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DEFINITIONS 

 
Diophantine m-tuple 

A set of m distinct positive integers { }maaaa .....,,,, 321  is said to have the 

property ( ) { }0, −∈ ZnnD  if naa ji +
 
is a perfect square for all mji ≤<≤1  and such 

a set is called a Diophantine m-tuple with property ( )nD . 

Dio m-tuple 

A set of m distinct positive integers { }maaaa .....,,,, 321  is said to have the 

property ( ) { }0, −∈ ZnnD  if i j i ja a a a n+ + +  is a perfect square for all mji ≤<≤1  

and such a set is called a Dio m-tuple with property ( )nD . 

Nasty Number 

A positive integer n is a Nasty number if cdabn == and dcba −=+  or 

dcba +=−  where a, b, c, d are non-zero distinct positive integers (Bert Miller 1980). 

Bernoulli and Euler Polynomials 

The Bernoulli and Euler polynomials can explicitly be defined as, 
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CHAPTER – I 

INTRODUCTION 

 
State of the art of the research topic 

The theory of numbers is one of the attractive and significant branches of pure 

mathematics concerning mainly to the study of the integers. It has varieties of subject 

areas and each area has its own history deserving special recognition. One of the 

oldest and largest subject areas of number theory is diophantine equations playing an 

important and significant role. A diophantine equation is a polynomial equation in 

two or more variables for which only the integer solutions are searched. In fact, it is 

worth mentioning that diophantine problems have fewer equations than unknown 

variables and involve finding integers that work correctly for all equations. In other 

words, the study of diophantine equations concerns with the search for non-zero 

distinct integer solutions to polynomial equations or systems of equations. The 

formulations of general theories of diophantine equations other than the theory of 

quadratic forms was an achievement of the twentieth century as the individual 

equations seem to be a puzzle and have been considered throughout history. 

Mathematics is like a banyan tree and the Number Theory is one of its oldest 

branches as its history spans for atleast 5000 years. Number theory is a vast and 

fascinating field of Mathematics, sometimes called “Higher Arithmetic”, consisting of 

the study of the properties of whole numbers. Gauss often known as the “Prince of 

Mathematics” called Mathematics the “Queen of the Sciences” and considered 

Number Theory the “Queen of Mathematics”. 

Number theory is populated by a variety of exotic flora and fauna that 

developed from the study of integers. Generally speaking, Number theory is defined 
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as the study of the property of numbers [4-6, 9, 10, 14-16] where by “Numbers” we 

mean integers and more specially, positive integers, which are the building blocks of 

the real number system. It has fascinated and inspired both amateurs and mathematicians 

alike and so they merit special recognition. 

 Number theory provides a fertile ground for both professionals and amateurs. 

In addition to known results, number theory abounds with unsolved problems. 

Although many of its results can be stated in simple and elegant terms, their proofs are 

sometimes long and complicated. Many unsolved problems that have been daunting 

mathematicians for centuries provide unlimited opportunities to expand the frontiers 

of mathematical knowledge. 

 Number theory has several branches and each branch has its own history 

[88, 90, 120-122] and they deserve special recognition. The history of number theory 

can be divided into three parts, progress of number theory before Christian era, its 

development in the next 1500 years and from sixteenth century to present. The 

Modern Era in the subject begins with Pierre de Fermat (Generally acknowledged to 

be the father of modern number theory). 

A vast domain of the theory of numbers goes back to Diophantus of Alexandria. 

The subject of diophantine equations is one of the oldest and largest branches of 

Number theory. The word Diophantine refers to the Hellenistic mathematician of the 

3rd century Diophantus of Alexandria, Egypt who made a study of diophantine equations 

and introduced symbolism into algebra. The study of diophantine equations is the 

study of solutions of polynomial equations or systems of equations in integers, rational 

numbers or sometimes more general number rings. One of the fascinations of the 

subject is that the problems are usually easy to state and when they can be solved, 

sometimes involve sophisticated mathematical tools. 
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Diophantine equations play an important and significant role in Number 

theory. It is worth mentioning that diophantine problems have fewer equations than 

unknown variables and involve finding integers that work correctly for all equations. 

In more technical language, they define an algebraic curve, algebraic surface or more 

general object and ask about the lattice points on it.  Fermat [2] solved new problems, 

posed many challenges to other mathematicians, invented new methods and in 

general, was much more advanced than contemporary mathematicians. The formulation 

of general theories of diophantine equations (further to theory of quadratic forms) was 

an achievement of the twentieth century [19, 23, 69, 74, 86, 87, 89] as the individual 

equations seem to be a puzzle and have been considered throughout history. 

Diophantine equations are numerously rich because of its variety [18, 25, 28, 

32-34, 38-40, 44-46, 48, 49, 54, 55, 60, 61, 76-82, 85, 97]. There is no universal 

method or algorithm for determining whether an arbitrary diophantine equation has a 

solution or finding all the solutions, if it exists. Such an algorithm does exist for the 

solution of first-order diophantine equations. However, the impossibility of obtaining 

a general solution was proven by Yuri Matiyasevich in 1970. There is a general theory for 

quadratic diophantine equations in many variables. There are many quadratic diophantine 

problems which kindled the interest among mathematicians. But there are very few 

diophantine problems for which the complete solution is known [1, 26, 29, 36, 42, 43]. 

There are several diophantine equations that have no solutions, trivial solutions, 

finitely many solutions or infinite number of solutions [30, 37, 47, 52]. For example 

23 14x xy+ =  and 2 42 1x y− = −  [59, 87] have finite number of solutions and the solutions 

are ( )( , ) (1,1), (2,1), ( 1, 11), ( 2, 1), ( 7, 19), ( 14, 41), ( 2, 1) & ( 1, 11)x y = − − − − ± ± ± ± ± ± ±∓  and 

( )( , ) ( 1, 1), ( 239, 39)x y = ± ± ± ±  respectively. The binary quadratic equation 
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2 2 2x y x y xy− + + + =  [31] represents a hyperbola and has infinitely many solutions. 

The pellian equation 2 219 1x y= −  [75] has no solution in integers and Fermat proved that 

4 4 2x y z± =  have no non-trivial solutions. The diophantine equations 4 4 22x y z± = , 

4 4 27x y z+ =  [87] have no integer solutions. In particular, 5 5 1x Dy+ =  [87] has only 

one solution ( 1,1)−  when 2D =  and no integer solution when 4,8,16D = . It is 

obvious that only a few details are known about the theory of representation of 

integers by binary cubic forms. Many special cases of the equation 2 nx c y+ =  [11-13] 

where x and y are positive integers and 3n ≥  have been considered over the years, but 

most results for general n are of recent origin. 

N. Elkies in 1988 found the example 4 4 4 42682240 15365639 1879760 20615673+ + =  

and there by disproving Euler’s conjecture that the Diophantine equation 4 4 4 4w x y z+ + =  

has only trivial solutions in which two of the variables are zero. Also one may refer 

[22, 24, 27, 52, 60, 62]. Titu Andreescue and Dorin Andrica proved that the 

bi-quadratic equation 2 2( 1)( 1) 2( )(1 ) 4(1 )x y x y xy xy+ + + − − = +  has only eight 

solutions ( , ) {(1, 2), ( 3,0), (0,3), ( 2,1), ( 1,0), (0, 1),( 3,2), ( 2,3)}x y = − − − − − − . The equations 

2 48 1y x= +  and 2 42 1x y− = −  have a finite number of solutions and the solutions are 

( , ) {(0, 1),( 1 , 3)}x y = ± ± ±  and ( , ) {( 1, 1),( 239, 13)}x y = ± ± ± ±  respectively. The only 

integral solutions to 2 4 3 2 1y x x x x= + + + +  is ( , ) {( 1, 1),(0, 1),(3, 11)}x y = − ± ± ±  and 

1x y= =  is the only solution for the equation 2 43 2x y= − . 

The Greek Mathematician Diophantus of Alexandria [3] studied the following 

problem: Find four (positive rational) numbers such that the product of any two of 

them increased by one is a perfect square. He obtained the following solution 
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1 33 17 105
, , , .

16 16 4 16
 The first set of four positive integers with the above property was found 

by Fermat and it was Euler who gave the solution { , , 2 ,4 ( )( )}a b a b r r r a r b+ + + +  

where 21ab r+ =  [8]. In other words, a set of m  distinct positive integers 

1 2 3 4 5( , , , , ..... )ma a a a a a  is called a diophantine-m -tuple with property ( )D n , if 

i ja a n+  is a perfect square for all 1i j m≤ ≤ ≤  [7, 8, 20, 21, 35, 119]. Non existence 

of diophantine quadruple with the property (4 2)D k +  was proved in [8] and yielded 

the interest of constructing diophantine m− tuple 4m =  with suitable properties. 

In the 17th century, the study of Diophantine equations was taken by Fermat 

who gave us the famous problem of proving Fermat’s last theorem. Fermat also 

looked at Diophantine problem, but he was more interested in whole number solutions 

than fractions. Weil’s brilliant solution has recently stimulated renewed interest in 

Number Theory. Mathematicians in India were interested in finding integral solutions 

of Diophantine equations since the Vedic era. 

Number is the essence of mathematical calculations. Numbers have varieties 

of patterns and varieties of range and richness. Any sequence of numbers represented 

by a mathematical function may be considered as pattern. In fact, mathematics can be 

considered as a characterization of patterns. For clear understanding, any regularity 

that can be illustrated by a scientific theory is a pattern. In other words, a pattern is a 

group of numbers, shapes or objects that follow a rule. A careful observer of patterns 

may note that there is a one to one correspondence between the polygonal numbers 

and the number of sides of the polygon. 

One of the fascinating variety of numbers is Ramanujan numbers (or R-number) 

named after the great Indian Mathematician Srinivasa Ramanujan. The number that 
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can be expressed as the sum of the squares of two numbers in two different ways are 

called the Second Order Ramanujan numbers and for simplicity, written as 2R  

numbers. In general, if nR  is an R-numbers of order n then its numerical relation can 

be represented as 1 2 1 2
n n n n

nR x x y y= + = + . Obviously, there are many R-numbers in 

each order, which are special cases of Diophantine problem covering a wide area in 

Number Theory [69, 85, 86, 88, 91]. 

Apart from the above patterns we have some more fascinating patterns of 

numbers namely Armstrong numbers, Harshad numbers, Multiple Harshad numbers, 

Nivenmorphic numbers, Sphenic numbers, Sphenic Palindrome numbers. For 

illustrations, one may refer [41, 70-73]. 

Results from Number Theory have countless applications in mathematics as 

well as in practical applications including security, memory management, authentication, 

coding theory, etc. Aspects of elementary number theory pertaining to the golden ratio 

and golden spiral are shown to be related to and therefore of importance in the 

simulation of chemical phenomena. 

Objectives and scope of the research work 

The proposed research work focuses its concentration to search for non-trivial 

integral solutions of diophantine equations of degree two to five with multivariables. 

Some procedures have been developed to find an infinite number of non-trivial 

integral solutions to a few interesting diophantine equations of polynomial types and 

search for interesting properties among the solutions. A few results about special 

Diophantine triple, Diophantine Quadruple, Dio-triples and Dio-quadruples and 

special triples are also studied. 
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In addition, the objective of this thesis is to find non-zero distinct integral 

solution to special forms of double equations, triple equations and equality among 

polygonal numbers. 

This Dissertation consists of XII Chapters. Chapter I provides the historical 

background and necessary literature survey for the variety of problems studied for the 

corresponding integral solutions and related properties presented in the chapters II to XII. 

Chapter-II deals with Quadratic diophantine equations in twelve sections 

II.1 to II.12 

Section II.1 to II.4 

The following binary quadratic equations are analyzed for finding its non-zero 

distinct integer solutions. A few interesting relations among its solutions are 

presented. Also, knowing an integral solution of the given hyperbola, integer solutions 

for other choices of hyperbolas and parabolas are presented. 

II.1[57] 2 23 8 40x y− =  

II.2[97] ( )2 2 25 1y xα= +  

II.3[98] 2 29 8 49x y− =  

II.4 [58] ( )2 23 1x y y= + +  

Section II.5 [99] 

The homogeneous cone represented by the ternary quadratic diophantine 

equation 2 2 26 15 15x xy y z+ + =
 
is studied for finding its non-zero distinct integer 

solutions. A few interesting properties among the solutions are also exhibited. 
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Section II.6 [100] 

The method of determining different solutions in integers to 2 2 2 141x y z+ = +  

by reducing it to ( )2 2 141 0 andsquare - freeD Dβ α= + >  through employing 

transformations. A special case has been illustrated along with the corresponding 

properties. Also, given an integer solution, a process of obtaining sequence of integer 

solutions based on its given solution is exhibited. 

Section II.7 [59] 

This section aims at determining non-zero distinct integer solutions satisfying 

the homogeneous cone represented by the ternary quadratic equation 2 2 23 8 25x y z− = . 

A few interesting relations among the solutions are presented. A general formula for 

generating sequence of integer solutions to the given cone based on a given solution is 

illustrated. 

Section II.8 [101] 

The homogeneous ternary quadratic diophantine equation given by 

2 2 2( ), odd primez D x y D= − =  is analyzed for its non-zero distinct integer solutions 

through different methods. Also, formulae for generating sequence of integer 

solutions based on the given solutions are presented. 

Section II.9 [123] 

The ternary quadratic equation 2 2 225 29x y z= +  representing a homogeneous 

cone is analysed for its non-zero distinct integral points. A few interesting properties 

among the solutions and polygonal numbers are presented. 
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Section II.10 [126] 

The homogeneous ternary quadratic equation given by ( )2 2 2 22 2 22z k k x y= − + +  

is analysed for its non-zero distinct integer solutions through different methods. A few 

interesting properties between the solutions are presented. Also, formulae for 

generating sequence of integer solutions based on the given solution are presented. 

Section II.11 [122] 

The homogeneous quadratic diophantine equation with four unknowns given 

by 2 22 3 8xy z w+ =  is analysed for obtaining its different sets of non-zero distinct 

integer solutions through employing linear transformations. Also, formulae for 

generating sequence of integer solutions based on the given solution are presented. 

Section II.12 [127] 

The homogeneous quadratic diophantine equation with five unknowns given 

by 2 2 2 2 24 16w x y z t− − + =  is analyzed for determining its non-zero distinct integer 

solutions through employing linear transformations. 

Chapter III analyses cubic diophantine equations in four sections III.1 to III.4 

Section III.1 [60] 

The non-homogeneous cubic equation with three unknowns represented by 

( )2 2 33 5 1 111x y xy x y z+ − + + + =  is analyzed for its patterns of non-zero distinct 

integer solutions. A few interesting relations among the solutions are presented. 

Section III.2 [84] 

An attempt is made to solve the cubic equation with four unknowns given by 

( )3 3 2 36 4x y x y z w+ + + =  in integers. Some special relations between the solutions 

are given. 
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Section III.3 [104] 

The homogeneous cubic equation with four unknowns represented by the 

Diophantine equation ( ) ( )23 3 216x y x y x y zw+ + + − =  is analyzed for its patterns of 

non-zero distinct integral solutions. Various interesting relations between the solutions 

and special numbers namely polygonal numbers are exhibited. 

Section III.4 [124] 

This paper concerns with the problem of obtaining non-zero distinct integer 

solutions to the non-homogeneous cubic equation with three unknowns given 

3 3 2 22 (2 1)x y x y z z α+ + + = − + . A few interesting relations among the solutions are 

presented. Also, a formula for generating sequence of integer solutions to the 

considered cubic equation based on its given solution is exhibited. 

Chapter-IV focuses on bi-quadratic diophantine equations in four sections 

IV.1 to IV.4 

Section IV.1 [103] 

We obtain infinitely many non-zero integer solutions to the non-homogeneous 

ternary bi-quadratic equation 2 2 47x xy y z+ + = . 

Section IV.2 [105] 

This section aims at determining non-zero distinct integer solutions 

to the algebraic equation of degree four with three unknowns given by 

( ) ( ) ( ) ( )2 2 2 2 41 2 1 4 3 , 0a x y a xy p a q z a + + − + = + + ≥   

Section IV.3 [102] 

This section concerns with the problem of determining non-trivial integral 

solutions of the non-homogeneous bi-quadratic equation with four unknowns given by 
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2 48 5 5xy z w+ = . We obtain infinitely many non-zero integer solutions of the 

equation, by introducing the linear transformations , ,x u v y u v z v= + = − = . 

Section IV.4 [125] 

On the Homogeneous Bi-Quadratic Equation with Four Unknowns given by 

( ) ( ) 24 4 3 2 2 22 3x y x y z k s w+ + − = +  aims at determining non-zero distinct integer 

solutions. 

Chapter-V [106] searches for the integral solutions to Quintic equation 

The quintic non-homogeneous equation with five unknowns represented by 

the Diophantine equation ( ) ( ) ( )3 3 2 2 33 7x y x y z w p+ − = −  is analyzed for its patterns 

of non-zero distinct integral solutions. 

Chapter VI deals with Double Diophantine Equations in six sections VI.1 to VI.6 

Section VI.1 [86] 

The system of double equations given by 2 33 ,x yz w xy T− = =  is studied for 

obtaining its non-zero distinct solutions in integers. 

Section VI.2 [107] 

The pair of equations given by x y z w+ = + , ( )2
y z x w+ = −  is studied for 

obtaining its non-zero distinct solutions in integers. 

Section VI.3 [61] 

In this section, different methods to obtain non-zero distinct integer solutions 

to the system of double equations ( ) 2,x y z w y z x w+ = + + = +  are illustrated. 
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Section VI.4 [110] 

This section illustrates the method of obtaining non-zero integral solutions 

to the system of two linear equations to be made squares represented by 

2 2,an b p bn a q+ = + =  for the choices of a and b given by (i) a = 1, b = 7 and 

(ii) a = 2, b = 7. 

Section VI.5 [87] 

Two different methods for obtaining non-zero distinct integer solutions to the 

pair of equations x y z w+ = + , ( )3
y z x w+ = −  are illustrated. 

Section VI.6 [109] 

The problem of obtaining non-zero distinct integer solutions to the pair of 

equations x y z w+ = + , ( )3
y z x w+ = +  is analysed. 

Chapter VII analyses Triple Diophantine Equations in three sections VII.1 to VII.3 

Section VII.1 [111] 

An attempt is made to obtain non-zero distinct integer quintuples ( ), , , ,x y a b c  

satisfying the system of three equations 2 2 2 2,2 , 2x y a x y b x y a c+ = + = + = − . 

Different sets of integer solutions are presented. 

Section VII.2 [112] 

Non-zero distinct integer quintuples ( ), , , ,x y a b c  satisfying the system of 

three equations 2 2 2 32 ,2 5 , 2x y a x y a b x y c+ = + = + + =  are determined. 

Section VII.3 [17] 

Triple equations with five unknowns represented by 2 2 22 ,2 5x y a x y a b+ = + = − , 

32 5x y c+ =  are analyzed for non-zero distinct integral solutions. 
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Chapter VIII focuses on Diophantine 3-Tuples in four sections VIII.1 to VIII.4 

Section VIII.1 [114] 

This paper deals with the study of constructing sequences of diophantine 

triples ( ), ,a b c
 
such that the product of any two elements of the set added by a 

polynomial with integer coefficient is a perfect square. 

Section VIII.2 [113] 

The construction of sequences of diophantine triples ( ), ,a b c
 
through pronic 

numbers is studied. 

Section VIII.3 

This section has three parts VIII.3A [88], VIII.3B [90], VIII.3C [62] 

The formulation of sequences of diophantine triples ( ), ,a b c
 
through Euler 

polynomials, Bernoulli polynomials & Euler and Bernoulli polynomails is considered 

in sections VIII.3A, VIII.3B, VIII.3C respectively. 

Section VIII.4 [115] 

This paper concerns with the formulation of sequences of Diophantine 3-tuples 

with property ( )2 10 3D k k+ −  through matrix method.  

Chapter IX [116] deals with formulation of special Dio 3-Tuples through 

polynomials with suitable property 

An attempt has made in constructing sequences of dio 3-tuples ( ), ,a b c
 
such 

that the product of any two elements of the set added with the sum or minus the sum 

of the same elements and increased by a polynomial with integer coefficient is a 

perfect square. 
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Chapter X has two sections X.1 and X.2 

Section X.1 [117] presents diophantine quadruples ( ), , ,a b c d  generated from two 

given pronic numbers such that the product of any two members of the set increased 

by one is a perfect square. 

Section X.2 [108] has two subsections X.2A and X.2B 

The Sub-section X.2A deals with the study of formulating special Dio-quadruples 

( ), , ,a b c d  generated through Euler polynomials such that the product of any two of 

the set minus their sum and increased by two is a perfect square. Sub-section X.2B 

concerns with constructing special Dio-quadruples ( ), , ,a b c d  generated through 

Euler polynomials such that the product of any two of the set minus their sum and 

increased by five is a perfect square. 

Chapter XI deals with special family of 3-tuples in two sections XI.1 to XI.2 

Section XI.1 [120] concerns with the study of formulating 3-tuples consisting of 

polygonal and pyramidal numbers such that, in each three tuple, the sum of any two 

members is a perfect square. 

Section XI.2 [121] deals with the study of formulation of special family of 3-tuples 

( ), ,a b c  such that the product of any two elements of the set added with their sum is a 

perfect square. 

Chapter XII focuses on Equality of Polygonal Numbers in two sections XII.1 to XII.2 

Section XII.1 [118] illustrates formulas for the ranks of Triangular numbers, 

Hexagonal numbers, star numbers satisfying the relation 3, 6,N h nt t S= = . 
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Section XII.2 [119] exhibits formulas for the ranks of Triangular numbers, 

Hexagonal numbers, Centered Hexagonal numbers, Centered Octagonal numbers, 

Centered Decagonal numbers and Centered Dodecagonal numbers satisfying the 

relations 3, 6, 6,N h Ht t ct= = , 3, 6, 8,N h Mt t ct= = , 3, 6, 10,N h Mt t ct= = , 3, 6, 12,N h Dt t ct= = . 
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CHAPTER – II 

QUADRATIC DIOPHANTINE EQUATIONS 

 

Chapter-II deals with Quadratic diophantine equations in twelve sections 

II.1 to II.12 

Section II.1 to II.4 

The following binary quadratic equations are analyzed for finding its non-zero 

distinct integer solutions. A few interesting relations among its solutions are presented. 

Also, knowing an integral solution of the given hyperbola, integer solutions for other 

choices of hyperbolas and parabolas are presented. 

II.1 2 23 8 40x y− =  

II.2 ( )2 2 25 1y xα= +  

II.3  2 29 8 49x y− =  

II.4  ( )2 23 1x y y= + +  

Section II.5 to II.10 

The method of determining different solutions in integers to ternary quadratic 

Diophantine equations are discussed in the following sections 

II.5  2 2 26 15 15x xy y z+ + =  

II.6  2 2 2 141x y z+ = +  

II.7  2 2 23 8 25x y z− =  

II.8  2 2 2( ), odd primez D x y D= − =  

II.9  2 2 225 29x y z= +  

II.10 ( )2 2 2 22 2 22z k k x y= − + +  
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Section II.11 

The homogeneous quadratic diophantine equation with four unknowns given 

by 2 22 3 8xy z w+ =  is analysed for obtaining its different sets of non-zero distinct 

integer solutions through employing linear transformations. Also, formulae for 

generating sequence of integer solutions based on the given solution are presented. 

Section II.12 

The homogeneous quadratic diophantine equation with five unknowns given 

by 2 2 2 2 24 16w x y z t− − + =  is analyzed for determining its non-zero distinct integer 

solutions through employing linear transformations. 
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II.1. On the Pell-Like Equation 2 23 8 = 40x y−−−−  

The binary quadratic equation representing hyperbola is given by 

2 23 8 40x y− =  (2.1) 

Taking 8x X T= + , 3y X T= +  (2.2) 

in (2.1), it simplifies to the equation 

2 224 8X T= −  (2.3) 

The smallest positive integer solution 0 0( , )T X
 
of (2.3) is 

0 01, 4T X= =  

To obtain, the other solutions of (2.3), consider the pellian equation 

2 224 1X T= +  (2.4) 

whose smallest positive integer solution is 

 0 01, 5T X= =ɶ ɶ  

The general solution ( , )n nT Xɶ ɶ
 
of (2.4) is given by 

( ) 1

24 5 24 , 0,1,2....
n

n nX T n
+

+ = + =ɶ ɶ  (2.5) 

Since, irrational roots occur in pairs, we have1 

( ) 1

24 5 24 , 0,1,2....
n

n nX T n
+

− = − =ɶ ɶ  (2.6) 

From (2.5) and (2.6), solving for ,n nX Tɶ ɶ , we have 

( ) ( )1 11 1
5 24 5 24

2 2

n n

n nX f
+ + = + + − =

  
ɶ  

( ) ( )1 11 1
5 24 5 24

2 24 2 24

n n

n nT g
+ + = + − − =

  
ɶ  

Applying Brahmagupta lemma between the solutions 0 0( , )T X  and ( , )n nT Xɶ ɶ , the 

general solution 1 1( , )n nT X+ +  
of (2.3) is found to be 
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1 0 0n n nT X T T X+ = +ɶ ɶ
 

1 0 024n n nX X X T T+ = +ɶ ɶ  

1

2 1

224
n n nT g f+⇒ = +  (2.7) 

1

24
2

2n n nX f g+ = +  (2.8) 

Using (2.7) and (2.8) in (2.2) we have 

1 1 1

28
8 6

24
n n n n nx X T f g+ + += + = +  (2.9) 

1 1 1

7 18
3

2 24
n n n n ny X T f g+ + += + = +  (2.10) 

Thus, (2.9) and (2.10) represent the integer solutions of the hyperbola (2.1). 

A few numerical examples are given in the following table 2.1 

Table 2.1: Examples 

n  +1nx  +1ny  

-1 12 7 

0 116 71 

1 1148 703 

2 11364 6959 

 
 

In the above table x -values are even and y -values are odd 

Recurrence relations for x  and y are: 

3 2 110 0, 1,0,1.....n n nx x x n+ + +− + = = −  

 3 2 110 0, 1,0,1.....n n ny y y n+ + +− + = = −  
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A few interesting relations among the solutions are given below: 

� 1 1 28 5 0n n ny x x+ + ++ − =  

� 3 1 28 5 49 0n n ny x x+ + ++ − =  

� 2 1 28 5 0n n ny x x+ + ++ − =  

� 1 1 380 49 0n n ny x x+ + ++ − =  

� 2 1 316 0n n ny x x+ + ++ − =  

� Each of the following expressions represents a cubical integer: 

i. ( ) ( )3 3 3 4 1 2

1
426 42 3 426 42

120 n n n nx x x x+ + + +− + −    

ii.  ( ) ( )3 3 3 5 1 3

1
4218 42 3 4218 42

1200 n n n nx x x x+ + + +− + −    

iii.  ( ) ( )3 3 3 4 1 2

1
522 84 3 522 84

150 n n n nx y x y+ + + +− + −    

iv. ( ) ( )3 3 3 3 1 1

1
54 84 3 54 84

30 n n n nx y x y+ + + +− + −    

v. ( ) ( )3 3 3 5 1 3

1
5166 84 3 5166 84

1470 n n n nx y x y+ + + +− + −    

� Each of the following expressions represents bi-quadratic integer: 

i. ( ) ( )2

4 4 4 5 1 22

1
51120 5040 4 426 42 28800

120 n n n nx x x x+ + + +
 − + − −
 

 

ii.  ( ) ( )2

4 4 4 6 1 32

1
5061600 50400 4 4218 42 2880000

1200 n n n nx x x x+ + + +
 − + − −
 

 

iii.  ( ) ( )2

4 4 4 4 1 12

1
1620 2520 4 54 84 1800

30 n n n nx y x y+ + + +
 − + − −
 

 

iv. ( ) ( )[ ]45000845444260078300
150

1 2
2154442

−−+− ++++ nnnn yxyx  

v. ( ) ( )2

4 4 4 6 1 32

1
7594020 123480 4 5166 84 4321800

1470 n n n nx y x y+ + + +
 − + − −
 
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� Each of the following expressions represents Nasty number: 

i. [ ]2 2 2 3

1
240 426 42

20 n nx x+ ++ −  

ii.  [ ]2 2 2 4

1
2400 4218 42

200 n nx x+ ++ −  

iii.  [ ]2 2 2 2

1
60 54 84

5 n nx y+ ++ −  

iv. [ ]2 2 2 3

1
300 522 84

25 n nx y+ ++ −  

v. [ ]2 2 2 4

1
2940 5166 84

245 n nx y+ ++ −  

� Each of the following expressions represents Quintic integer 

i. ( ) 3
5 5 5 6 1

1
71 7 30

20 nn n fx x P+ + −− +  where ( )1 2

1
71 7

20n n nf x x+ += −  

ii.  ( ) 3
5 5 5 7 1

1
2109 21 30

600 nn n fx x P+ + −− +  where ( )1 3

1
2109 21

600n n nf x x+ += −  

iii.  ( ) 3
5 5 5 7 1

1
27 42 30

15 nn n fx x P+ + −− +  where ( )1 3

1
27 42

15n n nf x x+ += −  

iv. ( ) 3
5 5 5 6 1

1
261 42 30

75 nn n fx y P+ + −− +  where ( )1 2

1
261 42

75n n nf x y+ += −  

v. ( ) 3
5 5 5 7 1

1
2583 42 30

735 nn n fx y P+ + −− +  where ( )1 3

1
2583 42

735n n nf x y+ += −  

REMARKABLE OBSERVATIONS 

I. Employing linear combinations among the solutions of (2.1), one may generate 

integer solutions for other choices of hyperbola which are presented in table 2.2 

below: 



Chapter-II  Quadratic Diophantine Equations 

 22 

Table 2.2: Hyperbola 

S. 
No. Hyperbola ( ),n nX Y  

1 2 224 1382400n nX Y− =  ( ) ( )1 2 2 1426 42 , 216 2088n n n nx x x x+ + + +− −    

2 2 224 138240000n nX Y− =  ( ) ( )1 3 3 14218 42 , 216 20664n n n nx x x x+ + + +− −    

3 2 224 86400n nX Y− =  ( ) ( )1 1 1 154 84 , 432 252n n n nx y y x+ + + +− −    

4 2 224 2160000n nX Y− =  ( ) ( )1 2 2 1522 84 , 432 2556n n n nx y y x+ + + +− −    

5 2 224 207446400n nX Y− =  ( ) ( )1 3 3 15166 84 , 432 25308n n n nx y y x+ + + +− −    

 
 

II.  Employing linear combination among the solutions for other choices of parabola 

which are presented in table 2.3 below: 

Table 2.3: Parabola 

S. 
No. Parabola ( ),n nX Y  

1 22880 1382400n nX Y− =  ( ) ( )2 2 2 3 2 1240 426 42 , 216 2088n n n nx x x x+ + + ++ − −    

2 228800 138240000n nX Y− =  ( ) ( )2 2 2 4 3 12400 4218 42 , 216 20664n n n nx x x x+ + + ++ − −    

3 2720 86400n nX Y− =  ( ) ( )2 2 2 2 1 160 54 84 , 432 252n n n nx y y x+ + + ++ − −    

4 23600 2160000n nX Y− =  ( ) ( )2 2 2 3 2 1300 522 84 , 432 2556n n n nx y y x+ + + ++ − −    

5 235280 207446400n nX Y− =  ( ) ( )2 2 2 4 3 12940 5166 84 , 432 25308n n n nx y y x+ + + ++ − −    

 
 

PROPERTIES 

III.  Let { }1sm +  
and { }1sn +  

be  sequence of positive integers defined by 

(i) 1 1
1 1

1
,

2 2
s s

s s

y x
n m+ +

+ +

−
= =  

It is seen that 

3, 1128 96st + +  is a Nasty number. 
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(ii)  Define 1 1
1 1

1
,

2 2
s s

s s

y x
n m+ +

+ +

+= =
 

It is noted that 

( )
1 125, 1 3, 111 8 8 1 64 40

s sm s n st m t n
+ ++ ++ − + + =  

(iii)  Consider 1 1
1 1

1
,

2 4
s s

s s

y x
n m+ +

+ +

−
= =

 

It is noted that 

1 198, 3, 164 47 48
s sm n st t m
+ + +− + =  

(iv) Assume 1 1
1 1

3
,

2 2
s s

s s

y x
n m+ +

+ +

−
= =

 

It is observed that 

1 125, 3, 1 164 11 64 112
s sm n s st t m n
+ + + +− + − =  
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II.2 A Remark on the Positive Pell Equation ( )2 2 2= 5 +1y α x  

The binary quadratic equation to be solved for its non-zero distinct integral 

solution is 

( )2 2 25 1y xα= +  (2.11) 

whose smallest  positive integer solution is 

0 02 , 5x y α= =  

Assuming 

y Yα=  (2.12) 

in (2.11), we get 

 ( )2 25 1Y x= +  (2.13) 

whose initial solution is ( ) ( )0 0, 2,5x y =  

To obtain the other solutions of (2.13), consider the Pell equation 

 2 25 1Y x= +  (2.14) 

whose smallest positive integer solution is 0 0( , ) (4 , 9)x Y =ɶɶ  

The general solution of (2.14) is given by 

 
1 1

,
2 2 5

n n n nY f x g= =ɶ ɶ  

where

( ) ( ) ( ) ( )1 1 1 1

9 4 5 9 4 5 , 9 4 5 9 4 5 , 1,0,1.......
n n n n

n nf g n
+ + + +

= + + − = + − − = −  

In view of (2.12), 2n ny f
α=ɶ  
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Applying Brahmagupta lemma between 0 0( , )x y
 

and ( , )n nx yɶ ɶ , the other integer 

solutions of (2.11) are given by 

1

1

5

2 , 1,0,1......
5

5
2

n n n

n n n

x f g
n

y f g
α α

+

+


= +  = −

= +


 

The recurrence relations satisfied by 1nx +  
and 1ny +  are given by 

3 2 118 0n n nx x x+ + +− + =
 

3 2 118 0n n ny y y+ + +− + =  

Some numerical examples of x and y satisfying (2.11) are given in the Table 2.4 below: 

Table 2.4: Numerical Examples 

n  +1nx  +1ny  

`-1 2 5α  

0 38 85α  

1 682 1525α  

2 12238 27365α  

3 219602 491045α  
 
 

From the above table, we observe some interesting relations among the solutions 

which are presented below: 

Illustration 1 

Consider 

0 5y α=  (2.15) 

04 20yα = ⇒ =  

 1*20 2*10 4*5⇒ = =  
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Now, 

 ( ) ( ) ( ) ( )2 2 2 2
1*20 2*10 1 20 10 2 1 20 10 2 505= ⇒ + + − = − + + =  

 ( ) ( ) ( ) ( )2 2 2 2
1*20 4*5 20 1 4 5 20 1 5 4 442= ⇒ − + + = + + − =  

 ( ) ( ) ( ) ( )2 2 2 2
2*10 4*5 2 10 4 5 2 10 4 5 145= ⇒ + + − = − + + =  

Thus, 505, 442, 145 represents second order Ramanujam Numbers with base numbers 

as integers. 

Illustration 2 

Consider (2.15). 

Now, 0 5* 5 *1, 1y α α α= = >  

( ) ( ) ( ) ( ) ( )2 2 2 2 25 5 1 5 5 1 26 1α α α α α⇒ + + − = − + + = +  

Also, ( ) ( ) ( ) ( ) ( )2 2 2 2 25 5 5 5 26 1i i i iα α α α α+ + − = − + + = −  

Thus, ( )226 1 α+  represents second order Ramanujam Numbers with base numbers as 

integers whereas, ( )226 1α −  represents second order Ramanujam Numbers with base 

numbers as Gaussian integers.  

Property I 

Let { }2 1sm +  and { }2 1sn +  be sequences of positive integers defined by 

( )2 1
2 1 2 1 2 1

2 1
, 5 , 0,1,2.......

5 20
s

s s s

x
m n y sα

α
+

+ + +

+   = = − =   
  

 

Observations 

� 
2 1 2 1

2
3, 2 1 12,16 8

s sn s mt n t
+ +++ =  

� ( ) 22
2 1 2 15 4 1 1s sx n+ += + −  
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Property II 

Let { }1sm +  and { }1sn +  be sequences of positive integers defined by 

1 1
1 1

2
, , 0,1,2.......

2 5
s s

s s

x y
m n s

α
+ +

+ +

+   = = =   
   

 

Observations 

� ( )
1

2
10, 1 15 1

sm s st n m
+ + += + −  

� 2 2
1 15 1s sx n+ += −  

� Each of the following expressions is a nasty number. 

� ( )2 2 2 3

6
19 10

5 n ny y α
α + +− +  

� ( )2 2 2 2

6
2 4 2n ny xα α

α + +− +  

� Each of the following expressions is a cubical integer. 

�  ( ) ( )3 3 3 4 1 2

1 3
19 19

5 5n n n nx y y y
α α+ + + +− + −  

� ( ) ( )3 3 3 3 1 1

1 3
2 4 2 4n n n ny x y xα α

α α+ + + +− + −  

� Each of the following expressions is a bi-quadratic integer. 

� ( )4 4 4 5 2 2 2 3

1 4
19 (19 10 ) 2

5 5n n n nx y y y α
α α+ + + +− + − + −  

� ( )4 4 4 4 2 2 2 2

1 4
2 4 (2 4 2 ) 2n n n ny x y xα α α

α α+ + + +− + − + −  

� ( ) 2
4 4 4 5 1 22

1 4
19 (19 ) 2

5 25n n n ny y y y
α α+ + + +− + − −  

� ( ) ( )2

4 4 4 4 1 12

1 4
2 4 2 4 2n n n ny x y xα α

α α+ + + +− + − −  
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� Relations among the solutions 

� 1 1 2

4
9n n ny x x

α + + += − +  

� 2 2 1

4
9n n ny x x

α + + += −  

� 3 2 1

4
161 9n n ny x x

α + + += −  

� 1 2 120 9n n nx y yα + + += −  

� 2 2 120 9n n nx y yα + + += −  

� 3 2 120 161 9n n nx y yα + + += −  

� 2 1 14 9n n nx y xα α+ + += +  

� 2 1 12 40 18n n ny x yα+ + += +  

� 3 1 12 322 720n n ny y xα+ + += +  

Remarkable observations 

1. Employing linear combinations among the solutions of (2.11), one may generate 

integer solutions for other choices of hyperbolas. Some examples are presented in 

the Table 2.5. 

Table 2.5: Hyperbolas 

S. No. Hyperbolas ( , )n nX Y  

1 2 2 24 5 400n nX Y α− =  ( )1 2 2 119 , 17n n n ny y y y+ + + +− −  

2 2 2 25 20n nX Y α− =  ( )1 1 1 12 4 ,10 4n n n ny x x yα α+ + + +− −  

 
 

2. Employing linear combinations among the solutions of (2.11), one may generate 

integer solutions for other choices of parabolas. Some examples are presented in 

the Table 2.6. 
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Table 2.6: Parabolas 

S. No. Parabolas )Y,( nnαααα  

1 2 24 80n nY α α α= −  ( )2 2 2 3 2 110 19 , 17n n n ny y y yα + + + ++ − −  

2 2 25 20n nY α α α= −  ( )2 2 2 2 1 12 2 4 ,10 4n n n ny x x yα α α+ + + ++ − −  
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II.3 On the Binary Quadratic Equation 2 29 8 = 49x y−−−−  

Consider the non homogeneous binary quadratic equation 

2 29 8 49x y− =  (2.16) 

Introducing the linear transformations 

8 , 9x X T y X T= + = +  (2.17) 

in (2.16), it leads to 

2 272 49X T= +  (2.18) 

with the least positive integer solutions 0 011, 1X T= =  

To obtain the other solutions of equation (2.18), Consider the Pellian equation 

2 272 1X T= +  

whose general solution, 1 1
,

2 2 72
n n n nX f T g= =ɶ ɶ   

in which 1 1[(17 2 72) (17 2 72) ]n n
nf

+ += + + −  

 
1 1[(17 2 72) (17 2 72) ]n n

ng + += + − − , where n = -1, 0, 1, 2…… 

Applying Brahmagupta lemma between the solutions of 0 0( , )X T  and ( , )n nX Tɶ ɶ  the 

general solutions of equation (2.18) are found to be 

1

11 72

2 2n n nX f g+ = +

 

1

1 11

2 2 72
n n nT f g+ = +  

In view of (2.17), the corresponding nonzero distinct integral solutions of (2.16) are 

1

19 80

2 72
n n

n

f g
x + = +  

1

171
10

2 72
n

n n

g
y f+ = +  
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The recurrence relations satisfied by the values of x and y  are respectively 

 3 2 134 0n n nx x x+ + +− + =  

3 2 134 0n n ny y y+ + +− + =  

A few numerical examples are presented in the table 2.7 below: 

Table 2.7: Numerical examples 

n  +1nx  +1ny  

-1 19 20 

0 643 682 

1 21843 23168 

2 742019 787030 

3 25206803 26735852 

4 856289283 908231938 
 
 

A few interesting properties are given below: 

1. The values of x are odd while the values of y are even. 

2. Each of the following is a Nasty number 

� [ ]2 2 2 2

6
342 320 98

49 n nx y+ +− +  

� [ ]2 2 2 3

6
11574 320 1666

833 n nx y+ +− +  

� [ ]2 2 2 3

6
10912 320 1568

784 n nx x+ +− +  

� 2 2 2 4

6
[370688 320 53312]

26656 n nx x+ +− +  

� [ ]2 2 2 4

6
393174 320 56546

28273 n nx y+ +− +  
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3. Each of the following is a Square number 

� [ ]2 4 2 4

1
393174 370688 98

49 n nx y+ +− +  

� [ ]2 3 2 2

1
342 11574 1764

882 n ny y+ +− +  

� [ ]2 4 2 2

1
342 393174 59976

29988 n ny y+ +− +  

� [ ]2 4 2 3

1
11574 393174 1764

882 n ny y+ +− +  

4. Each of the following is a cubical integer 

i. [ ]3 3 3 4 1 2

1
10912 320 32736 960

784 n n n nx x x x+ + + +− + −  

ii.  [ ]3 3 3 5 1 3

1
370688 320 1112064 960

26656 n n n nx x x x+ + + +− + −  

iii.  [ ]3 3 3 3 2 2

1
324 320 34722 32736

49 n n n nx y x y+ + + +− + −  

iv. [ ]3 3 3 4 2 1

1
11574 320 1026 32736

833 n n n nx y x y+ + + +− + −  

v. [ ]3 3 3 5 3 1

1
393174 320 1029 1112064

28273 n n n nx y x y+ + + +− + −  

5. Each of the following is a  bi-quadratic integer 

i. [ ]4 4 4 5 2 2 2 3

1
10912 320 43648 1280 4704

784 n n n nx x x x+ + + +− + − +  

ii.  [ ]4 4 4 6 2 2 2 4

1
370688 320 1482752 _1280 159936

26656 n n n nx x x x+ + + +− + +  

iii.  [ ]4 4 4 4 2 2 2 2

1
342 320 1368 1280 294

49 n n n nx y x y+ + + +− + − +  

iv. [ ]4 4 4 5 2 2 2 3

1
11574 320 46296 1280 4998

833 n n n nx y x y+ + + +− + − +  
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v. [ ]4 4 4 6 2 2 2 4

1
393174 320 1572696 1280 169638

28273 n n n nx y x y+ + + +− + − +  

6. Each of the following is a quintic integer 

� [ ]5 5 5 6 3 3 3 4 1 2

1
10912 320 54560 1600 109120 3200

784 n n n n n nx x x x x x+ + + + + +− + − − +  

� [ ]5 5 5 7 3 3 3 5 1 3

1
370688 320 1853440 4800 3706880 3200

26656 n n n n n nx x x x x x+ + + + + +− + − − +  

� [ ]5 5 5 5 3 3 3 3 1 1

1
342 320 1710 1600 3420 3200

49 n n n n n nx y x y x y+ + + + + +− + − − +  

� [ ]5 5 5 7 3 3 3 5 1 3

1
11574 320 57870 1600 115740 3200

833 n n n n n nx y x y x y+ + + + + +− + − − +  

� [ ]5 6 5 7 3 4 3 5 2 3

1
370688 10912 1853440 54560 3706880 109120

784 n n n n n nx x x x x x+ + + + + +− + − − +  

7. Relations among the solutions are given below: 

� 1 1 216 17 0n n ny x x+ + ++ − =  

� 2 1 216 17 0n n ny x x+ + ++ − =  

� 1 3 234 0n n nx x x+ + ++ − =  

� 1 1 3544 577 0n n ny x x+ + ++ − =  

� 2 1 332 0n n ny x x+ + ++ − =  

3. REMARKABLE OBSERVATIONS 

3.1. Employing linear combinations among the solutions of (2.16), one may generate 

integer solutions for other choices of hyperbolas which are presented in the 

table 2.8 below. 
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Table 2.8: Illustrations 

S. 
No. Hyperbola ( , )X Y  

1 2 272 2458624n nX Y− =  ( )1 2 2 110912 320 ,38 1286n n n nx x x x+ + + +− −  

2 2 272 2842169344n nX Y− =  ( )1 3 3 1370688 320 ,38 43686n n n nx x x x+ + + +− −  

3 2 272 9604n nX Y− =  ( )1 1 1 1342 320 ,38 40n n n nx y y x+ + + +− −  

4 2 272 2775556n nX Y− =  ( )1 2 2 111574 320 ,38 1364n n n nx y y x+ + + +− −  

5 2 272 3197450116n nX Y− =  ( )1 3 3 1393174 320 ,38 46336n n n nx y y x+ + + +− −  

 
 
 

3.2. Employing linear combinations among the solutions of (2.16), one may generate 

integer solutions for other choices of parabolas which are presented in the 

table 2.9 below. 

 
Table 2.9: Illustrations 

S. 
No. Parabola ( , )X Y  

1 2784 72 1229312n nX Y− =  2 3 2 4 3 2(370688 10912 ,1286 43686 )n n n nx x x x+ + + +− −  

2 226656 1421084672n nX Y− =  ( )2 2 2 4 3 1370688 320 ,38 43686n n n nx x x x+ + + +− −  

3 249 72 4802n nX Y− =  ( )2 2 2 2 1 1342 320 ,38 40n n n nx y y x+ + + +− −  

4 2833 72 1387778n nX Y− =  ( )2 2 2 3 2 111574 320 ,38 1364n n n nx y y x+ + + +− −  

5 228273 72 1598725058n nX Y− =  ( )2 2 2 4 3 1393174 320 ,38 46336n n n nx y y x+ + + +− −  

 
 
 

3.3. Employing linear combinations among the solutions of (2.16), one may generate 

integer solutions for other choices of straight lines which are presented in the 

table 2.10 below. 
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Table 2.10: Illustrations 

S. No. Straight line ( , )X Y  

1. 17X Y=  
1 2682 20n nX x x+ += −

 
1 311584 10n nY x x+ += −  

2. X Y=  
1 2

1 1

682 20

342 320
n n

n n

X x x

Y x y
+ +

+ +

= −
= −

 

3. 17X Y=  
1 2

1 2

682 20

11584 320
n n

n n

X x x

Y x y
+ +

+ +

= −
= −

 

4. X Y=  
1 2

2 3

682 20

23268 682
n n

n n

X x x

Y x x
+ +

+ +

= −
= −

 

5. 17X Y=  
1 2

2 1

682 20

342 10912
n n

n n

X x x

Y x y
+ +

+ +

= −
= −

 

 
 
 

3.4. Consider 1 1 1,n n np x y q x+ + += + =  observe that 0p q> > . Treat ,p q as the generators 

of the Pythagorean triangle ( ), ,T α β γ , where 2 2 2 22 , ,pq p q p qα β γ= = − = + . Let A, 

P represent the area and perimeter of ( , , )T α β γ . Then the following interesting 

relations are observed. 

a) 16 9 7 98 0X Y Z− − − = . 

b) 1 1

2
.n n

A
x y

P + +=  

c) 3( )Z Y−  is a nasty number. 

d) 
4

3( )
A

X
P

−
 
is a nasty number. 

e) 
4A

X Y
P

− +
 
is written as the sum of two squares. 

3.5. From the values of 1ny + , one may generate second order Ramanujan numbers 

with base numbers as real integers and Gaussian integers. 



Chapter-II  Quadratic Diophantine Equations 

 36 

Illustration 

Consider 0 20 20 1 2 10 4 5y = = ∗ = ∗ = ∗  

Now, 2 2 2 220 1 2 10 (20 1) (10 2) (20 1) (10 2)∗ = ∗ ⇒ + + − = − + +  

 2 2 2 221 8 19 12 505⇒ + = + =  

In a similar manner, 

2 2 2 2

2 2 2 2

2 10 4 5 12 1 8 9 145

20 1 4 5 21 1 19 9 442

∗ = ∗ ⇒ + = + =

∗ = ∗ ⇒ + = + =
 

Thus 505, 145, 442 are second order Ramanujan numbers with base numbers as real 

integers. 

Also, 

2 2 2 2

2 2 2 2

2 2 2 2

20 1 2 10 (20 ) (10 2 ) (20 ) (10 2 ) 495

2 10 4 5 (10 2 ) (5 4 ) (10 2 ) (5 4 ) 105

20 1 4 5 (20 ) (5 4 ) (20 ) (5 4 ) 408

i i i i

i i i i

i i i i

∗ = ∗ ⇒ + + − = − + + =

∗ = ∗ ⇒ + + − = − + + =

∗ = ∗ ⇒ − + + = + + − =

 

Here 495, 105, 408 are second order Ramanujan numbers with base numbers as 

Gaussian integers. 

3.6. Let { }1na +  and { }1nb +  be two sequences of positive integers, where 

1 1
1 1

1
,

2 2
n n

n n

x y
a b+ +

+ +

−= =  

It is observed that 

a) 
13,6( 5)

nat
+

−
 
is a Nasty Number. 

b) 
1 13, 10,9 2(mod3)

n na bt t
+ +

− ≡  

c) 
1

2
3, 19 4 5

na nt b
+ +− =

 
in which ,m nt  represents a polygonal number of rank n 

with side m. 
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REMARK 1 

One may also employ the linear transformations 8 , 9x X T y X T= − = −  to solve 

(2.16) and obtain a different set of solutions. 

REMARK 2 

The introduction of the linear transformations ( ) ( )7 8 , 7 9x X T y X T= ± = ±  in (2.16) 

leads to the pellian equation 

 2 272 1X T= +  

whose solutions are well-known. Applying these values in the above transformations, 

yet another set of integer solutions to (2.16) is obtained. 

In this paper, a study is made for determining many integer solutions to the hyperbola 

represented by the Pell-Like equation 2 29 8 49x y− = . As the quadratic equations are 

rich in variety, the readers of this paper may attempt to obtain integer solutions to 

other choices of quadratic equations with two or more unknowns. 
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II.4. Observations on the Pell Equation 2 2= 3( + ) +1x y y  

 
The hyperbola represented by the non-homogeneous quadratic equation under 

consideration is 

2 23( ) 1x y y= + +  (2.19) 

Treating (2.19) as a quadratic in y and solving for y, 

we get 

23 12 3

6

x
y

− ± −=
 

(2.20) 

Let 

2 212 3Y x= −  (2.21) 

The smallest positive integer solution to (2.21) is 0 1x = , 0 3Y =  

To find the other solutions to (2.19), consider the corresponding pellian equation 

given by 

2 212 1Y x= +  (2.22) 

whose the general solution ,n nx Yɶɶ  is 

1

2n nY f=ɶ  

1

4 3
n nx g=ɶ  

where 

( ) ( )1 1

7 4 3 7 4 3
n n

nf
+ +

= + + −  

( ) ( )1 1

7 4 3 7 4 3 , 0,1, 2,............
n n

ng n
+ +

= + − − =  
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Employing the lemma of Brahmagupta between the solutions ( ) ( )0 0, & ,n nx Y x Yɶɶ , the 

general solution ( )1 1,n nx Y+ +  to (2.21) is given by 

1 0 0n n nx x Y Y x+ = +ɶ ɶ  

 
1 3

2 4n nf g= +
 

(2.23) 

1 0 0n n nY Y Y Dx x+ = +ɶ ɶ  

 

1
3* 3

2 n nf g= + ∗  

In view of (2.20) and taking the positive sign before the square-root on the R.H.S. of 

(2.20), 

we have 

( )1

1
3 2 3 6

12n n ny f g+ = + −
 

(2.24) 

Thus, (2.23) and (2.24) represented the integer solutions to (2.19). 

A few numerical solutions to (2.19) are presented in Table below: 

 
Table 2.11: Numerical solutions 

N +1nx  +1ny  

-1 1 0 

0 13 7 

1 181 104 

2 2521 1455 

3 35113 20272 
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Observations 

� The x-values are odd primes whereas y-values are alternatively odd and even. 

� A few interesting relations among the solutions are given below: 

• 3 2 114 0n n nx x x+ + +− + =  

• 3 2 114 6n n ny y y+ + +− + =  

• 1 2 112 6 7n n ny x x+ + ++ = −  

• 2 1 212 6 7n n ny x x+ + ++ = − +  

• 3 1 212 6 7 97n n ny x x+ + ++ = − +  

� Expressions representing square integers: 

• [ ]2 2 2 315 2n nx x+ +− +  

• [ ]2 2 2 4

1
209 28

14 n nx x+ +− +  

• [ ]2 3 2 22 26 10n ny y+ +− −  

• [ ]2 4 2 2

1
181 76

7 n ny y+ +− −  

� Expressions representing cubical integers: 

• ( )3 3 3 4 1 2[15 3 15 ]n n n nx x x x+ + + +− + −  

• ( )3 3 3 5 1 3

1
209 3 209

14 n n n nx x x x+ + + +− + −    

• [ ]3 4 3 3 2 12 26 6 78 48n n n ny y y y+ + + +− + − −  

• [ ]3 5 3 3 3 1

1
181 3 543 360

7 n n n ny y y y+ + + +− + − −  
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� Expressions representing biquadratic integers: 

• ( ) ( )2

4 4 4 5 1 215 4 15 2n n n nx x x x+ + + +− + − −  

• ( ) ( )4 4 4 5 2 2 2 315 4 15 2 2n n n nx x x x+ + + +− + − + −  

• ( ) ( )2

4 4 4 6 1 3

1 1
209 209 2

14 49n n n nx x x x+ + + +− + − −  

• ( ) ( )4 4 4 6 2 2 2 4

1 2
209 209 28 2

14 7n n n nx x x x+ + + +− + − + −  

• ( ) ( )2

4 5 4 4 2 12 26 14 16 13 6 2n n n ny y y y+ + + +− − + − − −  

� Employing linear combinations among the solutions, one obtains solutions to 

other choices of hyperbolas. 

Choice 1: Let 2 1 1 213 , 15n n n nY x x X x x+ + + += − = −  

 Note that ( , )X Y  satisfies the hyperbola 

 
2 23 4 12X Y− =  

Choice 2: Let 3 1 1 3181 , 209n n n nY x x X x x+ + + += − = −  

 Note that ( , )X Y  satisfies the hyperbola 

 
2 23 4 48*49X Y− =  

Choice 3:  Let 1 2 2 115 7, 2 26 12n n n nY y y X y y+ + + += − + = − −  

 Note that ( , )X Y  satisfies the hyperbola 

 
2 24 3 4X Y− =  

Choice 4: Let 1 3 3 1209 104, 181 90n n n nY y y X y y+ + + += − + = − −  

 Note that ( , )X Y  satisfies the hyperbola 

 
2 24 3 49*16X Y− =  
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� Employing linear combinations among the solutions, one obtains solutions to 

other choices of parabolas. 

Choice 1: Let 2 1 1 2 2 2 313 , 15 2n n n nY x x X x x+ + + += − = − +  

 Note that ( )1,Y X  satisfies the parabola 

 
2

13 4 12X Y− =  

Choice 2: Let 3 1 1 2 2 2 4181 , 209 28n n n nY x x X x x+ + + += − = − +  

 Note that ( )1,Y X  satisfies the parabola 

 
2

121 2 21*56X Y− =  

Choice 3: Let 1 3 1 2 4 2 2209 104, 181 76n n n nY y y X y y+ + + += − + = − −  

 Note that ( )1,Y X  satisfies the parabola 

 
2

128 3 4*196X Y− =  

Choice 4: Let 513,715 2232121 −−=+−= ++++ nnnn yyXyyY  

 Note that ( )1,Y X
 
satisfies the parabola 

 
2

12 3 4X Y− =  

� Considering suitable values of 1nx +  
and 1ny + , one generates 2nd order 

Ramanujan numbers with base integers as real integers. 

For illustration, consider 

2 104 1 104 2 52 4 26 8 13y x= = × = × = × =
 

(2.25) 

Now, 1 104 2 52× = ×  

( ) ( ) ( ) ( )2 2 2 2
104 1 52 2 104 1 52 2→ + + − = − + +  

( ) ( )2 22 2105 50 103 54 13525→ + = + =  
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1 104 4 26× = ×  

( ) ( ) ( ) ( )2 2 2 2
104 1 26 4 104 1 26 4 11509→ + + − = − + + =  

1 104 8 13× = ×  

( ) ( ) ( ) ( )2 2 2 2
104 1 13 8 104 1 13 8 11050→ + + − = − + + =  

2 52 4 26× = ×  

( ) ( ) ( ) ( )2 2 2 2
52 2 26 4 52 2 26 4 3400→ + + − = − + + =  

2 52 8 13× = ×  

( ) ( ) ( ) ( )2 2 2 2
52 2 13 8 52 2 13 8 2941→ + + − = − + + =  

4 26 8 13× = ×  

( ) ( ) ( ) ( )2 2 2 2
26 4 13 8 26 4 13 8 925→ + + − = − + + =  

Also, 

2 2 2 22 52 4 26 27 25 15 11× = × → − = −  

2 2 2 227 11 15 25 850→ + = + =  

Thus, 13525, 11509, 11050, 3400, 2941, 925, 850 represent 2nd order Ramanujan 

numbers with base integers as real integers. 

� Considering suitable values of 1 1&n nx y+ + , one generates 2nd order Ramanujan 

numbers with base integers as Guassian integers. 

For illustration, consider again represented by (2.25) 

Now, ( ) ( ) ( ) ( )2 2 2 2
1 104 2 52 1 104 2 52 1 104 2 52 13520i i i i× = × → + + − = − + + = −  

Also, ( ) ( ) ( ) ( )2 2 2 2
1 104 2 52 104 52 2 104 52 2 13520i i i i× = × → + + − = − + + =  

Note that -13520 & 13520 represent 2nd order Ramanujan numbers with base integers 

as Gaussian integers. 

In a similar manner, other 2nd order Ramanujan numbers are obtained 
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Formation of sequence of Diophantine 3-tuples 

Consider the solution to (2.19) given by 

( ) ( )1 1 013 , 7x a say y c say= = = =  

It is observed that 

 2 2
0 91ac k k+ − = , a perfect square 

The pair ( )0,a c  represents diophantine 2-tuple with property ( )2 91D k − . 

If 1c  is the 3rd tuple, then it satisfies the system of double equations 

2 2
113 91c k p+ − =  (2.26) 

2 2
17 91c k q+ − =  (2.27) 

Eliminating 1c  
between (2.26) and (2.27), we have 

2 2 26( 91) 13 7k q p− = −
 

(2.28) 

Taking 

TXqTXp 7,13 +=+=
 

(2.29) 

in (2.28) and simplifying, we get 

9191 222 −+= kTX  

which is satisfied by 

, 1X k T= =  

In view of (2.29) and (2.26), it is seen that 

1 2 20c k= +  

Note that ( )13,7,2 20k +  represents diophantine 3-tuple with property ( )2 91D k − . 

The process of obtaining sequences of diophantine 3-tuples with property ( )2 91D k −
 

is illustrated below: 
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Let M be a 3*3 square matrix given by 

1 0 2

0 0 1

0 1 2

M

 
 = − 
 
 

 

Now 

( )13,7,2 20 (13,2 20, 4 59)k M k k+ = + +  

Note that 

( )213*(2 20) 91 perfect squarek k+ + − =  

( )213*(4 59) 91 perfect squarek k+ + − =  

( )2(2 20)*(4 59) 91 perfect squarek k k+ + + − =  

Therefore, the triple ( )13,2 20,4 59k k+ +  represents diophantine 3-tuple with 

property ( )2 91D k − . The repetition of the above process leads to sequences of 

diophantine 3-tuples whose general form 1( , , )S Sa c c−  is given by 

( )( )2 213,13 2 26 2 20,13 2 7s k s k s ks+ − − + + + , s = 1, 2, 3…….. 

A few numerical illustrations are given in Table below: 

Table 2.12: Numerical illustrations 

K 0 1( , , )a c c  1 2( , , )a c c  2 3( , , )a c c  ( )2 91D k −−−−  

0 (13,7,20) (13,20,59) (13,59,124) D(-91) 

1 (13,7,22) (13,22,63) (13,63,130) D(-90) 

2 (13,7,24) (13,24,67) (16,114,136) D(-87) 
 
 

It is noted that the triple ( )1 1, 13,s s sc c c− ++ , s = 1, 2, 3…… 

forms an arithmetic progression. 
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In a similar way, one may generate sequences of diophantine 3-tuples with suitable 

property through the other solutions to (2.19). 

Generation of solutions 

Let ( )0 0,x y  represents any given solution to (2.19). 

 Consider the second solution ( )1 1,x y  to (2.19) given by 

1 0 1 02 ,x h x y y h= − = +
 

(2.30) 

Substituting (2.30) in (2.19) and simplifying, one obtains 

0 04 6 3h x y= + +  

In view of (2.30), we have 

1 0 0 1 0 07 12 6, 4 7 3x x y y x y= + + = + +  

which is written in the form of matrix as 

1 1, 0 0

7 12 6

( , 1) 4 7 3 ( , ,1)

0 1 1

t tx y x y

 
 =  
 
 

 

where t is the transpose. The repetition of the above process leads to the general 

solution to (2.19) as 

( )1 1, ,1
t

n nx y+ + =
0 0

3
3

2
1

( , ,1) , 0,1, 2,...
2

0 0 1

n
n n

tn
n n

X
Y X

Y
X Y x y n

 
 
 

−  =
 
 
 
 
 

 

where 

( ) ( )( )1 11
7 4 3 7 4 3

2

n n

nY
+ +

= + + −  

( ) ( )( )1 11
7 4 3 7 4 3

2 3

n n

nX
+ +

= + − −  
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II.5 A Search on the Homogeneous Cone 2 2 2+ 6 +15 = 15x xy y z  

 
The quadratic Diophantine equation with the three unknowns to be solved is given by 

2 2 26 15 15x xy y z+ + =
 

(2.31) 

Substituting, 

3x y u+ =
 

(2.32) 

in (2.31), we get 

2 2 26 15u y z+ =
 

(2.33) 

Different ways of solving (2.33) for u, y and z are presented below. Knowing the 

values of u and y, the corresponding values of x are obtained from (2.32). 

Way 1 

Assume 

 ( ) 2 2, 6z a b a b= +
 

(2.34) 

Write 15 as 

( ) ( )15 3 6 3 6i i= + −
 

(2.35) 

Using (2.34) and (2.35) in (2.32) and applying the method of factorization define 

 ( ) ( ) ( )2

6 6 3 6u i y a i b i+ = + +  

From which, on equating the real and imaginary parts, one obtains 

2 23 18 12u a b ab= − −  (2.36) 

( ) 2 2, 6 6y a b a b ab= − +  (2.37) 

In view of (2.32), we have 

 ( ), 30x a b ab= −  (2.38) 

Thus, (2.34), (2.37) and (2.38) represent the integer solutions to (2.31). 
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Properties 

1. ( ) 4,,1 30 30 0a ax a Pr t+ − =  

2. ( ) 4,,1 5 6 6 0a ay a t Pr+ − + =  

3. ( ) 14, 4,1, 1 0b b by b t Pr t+ − + − =  

4. ( ) ( ) ( )4,,1 ,1 25 24 0 mod14a ax a y a t Pr+ − + ≡  

5. ( ) ( ) ( )1, 1, 0 mod14bx b y b S+ + ≡  

Note 1 

One may also represent 15 as  

( ) ( )
2

9 7 6 9 7 6
15

5

i i+ −
=

 

After performing a few calculations as above, the corresponding values of x, y and z 

are given by 

( ) 2 2, 60 360 690x A B A B AB= − + +  

 ( ) 2 2, 35 210 90y A B A B AB= − −  

 ( ) 2 2, 25 150z A B A B= +  

Properties 

1. ( ) 122, 4,,1 631 631 360 0A A Ax A t Pr t+ − + − =  

2. ( ) 722, 4,1, 1049 1049 60 0B Bx B t Pr t− − + + =B  

3. ( ) ( )72, 4,,1 56 56 0 mod 7A A Ay A t Pr t− + − ≡  

4. ( ) ( )422, 4,1, 299 299 0 mod5B B By B t Pr t+ + − ≡  

5. ( ) ( ) 52, 4,,1 ,1 576 576 150 0A A Ax A y A t Pr t+ + − + − =  
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Way 2 

(2.33)  is written as 

2 2 26 15 *1u y z+ =  (2.39) 

Assume 

( )( )
2

1 2 6 1 2 6
1

5

i i+ −
=  (2.40) 

Substituting (2.34), (2.35) and (2.40) in (2.39) and employing the method of 

factorization, define 

 ( ) ( ) ( ) ( )2 1 2 6
6 3 6 6 *

5

i
u i y i a i b

+
+ = + +  

On equating the real  and  imaginary  parts, we get 

( )2 21
9 54 84

5
u a b ab= − + −

 (2.41) 

 
( )2 21
7 42 18

5
y a b ab= − −

 (2.42)
 

As our interest is on finding integer solutions, replacing a by 5A and b by 5B in 

(2.34), (2.41) and (2.42), it is seen that 

 
2 245 270 420u A B AB= − + −

 

( ) 2 2, 35 210 90y A B A B AB= − −  (2.43) 

( ) 2 2, 25 150z A B A B= +  (2.44) 

In view of (2.32), one obtains 

( ) 2 2, 150 900 150x A B A B AB= − + −  (2.45) 

Thus, (2.43), (2.44) and (2.45) represent the integer solutions to (2.31). 
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Properties 

1. ( ) 302, 4,,1 299 299 900 0A A Ax A t Pr t+ + − − =  

2. ( ) 1800, 4,1, 749 749 150 0B B Bx B t Pr t− − + + =  

3. ( ) ( )72, 4,,1 56 56 0 mod3A A Ay A t Pr t− + − ≡  

4. ( ) ( )422, 4,1, 299 299 0 mod 7B B By B t Pr t+ + − ≡  

5. ( ) ( ) 232, 4,,1 ,1 354 354 690 0A A Ax A y A t Pr t+ + + − − =  

Note 2 

The representations of (2.45) and (2.31) in (2.39) may also be considered as follows: 

(i) ( )( ) ( )( )5 6 5 6
15 3 6 3 6 , 1

49

i i
i i

+ −
= + − =  

(ii)  
( )( ) ( ) ( )9 7 6 9 7 6 1 2 6 1 2 6

15 , 1
25 25

i i i i+ − + −
= =  

(iii)  
( )( ) ( )( )9 7 6 9 7 6 5 6 5 6

15 , 1
25 49

i i i i+ − + −
= =  

Employing the procedure as above for each of this representations, the corresponding 

integer solutions to (2.31) thus obtained are presented below. 

Solutions obtained from (i): 

( ) ( )
( )

( ) ( )

2 2

2 2

2 2

, 7 30 180 150

( , ) 7 11 66 6

, 49 6

x A B A B AB

y A B A B AB

z A B A B

= − + +

= − +

= +
 

Solutions obtained from (ii): 

( )

( )

2 2

2 2

2 2

, 6 3 6

( , ) 6 6

, 6

x a b a b ab

y a b a b ab

z a b a b

= − + +

= − −

= +
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Solutions obtained from (iii): 

 

( ) ( )
( )

( ) ( )

2 2

2 2

2 2 2

, 35 198 1188 402

( , ) 35 53 318 78

, 35 6

x A B A B AB

y A B A B AB

z A B A B

= − + −

= − −

= +
 

Way 3 

(2.33) can be written in the form of ratio as 

( )
3

, 0
6 3

u z z y

z y u z

α β
β

+ +
= = ≠

− −  (2.46) 

which is equivalent to the system of double equations 

( )
( )

6 6 3 0

3 0

u y z

u y z

β α α β
α β α β

+ + − + = 


− + + + = 
  (2.47) 

Solving (2.47) by method of cross multiplication we get, 

2 218 3 12u α β αβ= − +  

 
( )
( )

2 2

2 2

, 6 6

, 6

y

z

α β α β αβ

α β α β

= − − 


= + 
 (2.48) 

Using (2.32), we have 

( ), 30x α β αβ=  (2.49) 

Thus, (2.48) and (2.49) represent the integer solutions to (2.31). 

Properties 

1. ( ) 4,,1 30 30 0x Pr tα αα − + =  

2. ( ) 14, 4,,1 1 0y t Pr tα α αα − + − + =  

3. ( ) ( )4, 4,1, 6 6 0 mod 2y t Pr tβ β ββ + + − ≡  

4. ( ) ( ) 14, 4,,1 ,1 29 29 1 0x y t Pr tα α αα α+ − − + + =  

5. ( ) ( ) ( )4,1, 1, 24 25 0 mod 6x y Pr tβ ββ β+ − + ≡  
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Case 2 

(2.33) is written in the form of ratio as 

( )
( )33

, 0
2 3

z yu z

z y u z

α β
β

++ = = ≠
− −  

which is equivalent to the system of double equations 

( )
( )

2 3 2 0

3 3 3 0

u y

u y z

β α β α
α β β α

+ + − = 


− + + + = 
 (2.50) 

Solving (2.50) by method of cross multiplication, we get 

 
2 26 9 12u α β αβ= − +  

 
( )
( )

2 2

2 2

, 2 3 6

, 2 3

y

z

α β α β αβ

α β α β

= − − 


= + 
 (2.51) 

Using (2.32), 

 ( ), 30x α β αβ=  (2.52) 

Thus, (2.51) and (2.52) represent the integer solutions to (2.31). 

Properties 

1. ( ) ( )6, 4,,1 5 5 0 mod 3y t Pr tα α αα − + − ≡  

2. ( ) ( )8,, 4,1, 8 8 0 mod 2y t Pr tβ β ββ + + − ≡  

3. ( ) ( ) 6, 4,,1 ,1 25 25 3 0x y t Pr tα α αα α+ − − + + =  

4. ( ) ( ) 4,1, 1, 27 24 2 0x y t Prβ ββ β+ + − − =  

5. ( ) ( ) 6, 4,,1 ,1 35 35 3 0x y t Pr tα α αα α− + − + − =  

Case 3 

(2.33) is written in the form of ratio as 

 ( )
( )23

, 0
3 3

z yu z

z y u z

α β
β

+− = = ≠
− +  
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which is equivalent to the system of double equations 

 
( )

( )
3 3 3 0

2 3 2 0

u y z

u y z

β α α β
α β α β

+ + − − = 


− + + − + = 
 (2.53) 

Solving (2.53) by method of cross multiplication, we get 

 
2 29 6 12u α β αβ= − + +  

 
( )
( )

2 2

2 2

, 3 2 6

, 3 2

y

z

α β α β αβ

α β α β

= − + 


= + 
 (2.54) 

Using (2.32), 

 
2 218 12 6x α β αβ= − + −  (2.55) 

Thus, (2.54) and (2.55) represent the integer solutions to (2.31). 

Properties 

1. ( ) ( )38, 4,,1 23 23 0 mod12x t Pr tα α αα + + − ≡  

2. ( ) ( )26, 4,1, 5 5 0 mod 9x t Pr tβ β ββ − − + ≡  

3. ( ) 8, 4,,1 8 8 2 0y t Pr tα α αα − − + + =  

4. ( ) 6, 4,1, 5 5 3 0y t Pr tβ β ββ + − + − =  

5. ( ) ( ) 4,,1 ,1 15 10 0x y t αα α+ + − =  

Case 4 

(2.33) is written in the form of ratio as 

( )63
, 0

3

z yu z

z y u z

α β
β

++
= = ≠

− −  

which is equivalent to the system of double equations 

 
( )

( )
3 0

6 3 6 0

u y z

u y z

β α α β
α β α β

+ + − + = 


− + + + = 
 (2.56) 
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Solving (2.56) by method of cross multiplication, we get 

 
2 23 18 12u α β αβ= − +  

 
( )
( )

2 2

2 2

, 6 6

, 6

y

z

α β α β αβ

α β α β

= − − 


= + 
 (2.57) 

Using (2.32), 

 ( ), 30x α β αβ=  (2.58) 

Thus, (2.57) and (2.58) represent the integer solutions to (2.31). 

Properties 

1. ( ) 4,,1 6 0z t αα − − =  

2. ( ) ( )4,,1 7 6 Pr 0 mod 3y t α αα − + ≡  

3. ( ) 4,1, 6 1 0z t αβ − − =  

4. ( ) 14, 4,1, 11Pr 11 1 0y t tβ β ββ + + − − =  

5. ( ) ( ) 4,,1 ,1 6 Pr 8 0y z tα αα α+ + − =  

Case 5 

(2.33) is written in the form of ratio as 

 
( )63

, 0
3

z yu z

z y u z

α β
β

+− = = ≠
− +  

which is equivalent to the system of double equations 

( )
( )

3 0

6 3 6 0

u y z

u y z

β α α β
α β α β

+ + − − = 


− + + − + = 
 (2.59) 

Solving (2.59) by method of cross multiplication, we get 

 
2 23 18 12u α β αβ= − + +  
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( )
( )

2 2

2 2

, 6 6

, 6

y

z

α β α β αβ

α β α β

= − + 


= + 
 (2.60) 

Using (2.32), 

 ( ) 2 2, 6 36 6x α β α β αβ= − + −  (2.61) 

Thus, (2.60) and (2.61) represent the integer solutions to (2.31). 

Properties 

1. ( ) ( )14, 4,,1 11 11 0 mod 4x t Pr tα α αα + + − ≡  

2. ( ) ( )74, 4,1, 29 29 0 mod 3x t Pr tβ β ββ − − + ≡  

3. ( ) 4, 4,,1 6 6 6 0y t Pr tα α αα − − + + =  

4. ( ) 14, 4,1, 1 0y t Pr tβ β ββ + − + − =  

5. ( ) ( ) 4,,1 ,1 5 30 0x y t αα α+ + − =  

Way 4 

Introducing the linear transformations 

6 , 15 , 3z X T y X T u U= + = + =  (2.62) 

in (2.33), it is written as 

 
2 2 290X T U= +  (2.63) 

which is satisfied by 

 
2 2 2 22 , 90 , 90T rs U r s X r s= = − = +  

In view of (2.62) and (2.32), the corresponding integer solutions to (2.31) are given by 

 

2

2 2

2 2

6 90

90 30

90 12

x s rs

y r s rs

z r s rs

= − −

= + +

= + +
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Also, (2.63) can be expressed as the system of double equations as presented below in 

Table 2.13: 

Table 2.13: System of Double Equations 

System 1 2 3 4 5 6 7 8 9 

UX +  
2T  

2T3  
2T5  

2T9  
2T15  

2T45  
T90  T45  T30  

UX −  90  30  18 10 6  2  T  T2  T3  
 
 

System 10 11 12 13 14 15 16 17 18 

UX +  T18  T15  T10  T9  T6  T5  T3  T2  T  

UX −  T5  T6  T9  T10  T15  T18  T30  T45  T90  
 
 

Solving each of the above system of equations, the values of ,X U  and T are 

obtained. 

In view of (2.62) and (2.32), the corresponding integer solutions to (2.31) are 

obtained. For simplicity, we present below the corresponding solutions in Table 2.14: 

Table 2.14: Solutions 

System x  y  z  

1 270 90k− −  22 30 45k k+ +  22 12 45k k+ +  

2 90 90k− −  26 30 15k k+ +  26 12 15k k+ +  

3 54 90k− −  210 30 9k k+ +  210 12 9k k+ +  

4 30 90k− −  218 30 5k k+ +  218 12 5k k+ +  

5 18 90k− −  230 30 3k k+ +  230 12 3k k+ +  

6 6 90k− −  290 30 1k k+ +  290 12 1k k+ +  

7 96k−  121k  103k  

8 102k−  77k  59k  

9 108k−  63k  45k  

10 120k−  53k  35k  
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System x  y  z  

11 126k−  51k  33k  

12 144k−  49k  31k  

13 150k−  49k  31k  

14 180k−  51k  33k  

15 198k−  53k  35k  

16 270k−  63k  45k  

17 360k−  77k  59k  

18 630k−  121k  103k  
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II.6 On the Ternary Quadratic Equation 2 2 2+ = +141x y z  

 
Consider the second degree equation with three variables 

2 2 2 141x y z+ = +  (2.64) 

The introduction of the transformations 

( )
( )

2

2

2 20 21 ,

2 20 20 , 0, 0

x k k

z k k k

α

α α

= + − 


= + − > ≠ 

 (2.65) 

in (2.64) gives 

 ( )2 2 24 40 41 141y k k α= + − +  (2.66) 

which represents the positive pell equation. The initial positive integer solution to 

(2.66) is 0 01, 2 10y kα = = +  

To obtain the other integer solutions to (2.66), consider the corresponding pell 

equation 

( )2 2 24 40 41 1y k k α= + − +  (2.67) 

whose least positive integer solution is ( )0 0, yαɶ ɶ . 

The general solution ( ),n nyαɶ ɶ  of (2.67) is given by 

1

2n ny f=ɶ  (2.68) 

nn g
kk 414042

1~
2 −+

=α  (2.69) 

where 

( ) ( )1
2 2 1

0 0 0 04 40 41 4 40 41 , 1,0,1,2.......
n

n
nf y k k y k k nα α

+
+= + + − + − + − = −ɶ ɶɶ ɶ  

( ) ( )1
2 2 1

0 0 0 04 40 41 4 40 41 , 1,0,1,2.......
n

n
ng y k k y k k nα α

+
+= + + − − − + − = −ɶ ɶɶ ɶ  
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Employing the lemma of Brahmagupta between the solutions ( )0 0, yα  and ( ),n nyαɶ ɶ , 

the other solutions to (2.66) are represented by 

1 0 0 , 1,0,1, 2.....n n ny y nα α α+ = + = −ɶɶ  (2.70) 

( )2
1 0 04 40 41 , 1,0,1, 2,.....n n ny y y k k nα α+ = + + − = −ɶɶ  (2.71) 

To study the properties among the solutions, one has to go for particular values of k . 

For simplicity and brevity the choice 1k =  in (2.66), (2.67), (2.68) and (2.69) 

correspondingly leads to 

2 2
0 03 141, 1 , 12y yα α= + = =  

2 2
0 03 1, 1 , 2y yα α= + = =ɶ ɶ  

( ) ( )
( ) ( )

1 1

1 1

1
, 2 3 2 3

2
1

, 2 3 2 3 , 1,0,1........
2 3

n n

n n n

n n

n n n

y f f

g g nα

+ +

+ +

 = = + + −
  

 = = + − − = −
  

ɶ

ɶ

 

1

1
2 3

2n n nf gα + = +  (2.72) 

1

1
6 3

2n n ny f g+ = +  (2.73) 

Substituting 1k =  in (2.65) and using (2.72), we get 

1

1
2 3

2n n nx f g+ = +  (2.74) 

1 4 3n n nz f g+ = +  (2.75) 

Thus, (2.73), (2.74) and (2.75) represent different positive solution in integers to (2.64). 
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A few numerical examples are given in the following table 2.15 below: 

Table 2.15: Numerical Examples 

n  +1nx  +1ny  +1nz  

-1 1 12 2 

0 14 27 28 

1 55 96 110 

2 206 357 412 

3 769 1332 1538 

4 2870 4971 5740 

5 10711 18552 21422 

6 39974 69237 79948 
 
 

From the above table, one may generate Ramanujan numbers of second order from 

suitable values of ,x y  and z . 

Illustration 

2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2

96 2 48 4 24 6 16 8 12

25 23 14 10 11 5 10 2

25 23 14 10 25 10 23 14 725

25 23 11 5 25 5 23 11 650

25 23 10 2 25 2 23 10 629

14 10 11 5 14 5 10 11 221

11 5 10

y = = ∗ = ∗ = ∗ = ∗

= − = − = − = −

− = − ⇒ + = + =

− = − ⇒ + = + =

− = − ⇒ + = + =

− = − ⇒ + = + =

− = − 2 2 2 2 22 11 2 5 10 125⇒ + = + =

 

Thus, 725,650,629,221,125
 
are Ramanujan numbers of second order. 

Recurrence relations for ,x y  and z  are: 

3 2 14 0, 1,0,1.....n n nx x x n+ + +− + = = −  

 3 2 14 0, 1,0,1.....n n ny y y n+ + +− + = = −  

 3 2 14 0, 1,0,1.....n n nz z z n+ + +− + = = −  
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� Some combinations between the solutions are given below: 

� 1 2 12 0n n ny x x+ + +− + =  

� 3 2 17 2 0n n ny x x+ + +− + =  

� 1 3 14 7 0n n ny x x+ + +− + =  

� 2 3 12 0n n ny x x+ + +− + =  

� Cubical integer: 

i. ( ) ( )3 4 3 3 2 1

1
8 18 3 8 18

47 n n n nx x x x+ + + +− + −    

ii.  ( ) ( )3 5 3 3 3 1

1
8 64 3 8 64

188 n n n nx x x x+ + + +− + −    

iii.  ( ) ( )3 3 3 3 1 1

1
8 2 3 8 2

47 n n n ny x y x+ + + +− + −    

iv. ( ) ( )3 4 3 3 2 1

1
8 28 3 8 28

94 n n n ny y y x+ + + +− + −    

� Bi-quadratic integer: 

i. ( ) ( )2

4 5 4 4 2 12

1
376 846 4 8 18 4418

47 n n n nx x x x+ + + +
 − + − −
 

 

ii.  ( ) ( )2

4 6 4 4 3 12

1
1504 12032 4 8 64 70688

188 n n n nx x x x+ + + +
 − + − −
 

 

iii.  ( ) ( )2

4 4 4 4 1 12

1
376 94 4 8 2 4418

47 n n n ny x y x+ + + +
 − + − −
 

 

iv. ( ) ( )2

4 5 4 4 2 12

1
752 2632 4 8 28 17672

94 n n n ny x y x+ + + +
 − + − −
 

 

� Nasty number: 

i. [ ]2 3 2 2

1
564 48 108

47 n nx x+ ++ −  

ii.  [ ]2 4 2 2

1
2256 48 384

188 n nx x+ ++ −  
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iii.  [ ]2 2 2 2

1
564 48 12

47 n ny x+ ++ −  

iv. [ ]2 3 2 2

1
1128 48 168

94 n ny x+ ++ −  

Remarkable Observations 

I. Choices of hyperbola with their solutions generated through the known solutions 

are in Table 2.16 below: 

Table 2.16: Hyperbola 

S. No. Hyperbola ( ),n nX Y  

1 2 23 26508n nX Y− =  ( ) ( )2 1 1 28 18 , 28 2n n n nx x x x+ + + +− −    

2 2 23 424128n nX Y− =  ( ) ( )3 1 1 38 64 , 110 2n n n nx x x x+ + + +− −    

3 2 23 26508n nX Y− =  ( ) ( )1 1 1 18 2 , 24 2n n n ny x x y+ + + +− −    

4 2 23 106032n nX Y− =  ( ) ( )2 1 1 28 28 , 54 2n n n ny x x y+ + + +− −    

 
 

II.  Employing linear combination among the solutions other choices of parabola are 

presented in Table 2.17 below: 

Table 2.17: Parabola 

 
 

Generation of solutions 

Let ( )0 0 0, ,x y z  be a known solution of (2.64). 

S. No. Parabola ( ),n nX Y  

1 2141 26508n nX Y− =  ( ) ( )2 3 2 2 1 294 8 18 , 28 2n n n nx x x x+ + + ++ − −    

2 2564 424128n nX Y− =  ( ) ( )2 4 2 2 1 3376 8 64 , 110 2n n n nx x x x+ + + ++ − −    

3 2141 26508n nX Y− =  ( ) ( )2 2 2 2 1 194 8 2 , 24 2n n n ny x x y+ + + ++ − −    

4 2282 106032n nX Y− =  ( ) ( )2 3 2 2 1 2188 8 28 , 54 2n n n ny x x y+ + + ++ − −    
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Consider the second solution ( )1 1 1, ,x y z  of (2.64) to be 

1 0 1 0 1 0, ,x h x y h y z h z= − = − = +  (2.76) 

where h  is a non-zero integer to be determined. 

Substituting (2.76) in (2.64) and simplifying, we get 

( )0 0 02h x y z= + +  (2.77) 

Using (2.77) in (2.76), the second solution of (2.64) is represented in the matrix form as 

( ) ( )1 1 1 0 0 0, , , ,
t tx y z M x y z=  

where 

1 2 2

2 1 2

2 2 3

M

 
 =  
 
 

 and t  is the transpose 

The repetition of the above process leads to the general solution ( )1 1 1, ,n n nx y z+ + +  of 

(2.64) in the matrix form as 

( ) ( )1 1 1 0 0 0, , , , ,
t t

n n nx y z M x y z+ + + = ɶ  (2.78) 

where 

( ) ( )

( ) ( )

1 1

2 2

1 1
, 0,1,2......

2 2

n n

n n
n

n n

n n
n

n n n

Y Y
X

Y Y
M X n

X X Y

 − − + −
 
 
 + − − −
 = =
 
 
 
 
 

ɶ  

in which ( ),n nx y  represents the general solution of the pell equation 2 22 1Y X= + . 

Thus, given an integer solution ( )0 0 0, ,x y z , one may generate sequence of integer 

solutions to the given equation based on the known solution through employing 

(2.78). 
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Remark 

In addition to (2.65), one may introduce the transformations 

( ) ( )2 21 1
11 6 , 11 4

2 2
x k k z k kα α= + − = + −  

in (2.64) leading to 

( )2 2 2
0 011 5 141, 2, 2 11y k k y kα α= + − + = = +  

Following the procedure presented above, another set of integer solutions to (2.64) are 

obtained. 
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II.7 On the Homogeneous Cone 2 2 23 8 = 25x y z−−−−  

 
Consider the homogeneous cone represented by the ternary quadratic equation 

2 2 23 8 25x y z− =  (2.79) 

we present below different methods of solving (2.79) and thus, obtain different sets of 

integer solutions to (2.79) 

Method 1 

Introducing the linear transformations 

8 , 3x X T y X T= + = +  (2.80) 

2 2 25 24X z T+ =  (2.81) 

Assume 

( ) 2 2, 5T T a b a b= = +  (2.82) 

write 24 as 

( ) ( )24 2 2 5 2 2 5i i= + −  (2.83) 

Using (2.82), (2.83) in (2.81) and employing the method of factorization, define 

( ) ( )2

5 2 2 5 5X i z i a i b+ = + +  

Equating the real and imaginary parts in the above equation, one obtains 

( ) 2 2, 2 10 20X X a b a b ab= = − −  (2.84) 

( ) 2 2, 2 10 4z z a b a b ab= = − +  (2.85) 

Substituting (2.82) and (2.84) in (2.80), we have 

( )
( )

2 2

2 2

, 10 30 20

, 5 5 20

x x a b a b ab

y y a b a b ab

= = + − 


= = + − 
 (2.86) 

Note that (2.85) and (2.86) represent the non-zero distinct integer solutions to (2.79). 
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Properties 

• ( ) ( ) 3,1, 2 1, 40 bx b y b t+ =  

• ( ) ( )3,,1 10 25 0 mod5ny a t a− + ≡  

• ( ), 1 4 6 16 0a az a a PR GNo+ + + + =  

• ( ) ( ) 6,1, 5 1, 40 bz b z b t− =  

• ( ) ( ) ( ),1 2 ,1 10 0 mod3ax a y a GNo− − ≡  

Method 2 

(2.81) is written as 

2 2 25 24 1X z T+ = ∗
 (2.87) 

Assume 

( )( )2 5 2 5
1

9

i i+ −
=  (2.88) 

Substituting (2.82), (2.83) and (2.88) in (2.87) and employing the method of 

factorization, define 

( ) ( ) ( )( )22 5
5 2 2 5 5

3

i
X i z i a i b

+
+ = + +  (2.89) 

Equating the real and imaginary parts in (2.89), we have 

( ) 2 2, 2 10 20X X a b a b ab= = − + −  (2.90) 

( ) 2 2, 2 10 4z z a b a b ab= = − −  (2.91) 

Substituting (2.90) and (2.82) in (2.80), 

( )
( )

2 2

2 2

, 6 50 20

, 25 20

x x a b a b ab

y y a b a b ab

= = + − 


= = + − 
 (2.92) 

Thus, (2.91) and (2.92) represents the integer solutions to (2.79). 
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Properties 

• ( ) ,14, 5 0ax a a t a− − =  

• ( ) ( ) ( ), 5 , 11 33 0 mod11a ay a a z a a S GNo− − − ≡  

• ( ) ( ), , 30 15 15 0a ax a a y a a PR GNo− − + + =  

• ( ),y a a
 
is a nasty number 

• ( ) 3,, 1 24 6 16 0n bz b b t GNo+ + + + =  

Note: It is to be noted that, in addition to (2.88) I may also be represented as shown 

below: 

Way 1: 
( )( )1 4 5 1 4 5

1
81

i i+ −
=  (2.93) 

Way 2: 
( )( )2 3 5 2 3 5

1
49

i i+ −
=  (2.94) 

Following the procedure as above, the corresponding integer solutions to (2.79) for 

(2.93) and (2.94) are presented below: 

Solutions for (2.93): 

( )
( )
( )

2 2

2 2

2 2

, 306 4950 900

, 99 2925 900

, 90 450 684

x x A B A B AB

y y A B A B AB

z z A B A B AB

= = + −

= = − + −

= = − −

 

Solutions for (2.94): 

( )
( )
( )

2 2

2 2

2 2

, 210 2870 700

, 35 1645 700

, 70 350 364

x x A B A B AB

y y A B A B AB

z z A B A B AB

= = + −

= = − + −

= = − −
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Generation of solutions 

Here we obtain formula for generating sequence of integer solutions to (2.79) based 

on its initial solution. 

Let ( )0 0 0, ,x y z  be the initial solution of (2.79). 

Formula 1 

Let ( )1 1 1, ,x y z  be the second solution of (2.79), 

where 1 0 1 0 1 033 , 33 , 33x x y h y z h z= = − = −  (2.95) 

Substituting (2.95) in (2.79) and simplifying, we get 

0 016 50h y z= +  

Thus, the second solution ( )1 1 1, ,x y z  to (2.79) is given by 

1 0 1 0 0 1 0 033 , 17 50 , 16 17x x y y z z y z= = − + = +  

Express 1y  and 1z  in the form of 2 2×  matrix as follows: 

01

01

yy
M

zz

  
=   

   
 where 

17 50

16 17
M

− 
=  
 

 

Repeating the above process, the general values of y and z are given by 

0

0

n n

n

y y
M

z z

   
=   

   
 

If ,α β  are the eigen values of M , then 

( ) ( ) ( ) ( )
n n

nM M I M I
α ββ α

α β β α
= − + −

− −
 

( )

( )

( )

( )

1 25
8 25

33 33
8 25

8
33 33

n n n n

n

n n n n

M
α β α β

α β α β

 + − 
=  
 − + 
 
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Hence, the general values of zyx ,,  satisfying (2.79) are given by 

( ) ( )

( ) ( )

0

0 0

0 0

33

1 25
8 25

33 33
8 25

8
33 33

n
n

n n n n
n

n n n n
n

x x

y y z

z y z

α β α β

α β α β

=

= + + −

= − + +

 

Formula 2 

Let ( )1 1 1, ,x y z  be the second solution of (2.79), 

where 1 0 1 0 1 03 , ,x h x y y z h z= − = = +  (2.96) 

Substituting (2.96) in (2.79) and simplifying, we get 

0 09 25h x z= +  

Thus, the second solution ( )1 1 1, ,x y z  to (2.79) is given by 

1 0 0 1 0 1 0 026 75 , , 9 26x x z y y z x z= + = = +  

Express 1y  and 1z  in the form of 2 2×  matrix as follows: 

01

01

xx
M

zz

  
=   

   
 where 

26 75

9 26
M

 
=  
 

 

Repeating the above process, the general values of x and z are given by 

0

0

n n

n

x x
M

z z

   
=   

   
 

If ,α β  are the eigen values of M , then 

( ) ( ) ( ) ( )
n n

nM M I M I
α ββ α

α β β α
= − + −

− −
 

( )

( )

( )

( )

1 5 3
2 6
3 1

16 2

n n n n

n

n n n n

M

α β α β

α β α β

 + − 
 =
 − + 
 
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Hence, the general values of , ,x y z satisfying (2.79) are given by 

( ) ( )

( ) ( )

0 0

0

0 0

1 5 3

2 6

3 1

16 2

n n n n
n

n

n n n n
n

x x z

y y

z x z

α β α β

α β α β

= + + −

=

= − + +

 

Formula 3 

Let ( )1 1 1, ,x y z  be the second solution of (2.79), 

where 1 0 1 0 1 05 , 5 , 5x x h y h y z z= + = − =  (2.97) 

Substituting (2.97) in (2.79) and simplifying, we get 

0 06 16h x y= +  

Thus, the second solution ( )1 1 1, ,x y z  to (2.79) is given by 

1 0 0 1 0 0 1 011 16 , 6 11 , 5x x y y x y z z= + = + =  

Express 1x  and 1y  in the form of 2 2×  matrix as follows: 

01

01

xx
M

yy

  
=   

   
 where 

11 16

6 11
M

 
=  
 

 

Repeating the above process, the general values of x and z are given by 

0

0

n n

n

x x
M

y y

   
=   

   
 

If ,α β  are the eigen values of M , then 

( ) ( ) ( ) ( )
n n

nM M I M I
α ββ α

α β β α
= − + −

− −
 

( )

( )

( )

( )

66

2 52 5

3 6

4 5 2 5

n nn n

n

n n n n
M

α βα β

α β α β

 ++
 
 =  − + 
 
 

 



Chapter-II  Quadratic Diophantine Equations 

 71 

Hence, the general values of , ,x y z satisfying (2.79) are given by 

( ) ( )

( ) ( )
0 0

0 0

0

6 6

2 5 2 5

3 6

4 5 2 5

5

n n n n

n

n n n n

n

n
n

x x y

y x y

z z

α β α β

α β α β

+ +
= +

− +
= +

=  
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II.8 On the Integer Solutions to Ternary Quadratic Diophantine Equation 

 2 2 2= ( ), =oddprimez D x y D−−−−  

The ternary quadratic diophantine equation to be solved for its integer solutions is 

2 2 2( ),z D x y D odd prime= − =  (2.98) 

Since D is an odd prime, each of the expressions 
1 1

,
2 2

D D+ −
 is an integer. 

In view of the identity 

2 2( ) ( ) 4a b a b ab+ − − =  

it is observed that (1) is satisfied by 

1 1
( ) , ( ) ,

2 2

D D
x K y K z KD

+ −= = =  

The other sets of solutions to (2.98) are illustrated below: 

Set: 1 

(2.98) is written in the form of ratio as 

( )
, 0

z D x y

x y z

α β
β

−= = ≠
+

 

which is equivalent to the system of double equations 

0

0

x y z

Dx Dy z

α α β
β β α

+ − =
− + + =

 

Applying the method of cross-multiplication to the above system of equations, one 

obtains 

2 2

2 2

2z D

y D

x D

α β
α β

α β

=

= − +

= +

 

which satisfy (2.98). 
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Note: 1 

It is observed that (2.98) may also be represented as below: 

, 0
( )

z x y

D x y z

α β
β

−= = ≠
+

 

Employing the procedure as above, the corresponding solutions to (2.98) are given by: 

2 2 2 22 , ,z D y D x Dαβ α β α β= = − + = +  

Set: 2 

(2.98) is written as 

2 2 2 2 1z Dy Dx Dx+ = = ∗  (2.99) 

Assume x  as 

2 2x a Db= +  (2.100) 

Write 1 as 

2 2

2 2

2 2
1

( )

D k i k D D k i k D

D k

   − + − −   =
+  

(2.101) 

Using (2.100) & (2.101) in (2.99) and employing the method of factorization, consider 

( ) ( ) ( )
2

2

2

2
.

D k i k D
z i D y i D a i D b

D k

 − + + = +
+

 

Equating the real& imaginary parts, it is seen that 

( ) ( )

( ) ( )

2 2 2

2

2 2 2

2

1
2 2

1
4

z D D k ab kD a Db
D k

y D k a Db kDab
D k

  = − − − −   + 

  = − − −   +   

(2.102) 

Since our interest is to find the integer solutions, replacing a  by ( )2D k A+  & b  by 

( )2D k B+  in (2.100) & (2.102), the corresponding integer solutions to (2.98) are 

given by 
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( ) ( )
( ) ( )
( )

2 2 2 2

2 2 2 2

22 2 2

2 2 ,

4 ,

z D k D D k AB kD A DB

y D k D k A DB kDAB

x D k A DB

  = + − − − −  

  = + − − −  

 = + +   

Set: 3 

Taking 

z DW=   

in (2.98), it is written as 

2 2 2 2 1x Dw y y− = = ∗  (2.103) 

Assume y  as 

2 2y a Db= −  

Note that 1 may be represented as follows: 

( ) ( )2 2

2 2

2 2
1

( )

D k k D D k k D

D k

+ + + −
=

−  

Following the procedure as in Set 2, the corresponding integer solutions to (2.98) are 

given by 

( ) ( )
( ) ( )
( )

2 2 2 2

2 2 2 2

22 2 2

2 2 ,

4 ,

z D k D D k AB kD A DB

x D k D k A DB kDAB

y D k A DB

  = − + + +  

  = − + + +  

 = − − 

 

Set: 4 

(2.103) is written as the system of double equations as below: 

2,x y w x y D+ = − =  

Solving the above system, the values of x, y and z satisfying (2.98) are found to be 

2 21 1
2 2 , 2 2 , (2 1)

2 2

D D
x k k y k k z k D

+ −= + + = + + = +
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GENERATION OF SOLUTIONS  

Different formulas for generating sequence of integer solutions based on the given 

solution are presented below: 

Let ( )0 0, 0,x y z  be any given solution to (2.98). 

Formula: 1 

Let ( )1 1, 1,x y z
 
given by 

1 0( 1) ,x D x h= − − + 1 0( 1) ,y D y= − 1 0( 1) ,z D z h= − +  (2.104) 

be the 2nd solution to (2.98). Using (2.104) in (2.98) and simplifying, one obtains 

0 02 2h Dx z= +  

In view of (2.104), the values of 1x  and 1z  are written in the matrix form as 

( ) ( )1 1 0 0, ,t tx z M x z=  

where 

1 2

2 1

D
M

D D

+ 
=  + 

 and t is the transpose 

The repetition of the above process leads to the nth solutions ,n nx z  given by 

( ) ( )0 0, ,
t tn

n nx z M x z=  

If ,α β  are the distinct eigen values of M , then 

1 2 ,D Dα = + +  1 2D Dβ = + −  

We know that 

( ) ( ) ( ) ( ) , 2 2
n n

nM M I M I I
α ββ α

α β β α
= − + − = ×

− −
 identity matrix 
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Thus, the general formulas for integer solutions to (2.98) are given by 

( )

0 0

0

0 0

,
2 2

( 1) ,

2 2

n n n n

n

n
n

n n
n n

n

x x z
D

y D y

D
z x z

α β α β

α βα β

   + −
= +   
   

= −

 +
= − +  

 

 

Formula: 2 

Let ( )1 1, 1,x y z
 
given by 

1 0( 1) ,x D x= + 1 0( 1) ,y D y h= − + + 1 0( 1) ,z h D z= − +  (2.105) 

be the 2nd solution to (2.98). Using (2.105) in (2.98) and simplifying, one obtains 

0 02 2h Dy z= +  

In view of (2.105), the values of 1y  and 1z  are written in the matrix form as 

( ) ( )1 1 0 0, ,
t tny z M y z=  

where 

1 2

2 ( 1)

D
M

D D

− 
=  − − 

 and t  is the transpose 

The repetition of the above process leads to the nth solutions ,n ny z  given by 

( ) ( )0 0, ,
t tn

n ny z M y z=  

If ,α β are the distinct eigen values of M , then 

 1,Dα = + ( 1)Dβ = − +  

Thus, the general formulas for integer solutions to (2.98) are given by 

 

( )

0

0 0

0 0

( 1) ,

,
1 1

1 1

n
n

n n n n

n

n n n n

n

x D x

D
y y z

D D

D
z D y z

D D

α β α β

α β α β

= +

   + −= +   + +   

−  += +  + + 
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Formula: 3 

Let ( )1 1, 1,x y z
 
given by 

1 03 2 ,x Dx h= − + 1 03 ,y Dy h= + 1 03 ,z Dz=  (2.106) 

be the 2nd solution to (2.98).Using (2.106) in (2.98) and simplifying, one obtains 

 0 04 2h Dx Dy= +  

In view of (2.106), the values of 1x  and 1y  is written in the matrix form as 

( ) ( )1 1 0 0, ,
t tnx y M x y=  

where 

5 4

4 5

D D
M

D D

 
=  
   

and t  is the transpose 

The repetition of the above process leads to the nth solutions ,n nx y  given by 

( ) ( )0 0, ,
t tn

n nx y M x y=  

If ,α β  are the distinct eigen values of M , then 

Dα = , 9Dβ =  

Thus, the general formulas for integer solutions to (2.98) are given by 

 
0 0

0 0 0

,
2 2

( )
, (3 )

2 2

n n n n

n

n n n n
n

n n

x x y

y x y z D z

α β β α

β α α β

+ −= +

− += + =
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II.9 On Finding Integer Solutions to the Homogeneous Cone 2 2 2= 25 + 29x y z  

The quadratic Diophantine equation with three unknowns studied for its non-zero 

distinct integer solutions is given by 

2 2 225 29x y z= +
 

(2.107) 

We illustrate below different sets of integral solutions of (2.107). 

Set I 

It is observed that (2.107) is of the form 

2 2 2x y Dz= +  (2.108) 

where D = 29. Employing the most cited solutions of (2.108), one may obtain 

( )

2 2

2 2

29

1
29

5
2 , , .

x m n

y m n

z mn m n N

= +

= −

= ∈

 

Since our interest centers on finding integral solutions, it is possible to choose 

m, n such that x, y and z are integers. For the sake of clear understanding, the values of 

m, n with the corresponding solutions are presented in Table 2.18 below: 

Table 2.18: Values of m, n with solutions 

Choices m N x, y, z 

1 5M 5N 2 2 2 2725 25 ,145 5 ,50M N M N MN+ −  

2 5 4k −  5 3k −  2 2 2750 1190 473,140 226 91,50 70 24k k k k k k− + − + − +  

3 5 4k −  5 2k −  2 2 2750 1180 468,140 228 92,50 60 16k k k k k k− + − + − +  

4 5 3k −  5 4k −  2 2 2750 910 277,140 166 49,50 70 24k k k k k k− + − + − +  

5 5 3k −  5 1k −  2 2 2750 880 262,140 172 52,50 40 6k k k k k k− + − + − +  

6 5 2k −  5 4k −  2 2 2750 620 132,140 108 20,50 60 16k k k k k k− + − + − +  

7 5 2k −  5 1k −  2 2 2750 590 117,140 114 23,50 30 4k k k k k k− + − + − +  

8 5 1k −  5 3k −  2 2 2750 320 38,140 52 4,50 40 6k k k k k k− + − + − +  

9 5 1k −  5 2k −  2 2 2750 310 33,140 54 5,50 30 4k k k k k k− + − + − +  
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A few interesting properties among the solutions for each of the above choices in 

Table 2.18 are presented below: 

Properties 

Choice 1 

1. 292, 12, 0(mod 4)M Ny t t− + ≡  

2. 1452, 52, 0(mod 4)M Nx t t− − ≡  

3. 1162, 62, 579 29M Nx y t t M N− − − = +  

Choice 2 

1. 1222, 27(mod355)kx y t− − ≡  

2. 102, 3(mod 21)kz t− ≡  

3. 282, 4(mod87)ky t− ≡  

Choice 3 

1. 802, 702, 36(mod 432)k kx t t− − ≡  

2. 202, 82, 2(mod90)k ky t t− − ≡  

3. 52,2 4(mod12)kz t− ≡  

Choice 4 

1. 1402, 112(mod141)kx z t− − ≡  

2. 142,2 21(mod 28)ky t− ≡  

3. 382, 26(mod 47)ky z t+ − ≡  
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Choice 5 

1. 612,2 10(mod100)kx y t− − ≡  

2. 22,5 1(mod5)kz t− ≡  

3. 42,7 13(mod39)ky t− ≡  

Choice 6 

1. 32,50 52(mod80)kx t− ≡  

2. 30,10 20(mod 22)ky t− ≡  

3. 52,2 4(mod12)kz t− ≡  

Choice 7 

1. 502,3 117(mod157)kx t− ≡  

2. 16,20 5(mod 6)ky t− ≡  

3. 6,25 4(mod5)kz t− ≡  

Choice 8 

1. 8,250 38(mod180)kx t− ≡  

2. 16,20 4(mod 68)ky t− ≡  

3. 12,10 6kz t− =  

Choice 9 

1. 152,10 33(mod 430)kx t− ≡  

2. 42,7 5(mod 79)ky t− ≡  

3. 42, 62, 4(mod18)k kz t t− − ≡  



Chapter-II  Quadratic Diophantine Equations 

 81 

Set II 

Express (2.107) as the system of double equations as presented in Table 2.19 below: 

Table 2.19: System of double equations 

System I II III 

5x y+  2z  229z  29z  

5x y−  29 1 Z  
 
 

Solving each of the above system of double equations, one obtains the 

corresponding integer solutions to (2.107) as exhibited below: 

Solutions to System I 

2

2

50 30 19

10 6 2

10 3

x k k

y k k

z k

= + +

= + −
= +

 

Properties 

1. 42, 62, 19(mod 78)k kx t t− − ≡  

2. 22,5 1(mod 25)ky z t+ − ≡  

3. 122, 17(mod95)kx y t+ − ≡  

Solutions to System II 

2

2

1450 870 131

290 174 26

10 3

x k k

y k k

z k

= + +
= + +
= +

 

Properties 

1. 118,25 131(mod 2295)kx t− ≡  

2. 12,58 26(mod 406)ky t− ≡  

3. 102,29 134(mod 2301)kx z t+ − ≡  
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Solutions to System III 

75 , 14 , 5x y zα α α= = =  

Properties 

1. 2
152,75 0(mod5550)x t α− ≡  

2. 2
30,14 0(mod182)y t α− ≡  

3. 2
52, 0(mod 24)z t α− ≡  

Set III 

Write (2.107) as 

2 2 225 29 1y z x+ = ∗  (2.109) 

Let 2 225 29x a b= +  (2.110) 

Write 1 on the right hand side of (2.109) as 

( )( )
2

14 29 14 29
1

15

i i+ −
=

 

(2.111) 

Substituting (2.110) and (2.111) in (2.109) and employing the factorization method, 

define 

( )21
5 29 5 29 (14 29)

15
y i z a i b i+ = + +  

Equating real and imaginary parts, we’ve 

2 2

2 2

1
5 350 406 290

15
1

25 29 140
5

y a b ab

z a b ab


 = − − 


 = − +    

(2.112) 

As our interest is finding integer solutions, we choose a and b suitably so that x, y, z 

are integers, 
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Replacing a by 15a and b by 15b in (2.110) and (2.112), the corresponding integer 

solutions to (2.107) are given by 

2 2

2 2

2 2

( , ) 5625 6525

( , ) 1050 1218 870

( , ) 375 435 2100

x x a b a b

y y a b a b ab

z z a b a b ab

= = +
= = − −

= = − +

 

Properties 

1. 402, 352,( ,1) 2038(mod 2473)a az a t t− − ≡  

2. 20,( ,1) 625 1525(mod5000)ax a t− ≡  

3. 44,( ,1) 50 82(mod130)ay a t− ≡  
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II.10 On the Homogeneous Cone ( )2 2 2 2= 2 2 + 22 +z k k x y−−−−  

The ternary quadratic equation to be solved for its integer solutions is 

( )2 2 2 22 2 22z k k x y= − + +
 

(2.113) 

We present below different methods of solving (2.113): 

Method: 1 

(2.113) is written in the form of ratio as 

( )2
, 0

2 2 22

z y x r
s

z y sk k x

+ = = ≠
−− +

 

(2.114) 

which is equivalent to the system of double equations 

( )22 2 22 0

0

k k rx sy sz

sx ry rz

− + − − =

+ − =
 

Applying the method of cross-multiplication to the above system of equations, 

( )
( ) ( )
( ) ( )

2 2 2

2 2 2

, 2

, 2 2 22

, 2 2 22

x x r s rs

y y r s k k r s

z z r s k k r s

= =

= = − + −

= = − + +

 

which satisfy (2.113) 

Note: 1 

It is observed that (2.113) may also be represented in the form of ratio as below: 

(i) 
( )2 11

, 0
2

k k xz y r
s

x z y s

− ++ = = ≠
−

 

The corresponding solutions to (2.113) are given as: 

( ) ( )2 2 2 2 2 22 , 2 11 , 2 11x rs y r k k s z r k k s= = − − + = + − +  

(ii) ( )2

2
, 0

11

z y x r
s

z y sk k x

+ = = ≠
−− +
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The corresponding solutions to (2.113) are given as: 

( ) ( )2 2 2 2 2 22 , 11 2 , 11 2x rs y k k r s z k k r s= = − + − = − + +  

Method: 2 

(2.113) is written as the system of double equation in Table 2.20 as follows: 

Table 2.20: System of Double Equations 

System 1 2 3 4 

z y+  2x  ( )2 211k k x− +  ( )22 2 22k k x− +  ( )2 11k k x− +  

z y−  ( )2 11k k x− +  2  x  2x  

 
 

Solving each of the above system of double equations, the value of , &x y z
 
satisfying 

(2.113) are obtained. For simplicity and brevity, in what follows, the integer solutions 

thus obtained are exhibited. 

Solutions for system: I 

x = 2s, y = -( )2 9 ,k k s− +  z = ( )2 13k k s− +  

Solutions for system: II 

2 ,x s= ( )2 22 11 1y s k k= − + − , ( )2 22 11 1z s k k= − + +  

Solution for system: III 

2x s= , ( )22 2 21 ,y k k s= − + ( )22 2 23z k k s= − +  

Solution for system: IV 

2 ,x s= ( )2 11 2 ,y s k k s= − + − ( )2 11 2z s k k s= − + +  

Method: 3 

(2.113) is written as 

( )2 2 2 2 22 2 22 1y k k x z z+ − + = = ∗
 

(2.115) 
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Assume z as 

( )2 2 22 2 22z a k k b= + − +
 

(2.116) 

Write 1 as 

1=
( ) ( )

( )( )
2 2 2 2 2 2 2 2

2
2 2 2

2 2 22 2 2 2 22 2 2 22 2 2 2 22

2 2 22

k k r s i rs k k k k r s i rs k k

k k r s

   − + − + − + ∗ − + − − − +
   

− + + (2.117)

 

Using (2.116) & (2.117) in (2.115) and employing the method of factorization, consider 

( ) ( )
( )

2
2 2 2 2 2

2

2 2 2

2 2 22 2 2 22 2 2 22 2
2 2 22

2 2 22

a ib k k k k r s i k k rs
y i k k x

k k r s

 + − + − + − + − +
 + − + =

− + +
 

Equating real & imaginary parts, it is seen that 

( ) ( ){ } ( ){ } { }

( ) ( ){ } ( ){ }

2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

2 2 2

1
2 2 22 2 2 22 4 2 2 22

2 2 22

1
2 2 2 22 2 2 2 22

2 2 22

y k k r s a k k b abrs k k
k k r s

x ab k k r s rs a k k b
k k r s

 = − + − − − + − − +  − + + 

 = − + − + − − +

  − + +  

(2.118) 

Since our interest is to find the integer solutions, replacing a  by 

( )2 2 22 2 22k k r s A − + +   & b  by ( )2 2 22 2 22k k r s B − + +   in (2.118) & (2.116), 

the corresponding integer solutions to (2.113) are given by 

( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )
( )

( ) ( )( ) ( )( )

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2

2
2 2 2 2 2 2

( , ) 2 2 22 2 2 22 2 2 2 2 22

2 2 22 2 2 22
, 2 2 22

4 2 2 22

, 2 2 22 2 2 22

x x A B k k r s k k B rs AB k k r s

k k k k r s
y y k k r s

ABrs k k

z z k k r s k k

 = = − + + Α − − + + − + −
 

  Α − − + Β − + −  = Α Β = − + +
 − − + 

= Α Β = − + + Α + − + Β  

Following the above procedure, one may obtain difference sets of integer solutions to 

(2.113). 
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Method: 4 

(2.113) is written as 

( )2 2 2 2 22 2 22 1z k k x y y− − + = = ∗
 

(2.119) 

Assume y  as 

( )2 2 22 2 22y a k k b= − − +  (2.120) 

Write 1 as 

( )( ) ( )( )
( )( )

2 2 2 2 2 2 2 2

2
2 2 2

2 2 22 2 2 22 2 2 2 22 2 2 22 2
1

2 2 22

k k r s k k rs k k r s k k rs

k k r s

− + + + − + − + + − − +
=

− + −
  

(2.121) 

Using (2.120) & (2.121) in (2.119) and employing the method of factorization, consider 

( ) ( )

( )

2 2 2

2 2 2 2

2
2

2 2 2

2 2 22
2 2 22 2 2 2 22

2 2 2 22
2 2 22

2 2 22

a k k b
k k r s rs k k

ab k k
z k k x

k k r s

 + − +
   − + + + − + ∗
   + − + + − + =

− + −
 

Equating rational and irrational parts, it is seen that, 

 

( )( ) ( )( )
( )

( )( ) ( )( ) ( )
( )

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2

2 2 2

2 2 22 2 2 2 2 22

2 2 22

2 2 22 2 2 22 4 2 2 22

2 2 22

a k k b rs ab k k r s
x

k k r s

a k k b k k r s abrs k k
z

k k r s

+ − + + − + +
=
− + − 


+ − + − + + + − + 
= 

− + − 

(2.122) 

Since our interest to find the integer solution, replacing aby 

( )( )2 2 22 2 22k k r s A− + −  & b  by ( )( )2 2 22 2 22k k r s B− + −  in (2.122) & (2.120), 

the corresponding integer solutions to (2.113) are given by 
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( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( )
( )

2 2 2 2 2 2 2 2 2

2
2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2

, 2 2 22 2 2 22 2 2 2 2 22

, 2 2 22 2 2 22

2 2 22 2 2 22
, 2 2 22

4 2 2 22

x x A B k k r s k k rs k k r s

y y A B k k r s k k

k k k k r s
z z A B k k r s

ABrs k k

 = = − + − Α + − + Β + ΑΒ − + +
 

 = = − + − Α − − + Β 

 Α + − + Β − + +
 = = − + −
 + − + 

 

Following the above procedure, one may obtain difference sets of integer solutions to 

(2.113). 

GENERATION OF SOLUTIONS  

Different formulas for generating sequence of integer solutions based on the given 

solution are presented below: 

Let ( )0 0, 0,x y z
 
be any given solution to (2.113). 

Formula: 1 

Let ( )1, 1 1,x y z
 
given by 

1 0 1 0 1 03 , 3 , 3 2x x y y h z z h= = + = +
 

(2.123) 

be the 2nd
 solution to (2.113). Using (2.123) in (2.113) and simplifying, one obtains 

0 02 4h y z= −  

In view of (2.123), the values of 1y
 
and 1z  

are written in the matrix form as 

( ) ( )1 1 0 0, ,
t t

y z M y z=  

where M = 
5 4

4 5

− 
 − 

 

and t  is the transpose 

The repetition of the above proses leads to the nth solutions ,n ny z
 
given by 

( ) ( )0 0, ,
t tn

n ny z M y z=  
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If ,α β
 
are the distinct eigen values of M, then 

3, 3α β= = −  

We know that 

( ) ( ) ( ) ( ) ,
n n

n a
M M I M I

ββ α
α β β α

= − + −
− −

 

2 2I = ×  Identity matrix 

Thus, the general formulas for integer solutions to (2.113) are given by 

0

0

0

3

4 2 21

3 2 2 4

n
n

n n n n
n

n n n n
n

x x

y y

z z

α β α β
α β α β

=

 − − +   
=     − − +    

 

Formula: 2 

Let ( )1 1 1, ,x y z
 
given by 

( ) ( ) ( )2 2 2
1 0 1 0 1 02 2 23 , 2 2 23 , 2 2 23x h k k x y h k k y z k k z= − − + = − − + = − +

 
(2.124) 

be the 2nd solution to (2.113). Using (2.124) in (2.113) and simplifying, one obtains 

( )2
0 04 4 44 2h k k x y= − + +  

In view of (2.124), the values of1x and 1y are written in the matrix form as 

( ) ( )1 1 0 0, ,
t t

x y M x y=  

where M = 
2

2 2

2 2 21 2

4 4 44 (2 2 21)

k k

k k k k

 − +
 − + − − + 

 

And t is the transpose 

The repetition of the above process leads to the nth solutions ,n nx y
 
given by 

( ) ( )0, ,
t tn

n n ox y M x y=  

If ,α β
 
are the distinct eigen values of M, then 

( )2 22 2 23 , 2 2 23k k k kα β= − + = − − +  
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Thus, the general formulas for integer solutions to (2.113) are given by 

( )
( )
( )( ) ( )

2

0

2 2 2
0

2 2 221

2 2 23 2 2 22 2 2 22

n n n n

n

n n n n
n

k kx x

y yk k k k k k

α β α β

α β α β

 − + + −   
 =   
 − + − + − + − +    

 

( )2
02 2 23

n

nz k k z= − +  

Formula: 3 

Let ( )1 1 1,x y z
 
given by 

( ) ( ) ( )2 2 2
1 0 1 0 1 02 2 21 , 2 2 21 , 2 2 21x h k k x y k k y z k k z h= − − + = − + = − + +  (2.125) 

be the 2nd
 solution to  (2.113). Using (2.125) in (2.113) and simplifying, one obtains 

( )2
0 02 4 4 44h z k k x= + − +  

In view of (2.125), the values of 1x  
and 1z  

are written in the matrix form as 

( ) ( )1 1 0 0, ,
t t

x z M x z=  

where M = 
2

2 2

2 2 23 2

4 4 44 2 2 23

k k

k k k k

 − +
 

− + − + 
 

and t  is the transpose 

The repetition of the above process leads to the nth solutions ,n nx z  given by 

( ) ( )0 0, ,
t tn

n nx z M x z=  

If ,α β
 
are the distinct eigen values of M, then 

2 2

2 2

2 2 23 2 2 2 22,

2 2 23 2 2 2 22

k k k k

k k k k

α

β

= − + + − +

= − + − − +
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Thus, the general formulas for integer solutions to (2.113) are given by 

( )2
0

02

02

2 2 21

1
2 2 2 22

2
2 2 22( )

n

n

n n
n n

n

n n n n n

y k k y

x x
k k

z z
k k

α βα β

α β α β

= − +

 −+    
= − +    

    − + − + 
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II.11 On the Homogeneous Quadratic Diophantine 

Equation with Four Unknowns 2 22 + 3 = 8xy z w  

 
The homogeneous quadratic equation with four unknowns to be solved for its integer 

solutions is 

2 22 3 8xy z w+ =
 (2.126) 

We present below different sets of distinct integer solutions to (2.126) through 

employing linear transformations. 

Introduction of the linear transformations 

, , , ( 0)x u v y u v z v u v= + = − = ≠ ≠
 

(2.127) 

in (2.126) leads to 

2 2 22 8v u w+ =  (2.128) 

Assume 

2 22w a b= +  (2.129) 

Set I 

Write 8 as 

8 ( 2 2)( 2 2)i i= −  (2.130) 

Using (2.129) and (2.130) in (2.128) and employing the method of factorization, 

define 

22 ( 2 2)( 2 )v i u i a i b+ = +  

On equating the real and imaginary parts, one obtains 

2 28 , 2 4v ab u a b= = −  
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In view of (2.127), note that 

2 2

2 2

2 4 8

2 4 8

8

x a b ab

y a b ab

z ab

= − +


= − − 
=
  

(2.131) 

Thus, (2.131) and (2.129) represent the distinct integer solutions to (2.126). 

Set II 

Note that 8 may be expressed as the product of complex conjugates as below: 

(8 2 2)(8 2 2)
8

9

i i+ −
=

 
(2.132) 

Following the procedure as in Set I, the corresponding integer solutions to (2.126) are 

given below: 

2 2

2 2

2 2

2 2

3(10 20 8 )

3( 6 12 24 )

3(8 16 8 )

9( 2 )

x a b ab

y a b ab

z a b ab

w a b

= − +

= − + +

= − −

= +

 

Set III 

(2.128) is written as 

2 2 2 22 8 8 *1v u w w+ = =
 

(2.133) 

Consider 1 as 

(1 2 2)(1 2 2)
1

9

i i+ −
=

 
(2.134) 

Using (2.134), (2.130) and (2.129) in (2.133) and employing the method of factorization, 

define 

2 (1 2 2)
2 ( 2 2)( 2 )

3

i
v i u i a i b

+
+ = +  
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In this case, the corresponding integer solutions to (2.126) are found to be 

2 2

2 2

2 2

2 2

3( 6 12 24 )

3(10 20 8 )

3( 8 16 8 )

9( 2 )

x a b ab

y a b ab

z a b ab

w a b

= − + −

= − −

= − + −

= +

 

It is worth to note that, by substituting (2.134), (2.132) and (2.129) in (2.133) and 

performing the analysis as above, one obtains a different set of integer solutions to 

(2.126). 

Remark 

It is worth mentioning here that, in (2.134), 1 may be represented as the 

product of complex conjugates, in general, as exhibited below: 

2 2 2 2

2 2 2

(2 2 2 )(2 2 2 )
1

(2 )

r s i rs r s i rs

r s

− + − −
=

+  

Set IV 

Introduction of the linear transformations 

8 6 , 8 6 , 6 , 2x X T V y X T V z V w X T= + + = + − = = +
 

(2.135) 

in (2.126) leads to 

2 2 216 6X T V= +  (2.136) 

After performing a few calculations, the above equation is satisfied by the following 

three choices of solutions: 

i. 20 , , 8X k T k V k= = =  

ii.  28 , 5 , 8X k T k V k= = =  

iii.  2 2 2 224 4 , 6 , 8X R S T R S V RS= + = − =  
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In view of (2.135), the corresponding integer solutions to (2.126) are represented as 

follows: 

Solutions for (i): 

76 , 20 , 48 , 22x k y k z k w k= = − = =  

Solutions for (ii): 

116 , 20 , 48 , 38x k y k z k w k= = = =  

Solutions for (iii): 

2 2 2 2 2 272 4 48 , 72 4 , 48 , 48 , 36 2x R S RS y R S V RS z RS w R S= − + = − − = = +  

Note: Suppose, instead of (2.135), the linear transformations are taken as 

8 6 , 8 6 , 6 , 2x X T V y X T V z V w X T= − + = − − = = −  

then, the corresponding three choices of solutions to (2.126) are as follows: 

Solutions for (i): 

60 , 36 , 48 , 18x k y k z k w k= = − = =  

Solutions for (ii): 

36 , 60 , 48 , 18x k y k z k w k= = − = =  

Solutions for (iii): 

2 2 2 2 2 224 12 48 , 24 12 48 , 48 , 12 6x R S RS y R S RS z RS w R S= − + + = − + − = = +  

GENERATION OF SOLUTIONS  

Three different formulas for generating sequence of integer solutions based on the 

given solution are presented below: 

Let ( )0 0, 0 0, ,x y z w
 
be any given solution to (2.126) 
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Formula: 1 

Let ( )1, 1 1 1, ,x y z w
 
given by 

1 0,x x= 1 0y y= ,
1 02z h z= − ,

1 0w h w= +
 

(2.137) 

be the 2nd solution to (2.126). Using (2.137) in (2.126) and simplifying, one obtains 

0 03 4h z w= +  

In view of (2.126), the values of 1z  
and 1w

 
are written in the matrix form as 

( ) ( )1 1 0 0, ,
t t

z w M z w=  (2.138) 

where 

5 8

3 5
M

 
=  
 

 

and t  is the transpose 

The repetition of the above process leads to the nth solutions ,n nz w
 
given by 

( ) ( )0 0, ,
t tn

n nz w M z w=  

We know that 

( ) ( ) ( ) ( ) ,
n n

n a
M M I M I

ββ α
α β β α

= − + −
− −  

2 2I = ×  Identity matrix and ,α β
 
are the distinct eigen values of M. 

For M given above in (2.138), it is seen that 

5 2 6,α = + 5 2 6β = −  

Thus, the generation formula to obtain sequence of integer solutions to (2.126) is given by 

0 0

0 0

0 0

,

2
( )

2 6

3
( )

24 6

n n

n n
n n

n

n n
n n

n

x x y y

z z w

w z w

α β α β

α βα β

= =

 +
= + − 
 

 +
= − +  

 
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Formula: 2 

Let ( )1 1 1 1, , ,x y z w
 
given by 

1 05 ,x x= 1 05 ,y y= 1 05 ,z z h= + 1 05w h w= −
 

(2.139) 

be the 2nd solution to (2.126). For this choice, the generation formula for getting 

sequence of integer solutions to (2.126) is obtained as below: 

where 

0 0

0 0

0 0

5 , 5

2
( )

2 6

6
( )

8 2

n n
n n

n n
n n

n

n n
n n

n

x x y y

z z w

w z w

α β α β

α βα β

= =

 +
= + − 
 

 +
= − +  

   

11 4 6,α = + 11 4 6β = −  

Formula: 3 

Let ( )1 1 1 1, , ,x y z w
 
given by 

1 03 ,x h x= − 1 0,y h y= − 1 0 ,z z h= − + 1 0w h w= +
 

(2.140)  

be the 2nd solution to (2.126). Using (2.140) in (2.126) and simplifying, one obtains 

0 0 0 02 6 6 16h x y z w= + + +  

In view of (2.140), we have 

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

5 18 18 48

2 5 6 16

2 6 5 16

2 6 6 17

x x y z w

y x y z w

z x y z w

w x y z w

= + + +
= + + +
= + + +
= + + +

 

which is written in the form of matrix as 

1 1, 1 1 0 0 0 0

5 18 18 48

2 5 6 16
( , , ) ( , , , )

2 6 5 16

2 6 6 17

t tx y z w x y z w

 
 
 =
 
 
 
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where t is the transpose. The repetition of the above process leads to the general solution 

to (2.126) as 

1 0 0 0 0

( 1) 2
( ( 1) ) ( ( 1) ) 8

3

n
n nn

n n n n

Y
x x Y y Y z X w+

− −
= + + − + + − +  

1 0 0 0 0

( 1) ( 1) 2 ( 1) 8

9 3 3 3

n n n
n n n n

n

Y Y Y X
y x y z w+

+ − − − + −
= + + +  

1 0 0 0 0

( 1) ( 1) ( 1) 2 8

9 3 3 3

n n n
n n n n

n

Y Y Y X
z x y z w+

+ − + − − −
= + + +  

1 0 0 0 03
n

n n n n

X
w x X y X z Y w+ = + + +  

where 

( ) ( )( )1 11
17 6 8 17 6 8 ,

2

n n

nY
+ +

= + + −  

( ) ( )( )1 11
17 6 8 17 6 8 ), 0,1, 2,...

2 8

n n

nX n
+ +

= + − − =
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II.12 On Homogeneous Quadratic with Five Unknowns 2 2 2 2 24 + = 16w x y z t− −− −− −− −  

The second degree diophantine equation with five unknowns to be solved is 

2 2 2 2 24 16w x y z t− − + =  (2.141) 

The process of obtaining different sets of non-zero distinct integer solutions to (2.141) 

is exhibited below: 

Set 1 

The substitution of the linear transformations 

4 12 , 8 , 4( ) , 4( ) , 2x P Q y Y z P Q w P Q t T= + = = − = + =  (2.142) 

in (2.141) leads to the space pythagorean equation 

2 2 2 2P Q Y T= + +
 

(2.143) 

which is satisfied by 

2 2 2 2 2 2, , 2 , 2P a b c T a b c Q ab Y a c= + + = − − = =
 

(2.144) 

In view of (2.142), one has the integer solutions to (2.141) given by 

2 2 2 2 2 2

2 2 2 2 2 2

4( 6 ),  16 ,  4( 2 ) ,

4( 2 ) ,  2 ( )

x a b c ab y a c z a b c ab

w a b c ab t a b c

= + + + = = + + −

= + + + = − −
 

Set 2 

Introducing the linear transformations 

2 2(8 1) , 4 , , 4 ,x a s y aY z s w a s t aT= − = = = =
 

(2.145) 

in (2.141), it simplifies to the Pythagorean equation 

2 2 2s Y T= +  (2.146) 

whose solutions may be taken as 

2 2 2 2, , 2s p q T p q Y p q= + = − =  (2.147) 
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In view of (2.145), the integer solutions to (2.141) are given by 

2 2 2 2 2 2 2 2 2 2(8 1) ( ) , 8 , ( ) , 4 ( ) , ( )x a p q y a pq z p q w a p q t a p q= − + = = + = + = −  

Note 1 

The solutions to (2.146) is also taken as 

2 2 2 2, , 2s p q Y p q T p q= + = − =  

In this case, the integer solutions to (2.141) are given by 

2 2 2 2 2 2 2 2 2 2(8 1) ( ) , 4 ( ) , ( ), 4 ( ) , 2x a p q y a p q z p q w a p q t a p q= − + = − = + = + =  

Set 3 

Taking 

4( ), 4( ) , 4 , 4x P Q y P Q w P z Q= + = − = =
 

(2.148)  

in (2.141), it reduces to 

2 2 22Q t P+ =
 

(2.149) 

After some algebra, it is seen that (2.149) is satisfied by 

2 2

2 2

2 2

2 ,

2 ,

t a b a b

Q a b a b

P a b

= − +

= − −

= +

 

In view of (2.148), it is seen that 

2 2

2 2

8 ( ) ,

8 ( ) ,

4 ( 2 ) ,

4( )

x a a b

y b a b

z a b ab

w a b

= −
= +

= − −
= +

 

Thus, the above values of , , , ,x y z w t
 
satisfies (2.141). 
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Note 2 

After performing a few calculations, (2.149) is also satisfied by 

2 2

2 2

2 2

2 ,

2 4 ,

2 2

t a b

Q a b ab

P a b ab

= −
= + +

= + +

 

In view of (2.148), the corresponding values of , , ,x y z w
 
are found to be 

2 2

2 2

2 2

4(4 2 6 ) ,

8 ,

4(2 4 ),

4(2 2 )

x a b ab

y ab

z a b ab

w a b ab

= + +
= −

= + +

= + +

 

Set 4 

The choice 

t4xz +=
 

(2.150) 

in (2.141) leads to 

tx8w4y 22 =−
 

(2.151) 

which is expressed as the system of double equations  as shown in Table 2.21 below: 

Table 2.21: System of double equations 

System 1 2 3 4 

2y w+  8x  4x  8t  2x  

2y w−  t  2t  x  4t  

 
 

Solving each of the above systems, one obtains the values of , , ,x y w t . In view of 

(2.150), the corresponding value of z  is obtained. For simplicity, the integer solutions 

to the corresponding system of equations are exhibited below: 
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Solutions to system 1 

, 4 2 , 16 , 2 , 4x s y s k z s k w s k t k= = + = + = − =  

Solutions to system 2 

, 2 2 , 8 , , 2x s y s k z s k w s k t k= = + = + = − =  

Solutions to system 3 

4 , 2 4 , 4 4 , 2 ,x s y s k z s k w k s t k= = + = + = − =  

Solutions to system 4 

2 , 2 2 , 2 4 , ,x s y s k z s k w s k t k= = + = + = − =  
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CHAPTER – III 

CUBIC DIOPHANTINE EQUATIONS 

 
Chapter III analyses cubic diophantine equations in four sections III.1 to III.4 

Section III.1 

The non-homogeneous cubic equation with three unknowns represented by 

( )2 2 33 5 1 111x y xy x y z+ − + + + =  is analyzed for its patterns of non-zero distinct 

integer solutions. A few interesting relations among the solutions are presented. 

Section III.2 

An attempt is made to solve the cubic equation with four unknowns given by 

( )3 3 2 36 4x y x y z w+ + + =  in integers. Some special relations between the solutions 

are given. 

Section III.3 

The homogeneous cubic equation with four unknowns represented by the 

Diophantine equation ( ) ( )23 3 216x y x y x y zw+ + + − =  is analyzed for its patterns of 

non-zero distinct integral solutions. Various interesting relations between the solutions 

and special numbers namely polygonal numbers are exhibited. 

Section III.4 

This paper concerns with the problem of obtaining non-zero distinct integer 

solutions to the non-homogeneous cubic equation with three unknowns given 

3 3 2 22 (2 1)x y x y z z α+ + + = − + . A few interesting relations among the solutions are 

presented .Also ,a formula for generating sequence of integer solutions to the 

considered cubic equation based on its given solution is exhibited. 
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III.1 On the non-homogeneous ternary cubic equation 

( )2 2 33 + 5 + + +1 = 111x y xy x y z−−−−  

The ternary non-homogeneous cubic equation to be solved is 

( )2 2 33 5 1 111x y xy x y z+ − + + + =  (3.1) 

Introducing the linear transformations 

,x u v y u v= + = −  (3.2) 

in (3.1), it gives 

2 2 311 111U v z+ =  (3.3) 

where 1U u= +  (3.4) 

Assume 

( ) 2 2, 11z z a b a b= = +  (3.5) 

Solving (3.3) through various methods and using (3.2), different sets of integer 

solutions to (3.1) are obtained. 

A. Method 1 

Consider  

( )( )111 10 11 10 11i i= + −  (3.6) 

Substituting (3.5), (3.6) in (3.3) and applying the method of factorization, 

( ) ( ) ( ) ( ) ( ) ( )3 3

11 11 10 11 10 11 11 11U i v U i v i i a i b a i b+ − = + − ∗ + −
 

Equating the positive and negative terms in the above equation, we have 

( ) ( ) ( ) 3

11 10 11 11U i v i a i b+ = + +   (3.7) 

( ) ( ) ( ) 3

11 10 11 11U i v i a i b− = − −  (3.8) 
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Equating the real and imaginary parts in either (3.7) or (3.8), we have 

3 2 2 310 330 33 121U a ab a b b= − − +  (3.9) 

3 2 2 333 30 110v a ab a b b= − + −  (3.10) 

Substitution of (3.9) in (3.4) gives 

3 2 2 310 330 33 121 1u a ab a b b= − − + −  (3.11) 

Substituting the above values of uand v in (3.2), we get 

( )
( )

3 2 2 3

3 2 2 3

, 11 363 3 11 1

, 9 297 63 231 1

x x a b a ab a b b

y y a b a ab a b b

= = − − + − 


= = − − + −    

(3.12) 

Thus, (3.5) and (3.12) represents the integer solutions of (3.1). 

Properties 

� ( ) ,6 728,1, 11 365 10 0b bx b CP t b− + + − =  

� ( ) ,6, 120 1 0ay a a CP+ + =  

� ( ) ,6, 1 340 702 188 197 0a a a ax a a R CP PR GNO+ + + + − − =  

� ( ) ( ),1 ,1 60 125 220 0a ax a y a SO PR a− − − + + =  

� ( ) ,6, 456 1 0ay a a CP− + + =  

Note 1 

Apart from (3.6), 111 is also expressed as 

( )( )13 5 11 13 5 11
111

4

i i+ −
=  (3.13) 

In this case, the corresponding solutions to (3.1) are given by 

( )
( )
( )

3 2 2 3

3 2 2 3

2 2

, 72 504 2376 1848 1

, 32 816 1056 2992 1

, 4 44

x x A B A A B AB B

y y A B A A B AB B

z z A B A B

= = − − + −

= = − − + −

= = +
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B. Method 2 

(3.3) is written as 

2 2 311 111 1U v z+ = ∗  (3.14) 

Assume 

( ) ( )5 11 5 11
1

36

i i+ −
=  (3.15) 

Substituting (3.5), (3.6) and (3.15) in (3.14) and employing the method of factorization, 

define 

( ) ( )( ) ( )1
11 10 11 5 11 11

6
U i v i i a i b+ = + + +

 
(3.16) 

Equating the real and imaginary parts in (3.16), we have 

( )

( )

3 2 2 3

3 2 2 3

1
39 1287 495 1815

6
1

15 495 117 429
6

U a ab a b b

v a ab a b b

= − − + 

= − + −


 (3.17) 

Replacing a  by 6A  and b  by B6 in (3.17) and (3.5) we get 

3 2 2 31404 46332 17820 65340U A AB A B B= − − +  (3.18) 

3 2 2 3540 17820 4212 15444v A AB A B B= − + −  (3.19) 

2 236 396z A B= +  (3.20) 

Substitution of (3.18) in (3.4) gives 

3 2 2 31404 46332 17820 65340 1u A AB A B B= − − + −  (3.21) 

Substituting the above values of uand v in (3.2), it is seen that 

( )
( )

3 2 2 3

3 2 2 3

, 1944 64152 13608 49896 1

, 864 28512 22032 80784 1

x x A B A AB A B B

y y A B A AB A B B

= = − − + − 


= = − − + − 
 (3.22) 

Thus, (3.20) and (3.22) represents the integer solutions of (3.1). 
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Properties 

� ( ) ,6, 25920 1 0Ax A A CP+ + =  

� ( ) ,31, 106272 47952 23328 44497 0B B By B B CP PR GNO+ − + + + =  

� ( ) 128306,1, 24948 52811 1943 0B Bx B SO t B− + + − =  

� ( ) ( ) ( ),61, 1, 30888 35640 22032 23112 0B B Bx B y B CP PR GNO− + + − − =  

� ( ) ,6,1 864 22038 3234 77548 0A A A Ay A CP S PR GO− − + + − =  

Note 2 

It is to be noted that, in addition to (3.15), 1 may also be represented as 

( ) ( )1 3 11 1 3 11
1

100

i i+ −
=  (3.23) 

For this choice, the corresponding integer solutions to (3.1) are given by 

( )
( )

3 2 2 3

3 2 2 3

2 2

, 800 26400 109200 400400 1

, 5400 178200 95400 349800 1

( , ) 100 1100

x x A B A AB A B B

y y A B A AB A B

z z A B A B

= = − − + −

= = − + − + −

= = +

 
Note 3 

In (3.14), employing (3.13) along with (3.15) and (3.23) in turn, one obtains two more 

sets of integer solutions to (3.1) which are exhibited below: 

Set 1 

( )
( )
( )

3 2 2 3

3 2 2 3

2 2

, 6912 228096 176256 646272 1

, 4032 133056 184896 677952 1

, 144 1584

x x A B A AB A B

y y A B A AB A B B

z z A B A B

= = − − + −

= = − + − + −

= = +
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Set 2 

( )
( )

3 2 2 3

3 2 2 3

2 2

, 43200 1425600 763200 2798400 1

, 78400 2587200 398400 1460800 1

( , ) 400 4400

x x A B A AB A B B

y y A B A AB A B B

z z A B A B

= = − + − + −

= = − + − + −

= = +

 

In this paper, a search is performed to obtain different sets of integer solutions 

to the ternary cubic equation given by (3.1). To conclude, one may search for other 

choices of integer solutions to (3.1).
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III.2 On the Cubic Equation ( )3 3 2 3+ + 6 + = 4x y x y z w  

The cubic equation with four unknowns to be solved is 

( )3 3 2 36 4x y x y z w+ + + =  (3.24) 

Introducing the linear transformations 

, ,x u v y u v w u= + = − =  (3.25) 

in (3.24), it is written as 

2 2 23 6u v z= +  (3.26) 

Again, the substitution of 

3 , 6 , 3u U v X T z X T= = + = −  (3.27) 

in (3.26), leads to 

2 2 218U T X= +  (3.28) 

whose solutions are 

2 2 2 22 , 18 , 18T rs X r s U r s= = − = +  (3.29) 

From (3.29),(3.27), (3.25), the solutions of (3.24) are given below: 

( )
( )
( )
( )

2 2

2 2

2 2

2 2

, 72 2 12

, 36 4 12

, 18 6

, 54 3

x x r s r s rs

y y r s r s rs

z z r s r s rs

w w r s r s

= = + +

= = + −

= = − −

= = +

 

Properties 

• ( ) ( )1, 2 1, 6 21 21 0s sx s y s PR GNO− + − − =  

• ( ) ( ), 2 ,y r s z r s−  is a Nasty number 

• ( ) ( ) ( ),1 4 ,1 18 0 mod 2rx r z r GNO− − ≡  

• ( ),1 9 27 21r rw r S GNO− − =  

• ( ) 38,,1 11 1 rz r r t− + =  
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Remark: One may also consider the transformation (3.27) as 

3 , 6 , 3u U v X T z X T= = − = +  (3.30) 

In this case, the corresponding values of , , ,x y z w satisfying (3.24) are represented by 

( )
( )
( )
( )

2 2

2 2

2 2

2 2

, 72 2 12

, 36 4 12

, 18 6

, 54 3

x x r s r s rs

y y r s r s rs

z z r s r s rs

w w r s r s

= = + −

= = + +

= = − +

= = +

 

In addition to the above solutions, other sets of solutions to (3.24) may be obtained as 

illustrated below: 

Note that (3.28) is represented as the pair of equations as in Table 3.1: 

Table 3.1: Pair of equations 

S. No. 1 2 3 4 5 6 

U X+  2T  29T  23T  9T  6T  18T  

U X−  18 2 6 2T  3T  T  
 
 

Substituting the corresponding values of ,U X  and T  from the above Table1 and in 

(3.27) and (3.25) the different sets of integer solutions to (3.24) thus obtained are 

shown below in Table 3.2: 

Table 3.2: Solutions 

S. No. x  y  z  w  

1 28 12 18k k+ +  24 12 36k k− +  22 6 9k k− −  26 27k +  

2 272 12 2k k+ +  236 12 4k k− +  218 6 1k k− −  254 3k +  

3 224 12 6k k+ +  212 12 12k k− +  26 6 3k k− −  218 9k +  

4 54k  14k  k  33k  

5 42k  12k  3k−  27k  

6 86k  28k  11k  57k  
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Note: Substituting the values of , ,U X T  obtained from Table 1 in (3.30) and (3.25), 

one obtains some more choices of solutions to (3.24). 

Also, (3.28) is taken as 

2 2 218 1X T U+ = ∗  (3.31) 

Consider 

2 218U a b= +  (3.32) 

and 

( )( )3 2 18 3 2 18
1

81

i i+ −
=  (3.33) 

Applying (3.32), (3.33) in (3.31) and factorizing, take 

( ) ( )2

18 3 2 18
18

9

a i b i
X i T

+ +
+ =  

from which note that 

( )

( )

2 2

2 2

1
3 54 72

9
1

2 36 6
9

X a b ab

T a b ab

= − −

= − +
 

Replacing a by 3A in the above equations, we have 

2 2

2 2

3 6 24

2 4 2

X A b Ab

T A b Ab

= − − 


= − + 
 (3.34) 

and from (3.32), 

2 29 18U A b= +  (3.35) 

Substituting (3.34) and (3.35) in (3.27) and (3.25), the corresponding values of 

, , ,x y z w satisfying (3.24) are given by 
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2 2

2 2

2 2

2 2

42 24 12

12 84 12

3 6 30

27 54

x A b Ab

y A b Ab

z A b Ab

w A b

= + −

= + +

= − + −

= +

 

Note: In addition to (3.33), one may also write 1 as 

( ) ( )7 2 18 7 2 18
1

121

i i+ −
=  

The repetition of the above process leads to a different set of solutions to (3.24). 

In this paper, an attempt has been made to obtain different sets of integer solutions 

to ( )3 3 2 36 4x y x y z w+ + + = . In conclusion, a search for determining integer solutions 

to the considered cubic equation with four unknowns may be performed. 
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III.3 On the Equation of Degree Three with Four Unknowns 

( )( )23 3 2+ + + = 16x y x y x y zw−−−−  

 
The homogeneous cubic equation with four unknowns to be solved for its distinct 

non-zero integral solution is 

( ) ( )23 3 216x y x y x y zw+ + + − =  (3.36) 

Introduction of the linear transformations 

, ,x u v y u v z u= + = − =  (3.37) 

in (3.36) leads to 

2 2 27 8u v w+ =   (3.38) 

Different methods of obtaining the patterns of integer solutions to (3.36) are 

illustrated below: 

PATTERN: 1 

Let 

2 27w a b= +   (3.39) 

where a and b are non-zero integers. 

Write 8 as 

( ) ( )8 1 7 1 7i i= + −   (3.40) 

Using (3.39), (3.40) in (3.38) and applying the method of factorization, define 

( ) ( ) ( )2

7 1 7 7u i v i a i b+ = + +    (3.41) 

from which we have 

2 2

2 2

14 7

2 7

u a ab b

v a ab b

= − − 


= + − 
 (3.42) 
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Using (3.42) in (3.37), the values of ,x y  and z  are given by 

2 2

2 2

( , ) 2 12 14

( , ) 16

( , ) 14 7

x x a b a ab b

y y a b ab

z z a b a ab b

= = − −
= = − 
= = − − 

 (3.43) 

Thus (3.39) and (3.43) represent the non-zero integer solutions to (3.36). 

OBSERVATIONS 

1. 34, 26, 18, 10,( , ) ( , ) 0(mod3)a a a ax a a y a a t t t t+ + + + + ≡

 
2. ( ) ( ) 4,2, , 0bz b b y b b t− + =

 
3. ( ) ( ) ( ) 58,, , , 27ax a a y a a z a a t a− + + = −

 
4. ( ) ( ) ( ) 3,, 1 , 1 , 1 79 0ax a a y a a z a a t+ − + + + + =

 
5. ( ) ( ) ( ) 4,4, , , 0bx b b y b b w b b t− − + =  

PATTERN: 2 

Write 8 as 

( )( )5 7 5 7
8

4

i i+ −
=

 
 (3.44) 

Using (3.39), (3.44) in (3.38) and applying the method of factorization, define 

( ) ( )25 7
7 7

2

i
u i v a i b

 ++ = +  
 

 (3.45) 

from which we have 

( )

( )

2 2

2 2

1
5 14 35

2
1

10 7
2

u a ab b

v a ab b

= − − 

= + −


 (3.46) 
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Since our interest is on finding integer solutions, replacing a by 2A, b by 2B in (3.39) 

and by using (3.46) in (3.37), the corresponding integer solutions to (3.36) are given by 

( )

2 2

2 2

2 2

2 2

( , ) 12 8 84

( , ) 8 48 56

( , ) 10 28 70

, 4 28

x x A B A AB B

y y A B A AB B

z z A B A AB B

w w A B A B

= = − −


= = − − 


= = − − 
= = + 

 

 

 (3.47) 

Thus (3.47) represent the non-zero integer solutions to (3.36). 

OBSERVATIONS 

1. ( ) ( ) ( ) 114, 82, 74, 26,, , , 124B B B Bz B B x B B w B B t t t t B− + + + + + = −  

2. 4,4( , ) ( , ) 0Ay A A x A A t− + =  

3. ( ) ( ) ( ) 74, 106, 34,, , , 101A A Ax A A y A A z A A t t t A− − − − − =  

PATTERN: 3 

Write 8 as 

( )( )11 7 11 7
8

16

i i+ −
=  (3.48) 

Using (3.39), (3.48) in (3.38) and applying the method of factorization, define 

( ) ( )211 7
7 7

4

i
u i v a i b

 ++ = +  
   

(3.49) 

from which we have 

( )

( )

2 2

2 2

1
11 14 77

4
1

22 7
4

u a ab b

v a ab b

= − − 

= + −
  

 (3.50) 

Since our interest is on finding integer solutions, replacing a by 2A, b by 2B in (3.39) 

and by using (3.50) in (3.37), the corresponding integer solutions to (3.36) are given by 
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( )

2 2

2 2

2 2

2 2

( , ) 12 8 84

( , ) 10 36 70

( , ) 11 14 77

, 4 28

x x A B A AB B

y y A B A AB B

z z A B A AB B

w w A B A B

= = + −


= = − − 


= = − − 
= = + 

 (3.51) 

Thus (3.51) represent the non-zero integer solutions to (3.36). 

OBSERVATIONS 

1. ( ) ( ) 18, 22, 30,, , 0(mod 29)A A Ax A A w A A t t t+ + + + ≡  

2. 4,4( , ) ( , ) 0Bx B B z B B t− − =  

3. ( ) ( ) 14, 22,, , 0(mod 7)A Ay A A z A A t t− + + ≡  

PATTERN: 4 

Write (3.38) as 

2 2 27 8 *1u v w+ =  (3.52) 

Write 1 as 

( ) ( )3 7 3 7
1

16

i i + −
 =
 
 

 (3.53) 

Using (3.39), (3.40), (3.53) in (3.52) and applying the method of factorization, define 

( ) ( ) ( )2 3 7
7 1 7 7

4

i
u i v i a i b

 ++ = + +   
 

 (3.54) 

from which we have 

( )
( )

2 2

2 2

14 7

2 7

u a ab b

v a ab b

= − − + 


= − − 

 (3.55) 
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Using (3.55) in (3.37), the values of ,x y and z  are given by 

2 2

2 2

( , ) 16

( , ) 2 12 14

( , ) 14 7

x x a b ab

y y a b a ab b

z z a b a ab b

= = − 
= = − − + 
= = − − + 

 (3.56) 

Thus (3.39) and (3.56) represent the non-zero integer solutions to (3.36). 

OBSERVATIONS 

1. 18,( , ) ( , ) 0(mod 7)ay a a w a a t− + ≡  

2. 12, 8,( , ) ( , ) 6a ay a a z a a t t a+ + + = −  

3. 66,( , ) 2 ( , ) 0(mod 31)bx b b w b b t− + ≡  

PATTERN: 5  

Assume 1 as 

( )( )1 3 7 1 3 7
1

64

i i + −
 =
 
 

 (3.57) 

Using (3.39), (3.40), (3.57) in (3.52) and applying the method of factorization, define 

( ) ( )( )2 1 3 7
7 1 7 7

8

i
u i v i a i b

 ++ = + +   
 

 (3.58) 

from which we have 

( )

( )

2 2

2 2

1
5 14 35

2
1

10 7
2

u a ab b

v a ab b

= − − + 

= − −


 (3.59) 

Since our interest is on finding integer solutions, replacing a by 2A, b by 2B in (3.39) 

and by using (3.59) in (3.37), the corresponding integer solutions to (3.36) are given by 
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( )
( )
( )

2 2

2 2

2 2

2 2

( , ) 8 48 56

( , ) 12 8 84

( , ) 10 28 70

( , ) (4 28 )

x x A B A AB B

y y A B A AB B

z z A B A AB B

w w A B A B

= = − − +

= = − − + 


= = − − + 


= = + 

 (3.60) 

Thus (3.60) represent the non-zero integer solutions to (3.36). 

OBSERVATIONS 

1. ( ) ( ) 4,8, , 0Ax A A y A A t+ − =  

2. ( ) ( ) ( )3,, 1 , 1 64 0 mod10By B B w B B t+ − + − ≡  

3. ( ) ( ) 4,4 22, 38, 42,, , 0(mod5)B B B Bz B B w B B t t t t+ − − − − ≡  

PATTERN: 6  

Assume 1 as 

( )( )3 4 7 3 4 7
1

121

i i + −
 =
 
   

 (3.61) 

Using (3.39), (3.40), (3.61) in (3.52) and applying the method of factorization, define 

( ) ( )( )2 3 4 7
7 1 7 7

11

i
u i v i a i b

 ++ = + +   
 

 (3.62) 

from which we have 

( )

( )

2 2

2 2

1
25 98 175

11
1

7 50 49
11

u a ab b

v a ab b

= − − + 

= − −


 (3.63) 

Since our interest is on finding integer solutions, replacing a by 11A, b by 11B in 

(3.39) and by using (3.63) in (3.37), the corresponding integer solutions to (3.36) are 

given by 
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( )
( )
( )

2 2

2 2

2 2

2 2

( , ) 198 1628 1386

( , ) 352 528 2464

( , ) 275 1078 1925

( , ) (121 847 )

x x A B A AB B

y y A B A AB B

z z A B A AB B

w w A B A B

= = − − +

= = − − + 


= = − − + 


= = + 

 (3.64) 

Thus (3.64) represent the non-zero integer solutions to (3.36). 

PATTERN: 7  

Assume 1 as 

( )( )
2

1 48 7 1 48 7
1

127

i i + −
 =
 
 

   (3.65) 

Using (3.39), (3.40), (3.65) in (3.52) and applying the method of factorization, define 

( ) ( ) ( )2 1 48 7
7 1 7 7

127

i
u i v i a i b

 ++ = + +   
 

 (3.66) 

from which we have 

( )

( )

2 2

2 2

1
335 686 2345

127
1

49 670 343
127

u a ab b

v a ab b

= − − + 

= − −


 (3.67) 

Since our interest is on finding integer solutions, replacing a by 127A, b by 127B in (3.39) 

and by using (3.67) in (3.37), the corresponding integer solutions to (3.36) are given by 

( )
( )
( )

2 2

2 2

2 2

2 2

( , ) 36322 172212 254254

( , ) 48768 2032 341376

( , ) 42545 87122 297815

( , ) (16129 112903 )

x x A B A AB B

y y A B A AB B

z z A B A AB B

w w A B A B

= = − − +

= = − − + 


= = − − + 


= = + 

 (3.68) 

Thus (3.68) represent the non-zero integer solutions to (3.36). 
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PATTERN: 8  

Assume 1 as 

( )( )3 4 7 3 4 7
1

121

i i + −
 =
 
 

 (3.69) 

Using (3.39), (3.44), (3.69) in (3.52) and applying the method of factorization, define 

( ) ( )25 7 3 4 7
7 7

2 11

i i
u i v a i b

   + ++ = +      
   

 (3.70) 

from which we have 

( )

( )

2 2

2 2

1
13 322 91

22
1

23 26 161
22

u a ab b

v a ab b

= − − + 

= − −


 (3.71) 

Since our interest is on finding integer solutions, replacing a by 22A, b by 22B in (3.39) 

and by using (3.71) in (3.37), the corresponding integer solutions to (3.36) are given by 

 

( )
( )
( )

2 2

2 2

2 2

2 2

( , ) 220 7656 1540

( , ) 792 6512 5544

( , ) 286 7084 2002

( , ) (484 3388 )

x x A B A AB B

y y A B A AB B

z z A B A AB B

w w A B A B

= = − −

= = − − + 


= = − − + 


= = + 

 (3.72) 

Thus (3.72) represent the non-zero integer solutions to (3.36). 

PATTERN: 9  

Assume 1 as 

( )( )
2

1 48 7 1 48 7
1

127

i i + −
 =
 
 

 
 

(3.73) 
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Using (3.39), (3.44), (3.73) in (3.52) and applying the method of factorization, define 

( ) ( )25 7 1 48 7
7 7

2 127

i i
u i v a i b

   + ++ = +      
   

 (3.74) 

from which we have 

( )

( )

2 2

2 2

1
331 3374 2317

254
1

241 662 1687
254

u a ab b

v a ab b

= − − + 

= − −


 (3.75) 

Since our interest is on finding integer solutions, replacing a by 254A, b by 254B in (3.39) 

and by using (3.75) in (3.37), the corresponding integer solutions to (3.36) are given by 

( )
( )
( )

2 2

2 2

2 2

2 2

( , ) 22860 1025144 160020

( , ) 145288 688848 1017016

( , ) 84074 856996 588518

( , ) (64516 451612 )

x x A B A AB B

y y A B A AB B

z z A B A AB B

w w A B A B

= = − − +

= = − − + 


= = − − + 


= = + 

 (3.76) 

Thus (3.76) represent the non-zero integer solutions to (3.36). 

PATTERN: 10 

Assume 1 as 

( )( )3 7 3 7
1

16

i i + −
 =
 
 

 (3.77) 

Using (3.39), (3.48), (3.77) in (3.52) and applying the method of factorization, define 

( ) ( )211 7 3 7
7 7

4 4

i i
u i v a i b

   + ++ = +      
   

 (3.78) 

from which we have 

( )

( )

2 2

2 2

1
13 98 91

8
1

7 26 49
8

u a ab b

v a ab b

= − − 

= + −


 (3.79) 
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Since our interest is on finding integer solutions, replacing a by 8A, b by 8B in (3.39) 

and by using (3.79) in (3.37), the corresponding integer solutions to (3.36) are given by 

 

( )
( )
( )

2 2

2 2

2 2

2 2

( , ) 160 576 1120

( , ) 48 992 336

( , ) 104 784 728

( , ) (64 448 )

x x A B A AB B

y y A B A AB B

z z A B A AB B

w w A B A B

= = − −

= = − − 


= = − − 


= = + 

 (3.80) 

Thus (3.80) represent the non-zero integer solutions to (3.36). 

PATTERN: 11 

Assume 1 as 

( )( )1 3 7 1 3 7
1

64

i i + −
 =
 
 

 (3.81) 

Using (3.39), (3.48), (3.81) in (3.52) and applying the method of factorization, define 

( ) ( )211 7 1 3 7
7 7

4 8

i i
u i v a i b

   + ++ = +      
   

 (3.82) 

from which we have 

( )

( )

2 2

2 2

1
5 238 35

16
1

17 10 119
16

u a ab b

v a ab b

= − − + 

= − −


 (3.83) 

Since our interest is on finding integer solutions, replacing a by 16A, b by 16B in (3.39) 

and by using (3.83) in (3.37), the corresponding integer solutions to (3.36) are given by 

 

( )
( )
( )

2 2

2 2

2 2

2 2

( , ) 192 3968 1344

( , ) 352 3648 2464

( , ) 80 3808 560

( , ) (256 1792 )

x x A B A AB B

y y A B A AB B

z z A B A AB B

w w A B A B

= = − −

= = − − + 


= = − − + 


= = + 

 (3.84) 

Thus (3.84) represent the non-zero integer solutions to (3.36). 
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PATTERN: 12 

Assume 1 as 

( )( )3 4 7 3 4 7
1

121

i i + −
 =
 
 

 (3.85) 

Using (3.39), (3.48), (3.85) in (3.52) and applying the method of factorization, define 

( ) ( )211 7 3 4 7
7 7

4 11

i i
u i v a i b

   + ++ = +      
   

 (3.86) 

from which we have 

( )

( )

2 2

2 2

1
5 658 35

44
1

47 10 329
44

u a ab b

v a ab b

= − − 

= + −


 (3.87) 

Since our interest is on finding integer solutions, replacing a by 44A, b by 44B in 

(3.39) and by using (3.87) in (3.37), the corresponding integer solutions to (3.36) are 

given by 

( )
( )
( )

2 2

2 2

2 2

2 2

( , ) 2288 28512 16016

( , ) 1848 29392 12936

( , ) 220 28952 1540

( , ) (1936 13552 )

x x A B A AB B

y y A B A AB B

z z A B A AB B

w w A B A B

= = − −

= = − − + 


= = − − 


= = + 

 (3.88) 

Thus (3.88) represent the non-zero integer solutions to (3.36). 
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III.4 On Non-homogeneous Ternary Cubic Equation 

3 3 2 2+ + + = 2 (2 +1)x y x y z z α−−−−  

The non-homogeneous ternary cubic equation to be solved is 

3 3 2 22 (2 1)x y x y z z α+ + + = − +  (3.89) 

Introduction of the linear transformations 

, , , 0x u v y u v z u u v= + = − = ≠ ≠  (3.90) 

in (3.89) leads to 

2 2 23u v α= +  (3.91) 

which is the well-known positive Pell equation. The general solution 1 1( , )n nv u+ +  to 

(3.91) is given by 

1

1

,
23

3
, 1,0,1,...

2

n n n

n n n

v g f

u f g n

α α

α α

+

+

= +

= + = −
 

where 

1 1 1 1(2 3) (2 3) , (2 3) (2 3) ,n n n n
n nf g+ + + += + + − = + − −  

In view of (3.90), the general solution 1 1 1( , , )n n nx y z+ + +  to (3.89) is given by 

1

1

1

3 5 3
,

2 6

1 3
,

2 6

3
,

2

n n n

n n n

n n n

x f g

y f g

z f g

α α

α α

α α

+

+

+


= + 




= + 



= + 


 1, 0,1,....n = −  (3.92) 
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A few numerical examples are presented in Table 3.3 below: 

Table 3.3:  Numerical examples 

n  +1nx  +1ny  +1nz  

-1 3α  α  2α  

0 11α  3α  7α  

1 41α  11α  26α  

2 153α  41α  97α  

3 571α  153α  362α  
 
 

From the above Table 3.3, the following results are observed: 

(i) The values of x  and y  are both even or odd according as α  is even or odd. 

(ii)  The values of z  are even when α  is even and alternatively even & odd when 

α  is odd. 

(iii)  1 2n nx y+ +=  

(iv) 1 3 34n n nx x y+ + ++ =  

(v) 1 2 13n n nz z x+ + ++ =  

(vi) 3 2 33n n nz z y+ + ++ =  

(vii)  1 2 24n n ny x y+ + ++ =  

(viii)  3 2 22n n ny y z+ + ++ =  

(ix) 3 1 3 15 3( )n n n nz z y y+ + + ++ = +  

(x) 2 1 3 2n n n nx x y y+ + + ++ = +  

Each of the following expressions is a perfect square: 

• 2 2 2 3(8 2 2 )n nz zα α+ +− +  

• 2 2 2 2(10 6 2 )n nz xα α+ +− +  
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• 2 2 2 4(18 2 2 )n nx zα α+ +− +  

• 2 2 2 3(10 6 2 )n nz yα α+ +− +  

• 2 2 2 2(5 2 )n ny xα α+ +− +  

Each of the following expressions is a cubical integer: 

• [ ]2
3 3 3 3 1 15 3(5 )n n n ny x y xα + + + +− + −  

• [ ]2
3 3 3 4 1 210 6 3(10 6 )n n n nz y z yα + + + +− + −  

• [ ]2
3 3 3 5 1 318 2 3(18 2 )n n n nx z x zα + + + +− + −  

• [ ]2
3 3 3 3 1 110 6 3(10 6 )n n n nz x z xα + + + +− + −  

• [ ]2
3 3 3 4 1 28 2 3(8 2 )n n n nz z z zα + + + +− + −  

Employing the linear combinations between the solutions of (3.89), one obtains 

integer solutions to special hyperbolas and parabolas : 

Illustration 1 

The pairs of integers 

2 1 1 2 1 1 1 1

2 1 1 2 1 1 1 1

( , ) (4 14 ,  8 2 ),  (12 18 ,  10 6 ),

(12 18 ,10 6 ),  (3 9 ,  5 )

n n n n n n n n

n n n n n n n n

X Y z z z z x z z x

y z z y x y y x

+ + + + + + + +

+ + + + + + + +

= − − − −

− − − −  

satisfy the hyperbola 2 2 23 12Y X α− =  correspondingly. 

Illustration 2 

The pairs of integers 

2 1 2 2 2 3 1 1 2 2 2 2

2 1 2 21 2 3 1 1 2 2 2 2

( , ) (4 14 ,  8 2 2 ),  (12 18 ,  10 6 2 ),

(12 18 ,  10 6 2 ),  (3 9 ,5 2 )
n n n n n n n n

n n n n n n n n

X Y z z z z x z z x

y z z y x y y x

α α
α α

+ + + + + + + +

+ + + + + + + +

= − − + − − +
− − + − − +

 

satisfy the hyperbola 2 23 12Y Xα α− =  correspondingly. 
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Generation of Solutions 

The process of obtaining a formula for generating sequence of integer solutions based 

on the given solution is presented below: 

Let ( )0 0,u v  be any given solution to (3.91). 

Let ( )1 1,u v
 
given by 

1 02 ,u h u= − 1 0v h v= +  (3.93) 

be the 2nd solution to (3.91). Using (3.93) in (3.91) and simplifying, one obtains 

0 04 6h u v= +  

In view of (3.93), the values of1u and 1v are written in the matrix form as 

( ) ( )1 1 0 0, ,
t t

u v M u v=  

where 

7 12

4 7
M

 
=  
   

and t  is the transpose. 

The repetition of the above process leads to the nth solutions ,n nu v  given by 

( ) ( )0 0, ,
t tn

n nu v M u v=  (3.94) 

Now, if ,p q are the distinct eigen values of M, then 

7 4 3p = + , 7 4 3q = −  

We know that 

( ) ( ) ( ) ( ) ,
n n

n p q
M M qI M pI

p q q p
= − + −

− −  
2 2I = ×  Identity matrix 

and in view of (3.94), one obtains the values of ,n nu v . Employing (3.90), the values 

of , ,n n nx y z  satisfying (3.89) are given by 



Chapter-III                       Cubic Diophantine Equations 

 128 

0 0

0 0

0 0

1
(2 3( ) 4( ) ) 2( ) ,

4 3
1

(2 3( ) 4( ) ) 2( ) ,
4 3
1

( 3( ) ) ( 3( ))
4

n n n n n n
n

n n n n n n
n

n n n n n n n n
n

x x y

y y x

z x y

α β α β α β

α β α β α β

α β α β α β α β

 = + + − − −  

 = + − − + −  

 = + + − + + − −   

 (3.95) 

In the above system (3.95), 

0 0 0 0 0 0,x u v y u v= + = −  
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CHAPTER – IV 

BI-QUADRATIC DIOPHANTINE EQUATIONS 

 
Chapter-IV focuses on bi-quadratic diophantine equations in four sections 

IV.1 to IV.4 

Section IV.1 

We obtain infinitely many non-zero integer solutions to the non-homogeneous 

ternary bi-quadratic equation 2 2 47x xy y z+ + = . 

Section IV.2 

This section aims at determining non-zero distinct integer solutions to the 

algebraic equation of degree four with three unknowns given by 

( ) ( ) ( ) ( )2 2 2 2 41 2 1 4 3 , 0a x y a xy p a q z a + + − + = + + ≥   

Section IV.3 

This section concerns with the problem of determining non-trivial integral 

solutions of the non-homogeneous bi-quadratic equation with four unknowns given by 

2 48 5 5xy z w+ = . We obtain infinitely many non-zero integer solutions of the 

equation, by introducing the linear transformations , ,x u v y u v z v= + = − = . 

Section IV.4 

On the Homogeneous Bi-Quadratic Equation with Four Unknowns given by 

( ) ( ) 24 4 3 2 2 22 3x y x y z k s w+ + − = +  aims at determining non-zero distinct integer 

solutions. 
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IV.1 On Non-Homogeneous Ternary Bi-Quadratic Equation 

2 2 4+ 7 + =x xy y z  

The ternary bi-quadratic diophantine equation to be solved for its non-zero 

distinct integral solutions is given by 

2 2 47x xy y z+ + =  (4.1) 

Introducing the linear transformations 

 , , 0x u v y u v u v= + = − ≠ ≠  (4.2) 

in (4.2), it leads to 

2 2 49 5u v z= +  (4.3) 

We present below different methods of solving (4.3) and thus obtain different patterns 

of integral solutions to (4.1). 

Pattern 1 

It is noted that (4.3) is satisfied by 

2 2 2 2 22 , 5 , 3 5v rs z r s u r s= = − = +  (4.4) 

Taking 3 , 3r R s S= =   (4.5) 

in (4.5), we have 

2 215 3

18

u R S

v RS

= +


= 
 (4.6) 

and 

2 2 245 9z R S= −  (4.7) 

Now, we have to find ,R S and z  satisfying (4.7). 

For this, assume 

2 29R α β= +  (4.8) 
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Also, 45 can be written as 

( ) ( )45 6 3 6 3i i= + −  (4.9) 

Substituting (4.8) and (4.9) in (4.7) and applying the method of factorization, define 

( ) ( )( )2
3 6 3 3z iS i iα β+ = + +  

Equating the real and imaginary parts, we get 

2 26 54 18z α β αβ= − −  (4.10) 

αββα 129S 22 +−=  (4.11) 

Substituting (4.8) and (4.11) in (4.6), we get 

4 4 2 2 3 3

4 4 3 3

18 1458 648 72 648

18 1458 216 1944

u

v

α β α β α β αβ
α β α β αβ

= + + + − 


= − + + 
 (4.12) 

Employing (4.12) in (4.2), we have 

4 2 2 3 3

4 2 2 3 3

36 648 288 1296

2916 648 144 2592

x

y

α α β α β αβ
β α β α β αβ

= + + + 


= + − −   

 (4.13) 

Thus, (4.10) and (4.13) represent non-zero distinct integer solutions to (4.1). 

Note 

It is worth to note that, in addition to (4.9), one may write 45 as 

( ) ( )45 3 6 3 6i i= + −  

Following the procedure as presented above, the corresponding non-zero distinct integer 

solutions to (4.1) are given by 

4 4 2 2 3 3

4 4 2 2 3 3

2 2

63 729 162 180 324

94 5103 162 36 1620

3 27 36

x

y

z

α β α β α β αβ
α β α β α β αβ

α β αβ

= − + + +

= − + + − −

= − −
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Pattern 2 

Introduction of the linear transformations 

5 , 9 , 2u X T v X T z w= + = + =  (4.14) 

in (4.3) leads to 

2 4 24 45X w T− =  (4.15) 

which may be expressed as the system of double equations as presented in Table 4.1 below: 

Table 4.1: System of double equations 

System 1 2 3 4 5 
22X w+  15T  9T  45T  25T  2T  
22X w−  3T  5T  T  9 45 

 
 

Solving each of the above systems, the values of ,X T  and w are obtained. In view of 

(4.2) and (4.14), the corresponding values of ,x y  and z  for each of the systems in 

Table 4.1 are found. Note that the values of ,x y  and z  thus obtained satisfy (4.1). For 

the sake of simplicity and brevity, the values of ,x y  and z  satisfying (4.1), that are 

obtained through the system of equations in Table 4.1, are exhibited in Table 4.2 as 

follows: 

Table 4.2: Solutions 

System Solutions 

1 2 296 , 12 , 6x k y k z k= = − =  

2 2 228 , 4 , 2x k y k z k= = − =  

3 2 2660 , 44 , 22x k y k z k= = − =  

4 
( )

2
1 1 1

1 1

1

20 48 28

8 4

15
3

20

n n n

n n

n n n

x k k

y k

z f g

+ + +

+ +

+

= + +
= − +

= +
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System Solutions 

where, 1

1 15 30
5 , 1,0,1,....

10 2 20
n n nk f g n+

  = − ± + = −  
  

 

( ) ( )
( ) ( )

1 1

1 1

9 2 20 9 2 20

9 2 20 9 2 20

n n

n

n n

n

f

g

+ +

+ +

= + + −

= + − −
 

5 

Set 1: 896, 92, 22x y z= = − =  
Set 2: 252, 36, 6x y z= = − =  

Set 3: 192, 28, 2x y z= = − =  
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IV.2 A Search for Integer Solutions to Ternary Bi-Quadratic Equation  

( ) ( ) ( ) ( )  
2 2 2 2 4+1 + 2 +1 = + 4 + 3a x y a xy p a q z−−−−  

The fourth degree equation with three unknowns to be solved is 

( ) ( ) ( ) ( )2 2 2 2 41 2 1 4 3a x y a xy p a q z + + − + = + +   (4.16) 

Different sets of integer solutions to (4.16) are illustrated below: 

Set 1: 

The choice 

, , 0x u v y u v u v= + = − ≠ ≠  (4.17) 

in (4.16) leads to 

( ) ( )2 2 2 2 44 3 4 3u a v p a q z + + = + +   (4.18) 

Take 

( )2 24 3z aα β= + +  (4.19) 

Substituting (4.19) in (4.18) and factorizing, the resulting equation is written as the 

system of double equations 

( ) ( ) ( )4

4 3 4 3 4 3u i a v p i a q i aα β+ + = + + + +  (4.20) 

( ) ( ) ( )4
343434 βα +−+−=+− aiqaipvaiu  (4.21) 

On equating the rational and irrational parts either in (4.20) or (4.21), we have 

( ) ( ) ( )
( )

( ) ( )
( )

24 2 2 4 3

2 3

3 3 4 2 2

2 4

6 4 3 4 3 4 4 3

4 4 3

4 4 4 3 6 4 3

4 3

u p p a p a a q

a q

v p p a q a q

a q

α α β β α β

αβ

α β αβ α α β

β

= − + + + − +

+ + 


= − + + − + 


+ + 

 (4.22) 
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From (4.22) and (4.17), we get 

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( ) ( )

24 2 2 4

23 3

24 2 2 4

23 3

6 4 3 4 3

4 4 3 4 4 3 4 3

6 4 3 4 3

4 4 3 4 4 3 4 3

p q a p q a p q
x

p a q a q a p

p q a q p a p q
y

p a q a q a p

α α β β

α β αβ

α α β β

α β αβ

 + − + + + + +  =    + − + + + − +       


 − + + − + + −  
=  

  − + + + + + +       

 (4.23) 

Thus, (4.19) and (4.23) represents the integer solutions to (4.16). 

Set 2 

Observe that (4.18) is written in the form of ratio as 

( )( )22

2 2

4 3
, 0

a qz vu pz

qz v u pz

α β
β

+ −+ = = ≠
+ −

 

which is equivalent to the system of double equations 

( )
( ) ( )

2

2

0

4 3 4 3 0

u v p q z

u a v p a q z

β α β α

α β α β

− + − =

+ + − + + =  
 

Applying the method of cross multiplication we have 

( ) ( )
( )

2 2

2 2

4 3 2 4 3

4 3 2

u p a p a q

v q a q p

α β αβ

α β αβ

= − + + + 


= − + + + 

 (4.24) 

( )2 2 24 3z aα β= + +  (4.25) 

Note that (4.25) is satisfied by 

( ) 2 22 , 4 3mn a m nβ α= = + −  (4.26) 

( ) 2 24 3z a m n= + +  (4.27) 

Substituting the values of α  and β  from (4.26) in (4.24) we get, 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

2 4 4 2 2 2 2

3 3

2 4 4 2 2 2 2

3 3

4 3 2 4 3 4 4 3

4 4 3 4 3

4 3 2 4 3 4 4 3

4 4 3

u p a m n a m n a pm n

a a m n mn q

v q a m n a m n a qm n

a m n mn p

 = + + − + − +
  

 + + + −  


 = − + + − + + + 
  

 + + −  

 (4.28) 
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Substitution of (4.28) in (4.17) gives 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2 4 4 2 2 2 2

3 3

2 4 4 2 2 2 2

3 3

4 3 2 4 3 4(4 3)

4 4 3 4 3

4 3 2 4 3 4(4 3)

4 4 3 4 3

x p q a m n a m n a q p m n

a m n mn P a q

y p q a m n a m n a p q m n

a m n mn a q p

 = − + + − + + + −
  

 + + − + +    


 = + + + − + − + + 
  

 + + − + −    

 (4.29) 

Thus, (4.27) and (4.29) represent the integer solutions to (4.16). 

Note 1 

Also, (4.18) is written in the form of ratio as 

( ) ( )
2 2

22
, 0

4 3

u pz qz v

u pza qz v

α β
β

+ −= = ≠
−+ +  

In this case, the corresponding integer solutions to (4.18) are given by 

( )( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

22 2 4 4 3

3

22 2 4 4 3

3

2 2

6 4 3 4 3 4 4 3 4 3

4 4 3

6 4 3 4 3 4 4 3 4 3

4 4 3

4 3

x a p q m n a q p m q p n a p a q m n

p a q mn

y a p q m n a p q m p q n a a q p m n

p a q mn

z aβ α

= + − + + − + − + + + +  

− + +  

= + + − + + − + + + + −  

+ − +  

= + +

 

Set 3 

Write (4.18) as 

( ) ( )2 2 2 2 44 3 4 3 1u a v p a q z + + = + + ∗   (4.30) 

Assume 

( ) ( )
( )2

2 1 4 3 2 1 4 3
1

2 2

a i a a i a

a

   + + + + − +   =
+

 (4.31) 

Substituting (4.19) and (4.31) in (4.30) and employing the method of factorization, 

define 
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( ) ( ) ( )( ) ( )

( ) ( ) ( )
( )

4

4

2

4 3 4 3 4 3 4 3 4 3

2 1 4 3 2 1 4 3
4 3

2 2

u i a v u i a v p i a q p i a q i a

a i a a i a
i a

a

α β

α β

+ + − + = + + − + + +

   + + + + − +   + + ∗
+  

Equating the positive and negative terms in the above equation, we get 

( ) ( )
( )( )
( )

4

4 3 4 31
4 3

2 2 2 1 4 3

p i a q i a
u i a v

a a i a

α β + + + + + + =  +   + + +  

 (4.32) 

( ) ( )
( ) ( )
( )

4

4 3 4 31
4 3

2 2 2 1 4 3

p i a q i a
u i a v

a a i a

α β − + − + − + =  +   + − +  

 (4.33) 

Equating the real and imaginary parts in (4.32) or (4.33), we have 

( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( ) ( )

4 2 2

2 4 3

2 3

4 2 2

2 4

2 1 4 3 6 4 3 2 1 4 3
1

4 3 2 1 4 3 4 4 3 2 1
2 2

4 4 3 2 1

2 1 6 4 3 2 1
1

4 3 2 1 4 2 1 4 3
2 2

a p a q a a p a q

u a a p a q a a q p
a

a a q p

a q p a a q p

v a a q p a p a q
a

α α β

β α β

αβ

α α β

β

 + − + − + + − +      
 
 = + + + − + − + + +       +  
+ + + +    

+ + − + + +      

= + + + + + + − +  +
( ) ( ) ( )

3

34 4 3 2 1 4 3a a p a q

α β

αβ









  
   

    
 

− + + − +      

 (4.34) 

Substituting (4.34) in (4.17) we get, 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

24 4 2 2

3 3

4 2 2

2 4 3

3

4 3 6 4 3

4 4 3 4 4 3 4 3

2 6 4 6 4 3 6 4 2
1

4 3 2 6 4 4 6 4 2 4 3
2 2

4 4 3 4 3 2 6 4

p q a p q a p q
x

p a q a p a q

ap a q a a q ap

y a ap a q a p a a q
a

a a aq a p

α β α β

α β αβ

α α β

β α β

αβ

 − + + − − + − = 
+ − − + + + + +        

 − + + + + −      
= + + − + − + + +       + 
+ + + + +   












 (4.35) 

As our interest is in finding integer solutions, it is seen that replacing α  by 

( )2 2a M+  and β  by ( )2 2a N+  in (4.35) and (4.19), the corresponding integer 

solutions to (4.16) are obtained and they are given below: 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

24 4 2 2
4

3 3

4 2 2

3 2 4 3

3

4 3 6 4 3
2 2

4 4 3 4 4 3 4 3

2 6 4 6 4 3 6 4 2

2 2 4 3 2 6 4 4 6 4 2 4 3

4 4 3 4 3 2 6 4

p q M a p q N a p q M N
x a

p a q M N a p a q MN

ap a q M a a q ap M N

y a a ap a q N a p a a q M N

a a aq a p MN

 − + + − − + − = +  
+ − − + + + + +        

 − + + + + −      


= + + + − + − + + +       

+ + + + +  

( ) ( )2 2 22 2 4 3z a M a N








 


 
  


 = + + +  




 (4.36) 

Note 2 

It is to be noted that, in addition to (4.31), 1 may also be represented as below: 

(i) 
( ) ( )

( )2

3 2 3 4 3 3 2 3 4 3
1

2 6

a i a a i a

a

   − + + − − +   =
+

 

(ii)  
( ) ( )

( )2

4 1 4 4 3 4 1 4 4 3
1

4 7

a i a a i a

a

   − + + − − +   =
+

 

(iii)  
( ) ( )

( )2

9 6 9 4 3 9 6 9 4 3
1

6 18

a i a a i a

a

   − + + − − +   =
+

 

(iv) 
( ) ( )

( )2

16 4 16 4 3 16 4 16 4 3
1

16 28

a i a a i a

a

   − + + − − +   =
+

 

It is worth mentioning here that, by giving various integer values to ,a p and q , one 

may obtain integer solutions to the corresponding biquadratic equation. 

For illustration, the choices 

1, 8, 1a p q= = =  (4.37) 

in (4.16) give 

( )2 2 42 3 71x y xy z+ − =  (4.38) 
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Substituting (4.37) in (4.19), (4.23); (4.27), (4.29) and (4.36) the corresponding three 

sets of integer solutions to (4.38) are as follows: 

Set 1 

4 2 2 4 3 3

4 2 2 4 3 3

2 2

9 378 441 4 28

7 294 343 60 420

7

x

y

z

α α β β α β αβ
α α β β α β αβ

α β

= − + + −

= − + − +

= +

 

Set 2 

4 2 2 4 3 3

4 2 2 4 3 3

2 2

343 294 7 420 60

441 378 9 28 4

7

x r r s s r s rs

y r r s s r s rs

z r s

= − + + −

= − + − +

= +

 

Set 3 

4 2 2 4 3 3

4 2 2 4 3 3

2 2

1792 75264 87808 15360 107520

384 16128 18816 24064 168448

16 112

x M M N N M N MN

y M M N N M N MN

z M N

= − + − +

= − + − +

= +

 

Further, it is observed that, by choosing suitably the values of ,a p  and q  in (4.16), 

the solutions presented in [4.17, 4.21-4.24] are correspondingly obtained. 



Chapter-IV           Bi-Quadratic Diophantine Equations 

 140 

IV.3 On the Non-Homogeneous Bi-Quadratic Equation with Four Unknowns 

2 48 + 5 = 5xy z w  

Consider the bi-quadratic equations with four unknowns 

2 48 5 5xy z w+ =  (4.39) 

The process of obtaining different choices of non-zero distinct integer solutions to 

(4.39) is illustrated below: 

Choice 1 

Introducing the linear transformations 

, ,x u v y u v z v= + = − =  (4.40) 

in (4.39), it is written as 

2 2 48 3 5u v w− =  (4.41) 

Again, employing the linear transformations 

3 , 8 ,u X T v X T= + = +  (4.42) 

(4.41) is written as 

2 2 424X T w− =  (4.43) 

Express (4.43) as the system of double equations as shown in Table 4.3 below: 

Table 4.3:  System of Double Equations 

System I II III IV 
2X w+  26T  8T  6T  12T  

2X w−  4 3T  4T  2T  
 
 

Consider system I 

Solving for X  and w , we get 

23 2X T= +  (4.44) 
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2 23 2w T= −  (4.45) 

Now, observe that (4.45) is a negative Pellian equation whose solutions are obtained 

as illustrated below: 

The smallest positive integer solution to (4.45) is 

0 01, 1T w= =  (4.46) 

To obtain the other solutions to (4.45), consider the corresponding Pellian equation 

2 23 1w T= +  (4.47) 

The smallest positive integer solution to (4.47) is 

0 01, 2T w= =ɶ ɶ  

whose, general solution is given by 

1 1
,  

2 2 3
n n n nw f T g= =ɶɶ  

where, ( ) ( )1 1

2 3 2 3
n n

nf
+ +

= + + −  

( ) ( )1 1

2 3 2 3 , 0,1,2.....
n n

ng n
+ +

= + − − =   

Applying Brahmagupta lemma between the solutions ( )0 0,T w  and ( ),n nT wɶ ɶ , the other 

integer solutions of (4.45) are given by 

 1

1 1

2 2 3
n n nT f g+ = +  (4.48) 

1

1 3

2 2n n nw f g+ = +  (4.49) 

Using (4.48) in (4.44), we have 

2

1

1 1
3 2

2 2 3
n n nX f g+

 = + + 
 
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In view of (4.42) and (4.40), the values of x, y and z are represented by 

2

1

1

2

1

1 1 1 1
6 11 4

2 22 3 2 3

1 1
5

2 2 3

1 1 1 1
3 8 2

2 22 3 2 3

n n n n n

n n n

n n n n n

x f g f g

y f g

z f g f g

+

+

+

   = + + + +    
    

  = − +  
  


    = + + + +        

 (4.50) 

Thus, (4.50) and (4.49) represent the integer solutions to (4.39). 

Consider system II 

Solving for X and w, we get 

211 5
,

2 2

T T
X w= =  

Taking 

210T k=  

we have 

255X k=  

5w k=  (4.51) 

In view of (4.42) and (4.40), the values of ,x y  and z  are represented by 

2 2 2220 , 50 , 135x k y k z k= = − =  (4.52) 

Thus, (4.52) and (4.51) represent the integer solutions to (4.39). 

Consider system III 

Solving for X and w, we get 

25 ,X T w T= =  

Taking 

2T k=  
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we have 

25X k=  

w k=  (4.53) 

In view of (4.42) and (4.40), the values of ,x yand z  are represented by 

2 2 221 , 5 , 13x k y k z k= = − =  (4.54) 

Thus, (4.54) and (4.53) represent the integer solutions to (4.39). 

Consider system IV 

Solving for X and w, we get 

 27 , 5X T w T= =  

Taking 

25T k=  

we have 

235X k=  

5w k=  (4.55) 

In view of (4.42) and (4.40), the values of ,x y and z  are represented by 

2 2 2125 , 25 , 75x k y k z k= = − =  (4.56) 

Thus, (4.55) and (4.56) represent the integer solutions to (4.39). 

Choice 2 

Introducing the linear transformation 

z x y= −  (4.57) 

in (4.39), it becomes 

 ( )2 2 45 2 5 5 0x xy y w− + − =  (4.58) 
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Considering (4.58) as a quadratic expression in x  and solving for x , one obtains 

( )1

5
x y β= ±  (4.59) 

where 

2 4 225 24w yβ = −  (4.60) 

Now, (4.60) is written in the form of ratio as 

( )22

2 2

24
, 0

w yw M
N

w y w N

β
β

−+ = = >
+ −

 

which is equivalent to the system of double equations 

( ) 2 0N N M w Myβ + − − =  (4.61) 

( ) 224 24 0M N M w Nyβ− + + − =  (4.62) 

Applying the method of cross- multiplication between (4.61) and (4.62) we get 

2 224 48M N MNβ = − +  (4.63) 

2 2 224w M N= +  (4.64) 

2 224 2y M N MN= − + +  (4.65) 

Substituting (4.63), (4.65) in (4.59) and taking the positive sign, we get 

10x MN=  (4.66) 

and from (4.57), 

2 224 8z M N MN= − +  (4.67) 

Now, observe that (4.64) is satisfied by 

2 224 , 2M s t N st= − =  (4.68) 

2 224w s t= +  where ,  s t  are integers.             (4.69) 
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Substituting (4.68) in (4.65), (4.66) & (4.67), we get 

( )
( ) ( )

( ) ( )

2 2

22 2 2 2 2 2

22 2 2 2 2 2

20 24

24 96 4 24

24 96 16 24

x st s t

y s t s t st s t

z s t s t st s t

= −

= − − + + − 

= − − + − 

 (4.70) 

Thus, (4.69) and (4.70) give integer solutions of (4.39). 

Note 

It is to be noted that (4.60) is also expressed in the form of ratio’s as follows: 

i. ( )
2 2

22
, 0

24

w w y M
N

w Nw y

β
β

+ −= = >
−+

 

ii.  ( )
( )22

22

6
, 0

4

w yw M
N

w Nw y

β
β

−+ = = >
−+

 

iii.  ( )
( )22

22

4
, 0

6

w yw M
N

w Nw y

β
β

−+ = = >
−+

 

iv. ( )
( )22

22

8
, 0

3

w yw M
N

w Nw y

β
β

−+ = = >
−+

 

v. ( )
( )22

22

3
, 0

8

w yw M
N

w Nw y

β
β

−+ = = >
−+

 

vi. ( )
( )22

22

12
, 0

2

w yw M
N

w Nw y

β
β

−+ = = >
−+

 

vii.  ( )
( )22

22

2
, 0

12

w yw M
N

w Nw y

β
β

−+ = = >
−+

 

Solving each of the above ratio’s as presented above, one obtains different sets of 

integer solutions to (4.39). 
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However, there are other sets of solutions to (4.64) leading to other choices of 

solutions to (4.39) that are illustrated below: 

We can write (4.64) as the system of double equations as shown in following Table 4.4: 

Table 4.4: System of double equations 

System I II III IV V VI 

w M+  2N  212N  26N  8N  6N  12N  

w M−  24 2 4 3N  4N  2N  
 
 

For simplicity and brevity, we present below the integer solutions to (4.39) obtained 

on solving each of the above system of equations. 

System I 

( )
( ) ( )

( ) ( )

2

22 2 2

22 2 2

2

40 6

4 6 96 8 6

4 6 96 32 6

2 12

x p p

y p p p p

z p p p p

w p

= −

= − − + + −

= − − + −

= +

 

System II 

( ) ( )
( ) ( )

3

22 2 2

22 2 2

2

60 10

6 1 24 2 6 1

6 1 24 8 6 1

6 1

x N N

y N N N N

z N N N N

w N

= −

= − − + + −

= − − + −

= +

 

System III 

( )
( ) ( )

( ) ( )

2

22 2 2

22 2 2

2

10 3 2

3 2 24 2 3 2

3 2 24 8 3 2

3 2

x N N

y N N N N

z N N N N

w N

= −

= − − + + −

= − − + −

= +
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System IV 

2 2 2100 , 91 , 9 , 11x k y k z k w k= = = =  

System V 

2 2 210 , 25 , 15 , 5x N y N z N w N= = = =  

System VI 

2 2 250 , 9 , 41 , 7x N y N z N w N= = = =  

Choice 3 

Substituting 

( )2 15 2 , 1x yα α−= ∗ >  (4.71) 

in (4.39), 

It is written as 

( ) 22 1 2 42 y z wα − + =  (4.72) 

Note that, the above equation is similar to the well-known pythagorean equation. 

Employing the most cited solutions of the Pythagorean equation, one obtains the 

following two sets of solution to (4.39): 

Set 1 

( )
( )

( )
( )

3 2 2

2 2

22 2 2 2 2

2 2

5 2

2 2

2 4

2

x uv u v

y uv u v

z u v u v

w u v

α

α

α

α

= ∗ −

= ∗ −

 = − −  

= +
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Set 2 

( )
( )

( )
( )

3 2 2 4 4

1 2 2 4 4

2 2 2

1 2 2

5 2 6

2 6

16 2

2

x p q p q

y p q p q

z pq p q

w p q

α

α

α

α

+

+

= ∗ − −

= − −

= ∗ ∗ −

= +

 

When 1α =  in (4.71), the corresponding solutions to (4.39) are obtained as below: 

Set 3 

( )
( )

( )

2 2

2 2

22 2 2 2

2 2

10

4

x uv u v

y uv u v

z u v u v

w u v

= −

= −

= − −

= +

 

Set 4 

( )
( )

( )
( )

2 2 4 4

2 2 4 4

2 2

2 2

10 6

6

16

2

x p q p q

y p q p q

z pq p q

w p q

= − −

= − −

= −

= −  
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IV.4 On Non-homogeneous Bi-quadratic Equation with Four Unknowns 

4 4 3 2 2 2 2+ + ( ) = 2( + 3 )x y x y z k s w−−−−  

The non-homogeneous bi-quadratic equation with four unknowns to be solved is  

4 4 3 2 2 2 2( ) 2( 3 )x y x y z k s w+ + − = +   (4.73) 

The substitution of the linear transformations 

,  ,  2 ,  0x u v y u v z v u v= + = − = ≠ ≠  (4.74) 

in (4.73) leads to 

wskvu )3(3 2222 +=+  (4.75) 

Solving (4.75) in different ways for , ,u v w and using (4.74), one obtains different sets 

of solutions to (4.73). 

Way 1 

Consider 

2 2( , ) 3w w p q p q= = +  (4.76) 

Using (4.76) in (4.75) and employing the method of factorization, define 

3 ( 3 ) ( 3 )u i v k i s p i q+ = + +  

from which, on equating the real and imaginary parts, one has 

3 ,u kp sq v kq ps= − = +  (4.77) 

In view of (4.74), note that 

( , , , ) ( ) ( 3 )

( , , , ) ( ) ( 3 )

( , , , ) 2( )

x x p q k s k p q s p q

y y p q k s k p q s p q

z z p q k s kq ps

= = + + − 
= = − − + 
= = + 

 (4.78) 

Thus, (4.76) and (4.78) represent the integer solutions to (4.73). 
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Properties 

� 3,( 1, ,3 , ) 8 sx s q s s t+ =  

� 5( ( 1), ,3 , ) 8 sx s s q s s P+ =  

� 2 3
1( 1, ,3 , ) 24 sx s q s s P−− =  

� 2 2 2 2 2 2 2 2 2( ,3 ,3 ,2 ) ( ( ,3 ,3 ,2 ) ( ,3 ,3 ,2 ))k z p c a b ab s x p c a b ab y p c a b ab− − − + −  is 

a nasty number. 

� ( ( , , , ) ( ( , , , ) ( , , , )) (( 3 ) ( , , , ) ( 3 ) ( , , , ))p kz p q k s s x p q k s y p q k s q k s x p q k s k s y p q k s− + = + + −  

Way: 2 

Write (4.75) as 

2 2 2 23 ( 3 ) *1u v k s w+ = +  (4.79) 

Consider 1 on the R.H.S. of (4.79) as 

(1 3) (1 3)
1

4

i i+ −=  (4.80) 

Using (4.76) & (4.80) in (4.79) and employing the method of factorization, define 

1
3 (1 3) ( 3 ) ( 3 )

2
u i v i k i s p i q+ = + + +  (4.81) 

On equating the real and imaginary parts, one has 

[ ]

[ ]

1
3 3( )

2
1

3
2

u kp sq kq sp

v kp sq kq sp

= − − +

= − + +
 

In view of (4.74), one has 

3

2( )

3

x kp sq kq sp

y kq sp

z kp sq kq sp

= − − − 
= − + 
= − + + 

  (4.82) 

Thus, (4.76) & (4.82) represent the integer solutions to (4.73). 
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Properties 

� ( , ,3 , ) ( , ,3 , ) ( , ,3 , ) 4 ( , )z p q q p x p q q p y p q q p w p q− − =  

� ( , , , ) ( , , , ) 2 ( , )z p q p q x p q p q w p q− + − =  

� 2 2 2 2 2 2 2 23(2 (3 ,2 ,3 ,2 ) (3 ,2 ,3 ,2 ))x a b ab a b ab y a b ab a b ab+ + − + +  is a nasty number 

� 3, 24, 12,( , ,3 3, 1) 2 ( , ,3 3, 1) 24 1 2( 1)q q qz p q q q y p q q q t ct ct− + + + − + + = = − = −  

� 4

( , , (3 3) (2 1), ( 1) (2 1))

2 ( , , (3 3) (2 1), ( 1) (2 1)) 72q

z p q q q q q

y p q q q q q P

− + + + +

+ − + + + + =
 

� 26,( , ,3(12 11),12 11) 2 ( , ,3(12 11),12 11) 12qz p q q q y p q q q t− − − + − − − =  

� 2( ( , ,3 , ) 2 ( , ,3 , ))z p q q q y p q q q− + −  is a nasty number. 

Note: 1 

In addition to (4.80), represent 1 on the R.H.S. of (4.79) as below: 

2 2 2 2

2 2 2

(3 32 ) (3 32 )
1

(3 )

r s i rs r s i rs

r s

− + − −=
+

 

The repetition of the above process leads to a different set of solutions to (4.73). 

Way: 3 

Let 

2 2 2( 3 )w p q= +  (4.83) 

Using (4.83) in (4.75) and employing the method of factorization, define 

23 ( 3 ) ( 3 )u i v k i s p i q+ = + +  

On equating the real and imaginary parts, one has 

2 2 2 2( 3 ) 6 ,  ( 3 ) 2u k p q spq v s p q kpq= − − = − +  (4.84) 
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In view of (4.74), note that 










+−=

+−−−=

−+−+=

kpqqpsz

skpqqpsky

skpqqpskx

4)3(2

),62()3)((

,)62()3()(

22

22

22

 (4.85) 

Thus, (4.83) and (4.85) represent the integer solutions to (4.73). 

Note: 2 

Using (4.83) & (4.80) in (4.79) and following the analysis given in Way: 2, a different 

set of integer solutions to (4.73) are obtained. 
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CHAPTER – V 

QUINTIC DIOPHANTINE EQUATION 

 
The quintic non-homogeneous equation with five unknowns represented by 

the Diophantine equation ( )( ) ( ) 32233 pwz7yxyx3 −=−+ is analyzed for its patterns of 

non-zero distinct integral solutions. 

Integral Solutions of Non-Homogeneous Quintic Equation With Five Unknowns 

( ) ( ) ( )3 3 2 2 33 + = 7x y x y z w p− −− −− −− −  

The non-homogeneous quintic equation with five unknowns to be solved for its 

distinct non-zero integral solutions is 

( ) ( ) ( )3 3 2 2 33 7x y x y z w p+ − = −  (5.1) 

METHOD 1  

Introduction of the linear transformations 

, , 3 , 3x u v y u v z u v w u v= + = − = + = −  (5.2) 

in (5.1) leads to 

2 2 33 7v u P+ =  (5.3) 

Different methods of obtaining the patterns of integer solutions to (5.1) are illustrated 

below: 

PATTERN: 1 

Let 

2 23P a b= +  (5.4) 

where a and b are non-zero integers. 
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Write 7 as 

( )( )7 2 3 2 3i i= + −  (5.5) 

Using (5.4), (5.5) in (5.3) and applying the method of factorization, define 

( ) ( ) ( )3

3 2 3 3v i u i a i b+ = + +  (5.6) 

from which we have 

3 2 2 3

3 2 2 3

2 18 9 9

9 6 6

v a ab a b b

u a ab a b b

= − − + 


= − + −   

(5.7) 

Using (5.7) and (5.2), the values of , ,x y z and w  are given by 

( )
( )
( )
( )

3 3 2 2

3 3 2 2

3 3 2 2

3 3 2 2

, 3 3 27 3

, 15 9 15

, 5 9 45 9

, 27 9 27

x a b a b ab a b

y a b a b ab a b

z a b a b ab a b

w a b a b ab a b

= + − −


= − − + + 


= − − + 
= − − +   

(5.8) 

Thus (5.4) and (5.8) represent the non-zero integer solutions to (5.1). 

PATTERN: 2 

Write 7 as 

( )( )5 3 5 3
7

4

i i+ −
=

 
(5.9) 

Using (5.4), (5.9) in (5.3) and applying the method of factorization, define 

( ) ( ) ( )35 3
3 3

2

i
v i u a i b

+
+ = +  (5.10) 

from which we have 

3 3 2 2

3 3 2 2

1
5 9 45 9

2
1

15 9 15
2

v a b ab a b

u a b ab a b


 = + − − 


 = − − +  

 (5.11) 
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Using (5.11) and (5.2), the values of , ,x y z and w  are given by 

( )
( )
( )
( )

3 3 2 2

3 3 2 2

3 3 2 2

3 3 2 2

, 3 3 27 3

, 2 12 18 12

, 4 18 36 18

, 27 9 27

x a b a b ab a b

y a b a b ab a b

z a b a b ab a b

w a b a b ab a b

= − − +


= − − + + 


= − − + 
= − − + + 

 (5.12) 

Thus (5.4) and (5.12) represent the non-zero integer solutions to (5.1). 

PATTERN: 3 

Write (5.3) as 

2 2 33 7 1v u p+ = ∗  (5.13) 

Write 1 as 

( ) ( )1 3 1 3
1

4

i i+ −
=

 
(5.14) 

Using (5.4), (5.5), (5.14) in (5.13) and applying the method of factorization, define 

( ) ( ) ( ) ( )31
3 1 3 2 3 3

2
v i u i i a i b+ = + + +  (5.15) 

from which we have 

3 3 2 2

3 3 2 2

1
27 9 27

2
1

3 3 27 3
2

v a b ab a b

u a b ab a b


 = − + + − 


 = + − −  

 (5.16) 

Using (5.16) in (5.2), the values of , ,x y z and w are given by 

( )
( )
( )
( )

3 3 2 2

3 3 2 2

3 3 2 2

3 3 2 2

, 15 9 15

, 2 12 18 12

, 4 18 36 18

, 5 9 45 9

x a b a b ab a b

y a b a b ab a b

z a b a b ab a b

w a b a b ab a b

= + − −


= − − + 


= + − − 
= − − + 

 (5.17) 

Thus (5.4) and (5.17) represents the non-zero integer solutions to (5.1). 
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PATTERN: 4 

Write 1 as 

( )( )1 4 3 1 4 3
1

49

i i+ −
=  (5.18) 

Using (5.4), (5.5) and (5.18) in (5.13) and applying the method of factorization, define 

( ) ( ) ( ) ( ) 31
3 2 3 1 4 3 3

7
v i u i i a i b+ = + + +  (5.19) 

from which we have 

3 3 2 2

3 3 2 2

1
10 81 90 81

7
1

9 30 81 30
7

v a b ab a b

u a b ab a b


 = − + + − 


 = + − −  

 (5.20) 

Since our interest is on finding integer solutions, replacing a by 7A, b by 7B in (5.4) 

and (5.20) & using (5.2), the  corresponding integer solutions to (5.1) are given by 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 3 3 2 2

2 3 3 2 2

2 3 3 2 2

2 3 3 2 2

2 2 2

, 7 111 9 111

, 7 19 51 171 51

, 7 17 171 153 171

, 7 37 9 333 9

, 7 3

x A B A B AB A B

y A B A B AB A B

z A B A B AB A B

w A B A B AB A B

p A B A B

= − + + −

= − − +

= + − − 


= + − − 


= + 

 (5.21) 

Thus (5.21) represents the non-zero integer solutions to (5.1).  

PATTERN: 5 

Write 1 as 

( )( )1 3 1 3
1

4

i i+ −
=  (5.22) 

Using (5.4), (5.9) and (5.22) in (5.13) and applying the method of factorization, define 

( ) ( ) ( ) ( ) 31
3 5 3 1 3 3

4
v i u i i a i b+ = + + +  (5.23) 
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from which we have 

3 3 2 2

3 3 2 2

1
27 9 27

2
1

3 3 27 3
2

v a b ab a b

u a b ab a b


 = + − − 


 = − − +  

 (5.24) 

Using (5.24) in (5.2), the values of , ,x y z and w are given by 

( )
( )
( )
( )

3 3 2 2

3 3 2 2

3 3 2 2

3 3 2 2

, 2 12 18 12

, 15 9 15

, 5 9 45 9

, 4 18 36 18

x a b a b ab a b

y a b a b ab a b

z a b a b ab a b

w a b a b ab a b

= + − −


= − − + 


= + − − 
= − − + 

 (5.25) 

Thus (5.4) and (5.25) represents the non-zero integer solutions to (5.1). 

METHOD 2  

Introduction of the linear transformations 

, , 3 , 3x u v y u v z u v w u v= + = − = + = −  (5.26) 

in (5.1) leads to (5.3). 

Following the same process from Pattern 1 to Pattern 5 and using the transformation 

(5.26), the sets of solutions to (5.1) are given below in Table 5.1: 

Table 5.1: Solutions 

Patterns Solutions 

1 

( )
( )
( )
( )

3 3 2 2

3 3 2 2

3 3 2 2

3 3 2 2

2 2

, 3 3 27 3

, 15 9 15

, 7 21 63 21

, 5 33 45 33

( , ) 3

x a b a b ab a b

y a b a b ab a b

z a b a b ab a b

w a b a b ab a b

P a b a b

= + − −

= − − + +

= + − −

= − − + +

= +
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Patterns Solutions 

2 

( )
( )
( )
( )

3 3 2 2

3 3 2 2

3 3 2 2

3 3 2 2

2 2

, 3 3 27 3

, 2 12 18 12

, 8 6 72 6

, 7 21 63 21

( , ) 3

x a b a b ab a b

y a b a b ab a b

z a b a b ab a b

w a b a b ab a b

P a b a b

= − − +

= − − + +

= + − −

= − − + +

= +

 

3 

( )
( )
( )
( )

3 3 2 2

3 3 2 2

3 2

3 3 2 2

2 2

, 15 9 15

, 2 12 18 12

, 42 42

, 3 39 27 39

( , ) 3

x a b a b ab a b

y a b a b ab a b

z a b b a b

w a b a b ab a b

P a b a b

= + − −

= − − +

= −

= − − +

= +

 

4 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 3 3 2 2

2 3 3 2 2

2 3 3 2 2

2 3 3 2 2

2 2 2

, 7 111 9 111

, 7 19 51 171 51

, 7 21 273 189 273

, 7 39 213 351 213

, 7 3

x A B A B AB A B

y A B A B AB A B

z A B A B AB A B

w A B A B AB A B

p A B A B

= − + + −

= − − +

= − + + −

= − − +

= +

 

5 

( )
( )
( )
( )

3 3 2 2

3 3 2 2

3 3 2 2

2 3

2 2

, 2 12 18 12

, 15 9 15

, 3 39 27 39

, 42 42

( , ) 3

x a b a b ab a b

y a b a b ab a b

z a b a b ab a b

w a b a b b

P a b a b

= + − −

= − − +

= + − −

= −

= +

 

 
 

METHOD 3  

Introduction of the linear transformations 

, , 3 1, 3 1x u v y u v z uv w uv= + = − = + = −  (5.27) 

in (5.1) leads to (5.3). 

Following the same process from Pattern 1 to Pattern 5 and using the transformation 

(5.27), the sets of solutions to (5.1) are given below in Table 5.2: 
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Table 5.2: Solutions 

Patterns Solutions 

1 

( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

3 3 2 2

3 3 2 2

2 2

2 2

3 2 2 3

2 2

, 3 3 27 3

, 15 9 15

, 6 , 9 , , 162 ( , ) 1

, 6 , 9 , , 162 ( , ) 1

where , 9 ( , )

( , ) 3

x a b a b ab a b

y a b a b ab a b

z a b f a b f a b g a b g a b

w a b f a b f a b g a b g a b

f a b a ab and g a b a b b

P a b a b

= + − −

= − − + +

= + − +

= + − −

= − = −

= +

 

2 

( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

3 3 2 2

3 3 2 2

2 2

2 2

3 2 2 3

2 2

, 3 3 27 3

, 2 12 18 12

, 48 5 , 66 , , 135 ( , ) 1

, 48 5 , 66 , , 135 ( , ) 1

where , 9 ( , )

( , ) 3

x a b a b ab a b

y a b a b ab a b

z a b f a b f a b g a b g a b

w a b f a b f a b g a b g a b

f a b a ab and g a b a b b

P a b a b

= − − +

= − − + +

 = + − + 

 = + − − 

= − = −

= +

 

3 

( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

3 3 2 2

3 3 2 2

2 2

2 2

3 2 2 3

2 2

, 15 9 15

, 2 12 18 12

, 48 3 , 78 , , 81 ( , ) 1

, 48 3 , 78 , , 81 ( , ) 1

where , 9 ( , )

( , ) 3

x a b a b ab a b

y a b a b ab a b

z a b f a b f a b g a b g a b

w a b f a b f a b g a b g a b

f a b a ab and g a b a b b

P a b a b

= + − −

= − − +

 = − − + + 

 = − − + − 

= − = −

= +

 

4 

( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( )

2 3 3 2 2

2 3 3 2 2

2 2

2 2

3 2 2 3

2 2 2

, 7 111 9 111

, 7 19 51 171 51

, 147 90 , 429 , , 2430 ( , ) 1

, 147 90 , 429 , , 2430 ( , ) 1

where , 9 ( , )

, 7 3

x A B A B AB A B

y A B A B AB A B

z A B f A B f A B g A B g A B

w A B f A B f A B g A B g A B

f A B A AB and g A B A B B

p A B A B

= − + + −

= − − +

 = − − + + 

 = − − + − 

= − = −

= +
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Patterns Solutions 

5 

( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

3 3 2 2

3 3 2 2

2 2

2 2

3 2 2 3

2 2

, 2 12 18 12

, 15 9 15

, 48 3 , 78 , , 81 ( , ) 1

, 48 3 , 78 , , 81 ( , ) 1

where , 9 ( , )

( , ) 3

x a b a b ab a b

y a b a b ab a b

z a b f a b f a b g a b g a b

w a b f a b f a b g a b g a b

f a b a ab and g a b a b b

P a b a b

= + − −

= − − +

 = − − + 

 = − − − 

= − = −

= +
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CHAPTER – VI 

DOUBLE DIOPHANTINE EQUATIONS 

 
Chapter VI deals with Double Diophantine Equations in six sections VI.1 to VI.6 

Section VI.1 

The system of double equations given by 2 33 ,x yz w xy T− = =  is studied for 

obtaining its non-zero distinct solutions in integers. 

Section VI.2 

The pair of equations given by x y z w+ = + , ( )2
y z x w+ = −  is studied for 

obtaining its non-zero distinct solutions in integers. 

Section VI.3 

In this section, different methods to obtain non-zero distinct integer solutions 

to the system of double equations ( )2
,x y z w y z x w+ = + + = +  are illustrated. 

Section VI.4 

This section illustrates the method of obtaining non-zero integral solutions to the 

system of two linear equations to be made squares represented by 2 2,an b p bn a q+ = + =  

for the choices of a and b given by (i) a = 1, b = 7 and (ii) a = 2, b = 7. 

Section VI.5 

Two different methods for obtaining non-zero distinct integer solutions to the 

pair of equations x y z w+ = + , ( )3
y z x w+ = −  are illustrated. 

Section VI.6 

The problem of obtaining non-zero distinct integer solutions to the pair of 

equations x y z w+ = + , ( )3
y z x w+ = +  is analysed. 
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VI.1 On the Simultaneous Equations  2 3= 3 , =x yz w xy T−−−−  

Consider the pair of equations 

23x yz w− =  (6.1) 

3xy T=  (6.2) 

The elimination of y  between (6.1) and (6.2) gives 

2 2 33 0x w x zT− − =  (6.3) 

Treating (6.3) as a quadratic in x  and solving for x , we have 

2 4 31
3 9 4

2
x w w zT = ± +

 
 (6.4) 

The square root on the R.H.S of (6.4) is eliminated when 

(i) ( ) ( )2
3 , 3w T k z k kα α= = + = +  (6.5) 

(ii)  ( )2, 3w T k z k kα α= = = +  (6.6) 

Now, taking (i), the corresponding values of x  and y  are given by 

( )3 23 ,x k yα α= + =  (6.7) 

and for (ii) 

 3 2,x k yα α= − = −  (6.8) 

Note that, the pairs (6.5), (6.7) and (6.6), (6.8) satisfy (6.1) and (6.2) respectively. 

However, there are other choices of integer solutions to (6.1) and (6.2) and they are 

illustrated as below: 

Consider the transformations 

2,  x y T y= =  (6.9) 
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Note that (6.2) is satisfied automatically, Substituting (6.9) in (6.1), we have 

2 23y yz w− =  (6.10) 

which is a quadratic in y  and solving for y , we have 

( )2 21
12

2
y z z w= ± +  (6.11) 

which is satisfied by 

2 22 , 12w rs z r s= = −  and 2 212 ,y r s= −  (6.12) 

In view of (6.9), one obtains 

4 4144 ,x r s=  and 2 212 ,T r s= −  (6.13) 

Note that, (6.12) and (6.13) exhibits two sets of integer solutions to (6.1) and (6.2). 

Also, to eliminate the square root on the R.H.S of (6.11), assume 

 
2 2 212z wα = +  (6.14) 

which is represented as the system of double equations as shown below in Table 6.1. 

Table 6.1: System of double equations 

System 1 2 3 4 5 

zα +  2w  6w  12w  4w  26w  

zα −  12 2w  w 3w  2 
 
 

Solving each of the above systems in Table 1 and performing some algebra, the values of 

, , ,x y z w and T  satisfying (6.1) and (6.2) are presented below in Table 6.2. 

Table 6.2: Solutions 

System x  y  z  w  T  

1 44 ,36k  22 , 6k −  22 6k −  2k  22 , 6k −  

2 2 29 ,w w  3 ,w w−  2w w 3 ,w w−  

3 2 2144 ,k k  12 ,k k−  11k  2k  12 ,k k−  

4 2 216 ,9k k  4 , 3k k−  k  2k  4 , 3k k−  

5 49 ,1w  23 , 1w −  23 1w −  w 23 , 1w −  
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It is to be noted that, one may also write (6.10) as the system of double equations as in 

Table 6.3 below: 

Table 6.3: System of double equations 

System 1 2 3 4 5 6 

y  1 3 w 2w  3w 23w  

y z−  23w  2w  3w  3 w 1 

 
 

In this case, the corresponding values of , , ,x y z w and T  are given by the quintuples 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2 4 2 2 2

2 4 2 2 2

, , , , 1,1,1 3 , ,1 , 9,3,3 , ,3 , , , 2 , , , , , 3, ,

9 ,3 ,2 , ,3 , 9 ,3 ,3 1, ,3

x y z w T w w w w w w w w w w w w w w

w w w w w w w w w w

= − − − −

−
 

Further, write (6.14) as 

2 2 2 212 1z w α α+ = = ∗  (6.15) 

Assume 

2 24 12a bα = +  (6.16) 

Write 1 as 

( )( )2 12 2 12
1

16

i i+ −
=  (6.17) 

Substituting (6.16) and (6.17) in (6.15) and employing the method of factorization, define 

( ) ( )2 2 12
12 2 12

4

i
z i w a i b

+
+ = +  

On equating the real and imaginary parts, we have 

2 2 2 22 6 12 , 3 2z a b ab w a b ab= − − = − +  (6.18) 

In view of (6.11) and (6.9) we have 

( ) ( )

2 2 2 2

4 4

3 3 6 , 9 6

9 , 3

T y a b ab a b ab

x a b a b

= = + − − − − 


= − + 
 (6.19) 
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Thus (6.18) and (6.19) represent the solutions to (6.1) and (6.2). 

It is worth mentioning that, in addition to (6.16), (6.17), α  and 1 may also be written as 

( ) ( )( )
2 2

1 2 12 1 2 12
49 12 ,1

49

i i
a bα

+ −
= + =  

For this choice, the solutions of (6.1) and (6.2) are given by 

 

( ) ( )
( ) ( )

( )
( )

4 4

2 2

2 2

2 2

784 3 ,441 4

28 3 , 21 4

7 12 48

14 12

x a b a b

T y a b a b

z a b ab

w a b ab

= − +

= = − − +

= − −

= − +

 



Chapter-VI                     Double Diophantine Equations 

 166 

VI.2 On the Pair of Equations + = +x y z w , ( )2
+ =y z x w−−−−  

Consider the system of double equations 

 x y z w+ = +  (6.20) 

 ( )2
y z x w+ = −  (6.21) 

Four different methods of solving (6.20) and (6.21) are illustrated below: 

Method: 1 

The introduction of the transformations 

 ,x u v w u v= + = −  (6.22) 

in (6.20) and (6.21) leads to 

22 , 4z y v z y v− = + =  

from which, on solving, we get 

 2 22 , 2z v v y v v= + = −  (6.23) 

Note that (6.22) and (6.23) satisfy (6.20) and (6.21). 

Properties 

� Each of the following expressions represents a perfect square 

� ( )4xw z y− +  

� ( )2
4xw z y+ −  

� 2 2z y−  is a Cubical integer 

� Each of the following expressions represents a Bi-quadratic integer 

� 4zy z y+ +  

� ( ) ( )2
4 3zy z y x w+ + − −  



Chapter-VI                     Double Diophantine Equations 

 167 

Method: 2 

Assume 

 , ,z u v y u v w s= + = − =  (6.24) 

Substituting (6.24) in (6.20) and (6.21) and simplifying, note that 

22u v=  (6.25) 

The substitution of (6.25) in (6.24) leads to 

 2 22 , 2 ,z v v y v v w s= + = − =  (6.26) 

Also, from (6.20), 

2x v s= +  (6.27) 

Observe that (6.26) and (6.27) satisfy (6.20) and (6.21) 

Properties 

� ( )( )4
6 4x w zy− −  is a Nasty number. 

� ( ) ( )22 22 z y x w+ − −  is a Bi-quadratic integer. 

� 
( )

( )

4 4

2

2

1

z y

x w

−

− +
 is a Quintic integer. 

� ( )2 2 22 , 2 , 8v v v v v+ −  is the diophantine triple with the property ( )2D v as the 

product of any two members of the set added with 2v is a perfect square. 

� ( )2 2 22 , 2 , 8 3v v v v v+ − +  is the special dio-triple with the property ( )2 1D v +  

as the product of any two members of the set added with the same members 

and increased by 2 1v +  is a perfect square. 

Method: 3 

Assume w is chosen arbitrarily and take 

( )0w s= ≠  (6.28) 
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Eliminating x between (6.20) and (6.21), we have 

( )2 22 1 0z y z y y− + + − =  

Treating the above equation as a quadratic in z and solving for z, one gets 

( )1
2 1 8 1

2
z y y= + ± +  (6.29) 

The square-root on the R.H.S of (6.29) is eliminated when 

( )1

2

n n
y

+
=  (6.30) 

and ( ) ( ) ( )1 1
1 2 , 1

2 2
z n n n n= + + −  (6.31) 

Substituting (6.30), (6.31) and (6.28) in (6.20), we have 

1s n
x s z y

s n

+ +
= + − =  −

 

Thus, there are two sets of solutions to (6.20) and (6.21) represented as below: 

Set: 1 

 3, 3, 11, , ,n nx s n y t z t w s+= + + = = =  

Set: 2 

 3, 3, 1, , ,n nx s n y t z t w s−= − = = =  

where 3,t α  
is the triangular number of rank α . 

Method: 4 

Consider the transformations 

, , ,x p q y p q z p r w p r= + = − = + = −  (6.32) 

where p, q, r are non-zero distinct integers. 
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Note that equation (6.20) is automatically satisfied. The substitution of (6.32) in 

(6.21) leads to 

( )2 22 1 2 0q r q r r p+ + + − − =  

The above equation is quadratic in q and solving for q , we have 

( )1
2 1 8 1 8

2
q r r p= − − ± + +  (6.33) 

The square root on the R.H.S of (6.33) is removed by choosing suitably the values of 

r and p and the corresponding values of q are obtained from (6.33). Substituting these 

values of p, q, r in (6.32), the values of x, y, z, w satisfying (6.20) and (6.21) are 

obtained. A few examples are given below: 

Example: 1 

Take 
( ) ( )21 2 1

,  
2 2

s s k s k
r p

+ + +
= =  

( ) ( )2 21 1
2 , 3 2 2

2 2
q s s k s s k∴ = − + + − − − −  

In view of (6.32), the corresponding 2 sets of solutions to (6.20) and (6.21) are as 

follows: 

Set: 1 

 ( )( )2 21
2 1 2

2
x k s k s s k= + + − + +  

 ( )( )2 21
2 1 2

2
y k s k s s k= + + + − −  

 ( ) ( )( )21
2 1 1

2
z k s k s s= + + + +  

 ( ) ( )( )21
2 1 1

2
w k s k s s= + + − +  
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Set: 2 

 ( )( )2 21
2 1 3 2 2

2
x k s k s s k= + + − − − −  

 ( )( )2 21
2 1 3 2 2

2
y k s k s s k= + + + + + +  

 ( ) ( )( )21
2 1 1

2
z k s k s s= + + + +  

 ( ) ( )( )21
2 1 1

2
w k s k s s= + + − +  

Example: 2 

Consider 

( ) ( )( )2 21 1
2 , 2 1 2

2 2
r s s p k s k= + + = + + −  

( ) ( )2 21 1
2 2 , 3 2 4

2 2
q s s k s s k∴ = − + + − − − − −  

Employing (6.32), the corresponding 2 sets of solutions to (6.20) and (6.21) are as 

follows: 

Set: 3 

( )( )2 21
2 1 2 2 2

2
x k s k s s k= + + − − + + −  

 ( )( )2 21
2 1 2 2 2

2
y k s k s s k= + + − + − − +  

 ( )( )2 21
2 1 2 2

2
z k s k s s= + + − + + +  

 ( )( )2 21
2 1 2 2

2
w k s k s s= + + − − − −  
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Set: 4 

( )( )2 21
2 1 2 3 2 4

2
x k s k s s k= + + − − − − −  

 ( )( )2 21
2 1 2 3 2 4

2
y k s k s s k= + + − + + + +  

 ( )( )2 21
2 1 2 2

2
z k s k s s= + + − + + +  

 ( )( )2 21
2 1 2 2

2
w k s k s s= + + − − − −  
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VI.3 On the system of double equations ( ) 
2

+ = + , + = +x y z w y z x w  

Let , ,x y z and w  be four non-zero distinct integers such that the equations 

x y z w+ = +  (6.34) 

( )2
y z x w+ = +  (6.35) 

are satisfied. Different methods to obtain non-zero distinct integer values to , ,x y z 

and w  satisfying (6.34) and (6.35) are exhibited below: 

Method 1 

Eliminating y between (6.34) and (6.35), the resulting equation is 

( ) ( )2 22 1 2 0x w x w z w+ + + − − =  (6.36) 

Treating (6.36) as a quadratic in x  and solving for x , one obtains 

( )1
2 1 8 8 1

2
x w z w = − − ± + +   (6.37) 

The square-root on the R.H.S of (6.37) is eliminated when 

( )21
, 3 2 2

2
z m w n n m= = + − +  (6.38) 

From (6.37) and (6.38), we get 

( ) ( )2 21 1
2 , 5 2 6

2 2
x n n m n n m= − − + − + − +  (6.39) 

In view of (6.34), note that 

2 22 1, 4 4y n n m n n m= + − + + − +  (6.40) 

Thus, (6.38), (6.39) and (6.40) give two sets of non-zero distinct integer solutions to 

the system of equations (6.34) and (6.35). 



Chapter-VI                     Double Diophantine Equations 

 173 

Method 2 

The introduction of the transformations 

( ) ( ), , 4 , 4 , 0 , 0x u v w u v z k y l u v k l= + = − = = ≠ ≠ ≠ ≠  (6.41) 

in (6.34) and (6.35) leads respectively to the equations 

( )2v k l= −  (6.42) 

and 

2u k l= +  (6.43) 

Observe that (6.43) is satisfied when 

( ) ( )2
, 1 , 1l m k n m u n= = + − = +  (6.44) 

and from (6.42), we have 

 ( )2
2 1 2v n m = + −
 

 (6.45) 

Using (6.44) and (6.45) in (6.41), we get 

2

2

2

2 5 4 3

4

4 8 4 4

2 3 4 1

x n n m

y m

z n n m

w n n m

= + − +
=

= + − +

= − − + −

 

which satisfy (6.34) and (6.35). 

Method 3 

Consider the transformations 

( ), , , , 0x p q y p q z p s w p s p q s= + = − = + = − ≠ ≠ ≠  (6.46) 

it is seen that (6.34) is automatically satisfied. 

The substitution of (6.46) in (6.35) leads to 

 ( ) ( ) ( )224 4 2 0p p q s q s q s+ − − + − + − =    (6.47) 
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which is a quadratic in p and solving for p , we get, 

( ){ }1
2 1 1 8 8

4
p s q q s= − + ± − +    (6.48) 

The square-root on the R.H.S of (6.48) is eliminated when 

( )21
, 2

2
q m s n n m= = − +  (6.49) 

From (6.48) and (6.49) we have, 

( ) ( )2 21 1
, 3 2

4 4
p n n n n= + − +  (6.50) 

Substituting (6.49) and (6.50) in (6.46), there are two sets of solutions to (6.34) and 

(6.35) and they are represented as below: 

Set 1 

( )

( )

( )

( )

2

2

2

2

1

4
1

4
1

3
4
1

3
4

x n n m

y n n m

z n n m

w n n m

= + +

= + −

= − +

= − + −

 

where , 0n m≠  

Note that, for the values of , ,x y z and w  to be in integers, choose n  such that 

( )0, 1 mod 4n ≡ −  and { }0m z∈ −  

Set 2 

( )( )

( )( )

( )

( )

2

2

1
1 2

4
1

1 2
4
1

3 5 2
4
1

2
4

x n n m

y n n m

z n n m

w n n m

= − − +  

= − − −  

= − + +

= − − + −
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where , 0n m≠  

In this case for integer solutions n  should be such that 

( )1, 2 mod 4n ≡  and { }0m z∈ − . 

However, by treating (6.47) as a quadratic in ,  q s in turn and following the above 

procedure different sets of values of , ,x y z and w  satisfying (6.34) and (6.35) are 

exhibited below in Table 6.4: 

Table 6.4: Solutions 

Set x  y  z  w  

3 24 5 1n n s− + + −  212 7 1n n s− − +  24n n s− +  24n n s− −  

4 24 3n n s− − +  212n n s+ −  24n n s− +  24n n s− −  

5 24 3n n s− + +  212n n s− −  24n n s+ +  24n n s+ −  

6 24 5 1n n s− − + −  212 7 1n n s+ − +  24n n s+ +  24n n s+ −  

7 24n n q− +  24n n q− −  212n n q+ +  24 3n n q− − −  

8 24n n q− +  24n n q− −  212 7 1n n q− + +  24 5 1n n q− + − −  

9 24n n q+ +  24n n q+ −  212 7 1n n q+ + +  24 5 1n n q− − − −  

10 24n n q+ +  24n n q+ −  212n n q− +  24 3n n q− + −  
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VI.4 On the System of Two Linear Equations to be Made Squares 

 2 2+ = , + =an b p bn a q  

Let ,  a b  be two given non-zero distinct positive integers. 

The problem under consideration is to find non-zero positive integers n such that 

2an b p+ =  (6.51) 

 2bn a q+ =  (6.52) 

Eliminating n  between (6.51) and (6.52), one obtains 

2 2 2 2bp aq b a− = −  (6.53) 

Introduction of the linear transformations 

 p X aT= +  (6.54) 

 q X bT= +  (6.55) 

in (6.53) leads to 

 2 2X abT a b= + +  (6.56) 

Knowing the values of a  and b , one obtains the corresponding values for X  and T . 

In view of (6.54) and (6.51), the required values of n are obtained. The above process 

is illustrated through the following examples: 

Examples 1 

Let 1, 7a b= =  

The system of double equations to be solved is 

 27n p+ =  (6.57) 

 27 1n q+ =  (6.58) 

(3) 2 27 48q p⇒ = −  (6.59) 
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whose least positive integer solution is 

 0 04, 8p q= =  

To obtain the other values of ,p q  satisfying (6.59), consider the pell equation 

 2 27 1q p= +  (6.60) 

whose general solution ( ),s sp qɶ ɶ  is given by 

 
1 1

,
2 2 7

s s s sq f p g= =ɶ ɶ  

where 

( ) ( )
( ) ( )

1 1

1 1

8 3 7 8 3 7
, 0,1,2......

8 3 7 8 3 7

s s

s

s s

s

f
s

g

+ +

+ +

= + + −  =
= + − −


 

Applying Brahmagupta lemma between ( )0 0,p q  and ( ),s sp qɶ ɶ , the other values of p 

and q satisfying (6.59) are given by 

1

1

4
2

7
, 1,0,1.......

14
4

7

s s s

s s s

p f g

s

q f g

+

+

= +  = −
= +


 

From (6.51), it is seen that 

2
1 1 7, 1, 0,1........s sn p s+ += − = −  

Note that the above values of n  also satisfy (6.52). 

A few numerical examples are given in Table 6.5 below: 

Table 6.5: Numerical Examples 

s  +1sn  

-1 9 

0 3129 

1 795657 
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Observe that ( )1 0 mod3sn + ≡ . 

However, we have other values of n satisfying (6.51) and (6.52) that are obtained as 

illustrated below: 

In view of (6.56), we have 

 2 27 8X T= +  (6.61) 

whose least positive integer solution is 

 0 02, 6T X= =  

To obtain the other values of ,X T  satisfying (6.61), consider the pell equation 

 2 27 1X T= +  

Following the procedure as above the values of nare given by 

 
2

1

10
4 7, 1,0,1......

7
s s sn f g s+

 = + − = − 
 

 

A few numerical examples are given in Table 6.6 below: 

Table 6.6: Numerical Examples 

s  +1sn  

-1 57 

0 15369 

1 3904569 
 
 

Observe that ( )1 0 mod 3sn + ≡  

Example 2 

Let 2, 7a b= =  

In view of (6.56), we have 

2 214 9X T= +  (6.62) 
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whose least positive integer solution is 

 0 012, 45T X= =  

To obtain the other values of ,X T  satisfying (6.62), consider the pell equation 

2 214 1X T= +  

Following the procedure as in example 1 the values of n  satisfying (6.51) and (6.52) 

are given by 

 
2

1

1 69 129
7 , 1,0,1......

2 2 14
s s sn f g s+

  = + − = −  
   

 

A few numerical examples are given in Table 6.7 below: 

Table 6.7: Numerical Examples 

s  +1sn  

-1 2377 

0 2136241 

1 1918343737 
 
 

Example 3: 

Let 21, 2a b s s= = +  

In view of (6.56), we have 

 ( ) ( )22 2 22 1X s s T s= + + +  (6.63) 

whose least positive integer solution is 

( )2

0 01, 1T s X s= + = +  

To obtain the other values of ,X T  satisfying (6.63), consider the pell equation 

( )2 2 22 1X s s T= + +  
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whose initial solution is given by 

 0 01, 1T X s= = +ɶ ɶ  

whose general solution ( ),t tX Tɶ ɶ  is given by 

2

1 1
,

2 2
t t t tX f T g

s s
= =

+
ɶ ɶ  

where 

( ) ( )
( ) ( )

1 1
2 2

1 1
2 2

1 2 1 2
, 0,1,2......

1 2 1 2

t t

t

t t

t

f s s s s s s
t

g s s s s s s

+ +

+ +

= + + + + + − + 
=

= + + + − + − +


 

Applying Brahmagupta lemma between ( )0 0,X T  and ( ),t tX Tɶ ɶ , the other values of X 

and T satisfying (6.63) are given by 

( ) ( )

( ) ( ) ( )

2

1 2

2
2

1 2

11
1

2 2 2
, 1,0,1.......

2 11
1

2 2 2

t t t

t t t

s
T s f g

s s
t

s s s
X s f g

s s

+

+

+
= + + 

+  = −
+ + 

= + + 
+ 

 

From (6.51), it is seen that 

( )2 2
1 1 2 , 1,0,1........t tn p s s t+ += − + = −  

Note that the above values of nalso satisfy (6.52). 

A few numerical examples are given in Table 6.8 below: 

Table 6.8: Numerical Examples 

s  t  +1tn  

1 -1 33 

2 0 4753 

3 1 1507969 
 
 

In conclusion, one may search for the values of n satisfying (6.51) and (6.52) for other 

choices of a and b. 
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VI.5 On the Double Equations + = +x y z w , ( )3
+ =y z x w−−−−  

This paper illustrates two different methods for obtaining non-zero distinct integer 

solutions to the pair of equations 

x y z w+ = +  (6.64) 

( )3
y z x w+ = −  (6.65) 

Method 1 

Consider the linear transformations 

, , 0x u v w u v u v= + = − ≠ ≠  (6.66) 

Substituting (6.66) in (6.64) and (6.65) and simplifying, we have, 

3 34 , 4z v v y v v= + = −  (6.67) 

Note that (6.66) and (6.67) satisfy (6.64) and (6.65). 

A few interesting relations observed among the solutions are as follows: 

I. Each of the following expressions represents a cubical integer. 

(i) 2z w x+ −  

(ii)  2y x w+ −  

II.  ( ) ( )mod 4x z y w+ ≡ +  

III.  Each of the following triples represents Pythagorean triples 

(i) ( )( )2
, ,y z y z−  

(ii)  ( )( )2
, ,y x y z−  

(iii)  ( ) ( ) ( )( )2 2 2
2 2 ,2 2 ,2 2 3y z y z y z y z y z y z+ − + + − + + − +  

(iv) ( ) ( ) ( )( )2 2 2
2 2 ,2 2 ,2 2 3y x w z y x w z y x w z+ − + + − + + − +  
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IV. Each of the following triples represents diophantine 3-tuples with property ( )2D v : 

Triple 1: ( ) ( ) ( )2 3 2
1, , , 2 2 1 , 1,2,3.......n n nz c c c n v n v n+ = + + − =  

Triple 2: ( ) ( ) ( )2 3 2
1, , , 2 2 1 , 1,2,3.......n n ny c c c n v n v n+ = + − − =  

Triple 3: ( ) ( ) ( )2 2
1, , , 1 1 , 1, 2,3.......n n nx c c c n u n v n+ = + + − =  

Triple 4: ( ) ( ) ( )2 2
1, , , 1 1 , 1,2,3.......n n nw c c c n u n v n+ = + − − =  

V. It is worth to note that the value of y  represents 3 times centered octagonal pyramidal 

number where as the value of z  represents centered triangular pyramidal number. 

Method 2 

Introduction of the transformations 

( ), 1 , 0w s x k s k= = + >  (6.68) 

in (6.64) and (6.65) lead to 

( ) 3 3,z y ks z y k s− = + =  

from which we have 

( )3 31

2
z k s ks= + , ( )3 31

2
y k s ks= −  (6.69) 

Note that (6.68) and (6.69) satisfy (6.64) and (6.65). 

Observations 

1. It is worth mentioning that the value of z  represents centered triangular pyramidal 

number where as the value of y  represents 3 times triangular pyramidal number. 

2. The triple ( )3 3
1, ,s sk w k c c++  is a Diophantine 3-tuple with property ( )2 2D k w  

where ( ) ( )2 3 3 21 1 , 1,2,3.....sc s k w s kw s= + + − =  
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VI.6 On the System of Equations + = +x y z w , ( )3
+ = +y z x w  

This paper illustrates two different methods for obtaining non-zero distinct integer 

solutions to the pair of equations 

 x y z w+ = +  (6.70) 

( )3
y z x w+ = +  (6.71) 

Method 1 

Consider the linear transformations 

, , 0x u v w u v u v= + = − ≠ ≠  (6.72) 

Substituting (6.72) in (6.70) and (6.71) and simplifying, we have, 

3 34 , 4z u v y u v= + = −  (6.73) 

Note that (6.72) and (6.73) satisfy (6.70) and (6.71). 

A few interesting relations observed among the solutions are as follows: 

I. Each of the following expressions represents a cubical integer. 

(i) 2z w x+ −  

(ii)  2y x w+ −  

II.  ( )( )mod 4x z y w+ ≡ +  

III.  Each of the following triples represents Pythagorean triples 

(i) ( )6 3 3 2 6 34 ,4 , 4v v v v vα α α− +  

(ii)  ( )6 3 3 2 6 3 3 2 6 3 3 212 8 , 16 4 , 20 8v v v v v v v vα α α α α α+ + + + +  

IV.  A. Each of the following triples represents diophantine 3-tuples with property 

( )2 22D v nu n+ + : 

Triple 1: ( ) ( ) ( )2 2
1, , , 1 1 2 , 1, 2,3.......s s sx c c c s u s v sn s+ = + + − + =  

Triple 2: ( ) ( ) ( )2 2
1, , , 1 1 2 , 1,2,3.......s s sw c c c s u s v sn s+ = + − − + =  
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 B. Each of the following triples represents diophantine 3-tuples with property 

( )2 3 28D v nu n+ + : 

Triple 3: ( ) ( ) ( )2 3 2
1, , , 4 1 1 2 , 1, 2,3.......s s sy c c c s u s v sn s+ = + − − + =  

Triple 4: ( ) ( ) ( )2 3 2
1, , , 4 1 1 2 , 1,2,3.......s s sz c c c s u s v sn s+ = + + − + =  

 C. The triple ( ), , 4 2 1u v u v u s+ − + +  represents a dio 3-tuple with property 

( )( )2 22 2D v s u s+ − + . 

 D. The triple ( )3 3 34 ,4 ,16 2 1u v u v u s+ − + +  represents a dio 3-tuple with property 

( )( )2 2 38 8D v s s u+ + − . 

V. It is worth to note that, each of the values of ,y x z w+ +  represents centered 

triangular pyramidal number. 

VI.  The values of ( ) ( )y z x w+ − +  represents six times centered octagonal 

pyramidal number. 

VII.  The values of x y z w+ + +  represents two times centered triangular pyramidal 

number. 

VIII.  ( ) ( )22 22 z y x w+ − −  is a sextic integer. 

IX.  ( ) ( )2
2 xy zw z y+ + −  is a bi-quadratic integer. 

X. ( ) ( ) ( )( )22 22 1xy zw x w x w− = − + −  

XI.  When 2 23 , 2 , 0u r s v rs r s= − = ≠ ≠  

 2 2x xw w− +  is a perfect square. 

XII.  Consider, ,u v  to represent the sum of the legs and difference between the legs 

of the Pythagorean triangle then, it is observed that 2 2x w+ is a perfect square. 
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CHAPTER – VII 

SIMULTANEOUS EQUATIONS 

 
Chapter VII analyses Triple Diophantine Equations in three sections VII.1 to VII.3 

Section VII.1 

An attempt is made to obtain non-zero distinct integer quintuples ( ), , , ,x y a b c  

satisfying the system of three equations 2 2 2 2,2 , 2x y a x y b x y a c+ = + = + = − . Different 

sets of integer solutions are presented. 

Section VII.2 

Non-zero distinct integer quintuples ( ), , , ,x y a b c  satisfying the system of 

three equations 2 2 2 32 ,2 5 , 2x y a x y a b x y c+ = + = + + =  are determined. 

Section VII.3 

Triple equations with five unknowns represented by 2 2 22 ,2 5 ,x y a x y a b+ = + = −  

32 5x y c+ =  are analyzed for non-zero distinct integral solutions.  
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VII.1 On the System of Triple Equations with Five Variables 

 2 2 2 2+ = , 2 + = , + 2 =x y a x y b x y a c−−−−  

Consider the system of equations 

2x y a+ =  (7.1) 

22x y b+ =  (7.2) 

2 22x y a c+ = −  (7.3) 

Eliminating x  and y
 
between (7.1) to (7.3), the resulting equation is 

2 2 22b c a= +  (7.4) 

which is satisfied by 

2 , , 3a k c k b k= = =  (7.5) 

Now, (7.2)-(7.1)⇒  2 2x b a= −  (7.6) 

and (7.1) ⇒ 2y a x= −  (7.7) 

Using (7.5) in (7.6) and (7.7), the values of x  and y
 
satisfying the system of 

equations (7.1) to (7.3) are given by 

 2 25 ,x k y k= = −  (7.8) 

Also, note that (7.4) is satisfied by 

 2 2 2 22 , 2 , 2a rs c r s b r s= = − = +  

For this choice, the corresponding solutions to (7.1) to (7.3) are represented by 

4 4 2 2 4 44 , 4 4x r s y r s r s= + = − −  (7.9) 

In addition to the above two solutions (7.8) and (7.9) of (7.1) to (7.3), there are other 

choices of solutions to the system of equations under consideration that are illustrated 

below: 
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Choice 1 

Write (7.4) as 

 2 2 22 1c a b+ = ∗  (7.10) 

Assume ( )2 29 2b p q= +  (7.11) 

and 
( )( )1 2 2 1 2 2

1
9

i i+ −
=  (7.12) 

Substituting (7.11) and (7.12) in (7.10) and applying the method of factorization, define 

( ) ( ) 2
1 2 2

2 9 2
3

i
c i a p i q

+
+ = ∗ +  

Equating the rational and irrational parts in the above equation, one obtains 

( )2 23 2 8c p q pq= − −  (7.13) 

 ( )2 23 2 4 2a p q pq= − +  (7.14) 

Using the values of , ,a b c
 
given by (7.14), (7.11) and (7.13) in (7.6) and (7.7), the 

required values of x  and y
 
satisfying (7.1) to (7.3) are given by 

( ) ( )
( ) ( )

22 2 2 2 2

22 2 2 2 2

81 2 36 2

72 2 81 2

x p q p q pq

y p q pq p q

= + − − +

= − + − +  

Choice 2 

1 can also be written as 

( )( )7 4 2 7 4 2
1

81

i i+ −
=  (7.15) 

Substituting (7.11) and (7.15) in (7.10) and applying the method of factorization, define 

 
( ) ( ) 2
7 4 2

2 9 2
9

i
c i a p i q

+
+ = ∗ +  
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Equating the rational and irrational parts in the above equation, one obtains 

( )2 27 14 16c p q pq= − −  (7.16) 

 ( )2 22 2 4 7a p q pq= − +  (7.17) 

Using the values of , ,a b c
 
given by (7.17), (7.11) and (7.16) in (7.6) and (7.7), the 

required values of x and y satisfying (7.1) to (7.3) are obtained as 

( ) ( )
( ) ( )

22 2 2 2 2

22 2 2 2 2

81 2 4 2 4 7

8 2 4 7 81 2

x p q p q pq

y p q pq p q

= + − − +

= − + − +
 

Choice 3 

Write (7.4) as 

 2 2 2 21 2c c b a∗ = = −  (7.18) 

Assume 

 2 22c p q= −  (7.19) 

Write 1 as 

2 21 2n nY X= −  (7.20) 

where 

( ) ( )
( ) ( )

1 1

1 1

1
3 2 2 3 2 2

2
1

3 2 2 3 2 2 , 0,1,2.......
2 2

n n

n

n n

n

Y

X n

+ +

+ +

 = + + −
  

 = + − − =
  

 

Substituting (7.19) and (7.20) in (7.18) and applying the method of factorization, define 

( ) ( )22 2 2n nb a p q Y X+ = + +  

Equating the rational and irrational parts, we have 

 ( )2 22 4n nb Y p q pqX= + +  (7.21) 
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 ( )2 22 2n na pqY p q X= + +  (7.22) 

Using the values of , ,a b c
 
given by (7.22), (7.21) and (7.19) in (7.6) and (7.7), the 

required values of ,x y  satisfying the system (7.1) to (7.3) are given by 

 ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 22 4 4 4 2n n n n n nx p q Y X p q X Y pq p q X Y= + − + − + +  

 ( ) ( ) ( )2 2 2 2 2 2 2 2 24 2 4 2 2 , 0,1, 2,........n n n ny p q Y X p q X Y n= − + + − =  
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VII.2 On the Simultaneous Equation  2 2 2 3+ = 2 , 2 + = 5 + , + 2 =x y a x y a b x y c  

Let , , ,x y a b
 
and c  be five non-zero distinct integers such that 

22x y a+ =  (7.23) 

 2 22 5x y a b+ = +  (7.24) 

 32x y c+ =  (7.25) 

Eliminating x  and y
 
between (7.23) to (7.25), the resulting equation is 

2 2 3a b c− =  (7.26) 

Solving (7.26) through different methods, one obtains different sets of solutions to the 

system (7.23) to (7.25). 

Method 1 

It is observed that (7.26) is satisfied by 

 ( ) ( ) ( )2 2 2 2 2 2, ,a m m n b n m n c m n= − = − = −  (7.27) 

where m n≠ ±  and 1n ≠ . Eliminating y  between (7.23) and (7.24), the values of x  is 

given by 

 ( ) ( )22 2 2 2 2 23 3x a b m n m n= + = − −  (7.28) 

From (7.23), 

( ) ( )22 2 2 2 22y a x m n m n= − = − − +   (7.29) 

Note that, (7.27) to (7.29) satisfy (7.23) to (7.25). A few numerical examples are 

given in Table 7.1 below: 
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Table 7.1: Numerical Examples 

m  n  a  b  c  x  y  

2 3 -10 -15 -5 525 -325 

5 -7 -120 168 -24 71424 -42624 

11 9 440 360 40 710400 -323200 

9 2 693 154 77 1464463 -503965 
 
 

Method 2 

After performing numerical calculations, it is seen that (7.26) is satisfied by 

 ( )3, 1 3,, , 1k ka t b t c k+= = = +  (7.30) 

where 3,kt  the triangular number of rank k . 

The corresponding values of x andy satisfying (7.23) to (7.25) are represented by 

 ( ) ( ) ( ) ( ) ( )2 2 4 3 2

3, 1 3,3 1 1 1k kx t t k k k+= + = + + + + +  

 ( ) ( ) ( ) ( )2 2 4 2

3, 1 3,

1
1 1

2k ky t t k k+
 = − − = − + + +
 

 

A few numerical examples are given in Table 7.2 below: 

Table 7.2: Numerical Examples 

k  a  b  c  x  y  

2 6 3 3 117 -45 

3 10 6 4 336 -136 

4 15 10 5 775 -325 

5 21 15 6 1548 -666 
 
 

Method 3 

Observe that (7.26) is satisfied by 

 
3 31 1

,
2 2

c c
a b

+ −= =  



Chapter-VII                                Simultaneous Equations 

 192 

Since our interest is on finding integer solutions, 

take 

 2 1c k= +  

and we have 

 
3 2

3 2

4 6 3 1

4 6 3

a k k k

b k k k

= + + +

= + +
 

For this choice, the values of x  and y
 
satisfying (7.23) to (7.25) are given by 

 ( ) ( )3 2 2 3 24 4 6 3 6 4 6 3 3x k k k k k k= + + + + + +  

 ( ) ( )3 2 2 3 22 4 6 3 2 4 6 3 1y k k k k k k= − + + − + + −  

A few numerical examples are presented in Table 7.3 below: 

Table 7.3: Numerical Examples 

k  a  b  c  x  y  

2 63 62 5 15751 -7813 

3 172 171 7 117993 -58825 

4 365 364 9 532171 -265721 

5 666 665 11 1772893 -885781 
 
 

Method 4 

Introducing the transformations 

, , 2a u v b u v c α= + = − =  (7.31) 

in (7.26), we have 

 32uv α=  (7.32) 

One may choose u and vsuitably in (7.32) and using (7.31) the corresponding values 

of x  and y
 
satisfying the system of equations (7.23) to (7.25) are obtained. 
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Choice 1 

3 , 2u vα= =  

3 32, 2a bα α∴ = + = −  

Thus, ( ) ( )3 2 3 2 6 33 2 2 4 8 16x α α α α= + + − = + +  

 ( ) ( ) ( )3 2 3 2 62 2 2 8y α α α= − + − − = − +  

Choice 2 

 32 , 1u vα= =  

 3 32 1, 2 1a bα α∴ = + = −  

Thus, ( ) ( )3 2 3 2 6 33 2 1 2 1 16 8 4x α α α α= + + − = + +  

 ( ) ( ) ( )3 2 3 2 62 1 2 1 8 2y α α α= − + − − = − +  

Choice 3 

 32 ,u vα α= =  

 2 22 , 2a bα α α α∴ = + = −  

Thus, ( ) ( )2 2 2 2 4 3 23 2 2 16 8 4x α α α α α α α= + + − = + +  

 ( ) ( ) ( )2 2 2 2 4 22 2 8 2y α α α α α α= − + − − = − +  

Choice 4 

 2 , 2u vα α= =  

 2 22 , 2a bα α α α∴ = + = −  

Thus, ( ) ( )2 2 2 2 4 3 23 2 2 4 8 16x α α α α α α α= + + − = + +  

 ( ) ( ) ( )2 2 2 2 4 22 2 2 8y α α α α α α= − + − − = − +  
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Method 5 

The introductions of the transformations 

 3 32 , 2 , 2a u k v b u k v c kα= + = − =  (7.33) 

in (7.26), leads to 

 3uv α=  (7.34) 

One may choose u  and v  suitably in (7.33) and using (7.34) the corresponding values 

of x andy satisfying the system of equations (7.23) to (7.25) are obtained. 

Choice 5 

3 , 1u vα= =  

3 3 3 32 , 2a k b kα α∴ = + = −  

Thus, ( ) ( )2 23 3 3 3 6 3 3 63 2 2 4 8 16x k k k kα α α α= + + − = + +  

 ( ) ( ) ( )3 3 2 6 3 3 6 6 62 2 4 8 16 2 8y k k k kα α α α= + − + + = − +  

Choice 6 

 31,u v α= =  

 3 3 3 31 2 , 1 2a k b kα α∴ = + = −  

Thus, ( ) ( )3 3 2 3 3 2 6 6 3 33 1 2 1 2 16 8 4x k k k kα α α α= + + − = + + . 

 ( ) ( ) ( )3 3 2 6 6 3 3 6 62 1 2 16 8 4 8 2y k k k kα α α α= + − + + = − +  

Choice 7 

 2 ,u vα α= =  

 2 3 2 32 , 2a k b kα α α α∴ = + = −  

Thus, ( ) ( )2 3 2 2 3 2 4 6 2 3 33 2 2 4 16 8x k k k kα α α α α α α= + + − = + +  

 ( ) ( ) ( )2 3 2 4 6 2 3 3 6 2 42 2 4 16 8 8 2y k k k kα α α α α α α= + − + + = − +  
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Choice 8 

 2,u vα α= =  

 3 2 3 22 , 2a k b kα α α α∴ = + = −  

Thus, ( ) ( )3 2 2 3 2 2 2 3 3 6 43 2 2 4 8 16x k k k kα α α α α α α= + + − = + +  

 ( ) ( ) ( )3 2 2 2 3 3 6 4 2 6 42 2 4 8 16 2 8y k k k kα α α α α α α= + − + + = − +  
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VII.3 On a Set of Three Diophantine Equations 

 2 2 2 3+ = 2 , 2 + = 5 , + 2 = 5x y a x y a b x y c−−−−  

The system of triple equations with five unknowns to be solved for its distinct 

non-zero integral solutions are 

22x y a+ =  (7.35) 

 2 22 5x y a b+ = −  (7.36) 

 32 5x y c+ =  (7.37) 

Eliminating x and y between (7.35) to (7.37), we get 

 2 2 35a b c+ =  (7.38) 

Also, solving (7.35) and (7.36) for x and y, one obtains 

2 23x a b= −  (7.39) 

2 2y b a= −  (7.40) 

Now, solving (7.38), the values of a, b, c are obtained. In view of (7.39) and (7.40), 

the values of x and y satisfy (7.35) to (7.37) are obtained.  Thus, the above values of x, 

y, a, b and c represent the solutions to the system of equations (7.35) to (7.37).  The 

above process is illustrated as follows: 

Method 1 

Let 

 
2 2c α β= +  (7.41) 

where α  and β
 
are non-zero integers. 

Write 5 as 

 ( ) ( )5 2 2i i= + −  (7.42) 
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Using (7.41), (7.42) in (7.38) and applying the method of factorization, define 

( ) ( ) ( ) 3
2a ib i iα β+ = + +    (7.43) 

from which we have 

( )
( )

3 2 2 3

3 2 2 3

, 2 6 3

, 3 6 2

a a

b b

α β α αβ α β β

α β α αβ α β β

= = − − + 


= = − + − 
 (7.44) 

Substituting (7.44) in (7.39) and (7.40), the corresponding values of x and y are 

obtained. 

A  few numerical examples are given in the Table 7.4 below: 

Table 7.4: Numerical values 

α  β  a  b  c  x  
y  

1 2 -20 -15 5 975 -175 

2 3 -101 -28 13 29819 -9417 

1 3 -34 -62 10 -376 2688 

2 4 -160 -120 20 62400 -11200 
 
 

Method 2 

Write 5 as 

( ) ( )5 1 2 1 2i i= + −  (7.45) 

Using (7.45), (7.41) in (7.38) and applying  the method of  factorization, define 

( ) ( ) ( ) 3
1 2a ib i iα β+ = + +    (7.46) 

Equating real and imaginary parts, we have 

( )
( )

3 2 2 3

3 2 2 3

, 3 6 2

, 2 6 3

a a

b b

α β α αβ α β β

α β α αβ α β β

= = − − + 


= = − + − 
 (7.47) 

Substituting (7.47) in (7.39) and (7.40), the corresponding values of x and y are 

obtained. 
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A   few numerical examples are given in the Table 7.5 below: 

Table 7.5: Numerical values 

α  ββββ  a  b  c  x  
y  

1 2 -7 -24 5 -429 527 

2 3 -64 -83 13 5399 2793 

1 3 10 -70 10 -4600 4800 

2 4 -56 -192 20 -27456 33728 
 
 

Method 3 

Substituting 

 ( )5 3a k b= −  (7.48) 

in (7.38), it gives 

( )2 2 35 6 2k k b c− + =
 (7.49) 

Choose b and c such that 

( )2 35 6 2b k k u= − +  (7.50) 

( )2 25 6 2c k k u= − +  (7.51) 

Note that (7.49) is satisfied. 

Using (7.50) in (7.48), we have 

( ) ( )2 35 3 5 6 2a k k k u= − − +  

It is observed that the values of a, b and c represented by 

( ) ( )2 35 3 5 6 2a k k k u= − − +  

( )2 35 6 2b k k u= − +  

( )2 25 6 2c k k u= − +  

satisfy (7.38). In view of (7.39) and (7.40) the values of x and y satisfying (7.35) to 

(7.37) are obtained. 
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A few numerical examples are given in the Table 7.6 below: 

Table 7.6: Numerical values 

u  k  a  b  c  x  
y  

2 1 2 8 4 11 -3 

2 2 70 80 40 14600 -4800 

2 3 348 232 116 362471 -120263 

2 4 986 464 232 2913224 -968832 
 
 

Method 4 

Write (7.38) as 

2 2 35 1a b c+ = ∗  (7.52) 

Write 1 as 

( ) ( )3 4 3 4
1

25

i i+ −
=

 

(7.53) 

Using (7.41), (7.42), (7.53) in (7.52) and applying the method of factorization, define 

( ) ( ) ( ) ( )3 3 4
2

5

i
a ib i iα β

+
+ = + +    (7.54) 

from which we have 

( )

( )

3 2 2 3

3 2 2 3

1
, 2 6 33 11

5
1

, 11 33 6 2
5

a a

b b

α β α αβ α β β

α β α αβ α β β


 = = − − + 


 = = − + −    

(7.55) 

Since our interest is on finding integer solutions, replacing, α  by 5A  and β
 
by 5B  

in (7.41) and (7.55), the corresponding integer solutions to a, b and c are given by 

3 2 2 3

3 2 2 3

2 2

( , ) 50 150 825 275

( , ) 275 825 150 50

( , ) 25( )

a A B A AB A B B

b A B A AB A B B

c A B A B

= − − +

= − + −

= +  
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In view of (7.39) and (7.40), the values of x and y are obtained. 

A few numerical examples are given in the Table 7.7 below: 

Table 7.7: Numerical values 

αααα  ββββ  A  B  a  b  c  x  
y  

5 15 1 3 3650 -8050 250 -24835000 51480000 

10 15 2 3 -4775 -12200 325 -80438125 126039375 

15 10 3 2 -13100 -175 325 514799375 -171579375 

10 30 2 6 29200 -64400 1000 -1589440000 3294720000 

 
 

Method 5 

Using (7.41), (7.44), (7.53) in (7.52) and applying the method of factorization, define 

( ) ( ) ( ) ( )3 3 4
1 2

5

i
a ib i iα β

+
+ = + +  

 

(7.56) 

Equating real and imaginary parts, we have 

( )
( ) 





+−−==

+−+−==
3223

3223

362,bb

263,aa

ββααβαβα
ββααβαβα

 

(7.57) 

Substituting (7.57) in (7.39) and (7.40), the corresponding values of x and y are 

obtained. 

A   few numerical examples are given in the Table 7.8 below: 

Table 7.8: Numerical values 

αααα  ββββ  a  b  c  x  
y  

1 2 15 -20 5 275 175 

2 3 28 -101 13 -7849 9417 

1 3 62 -34 10 10376 -2688 

2 4 120 -160 20 17600 11200 
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CHAPTER - VIII 

DIOPHANTINE 3-TUPLES 

 

Chapter VIII focuses on Diophantine 3-Tuples in four sections VIII.1 to VIII.4 

Section VIII.1 

This paper deals with the study of constructing sequences of diophantine 

triples ( ), ,a b c
 
such that the product of any two elements of the set added by 11 is a 

perfect square. 

Section VIII.2 

The construction of sequences of diophantine triples ( ), ,a b c
 
through pronic 

numbers is studied. 

Section VIII.3 

This section has three parts VIII.3A, VIII.3B, VIII .3C 

The formulation of sequences of diophantine triples ( ), ,a b c
 
through Euler 

polynomials, Bernoulli polynomials & Euler and Bernoulli polynomails is considered 

in sections VIII.3A, VIII.3B, VIII.3C respectively. 

Section VIII.4 

This paper concerns with the formulation of sequences of Diophantine 3-tuples 

with property ( )2 10 3D k k+ −  through matrix method. 
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VIII.1 Formulation of Sequences of Diophantine 3-Tuples with Property (11)D  

Sequence 1 

Let 7a = , 27 4 1b n n= + −  

It is observed that 

( )2
11 7 2ab n+ = +  

Therefore, the pair ( ),a b
 
represents Diophantine 2-tuples with property (11)D . 

Let 1c  be any non-zero polynomial such that 

2
1 11ac p+ =  (8.1) 

2
1 11bc q+ =  (8.2) 

Eliminating 1c  
between (8.1) and (8.2), we have 

 ( )( )2 2 11bp aq b a− = −  (8.3) 

Introducing the linear transformations 

 ,p X aT q X bT= + = +  (8.4) 

in (8.3) and simplifying we get 

 2 2 11X abT= +  

which is satisfied by 1, 7 2T X n= = +  

In view of (8.4) and (8.1), it is seen that 

2
1 7 18 10c n n= + +  

Note that ( )1, ,a b c  represents Diophantine 3-tuples with property (11)D . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2
2 7 32 35c n n= + +  
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exhibits Diophantine 3 –tuples with property D(11). 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

 2
3 7 46 74c n n= + +  

exhibits Diophantine 3 –tuples with property D(11). 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

 2
4 7 60 127c n n= + +  

exhibits Diophantine 3-tuples with property D(11). 

The repetition of the above process leads to the generation of sequence of 

Diophantine 3-tuples whose general form is given by ( )1, ,s sa c c +  where 

 ( ) ( )2 27 14 4 7 4 1 , 1,2,3.......sc n s n s s s= + + + + − =  

Sequence 2 

Let 7a = , 27 4 1b n n= − −  

It is observed that 

 ( )2
11 7 2ab n+ = −  

Therefore, the pair ( ),a b
 
represents Diophantine 2-tuples with property (11)D . 

Let 1c  be any non-zero polynomial such that 

2
1 11ac p+ =  (8.5) 

2
1 11bc q+ =  (8.6) 

Eliminating 1c  
between (8.5) and (8.6), we have 

 ( )( )2 2 11bp aq b a− = −  (8.7) 
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Introducing the linear transformations 

 ,p X aT q X bT= + = +  (8.8) 

in (8.7) and simplifying we get 

 2 2 11X abT= +  

which is satisfied by 1, 7 2T X n= = −  

In view of (8.8) and (8.5), it is seen that 

 2
1 7 10 2c n n= + +  

Note that ( )1, ,a b c  represents Diophantine 3-tuples with property (11)D . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

 2
2 7 24 19c n n= + +  

exhibits Diophantine 3-tuples with property D(11). 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

 2
3 7 38 50c n n= + +  

exhibits Diophantine 3-tuples with property D(11). 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

2
4 7 52 95c n n= + +  

exhibits Diophantine 3-tuples with property D(11). 

The repetition of the above process leads to the generation of sequence of Diophantine 

3-tuples whose general form is given by ( )1, ,s sa c c +  where 

 ( ) ( )2 27 14 4 7 4 1 , 1,2,3.......sc n s n s s s= + − + − − =  
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Sequence 3 

Let 2a = , 2 12 2 5n nb −= + −  

It is observed that 

( ) 2
11 2 1nab+ = +  

Therefore, the pair ( ),a b
 
represents Diophantine 2-tuples with property (11)D . 

Let 1c  be any non-zero polynomial such that 

2
1 11ac p+ =  (8.9) 

2
1 11bc q+ =  (8.10) 

Eliminating 1c  
between (8.9) and (8.10), we have 

 ( )( )2 2 11bp aq b a− = −  (8.11) 

Introducing the linear transformations 

 ,p X aT q X bT= + = +  (8.12) 

in (8.11) and simplifying we get 

 2 2 11X abT= +  

which is satisfied by 1, 2 1nT X= = +  

In view of (8.12) and (8.9), it is seen that 

 2 1
1 2 3*2 1n nc −= + −  

Note that ( )1, ,a b c  represents Diophantine 3-tuples with property (11)D . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

 2 1
2 2 5*2 7n nc −= + +  

exhibits Diophantine 3-tuples with property D(11). 
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Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

2 1
3 2 7*2 19n nc −= + +  

exhibits Diophantine 3-tuples with property D(11). 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

 2 1
4 2 9*2 35n nc −= + +  

exhibits Diophantine 3-tuples with property D(11). 

The repetition of the above process leads to the generation of sequence of Diophantine 

3-tuples whose general form is given by ( )1, ,s sa c c +  where 

( ) ( )2 1 22 2 1 2 2 2 5 , 1,2,3.......n n
sc s s s s−= + + + + − =  

Now, consider ( )1,b c  and employing the above procedure, it is seen that the triple 

( )1 2, ,b c c  where 

 2 1
2 4*2 8*2 14n nc −= + −  

exhibits Diophantine 3-tuples with property D(11). 

Taking ( )2,b c  and employing the above procedure, it is seen that the triple ( )2 3, ,b c c  

where 

2 1
3 9*2 15*2 37n nc −= + −  

exhibits Diophantine 3-tuples with property D(11). 

Taking ( )3,b c  and employing the above procedure, it is seen that the triple ( )3 4, ,b c c  

where 

2 1
4 16*2 24*2 70n nc −= + −  
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exhibits Diophantine 3-tuples with property D(11). 

The repetition of the above process leads to the generation of sequence of Diophantine 

3-tuples whose general form is given by ( )1, ,s sb c c +  where 

( ) ( )2 2 1 2 22 2 2 5 2 2 , 1,2,3.......n n
sc s s s s s s−= + + − − − =  
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VIII.2 On Sequences of Diophantine 3-Tuples Generated through Pronic Numbers 

Sequence: 1 

Consider the Pronic numbers nPr  and 2nPr  given by 

( ) ( )21 , 2 2 1n nPr n n Pr n n= + = +  

Let 24 ,n na Pr b Pr= =  

It is observed that 

( ) 22 24 3ab n n n+ = +  

Therefore, the pair ( ),a b  represents diophantine 2-tuple with the property 2( )D n  . 

Let 1c  be any non-zero polynomial in x such that 

2 2
1ac n p+ =  (8.13) 

2 2
1bc n q+ =  (8.14) 

Eliminating 1c  
between (8.13) and (8.14), we have 

 ( )2 2 2bp aq b a n− = −  (8.15) 

Introducing the linear transformations 

 ,p X aT q X bT= + = +  (8.16) 

in (8.15) and simplifying we get 

2 2 2X abT n= +  

which is satisfied by 21, 4 3T X n n= = +  

In view of (8.16) and (8.13), it is seen that 

2
1 16 12c n n= +  

Note that ( )1, ,a b c  represents diophantine 3-tuple with property 2( )D n . 
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Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2
2 36 30c n n= +  

exhibits diophantine 3-tuple with property 2( )D n . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

2
3 64 56c n n= +  

exhibits diophantine 3-tuple with property 2( )D n . 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

2
4 100 90c n n= +  

exhibits diophantine 3-tuple with property 2( )D n . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,s sa c c +  
where 

( ) ( )2 2 24 8 4 4 6 2 , 1,2,3,...sc s s n s s s= + + + + + =  

Now, consider ( )1,b c  and employing the above procedure, it is seen that the triple 

( )1 2, ,b c c  where 

2
2 36 24c n n= +  

exhibits diophantine 3-tuple with property 2( )D n . 

Taking ( )2,b c  and employing the above procedure, it is seen that the triple ( )2 3, ,b c c  

where 

2
3 64 40c n n= +  
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exhibits diophantine 3-tuple with property 2( )D n . 

Taking ( )3,b c  and employing the above procedure, it is seen that the triple ( )3 4, ,b c c  

where 

2
4 100 60c n n= +  

exhibits diophantine 3-tuple with property 2( )D n . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,s sb c c + where 

( ) ( )2 2 22 2 2 6 4 , 1, 2 ,3,...nc s n s s n s= + + + + =  

Sequence: 2 

Consider the Pronic numbers nPr  and 2nPr  given by 

( ) ( )21 , 2 2 1n nPr n n Pr n n= + = +  

Let 2,n na Pr b Pr= =  

It is observed that 

( )22 3 22 2 2 2ab n n n n+ + = +  

Therefore, the pair ( ),a b  represents diophantine 2-tuple with the property 2 3(2 2 )D n n+ . 

Let 1c  be any non-zero polynomial in x such that 

2 3 2
1 2 2ac n n p+ + =  (8.17) 

2 3 2
1 2 2bc n n q+ + =  (8.18) 

Eliminating 1c  
between (8.17) and (8.18), we have 

 ( )( )2 2 2 32 2bp aq b a n n− = − +  (8.19) 



Chapter-VIII  Diophantine 3-Tuples 

 211 

Introducing the linear transformations 

,p X aT q X bT= + = +  (8.20) 

in (8.19) and simplifying we get 

2 2 2 32 2X abT n n= + +  

which is satisfied by 21, 2 2T X n n= = +  

In view of (8.20) and (8.17), it is seen that 

 2
1 9 7c n n= +  

Note that ( )1, ,a b c  represents diophantine 3-tuple with property 2 3(2 2 )D n n+ . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2
2 16 14c n n= +  

exhibits diophantine 3-tuple with property 2 3(2 2 )D n n+ . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

2
3 25 23c n n= +  

exhibits diophantine 3-tuple with property 2 3(2 2 )D n n+ . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,s sa c c +  where 

 ( ) ( )2 2 22 4 2 , 1,2,3,...sc s n s s n s= + + + + =  

Now, consider ( )1,b c  and employing the above procedure, it is seen that the triple 

( )1 2, ,b c c  where 

2
2 25 17c n n= +  
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exhibits diophantine 3-tuple with property 2 3(2 2 )D n n+ . 

Taking ( )2,b c  and employing the above procedure, it is seen that the triple ( )2 3, ,b c c  

where 

2
3 49 31c n n= +  

exhibits diophantine 3-tuple with property 2 3(2 2 )D n n+ . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,s sb c c +  where 

 ( ) ( )2 2 22 1 2 4 1 , 1,2,3,...sc s n s s n s= + + + + =  

Sequence: 3 

Consider the Pronic numbers nPr  and 4nPr  given by 

( ) ( )41 , 4 4 1n nPr n n Pr n n= + = +  

Let 44 ,n na Pr b Pr= =  

It is observed that 

( )22 29 8 5ab n n n+ = +  

Therefore, the pair ( ),a b  represents diophantine 2-tuple with the property 2(9 )D n . 

Let 1c  be any non-zero polynomial in x such that 

2 2
1 9ac n p+ =  (8.21) 

2 2
1 9bc n q+ =  (8.22) 

Eliminating 1c  
between (8.21) and (8.22), we have 

 ( )( )2 2 29bp aq b a n− = −  (8.23) 
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Introducing the linear transformations 

,p X aT q X bT= + = +  (8.24) 

in (8.23) and simplifying we get 

2 2 29X abT n= +  

which is satisfied by 21, 8 5T X n n= = +  

In view of (8.24) and (8.21), it is seen that 

 2
1 36 18c n n= +  

Note that ( )1, ,a b c  represents diophantine 3-tuple with property 2(9 )D n . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2
2 64 40c n n= +  

exhibits diophantine 3-tuple with property 2(9 )D n . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

2
3 100 70c n n= +  

exhibits diophantine 3-tuple with property 2(9 )D n . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,s sa c c +  where 

 ( ) ( )2 2 22 4 4 10 4 , 1,2,3,...sc s n s s n s= + + + + =  

Now, consider ( )1,b c  and employing the above procedure, it is seen that the triple 

( )1 2, ,b c c  where 

2
2 100 40c n n= +  
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exhibits diophantine 3-tuple with property 2(9 )D n . 

Taking ( )2,b c  and employing the above procedure, it is seen that the triple ( )2 3, ,b c c  

where 

2
3 196 70c n n= +  

exhibits diophantine 3-tuple with property 2(9 )D n . 

Taking ( )3,b c  and employing the above procedure, it is seen that the triple ( )3 4, ,b c c  

where 

2
4 324 108c n n= +  

exhibits diophantine 3-tuple with property 2(9 )D n . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,s sb c c + where 

 ( ) ( )2 2 24 2 4 10 4 , 1, 2 ,3,...sc s n s s n s= + + + + =  
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VIII.3A On Sequences of Diophantine 3-Tuples Generated through 

Euler Polynomials 

Sequence: 1 

Consider the Euler polynomials ( )1E x  and ( )2E x
 
given by 

( ) ( ) 2
1 2

1
,

2
E x x E x x x= − = −  

Let ( )( ) ( )2

1 24 ,a E x b E x= =  

It is observed that 

( )22 23 3 1 2 2 1ab x x x x+ − + = − +  

Therefore, the pair ( ),a b  represents diophantine 2-tuple with the property 2(3 3 1)D x x− + . 

Let 1c  be any non-zero polynomial in x such that 

2 2
1 3 3 1ac x x p+ − + =  (8.25) 

2 2
1 3 3 1bc x x q+ − + =  (8.26) 

Eliminating 1c  
between (8.25) and (8.26), we have 

 ( )( )2 2 23 3 1bp aq b a x x− = − − +  (8.27) 

Introducing the linear transformations 

,p X aT q X bT= + = +  (8.28) 

in (8.27) and simplifying we get 

2 2 23 3 1X abT x x= + − +  

which is satisfied by 21, 2 2 1T X x x= = − +  

In view of (8.28) and (8.25), it is seen that 

 ( )1 29 3c E x= +  
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Note that ( )1, ,a b c  represents diophantine 3-tuple with property 2(3 3 1)D x x− + . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

( )2 225 8c E x= +  

exhibits diophantine 3-tuple with property 2(3 3 1)D x x− + . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,n na c c +  where 

 ( ) ( )2 2
22 1 2 , 1,2,3,...nc n E x n n n= + + + =  

Now, consider ( )1,b c  and employing the above procedure, it is seen that the triple 

( )1 2, ,b c c  where 

( )2 216 5c E x= +  

exhibits diophantine 3-tuple with property 2(3 3 1)D x x− + . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,n nb c c +  where 

 ( ) ( )2

22 2 1, 1,2,3,...nc n E x n n= + + + =  

Sequence: 2 

Consider the Euler polynomials ( )1E x  and ( )3E x
 
given by 

( ) ( ) 3 2
1 3

1 3 1
,

2 2 4
E x x E x x x= − = − +  

Let ( ) ( )1 32 , 4a E x b E x= =  

It is observed that 

( )24 3 2 22 9 8 2 3 3 1ab x x x x x x+ − + − + = − +  
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Therefore, the pair ( ),a b  represents diophantine 2-tuple with the property 

4 3 2( 2 9 8 2)D x x x x− + − + . 

Let 1c  be any non-zero polynomial in x such that 

4 3 2 2
1 2 9 8 2ac x x x x p+ − + − + =  (8.29) 

4 3 2 2
1 2 9 8 2bc x x x x q+ − + − + =  (8.30) 

Eliminating 1c
 
between (8.29) and (8.30), we have 

 2 2 4 3 2( )( 2 9 8 2)bp aq b a x x x x− = − − + − +  (8.31) 

Introducing the linear transformations 

,p X aT q X bT= + = +  (8.32) 

in (8.31) and simplifying we get 

 2 2 4 3 22 9 8 2X abT x x x x= + − + − +  

which is satisfied by 21, 3 3 1T X x x= = − +  

In view of (8.32) and (8.29), it is seen that 

 3
1 4 4 2c x x= − +  

Note that ( )1, ,a b c  represents diophantine 3-tuple with property 4 3 2( 2 9 8 2)D x x x x− + − + . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

3 2
2 4 6 4 1c x x x= + − +  

exhibits diophantine 3-tuple with property 4 3 2( 2 9 8 2)D x x x x− + − + . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

3 2
3 4 12 2c x x= + −  
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exhibits diophantine 3-tuple with property 4 3 2( 2 9 8 2)D x x x x− + − + . 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

3 2
4 4 18 8 7c x x x= + + −  

exhibits diophantine 3-tuple with property 4 3 2( 2 9 8 2)D x x x x− + − + . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples. 

Now, consider ( )1,b c  and employing the above procedure, it is seen that the triple 

( )1 2, ,b c c  where 

3 2
2 16 12 10 7c x x x= − − +  

exhibits diophantine 3-tuple with property 4 3 2( 2 9 8 2)D x x x x− + − + . 

Taking ( )2,b c  and employing the above procedure, it is seen that the triple ( )2 3, ,b c c  

where 

3 2
3 36 36 16 14c x x x= − − +  

exhibits diophantine 3-tuple with property 4 3 2( 2 9 8 2)D x x x x− + − +  

Taking ( )3,b c  and employing the above procedure, it is seen that the triple ( )3 4, ,b c c  

where 

3 2
4 64 72 22 23c x x x= − − +  

exhibits diophantine 3-tuple with property 4 3 2( 2 9 8 2)D x x x x− + − +  

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,n nb c c +  where 

 ( ) ( )2

22 2 1, 1,2,3,...nc n E x n n= + + + =  
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VIII.3B On Sequences of Diophantine 3-Tuples Generated through 

Bernoulli Polynomials 

Sequence: 1 

Consider the Bernoulli polynomials ( )0B x  and ( )2B x
 
given by 

( ) ( ) 2
0 2

1
1,

6
B x B x x x= = − +  

Let ( ) ( ) 2
0 21, 6 6 6 1a B x b B x x x= = = = − +  

It is observed that 

( )22 23 9 6 1 3 1ab x x x x+ = − + = −  

Therefore, the pair ( ),a b  represents diophantine 2-tuple with the property 2(3 )D x . 

Let 1c  be any non-zero polynomial in x such that 

2 2
1 3ac x p+ =  (8.33) 

2 2
1 3bc x q+ =  (8.34) 

Eliminating 1c  
between (8.33) and (8.34), we have 

 ( )( )2 2 23bp aq b a x− = −  (8.35) 

Introducing the linear transformations 

 ,p X aT q X bT= + = +  (8.36) 

in (8.35) and simplifying we get 

2 2 23X abT x= +  

which is satisfied by 1, 3 1T X x= = −  

In view of (8.36) and (8.33), it is seen that 

 2 2 2
1 9 3 6c x x x= − =  
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Note that ( )1, ,a b c  represents diophantine 3-tuple with property 2(3 )D x . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2
2 6 6 1c x x= + +  

exhibits diophantine 3-tuple with property 2(3 )D x . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

4126 2
3 ++= xxc  

exhibits diophantine 3-tuple with property 2(3 )D x . 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

 2
4 6 18 9c x x= + +  

exhibits diophantine 3-tuple with property 2(3 )D x . 

Taking ( )4,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

 2
5 6 24 16c x x= + +  

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,n na c c +  
where 

 ( ) ( )226 6 1 1 , 1,2,3,...nc x n x n n= + − + − =  
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Sequence: 2 

Consider the Bernoulli polynomials ( )1B x  and ( )xB3 given by 

( ) ( ) 3 2
1 3

1 3 1
,

2 2 2
B x x B x x x x= − = − +  

Let ( ) ( ) 3 2
1 32 2 1, 2 2 3a B x x b B x x x x= = − = = − +  

It is observed that 

( )22 23 3 1 2 2 1ab x x x x+ − + = − +  

Therefore, the pair ( ),a b  represents diophantine 2-tuple with the property 2(3 3 1)D x x− + . 

Let 1c  be any non-zero polynomial in x such that 

2 2
1 3 3 1ac x x p+ − + =  (8.37) 

2 2
1 3 3 1bc x x q+ − + =  (8.38) 

Eliminating 1c  
between (8.37) and (8.38), we have 

 ( )( )2 2 23 3 1bp aq b a x x− = − − +  (8.39) 

Introducing the linear transformations 

 ,p X aT q X bT= + = +  (8.40) 

in (8.39) and simplifying we get 

 2 2 23 3 1X abT x x= + − +  

which is satisfied by 21, 2 2 1T X x x= = − +  

In view of (8.40) and (8.37), it is seen that 

 3 2
1 2 1c x x x= + − +  

Note that ( )1, ,a b c  represents diophantine 3-tuple with property 2(3 3 1)D x x− + . 
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Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

3 2
2 2 5c x x x= + +  

exhibits diophantine 3-tuple with property 2(3 3 1)D x x− + . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

3 2
3 2 9 7 3c x x x= + + −  

exhibits diophantine 3-tuple with property 2(3 3 1)D x x− + . 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

3 2
4 2 13 17 8c x x x= + + −  

exhibits diophantine 3-tuple with property 2(3 3 1)D x x− + . 

Taking ( )4,a c  and employing the above procedure, it is seen that the triple ( )4 5, ,a c c  

where 

3 2
5 2 17 31 15c x x x= + + −  

exhibits diophantine 3-tuple with property 2(3 3 1)D x x− + . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,n na c c +  
where 

 ( ) ( ) ( )3 2 2 22 4 3 2 4 1 2 , 1,2,3,...nc x n x n n x n n n= + − + − + + − =  

 



Chapter-VIII  Diophantine 3-Tuples 

 223 

VIII.3C On Sequences of Diophantine 3-Tuples Generated through Euler and 

Bernoulli Polynomials 

Consider the Euler polynomial ( )2E x  and Bernoulli polynomial ( )2B x
 
given by 

( ) ( )2 2
2 2

1
,

6
E x x x B x x x= − = − +  

Let ( ) ( )2 2
2 2, 6 6 6 1a E x x x b B x x x= = − = = − +  

It is observed that 

( )24 2 23 3 3 1 3 2 1ab x x x x x+ + − + = − +  

Therefore, the pair ( ),a b  represents diophantine 2-tuple with the property 

4 2(3 3 3 1)D x x x+ − + . 

Let 1c  be any non-zero polynomial in x such that 

4 2 2
1 3 3 3 1ac x x x p+ + − + =  (8.41) 

4 2 2
1 3 3 3 1bc x x x q+ + − + =  (8.42) 

Eliminating 1c
 
between (8.41) and (8.42), we have 

 ( ) ( )2 2 4 23 3 3 1bp aq b a x x x− = − + − +  (8.43) 

Introducing the linear transformations 

 ,p X aT q X bT= + = +  (8.44) 

in (8.43) and simplifying we get 

2 2 4 23 3 3 1X abT x x x= + + − +  

which is satisfied by 21, 3 2 1T X x x= = − +  

In view of (8.44) and (8.41), it is seen that 

 2
1 13 11 3c x x= − +  
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Note that ( )1, ,a b c  represents diophantine 3-tuple with property 4 2(3 3 3 1)D x x x+ − + . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2
2 22 18 5c x x= − +  

exhibits diophantine 3-tuple with property 4 2(3 3 3 1)D x x x+ − + . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

2
3 33 27 7c x x= − +  

exhibits diophantine 3-tuple with property 4 2(3 3 3 1)D x x x+ − +  

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

 2
4 46 38 9c x x= − +  

exhibits diophantine 3-tuple with property 4 2(3 3 3 1)D x x x+ − + . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,s sa c c+  where 

 ( ) ( )2 2 26 6 4 6 2 1, 1,2,3,...sc s s x s s x s s= + + − + + + + =  

A few numerical examples are presented in Table 8.1 below: 

Table 8.1: Numerical Examples 

x  D  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  ( )4 5, ,a c c  

2 55 (2,33,57) (2,57,85) (2,85,117) (2,117,153) 

3 262 (6,87,149) (6,149,223) (6,223,309) (6,309,407) 

4 805 (12,167,285) (12,285,427) (12,427,593) (12,593,783) 

5 1936 (20,273,465) (20,465,697) (20,697,969) (20,969,1281) 
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Now, consider ( )1,b c  and employing the above procedure, it is seen that the triple 

( )1 2, ,b c c  where 

2
2 37 33 8c x x= − +  

exhibits diophantine 3-tuple with property 4 2(3 3 3 1)D x x x+ − + . 

Taking ( )2,b c  and employing the above procedure, it is seen that the triple ( )2 3, ,b c c  

where 

2
3 73 67 15c x x= − +  

exhibits diophantine 3-tuple with property 4 2(3 3 3 1)D x x x+ − + . 

Taking ( )3,b c  and employing the above procedure, it is seen that the triple ( )3 4, ,b c c  

where 

2
4 121 113 24c x x= − +  

exhibits diophantine 3-tuple with property 4 2(3 3 3 1)D x x x+ − + . 

The repetition of the above process leads to the generation of sequence of diophantine 

3-tuples whose general form is given by ( )1, ,n nb c c +  where 

A few numerical examples are presented in Table 8.2 below: 

Table 8.2: Numerical Examples 

x  D  ( )1 2, ,b c c  ( )2 3, ,b c c  ( )3 4, ,b c c  ( )4 5, ,b c c  

2 55 (13,33,90) (13,90,173) (13,173,282) (13,282,417) 

3 262 (37,87,242) (37,242,471) (37,471,774) (37,774,1151) 

4 805 (73,167,468) (73,468,915) (73,915,1508) (73,1508,2247) 

5 1936 (121,273,768) (121,768,1505) (121,1505,2484) (121,2484,3705) 
 
 

For simplicity and brevity, some more sequences of 3-tuples generated through Euler 

and Bernoulli polynomials are presented in Table 8.3 below. 
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Table 8.3: Sequences of 3-tuples 

a  b  1c  D  Sequences of 3-tuples 

12 ( )E x  32 ( )B x  3 22 1x x x+ − +  23 3 1x x− +  

{ }
( )

( ) ( )
3 2

1 1,2,3,.. 2 2

2 4 3
, , , , 1,2,3...

2 4 1 2

s

s s s

c x s x
a c c s

s s x s s
+ =

 = + − +  = 
− + + − +  

 

{ }
( )

( )

2 3 2 2

1 1,2,3,.. 2

2 3 4
, , , , 1,2,3..

4 2 2 1

s

s s s

c s x s s x
b c c s

s s x s
+ =

 = + − + +  = 
− + + −  

 

12 ( )E x  26 ( )B x  26 2 8x x− +  3 212 19 17x x− + +  

{ }
( )

( )

2 2

1 1,2,3,.. 2

6 2 2 6
, , , , 1,2,3...

8 1

s

s s s

c x s s x
a c c s

s s
+ =

 = + + −  = 
+ − + +  

 

{ } ( )2 2 2

1 1,2,3,.. 2

6 6 2 2
, , , , 1,2,3..

8 1

s

s s s

c s x s s x
b c c s

s s
+ =

 = + − + +  = 
+ + −  

 

0( )E x  26 ( )B x  26 2 2x n+ −  ( )2 23 6 6 1x n x n+ − + −  

{ }
( )

( )
2

1 1,2,3,.. 2

6 6 1
, , , , 1,2,3...

2 1

s

s s s

c x s x
a c c s

s ns
+ =

 = + −  = 
+ − +  

 

{ }
( )
( )

2 2 2

1 1,2,3,.. 2

6 6 6
, , , , 1,2,3..

2 1

s

s s s

c s x s s x
b c c s

sn s
+ =

 = − −  = 
− + +  
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a  b  1c  D  Sequences of 3-tuples 

0( )B x  2 ( )E x  2 2 1x x n+ + +  ( ) 22 1n x n+ +  

{ } ( )2

1 1,2,3,.. 2

2 1
, , , , 1,2,3...

2

s

s s s

c x s x
a c c s

sn s
+ =

 = + −  = 
+ +  

 

{ } ( )
( )

2 2 2

1 1,2,3,..

2
, , , , 1,2,3..

2 1

s

s s s

c s x s s x
b c c s

sn
+ =

 = + − +  = 
+ +  

 

12 ( )B x  34 ( )E x  34 4 2x x− −  4 3 22 3 4 2x x x x− − + +  

{ }
( )

( ) ( )
3 2

1 1,2,3,.. 2 2

4 6 1
, , , , 1,2,3...

2 1 2 6

s

s s s

c x s x
a c c s

s s s s x
+ =

 = + −  = 
− + − + −  

 

{ }
( )

( ) ( )

2 3 2 2

1 1,2,3,.. 2

4 6 6
, , , , 1,2,3..

2 6 2 1

s

s s s

c s x s s x
b c c s

s x s s
+ =

 = + −  = 
+ − + − −  
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VIII.4 Generation of Diophantine 3-tuples Through Matrix Method 

Initially, construct a diophantine 2-tuple with property ( )2 10 3D k k+ −  and then, extend 

it to diophantine 3-tuple. 

Let 4, 7 be two distinct integers such that 

2 24*7 10 3 ( 5)k k k+ + − = + , a perfect square 

Therefore, the pair( )7,4  exhibits diophantine double having property 2( 10 3)D k k+ − . 

If c  is the 3rd tuple, then it satisfies corresponding double equations 

2 24 10 3c k k p+ + − =  (8.45) 

2 27 10 3c k k q+ + − =  (8.46) 

The eliminant of c  in the above two equations leads to 

 ( )2 2 27 4 3 10 3p q k k− = + −  (8.47) 

Taking 

 4 , 7p X T q X T= + = +  (8.48) 

in (8.47) and simplifying, we get 

2 2 228 10 3X T k k= + + −  

which is satisfied by 1, 5T X k= = +  

From (8.48) and (8.45), observe 

2 21c k= +  

Note that ( )4 , 7, 2 21k +  is a diophantine triple satisfying the property 2( 10 3)D k k+ − . 

The process of obtaining other diophantine triples with property ( )2 10 3D k k+ −  is 

illustrated below: 
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Let M be a 33× square matrix given by 

 

1 0 2

0 0 1

0 1 2

M

 
 = − 
 
 

 (8.49) 

Now, 

 ( ) ( )4, 7, 2 21 4, 2 21, 4 43k M k k+ = + +  

Note that 

 ( ) ( )224 2 21 10 3 9k k k k∗ + + + − = +  

 ( ) ( )224 4 43 10 3 13k k k k∗ + + + − = +  

 ( ) ( ) ( )222 21 4 43 10 3 3 30k k k k k+ ∗ + + + − = +  

∴ The triple ( )4,2 21,4 43k k+ +  is a diophantine triple having the property 

( )2 10 3D k k+ − . 

Performing the above analysis, the general form of diophantine triple ( )14, ,s sc c−  is 

given by 

( )2 24, 4 (2 2) 2 1, 4( 1) (2 2) 3 , 1,2,3.......s k s k s k s s+ + − + + + + + =  

A few numerical illustrations are given in table 8.4 below: 

Table 8.4: Numerical Illustrations 

k  ( )0 14, ,c c  ( )1 24, ,c c  ( )2 34, ,c c  ( )2 +10 3D k k −−−−  

0 (4,7,21) (4,21,43) (4,43,73) ( )3D −  

-1 (4,7,19) (4,19,39) (4,39,67) ( )12D −  

-2 (4,7,17) (4,17,35) (4,35,61) ( )19D −  

-3 (4,7,15) (4,15,31) (4,31,55) ( )24D −  

1 (4,7,23) (4,23,47) (4,47,79) ( )8D  
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It is noted that the triple ( )1 1, 4, , 1,2,3.......s s sc c c s− ++ =  forms an arithmetic progression. 

Note 1 

It is obvious that ( )7,4,2 21k+  is a Diophantine 3-tuples with property ( )2 10 3D k k+ − . 

Following the procedure as above, the Diophantine triples obtained are ( )7,4,2 21k + , 

( )7,2 21,4 52k k+ + , ( )19,4 52,6 97k k+ + , ............. each with property ( )2 10 3D k k+ −  

whose general form ( )17 , ,s sc c−  is 

( ) ( ) ( )( )227,7 2 4 2 1,7 1 2 4 3 , 1,2,3........s k s k s k s s+ − − + + + − − =  

Note that ( )1 1, 7,s s sc c c− ++  forms an Arithmetic Progression. 

Note 2 

In addition to (8.108), one may consider the linear transformation given by 

 4 , 7p X T q X T= − = −  

For this case, employing the procedure as above one obtains two sets of sequences of 

Diophantine 3-tuples in which, each triple has the property ( )2 10 3D k k+ − . For 

simplicity and brevity, the general form of the triple in the sequence of Diophantine 

3-tuples is presented: 

Set 1: ( )14, ,s sα α−  where ( )2
1 4 2 18 2 21, 1,2,3.......s s k s k sα − = + − − + + =  

Note that ( )1 1, 4,s s sα α α− ++  forms an Arithmetic Progression. 

Set 2: ( )17, ,s sα α−  where ( )2
1 7 2 24 2 21, 1,2,3.......s s k s k sα − = + − − + + =  

Note that ( )1 1, 7,s s sα α α− ++  forms an Arithmetic Progression. 
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Remark 

Instead of (8.109), suppose we have a third order square matrix N given by 

 

0 0 1

1 0 2

0 1 2

N

− 
 =  
 
 

 

Following the procedure presented above, one obtains 4 more sets of Diophantine 

triples, each with property ( )2 10 3D k k+ − . 

To conclude, one may search for other choices of Matrices for the formulation of 

collections of Diophantine triples with suitable properties. 
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CHAPTER – IX 

DIO 3-TUPLES 

 
An attempt has made in constructing sequences of dio 3- tuples ( ), ,a b c

 
such 

that the product of any two elements of the set added with the sum or minus the sum 

of the same elements and increased by a polynomial with integer coefficient is a 

perfect square. 

Formulation of Special Dio 3-Tuples generated through Polynomials with 

Suitable Property 

Sequence: 1 

Let 3, 5a b k= =  

It is observed that 

( )224 8 6 2 3ab a b k k k+ + + − + = +  

Therefore, the pair ( ),a b  represents dio 2-tuple with the property 2(4 8 6)D k k− + . 

Let 1c  be any non-zero polynomial in x  such that 

( ) 2 2
11 4 8 6a c a k k p+ + + − + =  (9.1) 

( ) 2 2
11 4 8 6b c b k k q+ + + − + =  (9.2) 

Eliminating 1c  
between (9.1) and (9.2), we have 

 ( ) ( ) ( ) ( ) ( )2 2 21 1 4 8 6b p a q a b b a k k+ − + = − + − − +  (9.3) 

Introducing the linear transformations 

 ( ) ( )1 , 1p X a T q X b T= + + = + +  (9.4) 
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in (9.3) and simplifying we get 

 ( ) ( )2 2 21 1 4 8 5X a b T k k= + + + − +  

which is satisfied by 1, 2 3T X k= = +  

In view of (9.4) and (9.1), it is seen that 

 1 9 10c k= +  

Note that ( )1, ,a b c  represents dio 3-tuple with property 2(4 8 6)D k k− + . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2 13 28c k= +  

exhibits dio 3-tuple with property 2(4 8 6)D k k− + . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

3 17 54c k= +  

exhibits dio 3-tuple with property 2(4 8 6)D k k− + . 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

4 21 88c k= +  

exhibits dio 3-tuple with property 2(4 8 6)D k k− + . 

The repetition of the above process leads to the generation of sequence of dio 3-tuples 

whose general form is given by ( )1, ,n na c c +  
where 

 ( ) ( )5 4 2 2 3 , 1,2,3,...nc n k n n n= + + + =  
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A few numerical examples are presented in Table 9.1 below: 

Table 9.1: Numerical Examples 

k  D  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  

2 6 (3, 28, 54) (3, 54, 88) (3, 88, 130) 

3 18 (3, 37, 67) (3, 67, 105) (3, 105, 151) 

4 38 (3, 46, 80) (3, 80, 122) (3, 122, 172) 

5 66 (3, 55, 93) (3, 93, 139) (3, 139, 193) 
 
 

Sequence: 2 

Let 5, 2 6a b k= = +  

It is observed that 

( )22 3 4ab a b k k− − + − = +  

Therefore, the pair ( ),a b  represents dio 2-tuple with the property 2( 3)D k − . 

Let 1c  be any non-zero polynomial in x  such that 

( ) 2 2
11 3a c a k p− − + − =  (9.5) 

( ) 2 2
11 3b c b k q− − + − =  (9.6) 

Eliminating 1c  
between (9.5) and (9.6), we have 

 ( ) ( ) ( ) ( ) ( )2 2 21 1 3b p a q a b b a k− − − = − + − −  (9.7) 

Introducing the linear transformations 

 ( ) ( )1 , 1p X a T q X b T= + − = + −  (9.8) 

in (9.7) and simplifying we get 

 ( ) ( )2 2 21 1 4X a b T k= − − + −  

which is satisfied by 1, 4T X k= = +  

In view of (9.8) and (9.5), it is seen that 

 1 4 18c k= +  
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Note that ( )1, ,a b c  represents dio 3-tuple with property 2( 3)D k − . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2 6 38c k= +  

exhibits dio 3-tuple with property 2( 3)D k − . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

3 8 66c k= +  

exhibits dio 3-tuple with property 2( 3)D k − . 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

4 10 102c k= +  

exhibits dio 3-tuple with property 2( 3)D k − . 

The repetition of the above process leads to the generation of sequence of dio 3-tuples 

whose general form is given by ( )1, ,n na c c +  
where 

 ( ) ( )22 2 4 8 6 , 1,2,3,...nc n k n n n= + + + + =  

A few numerical examples are presented in Table 9.2 below: 

Table 9.2: Numerical Examples 

k  D  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  

2 1 (5, 26, 50) (5, 50, 82) (5, 82, 122) 

3 6 (5, 30, 56) (5, 56, 90) (5, 90, 132) 

4 13 (5, 34, 62) (5, 62, 98) (5, 98, 142) 

5 22 (5, 38, 68) (5, 68, 106) (5, 106, 152) 
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Sequence: 3 

Let 5, 2 6a b k= = +  

It is observed that 

( )22 5 6ab a b k k+ + + − = +  

Therefore, the pair ( ),a b  represents dio 2-tuple with the property 2( 5)D k − . 

Let 1c  be any non-zero polynomial in x  such that 

( ) 2 2
11 5a c a k p+ + + − =  (9.9) 

( ) 2 2
11 5b c b k q+ + + − =  (9.10) 

Eliminating 1c  
between (9.9) and (9.10), we have 

 ( ) ( ) ( ) ( ) ( )2 2 21 1 5b p a q a b b a k+ − + = − + − −  (9.11) 

Introducing the linear transformations 

 ( ) ( )1 , 1p X a T q X b T= + + = + +  (9.12) 

in (9.11) and simplifying we get 

 ( )( )2 2 21 1 6X a b T k= + + + −  

which is satisfied by 1, 6T X k= = +  

In view of (9.12) and (9.9), it is seen that 

 1 4 24c k= +  

Note that ( )1, ,a b c  represents dio 3-tuple with property 2( 5)D k − . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2 6 54c k= +  

exhibits dio 3-tuple with property 2( 5)D k − . 
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Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

3 8 96c k= +  

exhibits dio 3-tuple with property 2( 5)D k − . 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

4 10 150c k= +  

exhibits dio 3-tuple with property 2( 5)D k − . 

The repetition of the above process leads to the generation of sequence of dio 3-tuples 

whose general form is given by ( )1, ,n na c c +  
where 

 ( ) ( )2
2 2 6 1 , 1,2,3,...nc n k n n= + + + =  

A few numerical examples are presented in Table 9.3 below: 

Table 9.3: Numerical Examples 

k  D  (((( ))))21 c,c,a  (((( ))))32 c,c,a  (((( ))))43 c,c,a  

2 -1 (5, 32, 66) (5, 66, 112) (5, 112, 170) 

3 4 (5, 36, 72) (5, 72, 120) (5, 120, 180) 

4 11 (5, 40, 78) (5, 78, 128) (5, 128, 190) 

5 20 (5, 44, 84) (5, 84, 136) (5, 136, 200) 
 
 

Sequence: 4 

Let 25, 6 8a b k k= = +  

It is observed that 

( )2
11 6 4ab a b k+ + + = +  

Therefore, the pair ( ),a b  represents dio 2-tuple with the property (11)D . 
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Let 1c  be any non-zero polynomial in x  such that 

( ) 2
11 11a c a p+ + + =  (9.13) 

( ) 2
11 11b c b q+ + + =  (9.14) 

Eliminating 1c  
between (9.13) and (9.14), we have 

 ( ) ( ) ( ) ( ) ( )2 21 1 11b p a q a b b a+ − + = − + −  (9.15) 

Introducing the linear transformations 

 ( ) ( )1 , 1p X a T q X b T= + + = + +  (9.16) 

in (9.15) and simplifying we get 

 ( ) ( )2 21 1 10X a b T= + + +  

which is satisfied by 1, 6 4T X k= = +  

In view of (9.16) and (9.13), it is seen that 

 2
1 6 20 14c k k= + +  

Note that ( )1, ,a b c  represents dio 3-tuple with property (11)D . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2
2 6 32 40c k k= + +  

exhibits dio 3-tuple with property (11)D . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

2
3 6 44 78c k k= + +  

exhibits dio 3-tuple with property (11)D . 
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Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

2
4 6 56 128c k k= + +  

exhibits dio 3-tuple with property (11)D . 

The repetition of the above process leads to the generation of sequence of dio 3-tuples 

whose general form is given by ( )1, ,n na c c +  
where 

 ( ) ( )26 4 3 2 2 3 4 , 1,2,3,...nc k n k n n n= + + + + =  

A few numerical examples are presented in Table 9.4 below: 

Table 9.4: Numerical Examples 

k  D  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  

2 11 (5, 78, 128) (5, 78, 190) (5, 190, 264) 

3 11 (5, 128, 190) (5, 190, 264) (5, 264, 350) 

4 11 (5, 190, 264) (5, 264, 350) (5, 350, 448) 

5 11 (5, 264, 350) (5, 350, 448) (5, 448, 558) 
 
 

Sequence: 5 

Let 25, 6 4 2a b k k= = + −  

It is observed that 

( )2
11 6 2ab a b k+ + + = +  

Therefore, the pair ( ),a b  represents dio 2-tuple with the property (11)D . 

Let 1c  be any non-zero polynomial in x  such that 

( ) 2
11 11a c a p+ + + =  (9.17) 

( ) 2
11 11b c b q+ + + =  (9.18) 
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Eliminating 1c  
between (9.17) and (9.18), we have 

 ( ) ( ) ( ) ( ) ( )2 21 1 11b p a q a b b a+ − + = − + −  (9.19) 

Introducing the linear transformations 

 ( ) ( )1 , 1p X a T q X b T= + + = + +  (9.20) 

in (9.19) and simplifying we get 

 ( ) ( )2 21 1 10X a b T= + + +  

which is satisfied by 1, 6 2T X k= = +  

In view of (9.20) and (9.17), it is seen that 

 2
1 6 16 8c k k= + +  

Note that ( )1, ,a b c  represents dio 3-tuple with property (11)D . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2
2 6 28 30c k k= + +  

exhibits dio 3-tuple with property (11)D . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

2
3 6 40 64c k k= + +  

exhibits dio 3-tuple with property (11)D . 

Taking ( )3,a c  and employing the above procedure, it is seen that the triple ( )3 4, ,a c c  

where 

2
4 6 52 110c k k= + +  

exhibits dio 3-tuple with property (11)D . 
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The repetition of the above process leads to the generation of sequence of dio 3-tuples 

whose general form is given by ( )1, ,n na c c +  
where 

 ( ) ( )2 26 4 3 1 6 4 2 , 1,2,3,...nc k n k n n n= + + + + − =  

A few numerical examples are presented in Table 9.5 below: 

Table 9.5: Numerical Examples 

k  D  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  

2 11 (5, 64, 110) (5, 110, 168) (5, 168, 238) 

3 11 (5, 110, 168) (5, 168, 238) (5, 238, 320) 

4 11 (5, 168, 238) (5, 238, 320) (5, 320, 414) 

5 11 (5, 238, 320) (5, 320, 414) (5, 414, 520) 
 
 

Sequence 6 

Let 1,a b n= =  

It is observed that 

( ) ( )22 2 2 2 1ab a b n s s n n s+ + + + + − − = +  

Therefore, the pair ( ),a b  represents dio 2-tuple with the property ( )2 2( 2 2 1)D n s s n+ + − − . 

Let 1c  be any non-zero polynomial in x  such that 

( ) ( )2 2 2
11 2 2 1a c a n s s n p+ + + + + − − =  (9.21) 

( ) ( )2 2 2
11 2 2 1b c b n s s n q+ + + + + − − =  (9.22) 

Eliminating 1c between (9.21) and (9.22), we have 

 ( ) ( ) ( ) ( ) ( )( )2 2 2 21 1 2 2 1b p a q a b b a n s s n+ − + = − + − + + − −  (9.23) 

Introducing the linear transformations 

 ( ) ( )1 , 1p X a T q X b T= + + = + +  (9.24) 
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in (9.23) and simplifying we get 

 ( ) ( ) ( )2 2 2 21 1 2 2X a b T n s s n= + + + + + −  

which is satisfied by 1,T X n s= = +  

In view of (9.24) and (9.21), it is seen that 

 1 3 2 2c n s= + +  

Note that ( )1, ,a b c  represents dio 3-tuple with property ( )2 2( 2 2 1)D n s s n+ + − − . 

Taking ( )1,a c  and employing the above procedure, it is seen that the triple ( )1 2, ,a c c  

where 

2 5 4 8c n s= + +  

exhibits dio 3-tuple with property ( )2 2( 2 2 1)D n s s n+ + − − . 

Taking ( )2,a c  and employing the above procedure, it is seen that the triple ( )2 3, ,a c c  

where 

3 7 6 18c n s= + +  

exhibits dio 3-tuple with property ( )2 2( 2 2 1)D n s s n+ + − − . 

The repetition of the above process leads to the generation of sequence of dio 3-tuples 

whose general form is given by ( )1, ,n na c c +  
where 

 ( ) 22 1 2 2 , 1,2,3,...nc S n Ss S S= + + + =  

A few numerical examples are presented in Table 9.6 below: 

Table 9.6: Numerical Examples 

n  s  D  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  

2 2 11 (1, 12, 26) (1, 26, 44) (1, 44, 66) 

3 3 29 (1, 17, 35) (1, 35, 57) (1, 57, 83) 

4 4 55 (1, 22, 44) (1, 44, 70) (1, 70, 100) 

5 5 89 (1, 27, 53) (1, 53, 83) (1, 83, 117) 
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CHAPTER – X 

DIOPHANTINE AND DIO QUADRUPLES 

 
Chapter X has two sections X.1 and X.2 

Section X.1 presents diophantine quadruples ( ), , ,a b c d  generated from two given 

pronic numbers such that the product of any two members of the set increased by one 

is a perfect square. 

Section X.2 has two subsections X.2A and X.2B 

The Sub-section X.2A deals with the study of formulating special Dio-quadruples 

( ), , ,a b c d  generated through Euler polynomials such that the product of any two of 

the set minus their sum and increased by two is a perfect square. Sub-section X.2B 

concerns with constructing special Dio-quadruples ( ), , ,a b c d  generated through 

Euler polynomials such that the product of any two of the set minus their sum and 

increased by five is a perfect square. 
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X.1 Sequences of (((( ))))1D  Diophantine Quadruples generated through 

Pronic Numbers 

Let ( )
2

2 3 2na PR n n−= = − +  and 2
nb PR n n= = +  be two pronic numbers such that 

1ab+  is a perfect square. 

Let sc
 
be any non-zero polynomial such that 

21s sac p+ =  (10.1) 

21s sbc q+ =  (10.2) 

Eliminating sc
 
from (10.1) and (10.2), we get 

 ( )2 2
s sbp aq b a− = −  (10.3) 

Setting, 

s s sp X aT= +  (10.4) 

s s sq X b T= +  (10.5) 

in (10.3), we have 

2 2 1s sX abT= +  (10.6) 

whose  initial solution is 2
0 01, 1T X n n= = − −  

The general solution of (10.6) is 

1

2s sX f= , 
 

1

2
s sT g

ab
=  (10.7) 

where 

( ) ( )
( ) ( )

1 1
2 2

1 1
2 2

1 1

1 1

s s

s

s s

s

f n n ab n n ab

g n n ab n n ab

+ +

+ +

= − − + + − − −

= − − + − − − −
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Substitution of (10.7) in (10.4) gives 

1 1

2 2
s s sp f a g

ab
= + ∗  (10.8) 

From (10.8) and (10.1) we get 

( )2 1s

s

p
c

a

−
=  (10.9) 

Substituting 0s = in (10.9) we have, 

( )2
0

0

1p
c

a

−
=  

(i.e.), 2
0 4 4c n n= −  

Note that, the tuple ( )0, ,a b c  is a dio-triple with property ( )1D . 

Again, substituting 1,2s =  in (10.9) and simplifying we get, 

( )( )2 4 3 2
1 4 2 4 12 6 6 2c n n n n n= − − + + −  

( )( )5 4 3 2 5 4 3 2
2 8 16 4 16 2 8 24 4 28 4 6c n n n n n n n n n= − − + − − + + − −  

It is seen that each of the quadruples ( )0 1, , ,a b c c  and ( )1 2, , ,a b c c  represents diophantine 

quadruples with property ( )1D . 

In general, it is observed that the quadruple ( )1, , , , 1,2,3,........s sa b c c s− =  is a diophantine 

quadruple with property ( )1D . Some numerical examples are given in Table 10.1 below: 

Table 10.1: (((( ))))1D  Diophantine-quadruples 

n  ( )0 1, , ,a b c c  ( )1 2, , ,a b c c  ( )2 3, , ,a b c c  

3 (6,20,48,23188) (6,20,23188,11176620) (6,20,11176620,5787107704) 

4 (2,12,24,2380) (2,12,2380,233244) (2,12, 233244,22855560) 

5 (12,30,80,115444) (12,30,115444,166470252) (12,30,166470252,240049988024) 
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X.2 Two special Dio-quadruples generated through Euler Polynomials 

Subsection X.2A: Formulation of ( )2D  Dio-quadruples 

Consider the Euler polynomials 1( )E x
 
and 2 ( )E x

 
given by 

1

1
( )

2
E x x= − , 2

2( )E x x x= −  

Let [ ]2 2
12 ( ) 4 4 1a E x x x= = − +  and 2

2( )b E x x x= = −  be two polynomials such that 

( ) 2ab a b− + +
 
is a perfect square. 

Let ( )Nc x
 
be any non-zero polynomial such that 

( ) 21 ( ) 2N Na c x a p− − + =  (10.10) 

( ) 21 ( ) 2N Nb c x b q− − + =  (10.11) 

Eliminating ( )Nc x
 
from (10.10) and (10.11), we get 

 ( ) ( ) ( )2 21 1N Nb p a q b a− − − = −  (10.12) 

Setting 

( )1N N Np X a T= + −  (10.13) 

( )1N N Nq X b T= + −  (10.14) 

in (10.12), we have 

( )( )2 21 1 1N NX b a T= − − +  (10.15) 

whose  initial solution is 2
0 01,  2 2 1T X x x= = − −  

The general solution of (10.15) is 

1

2N NX f= , 
( )( )

1

2 1 1
N NT g

a b
=

− −
 (10.16) 
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where 

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

1 1

0 0 0 0

1 1

0 0 0 0

1 1 1 1

1 1 1 1

N N

N

N N

N

f X a b T X a b T

g X a b T X a b T

+ +

+ +

= + − − + − − −

= + − − − − − −

 

Substitution of (10.16) in (10.13) gives 

( )
( )( )

1 1
1

2 2 1 1
N N Np f a g

a b
= + − ∗

− −
 (10.17) 

From (10.17) and (10.10) we get 

( ) ( )
( )

2 1
1

1
N

N

p
c x

a

−
= +

−
 (10.18) 

Substituting 0N =  in (10.18) we have, 

( ) ( )
( )

2
0

0

1
1

1

p
c x

a

−
= +

−
 

(i.e.) ( ) ( )2
0 9 2c x x x= − −  

Note that the tuple ( )0, , ( )a b c x  is Dio-triple with property ( )2D . 

Again, substituting 1,2N =  in (10.18) and simplifying we get, 

( ) ( ) ( ) ( )3 2

1 2 2 2144 192 76 7c x E x E x E x= − + −        

( ) ( ) ( ){ } ( ) ( ) ( ){ }2 3 2

2 2 2 2 2 21 48 56 15 48 56 15 1c x E x E x E x E x E x= + − + − + −            

It is seen that ( )0 1, , ( ), ( )a b c x c x  and ( )1 2, , ( ), ( )a b c x c x  represent Dio-quadruples with 

property ( )2D  respectively. 

In general, it is observed that the quadruple ( )1, , ( ), ( ) , 1,2,3,........N Na b c x c x N− =  is a 

Dio-quadruple with property ( )2D . Some numerical examples are given in Table 10.2 

below: 
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Table 10.2: ( )2D  Dio-quadruples 

x  ( )0 1, , ( ), ( )a b c x c x  ( )1 2, , ( ), ( )a b c x c x  ( )2 3, , ( ), ( )a b c x c x  

2 (9,2,16,529) (9,2,529,17956) (9,2,17956,609961) 

3 (25,6,52,24641) (25,6,24641,11876488) (25,6,11876488,5724442153) 
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Subsection X.2B: Formulation of ( )5D  Dio-quadruples 

Consider the Euler polynomials 0( )E x
 
and 1( )E x given by 

 0 ( ) 1E x = , 1

1
( )

2
E x x= −

 

Let 0( ) 1a E x= =
 
and [ ]12 ( ) 2 1b E x x= = −  be two polynomials such that ( ) 5ab a b− + +  

is a perfect square. 

Let c  be any polynomial. Observe that, ( ) 5ac a c− + +  is automatically a perfect square. 

Now, consider 

( ) 25bc b c p− + + =  (10.19) 

After some calculations, it is seen that (10.19) is satisfied when 2 3c x= + . 

Note that the triple ( )1, 2 1, 2 3x x− +  is a Dio-triple with property ( )5D . 

Let d  be any non-zero polynomial such that 

( ) 25bd b d α− + + =  (10.20) 

( ) 25cd c d β− + + =  (10.21) 

Eliminating d between the above two equations we have, 

( ) ( )2 22 2 2 2 16x xα β+ − − =  (10.22) 

Taking 

( )2 2X x Tα = + −  (10.23) 

( )2 2X x Tβ = + +  (10.24) 

in (10.22), we get 

( )2 2 24 4 4X x T= − +  

which is satisfied by 
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1, 2T X x= =  (10.25) 

Using (10.25) in (10.23) and in view of (10.20), one obtains 

8 1d x= +  

Observe that ( )1, 2 1, 2 3, 8 1x x x− + +  is a Dio-quadruple with property ( )5D . 

The repetition of the above process leads to the generation of Dio-quadruples given by 

( )1, 2 3, 8 1,18 7x x x+ + + , ( )1,8 1,18 7,50 11x x x+ + + , ( )1,18 7,50 11,128 33x x x+ + +  

and so on. 
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CHAPTER – XI 

SPECIAL FAMILY OF 3-TUPLES 

 
Chapter XI deals with special family of 3-tuples in two sections XI.1 to XI.2 

Section XI.1 concerns with the study of formulating 3-tuples consisting of polygonal 

and pyramidal numbers such that, in each three tuple, the sum of any two members is 

a perfect square. 

Section XI.2 deals with the study of formulation of special family of 3-tuples ( ), ,a b c  

such that the product of any two elements of the set added with their sum is a perfect 

square. 
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XI.1 On a Graceful Family of 3-Tuples 

Triple 1 

Let 2
3,22 4 2ka t k k= = +  and 2 1b k= +  

( )2
2 1a b k+ = +  

Let c  be any non-zero integer such that 

2a c α+ =  

2b c β+ =  

Using some algebra 

we have 

3
124 2kc k P k−= −  

Here ( )3
3,2 12 , 2 1, 24 2k kt k k P k−+ −  is the required triple such that the sum of any two 

members is a perfect square. 

Properties 

• 2 2c a b− + +  is a perfect square 

• 3 2 6c a b+ − +  is a perfect square 

• 32 1 8 ka b c k CP− + + =  

Triple 2 

Let 2
10,2 20 10 1ka Ct k k= = + +  and 2

10,25 80 30kb t k k= = −  

( )2
10 1a b k+ = −  

Let c  be any non-zero integer such that 

2a c α+ =  

2b c β+ =  
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Using some algebra 

we have 

( )2

8, 10,2100 5 , 1k kc t t k= − >  

Here ( )( )2

10,2 10,2 8, 10,2,5 ,100 5k k k kCt t t t−  is the required triple such that the sum of any 

two members is a perfect square. 

Properties 

• ( ) ( )4 1 0 mod 70a b− − ≡  

• ( ) ( )3 1 0 mod140a b− + ≡  

• ( )4 15 0 mod15c b a− − ≡  

Triple 3 

Let 2
3,8 4 4 , 1ka t k k k= = + >  and 1b =  

( )2
2 1a b k+ = +  

Let c  be any non-zero integer such that 

2a c α+ =  

2b c β+ =  

Using some algebra 

we have 

4
3, 12 12 4 6k k kc k SO CS t k−= + + −  

Here ( )4
3, 3, 18 ,1, 2 12 4 6k k k kt k SO CS t k−+ + −  is the required triple such that the sum of 

any two members is a perfect square. 
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Properties 

• 3
25,2 8 15k kc ka k CP t k− = − −  

• 2 3
10,2 8 5k kk a c k CP t k− = − +  

For simplicity some more triples satisfying the required condition are given below: 

Triple 4 ( )12,2 3,2 8,2 9,2 1, 2 ,6 24n n n nt t t n n nCP+ + − +  

Triple 5 ( )( )2 2
34, 42, 20, 20, 3, 1,11 10, 4 48 68 142n n n n n nt t GNO t nt t n−+ − − − +  

Triple 6 ( )2
12, 24,,6 18,36 78 6n n nS t nCP n n+ + +  

Triple 7 ( )5 34 ,1,8 24 8n n nPR nP CP n− +  

Triple 8 ( ) ( )( )23 5
3, 3, 3,7 6 2 , 4 4 , 36 28n n n n nP P t t t− + −  

 



Chapter-XI  Special Family of 3-Tuples 
 

 255 

XI.2 Formulation of Curious Family of 3-Tuples 

Sequence 1 

Let 2 2
02 6 4, 8 16 9a k k c k k= + + = + +  

It is observed that 

( ) 22
0 0 4 10 7ac a c k k+ + = + +  

Let 1c  be any integer such that 

( ) 2
11a c a α+ + =  (11.1) 

( ) 2
0 1 01c c c β+ + =  (11.2) 

Eliminating 1c  
between (11.1) and (11.2), we have 

 ( ) ( ) ( )2 2
0 01 1c a a cα β+ − + = −  (11.3) 

Introducing the linear transformations 

 ( ) ( )01 , 1X a T X c Tα β= + + = + +  (11.4) 

in (11.3) and simplifying we get 

 ( ) ( )2 2
01 1 1X a c T= + + −  

which is satisfied by 21, 4 10 7T X k k= = + +  

In view of (11.4) and (11.1), it is seen that 

2
1 18 42 28c k k= + +  

Let 2c  be any integer such that 

( ) 2
21a c a α+ + =  (11.5) 

( ) 2
1 2 11c c c β+ + =  (11.6) 
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Eliminating 2c
 
between (11.5) and (11.6), we have 

 ( ) ( ) ( )2 2
1 11 1c a a cα β+ − + = −  (11.7) 

Introducing the linear transformations 

 ( ) ( )11 , 1X a T X c Tα β= + + = + +  (11.8) 

in (11.7) and simplifying we get 

 ( ) ( )2 2
11 1 1X a c T= + + −  

which is satisfied by 21, 6 16 12T X k k= = + +  

In view of (11.8) and (11.5), it is seen that 

 2
2 32 80 57c k k= + +  

Let 3c  be any integer such that 

( ) 2
31a c a α+ + =  (11.9) 

( ) 2
2 3 21c c c β+ + =  (11.10) 

Eliminating 3c
 
between (11.9) and (11.10), we have 

 ( ) ( ) ( )2 2
2 21 1c a a cα β+ − + = −  (11.11) 

Introducing the linear transformations 

 ( ) ( )21 , 1X a T X c Tα β= + + = + +  (11.12) 

in (11.11) and simplifying we get 

 ( ) ( )2 2
21 1 1X a c T= + + −  

which is satisfied by 21, 8 22 17T X k k= = + +  

In view of (11.12) and (11.9), it is seen that 

 2
3 50 130 96c k k= + +  
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The repetition of the above process leads to the generation of sequence of 3-tuples 

whose general form is given by ( )1, ,s sa c c−  
where 

 ( ) ( ) ( )2 2 2 2
1 2 4 2 6 8 2 5 4 , 1,2,3,...sc s s k s s k s s s− = + + + + + + + =  

A few numerical examples are presented in Table 11.1 below: 

Table 11.1: Numerical Examples 

k  ( )0 1, ,a c c  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  

2 (24, 73, 184) (24, 184, 345) (24, 345,556) (24, 556,817) 

3 (40,129,316) (40, 316, 585) (40, 585, 936) (40, 936, 1369) 

4 (60,201,484) (60, 484,889) (60,889,1416) (60,1416,2065) 

5 (84,289,688) (84,688,1257) (84,1257,1996) (84,1996,2905) 
 
 

Sequence 2 

Let 2
01, 2 2a c k k= = −  

It is observed that 

( )2

0 0 2 1ac a c k+ + = −  

Let 1c  be any integer such that 

( ) 2
11a c a α+ + =  (11.13) 

( ) 2
0 1 01c c c β+ + =  (11.14) 

Eliminating 1c  
between (11.13) and (11.14), we have 

 ( ) ( ) ( )2 2
0 01 1c a a cα β+ − + = −  (11.15) 

Introducing the linear transformations 

 ( ) ( )01 , 1X a T X c Tα β= + + = + +  (11.16) 

in (11.15) and simplifying we get 

 ( ) ( )2 2
01 1 1X a c T= + + −  
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which is satisfied by 1, 2 1T X k= = −  

In view of (11.16) and (11.13), it is seen that 

 2
1 2 2c k k= +  

Let 2c  be any integer such that 

( ) 2
21a c a α+ + =  (11.17) 

( ) 2
1 2 11c c c β+ + =  (11.18) 

Eliminating 2c
 
between (11.17) and (11.18), we have 

 ( ) ( ) ( )2 2
1 11 1c a a cα β+ − + = −  (11.19) 

Introducing the linear transformations 

 ( ) ( )11 , 1X a T X c Tα β= + + = + +  (11.20) 

in (11.19) and simplifying we get 

 ( ) ( )2 2
11 1 1X a c T= + + −  

which is satisfied by 1, 2 1T X k= = +  

In view of (11.20) and (11.17), it is seen that 

 2
2 2 6 4c k k= + +  

Let 3c  be any integer such that 

( ) 2
31a c a α+ + =  (11.21) 

( ) 2
2 3 21c c c β+ + =  (11.22) 

Eliminating 3c
 
between (11.21) and (11.22), we have 

 ( ) ( ) ( )2 2
2 21 1c a a cα β+ − + = −  (11.23) 
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Introducing the linear transformations 

 ( ) ( )21 , 1X a T X c Tα β= + + = + +  (11.24) 

in (11.23) and simplifying we get 

 ( ) ( )2 2
21 1 1X a c T= + + −  

which is satisfied by 1, 2 3T X k= = +  

In view of (11.24) and (11.21), it is seen that 

 2
3 2 10 12c k k= + +  

The repetition of the above process leads to the generation of sequence of 3-tuples 

whose general form is given by ( )1, ,s sa c c−  
where 

 ( ) ( )2 2
1 2 4 6 2 6 4 , 1,2,3,...sc k s k s s s− = + − + − + =  

A few numerical examples are presented in Table 11.2 below: 

Table 11.2: Numerical Examples 

k  ( )0 1, ,a c c  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  

2 (1, 4, 12) (1, 12, 24) (1, 24, 40) (1, 40, 60) 

3 (1, 12, 24) (1, 24, 40) (1, 40, 60) (1, 60, 84) 

4 (1, 24,40) (1, 40, 60) (1,60, 84) (1, 84, 112) 

5 (1, 40, 60) (1, 60, 84) (1, 84, 112) (1, 112, 144) 
 
 

Sequence 3 

Let 2
01, 2 2a c k k= = +  

It is observed that 

( )2

0 0 2 1ac a c k+ + = +  

Let 1c  be any integer such that 

( ) 2
11a c a α+ + =  (11.25) 

( ) 2
0 1 01c c c β+ + =  (11.26) 
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Eliminating 1c  
between (11.25) and (11.26), we have 

 ( ) ( ) ( )2 2
0 01 1c a a cα β+ − + = −  (11.27) 

Introducing the linear transformations 

 ( ) ( )01 , 1X a T X c Tα β= + + = + +  (11.28) 

in (11.27) and simplifying we get 

 ( ) ( )2 2
01 1 1X a c T= + + −  

which is satisfied by 1, 2 1T X k= = +  

In view of (11.28) and (11.25), it is seen that 

 2
1 2 6 4c k k= + +  

Let 2c  be any integer such that 

( ) 2
21a c a α+ + =  (11.29) 

( ) 2
1 2 11c c c β+ + =  (11.30) 

Eliminating 2c
 
between (11.29) and (11.30), we have 

 ( ) ( ) ( )2 2
1 11 1c a a cα β+ − + = −  (11.31) 

Introducing the linear transformations 

 ( ) ( )11 , 1X a T X c Tα β= + + = + +  (11.32) 

in (11.31) and simplifying we get 

 ( ) ( )2 2
11 1 1X a c T= + + −  

which is satisfied by 1, 2 3T X k= = +  

In view of (11.32) and (11.29), it is seen that 

 2
2 2 10 12c k k= + +  



Chapter-XI  Special Family of 3-Tuples 
 

 261 

Let 3c  be any integer such that 

( ) 2
31a c a α+ + =  (11.33) 

( ) 2
2 3 21c c c β+ + =  (11.34) 

Eliminating 3c
 
between (11.33) and (11.34), we have 

 ( ) ( ) ( )2 2
2 21 1c a a cα β+ − + = −  (11.35) 

Introducing the linear transformations 

 ( ) ( )21 , 1X a T X c Tα β= + + = + +  (11.36) 

in (11.35) and simplifying we get 

 ( ) ( )2 2
21 1 1X a c T= + + −  

which is satisfied by 1, 2 5T X k= = +  

In view of (11.36) and (11.33), it is seen that 

 2
3 2 14 24c k k= + +  

The repetition of the above process leads to the generation of sequence of 3-tuples 

whose general form is given by ( )1, ,s sa c c−  
where 

 ( ) ( )2 2
1 2 4 2 2 2 , 1,2,3,...sc k s k s s s− = + − + − =  

A few numerical examples are presented in Table 11.3 below: 

Table 11.3: Numerical Examples 

k  ( )0 1, ,a c c  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  

2 (1,12,24) (1,24,40) (1, 40, 60) (1, 60, 84) 

3 (1,24,40) (1,40,60) (1, 60, 84) (1, 84, 112) 

4 (1,40,60) (1,60,84) (1, 84, 112) (1,112,144) 

5 (1,60,84) (1,84,112) (1,112, 144) (1,144,180) 
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Sequence 4 

Let 2
04, 5 4a c k k= = +  

It is observed that 

( )2

0 0 5 2ac a c k+ + = +  

Let 1c  be any integer such that 

( ) 2
11a c a α+ + =  (11.37) 

( ) 2
0 1 01c c c β+ + =  (11.38) 

Eliminating 1c  
between (11.37) and (11.38), we have 

 ( ) ( ) ( )2 2
0 01 1c a a cα β+ − + = −  (11.39) 

Introducing the linear transformations 

 ( ) ( )01 , 1X a T X c Tα β= + + = + +  (11.40) 

in (11.39) and simplifying we get 

 ( ) ( )2 2
01 1 1X a c T= + + −  

which is satisfied by 1, 5 2T X k= = +  

In view of (11.40) and (11.37), it is seen that 

 2
1 5 14 9c k k= + +  

Let 2c  be any integer such that 

( ) 2
21a c a α+ + =  (11.41) 

( ) 2
1 2 11c c c β+ + =  (11.42) 

Eliminating 2c
 
between (11.41) and (11.42), we have 

 ( ) ( ) ( )2 2
1 11 1c a a cα β+ − + = −  (11.43) 
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Introducing the linear transformations 

 ( ) ( )11 , 1X a T X c Tα β= + + = + +  (11.44) 

in (11.43) and simplifying we get 

 ( ) ( )2 2
11 1 1X a c T= + + −  

which is satisfied by 1, 5 7T X k= = +  

In view of (11.44) and (11.41), it is seen that 

 2
2 5 24 28c k k= + +  

Let 3c  be any integer such that 

( ) 2
31a c a α+ + =  (11.45) 

( ) 2
2 3 21c c c β+ + =  (11.46) 

Eliminating 3c
 
between (11.45) and (11.46), we have 

 ( ) ( ) ( )2 2
2 21 1c a a cα β+ − + = −  (11.47) 

Introducing the linear transformations 

 ( ) ( )21 , 1X a T X c Tα β= + + = + +  (11.48) 

in (11.47) and simplifying we get 

 ( ) ( )2 2
21 1 1X a c T= + + −  

which is satisfied by 1, 5 12T X k= = +  

In view of (11.48) and (11.45), it is seen that 

 2
3 5 34 57c k k= + +  

The repetition of the above process leads to the generation of sequence of 3-tuples 

whose general form is given by ( )1, ,s sa c c−  
where 

 ( ) ( )2 2
1 5 10 6 5 6 1 , 1,2,3,...sc k s k s s s− = + − + − + =  
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A few numerical examples are presented in Table 11.4 below: 

Table 11.4: Numerical Examples 

k  ( )0 1, ,a c c  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  

2 (4,28,57) (4, 57, 96) (4,96,145) (4,145,204) 

3 (4,57,96) (4,96, 145) (4,145,204) (4,204,273) 

4 (4,96,145) (4,145,204) (4,204,273) (4,273,352) 

5 (4,145,204) (4,204,273) (4,273,352) (4,352,441) 
 
 

Sequence 5 

Let 2
04, 5 4a c k k= = −  

It is observed that 

( )2

0 0 5 2ac a c k+ + = −  

Let 1c  be any integer such that 

( ) 2
11a c a α+ + =  (11.49) 

( ) 2
0 1 01c c c β+ + =  (11.50) 

Eliminating 1c  
between (11.49) and (11.50), we have 

 ( ) ( ) ( )2 2
0 01 1c a a cα β+ − + = −  (11.51) 

Introducing the linear transformations 

 ( ) ( )01 , 1X a T X c Tα β= + + = + +  (11.52) 

in (11.51) and simplifying we get 

 ( ) ( )2 2
01 1 1X a c T= + + −  

which is satisfied by 1, 5 2T X k= = −  

In view of (11.52) and (11.49), it is seen that 

 2
1 5 6 1c k k= + +  



Chapter-XI  Special Family of 3-Tuples 
 

 265 

Let 2c  be any integer such that 

( ) 2
21a c a α+ + =  (11.53) 

( ) 2
1 2 11c c c β+ + =  (11.54) 

Eliminating 2c between (11.53) and (11.54), we have 

 ( ) ( ) ( )2 2
1 11 1c a a cα β+ − + = −  (11.55) 

Introducing the linear transformations 

 ( ) ( )11 , 1X a T X c Tα β= + + = + +  (11.56) 

in (11.55) and simplifying we get 

 ( ) ( )2 2
11 1 1X a c T= + + −  

which is satisfied by 1, 5 3T X k= = +  

In view of (11.56) and (11.53), it is seen that 

 2
2 5 16 12c k k= + +  

Let 3c  be any integer such that 

( ) 2
31a c a α+ + =  (11.57) 

( ) 2
2 3 21c c c β+ + =  (11.58) 

Eliminating 3c
 
between (11.57) and (11.58), we have 

 ( ) ( ) ( )2 2
2 21 1c a a cα β+ − + = −  (11.59) 

Introducing the linear transformations 

 ( ) ( )21 , 1X a T X c Tα β= + + = + +  (11.60) 

in (11.59) and simplifying we get 

 ( ) ( )2 2
21 1 1X a c T= + + −  
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which is satisfied by 1, 5 8T X k= = +  

In view of (11.60) and (11.57), it is seen that 

 2
3 5 26 33c k k= + +  

The repetition of the above process leads to the generation of sequence of 3-tuples 

whose general form is given by ( )1, ,s sa c c−  
where 

 ( ) ( )2 2
1 5 10 14 5 14 9 , 1,2,3,...sc k s k s s s− = + − + − + =  

A few numerical examples are presented in Table 11.5 below: 

Table 11.5: Numerical Examples 

k  ( )0 1, ,a c c  ( )1 2, ,a c c  ( )2 3, ,a c c  ( )3 4, ,a c c  

2 (4,12,33) (4, 33, 64) (4, 64, 105) (4,105,156) 

3 (4,33,64) (4,64, 105) (4,105,156) (4,156,217) 

4 (4,64,105) (4,105,156) (4,156,217) (4,217,288) 

5 (4,105,156) (4,156,217) (4,217,288) (4,288,369) 
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CHAPTER – XII 

EQUALITY OF POLYGONAL NUMBERS 

 
Chapter XII focuses on Equality of Polygonal Numbers in two sections XII.1 to XII.2 

Section XII.1 illustrates formulas for the ranks of Triangular numbers, Hexagonal 

numbers, star numbers satisfying the relation 3, 6,N h nt t S= = . 

Section XII.2 exhibits formulas for the ranks of Triangular numbers, Hexagonal 

numbers, Centered Hexagonal numbers, Centered Octagonal numbers, Centered 

Decagonal numbers and Centered Dodecagonal numbers satisfying the relations 

3, 6, 6,N h Ht t ct= = , 3, 6, 8,N h Mt t ct= = , 3, 6, 10,N h Mt t ct= = , 3, 6, 12,N h Dt t ct= = . 
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XII.1 Triangular Numbers Simultaneously Equal to Hexagonal and Star Numbers 

Let N, h, n be the ranks of Triangular, Hexagonal and Star numbers respectively. 

The relation 

3, 6,N ht t=  

leads to 

 2 1N h= −  (12.1) 

The assumption 6,h nt S=  gives 

2 22 6 6 1h h n n− = − +  

Treating the above equation as a quadratic in n and solving for n, one obtains 

( )1
3

6
n R= +  (12.2) 

where 

2 212 6 3R h h= − +  (12.3) 

On completing the squares on R.H.S in (12.3), one obtains 

 2 24 3 9R X− =  (12.4) 

where 4 1X h= −  (12.5) 

To solve (12.4), the introduction of the transformations 

4 , 3X P Q R P Q= + = +  (12.6) 

lead to 

2 212 9P Q= +  (12.7) 

whose smallest positive integer solution ( )0 0,P Q  is 

0 021, 6P Q= =  
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To obtain the other solutions of (12.7), consider the pell equation 

 2 212 1P Q= +  

whose general solution is given by 

1 1
,

2 4 3
s s s sP f Q g= =ɶɶ

 
 

where 

( ) ( ) ( ) ( )1 1 1 1

7 4 3 7 4 3 , 7 4 3 7 4 3 ,  1,0,1,...
s s s s

s sf g s
+ + + +

= + + − = + − − = −

 

 

Applying Brahmagupta Lemma between ( )0 0,P Q  and ( ),s sP Qɶɶ , the other integer 

solutions of (12.7) are given by 

1

21
6 3

2s s sP f g+ = +  

1

21
3

4 3
s s sQ f g+ = +  

Substituting the values of 1 1,s sP Q+ +  in (12.6), we have 

1 1

45 39 45 3
13 3 ,

2 2 4s s s s s sX f g R f g+ += + = +  

In view of (12.5), (12.2) and (12.1), we get 

 1

1 45
13 3 1

4 2s s sh f g+
 = + + 
 

 

 1

45 13 1
3

4 2 2s s sN f g+ = + −  

 1

1 39 45 3
3

6 2 4s s sn f g+

 
= + +  

 
 

Note that the values of 
1 13, 6, 1 , 0,2,4,...

s sN h s nt t S s
+ ++= = =  
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A few numerical examples satisfying the relations are given in the Table 12.1 below: 

Table 12.1 Numerical Examples 

s  sf  sg  +1sN  +1sh  +1sn  
+1 +1 +13, 6,= =

s s sN h nt t S  

0 14 8 313 157 91 49141 

2 2702 1560 60817 30409 17557 1849384153 

4 524174 302632 11798281 5899141 3405871 6.95997E+13 

6 101687054 58709048 2288805793 1144402897 660721321 2.61932E+18 
 
 

To conclude, one may search for the ranks of triples of other special polygonal 

numbers with the same value. 
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XII.2 On Three Figurate Numbers With Same Values 

1. Equality of 3, 6, 6,= =N h Ht t ct  

Let N, h, H be the ranks of Triangular, Hexagonal and Centered Hexagonal numbers 

respectively. 

The relation 

3, 6,N ht t=  

leads to 

 2 1N h= −  (12.8) 

The assumption 6, 6,h Ht ct=  gives 

2 22 3 3 1h h H H− = − +  

which is written as 

2 26 3Y X= +  (12.9) 

where 

4 1, 2 1Y h X H= − = −  (12.10) 

To obtain the other solutions of (12.9), consider the pell equation 

 2 26 1Y X= +  

whose general solution is given by 

1 1
,

2 2 6
n n n nY f X g= =ɶ ɶ

 
 

where 

( ) ( ) ( ) ( )1 1 1 1

5 2 6 5 2 6 , 5 2 6 5 2 6 ,  1,0,1,...
n n n n

n nf g n
+ + + +

= + + − = + − − = −

 

 

Applying Brahmagupta Lemma between ( )0 0,X Y  and ( ),n nX Yɶ ɶ , the other integer 

solutions of (12.9) are given by 



Chapter-XII  Equality of Polygonal Numbers 

 272 

 1

1 3

2 2 6
n n nX f g+ = +  

1

3 3

2 6
n n nY f g+ = +  

In view of (12.8) and (12.10), we get 

1

1 3 3
1

4 2 6
n n nh f g+

 = + + 
 

 

1

3 3 1

4 22 6
n n nN f g+ = + +  

1

1 1 3
1

2 2 2 6
n n nH f g+

 = + + 
 

 

Note that the values of 
1 13, 6, 1 6, , 0,1,2,...

n nN h n Ht t ct n
+ ++= = =  

A few numerical examples satisfying the relations are given in the Table 12.2 below: 

Table 12.2: Numerical Examples 

n  +1nN  +1nh  +1nH  
+1 +1 +13, 6, 6,= =

n n nN h Ht t ct  

0 13 7 6 91 

1 133 67 55 8911 

2 1321 661 540 873181 

3 13081 6541 5341 85562821 

4 129493 64747 52866 8384283271 
 
 

2. Equality of 3, 6, 8,= =N h Mt t ct   

Let N, h, M be the ranks of Triangular, Hexagonal and Centered Octagonal numbers 

respectively. 

The relation 

3, 6,N ht t=  

leads to 

 2 1N h= −  (12.11) 



Chapter-XII  Equality of Polygonal Numbers 

 273 

The assumption 6, 8,h Mt ct=  gives 

2 22 4 4 1h h M M− = − +  

which is written as 

2 28 1Y X= +  (12.12) 

where 

4 1, 2 1Y h X M= − = −  (12.13) 

The general solution of (12.12) is given by 

1 1
,

2 4 2
n n n nY f X g= =

 
 

where 

( ) ( ) ( ) ( )1 1 1 1

3 2 2 3 2 2 , 3 2 2 3 2 2 ,  1,0,1,...
n n n n

n nf g n
+ + + +

= + + − = + − − = −

 

 

In view of (12.11) and (12.13), we get 

( )1
2

8n nh f= +  

 
1 1

4 2n nN f= −  

 
1 1

4
8 2

n nM g
 = + 
 

 

Note that the values of 3, 6, 8, , 0, 2,4,...
n nN hn Mt t ct n= = =  

A few numerical examples satisfying the relations are given in the Table 12.3 below: 

Table 12.3: Numerical Examples 

n  nN  nh  nM  3, 6, 8,= =
n n nN h Mt t ct  

0 1 1 1 1 

2 49 25 18 1225 

4 1681 841 595 1413721 
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3. Equality of 3, 6, 10,= =N h Mt t ct  

Let N, h, M be the ranks of Triangular, Hexagonal and Centered Decagonal numbers 

respectively. 

The relation 

3, 6,N ht t=  

leads to 

 2 1N h= −  (12.14) 

The assumption 6, 10,h Mt ct=  gives 

2 22 5 5 1h h M M− = − +  

which is written as 

2 210 1Y X= −  (12.15) 

where 

4 1, 2 1Y h X M= − = −  (12.16) 

To obtain the other solutions of (12.15), consider the pell equation 

 2 210 1Y X= +  

whose general solution is given by 

1 1
,

2 2 10
s s s sY f X g= =ɶ ɶ

 
 

where 

( ) ( ) ( ) ( )1 1 1 1

19 6 10 19 6 10 , 19 6 10 19 6 10 ,  1,0,1,...
s s s s

s sf g s
+ + + +

= + + − = + − − = −

 

 

Applying Brahmagupta Lemma between ( )0 0,X Y  and ( ),s sX Yɶ ɶ , the other integer 

solutions of (12.15) are given by 



Chapter-XII  Equality of Polygonal Numbers 

 275 

1

1 3

2 2 10
s s sX f g+ = +  

1

3 5

2 10
s s sY f g+ = +  

In view of (12.14) and (12.16), we get 

1

1 3 5
1

4 2 10
s s sh f g+

 = + + 
 

 

1

3 5 1

4 22 10
s s sN f g+ = + −  

1

1 1 3
1

2 2 2 10
s s sM f g+

 = + + 
 

 

Note that the values of 
1 13, 6, 1 10, , 1,1,3,...

s sN h s Mt t ct s
+ ++= = = −  

A few numerical examples satisfying the relations are given in the Table 12.4 below: 

Table 12.4: Numerical Examples 

s  +1sN  +1sh  +1sM  
+1 +1 +13, 6, 10,= =

s s sN h Mt t ct  

-1 1 1 1 1 

1 2221 1111 703 2467531 

3 3203401 1601701 1013005 5.13089E+12 
 
 

4. Equality of 3, 6, 12,= =N h Dt t ct  

Let N, h, D be the ranks of Triangular, Hexagonal and Centered Do Decagonal numbers 

respectively. 

The relation 

3, 6,N ht t=  

leads to 

 2 1N h= −  (12.17) 
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The assumption 6, 12,h Dt ct=  gives 

2 22 6 6 1h h D D− = − +  

which is written as 

2 212 3Y X= −  (12.18) 

where 

4 1, 2 1Y h X D= − = −  (12.19) 

To obtain the other solutions of (12.18), consider the pell equation 

 2 212 1Y X= +  

whose general solution is given by 

1 1
,

2 4 3
n n n nY f X g= =ɶ ɶ

 
 

where 

( ) ( ) ( ) ( )1 1 1 1

7 4 3 7 4 3 , 7 4 3 7 4 3 ,  1,0,1,...
n n n n

n nf g n
+ + + +

= + + − = + − − = −

 

 

Applying Brahmagupta Lemma between ( )0 0,X Y  and ( ),n nX Yɶ ɶ , the other integer 

solutions of (12.18) are given by 

 1

1 3

2 4n n nX f g+ = +  

1

3
3

2n n nY f g+ = +  

In view of (12.17) and (12.19), we get 

1

1 3
3 1

4 2n n nh f g+
 = + + 
 

 

1

3 3 1

4 2 2n n nN f g+ = + −  
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1

1 1 3
1

2 2 4n n nD f g+

 
= + +  

 
 

Note that the values of 
1 13, 6, 1 12, , 1,1,3,...

n nN hn Dt t ct n
+ ++= = = −  

A few numerical examples satisfying the relations are given in the Table 12.5 below: 

Table 12.5: Numerical Examples 

n  +1nN  +1nh  +1nD  
+1 +1 +13, 6, 12,= =

n n nN h Dt t ct  

-1 1 1 1 1 

1 313 157 91 49141 

3 60817 30409 17557 1849384153 

5 11798281 5899141 3405871 6.95997E+13 
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ON HOMOGENEOUS QUADRATIC WITH FIVE UNKNOWNS  
 

A. VIJAYASANKAR, SHARADHA KUMAR  AND M. A. GOPALAN 

ABSTRACT 
The homogeneous quadratic diophantine equation with five unknowns given by: 

 Is analyzed for determining its non-zero distinct integer solutions through 

employing linear transformations. 

Keywords: homogeneous quadratic, quadratic with five unknowns, integer solutions 

INTRODUCTION 
The theory of diophantine equations offers a rich variety of fascinating problems. In particular, homogeneous or 
non-homogeneous quadratic diophantine equations with two or more variables have been an interest to 
mathematicians since antiquity [1-4]. In this context, one may refer [5-11] for different choices of quadratic 
diophantine equations with four unknowns. In [12], the quadratic diophantine equation with five unknowns 

given by is analysed for obtaining its non-zero distinct integer solutions. 

This motivated me for finding integer solutions to other choices of quadratic equations with five unknowns. 
This paper deals with the problem of determining non-zero distinct integer solutions to the quadratic 

Diophantine equation with five unknowns given by . 

METHOD OF ANALYSIS 
The second degree diophantine equation with five unknowns to be solved is 

     (1) 

The process of obtaining different sets of non-zero distinct integer solutions to (1) is exhibited below: 

Set 1: 
The substitution of the linear transformations 

  (2) 

in (1) leads to the space pythagorean equation 

     (3) 

which is satisfied by 

   (4) 

In view of (2), one has the integer solutions to (1) given by 

 

Set  2: 
Introducing the linear transformations 

   (5) 
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in (1), it simplifies to the Pythagorean equation 

     (6) 

whose solutions may be taken as 

    (7) 

In view of (5), the integer solutions to (1) are given by 

 

Note 1: 
The solutions to (6) is also taken as 

 

In this case, the integer solutions to (1) are given by 

 

Set 3:
Taking 

    (8) 

in (1), it reduces to 

     (9) 

After some algebra, it is seen that (9) is satisfied by 

 

In view of (8), it is seen that 

 

Thus, the above values of satisfies (1). 

Note 2: 
After performing a few calculations, (9) is also satisfied by 

 

In view of (8), the corresponding values of are found to be 
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Set 4: 
The choice 

    (10) 

in (1) leads to 

     (11) 

which is expressed as the system of double equations  as shown in Table: 1 below: 

Table: 1 System of double equations 
System 1 2 3 4 

     

w2y      

Solving each of the above systems, one obtains the values of . In view of (10), the corresponding 
value of is obtained. For simplicity, the integer solutions to the corresponding system of equations are 
exhibited below: 

Solutions to system 1: 
 

Solutions to system 2: 
 

Solutions to system 3: 
 

Solutions to system 4: 
 

CONCLUSION 
In this paper, an attempt has been made to obtain non-zero distinct integer solutions to the quadratic diophantine 

equation with five unknowns given by . 

The readers of this paper may search for finding integer solutions to other choices of quadratic diophantine 
equations with five or more unknowns. 
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ON THE HOMOGENEOUS CONE 
 

A. VIJAYASANKAR, SHARADHAKUMAR AND M. A. GOPALAN 

ABSTRACT 
The homogeneous ternary quadratic equation given by is analysed for its non-

zero distinct integer solutions through different methods. A few interesting properties between the solutions are 
presented. Also, formulae for generating sequence of integer solutions based on the given solution are 
presented. 

Keywords: Ternary quadratic, Integer solutions, Homogeneous cone. 

INTRODUCTION 
It is well known that the quadratic Diophantine equations with three unknowns (homogeneous or non-
homogeneous) are rich in variety [1, 2]. In particular, the ternary quadratic Diophantine equations of the form

are analysed for values of D=29,41,43,47, 53, 55, 61, 63, 67in [3-11]. In [12], the homogeneous 

cone represented by the ternary quadratic equation has been studied. This result motivated us 

for determining integer solutions to the homogeneous cone when D takes even values.  In this 
communication, yet another interesting homogeneous  ternary quadratic  Diophantine  equation given by

is analysed for its non-zero distinct integer solutions through different methods. 
A few interesting properties between the solutions are presented. Also, formulas for generating sequence of 
integer solutions based on the given solution are presented. 

METHODS OF ANALYSIS 
The ternary quadratic equation to be solved for its integer solutions is 

 (1) 

We present below different methods of solving (1): 

METHOD: 1 
(1) Is written in the form of ratio as 

 
(2) 

which is equivalent to the system of double equations 

 

Applying the method of cross-multiplication to the above system of equations, 

 

which satisfy (1) 

NOTE: 1 
It is observed that (1) may also be represented in the form of ratio as below: 

(i)  
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The corresponding solutions to (1) are given as: 

 

(ii)  

The corresponding solutions to (1) are given as: 

 

METHOD: 2  
(1) Is written as the system of double equation in Table 1 as follows: 

Table: 1 System of Double Equations 
System 1 2 3 4 

z+y     

z-y     

Solving each of the above system of double equations, the value of satisfying (1) are obtained. For 
simplicity and brevity, in what follows, the integer solutions thus obtained are exhibited. 

Solutions for system: I 

x=2s , y = - ,92 skk z= s 

Solutions for system: II 

,  

Solution for system: III 

,  

Solution for system: IV 

,  

METHOD: 3 
(1) Is written as 

 (3) 

Assume z as 

 (4) 

Write 1 as 

1=  

Using (4) & (5) in (3) and employing the method of factorization, consider 

 

Equating real & imaginary parts, it is seen that 
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Since our interest is to find the integer solutions, replacing by  & by 

 in (6) & (4), the corresponding integer solutions to (1) are given by 

Following the above procedure,one may obtain difference sets of integer solutions to (1).  

METHOD: 4 
(1) Is written as 

 (7) 

Assume  as 

 (8) 

Write 1 as 

 

(9) 

Using (8) & (9) in (7) and employing the method of factorization, consider 

 

Equating rational and irrational parts, it is seen that, 

 (10) 

Since our interest to find the integer solution, replacing by  & by 

 in (10) & (8), the corresponding integer solutions to (1) are given by 

 

Following the above procedure,one may obtain difference sets of integer solutions to (1).  
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GENERATION OF SOLUTIONS  
Different formulas for generating sequence of integer solutions based on the given solution are presented below: 

Let 0,00, zyx be any given solution to (1) 

Formula: 1 
Let given by 

 (11) 

be the solution to (1). Using (11) in (1) and simplifying, one obtains 

 

In view of (11), the values of and are written in the matrix form as 

tt zyMzy 0011 ,,  

where  

M  =  

and is the transpose 

The repetition of the above proses leads to thesolutions givenby 

 

If are the distinct eigen values of M, then 

 

We know that 

Identity matrix 

Thus, the general formulas for integer solutions to (1) are given by

 

Formula: 2 
Let given by 

0
2

10
2

10
2

1 2322,2322,2322 zkkzykkhyxkkhx
 (12) 

be the nd2 solution to (1). Using (12) in (1) and simplifying, one obtains 

 

In view of (12), the values of and are written in the matrix form as 

tt yxMyx 0011 ,,  

Where  M=  
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And t  is the transpose 

The repetition of the above process leads to thesolutions givenby 

 

If arethe distinct eigen values of M, then 

 

Thus, the general formulas for integer solutions to (1) are given by 

 

 

Formula: 3 
Let given by 

 (13) 

be the  solution to  (1). Using (13) in (1) and simplifying, one obtains 

 

In view of (13), the valuesof and are written in the matrix form as 

 

Where   M=  

and is the transpose 

The repetition of the above process leads to the  solutions  given by 

 

If are the distinct eigen values of M, then 

 

Thus, the general formulas for integer solutions to (1) are given by 
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CONCLUSION 
In this paper, an attempt has been made to obtain non-zero distinct integer solutions to the ternary quadratic 

Diophantine equation 2222 2222 yxkkz representing homogeneous cone. As there are varieties of 
cones, the readers may search for other forms of cones to obtain integer solutions for the corresponding cones. 
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