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PREFACE 

          Fuzzy logic is similar to how people make decisions. There are a lot of fuzzy 

situations that give unclear information in our universe. It deals with fuzzy and 

ambiguous data. This is a gross oversimplification of the difficulties in the real world. 

Uncertain or ambiguous items are referred regarded as fuzzy. We must characterize 

such activities in a fuzzy fashion since any event, process, or function that is always 

changing cannot always be defined as either true or false. The current study examines 

various algorithmic approaches to solving fuzzy linear sum assignment problems and 

its modifications. The study could be viewed as a modest step toward the development 

of the fuzzy linear sum assignment problem. 

         Lofti A. Zadeh's [79] 1965 research article "Fuzzy Sets" introduced fuzzy logic. 

He is regarded as the father of fuzzy logic. Linear sum assignment problem was 

originally proposed by R. Burkard, Mauro Dell'Amico, and Silvano Martello [14]. This 

thesis uses various fuzzy numbers, defuzzifying 𝜔-trapezoidal fuzzy numbers, and 

generalised trapezoidal fuzzy numbers to identify methods and various algorithmic 

approaches with complimentary slackness conditions. The main concepts discussed in 

this thesis are some new algorithmic approaches for solving fuzzy linear sum 

assignment problems to obtain optimal/feasible or partial/complete matching solutions 

in the bipartite graph. Many authors L.Yang and B.Liu , P.S. Pundir, S.K. Porwal and 

Brijesh, P. Singh  and U. Derigs [23] utilized methods of their own interest and made 

various algorithms to tackle the linear sum assignment problems and fuzzy assignment 

problems. 

 

https://epubs.siam.org/author/Burkard%2C+Rainer
https://epubs.siam.org/author/Dell%27Amico%2C+Mauro
https://epubs.siam.org/author/Martello%2C+Silvano


This thesis is organized into eight chapters in order to present the FLSAP, with the 

above methods: 

    Chapter I Introduction 

        In this chapter presents, a basic preliminaries of assignment problems, linear sum 

assignment problems, the basic concepts of fuzzy sets, fuzzy numbers and fuzzy linear 

sum assignment problems are discussed and proposed different types of fuzzy numbers, 

α-cut fuzzy numbers  also discussed. Obtained Dual and partial feasible solutions and 

complete optimal solutions by using different fuzzy optimization matching techniques 

of fuzzy assignment problems and linear sum assignment problems.  Finally, the 

arithmetic functions of different types of fuzzy numbers are presented. This method is 

given by a numerical example.    

Chapter II   Dual and Partial Primal Solution for Solving Fuzzy Linear Sum 

Feasible Assignment Problems [FLSAP] 

         This chapter presents, a new method by using complementary slackness 

conditions to calculate the fuzzy dual solution and fuzzy partial primal solution using 

a bipartite graph and the assignment cost were taken as 𝜔 −trapezoidal fuzzy 

numbers. This chapter solves the primal problem first, then the dual problem, and 

finally the primal-dual problem. Here first construct 𝜔 − trapezoidal fuzzy Linear 

Sum Assignment table. Next we have to find row and column reduction, it's worth 

noting that the resulting dual variables of lower costs aren't negative and calculate 

reduced cost matrix 𝐶̅ next to obtain partial feasible solution. This method is 

illustrated by a numerical example. 

 



Chapter III   Feasible Degenerate Pivoting and Optimal Non-Degenerate Pivoting 

for Solving Fuzzy Linear Sum Assignment Problems 

 This chapter proposes Feasible Degenerate Pivoting and Optimal Non-

Degenerate Pivoting for Solving Fuzzy Linear Sum Assignment Problems. In this 

chapter the spanning trees on the associated bipartite graph G = (U, V; E). If a strongly 

feasible tree is producing degenerate pivoting on a backward edge and the rank of 

reduced fuzzy cost matrix [𝔑(𝐶𝑖𝑗
̅̅̅̃̅ )] is negative and then the current fuzzy linear sum 

assignment problem is not optimal. If a strongly feasible tree is producing non-

degenerate pivoting on a forward edge and the rank of the reduced cost matrix [𝔑(𝐶𝑖𝑗
̅̅̅̃̅ )] 

is non-negative and 𝐸̅= ∅ then the Current fuzzy linear sum assignment problem is 

optimal. This method is discussed by a numerical example. 

Chapter IV A New Modified Optimal Perfect Matching in Partial Feasible 

Matching for Solving Fuzzy Linear Sum Assignment Problems [FLSAP] 

This chapter proposes a new modified optimal and perfect matching from partial 

assignment for solving fuzzy linear sum assignment problem. The fuzzy assignment 

cost is we take as ω-Trapezoidal fuzzy numbers. By using ranking method, ω-

Trapezoidal fuzzy numbers converted to crisp one. First calculate the rank of fuzzy dual 

variables and compute a partial feasible solution then calculate reduced rank of ω-

trapezoidal fuzzy cost and find the new column and the new assignment introduced,  

Continue the process to reach optimal solution and complete bipartite matching. This 

method is illustrated by a numerical example. 

 

 



Chapter V   Spread of New Partial/ Feasible and Optimal/ Perfect Matching for 

Solving Interval-Valued -Cut Fuzzy Linear Sum Bottleneck Assignment 

Problem. 

This chapter proposes a spread of new partial/feasible and optimal/perfect 

matches of bipartite graphs for solving interval-valued 𝛼-cuts of generalized trapezoidal 

fuzzy numbers. Obtain  𝛼 -cut generalized trapezoidal fuzzy numbers from generalized 

trapezoidal fuzzy numbers, then discuss membership functions. The  𝛼-cut generalized 

trapezoidal fuzzy number is transformed into an Interval-valued  𝛼 -Cut of Generalized 

Fuzzy Numbers. The basic preliminaries and fuzzy interval operations are discussed. If 

the solution is maximum cost and complete match, then the solution is feasible and 

complete. If the solution is minimum cost and complete, then the solution is optimal 

and complete. If maximum cost and partial match, then the solution is feasible with 

partial match. If minimum cost or partial match, then the solution is optimal or feasible 

match. This method is presented by a numerical example. 

Chapter VI   A New Optimal Complete Matching of Edges with Minimum Cost by 

Ranking Method for Solving 𝝎-Type -2 Fuzzy Linear Sum Assignment 

Problem[FLSAP] 

This chapter proposes a new optimal solution and complete matching edges of 

bipartite graph. 𝜔-type -2 [FLSAP] is converted to crisp one by using new ranking  

method for solving 𝜔-type -2 [FLSAP]. This chapter discussed 𝜔-trapezoidal fuzzy 

number, 𝜔-type 1-Trapezoidal fuzzy number and 𝜔-type 2-Trapezoidal fuzzy number. 

Create 𝜔-type -2 [FLSAT].The rank of -type 2 Trapezoidal fuzzy number to assign each 

machine to a job with the lowest cost in that job for solving -type 2 [FLSAP]. 



Furthermore, each iteration updates a non-matched edge to a matched edge and update 

the corresponding dual variables. By using alternating path method to obtain a new 

optimal complete matching solution. This method is illustrated by a numerical example. 

Chapter VII    Fuzzy Multi-Objective Linear Sum Assignment Problem with 

Modified Partial Solution of 𝝎 - type 2 - Diamond Fuzzy Numbers[DFN] by Using 

Linguistic variables             

This chapter proposes fuzzy multi-objective linear sum assignment problem with 

modified partial assignment of 𝜔 - type 2 - diamond fuzzy numbers using linguistic 

variables. In this chapter introduced 𝜔 - type 1 and 𝜔 - type 2 diamond fuzzy numbers. 

Let us consider four jobs and four machine problem and to optimize fuzzy cost , fuzzy 

time, fuzzy quality are each considered as a 𝜔 - type 2 - DFN.  𝜔-type 2 DFN are 

converted into 𝜆𝑑--cut of DFN and upper and lower 𝜔-type 2 diamond multi-objective 

fuzzy numbers are converted into single objective 𝜆𝑑-cut fuzzy number by using 

ranking method. Obtain dual variables and then calculate [ 𝑐𝑖𝑗  ̃ − 𝑢𝑖  ̃ − 𝑣𝑗 ]̃ ; by using 

alternate path method increase the partial assignment. This method is illustrated by a 

numerical example, proving its efficiency. 

Chapter VIII   Minimum vertex cover of  𝝎 −Pentagonal Fuzzy Linear Sum 

Bottleneck Assignment Problem [𝝎 − 𝑷𝑭𝑳𝑺𝑩𝑨𝑷] 

 In this chapter we presented a spread of minimum solution of fuzzy optimization 

matching procedure in the bipartite graph. it provides minimum vertex cover with edge 

set E for solving 𝜔 − 𝑃𝐹𝐿𝑆𝐴𝑃. The 𝜔 − 𝑃𝐹𝐿𝑆𝐴𝑃 is minimum cost and  complete 

matching in the bipartite graph. The Linear Sum Bottleneck Assignment Cost [LSBAC] 

we taken as 𝜔 −Pentagonal Fuzzy Numbers (𝜔 − 𝑃𝐹𝑁). If each person and each job 



contain exactly one matching solution with Spr (φ) = 0 or minimum Spr (φ), then the 

current 𝜔-PFLSBAP is optimal. If each person and each job contain exactly one 

matching solution with maximum Spr (φ), then the current 𝜔-PFLSBAP is not optimal 

but feasible and complete matching solution. Finally obtained the graph has minimum 

vertex cover of cardinality n with perfect or complete matching. This method is 

illustrated by a numerical example.  
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CHAPTER I 

INTRODUCTION 

 

         In this chapter presents, a basic preliminaries of assignment problems, linear sum 

assignment problems, fuzzy linear sum assignment problems and the basic concepts of 

fuzzy sets, fuzzy numbers are discussed and proposed different types of fuzzy numbers 

,𝛼-cut fuzzy numbers and also discussed . obtained Dual and partial feasible solutions 

and complete optimal solutions by using different fuzzy optimization matching 

techniques of fuzzy assignment problems and linear sum assignment problems.  Finally, 

we present the arithmetic functions of different types of fuzzy numbers. This method is 

illustrated by a numerical example.    

 

1.1 LINEAR SUM ASSIGNMENT PROBLEM   

    A special type of transportation problem is the assignment problem. There is just 

one assignment supply from all sources, and only one assignment demand from all 

destinations. The n × n matrix contains the assignment problem. We have 'n' jobs that 

are performed by 'n' workers, and our focus is to minimize costs or increase profits. Let 

Cij be the assignment cost for the ith person to the jth job. 

    One of the most well-known problems in linear programming and combinatorial 

optimization is the linear sum assignment problem. We have a (𝑛 × 𝑛) cost matrix C = 

(𝑐𝑖𝑗) that we want to match each row to a different column so that the sum of the 

associated entries is as small as possible. To look at it another way, we want to select n 

elements from C so that there is exactly one element in each row and column, and the 
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sum of the corresponding costs is as small as possible. 

  Bipartite graphs provide another way to describe assignments. If every edge 

connects a vertex of U with a vertex of V and there are no edges that have both endpoints 

in U and in V, a graph G = (U, V; E) with disjoint vertex sets U and V and edge set E 

is called bipartite. A matching M in G is a subset of the edges where every vertex of G 

meets at least one matching edge. Assume that the total number of vertices in U and V 

is n, and that |U| = |V|= n. The matching M is said to be perfect if every vertex of G 

coincides with an edge of the matching M in this case.  

1.2 FUZZY SET THEORY 

In real world, fuzzy data is frequently used in human thinking and reasoning. 

Humans are capable of providing satisfactory responses that are most likely correct. 

Because our systems are built on classical set theory, they are unable to respond to a 

broad range of questions. Our system should be able to handle unreliable and 

incomplete information, as we desire. A solution was provided through a fuzzy system. 

Many real-world application problems, especially those involving elements that 

are only partially members of a set, cannot be explained and solved using classical set 

theory. Fuzzy set theory, on the other hand, allows partial memberships and so extends 

classical set theory in some ways. To introduce the concept of fuzzy sets, we will first 

go through the basics of classical mathematics' set theory. It will be seen that fuzzy set 

theory is both a natural extension and a formal mathematical notion of classical set 

theory. 

The process of converting a crisp set into a fuzzy set or a fuzzy set into a fuzzier 

set may be used to describe it. In general, this process converts accurate, crisp input 
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values into linguistic variables. The two key approaches of fuzzification are  (i) Support 

Fuzzification Method and (ii) Grade Fuzzification Method. 

The process transforms a fuzzy set into a crisp set or a fuzzy member into a crisp 

member can be used to describe it. The conversion of crisp values to fuzzy quantities is 

a step in the fuzzification process. Defuzzification, or rather the conversion of a "fuzzy 

result" to a crisp result, is required in a number of technical applications. 

Defuzzification is also known as "rounding it off" in mathematics. The different 

methods of Defuzzification are (i) Max-Membership Method, (ii) Centroid Method, (iii) 

Weighted Average Method, (iv) Mean-Max Membership and so on. 

Lofti A. Zadeh [79] proposed membership functions for the first time in 1965. 

fuzzy sets After commencing, it developed in a variety of ways across a variety of fields. 

Fuzzy logic is used to describe fuzziness, not because it is fuzzy logic. The membership 

function of this fuzziness serves as its best characterization. In other terms, we may say 

that the membership function in fuzzy logic represents the degree of truth. Fuzzy logic 

can manage data obtained from computational perception and cognition that is 

uncertain, imprecise, vague, partially true, or lacking sharp limits. In computational 

challenges, fuzzy logic allows for the inclusion of fuzzy human judgments. It also gives 

an excellent method for resolving multiple criterion conflicts and better evaluating 

solutions. New computing approaches based on fuzzy logic can be applied in the 

creation of intelligent systems for decision making, identification, pattern recognition, 

optimization, and control. 
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1.2.1 Definition: Fuzzy Sets 

A fuzzy set 𝐴1̃  in a universal set X is defined by a membership function 

𝜇𝐴1̃  : 𝑋 →[0,1].Where 𝜇𝐴1̃  (𝑥) is the degree of membership function in the fuzzy set 𝐴1̃  

, and is denoted by   𝐴1̃    = {(𝑥, 𝜇𝐴1̃  (𝑥)): 𝑥𝜖𝑋}. 

1.2.2 Example: 

If X = {Apple, Orange, Banana, Grapes, Cherry, Watermelon} the membership 

value of the set  

𝐴1̃ = (Apple, 0.4), (Orange, 0.5), (Banana, 0.75), (Grapes, 0.6), (Cherry, 0.3)  , (Kuvi, 0.9)} 

is a fuzzy set on X. 

1.2.3 Definition: 

A fuzzy set 𝐴1̃  is said to be normal if its defined in a universe of discourse holds 

total ordering, maximal membership value 𝜇𝐴1̃   is equal to one, that is  𝜇𝐴1̃  (𝑥) = 1. 

1.2.4 Definition: 

An element of a crisp subset of X with all of its elements with nonzero 

membership grades is the support of a fuzzy set 𝐴1̃  , and is defined by  support of      

𝐴1̃    = { 𝑥𝜖𝑋: 𝜇𝐴1̃  (𝑥) > 0}. 

1.2.5 Definition: 

The crisp subset of the universe of discourse X in 𝛼 -cut (𝐴̃ 𝛼) whose elements all have 

membership degrees greater than or equal to is 𝛼, that is 𝐴̃ 𝛼 = {𝑥 𝜖 𝑋: 𝜇𝐴1̃ (𝑥) ≥ 𝛼} 

1.2.6 Example: 

If  𝑋 =  {𝑃, 𝑄, 𝑅, 𝑆, 𝑇}, membership value 𝐴1̃ =
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{(𝑃, 0.5), (𝑄, 0.7), (𝑅, 0.2), (𝑆, 0.8), (𝑇, 0.1)} fuzzy set on 𝑋, then 𝐴̃ 0.5= {P,Q,S}. 

1.2.7 Definition: 

     A fuzzy set 𝐴1̃  is convex if 𝜇𝐴1̃
(𝜆p + (1 -𝜆) q ) ≥ min {𝜇𝐴1̃ (𝑝), 𝜇𝐴1̃ (𝑞)}∀ p,q 𝜖 𝑅𝑛 

and 𝜆 𝜖 [0,1]. 

1.3 FUZZY NUMBERS 

In fuzzy mathematics, fuzzy numbers perform a vital role, much like ordinary 

numbers do in crisp mathematics. A fuzzy number is a generalization of a regular, real 

number in that it refers to a connected collection of potential values instead of a single 

value, where each potential value has a weight between 0 and 1. This factor is referred 

to as the membership function. A convex, normalized fuzzy set of the real line is a 

special case of a fuzzy number, which implies. Fuzzy numbers are a development of 

real numbers, much like fuzzy logic is a development of Boolean logic. Uncertainty in 

parameters, characteristics, geometry, initial conditions, etc., can be incorporated into 

calculations using fuzzy numbers. 

A fuzzy number is a quantity whose value is imprecise, rather than exact as is 

the case with "ordinary" (single-valued) numbers. In many respects, fuzzy numbers 

depict the physical world more realistically than single-valued numbers. 

The membership functions of these sets, which have the form 𝐴1̃: R → [0,1], 

have a quantitative meaning that is obvious, albeit they can occasionally be interpreted 

as fuzzy numbers. To interpret them in this way, they must embody our intuitive ideas 

of approximate numbers, such as "numbers that are close to a particular real value" or 

"numbers that are about a specific interval of real numbers." Determining the states of 

fuzzy variables requires the use of such ideas, which are crucial for many applications, 
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such as fuzzy control, decision-making, and optimization and so on. 

A fuzzy set 𝐴1̃  on R must have at least three of the following characteristics in 

order to be considered a fuzzy number. 

 𝐴1̃ must also be a normal fuzzy set; 

 𝐴̃ 𝛼 must also be a closed interval for every 𝛼𝜖(0,1); 

 The support of 𝐴1̃  must always be bounded 

Assuming that r fully satisfies our conception of a set of real numbers close, the 

fuzzy set must be normal therefore r's membership grade in any attempt to represent 

this conception must be 1. Each fuzzy number is a convex fuzzy set because for all 𝛼 -

cuts of a fuzzy number must be closed intervals for every (0,1). 

One approach, in particular, to describe imprecise information, is provided by 

fuzzy set theory. A specific subclass of fuzzy sets on the real line is composed of fuzzy 

numbers. This concept's fundamental idea is motivated by the observation that people 

frequently use imprecise numbers to convey their basic knowledge of objects. 

1.3.1 GENERALIZED FUZZY NUMBER 

A fuzzy set 𝐴1̃= (p,q,r,s; 𝜔) is said to be a generalized fuzzy number if its membership  

function satisfies the condition listed below. It is defined on the universal set R of real 

numbers. 

1. The membership function 𝜇𝐴1̃  (𝑥) : R tends to [0,𝜔] is continuous. 

2. The membership function 𝜇𝐴1̃  (𝑥) is equal to zero for all x ∈ (−∞, 𝑝) ∪ [s,∞). 

3. The membership function 𝜇𝐴1̃  (𝑥) = 𝜔 ∀  x ∈ [𝑞, 𝑟], where 0 < x ≤ 1. 

4. The membership function strictly increasing on [p,q] and strictly decreasing on [r,s] 
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1.4 TRAPEZOIDAL FUZZY NUMBER 

The membership function of a trapezoidal fuzzy number is piecewise linear and 

trapezoidal, which can represent the fuzziness of certain linguistic assessments. Fuzzy 

variables are important because they enable gradual changes in state and, as a 

consequence, have a built-in ability to describe and handle measurement and 

observational uncertainty. Fuzzy variables capture measurement uncertainties as part of 

experimental data, they are more attuned to reality than crisp variables.it is an 

interesting paradox that data based on fuzzy variables provide us, in fact, with more 

accurate evidence about real phenomena than data based upon crisp variables. Suppose, 

we take five linguistic concepts are represented by the fuzzy set: extremely low, low, 

medium, high, and very high. The graphs of these functions have trapezoidal forms, and 

they are all determined by membership functions of the form [𝑅1, 𝑅2] → [0,1]. 

1.4.1 Definition: 

The fuzzy number 𝐴1̃   =  (𝑝, 𝑞, 𝑟, 𝑠) is referred to as a trapezoidal fuzzy number if the 

membership function is as follows: 

𝜇𝐴1̃  (𝑥)     =   0            if        𝑥 ≤ 𝑝 

                                                            =  
𝑥−𝑝

𝑞−𝑝
         if       𝑝 ≤ 𝑥 ≤ 𝑞  

                                                            =    1           if       𝑞 ≤ 𝑥 ≤ 𝑟  

                   =  
𝑠−𝑥

𝑠−𝑟
         if      𝑟 ≤ 𝑥 ≤ 𝑠 

 =    0            if     𝑥 ≥ 𝑠   

 

 

 



8 
 

 

 

 

 

 

 

 

 

 

 

1.4.2 Definition: 

The fuzzy number 𝐴1̃   =  (𝑝, 𝑞, 𝑟, 𝑠; 𝜔) is referred to as a generalized trapezoidal 

fuzzy number if the membership function is as follows: 

 

 𝜇𝐴1̃  (𝑥) =  0 ,                if        𝑥 < 𝑝 

                                                               = 𝜔 (
𝑥−𝑝

𝑞−𝑝
) ,     if       𝑝 ≤ 𝑥 ≤ 𝑞 

                                                               = 𝜔  ,                 if        𝑞 ≤ 𝑥 ≤ 𝑟 

                                                               = 𝜔 (
𝑠−𝑥

𝑠−𝑟
) ,       if        𝑟 ≤ 𝑥 ≤ 𝑠  

                                                               = 0 ,                   if        𝑥 > 𝑠    

                                                                                     Where 𝜔 ∈ [0,1] 

 

 

 

q r s p 

𝜇𝐴1̃  (𝑋) 

1 

X 
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1.4.3 Definition: 

The fuzzy number 𝐴1̃  =  (𝑝, 𝑞, 𝑟, 𝑠; 𝜔) is referred to as a 𝜔 −trapezoidal Fuzzy Number if the 

membership function is as follows: 

 𝜇𝐴1̃  (𝑥) =           0              if     𝑥 < 𝑝 

                                                       = 𝜔 (
𝑥−𝑝

𝑞−𝑝
)       if     𝑝 ≤ 𝑥 ≤ 𝑞 

                                                       =       𝜔              if     𝑞 ≤ 𝑥 ≤ 𝑟 

                                                       = 𝜔 (
𝑠−𝑥

𝑠−𝑟
)        if    𝑟 ≤ 𝑥 ≤ 𝑠 

 =           0              if    𝑥 > 𝑠   

                                                                               Where 𝜔 ∈ (0,1) 

 

 

 

 

 

 

q r s p 

𝜇𝐴1̃  (𝑋) 

𝝎 = 𝟏 

X 

 

q r s p 

𝜇𝐴1̃  (𝑋) 

𝝎 

X 
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1.5 DIAMOND FUZZY NUMBER 

A diamond Fuzzy Number 𝑨̃𝑫 = {𝒅′, 𝒅∗, 𝒅′′(𝜶𝒅, 𝜷𝒅)} are satisfy the following 

conditions;  

(i)  𝜇𝑨̃𝑫
is a continuous function in interval[0,1].  

(ii) 𝜇𝑨̃𝑫
 is strictly increasing and continuous function on [𝑑′, 𝑑∗] 

(iii)  𝜇𝑨̃𝑫
 is strictly decreasing and continuous function on [𝑑∗, 𝑑′′]. 

1.5.1 Definition: 

The fuzzy number 𝐴𝐷̃  = {𝑑′, 𝑑∗, 𝑑′′(𝛼𝑏, 𝛽𝑏)} is referred to as a diamond  fuzzy number 

if the membership function is as follows: 

 𝜇𝐴̃𝐷
   =  0             if         𝑥 ≤ 𝑑′ 

 = 
𝑥−𝑑′

𝑑∗−𝑑′
       if         𝑑′ ≤ 𝑥 ≤ 𝑑∗ 

 = 
𝑑′′−𝑥

𝑑′′−𝑑∗
     if          𝑑∗ ≤ 𝑥 ≤ 𝑑′′ 

              𝛼𝑏 − 𝑏𝑎𝑠𝑒                  

 = 
𝑑′−𝑥

𝑑′−𝑑∗
      if         𝑑′ ≤ 𝑥 ≤ 𝑑∗ 

 = 
𝑥−𝑑′′

𝑑∗−𝑑′′
    if          𝑑∗ ≤ 𝑥 ≤ 𝑑′′ 

 =   1          if           𝑥 =  𝛽𝑏 

 =   0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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1.6 PENTAGONAL FUZZY NUMBER 

A Pentagonal Fuzzy Number 𝐴1̃ = (P1 , P2 ,P3 , P4 , P5 ;ω) are satisfy the following 

conditions;  

(i) μ
𝐴1̃

(x) is a continuous function in the interval [0,1],  

(ii) μ
𝐴1̃

(x) is strictly increasing and continuous function on [P1 , P2]. 

(iii) μ
𝐴1̃

(x) is strictly decreasing and continuous function on [, P4 , P5]. 

(iv)  P3 is the middle point and (P1 , P2) ; (P4 , P5) are the left and right side 

     points of P3. 

(v) A Pentagonal Fuzzy Number P̃ = (P1 , P2 ,P3 , P4 , P5 ;ω) where ω ∈ (0.5,1) 

 

 

 

𝑑′
 𝑑∗

 𝑑′′
 

𝛼𝑏  

1 

0 

𝛽𝑏  
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1.7 ARITHMETIC OPERATIONS 

1.7.1 ARITHMETIC OPERATIONS ON 𝝎-TRAPEZOIDAL FUZZY 

NUMBERS. 

 Let 𝐴1̃ = (𝑝1, 𝑞1, 𝑟1, 𝑠1; 𝜔1) and 𝐵1̃ = (𝑝2, 𝑞2, 𝑟2, 𝑠2; 𝜔2) be any two 𝜔-trapezoidal 

fuzzy numbers, the then following operations are, 

(i) 𝐴1̃ +  𝐵1̃  = (𝑝1+𝑝2, 𝑞1+𝑞2, 𝑟1+𝑟2, 𝑠1+𝑠2; min(𝜔1, 𝜔2)) 

(ii) 𝐴1̃  − 𝐵1̃  = (𝑝1−𝑠2, 𝑞1−𝑟2, , 𝑟1−𝑞2, 𝑠1−𝑝2 ; min(𝜔1, 𝜔2)) 

(iii) 𝛾𝐴1̃ = {
𝛾𝑝1, 𝛾𝑞1, 𝛾𝑟1 , 𝛾𝑠1;  𝜔1), 𝛾 > 0

  
𝛾𝑠1, 𝛾𝑟1, 𝛾𝑞1, 𝛾𝑝1;   𝜔2), 𝛾 < 𝑂 

 

1.7.2 ARITHMETIC OPERATIONS ON GENERALIZED TRAPEZOIDAL 

FUZZY NUMBERS: 

Let 𝐴1̃ = (𝑎̆𝐿,𝑎̆𝛼,𝑎̆𝛽, 𝑎̆𝑈,𝜔) and 𝐵1̃ = (𝑏̆𝐿,𝑏̆𝛼,𝑏̆𝛽,𝑏̆𝑈,𝜔) are two generalized trapezoidal 

fuzzy number then the following operations are, 

1. 𝐴1̃ + 𝐵1̃ = (𝑎̆𝐿+𝑏̆𝐿,𝑎̆𝛼 + 𝑏̆𝛼,𝑎̆𝛽+𝑏̆𝛽𝑎̆𝑈 + 𝑏̆𝑈, 𝜔) where 𝜔 = (min(𝜔1, 𝜔2)) 

2. 𝐴1̃ − 𝐵1̃ = (𝑎̆𝐿 − 𝑏̆𝑈,𝑎̆𝛼--𝑏̆𝛽,𝑎̆𝛽 − 𝑏̆𝛼,𝑎̆𝑈 − 𝑏̆𝐿, 𝜔) where 𝜔 = (min(𝜔1, 𝜔2)). 

1.7.3 ARITHMETIC OPERATIONS OF 𝝎-TYPE-2 DIAMOND FUZZY 

NUMBER 

Let us take two 𝜔-type-2 diamond fuzzy number are given below 𝜔2𝐹𝑑̃
1
= [𝜔2𝐹𝑑̃

1
  , 

𝜔2𝐹𝑑̃
1
] = (d1′,d2′d3′d4′,d5′,d6′,𝜔1𝐹1),(d1′, d2′,d3′,d4′,d5′,d6′, 𝜔1𝐹1  ) and 𝜔2𝐹𝑑̃

2
= 

[𝜔2𝐹𝑑̃
2
, 𝜔2𝐹𝑑̃

2
]=(d1",d2", d3",,d4",d5", d6",𝜔1𝐹2),(d1", d2",d3",d4" ,d5",d6", 𝜔1𝐹2 ).  

The following arithmetic operations of 𝜔2𝐹𝑑̃
1

  and 𝜔2𝐹𝑑̃
2

. 
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 𝜔2𝐹𝑑̃
1

 𝜔2𝐹𝑑̃
2

  = 

      ((d1′d1", d2′d2", ,d3′d3" ,d4′d4" ,d5′d5"  ,d6′d6" ) , min{𝜔1𝐹1 , 𝜔1𝐹2}), 

(( d1′d1"  , d2′d2", ,d3′,d3",d4′d4" , d5′d5" , d6′d6" ), min{ 𝜔1𝐹1 , 𝜔1𝐹2 }) 

 𝜔2𝐹𝑑̃
1

  Ѳ  𝜔2𝐹𝑑̃
2

    = 

  ((d1′Ѳ d6",d2′Ѳ d5" , d3
′ Ѳd4"  ,  d4′Ѳ d3", d5′Ѳ d2", d6′Ѳ d6") , min{𝜔1𝐹1 , 𝜔1𝐹2}), 

        ((d1′Ѳd6", d2′Ѳd5",d3′Ѳ  d4" ,d4′Ѳd3" , d5′Ѳ d2",d6′Ѳ d1"), min{ 𝜔1𝐹1 , 𝜔1𝐹2 }). 

 𝜔2𝐹𝑑̃
1

   𝜔2𝐹𝑑̃
2

    =  

((d1′ d1", d2′ d2", ,d3′ d3" ,d4′ d4" ,d5′ d5"  ,d6′ d6"  ) , min{𝜔1𝐹1 , 𝜔1𝐹2}), 

        ( d1′d1"  , d2′d2", d3′  d3",d4′d4" , d5′d5" , d6′d6" ), min{ 𝜔1𝐹1 , 𝜔1𝐹2 }). 

if αk  ≥ 0. 

αk ( 𝜔2𝐹𝑑̃
1

 ) = ((αkd1′, αkd2′,αk d3′,αkd4′,αkd5′,αkd6′,𝜔1𝐹1), 

                                                         (αkd1′, αkd2′,αkd3′,αkd4′,αkd5′αkd6′, 𝜔1𝐹1 )) 

if αk  ≤ 0. 

 αk ( 𝜔2𝐹𝑑̃
1
) =  ((αkd6′, αkd5′ , αk d3′,αkd2′,αkd1′,𝜔1𝐹1),  

      (αkd6′, αkd5′,αkd4′,αkd3′, αkd2′,αkd1′, 𝜔1𝐹1))   
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1.7.4 ARITHMETIC OPERATIONS OF 𝜔 −PENTAGONAL FUZZY 

NUMBERS 

Let  𝐴1̃= (p
1
,  p

2
,  p

3
,  p

4
 ,p

5
; ω1) and 𝐵1̃= (q

1
, q

2
,  q

3
, q

4
,q

5
;ω2) be a two ω-Pentagonal 

Fuzzy Numbers (ω-PFN) then the following arithmetic operations:            

1. 𝐴1̃ + 𝐵1̃= (p
1
+ q

1
, p

2
+ q

2
,p

3
+q

3
,p

4
+ q

4
 ,p

5
+ q

5
; min (ω1,ω2) ) 

2. 𝐴1̃ − 𝐵1̃= (p
1
-q

5
, p

2
-q

4
,p

3
-q

3
,p

4
-q

2
, p

5
-q

1
; (ω1-ω2) ) 

3. 𝐴1̃+(-𝐵1̃)=(p
1
,  p

2
,  p

3
,  p

4
 ,p

5
) + (-q

1
, -q

2
,  -q

3
, -q

4
,-q

5
) ; (ω1-ω2)  ) 

                   =  ( p
1
- q

1
, p

2
- q

2
,p

3
- q

3
,p

4
- q

4
 , p

5
- q

5
;(ω1-ω2) ) 

4. λ𝐴1̃  ={λp
1
,λp

2
,λp

3
,λp

4
 , λp

5
 ; λ>0  and  λp

5
,λp

4
,λp

3
,λp

2
,λp

1
; λ<0  

5. 𝐴1̃𝐵1̃ = (p
1
q

1
, p

2
q

2
,p

3
q

3
,p

4
q

4
,p

5
q

5
;min (ω1,ω2)) 

6. 
𝐴1̃

𝐵1̃
̃ =𝐴1̃𝐵1̃

̅̅ ̅= (
p1

q5

,
p2

q4

,
p3

q3

,
p4

q2

,
p5

q1

; min (
1

2ω1
,

1

2ω2
)) 

7. If  𝐴1̃=(p
1
,  p

2
,  p

3
,  p

4
 ,p

5
; ω ) be a ω- Pentagonal Fuzzy Numbers; 

         𝐴1̃
-1

=
1

𝐴1̃
̅̅ ̅̅ = (

1

p5

,
1

p4

,
1

p3

,
1

p2

 ,
1

p1

 ; 
1

2ω
). 

1.7.5 Example: 

 𝐴1̃ = (6,11,16,21;0.7) and 𝐵1̃= (4,7,10,13; 0.5) are any any two 𝜔-trapezoidal fuzzy 

numbers, the then following operations 

1. 𝐴1̃+ 𝐵1̃= (6+4,11+7,10+16,13+21;min(0.5,0.7))= (10,18,26,34;0.5). 

  2. 𝐴1̃ - 𝐵1̃= (6 -13,11-10,16 – 7,21-4;min(0.5,0.7))= (-7,-1,11,17;0.5). 
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  3. 2𝐴1̃ =  (12,22,32,42;0.5)  

  4. -2𝐴1̃ =  (-12,-22,-32,-42;0.5) 

1.7.6 Example: 

 𝜔2𝐹𝑑̃
1
 = {(8,11,17)(5,14,21)}and 𝜔2𝐹𝑑̃

2
= {(13,16,22)(10,20,25)}are any any two  𝜔-

type-2 diamond fuzzy numbers, the then following operations. 

1. 𝜔2𝐹𝑑̃
1
+ 𝜔2𝐹𝑑̃

2
= {(8,11,17;0.2)(5,14,21;0.4)}+ {(13,16,22;0.4)(10,20,25;0.6)} 

             = {(8+13,11+16,17+22; min(0.2,0.4))(5+10,14+20,21+25;min(0.4,0.6))} 

            = {(21,27,39;0.2)(15,34,46;0.4)} 

2. 𝜔2𝐹𝑑̃
1

− 𝜔2𝐹𝑑̃
2
= {(8,11,17;0.2)(5,14,21;0.4)}- {(13,16,22;0.4)(10,20,25;0.6)} 

                            ={(8-22,11-16,17-13; min(0.2,0.4)(5-25,14-20,21-10;min(0.4,0.6))} 

                            = {(-14,-5,4;0.2)(-20,-6,11;0.4)}. 

3.  𝜔2𝐹𝑑̃
1

   𝜔2𝐹𝑑̃
2
=  {(8,11,17;0.2)(5,14,21;0.4)}  {(13,16,22;0.4)(10,18,25;0.6)} 

               ={(813,1116,1722) min (0.2,0.4)(510,1418,2125 min(0.4,0.6))} 

             = {(104,176,374;0.2) (50,252,525;0.4)} 

1.7.7 Example: 

Let 𝐴1̃ = (4,8,12,16,20;0.3) and 𝐵1̃= (5,10,15.20,25; 0.5) are any two ω-Pentagonal 

Fuzzy Numbers (ω-PFN) then the following arithmetic operations: 

   1. 𝐴1̃+ 𝐵1̃= (4+5,8+10,12+15,16+20,20+25;min(0.3,0.5))= (9,18,27,36,45;0.3). 
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   2. 𝐴1̃ - 𝐵1̃= (4-25,8-20,12-15,16-10,20-5;min(0.3,0.5))=(-21,-12,-3,6,15;0.3,0.5)). 

   3.𝐴1̃  𝐵1̃ = (45,810,1215,1620,2025;min(0.3,0.5))  

                 = (20,80,180,320,500;0.3) 

    4. 
𝐴1̃

𝐵1̃
̃ =𝐴1̃𝐵1̃

̅̅ ̅ = (
4

25
,

8

20
,

12

15
,

16

10
,

20

5
; 1) 

   5. 𝐴1̃
-1

=
1

𝐴1̃
̅̅ ̅̅ = (

1

20
,

1

16
,

1

12
,

1

8
 ,

1

4
 ; 

1

0.6
) 

1.8 FUZZY LINEAR SUM ASSIGNMENT PROBLEM  

 In combinatorial fuzzy optimization matching approaches, the fuzzy linear sum 

assignment problem is one of the most common issues. In order to reduce the total of 

the related entries, we must match each row to a different column in the (n× 𝑛)  cost 

matrix C = (𝐶̃𝑖𝑗) .The fuzzy costs or numbers in this case are C = (𝐶̃𝑖𝑗). The various 

kinds of fuzzy numbers include ω −type-1 and ω −type-2 diamond fuzzy numbers, 

ω −type-1 and ω −type-2 trapezoidal fuzzy numbers, generalized trapezoidal fuzzy 

numbers,  ω −type-1 and ω −type-2 pentagonal fuzzy numbers, and so on. Assumed to 

be non-negative are fuzzy costs. Every fuzzy number is a convex fuzzy set since all 𝛼 -

cuts of a interval fuzzy number for every (0,1] However, the opposite may not always 

be true because some convex fuzzy sets' 𝛼 -cuts may be open and half-open interval. 

By Fulkerson, Glicksberg, and Gross, the bottleneck assignment problem was first 

presented. The time required by machine j to finish task i is represented by the fuzzy 

cost coefficient (𝐶̃𝑖𝑗).The bottleneck fuzzy assignment problem is minimum fuzzy cost 

and maximum matching in the bipartite graph. The matching is partial/complete in the 

Bipartite graph and fuzzy optimization cost is feasible/optimal. A spanning tree 
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produced strong feasible tree. If a strongly feasible tree is producing degenerate pivoting 

on a backward edge and reduced fuzzy cost matrix is negative, then current FLSAP is 

not optimal. If a strongly feasible tree is producing non-degenerate pivoting on a 

forward edge and the reduced cost matrix is non-negative. The current FLSAP is 

optimal. 

1.8.1 Definition: 

      Every row and column of a bipartite graph G = (U,V;E) has a vertex of U and V, 

and every edge of [i,j] has a cost 𝐶̃𝑖𝑗 [i,j] (i,j=1,2,...n). Finding a perfect match in G for 

the lowest possible cost is the problem. (Weighted bipartite matching problem) Find a 

set of an edges where each vertex belongs to exactly one edge and where the total cost 

of these edges is the minimum. 

1.9 DUAL AND PARTIAL PRIMAL SOLUTION 

The primal-dual approach for linear programming is known to have its roots in 

the Hungarian algorithm. The Hungarian algorithm uses an assignment that is only 

partially feasible. Row(j) is equal to I if column j is assigned to row i. Row(j) is equal  

to 0 if column j is not assigned to row i. Beginning with a partial primal (to which less 

than n rows are assigned) that satisfies the complimentary slackness conditions with 

respect to the feasible dual solution u, v. 

Every iteration attempts to improve the cardinality of the current assignment by 

rearranging the edges of the partial graph of G = (U, V; E), which only comprises the 

edges of E with zero reduced costs. Each iteration solves a constrained primal problem 

independent of the costs. If successful, the attempt yields a new primal solution with 

one additional row assigned. Otherwise, the dual solution as it stands is updated to 
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produce new edges with zero reduced costs.   

  The first polynomial-time solutions to the linear sum assignment issue were 

primal-dual algorithms. In 1964, Balinski and Gomory presented the first primal 

algorithm. A set of assigned edges and corresponding set of assigned vertices are 

defined on G by the present partial assignment. A basic path with alternately assigned 

and unassigned edges is called an alternating path. An alternate path with unassigned 

initial and terminal edges is known as an augmenting path. By changing the assigned 

and unassigned edges along P, the improved assignment is produced. 

1.9.1 Definition: Fuzzy Linear Sum Assignment Problem (FLSAP) 

 A bipartite graph G = (U, V; E) with an edge [i, j] and a 𝝎 -trapezoidal fuzzy cost 𝑐𝑖𝑗̃ 

associated with each row, column, and vertex of U, V, with (i, j=1, 2....n). Finding a 

perfect match in G at the lowest possible cost.  

1.9.2 Definition: (Partial Feasible Assignment (PFA) / Partial Feasible Solution  

   Suppose that there are ‘n’ workers and ‘n’ jobs. If the column ‘j’ is assigned to row 

‘i’ then row (j) = i, (less than “n” rows / ”n” columns assigned), otherwise row (j) = 0 

(or) If the row ‘i’ is assigned to column ‘j’ then column (i) = j (less than “n” rows / ”n” 

columns assigned), otherwise column (i) = 0, that is called partial feasible assignment 

(or) partial  feasible solution.  

1.9.3 Definition (Fuzzy Partial Feasible Matching (FPFM)) 

      A bipartite graph G = (U, V; E) with an edge [i, j] and a 𝝎 −trapezoidal fuzzy cost 

𝑐𝑖𝑗̃ associated with each row, column, and vertex of U, V, with (i, j=1, 2....n). Finding 

less than “n” rows /” n” columns match in G.             
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1.10 LITERATURE REVIEW 

The main motivation for L.A. Zadeh's [79] development of fuzzy set theory was 

to overcome the obscurity of everyday life. After beginning, the theory expanded the 

scope of its applicability. The notion that a number is a significant information carrier 

should not come as a surprise. The concept of a fuzzy number was first proposed by 

Dubois and Prade in 1978, greatly extending the fuzzy set theory. 

          In 1970, Zadeh and Bellman proposed [10] a method for making decisions in 

uncertain cases. It refers to a decision-making process where the restrictions and/or 

goals, but not always the system under management, are uncertain. This indicates that 

the limitations and/or goals define classes of alternatives whose borders are not sharply 

defined. During the year 2004, Lin and Wen [50], presented an algorithm for labelling  

in the fuzzy assignment problem. In this case, the components of the cost matrix for the 

assignment problem are subnormal fuzzy intervals with increasing linear membership 

functions, while the membership function for the total cost is a fuzzy interval with 

decreasing linear membership functions.  

             In 2016 M.C Yeola., and V.A Jahav [77] Solving Multi-Objective 

Transportation Problem using fuzzy programming technique –Parallel method. Here, 

we outline a strategy for resolving the Multi-Objective Transportation Problem 

(MOTP). In order to solve MOTP, fuzzy programming is employed here together with 

a fuzzy linear membership function for varied costs. The suggested approach is 

comparable to the New Row Maxima Approach. It produces better outcomes when 

MOTP is solved in a simpler manner. 
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 In 2007, Majumder and Bhunia [52] proposed Elitist Genetic algorithm for 

assignment problem with imprecise goal. It is to use an elitist genetic algorithm to solve 

a generalized assignment problem with approximate cost(s) and time(s) rather than an 

exact one. Since interval valued numbers are the best representation over others like 

random variable representation with a known probability distribution and fuzzy 

representation, the imprecision of cost(s)/time(s) has been represented here by interval 

valued numbers and same year Chen Liang – Hsuan and Lu Hai – Wen [15], proposed 

an extended assignment problem considering  multiple outputs.it is presented for each 

potential assignment, a method is developed in this study for handling situations with 

multiple, for in inputs and outputs.and the same year S.J.Chen, S.M.Chen [17] Fuzzy 

risk analysis on the ranking of generalized trapezoidal fuzzy  numbers. Here, the 

suggested analysis takes into consideration the centroid points and standard deviations 

of generalized trapezoidal fuzzy numbers while ranking them and Bao, M.C.Tsai, and 

Tsai [9] proposed a new approach to study the multi-objective assignment problem. 

During the year 2012, Emrouznejad and Angiz,  and L, W. Ho [29] proposed an 

alternative formulation for the fuzzy assignment problem, discussed for each potential 

assignment, a strategy is developed in this study to address problems with fuzzy costs 

or profits using the data envelopment analysis method. The objective is to maximize the 

profit or reduce the assignment cost while obtaining the points with the highest 

membership values for the fuzzy parameters. 

               In 1995, A. V. Goldberg, Robert Kennedy [33] proposed an efficient cost 

scaling algorithm for the assignment problem Andrew Programming. It has been 

demonstrated that the cost scaling push-relabel method is effective for resolving 
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minimum-cost flow problems and implementations of the approach that take advantage 

of the unique structure of the assignment problem and apply it to the assignment 

problem. The outcomes demonstrate how practical application of the technology is very 

promising. 

            In 2010, Amit Kmar, Pushpinder Singh and Jagdeep Kaur [47] discussed 

generalized simplex algorithm to solve fuzzy linear programming problems with 

ranking of generalized fuzzy numbers. Here, the proposed algorithm is a direct 

extension of classical algorithm so it is very easy to understand and apply the proposed 

algorithm to find the fuzzy optimal solution of fuzzy linear programming problems 

occurring in the real life situations. 
           In the year of 2014, Supriya Kar, Kajla Basu and Sathi Mukherjee[41] 

presented Solution of generalized fuzzy assignment problem with restriction on costs 

under fuzzy environment and  Kayvan Salehi [66] proposed an approach for solving 

multi-objective assignment problem with interval parameters. Three criteria—total 

cost, total profit, and total operation time of the assignment are the focus of this model. 

The suggested model belongs to the category of nonlinear programming. 

          In 2013, Thorani, and Ravi Shanker [70] proposed fuzzy assignment problem 

with generalized fuzzy numbers. It is means that provide new algorithms for fuzzy 

assignment problems with fuzzy costs based on the ranking approach in classical and 

linear programming. A generalized fuzzy number is used to measure the fuzzy cost. 

To find the minimum fuzzy cost and to account for the different forms the fuzzy 

assignment problem can take, we constructed the classical algorithm using the 
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fundamental theorems of the problem. In 1987, Wang [71] proposed Fuzzy optimal 

assignment problem.  

           During the year 2018, Jishu Jana and Sankar Kumar Roy [38] Solution of 

Matrix Games with generalized trapezoidal Fuzzy Payoffs . It is shown that when a 

linear ranking function is selected, the fuzzy matrix game is transformed into a crisp 

one and can then be solved quickly using the suggested approach. The primary goal is 

to employ the ranking function to reduce the computational complexity and H. A. 

Khalifa, and M. Al-Shabi [45] proposed an interactive approach for solving fuzzy  

Multi-Objective assignment problems. The goal of this study is to investigate the fuzzy 

multi-objective assignment problem. The issue is taken into account by using 

trapezoidal fuzzy numbers. The problem under discussion is transformed into the 

equivalent (MOAS) with the use of 𝛼-level sets. It is proposed to use an interactive 

method to enhance the weights in the Weighted Tchebysheff program. The resultant 

solution is then matched with the stability set of the first kind without differentiability. 

           In 2005, Albrecher [1] proposed a note on the asymptotic behavior of 

bottleneck problems. In 1971, Garfinkal [32] proposed an improved algorithm for 

Bottleneck Assignment Problem. In 2010, Kagade and Bajaj [43] proposed a fuzzy 

method for solving unbalanced assignment problems with interval valued coefficients. 

The approach suggested in the literature is predicated on the idea that some tasks will 

be delegated to make-believe or fictitious machines. Jobs that are performed on 

dummy machines may later be ignored. In 1999, Dubois and Fortemps [26] 

Computing improved optimal solutions to max-min flexible constraint satisfaction 

problems. In 1998, Sokkalingam and Aneja [68] proposed Lexicographic bottleneck 
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combinatorial problems. We propose an approach which solves the lex-bottleneck 

optimization problem by solving bottleneck and zero–one sum optimizations for at 

most t iterations and reducing the problem size in each iteration. 

        In 2015, Pathinathan and Ponnivalavan [61], proposed Diamond fuzzy number. 

In 2011, Pramanik and Biswas[13] Multi-objective assignment problem with fuzzy 

costs for the case military affairs. Each fuzzy cost is viewed in this context as a 

trapezoidal fuzzy number. Weights of the objectives have been taken based on their 

priority to create a single objective problem from a multi-objective fuzzy assignment 

problem.  

             During the year 2020, Sanjivani and Ghadle [37], discussed Optimal Solution 

for Fuzzy Assignment Problem and Applications. The proposed method requires 

fewer iterations than previous methods while still providing the best feasible answer 

for a balanced fuzzy assignment problem. To validate the suggested technique's 

procedure, which is based on the industrial, environmental, and educational domains.  

           In 2019, Dong and Wan [27], proposed a new method for solving fuzzy multi-

objective linear programming problems. The goal of this work is to create a novel two-

stage strategy for selecting engineering project portfolios in fuzzy multi-objective 

linear programming. All of the objective coefficients, technology coefficients, and 

resource coefficients in the fuzzy multi-objective linear programed are trapezoidal 

fuzzy numbers. The interval expectation of trapezoidal fuzzy numbers. is used to 

introduce an order connection for them.  

           In 2012, Surapati Pramanik, Pranab Biswas [69] presented Multi-Objective 

Assignment Problem with Generalized Trapezoidal Fuzzy Numbers. The purpose of 



24 
 

this work is to examine a multi-objective assignment problem with inaccurate time, 

costs, and results in place of accurate information and P.K.De, ,Bharti Yadev [22], 

presented a General Approach for Solving Assignment Problems involving with Fuzzy 

Cost Coefficients and the same year Isabel and Uthra [64], presented an application of 

linguistic variables in assignment problem with fuzzy costs. The goal of this 

assignment problem is to reduced costs. Each fuzzy cost is viewed in this context as a 

triangular or trapezoidal fuzzy number. The fuzzy numbers have been ranked using 

Yager's ranking approach. Using linguistic variables and the Hungarian technique, the 

fuzzy assignment problem has been converted into a crisp one. 

              In 2017 Avinash,Kamble [40] proposed some notes on pentagonal fuzzy 

numbers. In 2015, Jatinder Pal Singh&Neha Ishesh Thakur [39] discussed a novel 

method to solve assignment problem in Fuzzy Environment. In the year 2014, A. 

Khandelwal [46] presented a modified approach for assignment method .  

             In 2010, Anthony Przybylski, Xavier Gandibleuxa, Matthias Ehrgott [5], 

proposed a two phase method for multi-objective integer programming and its 

application to the assignment problem with three objectives . Here, proposed an 

approach to compute all supported efficient solutions in the first phase. The second 

stage is defining and examining the search area where it is possible to find non 

supported non dominated locations. In the year 1998, C.H. Cheng [19], proposed a new 

approach for ranking fuzzy numbers by distance method.  

          In 2002, Haddad, Mohammadi, and Pooladkhan [36] proposed two models for 

the generalized assignment problem in uncertain environment. For this problem, two 

models are described, and novel hybrid algorithm is provided that combines the 
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simulated annealing method with the max-min fuzzy to achieve a nearly optimal result. 

The effectiveness of the suggested strategy is confirmed by computational experiments.  

    In 2006, Mitchell [55] proposed Ranking type-2 fuzzy numbers. In 1983, 

McGinnis[53], Implementation and testing of a primal-dual algorithm for the 

assignment problem. This study shows a thorough development of a primal-dual 

algorithm that is computationally efficient and extensive computational comparisons to 

primal simplex techniques. During the year 2010, Sathi Mukherjee and Kajla Basu [56] 

proposed, application of fuzzy ranking method for solving assignment problems with 

fuzzy costs. In 2002 ,Wu,J.M Mendel [74], proposed Uncertainty bounds and their use 

in the design of interval type-2 fuzzy logic systems. In 2009, Wu and Mendel [73] 

discussed a comparative study of ranking methods, similarity measures and uncertainty 

measures for interval type-2 fuzzy sets. 

1.11 MOTIVATION AND SCOPE OF THE THESIS 

This thesis attempts a significant yield from the conventional method of handling 

assignment problems to fuzzy linear sum assignment problems, motivated and inspired 

by the works of L.W Ho, R Burkard, Dell' M Amico, and S Martello ,S Kar, K Basu, 

and S Mukherjee, R Garfinkel, A Emrouznejad, M. Zerafat Angiz,. In this study, 

different approaches to solving fuzzy linear sum assignment problems are analyzed. 

New approaches are then developed complementary slack conditions and a partial 

feasible solution/complete optimal solution. This study could be viewed as a modest 

addition to the improvement of the fuzzy linear sum assignments 
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1.12 ORGANIZATION OF THE THESIS 

 Chapter I Introduction 

        In this chapter presents, a basic preliminaries of assignment problems, linear sum 

assignment problems, fuzzy linear sum assignment problems and the basic concepts of 

fuzzy sets, fuzzy numbers are discussed and proposed different types of fuzzy numbers 

,α-cut fuzzy numbers and also discussed . obtained Dual and partial feasible solutions 

and complete optimal solutions by using different fuzzy optimization matching 

techniques of fuzzy assignment problems and linear sum assignment problems. Finally, 

we present the arithmetic functions of different types of fuzzy numbers. This method is 

illustrated by a numerical example.    

Chapter II   Dual and Partial Primal Solution for Solving Fuzzy Linear Sum 

Feasible Assignment Problems [FLSAP] 

         This chapter presents a new method by using complementary slackness 

conditions to calculate the fuzzy dual solution and fuzzy partial primal solution using 

a bipartite graph and the assignment cost were taken as 𝜔 −trapezoidal fuzzy 

numbers. This chapter solves the primal problem first, then the dual problem, and 

finally the primal-dual problem. Here first construct 𝜔 − trapezoidal fuzzy Linear 

Sum Assignment table. Next we have to find row and column reduction, it's worth 

noting that the resulting dual variables of lower costs aren't negative and calculate 

reduced cost matrix 𝐶̅ next to obtain  Partial Feasible solution. This method is 

illustrated by a numerical example. 
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Chapter III   Feasible Degenerate Pivoting and Optimal Non-Degenerate Pivoting 

for Solving Fuzzy Linear Sum Assignment Problems 

 This chapter proposes Feasible Degenerate Pivoting and Optimal Non-

Degenerate Pivoting for Solving Fuzzy Linear Sum Assignment Problems. In this 

chapter the spanning trees on the associated bipartite graph G = (U, V; E). If a strongly 

feasible tree is producing degenerate pivoting on a backward edge and the rank of 

reduced fuzzy cost matrix [𝔑(𝐶𝑖𝑗
̅̅̅̃̅ )] is negative and then the current fuzzy linear sum 

assignment problem is not optimal. If a strongly feasible tree is producing non-

degenerate pivoting on a forward edge and the rank of the reduced cost matrix [𝔑(𝐶𝑖𝑗
̅̅̅̃̅ )] 

is non-negative and 𝐸̅= ∅ then the Current fuzzy linear sum assignment problem is 

optimal. This method is illustrated by a numerical example. 

Chapter IV A New Modified Optimal Perfect Matching in Partial Feasible 

Matching for Solving Fuzzy Linear Sum Assignment Problems [FLSAP] 

This chapter proposes a new modified optimal and perfect matching from partial 

assignment for solving fuzzy linear sum assignment problem. The fuzzy assignment 

cost is we take as ω-trapezoidal fuzzy numbers. By using ranking method, ω-trapezoidal 

fuzzy numbers converted to crisp one. First Calculate the rank of fuzzy dual variables 

and Compute a partial feasible solution then Calculate reduced rank of ω--trapezoidal 

fuzzy cost and Compute the new column and the new assignment introduced. continue 

the process to reach optimal solution and complete bipartite matching. This method is 

illustrated by a numerical example. 
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Chapter V   Spread of New Partial/ Feasible and Optimal/ Perfect Matching for 

Solving Interval-Valued -Cut Fuzzy Linear Sum Bottleneck Assignment 

Problem. 

This chapter proposes a spread of new partial/feasible and optimal/perfect 

matches of bipartite graphs for solving interval-valued 𝛼-cuts of generalized trapezoidal 

fuzzy numbers. Obtain  𝛼 -cut generalized trapezoidal fuzzy numbers from generalized 

trapezoidal fuzzy numbers, then discuss membership functions. The 𝛼 -cut generalized 

trapezoidal fuzzy number is transformed into an Interval-valued 𝛼 -Cut of Generalized 

Fuzzy Numbers. The basic preliminaries and fuzzy interval operations are discussed. If 

maximum cost and complete match, then the solution is feasible and complete. If the 

solution is minimum cost and complete, then the solution is optimal and complete. If 

maximum cost and partial match, then the solution is feasible with partial match. If 

minimum cost or partial match, then the solution is optimal or feasible match. This 

method is illustrated by a numerical example. 

Chapter VI   A New Optimal Complete Matching of Edges with Minimum Cost by 

Ranking Method for Solving 𝝎-Type -2 Fuzzy Linear Sum Assignment 

Problem[FLSAP] 

This chapter proposes a new optimal solution and complete matching edges of 

bipartite graph. 𝜔-type -2 [FLSAP] is converted to crisp one by using new ranking  

method for solving 𝜔-type -2 [FLSAP]. This chapter discussed 𝜔-trapezoidal fuzzy 

number, 𝜔-type 1-trapezoidal fuzzy number and 𝜔-type 2-trapezoidal fuzzy number.  

Create 𝜔-type -2 [FLSAT].The rank of -type 2 trapezoidal fuzzy number to assign each 

machine to a job with the lowest cost in that job for solving -type 2 [FLSAP]. 
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Furthermore, each iteration updates a non-matched edge to a matched edge and update 

the corresponding dual variables. By using alternating path method to obtain a new 

optimal complete matching solution. This method is illustrated by a numerical example. 

Chapter VII    Fuzzy Multi-Objective Linear Sum Assignment Problem with 

Modified Partial Solution of 𝝎 - type 2 - Diamond Fuzzy Numbers[DFN] by Using 

Linguistic variables             

This chapter proposes fuzzy multi-objective linear sum assignment problem with 

modified partial assignment of 𝜔 - type 2 - diamond fuzzy numbers using linguistic 

variables. In this chapter introduced 𝜔 - type 1 and 𝜔 - type 2 diamond fuzzy numbers. 

Let us consider four jobs and four machine problem and to optimize fuzzy cost , fuzzy 

time, fuzzy quality are each considered as a 𝜔 - type 2 - DFN.  𝜔-type 2 DFN are 

converted into 𝜆𝑑--cut of DFN and upper and lower 𝜔-type 2 diamond multi-objective 

fuzzy numbers are converted into single objective 𝜆𝑑-cut fuzzy number by using 

ranking method. obtain dual variables and  calculate [ 𝑐𝑖𝑗  ̃ − 𝑢𝑖  ̃ − 𝑣𝑗 ]̃ ; by using 

alternate path method increase the partial assignment. This method is illustrated by a 

numerical example, proving its efficiency. 

Chapter VIII   Minimum vertex cover of  𝝎 −Pentagonal Fuzzy Linear Sum 

Bottleneck Assignment Problem [𝝎 − 𝑷𝑭𝑳𝑺𝑩𝑨𝑷] 

 In this chapter we presented a spread of minimum solution of fuzzy optimization 

matching procedure in the bipartite graph. it provides minimum vertex cover with edge 

set E for solving 𝜔 − 𝑃𝐹𝐿𝑆𝐴𝑃. The 𝜔 − 𝑃𝐹𝐿𝑆𝐴𝑃 is minimum cost and  complete 

matching in the bipartite graph. The Linear Sum Bottleneck Assignment Cost [LSBAC] 
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we taken as 𝜔 −Pentagonal Fuzzy Numbers (𝜔 − 𝑃𝐹𝑁). If each person and each job 

contain exactly one matching solution with Spr (φ) = 0 or minimum Spr (φ), then the  

current ω-PFLSBAP is optimal. If each person and each job contain exactly one 

matching solution with maximum Spr (φ), then the current ω-PFLSBAP is not optimal 

but feasible and complete matching solution. Finally obtained the graph has minimum 

vertex cover of cardinality n with perfect or complete matching. This method is 

illustrated by a numerical example.  
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CHAPTER II 

DUAL AND PARTIAL PRIMAL SOLUTION FOR SOLVING 

FUZZY LINEAR SUM FEASIBLE ASSIGNMENT PROBLEMS 

 

         In this chapter presents, a new method by using complementary slackness 

conditions to calculate the fuzzy dual solution and fuzzy partial primal solution using a 

bipartite graph and the assignment cost were taken as 𝜔 −trapezoidal fuzzy 

numbers. This chapter solves the primal problem first, then the dual problem, and 

finally the primal-dual problem. Here first construct 𝜔 − trapezoidal fuzzy Linear Sum 

Assignment table. Next we have to find row and column reduction, it's worth noting that 

the resulting dual variables of lower costs aren't negative and calculate reduced cost 

matrix 𝐶̅ next to obtain  Partial Feasible solution. This method is illustrated by a 

numerical example.  

2.1 INTRODUCTION 

 The Fuzzy Assignment problem is a special kind of fuzzy linear programming 

problem. In the previously mentioned publication by Dinic and Kronrod, the first dual 

(non-simplex) algorithm for LSAP initially appeared. Bellman and Zadeh proposed the 

idea of fuzzy set theory. For the purpose of solving the linear fractional programming, 

Lin and Wen presented an effective algorithm based on the labelling technique. 

Different algorithms, including the mathematical programming, Hungarian algorithm, 

neural network, and genetic algorithm, have been designed to find optimal/feasible  

solutions to methods for solving.  

-------------------------------------------------------------------------------------------------------. 

This content of this chapter has been published in International journal of Fuzzy Mathematical Archive, 

Volume - 14, No. 2, 2017, 171-177. 
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  Many other iterations of the traditional assignment problems have been put forth 

during the past 52 years. Due to the significant degeneracy of the linear programme 

associated with LSAP, the earliest primal simplex algorithms, proposed in the middle 

of the year by Cunningham and Barr, Glover, and Kingman, took exponential time.

  The algorithms for Fuzzy Linear Sum Assignment Problem (FLSAP) are based on 

various strategies: a first class of methods solves the primal problem directly, a second  

one solves the dual problem, and a third one uses an intermediary approach (primal-

dual). In order to find a partial primal solution that meets the complimentary slackness 

constraints and a feasible dual solution, less than 'n' rows must be given by using 𝜔 − 

trapezoidal fuzzy number.   

 The solution to the partial feasible fuzzy assignment problem is dual and primal. in 

trapezoidal fuzzy numbers, we take, if 'm' people to 'n' jobs and its cost coefficient  '𝑐𝑖𝑗̃' 

As specified by, the storage location for the partial feasible fuzzy assignment. If column 

"j" is assigned to row i, then row(j) is equal to "1" and if column "j" is not assigned to 

row i, then row (j) is equal to "0."            

2.2 Properties of  𝝎 − Trapezoidal Fuzzy Number  

1) Two 𝜔 −trapezoidal fuzzy numbers are increasing order if and only if the sum 

of the  𝜔 −trapezoidal fuzzy number is also increasing order.  

2) Let 𝐴̃1 =( 𝑎1 , 𝑏1, 𝑐1,𝑑1 : 𝜔1),  and   𝐴̃2 = (𝑎2 ,𝑏2 ,𝑐2,𝑑2: 𝜔2) are any two  𝜔 − 

trapezoidal fuzzy numbers is said to be equal if and only if    𝑎1 = 𝑎2 , 𝑏1 =

𝑏2,   𝑐1 = 𝑐2, 𝑑1=𝑑2 and 𝜔1=𝜔2. 
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3) 𝜔 −trapezoidal fuzzy number 𝐴̃ = (a,b,c,d) is said to be symmetric 𝜔 − 

trapezoidal fuzzy number if and only if  c = d   i.e, 𝐴̃ = (a,b,c,c : 𝜔). 

2.3 MATHEMATICAL FORMULATION 

     Suppose that there are ‘n’ workers and ‘n’ jobs. Only one worker is permitted to 

perform each task at any given time. The challenge is to distribute up the tasks among 

the workers while attempting to keep the overall cost, which is represented by 𝜔-

trapezoidal fuzzy numbers, as low as possible. 

2.3.1 Fuzzy Assignment Problem (FAP) 

              Min Z = ∑ ∑ 𝑐𝑖𝑗̃𝑋𝑖𝑗
𝑛
𝑗=1

𝑛
𝐼=1                               ……………(a) 

          Subject to   ∑ 𝑥𝑖𝑗
𝑛
𝑗=1  =1; for i = 1,2......,n     ………… (b) 

                  ∑ 𝑥𝑖𝑗
𝑛
𝑖=1  =1; for j =1,2........,n 

               𝑥𝑖𝑗 = 0 or 1   

2.3.2 Fuzzy Dual Assignment Problem (FDAP) 

The fuzzy dual variables 𝑢𝑖̃ and 𝑣𝑗̃ with constraints and then fuzzy dual problem is   

       Max   ∑ 𝑢𝑖̃
𝑛
𝑖=1  + ∑ 𝑣𝑗̃

𝑛
𝑗=1  

     Subject to                  𝑢𝑖̃ + 𝑣𝑗̃ ≤ 𝑐𝑖𝑗̃      (i,j = 1,2.....,n)   

2.4 Fuzzy complementary slackness conditions   

    A pair of solutions that are feasible for the fuzzy primal and the dual, respectively, 

are said to be optimal by duality theory if and only if (complementary slackness) 

  𝑥𝑖𝑗(𝑐𝑖𝑗̃ − 𝑢𝑖̃ − 𝑣𝑗̃) = 0   (i,j=1,2.....n) 

   the values 
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       𝐶𝑖̅𝑗
̃  = 𝑐𝑖𝑗̃ − 𝑢𝑖̃ − 𝑣𝑗̃    (i,j = 1,2....n)  

 Where 𝐶𝑖̅𝑗
̃  is reduced cost. This transformation from 𝑐𝑖𝑗̃ to 𝑐𝑖̅𝑗̃ is a special case of 

admissible transformation.  

For any feasible solution, the transformed objective function is 

   ∑ ∑ (𝑐𝑖𝑗̃
𝑛
𝑗=1

𝑛
𝑖=1 −  𝑢𝑖̃ − 𝑣𝑗̃) 𝑥𝑖𝑗 = ∑ ∑ 𝑐𝑖𝑗̃

𝑛
𝑖=1

𝑛
𝑖=1 𝑥𝑖𝑗 − ∑ 𝑢𝑖̃𝑖

∑ 𝑥𝑖𝑗
𝑛
𝑖=1

𝑛
𝑖=1  − ∑ 𝑣𝑗̃𝑗

∑ 𝑥𝑖𝑗
𝑛
𝑖=1

𝑛
𝑗=1  

                                                    = ∑ ∑ 𝑐𝑖𝑗̃
𝑛
𝑖=1

𝑛
𝑖=1 𝑥𝑖𝑗 − ∑ 𝑢𝑖̃

𝑛
𝑖=1 − ∑ 𝑣𝑗̃

𝑛
𝑗=1  

The values of 𝑢𝑖̃ and 𝑣𝑗̃ determined by the first two sentences in this case fulfil the dual 

constraints. The 𝑥𝑖𝑗 values that were subsequently acquired ensure that the 

complimentary slackness conditions are satisfied While the primal constraints (a) and 

(b) the ≤ sign holds instead of = . It should be noted that an alternative technique might 

reduce the rows first, then the columns. getting various reduced costs and assignments. 

A feasible dual solution 𝑢𝑖̃ , 𝑣𝑗̃ satisfying 𝑢𝑖̃ + 𝑣𝑗̃ ≤ 𝑐𝑖𝑗̃ and partial primal solution 

satisfying complimentary slackness conditions with respect to 𝑢𝑖̃ , 𝑣𝑗̃. Each iteration 

solves a restricted primal problem independent of the costs. Trying to increase the 

cardinality of the current assignment by operating on the partial graph of G that only 

contains the edges of E having zero reduced costs are obtained. 

2.5 An Algorithm for Solving Feasible dual and Partial Primal Fuzzy Linear Sum  

         Assignment Problem with 𝝎 − Trapezoidal Fuzzy Numbers 

 Step 1:  Create the balanced fuzzy linear assignment table using 𝜔 − trapezoidal  

               fuzzy numbers. If the fuzzy linear assignment table is unbalanced and  

               introduce dummy fuzzy cost (row)/ dummy fuzzy cost (column) and convert  

               to balanced one. 
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 Step 2:  Calculate row reduction (𝑢𝑖)̃  

                     𝑢𝑖̃ = {𝑐𝑖𝑗̃1 ≤ 𝑖 ≤ 𝑛
𝑀𝑖𝑛 }    ,      for ( j = 1,2......n). 

Step 3: Calculate column reduction (𝒗𝒋̃) 

               𝑣𝑗̃ = {𝑐𝑖𝑗̃1≤𝑗 ≤ 𝑛
𝑀𝑖𝑛 − 𝑢𝑖̃} ,  for ( i = 1,2......n). 

Step 4:  Calculate reduced cost matrix𝑪𝒊𝒋̃ 

The reduced fuzzy cost is difference of fuzzy cost, row reduction and column reduction.                  

  𝐶𝑖𝑗̃ =  𝑐𝑖𝑗̃ – 𝑢 𝑖̃ − 𝑣𝑗̃    for   (i,j = 1,2......n). 

Step 5: [Partial assignment]                              

If the column ‘j’ is assigned to row ‘i’ then row (j) = i, otherwise row (j) =0  (or) If the 

row ‘i’ is assigned to column ‘j’ then column (i) = j, otherwise column (i) = 0,that is 

called partial feasible assignment (or) partial  feasible solution. Suppose we select the 

first column having any zero and assigned to row i, then row (j) = i and cross out 

corresponding row and column. Similarly select the second column having any zero and 

assigned to row i, then row (j) = i and cross out corresponding row and column. 

Suppose, if the column is not assigned to row i, then row(j) = 0.                      

Step 6: [Partial assignment that implements the inverse of row] 

Select the ‘i’ th row having any zero and assigned to column ‘j’ then column (i) = j   and 

cross out corresponding row and column. if the row is not assigned to column j, then 

column(i) = 0. 

Step 7: Draw a bipartite graph G = (U, V; E) with an edge [i, j] and a trapezoidal fuzzy 

cost 𝑐𝑖𝑗̃ associated with each row, column, and vertex of U, V, with (i, j=1, 2....n). 

Finding less than ‘n’ rows / ‘n’ columns match in G.             
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Step 8: Stop. 

2.6 NUMERICAL EXAMPLE 

To illustrate the proposed algorithm, let us consider an 𝜔 − trapezoidal fuzzy 

assignment problem with obtain ‘i’ th rows assigned to ‘j’th  column from the fuzzy  cost 

matrix by using dual and  primal fuzzy assignment problem. In ‘i’ th rows represented 4 

persons P1, P2, P3 , P4 and  in  ‘j’ th  column  represented the 4 jobs  J1, J2, J3, J4 . The cost 

matrix [𝑐̃ij]  is given whose elements are  𝜔 − trapezoidal fuzzy numbers. This problem 

is to find the feasible matching of the dual and partial primal fuzzy assignment problem. 

 

Solution: The fuzzy assignment problem given . Construct the fuzzy assignment table 

for the given balanced fuzzy linear assignment problem. 

The total number of jobs and the total number of persons are equal. Since the given fuzzy 

assignment problem is balanced. Next find  row reduction (𝑢𝑖)̃  , column reduction (𝑣𝑗)̃ and 

reduced cost matrix 𝑐𝑖𝑗̃. Calculate the row reduction (𝑢𝑖̃) the following table: 

Persons/jobs J1 J2 J3 J4 

P1 (1,4,9,16 : 0.3) (4,9,16,25: 0.4) (25,37,50,65:0.8) (4,9,16,25: 0.4) 

P2 (4,9,16,25: 0.4) (25,37,50,65:0.8) (16,25,37,50: 0.6) (9,16,25,37:0.5) 

P3 (16,25,37,50:0.6) (37,50,65,82: 0.9) (37,50,65,82: 0.9) (25,37,50,65:0.8) 

P4 (37,50,65,82 0.9) (25,37,50,65:0.8) (9,16,25,37:0.5) (9,16,25,37:0.5) 
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Given matrix  𝑐𝑖𝑗̃ and we obtain the dual variables  𝑢𝑖̃ and 𝑣𝑗̃ (Shown on the left and on the top 

of the given matrix  𝑐𝑖𝑗̃ then find the reduced cost matrix 𝐶𝑖𝑗̃  

     (0,0,0,0)          (0,0,0,0)  (24,33,41,49: 0.5 )       (3,5,7,9; 0.1) 

             (0,0,0,0) (18,23,27,31: 0.3 )  (12,16,21,25 : 0.2)       (5,7,9,12: 0.1) 

       (0,0,0,0)  (18,20,21,23: 0.2)  (21,25,28,32 : 0.3)      (9,12,13,15:0.2) 

   (28,34,40,45: 0.2)  (13,16,18,19 : 0.2 )          (0,0,0,0)          (0,0,0,0) 

Persons/Jobs 

(𝒖𝒊̃) 

J1 J2 J3 J4 

(1,4,9,16 : 0.3) (1,4,9,16 : 0.3) (4,9,16,25: 0.4) (25,37,50,65: 0.8) (4,9,16,25: 0.4) 

(4,9,16,25: 0.4) (4,9,16,25: 0.4) (25,37,50,65:0.8) (16,25,37,50: 0.6) (9,16,25,37:0.5) 

(16,25,37,50:0.6) (16,25,37,50:0.6) (37,50,65,82:0.9) (37,50,65,82: 0.9) (25,37,50,65:0.8) 

(9,16,25,37:0.5) (37,50,65,82:0.9) (25,37,50,65:0.8) (9,16,25,37: 0.5) (9,16,25,37: 0.5) 

Persons/jobs 

𝑢𝑖̃ / 𝑣𝑗̃ 

 

(0,0,0,0) 

 

(3,5,7,9 ; 0.1) 

 

(0,0,0,0) 

 

(0,0,0,0) 

(1,4,9,16 : 0.3) (1,4,9,16 : 0.3) (4,9,16,25: 0.4) (25,37,50,65:0.8) (4,9,16,25: 0.4) 

(4,9,16,25: 0.4) (4,9,16,25: 0.4) (25,37,50,65:0.8) (16,25,37,50:0.6) (9,16,25,37:0.5) 

(16,25,37,50:0.6) (16,25,37,50:0.6) (37,50,65,82:0.9) (37,50,65,82:0.9) (25,37,50,65:0.8) 

(9,16,25,37: 0.5) (37,50,65,82:0.9) (25,37,50,65:0.8) (9,16,25,37: 0.5) (9,16,25,37:0.5) 
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Select the ‘j’ th column having any zero and assigned to row i , then row(j) = i ,otherwise 

row(j) = 0.  row (j) = (1,0,4,0)   and  inverse of  row   𝛿(i) = (1.0,0,3) 

The Partial Primal Feasible Fuzzy Linear Sum Assignment Solution   

{(1,4,9,16: 0.3) + (9,16,25,37:0.5)} = (10,20,34,53: 0.3) 

row (j) = (1,0,4,0)     and   

   The inverse of the row is 𝜹(i) = (1.0,0,3). 
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                                                              CHAPTER III 

FEASIBLE DEGENERATE PIVOTING AND OPTIMAL NON-

DEGENERATE PIVOTING FOR SOLVING FUZZY LINEAR    

                      SUM ASSIGNMENT PROBLEMS 

         In this chapter proposes Feasible Degenerate Pivoting and Optimal Non-

Degenerate Pivoting for Solving Fuzzy Linear Sum Assignment Problems. In this 

chapter the spanning trees on the associated bipartite graph G = (U, V; E). If a strongly 

feasible tree is producing degenerate pivoting on a backward edge and the rank of 

reduced fuzzy cost matrix [𝑅(𝐶𝑖𝑗
̅̅̅̃̅ )] is negative and then the current fuzzy linear sum 

assignment problem is not optimal. If a strongly feasible tree is producing non-

degenerate pivoting on a forward edge and the rank of the reduced cost matrix [𝑅(𝐶𝑖𝑗
̅̅̅̃̅ )] 

is non-negative and 𝐸̅= ∅ then the Current fuzzy linear sum assignment problem is 

optimal. This method is illustrated by a numerical example. 

3.1 INTRODUCTION 

  Many applications of fuzzy assignment problems applied in real life situations, 

scientific, uncertainty and engineering. We compute the fuzzy optimal assignment cost 

for solving fuzzy linear sum assignment problem through rooted in a strongly feasible 

tree. In this problem (𝑐𝑖𝑗̃)  is denotes as fuzzy cost and assigned to perfect matching of 

the jth job to the ith person.  

Here, (𝑐𝑖𝑗̃) is 𝜔-trapezoidal fuzzy numbers to convert crisp by using Average  

  This content of this chapter has been published in Journal of Physical Sciences, Vol. 23, 2018, 97-109. 

 



40 
 

ranking technique for solving fuzzy linear sum assignment problem. In solving the 

fuzzy linear sum assignment problem, we compute the fuzzy optimal assignment cost 

using a strongly feasible tree in the bipartite graph.  

In fuzzy linear sum assignment problem, there is one-to-one correspondence 

between primal basic solutions and spanning trees on the associated with bipartite graph 

G = (U, V; E). Given any feasible solution, and the associated spanning tree T consists 

of the 2n-1 edges corresponding to the basic columns. The strong feasible tree (T) 

producing degenerate pivoting on a backward edge and non-degenerate pivoting on a 

forward edge. If the solution is feasible a strongly feasible tree (T) is Producing 

degenerate pivoting on a backward edge. If the solution is optimal a strongly feasible 

tree (T) is Producing non- degenerate pivoting on a forward edge. 

3.2 𝝎- Trapezoidal Fuzzy Linear Sum Assignment Problem [𝝎-TFLSAP] 

   Suppose there are ‘m’ jobs to be performed and ‘n’ persons (m = n) are 

available for doing the jobs. Assume that each person can do each job at a time, 

depending on their efficiency to do the job. Let (𝑐𝑖𝑗̃) be the 𝜔 −trapezoidal fuzzy linear 

sum assignment cost, then the objective is to minimize the total 𝜔- trapezoidal cost  is 

performed ith person perfect matched to the available  jth job or assigning all the jobs 

to the available persons (one job to one person).  

    The assignment cost as 𝜔-trapezoidal fuzzy numbers. Here, 𝜔-trapezoidal 

fuzzy assignment problem has been transformed into crisp assignment problem using  

Some ranking method. A strongly feasible tree T is producing fuzzy degenerate  

 

 



41 
 

pivoting on a backward edge and T is producing the non-degenerate pivoting on a 

forward edge and optimal are discussed. 

     The 𝜔-trapezoidal fuzzy linear sum assignment problem can be stated in the 

form of an mxn (m = n) Cost matrix [𝑐𝑖𝑗̃] of 𝜔-trapezoidal fuzzy numbers as given in 

the following table: 

                        𝜔- Trapezoidal Fuzzy Linear Sum Assignment Problem 

Persons/jobs 1 2 3 .   .   .  .   . N 

1 [𝑐11̃;  𝜔11] [𝑐12̃;  𝜔12] [𝑐13̃;  𝜔13] .   .   .  .   . [𝑐1𝑛̃;  𝜔1𝑛] 

2 [𝑐21̃;  𝜔21] [𝑐22̃;  𝜔22] [𝑐23̃;  𝜔23] .   .   .  .   . [𝑐2𝑛̃;  𝜔2𝑛] 

3 [𝑐31̃;  𝜔31] [𝑐32̃;  𝜔32] [𝑐33̃;  𝜔33] .   .   .  .   . [𝑐3𝑛̃;  𝜔3𝑛] 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

M [𝑐𝑚1̃;  𝜔𝑚1] [𝑐𝑚2̃;  𝜔𝑚2] [𝑐𝑚3̃;  𝜔𝑚3]  [𝑐𝑚𝑛̃;  𝜔𝑚𝑛] 

 

3.3 PROPERTIES OF STRONG FEASIBLE TREE 

         A strongly feasible tree T is producing fuzzy degenerate pivoting on a backward 

edge and T is producing the non-degenerate pivoting on a forward edge and optimal. 

A strongly feasible tree (T) that produces degenerate pivoting on a back edge indicates  

that the solution is feasible. A strongly viable tree (T), which produces non-degenerate 

pivoting on a forward edge, is the best case situation for the solution. 

3.3.1 Definition:  

      From the FLSAP with cost 𝑐𝑖𝑗̃ is 𝜔-trapezoidal fuzzy number and if the reduced 
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from cost matrix elements at least any one cost is negative then, the basis corresponding 

to tree is producing degenerate pivoting. 

3.3.2 Definition:  

      From the FLSAP with cost 𝑐𝑖𝑗̃ is 𝜔-trapezoidal fuzzy number and if the reduced 

from cost matrix elements for all the cost is non-negative, then the basis corresponding 

to tree is producing non-degenerate pivoting. 

3.3.3 Definition:  

       Given a feasible solution x, a tree T in G = (U,V;E) rooted at r 𝜖 U is a strongly 

feasible tree if  𝑥𝑖𝑗 = 1 ∀ odd edges [i, j] 𝜖 T and  𝑥𝑖𝑗 = 0 ∀ even edges [i, j] 𝜖 T. 

3.3.4 Definition  

        An edge [i, j] 𝜖 E\T with i 𝜖 U and j 𝜖 V is a forward edge if  i lies on the Path that 

connects r to j in T. 

3.3.5 Definition: 

        An edge [i, j] 𝜖 E\T with i 𝜖 U and j 𝜖 V is a backward edge if  j lies on the path 

that connects r to i in T. 

3.3.6 Definition: 

 An edge [i, j] 𝜖 E\T with i 𝜖 U and j 𝜖 V is a cross edge if it is neither forward nor 

backward. 

3.3.7 Theorem 

 If reduced costs 𝑐𝑖𝑗̅̅ ̅ =  𝑐𝑖𝑗 - 𝑢𝑖 - 𝑣𝑗 ≥ 0 where 1≤ i,j ≤ n is corresponding LSAP it is 

optimal solution and T is producing a non-degenerate pivot on a forward edge. 

 Proof. Let us take a strongly feasible tree T in the bipartite graph and from the balanced 

fuzzy linear sum assignment problem and arbitrarily fixing the value of the root 𝑢𝑟  to 
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zero from the strong feasible tree (T) and computed dual variables from T. next 

execution by using duality theory, suppose  𝑐𝑖𝑗̅̅ ̅ =  𝑐𝑖𝑗 - 𝑢𝑖 - 𝑣𝑗 is non- negative, Since 

the LSAP is optimal solution and T is producing non-degenerate pivot on a forward 

edge. ∎ 

3.3.8 Theorem 

 If 𝑐𝑖𝑗̅̅ ̅ =  𝑐𝑖𝑗 - 𝑢𝑖 - 𝑣𝑗 < o where 1≤ i,j ≤ n is corresponding LSAP it is not  optimal 

solution and T is producing a degenerate on a backward edge. 

Proof. Let T  be a strongly feasible tree in the bipartite graph and from the balanced 

linear sum assignment problem and arbitrarily fixing the value of the root 𝑢𝑟 to 

zero from strong feasible tree (T) and computed dual variables from T. by using duality 

theory 𝑐𝑖𝑗̅̅ ̅ =  𝑐𝑖𝑗 - 𝑢𝑖 - 𝑣𝑗 ,  if 𝑐𝑖𝑗̅̅ ̅ =  𝑐𝑖𝑗 - 𝑢𝑖 - 𝑣𝑗 is negative. i.e, the LSAP is not optimal 

solution and T is producing degenerate pivot on a backward edge. ∎ 

3.4 RANKING OF  𝝎-TRAPEZOIDAL FUZZY NUMBERS 

     An effective algorithm developed before for comparing 𝜔- trapezoidal fuzzy 

numbers is by use of ranking function [1],The given 𝜔- trapezoidal fuzzy number to 

convert crisp one by using average ranking method [1] . The ranking function map ℜ: 

F(R) → R, where F(R) is a set of fuzzy numbers defined on the set of real numbers, 

which maps each fuzzy number into the real line. 

 The following comparisons are exists i.e., 

(i) 𝐴̃ > 𝐵̃ if and only if  ℜ (𝐴̃) > ℜ (𝐵̃) 

(ii) 𝐴̃ <  𝐵̃ if and only if  ℜ (𝐴̃) < ℜ (𝐵̃) 

(iii) 𝐴̃ = 𝐵̃ if and only if  ℜ (𝐴̃) = ℜ (𝐵̃) 
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Let 𝐴̃ = (𝑝1, 𝑞1, 𝑟1, 𝑠1; 𝜔1) and 𝐵̃ = (𝑝2, 𝑞2, 𝑟2, 𝑠2; 𝜔2) be any two 𝜔-trapezoidal 

fuzzy numbers and 𝜔 = min(𝜔1, 𝜔2) then 

ℜ (𝐴̃) =
𝜔1(𝑝1+ 𝑞1+ 𝑟1+ 𝑠1)

4
   and   ℜ (𝐵̃) = 

𝜔2(𝑝2+ 𝑞2+ 𝑟2+ 𝑠2) 

4
 

3.5 THE PROPOSED ALGORITHM.  

Step 1: First test whether the given 𝜔-trapezoidal fuzzy linear sum assignment table is   

balanced (or) unbalanced. If it is balanced one, the total number of persons are              

equal to the total number of jobs, then go to step 3. If it is unbalanced one, the total 

number of persons are not equal to the total number of jobs, then go to step2. 

Step 2: Introduce dummy rows /dummy columns (𝜔 –trapezoidal fuzzy Cost is zero), 

so unbalanced problem converts to balanced one. 

Step 3:The 𝜔 –trapezoidal fuzzy number convert to crisp one by using average ranking 

method. Examine the rank of 𝜔-trapezoidal fuzzy cost and defined as  [ℜ ( 𝑐𝑖𝑗̃)]  

Step 4: Form a Strongly Feasible Tree(T) 

Given a feasible solution x, a tree T in G = (U,V;E) rooted at r 𝜖 U is a strongly feasible 

tree if  𝑥𝑖𝑗 = 1∀ odd edges [i, j] 𝜖 T and  𝑥𝑖𝑗 = 0∀ even edges [i, j] 𝜖 T. 

 Step 5: Compute Rank of Fuzzy Dual Variables (𝑢𝑖̃ * and 𝑣𝑗̃*);  

 First form a strong feasible tree(T) from the bipartite graph (G).the root 𝑢𝑖̃*= 0            

then calculate  𝑣𝑗̃* =  𝑐𝑖𝑗̃ - 𝑢𝑖̃ *  ; and  𝑢𝑖−1̃ * = 𝑐𝑖𝑗̃ - 𝑣𝑗̃*  and next  𝑣𝑗−1̃ * = 𝑐𝑖𝑗̃- 𝑢𝑖−1̃ *  and 

so on, similarly compute 𝑢𝑖+1̃ * = 𝑐𝑖𝑗̃ - 𝑣𝑗̃* ; 𝑣𝑗−1̃ * = 𝑐𝑖𝑗̃- 𝑢𝑖−1̃ * . 

Step 6: [Compute reduced rank of fuzzy cost matrix [ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)] 

The reduced rank of fuzzy cost matrix ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)= ℜ [𝑐𝑖𝑗̃ - 𝑢𝑖̃ - 𝑣𝑗̃] 
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Step 7: (Assigning the zeros) 

(a)  Compute the row[ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)]successively until a row with exactly one unmarked 

zero is    found. Make an assignment to this single unmarked zero by encircling 

it. Cross all other zeros in the column [ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)]of this encircled zero. 

(b) Compute the column [ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)]successively until a column with exactly one 

unmarked zero is found. Make an assignment to this single unmarked zero by 

encircling it. Cross any other zeros in its row [ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)]of this encircled zeros. 

(c) Continue the process until in each row  [ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)]and each column  [ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)] 

exactly one encircled zero. 

Step 8: (Apply optimal test) 

(i) A strongly feasible tree is producing degenerate pivoting on a backward edge 

and  the rank of reduced fuzzy cost matrix [ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)] is  negative and 𝐸̅= {[i, j] / 

𝐸̅ : ℜ[𝑐𝑖𝑗̃ - 𝑢𝑖̃ - 𝑣𝑗̃]< 0} then the current fuzzy linear sum assignment problem is  

not optimal. 

(ii) A strongly feasible tree is producing non-degenerate pivoting on a forward edge 

and the rank the reduced cost matrix [ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)]is non-negative and 𝐸̅̅ = ∅ then the 

current fuzzy linear sum assignment problem is optimal. 

Step 9:  

  The rank of reduced fuzzy cost matrix [ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)] = ℜ [𝑐𝑖𝑗̃ - 𝑢𝑖̃ - 𝑣𝑗̃] < 0 and 𝐸̅= [i, j] /        

   𝐸̅:  ℜ [𝑐𝑖𝑗̃ - 𝑢𝑖̃ - 𝑣𝑗̃] < 0} form a matching in a bipartite graph from [R(𝑐𝑖𝑗̅̅ ̅ ̃)] then select 

most negative edge from [ℜ (𝑐𝑖𝑗̅̅ ̅ ̃)] the most negative edge[i, j] ϵ 𝐸̅with i ϵ u and j ϵ v 

and removes from the basis the unique other edge [i, l] ϵ C ( T , [i,j] ) incident to i with 
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l≠j  and form a new matching in a bipartite graph and making a new strongly feasible 

tree.  Again a strongly feasible tree T is producing degenerate pivoting on a backward 

edge,continue the process until T is producing the non-degenerate pivoting on a forward 

edge and optimal. 

Step 10: Stop.  

3.6  NUMERICAL EXAMPLE 

A company has four persons P1, P2, P3, P4  and four jobs J1, J2, J3, J4 with cost 

matrix[𝑐𝑖𝑗̃] is given whose elements are 𝜔-trapezoidal fuzzy numbers and then 

illustrated the proposed algorithm. Compute the optimal complete matching in the 

bipartite graph (G) and also discuss the strong feasible tree (T) producing degenerate 

pivoting on a backward edge and non-degenerate pivoting on a forward edge and 

optimal.                                                           

                                                                                                                            

Case (i): The given 𝜔-trapezoidal fuzzy assignment problem is balanced one. Here we 

first obtain the matrix [R(𝑐𝑖𝑗̃ )] by using the given ranking method.      

 

 

 J1 J2          J3 J4 

P1 (14,20,26,32;0.4) (8,14,20,26;0.5) (4,8,14,20;0.2) (14,20,26,32;0.4) 

P2 (8,14,20,26;0.5) (8,14,20,26;0.5) (14,20,26,32;0.4) (20,26,32,38;0.5) 

P3 (32,38,44,50;0.8) (14,20,26,32;0.4) (4,8,14,20;0.2) (14,20,26,32;0.4) 

P4 (19,25,31,37;0.55) (26,32,38,44;0.46) (14,20,26,32;0.4) (8,14,20,26;0.5) 
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          [ℜ (𝑐𝑖𝑗̃ )]      = 

 

           

 

Form a strongly feasible tree 

        

Figure:3.1 

 

 

 

 

 

 

 

 

        

 J1 J2 J3 J4 

P1 9.20 8.50 2.30 9.20 

P2 8.50 8.50 9.20 14.5 

P3 32.8 9.20 2.30 9.20 

P4 15.4 16.1 9.20 8.50 

         𝑢̃𝑖* 

𝑣̃𝑗
* 

2.30 1.60 2.30 1.60 

6.9 9.20 8.50 2.30 9.20 

6.9 8.50 8.50 9.20 14.5 

0 32.8 9.20 2.30 9.20 

6.9 15.4 16.1 9.20 8.50 
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Here 𝐸̃ = {[1,3], [2, 1]} ; select [i, j] = [1,3]  and [i,l] = [1,2] 

A strongly feasible tree (T) is producing degenerate pivoting on a backward edge 

Case (ii): The above reduced rank of fuzzy cost matrix [ℜ(𝑐𝑖𝑗̅̅ ̅̃)] and strongly feasible 

tree (T) is producing degenerate pivoting on a backward edge. So, continue the process. 

The rank of fuzzy cost matrix is given by, 

 

 

 

           [ℜ(𝑐𝑖𝑗̃ )] = 

 

 

               

(0) 0 - 6.9 0.7 

- 0.7 (0) 0 6 

30.5 7.6 (0) 7.6 

6.2 7.6 0 (0) 

 J1 J2 J3 J4 

P1 9.20 8.50 2.30 9.20 

P2 8.50 8.50 9.20 14.5 

P3 32.8 9.20 2.30 9.20 

P4 15.4 16.1 9.20 8.50 
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Figure :3.2 

                                                                

 

 

 

 

 

 

 

                                                 

            

        ℜ(𝑐𝑖𝑗̅̅ ̅̃) = 

 

 

               

        𝑢𝑖̃ * 

𝑣̃𝑗
* 

9.20 1.60 2.30 1.60 

0 9.20 8.50 2.30 9.20 

6.9 8.50 8.50 9.20 14.5 

0 32.8 9.20 2.30 9.20 

6.9 15.4 16.1 9.20 8.50 

(0) 6.9 0 7.6 

- 7.6 (0) 0 6 

23.6 7.6 (0) 7.6 

- 0.7 7.6 0 (0) 



50 
 

      Here, 𝐸̃ = {[4,1], [2, 1]} ; select [i, j] = [2,1]  and [i,l] = [2,3] 

A strongly feasible tree (T) is producing degenerate pivoting on a backward edge 

Case (iii): The above reduced rank of fuzzy cost matrix [ℜ(𝑐𝑖𝑗̅̅ ̅̃)] and strongly feasible 

tree (T) is producing degenerate pivoting on a backward edge. So, continue the 

process. 

The rank of fuzzy cost matrix is given by, 

 

 

 

      [R(𝑐𝑖𝑗̃)] = 

 

                                                   

 

 

                                        Figure:3.3 

Persons

/Jobs 

 

J1 

 

J2 

 

J3 

 

J4 

P1 9.20 8.50 2.30 9.20 

P2 8.50 8.50 9.20 14.5 

P3 32.8 9.20 2.30 9.20 

P4 15.4 16.1 9.20 8.50 
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  [R(𝑐𝑖𝑗̅̅ ̅̃)] =                             

                                   

 

 

Here , 𝐸̃= {[4,1], [1,2]} ; select [i, j] = [1,2]  and [i,l] = [1,1] 

A strongly feasible tree (T) is producing degenerate pivoting on a backward edge 

Case (iv): The above reduced rank of fuzzy cost matrix [ℜ(𝑐𝑖𝑗̅̅ ̅̃)] and strongly feasible 

tree (T) is producing degenerate pivoting on a backward edge. So, continue the process. 

The rank of fuzzy cost matrix is given by,                         

         𝑢𝑖̃ *   

𝑣𝑗̃ * 
9.20 9.20 2.30 1.60 

0 9.20 8.50 2.30 9.20 

- 0.7 8.50 8.50 9.20 14.5 

0 32.8 9.20 2.30 9.20 

6.9 15.4 16.1 9.20 8.50 

 (0) - 0.7 0 7.6 

0 (0) 7.6 13.6 

23.6 0 (0) 7.6 

- 0.7 0 0 (0) 
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Figure: 3.4 

  

                                                                    

 

 

 

 

Persons 

/Jobs 

 

J1 

 

J2 

 

J3 

 

J4 

P1 9.20 8.50 2.30 9.20 

P2 8.50 8.50 9.20 14.5 

P3 32.8 9.20 2.30 9.20 

P4 15.4 16.1 9.20 8.50 
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   [R (𝑐𝑖𝑗̅̅ ̅̃)] = 

 

Here 𝐸̃ =∅; A strongly feasible tree (T) is Producing non- degenerate pivoting on a 

forward edge. Optimum reached and stop the procedure.  

The optimal assignment perfect Matching schedule is P1 →J2, P2 →J1,P3→ J3, P4 →J4,  

The fuzzy optimal assignment cost  

 (𝐶12̃;  𝜔12)+(𝐶21̃;  𝜔21)+(𝐶33̃;  𝜔33)+(𝐶44̃;  𝜔44) = (8,14,20,26;0.5) + (8,14,20,26;0.5) + 

                                                                             (4, 8, 14, 20; 0.2)  + 8, 14, 20, 26; 0.5) 

                                                                          = (28,50,74, 98;0.2)                                                       

                                                        and also [𝕽(𝒄𝒊𝒋̅̅ ̅̃)] = (28,50,74,98;0.2) = 12.5.                                     

 

                                             

        𝑢𝑖̃ * 

𝑣𝑗̃ * 

 8.50 8.50 2.30 1.60 

0 9.20 8.50 2.30 9.20 

0 8.50 8.50 9.20 14.5 

0 32.8 9.20 2.30 9.20 

6.9 15.4 16.1 9.20 8.50 

0.7 (0) 0 7.6 

(0) 0 6.9 12.5 

24.3 0.7 (0) 7.6 

0 0.7 0 (0) 
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                                                 CHAPTER IV 

A NEW MODIFIED OPTIMAL PERFECT MATCHING IN PARTIAL 

FEASIBLE MATCHING FOR SOLVING FUZZY LINEAR SUM 

ASSIGNMENT PROBLEMS 

In this chapter proposed, a new modified optimal and perfect matching from 

partial assignment for solving fuzzy linear sum assignment problem. Here the fuzzy 

assignment cost is ω- trapezoidal fuzzy numbers and by using ranking method ω- 

trapezoidal fuzzy numbers converted to crisp one. First Calculate the rank of fuzzy dual 

variables and Compute a partial feasible solution then Calculate reduced rank of ω--

trapezoidal fuzzy cost and Compute the new column and the new assignment 

introduced. Continue the process to reach optimal solution and complete bipartite 

matching. A numerical example is used to illustrate this technique. 

4.1 INTRODUCTION 

          The assignment problem is a special type of the transportation problem. The 

assignment problem is in the form of mxn matrix. Here, we have ‘n’ jobs is performed 

to ‘m’ persons and our objective is minimize the cost or maximize the profit. Let 𝑐𝑖𝑗 be 

the assignment cost is performed to jth job to the ith person.   

Fuzzy assignment problem is most powerful tool in fuzzy operations research. Many 

applications implemented and new ideas introduced in this criteria. The Linear Sum 

Assignment Problem is most important and special type of linear programming and in 

combinatorial optimization. we are given mxn matrix and 𝑐𝑖𝑗 is denotes as cost for  

This content of this chapter has been published in Bulletin of Pure and Applied Sciences. Vol. 38E 

(Math & Stat.), No.1, 2019. P.432-440. 
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optimal assigning through the jth job to the ith person and total sum of the entries 

minimize the cost or maximize the profit. In other words, Let G be a bipartite graph. 

G=(U,V;E)  being a vertex of U for each row, a vertex of V for each column and  cost 

or  profit associated with edge [i, j] for i = 1,2...n and j = 1,2...n then the problem is to 

determine a minimum cost or maximum profit is perfect matching in G. Easterfield was 

first initiated for Linear Sum Assignment Problem(LSAP) in 1946.Cunningham and 

Barr, Glover, and Kingman first initiated primal simplex algorithm in the mid-1970s.   

4.2. Ranking of 𝝎-Trapezoidal Fuzzy Numbers. 

The decision maker first take 𝜔-trapezoidal fuzzy cost and then find ranking of 𝜔 -

trapezoidal fuzzy cost after the process of optimal decisions. Here, 𝜔-trapezoidal fuzzy 

cost is decision variables,  

The ranking of 𝜔 -trapezoidal fuzzy cost to following comparisons are exits. 

(i) 𝐴̃ >R 𝐵̃ if and only if R(𝐴̃) > R(𝐵̃). 

(ii) 𝐴̃ <R 𝐵̃ if and only if R(𝐴̃) < R(𝐵̃). 

(iii) 𝐴̃ =R 𝐵̃ if and only if R(𝐴̃) = R(𝐵̃) 

Let 𝐴̃ = (𝑝1, 𝑞1, 𝑟1, 𝑠1; 𝜔1) and 𝐵̃ = (𝑝2, 𝑞2, 𝑟2, 𝑠2; 𝜔2) be any two 𝜔-trapezoidal fuzzy 

numbers, the following ranking function  [7] is, 

 ℜ(𝑨̃)  =   
𝛚𝟏(𝟐𝐩𝟏+𝐪𝟏 +,𝐫𝟏+𝟐𝐬𝟏)

𝟔
  ,  ℜ(𝐁̃) = 

𝛚𝟐(𝟐𝐩𝟐+𝐪𝟐 + 𝐫𝟐+𝟐 𝐬𝟐)

𝟔
. 

4.3 A New Modified Optimal Perfect Matching in Partial Feasible Matching. 

      The steps for a new modified optimal matching in a partial feasible matching   

technique are as follows: 
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Step 1: First, determine if the number of people and the number of jobs are equal. If             

they are, then do the ω -trapezoidal fuzzy assignment cost. When it is said that the 

problem is balanced, go on to step 2. Otherwise, dummy rows or dummy columns are 

added if it is not balanced. 

Step 2: ω-trapezoidal fuzzy numbers convert to crisp one by using ranking method              

[7].  The rank of ω-trapezoidal fuzzy cost is defined as R [C̃ij] . 

Step3:  Calculate the rank of fuzzy dual variables 

                       ℜ[𝑣̃𝑗]  =  min {ℜ[ 𝑐̃𝑖𝑗];  𝑖 =  1 𝑡𝑜 𝑛 𝑎𝑛𝑑 𝑗 =  1 𝑡𝑜 𝑛.        

ℜ[𝑢̃𝑖]  =  𝑚𝑖𝑛{ℜ[ 𝑐̃𝑖𝑗  − 𝑣̃𝑗];  𝑖 =  1 𝑡𝑜 𝑛 𝑎𝑛𝑑 𝑗 =  1 𝑡𝑜 𝑛. 

Step4: Compute a partial feasible solution 

 ℜ[ 𝑐̃𝑖𝑗  − 𝑣̃𝑗]  =  {
𝑖           𝑖𝑓  𝑐𝑜𝑙𝑢𝑚𝑛 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑜𝑤 𝑖
 0   𝑖𝑓 𝑐𝑜𝑙𝑢𝑚𝑛 𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑜𝑤 𝑖.

 

Step 5: Calculate reduced rank of 𝝎-trapezoidal fuzzy cost R (𝐜̅𝐢𝐣)  

Find partial feasible matching [less than ‘n’ - rows / columns matching]in the           

bipartite graph and calculate the reduced rank of ω-   trapezoidal fuzzy cost R [c̃ij -ũi- 

ṽj]  and performed in  jth job to the ith person in G. 

Step 6: Partial to Optimal Matching 

           First we take unassigned row [i*] and calculate 

            g* = arg min{ℜ[ c̃ij -ṽj]; j = 1,2...n} and 𝑢𝑔∗= 𝑐𝑖𝑔∗- 𝑣𝑔∗ 

            h* = arg min{ℜ[ c̃ij -ṽj]; j = 1,2...n, g* ≠ h*} and. 𝑢ℎ∗=𝑐𝑖ℎ∗- 𝑣ℎ∗ 

Step 7: If h*  >  g* then calculate 𝑣𝑔∗∗ = 𝑣𝑔∗ - (𝑢ℎ∗ -𝑢𝑔∗). 

Step 8: compute new column and new assignment introduced 

 If we consider T =  𝑢ℎ∗ - 𝑢𝑔∗   then calculate new pivotal column 𝑣𝑔∗∗=  𝑣𝑔∗ + T .         
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The new assignment is obtained z* = 𝑢𝑔∗+ T. 

Step 9: To find entering and leaving assignment 

The entering new assignment is z* and the entering assignment column is known             

as key assignment column or pivot assignment column. The old assigned element of the 

key assignment column is leaving assignment and introduced new assignment z*. if the 

key assignment column already must does not assign any old assignment then we have 

introduced new assignment z*.    

Step10: To find optimal perfect matching  

 Each row has precisely one unmarked zero that is assigned, and it crosses all 

other zeros in the corresponding column because these won't be taken into 

account for any additional future allocations. Continue in this manner until each 

row has been encountered. 

 Each column has precisely one unmarked zero that is assigned; encircle this one 

unmarked zero and cross any additional zeros in the column. Continue in this 

manner until each column has been encountered. The ideal assignment is attained 

at the end. 

 Finally, obtain optimal and complete matching in the bipartite graph assigned 

from jth job to the ith person in G.  

 Step 11:  STOP. 

4.4 NUMERICAL EXAMPLE 

   The fuzzy assignment problem associated with four jobs J1, J2, J3, J4 and four persons 

P1, 𝑃2, 𝑃3, 𝑃4 respectively. The fuzzy assignment cost to be ω-trapezoidal fuzzy 

numbers and allocating each row and each column exactly one perfect person. 
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Solution : 

First, determine if the number of people and the number of jobs are equal. If they are, 

then do the ω -trapezoidal fuzzy assignment cost. When it is said that the problem is 

balanced. Create balanced ω -trapezoidal fuzzy assignment cost. 

                                                              

The ω -trapezoidal fuzzy assignment cost is convert to crisp one by using ranking 

method. The rank of ω -trapezoidal fuzzy assignment cost is denoted as ℜ[ c̃ij] , 

      

                                                                                                            

    First, find the minimum value of each column and next calculate the difference 

between the rank of ω -trapezoidal fuzzy assignment cost and minimum value of each 

column. 

                                         

Persons / 

jobs 

𝐉𝟏 𝐉𝟐 𝐉𝟑 𝐉𝟒 

𝐌𝟏 (12,14,16,18;0.7) (16,18,20,22;0.9) (18,20,22,24;0.95) (22,24,26,28;0.99) 

𝐌𝟐 (4,6,8,10;0.3) (14,16,18,20;0.8) (12,14,16,18;0.7) (16,18,20,22;0.9) 

𝐌𝟑 (2,4,6,8;0.2) (10,12,14,16;0.6) (12,14,16,18;0.7) (20,22,24,26;0.97) 

𝐌𝟒 (6,8,10,12;0.4) (10,12,14,16;0.6) (4,6,8,10;0.3) (8,10,12,14;0.5) 

10.5 17.1 19.95 24.75 

2.1 13.6 10.5 17.1 

1 7.8 10.5 22.31 

3.6 7.8 2.1 5.5 
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                               Calculate R [ c̃ij -ũi- ṽj] 

                                                           

                                      

 

 

              

 

 

       Figure: 4.1 

v = (1,7.8,2.1,5.5) ; u = (9.3,1.1,0,0) ; 𝝋 = (0,0,2,4) ; 𝝆 = (0,3,0,4).   

First we take,   i* = 1 ; 𝑢𝑔∗= 9.3 ; 𝑢ℎ∗= 9.5 ; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) = 7.6. 

9.5 9.3 17.85 19.25 

1.1 5.8 8.4 11.6 

0 0 8.4 16.81 

2.6 0 0 0 

0.2 0 8.55 9.95 

0 4.7 7.3 10.5 

0 0 8.4 16.81 

2.6 0 0 0 
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                               Calculate new feasible assignment                                                                                                                                                                                                         

 

  

 

                                                           

 

 

Figure:4.2                                                            

V = (1,7.6,2.1,5.5);; 𝝋 = (2,0,0,4) ; 𝝆 = (0,1,0,4).                                

                         i*= 3 ; 𝑢𝑔∗= 0 ; 𝑢ℎ∗= 0.2 ; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) = 0.8.                                                                                                                                                            

Calculate new feasible assignment                                                

                        

   

 

 

 

9.5 9.5 17.85 19.25 

1.1 6 8.4 11.6 

0 0.2 8.4 16.81 

2.6 0.2 0 0 

9.7 9.5 17.85 19.25 

1.3 6 8.4 11.6 

0.2 0.2 8.4 16.81 

2.8 0.2 0 0 
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 Figure:4.3 

    V = (0.8,7.6,2.1,5.5); 𝝋 = (0,0,1,4) ; 𝝆 = (3,0,0,4).                

                      i* = 2 ; 𝑢𝑔∗= 1.3 ; 𝑢ℎ∗= 6 ; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) = -3.9. 

 

                                                                      

     

 

 

 

 

          Figure:4.4 

  V = (-3.9,7.6,2.1,5.5); 𝝋 = (0,1,0,4) ; 𝝆 = (2,0,0,4).                

                            i* = 3 ; 𝑢𝑔∗= 0.2 ; 𝑢ℎ∗= 4.9 ; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) =2.9.   

  

14.4 9.5 17.85 19.25 

6 6 8.4 11.6 

4.9 0.2 8.4 16.81 

7.5 0.2 0 0 
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 Figure:4.5                                                                                                 

V = (-3.9,2.9,2.1,5.5); 𝝋 = (0,1,2,4) ; 𝝆 = (2,3,0,4).                                                                                                                                                               

                       i* = 1 ; 𝑢𝑔∗=14.2 ; 𝑢ℎ∗= 14.4 ; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) =2.7 .                                                                   

          Calculate new feasible assignment 

Partial Feasible Matching in Bipartite Graph                                                 

                                   

 

 

 

 

14.4 14.2 17.85 19.25 

6 10.7 8.4 11.6 

4.9 4.9 8.4 16.81 

7.5 4.9 0 0 

14.4 14.4 17.85 19.25 

6 10.9 8.4 11.6 

4.9 5.1 8.4 16.81 

7.5 5.1 0 0 
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     Figure:4.6                     

V = (-3.9,2.7,2.1,5.5); 𝝋 = (2,1,0,4) ; 𝝆 = (2,1,0,4). 

 i* = 3 ; 𝑢𝑔∗= 4.9 ; 𝑢ℎ∗=5.1; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) = -4.1  

 

  

  

        

 

 

Figure: 4.7 

14.6 14.4 17.85 19.25 

6.2 10.9 8.4 11.6 

5.1 5.1 8.4 16.81 

7.7 5.1 0 0 
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V = (-4.1,7.6,2.1,5.5); 𝝋 = (2,0,1,4) ; 𝝆 = (3,1,0,4).                                         

Partial Feasible Matching in Bipartite Graph                                       

i* = 2 ; 𝑢𝑔∗= 6.2 ; 𝑢ℎ∗= 8.4 ; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) = -6.3     

Calculate new feasible assignment                                                                                           

                                                                                                                                                            

           

 

 

 

 

      Figure: 4.8    

    V = (-6.3,7.6,2.1,5.5); 𝝋 = (2,1,0,4) ; 𝝆 = (2,1,0,4).                                          

Partial Feasible Matching in Bipartite Graph                                                                                          

 i*= 3 ; 𝑢𝑔∗=5.1 ; 𝑢ℎ∗= 7.3 ; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) = 5.4  

                                                             

 

                                                                 

  

 

 

 

16.8 14.4 17.85 19.25 

8.4 10.9 8.4 11.6 

7.3 5.1 8.4 16.81 

9.9 5.1 0 0 

16.8 16.6 17.85 19.25 

8.4 13.1 8.4 11.6 

7.3 7.3 8.4 16.81 

9.9 7.3 0 0 
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 Figure: 4.9 

 

 

 V = (-6.3,5.4,2.1,5.5); 𝝋 = (0,1,2,4) ; 𝝆 = (2,3,0,4).                              

   

                               i*= 1 ; 𝑢𝑔∗=16.6 ; 𝑢ℎ∗= 16.8 ; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) = 5.2    

          Calculate new feasible assignment     

                                  

                                                            

                                                                                                                                     

 

 

 

 

Figure: 4.10    

16.8 16.8 17.85 19.25 

8.4 13.3 8.4 11.6 

7.3 7.5 8.4 16.81 

9.9 7.5 0 0 
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 V = (-6.3,5.2,2.1,5.5); 𝝋 = (2,1,0,4) ; 𝝆 = (2,1,0,4).                                    

   i* =3 ; 𝑢𝑔∗=7.3 ; 𝑢ℎ∗= 7.5 ; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) =  −6.5                                                                     

  

 

 

 

 

 

       Figure: 4.11    

V = (-6.5,5.2,2.1,5.5); 𝝋 = (2,0,1,4) ; 𝝆 = (3,1,0,4).     

   i*= 2 ; 𝑢𝑔∗=8.4 ; 𝑢ℎ∗= 8.6 ; 𝑣2∗∗ = 𝑣2∗ - (𝑢ℎ∗ - 𝑢𝑔∗) = 1.                        

 

 

 

 

 

17 16.8 17.85 19.25 

8.6 13.3 8.4 11.6 

7.5 7.5 8.4 16.81 

10.1 7.5 0 0 

17 16.8 18.05 19.25 

8.6 13.3 8.6 11.6 

7.5 7.5 8.6 16.81 

10.1 7.5 0.2 0 
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                                                            Figure: 4.12                            

V = (-6.5,5.2,1.9,5.5); 𝛗 = (2,3,0,4) ; 𝛒 = (3,1,2,4).                    

The 𝜔-Trapezoidal Fuzzy Optimal Assignment Table 

  

  The Optimal Perfect Matching Schedule is; P1→ J2,P2 → J3, P3 → J1,P4→  J4. 

The Optimal Perfect Matching in 𝜔-trapezoidal fuzzy assignment cost is 

(2,4,6,8;0.2) + (16,18,20,22;0.9) + (12,14,16,18;0.7) + (8,10,12,14;0.5) 

                                                                                                         = (38,46,54,62 ; 0.2) 

The Rank of Optimal Perfect Matching in fuzzy assignment cost is R[𝐂̃𝐢𝐣] = 10. 

 

Persons / 

jobs 

𝐉𝟏 𝐉𝟐 𝐉𝟑 𝐉𝟒 

𝐏𝟏 (12,14,16,18;0.7) (16,18,20,22;0.9) (18,20,22,24;0.6) (22,24,26,28;0.7) 

𝐏𝟐 (4,6,8,10;0.3) (14,16,18,20;0.8) (12,14,16,18;0.7) (16,18,20,22;0.9) 

𝐏𝟑 (2,4,6,8;0.2) (10,12,14,16;0.6) (12,14,16,18;0.7) (20,22,24,26;0.8) 

𝐏𝟒 (6,8,10,12;0.4) (10,12,14,16;0.6) (4,6,8,10;0.3) (8,10,12,14;0.5) 
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CHAPTER V 

A SPREAD OUT OF NEW PARTIAL FEASIBLE AND OPTIMAL PERFECT 

MATCHING FOR SOLVING INTERVAL-VALUED α-Cut FUZZY LINEAR 

SUM BOTTLENECK ASSIGNMENT PROBLEM 

In this chapter, proposed a spread of new partial/feasible and optimal/perfect 

matches of bipartite graph  for solving interval-valued 𝛼-cuts of generalized trapezoidal 

fuzzy numbers. Obtain  𝛼 -cut generalized trapezoidal fuzzy numbers from generalized 

trapezoidal fuzzy numbers, and discussed membership functions. The 𝛼 -cut generalized 

trapezoidal fuzzy number is transformed into an Interval-valued 𝛼 -Cut of Generalized 

Fuzzy Numbers. The basic preliminaries and fuzzy interval operations are discussed. If 

maximum cost and complete match, then the solution is feasible and complete solution. 

If the solution is minimum cost and complete match, then the solution is optimal and 

complete solution. If maximum cost or partial match, then the solution is feasible with 

partial solution. If minimum cost or partial match, then the solution is optimal or 

feasible solution. This method is illustrated by a numerical example. 

5.1 INTRODUCTION 

  Let ‘J’ jobs and ‘P’ machines be given in a balanced interval valued fuzzy linear 

sum bottleneck assignment problem (IFLSBAP) where 𝐶𝑖𝑗̆generalized trapezoidal fuzzy 

numbers. The bottleneck assignment refers to latest completion in the allocation of 

assignment problem. The interval-valued α-cut of generalized fuzzy linear sum 

bottleneck assignment problems are minimum cost maximum matching problem. 

This content of this chapter has been published in Advances and Applications in Mathematical 

Sciences Volume 19, Issue 11, September 2020, Pages 1159-1173. 
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 Let G = (U,V;E) be a bipartite graph with edge set E. The edge [i,j] has a cost coefficient 

𝜔𝐶𝑖𝑗̆
  We obtain complete matching in G such that the perfect length of an edge in this 

matching is as small as possible. The bottleneck minimum cost maximum matching 

problem can be formulated as follows. Find maximum matching in G such that the 

maximum length of an edge in this matching is small as possible.  

Fuzzy numbers have two characteristics on which fuzzy arithmetic is based. The 

following are the two characteristics of fuzzy numbers:   

(a) Each fuzzy set, and hence every fuzzy number, may be completely and 

specifically represented by its 𝛼- cuts. 

(b) 𝛼- cuts of each fuzzy number are closed intervals of real numbers ∀ 𝛼 𝜖 (0,1]. 

These characteristics allow us to describe arithmetic operations on fuzzy 

numbers in terms of arithmetic operations on their 𝛼- cuts. 

The idea of using threshold methods of the interval-valued α-cut of generalized fuzzy 

numbers. A threshold method alternates between two phases. In the first phase a cost 

element (threshold value) is chosen and threshold matrix 𝐶𝑖𝑗̆ is defined by threshold 

matrix is equal to 1 if  the cost element is greater than threshold value otherwise zero. 

5.2 GENERALIZED 𝜶-CUT FUZZY NUMBERS TO FUZZY INTERVAL  

𝜔𝐶11̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] = [𝑎11

𝐿𝑑11
𝑈

], 

𝜔𝐶12̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎12

𝐿𝑑12
𝑈

]    

𝜔𝐶13̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎13

𝐿𝑑13
𝑈

],  

 𝜔𝐶14̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎14

𝐿𝑑14
𝑈

]  
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𝜔𝐶21̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] = [𝑎21

𝐿𝑑21
𝑈

]  

𝜔𝐶22̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎22

𝐿𝑑22
𝑈

]     

𝜔𝐶23̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎23

𝐿𝑑23
𝑈

],  

 𝜔𝐶24̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎24

𝐿𝑑24
𝑈

]  

𝜔𝐶31̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] = [𝑎31

𝐿𝑑31
𝑈

],  

 𝜔𝐶12̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎32

𝐿𝑑32
𝑈

]              

𝜔𝐶33̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎33

𝐿𝑑33
𝑈

],  

 𝜔𝐶34̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎34

𝐿𝑑34
𝑈

]  

𝜔𝐶41̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] = [𝑎41

𝐿𝑑41
𝑈

],  

 𝜔𝐶12̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎42

𝐿𝑑42
𝑈

]              

𝜔𝐶43̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎43

𝐿𝑑43
𝑈

], 

  𝜔𝐶44̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] =   [𝑎44

𝐿𝑑44
𝑈

]  

5.3 MATHEMATICAL FORMULATION 

             Min   𝜔𝐶𝑖𝑗̆
𝑥𝑖𝑗1≤𝑖,𝑗≤𝑛

𝑚𝑎𝑥  

                 Such that          ∑ 𝑥𝑖𝑗
𝑛
𝑗=1  = 1     (i = 1,2…..n) 

                       ∑ 𝑥𝑖𝑗
𝑛
𝑗=1  = 1     (j =1,2…..n) 

 𝑥𝑖𝑗 ∈ {0,1}  (i,j = 1,2…..n). 

 



71 
 

5.3.1 Definition: An interval value 𝜔𝐶𝑖𝑗̆
= [𝑎𝑖𝑗

𝐿𝑑𝑖𝑗
𝑈

]∈ R is said to be interval value fuzzy 

set with membership grade 𝜇𝐶𝜔̃
(𝑥) then the following membership functions as, 

𝜇𝐶𝜔̃
(𝑥) = {

0,          𝑋 < 𝑎𝑖𝑗
𝐿

1,   𝑎𝑖𝑗
𝐿 < 𝑋 <

0,         𝑋 > 𝑑𝑖𝑗
𝑈

𝑑𝑖𝑗
𝑈𝑎𝑖𝑗

𝐿<𝑑𝑖𝑗
𝑈

 

5.3.2 Interval-valued α-Cut of Fuzzy Linear Sum Bottleneck Assignment Table: 

[𝑎11
𝐿𝑑11

𝑈
] [𝑎12

𝐿𝑑12
𝑈

] [𝑎13
𝐿𝑑13

𝑈
] [𝑎14

𝐿𝑑14
𝑈

] 

[𝑎21
𝐿𝑑21

𝑈
]  [𝑎22

𝐿𝑑22
𝑈

] [𝑎23
𝐿𝑑23

𝑈
] [𝑎24

𝐿𝑑24
𝑈

] 

[𝑎31
𝐿𝑑31

𝑈
] [𝑎32

𝐿𝑑32
𝑈

] [𝑎33
𝐿𝑑33

𝑈
] [𝑎34

𝐿𝑑34
𝑈

] 

[𝑎41
𝐿𝑑41

𝑈
] [𝑎42

𝐿𝑑42
𝑈

] [𝑎43
𝐿𝑑43

𝑈
] [𝑎44

𝐿𝑑44
𝑈

] 

 

5.4 𝜶-CUT OF THRESHOLD FUZZY LINEAR SUM BOTTLENECK ASSIGNMENT 

PROBLEM : 

    In the first case α-Cut of threshold Fuzzy Linear Sum Bottleneck Assignment cost 

element is (𝜔𝐶𝑖𝑗̆ 𝑀

∗ ) and α-Cut of threshold Fuzzy Linear Sum Bottleneck Assignment 

are defined as, 

                                              𝜔𝐶𝑖𝑗̆
=  {

1 , 𝑖𝑓 𝜔𝐶𝑖𝑗̆
> 𝜔𝐶𝑖𝑗̆ 𝑀

∗

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              
 

 

Let C = 𝜔𝐶𝑖𝑗̆
 be n x n matrix and 𝜔𝐶𝑖̆ 𝜑(i)n

𝑈  be a fuzzy arbitrary permutation of 

IFLSBAP.  

Spreading solution is sp (𝜑(i)) = max {min{𝜔𝐶𝑖̆ 𝜑(i)n
} 
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5.4.1 Property:  

  If two elements of IFLSBAP are in increasing order, then prove that the sum of two 

elements of IFLSBAP is also in Increasing Order, 

Proof:  Let X = [𝑎11
𝐿𝑑11

𝑈
] and Y =[𝑎22

𝐿𝑑22
𝑈

] are  two closed interval values in R is 

IFLSBAP.            

Here,     𝑎𝑖𝑗
𝐿<𝑑𝑖𝑗

𝑈
  and   𝑎22

𝐿<𝑑22
𝑈

 are in increasing orders. 

     We prove that, the sum of two elements of IFLSBAP is also in increasing Order, 

adding X and Y. We get, 

X+Y = [𝑎11
𝐿𝑑11

𝑈
] + [𝑎22

𝐿𝑑22
𝑈

] = [𝑎11
𝐿 +  𝑎22

𝐿𝑑11
𝑈  +  𝑑22

𝑈
].  

 We see that, Here,     𝑎11
𝐿 +  𝑎22

𝐿 < 𝑑11
𝑈  +  𝑑22

𝑈
   and    𝑎𝑖𝑗

𝐿<𝑑𝑖𝑗
𝑈

  and   𝑎22
𝐿<𝑑22

𝑈
. 

                Therefore, [𝑎11
𝐿𝑑11

𝑈
] + [𝑎22

𝐿𝑑22
𝑈

]< [𝑎11
𝐿 +  𝑎22

𝐿𝑑11
𝑈  +  𝑑22

𝑈
] . Hence, If 

two elements of IFLSBAP are in increasing order then the sum of two elements of 

IFLSBAP are also in increasing order. 

5.5 THE PROPOSED ALGORITM: 

Solving optimal perfect matching and feasible partial matching by using generalized α-

cut trapezoidal fuzzy numbers we present in the following step by step procedure. 

Step 1: Generalized α-cut trapezoidal fuzzy numbers  

Let us take generalized trapezoidal fuzzy number and obtain α-cut of trapezoidal fuzzy 

numbers, If α = 𝜔,then the following form. 
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                                       𝜔𝐴̆ = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿)𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈], 

                                                 𝜔𝐵̆ = [𝑏̆𝐿 + (𝑏̆𝛼-𝑏̆𝐿)𝜔,   -(𝑏̆𝑈-𝑏̆𝛽) + 𝑏̆𝑈]. 

Step 2: compute fuzzy interval values by using generalized α-cut trapezoidal fuzzy 

numbers: 

𝜔𝐶𝑖𝑗̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] = [𝑎𝑖𝑗

𝐿𝑑𝑖𝑗
𝑈

]. 

              Where   𝑎𝑖𝑗
𝐿<𝑑𝑖𝑗

𝑈
 and    𝑎𝑖𝑗

𝐿 = lower boundary of least value  

                                                       𝑑𝑖𝑗
𝑈

 = upper boundary of largest value 

Step 3: Forming balanced interval valued fuzzy linear sum bottleneck assignment 

problem (IFLSBAP): (number of Machines (M) and number of Jobs (P) are equal 

i.e.,∑ 𝑀𝑖
𝑛
𝑖=1 = ∑ 𝑃𝑗

𝑛
𝑗=1 ), if IFLSBAP   ∑ 𝑀𝑖

𝑛
𝑖=1 ≠ ∑ 𝑃𝑗

𝑛
𝑗=1 ,   We introduce dummy row 

i.e.,∑ 𝑀𝑖
𝑛
𝑖=1 +𝐷𝑖  (or), introduce dummy column ∑ 𝑃𝑗

𝑛
𝑗=1 +𝐷𝑗 (where 𝐷𝑖 = dummy row 

,𝐷𝑗 = dummy column) 

Step 4: Calculate𝜔𝐶𝑖𝑗̆ 0

𝐿  , 𝜔𝐶𝑖𝑗̆ 𝑛

𝑈. 

                      Let 𝜔𝐶𝑖𝑗̆
= [𝑎𝑖𝑗

𝐿𝑑𝑖𝑗
𝑈

]  be (n x n) interval cost/time matrix; 

                     𝜔𝐶𝑖𝑗̆ 0

𝐿   =   𝑚𝑖𝑛𝑖𝑗{𝑎𝑖𝑗
𝐿𝑑𝑖𝑗

𝑈} ,  𝜔𝐶𝑖𝑗̆ 𝑛

𝑈   =   𝑚𝑎𝑥𝑖𝑗{𝑎𝑖𝑗
𝐿𝑑𝑖𝑗

𝑈} 

Step 5: Calculate( 𝜔𝐶𝑖𝑗̆

∗) ,  (𝜔𝐶𝑖𝑗̆ 𝑀

∗
) 

                                     𝜔𝐶𝑖𝑗̆

∗  = {𝜔𝐶𝑖𝑗̆
 : 𝜔𝐶𝑖𝑗̆ 0

𝐿<𝜔𝐶𝑖𝑗̆
<𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 

     𝜔𝐶𝑖𝑗̆ 𝑀

∗    = min {   𝜔𝐶𝑖𝑗̆
 ∈    𝜔𝐶𝑖𝑗̆

∗:|{  𝜔𝐶𝑖𝑗̆
 ∈   𝜔𝐶𝑖𝑗̆

∗ :   𝜔𝐶𝑖𝑗̆
≤[𝑎𝑖𝑗

𝐿𝑑𝑖𝑗
𝑈

]}|≥|𝜔𝐶𝑖𝑗̆

∗| / 2. 
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Step 6: Feasibility check: Select the feasible element  𝜔𝐶𝑖𝑗̆ 𝑀

∗  , 

(  𝜔𝐶𝑖𝑗̆ 0

𝐿<  𝜔𝐶𝑖𝑗̆1

𝐿,  𝜔𝐶𝑖𝑗̆ 2

𝐿…..<𝜔𝐶𝑖𝑗̆ 𝑀

∗  = 0), select the ( 𝜔𝐶1𝑗̆
) row and assigned at least only 

one zero , similarly column allocations are𝜔𝐶2𝑗̆
, 𝜔𝐶3𝑗̆

……𝜔𝐶𝑛𝑗̆
, next column assigned 

as  𝜔𝐶𝑖1̆
,  𝜔𝐶𝑖2̆

,….  𝜔𝐶𝑖𝑛̆
. Each row and each column at least only one zero are assigned. 

Every row and column has at least one matching, the feasibility is executed. The 

bipartite matching, if minimum cost and maximum matching is optimal and perfect, 

otherwise the bipartite graph is feasible and partial matching. Obtain interval valued 

fuzzy linear sum cost is    ∑ 𝜔𝐶𝑖̆ 𝜑(i)𝑀

∗𝑛
𝑖=1   = [𝑎𝑖𝜑(i)𝑀

𝐿𝑑𝑖𝜑(i)𝑀
𝑈

]. 

Step 7: Backward calculation: Select the lower feasible elements of 𝜔𝐶𝑖𝑗̆ 𝑀

∗ and determine 

Feasible IFLSBAP 

        𝜔𝐶𝑖𝑗̆ 0

𝐿 =0,the feasible cost/time is∑ 𝜔𝐶𝑖̆ 𝜑(i)0

𝐿𝑛
𝑖=1 = [𝑎𝑖𝜑(i)0

𝐿𝑑𝑖𝜑(i)0
𝑈

] 

      𝜔𝐶𝑖𝑗̆1

𝐿 =0,the feasible cost/time is  ∑ 𝜔𝐶𝑖̆ 𝜑(i)1

𝐿𝑛
𝑖=1  = [𝑎𝑖𝜑(i)1

𝐿𝑑𝑖𝜑(i)1
𝑈

] 

       𝜔𝐶𝑖𝑗̆ 2

𝐿 =0,the feasible cost/time is  ∑ 𝜔𝐶𝑖̆ 𝜑(i)2

𝐿𝑛
𝑖=1  = [𝑎𝑖𝜑(i)2

𝐿𝑑𝑖𝜑(i)2
𝑈

] 

…………………………………………………………………….. 

……………………………………………………………………… 

  𝜔𝐶𝑖𝑗̆ 𝑚−1

𝐿  =0 ,the feasible cost/time is  ∑ 𝜔𝐶𝑖̆ 𝜑(i)m−1

𝐿𝑛
𝑖=1  = [𝑎𝑖𝜑(i)𝑚−1

𝐿𝑑𝑖𝜑(i)m−1
𝑈

]. 

Step 8: Forward calculation: Select the upper feasible elements of 𝜔𝐶𝑖𝑗̆ 𝑀

∗ and determine 

Feasible IFLSBAP 

       𝜔𝐶𝑖𝑗̆ 𝑚+1

𝑈  =0,the feasible cost/time is  ∑ 𝜔𝐶𝑖̆ 𝜑(i)m+1

𝑈𝑛
𝑖=1  = [𝑎𝑖𝜑(i)𝑚+1

𝐿𝑑𝑖𝜑(i)m∓1
𝑈

]. 
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       𝜔𝐶𝑖𝑗̆ 𝑚+2

𝑈  =0,the feasible cost/time is  ∑ 𝜔𝐶𝑖̆ 𝜑(i)m+2

𝑈𝑛
𝑖=1  = [𝑎𝑖𝜑(i)𝑚+2

𝐿𝑑𝑖𝜑(i)m+2
𝑈

]. 

       𝜔𝐶𝑖𝑗̆ 𝑚+3

𝑈  =0,the feasible cost/time is  ∑ 𝜔𝐶𝑖̆ 𝜑(i)m+3

𝑈𝑛
𝑖=1  = [𝑎𝑖𝜑(i)𝑚+3

𝐿𝑑𝑖𝜑(i)m+3
𝑈

 

…………………………………………………………………………………… 

…………………………………………………………………………………….. 

   𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 =0 ,the feasible cost/time is  ∑ 𝜔𝐶𝑖̆ 𝜑(i)n

𝑈𝑛
𝑖=1  = [𝑎𝑖𝜑(i)𝑛

𝐿𝑑𝑖𝜑(i)n
𝑈

]. 

Step 9: Determine and checking Feasible/Optimal and Partial/Perfect of IFLSBAP. 

  𝜔𝐶𝑖𝑗̆ 𝛿

𝐿  = [𝑎𝑖𝜑(i)𝛿
𝐿𝑑𝑖𝜑(i)𝛿

𝐿
] = min {  𝜔𝐶𝑖𝑗̆ 0

𝐿 ,   𝜔𝐶𝑖𝑗̆1

𝐿 ,….𝜔𝐶𝑖𝑗̆ 𝑀

∗  ……  𝜔𝐶𝑖𝑗̆ 𝑚+2

𝑈 ,   𝜔𝐶𝑖𝑗̆ 𝑚+3

𝑈  

..  𝜔𝐶𝑖𝑗̆ 𝑛

𝑈} 

           If,   𝜔𝐶𝑖𝑗̆ 𝛿

𝐿  = [𝑎𝑖𝜑(i)𝛿
𝐿𝑑𝑖𝜑(i)𝛿

𝐿
]≤[𝑎𝑖𝜑(i)𝑛

𝐿𝑑𝑖𝜑(i)n
𝑈

] is optimal and perfect 

matching. 

           If,   𝜔𝐶𝑖𝑗̆ 𝛿

𝐿  = [𝑎𝑖𝜑(i)𝛿
𝐿𝑑𝑖𝜑(i)𝛿

𝐿

𝑖𝜑(i)𝛿

∗
] < [𝑎𝑖𝜑(i)𝑛

𝐿𝑑𝑖𝜑(i)n
𝑈

] is feasible and partial 

matching. 

           If,   𝜔𝐶𝑖𝑗̆ 𝛿

𝑈 = [𝑎𝑖𝜑(i)𝛿
𝑈𝑑𝑖𝜑(i)𝛿

𝑈
]  ≤  [𝑎𝑖𝜑(i)𝑛

𝐿𝑑𝑖𝜑(i)n
𝑈

] is feasible and perfect 

matching.  

           If,   𝜔𝐶𝑖𝑗̆ 𝛿

𝑈 = [𝑎𝑖𝜑(i)𝛿
𝑈𝑑𝑖𝜑(i)𝛿

𝑈
] <  [𝑎𝑖𝜑(i)𝑛

𝐿𝑑𝑖𝜑(i)n
𝑈

] is feasible and partial 

matching. 

Step 10: Stop. 
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5.6 NUMERICAL EXAMPLE 

   Consider Generalized  trapezoidal fuzzy numbers (𝐶𝑖𝑗̆) 

 

Generalized α-cut trapezoidal fuzzy numbers is 

                 𝜔𝐶𝑖𝑗̆
 = [𝑎̆𝐿 + (𝑎̆𝛼-𝑎̆𝐿) 𝜔,  -(𝑎̆𝑈-𝑎̆𝛽) + 𝑎̆𝑈] = [𝑎𝑖𝑗

𝐿𝑑𝑖𝑗
𝑈

] 

  If α = 𝜔, compute fuzzy interval values by using generalized α-cut trapezoidal fuzzy 

numbers: 

𝜔𝐶11̆
 =[10 20],  𝜔𝐶12̆

 =[16 29]  𝜔𝐶13̆
 =[5 9],  𝜔𝐶14̆

 =[4 8] ,𝜔𝐶21̆
 =[6 10],    𝜔𝐶22̆

 =[9 12] 

,𝜔𝐶23̆
 = [5 9]𝜔𝐶24̆

 = [10 20]𝜔𝐶31̆
 = [3 1]𝜔𝐶32̆

 = [10 20] ,𝜔𝐶33̆
 =[14 27]𝜔𝐶34̆

 = [6 1]𝜔𝐶41̆
 

= [4 8] ,𝜔𝐶42̆
 =[7 11] ,𝜔𝐶43̆

 = [10 20],𝜔𝐶44̆
 =[5 9] 

    interval-valued fuzzy linear sum bottleneck assignment problem by using 

Generalized 𝜔-cut trapezoidal fuzzy numbers        

 [10 20] [16 29] [5 9] [4 8] 

[6 10] [9 13] [5 9] [10 20] 

     [3 7] [10 20] [14 27] [6 10] 

[4 8] [7 11] [10 20] [5 9] 

 

(9,13,17,21;0.25) (15,20,25,30;0.20) (4,6,8,10;0.50) (3,5,7,9;0.50) 

   (5,7,9,11;0.50) (8,10,12,14;0.50) (4,6,8,10;0.50) (9,13,17,21;0.25) 

    (2,4,6,8;0.50) (9,13,17,21;0.25) (13,18,23,28; 0.20) (5,7,9,11;0.50) 

    (3,5,7,9;0.50)  (6,8,10,12;0.50) (9,13,17,21;0.25)    (4,6,8,10;0.50) 
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     Case i:𝜔𝐶𝑖𝑗̆

∗ = 𝜔𝐶𝑖𝑗̆

∗  = {𝜔𝐶𝑖𝑗̆
  : 𝜔𝐶𝑖𝑗̆ 0

𝐿<𝜔𝐶𝑖𝑗̆
<𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 =  [7 11]    

                                                              

 

         

 

 

 

 

Figure: 5.1 

∑ 𝜔𝐶𝑖̆ 𝜑(i)𝑀

∗𝑛
𝑖=1   = [𝑎𝑖𝜑(i)𝑀

𝐿𝑑𝑖𝜑(i)𝑀
𝑈

] = [19 35], The IFLSAP is optimal and perfect 

matching 

 Case ii:𝜔𝐶𝑖𝑗̆ 𝑀−1

𝐿  = 𝜔𝐶𝑖𝑗̆

𝐿  = {𝜔𝐶𝑖𝑗̆
 : 𝜔𝐶𝑖𝑗̆ 0

𝐿<𝜔𝐶𝑖𝑗̆
<𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 =  [6 10]                 

 

 

    

    

 

𝜔𝐶𝑖𝑗̆ 𝑀

∗  =   [             [10 20] [16 29] 0 0 

0 [9 13] 0 [10 20] 

0 [10 20] [14 27] 0 

0 0 [10 20] 0 

𝜔𝐶𝑖𝑗̆ 𝑀

∗                 [10 20] [16 29] 0 0 

0 [9 13] 0 [10 20] 

0 [[10 20] [14 27] 0 

0 [7 11] [10 20] 0 
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Figure: 5.2 

Now [𝑎𝑖𝜑(i)𝑀−1
𝐿𝑑𝑖𝜑(i)𝑀−1

𝑈
] = [12 24],The IFLSAP is feasible and partial. 

 Case iii:𝜔𝐶𝑖𝑗̆ 𝑀−2

𝐿   = {𝜔𝐶𝑖𝑗̆
 : 𝜔𝐶𝑖𝑗̆ 0

𝐿<𝜔𝐶𝑖𝑗̆
<𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 =  [5 9]                                                                                                            

                                                                 

 

    

 

 

 Figure: 5.3 

 Now ∑ 𝜔𝐶𝑖̆ 𝜑(i)𝑀−2

∗𝑛
𝑖=1   = [𝑎𝑖𝜑(i)𝑀−2

𝐿𝑑𝑖𝜑(i)𝑀−2
𝑈

] = [12 24],The IFLSAP is feasible and 

partial. 

  Case iv:𝜔𝐶𝑖𝑗̆ 𝑀−3

𝐿  = 𝜔𝐶𝑖𝑗̆

𝐿  = {𝜔𝐶𝑖𝑗̆
 : 𝜔𝐶𝑖𝑗̆ 0

𝐿<𝜔𝐶𝑖𝑗̆
<𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 =  [4  8] 

 

𝜔𝐶𝑖𝑗̆ 𝑀

∗                  [10 20] [16 29] 0 0 

[6 10] [9 12] 0 [10 20] 

0 [[10 20] [14 27] [6 10] 

0 [7 11] [10 20] 0 
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Figure: 5.4 

Now ∑ 𝜔𝐶𝑖̆ 𝜑(i)𝑀−3

∗𝑛
𝑖=1   = [𝑎𝑖𝜑(i)𝑀−2

𝐿𝑑𝑖𝜑(i)𝑀−2
𝑈

] = [7 15],The IFLSAP is feasible and 

partial. 

  Case v:𝜔𝐶𝑖𝑗̆ 𝑀−4

𝐿  = 𝜔𝐶𝑖𝑗̆

𝐿  = {𝜔𝐶𝑖𝑗̆
 : 𝜔𝐶𝑖𝑗̆ 0

𝐿<𝜔𝐶𝑖𝑗̆
<𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 =  [3  7] 

 

    

  

 

 

 

𝜔𝐶𝑖𝑗̆ 𝑀

∗  = [10 20]         [10 20] [16 29] 0 0 

0 [9 12] 0 [10 20] 

0 [10 20] [14 27] 0 

0 [7 11] [10 20] 0 

𝜔𝐶𝑖𝑗̆ 𝑀

∗  =                [10 20] [16 29] [5 9] [4 8] 

[6 10] [9 12] [5 9] [10 20] 

0 [[10 20] [14 27] [6 10] 

[4 8] [7 11] [10 20] [5 9] 
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                                                         Figure: 5.5 

 

 Now ∑ 𝜔𝐶𝑖̆ 𝜑(i)𝑀−4

∗𝑛
𝑖=1   = [𝑎𝑖𝜑(i)𝑀−4

𝐿𝑑𝑖𝜑(i)𝑀−4
𝑈

] = [3 7],The IFLSAP is feasible and 

partial 

Case vi:𝜔𝐶𝑖𝑗̆ 𝑀+1

𝐿   = 𝜔𝐶𝑖𝑗̆

𝐿  = {𝜔𝐶𝑖𝑗̆
 : 𝜔𝐶𝑖𝑗̆ 0

𝐿<𝜔𝐶𝑖𝑗̆
<𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 =   [9 13] 

   

 

 

 

                                                      

   

 

   Figure: 5.6 

Now ∑ 𝜔𝐶𝑖̆ 𝜑(i)𝑀+1

∗𝑛
𝑖=1   = [𝑎𝑖𝜑(i)𝑀+1

𝐿𝑑𝑖𝜑(i)𝑀+1
𝑈

] = [12 24], 

𝜔𝐶𝑖𝑗̆ 𝑀

∗  = [10 20]     [10 20] [16 29] 0 0 

0 0 0 [10 20] 

0 [[10 20] [14 27] 0 

0 0 [10 20] 0 
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  The IFLSAP is feasible and perfect. 

Case vii:             𝜔𝐶𝑖𝑗̆ 𝑀+2

𝐿   = 𝜔𝐶𝑖𝑗̆

𝐿  = {𝜔𝐶𝑖𝑗̆
 : 𝜔𝐶𝑖𝑗̆ 0

𝐿<𝜔𝐶𝑖𝑗̆
<𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 =  [10 20]  

 

                                                           

 

 

 

 

Figure: 5.7 

∑ 𝜔𝐶𝑖̆ 𝜑(i)𝑀+2

∗𝑛
𝑖=1   = [𝑎𝑖𝜑(i)𝑀+2

𝐿𝑑𝑖𝜑(i)𝑀+2
𝑈

] = [19 35], 

The IFLSAP is optimal and perfect. 

Case viii:𝜔𝐶𝑖𝑗̆ 𝑀+3

𝐿   = 𝜔𝐶𝑖𝑗̆

𝐿  = {𝜔𝐶𝑖𝑗̆
 : 𝜔𝐶𝑖𝑗̆ 0

𝐿<𝜔𝐶𝑖𝑗̆
<𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 =  [14 27] 

    

        

 

 

 

 

𝜔𝐶𝑖𝑗̆ 𝑀

∗  =    0             0 [16 29] 0 0 

0 0 0 0 

0 0 [14 27] 0 

0 0 0 0 

𝜔𝐶𝑖𝑗̆ 𝑀

∗  =    0             0 [16  29] 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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Figure: 5.8 

Now ∑ 𝜔𝐶𝑖̆ 𝜑(i)𝑀+3

∗𝑛
𝑖=1   = [𝑎𝑖𝜑(i)𝑀+3

𝐿𝑑𝑖𝜑(i)𝑀+3
𝑈

] = [19 35], 

The IFLSAP is optimal and perfect. 

Case ix:𝜔𝐶𝑖𝑗̆ 𝑀+4

𝐿   = 𝜔𝐶𝑖𝑗̆

𝐿  = {𝜔𝐶𝑖𝑗̆
 : 𝜔𝐶𝑖𝑗̆ 0

𝐿<𝜔𝐶𝑖𝑗̆
<𝜔𝐶𝑖𝑗̆ 𝑛

𝑈 =  [16 29]                                                                                                                           

 

                                             

 

 

 

     

 

                                                           Figure: 5.9 

Now ∑ 𝜔𝐶𝑖̆ 𝜑(i)𝑀+4

∗𝑛
𝑖=1   = [𝑎𝑖𝜑(i)𝑀+4

𝐿𝑑𝑖𝜑(i)𝑀+4
𝑈

] = [38 69], the IFLSAP is feasible and 

perfect. 

𝜔𝐶𝑖𝑗̆ 𝑀

∗  =    0            0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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 The optimal perfect schedule is    P1→ J4, P2→ J3,  P3→ J1,  P4→ J2. 

The spread of new generalized trapezoidal fuzzy optimal perfect assignment cost  

∑ 𝐶𝑖𝜑(i)̆= 

(3,5,7,9;0.50)+ (4,6,8,10;0.50)+ (2,4,6,8;0.50)+ (6,8,10,12;0.50)  = (15,23,33,39;0.5). 
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CHAPTER VI 

A New Optimal Complete Matching of Edges with Minimum Cost by Ranking 

Method for Solving 𝝎-Type -2 Fuzzy Linear Sum Assignment Problem 

In this chapter, proposed a new optimal solution and complete matching edges 

of bipartite graph. 𝜔-type -2 Fuzzy Linear Sum Assignment Problem[FLSAP] is 

converted to crisp one by using new ranking  method for solving 𝜔-type -2 [FLSAP]. 

This chapter discussed 𝜔-trapezoidal fuzzy number, we introduced 𝜔-type 1-

trapezoidal fuzzy numbers and 𝜔-type 2-trapezoidal fuzzy numbers. Create 𝜔-type -2 

Fuzzy Linear Sum Assignment Table[FLST].The rank of 𝜔 -type 2 trapezoidal fuzzy 

number to assign each machine to a job with the lowest cost in that job for solving -type 

2 [FLSAP]. Furthermore, each iteration updates a non-matched edge to a matched edge 

and update the corresponding dual variables. By using alternating path method to 

obtain a new optimal complete matching solution. This method is illustrated by a 

numerical example. 

6.1 INTRODUCTION: 

              Ranking fuzzy numbers is a vital step in the decision-making process in many 

applications. Linguistic decision-making and various other fuzzy application systems 

both depend heavily on ranking fuzzy numbers. For ranking fuzzy numbers, a variety 

of methods have been suggested. It has been demonstrated that in some situations, each 

of these strategies can lead to unexpected outcomes. Due to its simplicity and 

popularity, the fuzzy technique is frequently utilized to deal with decision-making  

This content of this chapter has been published in Journal of Cardiovascular Disease Research     

VOL -12, No.02, 2021, 100-105. 
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problems. Fuzzy set theory can be used to solve difficulties in the real world. While 

fuzzy numbers lack this kind of inequality, real numbers can be sorted by or. Since 

fuzzy numbers can have a variety of outcomes, it is challenging to determine whether 

one is more or smaller than another. Using a ranking function to sort the fuzzy numbers 

is an effective method. The set of fuzzy numbers, which maps each fuzzy number to the 

real line in a natural order, is defined by real numbers. Fuzzy set theory has become 

more problematic utilizing the precise ranking of fuzzy numbers, a key step in making 

judgments in a fuzzy environment. 

           In this chapter we introduced 𝜔-Type-1 trapezoidal fuzzy numbers and 𝜔-Type-

2 trapezoidal fuzzy numbers and we discussed ranking methods,and assign each machine 

to a job with minimum reduced cost in that job by using ranking method of lower and 

upper membership function of the 𝜔-Type-2 trapezoidal fuzzy linear sum assignment 

problem (𝜔 − 𝑇2𝑇𝑟𝐹𝐿𝑆𝐴𝑃) and obtain new optimal complete matching edges of G.  

6.2 PRELIMINARIES OF 𝝎-TYPE 1 AND 𝝎-Type-2 TRAPEZOIDAL FUZZY 

NUMBER 

       We present here membership function of 𝜔- trapezoidal fuzzy number (𝜔-TrFN) 

and minimum and maximum membership value of 𝜔- type-1 trapezoidal fuzzy number 

(𝜔 − 𝑇1𝑇𝑟𝐹𝑁),lower and upper membership function of 𝜔- type-2 trapezoidal fuzzy 

number (𝜔 − 𝑇2𝑇𝑟𝐹𝑁). 

6.2.1 Definition:  

           A 𝜔-type 1 trapezoidal fuzzy number(𝜔 − 𝑇1𝑇𝑟𝐹𝑁) is denoted as 𝜔𝐴̃1
= 

(𝑎𝛼 , 𝑎𝑘, 𝑎𝑙 , 𝑎𝛽, 𝜔1, 𝜔2) and 𝜔1 is minimum membership value of type1 trapezoidal fuzzy 

number and 𝜔2 is  maximum membership value of type1 trapezoidal fuzzy number.         
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membership function  of 𝜔-type 1 trapezoidal fuzzy number : 

                   

                        𝜇𝜔𝐴̃1
= 𝜔1 (

𝑥−𝑎𝛼

𝑎𝑘−𝑎𝛼
 )                                   if      𝑎𝛼   ≤  𝑥 ≤  𝑎𝑘 

                                  = 𝜔1 + (
𝑥− 𝑎𝑘 

𝑎𝑙− 𝑎𝑘
) (𝜔2 − 𝜔1)            if      𝑎𝑘  ≤  𝑥 ≤  𝑎𝑙      

                                  = 𝜔2 (
𝑎𝛽− 𝑥

𝑎𝛽−𝑎𝑙 
)                                     if      𝑎𝑙  ≤ 𝑥 ≤  𝑎𝛽 

                                                              Where    𝜔1 < 𝜔2 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

𝝁𝝎𝑨̃ 𝟏
 

𝒂𝜶 𝒂𝒌 𝒂𝒍 𝒂𝜷 

𝝎𝑨̃𝟏
 

𝝎𝟏 

𝝎𝟐 
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6.2.2 Definition:   

A fuzzy number 𝜔𝐴̃2
 is said to be 𝜔-type 2 trapezoidal fuzzy number (𝜔 − 𝑇2𝑇𝑟𝐹𝑁) 

and is defined as, 𝜔𝐴̃2
 𝐿𝑀 = (𝑎𝛼

𝐿𝑀,  𝑎𝑘
𝐿𝑀 ,  𝑎𝑙

𝐿𝑀, 𝑎𝛽
𝐿𝑀,𝜔1

𝐿𝑀 , 𝜔2
𝐿𝑀) and , 𝜔𝐴̃2

 𝑈𝑀 = (𝑎𝛼
𝑈𝑀,  

𝑎𝑘
𝑈𝑀 ,  𝑎𝑙

𝑈𝑀, 𝑎𝛽
𝑈𝑀, 𝜔3

𝑈𝑀, 𝜔4
𝑈𝑀) are lower and upper membership function of 𝜔-type 2 

trapezoidal fuzzy number,(𝜔1
𝐿𝑀 , 𝜔2

𝐿𝑀 ) and (𝜔3
𝑈𝑀, 𝜔4

𝑈𝑀) are lower and upper 

membership value of 𝜔-type 2 trapezoidal fuzzy number (𝜔 − 𝑇2𝑇𝑟𝐹𝑁), if the 

following membership function 

 

  Membership function of  upper and lower 𝜔-type 2 trapezoidal fuzzy number : 

             𝜇𝜔𝐴̃2
𝐿𝑀 = 𝜔1

𝐿𝑀 (
𝑥−𝑎𝛼

𝐿𝑀

𝑎𝑘
𝐿𝑀−𝑎𝛼

𝐿𝑀   )                                      if   𝑎𝛼
𝐿𝑀   ≤   𝑥  ≤  𝑎𝑘

𝐿𝑀 

 

                            = 𝜔1
𝐿𝑀 + (

𝑥− 𝑎𝑘
𝐿𝑀 

𝑎𝑙
𝐿𝑀− 𝑎𝑘

𝐿𝑀) (𝜔2
𝐿𝑀 − 𝜔1

𝐿𝑀)    if  𝑎𝑘
𝐿𝑀  ≤  𝑥 ≤  𝑎𝑙

𝐿𝑀           

 

                            = 𝜔2
𝐿𝑀 (

𝑎𝛽
𝐿𝑀− 𝑥

𝑎𝛽
𝐿𝑀−𝑎𝑙

𝐿𝑀 
)                                        if   𝑎𝑙

𝐿𝑀  ≤ 𝑥 ≤  𝑎𝛽
𝐿𝑀         

and 

 𝜇𝜔𝐴̃2
𝑈𝑀 = 𝜔3

𝑈𝑀 (
𝑥−𝑎𝛼

𝑈𝑀

𝑎𝑘
𝑈𝑀−𝑎𝛼

𝑈𝑀   )                                      if   𝑎𝛼
𝑈𝑀   ≤   𝑥  ≤  𝑎𝑘

𝑈𝑀 

 

 = 𝜔3
𝑈𝑀 + (

𝑥− 𝑎𝑘
𝑈𝑀 

𝑎𝑙
𝑈𝑀− 𝑎𝑘

𝑈𝑀) (𝜔4
𝑈𝑀 − 𝜔3

𝑈𝑀)       if  𝑎𝑘
𝑈𝑀  ≤  𝑥 ≤  𝑎𝑙

𝑈𝑀           

 

 = 𝜔4
𝑈𝑀 (

𝑎𝛽
𝑈𝑀− 𝑥

𝑎𝛽
𝑈𝑀−𝑎𝑙

𝑈𝑀 
)                                           if   𝑎𝑙

𝑈𝑀  ≤ 𝑥 ≤  𝑎𝛽
𝑈𝑀 
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6.3 A NEW RANKING METHOD OF 𝝎-TYPE-2 TRAPEZOIDAL FUZZY 

NUMBER (𝝎 − 𝑻𝟐𝑻𝒓𝑭𝑵) 

           The lower membership function of 𝜔-type-2 trapezoidal fuzzy number is denoted 

as 𝜔𝐴̃2
 𝐿𝑀and upper membership function of  𝜔-type-2 trapezoidal fuzzy number is 

denoted as  𝜔𝐴̃2
 𝑈𝑀; where  𝜔𝐴̃2

 𝐿𝑀 = (𝑎𝛼
𝐿𝑀,  𝑎𝑘

𝐿𝑀 ,  𝑎𝑙
𝐿𝑀, 𝑎𝛽

𝐿𝑀,𝜔1
𝐿𝑀 , 𝜔2

𝐿𝑀)   and  𝜔𝐴̃2
 𝑈𝑀 

= (𝑎𝛼
𝑈𝑀,  𝑎𝑘

𝑈𝑀 ,  𝑎𝑙
𝑈𝑀, 𝑎𝛽

𝑈𝑀, 𝜔3
𝑈𝑀, 𝜔4

𝑈𝑀). The ranking method of lower membership 

function of the 𝜔-type-2 trapezoidal fuzzy number( 𝜔𝐴̃2
 𝐿𝑀) is defined as 𝑅 𝜔𝐴̃2

 𝐿𝑀 and 

The ranking method of upper membership function of the 𝜔-type-2 trapezoidal fuzzy 

number is defined as 𝑅 𝜔𝐴̃2
 𝑈𝑀 .  

𝑅𝜔𝐴̃2
= 

1

2
 [𝑅𝜔𝐴̃2

𝐿𝑀 min (𝜔1
𝐿𝑀,  𝜔2

𝐿𝑀) + 𝑅𝜔𝐴̃2
𝑈𝑀 max (𝜔3

𝑈𝑀,  𝜔4
𝑈𝑀)] 

Where    𝑅𝜔𝐴̃2
𝐿𝑀 min (𝜔1

𝐿𝑀,  𝜔2
𝐿𝑀) =   (

(𝑎𝛼
𝐿𝑀+  𝑎𝑘

𝐿𝑀+  𝑎𝑙
𝐿𝑀+ 𝑎𝛽

𝐿𝑀) min (𝜔1
𝐿𝑀,𝜔2

𝐿𝑀)

4
    ) ;                    
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             𝑅𝜔𝐴̃2
𝑈𝑀 max (𝜔3

𝑈𝑀,  𝜔4
𝑈𝑀) =    (

(𝑎𝛼
𝑈𝑀+  𝑎𝑘

𝑈𝑀+  𝑎𝑙
𝑈𝑀+ 𝑎𝛽

𝑈𝑀) max (𝜔3
𝑈𝑀,𝜔4

𝑈𝑀)

4
 ) 

𝑅𝜔𝐴̃2
= 

1

2
[(

(𝑎𝛼
𝐿𝑀 +  𝑎𝑘

𝐿𝑀 +   𝑎𝑙
𝐿𝑀 +  𝑎𝛽

𝐿𝑀) 𝑚𝑖𝑛 (𝜔1
𝐿𝑀, 𝜔2

𝐿𝑀)

4
    )  

+ (
(𝑎𝛼

𝑈𝑀 +   𝑎𝑘
𝑈𝑀 +   𝑎𝑙

𝑈𝑀 +  𝑎𝛽
𝑈𝑀) 𝑚𝑎𝑥 (𝜔3

𝑈𝑀, 𝜔4
𝑈𝑀)

4
 )] 

𝑅𝜔𝐴̃2
 =       

(
(𝑎𝛼

𝐿𝑀 +   𝑎𝑘
𝐿𝑀 +   𝑎𝑙

𝐿𝑀 +  𝑎𝛽
𝐿𝑀) min(𝜔1

𝐿𝑀 , 𝜔2
𝐿𝑀) + (𝑎𝛼

𝑈𝑀 +   𝑎𝑘
𝑈𝑀 +   𝑎𝑙

𝑈𝑀 +  𝑎𝛽
𝑈𝑀) max (𝜔3

𝑈𝑀, 𝜔4
𝑈𝑀)

𝟖
) 

6.4 A NEW OPTIMAL COMPLETE MATCHING SOLUTION WITH 

MINIMUM REDUCED COST BY USING RANKING METHOD  

                    We discussed a new optimal complete matching  solution for solving 𝜔-

type-2 fuzzy linear sum assignment problem by using ranking method and compute each 

machine to a job with minimum reduced cost in that job. We introduce the following 

new procedure.  

6.4.1 Theorem : If  𝑅𝜔𝑣0
 =  ∅,then,  Xij =1 provides an optimal complete matching of 

edges.  

proof 

First choose , 𝑅𝜔𝑣12
≠ ∅, then we proceed with the lowest possible expense for each job 

j ∈ 𝑅𝜔𝑣12
 with  𝑅𝜔𝜋𝑗

= min {𝑅𝜔𝑐𝑖𝑗
- 𝑅𝜔𝑢𝑖

 : row i is present in the tree}. pick  j ∈ 𝑅𝜔𝑣12
 

with minimum 𝑅𝜔𝜋𝑗
 - 𝑅𝜔𝑣𝑗

 and set 𝑅𝜔𝜋𝑗
 = 𝑅𝜔𝑣𝑗

 then add new edge [𝑖ꞌ,jꞌ] to the tree, 

where 𝑖ꞌ is the row vertex compute 𝑅𝜔𝜋𝑗
. For each i∈U  ; Xi jꞌ =1 then we proceed to 

𝑅𝜔𝑢𝑖
= 𝑅𝜔𝑐𝑖j′

- 𝑅𝜔𝑣j′
and [𝑖,jꞌ] add to the tree.  𝑅𝜔𝑣0

 , 𝑅𝜔𝑣1
and 𝑅𝜔𝑣2

 should all be modified 
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and hence Continue the loop until 𝑅𝜔𝑣0
 = ∅ and then the turn  paths to obtain a new 

optimal complete matching of edges. 

6.5 THE PROPOSED METHOD 

Step 1:   If the total number of machines (M) is equal to the total number of jobs (J),              

then  ω-type-2 fuzzy linear sum assignment problem is balanced. otherwise ω-              

type-2 fuzzy linear sum assignment problem is unbalanced. if ω-type-2 fuzzy               

linear sum assignment problem is unbalanced, then we introduce dummy row               or 

dummy column. 

Step 2: Balanced 𝜔-type- 2 fuzzy linear sum assignment problem is converted to ranking 

of balanced 𝜔-type-2 fuzzy linear sum assignment problem. 

Step 3: Let us assume 𝑅𝜔𝑣0
 , 𝑅𝜔𝑣1

and 𝑅𝜔𝑣2
 are column vertices with no machine             

Matched, one machine matched and more than one or two machine matched.              for    

job j =1,2,3… n do 𝑅𝜔𝑣𝑗
 = 0. 

Step 4: construction of the tree: Choose a job r ∈ 𝑅𝜔𝑣2
as the root, and set 𝑣𝑟 =0; for each  

i∈U, Xir =1 then we proceed 𝑅𝜔𝑢𝑖
= 𝑅𝜔𝑐𝑖𝑟

 the tree with the edge [i,r] such that Xir =1. 

Step 5 : Select one row assigned column 𝑅𝜔𝑣12
≠ ∅ then we proceed for each job j ∈ 

the tree}. 

Step 6: Select  j ∈ 𝑅𝜔𝑣12
 with minimum 𝑅𝜔𝜋𝑗

 - 𝑅𝜔𝑣𝑗
 and set 𝑅𝜔𝜋𝑗

 = 𝑅𝜔𝑣𝑗
 then add new  

edge [𝑖ꞌ,jꞌ] to the tree, where 𝑖ꞌ is the row vertex obtaining 𝑅𝜔𝜋𝑗
. For each i∈U  ;  Xi jꞌ =1 

then we proceed to 𝑅𝜔𝑢𝑖
= 𝑅𝜔𝑐𝑖jꞌ

- 𝑅𝜔𝑣jꞌ
and [𝑖,jꞌ] add to the tree. 

Step 7: Select the unassigned job 𝑅𝜔𝒋∗  ∈ 𝑅𝜔𝑣0
̅̅ ̅̅ ̅̅   and set 𝑅𝜔𝑢𝑖∗  = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑖∈𝑈 {𝑅𝜔𝑐𝑖𝑗∗- 

 𝑅𝜔𝑢𝑖
},𝑅𝜔𝑣𝑗∗= 𝑅𝜔𝑐𝑖∗𝑗∗-𝑅𝜔𝑢𝑖∗ . Let P be the bipartite path 𝑅𝜔𝑢𝑖∗  connecting to a               
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column of 𝑅𝜔𝑣2
.Interchange unmatched edges to matched edges along path,               

𝑋𝑖∗𝑗∗=1. 

Step 8:  Update  𝑅𝜔𝑣0
 , 𝑅𝜔𝑣1

and 𝑅𝜔𝑣2
. Continue the process until 𝑅𝜔𝑣0

 = ∅ and then              

alternate paths to obtain a new optimal complete matching of edges. 

Step 9: Stop. 

 

6.6 NUMERICAL EXAMPLE:  
  

       The number of machines equal to the number of jobs, so therefore the given fuzzy 

linear sum assignment problem is balanced otherwise unbalanced fuzzy linear sum 

assignment problem The balanced  𝜔-type-2 trapezoidal fuzzy number of fuzzy linear 

sum assignment problem as follows. The new ranking method of  𝜔-type-2 trapezoidal 

fuzzy number(𝜔 − 𝑇2𝑇𝑟𝐹𝑁) is as follows:  

 

𝜔𝐴̃2
 = (5,11,14,20,0.2,0.4 );(2,8,17,23,0.4,0.8) → 𝑅𝜔𝐴̃2

 = 6.25 , 

 𝜔𝐴̃2
 =(8,16,20,28,0.1,0.3); (4,12,24,32,0.45,0.6) → 𝑅𝜔𝐴̃2

 = 6.30. 

𝜔𝐴̃2
 = (14,26,32,44,0.25,0.3); (8,20,38,50,0.4,0.5) → 𝑅𝜔𝐴̃2

= 10.88 

𝜔𝐴̃2
 = (20,30,35,45,0.25,0.4); (15,25,40,50,0.6,0.8) → 𝑅𝜔𝐴̃2

= 17.06 

𝜔𝐴̃2
 = (20,40,50,70,0.2,0.35); (10,30,60,80,0.5,0.8) → 𝑅𝜔𝐴̃2

 = 22.50 

𝜔𝐴̃2
 =  (40,60,70,90,0.3,0.5); (30,50,80,100, .65, .95) → 𝑅𝜔𝐴̃2

= 40.63 

𝜔𝐴̃2
 =(35,45,50,60,0.65,0.75) ; (30,40,55,65,0.8,0.9) → 𝑅𝜔𝐴̃2

= 36.81 

𝜔𝐴̃2
 = (60,80,90,110,0.25,0.45) ; (50,70,100,120,0.7,0.95) → 𝑅𝜔𝐴̃2

 = 51 
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                  Figure: 6.1 

 

 

 

 

 

     

   

 

 

 

 
 

                 Figure:6.2 

Machine(M)/ 

JOB(J) 

J1 J2 J3 J4 

M1 36.81 51 40.63 51 

M2 6.30 40.63 10.88 36.81 

M3 6.25 22.50 22.50 51 

M4 17.06 22.50 6.30 6.30 

Machine(M)/ 

JOB(J) 

J1 J2 J3 J4 

M1 36.81 51 40.63 51 

M2 6.30 40.63 10.88 36.81 

M3 6.25 22.50 22.50 51 

M4 17.06 22.50 6.30 6.30 
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Updated dual solution and 𝑅𝜔𝑣12
 ={2,3} and obtain 𝑅𝜔𝜋2

= min {Rωcij
- 𝑅𝜔𝑢𝑖

= 16.25 (row 

3) add new edge[3,2], update 𝑅𝜔𝑢1
 = 34.75 and 𝑅𝜔𝜋3

= min {Rωcij
- 𝑅𝜔𝑢𝑖

= = 4.58 (row 

2), add new matching edge [2,3]; update 𝑅𝜔𝑢4
= 1.72., add new matching edge [1,2]; 

Update the dual solutions is 𝑅𝜔𝑢𝑖
ꞌ = (34.75, 6.30, 6.25,1.72); 𝑅𝜔𝑣𝑗

ꞌ = (0, 16.25, 4.58, 

4.58).select unassigned column 𝑅𝜔𝒋∗= {4} 𝑅𝜔𝑣𝑗∗=( 𝑅𝜔𝑐𝑖∗𝑗∗-𝑅𝜔𝑢𝑖∗ ) = 4.58 (row 4).hence, 

path P= {[4,3],[2,3],[2,1]}, unassigned to assigned edges are X43=0, X23 = 1, X21= 0 , 

X44= 1.       

 

 

                Figure: 6.3                                             Figure: 6.4                                        

 

   M1  → J2  ;     M2 → J3;     M3 → J1;      M4 → J4 

A new Optimal complete matching solution of ranking 𝜔 − 𝑇2𝐹𝐿𝑆𝐴𝑃 is 

                                     51+10.88+6.25 + 6.30 = 74.43 

A new Optimal complete solution of 𝜔 − 𝑇2𝐹𝐿𝑆𝐴𝑃 is       

                                         (87,133,156,202,0.1,0.3);(64,110,179,225,0.7,0.95)       
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                                                          CHAPTER – VII 

 

SOLVING FUZZY MULTI-OBJECTIVE LINEAR SUM ASSIGNMENT 

PROBLEM WITH MODIFIED PARTIAL PRIMAL SOLUTION OF 𝛚 - 

TYPE 2 - DIAMOND FUZZY NUMBERS   BY LINGUISTIC VARIABLES 

In this chapter, presented fuzzy multi-objective linear sum assignment problem 

with modified partial assignment of 𝜔 - type 2 - Diamond Fuzzy Numbers[DFN] using 

linguistic variables. In this chapter introduced 𝜔 - type 1 and 𝜔 - type 2 diamond fuzzy 

numbers. Let us consider four jobs and four machine problem and to optimize fuzzy cost 

, fuzzy time, fuzzy quality are each considered as a 𝜔 - type 2 - DFN.  𝜔-type 2 DFN 

are converted into 𝜆𝑑--cut of DFN and upper and lower 𝜔-type 2 diamond multi-

objective fuzzy numbers are converted into single objective 𝜆𝑑-cut fuzzy number by 

using ranking method. obtain dual variables and  calculate [ 𝑐𝑖𝑗  ̃ − 𝑢𝑖  ̃ − 𝑣𝑗 ]̃ ; by using 

alternate path method increase the partial assignment. This method is discussed by a 

numerical example, proving its efficiency. 

7.1 INTRODUCTION: 

           In this chapter, we introduced 𝜔-type 1-diamond fuzzy numbers and 𝜔-type2-

diamond fuzzy numbers are discussed . The upper and lower membership functions of 

diamond fuzzy numbers are  described as 𝜔-type 1 and 𝜔-type 2-diamond fuzzy 

numbers. In λd- cut form, express the 𝜔-type2 -diamond fuzzy numbers. Single fuzzy 

linear sum assignment problems are converted from fuzzy multi-objective linear sum 

assignment problems by using ranking method. Obtain partial feasible solution and  

This content of this chapter has been published in Advances in Dynamical Systems and 

Applications. ISSN 0973-5321, Volume -16, Number 2, (2021) pp. 1499-1514. 
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complete optimal solution by using λ 𝑑 −cut of ω-type 2-diamond fuzzy numbers (𝜔𝑡2-

DFN) . Arithmetic operations of   λ 𝑑 −cut of ω-type 2-diamond fuzzy numbers (𝜔𝑡2-

DFN) to obtain complete optimal matching. 

              We discussed 𝜔-type 1 and  𝜔-type 2-diamond fuzzy numbers. We proposed 

a new method for solving  λd- cut of 𝜔-type 2-diamond fuzzy multi-objective linear sum 

assignment problem and involving linguistic variables and by using alternate method 

and augmented method of bipartite graph to compute partial feasible solution and 

complete optimal solution. To modified partial primal solution and obtain complete 

optimal solution using the alternate path method producing augment path method of the 

bipartite graph. 

7.2 Membership functions of  𝛚-type1- and A 𝛚-type2- diamond fuzzy number  

In this chapter ,we introduced ω-type1- and A ω-type2- diamond fuzzy numbers and 

numerical examples are also discussed. 

7.2.1 Definition: 

       A ω-type1- diamond fuzzy number is upper and lower membership function of the 

diamond fuzzy number is defined as [𝜔𝑡1𝐹𝑑̃ , 𝜔𝑡1𝐹𝑑̃ ] where ωt1𝐹𝑑̃  ={dʹ,d∗, dʺ, (αd,βd), 

ωt1𝐹𝑑̃ = {dʹ,d∗, d′′ ,(αd,βd)} and it’s the following membership function is given by 

Membership function of A ω-type1- diamond fuzzy number 

 𝜇𝜔𝑡1𝐹𝑑̃  =           0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

=  𝜔 (
(𝑥−𝑑′)

(𝑑∗−𝑑′)
)             𝑓𝑜𝑟 𝑑′ ≤ 𝑥 ≤ 𝑑∗ 

=  𝜔 (
(𝑑′′−𝑥)

(𝑑′′−𝑑∗)
)             𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′
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=   𝜔 (
(𝑥−dʹ)

(𝑑∗−dʹ)
)             𝑓𝑜𝑟 dʹ ≤ 𝑥 ≤ 𝑑∗ 

=   𝜔 (
(𝑑′′−𝑥)

(𝑑′′−𝑑∗)
)           𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′ 

𝛼𝑑    −     𝑏𝑎𝑠𝑒 

=  𝜔 (
(𝑑′−x)

(𝑑′−𝑑∗)
)             𝑓𝑜𝑟 𝑑′ ≤ 𝑥 ≤ 𝑑∗

 

=  𝜔 (
(𝑥−𝑑′′)

(𝑑∗−𝑑′′)
)              𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′ 

=   𝜔 (
(dʹ−x)

(dʹ−𝑑∗)
)               𝑓𝑜𝑟 dʹ ≤ 𝑥 ≤ 𝑑∗ 

=   𝜔 (
(𝑥−𝑑′′)

(𝑑∗−𝑑′′)
)              𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′ 

=       𝜔 = 1                            𝑥 =  𝛽𝑑 

     0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

Figure: 7.1   λd- cut of 𝝎-type type1- diamond fuzzy number 
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7.2.2 Definition:  

    A 𝜔-type2 diamond fuzzy number is upper and lower membership function of the 

diamond fuzzy number is defined as [𝜔𝑡2𝐹𝑑̃ ,𝜔𝑡2𝐹𝑑̃ ] where 𝜔𝑡2𝐹𝑑̃ ={,dʹ,𝑑∗
,,dʺ (𝛼𝑑 ,𝛽𝑑), 

𝜔𝑡2𝐹𝑑̃ = (dʹ,𝑑∗
,𝑑′′ (𝛼𝑑 ,𝛽𝑑)) and it’s the following membership function. 

Membership function of A ω-type1- diamond fuzzy number 

𝜇𝜔𝑡2𝐹𝑑̃  =    0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

               =   𝜔 (
(𝑥−𝑑′)

(𝑑∗−𝑑′)
)           𝑓𝑜𝑟 𝑑′ ≤ 𝑥 ≤ 𝑑∗ 

              =   𝜔 (
(𝑑′′−𝑥)

(𝑑′′−𝑑∗)
)           𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′ 

=  𝜔 (
(𝑥−dʹ)

(𝑑∗−dʹ)
)            𝑓𝑜𝑟 dʹ ≤ 𝑥 ≤ 𝑑∗

 

 =  𝜔 (
(𝑑′′−𝑥)

(𝑑′′−𝑑∗)
)           𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′ 

𝛼𝑑    −     𝑏𝑎𝑠𝑒 

=  𝜔 (
(𝑑′−x)

(𝑑′−𝑑∗)
)             𝑓𝑜𝑟 𝑑′ ≤ 𝑥 ≤ 𝑑∗

 

= 𝜔 (
(𝑥−𝑑′′)

(𝑑∗−𝑑′′)
)              𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

 

= 𝜔 (
(dʹ−x)

(dʹ−𝑑∗)
)             𝑓𝑜𝑟 dʹ ≤ 𝑥 ≤ 𝑑∗

 

= 𝜔 (
(𝑥−𝑑′′)

(𝑑∗−𝑑′′)
)              𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′ 

   0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 



98 
 

 

Figure: 7.2   λd- cut of 𝝎-type 2- diamond fuzzy number 

 

7.2.3 Example:  

    Consider two 𝜔-type 2- diamond fuzzy number 𝜔𝑡2𝐹𝑑̃  = {(23,30,37;0.3) , 𝜔𝑡2𝐹𝑑̃  = 

(22,30,38;0.6)}then the following membership function of 𝜔-type 2- diamond fuzzy 

number.  

                                     𝜇𝜔𝑡2𝐹𝑑̃  =      0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                =   0.3 (
(𝑥−23)

(30−23)
)            𝑓𝑜𝑟 23 ≤ 𝑥 ≤ 30 

              =   0.3 (
(37−𝑥)

(37−30)
)           𝑓𝑜𝑟 30 ≤ 𝑥 ≤ 37 

       =  0.6 (
(𝑥−22)

(30−22)
)               𝑓𝑜𝑟 22 ≤ 𝑥 ≤ 30 

       =  0.6 (
(38−𝑥)

(38−30)
)               𝑓𝑜𝑟 30 ≤ 𝑥 ≤ 38 

𝛼𝑑    −     𝑏𝑎𝑠𝑒 

       =  0.3 (
(23−x)

(23−30)
)              𝑓𝑜𝑟 23 ≤ 𝑥 ≤ 30 

      = 0.3 (
(𝑥−37)

(30−37)
)              𝑓𝑜𝑟 30 ≤ 𝑥 ≤ 37 
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     = 0.6 (
(22−x)

(22−30)
)             𝑓𝑜𝑟 22 ≤ 𝑥 ≤ 30 

     = 0.6 (
(𝑥−38)

(30−38)
)              𝑓𝑜𝑟 30 ≤ 𝑥 ≤ 38 

   0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

7.2.4 Example:  

    Consider two 𝜔-type 2- diamond fuzzy number 𝜔𝑡2𝐹𝑑̃  = {(23,30,37;0.3) , 𝜔𝑡2𝐹𝑑̃  = 

(22,31,38;0.6)}then the following membership function of 𝜔-type 2- diamond fuzzy 

number.  

                                    𝜇𝜔𝑡2𝐹𝑑̃  =      0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                =   0.3 (
(𝑥−23)

(30−23)
)            𝑓𝑜𝑟 23 ≤ 𝑥 ≤ 30 

              =   0.3 (
(37−𝑥)

(37−30)
)           𝑓𝑜𝑟 30 ≤ 𝑥 ≤ 37 

       =  0.6 (
(𝑥−22)

(31−22)
)               𝑓𝑜𝑟 22 ≤ 𝑥 ≤ 31 

       =  0.6 (
(38−𝑥)

(38−31)
)               𝑓𝑜𝑟 31 ≤ 𝑥 ≤ 38 

𝛼𝑑    −     𝑏𝑎𝑠𝑒 

       =  0.3 (
(23−x)

(23−30)
)              𝑓𝑜𝑟 23 ≤ 𝑥 ≤ 30 

     = 0.3 (
(𝑥−37)

(30−37)
)              𝑓𝑜𝑟 30 ≤ 𝑥 ≤ 37 

    = 0.6 (
(22−x)

(22−31)
)             𝑓𝑜𝑟 22 ≤ 𝑥 ≤ 31 

   = 0.6 (
(𝑥−38)

(31−38)
)              𝑓𝑜𝑟 31 ≤ 𝑥 ≤ 38 

   0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

λd- cut of 𝝎-type 2- diamond fuzzy number assignment table: 
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7.3 RANKING FUNCTION OF 𝝎-TYPE 2 DIAMOND FUZZY NUMBERS  

          Let 𝜔𝑡2𝐹𝑑̃
1
= [𝜔𝑡2𝐹𝑑̃

1
  , 𝜔𝑡2𝐹𝑑̃

1
] and 𝜔𝑡2𝐹𝑑̃

2
= [𝜔𝑡2𝐹𝑑̃

2
, 𝜔𝑡2𝐹𝑑̃

2
] are two 𝜔-type2 

diamond fuzzy numbers. 𝜔𝑡2𝐹𝑑̃
1

   , 𝜔𝑡2𝐹𝑑̃
2
 are lower 𝜔-type 2 diamond fuzzy number 

and 𝜔𝑡2𝐹𝑑̃
1
, 𝜔𝑡2𝐹𝑑̃

2
 are upper 𝜔-type 2 diamond fuzzy number. Then the following 

Job/ 

Machine 

J1 J2        J3 J4 

 

M1 

[𝑐̃11,𝑐̃11] 

[𝑡̃11,𝑡̃11] 

[𝑞̃11,𝑞̃11] 

[𝑐̃12,𝑐̃12] 

[𝑡̃12,𝑡̃12] 

[𝑞̃12,𝑞̃12] 

[𝑐̃13,𝑐̃13] 

[𝑡̃13,𝑡̃13] 

[𝑞̃13,𝑞̃13] 

[𝑐̃14,𝑐̃14] 

[𝑡̃14,𝑡̃14] 

[𝑞̃14,𝑞̃14] 

 

M2 

[𝑐̃21,𝑐̃21] 

[𝑡̃21,𝑡̃21] 

[𝑞̃21,𝑞̃21] 

[𝑐̃22,𝑐̃22] 

[𝑡̃22,𝑡̃22] 

[𝑞̃22,𝑞̃22] 

[𝑐̃23,𝑐̃23] 

[𝑡̃23,𝑡̃23] 

[𝑞̃23,𝑞̃23] 

[𝑐̃24,𝑐̃24] 

[𝑡̃24,𝑡̃24] 

[𝑞̃24,𝑞̃24] 

 

M3 

[𝑐̃31,𝑐̃31] 

[𝑡̃31,𝑡̃31] 

[𝑞̃31,𝑞̃11] 

[𝑐̃32,𝑐̃32] 

[𝑡̃32,𝑡̃32] 

[𝑞̃32,𝑞̃32] 

[𝑐̃33,𝑐̃33] 

[𝑡̃33,𝑡̃33] 

[𝑞̃33,𝑞̃33] 

[𝑐̃34,𝑐̃34] 

[𝑡̃34,𝑡̃34] 

[𝑞̃34,𝑞̃34] 

 

M4 

[𝑐̃41,𝑐̃41] 

[𝑡̃41,𝑡̃41] 

[𝑞̃41,𝑞̃41] 

[𝑐̃42,𝑐̃42] 

[𝑡̃42,𝑡̃42] 

[𝑞̃42,𝑞̃42] 

[𝑐̃43,𝑐̃43] 

[𝑡̃43,𝑡̃43] 

[𝑞̃43,𝑞̃43] 

[𝑐̃44,𝑐̃44] 

[𝑡̃44,𝑡̃44] 

[𝑞̃44,𝑞̃44] 



101 
 

ranking function of 𝜔-type2 diamond fuzzy number and defined as R(𝜔𝑡2𝐹𝑑̃) 

R(𝜔𝑡2𝐹𝑑̃) = 
𝜔𝑡2𝐹𝑑̃

1
+𝜔𝑡2𝐹𝑑̃

2

2
 = 

(𝜔𝑡2𝐹𝑑̃
1

  + 𝜔𝑡2𝐹𝑑̃
2

) + (𝜔𝑡2𝐹𝑑̃
1

+ 𝜔𝑡2𝐹𝑑̃
2

])

2
 

7.4 PROPERTIES OF 𝝎-TYPE 2 DIAMOND FUZZY NUMBERS 

7.4.1 Theorem:  If partial feasible matching is the minimum matching edges in any 

bipartite graph. 

Proof:  Consider the fuzzy cost matrix (𝑛𝑥𝑛) is 𝑐𝑖𝑗̃  and define the fuzzy dual variables 

are  𝑢̃𝑖 = min {𝑐𝑖𝑗̃}  and 𝑣𝑗̃ = min {𝑐𝑖𝑗̃ - 𝑢̃𝑖 }. Then, we have by applying complementary 

slackness conditions for transform cost matrix 𝑐𝑖𝑗̃  to reduced cost matrix  𝑐𝑖𝑗̃  (ie), 𝑐𝑖𝑗̃ =  

𝑐𝑖𝑗̃ - 𝑢̃𝑖 - 𝑣𝑗̃ = 0, ∀ 0 ≤ 𝑖, 𝑗 ≤ 𝑛. Therefore, assign only one matching edge to each rows 

and columns but both rows and columns are less than 𝑛. Then we have a solution is 

partial if there are a minimum number of matching edges in any bipartite graph. 

7.4.2 Theorem:  If an optimal complete matching is the number of matching is equal 

to the order of the matrix (𝑛𝑥𝑛). 

Proof: From Theorem (5.1). Let us take the partial feasible matching edges in bipartite 

graph. The matching vertex is less then n and increase the partial solution and let ‘E’ be 

any vertex in U and choose the elementary path from ‘E’ whose edges are alternatively 

not matched and matched. In a bipartite graph, an alternating tree rooted in a vertex ‘r’ 

is a tree in which all paths emanating from ‘r’ alternate. adding new matching vertex is 

𝑈   = 𝑈 ∪ {E}. Choose the minimum value of an unassigned row 𝛿 = min{𝑐𝑖𝑗̃ - 𝑢̃𝑖 - 𝑣𝑗̃= 

0 and then updated the dual variables are 𝑢̃𝑖
∗  = 𝑢̃𝑖 + 𝛿 :    𝑣𝑗̃

∗
 = 𝑐𝑖𝑗̃ - 𝑢̃𝑖

∗  then compute 



102 
 

𝑐𝑖𝑗̃

∗
=  𝑐𝑖𝑗̃ - 𝑢̃𝑖

∗  - 𝑣𝑗̃
∗
  = 0 is the new bipartite graph of the current solution. The alternate 

method executed again for k = 𝛿 Producing the augmented tree. Then we have a solution 

is complete optimal if there are a maximum number of matching is equal to the order 

of the matrix (𝑛𝑥𝑛). 

7.5 THE PROPOSED ALGORITHM  

          𝜔-type 2 diamond fuzzy numbers are considered as linguistic variables. The 

fuzzy cost coefficient, fuzzy time, and fuzzy quality  are expressed in λd- cut of 𝜔-type 

2 diamond fuzzy numbers to compute the partial feasible solution and complete optimal 

solution. 

Step 1: First let us take the cost matrix [𝑐𝑖𝑗̃], whose elements are linguistic variables              

that have been substituted by fuzzy numbers, is presented. Examine whether or not the 

provided 𝜔-type 2 diamond fuzzy multi-objective linear sum assignment table is 

balanced. 

      a) If the number of machines and the number of jobs are equal, go to step 3. 

      b) Proceed to step 2 if the number of machines does not equal the number of jobs. 

Step 2: Create 𝜔-type 2 diamond fuzzy multi objective linear sum assignment table, 

add a dummy row or column. Dummy row/column cost, time, and quantity entries             

are always zero. 

Step 3: In λd- cut form, express the above 𝜔-type 2 diamond fuzzy multi-objective              

linear sum assignment problems. The upper and lower 𝜔-type 2 diamond fuzzy numbers 

of the multi-objective linear sum assignment problem are then merged into single λd- 

cut form of  𝜔-type 2 diamond fuzzy number of the multi-objective linear sum 

assignment problem. 
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Step 4: By applying ranking method, convert a λd- cut of 𝜔-type 2-diamond fuzzy multi 

objective linear sum assignment problem to  λd- cut of 𝜔-type 2-diamond single              

objective fuzzy linear sum assignment problem.. 

Step 5: Find dual variables (𝑢̃𝑖,𝑣𝑗̃ ),  

        If  𝑀𝑖 = 𝑀1,𝑀2….𝑀𝑛 then find  𝑢̃𝑖 = min {𝑐𝑖𝑗̃ ;     𝐽𝑖 = J1 ,J2 …..Jn 

        If  𝐽𝑖 = J1  , J2 …..Jn   then find  𝑣𝑗̃ = min {𝑐𝑖𝑗̃ - 𝑢̃𝑖 ; 𝑀𝑖 = 𝑀1,𝑀2….𝑀𝑛}; 

Step 6: Calculate (𝑐𝑖𝑗̃) and find a partial feasible solution  

             if  𝑗𝑖 = J1  , J2 …..Jn  then  row (j) = 0; if  𝑀𝑖 = 𝑀1,𝑀2….𝑀𝑛  and   𝑗𝑖 = J1  , J2  

                   J3…..Jn  then obtain 𝑐𝑖𝑗̃ =  𝑐𝑖𝑗̃ - 𝑢̃𝑖 - 𝑣𝑗̃ = 0  and the solution is row (j) =i ,𝑥̃𝑖𝑗 = 1  

     a) If there are less than ‘n' rows of matching. go to the next step 

     b) An optimal solution is found if the number of matches is equal to n. 

Step7: If the number of matching solution is less than (the order of the matrix) n             

matching solution by using the following alternative path method. The matching 

vertex|𝑼|< n then increase the partial solution and let E be any vertex in U and select 

the elementary path from k whose edges are alternatively not assigned and assigned. If  

E ∉ 𝑈   then sink = Alternate(k); If sink > 0 then 𝑈   = 𝑈 ∪ {E} ; j = sink and obtain in 

new graph. 

Step 8: update the dual variables and obtain complete optimal solution select the 

minimum value of an unassigned row 𝛿 = min{𝑐𝑖𝑗̃ - 𝑢̃𝑖 - 𝑣𝑗̃= 0 and then updated dual 

variables are 𝑢̃𝑖
∗  = 𝑢̃𝑖 + 𝛿 :    𝑣𝑗̃

∗
 = 𝑐𝑖𝑗̃ - 𝑢̃𝑖

∗  then obtain 𝑐𝑖𝑗̃

∗
=    𝑐𝑖𝑗̃ - 𝑢̃𝑖

∗  - 𝑣𝑗̃
∗
  = 0 is the 

new bipartite graph of the current solution. Alternate (k) is then executed again for k = 

𝛿 Producing the augmented tree. Finally, each machine (𝑀𝑖)  and job (𝑗𝑖) has one and 
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only matching edges, complete optimum solution is reached. 

Step 9: Stop. 

7.6 NUMERICAL EXAMPLE: 

 Let us considered the four machines given below. M1, M2, M3, M4, and four jobs 

J1, J2, J3, J4 respectively. To optimize the fuzzy cost, fuzzy time, and fuzzy quality are 

each considered as a 𝜔-type 2 diamond fuzzy numbers. The fuzzy cost, the fuzzy time 

and the fuzzy quality for solving λd- cut of 𝜔-type 2 diamond fuzzy  numbers of multi-

objective linear sum assignment problem.  

Solution: 

To optimize the fuzzy cost, fuzzy time, and fuzzy quality are each considered as a 𝜔-

type 2 diamond fuzzy numbers by using linguistic variables as follows: 

 

 

 

 

 

 

Job/Machine J1 J2 J3 J4 

M1 Fairly high Very high High Very high 

M2 Very low High low Fairly high 

M3 Extremely low Medium Medium Very high 

M4 Fairly low Medium Very low Very low 



105 
 

 

 

The fuzzy cost, fuzzy time, and fuzzy quality are each considered as a 𝜔-type 2 diamond 

fuzzy numbers. 𝜔-type 2 diamond fuzzy multi-objective linear sum assignment table is 

balanced. 𝜔-type 2 diamond fuzzy numbers are converted into λd-cut of fuzzy numbers 

 

 

(23,30,37) (22,31,38) 

(31,38,45) (30,39,46) 

(36,43,50) (35,44,51) 

(25,33,41) (24,34,42) 

(31,39,47) (30,40,48) 

(36,44,52) (35,45,53) 

(21,27,33) (20,28,34) 

(18,24,30) (17,25,31) 

(27,33,39) (26,34,40) 

(25,33,41) (24,34,42) 

(31,39,47) (30,40,48) 

(36,44,52) (35,45,53) 

(1,2,4) (0,3,7) 

(3,4,7) (2,5,9) 

(4,6,8) (3,7,10) 

(21,27,33) (20,28,34) 

(18,24,30) (17,25,31) 

(27,33,39) (26,34,40) 

(8,13,18) (7,15,21) 

(14,18,24) (13,23,28) 

(11,13,21) (10,17,22) 

(23,30,37) (22,31,38) 

(31,38,45) (30,39,46) 

(36,43,50) (35,44,51) 

(1,2,4) (0,3,5) 

(2,3,5) (1,4,6) 

(4,5,7) (3,6,8) 

(7,12,15) (6,13,16) 

(8,13,16) (7,14,17) 

(13,18,21) (12,19,22) 

(7,12,15) (6,13,16) 

(8,13,16) (7,14,17) 

(13,18,21) (12,19,22) 

(25,33,41) (24,34,42) 

(31,39,47) (30,40,48) 

(36,44,52) (35,45,53) 

(3,5,9) (2,6,10) 

(3,4,7) (2,5,10) 

(4,6,8) (3,7,11) 

(7,12,15) (6,13,16) 

(8,13,16) (7,14,17) 

(13,18,21) (12,19,22) 

(1,2,4) (0,3,7) 

(3,4,7) (2,5,9) 

(4,6,8) (3,7,10) 

(1,2,4) (0,3,7) 

(3,4,7) (2,5,9) 

(4,6,8) (3,7,10) 
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 J1 J2 J3 J4 

M
1
 

[ 
6

𝛌
𝐝
 +

2
1
, 

3
3

-6
𝛌

𝐝
] 

[8
𝛌

𝐝
̅̅

̅  
+

2
0

, 
3

4
-6

𝛌
𝐝

̅̅
̅ ]

 

[6
𝛌

𝐝
+

1
8

,3
0

- 
6

𝛌
𝐝
] 

[8
𝛌

𝐝
̅̅

̅  
+

1
7

, 
3
1

-6
𝛌

𝐝
̅̅

̅ ]
 

[6
𝛌

𝐝
+

2
7

,3
9

- 
6

𝛌
𝐝
][

8
𝛌

𝐝
̅̅

̅  
+

2
6

, 
4

0
-6

𝛌
𝐝

̅̅
̅ ]

 

[ 
8

λ
d
 +

2
5

, 
4

1
-8

𝛌
𝐝
] 

[1
0

𝛌
𝐝

̅̅
̅ +

2
4

, 
4
2

-8
𝛌

𝐝
̅̅

̅ ]
 

[8
𝛌

𝐝
+

3
1

,4
7

- 
8

𝛌
𝐝
] 

[1
0

𝛌
𝐝

̅̅
̅ +

3
0
, 

4
8

- 

[8
𝛌

𝐝
+

3
6

,5
2

- 
8

𝛌
𝐝
][

1
0

𝛌
𝐝

̅̅
̅  

+
3

5
, 

5
3

-8
𝛌

𝐝
̅̅

̅ ]
 

[ 
7

𝛌
𝐝
 +

2
3
, 

3
7

-7
𝛌

𝐝
] 

[9
𝛌

𝐝
̅̅

̅  
 +

2
2

, 
3

8
-7

𝛌
𝐝

̅̅
̅  

] 

[7
𝛌

𝐝
+

3
1

,4
5

- 
7

𝛌
𝐝
] 

[9
𝛌

𝐝
̅̅

̅  
 +

3
0
, 

4
6

-7
𝛌

𝐝
̅̅

̅  
] 

[7
𝛌

𝐝
+

3
6

,5
0

- 
7

𝛌
𝐝
][

9
𝛌

𝐝
̅̅

̅  
 +

3
5

, 
5
1

-7
𝛌

𝐝
̅̅

̅  
] 

[ 
8

λ
d
 +

2
5

, 
4

1
-8

𝛌
𝐝
] 

[1
0

𝛌
𝐝

̅̅
̅  

+
2

4
, 

4
2

-8
𝛌

𝐝
̅̅

̅  
] 

[8
𝛌

𝐝
+

3
1

,4
7

- 
8

𝛌
𝐝
] 

[1
0

𝛌
𝐝

̅̅
̅  

+
3
0

, 
4

8
-8

𝛌
𝐝

̅̅
̅ ]

 

[8
𝛌

𝐝
+

3
6

,5
2

- 
8

𝛌
𝐝
][

1
0

𝛌
𝐝

̅̅
̅  

 +
3
5

, 
5

3
-8

𝛌
𝐝

̅̅
̅  

] 

M
2
 

[ 
𝛌

𝐝
+

1
, 
4

-2
𝛌

𝐝
] 

[3
𝛌

𝐝
̅̅

̅ +
0

, 
7

-4
𝛌

𝐝
̅̅

̅ ]
 

[𝛌
𝐝
+

3
,7

- 
3

𝛌
𝐝
] 

[3
𝛌

𝐝
̅̅

̅  
+

2
, 
9

-4
𝛌

𝐝
̅̅

̅ ]
 

[2
𝛌

𝐝
+

4
,8

- 
2

𝛌
𝐝
][

4
𝛌

𝐝
̅̅

̅  
+

3
, 

1
0

-3
𝛌

𝐝
̅̅

̅ ]
 

[ 
7

𝛌
𝐝
 +

2
3
, 

3
7

-7
𝛌

𝐝
] 

[9
𝛌

𝐝
̅̅

̅  
+

2
2

, 
3

8
-7

𝛌
𝐝

̅̅
̅ ]

 

[7
𝛌

𝐝
+

3
1

,4
5

- 
7

𝛌
𝐝
] 

[9
𝛌

𝐝
̅̅

̅  
+

3
0

, 
4
6

-7
𝛌

𝐝
̅̅

̅ ]
 

[7
𝛌

𝐝
+

3
6

,5
0

- 
7

𝛌
𝐝
][

9
𝛌

𝐝
̅̅

̅  
+

3
5

, 
5

1
-7

𝛌
𝐝

̅̅
̅ ]

 

[ 
5

𝛌
𝐝
 +

8
, 
1

8
-5

𝛌
𝐝
] 

[8
𝛌

𝐝
̅̅

̅  
+

7
, 
2

1
-6

𝛌
𝐝

̅̅
̅ ]

 

[4
𝛌

𝐝
+

1
4

,2
4

- 
4

𝛌
𝐝
] 

[1
0

𝛌
𝐝

̅̅
̅ +

1
3
, 

2
8

-5
𝛌

𝐝
̅̅

̅ ]
 

[2
𝛌

𝐝
+

1
1

,2
1

- 
5

𝛌
𝐝
][

7
𝛌

𝐝
̅̅

̅  
+

1
0

, 
2

2
-5

𝛌
𝐝

̅̅
̅ ]

 

[ 
6

𝛌
𝐝
 +

2
1
, 

3
3

-6
𝛌

𝐝
] 

[8
𝛌

𝐝
̅̅

̅  
+

2
0

, 
3

4
-6

𝛌
𝐝

̅̅
̅ ]

 

[6
𝛌

𝐝
+

1
8

,3
0

- 
6

𝛌
𝐝
] 

[8
𝛌

𝐝
̅̅

̅  
+

1
7

, 
3
1

-6
𝛌

𝐝
̅̅

̅ ]
 

[6
𝛌

𝐝
+

2
7

,3
9

- 
6

𝛌
𝐝
][

8
𝛌

𝐝
̅̅

̅  
+

2
6

, 
4

0
-6

𝛌
𝐝

̅̅
̅ ]

 

M
3
 

[ 
𝛌

𝐝
 +

1
, 

4
-2

𝛌
𝐝
] 

[3
𝛌

𝐝
̅̅

̅ ]
, 

5
-2

𝛌
𝐝

̅̅
̅ ]

] 

[𝛌
𝐝
+

2
,5

- 
2

𝛌
𝐝
] 

[3
𝛌

𝐝
̅̅

̅ ]
 +

1
, 
6

-2
𝛌

𝐝
̅̅

̅ ]
] 

[𝛌
𝐝
+

4
,7

- 
2

𝛌
𝐝
][

3
𝛌

𝐝
̅̅

̅ ]
 +

3
, 
8

-2
𝛌

𝐝
̅̅

̅ ]
] 

[5
𝛌

𝐝
 +

7
, 
1

5
-3

𝛌
𝐝
] 

[7
𝛌

𝐝
̅̅

̅  
+

6
, 

1
6

-3
𝛌

𝐝
̅̅

̅ ]
 

[5
𝛌

𝐝
λ
+

8
,1

6
- 

3
𝛌

𝐝
] 

[7
𝛌

𝐝
̅̅

̅  
+

7
, 
1
7

-3
𝛌

𝐝
̅̅

̅ ]
 

[5
𝛌

𝐝
+

1
3

,2
1

- 
3

𝛌
𝐝
][

7
𝛌

𝐝
̅̅

̅  
+

1
2

, 
2

2
-3

𝛌
𝐝

̅̅
̅ ]

 

[5
𝛌

𝐝
 +

7
, 
1

5
-3

𝛌
𝐝
] 

[7
𝛌

𝐝
̅̅

̅  
+

6
, 

1
6

-3
𝛌

𝐝
̅̅

̅ ]
 

[5
𝛌

𝐝
λ
+

8
,1

6
- 

3
𝛌

𝐝
] 

[7
𝛌

𝐝
̅̅

̅  
+

7
, 
1
7

-3
𝛌

𝐝
̅̅

̅ ]
 

[5
𝛌

𝐝
+

1
3

,2
1

- 
3

𝛌
𝐝
][

7
𝛌

𝐝
̅̅

̅  
+

1
2

, 
2

2
-3

𝛌
𝐝

̅̅
̅ ]

 

[8
𝛌

𝐝
+

 +
2

5
, 

4
1

-8
𝛌

𝐝
] 

[1
0

𝛌
𝐝

̅̅
̅  

+
2

4
, 
4
2

-8
𝛌

𝐝
̅̅

̅  
] 

[8
𝛌

𝐝
+

3
1

,4
7

- 
8

𝛌
𝐝
] 

[1
0

𝛌
𝐝

̅̅
̅  

+
3
0

, 
4

8
-8

𝛌
𝐝

̅̅
̅ ]

 

[8
𝛌

𝐝
+

3
6

,5
2

- 
8

𝛌
𝐝
][

1
0

𝛌
𝐝

̅̅
̅  

 +
3
5

, 
5

3
-8

𝛌
𝐝

̅̅
̅  

] 

M
4
 

[ 
2

𝛌
𝐝
 +

3
, 
9

-4
𝛌

𝐝
] 

[4
𝛌

𝐝
̅̅

̅ ,
 +

2
, 

1
0

-4
𝛌

𝐝
̅̅

̅ ]
 

[𝛌
𝐝
+

3
,7

- 
3

𝛌
𝐝
] 

[3
𝛌

𝐝
̅̅

̅ +
2

, 
9

-5
𝛌

𝐝
̅̅

̅ ]
 

[2
𝛌

𝐝
+

4
,8

- 
2

𝛌
𝐝
][

4
𝛌

𝐝
̅̅

̅ +
3

 ,
 1

1
-4

𝛌
𝐝

̅̅
̅ ]

 

[5
𝛌

𝐝
 +

7
, 
1

5
-3

𝛌
𝐝
] 

[7
𝛌

𝐝
̅̅

̅  
+

6
, 

1
6

-3
𝛌

𝐝
̅̅

̅ ]
 

[5
𝛌

𝐝
λ
+

8
,1

6
- 

3
𝛌

𝐝
] 

[7
𝛌

𝐝
̅̅

̅  
+

7
, 
1
7

-3
𝛌

𝐝
̅̅

̅ ]
 

[5
𝛌

𝐝
+

1
3

,2
1

- 
3

𝛌
𝐝
][

7
𝛌

𝐝
̅̅

̅  
+

1
2

, 
2

2
-3

𝛌
𝐝

̅̅
̅ ]

 

[ 
𝛌

𝐝
+

1
, 
4

-2
𝛌

𝐝
] 

[3
𝛌

𝐝
̅̅

̅ +
0

, 
7

-4
𝛌

𝐝
̅̅

̅ ]
 

[𝛌
𝐝
+

3
,7

- 
3

𝛌
𝐝
] 

[3
𝛌

𝐝
̅̅

̅  
+

2
, 
9

-4
𝛌

𝐝
̅̅

̅ ]
 

[2
𝛌

𝐝
+

4
,8

- 
2

𝛌
𝐝
][

4
𝛌

𝐝
̅̅

̅  
+

3
, 

1
0

-3
𝛌

𝐝
̅̅

̅ ]
 

[ 
𝛌

𝐝
+

1
, 
4

-2
𝛌

𝐝
] 

[3
𝛌

𝐝
̅̅

̅ +
0

, 
7

-4
𝛌

𝐝
̅̅

̅ ]
 

[𝛌
𝐝
+

3
,7

- 
3

𝛌
𝐝
] 

[3
𝛌

𝐝
̅̅

̅  
+

2
, 
9

-4
𝛌

𝐝
̅̅

̅ ]
 

[2
𝛌

𝐝
+

4
,8

- 
2

𝛌
𝐝
][

4
𝛌

𝐝
̅̅

̅  
+

3
, 

1
0

-3
𝛌

𝐝
̅̅

̅ ]
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𝝎-type 2 diamond multi-objective fuzzy numbers are converted into single λ-cut 

fuzzy number 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M
4

 

[5
𝝀

𝒅
+

1
0
,2

4
-9

𝝀
𝒅
] 

[1
1

𝝀
𝒅

̅̅
̅  

+
7
, 
3
0

-1
3

𝝀
𝒅

̅̅
̅ ]

 

[1
5

𝝀
𝒅
+

2
8
,5

2
- 

9
𝝀

𝒅
] 

[2
1

𝝀
𝒅

̅̅
̅  

+
2
5
, 
5
5

-9
𝝀

𝒅
̅̅

̅ ]
 

[4
𝝀

𝒅
 +

8
,1

9
-7

𝝀
𝒅
 ]

 

[1
0

𝝀
𝒅

̅̅
̅  

 +
5
, 
2
6

-1
1

𝝀
𝒅

̅̅
̅  

] 

[4
𝝀

𝒅
 +

8
,1

9
-7

𝝀
𝒅
 ]

 

[1
0

𝝀
𝒅

̅̅
̅  

 +
5
, 
2
6

-1
1

𝝀
𝒅

̅̅
̅  

] 

M
3

 

[3
𝝀

𝒅
+

7
,1

6
-6

𝝀
𝒅
] 

[9
𝝀

𝒅
̅̅

̅  
+

4
, 
1
9

-6
𝝀

𝒅
̅̅

̅ ]
 

[1
5

𝝀
𝒅
+

2
8
,5

2
- 

9
𝝀

𝒅
] 

[2
1

𝝀
𝒅

̅̅
̅  

+
2
5
, 
5
5

-9
𝝀

𝒅
̅̅

̅ ]
 

[1
5

𝝀
𝒅
+

2
8
,5

2
- 

9
𝝀

𝒅
] 

[2
1

𝝀
𝒅

̅̅
̅  

+
2
5
, 
5
5

-9
𝝀

𝒅
̅̅

̅ ]
 

[2
4

𝝀
𝒅
+

9
2
,1

4
0

- 
2
4

𝝀
𝒅
] 

[3
0

𝝀
𝒅

̅̅
̅  

 +
8
9
, 
1

4
3

-2
4

𝝀
𝒅

̅̅
̅  

] 

M
2

 

[4
𝝀

𝒅
+

8
,1

9
-7

𝝀
𝒅
] 

[1
0

𝝀
𝒅

̅̅
̅  

+
5

, 
2

6
-1

1
𝝀

𝒅
̅̅

̅ ]
 

[2
1

𝝀
𝒅
+

9
0

,1
3

2
- 

2
1

𝝀
𝒅
] 

[2
7

𝝀
𝒅

̅̅
̅  

+
8

7
, 
1

3
5

-2
1

𝝀
𝒅

̅̅
̅ ]

 

[1
1

𝝀
𝒅
+

+
3

3
,6

3
-1

4
𝝀

𝒅
] 

[2
5

𝝀
𝒅

̅̅
̅  

+
3

0
, 
7

1
-1

6
𝝀

𝒅
̅̅

̅ ]
 

[1
8

𝝀
𝒅
 +

6
6

,1
0

2
- 

1
8

𝝀
𝒅
 ]

 

[2
4

𝝀
𝒅

̅̅
̅  

 +
6

3
, 
1

0
5

-1
8

𝝀
𝒅

̅̅
̅  

] 

M
1

 

[1
8

𝝀
𝒅
+

6
6
,1

0
2

- 
1

8
𝝀

𝒅
] 

[2
4

𝝀
𝒅

̅̅
̅  

+
6
3
, 
1

0
5

-1
8

𝝀
𝒅

̅̅
̅ ]

 

[2
4

𝝀
𝒅
+

9
2
,1

4
0

- 
2

4
𝝀

𝒅
] 

[3
0

𝝀
𝒅

̅̅
̅  

+
8
9
, 
1

4
3

-2
4

𝝀
𝒅

̅̅
̅ ]

 

[2
1

𝝀
𝒅
+

9
0
,1

3
2

- 
2

1
𝝀

𝒅
] 

[2
7

𝝀
𝒅

̅̅
̅  

 +
8
7
, 
1

3
5

-2
1

𝝀
𝒅

̅̅
̅  

] 
[2

4
𝝀

𝒅
+

9
2
,1

4
0

- 
2

4
𝝀

𝒅
] 

[3
0

𝝀
𝒅

̅̅
̅  

 +
8
9
, 
1

4
3

-2
4

𝝀
𝒅

̅̅
̅  

] 

Jo
b
/ 

M
ac

h
in

e
 

J 1
 

J 2
 

J 3
 

J 4
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Upper and lower𝝎-type 2 diamond multi-objective fuzzy numbers are converted 

into single objective λd-cut fuzzy number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

M
4

 

[8
𝝀

𝒅
+

8
.5

,2
7

-1
1

𝝀
𝒅

̅̅
̅ ]

 

[1
8

𝝀
𝒅
+

2
6
.5

,5
3
.5

-9
𝝀

𝒅
̅̅

̅ ]
 

[7
𝝀

𝒅
+

6
.5

,2
2
.5

 -
9

𝝀
𝒅

̅̅
̅ ]

 

[7
𝝀

𝒅
+

6
.5

,2
2
.5

 -
9

𝝀
𝒅

̅̅
̅ ]

 

M
3

 

[6
𝝀

𝒅
+

5
.5

,1
7
.5

-6
𝝀

𝒅
̅̅

̅ ]
 

[1
8

𝝀
𝒅
+

2
6

.5
,5

3
.5

-9
𝝀

𝒅
̅̅

̅ ]
 

[1
8

𝝀
𝒅
+

2
6

.5
,5

3
.5

-9
𝝀

𝒅
̅̅

̅ ]
 

[2
7

𝝀
𝒅
+

9
0

.5
,1

4
1
.5

- 
2
4

𝝀
𝒅

̅̅
̅ ]

 

M
2

 

[7
𝝀

𝒅
+

6
.5

,2
2

.5
 -

9
𝝀

𝒅
̅̅

̅ ]
 

[2
4

𝝀
𝒅
+

8
8

.5
,1

3
3

.5
-2

1
𝝀

𝒅
̅̅

̅ ]
 

[1
8

𝝀
𝒅
+

3
1

.5
,6

7
-1

5
𝝀

𝒅
̅̅

̅ ]
 

[2
1

𝝀
𝒅
+

6
4

.5
,1

0
3

.5
-1

8
𝝀

𝒅
̅̅

̅ ]
 

M
1

 

[2
1

𝝀
𝒅
+

6
4
.5

,1
0
3

-1
8

𝝀
𝒅

̅̅
̅ ]

 

[2
7

𝝀
𝒅
+

9
0
.5

,1
4
1
.5

- 
2

4
𝝀

𝒅
̅̅

̅ ]
 

[2
4

𝝀
𝒅
+

8
8
.5

,1
3
3
.5

-2
1

λ
] 

[2
7

𝝀
𝒅
+

9
0
.5

,1
4
1
.5

- 
2

4
𝝀

𝒅
̅̅

̅ ]
 

Jo
b
/ 

M
ac

h
i

n
e J 1

 

J 2
 

J 3
 

J 4
 



109 
 

  Obtain dual variable 

𝒖̃ ={[21𝝀𝒅+64.5,103-18𝝀𝒅
̅̅ ̅], [7𝝀𝒅+6.5,25.5-9𝝀𝒅

̅̅ ̅], [6𝝀𝒅+5.5,17.5-6𝝀𝒅
̅̅ ̅], 

[7𝝀𝒅+6.5,25.5-9𝝀𝒅
̅̅ ̅ ] 

     𝒗̃ = {0, [6𝝀𝒅+26,38.5- 6𝝀𝒅
̅̅ ̅],0 , 0} 

 

 

 

            Figure :7.3                          Figure :7.4                               Figure :7.5  

0   -[6𝝀𝒅+26,38.5- 6𝝀𝒅
̅̅ ̅] 0 0 

0 0     [3𝝀𝒅+24,30.5-3𝝀𝒅
̅̅ ̅] [6𝝀𝒅+26,38.5- 6𝝀𝒅

̅̅ ̅]  

0 [11𝝀𝒅+56,72.5-6𝝀𝒅
̅̅ ̅]    [11𝝀𝒅+25,44.5-6𝝀𝒅

̅̅ ̅]  [14𝝀𝒅+58,81-9𝝀𝒅
̅̅ ̅] 

0      [6𝝀𝒅-5, -2.5+3𝝀𝒅
̅̅ ̅]     [12𝝀𝒅+21,36-3𝝀𝒅

̅̅ ̅] [21𝝀𝒅+85,124- 18𝝀𝒅
̅̅ ̅]  

[𝝀𝒅+2.5,4.5-2𝝀𝒅
̅̅ ̅]       [5𝝀𝒅-6,-7.5+6𝝀𝒅

̅̅ ̅] 0 0 
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M
4

 

[8
𝝀

𝒅
+

8
.5

,2
7

-1
1

𝝀
𝒅

̅̅
̅ ]

 

[1
8

𝝀
𝒅
+

2
6
.5

,5
3
.5

-9
𝝀

𝒅
̅̅

̅ ]
 

[7
𝝀

𝒅
+

6
.5

,2
2
.5

 -
9

𝝀
𝒅

̅̅
̅ ]

 

[7
𝝀

𝒅
+

6
.5

,2
2
.5

 -
9

𝝀
𝒅

̅̅
̅ ]

 

M
3

 

[6
𝝀

𝒅
+

5
.5

,1
7
.5

-6
𝝀

𝒅
̅̅

̅ ]
 

[1
8

𝝀
𝒅
+

2
6
.5

,5
3
.5

-9
𝝀

𝒅
̅̅

̅ ]
 

[1
8

𝝀
𝒅
+

2
6
.5

,5
3
.5

-9
𝝀

𝒅
̅̅

̅ ]
 

[2
7

𝝀
𝒅
+

9
0
.5

,1
4
1
.5

- 
2
4

𝝀
𝒅

̅̅
̅ ]

 

M
2

 

[7
𝝀

𝒅
+

6
.5

,2
2

.5
 -

9
𝝀

𝒅
̅̅

̅ ]
 

[2
4

𝝀
𝒅
+

8
8

.5
,1

3
3

.5
-2

1
𝝀

𝒅
̅̅

̅ ]
 

[1
8

𝝀
𝒅
+

3
1

.5
,6

7
-1

5
𝝀

𝒅
̅̅

̅ ]
 

[2
1

𝝀
𝒅
+

6
4

.5
,1

0
3

.5
-1

8
𝝀

𝒅
̅̅

̅ ]
 

M
1

 

[2
1

𝝀
𝒅
+

6
4
.5

,1
0

3
-1

8
𝝀

𝒅
̅̅

̅ ]
 

[2
7

𝝀
𝒅
+

9
0
.5

,1
4
1

.5
- 

2
4

𝝀
𝒅

̅̅
̅ ]

 

[2
4

𝝀
𝒅
+

8
8
.5

,1
3
3

.5
-2

1
λ
] 

[2
7

𝝀
𝒅
+

9
0
.5

,1
4
1

.5
- 

2
4

𝝀
𝒅

̅̅
̅ ]

 

Jo
b
/ 

M
ac

h
in

e
 

J 1
 

J 2
 

J 3
 

J 4
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M
4

 

[1
2

𝜆
𝑑

+
2
7
,4

9
-4

𝜆
𝑑

̅̅
̅ ]

 

[0
𝜆

𝑑
-6

,-
7
.5

-4
𝜆

𝑑
̅̅

̅ ]
 

0
 

0
 

M
3

 

0
 

0
 

[6
𝜆

𝑑
+

2
6
.5

,3
8
.5

-0
𝜆

𝑑
̅̅

̅ ]
 

[1
5

𝜆
𝑑

+
9
0
.5

,1
2
6
.5

- 
5

𝜆
𝑑

̅̅
̅ ]

 

M
2

 

0
 

[0
𝜆

𝑑
 -

1
.5

,2
8
-0

𝜆
𝑑

̅̅
̅ ]

 

0
 

[3
𝜆

𝑑
+

3
3

,3
6

.5
+

3
𝜆

𝑑
̅̅

̅ ]
 

M
1

 

0
 

0
 

[3
𝜆

𝑑
+

2
4

,3
0

.5
-3

𝜆
𝑑

̅̅
̅ ]

 

[6
𝜆

𝑑
+

2
6

,3
8

.5
- 

6
𝜆

𝑑
̅̅

̅ ]
 

Jo
b
/ 

M
ac

h
in

e
 

J 1
 

J 2
 

J 3
 

J 4
 



112 
 

 𝒖̃𝒊
∗ = {[21𝝀𝒅 + 64.5,103 − 18𝝀𝒅

̅̅ ̅], [18𝝀𝒅 + 31.5,67 − 15𝝀𝒅
̅̅ ̅], 

[12𝝀𝒅, 15 − 9𝝀𝒅
̅̅ ̅], [7𝝀𝒅 + 6.5,25.5 − 9𝝀𝒅

̅̅ ̅]}; 

    𝒗𝒋̃
∗
 = {[-11𝝀𝒅-25, -44.5+6𝝀𝒅

̅̅ ̅], [6𝝀𝒅+26,38.5- 6𝝀𝒅
̅̅ ̅] ,0, 0 

Fuzzy optimal schedule M1  →J2,  M2→J3 , M3→J1, M4→J4 

𝐅𝐮𝐳𝐳𝐲 
𝐨𝐩𝐭𝐢𝐦𝐚𝐥 

𝐜𝐨𝐬𝐭 

}= {(25,33,41) + (8,13,18) + (1,2,4) + (1,2,4)}{(24,34,42) + (7,15,21) + 

(0,3,5) + (0,3,7)} 

 Fuzzy optimal cost =   (35, 50, 67) (31,55,75) 

 Fuzzy optimal time= {(31,39,47) + (14,18,24) +  (2,3,5) + (3,4,7)}{(30,40,48 + 

(13,23,28) +  (1,4,6) + (2,5,9)} 

Fuzzy optimal time = (50, 64, 83) (46,72,91) 

Fuzzy optimal quality   =  {(36,44,52) + (4,6,8) + (4,5,7) + (4,6,8)} {(35,45,53) + 

(3,7,10) + (3,6,8) + (3,7,10)} 

Fuzzy optimal quality = (48,61,75) (44,65,81). 
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CHAPTER VIII 

MINIMUM VERTEX COVER OF 𝝎-PENTAGONAL FUZZY LINEAR 

SUM BOTTLENECK ASSIGNMENT PROBLEM 

              In this chapter proposed, a spread of minimum solution of fuzzy optimization matching 

procedure in the bipartite graph. it provides minimum vertex cover with edge set E for solving 

𝜔 − Pentagonal Fuzzy Linear Sum Bottleneck Assignment Problem [𝜔-PFLSBAP]. The 𝜔 −

𝑃𝐹𝐿𝑆𝐵𝐴𝑃 is minimum cost and  complete matching in the bipartite graph. The Linear Sum 

Bottleneck Assignment Cost [LSBAC] we taken as 𝜔 −Pentagonal Fuzzy Numbers (𝜔 −

𝑃𝐹𝑁). If each person and each job contain exactly one matching solution with Spr (φ) = 0 or 

minimum Spr (φ), then the current ω-PFLSBAP is optimal. If each person and each job contain 

exactly one matching solution with maximum Spr (φ), then the current ω-PFLSBAP is not 

optimal but feasible and complete matching solution. Finally obtained the graph has minimum 

vertex cover of cardinality n with perfect or complete matching. This method is illustrated by 

a numerical example. 

8.1 INTRODUCTION: 

   In this chapter, the study of fuzzy linear sum assignment problems utilizing 

various methodologies and various fuzzy numbers based on fuzzy optimization 

matching techniques is the main goal of this research study. It primarily focuses on 

various methods for solving fuzzy assignment problems and linear sum assignment 

problems, which might lead to an optimal solution or a viable solution, as well as partial 

or complete matching in a bipartite graph. In order to use the approaches suggested, the 

research aims to emphasize the concepts described. The primary contribution of this  

This content of this chapter has been communicated to Advances and Applications in 

Mathematical Sciences 
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work is the presentation of a feasible/optimal solution and partial/complete 

matching in a bipartite graph for solving and connecting linear sum assignment 

problems with fuzzy numbers. This fundamental approach should be seen as a more 

approachable way to assess and identify optimized matching techniques in fuzzy 

numbers and fuzzy logic for students who lack understanding of new ideas for achieving 

optimal or feasible solutions. The matching solution is the partial/complete solution of 

the bipartite graph and If the solution have maximum matching and minimum spread of 

solution. then the solution is optimal or minimum vertex cover of spread of "ω-" 

pentagonal fuzzy linear sum bottleneck assignment problem. 

8.2 SPREADING SOLUTION OF 𝝎-PENTAGONAL FUZZY NUMBER 

8.2.1 Definition: 

The fuzzy number 𝐴1̃ = (P1 , P2 ,P3 , P4 , P5 ;ω) is referred to as a ω -Pentagonal fuzzy 

number if the membership function is as follows: 

                        

 μ
𝐴1̃

(x) =  
1

2
(

x-P1

P2-P1
) ,                  if        P1≤ x ≤ P2 

 = 
1

2
- (

1

2
-ω) (

x-P2

P3-P2
) ,      if        P2 ≤ x ≤ P3 

 =  ω ,                            if         x = P3 

 = 
1

2
- (

1

2
-ω) (

P4-x

P4-P3
)         if        P3≤ x ≤ P4   

 = 
1

2
(

P5-x

P5-P4
)                       if       P4 ≤ x ≤ P5  

   where ω ∈ (0.5,1) 
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8.2.2 Definition Let C̃=cij̃ be a given (m×n) ω-Pentagonal Fuzzy Linear Sum 

Bottleneck Assignment Problem (ω-PFLSBAP) and φ be an arbitrary permutation of 

the set then spr(φ) = 
max

i
{c̃iφ(i)}-

min

i
{c̃iφ(i)} is called spread of solution(φ). 

8.2.3 Definition Let φ be a matching solution of the bipartite graph. If the solution is 

maximum matching and minimum spread of solution (φ) or spr (φ)=0, then the solution 

is optimal or minimum vertex cover of spread of ω-pentagonal fuzzy linear sum 

bottleneck assignment problem. 

8.3 Mathematical formulation of 𝜔 −Pentagonal Fuzzy Linear Sum Bottleneck 

Assignment Problem (ω-PFLSBAP) 

Let C̃=cij̃ be a given (n×n) ω-Pentagonal FuzzyLinear Sum Bottleneck 

Assignment Problem (ω-PFLSBAP) then the following mathematical formulation:  

Objective       
min 

φ
 spr(φ) 

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 

0.5 

ω 

μ𝐴1̃
(x) 

X 
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Subject to the constraints      

∑ xij̃=

n

j=1

1  ;i=(1,2,…n) 

∑ xij̃

n

i=1

=1  ;j=(1,2,…n) 

 x̃ij = 0 (𝑜𝑟) 1. 

8.4 Matching solution of the ω-Pentagonal Fuzzy Linear Sum Bottleneck 

Assignment Problem (ω-PFLSBAP) 

● The matching solution φ=(φ
1
,φ

2
,…φ

n
) and row(j)  

 row (j) = i   if column j is matched to row i 

                               = 0   if column j is not matched to row i            (for j = 1,2…..n) 

● The matching solution φ=(φ
1
,φ

2
,…φ

n
) and implements the inverse of row    

                             φ = j      if row i is matched to column j        

                                = 0    if row i is not matched to column j           (for i = 1,2…n) 

8.5 THE PROPOSED ALGORITHM 

   Find minimum vertex cover of optimization matching techniques in the bipartite 

graph for solving ω-pentagonal fuzzy linear sum bottleneck assignment problems. The 

Linear Sum Bottleneck Assignment Cost [LSBAC] we taken as ω-Pentagonal Fuzzy 

Numbers (ω-PFN). 

Step 1: First check whether the given ω-Pentagonal Fuzzy Linear Sum Bottleneck 

Assignment Problem (ω-PFLSBAP) is balanced or not, 
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● If the total number of persons is equal to the total number of jobs, then ω-PFLSBAP 

is balanced, go to step 3.  

●  If the total number of persons is not equal to the total number of jobs, then 

ω-PFLSBAP is unbalanced, go to step 2. 

Step 2: Add a dummy row/column of ω-pentagonal fuzzy linear sum bottleneck    

assignment cost. Entries with a cost of dummy row/dummy column are always zero.  

Step 3: Calculate the matching solution (φ) of ω-PFLSBAP (row minimum) 

                              φ = min (Cij̃)   for  i=1,2.…n 

Step 4:  Calculate spr (φ)   

           Let φ be a matching solution of ω-PFLSBAP with cost matrix Cij̃ 

                     π = maxi(C̃i φ(i)) 

                                     λ =  mini(C̃i φ(i))        

                     Spr (φ) = π+(-λ)   ;      T = {(i, j) : λ< Cij̃     

Step 5: Find minimum spr (φ) or spr (φ) = 0     

           In the bipartite graph (n×n) with edge set E, find the minimum vertex cover (σ). 

    If |σ|=n then  𝜑 be a perfect matching solution of  ω-PFLSBAP. 

                   π = maxi(C̃i φ(i)) ;   λ = mini(C̃i φ(i)) ;    Spr (φ) = π+(-λ)    

Step 6: Minimum Vertex Cover of Cardinality n with Perfect Matching 

  Let us take uncovered vertex T̅  = {(i, j)ϵ T , (i, j) is Uncovered}. If T̅ is not equal to ∅ 

then find π = min{Cij̃:  (i,j)ϵ T̅}  and λ =  π + (- Spr (φ)). By completing no perfect 
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matching through augmenting techniques, the new vertex cover is obtained from the 

current partial solution.  

Step 7: (Apply optimal test of ω - PFLSBAP) 

● If each person and each job contain exactly one matching solution with Spr (φ) = 0 

or minimum Spr (φ), then the current ω-PFLSBAP is optimal.   

● If each person and each job contain exactly one matching solution with maximum 

Spr (φ), then the current ω-PFLSBAP is not optimal but feasible and 

perfect/complete matching solution.   

Step 8: Finally obtained the graph has minimum vertex cover of cardinality n with 

complete matching. Repeat the procedure (1) to (7), until an optimum ω-PFLSBA is 

attained. 

Step 9: STOP.  

8.6 NUMERICAL EXAMPLE 

A company wants to assign four persons A, B, C and D to four jobs 1,2,3,4. one 

for each job, with no person working on more than one job. The assignment cost is 

considered as ω- pentagonal fuzzy number. Find minimum vertex of Cardinality n with 

Perfect Matching of ω-Pentagonal Fuzzy Linear Sum Bottleneck Assignment Problem. 

Solution: 

Consider the following 𝜔 −Pentagonal Fuzzy Linear Sum Bottleneck Assignment 

table 
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 1 2 3 4 
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Figure: 8.1 

φ=(4,3,1,2);   λ=(0,1,2,3,4;0.6) ;  π=(8,12,16,20,24;0.8); 

  Spr (φ)=(8,11,14,17,20;0.2)      

  Table:3 

(20,26,32,38,44;0.9) (25,32,39,46,53;0.92) (4,7,10,13,16;0.65) - 

(6,10,14,18,22;0.75) (10,15,20,25,30; 0.7) - (20,26,32,38,44;0.9) 

- (20,26,32,38,44;0.9) (35,40,45,50,55;.90) (6,10,14,18,22;0.75) 

(2,4,6,8,10;0.63) (8,12,16,20,24;0.8) (20,26,32,38,44;0.9) (4,7,10,13,16;0.65) 

 

 Figure: 8.2 
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                            φ=(3,1,4,2);   λ=(4,7,10,13,16; 0.65) ;  π=(8,12,16,20,24; 0.8);   

                                                              Spr (φ)=(4,5,6,7,8;0.15)                                                                   

 

(20,26,32,38,44;0.9) (25,32,39,46,53;0.92) - - - 

    - - (10,15,20,25,30; 0.7) - (20,26,32,38,44;0.9) 

             - (20,26,32,38,44;0.9) (35,40,45,50,55;0.9)                 - - 

(2,4,6,8,10;0.63)            - - (20,26,32,38,44;0.9) (4,7,10,13,16;0.65) 

𝜑 = (1,2,3,4);  𝜋 =  (20,26,32,38,44; 0.9)  ; 𝜆 =  𝜋 + (−𝑆𝑝𝑟 (𝜑)) =

 (16,21,26,31,36;0.75) 

                                       

                                                                   Figure: 8.3 

𝜑 = (1,4,2,3); 𝜋 = (20,26,32,38,44; 0.9) ; 𝜆 = (20,26,32,38,44; 0.9);                                         

                                                            𝐒𝐏𝐫 (𝛗) = (0,0,0,0)           

(20,26,32,38,44;0.9) (25,32,39,46,53;0.92) - - - 

    - - - -- - - (20,26,32,38,44;0.9) 

             - (20,26,32,38,44;0.9) (35,40,45,50,55;0.9)                 - - 

- -- -            - - (20,26,32,38,44;0.9) - -- - 
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∴   The optimal ω - PFLSBA schedule is A → 1, B → 4, C → 2, D → 3 

The optimal ω – PFLSBAP is 

 (20,26,32,38,44;0.9) + (20,26,32,38,44;0.9) +(20,26,32,38,44;0.9) +            

                                                       (20,26,32,38,44;0.9) = (80,104,128,152,176; 0.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 
 

CONCLUSION 

 
            Fuzzy decision making is a group of single- or multi-criteria strategies designed 

to choose the optimal option when faced with ambiguous, incomplete, or inaccurate 

data. Establishing broad and usable fuzzy optimization methods is crucial in both theory 

and application since fuzzy optimization is a well-known optimization problem in 

artificial intelligence, manufacturing, and management. This research work's attention 

was primarily directed at an algorithmic approach to the fuzzy linear sum assignment 

problem. There are a number of papers in the literature that use fuzzy assignment costs 

to solve linear sum assignment problems, but no one has previously used fuzzy linear 

sum assignment costs. Here, the optimal results are chosen using a variety of algorithms. 

The techniques presented here are simple to comprehend and are applicable to all 

classes of linear sum assignment problems with fuzzy costs and fuzzy numbers. 

Numerical examples are used to explain the solution processes. 

           These techniques can be extended to fuzzy quadratic assignment problems, New  

fuzzy linear sum assignment problems, and their modifications, so they are not just 

limited to optimization in fuzzy linear sum assignment problems. 
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Abstract 

In this paper, we compare the spreading of new optimal perfect matching to solve interval-

value -cut fuzzy linear sum bottleneck assignment problem. If all the spreading solutions are in 

minimum cost/time and maximum matching, and we get the matching solution optimal and 

perfect. Suppose, the solution is in minimum cost/time and minimum matching, the solution is a 

spread out of new partial feasible matching, if the solution is in maximum cost and minimum 

matching ,we get a spread out of partial feasible matching. 

1. Introduction 

Let ‘J’ jobs and ‘P’ machines be given in a balanced interval valued fuzzy 

linear sum bottleneck assignment problem (IFLSBAP) where ijC


 generalized 

trapezoidal fuzzy numbers. The bottleneck assignment refers to latest 

completion in the allocation of assignment problem. The interval-valued -cut 

of generalized fuzzy linear sum bottleneck assignment problems are 

minimum cost maximum matching problem. Let  EVUG ,,  be a 

bipartite graph with edge set E. The edge  ji ,  has a cost coefficient .
ijC

  

We obtain perfect matching in G such that the perfect length of an edge in 

this matching is as small as possible. 
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Amit Kumar and Anil Gupta have proposed Assignment and Travelling 

Salesman problems with Coefficient as LR Fuzzy parameters [1]. In2019, K. 

Atanassov proposed extended interval-valued intuitionistic fuzzy index 

matrices [2]. H. Albrecher approached a note on the asymptotic behaviour of 

bottleneck problems [3]. Linear bottleneck assignment problems were 

proposed by Fulkerson, Glicksberg and Gross. In 1999, D. Dubois, and P. 

Fortemps have proposed Computing improved optimal solutions to max-min 

flexible constraint satisfaction problems [4]. In 1971, R. Garfinkal have 

proposed improved algorithm for bottleneck assignment problem [5]. In 2004 

E. Hansen and G. W. Walster, introduced Global Optimization using interval 

analysis. 

Definition 1.1. fuzzy number  
UL

aaaaA


,,,


  is fuzzy subset of R 

with membership grade  x
A
  is said to be trapezoidal fuzzy numberand 

then the following membership functions as, 

 
UL

U

U

U

L

L

L

A
aaaa

aXaif

aa

Xa

aXaif

aXa

aa

aX

x














 













































,

,1

if,

 

 

Definition 1.2. A fuzzy number  


,,,,
UL

aaaaA


 is said to be 

generalized trapezoidal fuzzy number with membership grade  x
A
  then 

the following membership functions as, 
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 
UL

U

U

U

L

L

L

A
aaaa

aXaif

aa

Xa

aXaif

aXa

aa

aX

x













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





































































,

,1

if,

 

Where   .1,0  

 

-Cut of Generalized Trapezoidal Fuzzy Number 

1.3. Arithmetic operations Generalized Trapezoidal Fuzzy 

Number:  

Let  


,,,,
UL

aaaaP


 and  


,,,,
UL

bbbbQ


 are two 

generalized trapezoidal fuzzy number then the following operations are, 

1.  


,,,,
UULL

babababaQP


 where 

  21 ,min    

2.  


,,,,
LUUL

babababaQP


 where 

  .,min 21   

2. -Cut Generalized Trapezoidal Fuzzy Number 

Let  


,,,,
UL

aaaaP


 and  


,,,,
UL

bbbbQ


 are two 

generalized trapezoidal fuzzy numbers and  be any arithmetic operators, 

QP


  define its -cut, 

 
.

QPQP

 


 Let QP


  can be formed as 
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 

 


1,0
.






QP
QP  P


 and Q


 are fuzzy numbers, QP


  is also fuzzy 

numbers. 

Consider P


 and Q


 as two generalized fuzzy numbers and then the 

following membership functions are, 

 








































































U

U

U

L

L

L

P

aXaif

aa

Xa

aXaif

aXaif

aa

aX

x















,

,1

,

 

 







































































.

,

,1

,

U

U

U

L

L

L

Q

bXbif

aa

Xa

bXbif

bXbif

bb

bX

x














  

Generalized -Cut trapezoidal fuzzy numbers are defined as, 

     
UULL

P
aaaaaa


 


,  

      .,
UULL

Q
bbbbbb


 

  

Let us assume that if   Then, the following generalized -Cut 

trapezoidal fuzzy numbers are formed as, 

     
UULL

P
aaaaaa


 


,  

      .,
UULL

Q
bbbbbb


 

  

2.1.Generalized -Cut fuzzy numbers to Fuzzy Interval 

        ,111111

ULUULL
c daaaaaaa 

 


 

       
ULUULL

c daaaaaaa 121212


 
  
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        ,131313

ULUULL
c daaaaaaa 

 


 

       
ULUULL

c daaaaaaa 141414


 
  

        ,212121

ULUULL
c daaaaaaa 

 


 

       
ULUULL

c daaaaaaa 222222


 
  

        ,232323

ULUULL
c daaaaaaa 

 


 

       
ULUULL

c daaaaaaa 242424


 
  

        ,313131

ULUULL
c daaaaaaa 

 


 

       
ULUULL

c daaaaaaa 323212


 
  

        ,333333

ULUULL
c daaaaaaa 

 


 

       
ULUULL

c daaaaaaa 343434


 


 

        ,414141

ULUULL
c daaaaaaa 

 


 

       
ULUULL

c daaaaaaa 424212


 
  

        ,434343

ULUULL
c daaaaaaa 

 


 

       .444444

ULUULL
c daaaaaaa 

 
  

2.2. Interval-valued -Cut of Generalized Fuzzy Linear Sum 

Bottleneck can be modelled as 

ijc
nji

xMin
ij


 ,1

max  

Such that 

 




n

j

ij nix

1

,,2,11   
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 




n

j

ij njx

1

,,2,11   

   .,,2,1,1,0 njix ij   

Definition 2.3. An interval value   Rda
U

ij

L
ijcij

   is said to be 

interval value fuzzy set with membership grade  xc
   then the following 

membership functions as, 

 
























u

ij

U

ij

L

ij

L

ij

C

dX

dXa

aX

x

,0

,1

,0

  

Where .
U

ij

L
ij da   

3. Fuzzy Interval Operations 

Let  
UL

daX 1111  and  
UL

daY 2222  are two closed interval values in R 

then the following operations are as, 

(a)      
UULLULUL

ddaadadaYX 2211221122221111   

(b)      
UULLULUL

addadadaYX 2211221122221111   

(c)    ,,max,,,, 2211221122112211221122112211
ULLLUULULUULLL

aaaaddadaddaaaYX 
 


UULU

ddad 22112211 ,  

(d) .,,,max,,,min

22

11

22

11

22

11

22

11

22

11

22

11

22

11

22

11












































L

U

U

U

L

L

U

L

L

U

U

U

L

L

U

L

a

d

d

d

a

a

d

a

a

d

d

d

a

a

d

a
YX  

(e)      
UULLULUL

ddaadadaYX 2211221122221111    

(d)       .2211221122221111
UULLULUL

ddaadadaYX   

3.1. Interval-valued α-Cut of Fuzzy Linear Sum Bottleneck 
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Assignment Table: 

 
UL

da 1111
  

UL
da 1212

   
UL

da 1313
  

UL
da 1414

 

 
UL

da 2121
  

UL
da 2222

  
UL

da 2323
  

UL
da 2424

 

 
UL

da 3131
  

UL
da 3232

  
UL

da 3333
  

UL
da 3434

 

 
UL

da 4141
   

UL
da 4242

  
UL

da 4343
  

UL
da 4444

 

3.2. -Cut of threshold Fuzzy Linear Sum Bottleneck Assignment  

In the first case -Cut of threshold Fuzzy Linear Sum Bottleneck 

Assignment cost element is  

Mijc
  and -Cut of threshold Fuzzy Linear Sum 

Bottleneck Assignment are defined as, 






 





otherwise.,0

,1

Mij
ij

ij

c
c

c

if 

  

Let 
ijcC   be nn   matrix and 

 

U

ni
cij 

   be a fuzzy arbitrary 

permutation of IFLSBAP.  

Spreading solution is     
 

 .minmax
nicisp


    

3.3. Property (i): If two elements of IFLSBAP are in increasing order, 

then prove that the sum of two elements of IFLSBAP is also in Increasing 

Order, 

Proof. Let  
UL

daX 1111  and  
UL

daY 2222  are two closed interval values 

in R is IFLSBAP. 

Here, U

ij

L
ij da   and UL

da 2222   are in increasing orders. 

We prove that, the sum of two elements of IFLSBAP is also in increasing 

order, adding X and Y. We get, 

      .2211221122221111
UULLULUL

ddaadadaYX   

We see that, Here, 
UULL

ddaa 22112211   and U

ij

L
ij da   and .2222

UL
da   
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Therefore,       .2211221122221111
UULLULUL

ddaadada   Hence, If two 

elements of IFLSBAP are in increasing order then the sum of two elements of 

IFLSBAP are also in increasing order. 

4. Algorithm 

Solving optimal perfect matching and feasible partial matching by using 

generalized -cut trapezoidal fuzzy numbers we present in the following step 

by step procedure. 

Step 1. Generalized α-cut trapezoidal fuzzy numbers 

Let us take generalized trapezoidal fuzzy number and obtain -cut of 

trapezoidal fuzzy numbers, If ,  then the following form. 

      ,
UULL

A
aaaaaa


 
  

     .
UULL

B
bbbbbb


 

  

Step 2. compute fuzzy interval values by using generalized α-cut 

trapezoidal fuzzy numbers:  

        .
U

ij

L
ij

UULL

C
daaaaaaa

ij


 

  

Where U

ij

L
ij da   and 

L
ija  lower boundary of least value 


U

ij
d  upper boundary of largest value  

Step 3. Forming balanced interval valued fuzzy linear sum bottleneck 

assignment problem (IFLSBAP):  

Let us consider balanced interval valued fuzzy linear sum bottleneck 

assignment problem (IFLSBAP) (number of Machines (M) and number of 

Jobs (P) are equal i.e., ,
1 1  


n

i

n

j ji PM  if IFLSBAP 

,
1 1  


n

i

n

j ji PM  We Introduce dummy row i.e.,  


n

i ii DM
1

 (or), 

introduce dummy column  


n

j jj DP
1

 (where iD  dummy row, jD  
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dummy column) 

Step 4: Calculate .,
0

U

n
c

L

c ijij

   

Let  
U

ij

L
ijc da

ij
   be  nn   interval cost/time matrix; 

    .max,min
0

U

ij

L
ijij

U

n
c

U

ij

L
ijij

L

c dada
ijij

   

Step 5: Calculate    



M

cc ijij

 ,  


U

n
cc

L

ccc ijijijijij

 


0
:  

    .2:|:min



ijijijijijijij c

U

ij

L
ijccccc

M
c da   

Step 6: Feasibility check: Select the feasible element 

 ,0,,
210




M
c

L

c

L

c

L

c
M

c ijijijijij

   select the  
ijc
  row and assigned 

at least only one zero, similarly column allocations are ,,,
32 njjj ccc

    

next column assigned as .,,
21 inii ccc

    Each row and each column at 

least only one zero are assigned. Every row and column has at least one 

matching, the feasibility is executed. The bipartite matching, if minimum 

cost and maximum matching is optimal and perfect, otherwise the bipartite 

graph is feasible and partial matching. Obtain interval valued fuzzy linear 

sum cost is 
 


   

 .
1

UL
i MiiMii

n

i Mic da







  

Step 7: Backward calculation: Select the lower feasible elements of 




M
c ij

  and determine Feasible IFLSBAP  

,0
0


L

c ij

  the feasible cost/time is 
 


   

 .
001 0 UL

i iiii

n

i

L

ic da





   

,0
1


L

c ij

  the feasible cost/time is 
 


   

 .
111 1 UL

i iiii

n

i

L

ic da





   

,0
2


L

c ij

  the feasible cost/time is 
 


   

 .
221 2 UL

i iiii

n

i

L

ic da





  
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,0
1




L

M
c ij

  the feasible cost/time is 

 


   
 .

111 1 UL
i miimii

n

i

L

mic da
 




  

Step 8. Forward calculation: Select the upper feasible elements of 


M
c ij

  

and determine Feasible IFLSBAP 

,0
1




U

m
c ij

  the feasible cost/time is 
 

  


n

i

U

mic
i1 1

  


   

.
11

UL
miimii

da


   

,0
2




U

m
cij

  the feasible cost/time is 

 


   
 .

221
2 UL

i miimii

n

i

U

mic da



 

  

,0
3




U

m
c ij

  the feasible cost/time is 

 


   
 .

331 3 UL
i miimii

n

i

U

mic da
 




  

,0
U

n
c ij

  the feasible cost/time is 
 


   

 .
1

UL
i niinii

n

i

U

nic da


 

  

Step 9. Determine and checking Feasible/Optimal and Partial/Perfect of 

IFLSBAP. 


   

   ..,,,,min
3210

U

n
c

U

m
c

U

m
c

M
c

L

c

L

ciiii

L

ijc ijijijijijij
LL da   






 

If, 
   

 
   

ULLL
ij niiniiiiii

L

c dada


   is optimal and perfect 

matching. 

If, 
   

 
   

ULL
ij niiniiiiii

L

c dada


 
  is feasible and partial 

matching.  

If, 
   

 
   

ULUU
ij niiniiiiii

U

c dada


   is feasible and perfect 

matching. 
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If, 
   

 
   

ULUU
ij niiniiiiii

U

c dada


   is feasible and partial 

matching. 

Step 10: Stop.  

Example: Consider generalized trapezoidal fuzzy numbers  ijC


 

(9,13,17,21;0.25) (15,20,25,30;0.20) 
(4, 6, 8, 10; 0.50) (3, 5, 7, 9; 0.50) 

(5,7,9,11;0.50) (8, 10, 12, 14; 0.50) 
(4, 6, 8, 10; 0.50) (9,13,17,21;0.25) 

(2,4,6,8;0.50) (9, 13, 17, 21; 0.25) 
(13,18,23,28;0.20) (5, 7, 9, 11; 0.50) 

(3,5,7,9;0.50) (6, 8, 10, 12; 0.50) 
(9, 13, 17, 21; 0.25) (4, 6, 8, 10; 0.50) 

Generalized α-cut trapezoidal fuzzy numbers is  

        .
U

ij

L
ij

UULL
c daaaaaaa

ij


 
  

If ,  compute fuzzy interval values by using generalized -cut 

trapezoidal fuzzy numbers: 

            ,12,9,10,6,8,4,9,5,29,16,20,10
222114131211

 cccccc


 

            ,1,6,27,14,20,10,1,3,20,10,9,5
3433323123 24  cccccc


  

        .9,5,20,10,11,7,8,4
44434241

 cccc
  

Interval-valued fuzzy linear sum bottleneck assignment problem by using 

Generalized -cut trapezoidal fuzzy numbers 

Table 2 

[10 20] [16 29] [5 9] [4 8] 

[6 10] [9 13] [5 9] [10 20] 

[3 7] [10 20] [14 27] [6 10] 

[4 8] [7 11] [10 20] [5 9] 

Case i.   11,7:
0

 

U

n
cc

L

cc
cc ijijijij

ijij


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Table 3 

 

 


   

   .35,19
1


 


UL

Mii MiiMii

n

i c
da  The IFLSAP is optimal and 

perfect matching 

Case ii:    .10,6:
01






U

n
cc

L

cc
cM

c ijijijij
L

ij
ij

   

Table 4 

 

Now 
   

  .24,12
11




UL
MiiMii

da  The IFLSAP is feasible and 

partial. 

Case iii:    .9,5:
02






U

n
cc

L

cc
cM

c ijijijij
L

ij
ij

  

Table 5 

 

Now 
 


   

   .24,12
221 2


 


UL

Mii MiiMii

n

i c
da  The IFLSAP is 

feasible and partial. 
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Case iv:    .8,4:
03




U

n
cc

L

cc
c

L

M
c ijijijij

L

ij
ij

  

Table 6. 

 

Now 
 


   

   .15,7
221 3


 


UL

Mii MiiMii

n

i c
da  The IFLSAP is 

feasible and partial.  

Case v:    .7,3:
04




U

n
cc

L

cc
c

L

M
c ijijijij

L

ij
ij

  

Table 7 

 

Now 
 


   

   .7,3
441 4


 


UL

Mii MiiMii

n

i c
da  The IFLSAP is 

feasible and partial.  

Case vi:    .13,9:
01




U

n
cc

L

cc
c

L

M
c ijijijij

L

ij
ij

  

Table 8 

 

Now 
 


   

   .24,12
111 1


 


UL

Mii MiiMii

n

i c
da  The IFLSAP is 
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feasible and perfect. 

Case vii:    .20,10:
02




U

n
cc

L

cc
c

L

M
c ijijijij

L

ij
ij

  

Table 9 

 

 


   

   .35,19
221 2


 


UL

Mii MiiMii

n

i c
da  The IFLSAP is 

optimal and perfect. 

Case viii:    .27,14:
03




U

n
cc

L

cc
c

L

M
c ijijijij

L

ij
ij

  

Table 10 

 

Now 
 


   

   .35,19
331 3


 


UL

Mii MiiMii

n

i c
da  The IFLSAP is 

optimal and perfect.  

Case ix:    .29,16:
04




U

n
cc

L

cc
c

L

M
c ijijijij

L

ij
ij

  

Table 11 
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Now 
 


   

   .69,38
441 4


 


UL

Mii MiiMii

n

i c
da  the IFLSAP is 

feasible and perfect. 

The optimal perfect schedule is .,,, 24133241 JPJPJPJP   

The spread of new generalized trapezoidal fuzzy optimal perfect 

assignment cost is      50.0;10,8,6,450.0,9,7,5,3   iiC



 

     .50.0;39,33,23,1550.0;12,10,8,650.0;8,6,4,2   

6. Conclusion 

We discussed above concepts of optimal perfect matching and partial 

feasible matching for solving interval valued fuzzy linear sum bottleneck 

assignment problem by using -cut of generalized trapezoidal fuzzy number. 

The machine completed maximum jobs with minimum cost or time then the 

solution is optimal and perfect, otherwise partial and feasible. 
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Abstract 

In this paper, we introduce ω-type 1 and ω-type 2-diamond fuzzy numbers 

and solving a fuzzy multi-objective linear sum assignment problem 

(FMOLSAP) with linguistic variables whose λ 𝑑 −cut are expressed as ω-type 

2-diamond fuzzy numbers (𝜔𝑡2-DFN). To solve the FMOLSAP, we can apply 

arithmetic operations of   λ 𝑑 −cut of ω-type 2-diamond fuzzy numbers (𝜔𝑡2-

DFN) to compute complete optimal matching.  

Keywords:  ω -type 1 and ω -type 2-diamond fuzzy numbers, Fuzzy 

assignment problem, 

AMS Mathematics Subject Classification (2010): 90B80, 90C29, 03E72 

 

1. Introduction 

In 2010, Kagade and Bajaj[6] discussed for solving fuzzy multi-objective assignment 

problem with interval cost. Isabel et.al [5] an application of linguistic variables in 

fuzzy assignment problem,  In 2014, Gupta and Mehlawat[3] For treating the fuzzy 

multi-objective assignment problems, a novel possibility programming technique was 

mailto:ganijmc@yahoo.co.in.%20%20and
mailto:shiekpareeth.t@gmail.com
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provided, Kayvan Salehi[7] proposed an approach for solving MOAP with interval 

parameters. In 2015, Pathinathan and Ponnivalavan [11] discussed diamond fuzzy 

number.  In 2017, Nagoor Gani and Shiek Pareeth [9] are discussed dual variables and 

partial solution for solving FLSAP. In recently, many of the researchers work in this 

area of fuzzy multi-objective assignment problems like [1-4,8,10,12, 13-15]. 

We introduced 𝜔 -type 1-diamond fuzzy numbers and 𝜔 -type2-diamond fuzzy 

numbers are discussed in this paper. The upper and lower membership functions of 

diamond fuzzy numbers are  described as 𝜔-type 1 and 𝜔-type 2-diamond fuzzy 

numbers. In λd- cut form, express the 𝜔-type2 -diamond fuzzy numbers. Single fuzzy 

linear sum assignment problems are converted from fuzzy multi-objective linear sum 

assignment problems by using ranking method. obtain partial feasible solution and 

complete optimal solution by using λ 𝑑 −cut of  ω-type 2-diamond fuzzy numbers 

(𝜔𝑡2-DFN) . Arithmetic operations of   λ 𝑑 −cut of ω-type 2-diamond fuzzy numbers 

(𝜔𝑡2-DFN) to obtain complete optimal matching 

 

2. Preliminaries 

2.1. Definition: [11]A fuzzy set 𝐹 is defined as 𝐹𝑑̃  =  {𝑑
′, 𝑑∗, 𝑑′′ (𝛼𝑑, 𝛽𝑑)}is called 

diamond fuzzy number and it’s the following membership function is given by 

 

𝜇𝐹𝑑̃  = 

{
 
 
 
 
 

 
 
 
 
 

    0            𝑓𝑜𝑟 𝑥 ≤  𝑑′

(𝑥−𝑑′)

(𝑑∗−𝑑′)
    𝑓𝑜𝑟 𝑑′ ≤ 𝑥 ≤ 𝑑∗

(𝑑′′−𝑥)

(𝑑′′−𝑑∗)
    𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

𝛼𝑑
(𝑑′−x)

(𝑑′−𝑑∗)
    𝑓𝑜𝑟 𝑑′ ≤ 𝑥 ≤ 𝑑∗

(𝑥−𝑑′′)

(𝑑∗−𝑑′′)
    𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

1                            𝑥 =  𝛽𝑑
0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

2.2.Definition: A ω-type1- diamond fuzzy number is upper and lower membership 

function of the diamond fuzzy number is defined as [𝜔𝑡1𝐹𝑑̃  , 𝜔𝑡1𝐹𝑑̃  ] where ωt1𝐹𝑑̃   

={dʹ,d∗, dʺ, (αd,βd), ωt1𝐹𝑑̃  = {dʹ,d∗, d′′ ,(αd,βd)} and it’s the following membership  
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function is given by 

𝜇𝜔𝑡1𝐹𝑑̃  =    

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

        0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜔 (
(𝑥−𝑑′)

(𝑑∗−𝑑′)
)            𝑓𝑜𝑟 𝑑′ ≤ 𝑥 ≤ 𝑑∗

𝜔 (
(𝑑′′−𝑥)

(𝑑′′−𝑑∗)
)           𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

𝜔 (
(𝑥−dʹ)

(𝑑∗−dʹ)
)            𝑓𝑜𝑟 dʹ ≤ 𝑥 ≤ 𝑑∗

𝜔 (
(𝑑′′−𝑥)

(𝑑′′−𝑑∗)
)           𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

𝛼𝑑    −     𝑏𝑎𝑠𝑒

𝜔 (
(𝑑′−x)

(𝑑′−𝑑∗)
)             𝑓𝑜𝑟 𝑑′ ≤ 𝑥 ≤ 𝑑∗

𝜔 (
(𝑥−𝑑′′)

(𝑑∗−𝑑′′)
)              𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

𝜔 (
(dʹ−x)

(dʹ−𝑑∗)
)             𝑓𝑜𝑟 dʹ ≤ 𝑥 ≤ 𝑑∗

𝜔(
(𝑥−𝑑′′)

(𝑑∗−𝑑′′)
)              𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

𝜔 = 1                            𝑥 =  𝛽𝑑
0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Figure 1:  𝜔-type 1- diamond fuzzy number 

 

2.3. Definition: A 𝜔-type2 diamond fuzzy number is upper and lower membership 

function of the diamond fuzzy number is defined as [𝜔𝑡2𝐹𝑑̃  ,𝜔𝑡2𝐹𝑑̃ ] where 𝜔𝑡2𝐹𝑑̃ 
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={,dʹ,𝑑∗,,dʺ (𝛼𝑑 ,𝛽𝑑), 𝜔𝑡2𝐹𝑑̃ = (dʹ,𝑑∗,𝑑′′ (𝛼𝑑 ,𝛽𝑑)) and it’s the following membership 

function is given by 

 

𝜇𝜔𝑡1𝐹𝑑̃  =    

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

        0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜔 (
(𝑥−𝑑′)

(𝑑∗−𝑑′)
)            𝑓𝑜𝑟 𝑑′ ≤ 𝑥 ≤ 𝑑∗

𝜔 (
(𝑑′′−𝑥)

(𝑑′′−𝑑∗)
)           𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

𝜔 (
(𝑥−dʹ)

(𝑑∗−dʹ)
)            𝑓𝑜𝑟 dʹ ≤ 𝑥 ≤ 𝑑∗

𝜔 (
(𝑑′′−𝑥)

(𝑑′′−𝑑∗)
)           𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

𝛼𝑑    −     𝑏𝑎𝑠𝑒

𝜔 (
(𝑑′−x)

(𝑑′−𝑑∗)
)             𝑓𝑜𝑟 𝑑′ ≤ 𝑥 ≤ 𝑑∗

𝜔 (
(𝑥−𝑑′′)

(𝑑∗−𝑑′′)
)              𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

𝜔 (
(dʹ−x)

(dʹ−𝑑∗)
)             𝑓𝑜𝑟 dʹ ≤ 𝑥 ≤ 𝑑∗

𝜔(
(𝑥−𝑑′′)

(𝑑∗−𝑑′′)
)              𝑓𝑜𝑟 𝑑∗ ≤ 𝑥 ≤ 𝑑′′

𝜔 = 1                            𝑥 =  𝛽𝑑
0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

  

Figure 2:   λd- cut of 𝜔-type 2- diamond fuzzy number 
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3. Arithmetic Operations of 𝝎-type2- Diamond Fuzzy Number (𝜔𝑡2𝐹𝑑̃ ) : 

Let us take two 𝜔-type2 diamond fuzzy number are given below 

 𝜔𝑡2𝐹𝑑̃
1
= [𝜔𝑡2𝐹𝑑̃

1
  , 𝜔𝑡2𝐹𝑑̃

1
] = (d1′,d2′d3′d4′,d5′,d6′,𝜔1𝐹1),(d1′, d2′,d3′,d4′ ,d5′,d6′, 𝜔1𝐹1  ) and 

𝜔𝑡2𝐹𝑑̃
2
= [𝜔𝑡2𝐹𝑑̃

2
, 𝜔𝑡2𝐹𝑑̃

2
]=(d1",d2", d3",,d4",d5", d6",𝜔1𝐹2 ),(d1", d2",d3",d4" ,d5",d6", 𝜔1𝐹2  ). 

The following arithmetic operations of 𝜔𝑡2𝐹𝑑̃
1
  and 𝜔𝑡2𝐹𝑑̃

2
. 

Addition  

 𝜔𝑡2𝐹𝑑̃
1
 𝜔𝑡2𝐹𝑑̃

2
  = 

           ((d1′d1", d2′d2", ,d3′d3" ,d4′d4" ,d5′d5"  ,d6′d6" ) , min{𝜔1𝐹1  , 𝜔1𝐹2}), 

 (( d1′d1"  , d2′d2", ,d3′,d3",d4′d4" , d5′d5" , d6′d6" ), min{ 𝜔1𝐹1  , 𝜔1𝐹2  }) 

Subtraction 

 𝜔𝑡2𝐹𝑑̃
1
  Ѳ  𝜔𝑡2𝐹𝑑̃

2
    = 

    ((d1′Ѳ d6",d2′Ѳ d5" , d3
′ Ѳd4"  ,  d4′Ѳ d3", d5′Ѳ d2", d6′Ѳ d6") , min{𝜔1𝐹1  , 𝜔1𝐹2}), 

   ((d1′Ѳd6", d2′Ѳd5",d3′Ѳ  d4" ,d4′Ѳd3" , d5′Ѳ d2",d6′Ѳ d1"), min{ 𝜔1𝐹1  , 𝜔1𝐹2  }). 

Multiplication 

 𝜔𝑡2𝐹𝑑̃
1
   𝜔𝑡2𝐹𝑑̃

2
    =  

           ((d1′ d1", d2′ d2", ,d3′ d3" ,d4′ d4" ,d5′ d5"  ,d6′ d6"  ) , min{𝜔1𝐹1  , 𝜔1𝐹2}), 

   (( d1′d1"  , d2′d2", d3′  d3",d4′d4" , d5′d5" , d6′d6" ), min{ 𝜔1𝐹1  , 𝜔1𝐹2  }). 

Scalar multiplication 

αk ( 𝜔𝑡2𝐹𝑑̃
1
  ) = 

((αkd1′, αkd2′ , αk d3′, αkd4′ , αkd5′,αkd6′, 𝜔1𝐹1),) ,(αkd1′, αkd2′,αkd3′,αkd4′, 

αkd5′,αkd6′, 𝜔1𝐹1  )) if αk  ≥ 0. 

αk ( 𝜔𝑡2𝐹𝑑̃
1
) = 

 ((αkd6′, αkd5′ , αk d3′,αkd2′,αkd1′,𝜔1𝐹1), (αkd6′, αkd5′,αkd4′,αkd3′, αkd2′,αkd1′, 𝜔1𝐹1))   

if k ≤ 0. 
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4. Mathematical Form of Multi-objective Fuzzy Linear Sum Assignment 

Problem is defined as: 

Minimize 𝑧̃k  = ∑ 𝑐̃𝑖𝑗
𝑘𝑛

𝑖=1 ∑ 𝑥̃𝑛
𝑗=1 ij 

 

Subject to  ∑ 𝑥̃𝑛
𝑖=1 i = 1, for j = 1,2,3,4…n 

 

∑ 𝑥̃𝑗
𝑛
𝑖=1  = 1, for i = 1,2,3,4…n 

 

and                    𝑥̃𝑖𝑗 = {
1 ,     𝑖𝑓   𝑗𝑜𝑏 ′𝑗′  𝑖𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑  𝑡𝑜  𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ′𝑚′
0 ,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

 

 

where 𝑧̃k  = {𝑧̃1  , 𝑧̃2  ,𝑧̃3  …..𝑧̃k}is vector of multi objectives 

 

Table 1. 

Job/ 

Machine 

J1 J2        J3 J4 

 

M1 

[𝑐̃11,𝑐̃11] 

[𝑡̃11,𝑡̃11] 

[𝑞̃11,𝑞̃11] 

[𝑐̃12,𝑐̃12] 

[𝑡̃12,𝑡̃12] 

[𝑞̃12,𝑞̃12] 

[𝑐̃13,𝑐̃13] 

[𝑡̃13,𝑡̃13] 

[𝑞̃13,𝑞̃13] 

[𝑐̃14,𝑐̃14] 

[𝑡̃14,𝑡̃14] 

[𝑞̃14,𝑞̃14] 

 

M2 

[𝑐̃21,𝑐̃21] 

[𝑡̃21,𝑡̃21] 

[𝑞̃21,𝑞̃21] 

[𝑐̃22,𝑐̃22] 

[𝑡̃22,𝑡̃22] 

[𝑞̃22,𝑞̃22] 

[𝑐̃23,𝑐̃23] 

[𝑡̃23,𝑡̃23] 

[𝑞̃23,𝑞̃23] 

[𝑐̃24,𝑐̃24] 

[𝑡̃24,𝑡̃24] 

[𝑞̃24,𝑞̃24] 

 

M3 

[𝑐̃31,𝑐̃31] 

[𝑡̃31,𝑡̃31] 

[𝑞̃31,𝑞̃11] 

[𝑐̃32,𝑐̃32] 

[𝑡̃32,𝑡̃32] 

[𝑞̃32,𝑞̃32] 

[𝑐̃33,𝑐̃33] 

[𝑡̃33,𝑡̃33] 

[𝑞̃33,𝑞̃33] 

[𝑐̃34,𝑐̃34] 

[𝑡̃34,𝑡̃34] 

[𝑞̃34,𝑞̃34] 

 

M4 

[𝑐̃41,𝑐̃41] 

[𝑡̃41,𝑡̃41] 

[𝑞̃41,𝑞̃41] 

[𝑐̃42,𝑐̃42] 

[𝑡̃42,𝑡̃42] 

[𝑞̃42,𝑞̃42] 

[𝑐̃43,𝑐̃43] 

[𝑡̃43,𝑡̃43] 

[𝑞̃43,𝑞̃43] 

[𝑐̃44,𝑐̃44] 

[𝑡̃44,𝑡̃44] 

[𝑞̃44,𝑞̃44] 
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5. Ranking function of 𝝎-type 2 diamond fuzzy numbers  

Let 𝜔𝑡2𝐹𝑑̃
1

= [𝜔𝑡2𝐹𝑑̃
1
  , 𝜔𝑡2𝐹𝑑̃

1
] and 𝜔𝑡2𝐹𝑑̃

2
= [𝜔𝑡2𝐹𝑑̃

2
, 𝜔𝑡2𝐹𝑑̃

2
] are two 𝜔 -type2 

diamond fuzzy numbers. 𝜔𝑡2𝐹𝑑̃
1
   , 𝜔𝑡2𝐹𝑑̃

2
 are lower 𝜔-type 2 diamond fuzzy number 

and 𝜔𝑡2𝐹𝑑̃
1
, 𝜔𝑡2𝐹𝑑̃

2
 are upper 𝜔-type 2 diamond fuzzy number. Then the following 

ranking function of 𝜔-type2 diamond fuzzy number and defined as R(𝜔𝑡2𝐹𝑑̃) 

R(𝜔𝑡2𝐹𝑑̃) = 
𝜔𝑡2𝐹𝑑̃

1
+𝜔𝑡2𝐹𝑑̃

2

2
 = 

(𝜔𝑡2𝐹𝑑̃
1
  + 𝜔𝑡2𝐹𝑑̃

2
) + (𝜔𝑡2𝐹𝑑̃

1
+ 𝜔𝑡2𝐹𝑑̃

2
])

2
 

 

6. Algorithm and Properties:  

6.1: A New Algorithm for fuzzy multi-objective linear sum assignment: 

𝜔-type 2 diamond fuzzy numbers are considered as linguistic variables. The fuzzy 

cost coefficient, fuzzy time, and fuzzy quality are expressed in λd- cut of 𝜔-type 2 

diamond fuzzy numbers to compute the partial feasible solution and complete optimal 

solution. 

Step 1: First let us take the cost matrix [𝑐𝑖𝑗̃], whose elements are linguistic variables 

that have been substituted by fuzzy numbers, is presented. Examine whether or not 

the provided 𝜔-type 2 diamond fuzzy multi-objective linear sum assignment table is 

balanced. 

 a) If the number of machines and the number of jobs are equal, go to step 3. 

   b) Proceed to step 2 if the number of machines does not equal the number of jobs. 

Step 2: In the 𝜔-type 2 diamond fuzzy multi objective linear sum assignment table, 

add a dummy row or column. Dummy row/column cost, time, and quantity entries are 

always zero. 

Step 3: In λd- cut form, express the above 𝜔-type 2 diamond fuzzy multi-objective 

linear sum assignment problems. The upper and lower 𝜔 -type 2 diamond fuzzy 

numbers of the multi-objective linear sum assignment problem are then merged into 

single λd- cut form of  𝜔-type 2 diamond fuzzy number of the multi-objective linear 

sum assignment problem. 

Step 4: By applying ranking method, convert a λd- cut of 𝜔-type 2-diamond fuzzy 

multi objective linear sum assignment problem to  λd- cut of 𝜔-type 2-diamond fuzzy 

linear sum assignment problem.. 

Step 5: Find dual variables (𝑢̃𝑖,𝑣𝑗̃ ),  

 If  𝑀𝑖 = 𝑀1,𝑀2….𝑀𝑛 then find  𝑢̃𝑖 = min {𝑐𝑖𝑗̃ ;     𝑗𝑖 = J1 ,J2 …..Jn 

 If  𝑗𝑖 = J1  , J2 …..Jn   then find  𝑣𝑗̃ = min {𝑐𝑖𝑗̃ - 𝑢̃𝑖 ; 𝑀𝑖 = 𝑀1,𝑀2….𝑀𝑛}; 
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Step 6: Calculate (𝑐𝑖𝑗̃) and find a partial feasible solution  

if  𝑗𝑖 = J1  , J2 …..Jn  then  row (j) = 0; 

 if  𝑀𝑖 = 𝑀1,𝑀2….𝑀𝑛  and   𝑗𝑖 = J1  , J2 …..Jn  then obtain 𝑐𝑖𝑗̃ =  𝑐𝑖𝑗̃ - 𝑢̃𝑖 - 𝑣𝑗̃ = 0  and 

the solution is  

row (j) =i ,  𝑥̃𝑖𝑗 = 1 and  

     a) If there are less than ‘n' rows of matching. go to the next step 

     b) An optimal solution is found if the number of matches is equal to n.. 

Step7: If the number of matching solution is less than (the order of the matrix) n 

matching solution by using the following alternative path method. 

The matching vertex|𝑼|< n then increase the partial solution and let E be any vertex 

in U and select the elementary path from k whose edges are alternatively not assigned 

and assigned. 

If  E ∉ 𝑈   then sink = Alternate(k);  

If sink > 0 then  𝑈   = 𝑈 ∪ {E} ; j = sink and obtain in new graph. 

Step 8: update the dual variables and obtain complete optimal solution  

Select the minimum value of an unassigned row 𝛿 = min{𝑐𝑖𝑗̃ - 𝑢̃𝑖  - 𝑣𝑗̃= 0 and then 

updated dual variables are 𝑢̃𝑖
∗  = 𝑢̃𝑖 + 𝛿 :    𝑣𝑗̃

∗
 = 𝑐𝑖𝑗̃ - 𝑢̃𝑖

∗  then obtain 𝑐𝑖𝑗̃
∗
=  𝑐𝑖𝑗̃ - 𝑢̃𝑖

∗  - 

𝑣𝑗̃
∗
  = 0 is the new bipartite graph of the current solution. Alternate (k) is then 

executed again for k = 𝛿 Producing the augmented tree. Finally, each machine (𝑀𝑖)  

and job (𝑗𝑖) has one and only matching edges, complete optimum solution is reached. 

Step 9: Stop. 

 

6.2. Properties on fuzzy matching: 

6.2.1. Theorem:  If partial feasible matching is the minimum matching edges in any 

bipartite graph. 

Proof:  Consider the fuzzy cost matrix (𝑛𝑥𝑛)  is 𝑐𝑖𝑗̃   and define the fuzzy dual 

variables are  𝑢̃𝑖 = min {𝑐𝑖𝑗̃}  and 𝑣𝑗̃ = min {𝑐𝑖𝑗̃ - 𝑢̃𝑖  }. Then, we have by applying 

complementary slackness conditions for transform cost matrix 𝑐𝑖𝑗̃   to reduced cost 

matrix  𝑐𝑖𝑗̃   (ie), 𝑐𝑖𝑗̃  =  𝑐𝑖𝑗̃  - 𝑢̃𝑖  - 𝑣𝑗̃  = 0 , ∀ 0 ≤ 𝑖, 𝑗 ≤ 𝑛 . Therefore, assign only one 

matching edge to each rows and columns but both rows and columns are less than 𝑛. 

Then we have a solution is partial if there are a minimum number of matching edges 

in any bipartite graph. 

 

6.2.2. Theorem:  If an optimal complete matching is the number of matching is equal 

to the order of the matrix (𝑛𝑥𝑛). 
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Proof: From Theorem (5.1). Let us take the partial feasible matching edges in 

bipartite graph. The matching vertex is less then n and increase the partial solution 

and let ‘E’ be any vertex in U and choose the elementary path from ‘E’ whose edges 

are alternatively not matched and matched. In a bipartite graph, an alternating tree 

rooted in a vertex ‘r’ is a tree in which all paths emanating from ‘r’ alternate. adding 

new matching vertex is 𝑈   = 𝑈 ∪ {E}. Choose the minimum value of an unassigned 

row 𝛿 = min{𝑐𝑖𝑗̃ - 𝑢̃𝑖  - 𝑣𝑗̃= 0 and then updated the dual variables are 𝑢̃𝑖
∗  = 𝑢̃𝑖  + 𝛿 :    

𝑣𝑗̃
∗
 = 𝑐𝑖𝑗̃ - 𝑢̃𝑖

∗  then compute 𝑐𝑖𝑗̃
∗
=  𝑐𝑖𝑗̃ - 𝑢̃𝑖

∗  - 𝑣𝑗̃
∗
  = 0 is the new bipartite graph of the 

current solution. The alternate method executed again for k = 𝛿  Producing the 

augmented tree. Then we have a solution is complete optimal if there are a maximum 

number of matching is equal to the order of the matrix (𝑛𝑥𝑛). 

 

7. Example:  

Let us considered the four machines given below. M1, M2, M3, M4, and four jobs J1, 

J2, J3, J4 respectively. To optimize the fuzzy cost, fuzzy time, and fuzzy quality are 

each considered as a 𝜔-type 2 diamond fuzzy numbers. The fuzzy cost, the fuzzy time 

and the fuzzy quality for solving λd- cut of 𝜔-type 2 diamond fuzzy  numbers of 

multi-objective linear sum assignment problem.  

 

Table 2: 𝜔-type 2 diamond fuzzy numbers are representing to the linguistic variables. 

Job/Machine J1 J2 J3 J4 

M1 Fairly high Very high High Very high 

M2 Very low High low Fairly high 

M3 
Extremely 

low 
Medium Medium Very high 

M4 Fairly low Medium Very low Very low 

 



1508 A. Nagoor Gani and T. Shiek Pareeth 

Table 3. 

Job/Machine J1 J2 J3 J4 

M1 (23,30,37) 

(22,31,38) 

(31,38,45) 

(30,39,46) 

(36,43,50) 

(35,44,51) 

(25,33,41) 

(24,34,42) 

  (31,39,47) 

(30,40,48) 

(36,44,52) 

(35,45,53) 

(21,27,33) 

(20,28,34) 

(18,24,30) 

(17,25,31) 

(27,33,39) 

(26,34,40) 

(25,33,41) 

(24,34,42) 

  (31,39,47) 

(30,40,48) 

(36,44,52) 

(35,45,53) 

M2 (1,2,4) (0,3,7) 

(3,4,7) (2,5,9) 

(4,6,8) 

(3,7,10) 

(21,27,33) 

(20,28,34) 

(18,24,30) 

(17,25,31) 

(27,33,39) 

(26,34,40) 

(8,13,18) 

(7,15,21) 

(14,18,24) 

(13,23,28)  

(11,13,21) 

(10,17,22) 

(23,30,37) 

(22,31,38) 

(31,38,45) 

(30,39,46) 

(36,43,50) 

(35,44,51) 

 M3 (1,2,4) (0,3,5) 

 (2,3,5) (1,4,6) 

 (4,5,7) (3,6,8) 

(7,12,15) 

(6,13,16) 

(8,13,16) 

(7,14,17) 

(13,18,21) 

(12,19,22) 

(7,12,15) 

(6,13,16) 

(8,13,16) 

(7,14,17) 

(13,18,21) 

(12,19,22) 

(25,33,41) 

(24,34,42) 

   (31,39,47) 

(30,40,48) 

(36,44,52) 

(35,45,53) 

M4 (3,5,9) 

(2,6,10) 

(3,4,7) 

(2,5,10) 

(4,6,8) 

(3,7,11)  

(7,12,15) 

(6,13,16) 

(8,13,16) 

(7,14,17) 

(13,18,21) 

(12,19,22) 

(1,2,4) (0,3,7) 

(3,4,7) (2,5,9) 

(4,6,8) (3,7,10) 

(1,2,4) (0,3,7) 

(3,4,7) (2,5,9) 

(4,6,8) (3,7,10) 
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Table 4: 𝜔-type 2 diamond fuzzy numbers are converted into λd-cut of fuzzy numbers 

Job/ 

Machine 
J1 J2 J3 J4 

 

M1 

[ 6𝜆𝑑 +21, 33-

6𝜆𝑑] [8𝜆𝑑̅̅ ̅ +20, 

34-6𝜆𝑑̅̅ ̅] 

[6𝜆𝑑+18,30- 6𝜆𝑑] 

[8𝜆𝑑̅̅ ̅ +17, 31-6𝜆𝑑̅̅ ̅] 

[6𝜆𝑑+27,39- 

6𝜆𝑑][8𝜆𝑑̅̅ ̅ +26, 40-

6𝜆𝑑̅̅ ̅] 

[ 8λd +25, 41-8𝜆𝑑] 

[10𝜆𝑑̅̅ ̅+24, 42-8𝜆𝑑̅̅ ̅] 

[8𝜆𝑑+31,47- 8𝜆𝑑] 

[10𝜆𝑑̅̅ ̅+30, 48- 

[8𝜆𝑑+36,52- 

8𝜆𝑑][10𝜆𝑑̅̅ ̅ +35, 53-

8𝜆𝑑̅̅ ̅] 

[ 7𝜆𝑑 +23, 37-7𝜆𝑑] 

[9𝜆𝑑̅̅ ̅  +22, 38-7𝜆𝑑̅̅ ̅ ] 

[7𝜆𝑑+31,45- 7𝜆𝑑] 

[9𝜆𝑑̅̅ ̅  +30, 46-7𝜆𝑑̅̅ ̅ ] 

[7𝜆𝑑+36,50- 

7𝜆𝑑][9𝜆𝑑̅̅ ̅  +35, 51-

7𝜆𝑑̅̅ ̅ ] 

[ 8λd +25, 41-8𝜆𝑑] [10𝜆𝑑̅̅ ̅ 

+24, 42-8𝜆𝑑̅̅ ̅ ] 

[8𝜆𝑑+31,47- 8𝜆𝑑] [10𝜆𝑑̅̅ ̅ 

+30, 48-8𝜆𝑑̅̅ ̅] 

[8𝜆𝑑+36,52- 8𝜆𝑑][10𝜆𝑑̅̅ ̅  

+35, 53-8𝜆𝑑̅̅ ̅ ] 

 

M2 

[ 𝜆𝑑+1, 4-2𝜆𝑑] 

[3𝜆𝑑̅̅ ̅+0, 7-4𝜆𝑑̅̅ ̅] 

[𝜆𝑑+3,7- 3𝜆𝑑] 

[3𝜆𝑑̅̅ ̅ +2, 9-4𝜆𝑑̅̅ ̅] 

[2𝜆𝑑+4,8- 

2𝜆𝑑][4𝜆𝑑̅̅ ̅ +3, 10-

3𝜆𝑑̅̅ ̅] 

[ 7𝜆𝑑 +23, 37-7𝜆𝑑] 

[9𝜆𝑑̅̅ ̅ +22, 38-7𝜆𝑑̅̅ ̅] 

[7𝜆𝑑+31,45- 7𝜆𝑑] 

[9𝜆𝑑̅̅ ̅ +30, 46-7𝜆𝑑̅̅ ̅] 

[7𝜆𝑑+36,50- 

7𝜆𝑑][9𝜆𝑑̅̅ ̅ +35, 51-

7𝜆𝑑̅̅ ̅] 

[ 5𝜆𝑑 +8, 18-5𝜆𝑑] 

[8𝜆𝑑̅̅ ̅ +7, 21-6𝜆𝑑̅̅ ̅] 

[4𝜆𝑑+14,24- 4𝜆𝑑] 

[10𝜆𝑑̅̅ ̅+13, 28-5𝜆𝑑̅̅ ̅] 

[2𝜆𝑑+11,21- 

5𝜆𝑑][7𝜆𝑑̅̅ ̅ +10, 22-

5𝜆𝑑̅̅ ̅] 

[ 6𝜆𝑑 +21, 33-6𝜆𝑑] [8𝜆𝑑̅̅ ̅ 

+20, 34-6𝜆𝑑̅̅ ̅] 

[6𝜆𝑑+18,30- 6𝜆𝑑] [8𝜆𝑑̅̅ ̅ 

+17, 31-6𝜆𝑑̅̅ ̅] 

[6𝜆𝑑+27,39- 6𝜆𝑑][8𝜆𝑑̅̅ ̅ 

+26, 40-6𝜆𝑑̅̅ ̅] 

 

M3 

[ 𝜆𝑑 +1, 4-2𝜆𝑑] 

[3𝜆𝑑̅̅ ̅], 5-2𝜆𝑑̅̅ ̅]] 

[𝜆𝑑+2,5- 2𝜆𝑑] 

[3𝜆𝑑̅̅ ̅] +1, 6-2𝜆𝑑̅̅ ̅]] 

[𝜆𝑑+4,7- 

2𝜆𝑑][3𝜆𝑑̅̅ ̅] +3, 8-

2𝜆𝑑̅̅ ̅]] 

[5𝜆𝑑 +7, 15-3𝜆𝑑] 

[7𝜆𝑑̅̅ ̅ +6, 16-3𝜆𝑑̅̅ ̅] 

[5𝜆𝑑λ+8,16- 3𝜆𝑑] 

[7𝜆𝑑̅̅ ̅ +7, 17-3𝜆𝑑̅̅ ̅] 

[5𝜆𝑑+13,21- 

3𝜆𝑑][7𝜆𝑑̅̅ ̅ +12, 22-

3𝜆𝑑̅̅ ̅] 

[5𝜆𝑑 +7, 15-3𝜆𝑑] 

[7𝜆𝑑̅̅ ̅ +6, 16-3𝜆𝑑̅̅ ̅] 

[5𝜆𝑑λ+8,16- 3𝜆𝑑] 

[7𝜆𝑑̅̅ ̅ +7, 17-3𝜆𝑑̅̅ ̅] 

      [5𝜆𝑑+13,21- 

3𝜆𝑑][7𝜆𝑑̅̅ ̅ +12, 22-

3𝜆𝑑̅̅ ̅] 

[8𝜆𝑑+ +25, 41-8𝜆𝑑] 

[10𝜆𝑑̅̅ ̅ +24, 42-8𝜆𝑑̅̅ ̅ ] 

[8𝜆𝑑+31,47- 8𝜆𝑑] [10𝜆𝑑̅̅ ̅ 

+30, 48-8𝜆𝑑̅̅ ̅] 

[8𝜆𝑑+36,52- 8𝜆𝑑][10𝜆𝑑̅̅ ̅  

+35, 53-8𝜆𝑑̅̅ ̅ ] 

 

M4 

[ 2𝜆𝑑 +3, 9-4𝜆𝑑] 

[4𝜆𝑑̅̅ ̅, +2, 10-4𝜆𝑑̅̅ ̅] 

[𝜆𝑑+3,7- 3𝜆𝑑] 

[3𝜆𝑑̅̅ ̅+2, 9-5𝜆𝑑̅̅ ̅] 

[2𝜆𝑑+4,8- 

2𝜆𝑑][4𝜆𝑑̅̅ ̅+3 , 11-

4𝜆𝑑̅̅ ̅] 

[5𝜆𝑑 +7, 15-3𝜆𝑑] 

[7𝜆𝑑̅̅ ̅ +6, 16-3𝜆𝑑̅̅ ̅] 

[5𝜆𝑑λ+8,16- 3𝜆𝑑] 

[7𝜆𝑑̅̅ ̅ +7, 17-3𝜆𝑑̅̅ ̅] 

[5𝜆𝑑+13,21- 

3𝜆𝑑][7𝜆𝑑̅̅ ̅ +12, 22-

3𝜆𝑑̅̅ ̅] 

[ 𝜆𝑑+1, 4-2𝜆𝑑] 

[3𝜆𝑑̅̅ ̅+0, 7-4𝜆𝑑̅̅ ̅] 

[𝜆𝑑+3,7- 3𝜆𝑑] [3𝜆𝑑̅̅ ̅ 

+2, 9-4𝜆𝑑̅̅ ̅] 

[2𝜆𝑑+4,8- 2𝜆𝑑][4𝜆𝑑̅̅ ̅ 

+3, 10-3𝜆𝑑̅̅ ̅] 

[ 𝜆𝑑+1, 4-2𝜆𝑑] [3𝜆𝑑̅̅ ̅+0, 7-

4𝜆𝑑̅̅ ̅] 

[𝜆𝑑+3,7- 3𝜆𝑑] [3𝜆𝑑̅̅ ̅ +2, 9-

4𝜆𝑑̅̅ ̅] 

[2𝜆𝑑+4,8- 2𝜆𝑑][4𝜆𝑑̅̅ ̅ +3, 

10-3𝜆𝑑̅̅ ̅] 
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Table 5: 𝜔-type 2 diamond multi-objective fuzzy numbers are converted into single 

λ-cut fuzzy number 

Job/ 

Machine 
J1 J2 J3 J4 

 

M1 

[18𝝀𝒅+66,102- 18𝝀𝒅] 

[24𝝀𝒅̅̅ ̅ +63, 105-18𝝀𝒅̅̅ ̅] 

[24𝝀𝒅+92,140- 

24𝝀𝒅] 

[30𝝀𝒅̅̅ ̅ +89, 143-

24𝝀𝒅̅̅ ̅] 

[21𝝀𝒅+90,132- 

21𝝀𝒅] 

[27𝝀𝒅̅̅ ̅  +87, 135-

21𝝀𝒅̅̅ ̅ ] 

[24𝝀𝒅+92,140- 

24𝝀𝒅] 

[30𝝀𝒅̅̅ ̅  +89, 143-

24𝝀𝒅̅̅ ̅ ] 

 

M2 

[4𝝀𝒅+8,19-7𝝀𝒅] 

[10𝝀𝒅̅̅ ̅ +5, 26-11𝝀𝒅̅̅ ̅] 

[21𝝀𝒅+90,132- 

21𝝀𝒅] 

[27𝝀𝒅̅̅ ̅ +87, 135-

21𝝀𝒅̅̅ ̅] 

[11𝝀𝒅++33,63-14𝝀𝒅] 

[25𝝀𝒅̅̅ ̅ +30, 71-16𝝀𝒅̅̅ ̅] 

[18𝝀𝒅 +66,102- 18𝝀𝒅 

] 

[24𝝀𝒅̅̅ ̅  +63, 105-

18𝝀𝒅̅̅ ̅ ] 

 

M3 

[3𝝀𝒅+7,16-6𝝀𝒅] 

[9𝝀𝒅̅̅ ̅ +4, 19-6𝝀𝒅̅̅ ̅] 

[15𝝀𝒅+28,52- 9𝝀𝒅] 

[21𝝀𝒅̅̅ ̅ +25, 55-9𝝀𝒅̅̅ ̅] 

[15𝝀𝒅+28,52- 9𝝀𝒅] 

[21𝝀𝒅̅̅ ̅ +25, 55-9𝝀𝒅̅̅ ̅] 

[24𝝀𝒅+92,140- 

24𝝀𝒅] 

[30𝝀𝒅̅̅ ̅  +89, 143-

24𝝀𝒅̅̅ ̅ ] 

 

M4 

[5𝝀𝒅+10,24-9𝝀𝒅] 

[11𝝀𝒅̅̅ ̅ +7, 30-13𝝀𝒅̅̅ ̅] 

[15𝝀𝒅+28,52- 9𝝀𝒅] 

[21𝝀𝒅̅̅ ̅ +25, 55-9𝝀𝒅̅̅ ̅] 

[4𝝀𝒅 +8,19-7𝝀𝒅 ] 

[10𝝀𝒅̅̅ ̅  +5, 26-11𝝀𝒅̅̅ ̅ ] 

[4𝝀𝒅 +8,19-7𝝀𝒅 ] 

[10𝝀𝒅̅̅ ̅  +5, 26-11𝝀𝒅̅̅ ̅ ] 

 

Table 6: Upper and lower 𝜔-type 2 diamond multi-objective fuzzy numbers are 

converted into single objective λd-cut fuzzy number 

Job/ 

Machine J1 J2 J3 J4 

M1 

[21𝝀𝒅+64.5,103-

18𝝀𝒅̅̅ ̅] 

[27𝝀𝒅+90.5,141.5- 

24𝝀𝒅̅̅ ̅] 

[24𝝀𝒅+88.5,133.5-

21λ] 

[27𝝀𝒅+90.5,141.5- 

24𝝀𝒅̅̅ ̅] 

M2 [7𝝀𝒅+6.5,22.5 -9𝝀𝒅̅̅ ̅] 
[24𝝀𝒅+88.5,133.5-

21𝝀𝒅̅̅ ̅] 

[18𝝀𝒅+31.5,67-

15𝝀𝒅̅̅ ̅] 

[21𝝀𝒅+64.5,103.5-

18𝝀𝒅̅̅ ̅] 

M3 [6𝝀𝒅+5.5,17.5-6𝝀𝒅̅̅ ̅] 
[18𝝀𝒅+26.5,53.5-

9𝝀𝒅̅̅ ̅] 

[18𝝀𝒅+26.5,53.5-

9𝝀𝒅̅̅ ̅] 

[27𝝀𝒅+90.5,141.5- 

24𝝀𝒅̅̅ ̅] 

M4 [8𝝀𝒅+8.5,27-11𝝀𝒅̅̅ ̅] 
[18𝝀𝒅+26.5,53.5-

9𝝀𝒅̅̅ ̅] 
[7𝝀𝒅+6.5,22.5 -9𝝀𝒅̅̅ ̅] [7𝝀𝒅+6.5,22.5 -9𝝀𝒅̅̅ ̅] 

  Obtain dual variables   

𝒖̃ ={[21𝝀𝒅+64.5,103-18𝝀𝒅̅̅ ̅], [7𝝀𝒅+6.5,25.5-9𝝀𝒅̅̅ ̅], [6𝝀𝒅+5.5,17.5-6𝝀𝒅̅̅ ̅], [7𝝀𝒅+6.5,25.5-9𝝀𝒅̅̅ ̅ ] 

     𝒗̃ = {0, [6𝝀𝒅+26,38.5- 6𝝀𝒅̅̅ ̅],0 , 0} 
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              Table 7. 

𝑐𝑖𝑗̃ = 

 

0 -[6𝝀𝒅+26,38.5- 6𝝀𝒅̅̅ ̅] 0 0 

0 0 [3𝝀𝒅+24,30.5-3𝝀𝒅̅̅ ̅] [6𝝀𝒅+26,38.5- 6𝝀𝒅̅̅ ̅] 

0 [11𝝀𝒅+56,72.5-6𝝀𝒅̅̅ ̅] [11𝝀𝒅+25,44.5-6𝝀𝒅̅̅ ̅] [14𝝀𝒅+58,81-9𝝀𝒅̅̅ ̅] 

0 [6𝝀𝒅-5, -2.5+3𝝀𝒅̅̅ ̅] [12𝝀𝒅+21,36-3𝝀𝒅̅̅ ̅] [21𝝀𝒅+85,124- 18𝝀𝒅̅̅ ̅] 

[𝝀𝒅+2.5,4.5-2𝝀𝒅̅̅ ̅] [5𝝀𝒅-6,-7.5+6𝝀𝒅̅̅ ̅] 0 0 

 

 

 

Table 8. 

Job/ 

Machine 
J1 J2 J3 J4 

M1 

[21𝝀𝒅+64.5,103-

18𝝀𝒅̅̅ ̅] 

[27𝝀𝒅+90.5,141.5- 

24𝝀𝒅̅̅ ̅] 

[24𝝀𝒅+88.5,133.5-

21λ] 

[27𝝀𝒅+90.5,141.5- 

24𝝀𝒅̅̅ ̅] 

M2 [7𝝀𝒅+6.5,22.5 -9𝝀𝒅̅̅ ̅] 
[24𝝀𝒅+88.5,133.5-

21𝝀𝒅̅̅ ̅] 

[18𝝀𝒅+31.5,67-

15𝝀𝒅̅̅ ̅] 

[21𝝀𝒅+64.5,103.5-

18𝝀𝒅̅̅ ̅] 

M3 [6𝝀𝒅+5.5,17.5-6𝝀𝒅̅̅ ̅] 
[18𝝀𝒅+26.5,53.5-

9𝝀𝒅̅̅ ̅] 

[18𝝀𝒅+26.5,53.5-

9𝝀𝒅̅̅ ̅] 

[27𝝀𝒅+90.5,141.5- 

24𝝀𝒅̅̅ ̅] 

M4 [8𝝀𝒅+8.5,27-11𝝀𝒅̅̅ ̅] 
[18𝝀𝒅+26.5,53.5-

9𝝀𝒅̅̅ ̅] 
[7𝝀𝒅+6.5,22.5 -9𝝀𝒅̅̅ ̅] [7𝝀𝒅+6.5,22.5 -9𝝀𝒅̅̅ ̅] 
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Updated dual variables 

𝒖̃𝒊
∗ = {[21𝝀𝒅+64.5,103-18𝝀𝒅̅̅ ̅], [18𝝀𝒅+31.5,67 -15𝝀𝒅̅̅ ̅], [12𝝀𝒅,15-9𝝀𝒅̅̅ ̅], [7𝝀𝒅+6.5,25.5-9𝝀𝒅̅̅ ̅]}; 

𝒗𝒋̃
∗
 = {[-11𝝀𝒅-25, -44.5+6𝝀𝒅̅̅ ̅], [6𝝀𝒅+26,38.5- 6𝝀𝒅̅̅ ̅] ,0, 0} 

 

     Table 9. 

𝑐𝑖𝑗̃
∗
= 

 

Job/ 

Machine 
J1 J2 J3 J4 

M1 0 0 [3𝜆𝑑+24,30.5-3𝜆𝑑̅] [6𝜆𝑑+26,38.5- 6𝜆𝑑̅] 

M2 0 [0𝜆𝑑  -1.5,28-0𝜆𝑑̅] 0 [3𝜆𝑑+33,36.5+3𝜆𝑑̅] 

M3 0 0 [6𝜆𝑑+26.5,38.5-0𝜆𝑑̅] [15𝜆𝑑+90.5,126.5- 15𝜆𝑑̅] 

M4 [12𝜆𝑑+27,49-4𝜆𝑑̅] [0𝜆𝑑-6,-7.5-4𝜆𝑑̅] 0 0 

 

Fuzzy optimal schedule M1  →J2,  M2→J3 , M3→J1, M4→J4 

Fuzzy optimal cost = {(25,33,41) + (8,13,18) + (1,2,4) + (1,2,4)}{(24,34,42) + 

(7,15,21) + (0,3,5) + (0,3,7)} 

 Fuzzy optimal cost =   (35, 50, 67) (31,55,75) 

 Fuzzy optimal time= {(31,39,47) + (14,18,24) +  (2,3,5) + (3,4,7)}{(30,40,48 + 

(13,23,28) +  (1,4,6) + (2,5,9)} 

Fuzzy optimal time = (50, 64, 83) (46,72,91) 

Fuzzy optimal quality   =  {(36,44,52) + (4,6,8) + (4,5,7) + (4,6,8)} {(35,45,53) + 

(3,7,10) + (3,6,8) + (3,7,10)} 

Fuzzy optimal quality = (48,61,75) (44,65,81) 
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CONCLUSION 

We discussed 𝜔-type 1 and  𝜔-type 2-diamond fuzzy numbers. We proposed a new 

method for solving λd- cut of 𝜔-type 2-diamond fuzzy multi-objective linear sum 

assignment problem and involving linguistic variables and by using alternate method 

and augmented method of bipartite graph to compute partial feasible solution and 

complete optimal solution. To modified partial primal solution and obtain complete 

optimal solution using the alternate path method producing augment path method of 

the bipartite graph. 
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