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ABSTRACT

We consider a modified damped version of Hénon-Heiles system and investigate its integrability. By extending the Painlevé analysis of
ordinary differential equations we find that the modified Hénon-Heiles system possesses the Painlevé property for three distinct parametric
restrictions. For each of the identified cases, we construct two independent integrals of motion using the well known Prelle-Singer method.
We then derive a set of nontrivial non-point symmetries for each of the identified integrable cases of the modified Hénon-Heiles system. We
infer that the modified Hénon-Heiles system is integrable for three distinct parametric restrictions. Exact solutions are given explicitly for
two integrable cases.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0172498

I. INTRODUCTION

The study of nonlinear differential equations has attracted much attention due to various reasons during the past several decades.' ” Non-
linear differential equations are not solvable or integrable in general and they possess various exciting mathematical structures and physical
features. Given a nonlinear differential equation, there exists no unique method to determine whether it is integrable or not. There exist several
definitions for integrability such as Lax integrability, algebraic integrability, Liouville integrability, etc. in the literature.” Several analytic and
numerical methods have been devised by different research groups to deal with nonlinear differential equations in general and integrability in
particular.””* ® Among them, the Painlevé analysis proposed by Ablowitz, Ramani, and Segur for ordinary differential equations (ODE) and
extended to partial differential equations (PDE) by Weiss, Tabor, and Carnevale played a vital role in identifying the integrable cases of both
nonlinear ODEs and PDEs during the past few decades.” '’ The Painlevé test is based on the realization that the integrability of differential
equations is known to be related to the singularity structure of the solution. A nonlinear differential equation is said to possess the Painlevé
property if its general solution is single valued about the movable singular point in the case of ODE and movable singularity manifold for
PDEs. A nonlinear dynamical system governed either by ODE or PDE passes the Painlevé test then it is expected to be integrable and have
a solution that can be described by an appropriate Laurent series expansion locally.”'"'* The effectiveness of the Painlevé analysis has been
widely demonstrated by identifying several new integrable systems.'”'* Another important problem of nonlinear differential equations is to
find its integrals of motion. If an Nth order nonlinear ODE admits N — 1 functionally independent integrals then it is completely integrable.
Also, the existence of integrals of motion enables one to reduce the order of the differential equation. Several analytic methods have been
devised to find integrals of motion for nonlinear differential equations.”'”'* Darboux has proposed a systematic method to construct integral
of motion for Hamiltonian systems with two degrees of freedom. Chandrasekhar has successfully exploited the idea of Darboux to construct
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second and third integrals of motion for Hamiltonian systems with three degrees of freedom.'”*’ Recent investigations reveal that the direct

15,21.22

method proposed by Prelle and Singer provides an efficient tool to find integrals of motion for coupled nonlinear second order ODEs.
Also, it is known that there exists a deep connection between the existence of nontrivial symmetries and integrals of motion of nonlinear
differential equations.””**

It is known that the celebrated Hénon-Heiles (HH) system described by the Hamiltonian

1 (dx\* (dy\*\ 1, > 2 2 1,5
H_E((E) +(E) +£(Ax +By)+(0¢x —gﬁy )y, (1.1)
with equations of motion
2
%+Ax+2o¢xy:0, (1.2)
2
%+By+o¢x2—ﬂy2 =0, (1.3)

where A, B, « and f3 are constants is completely integrable in the sense of Liouville for the following three distinct cases:

(i) A=B,f=-a.
(ii) A, B arbitrary, 5 = —6a.
(iii) B=16A,p = —16a.
If an integrable nonlinear dynamical system undergoes perturbation then the resulting system may not be integrable in general. With
this aim, we introduce a damping term in the equations of motion of HH system in the following form:

2
%+¢1% + Ax + 2axy = 0, (1.4)
2

%+¢2%+By+ax2fﬁy2:0, (1.5)

where ¢, and ¢, are constants in addition to with A, B, « and . We refer to the above as the modified Hénon-Heiles system equations.
We also note here that one can always use the scaling transformation available for the independent variable t to fix the parameter
a = 1 without loss of generality and also to agree with the original Hénon-Heiles system in the absence of damping. However, we prefer

to keep “a” as arbitrary here for convenience in order to compare with the various works in the literature on the generalization of
Hénon-Heiles system and one can always fix & = 1 whenever necessary.

The aim of this article is to identify the parametric restrictions at which (i) the general solution of it is single valued about the movable
singular point (ii) admits two functionally independent integrals of motion and (iii) admits more than one set of nontrivial non-point sym-
metries through the Painlevé analysis, Prelle-Singer method and Lie symmetry analysis, respectively. The plan of the article is as follows. In
Sec. 11, we extend the Painlevé analysis of ODEs to the modified Hénon-Heiles system governed by the above system [Egs. (1.4) and (1.5)]
of two-coupled second order ODEs and show that its solution is single valued about the movable singular point and admit four arbitrary
constants for three distinct parametric restrictions. In Sec. 111, we apply the Prelle-Singer method to the system of two coupled second order
ODEs associated with the modified Hénon-Heiles system and derive two independent integrals for each of the identified cases ensuring
their integrability. In Sec. IV, we derive a set of nontrivial non-point symmetries for each of the identified integrable cases of the modified
Hénon-Heiles system. An attempt is made to find exact solution, if it exists, for each one of the three identified cases in Sec. V. A summary of
the results of our investigation is given in Sec. V1.

Il. PAINLEVE ANALYSIS OF THE MODIFIED HENON-HEILES SYSTEM

To start with we give a brief summary of the Painlevé analysis for a scalar nth order nonlinear ODE having the form'?

dx d"x
Flt,x,—,..., =0, 2.1
( ot dar" ) @1)
where F is analytic in ¢ and rational in other arguments. In the Painlevé analysis, one looks for solution of Eq. (2.1) expressed as a Laurent
series
x(t) = (t-1)93 a(t—10),  Re(q) <0, 0<|t—to|<R 2.2)
k

in the neighborhood of an arbitrary singular point #,.
The Painlevé analysis for ODEs essentially consists of the following three steps:
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(a) determination of leading-order bahaviour of the Laurent series,

(b) determination of resonances, that is the powers at which arbitrary constants of the solution of (2.2) enter into the Laurent series
expansion; and

(c) verification that a sufficient number of arbitrary constants exist without the introduction of movable critical points.We would like to
remind that the Painlevé analysis provides only necessary condition for integrability of the considered nonlinear ODE. The sufficient
condition for integrability of it has to be established by other means, for example by constructing its sufficient number of integrals of
motion.

The remaining part of the section contains the details of the Painlevé analysis of the modified Hénon-Heiles system governed by

2
% + ¢ % + Ax + 2axy = 0, (2.3)

& d

de +¢2d—)t/ +By+ax’ - By’ =0. (2.4)

A. Leading-order behaviors

Let us assume that the leading order behavior of x(¢) and y(t) be
x(t) maotf, y(t) mbot!, T=(t—ty) >0 (2.5)
in a neighborhood of the movable singularity to, which results to the leading-order equations

aop(p — )77 + 2aapbor”* = 0, (2.6)
bog(q - 1)1 + aagr? - Pbyr’? = 0. (2.7)

From Egs. (2.6) and (2.7) we identify the following two distinct sets of possibilities.

Case 1.
3 ﬂ) 3
=2, q=-2 a=+1/(2+2), bo=-". 2.8
p=-2za=-2 m=-22\/(245) b--2 (.8)
Case 2.
1 1 4
p= 3 + 3 (1 - %), q = -2, ap = arbitrary, by = % (2.9)

B. Resonance
To identify the resonance values, we substitute

pr

x(t) m apt’ + w1, y(t) w bot? + w2, T = (1) = 0 (2.10)

into Egs. (2.3) and (2.4), retaining only the leading-order terms. This results into the following system of linear algebraic equations,

Mz(r)Q=0, Q=(w1,w2), (2.11)
where M, (r) is a 2 x 2 matrix depending on r.
For Case 1, the form of M,(r) is
r—2)(r—3) +2ab 200,
Ma(r) = (r=2)(r-3) 0 0 .
2atay (r=2)(r-3)-2pbo

To have nontrivial solutions for (w1, w>), we require det(Mz(r)) =0,

:>(r+1)(r—6)(r2—5r+12+%):0 (2.12)
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and so )
r=-1, G,Si%[l—m(ué)]z. (2.13)
o
In a similar manner for case 2 we find that the resonances occur at
r=-1, 0, (1-2p), 6. (2.14)

Demanding that the resonance value r be a non-negative integer other than -1, Eqgs. (2.13) and (2.14) allow the following parametric cases
and resonance values.

Case 1(a) :p=-2, q=-25 B=-o r=-1,2,3,6. (2.15)
Case 1(b) : p=-2, q=-2; B-= —%(x; r=-1,1,4,6. (2.16)
Case 1(c):p=-2, q=-2 B=-2a r=-1,0,5,6 (2.17)
Case 2(a):p=—%, q=-2 [3=—?0¢; r=-1,0,4,6. (2.18)
Case 2(b) : p=-1, q=-2; f=-6a r=-1,0,3,6 (2.19)
Case 2(c) : p = —%, q=-2 p=-16a; r=-1,0,2,6. (2.20)

C. Evaluation of arbitrary constants

Obviously the movable singular point t, is arbitrary, associated with resonance value —1. To check if the appropriate constants are
arbitrary corresponding to other resonance values, we introduce the following series expansions,

x(t) = 26: akrp+k, y(t) = 26: bqu+k, T=(t-t), (2.21)
k=0 k=0

in all the terms of (2.3) and (2.4). As a result, we obtain a system of 2—coupled recurrence relations. For example, for case 1, the recurrence
relations read
(k=2)(k=3)ax+ (k= 3)$prar_1 + Aay_, +2a) ajby_; =0, (2.22)
1

(k - 2)(k - 3)bk + (k - 3)¢2bk_1 + Bbk_z + (XZ aiay_; — sz blbk—l =0. (2.23)
1 1

Solving the above set of recurrence relations successively one can obtain the various a; and by, explicitly. For example, for case 1(a), when
k = 0,1 respectively we find [Here,a—; = b_1 =a_, = b, = 0]

G=by==2, ar==2 (-3, b= (31~ 2). (2.24)

For k = 2 we have
2a(boas + aobz) = (¢1 — 2aby1)ar — Aay, (2.25)
2a(agas + boby) = —a(ai + by) + ¢2by — Bby. (2.26)

Solving the above equations we find

_25A + 2647 — 63¢1¢5 + 36¢3 + 502

a, = arbitrary, b, = N 2.27
2 Y, 02 500 ( )
17 13
B=A—6¢1¢ + ?cp% + ?(/)i (2.28)
For k = 3 we have
20((boﬂ3 + aobg,) = 720((611172 + azbl) - Aal, (2.29)
J. Math. Phys. 65, 032702 (2024); doi: 10.1063/5.0172498 65, 032702-4
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20(((10(13 + b0b3) = —20c(a1a2 + blbz) - Bb1. (2.30)
Solving the above equations we find
3
as =—bs + Zf(l)a’ bs = arbitrary, ¢ = ¢1. (2.31)

Proceeding further we find ay, b4, as and bs explicitly. However the coefficient either as or be is arbitrary only if
6 >
B=A=—¢]. 2.32
%5 3 (2.32)

We thus infer that the modified Hénon-Heiles system admits a single valued solution with four arbitrary constants for the parametric
restrictions

6
B=-a ¢p2=¢1=9¢, A:BZEQZ)Z. (2.33)
Proceeding in a similar manner we find that for the following restrictions the modified Hénon-Heiles system admits Laurent series solutions
with four arbitrary constants:
6
Case 2(b): A=B, f=—6a, ¢1=¢s=¢, B= 2—5¢2, (2.34)

Case 2(c): A=B, f=-16a, 1 =¢2=¢, B= %gbz, (2.35)

We would like to mention that for the remaining cases (1b), (1c) and (2a) there exists a Laurent series solution with only three or two
arbitrary constants and consequently special exact solutions may exist for these cases.

D. Remark

We also mention here the fact that on taking the condition ¢, = ¢, = ¢ in (2.3) and (2.4) it leads directly to Painlevé integrability as
follows: If one changes the variables x, y to x1, x, such that

_é, _é,
xX=x1€ 2, y=xe *, (2.36)

one obtains from (2.3) and (2.4) a system of equations without a friction term where the exponential dependence on time only enters
multiplicatively in the nonlinear terms,

d2x1

2 2 2
7 _ ((ﬁ —A)x1 _ 206x1X267%t, & - ((A —B)xz - (ocx% —ﬁx%)efgt. (2.37)

4 dr 4

_¢
Then, the Painlevé analysis directly applies to (2.37) above to show that all solutions are Laurent series, since a Taylor series expansion of ¢ z°

would not affect the lower order calculations, where free constants enter, and the Painlevé property is established.

I1l. THE PRELLE-SINGER METHOD

Given a scalar or coupled second order ODE there exist methods in the literature to find its integrals of motion, if they exist. In this
article, we restrict our attention to the Prelle-Singer method. To start with we provide a brief account of the Prelle-Singer method for coupled
second order ODEs.'

A. The Prelle-Singer method for two-coupled second order ODEs
Consider a system of two-coupled second order ODEs having the form
P Pi(t,x,y,%,¥) _
Qi(t,x,y,%,¥)

. Ptxyay)
VY= S/ N~
Q(t%,9,%,7)

Y1 (x5, %), (3.1)

Yo (x, 9, %, 7). (3.2)

2
where x = %, y= %, X= %, y= %, P;, Qj, i=1,2are polynomials in (¢, x, y, X,J) with real or complex coefficients.
Let us assume that the system (3.1) and (3.2) admits a first integral of the form

I(t, x, y, %, y) =C, (3.3)
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where each subscript denotes partial derivative with respect to that variable. Equations (3.1) and (3.2) can be rewritten as

ﬂcit —dx =0,
Q

P, .
g —dy =
" Y

(3.4)

(3.5)

(3.6)

Addinganullterm S; (t,x,9,%,y)xdt — S1 (t,x,,% y)dxand S (t,x, 9%, ¥)ydt —= S, (t,x,,%,y)dy to (3.5) and (3.6), respectively, we obtain

the following equations

(\Pldt + Slx)dt - Sldx —dx = 0, (37)
(\Pzdt + Szj/)dt — Szdy - dy =0. (3.8)
Let R (t,x,y,%,7) and R, (¢, x, y, %, ) be the appropriate integrating factors for (3.7) and (3.8), respectively. Hence we have
dl = Ry (\Pl + Slx)dt + R, (‘I’z + Szy)dt - Rlsldx - RzSzdy - Rldx - de}/ =0. (39)
On the solutions, we require that (3.4) and (3.9) be proportional. Comparing Eq. (3.4) with (3.9) we have,
I = R () + $1%) + Ry (W3 + $12), (3.10)
L =-RiS;, I = —R,S5, (3.11)
Iic = —Rl, I = —Rz. (312)
The compatibility conditions,
Ity = La, Ity = Iyt; Liie = Ly, Itj/ = Lyt Ixy = I/vx»
L = Lix, Ixj/ = Iy)n Iy)'( =1, ij/ = Ij/y; Ixy = ijc;
on the Egs. (3.10)-(3.12) leads to the following conditions,
R R
D[S1] = —Wix— 22 W+ 22 $1Woi+ 8§ Wi + ST, (3.13)
Ry R:
Ry R 2
D[Sz] = *\sz - — \{11}, + — Sz‘l’l}) + Sz\yz}‘, + SZ> (314)
R, R,
OR1 _ORi .ORi _ORy _OR;
DIR|| = +xF—+y—F—+X—F— +)—F——
Ril =5, +%%5 *y “* oz g
= —(R1¥1x + Ra¥oi + R1S1), (3.15)
OR, .OR, .OR, _ORy _OR,
DRy | = —+Xx—+y)——+X— +y——
[Rel= 5, +%%¢ *7a, “¥ax 7%,
= —(R¥y + R1¥yj + RoS2), (3.16)
S1R1y = —R1S1y + S2Rax + R Saxs (3.17)
Rix = S1R1x + RiS1i, Riy = S2Roi + RaSoss (3.18)
Ry = SRy + RaSzj, Rox = S1Ryy + Ry Sy, (3.19)
Ryj = Ry, (3.20)
where D is the total differential operator given by
D= g+x3+ 2+x2+§
ot Yox Yoy T rox oy
J. Math. Phys. 65, 032702 (2024); doi: 10.1063/5.0172498 65, 032702-6
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Integrating Eqs. (3.10)-(3.12) we obtain the corresponding integral of motion,

I= K1 + Ky + K3+ Kg — f[Rz + g(lﬂ + Ky + K3 + K4)]dy, (3.21)
Y

where

. . 0
K1 = /(Rl ("I’] + S1x) + Rz(\yz + Szy))dt, Ky = — f(RISI + a(xl))dx,

0 0 .
K3:—[(R252+8—y(;c1+x2))dy, K4:—[(R1+&(K1+K2+K3))dx.

The determining Eqs. (3.13)-(3.20) are highly coupled and cannot be solved directly. Hence we use the following method to solve it.
To start with, we can identify the following two identities using (3.13)-(3.16),

D[Rlsl] = D(R1)81 + RlD(Sl) = _(Rl\ylx + Rz\yzx), (322)

D[RzSz] = D(Rz)Sz + RzD(Sz) = —(R1\I/1y + Rz\llzy). (3.23)

To eliminate S; and S, we again take total derivative of Egs. (3.15) and (3.16) with respect to “t” and then using Egs. (3.22) and (3.23) we
get

Ryst + 2Ryt + 2yRu1py + 2W1Rygi + 2¥2 Ry + 2 Ripe + 2xyR1xy
+ 5 Ruyy + WieRis + ¥aRyj + X¥1cR1z + 7¥1, Rz + 28¥1 Riss
+ 2y¥1Ryyx + 2x¥2R1yj + 29W2R1y5 + X¥2xRyy + Y2y Ry + W1Rix
+ W3Ry, + W1 W 1R s + iR + ¥a¥iRis + W1 ¥aiRyy + Y2 ¥Ry
+W1i(Ru + XRix + JR1y + WiRii + W2Ryy) + W3Ry + 2% ¥2R55
+Wai(Rar + %R + JRay + W1Raz + ¥2Ryy) — Ri¥ix — RyWax
+ Ry (P + i1 + P15 + V1 Wi + Yo ¥15)
+ Ry (Wari + xWaui + J¥oi + V1 Wais + ¥2¥ay5) = 0,

(3.24)

Rou + 2%Rosx + 2jRay + 2¥1 Rogs + 2¥2Roy + X Rowe + 25)Rasy + 7 Rayy
+WiRoi + W2rRoj + XV 1xRox + W1y Ros + 251 Roxic + 291 Ry

+ 255 Roy + 292 Ray5 + X¥2x Ry + ¥y Rojy + W1 Roy + WaRoy

+ W ¥ 1Ros + W7 Rosi + Wo¥1yRox + ¥1WaiRay + W2 Wo5Ryp

+Wij(Ri + &Rix + JRyy + iRz + ¥aRyj ) + W3Ry

+2¥1¥2Rosy + Waj (Rar + XRox + JRay + W1 Ros + 2Ry

- Ri¥1y — RoWay + Ry (Pryy + ¥W145 + JW15 + V1 Wi + ¥2 W15

+ Ry (Wayy + ¥¥asj + W2y + W1Waiy + W2 ¥2y5) = 0.

(3.25)

Also differentiating Eq. (3.15) with respect to x and Eq. (3.16) with respect to j, we have

Rigz + XRixi + yRiys + W1Risi + WaRoi + 2R1x + 2W2iRox

(3.26)
+ 2¥15R1x + RoWoii + Ri¥1ii = 0,

RZ[}', + XRij, +j/R2yj, + \Plle,)', + \I’szj,}', + 2R2y + Z\I’zj,Rz}',

(3.27)
+ Z\I’U,le, + Rz‘I’zj,}', + Rl\l’lj,j, =0.

Differentiating (3.15) with respect to y or (3.16) with respect to x and using (3.18) and (3.19), we get a single equation

th}', + )'CRlxj, +}'/R1yj, + \I’1R1,'C}', + \I’zR]j,}', + Rly + Ryy + \I’z,'ch}',

(3.28)
+ \IJla'chy + ‘I’ZJ‘C}',RZ + \I’l)‘g‘,Rl + \Plj/lec + \Pz)*,Rl)‘, =0.
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Using Eqs. (3.18), (3.19), and (3.26)-(3.28), Eq. (3.24) simplifies as

Rugt + 2&R1x + 2R1y + Wi Ryss + WaR 1y + % Rixy + 25)R1y — R1 Wi
- RyWax +j/2R1yy +WiRiz + WorRyy + XV 1xR1x + ¥1yRisx + X¥1 Rixi
+ y¥1Ryx + x¥2R1yy + y¥2Ryyy + XV2xRyy + yWoyRyy — ¥iR1x (3.29)
— WoRoy + Wia(Ris + XRix + jR1y) + R (Wrei + ¥W 1 + 7¥15)
+ W2 (Rat + XRox + JRay) + Rz(‘l’ztx + X oxi +}'/‘Y2yy) =0,
Now, using Egs. (3.18), (3.19), and (3.26)-(3.28), Eq. (3.25) simplifies to the form

Rott + 2&Rote + 2§Raty + W1 Rags + WaRosy + 5° Ry + 25)Rony — R1W),
— RyWay + WitRai + WarRaj + 77 Rayy + ¥¥1xRoi + ¥ 1, Ros + X% Roxs
+ y¥1Ryyi + x¥2Royy + yW2Rayy + xVaxRoj + yWoyRoj — WiRyy (3.30)
= W3Ry + Wij(Rys + %Rix + jRiy) + Ry (P + %1 + W1y
+Way(Rat + XRox + jRoy) + R (Wayj + ¥¥2sy + §%2y5) = 0.
Now solving the Egs. (3.29) and (3.30) one can find R; and R,. The null forms S; and S, can be found by substituting the obtained values
of R; and R, in Egs. (3.15) and (3.16). Hence integrals of motion for the system (3.1) and (3.2) can be found by using the resultant forms of
Ri,R;,S1and S, in Eq. (3.21).
B. The Prelle-Singer method for modified Hénon-Heiles system
We rewrite the modified Hénon-Heiles system given by Eqs. (2.3) and (2.4) for ¢, = ¢, = ¢ as

X =Yi(x,p,%) = —¢px — Ax — 2axy, (3.31)
7= Wa(x,9,7) = ¢y — By — ax’ + By’. (3.32)

Let us assume that the above equations admit an integral of motion I(#, x, y, %, ). Following the procedure outlined in the previous
sub-section we get

Ryy + 2xRyp + Zj/RUy + V1R + \PzRu}', + Xlexx + ZJ'Cj/Rlxy — W1Rox
+ (A +2ay)Ry + 2axR; + 7 Riyy — pxR1; — 20x)R 5 + X1 Ry

+ J¥1Ryyi + ¥¥5R1yg + ¥R,y — 2axkR;5 — V1 Ry (33)
+ (2By — B)yRyj — ¢(Rys + ¥Rix + yRyy) = 0,

Rott + 2XRotx + 2yRosy + W1Rori + WaRyyy + % R + 2xyRoxy + 2axRy

+ (B+2By)R: — (A +2ay)XRyi — 2axyRoi + X¥1 Roxic + V1JRoyz (3.34)

+ 7 Rayy + ¥%2 Ry + W2 Rayy — (B — 2By)jRoy — Wi Ry,
- 2ax%Ryj — YaRyy — ¢(Ras + ¥Rox + yRzy) = 0.

A comprehensive examination reveals that obtaining a general solution for the aforementioned equations with respect to Ry and R; is generally
unattainable. Nonetheless, a specific solution is sufficient for determining the integrals of motion. Therefore, we assume that

R, = [(Snx + &2y + 813)5C + (/\nx + /\12}/ + /\13)j/ + (yux + Uy + [,ln)]f(t),
R, = [(821){,’ + &0y + 823))'( + (Az1x + /122}/ + /\23)}'/ + ((421x + Uny + ‘1/£23):|f(t)

where &, A, i i=1,2,j=1,2,3 are unknown constants and f(¢) is an unknown function of t which has to be determined.

Substituting the values of R; and R; into (3.33) and (3.34), solving the resulting equations we can obtain the following two sets of values
for case 1(a).

() Mj=ej=Ay=e=pa=p3=0, k=12, j=1,2,3.

2 6
e13=-1, Aaz ==Ly = o1 = *§¢,M22 =up =0, f(t)= es?.
(i) ej=&r=Ar=Aj=pn=p3=0, k=12, j=1,2,3.

2 6
U =p23 =0, diz=€3=-1, pia = a1 = —g¢,f(f) =es?
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Below we give the explicit forms of Ry, R,, S1, S> and their integrals of motion for case (1a).
Casel(a). A=B, f=-a, B= 2%(;52.
Here the explicit forms of R; and R; read

(i) R = (x+ % ¢x)es¢r Ry - _(y N % ¢y)e?¢‘
. L2 S ot 2 ot
(ii) Ry = —(y+ B qSy)ev , R, = (x+ s gbx)eS

Making use of the above R; and R; in Egs. (3.15) and (3.16) we obtain the following values of S; and S, respectively.

2 2
2 2 o (X" +
() Si=2¢+ 2, Sz:*‘l”#’
5 x+§¢x 5 y+z oy
2 >+ x 2
(ii)81:7¢+7a,(y2+x), $== ¢p+2a —2—,
5 y+zdy 5 X+ fox

Thus we obtain the following integrals of motion for (3.31) and (3.32),

0 1= (16 +57) D) 282 7)o L))
(if) I = (xj’+ %‘/’(k)’mﬁ + %(bzx)w ocx(yz + %xz)) s 0,

Proceeding further we obtain nontrivial forms for R; and R; associated with case 2(b).

The explicit forms of Ry, Rz, S1, Sz and the integrals of motion obtained for the parametric restrictions in case 2(b) are given below.
Case2(b). A=B, f=—6a, B= 5S¢’

The explicit forms of Ry, Rz, S1 and S, and the related integrals read as

(i) Ri = 7(5c+ % (/)x)egq”, Ry = 7()'/+ % (py)e%(’”,

2 2
Zaxy o 2, 8465

317 . 2
X+ ¢x 5 y+z ¢y

2
A
( % +y + f¢(xx+yj/) + 22—5¢2(x2 +y2) + ocy(x2 + 2y2))eg¢t,

ii) Ry = 4 2k x+ xy)es?, Rz——4xx+% et
Y~ xp y

X)+ (/)xy+ ¢xy+ax’ +2 axy

S1 = >
Xy —2xy — 5¢xy
—(5c2 + %gbxjc - 2(xx2y)
S2= 2.2 >
Xy + s¢x
L= (45c(xj/ - yx) + §¢x(xy —xy) +ax’ (x2 + 4y2))e§¢t.

It is easy to check that the obtained integrals are independent in both the cases.
In order to construct the integral for case 2(c) we consider R, and R, as quadratic polynomials in % and y as

Ri=[(e1x+ ey +&)k" + (eax + &5y + €6)§” + (e7x + £y + £0)iy + - -+ | £ (£)

R; = [(91x + 92)/ + 93)5€2 + (94?6 + 95)/ + 65))72 + (97)6 + 98)/ + 99)96)/ + .- ]f(t),

where ¢;,0;,i=1,2,... are constants and f(¢) is an unknown function. A detailed calculation shows that there exists nontrivial solutions for
Ri, Ry, S1 and S, in this case also. Their explicit forms for the case 2(c) are given below.
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Case2(c). A=B, f=-16a, B= 2%(’52.

() Ri=—(5+ 2 )b 0 Ro= (54 2 )i

2 20 X 2 a(F*+16y
Si==¢+ 7)’ Sz:,¢+¥
5 % +25 ¢x 5 y+i ey
2 16 s
Ilz( i+’ +7¢(x5c+yjl)+2—¢2(x2+y2)+cxy(x2+?yz))es"”,
216 432 288
(if) Ry = (36x +— x2¢x+2—55c¢2x2 ¢x +720cxyx+24oqu5y—12axy)e*
22
Ry = 120 £ ( (px) 2ot U(x,y,)hc,)‘/)’ s, - 3542 a xx'—420cxy+g x
V(x,9,%7) x(k+zx)

where
AR PN e B — ) - 120 (e + 357 — 48axy(ay — o &
U(x,y,%p) = = (x+ 5¢x)+720cxyx(x+¢x) s Px (ocy 125(/) ) 12ax” (ax” + 35)) — 48ax y(zxy 25(/5 ),
- 2f. 6 2 3 144 5 of 0 2
V(x,y,%,¥) =36x"(x + g(/)x +36ax y(2x + y) + 12ax (2¢y—y)+E¢x 3%+ g(/)x ,
o5 (s Bse) s 1445001 1 6

L= (9x (x+ 5¢ )+ 125¢> (2x+ 5¢x)+36xx ((xy+ 25¢ )

24 4 iH]

+ 12ax’%(2¢y - ) — 20¢2x4(x2 + 6y2) + ggbax“(ggby —j/))e e

One can note that we can use the method suggested in Ref. 25 to remove the time-dependent part of the integrals, which helps to prove the

integrability nature of the present cases.

IV. INVARIANCE AND LIE SYMMETRY ANALYSIS OF THE MODIFIED HENON-HEILES SYSTEM

The modified Hénon-Heiles system (3.31) and (3.32) is also a Lagrangian system. The Euler-Lagrange equations of motion are

4(0) 0L d(00) 0L
dt\ o Ox at\oy) oy’

L= [%(xz +j/2) - %(sz + Byz) - (ocxzy— %ﬂf)]e‘pt

where L is the Lagrangian given by

The integrability properties of the modified Hénon-Heiles system could also be studied through the symmetry properties of it.”>**

Let (4.1) be invariant under the one parameter (¢) Lie group of infinitesimal transformations given by

x> X=x+en(t,xyxy),

yoY=y+temn(toysy)
t>T=t+eé(t,x,0.%7).
This leads to the following invariance condition to be satisfied
— k€ 28W, = X(W1), 1 - §E - 28¥, = X(T,).

where ¥; and W, are as given in (3.31) and (3.32), respectively, and the infinitesimal operator X is given by

0 0 0
X:fa+’11&+’725y+(’11 Ex) +(112—€y)—

After a detailed calculation, we observe that
E=0, m =m(xp5i)e, m=n(xyxi)e", - constant,

(4.1)

(4.2)

(4.3)
(4.4)

(4.5)

(4.6)

(4.7)
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and the nontrivial symmetries occur for the P-cases only. The details of the above investigation will be published elsewhere. Using Noether’s
theorem, the first integral of motion can be identified for each set of Lie symmetries which takes the form

.2 ¢ 2 s
§=0,m = (x+ g‘bx)eSt» N2 = ()/+ ggby)est‘
Similarly, the second integral of motion can be identified for each set of non-trivial symmetries of the following forms,
Casel(a): A=B= 765¢2)ﬁ —
.2 ¢ 2 ‘
§=0,m= (J’+ g‘l’)’)est» M2 = (x+ gqu)esf
Case2(b): A=B= %¢2)/3 e
8 3 8 5
§=0, m= (4’6)"— 8yk — g‘/’x)’)eSW, 7 = (45cx+ g(pxz)esfﬁt

Case2(c):A=B= z%gbz,ﬂ = —-16a.

216 2 288 : 2\ :
£=0,m= (365c3 + ?(pxjc(ic + g(px) + E¢3x3 +240x"y(3% + ¢x) — 12ax3j/)es¢t, n2 = —12ax3(5c + g(px)es“”.

A. Separability

In this section, we show how the generalized symmetries obtained can be used to find coordinates transformations in which the equa-
tions of motion become separable. This is possible when the generalized symmetries are linear in velocities. We say that a differentiable
function U(t,x,y,%,)) is an invariant for the transformations (4.3)-(4.5) if XU = 0, which is a first order partial differential equation. Then
its characteristic equations are

dt dx dy  dx dy

Eomom (h-&) (-§)
One can also find integrals of motion to the modified Hénon-Heiles system by solving the characteristic Eq. (4.8). Since our aim is to find
suitable coordinates transformations leading to separability we consider only the following part of Eq. (4.8). We illustrate this for case (1)

(4.8)

dx dy

N E T 49)
(y+ ggby)es (x+ g(px)es
Solving which we get
(* —yz)e_gw = constant, (4.10)
leading to the coordinates transformations u = (x + y)e_»%‘*” , v=(x- y)e_§¢t.
In the above coordinates the Eqgs. (2.3) and (2.4) separates into
d2u du 2 ;gbt
?Jr(pa +Au+aues” =0, (4.11)
v dv 2 2t
E‘F(/)E +Av—avies® =0. (4.12)
Equation (4.11) can be transformed into
du du 6 al\ ;2
P20 + —u=—| = |05, 4.13
a? a2 (¢2)” (&13)
by a substitution [ = ¢*'. Equation (4.13) can be further transformed into an Emden-Fowler equation of the form
& 250
d;; - _?f‘z W, (4.14)
z

by the substitution [ = 2%, u = z>w(z). The solution of Eq. (4.14) can be written parametrically interms of the Weierstrass elliptic function.”®
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V. EXACT SOLUTION OF MODIFIED HENON-HEILES SYSTEM

It is well known that finding an exact solution for a given nonlinear PDE or ODE is a difficult task. Also, there exists no unique analytic
method to construct an exact solution of nonlinear differential equations, in general. Recent investigations demonstrate that tanh or sech
method can provide an effective tool for nonlinear ODEs and PDEs toward constructing specific/particular solutions.”’” In this section we
extend the tanh or sech method to modified Hénon-Heiles system. With this aim, we look for exact solution of modified Hénon-Heiles
system having the form

x(t) = Ay + A, tanh (bt + &) + A; tanh® (bt + 6),

y(t) = By + B, tanh (bt + 8) + B; tanh® (bt + §).

where A;,Bi,i=1,2,3 and b are unknown constants to be determined. Substituting x(t) and y(t) in the equations of the modified
Hénon-Heiles system we find that each one becomes a fourth degree polynomial in tanh(bf + §). Then equating different powers of
tanh (bt + §) in both the equations to zero we obtain a system of algebraic equations in A; and B;, i = 1,2, 3. Solving them consistently yields
the following exact solutions.

Exact solution for integrable cases:

(i) A=B= " f=-
x(t) = 3 [3+tanh(—1%t+6)][—l+tanh(—1%t+6)],

100«

y(t) = —%[tanhz(—%ﬂ 8) +2 tanh(—l%tJré) + 5].

ﬁnAszéwiﬁ:%m
x(t)— I¢ [(1+ tanh( ?§t+6)]’

y(t) = Ig(fa[1 + tanh(—%t+ 6)][3 tanh(—%ua) - 1].

(i) A= 2 B= - 20 g fo t6a, a= -2 ¢,

x(t) = - \/_[t nh(—l%t+8) + 1]2,
y(t) = - +tanh (—EH 8) 5 tanhz( l‘f)tﬂs).

Exact solution for other cases:

(iv) A=B= —ipz, B= _ém

x(t)—6\/_a|:tanh(¢t+8) ][tanh(§t+5)—1],
y(t) = ¢2[tanh(¢t+6) ][tanh(%t+6)—3].

12
16

(V) A= s B¢ fe e

x(t) = 31\/_7?[ nh(—l%t+ 6) + 1]2,

y(t)=- 20%2 [ 3+4tanh(—%tﬂ?)+2tanh2(—l%t+6)].

We see that cases (i) and (ii) above have an exact solution for the integrable cases (1a) and (2b) respectively. Though the integrability of
parametric cases (1) and (2a) is not established, an exact solution for the same is given in (iv) and (v) respectively, which may correspond
to the cases admitting lesser number of arbitrary constants in the Laurent series. It appears that case 1(c) may not admit the exact solution
expressed in tanh or sech function. One may also be able to find particular forms of elliptic functions, generalizing the above procedure which
we hope to explore in future.
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VI. SUMMARY AND CONCLUDING REMARKS

In this article, by applying the Painlevé analysis of ordinary differential equations to modified Hénon-Heiles system we report that
it admits the Painlevé property for three distinct parametric restrictions. For each of the identified cases, we construct two independent
integrals of motion using the well known Prelle-Singer method. Thus we infer that the modified Hénon-Heiles system is integrable for three
distinct parametric restrictions. We have shown that there exists an exact solution for two of the isolated three integrable cases of modified
Hénon-Heiles system expressed in terms of tanh function. We observe that when

B=-16a, ¢ =¢1=9¢ (6.1)

leads to the integrable case 2(c), where
6

A=B=—¢"
25?

But we are able to find an exact solution expressed in tanh function for the case in (6.1) when A = %(pz, B= —% > a=-— %(/)Z. Also, we have
isolated two more parametric restrictions of modified Hénon-Heiles system admitting Laurent series solution with two arbitrary constants
and two of them admit an exact solution expressed in tanh function. From the investigation, we observe that the inclusion of damping term
in the equations of motion leads to further parametric restriction in the linear terms of the equations. The connection between the Laurent

series solution and the tanh solution of the integrable case needs further investigation.
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