inventory
model. In Section 4, the article concludes by summarizing our findings and discussing their
implications for optimizing inventory management in the pharmaceutical industry.

2. Methodology

This section outlines our methodological framework. We state how Kuhn-Tucker
conditions are integrated with PFNs and fuzzy arithmetic principles to address the uncer-
tainties in vendor-buyer dynamics within the pharmaceutical setting.

2.1. Foundational Concepts and Assumptions

The foundations of fuzzy logic, playing a crucial role in our methodological framework,
are based on established theoretical concepts that transformed the way uncertainty and
imprecision are handled across various fields. The introduction of fuzzy theory [47]
marked the beginning of this transformation, laying the groundwork for both theoretical
developments and practical applications of this theory. Its evolution and applications have
been extensively discussed [48,49], providing a theoretical and applied understanding of
the fuzzy logic. Furthermore, the exploration of the mathematical foundations of fuzzy
sets [50] and an accessible introduction of its concepts [51] significantly contribute to our
understanding and application of these concepts in the contexts of operational research
and specifically of the inventory management.

In operational research, fuzzy numbers are used to depict potential values with
uncertainty. Defuzzification, the process of transforming fuzzy values into precise ones, is
performed utilizing the signed distance method. This method is essential for making fuzzy
data practical and applicable to real situations.

Our model mathematically represents how vendors and buyers interact in the supply
chain of the pharmaceutical industry. We apply fuzzy numbers to handle the uncertainties
in such an interaction, which reflects how complex this industry is. Our model makes
it easier to understand and enhance the way the supply chain operates, especially when
things are uncertain. Table 1 lists the main symbols we use in our model, setting the stage
for the mathematical methods that follows.
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Table 1. Description of some notations used in the present study.

Notation Description
D Drug demand on an annual basis
F Fixed drug transportation costs per shipment
he Price of vendor pharmacy unit stock holdings
hy Cost of drug annual unit holdings per item
I Bearing expense per drug per year
i Size of drug lots per production run
Lo Drug shipping processing time for initial orders
L Lead time
n A positive integer representing the total number of drug shipments

made by a vendor to a purchaser in a batch
Purchase price of a drug unit

Drug manufacturing wage (R > D)

Drug vendor setup costs per production run
Allowable drug holding in account settlement
Buyer hourly processing fee for drug orders

CT~¥=m~

The validity and practicality of our proposed model in real-world situations are based
on the following assumptions:

(i) The inventory model focuses on a specific product involving a single vendor and a
single customer.

(i) Demand for the product remains constant over time.

(iii) Shortages are not allowed in the inventory system.

(iv) The lead time, denoted as L, is composed of independent components.

(v) The vendor acceptance of payment delays from the customer results in cost savings
for the customer by reducing the annual cost of order processing.

(vi) The model assumes an infinite time horizon.

The above-mentioned assumptions simplify the model while ensuring it remains
reflective of specific scenarios in the pharmaceutical industry.

Our research applies PENs. The choice of these numbers over more-conventional
triangular or trapezoidal fuzzy numbers is motivated by their flexibility in describing
uncertainty for the supply chain of the pharmaceutical industry. PFNs allow for a depiction
of uncertain parameters, accommodating asymmetric and more-complex statistical distribu-
tions for the uncertainty, which are often encountered in such an industry. This uncertainty
is particularly helpful in modeling scenarios like demand fluctuation and supply chain
disruptions, which are not adequately captured by simpler fuzzy number shapes. Also,
we assume the elements of PFNs to be non-negative, reflecting the nature of quantities
and costs in the context of the present investigation. When developing our methodology
based on fuzzy arithmetic with PFNs, we draw upon established methods in the literature.
The fundamental principles of fuzzy number operations, including addition, subtraction,
multiplication, and division, are well-explored in [52-54], as well as in comprehensive
texts [48,55,56]. We focus on the application of PFNs to effectively model uncertainty.

A PEN is represented as A= (a1,ap,a3,a4,a5), where a3 is the central point and (a1, a3)
and (a4, as) are the left and right side points, respectively. The membership function of a
PEN is given by

wl(é’_‘i}l), ap < x < ay;
1—(1—101)(“3;:[;2), ap < x < az;
Fi(x) =4 v )
A 1—(1—wp) (=2 a3 < x < ag;
2 ag—az )’ 3 4,
wz(éﬁﬁ), ag < x <as;
0, X > as;
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which assign the highest degree of membership to the central point a3 with weights wy, as
well as w, for a; and a4, as described in [57]. From the expression stated in (1), we deduce
that a PFN becomes a triangular fuzzy number when w; = w, = 0 and a trapezoidal fuzzy
number when w; = wy = 1, offering flexibility in the structure of PFNs which allows for a
wide range of modeling possibilities.

Additionally, in the expression given in (1), each PEN is characterized by two weights.
We adopted the notation w;y4, for i = 1,2, to denote w; and w» as the weights of the PFN A.

For two PFNs A = (ay,a3,a3,a4,a5) and B = (b1, by, b3, by, bs), the arithmetic opera-
tions are defined as:

[Addition] A + B = (a1 + by, as + by, a3 + bz, ag + by, as + bs), with weights w44 p) >

max(wiA, wl-B), fori = 1,2.

[Subtraction] A—B= (a1 —Dby,ap — by, a3 — bz, a4 — by, a5 — b5), with weights Wi(A—B) >
max(w; 4, w;g), fori=1,2.

[Multiplication] A-B= (a1b1, azby, azbs, asby, asbs), with w;(4.p) > max(w;a, wip) for

i = 1,2. Consequently, for a scalar k € R and a PFN A, the scalar multiplication is

defined as kA = (kay, kay, kas, kag, kas), for k > 0, and kA = (kas, kay, kaz, kay, kay),

for k < 0.

[Division] A/B = (a1/bs,as/bs,a3/b3,a5/by,a5/by). It is important to note that a

PFN A is divisible by B only when B is a non-null PEN with non-zero components.

[Exponentiation] Ak = (a’{, ag, a’é, aﬁ, a’5‘), where k is a real number.

The ‘max’ relation for the weights of the PFNs was chosen in all the arithmetic opera-
tions, as without it, operations such as addition, subtraction, multiplication, and division
between two PFNs would not be closed within these operations [57,58]. This means the
result of these operations might not always yield another PFN, compromising the mathe-
matical integrity of our model.

By defining these arithmetic operations for PFNs, we ensure that our analysis remains
consistent and the operations preserve the properties of PFNs. These definitions also enable
us to address a wide range of scenarios in our research, particularly those where the data
and parameters are not precisely known, but can be represented using fuzzy numbers.

2.2. Optimization Model Framework

Before presenting the formulation of the proposed model, we outline the primary
components of our optimization framework, which are the decision variables, objective
function, and constraints that govern the model.

The decision variables in our model are defined as

n: is a positive integer representing the total quantity of drug shipments made by a
vendor to a purchaser in a batch;

J: is the size of drug lots per production run, influencing both production scheduling
and inventory level;

U: is the buyer hourly processing fee for drug orders, impacting cost efficiency of the
supply chain.

The primary objective of our inventory model is to minimize the TC involved in the
pharmaceutical supply chain, expressed as min{F, h, h,, ], Lo, P, S, }, where

F: is the transportation cost per drug shipment;

he: is the price of vendor pharmacy unit stock holdings;
hy: is the cost of annual drug unit holdings per item;
Lo: is the shipping processing time for initial orders;

P: is the purchase price of a drug unit;

Se: is the setup cost per vendor production run.

The objective function, min{F, ke, hy, ], Lo, P,S.} say, is subject to the constraints:
(i) R > D, which indicates the drug manufacturing rate (R) must exceed the demand
(D), ensuring the supply chain can meet customer needs; and (ii) ¢ > 0, which is the permis-
sible delay in account settlement for drug, being the allowable time for payment processing.
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These constraints ensure that the pharmaceutical supply chain operates within realistic and
practical limits, balancing supply with demand and maintaining financial viability.

2.3. Solution Methods and Model Formulation

Following the framework outlined, next, we describe the methods and mathematical
modeling techniques used in our study. We focus on the Kuhn-Tucker conditions, an im-
portant component of optimization theory, and the signed distance method for managing
fuzzy numbers.

To address non-linear programming problems with inequality constraints, we apply
the Kuhn-Tucker conditions, as outlined in [59-63]. These conditions are derived using
the Lagrangian method, needed for identifying optimal solutions within the constraints
of our model. Consider a general problem formulated as min{y = .% (x)}, subject to the
constraints ¢ j(x) >0, forj € {1,...,m}, where x represents the decision variable vector,
7 (x) is the objective function to be minimized, and ¢;(x) > 0 are the constraints that limit
the decision variables. Here, m indicates the number of constraints, which includes non-
negativity conditions x > 0 for the feasible set of decision variables. To effectively transform
inequality constraints into equations, we introduce non-negative surplus variables. These
variables add flexibility and ensure the mathematical solvability of our model.

We denote the Lagrange multipliers by the vector givenby ¥ = (¥, ..., ¥,), whereas
4 (x) = (e1(x),...,em(x)) is the vector of constraints, and 2% = (£%,..., 22 is the vector
of surplus variables. Upon the Kuhn-Tucker conditions, the Lagrange multipliers ¥ are
used to weigh the constraints in the optimization problem. The solution vectors x and ¥ of
the minimized problem must meet the Kuhn-Tucker criteria given by

TJSO, jE{l,...,m},‘
Vﬁ(x) - Z}'n:l ‘F]VEJ(X) =0;
‘I’j%j(x) =0, jed{1,...,m};
Gi(x) >0, je{l,...,m}.

To manage fuzzy numbers, we employ the signed distance, a defuzzification method,
which permits us to calculate the expected value of a PEN. This method is vital for deriving
practical insights from fuzzy data. It evaluates the distances from each point in the fuzzy set
to a reference point, assigning positive or negative signs based on their relative positions.
The method is thoroughly explained in [64-66], and its importance in optimizing inventory
models and managing uncertainties is further discussed in [67-69]. Consider a PFN
U = (uy,up, u3, ug, us) with its expected value calculated as

B({) = fol(h/Z)((ul +us) + h(up — uy + uy — us))dh _uy +2up 4 2uz 4 2uy + us

T 8
where & is a normalization parameter that ranges from zero to one, representing the
degree of membership for each point within the fuzzy set. The integral from zero to one
encompasses the full range of this membership degree, allowing for the calculation of an
average value across the entire fuzzy set. This expected value is essential for translating
the fuzzy data of U into a single representative numerical value, thereby enabling practical
applications and interpretations.

Transitioning from the analysis of fuzzy data to the overall cost considerations in the
supply chain, we next examine the TC component of our model, as proposed in [70], and
stated as

D(Se“l‘n(F“‘ULO)) J

D PI
] +2n<(n_2)<1_R>he+he+hu+ )/ (2)

TC(n,],Ly) = [N
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TC = -

+
N

_l’_
N

where D denotes demand and R represents the replenishment rate, a critical factor in
inventory models. The variables F, h,, h;, Lo, P, Se, and U have been previously defined.
Here, | is the size of the drug lot per production run, I is the interest rate, and ¢ is the
permissible delay in payment.

To determine the optimal lot size, [* say, we differentiate the formula stated in (2) with
respect to | and set the derivative to zero, resulting in the expression presented as

. 21D(Se + n(F + ULg))
(n—2)<1— %)hg+he+hu+

pr

1+1t

Building upon the foundational model, our study further extends to include manu-
facturing costs associated with pharmaceutical drugs. This extension incorporates a range
of factors, each represented as a fuzzy variable to encapsulate the inherent uncertainties
present in such factors. As referenced in [71-73], these fuzzy variables are aligned with the
decision variables and cost components previously outlined in Section 2.2. Thus, the fuzzy
versions of such variables are defined as:

D= (D1, Dy, D3, Dy, Ds), reflecting a range of possible demand scenarios;
F= (Fy, By, F3, Fy, F5), capturing variability in transportation costs;

hy = (1, M, hus, hua, hus), denoting different levels of holding costs;
T = (J1, ]2, J3, J4, J5), representing different lot sizes;

P = (Py, Py, P3, Py, Ps), establishing a range of purchase prices;

Se = (Se1,Se2, Se3, Sea, Ses), stating variations in setup costs;

U = (Uy, Uy, Uz, Uy, Us), encompassing fluctuations in processing fees.

Integrating these fuzzy variables into our optimization model enables a comprehen-
sive and flexible approach to inventory management. Our methodology is particularly
beneficial in the dynamic pharmaceutical supply chain, where variability and uncertainty
are prevalent. By employing fuzzy logic, we can effectively accommodate and respond
to these uncertainties, thereby enhancing the overall robustness and adaptability of our
inventory strategies.

2.4. Cost Function and Optimal Solution

Having defined the fuzzy variables in the context given in (3), we now integrate them
into the TC function. This integration allows us to capture the inherent uncertainties in the
pharmaceutical supply chain, as outlined in the definitions of the fuzzy variables. The TC
is formulated utilizing the assumptions and parameters defined in the previous sections
and is mathematically expressed as

DifSa + ”(]Fl +thly) | % ((n —2) (1 - %))hﬂ + hy + iy + (113:1“»
Da(Se2 + ”(]Fz thly) % <(n —2) (1 - %))hgz +hgp + Ty + (1%21&))
Ds(Ses + n(]F3 +Uslo)) % ((n ~2) (1 - %))he3 +heg + s + (1Ijillt)) @)
Da(Ses + ”(]F‘* Ualo) | % <(n ~2) (1 . %))M + hog + hyg + (1?”))
Ds(Ses + n(]F5 +UsLo)) | % ((n —2) (1 - %))hes + hes + hys + (1?”))
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To derive the optimal solution for the model formulated in (4), we analyze the TC
function, which now incorporates the fuzzy variables. This derivation ensures that the
model adheres to the operational assumptions and captures the variability and uncertainty
characteristic of the real-world pharmaceutical supply chain. The resulting solution pro-
vides insights into the optimal inventory management strategies under varying conditions
and uncertainties.

Our next step focuses on identifying the optimal operational conditions that minimize
the TC, as defined in (4). The key parameter influencing the overall cost dynamics is J,
the size of drug lots per production run. To find the optimal value of |, denoted as J*,
we calculate the derivative of TC with respect to | and set this derivative to zero. Such a
calculation is mathematically represented as

D1(Se1 +n(Fy + UpLg)) +2(D2(Se2 + n(F2 + Uz L)) + (Ds( 3 +n(F+ Uslo)))

+2(D4(Sea + n(Fy + UsL))) + (Ds(S e5+”(F5+U5L0)))>

)
i )
(an)((lf%)helJrZ(lf%)heerZ(lf ) e3+2(1——2>he4+(17%’)h85). ®)

+(he1 4 2hep + 203 + 2heq + hes) + (M1 + 20y + 203 + 204 + hys) +

[N If ——(Py + 2P, +2P3 + 2Py + Ds)

The calculation stated in (5) determines the optimal value of [* that minimizes the
TC, considering the uncertainties and variabilities in the supply chain as represented by
the fuzzy variables. This optimal lot size J* is needed for managing the costs within
the dynamic environment of the pharmaceutical industry, ensuring both efficiency and
responsiveness to varying market conditions.

2.5. Integrated Inventory Model for Fuzzy Production Quantity

Building upon the methodological foundation laid out in Section 2, we extend the
application of PFNs to model uncertainties in production quantities within the pharma-
ceutical industry. This extended inventory model aims to capture the variability and
unpredictability inherent in production processes.

In alignment with the fuzzy arithmetic principles and PEN framework established
in Section 2, we define a PEN | = (J1, ]2, J3, J1, J5) to represent the potential range of
production quantities. The structure of ] and its membership function follow as stated
in (1), where J3 is the central, most-probable production quantity and |1, J», J4, J5 are the
varying levels of production capacity, from minimum to maximum.

To compute the fuzzy inventory production TC within this PFN framework, we utilize
the signed distance method to determine the expected TC. This computation involves the
constraints associated with the PFN T: (1, J2, J3, J1, J5), representing potential production
quantities. We ensure the logical sequencing of the elements J through a set of inequalities
expressed as

o=1h=20, Js—L=20, Ja—J3=20, J5—J+=0, J1>0. (6)

The inequalities presented in (6) confirm that the production quantities represented
by J are appropriately structured, which is crucial for coherent decision-making in the face
of production uncertainties.

In optimizing the TC, our model employs the Kuhn-Tucker conditions as stated in
Section 2.3. These conditions are applied to the elements of ] to determine the optimal
fuzzy production quantity. The optimization process involves ensuring the non-negativity
of [1, 2, J3, J4, J5 and satisfying the gradient equation formulated as

— i‘PiVsi(x) =0, (7)
i=1
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where V.7 (TC) is the gradient of the TC function, Ve;(x) denotes the gradient of the con-
straint functions, and ¥; are the Lagrange multipliers. The constraint functions, represented
by 4(x) = {e;(x) > 0}, encompass all the conditions applied to the decision variables x.
To transform inequality constraints into equalities, surplus variables 22 are introduced, as
outlined in Section 2.2.

The optimization process, employing the Kuhn-Tucker conditions as outlined in
Section 2.2, facilitates the determination of the optimal fuzzy production quantity, ] namely.
This quantity directly influences the TC of the inventory system. Our methodology aligns
the fuzzy inventory management with strategic objectives, accommodating the dynamic
and uncertain nature of pharmaceutical production processes.

The TC function, integrating the fuzzy variables and operational constraints, is formu-

lated as
(L2800 (oot 21)
+2<D2<S"2 +”fz +ULo)) | 2]121<(n ~2) <1 - 2))%1@2 + hey + hup + (1?”))
| T P ]
+2<D4(Sf4 +”§2F4 + Wlo)) | 2]—2 ((n ~2) (1 - %))hg4 + g + Tryg + (1?”))
N )
—1(2— 1) = 2(J3 = J2) = $3(Ja — J3) = Ya(Js — Ja) — 5/
leading to
é(—D(SE+"§§+UL°)) +21n<(n—2)(1—g)he+he+hu+1illt)> + i — s =0,
§<D(Se+"§§+m0)) +21n<(n2)(1]12)he+he+hu+1illt>> Fr -9, =0,
é(—D(Se+"S§+ ULo)) , 21n<(n—2) (1 - g)he+he+hu + 11;”)) — i+ 13 =0, ®)
§<_D<Se+ng+ULo>> +;n<<n_z>(1_g)hﬁhﬁmlfn)) a0,
;(-D(S“+”§§+UL°)) +21n<(n—2)(1—g>he+hg+hu+1ff”>> =0,

~—

P1(2—T1) =0, 2(Js3—J2) =0, ¢3(Ja—J3) =0, 9a(Js5—Js) =0, 9s5(J1) =0,

forp—J120,]3=)220,Js—J320,J5—Js =20,and J; > 0.
All equations stated in (8) lead us to the optimal lot size |*, balancing various cost
factors and constraints. Thus, the optimal lot size that minimizes the TC is given by

. <D1(5e1 +n(F +UiLg)) +2(D2(Se2 + n(F2 + UaLg))) +2(D3(Se3 + n(F3 + UsLo)))>
+2(Dy(Ses +n(Fy + UgLo))) + (D5(Ses + n(Fs + UsLo)))

D D D D D
(n—2)<(1 - R;)m +2<1 — Ri)hgz+2<1 - R;)he3+2<1 - Ri)heﬁ— (1 — Rf)@;)

I
+(hg1 + Zhgz + 2he3 + 2hg4 + hg5) + (hul + 2]’1“2 + Zhug + 2]’[1[4 + huS) + m(P] + 2P2 + 2P3 + 2P4 + P5)
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The proposed approach can be effectively utilized to reduce the costs associated with
fuzzy production data collection, streamlining the process of gathering and analyzing the
varying costs associated with pharmaceutical manufacturing.

3. Results

In the present section, we report the results of our research, which combines advanced
machine learning techniques with our new modeling approach. This section provides
insights into the impact and effectiveness of our work.

3.1. Simulation Using Machine Learning Techniques

Among various machine learning techniques, the NB classifier was selected for its
suitability in handling the probabilistic nature of our dataset, which includes a wide
range of scenarios within the pharmaceutical supply chain. The NB classifier is renowned
for its simplicity, efficiency, and effectiveness in dealing with large datasets that exhibit
a significant degree of variability and uncertainty, characteristics that are inherent to
our study dataset comprising 19,717 records and 12 parameters. Furthermore, the NB
classifier performs exceptionally well in scenarios where the assumption of independence
among predictors holds reasonably true, which aligns with the structure of our dataset,
where parameters such as demand, cost, and supply chain fluctuations can be considered
conditionally independent given the class variable (profitable versus non-profitable).

While other classifiers like, for example, support vector machine (SVM), k-nearest
neighbors (KNN), and random forest (RF) offer robust classification capabilities, they
generally require more computational resources and are prone to overfitting, especially
in cases with complex and high-dimensional data [74]. The NB classifier, however, offers
a good balance between predictive performance and computational efficiency, making it
an ideal choice for our initial exploration into categorizing pharmaceutical supply chain
scenarios. Additionally, the probabilistic output of the NB provides a straightforward
interpretation of the results, which is particularly beneficial for decision-makers in assessing
the profit or non-profit outcomes based on the model predictions.

Note that our choice of the NB classifier does not preclude the potential utility of other
classifiers in future research. Further studies could explore the application of SVM, KNN,
RF, and other advanced machine learning techniques to our model, potentially offering
deeper insights and enhanced predictive accuracy in classifying supply chain scenarios.

As mentioned, we utilized a comprehensive dataset comprising 19,717 records, which
includes 12 parameters, representing a wide range of scenarios in the pharmaceutical supply
chain. This dataset captured fluctuating values for 10 different pharmaceutical drugs,
with demand being a significant factor in categorizing TC. To ensure compatibility with the
Weka software, we converted the dataset into an attribute-relation file format (ARFF). In the
simulation, we adjusted fuzzy parameters such as D, F, Iy, Se, and U to accurately reflect
the variability and uncertainty inherent in the supply chain. For the detailed definitions
and mathematical formulations of these fuzzy variables, refer to Section 2.3.

Applying the NB classification to our dataset allowed for effective categorization of
the supply chain scenarios. The flowchart in Figure 1 outlines the methodological process
adopted in our study. To ensure comprehensive understanding, we included steps like
fuzzification and defuzzification. A description of each stage in the flowchart is stated as:

[Creation of the dataset] We began by compiling a comprehensive dataset that reflects
a variety of scenarios within the pharmaceutical supply chain, including demand data,
production costs, and other pertinent parameters.

[Fuzzification of parameters] Key parameters in the dataset were fuzzified, which
involved transforming deterministic (crisp) values into fuzzy numbers to better repre-
sent uncertainties and variabilities inherent in the supply chain.

[Conversion to ARFF] The dataset, now containing fuzzy parameters, was converted
into the ARFF for compatibility with the Weka software, facilitating the subsequent
machine learning analysis.
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[Classification with NB] The dataset was then processed using the NB classifier, which
categorizes supply chain scenarios into ‘profitable” and ‘non-profitable’, aiding in the
assessment of the feasibility of these scenarios.

[Defuzzification process] After classification, a defuzzification process was employed,
which converts the fuzzy results back into crisp values for a clearer interpretation.
[Analysis of results] The outcomes of the classification and defuzzification were
thoroughly analyzed to evaluate the model accuracy and its potential applicability in
the real-world pharmaceutical supply chain management.

Stratified cross-validation was employed to enhance the reliability of our findings, ensuring
that each fold of the dataset accurately represented the overall distribution.

[ Begin J—> Create dataset Convert to ARFF

Obtain fuzzy parameters

Apply NB classifier

Analyze results

Figure 1. Flowchart of the proposed

process.

3.2. Evaluation of the Integrated Inventory Model

Next, we evaluate our integrated inventory model, focusing on reducing inventory
costs and optimizing fuzzy production quantities. We define the optimal fuzzy production
quantity as | = (], J2, J3, J1, J5), based on an analysis of the cost components and constraints

in the pharmaceutical supply chain.

A key aspect of our evaluation is the performance of the NB classifier, assessed using

the following metrics:

End

[Class difficulty] Complexity of classifying different categories.

[Correctly classified incidents] Percentage of correctly identified instances (accuracy).
[Difficulty improvement] How much the classifier simplifies classification.

[Kappa statistic] Agreement between model predictions and observed classifications.
[K&B information score] Classifier capability in discerning underlying data structures
based on the Kononenko and Bratko (Ké&B) indicator [75].

[Mean error] Mean difference between predicted and observed values.

[Misclassified incidents] Instances incorrectly identified by the classifier.
[Root-mean-squared error] Aggregate measure of the error magnitude.

[Total number of occurrences] Total instances evaluated by the classifier.

Table 2 presents the performance metrics, demonstrating the effectiveness of the NB

classifier in categorizing complex scenarios within the pharmaceutical supply chain and its
value in our integrated inventory model.



Mathematics 2024, 12, 819

12 of 22

Table 2. Value of the indicated metric for the NB classifier.

Metric Value

Absolute Relative
Class difficulty|Order 0 (baseline) 18,137.94 bits 0.92 bits/instance
Class difficulty|Model (NB) 2860.54 bits 0.15 bits/instance
Correctly classified incidents 18,910 95.91%
Difficulty improvement 15,277.41 bits 0.77 bits/instance
Kappa statistic 0.91 -
K&B information score - 87.91%
Mean error 0.05 12.25%
Misclassified incidents 806 4.09%
Root-mean-squared error 0.17 36.01%
Total number of occurrences 19,716 100%

The values reported in Table 2 reveal the effectiveness of the NB classifier in our
inventory system. The classification without optimizing models (baseline complexity /order
0) is 0.92 bits/instance, while that, when using the NB model, the complexity is reduced at
0.15 bits/instance, indicating the model effectiveness in simplifying the classification by
identifying patterns in the data, which is supported by the difficulty improvement value as
well. Also, the table shows a high rate of correct classifications (95.91%) and a low rate of
misclassifications (4.09%), deducting the model accuracy in categorizing scenarios.

The Kappa statistic of 0.91 further reinforces this, indicating a high level of agreement
between the model predictions and observed outcomes, well above chance levels. The K&B
information score, at 87.91%, shows the model adeptness at discerning complex data struc-
tures. Additionally, the metrics related to error analysis, such as the absolute mean error
and root-mean-squared error, are reasonably low, suggesting that the model predictions are
generally close to the observed values. These findings collectively validate the robustness
and reliability of the NB classifier within the context of the pharmaceutical supply chain,
as integrated into our inventory model.

To further explore the performance of the NB classifier, we extend our analysis to
evaluate classification accuracy across different categories, as reported in Table 3, describing
the following metrics:

[False positive (FP) rate] Proportion of non-profitable scenarios incorrectly classified
as profitable.

[F-measure] Harmonic mean of precision and recall, balancing the two.

[Matthews correlation coefficient (MCC)] Robust measure considering true and false
positives and negatives, particularly helpful for imbalanced datasets.

[Precision] Accuracy in identifying profitable scenarios.

[PRC area] Value of the precision-recall curve used for imbalanced class distribution.
[Recall] Measure to capture all observed profitable scenarios.

[ROC area] Value of the receiver operating characteristic curve assessing the trade-off
between the TP and FP rates.

[True positive (TP) rate] Proportion of profitable scenarios correctly identified.

These metrics provide a comprehensive view of the NB classifier effectiveness in distin-
guishing between profitable and non-profitable scenarios within the pharmaceutical supply
chain. By combining diverse metrics, we ensure a multifaceted and robust evaluation of the
classifier predictive capabilities. The class-based analysis presented in Table 3 elucidates
the performance of the NB classifier.

Table 3. Accuracy by class for the indicated metric.

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area
Non-Profit 0.981 0.052 0.905 0.981 0.941 -0.912 0.995 0.988
Profit 0.948 0.019 0.990 0.948 0.969 0.912 0.995 0.997

Weighted Average 0.959 0.030 0.961 0.959 0.959 0.912 0.995 0.994
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The high TP rates for both the non-profit’ (0.981) and ‘profit’ (0.948) classes are
indicative of the NB classifier effectiveness in correctly identifying profitable scenarios.
The low FP rates, especially in the ‘profit’ class (0.019), demonstrate the model precision
in avoiding misclassification of non-profitable scenarios as profitable. The high precision
and recall values across both classes, along with the balanced F-measures, affirm the
classifier balanced approach in prediction accuracy and sensitivity. The MCC and areas
under the ROC and PRC curves substantiate the classifier robust performance, even in the
presence of class imbalances. These class-specific metrics collectively reinforces the NB
classifier adeptness in managing the dichotomy of profit and non-profit scenarios within
the pharmaceutical supply chain, showing the comprehensive efficacy of the integrated
inventory model. Building on this analysis, we also employ a confusion matrix (Table 4) to
enrich our evaluation. This matrix delineates the distribution of the FN, FP, TN, and TP
results, offering a comprehensive view of the model predictive capabilities in a more-visual
and interpretable format. The analysis of Table 4, demonstrating an overall classification
accuracy rate of 96%, confirms the effectiveness of our NB machine learning model in
accurately classifying scenarios within the pharmaceutical supply chain. This high level of
precision is especially important in an industry where making accurate decisions is needed
for operational efficiency and patient safety.

Table 4. Confusion matrix.

Class Predicted Non-Profit Predicted Profit
Observed Non-Profit TN (6478) FP (127)
Observed Profit FN (679) TP (12,432)

The application of PENs to represent production quantity, | = (1, J2, J3, J4, J5) say, has
enhanced the model alignment with real-world conditions. The determination of the opti-
mal production quantity (J*) was achieved through a comprehensive analysis incorporating
various cost elements related to manufacturing, transportation, and processing expenses.
Our methodology not only ensures a realistic representation of the pharmaceutical supply
chain, but also enables effective cost optimization strategies.

In summary, our findings suggest that the proposed model can significantly enhance op-
erational efficiency and profitability, particularly in the face of fluctuating market conditions
and dynamic supply chain requirements. The model adaptability and accuracy demonstrate
its potential to effectively address the complex needs of the pharmaceutical industry.

3.3. Visualization of the Results in the Weka Software

To complement our quantitative analysis, we next present a visual examination of
drug profitability using the Weka software. The visualizations provide an intuitive under-
standing of the data, offering a different perspective that enhances the insights gained from
the numerical analysis.

In the visual representations, we employ a consistent color scheme for clarity: blue
signifies non-profit drugs, including newer market entries, less-commonly used drugs,
or those for rarer ailments. Conversely, red depicts profitable drugs, which are more-
established, widely used, and form the core of the pharmaceutical industry offerings.

To provide an overarching view of the factors influencing the profitability of pharma-
ceutical drugs, Figure 2 is introduced as a composite visualization, which is subsequently
dissected into analyses for each parameter involved in the inventory TC.
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Figure 2. Plots of pharmaceutical drug profitability: integrating profit and non-profit analyses across
indicated cost or demand parameter.

Figure 3a illustrates a profitability analysis across ten different drug categories in
the pharmaceutical industry, using a grouped bar-plot to depict fuzzy TC on the y-axis.
The profitability of each category, expressed in monetary units per item, is depicted, distin-
guishing between profitable and non-profitable drugs. This figure aids in discerning market
trends, such as identifying which drug categories are most lucrative and which may be
oversaturated or less profitable. This analysis is valuable for manufacturers and dealers in
making informed decisions regarding production and market strategies. The visualization
encapsulates complex data in a straightforward manner, offering a clear depiction of the
financial performance of different drug categories within the pharmaceutical market.

Figure 3a—j explore the financial dimensions influencing the profitability of phar-
maceutical drugs, each from a distinct parameter. A multidimensional analysis helps to
understand how each parameter contributes to the overall financial performance, showing a
balance between supply chain efficiency and cost implications for both vendors and buyers.

Figure 3b—d analyze profitability in relation to key variables: demand (D), holding
costs for vendors (h,), and holding costs for buyers (h,), respectively. Figure 3e,f,g,h show
the impact of manufacturing-related costs on drug profitability, examining the effects of
manufacturing wages (R), setup costs (S,), purchase prices (P), and production quantities
on the profit margins of pharmaceutical drugs. By breaking down these cost components,
the figures offer insights into the cost structure of drug manufacturing and its influence on
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pricing and profitability strategies. Figure 3i,j focus on the logistical costs associated with
pharmaceutical drugs, specifically examining how transportation costs (F) and ordering
costs (U) affect profitability. This analysis helps to understand the impact of managing
logistical expenses in the financial viability of drugs in the competitive pharmaceutical market.

Together, Figure 3a—j provide a comprehensive understanding of the various costs
and factors that determine the profitability of pharmaceutical drugs. By highlighting the
interplay between production, logistics, and market demand, they offer valuable insights
for optimizing financial outcomes in pharmaceutical operations.

Figure 4a—d offer a comparison of the EOQ and TC across profit and non-profit
scenarios for pharmaceutical drugs, employing both crisp and fuzzy logics. Figures 4a,c
illustrate the empirical distribution of the EOQ (year) for profit and non-profit scenarios
under crisp and fuzzy logics, respectively. Notably, the distributions differ significantly in
shape, especially for profit scenarios. Both distributions exhibit positive skewness, yet the
fuzzy logic approach reveals a more-flattened left tail of the distribution with a pronounced
plateau, indicating a wider range of EOQ values considered optimal. For non-profit
scenarios, the shape differences between crisp and fuzzy distributions are less pronounced.
The range of EOQ values spans approximately from 740 to 5600 in the crisp case and from
820 to 7745 in the fuzzy case, suggesting that fuzzy logic accommodates a broader spectrum
of optimal lot sizes.

Figure 4b,d focus on the TC associated with the EOQ under crisp and fuzzy logics,
respectively. The resemblance in shape between the crisp and fuzzy cases is more evident,
with both displaying slight positive skewness, indicating a common tendency towards
lower TCs with a tail of higher-cost scenarios. However, the range of TCs is slightly greater
in the crisp approach, reflecting a narrower focus on cost minimization that may not capture
the full complexity of the pharmaceutical supply chain as effectively as the fuzzy approach.
The comparison given in Figure 4 reveals the differences between crisp and fuzzy logics
in modeling the EOQ and TCs. The fuzzy logic offers an inclusive and flexible model,
accommodating a wider range of scenarios and demonstrating a capacity for handling the
inherent uncertainties of the pharmaceutical industry supply chain more effectively.

While Figure 4 focuses on the inventory management aspect, Figure 5a shifts the
perspective to a broader analysis of the market by presenting the number of profitable
and non-profitable items across the studied pharmaceutical drugs. This figure provides a
straightforward enumeration, showing the distribution of profitable versus non-profitable
drugs within the market.

By using box-plots, Figure 5b,c provide a comparative analysis of the TC implications
for drug profitability under deterministic (crisp) and fuzzy logic scenarios, respectively.
While both box-plots visually suggest a similar distribution pattern across profit and non-
profit categories, a closer inspection reveals subtle, yet impactful differences in the range
of TCs captured by each model. The crisp model, utilizing fixed data points, offers a
straightforward, albeit rigid, representation of cost dynamics. In contrast, the fuzzy logic
model, by incorporating uncertain or imprecise data, slightly adjusts the cost boundaries,
reflecting an understanding of market variability and its implications for drug profitability.

The observed variations between crisp and fuzzy analyses show the capability of fuzzy
logic to accommodate the uncertainties of the pharmaceutical market, potentially offering a
more-adaptable framework for cost management and strategic planning. By subtly shifting
the cost parameters, the fuzzy model may reveal opportunities for cost optimization
and risk management that a deterministic approach might overlook, emphasizing the
importance of adopting flexible analytical strategies in the face of market complexities.

The comparison of the crisp and fuzzy analyses does not merely highlight their
methodological differences, but also illustrates how the adoption of a fuzzy logic approach
can subtly, yet significantly refine our understanding of TC implications in drug profitability.
This refinement enhances decision-making processes, providing strategic insights that are
critical for navigating the uncertainties inherent in the pharmaceutical industry.
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Figure 3. Bar-plots—(a,c,d,g,h)—and histograms with ’frequency’ in the y-axis being the absolute
frequency of the data—(b,e,f,i,j)—of profit/non-profit in pharmaceutical drugs for: (a) category;
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Mathematics 2024, 12, 819

17 of 22

Advancing our exploration into operational efficiency, Figure 6a,b examine the EOQ
from deterministic and fuzzy perspectives, respectively. Figure 6a explores the EOQ in a
crisp scenario, showing the application of deterministic models to optimize inventory man-
agement by aiming to minimize inventory TCs. Figure 6b displays the EOQ within a fuzzy
logic framework, illustrating how embracing uncertainty and imprecision in inventory
management strategies can potentially maximize the EOQ effectiveness.

The differential in TC variations between non-profit and profit categories under crisp
and fuzzy models highlights the capacity of fuzzy logic to encompass a broader spectrum of
market uncertainties. In particular, the fuzzy model adjusts the cost parameters more flexi-
bly, reflecting a depth of market variability and its impact on profitability. This adjustment
suggests that the fuzzy approach, by accounting for uncertainties more comprehensively,
might offer a more-refined strategy for managing inventory costs and maximizing profitabil-
ity. This indicates a strategic advantage in applying fuzzy logic for inventory management,
allowing businesses to navigate the complexities of market conditions with greater agility
and informed precision.

It is observed from the analyses presented in Figure 5 that employing fuzzy logic
not only maximizes the EOQ, but also minimizes the TCs in comparison to the crisp
values. This finding indicates that the fuzzy approach provides a more-effective framework
for managing inventory and costs in the pharmaceutical industry, suggesting that the
application of fuzzy logic enhances the decision-making process by better accommodating
the complexities and uncertainties inherent in the market.

From our graphical analyses, we have offered a comprehensive view of how different
mathematical models, particularly the fuzzy logic approach, contribute significantly to un-
derstanding and improving the profitability and operational efficiency of drug production
and distribution in the pharmaceutical industry.

Figure 6¢ presents a comparison between the TCs associated with deterministic and
fuzzy models in inventory management, as depicted through an elliptically shaped scatter
plot with a positive slope. This visualization succinctly embodies the relationship between
the cost outcomes of both modeling approaches, highlighting the variability and overlap in
their cost efficiency when applied to pharmaceutical inventory management.

The elliptical shape of points suggests a correlation between the models in terms of
cost implications, yet it also indicates the variability inherent in applying each method
under different market conditions. This highlights the potential of fuzzy logic to offer
competitive, if not superior, cost-minimization strategies compared to traditional crisp
methods, particularly in scenarios characterized by uncertainty and complexity.

In summary, the present research affirms the value of integrating both deterministic
and fuzzy logic models for sophisticated inventory management in the pharmaceutical
supply chain. Figure 6¢ illustrates not merely the comparative costs, but also the broader
applicability and effectiveness of these models in the pharmaceutical market. Our method-
ology facilitates the crafting of inventory management strategies that are not only more
adaptable, but also cost-efficient, thereby enhancing the overall resilience and responsive-
ness of the supply chain.

By leveraging the strengths of both deterministic and fuzzy logic models, as demon-
strated in Figure 6¢, the present study provides compelling evidence for their combined
utility in optimizing inventory management practices. Our methodology shows the im-
portance of employing advanced analytical tools to better comprehend and address the
challenges posed by the pharmaceutical supply chain, ultimately leading to more-strategic
and -informed decision-making processes.
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4. Discussion and Conclusions

This study presented an advancement in the field of inventory management within
the pharmaceutical industry, particularly through the integration of fuzzy models, Kuhn-
Tucker optimization techniques, and the naive Bayes classifier. The methodology proposed
in this investigation has collectively addressed the complex dynamics of the pharmaceutical
supply chain, offering novel insights into optimizing inventory management to enhance
supply chain efficiency and, consequently, patient access to medications.

The application of pentagonal fuzzy numbers for production quantity representation
highlighted our methodological innovation, catering to the inherent variability and uncer-
tainty in production processes. The accuracy achieved by the naive Bayes classifier in a
scenario classification (approximately 95.9%) showed the potential of combining machine
learning with fuzzy logic to refine inventory strategies in dynamic environments.

The visual analysis conducted using the Weka software provided us with an intuitive
understanding of the data, particularly in identifying profitable and non-profitable drug
categories. The visualizations did not only make complex data comprehensible, but also
revealed underlying market trends that are crucial for pharmaceutical manufacturers and
dealers in making informed production and marketing decisions.

While our findings validated the effectiveness of the proposed integrated inventory
model, it is important to acknowledge the limitations of our study. The current model
application in scenarios involving multiple products and complex supply chain tiers
remains unexplored. This limitation not only suggests the potential broad applicability of
our model, but also reveals the need for future research to extend its capabilities.

The visualizations demonstrated the importance of considering various dimensions in-
fluencing drug profitability, which include demand, manufacturing, and logistical costs. Fu-
ture research should aim to explore these dimensions further, utilizing more-sophisticated
machine learning algorithms to enhance predictive accuracy and operational efficiency in
the face of global health crises and fluctuating market demands.

The present study confirmed the efficacy of our integrated inventory model and high-
lighted the utility of advanced computational methods in improving decision-making for
complex supply chain scenarios. Facing the dynamic challenges of epidemics and changing
market demands, this research provided critical insights that can help to enhance the adapt-
ability, resilience, and efficiency of supply chain operations in the pharmaceutical sector.

Future work should look to expand the model to include multi-product scenarios
and incorporate epidemic modeling for a more-holistic approach to the supply chain
management. Also, the digital era with the generation of big data [74] must be an aspect to
be considered. These developments and additions are expected to significantly enhance
both the theoretical framework and practical applications of the inventory management,
offering new avenues for innovation within the pharmaceutical industry and related fields.
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