

View

Online


Export
Citation

RESEARCH ARTICLE |  JANUARY 29 2024

Superconductivity coupling of harmonic resonant
oscillators: Homogeneous and heterogeneous extreme
multistability with multi-scrolls 
T. Fonzin Fozin   ; A. R. Tchamda  ; G. Sivaganesh  ; K. Srinivasan  ; Z. Tabekoueng Njitacke  ;
A. B. Mezatio

Chaos 34, 013148 (2024)
https://doi.org/10.1063/5.0176928

 30 M
ay 2024 15:44:56

https://pubs.aip.org/aip/cha/article/34/1/013148/3222762/Superconductivity-coupling-of-harmonic-resonant
https://pubs.aip.org/aip/cha/article/34/1/013148/3222762/Superconductivity-coupling-of-harmonic-resonant?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0001-7385-5462
javascript:;
https://orcid.org/0000-0003-3220-4174
javascript:;
https://orcid.org/0000-0003-4755-9525
javascript:;
https://orcid.org/0000-0001-8612-6226
javascript:;
https://orcid.org/0000-0001-7797-8929
javascript:;
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0176928&domain=pdf&date_stamp=2024-01-29
https://doi.org/10.1063/5.0176928
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2100974&setID=592934&channelID=0&CID=768787&banID=521069223&PID=0&textadID=0&tc=1&scheduleID=2025884&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1717083896917294&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0176928%2F19209159%2F013148_1_5.0176928.pdf&hc=f8c2c018e5d46ccb366edeae57dbfe0a8f700ac8&location=


Chaos ARTICLE pubs.aip.org/aip/cha

Superconductivity coupling of harmonic resonant
oscillators: Homogeneous and heterogeneous
extreme multistability with multi-scrolls

Cite as: Chaos 34, 013148 (2024); doi: 10.1063/5.0176928

Submitted: 18 September 2023 · Accepted: 27 December 2023 ·
Published Online: 29 January 2024 View Online Export Citation CrossMark

T. Fonzin Fozin,1,a) A. R. Tchamda,2 G. Sivaganesh,3 K. Srinivasan,4 Z. Tabekoueng Njitacke,5

and A. B. Mezatio6

AFFILIATIONS

1Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology (FET), University of Buea,
P.O. Box 63, Buea, Cameroon
2Department of Rural Engineering, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 222,
Dschang, Cameroon
3Department of Physics, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi 630003,
Tamilnadu, India
4Department of Physics, Nehru Memorial College (Affiliated to Bharathidasan University, Tiruchirapalli 620024, Tamilnadu, India),
Puthanampatti, Tiruchirapalli 621007, Tamilnadu, India
5Department of Electrical and Electronic Engineering, College of Technology (COT), University of Buea, P.O. Box 63,
Buea, Cameroon
6South-Polytech (Affiliated to École National Supérieur Polytechnique de Douala, Université de Douala, Douala, Cameroun),
Institut Universitaire des Grandes Écoles des Tropiques, P.O. Box 25080, Douala, Cameroun

a)Author to whom correspondence should be addressed: fozintheo@gmail.com

ABSTRACT

Understanding and characterizing multistabilities, whether homogeneous or heterogeneous, is crucial in various fields as it helps to unveil
complex system behaviors and provides insights into the resilience and adaptability of these systems when faced with perturbations or changes.
Homogeneous and heterogeneous multistabilities refer, respectively, to situation in which various multiple stable states within a system are
qualitatively similar or distinct. Generating such complex phenomena with multi-scrolls from inherent circuits is less reported. This paper
aims to investigate extreme multistability dynamics with homogeneous and heterogeneous multi-scrolls in two coupled resonant oscilla-
tors through a shunted Josephson junction. Analysis of equilibrium points revealed that the system supports both hidden and self-excited
attractors. Various dynamical tools, including bifurcation diagrams, spectrum of Lyapunov exponents, and phase portraits, are exploited to
establish the connection between the system parameters and various complicated dynamical features of the system. By tuning both system
parameters and initial conditions, some striking phenomena, such as homogeneous and heterogeneous extreme multistability, along with the
emergence of multi-scrolls, are illustrated. Furthermore, it is observed that one can readily control the number of scrolls purely by varying the
initial conditions of the investigated system. A multi-metastable phenomenon is also captured in the system and confirmed using the finite-
time Lyapunov exponents. Finally, the microcontroller implementation of the system demonstrates strong alignment with the numerical
investigations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0176928

Systems capable of generating hybrid multistability features are
more attractive. In addition, if the system is electronically sim-
ple and possesses high dynamic complexity, it is, therefore,
valuable for engineering applications. In this work, homogeneous

and heterogeneous extreme multistabilities with multi-scrolls are
reported. The tri-transient phenomenon is also captured, thereby
enriching the existing literature. Such striking features are uncov-
ered in two coupled resonant oscillators through a shunted
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Josephson junction. The results of the model have been demon-
strated through laboratory measurements and do not solely rely
on theoretical investigations or simulations.

I. INTRODUCTION

The design of innovative chaotic systems and circuits has
received a great deal of attention in recent decades.1–4 Based on
what has been published so far, such innovative systems are either
designed to exhibit novel traits or to be straightforward.5 In this
regard, in addition to artificial systems created entirely from scratch,
numerous others are obtained by modifying or altering certain sys-
tem parameters, such as their nonlinearity.6–8 Memristors9–12 and the
Josephson junction (JJ)13,14 are two prominent nonlinearities dis-
cussed in the literature to date that are becoming more and more
significant in producing complicated dynamics.

The Josephson junction was first predicted in 196215 and is
constituted of superconducting materials that behave nonlinearly
as a result of copper-pair quantum tunneling via a tiny insulating
barrier. A few of its appealing characteristics comprise a high oper-
ational frequency, extremely minimal noise, and minimal power
usage. Extensive research efforts have been devoted to the JJ devices
in order to determine how they might be used in metrology, com-
puting, and electronics.16–18 Additionally, the JJ has been found to
play a crucial role in the development of essential technological
components, such as quantum-computing devices, highly sensitive
detectors, electronic components with superconductivity, and signal
generators capable of producing high-speed chaotic signals, to name
a few.19–21

Apart from being investigated solely through their various
existing models22 and references therein, circuits based on JJ devices
are also at the forefront of several research projects. One can
cite the relevant work of Louodop and collaborators,23 where the
authors discuss a JJ as a nonlinear component in a straightfor-
ward non-autonomous CLC resonator. Their results include the
interesting phenomenon of extreme multistability, classified later
as heterogeneous. Following the same approach, Refs. 24 and 25
have also considered the JJ as a nonlinear element in their pro-
posed systems. The resistive capacitive shunted and linear resis-
tive–capacitive–inductance shunted junctions were considered in
each of those works. Additionally, both works share the special
feature of having a simple electronic circuit with rich dynamical
behaviors; for instance, in Ref. 24, one can note the coexistence of
multi-scrolls and the homogeneous multistability in their system
among the significant outcomes emphasized. Meanwhile, in Ref. 25,
authors were able to tackle the striking phenomenon of hyper-
chaos in their system both with numerical simulations and micro-
controller implementation. Regarding the aforementioned works,
it is possible to make the following observations: The proposed
or explored systems are either non-autonomous or are limited to
demonstrate homogeneous or heterogeneous multistability. Also,
most of those systems display muti-scrolls among their features.

Various relevant works in the literature have focused on the
broadband application of double scrolls and multi-scrolls in several
nonlinear dynamical systems, including random bit generations26

and network optimization.27 Chaotic multi-scrolls show more

interest since the phase trajectory of the dynamic can randomly
jump between different scrolls, making it very unpredictable with
the possibility of generating a much larger secret key space.28 Multi-
scrolls are most often obtained through systematic modification of
the nonlinearity function of the investigated systems or circuits.27,29

The enigmatic Chua’s circuit has been extensively exploited both
theoretically and experimentally as a study case in demonstrating
the feasibility and generation mechanisms of n-scrolls.30,31 Accord-
ing to the general theory, multi-scroll chaotic attractors can be
created by altering the nonlinear characteristics of a scroll-based
chaotic attractor, resulting in multiple equilibrium points. Among
existing methods, one can cite that of inserting various break-
points in the system’s nonlinear function to construct multi-scroll
attractors..30,31 Also, the association of step32 and tangent hyper-
bolic functions33,34 was exploited to successfully generate grids of
multi-scrolls in some investigated systems. In a more recent work,
the authors of Ref. 28 have proposed a new technique based on a
series of multi-level-logic pulse functions for generating symmetric
multi-scrolls in a magnetized Hopfield neural network. Other meth-
ods of generating multi-scrolls are to consider nonlinearities in the
form of hysteresis, saturated function series,35 or sine function.36 So
far, nonlinearity seems to be the cornerstone in generating multi-
scroll in nonlinear systems. Nevertheless, the primary obstacle in
designing multi-scrolls lies in the synthesis of nonlinearity using
an electrical component. This prompts the inquiry of whether there
exists an electrical apparatus capable of facilitating the creation of a
multi-scroll chaotic attractor. The answer came with the JJ36,37 that
possesses such nonlinearity. Since then, several works have reported
multi-scroll exploiting the JJ as a nonlinear element. It was also
found that multistability is inherent to those systems.

Multistability is one of the most popular venues in chaos the-
ory. This happens when various initial conditions yield qualitatively
distinct steady states for the same set of parameters. Symmet-
ric systems are particularly prone to multistability, as any non-
symmetric attractor will always have a corresponding twin.38 More
attention is now dedicated to the analysis of multistability in sys-
tems given the disastrous consequences it might lead in practical
applications.11,39 This also represents the unpredictability of the sys-
tem’s behavior, adding to its complexity. Multiple attractors are
a manifestation of parallel branches and hysteresis dynamics.40,41

From recent trends, multistable systems are classified as heteroge-
neous or homogeneous.42–44 The latter is a situation where coexisting
attractors are of the same shape, while the former is the coexis-
tence of different shapes or states. The coexistence of homogeneous
and heterogeneous multistability suggests a rich and diverse land-
scape of stability and dynamics in natural and artificial systems. It
showcases the intricate interplay of stability and resilience, shedding
light on the system’s ability to navigate various configurations while
adapting to changing conditions. According to the author’s knowl-
edge, very few studies have reported systems or circuits capable of
generating multi-scrolls with both homogeneous and heterogeneous
multistabilities.45 More importantly, most of these reported systems
are designed artificially with no backbone on a real circuit.36,37

In this work, a new system made of two coupled harmonic
oscillators through a shunted JJ is designed. The sinusoidal non-
linearity of the system provides flexibility in generating extreme
multistability with self-excited and hidden dynamics. One of the
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striking features highlighted is that the system exhibits both homo-
geneous and heterogeneous multistabilities while varying system
parameters and/or initial conditions. Metastability with tri-transient
chaos was also captured during our investigations. Implemented
hardware further validated these prominent findings.

The remaining sections of this work are organized as follows.
Section II focuses on the circuit description and mathematical mod-
eling of the proposed system. Some basic properties, including phase
space volume, analysis of equilibrium points, and system symmetry,
are also analyzed. In Sec. III, numerical investigations are reported.
The striking phenomena of heterogeneous and homogeneous multi-
stabilities with multi-scrolls are discussed in Secs. IV and V, respec-
tively. In Sec. VI, we report the rare phenomenon of tri-transient
chaos. Section VII is dedicated to the hardware experiment. Finally,
significant conclusions are presented in Sec. VIII.

II. CIRCUIT ANALYSIS AND ITS MATHEMATICAL

MODEL

A. Circuit analysis

The circuit diagram in Fig. 1 consists of two coupled res-
onant harmonic oscillators (L1C1 and L2C2) through an ideal
shunted Josephson junction (JJ) element.36,46 The JJ component is
highly attractive nowadays given its capability to produce chaotic
dynamics47,48 and attractors with multiple scrolls. In the schematic
diagram of Fig. 1, the JJ is considered the only nonlinear component
in the circuit and is marked by “X.” The two harmonic oscillators
are considered stable (i.e., no dissipative component). One of the
main control parameters throughout this work will be the shunted
resistance of the JJ element (i.e., the negative impedance converter
Z = −R49). Upcoming investigations will reveal that the JJ element
is responsible for the emergence of the complex dynamical behav-
iors, including extreme multistability and multi-scrolls in system (4)
(see Sec. III).

B. Mathematical model

The current in the JJ is described by

I = Ic sin(φ), (1)

FIG. 1. Schematic diagram depicting the coupled resonant oscillators L1C1 and
L2C2 through a shunted Josephson junction.

where

dφ

dt
= 2e

~
V. (2)

Here, φ and V represent the phase angle and the potential
drop across the JJ, respectively, while ~ (~ = h/2π) and e represent
the reduced Planck’s constant and the charge of the electron. The
dynamics of the proposed circuit can be described by a set of cou-
pled differential equations [see Eq. (3)] when Kirchhoff’s laws are
applied to the circuit diagram shown in Fig. 1,
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dt
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C1

dVC1

dt
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R
− I1 − IC sin(φ),

C2

dVC2

dt
= VC2 − VC1

R
− I2 + IC sin(φ),

dφ

dt
= 2e

~

(

VC1 − VC2

)

.

(3)

Here, Im (m = 1, 2) denotes the current flowing through induc-
tors Lm, while VCn (n = 1, 2) are the voltages across the capacitors
Cn. It is worth mentioning that except for the JJ, all other circuit
elements in Fig. 1 are assumed linear. The phase variation of the JJ
element in Eq. (2) introduces a fifth state variable, turning the state
equations from four to five.

By considering the following dimensionless states and vari-
ables, t = τ

√
L1C1, ρ = √

L1/C1, x1 = I1/IC, x2 = I2/IC, x3 = VC1/

(ρIC), x4 = VC2/(ρIC), x5 = φ, α = ρ/R, ε1 = L1/L2, ε2 = C1/C2,
ω0 = 2eICL1/~, we can write Eq. (3) as























ẋ1 = x3,
ẋ2 = ε1x4,
ẋ3 = α(x3 − x4) − x1 − sin(x5),
ẋ4 = ε2 (sin(x5) + α(x4 − x3) − x2) ,
ẋ5 = ω0(x3 − x4),

(4)

where α, ε1, ε2, and ω0 are all positive parameters representing
the ratio of resistors, inductances, and capacitors, respectively. The
system of five interconnected differential equations [see Eq. (4)],
representing the circuit model, is smooth and nonlinear. The sine
function is the only nonlinear function in the model, and it involves
only one state variable (namely, x5).

C. System (4) properties: Phase space volume,

symmetry, and steady states

Let us consider the dynamical system Ẋ = 8(X), where
X = (x1, x2, x3, x4, x5)

T and 8(X) = (φ1(X), φ2(X), φ3(X), φ4(X),
φ5(X))T. From the theory, the volume contraction/expansion rate
is given by the following Lie derivative:

3 = ∇ .8(X) = ∂φ1

∂x1

+ ∂φ2

∂x2

+ ∂φ3

∂x3

+ ∂φ4

∂x4

+ ∂φ5

∂x5

. (5)

Chaos 34, 013148 (2024); doi: 10.1063/5.0176928 34, 013148-3

Published under an exclusive license by AIP Publishing

 30 M
ay 2024 15:44:56

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

After straightforward calculations on system (4), the volume
contraction/expansion rate yields

3 = α(1 + ε2). (6)

Given that α and ε2 are positive parameters, the volume 3

is, therefore, expanding making the system in Eq. (4) to be non-
dissipative. In other words, the system’s trajectories contained in
the volume V at the time t → 0 will abruptly increase as time
progress toward infinity [i.e., V(t) = V(0) exp{3t}]. Thus, system
(4) is volume expanding around the steady states.

It is worth recalling that the property of involutional symmetry
in dynamical systems consists of not altering the dynamical equa-
tions when one or more of the variables changes sign. According to
the relevant work of Ref. 38, basic involutional symmetries, such as
inversion, rotation, and reflection, are involved. System (4) is found
to be inversion invariant since their dynamical equations remain
unchanged when the coordinates are substituted with their nega-
tion. This means that the results of system (4) will either appear as
individual symmetric solutions or in pairs that exhibit symmetry in
order to match the inversion invariance property of the dynamical
equations. This property is significant when examining coexisting
solutions through symmetry breaking or restoring crisis.

It is known that the steady states play an essential role in the
characterization of dynamical systems.50,51 They are calculated by
setting the left-hand side of Eq. (4) to zero; this yields

{

x̄3 = x̄4 = 0,
x̄2 = −x̄1 = sin (x̄5) .

(7)

From Eq. (7), two scenarios are observed:

• ∀ (x̄1, x̄2) /∈ [−1, 1], system (4) has no equilibrium points and
one may observe hidden dynamics52,53 and

• ∀ (x̄1, x̄2) ∈ [−1, 1], system (4) has an infinite number of steady
state in the space (x1, x2, x5).

From the second hypothesis, we have derived in Eq. (8) the
Jacobean matrix of system (4),

MJ =











0 0 1 0 0
0 0 0 ε1 0

−1 0 α −α − cos (x̄5)

0 −ε2 −αε2 αε2 ε2 cos (x̄5)

0 0 ω0 −ω0 0











. (8)

The characteristic equation associated with Eq. (8) is given by

|MJ − ξ I5| = c5ξ
5 + c4ξ

4 + c3ξ
3 + c2ξ

2 + c1ξ + c0, (9)

where I5 is a 5 × 5 identity matrix. The coefficients ci (with
i = 0, . . . ., 5) are defined as c5 = 1, c4 = −α(ε2 + 1), c3 = ε2(α

+ ω0 cos(x̄5)), c2 = −αε2ω0 cos(x̄5), c1 = c0 = 0. The eigenvalues
ξi (i = 1, 2, 3, 4, 5) corresponding to Eq. (9) are obtained by vary-
ing x̄5 over certain range and fixing the values of the other system
parameters. The eigenvalues obtained for the parameters ε1 = 15,
ε2 = 3.8596, ω0 = 39.6529, α = 1.7408 × 10−5 (corresponding to a
four-scroll attractor discussed in Sec. III) are shown in Fig. 2. The
eigenvalues ξ1, ξ2 are observed to be real and unequal or a pair of
complex conjugates with variation in x̄, while the eigenvalue ξ3 is
always zero. The eigenvalues ξ4, ξ5 are a pair of complex conjugates
with positive real parts for all values of x̄5. Hence, the fixed point
corresponding to a value of x̄5 is an unstable saddle-focus, leading
to the expansion of phase space of the system along the x̄5-axis.
Figures 2(a) and 2(b) show the variation of the real parts of the
eigenvalues ξ1, ξ2 and ξ4, ξ5 with x̄5, respectively.

III. COMPUTATIONAL INVESTIGATIONS

A. Numerical schemes

Numerical approaches involve the use of the fourth-order
Runge–Kutta algorithm implemented in C++. The integration steps
are always fixed at 1τ ≤ 10−3, and the system parameters and vari-
ables are set in a double format. Unless explicitly mentioned, long
transients of 30 000 data points of integration are always discarded.

FIG. 2. Eigenvalues of Eq. (9) as a function of x̄5. (a) Real parts of eigenvalues ξ1 (red), ξ2 (green), and the real part of the complex conjugates of ξ1, ξ2 (violet) indicating
the saddle nature of corresponding x̄. (b) The real part of complex conjugates of the eigenvalues ξ4, ξ5 representing the unstable focus behavior.
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Both qualitative and quantitative tools, such as bifurcation diagrams,
the spectrum of Lyapunov exponents, phase portraits, and time
series, are used to reveal the bifurcation scenarios, multi-scrolls,
and homogeneous and heterogeneous multistability in the system
(4). For the bifurcation analysis, the parallel bifurcation method is
exploited. It involves superimposing various sets of data obtained by
recording extrema of the nonlinear system with fixed initial con-
ditions at each step of the control parameter. The graphs of the
Lyapunov exponent spectrum are obtained using the algorithm of
Wolf et al.54

B. Complex patterns, multi-scrolls, and transitions to

chaos

The behavior of system (4) is analyzed by studying the impact
of parameters on its dynamics in order to observe the complex pat-
terns it can generate. Figure 3 displays the phase portraits in the
(x5, x4) plane for specific values of α, ε1, and ε2. These phase por-
traits reveal a variety of complex patterns and dynamics, including
multi-scroll chaotic attractors and quasiperiodic oscillations in both

2D and 3D. To gain a better understanding of the system’s sensi-
tivity to the control parameter α, we present in Figs. 4(a) and 4(b),
respectively, the bifurcation diagram and the spectrum of Lyapunov
exponents with the set of parameters of Fig. 3(b). In Fig. 4(a),
three sets of data are overlaid on the bifurcation diagram, each
obtained by reinitializing the initial conditions at each step of the
control parameter. The diagram in green color represents the solu-
tion of system (4) with fixed initial conditions (0, −0.7, 0.3, 0, 1),
while those in black and red colors correspond to fixed initial con-
ditions (0, −1.0, −0.2, 0, 0) and (0, 0.7, 0.2, 0, 0), respectively. It is
evident that these three sets of data do not perfectly overlap, indi-
cating the presence of multistability in system (4). Additionally,
some of the bifurcation diagrams in Fig. 4(a) exhibit stratification
or layering for certain initial conditions (black and green curves),
coexisting with the more compact red curve within a specific range
of the control parameter. These stratifications support the occur-
rence of multi-scroll behaviors within the investigated system.31

Those stairs/layers (i.e., multi-scrolls) are varying with α. Further
insights on the dynamical evolution of system (4) are observed
through the 3D phase diagrams in Fig. 5 where seven attractors are

FIG. 3. Phase diagrams of system (4) in the plane (x5, x4) for specific parameter values α, ε1, ε2, and ω0 = 39.6529. (a) 3D torus, (b) three-scroll chaotic attractor,
(c) seven-scroll chaotic attractor, and (d) 2D torus. The initial conditions are (0, 0.7, 0.2, 0, 0).
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FIG. 4. (a) Bifurcation diagrams showing the local maxima of the state variable x5(τ ) when varying the control parameter α ∈ [1.044, 4.37] × 10−5. Three sets of data
obtained from computing the system using different initial conditions are superimposed by exploiting the parallel bifurcation technique40 (refer to the main text for details).
(b) The corresponding spectrum of the five Lyapunov exponents of system (4) vs α. Other parameters were fixed as ε1 = 15.0, ε2 = 3.8596, and ω0 = 39.6529.

depicted when tunning α. The figure clearly demonstrates the pres-
ence of various multi-scroll attractors in the phase space (x5, x4);
for instance, when α = 9.3256 × 10−6, the system is quasiperiodic
(see attractor A1 in Fig. 5). When selecting discrete values of α in
[1.044, 4.37] × 10−6, system (4) undergoes 2-scroll, 3-scroll, 4-scroll,
and up to 12-scroll chaotic dynamics (see attractors A2–A7 of Fig. 5).

FIG. 5. Numerical 3D phase spaces of system (4) for seven selected val-
ues of the parameter α, illustrating the variation in the number of scrolls.
Torus for α = 9.3256 × 10−6 (A1), 2-scroll for α = 1.0445 × 10−5 (A2), 3-scroll
for α = 1.2145 × 10−5 (A3), 4-scroll for α = 1.7408 × 10−5 (A4), 6-scroll for
α = 2.6112 × 10−5 (A5), 8-scroll for α = 3.264 × 10−5 (A6 ), and 12-scroll
for α = 4.3519 × 10−5 (A7). The initial states were fixed as X(0) = (0, 0.7,
0.2, 0, 0)T .

It is worth mentioning that the volume expanding property of
system (4) is clearly confirmed along each axes of Fig. 5 when
increasing, respectively, α and ε2 (although not discussed in this
paper for consistency). Moreover, the fact that system (4) is of inver-
sion invariant type and has no or infinite equilibria (as discussed in
Sec. II C) further emphasizes the extreme multistability experienced
by the system.

IV. HETEROGENEOUS EXTREME MULTISTABILITY

WITH MULTI-SCROLLS

Heterogeneous multistability is defined as the coexistence of
different patterns/attractors when varying solely the initial condi-
tions with fixed parameters. One effective tool used in the analysis is
the bifurcation diagram of initial conditions, which helps in address-
ing the number of coexisting attractors arising from hysteresis
and parallel bifurcation branches.40,55 In Fig. 6, a map of the two-
parameter Lyapunov exponent for −50 ≤ x5(0) ≤ 50 and 1 ≤ α

≤ 1.45 is illustrated. A noticeable transition of dynamics from
chaotic oscillations, marked by yellow-reddish color, to quasiperi-
odic states in black color occurs for fixed values of α with varying
initial condition x5(0). It is observed that regions of quasiperi-
odic dynamics (in black color) become narrower as the value of α

increases. To further comprehend the qualitative dynamics, Fig. 7(a)
exhibits the bifurcation diagram of the maxima of x1 vs the ini-
tial state x2(0). As the investigated system is inversion invariant,
the bifurcation diagram exhibits symmetry over the origin. This
indicates that attractors appear in symmetric pairs to restore the sys-
tem’s exact symmetry. Two qualitative dynamics, chaos, and 2D/3D
quasiperiodic oscillations are also observed [see Fig. 7(a)]. This
is corroborated through the spectrum of Lyapunov exponents in
Fig. 7(b), where regions with one positive Lyapunov exponent repre-
sent chaotic behavior, while those with two or three zero Lyapunov
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FIG. 6. 2D map of the Lyapunov exponent in the plane [x5(0),α] highlighting the
heterogeneous multistability in system (4). Black regions mark the quasiperiodic
dynamics, while the yellow-reddish regions are those of chaotic oscillations.

exponents depict quasiperiodic dynamics. The volume expanding
property is also visible in the bifurcation diagram of Fig. 7(a).
The results in Fig. 7 are obtained by fixing α = 1.3056 × 10−5 and
selecting initial states as [x1(0), x3(0), x4(0), x5(0)] = (0, 0.2, 0, 0).

FIG. 7. (a) Bifurcation diagram of system (4) illustrating the local maxima of
x1(τ ), accompanied by the corresponding (b) spectrum of Lyapunov exponents
vs the initial state x2(0) for α = 1.3056 × 10−5. Qualitative changes in both
diagrams indicate the system experiencing the phenomenon of extreme mul-
tistability. The other initial conditions were fixed as [x1(0), x3(0), x4(0), x5(0)]
= (0, 0.2, 0, 0).

By choosing symmetric initial conditions as depicted in Fig. 8,
the phenomenon of heterogeneous extreme multistability is vividly
highlighted through various phase portraits. These include pairs
of symmetric chaotic multi-scroll attractors [see Figs. 8(a)–8(e)],
quasiperiodic attractors [see Figs. 8(f) and 8(j)], and symmetric
chaotic attractors [see Figs. 8(g) and 8(h)]. Clearly, different dynam-
ical topologies were captured by varying solely the initial states with
fixed control parameter α. It is also noteworthy that the initial condi-
tions induce multi-scroll selection, as highlighted in Figs. 8(a)–8(e).

V. HOMOGENEOUS EXTREME MULTISTABILITY AND

INITIAL OFFSET BOOSTING

In contrast to offset boosting, which involves the utilization of
an additive constant to switch between bipolar and unipolar signals
by introducing additional electronic components as accessible state
parameters,56,57 the results presented here are more relevant in two
senses:

• System (4) is capable of self-generating initial offset boosting
with coexistence of infinitely many attractors58 and

• Homogeneous extreme multistability with any number of
scrolls is also achievable by fixing α and then varying the initial
states.

It is important to recall that homogeneous multistability rep-
resents the system’s capacity to exhibit qualitative similar coexisting
solutions shifted in the state space solely by varying initial states.59

In system (4) by fixing the initial state x5(0) to π

2
± k2π (k ∈ Z)

while setting all others to zero, we have effectively captured the phe-
nomenon of homogeneous multistability. This is clearly evident in
the bifurcation diagram of Fig. 9(a) where infinite, uniform, and
symmetric layer band patterns are observed on each other side of
the origin x5(0) = 0. This bifurcation diagram aligns perfectly with
the spectrum of Lyapunov exponents depicted in Fig. 9(b). It is
worth mentioning that the repeated layered patterns observed in the
bifurcation diagram of Fig. 9(a) demonstrate that some of coexist-
ing heterogeneous solutions are of multi-scrolls type. This is clearly
illustrated in Fig. 10 by the phase portraits showing the coexis-
tence of 4-scrolls in the phase space (x5, x4) for different symmetric
initial conditions; for instance, with x5(0) = ±π/2, a pair of sym-
metric chaotic 4-scroll attractors are obtained in Fig. 10(a). By fixing
x5(0) = ±21π/2, the attractors shift away from each other, and the
centers of their manifolds are separated by 21π [see Fig. 10(e)].
Henceforth, we can generalize that when selecting x5(0) in the form
of π

2
± k2π (k ∈ Z), initial offset boosting can be observed along the

x5-axis while preserving the intrinsic dynamics (i.e., 4-scrolls).
Although still exhibiting heterogeneous extreme multistabil-

ity, the selection of only positive or negative initial conditions
leads to the generation of homogeneous extreme multistability, as
depicted in Fig. 11. Indeed, the first five attractors displaying the
same characteristics but shifted in the state space are depicted in
Figs. 11(a) and 11(b). The offset statistical property is used to track
the demarcation region of initial state for each coexisting solutions
as presented in Fig. 11(c). In that diagram, the colors are associ-
ated with each coexisting attractor in Figs. 11(a) and 11(b), while
the white color represents other untracked dynamics. The phe-
nomenon of homogeneous extreme multistability discussed here is
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FIG. 8. 2D phase portraits of system (4) in the plane (x5, x4) highlighting the heterogeneous extreme multistability of system (4) when varying solely the initial con-
ditions as depicted in the diagrams with a fixed control parameter α = 1.3056 × 10−5. (a) Symmetric 6-scroll for X(0) = (0,±1,±0.2, 0, 0), (b) symmetric 5-scroll
for X(0) = (0, 0, 0, 0,∓3π/4), (c) symmetric 4-scroll for X(0) = (0,±1, 0, 0, 0), (d) symmetric 3-scroll for X(0) = (0,∓0.7,∓0.2, 0, 0), (e) symmetric 2-scroll for
X(0) = (0, 0, 0, 0,∓π/3), (f) quasiperiodic attractor for X(0) = (0,±0.2, 0, 0, 0), (g) symmetric chaotic attractors for X(0) = (0,∓3,∓1.2, 0, 0), (h) symmetric chaotic
attractors for X(0) = (0,∓3,±1.2, 0, 0), (i) chaotic attractors for X(0) = (0,±0.1,±1.2, 0, 0), and (j) quasiperiodic attractor for X(0) = (0, 0, 0, 0,∓π/4).
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FIG. 8. (Contineud.)

FIG. 9. (a) Bifurcation diagram of initial conditions showing the maxima of x5 in the form of layered band patterns highlighting homogeneous and heterogeneous multi-scrolls
in system (4) as a function of the initial condition x5(0) ∈ [−10π , 10π ] with all other ones set at zero. (b) Corresponding spectrum of Lyapunov exponents. The control
parameter is fixed as α = 1.3056 × 10−5.
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FIG. 10. Phase portraits of heterogeneous extreme multistability in the plane (x5, x4) displaying symmetric pairs of four-scroll attractors obtained through initial offsets
in the phase space and for the fixed control parameter α = 1.3056 × 10−5. (a) x5(0) = ±π/2, (b) x5(0) = ±5π/2, (c) x5(0) = ±9π/2, (d) x5(0) = ±13π/2, and
(e) x5(0) = ±21π/2. When selecting only positive or negative signs of the initial state x5(0), homogeneous multistability is captured, as depicted in Fig. 11.
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FIG. 11. (a) Phase portraits of five scrolls in the plane (x5, x4) and (b) in the plane (x5, x1). Additionally, (c) denotes the demarcation region of each coexisting attractor

in the plane [x5(0), x3(0)], supporting homogeneous extreme multistability. Five attractors are plotted for five distinct initial states X(0) = [0, 0.7, 0.2, 0, x5(0)]
T and with

α = 1.684 62 × 10−5. The color label and the initial state for each attractor are as follows: red color for x5(0) = −π/2, green color for x5(0) = −21π/2, black color for
x5(0) = −41π/2, magenta color for x5(0) = −61π/2, and blue color for x5(0) = −81π/2.

FIG. 12. Multi-metastable phenomenon in system (4) for α = 1.7408 × 10−5 and initial conditions X(0) = (0, 0, 0, 0,−31π/2)T . (a) Time trace of the variable x5(τ ) and
(b) phase portraits at different time intervals. (b1) Depicts chaos with five scrolls, (b2) single-band chaos, (b3) chaos with five scrolls, and (b4) single-band chaos.
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FIG. 13. Finite-time Lyapunov exponent spectra (λ1,2,3,4) showing the transition
from a transient to permanent regime. Parameters and initial conditions are those
of Fig. 12.

of high interest in engineering applications requiring only unipolar
signals.60

VI. MULTI-METASTABLE DYNAMICS

Metastability or transient chaos is a phenomenon wherein tra-
jectories, originating from a variety of randomly chosen initial states,
initially exhibit chaotic behavior over an extended period before
abruptly or gradually evolving into a final attractor, often of a non-
chaotic nature.61 Recent investigations have revealed instances of

double and tri-transient chaos in both integer and fractional order
systems.62,63 Moreover, it is noteworthy that several studies have
underscored the heightened significance of this transient behavior
for various applications.64–66

By fixing the system parameters to α = 1.7408 × 10−5,
ε1 = 15.0, ε2 = 3.8596, ω0 = 39.6529 and initial conditions as
(0, 0, 0, 0, −31π/2), the time series in Fig. 12(a) illustrates the tri-
transient chaotic behaviors. Each motion state in the time series is
represented with a different color, and a correlation is detected with
the phase diagrams in Fig. 12(b). As it can be observed in Fig. 12, the
first and third transient regimes are chaotic and characterized by five
scrolls, as depicted in Figs. 12(b1) and 12(b3), respectively. In con-
trast, the second transient regime, captured in Fig. 12(b2), displays a
single-band chaotic dynamic. The persistent dynamical behavior of
the system following these transients represents another single-band
chaotic behavior, as plotted in Fig. 12(b4). The tri-transient feature
is further validated by the finite-time Lyapunov exponent (FTLE)
spectra as depicted in Fig. 13. Unlike qualitative tools, such as phase
portraits and time series, the FTLE provides a statistical measure
of the extent to which a trajectory stretches or folds in a specific
direction within a defined interval.67 The FTLE is evaluated as

λ̄m
j = 1

m

M
∑

i=1

λm
j , m = 1, 2, . . . , k, (10)

where M denotes the time interval and λm
j is the instantaneous

Lyapunov exponents, which is defined as

λm
j = log

∥

∥em
j

∥

∥. (11)

The reorthonormalization vector em
j is denoted as

em
j = MJ

(

xj, yj, 2j, φj

)

êm
j . (12)

FIG. 14. (a) Microcontroller implementation for system (4) with an Arduino Mega 2560. (b) Phase portraits in the plane (x5, x4) of a three-scroll chaotic oscillator display on
the TFT 3.5 inch LCD screen.
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FIG. 15. (a1)–(a6) Experimental results and their (b1)–(b6) numerical equivalence of the three scrolls chaotic attractor in various phase spaces for α = 1.2145 × 10−5,
ε1 = 15.0, ε2 = 3.8596, ω0 = 39.6529 and initial conditions fixed at X(0) = (0, 0.7, 0.2, 0, 0).
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FIG. 15. (Continued.)
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Here, MJ represents the Jacobean matrix in Eq. (8), and j refers to
the time step. Figure 13 showcases the evolution of the time series
Lyapunov exponent computed over M = 200 data points with a step
size of 0.005. One can notice in Fig. 13 the persistence of a positive
Lyapunov exponent over the long-time run, confirming the chaotic
nature of the system post the elimination of all transient regimes. In
addition, the zoomed-in view in Fig. 13 reveals three rapid switches
between two Lyapunov exponents (depicted in red and green colors)
in the spectra. These switches are demonstrating the tri-transient
dynamics captured in the investigated system.

VII. MICROCONTROLLER MEASUREMENTS

This section presents the microcontroller experimental kit used
to capture phase portraits. It includes an Arduino Mega board
equipped with an ATMega2560 microcontroller clocked at 16 MHz,
a 32-bit data bus, flash memory, and 256 kB of SRAM, along with
8 kB of flash memory. The board features 54 input/output pins,
while the firmware is developed using the Arduino IDE software.
The computational results for system (4) are obtained by the fourth-
order Runge–Kutta method. The phase portraits are displayed on
a 3.5 inch GLCD screen with a resolution of 320 × 480 and a 65 K
color display. This setup is fully compatible with the ATMega2560
microcontroller and supports SD card expansion. It operates using
8-bit parallel communication and an ILI9486 driver. The complete
experimental board is depicted in Fig. 14(a), showing the GLCD
screen displaying a three-scroll chaotic oscillator as illustrated in
Fig. 14(b). Figure 15 presents the experimental measurements in
the left panel and their corresponding numerical equivalence from
MATLAB in the right panel for α = 1.2145 × 10−5. One can observe
good agreement between both results.

VIII. CONCLUSION

In this paper, we have investigated the dynamics of coupled res-
onant circuits through a shunted Josephson junction. The system is
both electronically and mathematically simple, where JJ stands as
the sole nonlinear element. Our investigation revealed that the pro-
posed system exhibits either no equilibrium or an infinite number
of equilibria. The stability analysis of the steady states revealed the
system’s ability to demonstrate extreme multistability with hidden
and self-excited dynamics. The numerical results captured through
bifurcation diagrams, spectra of Lyapunov exponents, time series,
phase portraits, and basins of initial states, have highlighted some
remarkable features. Particularly, the stair-like layers appearing in
the three superimposed bifurcation diagrams, captured from paral-
lel branches, reveal the multi-scroll dynamics within the investigated
system. This evidence of multi-scrolls is further confirmed through
the phase diagrams for discrete values of the main control parame-
ter. In addition, volume expansion of the system was also confirmed
through the depicted phase portraits. Among other key findings, our
proposed system has exhibited the capability of generating attractors
with similar and/or different shapes, also known as homogeneous
and heterogeneous multistability, purely by tuning the initial condi-
tions and/or system parameters. Various phase portraits, alongside
their corresponding basins of attraction, support these striking phe-
nomena of homogeneous and heterogeneous extreme multistability.

Additionally, the rare phenomenon of tri-transient chaos was cap-
tured and discussed within the investigated system. Our results from
the time series, associated with the statistical tool of the finite-time
Lyapunov exponent, have confirmed the metastable phenomenon
in the system. The outcomes of our theoretical and numerical
analysis align perfectly with laboratory measurements. Our future
investigations will relate on potential industrial applications of the
homogeneous and heterogeneous multistability.68
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