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ABSTRACT

We report the occurrence of vibrational resonance and the underlying mechanism in a simple piecewise linear electronic circuit, namely,
the Murali-Lakshmanan-Chua circuit, driven by an additional biharmonic signal with widely different frequencies. When the amplitude
of the high-frequency force is tuned, the resultant vibrational resonance is used to detect the low-frequency signal and also to enhance
it into a high-frequency signal. Further, we also show that even when the low-frequency signal is changed from sine wave to square and
sawtooth waves, vibrational resonance can be used to detect and enhance them into high-frequency signals. These behaviors, confirmed by
experimental results, are illustrated with appropriate analytical and numerical solutions of the corresponding circuit equations describing the
system. Finally, we also verify the signal detection in the above circuit even with the addition of noise.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0169195

Vibrational resonance is a phenomenon that occurs in typical
nonlinear systems where a weak low-frequency signal can be
strengthened by a high-frequency signal, according to Landa and
McClintock. The mechanism of vibrational resonance is the inter-
action of the two-frequency signals, which helps the quality of
the weak low-frequency signal in the output to be enhanced.
In this paper, we succeed in showing the enhancement of the
quality of the weak low-frequency signal in the output of a
driven Murali-Lakshmanan-Chua (MLC) circuit by adding a
high-frequency signal. The results of our investigation show that
the different signals, namely, sine, square, and sawtooth waves,
can be identified and enhanced through vibrational resonance.
These behaviors are confirmed by numerical and experimental
studies. Also, we have verified the tolerance of the nature of the
output against noise.

I. INTRODUCTION

In a nonlinear system, the phenomenon of vibrational
resonance (VR) takes place when weak periodic signals are

amplified by the high periodic force present therein." Due to
the significance of their potential applications, high-frequency sig-
nal and VR phenomenon have been studied in different non-
linear dynamical systems.” There are many branches of science
that use two-frequency signals,” including brain dynamics," where
bursting neurons may exhibit two different scales, and com-
munication technology, where low-frequency signals are usu-
ally modulated by high-frequency signals,"” which encode the
data.®

In particular, this phenomenon was first reported by Landa and
McClintock’ in a bistable system driven by a biharmonic force with
widely different frequencies. Both computational and experimental
reports of this VR effect in bistable electrical oscillators have been
made.”* Its potential applications are now being widely researched
in a broad range of systems, such as bistable systems,”” multistable
systems,””'" excitable systems,'' delayed dynamical systems,'*"* cou-
pled neural oscillators,”'*~'” and biological nonlinear systems.'* In
particular, the phenomenon of vibrational resonance is used in
the implementation of logic gates,'””' in the detection of faults
in bearings,”” to detect a lower level input signal with a higher
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level amplitude of output,
devices.'”**

Recently, two of the present authors and Venkatesh have
found that the quasiperiodically driven Murali-Lakshmanan-Chua
(QPDMLC) system mimics dynamic logic gates and basic R-S flip-
flops.”** In their study, they used two square waves to mimic the
different logic behaviors and memory functions. In the recent litera-
ture, a few authors have applied vibrational resonance to investigate
signal detection and enhancement. It was shown that a driven nano-
electromechanical weak signal that has had its nonlinear resonance
strengthened makes up a single-stable system.”” A high-frequency
character signal has been formulated and fault detected using vibra-
tional resonance in a stable state.” Aperiodic and periodic weak
signals were detected numerically using vibrational resonance.”>*>*
Generally, for vibrational resonance, one will use two forces, both of
which are uniform.” Naturally, a question arises here as to whether
one can change the low-frequency signal from sinusoidal to square
or sawtooth force and fix the second force to be just sinusoidal and
then predict the low-frequency signal (sine, square, and sawtooth)
without altering the parameters or the second external force. We
address this issue in this paper using a simple nonlinear circuit, both
numerically and experimentally.

A basic nonlinear circuit, namely, Murali-Lakshmanan-Chua
(MLC) circuit, characterized by its rich content and simplicity, has
garnered significant attention in the literature regarding nonau-
tonomous chaotic circuits [see Fig. 1(a)].”" It consists of an induc-
tor, a capacitor, a resistor, and Chua’s diode. As inductors are dis-
crete in nature, they impose limitations on the ability to implement
MLC circuits as integrated circuits (ICs). Conversely, in electronic
circuits, the inductor is a less preferable circuit element. This is the
result of a multitude of factors. For instance, inductors are compara-
tively less conventional than the remaining circuit components and
necessitate individual preparation for the majority of applications.
Furthermore, their spatial dimensions are more sizable, rendering
them unsuitable for VLSI implementation unless the inductance
is relatively negligible. Numerous inductorless implementations
of chaotic circuits have been suggested as a consequence of
this. "

Compared to neural networks, state controlled-cellular neu-
ral networks (SC-CNNs) are a paradigm for parallel computation.”
A typical SC-CNN is composed of a vast quantity of identical,
interconnected dynamical systems known as cells. The fundamental
representation of these cells or nodes is usually expressed in terms
of coupled nonlinear ordinary differential equations. Narrow-band
processing units are frequently denoted by the terms neurons or
cells. Typically, two CNN cells are utilized in the construction of
the above MLC circuit [see Fig. 1(b)], in addition to external forces
such as biasing, noise, and sinusoidal force.">'"** Utilizing such an
SC-CNN based MLC circuit to extend the analysis to the coupled
system is extremely useful.

The theme of this paper is to study the underlying dynamical
phenomenon of vibrational resonance in the presence of two dif-
ferent forces in a piecewise linear non-autonomous system and, in
particular, in the Murali-Lakshmanan-Chua (MLC) system using
the State Controlled-Cellular Neural Networks (SC-CNNs). We
have also carried out appropriate numerical studies on the SC-CNN
MLC circuit when additional low- and high-frequency signals are

and also in the design of memory

ARTICLE pubs.aip.org/aip/cha

—\/\/\/\—>—/. 666‘ P
R 't L In
F + /.cv +
1
™) c ;:VR
+
Fo (" -
2\ R )
VA .

(b)

FIG. 1. Panels (a) and (b) show the schematic diagram for MLC circuit and
SC-CNN based MLC circuit.

present. Also, in the present study, we point out that, in contrast
to the earlier investigation in Ref. 19, for the appropriate choice of
system parameters, one can identify VR with a maximal response
over a wide range of high-frequency amplitudes, which will enable
assured applications in signal detection and enhancement. Particu-
larly, the low input signals are in the form of sinusoidal, square wave,
or sawtooth types. The obtained numerical results for the detec-
tion and enhancement of low-frequency signals are compared and
confirmed with the corresponding experimental results. Finally, we
demonstrate a robust principle to detect the low-intensity signal via
vibrational resonance even in the presence of additional Gaussian
white noise.
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The structure of this paper is as follows: In Sec. 1, we provide an
overview of the notion of vibrational resonance in the SC-CNN cell
structure of the nonlinear, non-autonomous system. In Secs. IT1I-V,
we discuss the numerical and experimental realization, respectively,
of response amplitude in detecting the low-frequency signal and its
enhancement for different input signals. In Sec. VI, the impact of
noise is examined. We conclude by summarizing our findings in
Sec. VIIL. Also, we discuss the analytical evaluation of the response
amplitude in the Appendix.

1. VIBRATIONAL RESONANCE IN STATE
CONTROLLED-CNN BASED NONLINEAR
NON-AUTONOMOUS SYSTEM

The concept of Cellular Neural Network (CNN) was first devel-
oped by Chua and Yang in 1988.” It is an n-dimensional array of
resistors, capacitors, operational amplifiers (OP-AMPs), and other
analog circuit components, but without any inductors. The underly-
ing CNN is built from a large number of interconnected dynamical
systems.

CNN is a reasonably basic circuit that may be easily imple-
mented experimentally using appropriate electronic circuit ele-
ments. These circuits are powerful tools for the emulation of com-
plex dynamics in nonlinear systems. In this case, the local output and
voltage variables of the CNN cells are exchanged with one another.
This generalization uses the analog components of CNN and it is
known as the State Controlled-CNN (SC-CNN). Many chaotic cir-
cuits designed and implemented in terms of SC-CNN have been
documented in the literature.'*">***~*” The significant advantages
of these CNN circuits are fourfold, that is, (1) they have no induc-
tors, (2) their only circuitry is RC based, (3) they are parallelly
connected, and (4) they consume less power. Thus, the SC-CNN
circuits are realized with less number of hardware and are easily
implemented in VLSI design.”’ The present study illustrates that,
after adding an additional sine wave signal to this circuit, the resul-
tant output exhibits similar and inverted enhanced sine wave signals.
Further, this phenomenon is also illustrated for as other signals such
as square wave and sawtooth wave.

The single forced SC-CNN MLC circuit has been well studied
at the numerical, experimental, and analytical levels in Ref. 40. The
standard MLC circuit [see Fig. 1(a)] consists of a nonlinear resis-
tor that has the three-segment piecewise characteristics of Chua’s
diode, a linear resistor, a linear inductor, and a linear capacitor with
a sinusoidal voltage source.””

It is a well-established fact”” that the normalized form of the
MLC circuit equation with additional sinusoidal force connected in
series [Fig. 1(a)] can be written as

X =y — h(x), )

y=—BA +v)y— Bx+ fisin(wt) + f, sin(w;t),
where the piecewise linear function h(x) is given as

bx+ (a—0b), x>1,
h(x) = { ax, x| <1, (2)
bx—(a—b), x<-—1.

pubs.aip.org/aip/cha

The relationship between the various circuit variables and cir-
cuit parameters and the above dynamical variables and parameters
can be obtained from Refs. 9, 37, and 51. Earlier studies on the
dimensionless version of the circuit with a single external periodic
force for the chosen parametric values a = —1.02, b = —0.55, y
=0.015, B = 1.0, and w; = 0.75 is readily available in the litera-
ture. In these studies, quantity f;, which is the amplitude of the
first periodic force, was varied to identify different bifurcation struc-
tures. It has been shown that this dynamical system exhibits chaos
via different routes, including the period-doubling route, intermit-
tency route, and strange non-chaotic attractor (SNA) route, among
others.”"

The dynamic model of the circuit [Fig. 1(b)] of two general-
ized CNN cells is in accordance with the following coupled state
equations:

2
X1 = —x1 +any +any, + Zslkxk + i,
= (3)
2

Xy ==X +any +ay, + E SokXk + 2,
k=1

where x; and x, are state variables, and y; and y, are the corre-
sponding outputs. The MLC circuit equation defined by Eq. (1)
can be derived from Eq. (3), by assuming x = x1, y =%, a; = b
—dan=dy=a,=0,s1=1=bsp =15 = —B,su=1—-8
(1+v),i; = 0,and i, = f; sin(w; ) + f, sin(w;1).

Consequently, from Eq. (3), the SC-CNN based MLC circuit
model [Fig. 1(b)] is organized as below:

561 = —x1 + a1 =+ s11x1 + S12%,

(4)
X, = —x + sux + spx; + fi sin(wr f) + £ sin(w;, 1),
where y; is the piecewise linear function,
y1=fx) =05(x; + 1] —Jx — 1. (5)

Here, the external forces fisin(w;t) and fysin(w,t) correspond to
low and high level frequencies, respectively, where the amplitude f;
= 0.25 is fixed while f, is varied. Further, the following are typ-
ically the rescaled parameter values: a; = 0.47; s;; = 1.550; s,
= 10; S = _10; Sy = —0015; w; = 075; wy = 35; and ﬁ =
0.25. For suitable choices of the control parameter value f,, the sys-
tem exhibits a rich variety of dynamics. In the present paper, we
investigate the effect of vibrational resonance, detect the existence
of a low input frequency signal in the corresponding response, and
also obtain the enhancement of it to a high-frequency signal in this
circuit.

11I. ANALYTICAL AND NUMERICAL EVALUATION OF
RESPONSE AMPLITUDE

The analytical expression for the response function can be
explicitly obtained using the exact solution of the dynamical
equation of the MLC circuit Egs. (1) and (2) in the three differ-
ent piecewise regions of Chua’s diode. This is carried out in the
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FIG. 2. The dependence of response amplitude Q with f,. The solid line and the
dashed line represent the numerical and analytical response amplitudes, respec-
tively, for a fixed set of values of parameters with w; = 0.75, w, = 3.5, and the
forcing parameter f; = 0.25.

Appendix. Consequently, we obtain

J(Z @) + (@)
h

where Q%%, Q%* are given in Eqs. (A14) and (A15) in the Appendix.
To obtain the corresponding response amplitude from numerical
analysis, we proceed as follows.

After solving numerically Eq. (4) and using the results in the
following expression for the response function, after discarding the

transients, we obtain'
Je+ra@
h

over a range of values of the forcing strength of high-frequency
driving force (f,). Here, the values of the quantities Q, and Q, are
computed from the Fourier spectrum of the time series of the output

Quna =

, (6)

, )

num —

5
4 k I
| !M \||\||.
3 ' N
2 - 4
= »
1
0 -1
B 0 4 8 12 16 20 24 28
" f2
0 10 20 30 40 50 60 70 8 90 100

V)

FIG. 3. Bifurcation diagram of f, vs x(t). The sub-figure shows the enlarged ver-
sion of external force f, for a fixed set of values of parameters with w; = 0.75,
wy = 3.5, and the forcing parameter f; = 0.25.
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0 0.2 0.4 0.6 0.8 1

FIG. 4. The dependence of response amplitude Q with w4 for different values
of f,. Different colors indicate different values of the second forcing parameter f,.
The remaining parameters are fixed with w, = 3.5, and the first forcing parameter
fi = 0.25.

signal x(¢) as
2 nT
Q. = —/ x(t) cos(w, b)dt,
nT 0

2 nT
Q= — / x(t) sin(w; t)dt, (8)
nT 0

where 7 is an integer. The response curves of Q vs selected param-
eters for a range of system parameters are numerically calculated.
System (4) is numerically integrated with Runge-Kutta fourth order
algorithm with step size At = 0.01.

The analytically and numerically calculated response ampli-
tudes from Eqgs. (6) and (7) are shown in Fig. 2. The solid and dashed
lines represent the numerical and analytical response amplitudes,
respectively. To obtain these curves, we fix the system parameter
values as w; = 0.75, w, = 3.5, and f; = 0.25. The remaining param-
eter, f,, is selected in such a way that it promotes the emergence
of VR. It is obvious from Fig. 2 that as the high-frequency force

0.55
0.5
40 0.45
0.4
035
20 0.3
0.25
0.2
0 0.15
0 05 1

fi

FIG. 5. The maximum response amplitude Q depicted in a two-parameter phase
diagram for the amplitude of the first force f; vs second force f, for fixed
parameters wy = 0.75 and w, = 3.5.
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FIG. 6. Realization of the signal detection in the numerical simulation: Panels (a)—(d) correspond to different values of f,, f, = 1.0, 5.0, 15.0, and 25.0, respectively. Every
panel is having three sub-figures, namely, the low amplitude signal f;, and the resultant outputs x; and x,.

f» increases, the response amplitude slowly increases and reaches
a first maximum value when f, = 10.0. After this, there is a sud-
den drop in the response amplitude, and then it again increases
until the response amplitude reaches its maximum value around
f, = 25.0. Any further increase in f, does not lead to any notable
change in the value of Q. It is also instructive to look at the nature
of the corresponding dynamics, which can be identified from the
structure of the associated bifurcation diagram. Figure 3 exhibits the
bifurcation diagram for different values of the high forcing param-
eter f;. Initially, for low f,, the system exhibits period-3 oscillations
(f, € [0,1.30]); on further increase in f;, the system exhibits period-
doubling phenomenon in the range of f, € [1.30, 1.65] and exhibits
chaotic behavior for f, € [1.65,3.66]. After this, beyond f, = 3.66,
the system shows a reverse period-doubling phenomenon for the
range of f, € [3.66,5.3]. After the forcing parameter f, reaches the
value f, = 5.3, the system exhibits period-1 oscillations. Further,
by increasing the forcing parameter f, > 5.3, the system continu-
ously exhibits period-1 oscillation behavior. Also, with the increase
of f;, the response Q reaches a maximum value when f, = 10.0, after
which one observes a sudden drop in the response amplitude (see
Fig. 2), and then it again increases as f, increases until f, reaches
the value around f, = 25.0 beyond which saturation arises. Here
again, the system exhibits limit cycle oscillations in this range of
f> € [5.3,100]." The sub-figure of Fig. 3 shows the enlarged version
asa functlon of the external forcing parameter f, f, € [0, 30].

Further in Fig. 4, we present the response amplitude against the
first forcing frequency w; for different values of the forcing parame-
ter f,. Different values of f, are indicated by different colors in Fig. 4.
Initially, at a low-frequency of f,, we obtain a high response at a
low value of ;. On increasing the value of f,, the maximum of the
response amplitude shifts to a larger value of w;. For all the values of
f»» the response curves exhibit a saturation at higher values of ;.

Figure 5 is a three-dimensional plot that depicts the numeri-
cally computed response as a function of the first forcing strength f;
of low-frequency signal and the second forcing strength f, of high-
frequency. It is clearly demonstrated in Fig. 5 that the response
amplitude “Q” is constant for the higher value of the second forc-
ing strength f,. Increasing the low-frequency signal f; € [0, 1], the
response amplitude attains the maximum value for a low value of
the second forcing signal f,. In Fig. 6, every panel indicates the three
signals, namely, the low input signal f; and the outputs x; and x,.
Let us consider first the low input signal for f; = 0.25 and the sec-
ond forcing signal f, = 1.0. The corresponding outputs x; and x,
are shown in Fig. 6(a). The two outputs x; and x, randomly oscillate
and do not match with the low input signal f;. On further increasing
the f, value to f, = 5.0, the outputs x; and x, slowly approach the
actual input behavior [see Fig. 6(b)]. At f, = 15.0, we find the out-
puts x; and x, approach exactly the sinusoidal behavior where the
output x, matches with the low input signal f;, and the other out-
put x; inversely matches it. Also, the output signals get enhanced in
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comparison with the input signal f; [see Fig. 6(c)]. Then, on further
increase in the f value to f, = 25.0 and beyond, that is, in the range
f> € [25,200], the outputs x; and x; accurately predict the frequency
of the input signal f; continuously in the form of inverse and similar
signals, respectively [see Fig. 6(d)]. Also, the response outputs are
enhanced in comparison with the low input signal f;.

IV. EXPERIMENTAL REALIZATION

Using experimental realization, in the following, we verify
the results obtained by numerical simulation discussed in the
earlier sections. Now, we consider the biharmonic forced SC-
CNN based Murali-Lakshmanan-Chua circuit given in Fig. 1(b)
with the circuit cell components Rj; = 207 K2, R, = 66K, R;;
- 100 KQ, R14 - 100 KQ, R15 == IKQ, Rl6 == 100 KQ, R17 - 100 KQ,
Rnl =220 KQ, an == SMQ, Rn3 =180 KQ, Rn4 =16 KQ, R21
- 100 KQ, Rzz == 66666 KQ, R23 == 100 KQ, R24 - 100 KQ, R25
= 1KQ, R25 =100 KQ, R27 =100 KQ, R31 - R38 =10 KQ, Cl
= 10nF, C, = 10nF and active element IC741 type voltage OP-
AMPs with +12V supply voltages. Experimental results were
obtained using Agilent function generators (33220A) and Agi-
lent digital storage oscilloscopes (DSO 7014B). The changes in the
dynamics of the circuit under the effect of input streams are obtained
by measuring the voltages v; and v, across the capacitors C; and
C,, respectively. Further, we vary the second forcing parameter f,
from 100mV to 1 V. In this case, Fig. 7(a) shows the low input sig-
nal f; and two output signals v; and v,. The first input f; is fixed as
100 mV and the second input f; is also given the value 100 mV. The
corresponding outputs of the system signals do not predict the low-
frequency input signals f; [Fig. 7(a)]. As f; is increased to 300 mV
[Fig. 7(b)], the lower input is not observed in the output signal. On
further increase to the value f, = 700 mV [see Fig. 7(c)], the out-
put signals are able to replicate the low input signals f;. Even further
increase of f, to f, = 1.0V [see Fig. 7(d)], the lower input signal is
predicted from the output signal v, (and its inverse from v;) and
also the amplitude gets enhanced from 100 mV to 1V (see the panel
at the top of every figure in Fig. 7). On further increase in the value
of f,, the output signals are able to detect the lower input signal
continuously.

V. ANALYZING THE BEHAVIOR OF DIFFERENT
LOW-FREQUENCY INPUT SIGNALS f;

Next, we pose an interesting question: is it possible to detect
other types of wave profiles like square, sawtooth, etc. waves which
are different from sinusoidal ones? The answer is yes if one changes
the low-frequency signal from a sine to a square or sawtooth wave,
as discussed below. For this purpose, we fix the high-frequency sig-
nal f, as a sine wave and change the low-frequency signal f; from a
sine wave to a square or sawtooth wave. Figures 8 and 9 show the
corresponding numerical and experimental outputs of the square
wave. Also, Figs. 10 and 11 show the corresponding numerical and
experimental outputs of the sawtooth wave. In particular, Figs. 8
and 10 indicate three panels (a)-(c), namely, the low input sig-
nal square/sawtooth wave and the corresponding numerical outputs
x; and x,. The experimental outputs [Figs. 9 and 11] indicate the
three panels (a)-(c), namely, the low input signal square/sawtooth

pubs.aip.org/aip/cha
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FIG. 7. Realization of the signal detection in experimental SC-CNN based MLC
electronic circuit: Panels (a)—(d) correspond to different values of f,, f, = 100 mV,
300mV, 700 mV, and 1.0V, respectively. Every panel is having three sub-figures,
namely, the low amplitude signal f;, and the experimental outputs v4 and v,.

wave and the corresponding resultant outputs v, and v,. The
corresponding numerical and experimental outputs x; /v; and x, /v,
are shown in Figs. 8/10 and 9/11. These outputs x;/v; and x,/v,
approach exactly the square and sawtooth waveforms and accurately
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FIG. 8. Realization of the signal detection in the numerical simulation: Panels
(a)~(c) correspond to low amplitude square wave, and the resultant outputs x4
and x, for a fixed value of f, = 25.0.

predict the frequency of the square and sawtooth wave input signals
continuously in the form of inverse and similar signals, respectively
[see Figs. 8/10 and 9/11]. Also, the response outputs are enhanced
in comparison with the low input signal. Thus, we confirm using
different input signals like square/sawtooth wave signals that we are
able to detect and enhance the output signals through numerical and
experimental realizations.

VI. EFFECT OF NOISE

At this point, a question that may naturally arise is whether or
not the system exhibits the same kind of structure after the inclusion
of additional noise. Now, we re-express Eq. (4) after including the
Gaussian white noise as below:

X1 = —x1 + ayy) +sux + spxs,

%)
Xp = =% + $uxX1 + Spx; + fisin(w t) + f; sin(w,t) + DE(Y).

10.008/ Stop £ H

FIG. 9. Realization of the signal detection in the experimental realization: Panels
(a)—(c) correspond to low input of square wave, and the resultant experimental
outputs v4 and v;.
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FIG. 10. Realization of the signal detection in the numerical simulation: Panels
(a)—(c) correspond to low amplitude sawtooth wave, and the resultant outputs x
and x, for a fixed value of f, = 25.0.

The above equation (9) &(f) represents the Gaussian white
noise and D is its strength. We fix the forcing parameters as f; = 0.25
and f, = 25.0 and vary the noise strength D. The numerically calcu-
lated time series outputs from Eq. (9) is shown in Fig. 12. Every panel
in Fig. 12 contains four figures, which correspond to the following:
the low input signal f;, noise D, and the outputs x; and x,. Let us
consider the low input signal with f; = 0.25, a second forcing signal
f» = 25.0, and noise D = 0.0. Figure 12(a) depicts the correspond-
ing outputs x; and x,. In the form of inverse and similar signals, the
two outputs, x; and x,, continuously predict the frequency of the
input signal, f;. When the value of D is increased further to D = 0.1,
the outputs x; and x, continue to take the form of the input behav-
ior [see Fig. 12(b)]. As the D value is increased further to D = 0.5,
the outputs x; and x, gradually lose their actual input behavior [see
Fig. 12(c)]. The output signals x; and x, then randomly oscillate and
do not match with the low input signal f; as the value of D increases
to D = 1.0 and beyond [see Fig. 12(d)].

Next, we include the noise in the experimental SC-CNN based

a) i 100w/ 100v/ @ 1.00v/ @ #  00s 1000/ Stop £ [ 138v

Sawtooth

FIG. 11. Realization of the signal detection in the experimental realization: Panels
(a)~(c) correspond to low input of sawtooth wave, and the resultant experimental
outputs v4 and v;.
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FIG. 12. Realization of the signal detection in numerical simulation: Panels (a)-(d) correspond to different values of D. Panel (a) represents D = 0.0, panel (b) represents
D = 0.1, panel (c) represents D = 0.5, and panel (d) represents D = 1.0 with fixed forcing parameter f; = 0.25 and f, = 25.0. Every panel is having four subfigures,
namely, low amplitude f; sin w4t, Gaussian white noise D& (t), and the resultant outputs x4 and x,.

MLC circuit [Fig. 1(b)] in series with signal f; and f,. By measur-
ing voltages v; and v, across capacitors C; and C,, respectively, the
realization of experimental output and changes in the dynamics of
the circuit under the effect of noise are obtained. In our experi-
mental investigation, we are using an Agilent function generator
(33220A) and it has a noise signal option to generate the noise sig-
nal. The noise bandwidth of this function generator has been fixed
at 9MHz, which is typical. In our study, we vary the amplitude
DE (t) of the noise signal [see Figs. 13(a)-13(d) second channel]. Fur-
ther, we fix the forcing parameters as fi = 100mV and , =1V and
vary the noise parameter D from 0 to 2.6 V. Figure 13(a) depicts
the low input signal f;, the noise input signal D = 0.0V, and two

output signals v; and v, in this case. When no noise is present,
D = 0.0V, the first and second inputs, f; and f,, are set to 100 mV
and 1V, respectively. The frequencies of the corresponding outputs
vy and v, exactly predict that of the lower input signal f; [as shown
in Fig. 13(a)]. As D is increased to 500 mV, the lower input sig-
nal is continued to be observed in the output signals [Fig. 13(b)].
As the value D is increased further to D = 1.5V [see Fig. 13(c)],
the output signals gradually miss matching the input signals. When
increasing the strength D to D = 2.6V [see Fig. 13(d)], the sys-
tem output signals are too weak to predict the low-frequency input
signal. On further increasing the strength of the noise signal, one
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FIG. 14. The maximum response amplitude Q depicted in a two-parameter phase
diagram for noise strength D vs second force f, for fixed parameters f; = 0.25,
w = 0.75, and wy = 315}

DE®  f1 sin o(t)

©'g 100e7 B 200w/ § 100w/ 100w/ % 00s 10008/ Stop £ @00V
dots. With strength D, we determine the probability P(signal) of
receiving the same input structure for various noise intensities.
P(signal), in its simplest form, represents the proportion of total

Vi
V2
successful runs to total runs. P(logic) is given the value “1” if the

01005/ B 200v/ B 100v/ B 100V/ 3 00 10005/ Stop 5 @00V system displays the intended input signal in response output; other-

wise, it is handled as “0.” A sampling of 2000 runs of the given input
set is used to calculate P(signal) for the system (9), and this process
is repeated 1000 times. We use a low D value for the output signal
in order to recognize or mimic the low input signal f;. The noise
progressively ceases matching the weak input signal f; as the noise

1000/ @ 200/ @ 100v/ @ 100v/ # 00s 10008/ Stop £ @ 00V
w parameter values. Apart from this, we have also demonstrated the
idea of detecting low input signals and obtaining enhanced output
FIG. 13. Realization of the signal detection in experimental electronic circuits: signals, which is one of the significant roles played by vibrational
Panels (a)—(d) correspond to different values of D with fixed fy = 100 mV and resonance in nonlinear systems. In addition to these, we have also

level increases. Hence, even in the presence of noise coming from
electronic components or any other external variables, the system’s
f, = 1V. Panel (a) represents D = 0V, panel (b) represents D = 500 mV, panel . . .
(c) represents D = 1.5V, and panel (d) represents D = 2.6\. Every panel is detected different low input signals, such as square and sawtooth

e

1 sin o(t)

DE(1)

ability to recognize or replicate the low input signal is conclusively
proven.

g

VIl. CONCLUSIONS

In summary, we have demonstrated the existence of vibrational
resonance in a nonlinear, nonautonomous SC-CNN-based MLC cir-
cuit. We have explained how the amplitude of the driving signal
interacts with the state of the system through analytical, numerical,
and experimental studies. Particularly, we used two different forces
with widely varying frequencies that contribute to generating vibra-
tional resonance in the SC-CNN based MLC circuit. These forces
work together to extend the region of resonance at specific system

1 sin o(t)

Dg(1)

having four subfigures, namely, low amplitude f; sin wy (t), Gaussian white noise waves, in the same circuit without altering the system parameter
D& (t), and the experimental outputs v4 and v,. values. We have also confirmed the robustness of detecting and
enhancing the signal even after adding external Gaussian white
noise.
finds that the system no longer has the ability to mimic the input
signal.
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APPENDIX A: ANALYTICAL EVALUATION OF THE
RESPONSE AMPLITUDE

Now system (1) can be explicitly integrated in terms of ele-
mentary functions in each of the three regions Dy, D, and D_
(Jx] < 1,x > 1 and x < —1) and matched across the boundaries to
obtain the full solution as shown below."”

It is found that in each one of the regions Dy, D, and D_
the driving system (1) can be represented as a single second order
inhomogeneous differential equation for variable y(f),

J+ B+ Bv+wy+ B+ upv+ pu)y = A+ufi sin(wrt)
+ wifi cos(wrt) + pfy sin(w,t) + w,f cos(w,t), (A1)

where

(i) #=a, A =0inregion D, and
(ii) w =b, A = £B(a —b) inregion D,

The general solution of system (A1) can be written as

y(t) = Cpox exp(ot) + Co,x exp(azt) + Ey + Eyy sin(w; 1)
+ E3 cos(w;t) + Ey, sin(w,t) + Ep3 cos(w,t), (A2)

pubs.aip.org/aip/cha

where Cj,.,C3,. are integration constants in the appropriate
regions Dy, D, and

ajp, = (—Ax A2 —4B)/2,
A=p+Bv+u, B=B+upv+pu,
E, = 0inregion Dy, E; = A/Binregion Dy,
[fio}(A—w +uhB]  fio[B— o} — uA]
(A0 +B-o] " [Aw+(B-o?)]
[fza)%(A — )+ Msz] _ fzwz[B —wl— ,uA]
[0} + (B—wd)’]  [A}+ (B—wd)]]

E12 =

E22 = 23

Knowing y(t), we can obtain x(f) from (1) as
x(t) = 1/B[—y — By(1 +v) + fisin(w))t + fy sin(wy)t].  (A3)

Substituting for y and y from Eq. (A2), the form of x(f) is found
to be

x(t) = 1/,8[—C(1,,i (o + o)exp(aqt) — Cé,i (a2 + 0)exp(ayt)
+ (Ejp01 + Ei30) cos(wt) + (i — Ei20 + Ejzwy) sin(w, )
+ (Exw; + Ex0) cos(wat) + (f, — Exno + Eyws) sin(w;t)
~Eo), (A4)

where 0 = (1 +v) and the value of the integration constants,

namely, Cj , and C}, are obtained by substituting the initial con-

dition at t = #y, x(tp) = %o and y(f,)) = y, in Egs. (A3) and (A4).
On solving further, the explicit form of the integration constants are
found as

Co = exp(—anty)/(ar — e2)[—Bxo + [Eppwy + Eis(a
+ 20)] cos(wity) + [fi + Enpea + Epzo1] sin(wi tp)
+ [Exow, + Exs(az 4 20)] cos(waty) + [ + Exnatz
+ Exywy] sin(wyty) — Eyas — yo(az + 0)], (A5)

Cox = exp(—anty)/(a — a1)[=Bxo + [Epny + Eys (e
+ 20)] cos(wity) + [fi + Ennaq + Er301] sin(w; t)
+ [Exw, + Exs(ag 4 20)] cos(waty) + [fo + Exnaty
+ Eywy] sin(wyty) — Eyoy — yo(ay +0)]. (A6)

The response of the system is then calculated from the sine and
cosine components, Q, and Q,, respectively, of the output signal x(¢).

Using Eq. (A4), the sine and cosine constituents of the output
signal are given by

2 nT
Q= _T_/ x(¢) sin(w, t)dt,
e (A7)

2 nT
Qc = — f x(t) COS(a)]t)dt,
nT J,

where T = 27 /w; and # is a positive integer.
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Then, we finally find the dependence on f, of the response

amplitude Qg as
Q ere (A8)
ana — — - 8

h

In order to evaluate the analytical expression for response
amplitude, one can rewrite Eq. (A4) as

x(t) = l/,B[—C(l),i (ay + o) exp(a;t) — Cé’i (a2 + 0) exp(zt)
+ Scos(wt — ¢1) + S cos(wrt — ¢) — Eio], (A9)

where

§ = (B + EL)(@f +0%) + ff + 2fionEris — 2i0En,  (A10)
S? = (B2, + E5) (@2 + 0%) + 2 + 2fsEps — 2f0Ep,  (All)

1 fi —Eno + Eon

(A12)
Elza)l + E130

1= Exo + Ejw,

= tan
¢ Eyw; + Eyo

(A13)

By substituting Eq. (A9) in Eq. (A7), one can get

2 nT
Qo = o / [—Cy. (a1 + o) exp(ayt) — Cj (2 + 0) exp(ast)
0

+ Scos(wt — ¢y) + S cos(w,t — ¢,) — Eo] sin(w, t)dt,
(A14)

2 nT
Q= v / [—Cyi(on + o) exp(ast) — Cg o (ay + 0) exp(at)
0

+ Scos(wt — ¢y) + S cos(w,t — ¢,) — Ejo] cos(w, t)dt.
(A15)

During the time interval nT, the value of x(#) flips between vari-
ous regions, namely, Dy, D;, and D_, and the intrusion times of
x(?) in each of the regions are identified separately. Then, the sine
and cosine components of x(f) in each of the components of sine
(Q**) and cosine (Q%*) are added successively depending on their
dwelling in the three different regions Dy, D.. Finally, the response
amplitude Q is calculated as

0,412 0,412
o Jxa >f+ (¥ Q%) e
1

to obtain the analytical response amplitude.
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