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ABSTRACT

We investigate the physics informed neural network method, a deep learning approach, to approximate soliton solution of the nonlinear
Schrödinger equation with parity time symmetric potentials. We consider three different parity time symmetric potentials, namely, Gaussian,
periodic, and Rosen–Morse potentials. We use the physics informed neural network to solve the considered nonlinear partial differential
equation with the above three potentials. We compare the predicted result with the actual result and analyze the ability of deep learning in
solving the considered partial differential equation. We check the ability of deep learning in approximating the soliton solution by taking the
squared error between real and predicted values. Further, we examine the factors that affect the performance of the considered deep learning
method with different activation functions, namely, ReLU, sigmoid, and tanh. We also use a new activation function, namely, sech, which is
not used in the field of deep learning, and analyze whether this new activation function is suitable for the prediction of soliton solution of
the nonlinear Schrödinger equation for the aforementioned parity time symmetric potentials. In addition to the above, we present how the
network’s structure and the size of the training data influence the performance of the physics informed neural network. Our results show that
the constructed deep learning model successfully approximates the soliton solution of the considered equation with high accuracy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086038

The soliton in complex parity time (PT ) symmetric media has
attained an undeniable advantage of gain and loss distribution
in its dynamics. Such dynamical studies on solitons have been
widely analyzed in mode-locked lasers, ultrashort pulse optics,
optical solitons in communication systems, and atomic lasers.
Solving partial differential equations (PDEs) using deep learn-
ing approaches have become popular because the method depends
on the optimization techniques. Physics Informed Neural Net-
works (PINNs) are one kind of optimization method, which
is used to solve a wide class of PDEs, including the nonlin-
ear Schrödinger (NLS) equation. We utilize the PINN method
to approximate the soliton solution of the NLS equation with
three differentPT -symmetric potentials, namely, Gaussian, peri-
odic, and Rosen–Morse potentials. The PINN method accurately
approximates the soliton solution of the considered NLS equation
for all three potentials.

I. INTRODUCTION

For the past four decades, soliton and its applications have
been studied in depth in several branches of optics. In particular,
the demand for harnessing the fruitfulness of solitons in nonlinear
fiber optics and communication systems has attracted a plethora
of interest.1 Mathematically, the dynamics of such optical soli-
ton pulses can be described by the nonlinear Schrödinger (NLS)
equation. By properly managing the dispersion and nonlinearity
parameters in the NLS equation, one can generate a stable soliton.

It has also been shown that by introducing a proper complex
parity time (PT ) symmetric potential in the NLS equation, one
can gain more access to the optical soliton pulse propagation. Even
though the complex PT -symmetric potential is non-Hermitian
in nature, the underlying system admits real eigenspectra2 and
it also supports a continuous range of stable optical solitons.3–5

The dynamical behaviors of PT -symmetric optical solitons have
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been investigated in many optical experiments and theoretical
models.6–14

Nowadays, Machine Learning (ML) and Deep Learning (DL)
approaches have become important tools in the prediction task in
various fields of physics.15–18 In the field of nonlinear dynamics, ML
methods have been used for the replication of chaotic attractors,19

prediction of chaotic laser pulses amplitude,20 detection of unstable
periodic orbits,21 chaotic signals separation,22 network classification
from symbolic time series,23 identification of chimera states,24–26 and
also in the study of extreme events.27–31

The rapid growth in the field of DL enables us to solve
linear and nonlinear partial differential equations (PDEs) by an
approximation technique, namely, Physics Informed Neural Net-
work (PINN), which was introduced by Raissi et al.32 For the past
couple of years, PINNs have been widely used to solve NLS equation
and its generalizations.33–37 In this direction, quite recently, the log-
arithmic NLS equation with PT -symmetric harmonic potential
and Scarf-II potential has been solved through PINN approach.38,39

In the present work, we consider NLS equation with three dif-
ferent PT -symmetric potentials, namely, Gaussian, periodic, and
Rosen–Morse potentials and approximate the soliton solution of all
three cases with the PINN approach. In our study, we introduce a
new activation function, namely, sech and test the ability of this new
function by comparing it with the other activation functions that
are being used in the literature. To the best of our knowledge, this
is the first time wherein the PINN approach is being used to solve
the NLS equation with the above said PT -symmetric potentials and
this is also the first time sech is used as an activation function in this
approach.

We organize our presentation as follows. In Sec. II, we present
the methodologies involved in the PINN approach and the general
way of solving the considered NLS equation with PINN method. The
data driven soliton solution of the NLS equation with all three con-
sidered potentials, a comparison with exact solution, and the error
occurring in this approximation are given in Sec. III. A comparative
study on factors that affect the performance of the PINN is discussed
in Sec. IV. We present our conclusions in Sec. V.

II. PINN AND THE NLS EQUATION WITH

PT -SYMMETRIC POTENTIAL

A. The scheme of PINN

Usually, the PINNs have been used for solving nonlinear PDEs
that have the general form32

ut − N [u(x, t); λ] = 0, x ∈ �, t ∈ [0, T]. (1)

In this work, we consider the complex nonlinear PDEs with the
following initial and boundary conditions, that is,











iut = N [u(x, t); λ0], x ∈ �, t ∈ [0, T],

I[u(x, t)]|t=0 = uI(x), x ∈ � (initial condition),

B[u(x, t)]|x∈∂� = uB(t), t ∈ [0, t] (boundary conditions),

(2)

where u(x, t) is the solution of the PDE, N [·, λ] is the combination
of linear and nonlinear operators, which are parameterized by the
initial vector λ0, [0, T] represents the lower and upper boundary of
the time variable t, � and ∂� denote the spatial variable range and

the boundary of that domain, respectively, I and B are operators cor-
responding to initial and boundary values, I[u(x, t)]|t=0 = uI(x) and
B[u(x, t)]|x∈∂� = uB(t), respectively, represent the initial and bound-
ary conditions. We define a complex-valued physics model f(x, t) as
follows:

f(x, t) := iut − N [u; λ0]. (3)

We can differentiate the latent solution u(x, t) with respect to
time variable t and spatial variable x using the derivative technique,
namely, Automatic Differentiation (AD)40,41 based on the chain rule,
which is used to make backpropagation (BP)42 in Artificial Neural
Networks (ANNs). For the implementation of BP, AD, and other
optimization steps involved in the complex-valued PINN, we use
Tensorflow,43 which is a well known open-source software library
used for AD and DL computations. We use four different kinds of
activation functions for the activation of neurons in the ANN (a
comparative study on the activation functions is given in Sec. IV A).
However, for the main study, we choose tanh as the nonlinear acti-
vation function, which is being used in the current literature in the
form32

Zl = tanh(wl.Zl−1 + bl), l = 1, 2, 3, . . . , n, (4)

where wl is the dim(Zl) × dim(Zl−1) weight matrix and bl is the
dim(Zl) bias vector. We define the loss function for the training
process as

LTrain = 1

NI

NI
∑

j=1

∣

∣

∣
I[u(x

j
I, t)]|t=0 − uI(x

j
I)

∣

∣

∣

2

+ 1

NB

NB
∑

j=1

∣

∣

∣
B[u(xB, t

j
B)]|xB∈∂D − uB(t

j
B)

∣

∣

∣

2
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NC

NC
∑
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∣

∣

∣
f(x

j
C, t

j
C)

∣

∣

∣

2

, (5)

where
{

x
j
I, u

j
I

}NI

j=1
and

{

t
j
B, u

j
B

}NB

j=1
are, respectively, represent the

initial and boundary conditions and
{

x
j
C, t

j
C, f(x

j
C, t

j
C)

}NC

j=1
denotes

the collocation points of f(x, t). We create the sample points
using Latin Hypercube Sampling (LHS) algorithm44 and the opti-
mization for the loss function by the Limited memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm.45

The major steps involved in solving the PDE (1), with initial
and boundary conditions (2), using the PINN method, are given
below:

(i) Defining the structure of ANN, which is described by a fixed
number of layers and a fixed number of neurons.

(ii) Preparing three training sets, namely, (i) the initial condition
set, (ii) boundary conditions sets, and (iii) the random colloca-
tion points using the LHS technique.44

(iii) Getting the training loss function LTrain given in (5) by adding
weighted L

2-norm errors of the initial, boundary condition
residuals, and f(x, t).

(iv) Train the ANN in order to get suitable values of {ŵ, b̂} to
minimize the LTrain using the L-BFGS algorithm.
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Using these four steps, we approximate the solution of the consid-
ered PDE.

B. PINN method for NLS equation with PT -symmetric

potential

We consider NLS equation with a PT -symmetric potential in
the form

iψt + ψxx + P(x)ψ + σ |ψ |2ψ = 0, (6)

where ψ = ψ(x, t) is a complex field, σ is the nonlinear coefficient
corresponding to focusing and defocusing interactions, and P(x) is
the PT -symmetric potential, which has the form

P(x) = [V(x)+ iW(x)], (7)

where V(x) and W(x) are real and imaginary parts of the PT -
symmetric potential and they should satisfy the following two
conditions:

V(−x) = V(x), W(−x) = −W(x). (8)

In this work, to obtain the soliton solution of (6) using the
above mentioned PINN method,32 we define the equation, initial and
boundary conditions, respectively, as follows:

iψt = −ψxx − P(x)ψ − σ |ψ |2ψ , x ∈ (−L, L), t ∈ (0, T), (9)

ψ(x, 0) = ψ0(x), x ∈ [−L, L], (10a)

ψ(−L, t) = ψ(L, t), t ∈ [0, T]. (10b)

Since the solution ψ(x, t) of Eq. (9) is complex, we consider it
in the form ψ(x, t) = u(x, t)+ iv(x, t), where u(x, t) and v(x, t) are
two real functions denoting real and imaginary parts of the solution
ψ , respectively. Now, we use the associated complex-valued PINN
as f(x, t) = ifu(x, t)− fv(x, t) with −fv(x, t) and fu(x, t) being the real
and imaginary parts of f(x, t), respectively. The explicit form of the
functions reads

f(x, t) = iψt + ψxx + [V(x)+ iW(x)]ψ + σ |ψ |2ψ , (11a)

fu(x, t) = ut + vxx + V(x)v + W(x)u + σ(u2 + v2)v, (11b)

fv(x, t) = vt − uxx − V(x)u + W(x)v − σ(u2 + v2)u, (11c)

and, using this, we approximate ψ(x, t) by a complex-valued deep
neural network. The shared parameters between ψ(x, t) and f(x, t)
can be trained by minimizing LTrain, which is the combination of

three mean squared errors as given below,

LTrain = LI + LB + LC, (12)

where the mean squared errors are taken in the form

LI = 1

NI

NI
∑

j=1
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∣
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∣

∣
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+
∣

∣

∣
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j
0

∣

∣

∣

2
)

,
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∣

∣
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j
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∣

∣

∣

2

+
∣

∣

∣
v(−L, t

j
B)− v(L, t

j
B)

∣
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, (13)

LC = 1

NC
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∣
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2
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,

with {xj
I, u

j
0, v

j
0}

NI

j=1 denoting the initial data, {tj
B, u(±L, t

j
B),

v(±L, t
j
B)}

NB
j=1 denoting the boundary data, and {xj

C, t
j
C, fu(x

j
C, t

j
C),

fv(x
j
C, t

j
C)}

NC
j=1 denoting the collocation points on f(x, t). The losses

LI, LB, and LC, respectively, represent the L
2-norm error in initial,

boundary, and inside the spatiotemporal regime. Figure 1 shows the
schematic diagram of the PINN. The left panel of the figure corre-
sponds to the ANN, where we have two input neurons for space and
time and two output neurons for real and imaginary parts of the
solution. The right panel shows the physics information, which we
give as a form of training loss function LTrain.

III. DATA DRIVEN SOLUTIONS OF THE NLS EQUATION

WITH PT -SYMMETRIC POTENTIALS

In this section, we present the outcomes of DL while solving
the focusing (σ = 1) NLS equation with soliton solution with three
PT -symmetric potentials, namely, (i) Gaussian, (ii) periodic, and
(iii) Rosen–Morse potential. To make the PINN to solve the con-
sidered problem, we are in need of training set data. The training
set consists of NI = 50 data points on initial conditions, NB = 100
data points on the periodic boundary conditions (50 on the upper
boundary and another 50 on the lower boundary), and NC = 20 000
collocation points, which are chosen randomly using the LHS44

method. We choose a six-layer ANN in which the first and the last
layer have two neurons, which are used for input (x, t) and out-
put (u(x, t), v(x, t)). The other four hidden layers have 100 units of
neurons each. The hyperbolic tangent function given in Eq. (4) is
used for the activation of the neurons. The space and time interval
are taken as L = 10 and T = 5, respectively. So, the limit for spa-
tial and time points are [−10, 10] and [0, 5]. The PINN model has
been run for 40 000 optimization steps to minimize the loss function
LTrain. To verify the outcome of PINN, we compare the solutions
obtained from PINN with the numerical solutions. To generate
the latter data, we use the Fourier spectral method46 with a spe-
cial Fourier discretization with 256 space modes and a fourth-order
explicit Runge–Kutta temporal integrator with 201 points at the
same space/time interval to solve the NLS equation (9). So,ψ(x, t) is
a 256 × 201 matrix. We note here that the solution obtained using
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FIG. 1. Schematic diagram of PINN. The left panel shows the input and output layers with two neurons and n hidden layers. Each neuron is activated by the activation
function A. The right panel corresponds to the physics information of the PINN given as a loss function of the optimization problem.

the above said numerical method is just to access the accuracy of
the PINN solution. Training of the PINN itself does not require a
numerical solution.

The above setup has been considered same for all three PT -
symmetric potentials throughout this work except for the activation
function which we change in each case since it will be used to study
the influence in the accuracy of solving the NLS equation with PT -
symmetric potential using the PINN method.

A. NLS equation with PT -symmetric Gaussian

potential

To begin, we consider the NLS Eq. (9) with PT -symmetric
Gaussian potential,47

P(x) = V(x)+ iW(x) = e−x2 + iW0x e−x2
, (14)

where W0 is the strength of the imaginary part with the value 0.1.
The real (V(x)) and the imaginary (W(x)) parts of the potential
P(x) given in (14) satisfy the conditions given in (8). The Gaus-
sian profile is taken as the initial profile to solve the NLS equation
(9) with the above potential (14). After training, the PINN with the
above mentioned setup with the Gaussian potential, the approxi-
mated solution is shown in Fig. 2. Figures 2(a) and 2(b), respec-
tively, represent the predicted and exact magnitudes of the soliton
solution |ψ(x, t)| =

√
u2(x, t)+ v2(x, t) for the NLS equation (9)

with PT -symmetric Gaussian potential (14). The star markers in
Fig. 2(a) denote the randomly chosen data points on the initial (50
points) and boundary (100 points) conditions. Figure 2(c) shows
the value of squared errors between the predicted and exact val-
ues of the solution. From Fig. 2(a), we can see that the predicted
soliton solution of the NLS Eq. (9) with potential (14) is similar to
that of the exact solution shown in Fig. 2(b). To examine the error
between these two solutions, we plot the squared error of them in
Fig. 2(c). This figure infers that the error value between the predicted
and exact solutions is of the order of 10−6. The relative L

2-norm

errors of u(x, t), v(x, t), and ψ(x, t), respectively, are 2.1856 × 10−2,
2.8822 × 10−2, and 3.1912 × 10−3. These results infer that the con-
sidered PINN is enabled to approximate the soliton solution of the
NLS equation with considered Gaussian potential with low error
values. Figures 2(d)–2(f) show the comparisons of exact and the
predicted soliton solution at different times, say, t = 0.65, t = 2.64,
and t = 4.38. The predicted solitons at different time instants are
fitted well with the exact soliton solutions. This also confirms the
ability of PINN in solving the NLS equation for the given Gaussian
PT -symmetric potential.

B. NLS equation with PT -symmetric periodic

potential

Let us now consider the potential P(x) in (9) in the form3

P(x) = V(x)+ iW(x) = cos2 x + iW0 sin 2x, (15)

where the value of strength of the imaginary part is W0 = 0.45. Since
the potential P(x) is PT -symmetric, the real (V(x)) and imaginary
(W(x)) parts satisfy the conditions mentioned in (8). Here also, the
Gaussian profile is considered as the initial profile to solve the NLS
equation (9) with PT -symmetric periodic potential (15). After the
initial common setup made for training the PINN, as mentioned
before, we obtain the soliton solution from PINN. The obtained
results are reported in Fig. 3. The predicted and exact magnitudes
of the soliton solution |ψ(x, t)| obtained are shown in Figs. 3(a) and
3(b), respectively. The data points, which are randomly chosen on
the initial and boundary conditions for the purpose of training, are
denoted as stars in Fig. 3(a). The squared error values between the
predicted and exact solutions are shown in Fig. 3(c). From Fig. 3(c),
we can see that the error values are of the order of 10−5, which
confirms that our constructed PINN model succeeds in approximat-
ing the soliton solution of the NLS equation with PT -symmetric
periodic potential (15) with high accuracy. Further, to check the cor-
rectness of the solution, we plot the solution |ψ(x, t)| at different
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FIG. 2. Results of PINN in approximating soliton solution of NLS equation (9) with
Gaussian potential (14). (a) represents the predicted values of |ψ(x, t)| by PINN.
The stars in (a) represent randomly selected data points on initial and bound-
ary conditions. (b) showing the exact values of |ψ(x, t)|. (c) corresponds to the
squared error values between the predicted and exact results. (d)–(f) A compar-
ison of approximation done by PINN in finding soliton solution at particular time
instants t = 0.65, t = 2.64, and t = 4.38.

instants of time, say, t = 0.65, t = 2.64, and t = 4.38 in Figs. 3(d),
3(e), and 3(f), respectively, and these figures also confirm that the
solution obtained through PINN is accurate since the exact and
predicted solutions coincide with each other. The relative L

2-norm
error values in u(x, t), v(x, t) and ψ(x, t) in this case are found to be
5.0925 × 10−2, 4.9897 × 10−2, and 4.272 × 10−3.

C. NLS equation with PT -symmetric Rosen–Morse

potential

Next, we consider another PT -symmetric potential, namely,
Rosen–Morse potential, which is given by Ref. 48,

P(x) = V(x)+ iW(x) = −a(a + 1)sech2x + i 2b tanh x, (16)

where a and b are parameters, which we will take as 0.1 and 0.03.
The potential considered in (16) also satisfies the conditions given

FIG. 3. Results of PINN in approximating soliton solution of NLS equation (9) with
periodic potential (15). (a) represents the predicted values of |ψ(x, t)| by PINN.
The stars in (a) represent randomly selected data points on initial and boundary
conditions. (b) shows the exact values of |ψ(x, t)|. (c) corresponds to the squared
error values between the predicted and exact results. (d)–(f) A comparison of
approximation done by PINN in finding soliton solution at particular time instants
t = 0.65, t = 2.64, and t = 4.38.

in (8). We take the initial profile in the form48

ψ(x) =
√

a2 + a + 2sechx eibx, (17)

which satisfies the stationary part of (9). We consider the same pre-
liminary setup and train the PINN as in the case of Gaussian and
periodic potentials and obtain the outcome which we present in
Fig. 4. Figures 4(a) and 4(b), respectively, correspond to the pre-
dicted and exact magnitudes of the soliton solution of the NLS
equation (9) with Rosen–Morse potential (16). The stars at the
boundary of Fig. 4(a) denote the data points taken in the initial and
boundary conditions. The squared error values between exact and
the predicted ones are in the order of 10−4, which is reported in
Fig. 4(c). Figures 4(a)–4(c) reveal that PINN succeeds in approxi-
mating the soliton solution of the Rosen–Morse potential as well.
The relative L

2-norm error values of u(x, t), v(x, t), and ψ(x, t)
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FIG. 4. Results of PINN in approximating soliton solution of NLS equation (9)
with Rosen–Morse potential (16). (a) represents the predicted values of |ψ(x, t)|
by PINN. The stars in (a) represent randomly selected data points on initial and
boundary conditions. (b) shows the exact values of |ψ(x, t)|. (c) corresponding
to the squared error values between the predicted and exact results. (d)–(f) A
comparison of approximation done by PINN in finding soliton solution at particular
time instants t = 0.65, t = 2.64, and t = 4.38.

for this case are found to be 3.7277 × 10−2, 3.2468 × 10−2, and
5.9112 × 10−3. In Figs. 4(d)–4(f), the exact and the predicted soli-
tons are plotted one over the other at different time instants, say, for
example, t = 0.65, t = 2.64, and t = 4.38 in order to check whether
the predicted result is accurate or not. From these figures, we can
see that the exact and predicted solutions fit well one over the other,
indicating that the predicted result is accurate.

D. Non-stationary solution of NLS equation with

PT -symmetric Rosen–Morse potential

Finally, we analyze the ability of PINN in predicting non-
stationary solutions of the NLS equation. Let us consider an initial
profile of a non-stationary solution to the NLS equation for the

FIG. 5. Results of PINN in approximating non-stationary solution of NLS
equation (9) with Rosen–Morse potential (15). (a) represents the predicted values
of |ψ(x, t)| by PINN. The stars in (a) represent randomly selected data points on
initial and boundary conditions. (b) shows the exact values of |ψ(x, t)|. (c) corre-
sponds to the squared error values between predicted and exact results. (d)–(f) A
comparison of approximation done by PINN in finding soliton solution at particular
time instants t = 0.39, t = 1.58, and t = 2.78.

potential (16) in the form

ψ(x) =
√

a2 + 1sechx e−ibx, (18)

which does not satisfy the stationary part of (9). Let us fix the param-
eters as a = 1.75 and b = 0.35. The obtained results after training
the PINN with the same preliminary setup considered earlier are
reported in Fig. 5. The predicted and exact magnitudes ofψ(x, t) are
presented, respectively, in Figs. 5(a) and 5(b). From these two fig-
ures, we observe that PINN successfully predicts the non-stationary
solution as well. We have examined the error values between the pre-
dicted and exact results and plot the outcome in Fig. 5(c). We come
across the relative L

2-norm error values of u(x, t), v(x, t), andψ(x, t)
for this case as 5.4182 × 10−1, 5.5958 × 10−1, and 2.8065 × 10−1,
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FIG. 6. Different kinds of activation functions.

respectively. To verify the obtained solution, we also plot the solu-
tion at different time instants, say, t = 0.39, t = 1.58, and t = 2.78 in
Figs. 5(d), 5(e), and 5(f), respectively. The exact and predicted mag-
nitudes of the predicted solution are fitted well in figures (d) and (e)
but in Fig. 5(f), we can observe that the magnitude of the solution
not fitted well with the exact one. This is due to the time-dependent
nature of the solution. Our investigations reveal that one can solve
the considered problem with less accuracy using PINN.

IV. FACTORS AFFECTING THE PERFORMANCE OF

PINN

A. Effect of activation functions

In our main study, we have chosen tanh as the activation
function [see Eq. (4)] because it gives us the solution with a low
error value. To study the effect of other activation functions in
approximating the soliton solution of the PT -symmetric potentials,
we consider three other functions, namely, Rectified Linear Unit

FIG. 7. PINN results for the Gaussian potential case with different activation functions. Rows one to four, respectively, represent the activation functions ReLU, sigmoid, sech,
and tanh. (a), (e), (i), and (m) represent the predicted magnitude of soliton solutions. (b), (f), (j), and (n) represent the error values in magnitude of soliton solutions. (c), (g),
(k), and (o) in the third column and (d), (h), (l), and (p) in fourth column correspond to the soliton solution at particular time instants t = 0.65 and t = 4.38, respectively.
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FIG. 8. PINN results for the periodic potential case with different activation functions. Rows one to four, respectively, represent the activation functions ReLU, sigmoid, sech,
and tanh. (a), (e), (i), and (m) represent the predicted magnitude of soliton solutions. (b), (f), (j), and (n) represent the error values in magnitude of soliton solutions. (c), (g),
(k), and (o) in the third column and (d), (h), (l), and (p) in the fourth column correspond to the soliton solution at particular time instants t = 0.65 and t = 4.38, respectively.

(ReLU), sigmoid, and sech. Since the problem under consideration
is approximating the soliton solution of the NLS equation with var-
ious PT -symmetric potentials, we intend to use a new activation
function, namely, sech, which has not been used in the field of DL.
We consider the general form of the activation functions as given
below,

(i) Zj = ReLU(M) = max(0, M), (19a)

(ii) Zj = sigmoid(M) = 1

1 + e−M
, (19b)

(iii) Zj = sech(M), (19c)

(iv) Zj = tanh(M), (19d)

where M = wj.Zj−1 + bj as taken in (4). The functionality of each
activation function can be visualized with the help of Fig. 6.

The predicted values and the error values in the case of NLS
equation with PT -symmetric Gaussian potential in approximat-
ing the soliton solution with all four different activation functions
are reported in Fig. 7. Figure 7(a) reveals that the function ReLU
fails in approximating the soliton solution. The squared error value
between the predicted and the actual magnitude of soliton solution
comes out in the order of 10−1 only [Fig. 7(b)]. The comparison
between the predicted and exact solutions at two other instants
of time, say, at t = 0.65 and t = 4.38 are presented in Figs. 7(c)
and 7(d), which also confirms that by using ReLU as the acti-
vation function, a good approximation cannot be obtained for
Gaussian potential. The results for the other three activation func-
tions, namely, sigmoid, sech, and tanh are plotted in Figs. 7(e)–7(h),
7(i)–7(l), and 7(m)–7(p), respectively. From the outcome, we can
infer that the prediction done by PINN with tanh as activation
function gives an accurate result when compared with the other
three. As far as the Gaussian potential is concerned, we come across
squared error values that are of the order of 10−1, 10−4, 10−5, and
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FIG. 9. PINN results for the Rosen–Morse potential with different activation functions. Rows one to four, respectively, represent the activation functions ReLU, sigmoid, sech,
and tanh. (a), (e), (i), and (m) represent the predicted magnitude of soliton solutions. (b), (f), (j), and (n) represent the error values in magnitude of soliton solutions. (c), (g),
(k), and (o) in the third column and (d), (h), (l), and (p) in the fourth column correspond to the soliton solution at particular time instants t = 0.65 and t = 4.38, respectively.

10−6 for the ReLU, sigmoid, sech, and tanh activation functions,
respectively.

The results coming out from PINN with four different activa-
tion functions for thePT -symmetric periodic potential are reported
in Fig. 8. The rows one to four represent the results coming out from
PINN with the activation functions ReLU, sigmoid, sech, and tanh,
respectively. From Figs. 8(c), and 8(d), we can see that the approx-
imation done by PINN with ReLU as an activation function is not
fitting well with the original result. But in the case of sech, the pre-
diction is better while comparing with the prediction done by ReLU
and sigmoid functions since the squared error value comes out less.
From the plots given in the second column of Fig. 8, we infer that
the squared error values of the cases ReLU, sigmoid, sech, and tanh
are of the order of 100, 10−3, 10−4, and 10−5, respectively.

Prediction results of PINN with different activation functions
for the NLS equation with Rosen–Morse potential are shown in
Fig. 9. The results corresponding to PINN with ReLU as the acti-
vation function are shown in Figs. 9(a)–9(d). From Fig. 9(a) we can

see that the approximation done by the PINN is not accurate. From
the squared error plots shown in the second column in Fig. 9, we can
see that the error value is low in the case of tanh function. The plots
on the third and fourth columns of Fig. 9 confirm that the predicted
and exact results are fitted well with each other while we compare
tanh activation function with the other activation functions.

The overall outcome is presented in Table I. For better compar-
ison, we take the L

2-norm error value in approximating u, v, and ψ
for all the three cases and also for four activation functions. L2-norm
error values of the PINN with ReLU as activation function are very
high in approximating u, v, andψ for all three potentials when com-
pared with the other three activation functions. This is due to the
piecewise linearity of the ReLU function. In the case of sigmoid acti-
vation function, the value of L

2-norm error is of the order of 10−2.
While comparing the outcome of the PINN with sech and tanh func-
tions, it is clear that the error value is slightly low in the case of tanh
while approximating the function ψ . But for the approximation of
real (u) and imaginary (v) parts of the solution the PINNs with sech
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TABLE I. L
2-norm error values in u, v, and ψ of the PINN results approximated with different activation functions for all three considered potentials.

Activation functions

PT -symmetric potentials L
2-norm error ReLU sigmoid sech tanh

u 8.2281 × 10−1 1.6449 × 10−2 1.6841 × 10−2 2.1856 × 10−2

Gaussian v 7.2510 × 10−1 2.0385 × 10−2 1.8659 × 10−2 2.8822 × 10−2

ψ 6.4185 × 10−1 1.1915 × 10−2 5.8949 × 10−3 3.1912 × 10−3

u 1.0433 × 100 4.7092 × 10−2 2.9961 × 10−2 5.0925 × 10−2

Periodic v 1.0236 × 100 4.7094 × 10−2 2.9019 × 10−2 4.9897 × 10−2

ψ 6.9093 × 10−1 1.3379 × 10−2 5.2880 × 10−3 4.2720 × 10−3

u 1.1185 × 100 1.1149 × 10−1 2.4371 × 10−2 3.7277 × 10−2

Rosen–Morse v 1.1529 × 100 8.2902 × 10−2 2.4424 × 10−2 3.2468 × 10−2

ψ 4.8206 × 10−1 3.3237 × 10−2 9.8817 × 10−3 5.9112 × 10−3

TABLE II. L
2-norm error values in u, v, and ψ of the PINN results approximated with different number of hidden layers of ANN for all three considered potentials.

Number of hidden layers

PT -symmetric potentials L
2-norm error 1 2 3 4

u 4.0425 × 10−2 2.0164 × 10−2 2.3489 × 10−2 2.1856 × 10−2

Gaussian v 6.9994 × 10−2 2.4169 × 10−2 3.1864 × 10−2 2.8822 × 10−2

ψ 2.8418 × 10−2 5.5559 × 10−3 3.5918 × 10−3 3.1912 × 10−3

u 7.9002 × 10−1 3.2177 × 10−2 4.8171 × 10−2 5.0925 × 10−2

Periodic v 9.7382 × 10−1 3.1851 × 10−2 4.7245 × 10−2 4.9897 × 10−2

ψ 1.8630 × 10−1 7.6633 × 10−3 4.0443 × 10−3 4.2720 × 10−3

u 3.9728 × 10−1 2.1559 × 10−2 3.7352 × 10−2 3.7277 × 10−2

Rosen–Morse v 3.7073 × 10−1 2.1047 × 10−2 3.2467 × 10−2 3.2468 × 10−2

ψ 8.3272 × 10−2 6.4215 × 10−3 5.8233 × 10−3 5.9112 × 10−3

TABLE III. L
2-norm error values in u, v, and ψ of the PINN results approximated with different number of neurons (10–50) in each hidden layer of ANN for all three considered

potentials.

Number of neurons in the hidden layers

PT -symmetric potentials L
2-norm error 10 20 30 40 50

u 2.1027 × 10−2 1.9056 × 10−2 2.1658 × 10−2 2.0601 × 10−2 1.9279 × 10−2

Gaussian v 2.7296 × 10−2 2.2187 × 10−2 2.7912 × 10−2 2.5865 × 10−2 2.3295 × 10−2

ψ 4.4595 × 10−3 5.7220 × 10−3 3.8554 × 10−3 4.1573 × 10−3 4.5314 × 10−3

u 5.3167 × 10−1 3.7814 × 10−2 4.2063 × 10−2 4.5505 × 10−2 4.6104 × 10−2

Periodic v 7.0910 × 10−1 3.6862 × 10−2 4.1328 × 10−2 4.4600 × 10−2 4.5129 × 10−2

ψ 1.3475 × 10−1 4.3729 × 10−3 4.1834 × 10−3 4.0019 × 10−3 3.7271 × 10−3

u 1.4408 × 10−1 2.5117 × 10−2 3.9776 × 10−2 2.7235 × 10−2 3.1777 × 10−2

Rosen–Morse v 1.0567 × 10−1 2.3972 × 10−2 3.3787 × 10−2 2.5332 × 10−2 2.7809 × 10−2

ψ 3.2571 × 10−2 7.2073 × 10−3 5.2887 × 10−3 5.1823 × 10−3 5.0052 × 10−3
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TABLE IV. L
2-norm error values in u, v, andψ of the PINN results approximated with different number of neurons (60–100) in each hidden layer of ANN for all three considered

potentials.

Number of neurons in the hidden layers

PT -symmetric potentials L
2-norm error 60 70 80 90 100

u 1.8949 × 10−2 1.9171 × 10−2 1.8510 × 10−2 2.0515 × 10−2 2.1856 × 10−2

Gaussian v 2.2847 × 10−2 2.3018 × 10−2 2.1814 × 10−2 2.5669 × 10−2 2.8822 × 10−2

ψ 4.3099 × 10−3 4.6188 × 10−3 4.9689 × 10−3 4.0189 × 10−3 3.1912 × 10−3

u 4.8924 × 10−2 4.3401 × 10−2 5.2175 × 10−2 5.0627 × 10−2 5.0925 × 10−2

Periodic v 4.7821 × 10−2 4.2629 × 10−2 5.0985 × 10−2 4.9554 × 10−2 4.9897 × 10−2

ψ 3.8299 × 10−3 3.8624 × 10−3 4.0359 × 10−3 3.9781 × 10−3 4.2720 × 10−3

u 3.0926 × 10−2 3.7381 × 10−2 4.4708 × 10−2 4.1246 × 10−2 3.7277 × 10−2

Rosen–Morse v 2.7566 × 10−2 3.2622 × 10−2 3.7069 × 10−2 3.5090 × 10−2 3.2468 × 10−2

ψ 4.9355 × 10−3 5.8375 × 10−3 5.3917 × 10−3 5.6393 × 10−3 5.9112 × 10−3

TABLE V. L
2-norm error values in u, v, and ψ of the PINN results approximated with different number of collocation points for all three considered potentials.

Number of collocation points

PT -symmetric potentials L
2-norm error 5000 10 000 15 000 20 000

u 2.0919 × 10−2 1.9999 × 10−2 1.9238 × 10−2 2.1856 × 10−2

Gaussian v 2.6675 × 10−2 2.4926 × 10−2 2.3326 × 10−2 2.8822 × 10−2

ψ 3.6122 × 10−3 4.0438 × 10−3 4.1420 × 10−3 3.1912 × 10−3

u 4.5870 × 10−2 5.1518 × 10−2 4.2062 × 10−2 5.0925 × 10−2

Periodic v 4.4983 × 10−2 5.0452 × 10−2 4.1056 × 10−2 4.9897 × 10−2

ψ 3.8983 × 10−3 3.8867 × 10−3 3.8140 × 10−3 4.2720 × 10−3

u 3.8685 × 10−2 3.7610 × 10−2 4.6277 × 10−2 3.7277 × 10−2

Rosen–Morse v 3.3381 × 10−2 3.2416 × 10−2 3.8593 × 10−2 3.2468 × 10−2

ψ 6.0374 × 10−3 5.6554 × 10−3 5.8951 × 10−3 5.9112 × 10−3

TABLE VI. L
2-norm error values in u, v, and ψ of the PINN results approximated with different number of initial and boundary points of the considered domain for all three

considered potentials.

Number of initial and boundary points

PT -symmetric potentials L
2-norm error 10 20 30 40 50

u 1.7453 × 10−2 1.7899 × 10−2 1.6184 × 10−2 2.1619 × 10−2 2.1856 × 10−2

Gaussian v 2.0003 × 10−2 2.0321 × 10−2 1.7222 × 10−2 2.8040 × 10−2 2.8822 × 10−2

ψ 5.5589 × 10−3 4.9169 × 10−3 6.3697 × 10−3 3.6132 × 10−3 3.1912 × 10−3

u 2.5785 × 10−2 4.5283 × 10−2 3.3628 × 10−2 4.9036 × 10−2 5.0925 × 10−2

Periodic v 2.4970 × 10−2 4.4399 × 10−2 3.2921 × 10−2 4.8044 × 10−2 4.9897 × 10−2

ψ 6.9655 × 10−3 4.0064 × 10−3 4.3703 × 10−3 3.9586 × 10−3 4.2720 × 10−3

u 2.1818 × 10−2 3.6917 × 10−2 3.4343 × 10−2 3.9939 × 10−2 3.7277 × 10−2

Rosen–Morse v 2.2776 × 10−2 3.1811 × 10−2 2.9756 × 10−2 3.4444 × 10−2 3.2468 × 10−2

ψ 1.0650 × 10−2 5.2218 × 10−3 4.9235 × 10−3 5.0712 × 10−3 5.9112 × 10−3
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function have low error values for all three considered potentials.
Finally, we note that the time taken for the training of the PINN
with sech activation function is higher when compared to the other
three activation functions.

B. Effect of structure of the network

ANNs have large amount of parameters like weight and
bias matrices, which change randomly to minimize the given loss
function during the process of optimization. So, the structure of the
ANN influences the accuracy of the PINN for the considered task.
There are hyper-parameters that describe the structure of the ANN,
namely, width of the network (number of hidden layers) and depth
of the network (number of units in each layer). We test the impact
of these hyper-parameters for all three potentials with tanh as an
activation function and present the outcomes in Tables II, III, and
IV. Table II corresponds to the L

2-norm error values of the PINNs
with number of hidden layers varying from 1 to 4. In this study, we
fix the number of units equal to 100. It is clear from this table that
the performance of the PINN with single hidden layer is very low as
compared with the other PINNs with more number of hidden lay-
ers. Further, when increasing the number of layers, we observe that
the performance of PINN for all three potentials getting increased.
In other words, the L

2-norm error values decrease. However, in the
case of periodic and Rosen–Morse potentials, the error values of the
PINN with four hidden layers are slightly high when compared to
the error values of the PINN with three hidden layers. The difference
between these error values is considerably low. We need a model
that performs well in finding solution of the NLS equation for all
three considered potentials. So, in our study, we fixed the number of
hidden layers equal to 4.

Next, we examine how the performance of PINN is affected by
the number of neurons in the hidden layers. For this, we consider the
PINN with tanh activation function and four hidden layers. Now, we
vary the number of neurons from 10 to 100 and present the results
of the PINN with the number of neurons 10–50 in Table III and for
the number of neurons 60–100 in Table IV, respectively. From these
two tables, we can see that L

2-norm error values are very high for
the case of PINN with ten neurons. Further, increasing the number
of neurons the error values are decreasing and for some cases they
are oscillating between low and high values because while increasing
the number of neurons automatically increases the size of the weight
and bias matrices and the model needs to optimize the more number
of parameters. The error value of the solution of the NLS equation
with the Gaussian potential gives a low value only when the PINN
is trained with 100 neurons. So, we fixed the number of neurons in
each hidden layer as 100.

C. Effect of sampling points

We use the sampling points which are sampled from LHS44

for the input to the PINN model. These training data points also
influence the performance of the PINN in solving the considered
problem. The results with different number of collocation points are
presented in Table V. For this study, we use tanh activation func-
tion, four hidden layers each with 100 neurons and 50 initial points,
and 50 points each on upper and lower boundaries. From Table V,
it is clear that L

2-norm error values are changing with respect to the

change in the number of collocation points. When the number of
collocation points is 20 000, the error value is completely low for all
cases especially for the Gaussian potential case. Our aim is to con-
struct a DL model, which is good enough to make the solution to
the NLS equation for all three considered potentials. So, it is better
to have a more number of collocation points inside the considered
domain so that the model can train with more points which lead to
high accurate solution.

Finally, we experiment the PINN by varying the number of ini-
tial and boundary sampling points and the L

2-norm error values in
u, v, and ψ for all three potentials presented in Table VI. In this
table, we vary the number of points from 10 to 50 in both initial
and boundary regions. Here, the number on the boundary denotes
the number of points taken for both the upper and lower bound-
ary. For example, the number 10 denotes that there are 10 points
on the initial and also 10 points each on both the upper and lower
boundary regions so that there are totally 20 points on the boundary
of the considered domain. Here also, we use PINN with tanh acti-
vation function with four hidden layers each with 100 neurons and
20 000 collocation points inside the domain. From the results that
are shown in Table VI, we observe that in most cases, the error val-
ues become low when we increase the number of points, and also
in some cases, the error values vary between low and high values;
particularly in the case of NLS equation with Rosen–Morse poten-
tial, the error value is very high when the PINN trained with low
number of points on the initial and boundary regions, say, 10. As
discussed in the earlier cases, here also, we fix the number of points
on the initial and boundary regions as equal to 50 because the PINN
with this setup has considerable low values for the L

2-norm error
for all three considered potentials.

It is worth noting that all the above presented results may vary
in the repeated learning processes because of the stochastic nature
of the sampling technique and algorithm.

V. CONCLUSION

In this work, we have considered the NLS equation with
three PT -symmetric potentials, namely, Gaussian, periodic, and
Rosen–Morse and approximated the soliton solution of the NLS
equation with the help of a DL approach, the so called PINN. For
this purpose, we have considered a complex-valued PINN with tanh
as an activation function. The PINN solves the given equation for
the prescribed initial and boundary conditions by minimizing the
mean squared error loss. We have considered 20 000 collocation
points by LHS,44 50 points, and 100 points on initial and bound-
ary data, respectively. The predicted, exact, and squared error in the
magnitude of the soliton solution for the considered three different
potentials are evaluated and plotted. Further, we have also plotted
the exact and predicted magnitudes of the soliton solution one over
the other for various instants of time. From the results, we conclude
that our constructed PINN can approximate the soliton solution
for the given NLS equation for all three potentials precisely. The
squared errors are found to be very low of the order of 10−6, 10−5,
and 10−4, respectively, for the Gaussian, periodic, and Rosen–Morse
potentials.

To visualize the performance of the PINN with tanh as
the activation function, we also present the scatterplot of actual
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FIG. 10. Scatterplots showing the performance of the PINN. (a)–(c) correspond to the result of NLS equation with Gaussian, periodic, and Rosen–Morse, respectively.

vs the predicted data for all three considered potentials in
Fig. 10. The scatterplots of the NLS equation with Gaussian,
periodic, and Rosen–Morse potentials are, respectively, shown in
Figs. 10(a)–10(c). The scatterplots confirm that the considered
PINN accurately predicts the soliton solution in all three cases. Fur-
ther, to analyze the factors that influence the performance of the
PINN, we tested the effect against the activation functions, network
structure, and sampling points. First, we have considered three func-
tions, namely, ReLU, sigmoid, and tanh along with a new activation
function sech. The PINNs with ReLU and sigmoid as the activation
functions approximated the soliton solution with less accuracy when
compared to the PINNs with sech and tanh as activation functions.
We have also examined the ability of these different PINNs by cal-
culating the L

2-norm error values for real (u) and imaginary (v)
parts of the solution (ψ) for all three considered potentials. From
the results, we conclude that the PINN can approximate the soli-
ton solution of the NLS equation for the considered PT -symmetric
potentials with tanh and sech as the activation function. We have
also examined the effect on the performance due to the width and
the depth of the PINN. From the obtained results, we fixed the
number of hidden layers equal to 4 and 100 neurons in each layer.
Finally, we have also done an experiment on the number of sam-
pling points and initial and boundary regions. From the outcomes,
we found that the amount of training data should be 20 000 colloca-
tion points, 50 initial points, and 50 boundary points in order to get
a high accurate solution for the considered problem. One can use the
considered DL model, namely, PINN for solving the NLS equation
with PT -symmetric potentials.
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