

View

Online


Export
Citation

RESEARCH ARTICLE |  MARCH 19 2024

Painlevé analysis, Prelle–Singer approach, symmetries and
integrability of damped Hénon–Heiles system 
C. Uma Maheswari  ; N. Muthuchamy  ; V. K. Chandrasekar  ; R. Sahadevan   ; M. Lakshmanan 

J. Math. Phys. 65, 032702 (2024)
https://doi.org/10.1063/5.0172498

 30 M
ay 2024 14:51:26

https://pubs.aip.org/aip/jmp/article/65/3/032702/3277716/Painleve-analysis-Prelle-Singer-approach
https://pubs.aip.org/aip/jmp/article/65/3/032702/3277716/Painleve-analysis-Prelle-Singer-approach?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0003-1439-1930
javascript:;
https://orcid.org/0009-0007-1211-6042
javascript:;
https://orcid.org/0000-0002-2220-9310
javascript:;
https://orcid.org/0000-0003-1748-3216
javascript:;
https://orcid.org/0000-0001-6687-4251
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0172498&domain=pdf&date_stamp=2024-03-19
https://doi.org/10.1063/5.0172498
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063253&setID=592934&channelID=0&CID=754915&banID=520996574&PID=0&textadID=0&tc=1&scheduleID=1989154&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjmp%22%5D&mt=1717080686812420&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjmp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0172498%2F19831967%2F032702_1_5.0172498.pdf&hc=1fbfe8ce658781263f753fecb1ee8ed9c1afe087&location=


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

Painlevé analysis, Prelle–Singer approach,
symmetries and integrability of damped
Hénon–Heiles system

Cite as: J. Math. Phys. 65, 032702 (2024); doi: 10.1063/5.0172498
Submitted: 16 August 2023 • Accepted: 26 February 2024 •
Published Online: 19 March 2024

C. Uma Maheswari,1 N. Muthuchamy,1 V. K. Chandrasekar,2 R. Sahadevan,1,a)

and M. Lakshmanan3

AFFILIATIONS
1 Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai 600005, Tamil Nadu, India
2Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University,
Tanjavur 613401, Tamil Nadu, India

3Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India

a)Author to whom correspondence should be addressed: ramajayamsaha@gmail.com

ABSTRACT
We consider a modified damped version of Hénon–Heiles system and investigate its integrability. By extending the Painlevé analysis of
ordinary differential equations we find that the modified Hénon–Heiles system possesses the Painlevé property for three distinct parametric
restrictions. For each of the identified cases, we construct two independent integrals of motion using the well known Prelle–Singer method.
We then derive a set of nontrivial non-point symmetries for each of the identified integrable cases of the modified Hénon–Heiles system. We
infer that the modified Hénon–Heiles system is integrable for three distinct parametric restrictions. Exact solutions are given explicitly for
two integrable cases.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0172498

I. INTRODUCTION
The study of nonlinear differential equations has attracted much attention due to various reasons during the past several decades.1–3 Non-

linear differential equations are not solvable or integrable in general and they possess various exciting mathematical structures and physical
features. Given a nonlinear differential equation, there exists no unique method to determine whether it is integrable or not. There exist several
definitions for integrability such as Lax integrability, algebraic integrability, Liouville integrability, etc. in the literature.2 Several analytic and
numerical methods have been devised by different research groups to deal with nonlinear differential equations in general and integrability in
particular.1,2,4–6 Among them, the Painlevé analysis proposed by Ablowitz, Ramani, and Segur for ordinary differential equations (ODE) and
extended to partial differential equations (PDE) by Weiss, Tabor, and Carnevale played a vital role in identifying the integrable cases of both
nonlinear ODEs and PDEs during the past few decades.3,7–10 The Painlevé test is based on the realization that the integrability of differential
equations is known to be related to the singularity structure of the solution. A nonlinear differential equation is said to possess the Painlevé
property if its general solution is single valued about the movable singular point in the case of ODE and movable singularity manifold for
PDEs. A nonlinear dynamical system governed either by ODE or PDE passes the Painlevé test then it is expected to be integrable and have
a solution that can be described by an appropriate Laurent series expansion locally.3,11,12 The effectiveness of the Painlevé analysis has been
widely demonstrated by identifying several new integrable systems.12–14 Another important problem of nonlinear differential equations is to
find its integrals of motion. If an Nth order nonlinear ODE admits N − 1 functionally independent integrals then it is completely integrable.
Also, the existence of integrals of motion enables one to reduce the order of the differential equation. Several analytic methods have been
devised to find integrals of motion for nonlinear differential equations.2,15–18 Darboux has proposed a systematic method to construct integral
of motion for Hamiltonian systems with two degrees of freedom. Chandrasekhar has successfully exploited the idea of Darboux to construct
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second and third integrals of motion for Hamiltonian systems with three degrees of freedom.19,20 Recent investigations reveal that the direct
method proposed by Prelle and Singer provides an efficient tool to find integrals of motion for coupled nonlinear second order ODEs.15,21,22

Also, it is known that there exists a deep connection between the existence of nontrivial symmetries and integrals of motion of nonlinear
differential equations.23,24

It is known that the celebrated Hénon–Heiles (HH) system described by the Hamiltonian

H =
1
2
((

dx
dt
)

2

+ (
dy
dt
)

2

) +
1
2
(Ax2

+ By2
) + (αx2

−
1
3

βy2
)y, (1.1)

with equations of motion
d2x
dt2 + Ax + 2αxy = 0, (1.2)

d2y
dt2 + By + αx2

− βy2
= 0, (1.3)

where A, B, α and β are constants is completely integrable in the sense of Liouville for the following three distinct cases:

(i) A = B, β = −α.
(ii) A, B arbitrary, β = −6α.

(iii) B = 16A, β = −16α.
If an integrable nonlinear dynamical system undergoes perturbation then the resulting system may not be integrable in general. With
this aim, we introduce a damping term in the equations of motion of HH system in the following form:

d2x
dt2 + ϕ1

dx
dt
+ Ax + 2αxy = 0, (1.4)

d2y
dt2 + ϕ2

dy
dt
+ By + αx2

− βy2
= 0, (1.5)

where ϕ1 and ϕ2 are constants in addition to with A, B, α and β. We refer to the above as the modified Hénon–Heiles system equations.
We also note here that one can always use the scaling transformation available for the independent variable t to fix the parameter
α = 1 without loss of generality and also to agree with the original Hénon–Heiles system in the absence of damping. However, we prefer
to keep “α” as arbitrary here for convenience in order to compare with the various works in the literature on the generalization of
Hénon–Heiles system and one can always fix α = 1 whenever necessary.

The aim of this article is to identify the parametric restrictions at which (i) the general solution of it is single valued about the movable
singular point (ii) admits two functionally independent integrals of motion and (iii) admits more than one set of nontrivial non-point sym-
metries through the Painlevé analysis, Prelle–Singer method and Lie symmetry analysis, respectively. The plan of the article is as follows. In
Sec. II, we extend the Painlevé analysis of ODEs to the modified Hénon–Heiles system governed by the above system [Eqs. (1.4) and (1.5)]
of two-coupled second order ODEs and show that its solution is single valued about the movable singular point and admit four arbitrary
constants for three distinct parametric restrictions. In Sec. III, we apply the Prelle–Singer method to the system of two coupled second order
ODEs associated with the modified Hénon–Heiles system and derive two independent integrals for each of the identified cases ensuring
their integrability. In Sec. IV, we derive a set of nontrivial non-point symmetries for each of the identified integrable cases of the modified
Hénon–Heiles system. An attempt is made to find exact solution, if it exists, for each one of the three identified cases in Sec. V. A summary of
the results of our investigation is given in Sec. VI.

II. PAINLEVÉ ANALYSIS OF THE MODIFIED HÉNON–HEILES SYSTEM
To start with we give a brief summary of the Painlevé analysis for a scalar nth order nonlinear ODE having the form12

F(t, x,
dx
dt

, . . . ,
dnx
dtn ) = 0, (2.1)

where F is analytic in t and rational in other arguments. In the Painlevé analysis, one looks for solution of Eq. (2.1) expressed as a Laurent
series

x(t) = (t − t0)
qj
∑

k
ak(t − t0)

k, Re(qj) < 0, 0 < ∣t − t0∣ < R (2.2)

in the neighborhood of an arbitrary singular point t0.
The Painlevé analysis for ODEs essentially consists of the following three steps:
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(a) determination of leading-order bahaviour of the Laurent series,
(b) determination of resonances, that is the powers at which arbitrary constants of the solution of (2.2) enter into the Laurent series

expansion; and
(c) verification that a sufficient number of arbitrary constants exist without the introduction of movable critical points.We would like to

remind that the Painlevé analysis provides only necessary condition for integrability of the considered nonlinear ODE. The sufficient
condition for integrability of it has to be established by other means, for example by constructing its sufficient number of integrals of
motion.

The remaining part of the section contains the details of the Painlevé analysis of the modified Hénon–Heiles system governed by

d2x
dt2 + ϕ1

dx
dt
+ Ax + 2αxy = 0, (2.3)

d2y
dt2 + ϕ2

dy
dt
+ By + αx2

− βy2
= 0. (2.4)

A. Leading-order behaviors
Let us assume that the leading order behavior of x(t) and y(t) be

x(t) ≈ a0τp, y(t) ≈ b0τq, τ = (t − t0)→ 0 (2.5)

in a neighborhood of the movable singularity t0, which results to the leading-order equations

a0p(p − 1)τp−2
+ 2αa0b0τp+q

= 0, (2.6)

b0q(q − 1)τq−2
+ αa2

0τ2p
− βb2

0τ2q
= 0. (2.7)

From Eqs. (2.6) and (2.7) we identify the following two distinct sets of possibilities.

Case 1.

p = −2, q = −2, a0 = ±
3
α

√

(2 +
β
α
), b0 = −

3
α

. (2.8)

Case 2.

p =
1
2
±

1
2

¿
Á
ÁÀ(1 −

48α
β
), q = −2, a0 = arbitrary, b0 =

6
β

. (2.9)

B. Resonance
To identify the resonance values, we substitute

x(t) ≈ a0τp
+ ω1τp+r , y(t) ≈ b0τq

+ ω2τq+r , τ = (t − t0)→ 0 (2.10)

into Eqs. (2.3) and (2.4), retaining only the leading-order terms. This results into the following system of linear algebraic equations,

M2(r)Ω = 0, Ω = (ω1, ω2), (2.11)

where M2(r) is a 2 × 2 matrix depending on r.
For Case 1, the form of M2(r) is

M2(r) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

(r − 2)(r − 3) + 2αb0 2αa0

2αa0 (r − 2)(r − 3) − 2βb0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

To have nontrivial solutions for (ω1, ω2), we require det(M2(r)) = 0,

⇒ (r + 1)(r − 6)(r2
− 5r + 12 +

6β
α
) = 0 (2.12)
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and so

r = −1, 6,
5
2
±

1
2
[1 − 24(1 +

β
α
)]

1
2

. (2.13)

In a similar manner for case 2 we find that the resonances occur at

r = −1, 0, (1 − 2p), 6. (2.14)

Demanding that the resonance value r be a non-negative integer other than −1, Eqs. (2.13) and (2.14) allow the following parametric cases
and resonance values.

Case 1(a) : p = −2, q = −2; β = −α; r = −1, 2, 3, 6. (2.15)

Case 1(b) : p = −2, q = −2; β = −
4
3

α; r = −1, 1, 4, 6. (2.16)

Case 1(c) : p = −2, q = −2; β = −2α; r = −1, 0, 5, 6. (2.17)

Case 2(a) : p = −
3
2

, q = −2; β = −
16
5

α; r = −1, 0, 4, 6. (2.18)

Case 2(b) : p = −1, q = −2; β = −6α; r = −1, 0, 3, 6. (2.19)

Case 2(c) : p = −
1
2

, q = −2; β = −16α; r = −1, 0, 2, 6. (2.20)

C. Evaluation of arbitrary constants
Obviously the movable singular point t0 is arbitrary, associated with resonance value −1. To check if the appropriate constants are

arbitrary corresponding to other resonance values, we introduce the following series expansions,

x(t) =
6

∑
k=0

akτp+k, y(t) =
6

∑
k=0

bkτq+k, τ = (t − t0), (2.21)

in all the terms of (2.3) and (2.4). As a result, we obtain a system of 2−coupled recurrence relations. For example, for case 1, the recurrence
relations read

(k − 2)(k − 3)ak + (k − 3)ϕ1ak−1 + Aak−2 + 2α∑
l

albk−l = 0, (2.22)

(k − 2)(k − 3)bk + (k − 3)ϕ2bk−1 + Bbk−2 + α∑
l

alak−l − β∑
l

blbk−l = 0. (2.23)

Solving the above set of recurrence relations successively one can obtain the various ak and bk explicitly. For example, for case 1(a), when
k = 0, 1 respectively we find [Here, a−1 = b−1 = a−2 = b−2 = 0]

a0 = b0 = −
3
α

, a1 = −
3

5α
(2ϕ1 − 3ϕ2), b1 =

3
5α
(3ϕ1 − 2ϕ2). (2.24)

For k = 2 we have

2α(b0a2 + a0b2) = (ϕ1 − 2αb1)a1 − Aa0, (2.25)

2α(a0a2 + b0b2) = −α(a2
1 + b2

1) + ϕ2b1 − Bb0. (2.26)

Solving the above equations we find

a2 = arbitrary, b2 = −
25A + 26ϕ2

1 − 63ϕ1ϕ2 + 36ϕ2
2 + 50a2α

50α
, (2.27)

B = A − 6ϕ1ϕ2 +
17
5

ϕ2
2 +

13
5

ϕ2
1. (2.28)

For k = 3 we have

2α(b0a3 + a0b3) = −2α(a1b2 + a2b1) − Aa1, (2.29)
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2α(a0a3 + b0b3) = −2α(a1a2 + b1b2) − Bb1. (2.30)

Solving the above equations we find

a3 = −b3 +
ϕ3

1

250α
, b3 = arbitrary, ϕ2 = ϕ1. (2.31)

Proceeding further we find a4, b4, a5 and b5 explicitly. However the coefficient either a6 or b6 is arbitrary only if

B = A =
6

25
ϕ2

1. (2.32)

We thus infer that the modified Hénon–Heiles system admits a single valued solution with four arbitrary constants for the parametric
restrictions

β = −α, ϕ2 = ϕ1 = ϕ, A = B =
6

25
ϕ2. (2.33)

Proceeding in a similar manner we find that for the following restrictions the modified Hénon–Heiles system admits Laurent series solutions
with four arbitrary constants:

Case 2(b) : A = B, β = −6α, ϕ1 = ϕ2 = ϕ, B =
6

25
ϕ2, (2.34)

Case 2(c) : A = B, β = −16α, ϕ1 = ϕ2 = ϕ, B =
6

25
ϕ2, (2.35)

We would like to mention that for the remaining cases (1b), (1c) and (2a) there exists a Laurent series solution with only three or two
arbitrary constants and consequently special exact solutions may exist for these cases.

D. Remark
We also mention here the fact that on taking the condition ϕ1 = ϕ2 = ϕ in (2.3) and (2.4) it leads directly to Painlevé integrability as

follows: If one changes the variables x, y to x1, x2 such that

x = x1e−
ϕ
2 t , y = x2e−

ϕ
2 t , (2.36)

one obtains from (2.3) and (2.4) a system of equations without a friction term where the exponential dependence on time only enters
multiplicatively in the nonlinear terms,

d2x1

dt2 = (
ϕ2

4
− A)x1 − 2αx1x2e−

ϕ
2 t ,

d2x2

dt2 = (
ϕ2

4
− B)x2 − (αx2

1 − βx2
2)e
−

ϕ
2 t. (2.37)

Then, the Painlevé analysis directly applies to (2.37) above to show that all solutions are Laurent series, since a Taylor series expansion of e−
ϕ
2 t

would not affect the lower order calculations, where free constants enter, and the Painlevé property is established.

III. THE PRELLE–SINGER METHOD
Given a scalar or coupled second order ODE there exist methods in the literature to find its integrals of motion, if they exist. In this

article, we restrict our attention to the Prelle–Singer method. To start with we provide a brief account of the Prelle–Singer method for coupled
second order ODEs.15,21,22

A. The Prelle–Singer method for two-coupled second order ODEs
Consider a system of two-coupled second order ODEs having the form

ẍ =
P1(t, x, y, ẋ, ẏ)
Q1(t, x, y, ẋ, ẏ)

= Ψ1(x, y, ẋ, ẏ), (3.1)

ÿ =
P2(t, x, y, ẋ, ẏ)
Q2(t, x, y, ẋ, ẏ)

= Ψ2(x, y, ẋ, ẏ). (3.2)

where ẋ = dx
dt , ẏ = dy

dt , ẍ = d2x
dt2 , ÿ = d2y

dt2 , Pi, Qi, i = 1, 2 are polynomials in (t, x, y, ẋ, ẏ) with real or complex coefficients.
Let us assume that the system (3.1) and (3.2) admits a first integral of the form

I(t, x, y, ẋ, ẏ) = C, (3.3)
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where C is constant and so
dI = Itdt + Ixdx + Iydy + Iẋdẋ + Iẏ dẏ = 0, (3.4)

where each subscript denotes partial derivative with respect to that variable. Equations (3.1) and (3.2) can be rewritten as

P1

Q1
dt − dẋ = 0, (3.5)

P2

Q2
dt − dẏ = 0. (3.6)

Adding a null term S1 (t, x, y, ẋ, ẏ)ẋdt − S1 (t, x, y, ẋ, ẏ)dx and S2 (t, x, y, ẋ, ẏ)ẏdt − S2 (t, x, y, ẋ, ẏ)dy to (3.5) and (3.6), respectively, we obtain
the following equations

(Ψ1dt + S1ẋ)dt − S1dx − dẋ = 0, (3.7)

(Ψ2dt + S2ẏ)dt − S2dy − dẏ = 0. (3.8)

Let R1(t, x, y, ẋ, ẏ) and R2(t, x, y, ẋ, ẏ) be the appropriate integrating factors for (3.7) and (3.8), respectively. Hence we have

dI = R1 (Ψ1 + S1ẋ)dt + R2 (Ψ2 + S2ẏ)dt − R1S1dx − R2S2dy − R1dẋ − R2dẏ = 0. (3.9)

On the solutions, we require that (3.4) and (3.9) be proportional. Comparing Eq. (3.4) with (3.9) we have,

It = R1(Ψ1 + S1ẋ) + R2(Ψ2 + S2ẏ), (3.10)

Ix = −R1S1, Iy = −R2S2, (3.11)

Iẋ = −R1, Iẏ = −R2. (3.12)

The compatibility conditions,

Itx = Ixt , Ity = Iyt , Itẋ = Iẋt , Itẏ = Iẏt , Ixy = Iyx,
Ixẋ = Iẋx, Ixẏ = Iẏx, Iyẋ = Iẋy, Iyẏ = Iẏy, Iẋẏ = Iẏẋ,

on the Eqs. (3.10)–(3.12) leads to the following conditions,

D[S1] = −Ψ1x −
R2

R1
Ψ2x +

R2

R1
S1Ψ2ẋ + S1Ψ1ẋ + S2

1, (3.13)

D[S2] = −Ψ2y −
R1

R2
Ψ1y +

R1

R2
S2Ψ1ẏ + S2Ψ2ẏ + S2

2, (3.14)

D[R1] =
∂R1

∂t
+ ẋ

∂R1

∂x
+ ẏ

∂R1

∂y
+ ẍ

∂R1

∂ẋ
+ ÿ

∂R1

∂ẏ

= −(R1Ψ1ẋ + R2Ψ2ẋ + R1S1), (3.15)

D[R2] =
∂R2

∂t
+ ẋ

∂R2

∂x
+ ẏ

∂R2

∂y
+ ẍ

∂R2

∂ẋ
+ ÿ

∂R2

∂ẏ

= −(R2Ψ2ẏ + R1Ψ1ẏ + R2S2), (3.16)

S1R1y = −R1S1y + S2R2x + R2S2x, (3.17)

R1x = S1R1ẋ + R1S1ẋ, R1y = S2R2ẋ + R2S2ẋ, (3.18)

R2y = S2R2ẏ + R2S2ẏ, R2x = S1R1ẏ + R1S1ẏ, (3.19)

R1ẏ = R2ẋ, (3.20)

where D is the total differential operator given by

D =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ ẍ

∂

∂ẋ
+ ÿ

∂

∂ẏ
.
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Integrating Eqs. (3.10)–(3.12) we obtain the corresponding integral of motion,

I = κ1 + κ2 + κ3 + κ4 − ∫ [R2 +
∂

∂ẏ
(κ1 + κ2 + κ3 + κ4)]dẏ, (3.21)

where

κ1 = ∫ (R1(Ψ1 + S1ẋ) + R2(Ψ2 + S2ẏ))dt, κ2 = −∫ (R1S1 +
∂

∂x
(κ1))dx,

κ3 = −∫ (R2S2 +
∂

∂y
(κ1 + κ2))dy, κ4 = −∫ (R1 +

∂

∂ẋ
(κ1 + κ2 + κ3))dẋ.

The determining Eqs. (3.13)–(3.20) are highly coupled and cannot be solved directly. Hence we use the following method to solve it.
To start with, we can identify the following two identities using (3.13)–(3.16),

D[R1S1] = D(R1)S1 + R1D(S1) = −(R1Ψ1x + R2Ψ2x), (3.22)

D[R2S2] = D(R2)S2 + R2D(S2) = −(R1Ψ1y + R2Ψ2y). (3.23)

To eliminate S1 and S2 we again take total derivative of Eqs. (3.15) and (3.16) with respect to “t” and then using Eqs. (3.22) and (3.23) we
get

R1tt + 2ẋR1tx + 2ẏR1ty + 2Ψ1R1tẋ + 2Ψ2R1tẏ + ẋ 2R1xx + 2ẋẏR1xy

+ ẏ 2R1yy +Ψ1tR1ẋ +Ψ2tR1ẏ + ẋΨ1xR1ẋ + ẏΨ1yR1ẋ + 2ẋΨ1R1xẋ

+ 2ẏΨ1R1yẋ + 2ẋΨ2R1xẏ + 2ẏΨ2R1yẏ + ẋΨ2xR1ẏ + ẏΨ2yR1ẏ +Ψ1R1x

+Ψ2R1y +Ψ1Ψ1ẋR1ẋ +Ψ2
1R1ẋẋ +Ψ2Ψ1ẏR1ẋ +Ψ1Ψ2ẋR1ẏ +Ψ2Ψ2ẏR1ẏ

+Ψ1ẋ(R1t + ẋR1x + ẏR1y +Ψ1R1ẋ +Ψ2R1ẏ) +Ψ2
2R1ẏẏ + 2Ψ1Ψ2R1ẋẏ

+Ψ2ẋ(R2t + ẋR2x + ẏR2y +Ψ1R2ẋ +Ψ2R2ẏ) − R1Ψ1x − R2Ψ2x

+ R1(Ψ1tẋ + ẋΨ1xẋ + ẏΨ1yẋ +Ψ1Ψ1ẋẋ +Ψ2Ψ1ẋẏ)

+ R2(Ψ2tẋ + ẋΨ2xẋ + ẏΨ2yẋ +Ψ1Ψ2ẋẋ +Ψ2Ψ2ẋẏ) = 0,

(3.24)

R2tt + 2ẋR2tx + 2ẏR2ty + 2Ψ1R2tẋ + 2Ψ2R2tẏ + ẋ 2R2xx + 2ẋẏR2xy + ẏ 2R2yy

+Ψ1tR2ẋ +Ψ2tR2ẏ + ẋΨ1xR2ẋ + ẏΨ1yR2ẋ + 2ẋΨ1R2xẋ + 2ẏΨ1R2yẋ

+ 2ẋΨ2R2xẏ + 2ẏΨ2R2yẏ + ẋΨ2xR2ẏ + ẏΨ2yR2ẏ +Ψ1R2x +Ψ2R2y

+Ψ1Ψ1ẋR2ẋ +Ψ2
1R2ẋẋ +Ψ2Ψ1ẏR2ẋ +Ψ1Ψ2ẋR2ẏ +Ψ2Ψ2ẏR2ẏ

+Ψ1ẏ(R1t + ẋR1x + ẏR1y +Ψ1R1ẋ +Ψ2R1ẏ) +Ψ2
2R2ẏẏ

+ 2Ψ1Ψ2R2ẋẏ +Ψ2ẏ(R2t + ẋR2x + ẏR2y +Ψ1R2ẋ +Ψ2R2ẏ)

− R1Ψ1y − R2Ψ2y + R1(Ψ1tẏ + ẋΨ1xẏ + ẏΨ1yẏ +Ψ1Ψ1ẋẏ +Ψ2Ψ1ẏẏ)

+ R2(Ψ2tẏ + ẋΨ2xẏ + ẏΨ2yẏ +Ψ1Ψ2ẋẏ +Ψ2Ψ2ẏẏ) = 0.

(3.25)

Also differentiating Eq. (3.15) with respect to ẋ and Eq. (3.16) with respect to ẏ, we have

R1tẋ + ẋR1xẋ + ẏR1yẋ +Ψ1R1ẋẋ +Ψ2R2ẋẋ + 2R1x + 2Ψ2ẋR2ẋ

+ 2Ψ1ẋR1ẋ + R2Ψ2ẋẋ + R1Ψ1ẋẋ = 0,
(3.26)

R2tẏ + ẋR2xẏ + ẏR2yẏ +Ψ1R1ẏẏ +Ψ2R2ẏẏ + 2R2y + 2Ψ2ẏR2ẏ

+ 2Ψ1ẏR1ẏ + R2Ψ2ẏẏ + R1Ψ1ẏẏ = 0.
(3.27)

Differentiating (3.15) with respect to ẏ or (3.16) with respect to ẋ and using (3.18) and (3.19), we get a single equation

R1tẏ + ẋR1xẏ + ẏR1yẏ +Ψ1R1ẋẏ +Ψ2R1ẏẏ + R1y + R2x +Ψ2ẋR2ẏ

+Ψ1ẋR1ẏ +Ψ2ẋẏR2 +Ψ1ẋẏR1 +Ψ1ẏR1ẋ +Ψ2ẏR1ẏ = 0.
(3.28)
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Using Eqs. (3.18), (3.19), and (3.26)–(3.28), Eq. (3.24) simplifies as

R1tt + 2ẋR1tx + 2ẏR1ty +Ψ1R1tẋ +Ψ2R1tẏ + ẋ 2R1xx + 2ẋẏR1xy − R1Ψ1x

− R2Ψ2x + ẏ 2R1yy +Ψ1tR1ẋ +Ψ2tR1ẏ + ẋΨ1xR1ẋ + ẏΨ1yR1ẋ + ẋΨ1R1xẋ

+ ẏΨ1R1yẋ + ẋΨ2R1xẏ + ẏΨ2R1yẏ + ẋΨ2xR1ẏ + ẏΨ2yR1ẏ −Ψ1R1x

−Ψ2R2x +Ψ1ẋ(R1t + ẋR1x + ẏR1y) + R1(Ψ1tẋ + ẋΨ1xẋ + ẏΨ1yẋ)

+Ψ2ẋ(R2t + ẋR2x + ẏR2y) + R2(Ψ2tx + ẋΨ2xẋ + ẏΨ2yẏ) = 0,

(3.29)

Now, using Eqs. (3.18), (3.19), and (3.26)–(3.28), Eq. (3.25) simplifies to the form

R2tt + 2ẋR2tx + 2ẏR2ty +Ψ1R2tẋ +Ψ2R2tẏ + ẋ 2R2xx + 2ẋẏR2xy − R1Ψ1y

− R2Ψ2y +Ψ1tR2ẋ +Ψ2tR2ẏ + ẏ 2R2yy + ẋΨ1xR2ẋ + ẏΨ1yR2ẋ + ẋΨ1R2xẋ

+ ẏΨ1R2yẋ + ẋΨ2R2xẏ + ẏΨ2R2yẏ + ẋΨ2xR2ẏ + ẏΨ2yR2ẏ −Ψ1R1y

−Ψ2R2y +Ψ1ẏ(R1t + ẋR1x + ẏR1y) + R1(Ψ1tẏ + ẋΨ1xẏ + ẏΨ1yẏ)

+Ψ2ẏ(R2t + ẋR2x + ẏR2y) + R2(Ψ2tẏ + ẋΨ2xy + ẏΨ2yẏ) = 0.

(3.30)

Now solving the Eqs. (3.29) and (3.30) one can find R1 and R2. The null forms S1 and S2 can be found by substituting the obtained values
of R1 and R2 in Eqs. (3.15) and (3.16). Hence integrals of motion for the system (3.1) and (3.2) can be found by using the resultant forms of
R1, R2, S1 and S2 in Eq. (3.21).

B. The Prelle–Singer method for modified Hénon–Heiles system
We rewrite the modified Hénon–Heiles system given by Eqs. (2.3) and (2.4) for ϕ1 = ϕ2 = ϕ as

ẍ = Ψ1(x, y, ẋ) = −ϕẋ − Ax − 2αxy, (3.31)

ÿ = Ψ2(x, y, ẏ) = −ϕẏ − By − αx2
+ βy2. (3.32)

Let us assume that the above equations admit an integral of motion I(t, x, y, ẋ, ẏ). Following the procedure outlined in the previous
sub-section we get

R1tt + 2ẋR1tx + 2ẏR1ty +Ψ1R1tẋ +Ψ2R1tẏ + ẋ 2R1xx + 2ẋẏR1xy −Ψ2R2x

+ (A + 2αy)R1 + 2αxR2 + ẏ 2R1yy − ϕẋR1ẋ − 2αxẏR1ẋ + ẋΨ1R1xẋ

+ ẏΨ1R1yẋ + ẋΨ2R1xẏ + ẏΨ2R1yẏ − 2αxẋR1ẏ −Ψ1R1x

+ (2βy − B)ẏR1ẏ − ϕ(R1t + ẋR1x + ẏR1y) = 0,

(3.33)

R2tt + 2ẋR2tx + 2ẏR2ty +Ψ1R2tẋ +Ψ2R2tẏ + ẋ 2R2xx + 2ẋẏR2xy + 2αxR1

+ (B + 2βy)R2 − (A + 2αy)ẋR2ẋ − 2αxẏR2ẋ + ẋΨ1R2xẋ +Ψ1ẏR2yẋ

+ ẏ 2R2yy + ẋΨ2R2xẏ + ẏΨ2R2yẏ − (B − 2βy)ẏR2ẏ −Ψ1R1y

− 2αxẋR2ẏ −Ψ2R2y − ϕ(R2t + ẋR2x + ẏR2y) = 0.

(3.34)

A comprehensive examination reveals that obtaining a general solution for the aforementioned equations with respect to R1 and R2 is generally
unattainable. Nonetheless, a specific solution is sufficient for determining the integrals of motion. Therefore, we assume that

R1 = [(ε11x + ε12y + ε13)ẋ + (λ11x + λ12y + λ13)ẏ + (μ11x + μ12y + μ13)] f (t),
R2 = [(ε21x + ε22y + ε23)ẋ + (λ21x + λ22y + λ23)ẏ + (μ21x + μ22y + μ23)] f (t).

where εij, λij, μij, i = 1, 2, j = 1, 2, 3 are unknown constants and f (t) is an unknown function of t which has to be determined.
Substituting the values of R1 and R2 into (3.33) and (3.34), solving the resulting equations we can obtain the following two sets of values

for case 1(a).
(i) λ1j = ε2j = λ2k = ε1k = μ12 = μ13 = 0, k = 1, 2, j = 1, 2, 3.

ε13 = −1, λ23 = −1, μ11 = μ21 = −
2
5

ϕ, μ22 = μ23 = 0, f (t) = e
6
5 ϕt.

(ii) ε1j = ε2k = λ1k = λ2j = μ11 = μ13 = 0, k = 1, 2, j = 1, 2, 3.

μ22 = μ23 = 0, λ13 = ε23 = −1, μ12 = μ21 = −
2
5

ϕ, f (t) = e
6
5 ϕt.
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Below we give the explicit forms of R1, R2, S1, S2 and their integrals of motion for case (1a).
Case 1(a). A = B, β = −α, B = 6

25 ϕ2.
Here the explicit forms of R1 and R2 read

(i) R1 = −(ẋ +
2
5

ϕx)e
6
5 ϕt , R2 = −(ẏ +

2
5

ϕy)e
6
5 ϕt ,

(ii) R1 = −(ẏ +
2
5

ϕy)e
6
5 ϕt , R2 = −(ẋ +

2
5

ϕx)e
6
5 ϕt ,

Making use of the above R1 and R2 in Eqs. (3.15) and (3.16) we obtain the following values of S1 and S2 respectively.

(i) S1 =
2
5

ϕ +
2α xy

ẋ + 2
5 ϕx

, S2 =
2
5

ϕ +
α (x2

+ y2
)

ẏ + 2
5 ϕy

,

(ii) S1 =
2
5

ϕ +
α (y2

+ x2
)

ẏ + 2
5 ϕ y

, S2 =
2
5

ϕ + 2α
xy

ẋ + 2
5 ϕx

,

Thus we obtain the following integrals of motion for (3.31) and (3.32),

(i) I1 = (
1
2
(ẋ 2
+ ẏ 2
) +

2
5

ϕ(xẋ + yẏ) +
2

25
ϕ2
(x2
+ y2
) + αy(x2

+
1
3

y2
))e

6
5 ϕ t ,

(ii) I2 = (ẋ ẏ +
2
5

ϕ(ẋy + xẏ) +
4

25
ϕ2xy + αx(y2

+
1
3

x2
)) e

6
5 ϕ t.

Proceeding further we obtain nontrivial forms for R1 and R2 associated with case 2(b).
The explicit forms of R1, R2, S1, S2 and the integrals of motion obtained for the parametric restrictions in case 2(b) are given below.
Case 2(b). A = B, β = −6α, B = 6

25 ϕ2.
The explicit forms of R1, R2, S1 and S2 and the related integrals read as

(i) R1 = −(ẋ +
2
5

ϕx)e
6
5 ϕt , R2 = −(ẏ +

2
5

ϕy)e
6
5 ϕt ,

S1 =
2
5

ϕ +
2α xy

ẋ + 2
5 ϕx

, S2 =
2
5

ϕ +
α (x2

+ 6 y2
)

ẏ + 2
5 ϕy

.

I1 = (
1
2
(ẋ 2
+ ẏ 2
) +

2
5

ϕ(xẋ + yẏ) +
2

25
ϕ2
(x2
+ y2
) + αy(x2

+ 2y2
))e

6
5 ϕt ,

(ii) R1 = 4(2ẋy − xẏ +
2
5

ϕxy)e
8
5 ϕt , R2 = −4x(ẋ +

2
5

ϕx)e
8
5 ϕt ,

S1 =
ẋẏ + 4

5 ϕx ẏ + 4
25 ϕ2xy + α x3

+ 2 α xy2

xẏ − 2ẋy − 2
5 ϕxy

,

S2 =
−(ẋ 2

+ 2
5 ϕxẋ − 2αx2y)

xẏ + 2
5 ϕx2 ,

I2 = (4ẋ(xẏ − yẋ) +
8
5

ϕx(xẏ − ẋy) + αx2
(x2
+ 4y2

))e
8
5 ϕt.

It is easy to check that the obtained integrals are independent in both the cases.
In order to construct the integral for case 2(c) we consider R1 and R2 as quadratic polynomials in ẋ and ẏ as

R1 = [(ε1x + ε2y + ε3)ẋ 2
+ (ε4x + ε5y + ε6)ẏ 2

+ (ε7x + ε8y + ε9)ẋẏ + ⋅ ⋅ ⋅ ] f (t)

R2 = [(θ1x + θ2y + θ3)ẋ 2
+ (θ4x + θ5y + θ6)ẏ 2

+ (θ7x + θ8y + θ9)ẋẏ + ⋅ ⋅ ⋅ ] f (t),

where εi, θi, i = 1, 2, . . . are constants and f (t) is an unknown function. A detailed calculation shows that there exists nontrivial solutions for
R1, R2, S1 and S2 in this case also. Their explicit forms for the case 2(c) are given below.
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Case 2(c). A = B, β = −16α, B = 6
25 ϕ2.

(i) R1 = −(ẋ +
2
5

ϕx)e
6
5 ϕt , R2 = −(ẏ +

2
5

ϕy)e
6
5 ϕt ,

S1 =
2
5

ϕ +
2α xy

ẋ + 25 ϕx
, S2 =

2
5

ϕ +
α (x2

+ 16 y2
)

ẏ + 2
5 ϕy

,

I1 = (
1
2
(ẋ 2
+ ẏ 2
) +

2
5

ϕ(xẋ + yẏ) +
2

25
ϕ2
(x2
+ y2
) + αy(x2

+
16
3

y2
))e

6
5 ϕt ,

(ii) R1 = −(36 ẋ 3
+

216
5

ẋ 2ϕx +
432
25

ẋϕ2x2
+

288
125

ϕ3x3
+ 72 α x2yẋ + 24 α x3ϕy − 12 α x3ẏ)e

12
5 ϕt ,

R2 = 12α x3
(ẋ +

2
5

ϕx)e
12
5 ϕt , S1 =

U(x, y, ẋ, ẏ)
V(x, y, ẋ, ẏ)

, S2 =
3 ẋ 2

+ 2 αϕ xẋ − 4αx2y + 8
25 ϕ2x2

x(ẋ + 2
5 x)

.

where
U(x, y, ẋ, ẏ) =

72
5

ẋ 2
(ẋ +

6
5

ϕx) + 72αxyẋ(ẋ + ϕx) −
96
5

ϕx3
(αẏ −

6
125

ϕ3
) − 12αx2

(αx3
+ 3ẋẏ) − 48αx3y(αy −

8
25

ϕ2
),

V(x, y, ẋ, ẏ) = 36ẋ 2
(ẋ +

6
5

ϕx) + 36αx2y(2ẋ + ẏ) + 12αx3
(2ϕy − ẏ) +

144
25

ϕ2x2
(3ẋ +

2
5

ϕx),

I2 = (9ẋ 3
(ẋ +

8
5

ϕx) +
144
125

ϕ3x3
(2ẋ +

1
5

ϕx) + 36x2ẋ 2
(αy +

6
25

ϕ2
)

+ 12αx3ẋ(2ϕy − ẏ) − 2α2x4
(x2
+ 6y2

) +
24
5

ϕαx4
(

4
5

ϕy − ẏ))e
12
5 ϕt.

One can note that we can use the method suggested in Ref. 25 to remove the time-dependent part of the integrals, which helps to prove the
integrability nature of the present cases.

IV. INVARIANCE AND LIE SYMMETRY ANALYSIS OF THE MODIFIED HÉNON–HEILES SYSTEM
The modified Hénon–Heiles system (3.31) and (3.32) is also a Lagrangian system. The Euler–Lagrange equations of motion are

d
dt
(
∂L
∂ẋ
) =

∂L
∂x

and
d
dt
(
∂L
∂ẏ
) =

∂L
∂y

, (4.1)

where L is the Lagrangian given by

L = [
1
2
(ẋ 2
+ ẏ 2
) −

1
2
(Ax2

+ By2
) − (αx2y −

1
3

βy3
)]eϕt. (4.2)

The integrability properties of the modified Hénon–Heiles system could also be studied through the symmetry properties of it.23,24

Let (4.1) be invariant under the one parameter (ε) Lie group of infinitesimal transformations given by

x → X = x + ε η1(t, x, y, ẋ, ẏ), (4.3)

y → Y = y + ε η2(t, x, y, ẋ, ẏ), (4.4)

t → T = t + ε ξ(t, x, y, ẋ, ẏ). (4.5)

This leads to the following invariance condition to be satisfied

η̈1 − ẋξ̈ − 2ξ̇Ψ1 = X(Ψ1), η̈2 − ẏξ̈ − 2ξ̇Ψ2 = X(Ψ2). (4.6)

where Ψ1 and Ψ2 are as given in (3.31) and (3.32), respectively, and the infinitesimal operator X is given by

X = ξ
∂

∂t
+ η1

∂

∂x
+ η2

∂

∂y
+ (η̇1 − ξ̇ẋ)

∂

∂ẋ
+ (η̇2 − ξ̇ẏ)

∂

∂ẏ
. (4.7)

After a detailed calculation, we observe that
ξ = 0, η1 = η1(x, y, ẋ, ẏ)eλt , η2 = η2(x, y, ẋ, ẏ)eλt , λ − constant,
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and the nontrivial symmetries occur for the P-cases only. The details of the above investigation will be published elsewhere. Using Noether’s
theorem, the first integral of motion can be identified for each set of Lie symmetries which takes the form

ξ = 0, η1 = (ẋ +
2
5

ϕx)e
ϕ
5 t , η2 = (ẏ +

2
5

ϕy)e
ϕ
5 t.

Similarly, the second integral of motion can be identified for each set of non-trivial symmetries of the following forms,

Case 1(a): A = B = 6
25 ϕ2, β = −α.

ξ = 0, η1 = (ẏ +
2
5

ϕy)e
ϕ
5 t , η2 = (ẋ +

2
5

ϕx)e
ϕ
5 t

Case 2(b): A = B = 6
25 ϕ2, β = −6α.

ξ = 0, η1 = (4xẏ − 8yẋ −
8
5

ϕxy)e
3
5 ϕt , η2 = (4ẋx +

8
5

ϕx2
)e

3
5 ϕt

Case 2(c): A = B = 6
25 ϕ2, β = −16α.

ξ = 0, η1 = (36ẋ 3
+

216
5

ϕxẋ(ẋ +
2
5

ϕx) +
288
125

ϕ3x3
+ 24αx2y(3ẋ + ϕx) − 12αx3ẏ)e

7
5 ϕt , η2 = −12αx3

(ẋ +
2
5

ϕx)e
7
5 ϕt.

A. Separability
In this section, we show how the generalized symmetries obtained can be used to find coordinates transformations in which the equa-

tions of motion become separable. This is possible when the generalized symmetries are linear in velocities. We say that a differentiable
function U(t, x, y, ẋ, ẏ) is an invariant for the transformations (4.3)–(4.5) if XU = 0, which is a first order partial differential equation. Then
its characteristic equations are

dt
ξ
=

dx
η1
=

dy
η2
=

dẋ
(η̇1 − ξ̇ẋ)

=
dẏ

(η̇2 − ξ̇ẏ)
. (4.8)

One can also find integrals of motion to the modified Hénon–Heiles system by solving the characteristic Eq. (4.8). Since our aim is to find
suitable coordinates transformations leading to separability we consider only the following part of Eq. (4.8). We illustrate this for case (1)

dx

(ẏ + 2
5 ϕy)e

ϕ
5 t
=

dy

(ẋ + 2
5 ϕx)e

ϕ
5 t

. (4.9)

Solving which we get

(x2
− y2
)e−

4
5 ϕt
= constant, (4.10)

leading to the coordinates transformations u = (x + y)e−
2
5 ϕt , v = (x − y)e−

2
5 ϕt .

In the above coordinates the Eqs. (2.3) and (2.4) separates into

d2u
dt2 + ϕ

du
dt
+ Au + αu2e

2
5 ϕt
= 0, (4.11)

d2v
dt2 + ϕ

dv
dt
+ Av − αv2e

2
5 ϕt
= 0. (4.12)

Equation (4.11) can be transformed into

l2 d2u
dl2 + 2l

du
dl
+

6
25

u = −(
α
ϕ2 )u2l

2
5 , (4.13)

by a substitution l = eϕt . Equation (4.13) can be further transformed into an Emden-Fowler equation of the form

d2w
dz2 = −

25α
ϕ2 z−3w2, (4.14)

by the substitution l = z5, u = z−3w(z). The solution of Eq. (4.14) can be written parametrically interms of the Weierstrass elliptic function.26
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V. EXACT SOLUTION OF MODIFIED HÉNON–HEILES SYSTEM
It is well known that finding an exact solution for a given nonlinear PDE or ODE is a difficult task. Also, there exists no unique analytic

method to construct an exact solution of nonlinear differential equations, in general. Recent investigations demonstrate that tanh or sech
method can provide an effective tool for nonlinear ODEs and PDEs toward constructing specific/particular solutions.27 In this section we
extend the tanh or sech method to modified Hénon–Heiles system. With this aim, we look for exact solution of modified Hénon–Heiles
system having the form

x(t) = A1 + A2 tanh (bt + δ) + A3 tanh2
(bt + δ),

y(t) = B1 + B2 tanh (bt + δ) + B3 tanh2
(bt + δ).

where Ai, Bi, i = 1, 2, 3 and b are unknown constants to be determined. Substituting x(t) and y(t) in the equations of the modified
Hénon–Heiles system we find that each one becomes a fourth degree polynomial in tanh(bt + δ). Then equating different powers of
tanh(bt + δ) in both the equations to zero we obtain a system of algebraic equations in Ai and Bi, i = 1, 2, 3. Solving them consistently yields
the following exact solutions.

Exact solution for integrable cases:

(i) A = B =
6

25
ϕ2, β = −α,

x(t) =
3ϕ2

100α
[3 + tanh(−

ϕ
10

t + δ)][−1 + tanh(−
ϕ
10

t + δ)],

y(t) = −
3ϕ2

100α
[tanh2

(−
ϕ
10

t + δ) + 2 tanh(−
ϕ
10

t + δ) + 5].

(ii) A = B =
6

25
ϕ2, β = −6α,

x(t) =
3Iϕ2

25α
[(1+ tanh(−

3ϕ
10

t + δ)],

y(t) =
−3ϕ2

100α
[1 + tanh(−

3ϕ
10

t + δ)][3 tanh(−
3ϕ
10

t + δ) − 1].

(iii) A =
21

100
ϕ2, B = −

24
100

ϕ2, β = −16α, α = −
3

50
ϕ2,

x(t) = −
I
√

14
2
[tanh(−

ϕ
10

t + δ) + 1]
2
,

y(t) =
1
4
+ tanh(−

ϕ
10

t + δ) +
1
2

tanh2
(−

ϕ
10

t + δ).

Exact solution for other cases:
(iv) A = B = −

4
9

ϕ2, β = −
4
3

α,

x(t) =
ϕ2

6
√

6α
[tanh(

ϕ
6

t + δ) + 1][tanh(
ϕ
6

t + δ) − 1],

y(t) =
−ϕ2

12α
[tanh(

ϕ
6

t + δ) + 1][tanh(
ϕ
6

t + δ) − 3].

(v) A =
9

100
ϕ2, B = −

6
25

ϕ2, β = −
16
5

α,

x(t) =
3I
√

30ϕ2

500α
[tanh(−

ϕ
10

t + δ) + 1]
2
,

y(t) = −
3ϕ2

200α
[−3 + 4 tanh(−

ϕ
10

t + δ) + 2 tanh2
(−

ϕ
10

t + δ)].

We see that cases (i) and (ii) above have an exact solution for the integrable cases (1a) and (2b) respectively. Though the integrability of
parametric cases (1b) and (2a) is not established, an exact solution for the same is given in (iv) and (v) respectively, which may correspond
to the cases admitting lesser number of arbitrary constants in the Laurent series. It appears that case 1(c) may not admit the exact solution
expressed in tanh or sech function. One may also be able to find particular forms of elliptic functions, generalizing the above procedure which
we hope to explore in future.
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VI. SUMMARY AND CONCLUDING REMARKS
In this article, by applying the Painlevé analysis of ordinary differential equations to modified Hénon–Heiles system we report that

it admits the Painlevé property for three distinct parametric restrictions. For each of the identified cases, we construct two independent
integrals of motion using the well known Prelle–Singer method. Thus we infer that the modified Hénon–Heiles system is integrable for three
distinct parametric restrictions. We have shown that there exists an exact solution for two of the isolated three integrable cases of modified
Hénon–Heiles system expressed in terms of tanh function. We observe that when

β = −16α, ϕ2 = ϕ1 = ϕ (6.1)

leads to the integrable case 2(c), where

A = B =
6

25
ϕ2.

But we are able to find an exact solution expressed in tanh function for the case in (6.1) when A = 21
100 ϕ2, B = − 24

100 ϕ2, α = − 3
50 ϕ2. Also, we have

isolated two more parametric restrictions of modified Hénon–Heiles system admitting Laurent series solution with two arbitrary constants
and two of them admit an exact solution expressed in tanh function. From the investigation, we observe that the inclusion of damping term
in the equations of motion leads to further parametric restriction in the linear terms of the equations. The connection between the Laurent
series solution and the tanh solution of the integrable case needs further investigation.
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