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fuzzy-contraction conditions in revised fuzzy metric spaces with illustrative examples provided to
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fuzzy fixed point results, and it can be generalized for different contractive type mappings in the
context of revised fuzzy metric spaces. Additionally, an application of a nonlinear integral type
equation is presented to obtain the existing result in a unique solution to support the work.
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1. Introduction

In the year 2018, Alexander Sostak [1-3] introduced the idea of revised fuzzy metrics,
which allow for the progressive evaluation of an element’s inclusion in a collection. Revised
fuzzy contraction mappings were described by Muraliraj and Thangathamizh [4-7], and
the existence of fixed points was established for it. Cone Revised fuzzy metric space and
revised fuzzy moduler meric space are also specified. Numerous general topology ideas
and findings were subsequently applied to the revised fuzzy topological space.

It is well-known that GV-fuzzy metrics are non-decreasing in the third variable. From
here, or independently, by analyzing the definition of an RGV-fuzzy metric, we conclude
that RGV-fuzzy metrics are non-increasing in the third variable. This allows us to give the
following visual interpretation of an RGV-fuzzy metric. Assume that we are looking from a
distance (¢ € (0,+0)) at a plane filled up with pixels. We estimate the distance between
pixels x and y by means of an RGV-fuzzy metric iy, (72, ¢, ¢). Being close to the plane, we
see quite clearly how far the two pixels x and y are. However, going further from the plane,
our ability to distinguish the real distance between different pixels becomes weaker, and, at
some moment, two different pixels can merge into one in our eye-pupil.

RGV-fuzzy metrics are equivalent to GV-fuzzy metrics; the theories based on these
concepts are equivalent. The difference is in the definitions, the proofs, and the interpre-
tations of results. In particular, in the case of revised fuzzy metrics, we have the natural
interpretation of the standard situation: the longer the segments of two infinite words taken
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into consideration, the more precise the obtained information about the closeness of the
two words.

The concept of an intuitionistic fuzzy metric on a set X used two functions
M,N : X% x (0,+0) — (0,1] satisfying inequality M(x,y,t) + N(x,y,t) < 1 for all
x,y € X, t > 0. The first one of these functions, M(x,y,t), describes the degree of
nearness, while N(x, y, t) describes the degree of non-nearness of points x, y on the level t.
So, actually, M in definition is an ordinary GV-fuzzy metric, and therefore, it is based on
the use of a t-norm *. On the other hand, function N, which in some sense complements
function M, is based on a t-conorm ¢ (that is, probably, unrelated to the t-norm *). In
contrast to the case of an intuitionistic fuzzy metric, we, when defining an RGV-fuzzy
metric, started with a “classic” GV-metric and just reformulated the axioms from [3] by
using involution. So, in our approach, a t-conorm @ in the definition of a fuzzy metric is
used to evaluate the degree of nearness of two points, and hence, it is opposite to the role
of a t-conorm in the definition of an intuitionistic fuzzy metric.

The following articles [2-5,8-21] contain some triangular characteristic and integral
type application findings in the theory of fixed point.

The aim of this research is to introduce the concept of rational type revised fuzzy-
contraction mappings in G-complete RFM-spaces. This new theory is crucial in the study
of revised fuzzy fixed point results and can be generalized for various contractive type
mappings in the context of revised fuzzy metric spaces. Additionally, an integral type
application is presented in the space, and a result is proved for a unique solution to support
the work. The application section of the paper is of utmost importance as this concept can
be utilized to present different types of nonlinear integral equations for the existence of
unique solutions for their results.

2. Preliminaries

Definition 1 [11. A binary operation of the form @ : [0,1]* — [0,1] is said to be a t-conorm if it
satisfies the following conditions:

(a) € is associative and commutative, continuous.

b) 2@®0=p, forall z € [0,1],
() 2Bg <uv. Whenever, » < wand ¢ < v. Forall pn,¢,«,v € [0,1].

Example 1 [1].

i.  Lukasievicz t-conorm: n @ ¢ = max{n, ¢},
ii.  Product t-conorm:n@® g = n+ g — rg,
iii. Minimum t-conorm:

7@ g =min(n+4,1) 1)

Definition 2 [1]. Let 0t be a set and @ : [0,1)* — [0,1] is a continuous t-conorm. A Revised
fuzzy metric or an (shortly, REM), on the set M is a pair (LU, @) or simply Ly, where the mapping
Uy =+ M x M — [0, 1] satisfying the following conditions, for all z2, ¢, € Mand ¢,5 >0,

(RF V) Uy (2, 9,2) <1, forall z >0

(RF 2) Uy (12,9,2) =0<= n=¢ >0

(RF 3) uf) (7—7/ qrf) = ub (4/ VY t)

(RF &) Uy (12, 9,2+ 3) < U (2,2, ) D Uy (2, ¢, 5)

(RF 5) Uy (72,9, —) : (0,00) = [0,1) is right continuous. Then, (Ly, @) is said to be a
Revised fuzzy metric on 9.

Definition 3 [6]. Let the triple (I, Uy, @) be a RFM-space and & : M — M. Then, & known
as a revised fuzzy contractive, if there is 0 < M < 1 so that forall ¢ > 0,j > 1.

Uy (7j, i1, 1) < M (U (2j-1, 2), 1)) )
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Definition 4 [8]. Let the triple (9%, iy, @) be an REM-space and the 4y, is triangular if

Uy(2,9,¢) <Uy(m,u, 1) +Uy(w, ¢,1) 3)

forall p,q¢,uwe€Mand ¢ >0,j > 1.

Definition 5 [6]. Let the triple (9, iy, @) be an REM-space and G : I — M. Then, & known
as a revised fuzzy contraction, if 0 < 7 < 1so that for all ¢ > 0, for all z2,q¢ € M.

uh (?7-7/ ?QI{) < m(ub (7—7/ G {)) (4)

Lemma 1 [6]. Let the triple (I, Uy, @) be an RFM-space and let a sequence { pj} in 9 converge
to a point wy € Miff Uy (), w1, ) — 0,as j — oo, for £ > 0.

Definition 6. Consider a nonempty 9 and a mapping 8l : [IN)* x [0,00) — [0,1]. Define a set

lim

X(Ly, M, 2) = {{pﬂ} CM: 1 o

Uy (722, 12,2) =0, forall £ > 0}

for every z2 € M then Uy is said to be generalized revised fuzzy metric (shortly, G-RFM)
forall n,¢,« € Mand £,s > 0, it satisfies the following conditions:

(CRF 1) Uy(n,9,7) <1

(GCRF 2) Uy(n,9,¢)=0= n=1¢

(GRF 3) Uy(r,4,2) = Uy(g, 2,t)

(GRF 4) there exist a > 1 such that if {2, } € X(Ly, M, ) then

liminf z
< —
(20 2) < o <ﬂn,f},a)

(GRZF 5) Uy (72, 9,—) : (0,00) — [0,1) is continuous and " li”oouh (720, ¢,2) = 0. Then,
(9, Ly, P) is said to be Generalized revised fuzzy metric space (shortly G-RFMS).

Example 2. Consider a generalized metric space (L, ). Define a mapping iy, [EIR]Z x (0,00) —
4(z.9) .
0,1 by Uy (2, ¢, %) =€~ 7Y and XUy, M, 2) = {{pn} co: l:"wuf, (724,

72,1) =0}for every z € Mand ¢ > 0. Then, (I, iy, @) is Generalized fuzzy metric space
(G-RFMS), where the t-conorm “ @ " is taken as product norm. i.e., n@ ¢ = p+ g — rg.

4(7;4) (e

Proposition 1. Every revised fuzzy metric space (I, hy, @) is a generalized revised fuzzy metric
space ( G-RFMS).

Definition 7. Let (9, Uy, @) be a generalized revised fuzzy metric space (G-RFMS). A sequence
{72, } in M is said to be G-convergent sequence if 2 € M, {72, } € X(Uy, M, 22).

Definition 8. Let (9, 4y, @) be a generalized revised fuzzy metric space (G-RFMS). A
sequence {2, } in M is said to be G-Cauchy sequence if " l;mooilb (21, 2n+m,t) = 0 for
allz > 0.

Definition 9. A generalized revised fuzzy metric space in which every G-Cauchy sequence is

G-convergent is called a G-complete generalized revised fuzzy metric space (shortly, G-complete
RFM-space).
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3. Main Results

In this section, we define rational type revised fuzzy-contraction maps and prove some
unique fixed-point theorems under the rational type revised fuzzy-contraction mappings
in G-complete REM-spaces.

Definition 10. Let the triple (I, Uy, @) be an REM-space; a mapping & : M — M is said to
be a rational type revised fuzzy-contraction if for all m,»n € [0,1), such that

Up(2,8n,1) DUy (g, ?72,25))
Uy (2, 9,7)

Uy (T, G0, 0) < m(tly(m 9,2)) + n( )

forallz >0, 2,9 € M.

Theorem 1. Let the triple (I, Uy, @) be a G-complete RFM-space in which iy is triangular and
a mapping & : M — M is said to be a rational type revised fuzzy-contraction satisfying (5) with
m + 7 < 1. Then, & has a fixed point in M.

Proof. Let »; € M and zj,1 = Gpj,j > 0. Then, by (5), forz > 0,j > 0,

Uy (7j, 2iv?) = (S (921,92, 7))

Uy (2192 1) Dy (7,97 1,2t
Sm(uh(ﬁjlfﬁj,f))—i—ﬂ,( (219 7j11) @ Yo (7,9 71 )) ©

sty (2j-172),1 )

o (21,25, ) © o (721,20) )

=7 (Uy (721, 7). 7)) + 7 ( sy (1)

and after being simplified,

Uy (7)) 2j+1,2) < m (U (2j-1, 2, 7)), for £ > 0. (7)
ie., ilb (7.?]'_1,7.?]',{) < m(ﬂh (72]'_2,7_?]‘_1,'1')), forz > 0. (8)

Now, by inference, for ¢ > 0, we have that from (7) and (8).

. m(8y (71,2, 7)) < 7 (Lo (22, 251, 7)) :

Consequently, Revised fuzzy contractive sequence in (91, iy, @) is represented by

{7}, then,
hmﬂh (ﬂ]', 7—7]'—1/{) =0,forz > 0. (10)
j—o0

We now demonstrate that {z;} is a G-Cauchy sequence, assuming that j € N, and
that there exists a fixed g € N, such that

Z Z 4 .
Uy (72j, 2j1g ) < Uy (ﬂjlﬂjﬂf 5) P sy (72]41,72;42/ E) P.. . Py (ﬂj+q—1:ﬂj+q/ E) - 0PoEP...6p0=0,asj—o0. (11)

Thus, it is established that the sequence { /2]-} is a G-Cauchy. Given that (97, iy, @) is
G-complete, for all wy € M such that R2j —> wi,as ] —> o0,

1111111() (p]‘,wl,f) =0, for ¢ > 0. (12)

j—oo

Since iy is triangular, we can derive Z > 0 from (5), (10), and (12),



Mathematics 2023, 11, 2244

50f11

Uy (w1, Gwr, 7) < Ug (w1, 2j11, ) + Uy (T2, Gawn, 7)

< Uy (W1/ﬂj+1,f) + 72 (Uy (72]‘, wy, ) +n (uh (7,5 7,0) © Uy (wl’?ﬂj’%))

Ly (2j01,) (13)
Uy (w1, 2j11,7) +m(Uy (25, w1, 7))
= +n Uy (2j, 41,2 ) D Ly (w1,2)11,22) — 0, asj— oco.
4y (7j,01,7)
L[h (wl,ﬁl,f) = L(h (fﬁwl, ?sl,i‘)
s ,SGwi,t 1t ,Gwq,27
< (8 (w1, 51,2)) + o (LT B T2 )
(14)

Uy (w,w1,2) B Uy (51,01,7)
< ﬁ?/(ﬂh ((471,51,f)) + n( ilh(wlrﬁlljf) )

= m(ﬂb(w1,51,i‘)) = m(uh(ﬁ?wl, ?51,5))
< mZ(ﬂh(wl,ﬁl,{)) <...< mf(ilh(wl,sl,{)) — 0, asj — 0.
Thus, it is established that iy (wy,81,¢) =0 = w1 = ;. O

Corollary 1. (Revised fuzzy Banach contraction principle).

Let (O, Uy, @) be a G-complete RFM-space in which Uy is triangular and a mapping
G M — M is a revised fuzzy-contraction satisfying (4) with 7 € (0,1). Then, & has a
unique fixed point in .

Example 3. Let M = [0,00), @ be a continuous t-conorm, and Ly : IM? x (0,00) — [0,1] be
defined as
(42 —44)/5|

t) = for all z>0. 1
U (72, 9.t) Tt @n—4q) /5 T2 79 €M >0 (15)

The one can easily verify that Uy is triangular and (M, LUy, @) is a G -complete RFM space.
Now we define a mapping & : M — M as

3p2 -
T/if re(01],
G(n) = 2 . (16)
e +8,lf].? S (0,00)
Then, we have
3
Uy (Cn,Gq,1) = Z(Mh(p,{;,{)), forall pn,q € M, £ > 0. (17)

Hence, a mapping € is a revised fuzzy contraction. Now, from Example 1 (iii), for £ > 0,

Uy (2921) By (9,9220) - U(2Zn1) ®Ly(g.27) D (2Y71)
Uy (2,9.2) - Uy (2,9/7) (18)

=Uy(2,Gn,0) B (2,9n,1) = Uy(2,92,1)" = 2Z5(%+1)

Hence, all the conditions of Theorem 1 are satisfied with 7. = %, 7 =
A mapping € has a fixed point. i.e., & (24) = 24 € [0, c0).
Now, we prove a generalized rational type revised fuzzy contraction theorem.
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Theorem 2. Let (M, Uy, @) is a G-complete REM-space. Which Uy, is triangular and a mapping
g M — I satisfies

Uy (2 7n,7) By (2,Z927)
m(Uy(2,9,7)) + ”( &h (ﬁ,{;,t)@uhh(%g%g) )

Uy (2,89,2%) Uy (2,8 ¢,2¢)
+1€( ilbn(ﬂf?ﬂrf) + ilhh(%?%i‘) ) + (g (2,8 n, 1)+ Uy (g, %q,1))

Uy(¥$n,%q,1) < (19)

forall p, g € M, ¢ >0and m,7,#,L > 0with 72 + n +2£ 4+ 2¢ < 1. Then, & has a unique
fixed point.

Proof. Let »; € Mand p;j,1 = Gz, j > 0. Then, by (19), forZ > 0,j > 0,

Uy (2j, 7js1, ) = (U (927-1,9 221, 7))

Uy (2i-1,97-1.1) © Uy (2i-1,97),2¢)
s i1, 72,L DA ] ] ]
m (S (7)1, 72j, 7)) +”( 8 (7 1250) By (2,6 721

B Sy (21 9m2t) | W(zi19p2t)
A bAZ i I / / L Cni 11 € nit 20
+ <uh(72jl,?ﬂjl’{) Y W (meme) )T (8 (71, G751, 2) + 444 (), G 72j, 1)) (20)

it (ﬂ'—lrﬂ'—lff) @ﬂb(ﬂ'—l/ﬂ‘ﬂ/y)
S i1, 72,7 h\7Zj ] ] ]
77?/( h (/2] 1 /2] )) + 72 ( ﬂb(ﬂ]',l,ﬂj,t) ®uh(pj’ﬂj+1’t)

Uy (ﬁ'flrﬂ#l/z{) Uy (ﬁ'flrﬂ#l/z{)
ﬁ H\ "] ) Y\ "] ) g . - . . A
+ ( u[] (ﬂjfllﬂj,f) + U.[) (7—?]',72]411) + (Llh (7-7] 1, 7-7]/ ) + uh (72]/ 72]+1/ ))

By the Example 1 (iii), L[h (/Jj_l,/)]'+1,2f) < Uy (/_’1]'_1,/2]', f) EBL[(] (/_’1]', ﬂ]‘_H,f), and
after simplification, we have

trthl
Uy (), 2511,7) < @(Uo (21, 2, )), where 9 = s <10 (21)
Similarly, for # > 0, we have
Y4 ft !
Uy (21, 2, 7) < @(Uy(2j-2, 2j-1,7)), where ¢ = ml_nW <L (22)

Now, from (21) and (22) by induction, for ¢ > 0, we have that

oy (21, 2,2)) < 9* (U (72, 25-1,7)) }
u ir i 4 Z‘ S ] —> 0’ 23
(7, 7241,7) { <. <9/ (Up (0, 21,2)) >

As j — oo. Then, { pj} is revised fuzzy contractive sequence in (901, iy, @); therefore,

]1Lr£10ﬂh (/Qj,/.?j+1, {) =0, forz > 0. (24)
Now, to prove that { pj} is a G-Cauchy sequence, let j € N, and there is a fixed g € N,
such that
Uy (72j, Rjsq t) < Uy (7—7]‘/ 2j+1, %) @ Uy (ﬂj+1/ﬂj+zr 5) D... DUy, (ﬂj+q—1/ﬂj+q/ %) (25)

S0D0P...H0=0, asj — oo.

Hence, it is shows that { ;} is a G-Cauchy sequence. Since (9, g, @) is G-complete,
forall wy € M, such that p; — wy,as j — oo,

ie, limiy(z,wi, ) =0, for £ > 0. (26)
]
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Since iy, is triangular,
Uy (w1, Gwr, ) < Uy (wr, g1, 2) + Uy (i1, Gwr, 2), for £ > 0. (27)

Now, from (19), (24) and (26), for Z > 0, we have

Uy (7j31,Gw1, ¢) = Uy (S ), Gwn, 1)

Uy (2,9 pj 2 @uh(ﬂ] Gwy21)
(uh (7‘7]""1' + 7 < b (72j,01,0) @ Uy (w1, 8w1,¢)
<
- 8ty (129w 2¢) u,, 7, 5wy ,24)
+7%( o (;jzj,z,yj,f) u,,(ajl,?wl,{) +0(Uy (725, G 72, 1) + Uy (w1, Gy, 7)) (28)
U (ﬁj/ﬂ]+1/ @D Uy (/]]/?werff)
e (L (7—7]/(4]1/ )+ n( Sty (2000,7) @ Sy (01, 80,7)
<
- Uy (12, Fw1,2¢) uh 72] Guwy 21)
+)€< o, (ﬂj/ﬁj+1f{) Ty (@, ?aﬁf +€ Llh Rjr 2j+1s ) +ﬂb (wl,?wl,i‘))
By the Example 1 (iii), Uy (2, Gw1,2¢) < Uy (1), w1, 7) B Uy (w1, Gwy, ), and after
simplification, we have
m (Uy (7, w1,7))
. Uy (2jp1.2 ) D Uy (2,01,2 ) D Uy (w1,8wn,2)
L[h (]J]',wl,f) @ L(b (wl,?wl,{)
by 1, %w1,7) <
h (ﬂ]+1 C(J] ) - +é uh (ﬂj,w] ,f) @ L[h (w1 ,Z(JJ] ,f) + Llh (7]]',(4)] ,{) @ il;, (wl ,?(AJ] ,2{) (29)
Ll[) (ﬂjrﬁjJrl/{) ﬂ[] (“-’l ,?uﬂ,f)
+€(ﬂb (ﬂj,/_?]url,i‘) +ﬂh (wl,fﬁwl,f))

— (ﬁ +€)(ﬂh(w1,?w1,{)) , ] — 00.
Then,
Yim inf (84 (72711, Gwr, ) < (£ +£)(Uy (w1, Gwr, £)), for £ > 0. (30)
Now, from (26), (27), and (30), as j — co, we get that
ﬂh (7:2]'_;,_1,?(4)1,{) < (é + K)(ilh(wl,?wl,i‘)), forz > 0. (31)

and (#+/) < 1, where 72 + n +2# +2{ < 1, and hence {,(wy,9wy,¢) = 0, ie,
Cwi = w, forz > 0.

Uniqueness. Let s; € 9, such that €57 = 51 and w1 = wi. Then, from (19) and
Example 1 (iii), for ¢ > 0, we have
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uh (wl/’sll 'l-) = uh (?wlr ?511 [)

Uy (w1,Gw1,7) @ty (w1,951,2¢)
< m(ub((ﬂl,ﬁl,{)>+n< Llh((ul,sl,{)@ﬂh(sl,gﬁl,{) )
o Uy (w1,951,2¢) | Up(w1,951,27)
A (ot + hisssa ) (@1 EwL0) + iy (o1, G, 1)

= { sty (er, 1, 0)) + 7o (S ) - A (84 (1,51, 20) + 8y (w1, 51,20)) }

m Uy (w1,81,7)) + n(un(wl,sl,m@ub(sl,sl,{)) }

(32)

{ Uy (wr,51,7)
—Q—ﬁ(ﬂb(wl,ﬁl,f) @ﬂb(ﬁl,ﬁl,{) +ﬂh(wl,51,f) @ﬂh (El,ﬁl,f))

=(m —|—2/’é)(ilb(w1,51,{)) = (77Z +2é)(uh(a)1,51,i())

< (e +28) (U (Twy, €51, 2)) < ... < (7 +2) (U (Fwr, €51, 7))
— 0, asj — oo, where (72 +2£) < 1.

Hence, Uy (w1,51,7) = 0, and this implies that w; = s1, for Z > 0. O

Corollary 2. Let (9%, iy, @) is a G-complete RFM-space in which iy is triangular and a mapping
G M — M satisfies

Uy (2% nt) DUy (2,S921)
Uy (G, Gq,7) < {m(uh )t n( (2] Oy (0.59.0) ) } (33)
+H( Uy (2, Cn,1)+ Uy (¢, 8, 1))

forall p,q¢ € M, ¢ > 0and m,n,¢ > 0 with 7 + n + +2¢ < 1. Then, & has a unique
fixed point.

Corollary 3. Let (9%, iy, @) is a G-complete RFM-space in which iy is triangular and a mapping
G M — M satisfies

Uy (29921) | Uy(nY92¢)
Uy (S, %q,1) < {mwb(ﬂ/ a2 fé( 6(5rd) T oo F00) ) } (34)
+(ty(2,%2,7) + Uy (9, 9¢,1))

forall p,q9 € M, ¢ > Oandme, £, > 0 with me +2£ 4+ 20 < 1. Then, & has a unique
fixed point.

Corollary 4. Let (9%, iy, @) is a G-complete RFM-space in which iy is triangular and a mapping
g M — M satisfies

Uy (Cn,Cq,t) < {mUy(n,¢.7))++H( Uy (2, Cn,1)+U(q,G9,7))},  (35)
forall #»,¢ € M, ¢ > 0and e, £, > 0 with 772 + 2¢ < 1. Then, € has a unique fixed point.

Example 4. By the Example 3, Define i, as

ub(ﬂ/{};{) _ |(727¢)/2|

- 7 7 em,£>0 36
{Jr(ﬂ_q)/zﬂfz (36)

3z 0,1],
s;(ﬂ:{ Frifpe o 37)

% 4 1,if p € (0,00).
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Then, we have

3
Uy($n,%q,1) = §(ilh(72,¢,[)), forall n, ¢ € M, £ > 0. (38)

A mapping @ is a revised fuzzy contraction. Now, by the Example 1 (iii), for £ > 0,
Uy (72,9q,2t) < Uy (2,9,1) DUy (¢, g, ) and after simplification, we get the following result

Up(2,87,7) DUy (2,59,22) ) 272
Su ﬁ/?ﬂ/{ ==
( Uy (2, 9.7) DUy(2,T9,7) h ) 7t
Uy(2,%9,27) ﬂn(ﬁ,?%Zt‘)) 10 52— 4
< =WUy(n,¢,2)) = (39)
(Gt " thira) < 7lman ="
2|2 +
Uy(72,97,¢) Py (9. 99,¢) = 7'725{ 7l

Its shows, all the conditions of Theorem 2 are satisfied with e = %, n=~"= %, and ¢ = %,
and & has a fixed point, i.e., & (4) = 4 € [0,00).

4. Application

In this section, we present an integral type application to support our work. Let
M = F([0,7],R) be the space of all R-valued continuous functions on the interval [0, y],
where 0 < ¢ € R. The nonlinear integral equation is

T
2(1) = / (7, u, 72(u) )ddu, for all 2 € M (40)
0
where 7,u € [0,7] and T: [0,7] x [0,7] x R — R. The induced metric « : M?> — R can
be defined as

a(n,q) =infco,12(1) = ¢(T)| = ||z — ¢|, whereVz, ¢ € €[0,7] =M. (41)

The operation @ is defined by @ ¢ = 2+ ¢ — ¢, 7,49 € [0,7]. A standard
revised fuzzy metric iy : M2 x (0,00) — [0,1] can be defined as

Sy (72, 9, ) = m, fort > 0,forall 2,4 € M. (42)

Hence, one can easily verify that i is triangular and (9, iy, @) is a G-complete
RFM-space.

Theorem 3. Let the integral equation be defined in (40), and such that ¢ € (0, 1) satisfies
a($n,9q) < 9(M(%,2,4)), forall z,¢ € M, (43)

where
M(%, r,¢) = min{| 7 — ¢l,2|z -z}, forall ,¢ € M, (44)

So, M is the only place where the integral problem in (40) can be solved.

Proof. Define the integral operator & : 9t — 91 by

T
En(t)= /T(T, u, 2(u))du, for all 2 € M, (45)
0
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@ is clearly specified, and (40) has a singular answer only if ¥ has a singular fixed
point in M. We must now demonstrate that the integral operator ¥ is covered by Theorem 1.
Then, for all 22, ¢ € 9, we have the subsequent two cases:

(@) IEM(Z, 2,9)=|r2— | then, from (42) and (43), we have (44),

Uy (9, %q,1) = @(?7‘;’?4) < (P(M(?'f'{})) = q)(w) = ¢ty (2,92,7)), (46)
— U (92,99,¢) < ¢(Uy(2,9,7)), ¢ >0, (47)

for all 22, ¢ € M, such that € # T ¢, inequality (47) is true. With ¢ = 72 and 2 = 0, the
integral operator & thus meets all the requirements of Theorem 1 (5). The answer to (40)
exists in 91, making it the only fixed point for the integral operator &.

(b) EM(Z, n,4)=|r—%r| then, from (42) and (43), we have (44),

a(%n,% M(%, n, -7 -7
Uy ($ G g, 1) = ( z; 7) §q0< ( {72 4)) :q)(Hﬁ . 72||> Sz(P<|72 . 72||> (48)
-g
= Uy(9n,%9¢,7) < 2(p(|p{72|> ,7>0, (49)
Here, we condense the expression (u"(” or th )32”{()4 ized) ), and by applying Example 1

(iii) and (42) we obtain for ¢ > 0,

Uy (2 9n1) DUy (9.5220) (ilb(ﬂ,?ﬂ,i‘)@ﬂn(a,ﬂ,f)@ﬂh(ﬂ,?ﬂf)> —p2(r%p) + (a(ﬁ,fﬂ))z

uh (71141{) uh (71141{) 4 4 (50)
2
— 2(H7J7{?7]H) + (Hﬂ*fﬂ”)

Uy (2, %72,7) DUy (9, 92,27) (Iﬂ—%ﬂll) (Ilﬁ—?ﬁH)Z
<2 + , forz > 0. (51
U (2,9,7) z ‘ :

Now that we have (49) and (51)
Up(2,8n,t Uy (g, En, 2t

Uy (G, Gq,1) < 0(2. 92, 0) @9, 92,20) (L (52)

Uy (12,9, 7)

Now, ¢ € M, such that pn # E¢. Inequality (52) holds if £» = Z¢. Thus, the
integral operator ¥ satisfies all the conditions of Theorem 1 with ¢ = » and 72 = 0 in (5).
The integral operator & has a unique fixed point; i.e., Equation (40) has a solution in . O

5. Conclusions

The concept of rational type revised fuzzy-contraction maps in REM-spaces is pre-
sented in this paper, and some rational type fixed point theorems are proved in G-complete
RFM-spaces under the rational type revised fuzzy-contraction conditions, utilizing the
“triangular property of revised fuzzy metric.” In the final section, an integral type ap-
plication for rational type revised fuzzy-contraction maps is presented, and a result of a
unique solution for an integral operator in RFM-space is proved. In this direction, more
rational type revised fuzzy-contraction results in G-complete-spaces with various types of
applications can be demonstrated.
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