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NOTATIONS

Polygonal number of rankwith sidesm

(n —1)2(m - 2)}

ton = n[1+

Gnomonic number of rank
GNG, =2n-1
Pentagonal pyramidal number of ramk

o = 3n? +n*(m-2)-n(m-5)
" 6

Pronic number of rank
PR, =n(n+1)

Star number of rank
S, =6n’-6n+1

Triangular number of rank

Centered Polygonal number of ramkvith sidesm

oy, =041

Pyramidal number of rankwith sidesm

Py = <[n(o+1][(m-2)n+(5-m)

Centered Pyramidal number of ramkvith sidesm

ch - m(n-1) n(6n +1)+6n



Stella octangular number of rank

sq, =nzn? -1

Centered hexagonal pyramidal number of nank
CPg, =n°

Rombic Dodecagonal number of ramk

R, =4n°-6n°+4n-1

Centered triangular pyramidal number of rank

Cp? = n(n? +1)
"2

Centered square pyramidal number of rank

cs' = n(2n; +1)

Pentagonal pyramidal number of ramlith size 5

P5 - nz(n+1)
" 2

Triangular pyramidal number of ramk

s 0+ 2)n+2)
6

Centered nonagonal pyramidal number of rank

2 —
CR, = n(3n 1)
: 2
Centered icositetragonal pyramidal number of nank

3 —
CPz4,n _ 24n . 18n



Centered Hexagonal Number of rardk
ct,, =3H (H -1)+1

Centered Octagonal Number of rawik
Ctyy =4M (M -1)+1

Centered Decagonal Number of ravik
Cloy =5M (M -1)+1

Centered Dodecagonal Number of rdahk
Ct,p =6D(D-1)+1

Hexagonal Number of rank

ts, =2h*—h



DEFINITIONS

Diophantine m-tuple

A set of m distinct positive integerda, ,a, ,a,,.....,a } is said to have the
property D (n),n0Z -{0} if aa, +n is a perfect square for adli<i < j <m and such
a set is called a Diophantinetuple with propertyD (n).

Dio m-tuple

A set of m distinct positive integerda, ,a, ,a,,.....,a,} is said to have the
property D (n),n0Z -{0} if aa +a+ g+ r is a perfect square for dli<i < j<m
and such a set is called a Distuple with propertyD (n).

Nasty Number

A positive integermn is a Nasty number ih=ab=cdand a+b=c-d or

a-b=c+d wherea, b, ¢, d are non-zero distinct positive integers (Bert &l 980).

Bernoulli and Euler Polynomials

The Bernoulli and Euler polynomials can explicitly defined as,

B, () = Zn:[Ej B, X<
k=0

B, - Bernoulli numbers

_&(n Ek[ _1Jn_k
d E,(X)= Skl y-=
an 1 (X) kzzl(k] ok X 5

E, - Euler numbers
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Chapter — | Introduction
CHAPTER — |
INTRODUCTION

State of the art of the research topic

The theory of numbers is one of the attractive sigdificant branches of pure
mathematics concerning mainly to the study of titegers. It has varieties of subject
areas and each area has its own history deserp@gas recognition. One of the
oldest and largest subject areas of number theodyophantine equations playing an
important and significant role. A diophantine egmatis a polynomial equation in
two or more variables for which only the integelusions are searched. In fact, it is
worth mentioning that diophantine problems have eiewquations than unknown
variables and involve finding integers that workreatly for all equations. In other
words, the study of diophantine equations concevite the search for non-zero
distinct integer solutions to polynomial equatioos systems of equations. The
formulations of general theories of diophantine atuns other than the theory of
quadratic forms was an achievement of the twentmghtury as the individual
equations seem to be a puzzle and have been cetsiteoughout history.

Mathematics is like a banyan tree and the Numbeofihis one of its oldest
branches as its history spans for atleast 5000syédumber theory is a vast and
fascinating field of Mathematics, sometimes callddyher Arithmetic”, consisting of
the study of the properties of whole numbers. Gafgmn known as the “Prince of
Mathematics” called Mathematics the “Queen of thaeikces” and considered
Number Theory the “Queen of Mathematics”.

Number theory is populated by a variety of exotiord and fauna that
developed from the study of integers. Generallyakpey, Number theory is defined

1
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as the study of the property of numbers [4-6, 9,1M316] where by “Numbers” we
mean integers and more specially, positive integehsch are the building blocks of
the real number system. It has fascinated andretspioth amateurs and mathematicians
alike and so they merit special recognition.

Number theory provides a fertile ground for botbfpssionals and amateurs.
In addition to known results, number theory abounmdth unsolved problems.
Although many of its results can be stated in sevgid elegant terms, their proofs are
sometimes long and complicated. Many unsolved problthat have been daunting
mathematicians for centuries provide unlimited apyaties to expand the frontiers
of mathematical knowledge.

Number theory has several branches and each bifzhts own history
[88, 90, 120-122] and they deserve special recmgmiiThe history of number theory
can be divided into three parts, progress of nuntbeory before Christian era, its
development in the next 1500 years and from sixteeentury to present. The
Modern Era in the subject begins with Pierre darfegér(Generally acknowledged to
be the father of modern number theory).

A vast domain of the theory of numbers goes badRitphantus of Alexandria.
The subject of diophantine equations is one of dltest and largest branches of
Number theory. The word Diophantine refers to tredldthistic mathematician of the
3“ century Diophantus of Alexandria, Egypt who madstualy of diophantine equations
and introduced symbolism into algebra. The studydiophantine equations is the
study of solutions of polynomial equations or sy®eof equations in integers, rational
numbers or sometimes more general number rings. drbe fascinations of the
subject is that the problems are usually easydte sdind when they can be solved,
sometimes involve sophisticated mathematical tools.

2
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Diophantine equations play an important and sigaift role in Number
theory. It is worth mentioning that diophantine lpems have fewer equations than
unknown variables and involve finding integers tivatrk correctly for all equations.
In more technical language, they define an algelsarve, algebraic surface or more
general object and ask about the lattice pointg.oRermat [2] solved new problems,
posed many challenges to other mathematicians,ntedenew methods and in
general, was much more advanced than contemporattyematicians. The formulation
of general theories of diophantine equations (frrto theory of quadratic forms) was
an achievement of the twentieth century [19, 23,78 86, 87, 89] as the individual
equations seem to be a puzzle and have been cmiteoughout history.

Diophantine equations are numerously rich becafists @ariety [18, 25, 28,
32-34, 38-40, 44-46, 48, 49, 54, 55, 60, 61, 76&2, 97]. There is no universal
method or algorithm for determining whether an tagloy diophantine equation has a
solution or finding all the solutions, if it existSuch an algorithm does exist for the
solution of first-order diophantine equations. Hoe® the impossibility of obtaining
a general solution was proven by Yuri Matiyasewch970. There is a general theory for
guadratic diophantine equations in many varialesre are many quadratic diophantine
problems which kindled the interest among mathesizats. But there are very few
diophantine problems for which the complete softuttoknown [1, 26, 29, 36, 42, 43].

There are several diophantine equations that hav&olutions, trivial solutions,

finitely many solutions or infinite number of sals [30, 37, 47, 52]. For example

33X’ +xy=14 and x*-2y*=-1[59, 87] have finite number of solutions and thietins
are (x,y)=((01),(2,1),€ I 1) 2 Lx % 19%( 14,14(#2,+1)&*1+11) and

(x,y):((il,il),¢239,t 39) respectively. The binary quadratic equation

3
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X? = y*+ x+ y+ xy=2 [31] represents a hyperbola and has infinitely msmiytions
The pellian equationx’ =19y* -1 [75] has no solution in integers and Fermat prdiat
x* = y* = z? have no non-trivial solutions. The diophantine atopns x* +2y* = z?,
x* +y*=72° [87] have no integer solutions. In particular,+ Dy’ =1 [87] has only
one solution(-1,1) when D=2 and no integer solution whe® =4,8,1¢. It is
obvious that only a few details are known about theory of representation of
integers by binary cubic forms. Many special casfethe equationx® +c= " [11-13]
where x and y are positive integers anel 3 have been considered over the years, but
most results for general n are of recent origin.

N. Elkies in 1988 found the example682240+ 15365639 1879766 20615673
and there by disproving Euler’s conjecture thatQi@phantine equatiow’ + x* + y* = :*

has only trivial solutions in which two of the vabies are zero. Also one may refer

[22, 24, 27, 52, 60, 62]. Titu Andreescue and DoAindrica proved that the
bi-quadratic equation(x® +1)(y* +1)+ 2(x— y)(1- xy)= 4(+ x has only eight
solutions (x, y) ={(1, 2),(-3,0),(0,3),€ 2,1),£ 1,0),(6;, 153,2),(-2,3)]. The equations
y>=8x*+1 and X’ —2y* =-1 have a finite number of solutions and the solgtiare
(X, ¥)={(0,£1),(x1,+£ 3)} and (x,y)={(£1,£1),(x239+ 13) respectively. The only
integral solutions toy*=x'+x+xX+>+1 is (x y)={(-1,%1),(0,x1),(3+ 11) and
x =y =1 is the only solution for the equatiod =3y"* - 2.

The Greek Mathematician Diophantus of AlexandripsiBidied the following
problem: Find four (positive rational) numbers subhat the product of any two of

them increased by one is a perfect square. He ratathe following solution
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1 3317 1—05 The first set of four positive integers with tHmogae property was found

16'16" 4 1

by Fermat and it was Euler who gave the solutjanb, a+ b+2r,4r(r+a)(r+hb)}
where ab+1=1r?> [8]. In other words, a set ofm distinct positive integers
(a.,a,,a,8, 8....;, Is called a diophantines-tuple with property D(n), if
aa +r is a perfect square for ali < j <m [7, 8, 20, 21, 35, 119]. Non existence

of diophantine quadruple with the propeif(4k + 2) was proved in [8] and yielded

the interest of constructing diophantine-tuple m=4 with suitable properties.

In the 17" century, the study of Diophantine equations w&enaby Fermat
who gave us the famous problem of proving Fermhkt& theorem. Fermat also
looked at Diophantine problem, but he was more@stied in whole number solutions
than fractions. Weil's brilliant solution has retlgnstimulated renewed interest in
Number Theory. Mathematicians in India were intexésn finding integral solutions
of Diophantine equations since the Vedic era.

Number is the essence of mathematical calculatiNosnbers have varieties
of patterns and varieties of range and richnesyg. deguence of numbers represented
by a mathematical function may be considered agnpatin fact, mathematics can be
considered as a characterization of patterns. Far ainderstanding, any regularity
that can be illustrated by a scientific theory igadtern. In other words, a pattern is a
group of numbers, shapes or objects that followle. rA careful observer of patterns
may note that there is a one to one correspondeeiveeen the polygonal numbers
and the number of sides of the polygon.

One of the fascinating variety of numbers is Rarjaanaumbers (oR-number)

named after the great Indian Mathematician SrirdvBRamanujan. The number that
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can be expressed as the sum of the squares ofumbers in two different ways are

called the Second Order Ramanujan numbers and ifioplisity, written as R,
numbers. In general, IR, is anR-numbers of orden then its numerical relation can
be represented aR = x'+ X = y'+ ). Obviously, there are many R-numbers in

each order, which are special cases of Diophamioblem covering a wide area in
Number Theory [69, 85, 86, 88, 91].

Apart from the above patterns we have some moreinasng patterns of
numbers namely Armstrong numbers, Harshad numbukiple Harshad numbers,
Nivenmorphic numbers, Sphenic numbers, Sphenic néhaime numbers. For
illustrations, one may refer [41, 70-73].

Results from Number Theory have countless apptinatin mathematics as
well as in practical applications including segyrinemory management, authentication,
coding theory, etc. Aspects of elementary numbeoy pertaining to the golden ratio
and golden spiral are shown to be related to amdetbre of importance in the

simulation of chemical phenomena.

Objectives and scope of the research work

The proposed research work focuses its concentr&ticearch for non-trivial
integral solutions of diophantine equations of éegtwo to five with multivariables.
Some procedures have been developed to find anitenfnumber of non-trivial
integral solutions to a few interesting diophantaggiations of polynomial types and
search for interesting properties among the salsticA few results about special
Diophantine triple, Diophantine Quadruple, Dio-le(p and Dio-quadruples and

special triples are also studied.
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In addition, the objective of this thesis is todimon-zero distinct integral
solution to special forms of double equations,léripquations and equality among
polygonal numbers.

This Dissertation consists of XIl Chapters. Chaptgrovides the historical
background and necessary literature survey forénety of problems studied for the

corresponding integral solutions and related ptegsepresented in the chapters Il to XIl.

Chapter-Il deals with Quadratic diophantine equations in twelve sections
1.1to1l.12
Section Il.1 to 1.4
The following binary quadratic equations are anadyfor finding its non-zero
distinct integer solutions. A few interesting redas among its solutions are
presented. Also, knowing an integral solution & ¢fiven hyperbola, integer solutions

for other choices of hyperbolas and parabolas wreepted.

11.1[57] 3x2 —8y? = 4(
11.2[97] y* =5a°(x* +1)
11.3[98] Ox? - 8y? = 4¢
1.4 [58] X =3(y?+y)+1

Section 11.5 [99]

The homogeneous cone represented by the ternargragica diophantine
equation X’ +6xy+15y = 1¢.% is studied for finding its non-zero distinct intege

solutions. A few interesting properties among thieitsons are also exhibited.
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Section 11.6 [100]

The method of determining different solutions iteers tox® + y* = 22 +141
by reducing it to B?=Da”+141(D > 0 andsquare-fr) through employing

transformations. A special case has been illusiraleng with the corresponding
properties. Also, given an integer solution, a pescof obtaining sequence of integer

solutions based on its given solution is exhibited.

Section 11.7 [59]

This section aims at determining non-zero distintdéger solutions satisfying
the homogeneous cone represented by the ternadyajicaequation3x’ —8y* = 2£7°.

A few interesting relations among the solutions presented. A general formula for
generating sequence of integer solutions to thergoone based on a given solution is

illustrated.

Section 11.8 [101]

The homogeneous ternary quadratic diophantine ®mouagiven by
7* = D(X - y’), D=odd prime¢ is analyzed for its non-zero distinct integer solus

through different methods. Also, formulae for getly sequence of integer

solutions based on the given solutions are pregente

Section 11.9 [123]
The ternary quadratic equatiofi = 25y° + 2¢z° representing a homogeneous

cone is analysed for its non-zero distinct integaints. A few interesting properties

among the solutions and polygonal numbers are prege
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Section 11.10 [126]
The homogeneous ternary quadratic equation gives’ b{(2k2—2k+ 23 X+ 12
is analysed for its non-zero distinct integer dohg through different methods. A few

interesting properties between the solutions aresgnted. Also, formulae for

generating sequence of integer solutions basetleogiven solution are presented.

Section 11.11 [122]

The homogeneous quadratic diophantine equation feith unknowns given
by 2xy+37Z =€w is analysed for obtaining its different sets of +memo distinct

integer solutions through employing linear transfations. Also, formulae for

generating sequence of integer solutions basetleogiven solution are presented.

Section 11.12 [127]

The homogeneous quadratic diophantine equation fiviéhunknowns given
by 4w’ - xX* — y*+ Z=1€ ? is analyzed for determining its non-zero distiimteger
solutions through employing linear transformations.

Chapter Ill analyses cubic diophantine equations irfour sections Ill.1 to IIl.4

Section 111.1 [60]

The non-homogeneous cubic equation with three uwksorepresented by

3(x2+ yz)—5xy+ x+ yw1=11.°% is analyzed for its patterns of non-zero distinct

integer solutions. A few interesting relations agoime solutions are presented.

Section 111.2 [84]

An attempt is made to solve the cubic equation Watlr unknowns given by

X+ y +6(x+y) Z=4V' in integers. Some special relations between thetisoks

are given.
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Section 111.3 [104]

The homogeneous cubic equation with four unknowemesented by the
Diophantine equations® + y* +( x+ y)( x- 3)2 =16 z\ is analyzed for its patterns of

non-zero distinct integral solutions. Various ietding relations between the solutions

and special numbers namely polygonal numbers dribited.

Section 111.4 [124]
This paper concerns with the problem of obtainieg-gero distinct integer

solutions to the non-homogeneous cubic equatiorh whtree unknowns given
X+ y+ x+ y=2727-a’+1). Afew interesting relations among the solutiors a

presented. Also, a formula for generating sequeofcenteger solutions to the

considered cubic equation based on its given swius exhibited.

Chapter-1V focuses on bi-quadratic diophantine equ#ons in four sections
IV.1to IV.4
Section IV.1 [103]

We obtain infinitely many non-zero integer solusao the non-homogeneous

4

ternary bi-quadratic equatioxt + 7xy+ y* = :*.

Section 1V.2 [105]
This section aims at determining non-zero distinateger solutions

to the algebraic equation of degree four with threaeknowns given by

(a+1)(¥+y)-(2a+]) xy=| g+(4a 3 4] %, & (

Section 1V.3 [102]
This section concerns with the problem of determgnnon-trivial integral
solutions of the non-homogeneous bi-quadratic eguatith four unknowns given by

10
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8xy+57 =Ev*. We obtain infinitely many non-zero integer sabms of the

equation, by introducing the linear transformatitsu+ v, y= u— v z=
Section 1V.4 [125]

On the Homogeneous Bi-Quadratic Equation with Rdoknownsgiven by
X'+ y+(x-y) z°’:2( K+3 §)2 \* aims at determining non-zero distinct integer
solutions.

Chapter-V [106] searches for the integral solutionso Quintic equation

The quintic non-homogeneous equation with five wvans represented by
the Diophantine equatioB(x+ y)( X - y3) = 7( Z- V\7) 1*is analyzed for its patterns

of non-zero distinct integral solutions.

Chapter VI deals with Double Diophantine Equationsin six sections VI.1 to VI.6

Section VI.1 [86]

3

The system of double equations given by yz=3Ww, xy= ~° is studied for

obtaining its non-zero distinct solutions in intege
Section VI.2 [107]
The pair of equations given by+y=z+ v, y+z=(x- v)2 is studied for

obtaining its non-zero distinct solutions in intege

Section VI.3 [61]

In this section, different methods to obtain nomezéistinct integer solutions

to the system of double equatiors y= z+ w, y+ z:( X \)2 are illustrated.

11
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Section VI.4 [110]
This section illustrates the method of obtainingh4zero integral solutions

to the system of two linear equations to be madeamss represented by
an+ b= ¢, br+ & * for the choices of andb given by ()a =1,b = 7 and
(i)a=2,b=7.
Section VI.5 [87]

Two different methods for obtaining non-zero distimteger solutions to the

pair of equationsc+y=z+ v, y+z=(x- v)3 are illustrated.

Section VI.6 [109]

The problem of obtaining non-zero distinct integetutions to the pair of

. 3 .
equationsx+y=z+ v, y+z=(x+ v) is analysed.

Chapter VII analyses Triple Diophantine Equations n three sections VII.1 to VII.3

Section VII.1 [111]
An attempt is made to obtain non-zero distinctgetequintuples(x, y,a b ()
satisfying the system of three equationsty=a,2x+ y=8, 2y &- 2

Different sets of integer solutions are presented.
Section VII.2 [112]
Non-zero distinct integer quintuple@g y,a b () satisfying the system of
three equations+ y=2a’,2x+ y=5d&+ I§, % 2y ° are determined.
Section VII.3 [17]

Triple equations with five unknowns representedkyy = 2&,2x+ y=5& - 17,

x+2y=5¢ are analyzed for non-zero distinct integral solsi

12



Chapter — | Introduction

Chapter VIl focuses on Diophantine 3-Tuples in fou sections VIIl.1 to VIIl.4
Section VIII.1 [114]

This paper deals with the study of constructinguseges of diophantine

triples (a,b, ¢) such that the product of any two elements of theasieled by a

polynomial with integer coefficient is a perfecusge.

Section VII1.2 [113]

The construction of sequences of diophantine 'si;()t& b, c) through pronic

numbers is studied.

Section VIII.3

This section has three parts VIII.3A [88], VIII.3B [90], VIII.3C [62]
The formulation of sequences of diophantine tripﬂasb, c) through Euler

polynomials, Bernoulli polynomials & Euler and Betili polynomails is considered

in sections VIII.3A, VIIL.3B, VIIL.3C respectively.

Section VIII.4 [115]

This paper concerns with the formulation of seqaemaf Diophantine 3-tuples

with propertyD(k2 +10k - E) through matrix method.

Chapter IX [116] deals with formulation of specialDio 3-Tuples through

polynomials with suitable property
An attempt has made in constructing sequencesoo84iiples(a, b, ¢) such
that the product of any two elements of the seeddadith the sum or minus the sum

of the same elements and increased by a polynomthl integer coefficient is a

perfect square.

13
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Chapter X has two sections X.1 and X.2
Section X.1 [117]presents diophantine quadrupl@, b, c, c) generated from two

given pronic numbers such that the product of any mmembers of the set increased

by one is a perfect square.

Section X.2 [108]has two subsections X.2A and X.2B

The Sub-section X.2A deals with the study of foratinly special Dio-quadruples
(a, b, c, c) generated through Euler polynomials such thatptieeluct of any two of
the set minus their sum and increased by two isrée@t square. Sub-section X.2B
concerns with constructing special Dio-quadrup(easb, C, c) generated through

Euler polynomials such that the product of any mfahe set minus their sum and

increased by five is a perfect square.

Chapter XI deals with special family of 3-tuples intwo sections XI.1 to XI.2
Section XI.1 [120] concerns with the study of formulating 3-tuples sisting of
polygonal and pyramidal numbers such that, in ¢hoke tuple, the sum of any two

members is a perfect square.

Section XI.2 [121]deals with the study of formulation of special fnof 3-tuples

(a,b, ¢) suchthat the product of any two elements of the seeddaith their sum is a

perfect square.

Chapter XII focuses on Equality of Polygonal Numbes in two sections XII.1 to XII.2
Section XII.1 [118] illustrates formulas for the ranks of Triangular numbers,

Hexagonal numbers, star numbers satisfying théioala, , =t;, =S, .

14
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Section XIl.2 [119] exhibits formulas for the ranks of Triangular numg)e
Hexagonal numbers, Centered Hexagonal numbers,e@entOctagonal numbers,

Centered Decagonal numbers and Centered Dodecagomatbers satisfying the

reIa'tIC)nSt3N = t6,h = CtG,H ! t3,N :tG,h = Ct8,M ! t3,N = t6,h = Cth,M ! t3,N = tG,h = CtlZ,D -

15
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Chapter-II Quadratic Diophantine Equations
CHAPTER -1
QUADRATIC DIOPHANTINE EQUATIONS

Chapter-Il deals with Quadratic diophantine equations in twelve sections
1.1to1.12
Section Il.1 to 1.4
The following binary quadratic equations are anadlyfor finding its non-zero
distinct integer solutions. A few interesting relas among its solutions are presented.
Also, knowing an integral solution of the given bypola, integer solutions for other

choices of hyperbolas and parabolas are presented.
1.1 3x*-8y* = 4(

.2y =5a7(x*+1)

1.3 9x2 -8y? = 4¢

.4 x> =3(y +y)+1

Section 11.5to 11.10
The method of determining different solutions itemgers to ternary quadratic

Diophantine equations are discussed in the follgvgections
1.5 X*+6xy+15y =1t.°

1.6 x*+y>=7+141

1.7 3x*-8y* = 2E;°

1.8 Z° = D(X - ¥), D=odd prime

1.9 x*=25y°+2¢;°

1110 22 =(2K - 2k+ 22) X + 17

16
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Section 11.11

The homogeneous quadratic diophantine equation feith unknowns given
by 2xy+37Z = €w is analysed for obtaining its different sets of +zemo distinct

integer solutions through employing linear transfations. Also, formulae for

generating sequence of integer solutions basetleogiven solution are presented.

Section 11.12

The homogeneous quadratic diophantine equation fviéhunknowns given
by 4w’ - xX* - y*+ Z=1€ ? is analyzed for determining its non-zero distiimteger

solutions through employing linear transformations.

17
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Il.1. On the Pell-Like Equation 3x* - 8y* =40

The binary quadratic equation representing hyperisgiven by

3x* - 8y* = 4C (2.1)
Taking x= X+8T,y=X+3T (2.2)
in (2.1), it simplifies to the equation

X?=24T°-8 (2.3)
The smallest positive integer soluti¢fy, X,) of (2.3) is

T,=1, X, =4
To obtain, the other solutions of (2.3), consider pellian equation

X?=24T%+1 (2.4)
whose smallest positive integer solution is

T, =1, X, =5
The general solutioqT, , X, ) of (2.4) is given by

X, +24T,=(5+v24)" n=0.1,2. (2.5)
Since, irrational roots occur in pairs, we havel

X,-247,=(5-v24" n=012... (2.6)

From (2.5) and (2.6), solving foX_, T, we have

)Zn :%[(5+@)n+1+(5_\/74)n+1:|:% fn

Applying Brahmagupta lemma between the solutigfig X,) and (T, X,), the

general solution(T, ,,, X,.,;) of (2.3) is found to be

18
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=T :ig +£f
n+l \/ﬂ n 2 n
><n+1:21:n+g gn

Using (2.7) and (2.8) in (2.2) we have

28

Xn+1 = xn+1+8Tn+1: 6 fn+ﬁ gn
7 18

yn+ :XFH' +3 n+ :_fn+_€n
1 1 175 /EZ

Quadratic Diophantine Equations

2.7)

(2.8)

(2.9)

(2.10)

Thus, (2.9) and (2.10) represent the integer smiatof the hyperbola (2.1).

A few numerical examples are given in the followtagle 2.1

Table 2.1: Examples

n X1 Yns
-1 12 7

0 116 71
1 1148 703
2 11364 6959

In the above table -values are even angl-values are odd

Recurrence relations for andy are:
X, —10x,,+x,.,=0,n=-10,1...

Yors 10y, + V., =0,n=-1,0,1...

19
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A few interesting relations among the solutionsgven below:

>

>

>

>

>

8t T 9% ™ %2 = C
8Ypas + 59Xy — 49X, , = (
8Ynez t X1 75X, = C
80y, + 49K, ~ X, = (

16Y,., + Xy = %3 = C

» Each of the following expressions represents acallmteger:

1—; (4266, — 42¢,,,) + § 426,.,- 4%,))]
Floc (42186, 42,.;)+ § 4218,,- 42, )]
l_éc (522, - 84y,,,.) + { 52%,,~ 84,.,)]

3_10 (54%,,.5— 84Y,,..) +  54,.,~ 84,)) |

?17( (5166, ~ 84y,,.)+ J 5166,,~ 84, )]

Each of the following expressions represents bdgatec integer:

1
o [(51120<4n+4

- 504Q,,.,)+ 4 428,,~ 42.,) - 288]

12%)(2 (5061600, ~ 50408,,.,)+ @ 4236,~ 4@.) -~ 2880(]

1
ﬁ[(1620<4n+4— 2529,...)+ 4 5%, 8%,..) - 18(]

L 178300014 ~ 2600y 4045) + 4(544x41 ~84ypss)? - 4500CJ

150°

1
F7(2[(7594020<4n+4— 123489, )+ (4 5166,~ 84.)

2

- 4321:}

20
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» Each of the following expressions represents Nastgber:

.1

. %[24o+ 426, — 4%, ]

i. i[2400+ 4218, ., - 4%, ]
20c n+2 n+4

L1

ii. g[60+ 54%,,., = 84y,..,]

1
iv. £[300+ 52X,..,~ 84/,..]

1
24t

[2940+ 5166,,., ~ 84.,,..]
» Each of the following expressions represents Quinteger

) 1 1
i. E(?]st ~ TXps) + 30Ff;_1 where f_ =£(71Xn+1 - 7%.,,)

. 1 1

i. ——(210 -2 + 3F’_, where f =—(210% ,, — 2K .
6OC( 9(Sn+5 ]x5n+7) f,-1 n 6OC( n+l :Ixn-h.)

1 \ 1

ii. 1—5(27x5n+5 - 42x,,,) + 30 _, where f, = 1—5(27xn+1 - 42x,.,)

iv. %(%stms - 4%,,..) + 3@ _ where f, =%(261xn+1— 4%..,)

1
73<

1
(258%,,, — 4%,.,)

3¢

(2583x,,s — 42;,.,) + 3F _, where f =

REMARKABLE OBSERVATIONS

Employing linear combinations among the solutiohg21), one may generate
integer solutions for other choices of hyperbolachhare presented in table 2.2

below:

21
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Table 2.2: Hyperbola

Quadratic Diophantine Equations

Hyperbola

(xn’Yn)

1 24X2 - Y2 = 138240

[ (426, - 42¢,,) ( 216,,~ 2088,,) ]

2 | 24X2-Y?=13824000

[(4218¢,, - 4.,) ( 216~ 20664,,) ]

3 24X? - Y? = 8640

[(54Xn+1 - 84yn+1) '( 4325’n+1_ 252%1)]

4 24X2 -Y? = 216000

[(522x,,, ~ 84y,.,) ( 43%,,,~

2558, ,) |

5 | 24X?-Y?=20744640

[(5166x,,, - 84,,;) ( 433,,,~ 25308,,)]

lI. Employing linear combination among the solutions dther choices of parabola

which are presented in table 2.3 below:

Table 2.3: Parabola

Parabola

(Xn'Yn)

1 2880X, —Y? = 138240

[(24o+ 4264, 4%,,.,) ( 218, ,- 208&1)]

2 | 28800, —Y? = 1382400(

[(2400+ 4218,,.,- 42,,,) (, 21§, .~ 20664.)]

3 720X, - Y2 = 8640

[(60"' S5&ne2 ~ 84yzn+2) ( 4331~ 252“*1)]

4 | 3600X,-Y?= 216000

[(300+ 52, ~ 84/2n+3) ( 439, .~ 255@*1)]

5 | 35280X, - Y2 = 2074464(

[(2940+ 5166, ~ 84;,..) (, 439~ 25308)]

PROPERTIES

. Let{m,,} and{n,.} be sequence of positive integers defined by

— ys+1 _1

M N ==

My, =
It is seen that

128

3,5+1

X

stl

2

+ 9¢ is a Nasty number.

22
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(ii)

(iii)

(iv)

, +1 X
Define n_,, :ySL, m,, =—==*

It is noted that

tyom, 10, - 8(8,, +1+ 64,

25 vms+1

. -1 X
Considern,,, = You m,, =—=%

2 4

It is noted that

togm,, ~64t;,  +4Mm,, = 4
- X
Assume n_,, = M, m,,, =—=%
2 2

It is observed that

25'ms+l a 64t 3vns+1

23

+1im, - 64, = 11

Quadratic Diophantine Equations
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1.2 A Remark on the Positive Pell Equationy® = 5a2(X2 + 1)

The binary quadratic equation to be solved fornits-zero distinct integral

solution is
y? =5a°(x*+1) (2.12)

whose smallest positive integer solution is

X =2,Y,=%a
Assuming
y=ay (2.12)

in (2.11), we get

Y2 =5(x +1) (2.13)
whose initial solution i{x,, ¥,) =(2,£)
To obtain the other solutions of (2.13), considher Pell equation

Y2=5x+1 (2.14)
whose smallest positive integer solutior(%s, \?0) =(4,9)

The general solution of (2.14) is given by

=

Y, =

N

foo %= ¢

r

o

2

where

fn:(9+4\/_5)n+1+(9— A/_Qnﬂ ,gn:( O 4/_¥+1—( 9 {f)iml n=- 101..

f

n

In view of (2.12),y. =

N

24
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Applying Brahmagupta lemma betweefx,,y,) and (X,,V,), the other integer

solutions of (2.11) are given by

NG

=f +—
Xn+l n 2 gn
Sa
yn+1 :? fn +\/§a gn
The recurrence relations satisfied Xy, and y_,, are given by
Xpeg 18X, + X, = C
yn+3 _18yn+2 + yn+1 = c

Some numerical examples>ohndy satisfying (2.11) are given in the Table 2.4 below

Table 2.4: Numerical Examples

n Xii1 Yns
-1 2 S5a

0 38 8y

1 682 1525a

2 12238 27368

3 219602 491045

From the above table, we observe some interesefaions among the solutions

which are presented below:

[llustration 1

Consider
Yo =50 (2.15)
a=4=y,=2C

= 1*20= 2*10= 4*5

25
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Now,
1*20=2*10=(1+ 20" +(10- 3" =(+ 2Jf+( 18 ¥= 5
1¥20=4*5=(20- )" +(4+ §°=(26- Y'+( 5 ¥ = 4
2*10=4*5=(2+10"+(4 9°=(2 10°+( 4 ¥ = 1

Thus, 505, 442, 145 represents second order Raamaridgimbers with base numbers

as integers.

lllustration 2

Consider (2.15).

Now, y, =5*a =5a*1, a>1

= (5+a) +(5a-1)"=(5-a)"+(@m+ )" = 2¢ *a?)

Also, (a +i5)" +(5a~i)" =(a~i 5" +(5r+i )" = 2da” - )

Thus, 26(1+ az) represents second order Ramanujam Numbers withrhasbers as
integers whereaQG(a2 - 1) represents second order Ramanujam Numbers with bas
numbers as Gaussian integers.

Property |

Let{m,,,} and{n,,.} be sequences of positive integers defined by

at2 1
{rnZHl :XZS#} ) {nZs+1:E( yZ&l_sa)}! S= 011’2 -----

Observations

- 16t3rn25+1 + 8]2 =

2s+1 tlz,nhsﬂ

" X223+1 = 5(4n23+1+ ])2 -1

26
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Property I

Let{m,} and{n,,} be sequences of positive integers defined by

_Xs+1+2 _ys+1 —
=Xa Tl )y = , s=0,1,2.....
R

Observations

. tw’msﬂ:S(n2 +ms+1—1)

st1
" Xs2+l = 5 n§+1 - 1
» Each of the following expressions is a nasty number

6
** 5(19y2n+2 - y2n+3 + 1(0’)

6
& 2(2y,.,-4a 7
a( Vors s Xony 2+ 201 )

2n+ 2

» Each of the following expressions is a cubicalgete

*

1 3
** 5(19)(3n+3 = Yan 4) + 5_a(19y"+1_ Yo 2)

. 1
o (2y3n+3 —-4a Xan+ 3)

3
E (ZYn+1_ 4 )n+l)

+ —
a
» Each of the following expressions is a bi-quadratieger.

L1 4 ‘
K 5(19X4n+4 - y4n+5) +5_0’ (19y2n+ 2~ Yo gt 1@ )y

1 4 ,
K E(2y4n+4 —4a X4n+4) +; (2y2n+ 2= A Xyt XX )y

4

"‘ﬁ(wynﬂ‘ Y

1
K 5(19y4n+4 - y4n+5)

4
=

4 .
* E(2y4n+4_4a X4n+4)+?(2yn+l_ & )g‘n‘-l)z T«

27
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» Relations among the solutions
4
K ; You = _9Xn+1 * Xz

4 _
K ; Yorz = 9o = Xoug

. 4
» E Yniz = 161)(n+2 - 9)‘n+]

@ 200 X1 = Youo ~ N
% 200X, =9 0~ Vo1
& 20ax,,=16ly.,- 9.,
S AX,y =AY+ X,

% 2y, =40 x,, +18y,,,
% 2V, =322y, + 720 x,,
Remarkable observations

1. Employing linear combinations among the soldiafi (2.11), one may generate

integer solutions for other choices of hyperboB@me examples are presented in

the Table 2.5.
Table 2.5: Hyperbolas
S. No. Hyperbolas (X,,Yy,)
1 4X *-5Y.2 = 40(a? (19Y, = Yoz + Yoo = 173001
2 5X,2-Y,2=2(a? (2Yp1 =40 X,y 100 X, = 4y,,1)

2. Employing linear combinations among the solioh (2.11), one may generate
integer solutions for other choices of parabolasn& examples are presented in

the Table 2.6.
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Table 2.6: Parabolas

S. No. Parabolas (a,,Yn)
1 Y?=4aa,-8Ca’ (100 + 1%, = Yones + Y o= 173 )
2 Y?=5aa,6-2C(a’ (20’+2y2n+2—4a'x2n+2 10 X, — 4)n+:)

29
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1.3 On the Binary Quadratic Equation 9x° — 8y* = 49

Consider the non homogeneous binary quadratic eauat

9x* — 8y” = 4¢ (2.16)
Introducing the linear transformations

X=X+8T,y= X+¢1 (2.17)
in (2.16), it leads to

X?=72T%+ 4¢ (2.18)
with the least positive integer solutiong =11, T, =1
To obtain the other solutions of equation (2.1&8)nslder the Pellian equation

X?=72T?+1

whose general solutiorx =% f,T,

1
n= 2—\/7—2 Cn
in which f_ =[17+2/72)"+ @7~ 2/ 72)*
g, =[A7+2J72)" - A7~ 2/ 72)* , wheren=-1,0, 1, 2......
Applying Brahmagupta lemma between the solutiong%f,T,) and (X,,T) the

general solutions of equation (2.18) are foundeo b

11 72
X, ==f+
n+l 2 n 2 gn
1 11
T + =5 fn t—= n
n+1 2 Zﬁ g
In view of (2.17), the corresponding nonzero didtintegral solutions of (2.16) are
. lof, , 8,
n+l 2 \/ﬁ
1719
n+ :1Ofn +t—=
Yo 2J7z
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The recurrence relations satisfied by the value® ahd y are respectively
Xz ~ 34X+ X%, = C
yn+3 _34yn+2 + yn+1 = c

A few numerical examples are presented in the 2bldelow:

Table 2.7: Numerical examples

n - Yoer

1 19 20

0 643 682

1 21843 23168

2 742019 787030
3 25206803 26735852
4 856289283 908231938

A few interesting properties are given below:
1. The values ok are odd while the values pfare even.

2. Each of the following is a Nasty number

6
> E[342XZn+2 - 32WZn+2+ 9:]

> 82"[11574(2””_ 320),,,,+ 166]

> =2 [10912,,,, - 320,,,,+ 156]
784 2n+2 2n+ 3

6

> ———[37068 - 32%,.,,+ 5331,
26656[ 8(2n+2 &2n+4

> 2 [393174,,,,~ 32Q,,,+ 565
2827: " "
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3. Each of the following is a Square number

> -22[3931749m4— 370688, ,+ ¢

> i[342y - 11574y, ,,+ 176]
882 2n+3 2n+ 2

> 2998J342ﬁww 393174, . ,+ 5997]

>

- 393174, ,+ 17¢

882z

4. Each of the following is a cubical integer

i' 784 [10912(3n+3 - 320(3n+4 + 3273ﬁn+1 96Q+ 2]

i. ———[37068%,

- 32 + 1112064,.— 96
2665( 0(3n+5 4+1 Q»a]

n+3

ii. j%{324gw%-32Q@m3+ 34722 ,— 3273, ]

832 ﬁ1574gm3 320, ,+ 1028, ,~ 3273%, ]

2827,[393174%n+3 329+ 1029, ,~ 1112064 ]

5. Each of the following is a bi-quadratic integer

. -——{1091 s = 320, o+ 43648, ,~ 1280, ,+ 47

i. ———[37068%,
2665(

- 32

4An+ 6

+ 1482758, , _128Q, ,+ 159]

n+a

- 320]4n+4+ 136&2n+ 2_ 12802n+ 2+ 2(]

n+4

1
. —[342x
49[ !

L (11574, - 320),,.,+ 46298, ,~ 1280, ,+ 49

83<
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1
2827:

V. [393174,,,, - 32¢,, .+ 1572696, ,- 1280, ,+ 169¢

n+4

6. Each of the following is a quintic integer

> %[10912%n+5-320<3n+6+ 54568, ,~ 160Q, ,~ 10910+ 3280]
> %656[370688@%— 320k, ,+ 1853448 ~ 4800, .~ 3706880+ 320

> %[342}(‘\%% - 320y, s+ 1716, ,— 1609, ,— 3420, + 32QQ;|

1
83¢

[11574,.. - 329, ,+ 57878, ,- 1609, ,~ 115740+ 3200]

> %4[370688>gn+6— 1091%,,+ 1853448, ,~ 54560, .~ 3706880+ 10912
7. Relations among the solutions are given below:

> 16y, +17%., =X, = (
16y, * X~ 17X, = €
Xt X~ 34X, = C
> 544y .+ 571K, = X,3= (
> 32y, + Xy~ Xy = C

3. REMARKABLE OBSERVATIONS

3.1. Employing linear combinations among the sohgiof (2.16), one may generate

integer solutions for other choices of hyperboldsci are presented in the

table 2.8 below.
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Table 2.8: lllustrations

S, Hyperbola (X,Y)

No.

1 | X7?-72Y2= 245862

(10912, - 32%,,, ,38&,,~ 12886,,)

2 | X 2-72Y72=284216934

(370688(n+1_ 32%3 !3&1+3_ 43636&1)

3 X 2~ 72Y? = 960:

(342Xn+1 - 320]n+1 ’Salml_ 4Om])

4 | XZ-T72Y72= 277555

(11574,,, - 320,., .3§,.,~ 1364,,)

5 | X,2-72Y%?=319745011

(393174, - 32, ,38,,~ 46334,,)

3.2. Employing linear combinations among the sohgiof (2.16), one may generate

integer solutions for other choices of parabolasciwiare presented in the

table 2.9 below.

Table 2.9: Illustrations

No. Parabola (X,Y)

1 784X - 7X? = 122931 (37068%,,,, - 10912, ., ,1286,,— 43686 .
2 | 26656X, —Y?2= 14210846 (370688&,,,, ~ 320,,,, ,38,,~ 43686,.)
3 49X - 72(? = 480 (342%,,,,, = 320y,,,, , 38),.,— 40,.)

4 833X, — 72r? = 138777 (11574,,., - 320),,,, ,3§,.,~ 1364, )

5 28273K, - 7X,? = 15987250! (393174(2n+2 - 329,,,, .39, ,— 4633@1)

3.3.  Employing linear combinations among the sohgiof (2.16), one may generate

integer solutions for other choices of straighedrwhich are presented in the

table 2.10 below.
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Table 2.10: Illustrations
S. No. Straight line (X,Y)
X = 682)§1+l - 20)‘n+2
1. =
Lrx=y Y =11584x, - 10, ..
X =682x.,, — 20x,,
2. X=Y _
Y= 342)‘&1 - 320)n+1
3 X =682x,, ~ 20x,,,
' Lrx =y Y =11584x . - 320,,,
X =682x ., — 20x .,
4, X=Y B
Y =23268%,, - 682 ..
. X =682x,,, ~ 20,
' Lrx =y Y =342, -10912 ,,

3.4. Considem=x,, + Y,.., 0= 3, observe thap > q>0. Treat p,q as the generators

of the Pythagorean triang®®a,8,)), wherea=2pq,B= - y= g+ . Let A,
P represent the area and perimetefl ¢, 5,y). Then the following interesting

relations are observed.
a) 16X -9y -7Z- 98= (.
2A
b) F = Xn+1 yn+1'

c) 3(Z-Y) is a nasty number.

d) 3(X —4—:) is a nasty number.

e) X —%A+Y is written as the sum of two squares.

3.5. From the values of,,,, one may generate second order Ramanujan numbers

with base numbers as real integers and Gaussiegeirst

35



Chapter-II Quadratic Diophantine Equations

[llustration

Considery, =20= 2001= 211G 41
Now, 2001= 2010= (20+ B+ (16 2Z)= (26 iy (O °*

=2P+8& =19+ 1%= 50
In a similar manner,

2[10=405= 12+ 1= 8+ 9= 14
20001= 405=> 21+ 1= 19+ 9= 4«

Thus 505, 145, 442 are second order Ramanujan mamiin base numbers as real
integers.

Also,

2001= 2010= (20vi }+ (16 2)= (26i * (0 iZF 4
2010= 405= (10r 23+ (5 #3= (18 2 (B idE 1
20001= 405= (20-i §+ (3 #)= (28 3+ (5 i4)= A

Here 495, 105, 408 are second order Ramanujan nemiaéh base numbers as
Gaussian integers.

3.6. Let{a,} and {b

n+1,

} be two sequences of positive integers, where

It is observed that

a) 6(,,  —5)is aNasty Number.

b) ot,, —t,, =2(mod3
c) 9, . -4p?, =E in which t_ represents a polygonal number of ramk
with sidem.
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REMARK 1
One may also employ the linear transformations X —8T, y= X-¢1 to solve

(2.16) and obtain a different set of solutions.

REMARK 2

The introduction of the linear transformatiors= 7( X +8T), y= 7( X+ ¢1) in (2.16)

leads to the pellian equation

X?=72T%+1
whose solutions are well-known. Applying these ealin the above transformations,
yet another set of integer solutions to (2.16)b&med.

In this paper, a study is made for determining miatgger solutions to the hyperbola
represented by the Pell-Like equati®r’® — 8y* = 4¢. As the quadratic equations are

rich in variety, the readers of this paper maymfteto obtain integer solutions to

other choices of quadratic equations with two orenanknowns.
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Il.4. Observations on the Pell Equationx® = 3(y* +y)+1

The hyperbola represented by the non-homogeneowsiraiic equation under
consideration is

X2 =3(y*+ y)+1 (2.19)
Treating (2.19) as a quadraticyimnd solving fos,

we get

y= -3+/12¢ - ¢

: (2.20)

Let

Y2 =12% - ¢ (2.21)
The smallest positive integer solution to (2.21xjs=1, Y, =3
To find the other solutions to (2.19), consider gwresponding pellian equation
given by

YZ=12% +1 (2.22)

whose the general solutidh, Y, is

f

n

Y, =

N[

- 1

X R
n 4\/§gn

where
fn _ (7+ 4\/—3)n+1 +( 7_ 4‘\/_éml

g, :(7+ 4\/5,)”1—(7— 4/3”1 . n=012,.........
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Employing the lemma of Brahmagupta between thetimiﬂ(xo,\())&(x, 1) the
general solutior{x,,,Y,,;) to (2.21) is given by
X1 = %Y+ Y,

1
=—f +— 2.23
S+ 0, (2.23)

In view of (2.20) and taking the positive sign lrefoehe square-root on the R.H.S. of
(2.20),

we have
_1 _
yn+1—ﬁ(3fn+2\/§gn ¢) (2.24)

Thus, (2.23) and (2.24) represented the integetisak to (2.19).

A few numerical solutions to (2.19) are presentedable below:

Table 2.11: Numerical solutions

N X1 Yne1
-1 1 0

0 13 7

1 181 104
2 2521 1455
3 35113 20272
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Observations
» Thex-values are odd primes whereas y-values are alieehaodd and even.
» A few interesting relations among the solutionsgiven below:
¢ XTIt X, =C
* Yo T14Yoot Vo =€
© 12y, +6= X, T
* 12y, 6= Xt Dy,
© 12y, +6=-7%,,+ 9N,

» Expressions representing square integers:

° [15X2n+2 ~Xnat 2]

1
* a[zogxzmz - X2n+4+ 22]
* [2y2n+3 = 26Y,, 5~ 1(]

1
° 7[ Yonea ~181Y50, 5~ 76]

» Expressions representing cubical integers:

© 5%~ Xanat 315617 X, ).

1
* a[zogxsmg_ Xgnest 3 20%,,,~ )%3)]
* [ZY3n+4_ 26Y30, 3+ 6Yy o~ 78y, 1~ 4;]

1
¢ 7[y3n+5_181y3n+3+ Yz~ D43y~ 36]
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» Expressions representing biquadratic integers:
¢ (15X4n+4 4n+5) 4(15)%1 )ﬂwz) ‘

° (15X4n+4 4n+5) 4( 1o 2= Xom 5+ 3_ :

1
¢ 14(209X4n+4 4n+6) Z( 2091~ X, 3)2 -
1 2
. 14(209X4n+4 4n+ 6) ( 209(2n+ 2 4+ 23 B

o (245 =26y~ 14+ 18y, ,— 13, - §>2 -
» Employing linear combinations among the solutiamsg obtains solutions to
other choices of hyperbolas.
Choice 1: Let Y =x,,—-13x%,,, X=15%,,— ..,
Note that(X,Y) satisfies the hyperbola
3X?-4Y? =12
Choice 2: Let Y = x,, —181x,,, X= 209%,, — ...
Note that(X,Y) satisfies the hyperbola
3X? - 4Y? = 48*49
Choice 3: Let Y =15y, - V., + 7, X=2y,,— 26y,,— 1
Note that(X,Y) satisfies the hyperbola
X?-3Y*=4
Choice 4: Let Y =209y,,, — ¥.., +104,X= vy, .- 181y, - 9
Note that(X,Y) satisfies the hyperbola
—-3Y? = 49*1¢
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» Employing linear combinations among the solutiamsg obtains solutions to
other choices of parabolas.

Choice 1: LetY = x,,,=13X%,,, X =15%,, ,— %, st ¢
Note that(Y, X,) satisfies the parabola
3X,—4Y* =1z
Choice 2: LetY = x,,—181x,,, X = 209%,, ,— X%, ,* 2
Note that(Y, X, ) satisfies the parabola
21X, — 2Y? = 21*5¢
Choice 3: Let Y =209y, - v, +104,X = y,,~ 181y, ,— 7
Note that(Y, X,) satisfies the parabola
28X, - 3Y% = 4*19¢
Choice 4: Let Y =15y, = Vo T 7, X, = Vori3 —13Y,,,, =5
Note that(Y, X,) satisfies the parabola
2X, -3Y? =4
» Considering suitable values ok, and y,,, one generates "D order

Ramanujan numbers with base integers as real nstege

For illustration, consider

y,=104=1x 104 X 52 4 26 8 : (2.25)
Now, 1x104= 2x 52

- (104+1)°+(52- 2" =(104 Y +( 52 )

- 105 +(50° =( 10} + 53= 135:
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1x104= 4x 2
- (104+1)°+(26- §°=(104 X +( 26 W= 115
1x104= 8 1!
- (104+1)°+(13- §°=(104 Y +( 13 B= 110
2x52= 4x 2
L (52+2)°+(26- " =(52 ¥ +( 26 W= 34
2x52=8x13
- (52+2)°+(13- 9" =(52 ¥+( 13 F= 29
4% 26= 8x 1!
- (26+4)°+(13- 9°=(26- ¥ +( 13 F= o
Also,
2x52= 4x 26— 27— 285= 15 T
277 +1f =15+ 25= 85
Thus, 13525, 11509, 11050, 3400, 2941, 925, 85@esept 2 order Ramanujan

numbers with base integers as real integers.

» Considering suitable values af,, & y,,,, one generates'2order Ramanujan

numbers with base integers as Guassian integers.

For illustration, consider aga¥: represented by (2.25)

Now, 1x104= 2x 52, (i 10¥ +( 2i 58 =( 4 104+( & ¥2=- 13t

Also, 1x104= 2x 52— ( 104i)"+( 52i P =( 104 )°+( 5& )2= 13t

Note that-13520 & 13520 represent®rder Ramanujan numbers with base integers

as Gaussian integers.

In a similar manner, othef2order Ramanujan numbers are obtained
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Formation of sequence of Diophantine 3-tuples
Consider the solution to (2.19) given by
x, =13=a(say, y=7= ¢( se)
It is observed that
ac, + k* —91= k*, a perfect square
The pair(a, ¢,) represents diophantine 2-tuple with propd]it(/k2 —91).
If c, is the & tuple, then it satisfies the system of double &qna
13c, +k*-91= ¢° (2.26)
7c,+k’ -91= ¢’ (2.27)
Eliminating ¢, between (2.26) and (2.27), we have
6(k?> -91)= 137 - 7[> (2.28)
Taking
p=X+13r,q=X+7T (2.29)
in (2.28) and simplifying, we get
X?=91T*+k*-91
which is satisfied by
X=kT=1
In view of (2.29) and (2.26), it is seen that
c, =2k+2C

Note that(13,7, %+ 2() represents diophantine 3-tuple with propel]ﬁt(/k2 —91).

The process of obtaining sequences of diophantitupl&s with propertyD(k2 —91)
is illustrated below:
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Let M be a 3*3 square matrix given by

<
I
o o R
P O O
|
H'\’

NY

Now

(13,7, %+ 2QM = (13,R+ 20,K+ 5
Note that

13*(2k + 20)+(k2 - 9]) = perfectsqua

13*(4k + 59)+(k2 - 9]) = perfectsqua

(2k + 20)* (4k + 59)+( K- Qj = perfectsque

Therefore, the triple(13,2k+ 20, &+ 5) represents diophantine 3-tuple with
property D(k2—91). The repetition of the above process leads to esemps of
diophantine 3-tuples whose general fofac,_,, ¢5) is given by
(1313°+( %- 2§ s~ &+ 20,18+ Xs ),s=1,2,3.......

A few numerical illustrations are given in Tablddwe:

Table 2.12: Numerical illustrations

K (a,¢,,C,) (a,c.,c,) (a,c,,c,) D(k2—91)

0 (13,7,20) (13,20,59) (13,59,124) D(-91)
1 (13,7,22) (13,22,63) (13,63,130) D(-90)
2 (13,7,24) (13,24,67) (16,114,136 D(-87)

It is noted that the tripléc,_,,c,+13,¢,,),s=1, 2, 3......

forms an arithmetic progression.
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In a similar way, one may generate sequences @hdiatine 3-tuples with suitable

property through the other solutions to (2.19).

Generation of solutions

Let (xo, yc) represents any given solution to (2.19).
Consider the second soluti¢r,, y,) to (2.19) given by
X =2h=, = %+t! (2.30)
Substituting (2.30) in (2.19) and simplifying, ooletains
h=4x,+6y,+ 2
In view of (2.30), we have
X =T%+12y,+ 6,y,= 4dx+ 7Ty,+ .

which is written in the form of matrix as

7 12 6
LD =4 7 3| (%, Y1
0 1 1

wheret is the transpose. The repetition of the above gg®deads to the general

solution to (2.19) as

Y, 3x, 2Zn
2
(Xﬂ+l’ yn+l’1)t = Xn Yn Yn2_1 ()6! %11)t ’ n= 011121-‘
0 0 1

where

=2l a (- 497

X :2—\1/§((7+ 3" - (- 4/_3)1)
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1.5 A Search on the Homogeneous Cong? + 6xy + 15y* = 15°

The quadratic Diophantine equation with the threknowns to be solved is given by

X* +6xy+15y = 1£:° (2.31)
Substituting,
X+3y=1 (2.32)

in (2.31), we get
u®+6y” =1£:° (2.33)
Different ways of solving (2.33) for u, y and z greesented below. Knowing the

values of u and y, the corresponding values oexoftained from (2.32).

Way 1
Assume

z(ab)= &+61 (2.34)
Write 15 as

15= (3+if6) ( 3—i\/_() (2.35)

Using (2.34) and (2.35) in (2.32) and applying tiethod of factorization define
(u + i\/éy) = (a+ i\/éb)z(3+ i\/—E)

From which, on equating the real and imaginaryspame obtains

u=3a*-180"-1zak (2.36)

y(ab)=d-65+€al (2.37)
In view of (2.32), we have

x(a, b) = -30at (2.38)

Thus, (2.34), (2.37) and (2.38) represent the arteglutions to (2.31).
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Properties

1. x(a1)+30Pr-3a,, = (

2. y(a1)+5t,,-6Pr+6=0

3. y(Lb)+t,, - Pr+t,, -1=C

4. x(al)+y(al-25;,+ 24Pr= ¢ modl)
5. x(1,b)+ y(1,b)+ § = 0o mod12

Note 1

One may also represent 15 as

1708) (o 47

2

15=

After performing a few calculations as above, tberesponding values of y andz
are given by

X( A B)=-60K + 3608+ 69 Al
y(A B) =35A& - 2108 - 90AE
z( A B)=25K +15( F°
Properties
1. x(A1)+t,,,—631Pr, + 631,,~ 366
2. X(1,B)=t,,,5 —1049Pr, + 1049,, + 66
3. y(A1)-t,,+56Pr,-56&,,=  mod)
4. y(1,B)+1,,, +299Pr, - 299,, = ¢ mod)

5. x(A)+y(A)+t,,— 576P,+ 576,,— 156
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Way 2
(2.33) is written as

2 2 _ 2 %
u-+6y =15z *1 (2.39)

Assume

(1+i2V6)(1-i 2/)

1= = (2.40)

Substituting (2.34), (2.35) and (2.40) in (2.39)daemploying the method of

factorization, define

(u+iVey)=(3+iV6) (a+ive) *@

On equating the real and imaginary parts, we get

u=2(-9a + 54 - 84at)
5 (2.41)

y=1(7a - 426% - 18at)
5 (2.42)

As our interest is on finding integer solutionsplaging a by 5A and b by 5B in

(2.34), (2.41) and (2.42), it is seen that
u=-45A + 2708° - 420AE

y(A B)=35K - 2108 - 90AI

(2.43)
z(A B =25K +15(F* (2.44)

In view of (2.32), one obtains
x( A B)=-150K + 9008 - 150At (2.45)

Thus, (2.43), (2.44) and (2.45) represent the artsglutions to (2.31).
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Properties

1. X(AL)+t,,+ 299Pr, — 299, ,— 906G

2. X(1,B) = tggos — 749Pr, + 749, + 156

3. y(AD-t,,+56Pr,~-56,,= ( mod)

4. y(1,B)+t,,, +299Pr, - 299,, = ¢ mod)

5. x(AL)+ y( A)+ t,,, + 354P;, — 354, ,— 696

Note 2

The representations of (2.45) and (2.31) in (2rB8y also be considered as follows:

(5+iv6)(5-ive)

49

(i) 15=(3+iVe)(3-iVe , E

(9+i7\/%l(59—i z/_@ l:(lri 24( v )

(i) 15= S

(i) 15:(9“7*/%129'”‘/_6) | 1:(5”\/—% 5i")

Employing the procedure as above for each of #psasentations, the corresponding
integer solutions to (2.31) thus obtained are prieskebelow.
Solutions obtained from (i):

x( A B)=-7(304 + 1808 + 150At)

y(A B =7(11K - 66E + 6AH
z(AB)=49 A +68)

Solutions obtained from (ii):

x(a b)=-6&+3 + €al
y(ab)=d-65-6al
z(ab=d+68
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Solutions obtained from (iii):

x( A B)=35(-198& + 11888 - 402\

y(A B)=35(53K - 3188 - 78AH

z(AB)=35( K +6E)

Way 3
(2.33) can be written in the form of ratio as

u+3z z+y_ a
= =—, %0
6(z-y) u-3z B o (2.46)

which is equivalent to the system of double equmtio

pu+6ay+(-6a+33) z= (}

—au+By+(3a+pB) z=0 (2.47)

Solving (2.47) by method of cross multiplication get,

u=18x%-36°+ 1aap

z(a, B) =6a* + p? (2.48)

y(a.B)=6a’-p*- wﬁ}
Using (2.32), we have

x(a.B) =3Cap (2.49)
Thus, (2.48) and (2.49) represent the integer isolsitto (2.31).

Properties

1. x(a,1)-30Pr, +30Q,, =

2. y(a,1)-t,, +Pr,—t,, +1=C(

3. y(LB)+t,,+6Pr,—6t,,=0 mod)

4. x(a,)+y(a,)-t,, - 2%+ 29, + F

5. x(1,8)+y(1B)- 24Pr, + 25, ,= ¢ mod)
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Case 2

(2.33) is written in the form of ratio as

u+3z :3(Z+ y)zﬁ,ﬂio

2(z-y) u-3z p

which is equivalent to the system of double equmtio

Bu+2ay+(38-20)=0
(2.50)

—au+3By+(3B8+3r) z=(
Solving (2.50) by method of cross multiplicatiore get
u=6a’-98%+1.p

y(a,B)=2a"-33"- &
2(a, B) = 2a° + 352

(2.51)
Using (2.32),
x(a,B)=30ap (2.52)

Thus, (2.51) and (2.52) represent the integer isolsitto (2.31).
Properties

1. y(a,1)-t, +5Pr, - %,,= 0 mod)

2. y(LB)+t, ,+8Pr,—8&,, =0 mod)

3. x(a,)+y(a,)-t,-25Pr, + 25, + 3=

4. x(LB)+y(1,B8)+ 2m, ,~ 21, - 2=

5. x(a,1)-y(a,)+1t,, - 35Pr, + 35,, - 3

Case 3

(2.33) is written in the form of ratio as

u-3z _2(z+y) _a
3(z-y) u+3z _,B"B;tO
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which is equivalent to the system of double equntio

Bu+3ay+(-30-38) z=(
(2.53)

—aqu+2By+(-3a+2B) z=(
Solving (2.53) by method of cross multiplicatiore gyet
u=-9a°+6pB%+1.p3

y(a,B)=3a%-28"+ 60,6’}

2(a, B) = 30" + 28° (2.54)

Using (2.32),

x=-18a% +128° - tap (2.55)

Thus, (2.54) and (2.55) represent the integer isoisitto (2.31).

Properties

1. x(a,1)+t,, +23Pr, - 23,, =  mod1)

4a
2. x(L,B)-ty,—5Pr,+&,, =0 mod)
3. y(a,1)-t,, -8Pr, +8&,,+2=(
4. y(1,B8)+t,—5Pr, + &, , - 3= (
5. x(a,1)+y(a,)+18,, - 10= |

Case 4

(2.33) is written in the form of ratio as

u+3z_6(z+y) =2 B0
z-y u-3z g

which is equivalent to the system of double equnstio

(2.56)

Bu+ay+(-a+3B)z=0
—au+6By+(3r+68) z=(
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Solving (2.56) by method of cross multiplicatiorg wet

u=3a°-188°+1ap

y(a.B8)=a’-6p°-6aB
(2.57)

z(a,B)=a’+6p*
Using (2.32),
x(a,B)=3CaB (2.58)

Thus, (2.57) and (2.58) represent the integer isolsitto (2.31).

Properties
1. z(a,1)-t,,-6=C

2. y(a,)-7,,+6Pg=(d mod)

3. z(LB)-6t,-1=C(
4. y(L,B)+t,,+11PE- 11, , - E

5. y(a.1)+z(a,)+6Pr- 8§, = |

Case 5

(2.33) is written in the form of ratio as

u=sz_8(z*y) _a o
z-y u+3z p

which is equivalent to the system of double equnstio

(2.59)

Bu+ay+(-a-3B)z=0
—aqu+6By+(-3a+68) z= (

Solving (2.59) by method of cross multiplicatiore get

u=-3a°+188°+ 1.ap
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y(a,B)=a*-6p5%+ Gaﬂ}

z(a,B)=a’® +6p3? (2.60)

Using (2.32),
x(a,B) =-6a*+368° - (2.61)

Thus, (2.60) and (2.61) represent the integer isoisitto (2.31).

Properties

1. x(a,1)+t,, +11Pr, - 11, =  mod)
2. x(LB)-t,,~29Pr, +2%,, = ( mod)
3. y(a,1)-t,,-6Pr, + 6, +6=(

4. y(LB)+t,,~Pr+t,, —1=C

5. x(a,1)+y(a,)+5,, - 30= I

Way 4
Introducing the linear transformations

z= X+6T, y= X+15T, u= L (2.62)

in (2.33), it is written as
2 2 2
X“=90T"+U (2.63)
which is satisfied by
T=2r5,U=90r" -5, X=90r* + ¢

In view of (2.62) and (2.32), the correspondinggdr solutions to (2.31) are given by

X =-65 —90rs
y =90r +s° + 3(rs

Z=90r* +s? +1:re
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Also, (2.63) can be expressed as the system ofled@guations as presented below in

Quadratic Diophantine Equations

Table 2.13:
Table 2.13: System of Double Equations

System 1 2 3 4 5 6 7 8 9
X +U T2 | 3T? | 5T2 | 9T? | 15T% | 45T% | 90T | 45T | 30T
X-U 90 30 18 10 6 2 T 2T 3T
System 10 11 12 13 14 15 16 17 18
X+U 18T 15T 10T oT 6T 5T 3T 2T T
X-U 5T 6T oT 10T 15T 18T 30T 45T 90T

Solving each of the above system of equations, vlees of X,U and T are

obtained.

In view of (2.62) and (2.32), the correspondingegdr solutions to (2.31) are

obtained. For simplicity, we present below the esponding solutions in Table 2.14:

Table 2.14: Solutions

System X y 4
1 -270- 9k 2k? + 30k + 4¢ 2k> +12k + 4*
2 -90- 9k 6k? + 30k + 1° 6k* + 12k + 1°
3 -54-9(k 10k* + 30k + ¢ 10k® + 12K+ ¢
4 -30- 9(k 18k* + 30k + & 18k° + 1K+ ¢
5 -18- 9(k 30k* + 30k + ¢ 30k* + 1K+ ¢
6 -6-9Ck 90k* + 30k + 1 90k* + 12K + 1
7 ~96k 12Kk 102
8 -102k 77k 59k
9 -108 63k 45k
10 -12Ck 53k 35k
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Quadratic Diophantine Equations

System X y 4
11 -126k 51k 33k
12 -144k 49k 31k
13 -15Ck 439k 31k
14 -18Ck 51k 33k
15 -19¢k 53k 35k
16 -27Ck 63k 45k
17 -36Ck 77k 59k
18 -630k 12k 10k
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1.6 On the Ternary Quadratic Equation x>+ y* =z*+141

Consider the second degree equation with threahles
X*+y =72 +141 (2.64)

The introduction of the transformations

x = (2k* + 20k- 2] a ,
(2.65)
z=(2K +20k- 20 a k> Og # |
in (2.64) gives
y? =(4K* + 40k- 4)a®+ 14 (2.66)

which represents the positive pell equation. Thgainpositive integer solution to
(2.66) isa, =1,y, = 2k + 1(
To obtain the other integer solutions to (2.66)nsder the corresponding pell

equation
y* =(4K*+ 40k- 4)a® + (2.67)
whose least positive integer solution(i,, ¥,) .

The general solutio(d, ,y,) of (2.67) is given by
y == f (2.68)

~ 1
a

= (2.69)
2\Jak? + 40k — 41

n

where

n+l
fn :()70"'\/4k2+40k— 415’0) + (%_V 4K + A0k 4']670)”+l - 1012.

n+l
0, = (% +VaK +40k- 414,) - (- 4K+ 40 41,)"* - 10.1.2..
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Employing the lemma of Brahmagupta between thetisoisi (a,,y,) and (4, ,,).

the other solutions to (2.66) are represented by

O’n+1:0'0yn+ yodn , h=-1,0,1,2... (270)

You = Yo¥o + (4K +40k- 4da,a, ,n=-1,01,2,. (2.71)

To study the properties among the solutions, osetti@o for particular values &f.
For simplicity and brevity the choic& =1 in (2.66), (2.67), (2.68) and (2.69)
correspondingly leads to

y’=3a*+141,a,=1y,= 1L

y*=3a*+1,4,=1,y,= ¢

Y, :% £, :[(zwg)”ﬂ N Z_ﬁ)m}
vt =[(2+¢§)”“_(2_@)”*1} n=-1,01..

2.3
a.. :% f, +239, (2.72)
Yo =61, +%\/§gn (2.73)

Substitutingk =1 in (2.65) and using (2.72), we get
1
X1 =5 1, +2,/3g, (2.74)

z.,=1+4/3¢, (2.75)

Thus, (2.73), (2.74) and (2.75) represent diffepasitive solution in integers to (2.64).
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A few numerical examples are given in the followtagle 2.15 below:

Quadratic Diophantine Equations

Table 2.15: Numerical Examples

n X1 Yne1 241

-1 1 12 2

0 14 27 28

1 55 96 110

2 206 357 412

3 769 1332 1538
4 2870 4971 5740
5 10711 18552 21422
6 39974 69237 79948

From the above table, one may generate Ramanujaubbers of second order from

suitable values ofx,y and z.

[llustration

y,=96=2048= 4124 6 16 8 12
=25°-23F=14-16= 11- 5= 18- 2
25%-23=14- 1G> 25+ 16= 23 1% 7
25°-23=1F- 5= 25+ 5= 23+ 1i= 6!
25%-23=10G- Z= 25+ 2= 2%+ 18= 6
14 -10=17- 5= 14+ 5= 16+ 13= 221

1P-5=1C-2>= 1%+ 2=5+16= 12

Thus, 725,650,629, 221,1. are Ramanujan numbers of second order.
Recurrence relations fot, y and z are:

X,z ~4X,.,+X,.=0,n=-1,0,1...

Yors = 4Yneot Yoy =0,n=-1,0,1...

z,,—4z,,+7,,=0,r-1,0,1...
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*
L X4

*
°e

Some combinations between the solutions are gieéwb
Z Yo~ X2 ¥2%,,=C

Z Yoa 1% T 2%, =C

» Ay Xt X, = C

> 2Yp2 " Xua T % =0

Cubical integer:

I % (8X3n+4 _18X3n+3) + 3( &%*'2_ 1% 1):|

. 1
i [ (B~ 646, + B, 64,)]

1
. E[(sysms - 2X3n+3) + 3( 81~ 2X, 1)]

1

iv. a[(gysnw - 28y3n+3) + 3( 8y~ 28X, 1)]

Bi-quadratic integer:

1

] F[(376x4n+5—846<4n+4)+ {8&..- 18,) - 44]

i 8182[(1504x4n+6—12032<4n+4)+ ¢ 8.,- 64,) - 70698

1

“I F[(376y4n+4 - 94X4n+4)+ Z( &/ml_ %1)2 - 441:|

. 1 -
Iv. E[(752y4n+5_ 2632(4n+4)+ z( 8’n+2_ 2&‘#1)2_ 176[|

Nasty number:

o1
. E[564+ 48, — 10, ,]

n+3

L1
i E[2256+ 4%, 384,,.,]

n+4 -
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1
i E[564+ 48y,.,,~ 1,.,,|
1

iv. a[1128+ 48y,,.,— 168&,,,,]

Remarkable Observations
I.  Choices of hyperbola with their solutions generatedugh the known solutions
are in Table 2.16 below:

Table 2.16: Hyperbola

S. No. Hyperbola (Xn’Yn)
1 3X2 - Y? = 2650¢ [ (8%,12 =18%,) { 28, 2%,,)]
5 3X2 Y2 = 42412 [(8%.15=64x,.,) {110¢,,~ 2¢,5) ]
3 3X2 - Y? = 2650¢ [ (8Yna = 2%,1) [ 24%, = 2%,1) ]
4 3XZ - Y2 =10603; [(8Ynz = 28%,.1) { 5%~ i) ]

Il. Employing linear combination among the solutionseotchoices of parabola are
presented in Table 2.17 below:

Table 2.17: Parabola

S. No. Parabola (X,.Y,)
1 141X, - Y? = 2650 [(94+ 8%,5 = 18%,,.,) [ 28¢,,— X, )]
2 564X, - Y? = 42412 [(876+ 8., — 64,,.,) (116~ X,..)]
3 141X - Y? = 2650 [(94+ 8,00 = 2,.5) { 246, ,= 2, ) ]
4 282X -Y? = 10603 [(188+ 8y,,.s— 28,,.,) ( 5&.,~ 3, ,)]

Generation of solutions

Let (x,, Yy, 2,) be a known solution of (2.64).
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Consider the second soluti¢m, y, , z,) of (2.64) to be

x=h=-x,%=h-y% 2=k , (2.76)
whereh is a non-zero integer to be determined.

Substituting (2.76) in (2.64) and simplifying, wetg
h=2(x+ Y+ i) (2.77)

Using (2.77) in (2.76), the second solution of 4218 represented in the matrix form as

(% %.2) = M( %, %, o'

where M = andt is the transpose

N N P
N PN
) NY N

The repetition of the above process leads to tmergé solution(X,,,, Yo, z,,) Of

(2.64) in the matrix form as

(Xots Yirts Za) = M, %, o) (2.78)
Y, -(-1)" Y,+(-9 X.
2 2
wherent =| o t(EY Y =(=1) X |,n=0,1,2....
2 2
Xn Xn Yn

in which (xn, Yn ) represents the general solution of the pell eqoaf =2 X* +1.

Thus, given an integer solutio(mo,yo,zo), one may generate sequence of integer

solutions to the given equation based on the knewatution through employing

(2.78).
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Remark
In addition to (2.65), one may introduce the transiations

x:%(kz +11K— 6)a , z:%( R+ 11k- ¢)a

in (2.64) leading to
y* =(k*+11k-5)a’+141.a,= 2y, = &+ 1

Following the procedure presented above, anothiefseteger solutions to (2.64) are

obtained.
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1.7 On the Homogeneous Conex?* — 8y* = 257

Consider the homogeneous cone represented byrtiatejuadratic equation
3x* —8y” = 287 (2.79)
we present below different methods of solving (2.8®d thus, obtain different sets of

integer solutions to (2.79)

Method 1

Introducing the linear transformations

X=X +8T, y= X+31 (2.80)

X?+57 = 24T? (2.81)
Assume

T=T(ab=d+5F (2.82)
write 24 as

24=(2+i2/5) (21 21) (2.83)

Using (2.82), (2.83) in (2.81) and employing thetlmoel of factorization, define
2
X +iy/5z= (2+ i2\/_5) (a+ i\/_Eb)
Equating the real and imaginary parts in the alsapeation, one obtains
X=X(ab=2&-105~ 2(al (2.84)
z=7zah=24-10B+¢a (2.85)

Substituting (2.82) and (2.84) in (2.80), we have

x=x(a b)=10& + 308 - 20a|}
(2.86)

y=y(ab=5&+58-20ab
Note that (2.85) and (2.86) represent the non-destinct integer solutions to (2.79).
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Properties

« x(Lb)+2y(1,b) = 4(,,

« y(al)-10y, + 25= ¢ mod)

« z(aa+l)+4PR+6GNp+ 16= |

« z(Lb)-571,0= 4(,,

« x(a1)-2y(a1-10GNg= ( mod)

Method 2

(2.81) is written as

2 2 _ 2
X +5z2°=24T°11 (2.87)

Assume

1=

(2.88)

(2+i\/§)9(2—i\/_5)

Substituting (2.82), (2.83) and (2.88) in (2.87)daemploying the method of

factorization, define

2+'\/g 2
(x +iv5z) :u(y i2/5)(a+ i) (2.89)
3
Equating the real and imaginary parts in (2.89) haee
X:X(a,b):—za%+106—2(a| (2.90)
z=2z(aBh=24-10B-¢a (2.91)

Substituting (2.90) and (2.82) in (2.80),

x=x(a b =6& +508 - 20al}
(2.92)

y=y(ab=&+255-20al

Thus, (2.91) and (2.92) represents the integetisokito (2.79).
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Properties
+ x(aa)-t,-5a=C
« y(aa)-57a9-115-33GNp= ¢ modl)
« x(aa)-y(a3d-30PR+15GNp+ 15 |
* y(a &) is a nasty number
e z(b b+1)+24t, + 6GNQ+ 16= |

Note: It is to be noted that, in addition to (2.88) Iyr&lso be represented as shown

below:
(1+iaVs)(1-i 4/

Way 1: 1= a1 (2.93)
(2+i3\ﬁ5)( 2-i 3ﬁ)

Way 2: 1= A9 (2.94)

Following the procedure as above, the corresponitlteger solutions to (2.79) for
(2.93) and (2.94) are presented below:

Solutions for (2.93):

x=X( A B)=306A + 49508 - 900AI
y=y(A B)=-99 & + 29258 - 900AI
z=2( A B=90 A- 4508 - 684AB

Solutions for (2.94):

x( A B)=210K + 28708 - 700Al
y(A B =-35K +16458 - 70 Al
z( AB=70A-3508~ 364A

X
y
z
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Generation of solutions
Here we obtain formula for generating sequencentd#ger solutions to (2.79) based

on its initial solution.

Let (%, Yo, 2c) be the initial solution of (2.79).

Formula 1
Let (x, ¥, z,) be the second solution of (2.79),
wherex =33x, , y,=h-33y, , z= h 37, (2.95)
Substituting (2.95) in (2.79) and simplifying, wetg
h =16y, + 5(z,
Thus, the second solutidix,, y,, z,) to (2.79) is given by
X =33x%, , ¥,=—17y,+ 50z ,z= 16y+ 1 |

Expressy, andz in the form of2x 2 matrix as follows:

Yilom | ] where m = 17 SE
z 2, 16 17

Repeating the above process, the general valugsnil z are given by

) (%)

If a, f are the eigen values &l , then

M" = a (M=-p1)+ 2 (M —at)

(a-8) (B-a)
1 n n 25 n n
- 3—3(80' +25ﬁ) E})(O’ _ﬂ)
8/ n 25; , n
3—3(” -£") 33(” +84")
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Hence, the general values xfy, z satisfying (2.79) are given by

X, =33'X,

Y, :i(8an + 25,3”) A +§_2(an_ﬁn) 2,

=@ -F) @ +88) 2

Formula 2
Let (X, ¥;, %) be the second solution of (2.79),
wherex =3h=X%, =Y, 3= h (2.96)
Substituting (2.96) in (2.79) and simplifying, wetg
h=9x, + 2Ez,
Thus, the second solutidrx,, y;, z,) to (2.79) is given by
X =26%+75Z, , Y= % , 3= 9%+ 2

Expressy, and z in the form of2x 2 matrix as follows:

(le =M [Xoj where M :(26 7”)
z 2, 9 26

Repeating the above process, the general valugswod z are given by

3 (3

If a, 8 are the eigen values ™ , then

o a _a\+ P g
M —(a_ﬁ)(M ) (’B_a)(M )
3( n_pn i 0, pn
W@ =) Slap)
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Hence, the general values xfy, z satisfying (2.79) are given by

=2 )+ 20 )-,

Yo = Yo

z, :g(a” —,B”) X, +—;(a’”+[j”) %
Formula 3

Let (X, ¥;, %) be the second solution of (2.79),
wherex =5x,+h, y=h-5y, z=£% (2.97)
Substituting (2.97) in (2.79) and simplifying, wetg

h=6x, +1€y,
Thus, the second solutidrx,, y;, z,) to (2.79) is given by

X =11x+16y, , %= 6%+ 11y, ,2=

Expressx, andy, in the form of2x 2 matrix as follows:

(le =M (Xoj where M :(ll 16)
Y, Yo 6 11

Repeating the above process, the general valugswod z are given by

)= ()

If a, B are the eigen values ™ , then

@ o B
M _(a_ﬁ)(lvl B) (ﬂ_a)(M al)
Blaeg) o)
vro| 25 2.5

3(a"-p")  Je(a"+p")
45 2.5
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Hence, the general values xfy, z satisfying (2.79) are given by

_Vo(a"+p")  NE(a"+p")
Xn_ 2\/3 Xo+ 2\/*5 3'0
_3{a"-p) e(a+p)
yn_ 4\/3 X0+ 2\/_5 )0

z,=5"2

n
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[1.8 On the Integer Solutions to Ternary Quadratic Diophantine Equation

72> = D(x*-y?), D =oddprime

The ternary quadratic diophantine equation to Ieesiofor its integer solutions is

Z* = D(X¥ - y?), D= odd prim (2.98)
SinceD is an odd prime, each of the expressie[})|c12+s—1,DT_1 is an integer.

In view of the identity
(a+b)’-(a-b*=4at

it is observed that (1) is satisfied by
D+1 D-
X=(—)K, y=(—)K,z= KL
( > K, y=( >
The other sets of solutions to (2.98) are illusiddbelow:

Set: 1
(2.98) is written in the form of ratio as

z _D(x=y_a
X+y  z _,8"8¢0

which is equivalent to the system of double equnstio

axtay-p£z=0
-Dxp+ [Dy+a z=0

Applying the method of cross-multiplication to thbove system of equations, one

obtains

z=2a 3D
y=-a’+Dp’
x=a*+Dp*

which satisfy (2.98).
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Note: 1
It is observed that (2.98) may also be represeasdaelow:

z _X-y_a

pry 2z g P70

Employing the procedure as above, the corresporgbhgions to (2.98) are given by:

z=2apD, y=-Da*+ [, x= n*+B°

Set: 2

(2.98) is written as

Z+ Dy’ = DX = DX (2.99)
Assumex as

x=a + Dk? (2.100)
Write 1 as

) [D—k2+i2w5] [D—kz—izkﬁ}

1=
(D +k?)?

(2.101

Using (2.100) & (2.101) in (2.99) and employing thethod of factorization, consider

(Z+i\/HY):i\/B( a+iJBb)2. [DEI;Z:LZZI;\/B}

Equating the real& imaginary parts, it is seen that

z:(lez)[—ZD( D-K') ab-2kg &- DB | |
. (2.102)
y:m[( D-K*)[ &~ DB’]-4kDal

Since our interest is to find the integer solutiomplacinga by (D+k2) A & b by

(D+k2) B in (2.100) & (2.102), the corresponding integelusons to (2.98) are
given by
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=(D+K)[-2D(D-K) AB-2ki A- DB ]|.

(D+K)[(D-1)[ X~ DE]-4kDAH,

x=(D+K*)[ A+ DB

y

Set: 3
Taking
z=DW
in (2.98), it is written as
X2 - DW = y? = V[ (2.103)
Assumey as
y=a’ - DK’
Note that 1 may be represented as follows:

(D+k?+2k/D)(D+ K - 2k/T)

1=
(D-Kk**

Following the procedure as in Set 2, the correspanohteger solutions to (2.98) are

given by
z=(D-K)[2D(D+K) AB+2kD A+ DE]]|.
x=(D-k)[(D+K)[ A+ DE'|+4 kDAH,
=( )2[ - DF]

Set: 4

(2.103) is written as the system of double equatms below:
X+y=wW, x-y= L[
Solving the above system, the values,of andz satisfying (2.98) are found to be

D+1 1-D

x=2k* + 2k + , Y= 2K+ 2k+

= (k11
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GENERATION OF SOLUTIONS
Different formulas for generating sequence of ietegolutions based on the given

solution are presented below:

Let (x,. o, 2,) be any given solution to (2.98).

Formula: 1

Let (x,y,7) given by
X ==(D-Dx+t, y,=(D-1)y, z=(D-1)z+ 1 (2.104)

be the 2 solution to (2.98). Using (2.104) in (2.98) anmhglifying, one obtains
h=2Dx, + 2z,

In view of (2.104), the values of and z, are written in the matrix form as
(%:2)'= M, %) '

where

D+1 2 _
M = andt is the transpose
2D D+1

The repetition of the above process leads totheolutionsx , z, given by

(% 2) = M (%, )

If a,B are the distinct eigen values bf , then
a=D+1+2JD, B=D+1-2JD

We know that

a,n

(@-5)

L
(B-a)

M" = (M=-p1)+ (M —al),l =2x2 identity matrix
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Thus, the general formulas for integer solution&2t88) are given by

3 an+ﬂn an_ﬂn
S

Y. =(D-1)"y, ,
z zg(an_'gn)){ﬁ[an;ﬁnj .
Formula: 2
Let (x, y, ,) given by
X =(D+Dx;, ¥, ==(D+1)y,+F z =h-(D+1), (2.105)

be the 2° solution to (2.98). Using (2.105) in (2.98) anmhglifying, one obtains
h=2Dy, + 2z,

In view of (2.105), the values of, and z, are written in the matrix form as

(Y Zl)t =M"( 30)t

where

_(D—l 2

= andt is the transpose
2D -(D-1

The repetition of the above process leads to tPhsaolhyltionsyn, z, given by

t

(Yo z2) = M"(%, )
If a,p are the distinct eigen values bf , then
a=D+1 g=—(D+1)

Thus, the general formulas for integer solution&2t88) are given by

X, =(D+1)"x, ,
_(Da"+p") (a"=B").
yn_( D+1 jyo_{-( D+1j‘0’
_la=B)  (a+Dp)
2= P 5T %+( D+1J‘0
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Formula: 3
Let (xl, A zl) given by
% =-3Dx, +2F.y, =3Dy, + I, 7 =3Dz, (2.106)

be the 2 solution to (2.98).Using (2.106) in (2.98) and glifying, one obtains

h =4Dx, + 2Dy,
In view of (2.106), the values of andy, is written in the matrix form as

(% %) = M" (%, %)

where

5D 4D _
M = andt is the transpose
4D 5D

The repetition of the above process leads to tihaaom.ltionsxn, y, given by

(%0 ¥a) = M" (%, %)

If a,B are the distinct eigen values Bf , then
a=D B=9D

Thus, the general formulas for integer solution&2t88) are given by

_O,n_'_'gn 'Bn_an

= > X0+ > Yo

_(B —a))“a +B
2 2

Y, Yo 2=03BD" .,
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1.9 On Finding Integer Solutions to the Homogeneos Cone x* = 25y* + 2%*

The quadratic Diophantine equation with three umkm® studied for its non-zero
distinct integer solutions is given by
x* =25y° + 2¢;° (2.107)

We illustrate below different sets of integral s@uas of (2.107).

Set |
It is observed that (2.107) is of the form

x* = y*+ Dz? (2.108)
whereD = 29. Employing the most cited solutions of (2.1.@8e may obtain

X =29nT + 1t

1

y= g(29m2 - r2)

z=2mnmnl I

Since our interest centers on finding integral Bohs, it is possible to choose
m, n such thak, y andz are integers. For the sake of clear understanttiegyalues of
m, n with the corresponding solutions are presentethinle 2.18 below:

Table 2.18: Values ofm, n with solutions

Choices| m N X, Y, Z

1 5M 5N 725M %+ 25N? | 1484%- BI° 50N

2 Bk-4 | 5k-3 | 750k*-119Kk+ 473,14k - 226+ 91,30- T8
3 Bk—-4 | 5k—2 | 750k*>-118Kk+ 468,14k — 228+ 92,%0- &0
4 5k-3 | 5k-4| 750k*-91k+ 277,14k - 166+ 49,3%- T8
5 5k—-3 | 5k-1 750k - 88k + 262,14 - 17R+ 52,30- 4@
6 Bk—-2 | 5k—-4| 750k*-62k+ 132,14k - 108+ 20,30- 6@
7 Bk—-2 | 5k—-1| 750k*’-59k+ 117,14R° - 11K+ 23.50- 36
8 Bk-1 | 5k—-3 750k* - 32(k+ 38,14&° — 5R+ 4,56- 46

9 Bk-1 | 5k-2 750k* - 31(k+ 33,14&° - 5K+ 555- 36
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A few interesting properties among the solutions dach of the above choices in

Table 2.18 are presented below:

Properties
Choice 1

1. y-tgy +t,y =0(mod4
2. X=tysom ~ s =0(mod4
3. X=Y=tieom ~teoy =57IM + 2(N
Choice 2
1. X=y—t,,, =27(mod355
2. z-ty,, =3(mod21
3. Yty =4(mod87
Choice 3
1. Xty —tyey =36(mod 432
2. Y=ty —tg =2(mod 90
3. z-2t, =4(mod12

Choice 4

1. X=Z— 1,5 =112(mod14]
2. y-2t,, =21(mod2¢€

3. y+z-tg,, =26(mod47
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Choice 5

1. x-y-2t,;,, =10(mod10C
2. z-5t,, =1(mod5
3. y-Tt,, =13(mod39
Choice 6
1. x-50t,, =52(mod8C
2. y-10t,, = 20(mod 2z
3. z-2t,, =4(mod12
Choice 7
1. x—=3t,, =117(mod157
2. y-20tg, =5(mod6
3. z—-25%, = 4(mod5
Choice 8
1. x-250, = 38(mod18(
2. y-20tg, =4(mod6€
3. z-10t,, =€
Choice 9
1. x-10t,, = 33(mod43(
2. y-Tt,, =5mod79

3. z—-t,, —t,, =4(mod18
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Set |l
Express (2.107) as the system of double equattopseaented in Table 2.19 below:

Table 2.19: System of double equations

System I [l "
X+3y 7’ 297° 29z
X—=5y 29 1 Z

Solving each of the above system of double equatimme obtains the

corresponding integer solutions to (2.107) as etddbelow:

Solutions to System |

X = 50k?* + 30k + 1¢
y =10k? + 6k— =
z=10k+ 3

Properties
1. X-t,, —t,, =19(mod 78
2. y+z-5t, =1(mod25

3. x+y-t,,, =17(mod95

Solutions to System Il

X =1450k* + 87k + 13
y =290k? + 174k + 2
z=10k+ 3

Properties
1. Xx—=28,, =131(mod 229!
2. y-58,, =26(mod40¢

3. X+2z-29t,,, =134(mod230:
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Solutions to System Il
X=75a,y=14r ,z= ‘a
Properties

1. x*-75t,,, =0(mod555(
2. y*-14t, , = 0(mod18z

3. z*-t,,=0(mod24

Set Il

Write (2.107) as
25y* + 297 = X 01 (2.109)
Let x=25a’+ 2¢k? (2.110)

Write 1 on the right hand side of (2.109) as

(14+i29)( 141V 2)

15?

1= (2.111)

Substituting (2.110) and (2.111) in (2.109) and lyipg the factorization method,
define
By + i@zzl—lb_( Sa+ i 2% (14 iV 28
Equating real and imaginary parts, we've
5y:i[350a2 ~ 4067 - 29t |
15 (2.112)

z= 1[25:12 — 201 + 140ab]
5

As our interest is finding integer solutions, weocke a and b suitably so thaty, z

are integers,

82



Chapter-II Quadratic Diophantine Equations

Replacing a by 15a and b by 15b in (2.110) and1@).1the corresponding integer

solutions to (2.107) are given by

x = X(a b) =56254& + 65297
y=1Yy(a b=1050& - 12185 — 87 al
z=7231)=3754- 4356+ 2100a

Properties

1. z(al)-t,,, — ts,, = 2038(mod 247.
2. X(a1)-62%,,, = 1525(mod 500

3. y(al)-50,, = 82(mod13(
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11.10 On the Homogeneous Cone’ = (2k2 -2k + 2@ X% +y’

The ternary quadratic equation to be solved fointisger solutions is

7 = (2K - 2k+ 22) X+ (2.113)

We present below different methods of solving (3)11

Method: 1
(2.113) is written in the form of ratio as

z+y X

- sz 0 2114
(2k2—2k+ 22)x z-y ( )

il
S!
which is equivalent to the system of double equnstio

(2k* - 2k+ 22) rx= sy- sz (

sx+ ry—rz=0
Applying the method of cross-multiplication to thleove system of equations,

x=x(r,s)=2rs
y:y(r,s):(2k2—2k+ 22) F-¢
z=7(r,9=(2K -2kt 29 P+

which satisfy (2.113)

Note: 1

It is observed that (2.113) may also be represantéte form of ratio as below:

k? - k+11) x
oy (ke g
2X z-y S

(i)

The corresponding solutions to (2.113) are given as
X=2rs,y= 2r2—(k2— k+1:l) g, = 2t2+( K- k- 1:) :

(i) ¥ = 2X_Tag
(kz—k+11)x z-y s
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The corresponding solutions to (2.113) are given as

x:2rs,y:(k2—k+1]) F—Zsz,z:( K- krl) f+ .

Method: 2
(2.113) is written as the system of double equatiohable 2.20 as follows:

Table 2.20: System of Double Equations

System 1 2 3 4
z+y 2x (k? - k+12) 5" | (2K? -2k +22) x | (k*—k+12)»
z-y (kz—k+11)> 2 X 2%

Solving each of the above system of double equsitithe value ok, y& z satisfying
(2.113) are obtained. For simplicity and brevitywhat follows, the integer solutions
thus obtained are exhibited.
Solutions for system: |

X=2sy= -(kz—k+9) ¢, z= (k2 —k+13)s
Solutions for system: Il

x=25,y=25 (K- k+1l)-1,z=2¢ (K - k+11)+1

Solution for system: Il

x:25’y:(2k2—2k+ 21) ¢ z=(2K - 2k+ 29) «

Solution for system: IV
x=25,y=s(K - k#11)-2: 2= K- k+11)+ 2
Method: 3
(2.113) is written as
y*+(2k*-2k+22) X = 7= 201 (2.115)
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Assumez as

z=a +(2K - 2k+ 22) I (2.116)
Write 1 as
1_[(z<2—z<+23r2—sz+i2rs\/z€—72«2ﬁ( ¥-x pr-s- i £ x|

(2 -2+ 23 r2+32)2 (2.117)

Using (2.116) & (2.117) in (2.115) and employing thethod of factorization, consider

(a+i 2k2—2k+22)2[(2k2— At 2 P-4+ i - 2¢ 22 r}

+iv2k? = 2k+ 22x=
y (2k2—2k+ 23 r’+¢

Equating real & imaginary parts, it is seen that

1
Z<2—Z<+23 P+d

v {(2¢ -2+ 23 P-s}{ &~( 2¢- 2¢ 22 § - 40 2k 2k 2

x= (z&—zkag | 2at{ (2K -2k 24 P ¢ + 2 (26~ 2 2§

(2.118

Since our interest is to find the integer solutjonseplacing a by
[(2k2—2k+ 22) r2+sﬂ £ & b by [(2k2—2k+ 22) r2+sﬂ E in (2.118) & (2.116),
the corresponding integer solutions to (2.113)garen by

x=X{AB=((2K-2k 23 P+ §)[(A*-( 2K~ 2k 22 & 2rs 24§ 2 2k 2+ }]
A2k -2+ 29 BZ)[( 2~ de+ 21~ |

y=y(AB)=((2€-2k+ 23 '+ §) | —~4pBrs( 2K - 2k+ 29

2= {AB)=((2k -2k 23 F+ &)"(A7+{ 26 2k 2}B)
Following the above procedure, one may obtain difiee sets of integer solutions to

(2.113).
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Method: 4

(2.113) is written as

7 -(2K -2k+ 29 ¥ = y= YOI (2.119)
Assumey as

y=a’ - (2K - 2k+ 22) I (2.120)
Write 1 as

1_((2k2—2k+23 P+ ++ 28— K+ 222% (( K- e 2)2[2+ $—V K- X 2 |)

(262 -2x+ 29 r2-7)

(2.121)

Using (2.120) & (2.121) in (2.119) and employing thethod of factorization, consider

[(2k2—2k+ 22+ 5+ s/ A- ¢ 2%[{
+2aby/ 2I¢ — 2k+ 22

(2k2—2k+ 23 -

a’ +(2k? - 2k+ 23 t2]

2+ 21 = 2k+ 22 x=

Equating rational and irrational parts, it is séwat,

(a7 +(2Kk* - 2k+ 22 1) 2rs+ 2a( 2K - 2k 2 P+ §)

X_ (2k* - 2k+ 29 r? - &

(a2 +(2k - 2k+ 29 17)(( 2 - 2K+ 23 P+ §)+ dabrf 2R- 2k 2)
Z_ (2K - 2k+ 29 r? - &°

(2.122)

Since our interest to find the integer solution, plaeing aby
((2k2—2k+ 22) rz—sz) £ & b by ((2k2—2k+ 22) rz—s2) E in (2.122) & (2.120),

the corresponding integer solutions to (2.113)garen by
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x=x(AB=((2k-2k 29 - §) [(A2+( 2k- 2k 287 2rs BB(( K- 2% R ﬂ
y=y(AB=((2k-2k- 23 F- & [A*~( 2k 2 23B7]
2=4 AB=((2k-21 23 #- § rfaccae 22)52)((32;;:(’233:)22)

Following the above procedure, one may obtain difiee sets of integer solutions to

(2.113).

GENERATION OF SOLUTIONS
Different formulas for generating sequence of ietegolutions based on the given

solution are presented below:

Let (xo, yoyzo) be any given solution to (2.113).

Formula: 1
Let (x ¥, z,) given by
X =3%, % =3y,+ h z=32+" (2.123)
be the 2! solution to (2.113). Using (2.123) in (2.113) amdifying, one obtains
h=2y,-4z,

In view of (2.123), the values of, and z are written in the matrix form as
(yp 21)t = M( Yo ;()t

5 4
where M =
4 -5

andt is the transpose

The repetition of the above proses leads tmthsolutions Y., z, given by

t

(Vo) = M"( %, o)
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If a,f are the distinct eigen valuesMf then
a=3,=-3

We know that

M" = (aa_nﬂ)(M -pBl)+ (ﬁﬁ_”a)(M —al), 1 =2x2 Identity matrix

Thus, the general formulas for integer solution&t@13) are given by

X, =3"x,

(yn}; 4" -p" -20"+2B" PO}

Zn 3 20’”-2ﬁn —O’n+4;8n 20
Formula: 2

Let (X, ¥;, 7) given by
x =h-(2K -2k+23 x , y= h(2k- 2k 2§ y . z=( 2k- 2k 2) , (2.124)
be the 2 solution to (2.113). Using (2.124) in (2.113) aahplifying, one obtains

h

(4K - 4k+ 44) % + 2,
In view of (2.124), the values rfandy, are written in the matrix form as

(% %) = M(%, )

2k* -2k + 21 2
whereM = [ }

4k? - 4k+ 44 - (2% - %+ 21

Andtis the transpose

The repetition of the above process leads tm‘ﬂmolutions&, y, given by
(% ¥) = M7 (%, 3,)

If a,f are the distinct eigen valuesMf then
a=2-2k+23 B=-( & - X+ 2)
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Thus, the general formulas for integer solution&t@13) are given by

X 1 (2k* - 2k+ 22)a" + " a"-p" X,
[ynj_ (2" - 2k+ 23| (2k? -2k + 22)(a" - B")  a"+( 28 - K+ 23" {yj

z,= (2K -2k+ 23"
Formula: 3
Let (X, ¥,z) given by
x =h-(2K -2k+21]) x , y=(2R- 2k 2) y, z=( 2k- 2k P & (2.125)
be the 2° solution to (2.113). Using (2.125) in (2.113) amimhplifying, one obtains

h=27,+(4K - 4k+ 4¢) 3,

In view of (2.125), the values of and z, are written in the matrix form as

(%) = M5, %)
2k? - 2k + 23 :
whereM =
4k* - 4k + 44 A - X+ 2.

andt is the transpose

The repetition of the above process leads to tihaaom.ltionsxn, z, given by

t

(%:2,) = M" (%, &)

If a,f are the distinct eigen valuesif then

a =2k?-2k+ 23+ &/ X*- X+ 22,
L= 2k*-2k+23- 2] K- X+ 2

90



Chapter-II Quadratic Diophantine Equations

Thus, the general formulas for integer solution&t@13) are given by

y, =(2k* - 2k+21)"

2 2K2 - 2k + 22

3):
“ Joki-2k+22@"-B")  a"+p" °

N

an +ﬁn an_ﬁn XO
N
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[1.11 On the Homogeneous Quadratic Diophantine

Equation with Four Unknowns 2xy + 3z2° = 8n°

The homogeneous quadratic equation with four unkisote be solved for its integer
solutions is

2xy+37Z = Ev? (2.126)
We present below different sets of distinct integetutions to (2.126) through
employing linear transformations.
Introduction of the linear transformations

X=u+tv,y=u-vz= y(¥ ¥0 (2.127)

in (2.126) leads to

V2 +2u° = 8w’ (2.128)
Assume
— A2 2
w=a +2k (2.129)
Set |
Write 8 as
8=(i2/2)H 2/ 2 (2.130)

Using (2.129) and (2.130) in (2.128) and employthg method of factorization,

define
v+ivau=(i2V2)a+iva?

On equating the real and imaginary parts, one obtai

v=8ab,u=2d& - 41I*

92



Chapter-II Quadratic Diophantine Equations

In view of (2.127), note that

x = 2a’ - 4b* + 8at
y =2a’ - 4b’ - 8al (2.131)
z=8ab

Thus, (2.131) and (2.129) represent the distirteiger solutions to (2.126).

Set |l

Note that 8 may be expressed as the product of leoncpnjugates as below:

o (8+i2x/_2s)9(8—i a/2) (2.132)

Following the procedure as in Set |, the correspundhteger solutions to (2.126) are

given below:

x =3(10a” - 200” + 8alk

y =3(-6a" +12b* + 24at)
z=3(8a" - 161" — 8ab)
w=9(a? + 2b7)

Set Il

(2.128) is written as
V2 +20° = 8w’= 8W *1 (2.133)

Consider 1 as

1

_ (1+i2«/_2S)9(1—i 2/ 2) (2.134)

Using (2.134), (2.130) and (2.129) in (2.133) ampleying the method of factorization,

define

vrivau= (2/2)@+ ifzbf%m

93



Chapter-II Quadratic Diophantine Equations

In this case, the corresponding integer solution@1126) are found to be

x = 3(-6a’ + 12b* — 24al
y =3(10a” - 20" - 8at
z=3(-8a +16b° - 8al
w=9(a’ + 2b%)

It is worth to note that, by substituting (2.138,132) and (2.129) in (2.133) and

performing the analysis as above, one obtains fardiit set of integer solutions to

(2.126).

Remark
It is worth mentioning here that, in (2.134), 1 mig represented as the

product of complex conjugates, in general, as etddlbelow:

1- (2r2-s?+iJas)(@a?-s*-ia/ 2s
(2r2 +SZ)2

Set IV
Introduction of the linear transformations

X=X+8T+6V,y= X+8T-6V, = 6V, w X . (2.135)
in (2.126) leads to

X% =16T%+ €V? (2.136)
After performing a few calculations, the above doumis satisfied by the following
three choices of solutions:

. X=20k,T=kV=¢EI

ii. X =28k, T=5k,V=¢l

ii. X=24RP+4S ,T=6R- §, = ¢ F
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In view of (2.135), the corresponding integer solus to (2.126) are represented as
follows:
Solutions for (i):
x=76k,y=-20k,z= 48k,w= 2
Solutions for (ii):
x=116k,y= 20k,z= 48k,w= 3
Solutions for (iii):
X=T72RF-4S+ 48RS ¥ 72R- 45, ¥V 48 RS=z 48 RSw36 +R ’
Note: Suppose, instead of (2.135), the linear transftons are taken as
Xx=X-8T+6V,y= X-8T-6V,z= 6V, w X .
then, the corresponding three choices of solutior{2.126) are as follows:
Solutions for (i):
X =60k, y=-36k,z= 48k,w= 1
Solutions for (ii):
x=36k,y=-60k,z= 48k,w= 1
Solutions for (iii):

X=-24R +12S + 48RS ¥ - 24 R+ 125 48RS$S=z 48 RS=wW1Z+R ?

GENERATION OF SOLUTIONS
Three different formulas for generating sequencentéger solutions based on the

given solution are presented below:

Let (X, ¥ 2, Vo) be any given solution to (2.126)
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Formula: 1
Let (x,y,, z,w,) given by
X, = X0y ¥y = Y12, =20= i, W, = h+w, (2.137)
be the 2° solution to (2.126). Using (2.137) in (2.126) aihplifying, one obtains
h=3z + 4w,

In view of (2.126), the values & and w, are written in the matrix form as

(2 w) = M(3, vo) (2.138)

where

5 8
M :(3 5) andt is the transpose

The repetition of the above process leads to tfhaaom.ltions;q, w, given by

(zow) = M"(7, vo)

We know that

o & B’ g
M (a ﬁ)(M -1+ (3- a)(M 1),

| =2x 2 Identity matrix anda, 8 are the distinct eigen valuesdf
ForM given above in (2.138), it is seen that
a=5+2/6 f=5-2J€

Thus, the generation formula to obtain sequenageger solutions to (2.126) is given by

X = %
a"+p" 2 o
[ 2 J%"'%(a IB)VO

0’n+ﬁn
Wn 4\/6 ﬁ)zo [ 2 jV\O

Xn
z,
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Formula: 2
Let (X, ¥, Z, W) given by
X, =5%, Y, =5Y,,2 =57+ I, w, =h-5w, (2.139)

be the 2° solution to (2.126). For this choice, the generatformula for getting

sequence of integer solutions to (2.126) is obthasebelow:

X, =5"%,Y, =5y

where z, :Ean;ﬁnj%+%(a”—ﬁ”)w
W, =§(U"-ﬂ”)%+£an;ﬁnjv\o
a=11+4/6 B=11- 4/¢€
Formula: 3
Let (X, ¥, Z, W) given by
% =3h=3, Y, =h=y, z=-7+Fw=h+tw (2.140)

be the 2° solution to (2.126). Using (2.140) in (2.126) aihplifying, one obtains
h=2x,+6y,+ 67+ 1€V,
In view of (2.140), we have

X, =5x%,+18y,+ 18z + 4iv,
Y, =2%,+5Yy,+ 67+ 16v,
Z, =2%+6y,+57+ 16V,
W = 2% +6Y,+ 6%+ 17v,

which is written in the form of matrix as

5 18 18 4
|2 5 6 16 t
(X, ¥1,2, W) = 5 6 5 16 (%: %+ 3 o)
2 6 6 17
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wheret is the transpose. The repetition of the abovega®teads to the general solution

to (2.126) as

% (LD %+ (X+(-1)") g+8 X

+1

_Y, - (12
3

:n+en”%+m—eﬂ?y+m+§4f%+8xv

n+l 9 3 0 - 0
_Ya DT (L) Y-(1'2_ 8
Zn+l_ 9 )%+ 3 y0+ 3 Z)+ ? V0

Xn
Wn+l: 3 XO+Xny0+)(n%+Y\O

where

Y, =%((17+ 6ve)" +(17- a/_ém)

X, =

((17+ 6\/?3)”+l—(17— e/_za)””) = 012,

&

2
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11.12 On Homogeneous Quadratic with Five UnknownsAw® — x> - y? +z° =1@a*

The second degree diophantine equation with fivlenawns to be solved is
AW - X' -y + Z7=1€ * (2.141)
The process of obtaining different sets of non-zlistinct integer solutions to (2.141)

is exhibited below:

Setl
The substitution of the linear transformations

X=4P+12Q,y=8Y,z= 4(P- Q,w 4(RF Q,¢t (2.142)
in (2.141) leads to the space pythagorean equation

P2 = Q24 Y2+ 12 (2.143)
which is satisfied by

P=a’+bP+c, T=ad-06- ¢ Q&2 ah ¥z2 ¢ (2.144)
In view of (2.142), one has the integer solutiong2x.141) given by

x=4(@ +b’++6ab), y=16ac, = 4(a+ b+ - 2 ¢)
w=4(@ +b’+ c+2ab), t=2(d- - &)

Set 2
Introducing the linear transformations

x=(8a*-1)s,y=4aY,z swdast ¢ (2.145)
in (2.141), it simplifies to the Pythagorean eqoati

2= y24 12 (2.146)
whose solutions may be taken as

s=p+d, T=p-¢,Y=2p (2.147)
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In view of (2.145), the integer solutions to (2.} 4te given by
x=Ba’ -1)(p'+q),y=8apg = (p+ @), wada(p- 9.2 &p °
Note 1
The solutions to (2.146) is also taken as
s=p+q,Y=p-d, =2 p
In this case, the integer solutions to (2.141)gaven by

x=@8a-1)(p+ ), y=4a(p-4), Z(p+ 4), w4 a( pr 8,22 aj
Set 3

Taking

x=4(P+Q),y=4(P- Q,w=4P, = 41 (2.148)

in (2.141), it reduces to

Q +t2=2P? (2.149)

After some algebra, it is seen that (2.149) iss§ati by

t=a’-b’+2at,
Q=a’-b*-2al,
P=a’+t?

In view of (2.148), it is seen that

x=8a(a-b),
y=8b(a+b),
z=4(&-I¥-2al),
w=4(a’ +b)

Thus, the above values &fy, z, w, satisfies (2.141).
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Note 2

After performing a few calculations, (2.149) isaksatisfied by

t=2a*-b?,
Q=2a+b*+4al.
P=2a’+b*+2al

In view of (2.148), the corresponding valuesxpf, z, v are found to be

x=4(4a + 2b*+ 6al)
y=-8ab,

z=42a& +0+4ab)
w=4(2a*+ b+ 2al’

4

Set4
The choice

Z=Xx+4t (2.150)
in (2.141) leads to

y> — 4w’ = 8xt (2.151)
which is expressed as the system of double equataanshown in Table 2.21 below:

Table 2.21: System of double equations

System 1 2 3 4
y+2w 8x 4x 8t 2X
y-2w t 2t X 4t

Solving each of the above systems, one obtainsdhees of x, y, w,1. In view of

(2.150), the corresponding value ofis obtained. For simplicity, the integer solutions

to the corresponding system of equations are exlitielow:
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Solutions to system 1

X=s,y=4s+t2Kk, z= 16 K w 25 k=% 4

Solutions to system 2

X=s,y=2st2k,z= 8k w 5 k%2

Solutions to system 3

X=4s,y=2st+4k, =243 4k w2k s+

Solutions to system 4

Xx=2s,y=2s+t2k,=z2s 4k w s k=
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CHAPTER - 1lI
CUBIC DIOPHANTINE EQUATIONS

Chapter Ill analyses cubic diophantine equations irfour sections Ill.1 to IIl.4

Section 1.1

The non-homogeneous cubic equation with three umksorepresented by

3(x2+ yz)—5xy+ x+ y1=11:°% is analyzed for its patterns of non-zero distinct

integer solutions. A few interesting relations ampdine solutions are presented.

Section 1.2

An attempt is made to solve the cubic equation Watlr unknowns given by

X+ y +6(x+ y) Z=4 V' in integers. Some special relations between thetisols

are given.

Section 1.3

The homogeneous cubic equation with four unknowermesented by the
Diophantine equationc + y*+( x+ y)( x- y)* =16 2 is analyzed for its patterns of

non-zero distinct integral solutions. Various istdng relations between the solutions

and special numbers namely polygonal numbers dribiged.

Section 1.4
This paper concerns with the problem of obtainieg-gero distinct integer
solutions to the non-homogeneous cubic equatiorh whtree unknowns given

X+ Yy + x+ y=2727-a’+1). Afew interesting relations among the solutiors a

presented .Also ,a formula for generating sequeofcenteger solutions to the

considered cubic equation based on its given swilus exhibited.
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[11.1 On the non-homogeneous ternary cubic equation
3(x2 +y2)—5xy +Xx +y+1=11%°
The ternary non-homogeneous cubic equation to vedds
3(x2 + yz)—5xy+ x+ y1=11:° (3.1)
Introducing the linear transformations
X=Uu+Vv, y=u— (3.2

in (3.1), it gives

U?+10 =1117° (3.3)
where U =u+1 (3.4)
Assume

z=z(abh= d+11P° (3.5)

Solving (3.3) through various methods and usin@)(3different sets of integer

solutions to (3.1) are obtained.

A. Method 1
Consider
111=(10+iv/13( 16-1v 1) (3.6)

Substituting (3.5), (3.6) in (3.3) and applying thethod of factorization,
(U +ivIn)(U -iviw) =(10riv I 161V Po(a+iv 1) (a-iv b)’

Equating the positive and negative terms in thevalsmuation, we have

(U +ivIN)=(10+iV1] (a+iv 1)’ (3.7)
(U-ivi)=(10-iV1) (a-iv1b) (3.8)
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Equating the real and imaginary parts in either)(8r (3.8), we have
U =10a° - 330k’ - 33 b+ 12F° (3.9)
v=a’—33al’ + 30& b- 11(F (3.10)
Substitution of (3.9) in (3.4) gives
u=10a° - 330alf - 33 b+ 128 - (3.11)

Substituting the above values wéndv in (3.2), we get

x=x(a b =118 - 363a8- 38 b 116~ 1 }
(3.12)

y=y(ab=9d8-297a8- 638 b 2316-

Thus, (3.5) and (3.12) represents the integerisolsiof (3.1).

Properties
% X(L,b)-11CR + t,,, + 365- 10=
< y(a a)+120CR,+ 1= (
% x(aa+1)+ R +340CP,+ 702PR- 188GNQ- 19%
<+ x(al)-y(al- SQ-60PR+125a& 226
< y(a-a)+456CR, + 1= (

Note 1

Apart from (3.6), 111 is also expressed as

13+i5/11)( 13- §/1)

111= ( p (3.13)

In this case, the corresponding solutions to (8c&)given by

x=x(A B)=72K - 504K B- 2376AB+ 184&8-
y=y(A B =32R-816A B- 1056AB+ 29928-
z=2z(AB=4A+44B
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B. Method 2
(3.3) is written as

UZ+1v =112°0: (3.14)
Assume

(5+iv11)(5-iv1)

36

1=

(3.15)

Substituting (3.5), (3.6) and (3.15) in (3.14) @amdploying the method of factorization,

define
(v +i\/1_1/):%(10+ix/T])( 5+ 1}(a+iv D) (3.16)

Equating the real and imaginary parts in (3.16) haee

u :1(39a3—1287ab2— 495 b+ 181F)
16 (3.17)
v= 8(15a3 - 495l + 1174 b- 4295)
Replacinga by 6A andb by 6Bin (3.17) and (3.5) we get
U =1404A° — 46332AB° - 17828 B+ 653 F° (3.18)
v=540A° - 178200B° + 421X B- 154 F° (3.19)
z=36A + 39¢E’ (3.20)
Substitution of (3.18) in (3.4) gives
U=1404A° — 46332AF° - 1782& B+ 65348 - (3.22)
Substituting the above values wandv in (3.2), it is seen that
x=x( A B)=1944R - 64152AB - 13608 B- 49898~ (3.22)
y=y(A B =864A - 28512AB - 22032% B- 80788- '

Thus, (3.20) and (3.22) represents the integetisakiof (3.1).
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Properties

% x(A A)+25920CR + 1= 0

< y(B+1,B)-10627LR,+ 4795PR+ 23326NQ+ 44487

“ x(1,B) - 249485Q + bgses + 5281B- 1943

< x(1,B)- y(1,B)+ 3088&R, + 3564PR- 22032GNQ)- 231%2
“ y(A1)-864CR,~ S+ 22038PR+ 3234GQ- 77548

Note 2

It is to be noted that, in addition to (3.15), 1ynadso be represented as

(1+i3v11) (1-i 3/1)

3.23
10C ( )

1=

For this choice, the corresponding integer sol@itin(3.1) are given by

x=x( A B)=800A - 26400AB - 109200% B~ 400408- 1
y=y(A B)=-5400A + 178200AE - 95400+ 34980B- 1
z=2 A B=100 A+ 11008

Note 3

In (3.14), employing (3.13) along with (3.15) ar&d23) in turn, one obtains two more

sets of integer solutions to (3.1) which are exbibibelow:

Setl

x=x( A B)=69124 - 228096AB - 17625&+ 646278~
y=y(A B)=-4032A& + 133056AB - 18489& B- 677952
z=7( A B =144 A+ 15848
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Set 2

x=x( A B)=-43200A + 142560\ — 763204 B 27984@-
y=y(A B)=-78400A + 2587200AE - 39840& B- 14608-
z=Z A B =400 A+ 44008

In this paper, a search is performed to obtairedsffit sets of integer solutions
to the ternary cubic equation given by (3.1). Tealode, one may search for other

choices of integer solutions to (3.1).
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1.2 On the Cubic Equation x°+y®+6(x +y)z* = 4w?

The cubic equation with four unknowns to be soliged

X+ y +6(x+y) Z=4V (3.24)
Introducing the linear transformations

X=U+V, Y= U-\y W= | (3.25)
in (3.24), it is written as

u> =3v* +6z° (3.26)
Again, the substitution of

u=3U,v= X+6T, z= X-3° (3.27)
in (3.26), leads to

U?=18T?+ X? (3.28)
whose solutions are

T=2rs,X=18°%- ¢, U= 182+ ¢ (3.29)
From (3.29),(3.27), (3.25), the solutions of (3.249 given below:

x=x(r,s)=72r" + 28’ + 1ir

y=1y(r,s)=36r"+ 45 - 1ir:

z=127(r,9=18F-$-6r

w=w(r,s)=54r + 35
Properties

« x(1,5)-2y(1,9+ 6PR- 21GNQ- 2E
« y(r,s)=27(r,¢) is a Nasty number

« x(r,2)-4z(r,)-18NQ = ( mod)

« w(r,1)-9S - 27GNQ = 2:

« z(r])-11r+ 1=t

38.r
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Remark: One may also consider the transformation (3.27) as
u=3U,v= X-6T, z= X+~ (3.30)
In this case, the corresponding valuexof/, z, w satisfying (3.24) are represented by
x=x(r,s)=72r" + 28 - 1ir:
y=y(r,s)=36r"+ 45"+ 1irs
z=12(r,9=18F - < +6r
w=w(r,s)=54r + 35
In addition to the above solutions, other setsotitions to (3.24) may be obtained as
illustrated below:
Note that (3.28) is represented as the pair of teepumas in Table 3.1:

Table 3.1: Pair of equations

S. No. 1 2 3 4 5 6
U+X T2 gT? 312 ar 61 181
U-X 18 2 6 2T 3T T

Substituting the corresponding valuesWwfX and T from the above Tablel and in

(3.27) and (3.25) the different sets of integemusohs to (3.24) thus obtained are
shown below in Table 3.2:

Table 3.2: Solutions

S. No. X y z w
1 8k* +12k + 1¢ 4k* 12k + 3¢ 2k* —6k— ¢ 6k> + 27
2 72K+ 1K+ - 36k* - 1K+ ¢ 18k* —6k—1 54k? + ¢
3 24k* + 1K + ¢ 12k* - 12X+ 1. 6k — 6k — 2 18k* +¢
4 54k 14k k 33k
5 42k 12k -3k 27k
6 86k 28k 11k 57k
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Note: Substituting the values &, X, T obtained from Table 1 in (3.30) and (3.25),

one obtains some more choices of solutions to }3.24

Also, (3.28) is taken as

X?+18T*=U*01 (3.31)
Consider
U =a®+18b” (3.32)

and

3+ 2/8)(+ 21T

81

1= (3.33)

Applying (3.32), (3.33) in (3.31) and factorizirtgke

(a+ividD) (3+i 2/

9

X +i18T =

from which note that
1 2 2
X ==(3a* - 540" - 72al)
9

T =1 (24" - 360 + 6a)
9

Replacinga by 3A in the above equations, we have

X =3A? - 6% — 24AtL
(3.34)

T =2~ -4+ 2At
and from (3.32),

U =9A? +1¢h’ (3.35)
Substituting (3.34) and (3.35) in (3.27) and (3,2fh)e corresponding values of

X, Y, z, v satisfying (3.24) are given by
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X =42/ + 247 - 1. At
y=12/A° + 840" + 1: Ak
z=-3A + 60" - 30Al
w=27A + 5¢?

Note: In addition to (3.33), one may also write 1 as

(7+i 2v18)( 7-i 2/1)

121

1=

The repetition of the above process leads to ardifit set of solutions to (3.24).

In this paper, an attempt has been made to olféenetht sets of integer solutions

to X+ y*+6(x+ y) Z=4V". In conclusion, a search for determining integeutons

to the considered cubic equation with four unknowiay be performed.
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[11.3 On the Equation of Degree Three with Four Unknowns

x3+y3+(x+y)(x—y)2 = 162w°

The homogeneous cubic equation with four unknovwn$d solved for its distinct
non-zero integral solution is

X4y (x+ y)(x- y) =16 2¢ (3.36)
Introduction of the linear transformations

X=U+V, y=u-V z= (3.37)
in (3.36) leads to

u? +7v2 = 8w? (3.38)
Different methods of obtaining the patterns of gete solutions to (3.36) are

illustrated below:

PATTERN: 1
Let

w=a’+7L? (3.39)
wherea andb are non-zero integers.

Write 8 as

8=(1+iv7) (1-iV7) (3.40)
Using (3.39), (3.40) in (3.38) and applying the Inoet of factorization, define

(u+ivav) =(1+iV7) (a+ivb) (3.41)

from which we have

u=a’-14ab- 71
(3.42)

v=a’+2ab-76
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Using (3.42) in (3.37), the values gfy and z are given by

x=x(a,b)=2a8-12ab- 14/
y=y(a b =-16ab (3.43)
z=2zab=d-14ab-78

Thus (3.39) and (3.43) represent the non-zero énteglutions to (3.36).
OBSERVATIONS

1L x(aa)+Yaad+ 1, +t,+ t,,+ t,,=0(mod3

2.2(b o)~ y(b B+, =0

3.x(aa)-y(agd+ 4 aq+d,=-20

4.x(aa+l)-y(aarl)+ £ aad+ 79t = |

5. x(b.b)- (b B- W b+ £, =C

PATTERN: 2

Write 8 as

s+ 147)(5-17)

4

8=

(3.44)

Using (3.39), (3.44) in (3.38) and applying the Ineet of factorization, define
: 5+i7 : 2
(u+|ﬁv):(7\/_J(a+ |\/7b) (3.45)
from which we have

u :1(5a2 ~14ab- 35k2)
2

. (3.46)
v:—(a2 +10ab- 76)
2
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Since our interest is on finding integer solutioreplacing a by &, b by 2B in (3.39)

and by using (3.46) in (3.37), the correspondigger solutions to (3.36) are given by

x=x(A B =12 & - 8AB- 84B
y=y(A B =8 & - 48 AB- 568
z= 2 A B=10 A- 28 AB- 7012
w=w(A B)=4K +28B

(3.47)

Thus (3.47) represent the non-zero integer solstior(3.36).
OBSERVATIONS
1. (BB =X BB+ W BB+ f,,+ o+ Lat be=—12
2. YAA-XAA+1,,=C
3. x(AA-Y(AA~{ AN dam Bon La=101

PATTERN: 3

Write 8 as

8:(11+i\/7)(11—i\/_7)

16

(3.48)

Using (3.39), (3.48) in (3.38) and applying the Inoet of factorization, define

(u+ iﬁv) :[llﬂﬁj(aw iﬁb)z (3.49)

4

from which we have

u :5(11:;12 - 14ab- 77)
4

1 (3.50)
v:—(a2 +22ab- 76)
4
Since our interest is on finding integer solutiorplacinga by 2A, b by 2B in (3.39)

and by using (3.50) in (3.37), the corresponditgger solutions to (3.36) are given by
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x=x(A B =12 K + 8 AB- 84B
y=y(A B=10& - 36 AB- 70

3.51
z=7AAB=11A-14AB-77B ( )
w=w(A B)=4K+28B

Thus (3.51) represent the non-zero integer solstior(3.36).
OBSERVATIONS
1. x(AA+WAA+ L, +1,,+t,,=0(mod29
2. X(B,B)- 4B B- [, =0
3. y(A’ A)_ Z( A A)+ fiat 1,4 =0(mod7)
PATTERN: 4
Write (3.38) as
u’+7v: = 8w *1 (3.52)
Write 1 as
((3+iﬁ) (3—iﬁ)}
1= (3.53)
16
Using (3.39), (3.40), (3.53) in (3.52) and applythg method of factorization, define
(u+iv7v) = (1+iV7) (a+ if?o)z(3+;ﬁJ (3.54)

from which we have

u

(-a* -14ab+ 7t2)}
(3.55)

v:(a2—2ab—7kf)
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Using (3.55) in (3.37), the values gfy and z are given by

x = Xx(a, b)=-16ab
y=y(a b)=-2a& -12ab+ 14/° (3.56)
z=zab=-d-14ab+ 758

Thus (3.39) and (3.56) represent the non-zero énteglutions to (3.36).
OBSERVATIONS

1. y(aa-waag+ f,=0(mod7

2. y(aa+Zag+f,+f, =6

3. x(b,b)-2w(h )+ ,, = 0(mod 31

PATTERN: 5
Assume 1 as
[(1+i3\/_7)(1—i 3/_)}
1= (3.57)
64
Using (3.39), (3.40), (3.57) in (3.52) and applythg method of factorization, define
N (e =2 1+i3V7
(u+ 7] = (1+147)(a+ ) [ 8 J @59)

from which we have

u=21(-5a - 14ab+ 35¢°)
2

(3.59)
v=1(a ~10ab- 75)
2

Since our interest is on finding integer solutiorglacinga by 2A, b by 2B in (3.39)

and by using (3.59) in (3.37), the correspondingger solutions to (3.36) are given by
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x=X(A B =(-8 K - 48 AB+ 56 B)
y=Y(A B=(-12& - 8 AB+ 848)

(3.60)
z=2 A B=(-10 A- 28 AB- 70 B)
w=wWA B=(4AK+28E)
Thus (3.60) represent the non-zero integer solsitior(3.36).
OBSERVATIONS
1. x(AA+Y(AA-1,=0
2. y(B,B+1)-w B B+1)-64t, =  mod1)
3. Z( B, B)+ V\( B 3_ = Lp— L™ QZBEO(mOd5
PATTERN: 6
Assume 1 as
[(s+i4ﬁ>(s—i w)]
1= (3.61)
121
Using (3.39), (3.40), (3.61) in (3.52) and applythg method of factorization, define
. . =2 3+iaT
V) =1+iV7 D 3.62
(u+|J_v) (+|\/_)(a+|\/_)[ 11 j ( )

from which we have

u=21 (250 - 98ab+ 17%?)
11

1 (3.63)
v=—(7a" - 50ab- 49)
11
Since our interest is on finding integer solutioreplacinga by 11A, b by 11B in

(3.39) and by using (3.63) in (3.37), the corresiiog integer solutions to (3.36) are

given by
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x=x(A B =(-1984 - 1628AB+ 13868)
y=Y(A B =(-3524 - 528AB+ 24648)

(3.64)
z=2 A B=(-275A-1078AB 19258)
w=wWA B) =(1214 + 847E )
Thus (3.64) represent the non-zero integer solsitior(3.36).
PATTERN: 7
Assume 1 as
(1+i48/7)(1-i 28/")
127 ( )
Using (3.39), (3.40), (3.65) in (3.52) and applythg method of factorization, define
N 2 1+i1487
(u + |ﬁv) = (1+ |J_7)(a+ |J_7o) LTJ (3.66)

from which we have

U =1 (-335° - 68eab+ 234%)

157 (3.67)
v=-"-(49a" - 670ab- 3437)

127

Since our interest is on finding integer solutiaeglacinga by 1274, b by 12'Bin (3.39)

and by using (3.67) in (3.37), the correspondingger solutions to (3.36) are given by

x=X(A B =(-363224 - 17221 0B+ 254258)
y=Y(A B =(-48768K ~ 2032AB+ 34137@)
z= 2 A B=(-42545A~ 87122AB- 29781%)
w=W A B)= (161294 + 11290F )

(3.68)

Thus (3.68) represent the non-zero integer solsitior(3.36).
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PATTERN: 8

Assume 1 as

_[(3+i4ﬁ)(<’>—i W)} (3.69)

- 121

Using (3.39), (3.44), (3.69) in (3.52) and applythg method of factorization, define

(u+iﬁv):£5+iﬁj(a+iﬁb)2£3+i 4‘/—} (3.70)

2 11

from which we have

u= Ziz(—l3a2 ~ 322ab+ 91°)
1 (3.71)
v=--(23a" - 26ab- 1615
22
Since our interest is on finding integer solutiarglacinga by 227, b by 2B in (3.39)
and by using (3.71) in (3.37), the correspondirgger solutions to (3.36) are given by

x=xX(A B =(220& - 7656AB- 154(8)
y=Y(A B =(-792A& - 6512AB+ 55448)

(3.72)

z=2 A B=(-286 A~ 7084AB- 20028)

w=wA B) = (484K + 33888 )
Thus (3.72) represent the non-zero integer solsitior(3.36).
PATTERN: 9
Assume 1 as

(1+i48V7)(1-i 48/7)
1= > (3.73)

127

120



Chapter-lll Cubic Diophantifguations

Using (3.39), (3.44), (3.73) in (3.52) and applythg method of factorization, define

(u+iva) :£5+iﬁj(a+ iﬁb)z [ﬂj (3.74)

2 127

from which we have

u=—-—(-331a" - 3374b+ 2317)

1
2154 (3.75)

V= (241a2 — 662ab- 1681)2)
54

Since our interest is on finding integer solutiaeplacinga by 2547, b by 258 in (3.39)

and by using (3.75) in (3.37), the corresponditgger solutions to (3.36) are given by

x=X(A B =(-22860A - 10251448+ 160028
y=Y(A B)=(-145288K - 688848\B+ 1017018)

(3.76)
z= 2 A B=(-84074 A~ 856996AB+ 588518)
w=wW A B) = (645164 + 451618 )
Thus (3.76) represent the non-zero integer solstior(3.36).
PATTERN: 10
Assume 1 as
(3+iv/7)(3-iV7)
1= (3.77)
16
Using (3.39), (3.48), (3.77) in (3.52) and applythg method of factorization, define
(u+iv7v) :L“*iﬁj(m iﬁb)zi 3+'4‘/_‘j (3.78)

from which we have

u=2 (134 - 98ab- 91*)

8 (3.79)
v= 1(7a2 +26ab- 495

8
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Since our interest is on finding integer solutioreglacinga by 8A, b by 8 in (3.39)
and by using (3.79) in (3.37), the correspondigger solutions to (3.36) are given by

x=X(A B =(1604 - 576AB- 11208)
y=Y(A B =(48 K - 992AB- 3368)

(3.80)
z=2 A B=(104 A- 784AB- 7288)
w=wWA B = (64K + 4488 )
Thus (3.80) represent the non-zero integer solstior(3.36).
PATTERN: 11
Assume 1 as
(1+i3v7) (11 377)
1= (3.82)
64
Using (3.39), (3.48), (3.81) in (3.52) and applythg method of factorization, define
(u+iﬁv) :[11+L;\/_7j(a+ i\ﬁb)z[lHBa/_‘J (3.82)

from which we have

0 == (~5a¢ - 238ab+ 352)
16 (3.83)
v= i(l?az ~10ab- 1195)
16

Since our interest is on finding integer solutiarglacinga by 16A, b by 18 in (3.39)

and by using (3.83) in (3.37), the corresponditgger solutions to (3.36) are given by
x=X(A B =(1924 - 3968AB- 13448)
y=Y(A B =(-352K - 3648AB+ 24648)

z=2 A B=(-80 A-3808AB 5608)
w=w A B = (256K + 17928 )

(3.84)

Thus (3.84) represent the non-zero integer solstior(3.36).
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PATTERN: 12

Assume 1 as

(s34
S

3.85
121 ( )

Using (3.39), (3.48), (3.85) in (3.52) and applythg method of factorization, define

(u+iv7v) :[112[7](% iﬁb)ZE 3 M] (3.86)

11

from which we have

us= i(5a2 — 658ab- 35102)
44 (3.87)
V= i(47a2 +10ab- 3297)
44

Since our interest is on finding integer solutioreplacinga by 44A, b by 44B in
(3.39) and by using (3.87) in (3.37), the corresiiog integer solutions to (3.36) are
given by

x=X(A B)=(2288K - 28512AB- 16016

y=Y(A B =(-1848K - 29392AB+ 129363) 3.8

z= 7 A B=(220 A- 28952AB- 15408)
w=wA B)=(1936A& + 13558 )

Thus (3.88) represent the non-zero integer solstior(3.36).
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[11.4 On Non-homogeneous Ternary Cubic Equation
X+ y +x+y=2z(22°-a®+1)

The non-homogeneous ternary cubic equation to hedds

XC+y+x+y=2227-a’+1) (3.89)
Introduction of the linear transformations

X=u+v,y=u- Vv, zZ= y ¥ ¥C( (3.90)
in (3.89) leads to

u>=3vV+a? (3.91)
which is the well-known positive Pell equation. Tgeneral solution(v,,,,u,,,) to
(3.91) is given by

\V :ig +£f
"2

n+l 3
\3

U, =a fn+7a g,,n=-1,0,1,..

n?

where
f,=(2+/3)"+(2-/3)" g, = (2+4/3)" - (2 3"

In view of (3.90), the general solutiqw, _,, V..., , z,,,) 10 (3.89) is given by

3 5/3
=—af +—agq,,
Xn+1 2 n 6 gn
Yo =2 fn+—ﬁagn. n=-101,... (3.92)
2 6
Zn+1:a fn+\/2§agn’
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A few numerical examples are presented in Tablé8I8w:

Table 3.3: Numerical examples

Cubic Diophantifguations

n X1 Yne1 Z
-1 3a a 2a
0 1llo 3a Ta
1 41 1la 26a
2 155 41 97a
3 57 155 36za

From the above Table 3.3, the following resultsabrserved:

() The values ofx andy are both even or odd accordingass even or odd.

(i) The values ofz are even whemr is even and alternatively even & odd when

a is odd.
(i) X1 = Yneo
(V) Xoa ¥ Xz =4V
V) Zut+7,.,=30,
Vi) Z.3% 7,53 s
(Vi) Yot X2 =4 Y
(Vill) Yo+ Youo =27,
(iX)  Z.,5%52,, = 3(Yust Vi)
() X2 T X1 = Yaeat Y
Each of the following expressions is a perfect sgua
© a(8z,,722,,,t 2]

* a (1022n+2 - 6XZn+2 + m
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o a(18%,,,-22,.,+ 20
+ a(10z,,, - 6Y,,,+ 21,
o A(BYaniz ™ Xons o+ 20)
Each of the following expressions is a cubicalgete
© 0" [5Yans = Xanest 3(5Yn1 X))
«  a*[10z,,,- 6Y,,,+ 3(10z,,~ 6Y,,]
© 0% [18%,,,— 22,5+ 318X~ 23, ]
«  a?[10z,,,~ 6%, .+ 3(10z, ,~ 6%, |
. 0°[82,.5-22,,,+ 3(8%,,~ 27,,]
Employing the linear combinations between the swmhst of (3.89), one obtains

integer solutions to special hyperbolas and pagabol

[llustration 1

The pairs of integers

(X1Y)=(4%+2_14%+11 8@1_ 2%2 ) (123&_ 18@1 ) 1Onzl_ 6h)(
(12yn+2_1&n+1’1%1_ 63{»2 ), (3&1_ 9¥+1 1 5y+1_ X1 )

satisfy the hyperbol&8Y? — X* =1Za? correspondingly.

[llustration 2

The pairs of integers

(X1Y):(4Z1+2_14%+1’ 8%&2_ 25&3‘" Z), (12%1_ 18rZ1 , 10}( 2 6% st a2
(12yn+2_182n+1’ 1@, 1~ Ot & ): (3&1_ W1 s %t 2 )

satisfy the hyperbol&8aY - X? = 1Za? correspondingly.
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Generation of Solutions
The process of obtaining a formula for generatiegugnce of integer solutions based
on the given solution is presented below:

Let (u,,v,) be any given solution to (3.91).
Let (u,,v,) given by
u=2h-1,, v, =h+y (3.93)
be the 2° solution to (3.91). Using (3.93) in (3.91) and plifying, one obtains
h=4u, + 6\,

In view of (3.93), the values afandv, are written in the matrix form as

(W) =Mty \)
where

1z

7 ~
M :(4 7) andt is the transpose.

The repetition of the above process leads tm‘ﬂ‘uaolutionsun,vn given by

(Upsv,) = M (4, ) (3.94)
Now, if p,q are the distinct eigen valuesidf then

p=7+4/3, q=7-4/¢
We know that

n

q

n_ P
v (a-p)

(p-q)

(M-ql)+

(M =pl), | =2x2 Identity matrix

and in view of (3.94), one obtains the valuesupfv,. Employing (3.90), the values

of x,,V,, z, satisfying (3.89) are given by
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—7[(2ﬁ(a +BN)HAE" - BM)% = 20" =B, |

Y, = ﬂ(zﬁ%(a +B")=4@"=B"))Ys + 20" =B %] (3.95)

:Z[(" +B +\B3@" =8N %+ @+ B -NBE@ =By, |

In the above system (3.95),

X =Up*t Vo, Yo= b=
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CHAPTER - IV
BI-QUADRATIC DIOPHANTINE EQUATIONS

Chapter-1V focuses on bi-quadratic diophantine equéions in four sections

IV.1tolIV.4

Section IV.1

We obtain infinitely many non-zero integer solusao the non-homogeneous

4

ternary bi-quadratic equatioxt + 7xy+ y* = :*.

Section IV.2
This section aims at determining non-zero distimtéger solutions to the

algebraic equation of degree four with three unkmegiven by

(a+1)(X¥+y)-(2a+D) xy=[ B+(4a 3 4] 2, & (

Section IV.3
This section concerns with the problem of deterngnnon-trivial integral

solutions of the non-homogeneous bi-quadratic eguatith four unknowns given by
8xy+5Z =t wv*. We obtain infinitely many non-zero integer sobus of the

equation, by introducing the linear transformatiotrsu+ v, y= u- v z=

Section IV.4
On the Homogeneous Bi-Quadratic Equation with Rdoknownsgiven by
X'+ y'+(x=y) 2:2( K+3 §)2 \' aims at determining non-zero distinct integer

solutions.
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IV.1 On Non-Homogeneous Ternary Bi-Quadratic Equaton
X*+7xy+y* =2z

The ternary bi-quadratic diophantine equation tosbkled for its non-zero
distinct integral solutions is given by

XC+T7xy+ Y=t (4.1)
Introducing the linear transformations

X=u+v, y=u- vy W ¥ C( 4.2
in (4.2), it leads to

ou® =5v° + z* (4.3)
We present below different methods of solving (48) thus obtain different patterns

of integral solutions to (4.1).

Pattern 1

It is noted that (4.3) is satisfied by
v=2rs, Z=5r-¢,3u=5f+:° (4.4)
Takingr =3R, s= 3¢ (4.5)

in (4.5), we have

= + 3¢2
ioms | 9
and
2 =45R -¢ ¢ (4.7)
Now, we have to findR, £ and z satisfying (4.7).
For this, assume
R=a?+9p3? (4.8)
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Also, 45 can be written as
45=(6+3)( 6- 8) (4.9)
Substituting (4.8) and (4.9) in (4.7) and applyihg method of factorization, define
(z+3iS)=(6+3i)(a +i36)°
Equating the real and imaginary parts, we get
z=6a°-54B% - 1ap (4.10)
S=a*-9B%+12af (4.11)

Substituting (4.8) and (4.11) in (4.6), we get

u=18a"+14583* + 64&°B%+ 72°B- 6483° 4.12)

v=180* - 145" + 21&°8+ 19443° '
Employing (4.12) in (4.2), we have

X=360" + 64&r° B + 28&°B+ 129603° (4.13)

y=29163" + 64%°B> - 144°B~ 2593833 '

Thus, (4.10) and (4.13) represent non-zero distirteger solutions to (4.1).

Note
It is worth to note that, in addition to (4.9), omay write 45 as
45:(3+ 6)( 3 (i)
Following the procedure as presented above, thresmonding non-zero distinct integer
solutions to (4.1) are given by

X=63a"-729" + 162°B°+ 180°3+ 343°
y=-94g* + 510" + 162°82- 36°3- 1624B°
z=3a%-273%- 3@
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Pattern 2
Introduction of the linear transformations
u=X+5T, v= X+9T, z= 2\ (4.14)
in (4.3) leads to
X2 —4w' = 4572 (4.15)
which may be expressed as the system of doubldi@mgias presented in Table 4.1 below:

Table 4.1: System of double equations

System 1 2 3 4 5
X +2w? 15T aT 45T 5T T2
X —2w? 3T 5T T 9 45

Solving each of the above systems, the valueX af and w are obtained. In view of
(4.2) and (4.14), the corresponding valuesxpy and z for each of the systems in
Table 4.1 are found. Note that the valuexpy and z thus obtained satisfy (4.1). For
the sake of simplicity and brevity, the values>gfy and z satisfying (4.1), that are

obtained through the system of equations in Talle @e exhibited in Table 4.2 as

follows:
Table 4.2: Solutions
System Solutions
1 Xx=96k*,y=-12Kk ,z= ¢|
2 x=28k>,y=—-4K ,z= - |
3 X=660Kk* ,y=—-44Kk ,z= 2|

Xn+1 = 2OI<§+1 + 48kn+1+ 2{
yn+1 = _(8kn+1 + 4)
15
+ = 3 fn + n
Zn 1 \/2—0 g
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Bi-Quadratic Diophantine Eqicais

System

Solutions

where, ki :%{—5i{1—25 f, +% gnH ,n=-1,0,1,...
fn :(9+2\/§))n+1+(9_ 2/7(_‘)n+1
g, :(9+2\/§))n+l_(9_ 2/7(_)n+l

Set1:x=896,y=-92,z= 2.
Set 2:x=252,y=-36,z= |
Set 3:x=192,y=-28,z= .
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IV.2 A Search for Integer Solutions to Ternary Bi-Quadratic Equation

(a+1)(x* +y*)=(2a+D)xy =] p* H 4 +39*]2*

The fourth degree equation with three unknownsetsdived is
(a+1)(x2+ yz)—(2a+])xy:[ p+(4a 3 d] 4 (4.16)

Different sets of integer solutions to (4.16) dhestrated below:

Set 1:
The choice

X=u+Vv, y=u- Vv = ¥#C (4.17)
in (4.16) leads to

u*+(4a+3) vV =| P+(4a+3 ¢ * (4.18)
Take

z=a’+(4a+3)p? (4.19)
Substituting (4.19) in (4.18) and factorizing, ttesulting equation is written as the

system of double equations

(u+iyaa+3v)=( p+iaa+ 3q) (a+ iV da+ 38)° (4.20)
(u—i1/4a+3 v): (p—i\/4a+3q) (cr—i\/4a+3,8)4 (4.212)

On equating the rational and irrational parts eith€4.20) or (4.21), we have

u=pa‘-6p(4a+Ja’p*+ fl4a+ 3 - 4 4ar 3aB
+4(4a+ 3" aBq

v=4pa’B-4p(da+ Japi+a‘aq q 4ar Ja’B%q
+(4a+23)”" gB*

(4.22)
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From (4.22) and (4.17), we get

) a‘(p+q)-6(4a+3)( p+r ga’s*+(4ar 3°( pr 9B8°
X_{+4[p—(4a+ 3 qla’B+ 4[( 4a+ 3" q-( 4a+ 3 @aﬁ}
(p-q)a*+6(4a+3)(q- pa’s>+(4sar 3°( p- 98°
{—4[p+(4a+ 3qla’B+ 4[( da+ 3" g+ ( da+ 3 @aﬁﬁ}

(4.23)

Thus, (4.19) and (4.23) represents the integetisakito (4.16).

Set 2

Observe that (4.18) is written in the form of red®

u+ p22 :(4a+3)(q22—\):£
qZ + Vv u- pz Y4

%0

which is equivalent to the system of double equmtio

Bu-av+(pB-aq) Z=0
ua +(4a+3) pv-[ pr+(4a+ 3 B 2=

Applying the method of cross multiplication we have

(4.24
v=-a’q+(4a+3) g8’ + 208 p

u=pa’-(4a+3) pB°+ 2(4a+ Jap « }
2 =a’+(4a+3)p? (4.25)
Note that (4.25) is satisfied by
B=2mn,a=(4a+ 3 nf- 1? (4.26)
z=(4a+3)nt + 1? (4.27)
Substituting the values a@f and B from (4.26) in (4.24) we get,
u=p|(4a+3 nf+ d-2(4aJ MA|-44a 3 ph*
+4(4a+3[(4a+ Inin- mi] g
v=-qf (4a+3)] nf+ d-2(4a § m A+ 4 4a § gh’
+4[(4a+nin-md] p

(4.28)
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Substitution of (4.28) in (4.17) gives

x=(p-q) | (4a+3 ni+ A-24a 3 M A+ 44a 3 g p i
+4[(4a+Infn-md|[ P(4a 3y

y=(p+)|(4a+3y’ M+ A-2(4ar § hi |- 448 3 p Jo f'n
+4[(4a+3)m3n— mﬁ][(4a+3 a

(4.29)

Thus, (4.27) and (4.29) represent the integer isolsitto (4.16).

Note 1

Also, (4.18) is written in the form of ratio as

u+ pz :qf— v_a
(4a+3)(aZ+V u-pZ B’

B#0

In this case, the corresponding integer solution@18) are given by

x=6(4a+3(p-gMi+(4a3 (a prir( g P 44ay H 4aP ]’
4] p+(4a+3 q| md

y=6(da+3(p+qmir-(4a 3 (p yh-( p o 44a)(4ap g p’
+4 p-(4a+3 q| mA

z=fF +(4a+3)a’?

Set 3

Write (4.18) as
u2+(4a+3)v2=[ P +(4at+ 3 (ﬂ 201 (4.30)
Assume

1:[(2a+1)+i\/4a+ 3] (2t 3-iW @+ ]

(2a+2)°

(4.31)

Substituting (4.19) and (4.31) in (4.30) and emplgythe method of factorization,
define
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(u+iJ4a—+a/)(u— i\/4a+3\):( p+ k/ﬂ&é( P Wa)l(m Wﬁ)“
4E[(Za+:|)+i«/£a_+3] [( 2+ :)_—I\/‘a—*'}

(2a+2)

(a+iJ4a—+38)

Equating the positive and negative terms in thevalsguation, we get

p+ivda+ 3q)(a+ i 4a 38)
2a+1 +iv4da 3]

(4.32)

oo L[(

(u iv4a+ 3v)

1 {(p—i\/4a+ 3q)(a— i da+ 38)4 4.33)

(22+2) | [(2a+1)-iVaa+3]

Equating the real and imaginary parts in (4.324d83), we have

[(2a+1) p~(4a+ 3 oo - § e+ J[( 2+ L p-( 4 Bda’s”
aae g [(2a0 p-{ 420 J Q- 4 4 Y( 2¢ L B
+4(4a+3°[( 2+ ) g+ plap’

[(2a v pla- o v 3[( 22 b o G
+(4a+3°[(2a+) o+ p| B+ 4( 2ar ) p( 4 B o’
4(4a+3[( 2+ p-( 4+ 3 glas’

(4.34)

Substituting (4.34) in (4.17) we get,

X:{(p—q)a4+(4a+3)2( p-95°-6(4a+ 3( p- qazﬁz}
+4[-p-(4a+3 qla’s+ 4 4a+ 3[ p+( dar 3 o’
[ 2ap—(6a+4) gja* + § 4a+ 3[( 6a+ ¥ - 2aga’S (4.35)
+(4a+3)°[ 2ap-(6a+ 4 o'~ 4( 6a- ¥ p 24 4= B 0B
+4(4a+3[( 4+ J 2q+( G+ ) plaf’

Y (2a+2)

As our interest is in finding integer solutions, ig seen that replacingr by
(2a+2)M and B by (2a+2)N in (4.35) and (4.19), the corresponding integer

solutions to (4.16) are obtained and they are gbedaw:
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(P-a)M*+(4a+3)"(p-9 N'-6(4a-3( p- § M N }
+4[-p-(4a+3 ] M N+ 4 4a+ §[ pr( 4 3 4 MR
[2ap-(6a+ 4) d| M+ 6 da 3[( 6+ 3 o 22} M
y=(2a+2)’{+(4a+ 3" 2ap-(6a-  d N-4( 6a ¥ p 2h 4a B M N (4.36)
+4(4a+3[(4a+ 3 2q+( 6a+ ¥ p MN
z=(2a+2)"[ M’ +(4a+ 3 N ]

x=(2a+2)"

Note 2
It is to be noted that, in addition to (4.31), 1ynadso be represented as below:

[(3-2a)+i3/a+3|[ (3 2)-i § &+ |

(2a+6)°

() 1=

[(4a-9+i @7 3] (@ }-i 4@ |

(4a+7)

(i) 1=

[(9-6a)+io/a+3|[(9- &)-i & a+ |

(6a+18)’

(i) 1=

[(16a-4)+i16/ &+ 3[( 16~ }-i 16 4+ |

(iv) 1= (16a+ 28)2

It is worth mentioning here that, by giving variouseger values t@, p and q, one

may obtain integer solutions to the correspondiggddratic equation.

For illustration, the choices

a=1p=8,g9=1 (4.37)
in (4.16) give
2(x2 + yz)—3xy: 71.° (4.38)
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Substituting (4.37) in (4.19), (4.23); (4.27), @ and (4.36) the corresponding three

sets of integer solutions to (4.38) are as follows:

Setl
x=9a* -37W°B+ 44+ &°B- 288°
y=7a" - 2940 B2 + 34B - 6@ B+ 4203°
z=a°+7p°

Set 2
X=343"-294°s*+ B*'+ 420°s— 6r<°
y=441" - 378%°+ &'— 28%+ 4<°
z=T7r*+¢?

Set 3

Xx=1792M* - 7526M>N*+ 8780B“— 1538@°N+ 1075MN°
y=384M*- 16128 °N*+ 18816l*- 2406M°N+ 168448\°
z=16M? +112N?

Further, it is observed that, by choosing suitdhky values ofa, p and q in (4.16),

the solutions presented in [4.17, 4.21-4.24] areespondingly obtained.
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IV.3 On the Non-Homogeneous Bi-Quadratic Equation wh Four Unknowns

8xy +52° =5n*

Consider the bi-quadratic equations with four unkng
8xy+57 = Ev* (4.39)
The process of obtaining different choices of nemszdistinct integer solutions to

(4.39) is illustrated below:

Choice 1
Introducing the linear transformations

X=Uu+V,y=uU-V Z= (4.40)
in (4.39), it is written as

8u’ - 3v* = En’ (4.41)
Again, employing the linear transformations

u=X+3T, v= X+81, (4.42)
(4.41) is written as

X?-24T%=w* (4.43)
Express (4.43) as the system of double equatiosh@sn in Table 4.3 below:

Table 4.3: System of Double Equations

System I Il 1l v
X + w2 6T2 8T 6T 12T
X =W 4 3T aT 2T

Consider system |

Solving for X andw, we get
X =3T?+2 (4.44)
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W =3T%-2

(4.45)

Now, observe that (4.45) is a negative Pellian 8gnavhose solutions are obtained

as illustrated below:
The smallest positive integer solution to (4.45) is

T,=1w=1

(4.46)

To obtain the other solutions to (4.45), consither¢dorresponding Pellian equation

W =3T?+1

The smallest positive integer solution to (4.47) is
T, =1, W, =2

whose, general solution is given by

N

n n 2\/§gn

1
W, ==
2

where, f, :(2+\/§)n+1+(2_\/—3) n+l

g,=(2+v3)" -(2-v3" n=0.1.2.

(4.47)

Applying Brahmagupta lemma between the soluti@T&s wo) and (fn ,Wn), the other

integer solutions of (4.45) are given by

T . =

n+l

N

Wn+1 -

f+ig
n 2\/§n
J3
f+=
n zgn

N

Using (4.48) in (4.44), we have

2

1 1

X =3 =f+——g | +2
' (2 2\/§gj
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In view of (4.42) and (4.40), the valuesxply andz are represented by
1 1Y 1 1
X, =6|=f+—g,| +1Y = f +——=g, |+ ¢
" (2 2ﬁgJ 1{2 zﬁ%gj
1 1
=5 =f +——=g, (4.50)
Yon (2 e g J

2
1 1 1 1
L=3 = f+——g | +8 Zf+——g |+2
Znea (2 2\/§gj (2 2[:%9)

Thus, (4.50) and (4.49) represent the integer isolsitto (4.39).

Consider system Il

Solving forX andw, we get

X :E, W :E
2 2
Taking
T =10k?
we have
X =55k?
w=5k (4.51)

In view of (4.42) and (4.40), the valuesxafy and z are represented by
Xx=220k*, y=-50k , z= 13 | (4.52)

Thus, (4.52) and (4.51) represent the integer isolsitto (4.39).

Consider system Il

Solving forX and w, we get
X=5T, Ww=T
Taking
T =k
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we have

X =5k?

w=k (4.53)
In view of (4.42) and (4.40), the valuesxyfyand z are represented by

x=21k*, y=-5K, z= 1.1 (4.54)

Thus, (4.54) and (4.53) represent the integer isolsitto (4.39).

Consider system IV

Solving for X and w, we get
X=7T, W =ET
Taking
T =5k?
we have
X =35k?
w =5k (4.55)
In view of (4.42) and (4.40), the valuesxfy and z are represented by
X=125k%, y=-28¢ ,z= 7' (4.56)

Thus, (4.55) and (4.56) represent the integer isolsitto (4.39).

Choice 2
Introducing the linear transformation

zZ=x-) (4.57)
in (4.39), it becomes

5x* = 2xy+(5Y - 5w) = ( (4.58)
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Considering (4.58) as a quadratic expressior end solving forx, one obtains

x==(yxp) (4.59)
where

B? =25w" - 2¢y* (4.60)
Now, (4.60) is written in the form of ratio as

p+w _24(w - y)
W+y  [B-wW

= N>

which is equivalent to the system of double equntio
NB+(N-M)w - My=0 (4.61)
-M B+ (24N + M) w? - 24Ny= 0 (4.62)

Applying the method of cross- multiplication betwegd.61) and (4.62) we get

B =M?=-24N?+ 48VIN (4.63)
W’ = M2 +24N? (4.64)
y=-M?+24N’+ 2MN (4.65)

Substituting (4.63), (4.65) in (4.59) and taking ffositive sign, we get

x=10MN (4.66)
and from (4.57),

z= M2 -24N?+ 8MN (4.67)
Now, observe that (4.64) is satisfied by

M =245’ —t*, N=Zs (4.68)

w =245 + 1> wheres, 1 are integers. (4.69)
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Substituting (4.68) in (4.65), (4.66) & (4.67), get

x = 20st( 24¢ - t)
y=-(248 - £) + 968 £ + 4s{ 243~ ) (4.70)
z=(24¢ - £)° - 968 £+ 165 248~ )

Thus, (4.69) and (4.70) give integer solutions4089).

Note

It is to be noted that (4.60) is also expressaterform of ratio’s as follows:

24?&V\+Fy):,év’vz—_y:% N >0
“ 4([1;2@):6(3“:;):%’“”
i 6([;;2’;) - 4;"":;/23’) :%, N >0
v, S@Yy)zs(ﬁm:ﬁy):%, N >0
V. S@Yy)f(ﬂv\:ﬁy):%, N >0
i z(ﬁm;ffy) :12%?) SRV
Vii. lzf;z"‘fy) = Z(ﬂwj\;lzy) :%, N >0

Solving each of the above ratio’s as presented gbome obtains different sets of

integer solutions to (4.39).
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However, there are other sets of solutions to (4lédding to other choices of

solutions to (4.39) that are illustrated below:

We can write (4.64) as the system of double equs#s shown in following Table 4.4:

Table 4.4: System of double equations

Bi-Quadratic Diophantine Eqicais

System I I [l A\ \Y Vi
w+ M N? 12N? 6N? 8N 6N 12N
w-M 24 2 4 3N 4N 2N

For simplicity and brevity, we present below théeger solutions to (4.39) obtained

on solving each of the above system of equations.

System |

x:40p( p2—6)

y=-4(p*-6) +96p’+ 8p( p'- 9
z=4(p-6) - 96p + 32p( F- §

w=2p>+12

System |l

X = 60N° — 10N
y=-(6N?-1)"+ 24N + 2N( 6N - )

z=(6N? -1)" - 24N° + 8N( 6N )
W=6N2+1

System Il

x=10N(3N’ - 2)

y=-(3N?-2)" + 24N+ 2N( 3\° - )

z=(3N*-2) - 24N° + 8N( 3N - )
W=3N? + 2
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System IV

Xx=100k*, y=91 , z= 9K , w= 1

System V

x=10N?, y= 25N*, z= 15N, w= ' |

System VI

X=50N?, y=9N*, z= 41N, w= " |

Choice 3
Substituting
x=502""y, (a >1) (4.71)
in (4.39),
It is written as

L

(22ty) "+ 2= w (4.72)
Note that, the above equation is similar to thelAebwn pythagorean equation.

Employing the most cited solutions of the Pythagarequation, one obtains the

following two sets of solution to (4.39):

Setl
X:SD?”UV(LF—\f)
y:2uvD2"(tf—v2)
2=2| 4t -( - V|

w=27 (u2 + \/2)
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Set 2
x:5D23"(6p2q2— p'- (4)
y:2a+1(6p2q2_ p4_ qA)
z=1602 Opo( 0 - o)
W:20+1(p2+q2)

Whena =1 in (4.71), the corresponding solutions to (4.3®) @ltained as below:

Set 3
x:10uv(tf— \f)
y:uv(tf— \f)
z= 4V - (- ?)°

w=u'+ Vv

Set4
x=10(6p*cf - p' - *)
y=(6p"c - p'~ o)
z=16pq( B - d)
sz(pz_qz)
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V.4 On Non-homogeneous Bi-quadratic Equation withFour Unknowns

X*+y'+(x-y)2®=2(*+3s*)w’

The non-homogeneous bi-quadratic equation with fmknowns to be solved is
X*+y'+(x—y) Z2=2(K+33)* v (4.73)
The substitution of the linear transformations
X=U+Vv, y=u-V =2V ¥ ¥ ( (4.74)
in (4.73) leads to
u®+3v” = (k*+3s”)w (4.75)
Solving (4.75) in different ways fau, v, w and using (4.74), one obtains different sets

of solutions to (4.73).

Way 1
Consider

w=w(pg=g+3¢ (4.76)
Using (4.76) in (4.75) and employing the methodaatorization, define

u+iv/3v = (k+iv/3s) (p+ /3¢
from which, on equating the real and imaginary pashe has

u=Kkp-3sqg, v= ka+ 4.77)
In view of (4.74), note that

x=X(pgk9=Kp 9+ 6 p3 ]
y=¥(pogk9=Kp - 6p3) (4.78)
z=2Apak3=2(kea pp

Thus, (4.76) and (4.78) represent the integer isolsitto (4.73).
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Properties
> X(s+1,0,3s 9= ¢,
>  x(s(s+1),q3s 3=¢ .
> x(5-1,093s9=2[,
> kz(p3¢,3@-6,2ab- £ X p3¢c,3a b 2ap ¢ B°c3*a b2 is
a nasty number.
> pkAnqgks3- 6&kpaks (y.paks (@B)Expaks-X) 6yp
Way: 2
Write (4.75) as
u?+3v2 = (K2 +3<) v*1 (4.79)

Consider 1 on the R.H.S. of (4.79) as

1 (1+i\/§)4 (1-i+/3] (4.80)

Using (4.76) & (4.80) in (4.79) and employing thethod of factorization, define
u+i\/§v:%(l+i\/§)(k+i\/_$)(p+ i) (4.81)
On equating the real and imaginary parts, one has

u:%[kp—Bsq—B( kat s)]
v:%[kp—35q+ kar sp
In view of (4.74), one has

Xx=kp—-3sq kg s

y=-2(ka+ sp (4.82)
z=kp—-3sgt kg s

Thus, (4.76) & (4.82) represent the integer sohsgit (4.73).
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Properties
“ z(pa3gpP-Xpa3qgp- Y PWRBgPFE 4wp
“ Zpgp-9+rXPAgRP-9=2wWp
% 3(2x(3+17,2ab,3d+ b ,2abr y3a&+ b,2ah3% b,2. is a nasty number
< z2(p-93g+3,a- D+ 2y(p- g3¢ 3, 1F 24t = ¢f - = 2@, -

Z(p-q(3a+3)(2a+ 1), (a+ 1)(2a+ 1))
+2y(p,—q,(3q+ 3) (2q+ 1), (a+ D (2a+ DF 7 |

* z(p-03(12q-11),1 11y % (b5 q.3(12r 11),1d 1) I2
@ 2(z(p,-9,39,9+ 2y( p— g34g ) is a nasty number.

Note: 1

In addition to (4.80), represent 1 on the R.H.§4079) as below:

1= (3r2-s2+iJ32s) (32-s2- iV 32s
(3r* +s?)?

The repetition of the above process leads to arifit set of solutions to (4.73).

Way: 3
Let
w=(p°+3c?)? (4.83)
Using (4.83) in (4.75) and employing the methodaatorization, define
u+iv/3v = (k+iv/3s) (p+ i/ 3c?
On equating the real and imaginary parts, one has

u=k(p°-3¢)-6spq = ¢ p—3 )+ 2 ki (4.84)
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In view of (4.74), note that

x = (k+s)(p®=39%) + pq(2k - 6s),
y = (k=s)(p* —30°) - pq(2k +6s), (4.85)
z=2s(p*-3q9°) +4kpq

Thus, (4.83) and (4.85) represent the integer isolsitto (4.73).

Note: 2
Using (4.83) & (4.80) in (4.79) and following thaaysis given in Way: 2, a different

set of integer solutions to (4.73) are obtained.
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CHAPTER -V
QUINTIC DIOPHANTINE EQUATION

The quintic non-homogeneous equation with five wvins represented by
the Diophantine equation(x +y)(x’ -y*)=7(z* -w*)p’is analyzed for its patterns of

non-zero distinct integral solutions.

Integral Solutions of Non-Homogeneous Quintic Equabn With Five Unknowns
3(x+ y)(x3 - y3) = 7(22—W2) p®
The non-homogeneous quintic equation with five wvikms to be solved for its

distinct non-zero integral solutions is

3(x+y)(X-y)=7(2- W) |° (5.1)

METHOD 1
Introduction of the linear transformations

X=u+v,y=u-yzZ=3u vw3u (5.2)
in (5.1) leads to

VvV +3Uu*=T7F° (5.3)
Different methods of obtaining the patterns of gatesolutions to (5.1) are illustrated

below:

PATTERN: 1

Let
P=a’+3L” (5.4)

wherea andb are non-zero integers.
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Write 7 as
7=(2+iJ§)(2—iJ‘:) (5.5)
Using (5.4), (5.5) in (5.3) and applying the metioddactorization, define
(v+ivau) = (2+iV3) (a+ivab) (5.6)

from which we have

(5.7)

v=2a’-18alf - 9& b+ 9I°
u=a’-9ak¥+6&b-605

Using (5.7) and (5.2), the values xfy, z andw are given by
b) =3& + 30 - 27alf - 34

b)=-& -155 + 9alf + 154
(5.8)

Thus (5.4) and (5.8) represent the non-zero integkitions to (5.1).

PATTERN: 2

Write 7 as

(5+i\/§)(5—i\/_5)

; (5.9)

7=

Using (5.4), (5.9) in (5.3) and applying the metloddactorization, define

(5+i\/§)

(v+ivau) = (a+iv/a0) (5.10)

from which we have
V= 1[5a3 +9b° - 45af - 9& I]
2

) (5.11)
u :—[a3 -15b° - 9alf + 15& |]
2
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Using (5.11) and (5.2), the valuesxfy, z andw are given by

x(a,b)=3& -3 - 27a+ 3d b
y(a b)=-2& -121 + 18alf + 124
a b=

a,

(5.12)
z( 4&-180 - 36al+ 184
w(a b)=-&-278+9ab+ 274
Thus (5.4) and (5.12) represent the non-zero integi@tions to (5.1).
PATTERN: 3
Write (5.3) as
VvV +3uP=7p’1 (5.13)
Write 1 as
(1+i/3)(2-iv7)
1= (5.14)

4

Using (5.4), (5.5), (5.14) in (5.13) and applyihg method of factorization, define
. 1y . AT
(v+| 3u) —E(1+ |\/§) (2+|\/_3) (a+|\/_:b) (5.15)
from which we have

V= E[—ag’ +27b* + 9alf - 274 I]
2

1 (5.16)
==[3a8° +30° - 27alf - 3 b
2
Using (5.16) in (5.2), the values a&fy, z andw are given by
x(a,b)= & +158 - 9af - 154 b
2d -125 - 18alf + 124
y(a, ) ar (5.17)
z(a b)=44d +180 - 36a5- 184

w(a,b)=5& -9 - 45al + 94

Thus (5.4) and (5.17) represents the non-zeroentegjutions to (5.1).
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PATTERN: 4

Write 1 as

(1+i4V3)(1-i 43

49

1=

(5.18)
Using (5.4), (5.5) and (5.18) in (5.13) and appiythe method of factorization, define
_ T . . 3
(v+|\/§u)—7(2+|\/§)(1+|4/_?) (a+|\/_b) (5.19)
from which we have

v:%[—10a3 +810° + 90alf - 814 |]

. (5.20)

us= [9a3+30b3— 8lalf - 30&@

7
Since our interest is on finding integer solutioreplacinga by 7A, b by 7B in (5.4)

and (5.20) & using (5.2), the corresponding integggutions to (5.1) are given by

=7 (17R+ 1718 - 153AB - 171K |) (5.21)

Thus (5.21) represents the non-zero integer saolsitio (5.1).

PATTERN: 5
Write 1 as

- (1+i3)(1-i1V2)

4

(5.22)
Using (5.4), (5.9) and (5.22) in (5.13) and appiyihe method of factorization, define
(v+ivau) =3 (5+1V3) (2+iv3 (a+ivD) (5.23)
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from which we have

v:%[a3+27b3—9atf— 274 |]
) (5.24)

u= —[3a3 -3p’ - 27a + 3& |]
2

Using (5.24) in (5.2), the values &fy, z andw are given by

(5.25)

Thus (5.4) and (5.25) represents the non-zeroeéntegjutions to (5.1).

METHOD 2
Introduction of the linear transformations

X=u+v,y=u-VvzZ w3y w u: (5.26)

in (5.1) leads to (5.3).
Following the same process from Pattern 1 to Raieand using the transformation

(5.26), the sets of solutions to (5.1) are givelowen Table 5.1:

Table 5.1: Solutions

Patterns Solutions

(a,b)=3&+30-27a-3d b
y(a b)=-4&-155 + 9af + 154
1 z(a b =7a+215- 63a- 214
w(a, b)=-5& - 330 + 45alf + 334
P(ab) = & +3K

X
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Patterns

Solutions

x(a b)=3a -3~ 27a+ 3d b
y(a b)=-2& -126 + 18alf + 124
z(ab)=8d+605-72a- 64 b
w(a b)=-78-215 + 63a+ 2. &

P(ab) = & +35

X(a,b)= & +158 - 9af - 154
y(a b)=2&-121F - 18a5 + 124
z(a b)=425 - 42&b

w(a, b)=3a - 398 - 27al5 + 394

P(ab) = & +35

AB)=7"(-A+111B+ 9AB - 1114 §

A B)=7"(19A- 518 - 171AB + 51K §

A B)=7(-21R+ 2738 + 189AB - 273 )
A B)=7"(39A - 2138 - 351AB + 213K |)
AB)=7"( R+3F)

x(a,b)=24d +120 - 18af - 12&
y(a b)=&-155-9a + 154
(a b)=3a+395 - 27a- 394
w(a, b) = 42 b- 428

P(a,b)= & +3

z

METHOD 3
Introduction of the linear transformations
X=u+v,y=u-vy zZ=3uwl w 3L

in (5.1) leads to (5.3).

(5.27)

Following the same process from Pattern 1 to Raieand using the transformation

(5.27), the sets of solutions to (5.1) are givelowen Table 5.2:
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Table 5.2: Solutions

Patterns Solutions
x(a,b)=38 +30-27a5-3& b
y(ab)=-&-156 +9a + 15& b
. z(ab)=6f(abh+9f(al) 4 ab-1625(a bt
w(ab)=6f(ah+9f(al d abh-1624(ab-
wheref (ap)=a - %@lf and g(ab= ab b
P(ab)= & +38
x(ab)=3d-30-27a+3& b
y(ab)=-2&-125+18a+ 124 b
2(ah)=48 5f(ah+66f al d ap- 1358 (a B+
? w(a b)=48 5f(a,)+ 66 f( a,t d ab- 1354 (ab)-
wheref (ap)=a’'- %lf and g(ab= ab b
P(a,b)= & +3
x(a,b)= & +158 - 9af - 154 b
y(ab)=2&-120-18a+ 12d b
z(ab)=48-3f(ah- 781 al d ah+ 81f (a b+
° w(a b)=48 -3f*(a,h- 78f(a,§ ¢ abh+ 814 (a -
wheref(ab)=a- %l and g(al= ab b
P(a b =& +31
x(A B)=7"(- R+1118 + 9AB - 111K B
y(A B)=7 (19K - 518 - 171AB + 51K B
. z( A B)=147-90f ( A,B- 429f( A.B ¢ A B+ 24305 (A B)
w(A B)=147-90f*( A,B)- 429f( AB d A B+ 24305 (AB)-
wheref (AB)= A - 9AB and g(AB= AB B
p(AB)=7"( K +3B)
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Patterns Solutions

x(a b) =24 +121 - 18a - 124 b

y(a b)=&-156-9a5+15& b

z(ab=48 3F(ab-78f(al d abh- 815 (al+
w(a b)=48 3f*(a,h-78f(al d ab- 81§ (abj-
wheref(ap)=a- %l and g(ab= ab b
P(ab) = & +3H8
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CHAPTER — VI
DOUBLE DIOPHANTINE EQUATIONS

Chapter VI deals with Double Diophantine Equationsin six sections VI.1 to VI.6

Section VI.1

3

The system of double equations given by yz=3Ww, xy= ~° is studied for

obtaining its non-zero distinct solutions in intege

Section VI.2

The pair of equations given by+y= z+w, y+z=(x- v)2 is studied for
obtaining its non-zero distinct solutions in intege
Section VI.3

In this section, different methods to obtain normezeistinct integer solutions

to the system of double equatiors y= z+ w, y z:( X \)2 are illustrated.

Section VI.4

This section illustrates the method of obtaining-aero integral solutions to the
system of two linear equations to be made squapessented ban+ b= [, bt a=
for the choices of andb given by (la=1,b=7 and (ija=2,b=7.

Section VI.5
Two different methods for obtaining non-zero distimteger solutions to the

pair of equationsc+ y = z+ v, y+z=(x- v)° are illustrated.

Section VI.6

The problem of obtaining non-zero distinct integetutions to the pair of

equationsx+ y= z+ v, y+z=(x+ v)’ is analysed.
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VI.1 On the Simultaneous Equationsx — yz=3w*, xy =T°

Consider the pair of equations

X—yz=3Ww (6.1)

xy=T* (6.2)
The elimination ofy between (6.1) and (6.2) gives

x> -3w'x- zT° =0 (6.3)
Treating (6.3) as a quadratic yand solving forx, we have

x:a}wiJ9W+4fﬁ} (6.4)

The square root on the R.H.S of (6.4) is eliminat®en
(i) w=T=(k+3)a, z= K kt 3)2a (6.5)
(i) w=T=ka, z= K( kt3)a (6.6)

Now, taking (i), the corresponding values»fand y are given by

x=(k+3)’a®, y=a (6.7)
and for (ii)
x=-Ka? y=-a (6.8)

Note that, the pairs (6.5), (6.7) and (6.6), (8&)sfy (6.1) and (6.2) respectively.
However, there are other choices of integer sahgtito (6.1) and (6.2) and they are
illustrated as below:

Consider the transformations

x=Vy, T=\ (6.9)
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Note that (6.2) is satisfied automatically, Suloitity (6.9) in (6.1), we have

y> - yz=3w

(6.10)
which is a quadratic iry and solving fory, we have
y:%(zi\/f+12v2) 6.11)
which is satisfied by
w=2rs,z=12r - < and y =12r? —<? (6.12)
In view of (6.9), one obtains
x=144r* s* andT =12r* - ¢° (6.13)

Note that, (6.12) and (6.13) exhibits two setsndéger solutions to (6.1) and (6.2).
Also, to eliminate the square root on the R.H.§60f1), assume
a’ =7 +12w? (6.14)

which is represented as the system of double empsatis shown below in Table 6.1.

Table 6.1: System of double equations

System 1 2 3 4 5
a+z Wa 6w 12w 4w 6W>
a-z 12 2w W 3w 2

Solving each of the above systems in Table 1 arfdrp@ing some algebra, the values of

X, ¥,z wandT satisfying (6.1) and (6.2) are presented belowahl& 6.2.

Table 6.2: Solutions

System X y Z w T
1 4k*, 3¢ 2k*,— € 2k’ -6 2k 2k*,— €
2 oW, w’ 3w,— W 2W w 3w,— W
3 144k* k? 12k, -k 11k 2k 12k ,— k
4 16k?,ck? 4k,— 3k k 2k 4k ,— 3k
5 ow*,1 3w ,-1 3w -1 W 3w ,-1
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It is to be noted that, one may also write (6.10)ree system of double equations as in
Table 6.3 below:

Table 6.3: System of double equations

System 1 2 3 4 5 6
y 1 3 w w? 3w 3w
y-z 3w’ w 3w 3 w 1

In this case, the corresponding valuexpy, z w and T are given by the quintuples

(x,y,z,w'l)z(l,l,l— B\K/W).( 9,33 W W)S(\?v W, ZN,W)/\.( v v 3W2)
(9w, 3w, 2w,w, 30 ( 94,34 36— 1w,30)

Further, write (6.14) as

Z+12wW=a’=a?1 (6.15)
Assume

a=4a*+12k° (6.16)
Write 1 as

(2+iv12)( 2-iV1)

1=

(6.17)

Substituting (6.16) and (6.17) in (6.15) and empigy¥he method of factorization, define

z+iv12w= ( 2a+ i\/sz)2 (2+I—41:/1_2)

On equating the real and imaginary parts, we have
z=2a& -6 -12ab,w= d- 36+ . a (6.18)
In view of (6.11) and (6.9) we have

T:y:3é+3ﬁ—6ah—é—95—6a}
(6.19)

x=9(a-b)",(a+3D"
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Thus (6.18) and (6.19) represent the solution$.tb) @nd (6.2).
It is worth mentioning that, in addition to (6.16),17),a and1 may also be written as

(1+1 2\/1_24)1214 a/1)

a=49(a’ +1%°) 1=

For this choice, the solutions of (6.1) and (612) given by

4

x=784(a- )" ,44]a+ 4
T=y=28(a-30° - 21 a+ «1)°
z=7(a -121 - 48aj)
w=14(a’ - 120" + ab)
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VI.2 On the Pair of Equations x+y=z+w, y+z:(x—w)2

Consider the system of double equations
X+y=2z+W (6.20)
y+z=(x- \ﬁ)2 (6.21)
Four different methods of solving (6.20) and (6.2dg illustrated below:
Method: 1
The introduction of the transformations
X=U+V, W= U—\ (6.22)
in (6.20) and (6.21) leads to
Z-y=2v, z+ y=4°7
from which, on solving, we get
Z=2V +V, y=2V - (6.23)

Note that (6.22) and (6.23) satisfy (6.20) and 1.2

Properties

» Each of the following expressions represents apedquare
* dxw—(z+ )
* Axw+(z- ))2

> Z° -y’ is a Cubical integer

» Each of the following expressions represents auBidgatic integer

®,

o A4zy+ 7+ )

o 4(zy+ z+ ) -3(x V)’
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Method: 2
Assume

Z=Uu+\V y= -V W (6.24)
Substituting (6.24) in (6.20) and (6.21) and sitiyplig, note that

u=2v (6.25)
The substitution of (6.25) in (6.24) leads to

Z=2V+V, y=2V -\ W (6.26)
Also, from (6.20),

X=2V+ ¢ (6.27)
Observe that (6.26) and (6.27) satisfy (6.20) &#1()

Properties

> 6((x— W)4 - 42)) is a Nasty number.
> 2(22 + yz) —(x- v)* is a Bi-quadratic integer.

2(2“— y‘)

————— Is a Quintic integer.
(x-w)" +1

> (2v2 +V, 2V -V, E\z) is the diophantine triple with the propenty(vz)as the
product of any two members of the set added wfils a perfect square.
> (2v2 +Vv, 2V -V, 8V + ) is the special dio-triple with the proper[y(v2 +1)

as the product of any two members of the set asdtdthe same members

and increased by’ +1 is a perfect square.

Method: 3

Assumew is chosen arbitrarily and take
w=s(20) (6.28)
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Eliminating x between (6.20) and (6.21), we have
ZZ-(2y+l) z+ ¥~ y=0
Treating the above equation as a quadratic in zahdng for z, one gets

Z:%(2y+1i 8y+ ]) (6.29)

The square-root on the R.H.S of (6.29) is elimidatden

y= n(n+1) (6.30)
2
and z:%(n+1)(n+2) % (1) (6.31)

Substituting (6.30), (6.31) and (6.28) in (6.20% have

s+r+1

X=s+ z- y=
s—r

Thus, there are two sets of solutions to (6.20)(&r2ll) represented as below:

Set: 1

X=S+ L, y= §,, 25 L, W

Set: 2

X=s-ny=t, z=1,, W

wheret, , is the triangular number of rank.

Method: 4
Consider the transformations

X=p+q y=p-qQ #= pr [ w p (6.32)
wherep, g, r are non-zero distinct integers.
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Note that equation (6.20) is automatically satafidhe substitution of (6.32) in
(6.21) leads to
o*+(2r+Yg+r’-r-2p=_(

The above equation is quadratic in g and solvimgjfpwe have

q:%(—Zr—liw/8r+1+ Ep) (6.33)

The square root on the R.H.S of (6.33) is remowedhwosing suitably the values of
r andp and the corresponding values of q are obtained {&33). Substituting these
values ofp, q, r in (6.32), the values of, y, z, w satisfying (6.20) and (6.21) are

obtained. A few examples are given below:

Example: 1

Take r:S(S+1),p= K+(2st+1) |

2 2

O q:%(—sz+ s+2@,%(—§—332—: )

In view of (6.32), the corresponding 2 sets of 8ohs to (6.20) and (6.21) are as

follows:
Set: 1

x=%(k2+(25+1) k-§+ 92 )
y:%(k2+(28+1) k+ &~ 52 )
2=2 (16 +(25¢1) ke § 99))
w=Z (€ +(25+1) k- { 37
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Set: 2

x:%(k2+(2s+1) k-$-3s2-: )
y:%(k2+(23+1) kt $+39 2+ : )
1
z=§(k2+(23+1) k+ § s19))
12
WZE(k +(2s+1) k- { ¢7))

Example: 2

Consider

r :%(sz+s+2), p:%( K+(2s+]) k 2)

0 q:%(—sz+s+2k—2),%(—§—33—2k t)

Employing (6.32), the corresponding 2 sets of sohgt to (6.20) and (6.21) are as

follows:
Set: 3

x:%(k2+(25+1) k=2-$+ 3 2k 2
y:%(k2+(2s+1) k-2+ §- s 2k 2
1 -

Z:E(k2+(23+1) k-2+ $+ ¢ 2)

W:%(k2+(23+1) k-2-$- s 2)
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Set: 4

x:%(k2+(23+1) k-2- $-3s 2k ¢

y:%(k2+(23+1) k-2+ $+33 2k ¢
1 -

Z:E(k2+(25+1) k-2+ $+ ¢ 2)

W:%(k2+(25+1) k-2-$- s 2)
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V1.3 On the system of double equationsc+y =z+w, y +z =(x +W)2
Let x, Yy, z andw be four non-zero distinct integers such that theadqgns
X+y=2z+w (6.34)
y+z=(x+ v (6.35)
are satisfied. Different methods to obtain non-zaigiinct integer values ta, v, z

andw satisfying (6.34) and (6.35) are exhibited below:

Method 1

Eliminating y between (6.34) and (6.35), the resulting equason i
X+ (2w+ 1) x+ (W - 22- W= ( (6.36)
Treating (6.36) as a quadratic xynand solving forx, one obtains

X=

N

[ (-2w-1)+/Bz+ 8w+ 1] (6.37)
The square-root on the R.H.S of (6.37) is elimidatden
1 -
z:m,vvzz(ﬁ+3n—2mu) (6.38)
From (6.37) and (6.38), we get
le(—nz—n+2m),—5(rf+5rr2n+e) (6.39)
2 2

In view of (6.34), note that
y=n+2n-mt+1, f+4n m¢ (6.40)
Thus, (6.38), (6.39) and (6.40) give two sets af-mero distinct integer solutions to

the system of equations (6.34) and (6.35).
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Method 2

The introduction of the transformations

x=u+tv,w=u-v, =4k y41( v 0 [ kR ¥ (6.41)
in (6.34) and (6.35) leads respectively to the &qoa

v=2(k-1) (6.42)
and

u? =k+| (6.43)
Observe that (6.43) is satisfied when

| =m,k=(n+2)"-m, u=( n+J) (6.44)
and from (6.42), we have

v:Z[(n+1)2—2rr} (6.45)

Using (6.44) and (6.45) in (6.41), we get

X=2n +5n- 4m+ ¢
y=4m

z=4rf +8n- 4m+ ¢
w=-2° —3n+ 4n -1

which satisfy (6.34) and (6.35).
Method 3
Consider the transformations
X=p+q,y=p-gz= p sw p § & 8 () (6.46)

it is seen that (6.34) is automatically satisfied.

The substitution of (6.46) in (6.35) leads to

ap’+p[4(a-9-2]+(a § +( a p=¢ (6.47)
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which is a quadratic irp and solving forp, we get,

p={[2(s- g +1)= /18 1}

(6.48)

The square-root on the R.H.S of (6.48) is elimidatden
1
=m,s==(rfd-m2r 6.49

q Al ) (6.49)
From (6.48) and (6.49) we have,

pzi(n2+n),—1(n?—3n+2) (6.50)

4 4

Substituting (6.49) and (6.50) in (6.46), there @ve sets of solutions to (6.34) and
(6.35) and they are represented as below:

Set 1

W:l(—n2 +3n)-n
4
wheren, m# 0

Note that, for the values of, y, z and w to be in integers, choose such that

n=0,-1( mod:) and m0 z-{0}
Set 2
x=2[(n-1)(n-2]+
y=2[(n-)(n-2)]-n
22711(3”2 -5n+2)+n

wzzll(—n2 - n+2)— n
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In this case for integer solutioms should be such that

n=1,2(mod< andmQ z-{0} .

However, by treating (6.47) as a quadraticgins in turn and following the above

procedure different sets of values »fy, z and w satisfying (6.34) and (6.35) are

exhibited below in Table 6.4:

Table 6.4: Solutions

Set X y z w

3 | =4n*+5n+:<-1 | 12n°-7n-<+1 4n® - n+ ¢ 4n®—n-¢

4 —-4n® - 3n+ ¢ 12n* +n- ¢ 4n® - n+ < 4n® —n- ¢

5 —4n® +3n+ < 12n* —n-¢ An° +n+ < 4n® +n- ¢

6 | -4n°-5n+<-1 | 12n°+ 7n—<+1 An° +n+ < 4n® +n- ¢

7 40’ —n+ ¢ 4n*-n-c 12n° +n+c —-4n*-3n-¢
8 40’ —n+ ¢ 4n*-n-c 12n° = 7n+c+1 | —-4n*+5n-c-1
9 4n° +n+c 4n°+n-c 12n*+ 7n+c+1 | —-4n’-5n-c-1
10 4n° +n+c 4n°+n-c 12n° —n+c —-4n* +3n-c
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V1.4 On the System of Two Linear Equations to be Mde Squares

an+b=p? bn+a=q?

Let a, b be two given non-zero distinct positive integers.

The problem under consideration is to find non-zawsitive integers such that
an+b= (6.51)
bn+a= ¢ (6.52)

Eliminating n between (6.51) and (6.52), one obtains
bp*—aqf = - ¢ (6.53)

Introduction of the linear transformations
p=X+al (6.54)
4= X+bT (6.55)

in (6.53) leads to
X?=abT?+ at | (6.56)

Knowing the values o& and b, one obtains the corresponding values Xoand T .

In view of (6.54) and (6.51), the required valuésnare obtained. The above process

is illustrated through the following examples:

Examples 1
Leta=1,b=7

The system of double equations to be solved is

N+7=p? (6.57)
n+1= (6.58)
(3) = q*=7p* - 4¢€ (6.59)
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whose least positive integer solution is
Po=4 0 =¢

To obtain the other values g, g satisfying (6.59), consider the pell equation
q*=7p°+1 (6.60)

whose general solutiofip,, @) is given by

where

fS:(8+3\/_7)S+l+(8—3/_7)S+1
gS:(8+3\/_7)S+l—(8—3/_7)S+1

Applying Brahmagupta lemma betweép,, g,) and(p,, @), the other values qf

andq satisfying (6.59) are given by

4
ps+l:2fs+_gs
:\L/Z , s=-1,0,1......
+ :4fs+_ s
qsl ﬁg

From (6.51), it is seen that
n,, = p,—-7,s=-10,1......
Note that the above values pfalso satisfy (6.52).

A few numerical examples are given in Table 6.Db%el

Table 6.5: Numerical Examples

S Nevy

-1 9

0 3129
795657
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Observe than,,, =0(mod?).
However, we have other values o&atisfying (6.51) and (6.52) that are obtained as
illustrated below:
In view of (6.56), we have
X2=7T%+8 (6.61)
whose least positive integer solution is
T,=2, X,=6€
To obtain the other values of, T satisfying (6.61), consider the pell equation
X?=7T?+1
Following the procedure as above the values afe given by

2
N, :[4fs+£ gsJ -7, s=-1,0,1....

Ni

A few numerical examples are given in Table 6.®b%el

Table 6.6: Numerical Examples

S ns+1
-1 57
0 15369
3904569
Observe thah,,, =0(mod?)
Example 2
Leta=2,b=7
In view of (6.56), we have
X2 =14T?+¢ (6.62)
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whose least positive integer solution is
T,=12, X, = 4¢
To obtain the other values of, T satisfying (6.62), consider the pell equation

X?=14T%+1
Following the procedure as in example 1 the vabfes satisfying (6.51) and (6.52)

are given by

11(69, 129 Y
n, =—||—f.+— -7, s=-1,0,1....
S+l 2{( 2 s \/ﬁgsj ]

A few numerical examples are given in Table 6. 0bel

Table 6.7: Numerical Examples

S N,

-1 2377

0 2136241
1918343737

Example 3:
Leta=1,b=¢+2:¢
In view of (6.56), we have
X?=(s*+29 T+( sr1) (6.63)
whose least positive integer solution is
T, =s+1, X =(s+1)’
To obtain the other values of, T satisfying (6.63), consider the pell equation

X?=(s’+29 T+1
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whose initial solution is given by

T

0

=1,X,=s+1
whose general solutio(1>~(t , 'ﬁ) is given by

X :!:f :___l__
2 2Js? + ¢

t?

1

t

where

f. :(s+1+\/sz+23)m+( st1-+ &+ 2 };Hl
g, :(s+1+m%m—( &1—@);1 |

Applying Brahmagupta lemma betweél;(0 , To) and ()Zt : T’t) , the other values of

andT satisfying (6.63) are given by

(s+1)°
2s* +2s .
(s*+25)( s+1)
2\s? +2s

T

t+

=551 1+

X :%(S+ )2 l;+

t+1

From (6.51), it is seen that
n,=p,-($+29, =-1,01.....

Note that the above values ptlso satisfy (6.52).

A few numerical examples are given in Table 6.&Wel

Table 6.8: Numerical Examples

S t N,

1 -1 33

2 4753
3 1 1507969

In conclusion, one may search for the values dtisfying (6.51) and (6.52) for other

choices ofa andb.

180



Chapter-VI Double Diophantinguations

V1.5 On the Double Equationsx + y =z+w, y+z=(x —W)3

This paper illustrates two different methods fortaming non-zero distinct integer

solutions to the pair of equations

X+ Y= z+ w (6.64)
y+z=(x- V‘)3 (6.65)
Method 1

Consider the linear transformations

X=u+v,w=u- vy uw ¥( (6.66)
Substituting (6.66) in (6.64) and (6.65) and sitfiyplig, we have,

Z=4V+v, y= 4V - (6.67)
Note that (6.66) and (6.67) satisfy (6.64) and%k.6
A few interesting relations observed among thetsmig are as follows:
I. Each of the following expressions represents acallimteger.

H 2z+w->

(i) 2y+x—-w
Il. x+z=(y+ w(mod?)

lll. Each of the following triples represents Pythagoregles

(
(

(iii) (y+2(z— Y +2z2y(z Y+2z22y 4 z Jy+ :)
(

y+2(x-w)’+2z2y+(x W+2z2y 4 x W+ :)

181



Chapter-VI Double Diophantinguations

IV. Each of the following triples represents diophamBrtuples with propert{p (vz):
Triple 1: (2,6, G.,), G =(2m 2 ¥+( A-1 v = 1,23...
Triple 2:(Y.6,,6.,). 6 =(2m 2" V-(A-1 v 1,2,3..
Triple 3: (x,¢,,G,..), 6 =(n+1)° u+( A —J) Ve 123

Triple 4: (w,c,,G,,), 6 =(n+2)’° u—( ﬁ—]) vel123...

V. lItis worth to note that the value gf represents 3 times centered octagonal pyramidal

number where as the value pfrepresents centered triangular pyramidal number.

Method 2

Introduction of the transformations

w=s, x=(k+1) s k> C (6.68)
in (6.64) and (6.65) lead to

(z-y)=ks z ¥ K°
from which we have

2=2(K$+ k), y=2 (K- k) (6.69)
Note that (6.68) and (6.69) satisfy (6.64) and%k.6

Observations
1. Itis worth mentioning that the value of represents centered triangular pyramidal

number where as the value pfrepresents 3 times triangular pyramidal number.
2. The triple (k3vv3+ k G, (Sﬂ) is a Diophantine 3-tuple with property(kzwz)

wherec, = (s+1)° k3vx?+( §—1) kw s1,2,3...
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VI.6 On the System of Equationsx +y=z+w, y+z=(x+w)’

This paper illustrates two different methods fortaming non-zero distinct integer

solutions to the pair of equations

X+y=z+w (6.70)
y+z=(x+ V‘)3 (6.71)
Method 1

Consider the linear transformations
X=u+v,w=u-V, iz ¥ C (6.72)
Substituting (6.72) in (6.70) and (6.71) and sitfiypiig, we have,
z=40+ v, y=40 - (6.73)
Note that (6.72) and (6.73) satisfy (6.70) and1B.7
A few interesting relations observed among thetsmis are as follows:
|. Each of the following expressions represents acallimteger.
i) 2z+w->
(i) 2y+x-wn
. x+z=(y+ w(mod<)
lll. Each of the following triples represents Pythagorigples
(i) (40'6v3 -V, 40V, 4 P+ \)
(ii) (120/6v3 + 8%V + v, 16V + 4 VY, 20 v+ & v+ )
IV. A. Each of the following triples represents diopivag 3-tuples with property

D(v2 +2nu+ rz):
Triple 1: (x,c,,c,,), ¢, =( s+ 1)’ u+( §—:I) w2sps 1,23..

' Y8 Mstl

Triple 2: (w, ¢, ¢,,), . =( s+’ u—( é—]) w2sns123..

18 MsHl
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B.Each of the following triples represents diopivae 3-tuples with property
D(v2 +8nu’ + r2) ;
Triple 3: (y.c,.c,,).c.=4(s+1)" d-( §-1 w 2sns 1,2,3...
Triple 4:(z,¢.G,,), ¢=4(s+1)" d+( -1 v 2sns123..
C. The triple (u+v,u-v,4u+2s+1) represents a dio 3-tuple with property
D(v* +(2s-2) u+ ).
D. The triple(4u3 +Vv,40° - v,160° + 2st+ :) represents a dio 3-tuple with property
D(V* +°+(8s-8) 1*).
V. It is worth to note that, each of the values\yof x, z+ v represents centered

triangular pyramidal number.

VI. The values of (y+z)-(x+ v) represents six times centered octagonal

pyramidal number.
VIl. The values ofx+ y+ z+ v represents two times centered triangular pyramidal

number.

VIl 2(Z+ y?)-(x- v)’° is a sextic integer.
IX.  2(xy+zw+( z j)2 is a bi-quadratic integer.

X 2(xy- 2w =( % - wi)(( * W -1)
Xl. Whenu=3r>-s* v=2rs, r# sz (

x* - xw+ W is a perfect square.

XIl.  Consider,u,v to represent the sum of the legs and differentedsn the legs
of the Pythagorean triangle then, it is observed % + w’is a perfect square.

184



Chapter — VII

Simultancous Equations



Chapter-VII Simuléegnus Equations
CHAPTER - VII
SIMULTANEOUS EQUATIONS

Chapter VIl analyses Triple Diophantine Equations n three sections VII.1 to VII.3

Section VII.1

An attempt is made to obtain non-zero distinctgatequintuples(x, y,a b, ()
satisfying the system of three equationsy= & ,2x+ y= 3, x+ 2 y= 4- °. Different

sets of integer solutions are presented.

Section VII.2

Non-zero distinct integer quintuple@g y,a b, () satisfying the system of

three equationx+ y=2a" ,2x+ y=5d+ I, » 2 y= ° are determined.

Section VII.3

Triple equations with five unknowns representedxlsyy=2a,2x+ y=5& - I?

x+2y=5¢ are analyzed for non-zero distinct integral solsi
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VII.1 On the System of Triple Equations with Five \ariables

x+y=a’, 2x+y =b’,x +2y =a’*-c?

Consider the system of equations

X+y=é (7.1)
2x+y=1t (7.2)
x+2y=a - ¢ (7.3)

Eliminating x and y between (7.1) to (7.3), the resulting equation is
b? = c2 + 222 (7.4)

which is satisfied by

a=2k,c= k, b= 2| (7.5)
Now, (7.2)-(7.1» x=b*-¢&° (7.6)
and (7.1)= y=a’ — x (7.7)

Using (7.5) in (7.6) and (7.7), the values »fand y satisfying the system of
equations (7.1) to (7.3) are given by
x=5k*, y=-k (7.8)
Also, note that (7.4) is satisfied by
a=2rs,c=2r-¢,b=2r+ ¢
For this choice, the corresponding solutions t&)(7o (7.3) are represented by
X=4r*+s", y=4r’s’— 4r* - ¢* (7.9)
In addition to the above two solutions (7.8) an®)©f (7.1) to (7.3), there are other

choices of solutions to the system of equationseuednsideration that are illustrated

below:
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Choice 1
Write (7.4) as

C2 + 23.2 = b2 i (710)
Assumeb:9( p’ +2c2) (7.11)

(1+i2\/_2)9(1—i a/)

and 1=

(7.12)

Substituting (7.11) and (7.12) in (7.10) and apmythe method of factorization, define

(1+i2v2)

c+i\/§a:TD9(p+ix/_2q)2

Equating the rational and irrational parts in thewe equation, one obtains
c=3(p’-2¢" -8p() (7.13)
a=3(2p" - 49" + 2p() (7.14)

Using the values of, b, ¢ given by (7.14), (7.11) and (7.13) in (7.6) and7]/the

required values ok and y satisfying (7.1) to (7.3) are given by

x=81( p’ + 2¢) - 3¢ p'- 24+ pi) 2
y=72(p’ - 26+ pq - 81 g+ 2q)°

Choice 2
1 can also be written as

. (7+iaV2)(7-i %)
81

(7.15)

Substituting (7.11) and (7.15) in (7.10) and apmythe method of factorization, define

(7+i4f2)

c+iv2a= 09( p+i'20)
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Equating the rational and irrational parts in thewe equation, one obtains
c=(7p* 14 - 16p() (7.16)
a:2(2p2—4q2+ 7pc) (7.17)

Using the values of, b, ¢ given by (7.17), (7.11) and (7.16) in (7.6) and/}/the

required values ok and y satisfying (7.1) to (7.3) are obtained as

x=81 p* + 2¢¢) - 4 2p* - 4+ 7p()
y=8(2p - 4¢ + 7pq - 8] p+ 2d)’

Choice 3

Write (7.4) as

10c% =c¢® = b*-2¢&? (7.18)
Assume

c=p*-2c° (7.19)
Write 1 as

1=Y2-2X2 (7.20)
where

Y, :%[(3+ 2\/_2)n+l +(3— ZK/—Z)M}

X, :2—\1/5[(:% 2\/_2)”“—(3— z\/_gl} n=012..

Substituting (7.19) and (7.20) in (7.18) and apmythe method of factorization, define
b++2a=(p+/29*( Y +v2>,)
Equating the rational and irrational parts, we have

b=Y,(F+2¢)+4 pw, (7.21)
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a=2pqY,+( B+2¢) >, (7.22)
Using the values of, b, ¢ given by (7.22), (7.21) and (7.19) in (7.6) andr)/the

required values ok, y satisfying the system (7.1) to (7.3) are given by
x=(p*+20°)* (Y- X)) +4 g (4 X~ Y)+4 pf B+2 9 X,

y=ap¢t(2y2- 4X7)+( g+ 2d) (2% ), ® 0,1,2,...
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VII.2 On the Simultaneous Equation x+y=2a’, 2x +y =@° +b* ,x +% =°®

Let x, y, & k and ¢ be five non-zero distinct integers such that

X+y=2¢& (7.23)
2x+ y=5a + ? (7.24)
X+2y= I (7.25)

Eliminating x and y between (7.23) to (7.25), the resulting equation is
a’-b’=¢° (7.26)
Solving (7.26) through different methods, one atdalifferent sets of solutions to the

system (7.23) to (7.25).

Method 1

It is observed that (7.26) is satisfied by
a:m(rrf— r?), b= r( m- ﬁ), e:( - 2) (7.27)

wherem# +r andn#1. Eliminating y between (7.23) and (7.24), the valuexas

given by
x=3a% + 0 =(nf- 1) (3ni- ?) (7.28)
From (7.23),
y=2a’ - x=-(nf- i) ( i+ ?) (7.29

Note that, (7.27) to (7.29) satisfy (7.23) to (}.2B few numerical examples are

given in Table 7.1 below:
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Table 7.1: Numerical Examples

m n a b c X y
3 -10 -15 -5 525 -325
5 -7 -120 168 -24 71424 -42624
11 9 440 360 40 710400 -32320
9 2 693 154 77 1464463  -50396
Method 2

After performing numerical calculations, it is sabat (7.26) is satisfied by
a=t,,,b=t, c=(k+1) (7.30)
wheret,, the triangular number of rark.

The corresponding values &fandy satisfying (7.23) to (7.25) are represented by

x=3(ty) + (1) = (kr D"+ (k+ 2+ (k+ )’

y= —(t&kﬂ)2 —(t3’k)2 = —%[(k+1)4 +(k+ 1)2}

A few numerical examples are given in Table 7.2%el

Table 7.2: Numerical Examples

k a b c X y

2 6 3 117 -45

3 10 4 336 -136

4 15 10 5 775 -325

5 21 15 6 1548 -666
Method 3

Observe that (7.26) is satisfied by
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Since our interest is on finding integer solutions,
take

c=2k+1
and we have

a=4k®+6k*+ 3k+1
b =4k® + 6k* + 3k

For this choice, the values afand y satisfying (7.23) to (7.25) are given by
x = 4( 4K+ 6K* + 3K) >+ g 4+ B+ K+
y=-2(4Kk° + 6Kk + 3k) - A 4+ 6K+ H -

A few numerical examples are presented in Tabld&l8w:

Table 7.3: Numerical Examples

k a b c X y

2 63 62 5 15751 -7813

3 172 171 7 117993 -58825

4 365 364 9 532171 -265721

5 666 665 11 1772893 -885781
Method 4

Introducing the transformations

a=u+v,b=u- v c2a (7.312)
in (7.26), we have

uv=2aq"* (7.32)
One may choose and v suitably in (7.32) and using (7.31) the correspogdialues

of x and y satisfying the system of equations (7.23) to (7&%®)obtained.
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Choice 1
u=a®,v=2
Da=a*+2,b=a*-2
Thus, x=3(a° +2)*+(a°- 2) = 4 °+ & °+ 1
y=-(a*+2)%-(a’-2) =—(20°+¢)
Choice 2
u=2a°,v=1
Oa=2a°+1b=20°~1
Thus, x=3(20° +1) *+( 2° - ) = 1&r°+ &°+ .
y=-(20°+1)*-(20°- 1) = (& °+ )
Choice 3
u=2a°,v=a
Da=2a’+a,b=20*-a
Thus, x=3(20% +a)*+(22%-a) = 16"+ & °+ «*
y=-(20°+a)*-(20°-a) =~ (& *+ 227
Choice 4
u=a®,v=2a
Da=a®+2a,b=a*-2a
Thus,x=3(a’ +20) *+(a’ - 20) = 4"+ &°+ L@
y=-(a®+2a)*~(a’-20) =~(20*+ &r?)
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Method 5

The introductions of the transformations

a=u+2kv,b=u-2RvGeE:a (7.33)
in (7.26), leads to

uv=a?® (7.34)
One may choose andv suitably in (7.33) and using (7.34) the correspogdalues

of xandy satisfying the system of equations (7.23) to (7&%)obtained.
Choice 5
u=a’,v=1
Oa=a’+2k’,b=a°-2k°
Thus, X :3(0'3 + 2k3‘)2 +(0'3— 2k3’)2 = 4r°+ 8%+ 1th
y=2(a%+2k*) *~ (4o + 8 *+ 16k°) =-( 2 °+ 8
Choice 6
u=1,v=a’
0 a=1+2Ka’ ,b=1- 2°a°®
Thus, x =3(1+ 2°a®) *+(1- K’a®) = 160 *+ & *+ .
y= 2(1+ 2k3a3) 2—(16k6a'6+ &+ A): —( & °+ )
Choice 7
u=a’,v=a
Oa=a’+2k’a,b=a?-2ka
Thus, x:3(a'2 + 2k3a) 2+(a'2— 2k3a) = 4o+ 16k P+ & ®
y=2(a’+2¢a) ~(40* + 16k% >+ & )= - &b *+ 2 )
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Choice 8
u=a,v=a?
Oa=a+2k’a? b=a-2Ka’
Thus, x:3(a+ 2k30'2) 2+(a'— 2k3a2) = 4o+ 8+ 1k !

y=2(a+2Ka?) - (da®+ &%+ 16k% )= 2 *+ &% )
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VI1.3 On a Set of Three Diophantine Equations

X+y=2a’, X +y =@°-b’ ,x +% =§°

The system of triple equations with five unknowrms te solved for its distinct

non-zero integral solutions are

X+y=2& (7.35)
2x+y=5a - I (7.36)
X+2y=5¢ (7.37)

Eliminatingx andy between (7.35) to (7.37), we get
a’+b’=5¢ (7.38)
Also, solving (7.35) and (7.36) farandy, one obtains

x = 3a% - L2 (7.39)

2

y=b'-¢ (7.40)
Now, solving (7.38), the values af b, ¢ are obtained. In view of (7.39) and (7.40),
the values ok andy satisfy (7.35) to (7.37) are obtained. Thus,aheve values of,
Yy, &, b andc represent the solutions to the system of equaiidrdd) to (7.37). The

above process is illustrated as follows:

Method 1
Let

c=a*+p° (7.41)
wherea and B are non-zero integers.

Write 5 as
5=(2+i)(2-i) (7.42)
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Using (7.41), (7.42) in (7.38) and applying the Inoet of factorization, define

(a+ib)=(2+i)[(a+iB)] (7.43)

from which we have

a=a(a,pB)=2a°-6aB*-1’B+p
(7.44)

b=b(a,B)=0a’°-3aB*+6a*B- 28"
Substituting (7.44) in (7.39) and (7.40), the cspanding values ok andy are
obtained.

A few numerical examples are given in the Tabfebélow:

Table 7.4: Numerical values

a p a b C X y
1 2 -20 -15 5 975 -175
2 3 -101 -28 13 29819 -9417
1 3 -34 -62 10 -376 2688
2 4 -160 -120 20 62400 -1120Q
Method 2
Write 5 as
5:(1+ 2’)(1— 2) (7.45)

Using (7.45), (7.41) in (7.38) and applying thetioel of factorization, define

(a+ib) = (1+2))[(a +iB)]

Equating real and imaginary parts, we have

|

a=a(a,B)=a’-3ap*-6a’B+ 2B
b=b(a,B)=2a° - 6aB*+ BB~

(7.46)

(7.47)

Substituting (7.47) in (7.39) and (7.40), the cspending values ok andy are

obtained.
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A few numerical examples are given in the Tabtebélow:

Table 7.5: Numerical values

a B a b C X y
1 2 -7 -24 5 -429 527
2 3 -64 -83 13 5399 2793
1 3 10 -70 10 -4600 4800
2 4 -56 -192 20 -27456 33728
Method 3
Substituting
a=(5k-3)t (7.48)
in (7.38), it gives
(5k2 - 6k+ 2) b2 = (3 (749‘
Chooséb andc such that
b:(5k2 - 6k+ 2) L3 (750)
C:(5k2_6k+ 2)L2 (751)

Note that (7.49) is satisfied.

Using (7.50) in (7.48), we have
a=(5k-3)(5K - 6k+ 2 \°
It is observed that the valuesayfo andc represented by
a=(5k-3)(5K - 6k+ J U’
b=(5k* -6k+ 2’
c = (5k* - 6k+ 21’

satisfy (7.38). In view of (7.39) and (7.40) thdues ofx andy satisfying (7.35) to

(7.37) are obtained.
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A few numerical examples are given in the Tablebe®w:

Table 7.6: Numerical values

u k a b C X y
2 1 2 8 4 11 -3
2 2 70 80 40 14600 -4800
2 3 348 232 116 362471 -120263
2 4 986 464 232 2913224  -968832
Method 4
Write (7.38) as
a’+b*=5c1 (7.52)
Write 1 as
1= (3+4)(3-4) (7.53)

25
Using (7.41), (7.42), (7.53) in (7.52) and applythg method of factorization, define

(3+4i)

(a+ib):(2+i)[(a+iﬁ)]3T (7.54)

from which we have

a= a(a,ﬂ) ::_LI:ZO,S _ &3’,32 _ 33),2[;4. ]_Bs:'
5 (7.55)
b=b(a,B) :é[lw -3p° + @B PB°

Since our interest is on finding integer solutioreplacing,a by 5A and 8 by 5B
in (7.41) and (7.55), the corresponding integeutsmhs toa, b andc are given by

a(A B) =504 — 150AB — 8254 B+ 27 I°
b(A B) =275/ - 825AB + 1504 B- 5 I
o(A B)=25(& + B)
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In view of (7.39) and (7.40), the values of x anarg obtained.
A few numerical examples are given in the Tableb&lbw:

Table 7.7: Numerical values

a B A B a b C X y

5 15 1 3 3650| -8050 250 -24835000 51480000

10 15 2 3 4775 -12200325 | -80438125| 12603937H

15 10 3 2 -13100 -175 | 325| 514799375 -171579375

10 30 2 6 29200 -644001000| -158944000Q 3294720000
Method 5

Using (7.41), (7.44), (7.53) in (7.52) and applythg method of factorization, define

(a+ib)=(1+ 2i)[(a+iﬁ)]3(3+5—4i) (7.56)
Equating real and imaginary parts, we have

a=ala,B)=-a°+3apB -6a*L+23 (7.57)

b=b(a,B) = 2a° -6aB* -3a*B + °

Substituting (7.57) in (7.39) and (7.40), the cspanding values ok andy are

obtained.
A few numerical examples are given in the Tab&bélow:

Table 7.8: Numerical values

a B a b Cc X y

1 2 15 -20 5 275 175

2 3 28 -101 13 -7849 9417
1 3 62 -34 10 10376 -2688
2 4 120 -160 20 17600 11200
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Chapter-VIil Diophantine 3-Tuples
CHAPTER - VI
DIOPHANTINE 3-TUPLES

Chapter VIl focuses on Diophantine 3-Tuples in fou sections VIII.1 to VIIl.4

Section VIII.1

This paper deals with the study of constructinguseges of diophantine

triples (a, b, ¢) such that the product of any two elements of theadded by 11 is a
perfect square.
Section VIII.2

The construction of sequences of diophantine 'si;()m b, c) through pronic
numbers is studied.

Section VIII.3

This section has three parts VIII.3A, VIII.3B, VIII .3C

The formulation of sequences of diophantine tripﬂesb, c) through Euler
polynomials, Bernoulli polynomials & Euler and Beudli polynomails is considered
in sections VIIL.3A, VIII.3B, VIII.3C respectively.
Section VIIl.4

This paper concerns with the formulation of seqaemaf Diophantine 3-tuples

with propertyD(k2 +10k - E) through matrix method.
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VIII.1 Formulation of Sequences of Diophantine 3-Tples with Property D (11)

Sequence 1
Leta=7,b=7n"+4r-1
It is observed that
ab+11=(7n+ 2)°
Therefore, the pai(a, b) represents Diophantine 2-tuples with propdbtfl1).
Let ¢, be any non-zero polynomial such that
ag +11= ? (8.1)
bg +11=c? (8.2)
Eliminating c, between (8.1) and (8.2), we have
bp? - aqf = (b~ g(11) (8.3)
Introducing the linear transformations
p=X+aT, g= X+ b’ (8.4)
in (8.3) and simplifying we get
X?=abT?+11
which is satisfied byl =1, X =7n+ Z
In view of (8.4) and (8.1), it is seen that
¢, =7n" +18n+ 1(
Note that(a, b, g) represents Diophantine 3-tuples with propéDifL1).
Taking (a,¢) and employing the above procedure, it is seenttieatriple(a, ¢, c,)
where
C, =7n" +32n+ 3¢
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exhibits Diophantine 3 —tuples with propeDy11).
Taking (a, c,) and employing the above procedure, it is seenthigatriple(a,c,, c,)
where
C, =7 +46n+ 7¢
exhibits Diophantine 3 —tuples with propeDy11).
Taking (a,c,) and employing the above procedure, it is seenttteatriple(a,c,, ¢,)
where
c, =7 +60n+ 12
exhibits Diophantine 3-tuples with propefy11).
The repetition of the above process leads to theerggion of sequence of

Diophantine 3-tuples whose general form is giver(dn)cs, csﬂ) where

C.=7n +(l4s+ Y n+(78+ 45 ) , s 1,2,3...

Sequence 2
leta=7, b=7n-4r-1

It is observed that
ab+11=(7n-z)’
Therefore, the pai(a, b) represents Diophantine 2-tuples with propeifi1).
Let ¢, be any non-zero polynomial such that
ag +11= ? (8.5)
bg +11=¢? (8.6)
Eliminating c, between (8.5) and (8.6), we have

bp? — acf = (b- g(11) (8.7)
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Introducing the linear transformations
p=X+aT, g= X+ b (8.8)
in (8.7) and simplifying we get
X?=abT?+11
which is satisfied byl =1, X =7n- 2
In view of (8.8) and (8.5), it is seen that
c, =7n" +10n+ Z
Note that(a, b, cl) represents Diophantine 3-tuples with propddift1).
Taking (a,¢,) and employing the above procedure, it is seenttteatriple (a, g, ¢,)
where
C, =7 + 24n+ 1¢
exhibits Diophantine 3-tuples with propefyl1).
Taking (a,c,) and employing the above procedure, it is seenthigatriple(a,c,, ,)
where
c, =7n° +38n+ 5(
exhibits Diophantine 3-tuples with propefyl1).
Taking (a,c,) and employing the above procedure, it is seenthieatriple(a,c,, ¢,)
where
c, =7n +52n+ 9t
exhibits Diophantine 3-tuples with propefyl11).
The repetition of the above process leads to timergéon of sequence of Diophantine

3-tuples whose general form is given (@ c,, ¢,,,) where

C,=7n+(14s- ) m(78-4s 1, s 1,2.3...
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Sequence 3
leta=2,b=2"""+2"-E

It is observed that
ab+11= ( 2'+ 1)2
Therefore, the pai(a, b) represents Diophantine 2-tuples with propeifi1).
Let c, be any non-zero polynomial such that
ag +11= ? (8.9)
bg +11=¢? (8.10)
Eliminating c, between (8.9) and (8.10), we have
bp? - aqf = (b~ g(11) (8.11)
Introducing the linear transformations
p=X+aT, g= X+ b’ (8.12)
in (8.11) and simplifying we get
X?=abT?+11
which is satisfied by =1, X =2'+1
In view of (8.12) and (8.9), it is seen that
C =21 +3%2" -1
Note that(a, b, fi) represents Diophantine 3-tuples with propddit1).
Taking (a,¢) and employing the above procedure, it is seenttieatriple(a, ¢, c,)
where
C,=2"""+5%2"+7
exhibits Diophantine 3-tuples with propefyl1).
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Taking (a,c,) and employing the above procedure, it is seenthigatriple(a,c,, ,)
where
C,=2"t+7*2" +1¢
exhibits Diophantine 3-tuples with propefyl1).
Taking (a,¢,) and employing the above procedure, it is seenthteatriple(a,c,, c,)
where
C,=2"1+9*2"+3E
exhibits Diophantine 3-tuples with propefyl11).
The repetition of the above process leads to tinergéon of sequence of Diophantine

3-tuples whose general form is given (bycs, csﬂ) where

C,=2""+(2s+) 2+( 28+ 25§ , = 1,2,3...
Now, consider(b,cl) and employing the above procedure, it is seen ttiattriple
(b.q,¢,) where

C, =4%22"1 +8%2" 14
exhibits Diophantine 3-tuples with propefyl11).
Taking (b,c,) and employing the above procedure, it is seenthteatriple (b, c,, ¢,)
where

C,=9*2*" +15*2" - 37
exhibits Diophantine 3-tuples with propefyl11).
Taking (b, c;) and employing the above procedure, it is seenttteatriple (b, c,, ¢,)
where

C, =16* 27"+ 24*2" - 7(
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exhibits Diophantine 3-tuples with propefyl1).
The repetition of the above process leads to tinergéon of sequence of Diophantine

3-tuples whose general form is given (Hrycs, cs+1) where

c.=52"'+(+292-(58-25 2 , 5 1,2,3...
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VIIl.2 On Sequences of Diophantine 3-Tuples Generat through Pronic Numbers

Sequence: 1

Consider the Pronic numbeRs;, and Pr,, given by
Pr, =n(n+1), P, =2n(2n+ )
Let a=4Pr, b= Py,
It is observed that
ab+ rf =(4r12+3r)2
Therefore, the pai(a, b) represents diophantine 2-tuple with the prop&in®) .
Let c, be any non-zero polynomial in x such that
ac + 1’ = ¢? (8.13)
bg + f = ¢ (8.14)
Eliminating ¢, between (8.13) and (8.14), we have
bp’ - ad =(b- g 1? (8.15)
Introducing the linear transformations
p=X+aT, g= X+ b’ (8.16)
in (8.15) and simplifying we get
X?=abT?+ r?
which is satisfied byl =1, X = 4rf + &r
In view of (8.16) and (8.13), it is seen that
c =16n* +1zr

Note that(a, b, cl) represents diophantine 3-tuple with propedtyn?®) .
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Taking (a,c) and employing the above procedure, it is seentkteatriple (a, ¢ , ¢,)
where

c, =36n° + 3(r
exhibits diophantine 3-tuple with properB/(n?).
Taking (a,c,) and employing the above procedure, it is seenttieatriple(a, c, , c,)
where

C, = 64n° + 5¢r
exhibits diophantine 3-tuple with properB/(n?).
Taking (a,c,) and employing the above procedure, it is seenttigatriple(a, ¢, c,)
where

c, =100n° + 9(r
exhibits diophantine 3-tuple with properB/(n?).
The repetition of the above process leads to therg¢ion of sequence of diophantine
3-tuples whose general form is given (&, c, , c,,,) where

c.=(45+8s+4) f+(4d8+6% 23, 51,23,
Now, consider(b,q) and employing the above procedure, it is seen ttiattriple
(b,q,c,) where

c, =36n" + 24r
exhibits diophantine 3-tuple with properB/(n?).
Taking (b, c,) and employing the above procedure, it is seenttteatriple (b, c, , ¢,)
where

c, =64n” + 4(r
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exhibits diophantine 3-tuple with properB/(n?).
Taking (b, c,) and employing the above procedure, it is seenttteatriple (b, c,, ¢,)

where
c, =100n" + 6(r
exhibits diophantine 3-tuple with properB/(n?).
The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (Hry C, cs+1) where

c,=(2s+2) f+(28+6s+ 4 n s1,2,3,.

Sequence: 2

Consider the Pronic numbeRs;, and Pr,, given by
Pr,=n(n+1), Pr, =2n(2n+]))
Leta=Pr, b= Py,
It is observed that
ab+2r? + 2rf =( 21t + 21)’
Therefore, the paifa, b) represents diophantine 2-tuple with the propBr{gn® + 2n°).
Let c, be any non-zero polynomial xisuch that
ag +2r +2r7 = ? (8.17)
bg +2r° + 217 = (? (8.18)
Eliminating ¢, between (8.17) and (8.18), we have

bp’ —acf =(b- §(2+2r°) (8.19)
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Introducing the linear transformations

p=X+aT, g= X+ b’ (8.20)
in (8.19) and simplifying we get

X?=abT?+2rf+21°
which is satisfied byl =1, X = 217 + Zr
In view of (8.20) and (8.17), it is seen that

c,=9n* +7r
Note that(a, b, c1) represents diophantine 3-tuple with propddt{2n’ + 2n°).
Taking (a,c,) and employing the above procedure, it is seenttteatriple (a, ¢ , ¢,)
where

c, =16n° +14r
exhibits diophantine 3-tuple with proper/(2n* + 2n®).
Taking (a,c,) and employing the above procedure, it is seenttieatriple(a, c, , c,)
where

c, = 25n° + 2¢r
exhibits diophantine 3-tuple with proper/(2n* + 2n®).
The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (& c, , c,,,) where

c,=(s+2) f+($+4s 2 n 1,23,
Now, consider(b,cl) and employing the above procedure, it is seen ttiattriple
(b,q,¢,) where

c, =25 +1ir
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exhibits diophantine 3-tuple with proper/(2n* + 2n®).
Taking (b, c,) and employing the above procedure, it is seenttteatriple (b, c, , ¢,)
where
C, =49’ + 31r
exhibits diophantine 3-tuple with proper/(2n* + 2n®).
The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (by C, cs+1) where

c,=(2s+1) rf+(28+4s+) n s1,2,3,.

Sequence: 3

Consider the Pronic numbeRs;, and Pr,, given by

Pr.=n(n+1), Pr

n 4n

=4n(4n+ ]
Leta=4Pr, b= P,
It is observed that
ab+9r? = (8rf + Er)’
Therefore, the pai(a, b) represents diophantine 2-tuple with the prop&i@n?).
Let ¢, be any non-zero polynomial in x such that
ac +9rf = ? (8.21)
bg +9rf = ¢ (8.22)
Eliminating ¢, between (8.21) and (8.22), we have

bp® - af =(b- §(9 1*) (8.23)
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Introducing the linear transformations
p=X+aT, g= X+ b (8.24)
in (8.23) and simplifying we get
X?=abT?+9r?
which is satisfied byl =1, X = 8rf + Er
In view of (8.24) and (8.21), it is seen that
c, =36n° + 1¢r
Note that(a, b, c1) represents diophantine 3-tuple with propddtgon®).
Taking (a,c,) and employing the above procedure, it is seenttteatriple (a, ¢ , ¢,)
where
C, =64n’ + 4(r
exhibits diophantine 3-tuple with properB/(9n®).
Taking (a,c,) and employing the above procedure, it is seenttieatriple(a, c, , c,)
where
¢, =100n* + 7(r
exhibits diophantine 3-tuple with properB/(9n®).
The repetition of the above process leads to thergéion of sequence of diophantine
3-tuples whose general form is given (& c, , c,,,) where
C.=(2s+4)°rf+(4$+10s+ 4 n s 1,23,
Now, consider(b,q) and employing the above procedure, it is seen ttiattriple
(b,q.¢,) where
c, =100n" + 4(r
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exhibits diophantine 3-tuple with properB/(9n®).
Taking (b, c,) and employing the above procedure, it is seenttieatriple (b, c, , ¢,)
where
c, =196n° + 7(r
exhibits diophantine 3-tuple with properB/(9n®).
Taking (b, c,) and employing the above procedure, it is seenttieatriple (b, c, , ¢,)
where
c, =324n° + 10¢r
exhibits diophantine 3-tuple with proper/(9n?).
The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (by C, cs+1) where

c,=(4s+2) P +(4$+10sr 4 n s 1,2,3,.

214



Chapter-VIil Diophantine 3-Tuples

VIII.3A On Sequences of Diophantine 3-Tuples Genetad through

Euler Polynomials

Sequence: 1

Consider the Euler polynomials, (x) and E, ( x) given by

E(x)=x-=, E(X=%X-:

N

Leta=4(E(X)", b= E())
It is observed that

\2

ab+3x - 3x+1=( 2X - 2x+ )
Therefore, the paifa, b) represents diophantine 2-tuple with the propBr{gx* - 3x+1..
Let c, be any non-zero polynomial xisuch that

ag +3x —3x+1= |? (8.25)

bg +3X¥ - 3x+1= ¢ (8.26)
Eliminating ¢, between (8.25) and (8.26), we have

bp’ - af =(b- §(3 X-3 x1) (8.27)
Introducing the linear transformations

p=X+aTl, g= X+ b’ (8.28)
in (8.27) and simplifying we get

X?=abT?+3%X-3:+1
which is satisfied byl =1, X = 2¥ - 2+ 1
In view of (8.28) and (8.25), it is seen that

¢, =9E,(x)+3

215



Chapter-VIil Diophantine 3-Tuples

Note that(a, b, cl) represents diophantine 3-tuple with propedt{8x” — 3x+ 1.
Taking (a,c) and employing the above procedure, it is seentkteatriple (a, ¢ , ¢,)
where
c, = 25E,(X)+8
exhibits diophantine 3-tuple with proper/(3x° —3x+1.
The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (t:y G,.C ) where

el
¢, =(2n+1)° E(X+ f+2n =1,2,3,.
Now, consider(b,q) and employing the above procedure, it is seen ttiattriple
(b,q.c,) where
c, =16E,(X)+ &
exhibits diophantine 3-tuple with proper/(3x* —3x+1..
The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (¢, , ,,,) where

¢, =(n+2)° E(X+2n+1 n=1,2,3,.

Sequence: 2
Consider the Euler polynomiak (x) and E,(x) given by
1 3 1
=x-=, = X-= X+=
E (x)=x=2,B(§= X=X+

Leta=2E (X), b=4E(:)
It is observed that

\2

ab+ X' -2X+9xX-8x+ 2:(3>€— 3% )
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Therefore, the pair(a, b) represents diophantine 2-tuple with the property
D(x'-2x+9x° —8x+ 2.
Let ¢, be any non-zero polynomial in x such that

ac + X' -2xX+9xX-8x+ 2= |? (8.29)

bg + X -2X +9X -8x+ 2= (° (8.30)
Eliminating ¢, between (8.29) and (8.30), we have

bp’—a =(b- §( ¥-2 X+9 %-8 % 2 (8.31)
Introducing the linear transformations

p=X+aT, g= X+ b’ (8.32)
in (8.31) and simplifying we get

X?=abT?+ X-2X+9X-8x -

which is satisfied byl =1, X =3x - 3>+ ]
In view of (8.32) and (8.29), it is seen that

C, =4X —4x+ 2z
Note that(a, b, ¢) represents diophantine 3-tuple with propdx’ —2x’ +9x - 8x+ 2).
Taking (a,c ) and employing the above procedure, it is seenttteatriple (a, ¢ , ¢,)
where

C,=4X +6X - 4>+
exhibits diophantine 3-tuple with proper/(x* - 2x* + 9x* - 8x+ 2..
Taking (a,c,) and employing the above procedure, it is seenttieatriple(a, c, , c,)
where

C,=4x+12x% - ¢
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exhibits diophantine 3-tuple with propery/(x* - 2x* + 9x* - 8x+ 2..
Taking (a,c,) and employing the above procedure, it is seenthigatriple(a, c,, c,)
where

c, =4X +18X + 8~ 1
exhibits diophantine 3-tuple with propery/(x* - 2x* + 9x* - 8x+ 2..
The repetition of the above process leads to thergéion of sequence of diophantine
3-tuples.
Now, consider(b,q) and employing the above procedure, it is seen ttiattriple
(b,q.¢,) where

c, =16x —12¢ - 10x+
exhibits diophantine 3-tuple with proper/(x* - 2x* + 9x* - 8x+ 2..
Taking (b, c,) and employing the above procedure, it is seenttieatriple (b, c, , ;)
where

c, = 36X — 36X — 16x+ 1.
exhibits diophantine 3-tuple with proper/(x* —2x* + 9x* - 8x+ 2
Taking (b, c,) and employing the above procedure, it is seenttieatriple (b, c,, c,)
where

C, =64x° = 72¢ - 22+ 2.
exhibits diophantine 3-tuple with proper/(x* - 2x* + 9x* - 8x+ 2
The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (Hry G, C ) where

n+l

¢, =(n+2)" E(X+2n+1 n=1,2,3,.
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VII1.3B On Sequences of Diophantine 3-Tuples Genetad through

Bernoulli Polynomials

Sequence: 1

Consider the Bernoulli polynomiaB, (x) and B, (x) given by
1
B,(X)=1 B(X=X- Xk

Leta=B,(X) =1, b=6B(XY=6%X-6 +
It is observed that
ab+3X = 9% - 6x+ 1= ( 3% )’
Therefore, the pai(a, b) represents diophantine 2-tuple with the prop@iax’).
Let ¢, be any non-zero polynomial in x such that
ag +3x = ? (8.33)
bg +3X = ¢* (8.34)
Eliminating ¢, between (8.33) and (8.34), we have
bp® - af =(b- §(3 ) (8.35)
Introducing the linear transformations
p=X+aTl, g= X+ b’ (8.36)
in (8.35) and simplifying we get
X?=abT?+3»°
which is satisfied byl =1, X =3x-1
In view of (8.36) and (8.33), it is seen that

c, =9x -3X = 6>°
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Note that(a, b, cl) represents diophantine 3-tuple with propddt{8x”).
Taking (a,c,) and employing the above procedure, it is seentkteatriple(a, ¢ , ¢,)
where

C, =6X +6x+1
exhibits diophantine 3-tuple with properB/(3x°).
Taking (a,c,) and employing the above procedure, it is seenttieatriple(a, c, , ¢,)
where

C, =6X° +12x+4
exhibits diophantine 3-tuple with properB/(3x°).
Taking (a,c,) and employing the above procedure, it is seenttigatriple(a, c,, c,)
where

Cc, =6X +18x+ ¢
exhibits diophantine 3-tuple with properB/(3x°).
Taking (a,c,) and employing the above procedure, it is seenttieatriple(a, ¢, , ¢,)
where

C, = 6X° + 24x+ 1€
The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (&, , ¢,.,) where

¢, =6xX+6(n-1) x+(n-9°, n~=1,2,3,.
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Sequence: 2

Consider the Bernoulli ponnomiaBl(x) and Bg(x)given by

B (%)= %2, B(§= k-3 k+-

N |-

Leta=2B(x)=2x-1, b= 2B( §= 2%~ 3%+
It is observed that

)2

ab+3x -3x+1=( 2% - 2x+ )
Therefore, the paifa, b) represents diophantine 2-tuple with the propBr§x’ — 3x+ 1).
Let c, be any non-zero polynomial in x such that

ac +3¥X -3x+1= ? (8.37)

bg +3¥ —=3x+1= ¢ (8.38)
Eliminating ¢, between (8.37) and (8.38), we have

bp® - af =(b- §(3 X -3 % 1) (8.39)

Introducing the linear transformations
p=X+aT, g= X+ b (8.40)
in (8.39) and simplifying we get
X?=abT?+3xX-3:+1
which is satisfied byl =1, X = 2X - 2>+ 1
In view of (8.40) and (8.37), it is seen that
c=2X+xX->+1

Note that(a, b, c1) represents diophantine 3-tuple with propddt{8x” — 3x+ 1.

221



Chapter-VIil Diophantine 3-Tuples

Taking (a,c) and employing the above procedure, it is seentkteatriple (a, ¢ , ¢,)
where

C,=2X +5X +)
exhibits diophantine 3-tuple with proper®/(3x* —3x+1.
Taking (a,c,) and employing the above procedure, it is seenttieatriple(a, ¢, , ¢,)
where

C,=2X+9X+ 7> ¢
exhibits diophantine 3-tuple with properB/(3x° —3x+1.
Taking (a,c,) and employing the above procedure, it is seenttteatriple(a, c,, ¢,)
where

C,=2X +13 + 17— ¢
exhibits diophantine 3-tuple with proper®/(3x* —3x+1.
Taking (a,c,) and employing the above procedure, it is seenttieatriple(a, c, , ¢;)
where

C, = 2% +17x + 31x- 1!
exhibits diophantine 3-tuple with proper®/(3x* —3x+1.
The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (@ c, , ¢,.,) where

c,=2x¢+(4n-3 X +(2f - anr § x( 2m A) , = 1,2,3,
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VIII.3C On Sequences of Diophantine 3-Tuples Genetad through Euler and

Bernoulli Polynomials

Consider the Euler polynomidd, (x) and Bernoulli polynomiaB, (x) given by
1
E,(X)=X-x B(X= X- X<

Leta=E,(x)=X~-x b=6B( =6 %-6 +1
It is observed that

\2

ab+3x' +3x - 3x+ 1= 3% - 2%+ )
Therefore, the pair(a, b) represents diophantine 2-tuple with the property
D(3x*+3x* - 3x+ 1.
Let c, be any non-zero polynomial ¥nsuch that

ag +3xX' +3¥X - 3x+ 1= |* (8.41)

b +3x +3X - 3x+ 1= (¢ (8.42)
Eliminating ¢, between (8.41) and (8.42), we have

bp’ - adf =(b- §(3 X +3%-3 ] (8.43)
Introducing the linear transformations

p=X+aT, g= X+ b’ (8.44)
in (8.43) and simplifying we get

X?=abT?+3X+3xX-3.+1
which is satisfied byl =1, X = 3¥ — 2>+ 1
In view of (8.44) and (8.41), it is seen that

C, =13 —11x+ ¢
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Note that(a, b, cl) represents diophantine 3-tuple with propedt{Bx* + 3x* — 3x+ 1 .

Taking (a,c,) and employing the above procedure, it is seenttieatriple(a,c , c, )

where

C, =22x° —18x+ ¢

exhibits diophantine 3-tuple with propery(3x* + 3x* - 3x+ 1.

Taking (a,c,) and employing the above procedure, it is seenttieatriple (a, c,, ¢,)

where

C, =33X - 27x+ 1

exhibits diophantine 3-tuple with propey(3x* + 3x* - 3x+ 1

Taking (a,c,) and employing the above procedure, it is seenttigatriple (a, ¢, ¢,)

where

C, = 46X — 38x+ ¢

exhibits diophantine 3-tuple with properB(3x* + 3x* - 3x+ 1 .

The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (@, c, , c,,,) where

c.=(f+65+6) X-($+456 %281 51,23,

A few numerical examples are presented in Tabld8ldaw:

Table 8.1: Numerical Examples

X D (a.c,.c,) (a,c,.c,) (a,c;.c,) (a,c,.c)

2 55 (2,33,57) (2,57,85) (2,85,117) (2,117,15
3 262 (6,87,149) (6,149,223)  (6,223,309)  (6,309,40
4 805 (12,167,285)|  (12,285,427)  (12,427,593)  (12,5%8)
5 | 1936 | (20,273,465) (20,465,697)  (20,697,969) (@B,281)
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Now, consider(b,cl) and employing the above procedure, it is seen ttiattriple
(b,c,c,) where
C,=37¢ - 33+ ¢
exhibits diophantine 3-tuple with propery(3x* + 3x* - 3x+ 1 .
Taking (b, c,) and employing the above procedure, it is seenthieatriple (b, c, , ,)
where
c, =73x° — 67x+ 1t
exhibits diophantine 3-tuple with properB(3x* + 3x* - 3x+ 1 .
Taking (b,c;) and employing the above procedure, it is seenttieatriple (b, c;, ¢,)
where
c, =121¢ - 11X+ 2.
exhibits diophantine 3-tuple with properB(3x* + 3x* - 3x+ 1 .
The repetition of the above process leads to thergéion of sequence of diophantine

3-tuples whose general form is given (Hry G, cn+1) where

A few numerical examples are presented in Tabld8l@w:

Table 8.2: Numerical Examples

X D (b.c,,c,) (b,c,.c,) (b.cy.c,) (b.c,.c.)

2 55 (13,33,90) |  (13,90,173)]  (13,173,282) (13,2841
3| 262 (37,87,242)| (37,242,471 (37,471,774)  (37,0731)
4 | 805 | (73,167,468 (73,468,915)  (73,915,1508) (GB312247)
5 | 1936 | (121,273,768)(121,768,1505) (121,1505,2484) (121,2484,3705

For simplicity and brevity, some more sequence3-tufples generated through Euler
and Bernoulli polynomials are presented in Tab8&low.

225



Chapter-VllI

Diophantine 3-Tuples

Table 8.3: Sequences of 3-tuples

a b C, D Sequences of 3-tuples
c,=2xX +(4s-3) X+
a,C,Cy__ , ,$=12,3..
(2.6 Gbiiaa | (o5 - ase 1) o (- 6+ 2)
2E(x) | 2By(X) | 2x°+x*—»x+1 3x? - 3x+1
> S S ( } c,=28 X +(-3S+49 %+
B¢, Coif ey ns ,$=1,2,3.
e (s -4s+2) x+ 251
c, =6X +(25 + 25~ 6)
a,C,C , ,$=12,3..
{ l} s=1,2,3,.. + (—32 +85+ 1)
2E,(x) | 6B,(x) 6X2 — 2x+ € ~12x° + 19 + 1
C, =65 X +(-65+ 23 2
{b.c.c}  ,, s=123
o +s° +8s-1
c, =6xX +6(s-1
{a' G Cs+1} s=1,2,3,.. +(82 —2ns+ 1) ,$=1,2,3.,
E,(x) | 6B,(x) 6X% + 2-2n 3x* +(6-6n) x+ " -1
2 ‘ ( ) b \ c,=65X-(65-69
N S ,5=1,2,3.
2 —an+(§+1)
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Sequences of 3-tuples

B, (X)

E, (%)

X2+ x+2r+1

(2n+12) x+r?

+2sn+ ¢

=X +(-5+2
{b'cs’csﬂ}s—lzs '{CS +( ' % },521,2,3.
e +(25n+1)

c. =X +(2s-1
{a' CS’ CS+l}s=1,2,3,.. ! { ( ) >} » S= l’ 2’3"

2B, (x)

4E; (%)

4x3 - 4x— 2

Xt =2x3-3x%+ 4x+ 2

c,=4x+6(s-1 X
{a' Cs1Cs+1} _ ’ ,S= 1,2,3..
w2t (s +2s-1)+(28 - 69

c, =45 X +(6s-63) %
{bc.c}e,s s=1,2,3.

+(2-6s) x+($ - 2s-1)
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VIIl.4 Generation of Diophantine 3-tuples Through Matrix Method

Initially, construct a diophantine 2-tuple with pesty D(k2 +10k - E) and then, extend
it to diophantine 3-tuple.
Let 4, 7 be two distinct integers such that
4*7 +k*+10k - 3= (k+ 57, a perfect square
Therefore, the pa(m,7) exhibits diophantine double having propebyk® +10k - 3.
If c is the ¥ tuple, then it satisfies corresponding double &qna
4c+Kk? +10k- 3= ? (8.45)
7c+k*+10k- 3= ¢? (8.46)
The eliminant ofc in the above two equations leads to
7p? - 4q” = 3 K2+ 10k- ) (8.47)
Taking
p=X+4T, q= X+ 71 (8.48)
in (8.47) and simplifying, we get
X2 =28T%+ k*+10k- ¢
which is satisfied byl =1, X = k+&
From (8.48) and (8.45), observe
c=2k+21

Note that(4,7, %+ 2] is a diophantine triple satisfying the properiyk® +10k- 3.
The process of obtaining other diophantine tripleth property D(k2 +10k—E) is
illustrated below:
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Let M be a3x3square matrix given by

1 0 =2
M=/0 0 -1 (8.49)
01 =
Now,
(4,7, %+ 2)M =( 4,x+ 214+ 4B
Note that

402k + 20 + K2 + 10— 3=(k+ 1)’

AD( 4K+ 43+ K2 + 1k~ 3= (k+ 1)°

(2k+20) 0 &+ 43+ 1K+ 1k— 3= ( ¥+ 3)°
O The triple (4,2+ 21,4+ 4) is a diophantine triple having the property
D(k® +10k—-¢).
Performing the above analysis, the general forndiophantine triple( 4,cs_l,cs) is
given by

(4, 45 + (2k+ 2)s- 2k+ 1, 4@ B+ (2 2)s B s 1,2,3..

A few numerical illustrations are given in tabld &elow:

Table 8.4: Numerical lllustrations

Kk (4,,.c,) (4.c,.c,) (4.c,.c,) D(k?+10k - 3)
0 (4,7,21) (4,21,43) (4,43,73) D(-3)

-1 (4,7,19) (4,19,39) (4,39,67) D(-12)

-2 (4,7,17) (4,17,35) (4,35,61) D (-19)

-3 (4,7,15) (4,15,31) (4,31,55) D (-24)

1 (4,7,23) (4,23,47) (4,47,79) D (8)
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-1' s ! Ysrl

It is noted that the triplc_,, c,+4,c,,), s=1,2,3......forms an arithmetic progression.

Note 1

It is obvious tha{7,4, X+ 2) is a Diophantine 3-tuples with propellnl(k2 +10k - E) .
Following the procedure as above, the Diophantipdes obtained arg7,4, X + 2)),
(7,2 + 2L, &+ 5), (19, &+ 52,&+ 9), .ccccvvrees each with propery (k* +10k - €)
whose general forr7,c_ ,c,) is

(7.7 +(k-4 s 2k LT F+( 2« b5 B.5 123..

Note that( c,_,,c,+7,c

s-17 s ? Rl

) forms an Arithmetic Progression.

Note 2
In addition to (8.108), one may consider the lineansformation given by
p=X-4T, q= X-71
For this case, employing the procedure as aboveobtans two sets of sequences of

Diophantine 3-tuples in which, each triple has fiveperty D(k2+10k—E). For

simplicity and brevity, the general form of theptd in the sequence of Diophantine

3-tuples is presented:

Set 1:(4,a,,.a,) wherea_, =4s’ +(-2k-18) s+ 2k+ 21,s= 1,2,3....
Note that( a,_,,a, +4,a,) forms an Arithmetic Progression.
Set 2:(7,a,,.a,) wherea,, =75 +(-2k-24) s+ 2k+ 21,5 1,2,3....

Note that(a,_,,a,+7,a,,) forms an Arithmetic Progression.
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Remark

Instead of (8.109), suppose we have a third orgeare matriX\ given by

Z

I
o +— O
= O O

NY NY

Following the procedure presented above, one abtdimore sets of Diophantine
triples, each with propert@(k2 +10k - E) :

To conclude, one may search for other choices offritds for the formulation of

collections of Diophantine triples with suitableoperties.
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Chapter-IX Dio 3-Tuples
CHAPTER - IX
DIO 3-TUPLES

An attempt has made in constructing sequencesooBdtuples(a, b, c) such

that the product of any two elements of the seeddadith the sum or minus the sum
of the same elements and increased by a polynomthl integer coefficient is a

perfect square.

Formulation of Special Dio 3-Tuples generated throgh Polynomials with

Suitable Property

Sequence: 1
Leta=3, b=Ek
It is observed that
ab+ a+ b+ 4K -8k+ 6= 2k+ 2’
Therefore, the pai(a, b) represents dio 2-tuple with the propely4k> -8k + 6.
Let c, be any non-zero polynomial ix such that
(a+1)c + a+ 4K - 8k+ 6= |’ (9.1)
(b+1)c + b+ 4K - 8k+ 6= ¢ (9.2)
Eliminating c, between (9.1) and (9.2), we have
(b+1) p*—(a+1) f =(a Y+(b- §(4 k-8 ¢ (9.3)
Introducing the linear transformations

p=X+(a+l)T, qg= X+(b+1) " (9.4)
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in (9.3) and simplifying we get

X2 =(a+1)(b+1) T*+ 4K - 8k+ &
which is satisfied byl =1, X = 2k+ &
In view of (9.4) and (9.1), it is seen that

¢ =9k+1C
Note that(a, b, ¢ ) represents dio 3-tuple with proper®y(4k® -8k + 6.
Taking (a,c ) and employing the above procedure, it is seenttteatriple (a, ¢ , ¢,)

where

c, =13k + 2¢
exhibits dio 3-tuple with propert (4k* -8k + 6.
Taking (a,c,) and employing the above procedure, it is seentlteatriple(a, ¢, , ¢,)

where

¢, =17k + 5¢
exhibits dio 3-tuple with propert (4k* -8k + 6.
Taking (a,c,) and employing the above procedure, it is seentieatriple (a, ¢, ¢,)

where
c, = 21k + 8¢
exhibits dio 3-tuple with propert (4k* -8k + 6.
The repetition of the above process leads to thergéion of sequence of dio 3-tuples

whose general form is given g, c, , ¢..,) where

c,=(5+4n)k+2n(2n+3 , n=1,2,3,.
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A few numerical examples are presented in Tabld8ldw:
Table 9.1: Numerical Examples
k D (a,c,.c,) (a,c,,c,) (a,c,.c,)
2 (3, 28, 54) (3, 54, 88) (3, 88, 130)
3 18 (3, 37, 67) (3, 67, 105) (3, 105, 151)
4 38 (3, 46, 80) (3, 80, 122) (3,122, 172)
5 66 (3, 55, 93) (3, 93, 139) (3, 139, 193)
Sequence: 2

Leta=5, b=2k+¢€

It is observed that

ab—a- b+ K -3=( k+4)°

Therefore, the paifa, b) represents dio 2-tuple with the propeByk® - 3).

Let c, be any non-zero polynomial ix such that

(a-1)g-a+K-3=

(b-1)g-b+K-3=¢

Eliminating c, between (9.5) and (9.6), we have

(b-1)p* ~(a-1) o =(a §+( b- 3( K-

Introducing the linear transformations

p=X+(a-1)T, o= X+(b-1) "~

in (9.7) and simplifying we get

X?=(a-1)(b-1) T?+ K- 4

which is satisfied byl =1, X = k+4

In view of (9.8) and (9.5), it is seen that

c =4k+1E€

(9.5)

(9.6)

(9.7)

(9.8)
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Note that(a,b, ¢) represents dio 3-tuple with proper®y(k* -3).
Taking (a,c,) and employing the above procedure, it is seenttteatriple (a, g , ¢,)
where
c, = 6k + 3¢
exhibits dio 3-tuple with propert (k> —3).
Taking (a,c,) and employing the above procedure, it is seentlteatriple(a, c, , ¢,)
where
c, =8k +6¢
exhibits dio 3-tuple with properti (k*> —3).
Taking (a,c,) and employing the above procedure, it is seenttigatriple (a, ¢, ¢,)
where
c, =10k + 10:
exhibits dio 3-tuple with propert (k*> —3).
The repetition of the above process leads to thergéion of sequence of dio 3-tuples
whose general form is given g, c, , ¢,.,) where
c,=(2n+2)k+(4rf+8n+ g, n=1,2,3,.

A few numerical examples are presented in Tablé8l@w:

Table 9.2: Numerical Examples

k D (a.c,.c,) (a,c,.c,) (a,c,.c,)

2 (5, 26, 50) (5, 50, 82) (5, 82, 122)
3 6 (5, 30, 56) (5, 56, 90) (5, 90, 132)
4 13 (5, 34, 62) (5, 62, 98) (5, 98, 142)
5 22 (5, 38, 68) (5, 68, 106) (5, 106, 152)
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Sequence: 3
Leta=5, b=2k+¢€
It is observed that

ab+a+ b+ K -5=( k+6)°

Dio 3-Tuples

Therefore, the pai(a, b) represents dio 2-tuple with the propelyk® -5).

Let c, be any non-zero polynomial ix such that
(a+1l)g+a+ K-5= ¢
(b+1)g +b+ K -5=¢

Eliminating ¢, between (9.9) and (9.10), we have
(b+1) p’-(a+) of =(a- B+( b- a( I%—E)

Introducing the linear transformations
p=X+(a+l) T, q= X+(b+1) "

in (9.11) and simplifying we get
X?=(a+1)(b+]) T*+ K- €

which is satisfied byl =1, X = k+ €

In view of (9.12) and (9.9), it is seen that

c, =4k+24

Note that(a, b, ¢) represents dio 3-tuple with properBy(k® -5).

(9.9)

(9.10)

(9.11)

(9.12)

Taking (a,c) and employing the above procedure, it is seenttteatriple (a, ¢ , ¢,)

where
Cc, =6k + 54
exhibits dio 3-tuple with propert (k*> -5).
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Taking (a,c,) and employing the above procedure, it is seentteatriple(a, ¢, , ¢,)
where
c, =8k +9€
exhibits dio 3-tuple with propert (k> -5).
Taking (a,c,) and employing the above procedure, it is seentkieatriple (a, ¢, c,)
where
¢, = 10K+ 15(
exhibits dio 3-tuple with propert (k*> -5).
The repetition of the above process leads to thergéion of sequence of dio 3-tuples

n+l

whose general form is given g, c, , ¢..,) where

c,=(2n+2)k+6(n+1°, n=1,2,3,.

A few numerical examples are presented in Tabléo8Il8w:

Table 9.3: Numerical Examples

k D (a,c,.c,) (a.c,.c,) (a.c,.c,)

2 -1 (5, 32, 66) (5, 66, 112) (5, 112, 170)

3 4 (5, 36, 72) (5, 72, 120) (5, 120, 180)

4 11 (5, 40, 78) (5, 78, 128) (5, 128, 190)

5 20 (5, 44, 84) (5, 84, 136) (5, 136, 200)
Sequence: 4

Let a=5, b=6k* + £k
It is observed that

ab+ a+ b+11=(6k+ 2)°

Therefore, the pai(a, b) represents dio 2-tuple with the propey11).
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Let c, be any non-zero polynomial ix such that
(a+1l)c +a+1l= (9.13)
(b+1)¢ +b+11= ¢ (9.14)
Eliminating ¢, between (9.13) and (9.14), we have
(b+1) p’-(a+1) of =(a- B+ ( b- 3(19) (9.15)
Introducing the linear transformations
p=X+(a+l)T, g= X+(b+1) " (9.16)
in (9.15) and simplifying we get
X2 =(a+1)(b+1) T*+1(
which is satisfied byl =1, X = 6k+ £
In view of (9.16) and (9.13), it is seen that
c, = 6K* + 20k + 1«
Note that(a, b, ¢) represents dio 3-tuple with properBy(11).
Taking (a,c ) and employing the above procedure, it is seentkteatriple (a, ¢ , ¢,)
where
C, = 6k* + 32k + 4(
exhibits dio 3-tuple with propertip (11).
Taking (a,c,) and employing the above procedure, it is seentlteatriple(a, c, , ¢,)

where

c, = 6k* + 44k+ 7¢

exhibits dio 3-tuple with propertip (11).
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Taking (a,c,) and employing the above procedure, it is seentkteatriple (a, c,, ¢,)
where

c, = 6k? + 56k + 12¢
exhibits dio 3-tuple with propertip (11).
The repetition of the above process leads to thergéion of sequence of dio 3-tuples
whose general form is given @, c, , ¢,.,) where

c, =6k’ +4(3n+ 2 k+ 2n( 3+ 4 , = 1,2,3,

A few numerical examples are presented in Tabld8ldw:

Table 9.4: Numerical Examples

k D (a.c,.c,) (a.c,.c,) (a,c,.c,)

2 11 (5, 78, 128) (5, 78, 190) (5, 190, 264)

3 11 (5, 128, 190) (5, 190, 264) (5, 264, 350)

4 11 (5, 190, 264) (5, 264, 350) (5, 350, 448)

5 11 (5, 264, 350) (5, 350, 448) (5, 448, 558)
Sequence: 5

Let a=5, b=6k*+ 4k- ¢
It is observed that
ab+ a+ b+11=(6k+ 2)°
Therefore, the paifa, b) represents dio 2-tuple with the propeRy(11).
Let c, be any non-zero polynomial ix such that
(a+1)g+a+1l= (9.17)

(b+1)c +b+11= ¢ (9.18)
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Eliminating ¢, between (9.17) and (9.18), we have

(b+1) p*-(a+1) f =(a- B+ ( b- 3(19) (9.19)
Introducing the linear transformations

p=X+(a+l) T, g= X+(b+1) " (9.20)
in (9.19) and simplifying we get

X2 =(a+1)(b+1) T2 +1C
which is satisfied byl =1, X = 6k+ Z
In view of (9.20) and (9.17), it is seen that

c, =6k* +16k+ ¢
Note that(a, b, ¢) represents dio 3-tuple with properBy(11).
Taking (a,c,) and employing the above procedure, it is seenttteatriple (a, ¢ , ¢,)
where

c, = 6k* + 28k + 3(
exhibits dio 3-tuple with propertip (11).
Taking (a,c,) and employing the above procedure, it is seentlteatriple(a, ¢, , ¢,)
where

c, = 6k* + 40k + 6¢
exhibits dio 3-tuple with propertp (11).
Taking (a,c,) and employing the above procedure, it is seenttigatriple (a, c;, ¢,)
where

c, = 6k* + 52k + 11(

exhibits dio 3-tuple with propertip (11).
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The repetition of the above process leads to thergéion of sequence of dio 3-tuples

n+l

whose general form is given @, c, , ¢..,) where

C, =6k’ +4(3n+ ) k+(6rf+ 4n- 3, = 1,2,3

A few numerical examples are presented in Tabld8l&w:

Table 9.5: Numerical Examples

Kk D (a.c,.c,) (a,c,.c,) (a,c,.c,)
2 11 (5, 64, 110) (5, 110, 168) (5, 168, 238)
3 11 (5, 110, 168) (5, 168, 238) (5, 238, 320)
4 11 (5, 168, 238) (5, 238, 320) (5, 320, 414)
5 11 (5, 238, 320) (5, 320, 414) (5, 414, 520)
Sequence 6
Leta=1, b=r

It is observed that

ab+ta+ b+ f+ ¢+(2s2) mi=( m )
Therefore, the paifa, b) represents dio 2-tuple with the propeltyn’ + s’ +(2s-2) n-1.
Let c, be any non-zero polynomial ix such that

(a+l)g+a+ P+ $+(2s2) nr1= ? (9.21)

(b+l)g+b+trf+$+(2s2) ni1= 2 (9.22)
Eliminating c, between (9.21) and (9.22), we have

(b+1) p*—(a+1) f =(a §+( b- z)( A+ §+(2 52 ﬁj) (9.23)
Introducing the linear transformations

p=X+(a+l)T, g= X+(br)~ (9.24)
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in (9.23) and simplifying we get
X?=(a+1)(b+]) T?+ rf+ $+(2s 2)

which is satisfied byl = 1X = n+ ¢
In view of (9.24) and (9.21), it is seen that

C, =3n+2¢+ 2
Note that(a, b, ¢) represents dio 3-tuple with propemy(n® + s* +(2s-2) n-1).
Taking (a,c,) and employing the above procedure, it is seentkteatriple (a, ¢ , ¢,)
where

C,=5Nn+4s+¢€
exhibits dio 3-tuple with propertp (n* + s° + (2 S 2) 1.
Taking (a,c,) and employing the above procedure, it is seenttteatriple(a, c, , ¢,)
where

C, =7n+6s+1¢
exhibits dio 3-tuple with propert (n* + s’ +(2s-2) n-1,.
The repetition of the above process leads to thergéion of sequence of dio 3-tuples
whose general form is given @, c, , ¢..,) where

c,=(2S+1) n+2S32 3, $1,2,3,.

A few numerical examples are presented in Tabld8léw:

Table 9.6: Numerical Examples

n s D (a,c,.c,) (a,c,,c;) (a,c,,c,)

2 | 2 11 (1, 12, 26) (1, 26, 44) (1, 44, 66)
3| 3 29 (1, 17, 35) (1, 35, 57) (1, 57, 83)
4| 4 55 (1, 22, 44) (1, 44, 70) (1, 70, 100
5| 5 89 (1, 27, 53) (1, 53, 83) (1, 83, 117
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Chapter-X Diophantine and Dio Quayples
CHAPTER - X
DIOPHANTINE AND DIO QUADRUPLES

Chapter X has two sections X.1 and X.2

Section X.1presents diophantine quadrupl@, b, c, c) generated from two given
pronic numbers such that the product of any two besiof the set increased by one

is a perfect square.

Section X.2has two subsections X.2A and X.2B

The Sub-section X.2A deals with the study of foratmg special Dio-quadruples
(a, b, c, c) generated through Euler polynomials such thatptieeluct of any two of
the set minus their sum and increased by two isrée@t square. Sub-section X.2B

concerns with constructing special Dio-quadrup(esb, C, c) generated through

Euler polynomials such that the product of any wécdhe set minus their sum and

increased by five is a perfect square.

243



Chapter-X Diophantine and Dio Quayples

X.1 Sequences oD(l) Diophantine Quadruples generated through

Pronic Numbers

Let a=PR,_, = Mf-3m2 andb=PR = rf+ 1 be two pronic numbers such that

ab+1is a perfect square.

Let c, be any non-zero polynomial such that
ac,+1= 2 (10.1)
bc, +1=c? (10.2)

Eliminating ¢, from (10.1) and (10.2), we get

bpZ — acf =( b~ ¢ (10.3)
Setting,

p, = X, +aT, (10.4)

=X +bT, (10.5)

in (10.3), we have

XZ=abT’+1 (10.6)
whose initial solution i§, =1, X,=rf - r-1
The general solution of (10.6) is

1
f, T.=——aq. 10.7
° 2\/%9 (10.7)

S

X ==
2

where

f :(n2 - n—1+\/§))s+l+( - n—l—\/ztfl
g, :(n2 - n—1+x/?b)s+l—( - n—1—\/_at)S+1
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Substitution of (10.7) in (10.4) gives

1 1
== f.+all—— 10.8
pS 2 S 2\/% gS ( )
From (10.8) and (10.1) we get
2
-1

C, :M (10.9)

a

Substitutings=0in (10.9) we have,

(i.e.), ¢, =4n* —4r
Note that, the tupl¢a, b, ¢;) is a dio-triple with propertyD(1).
Again, substitutings=1,2 in (10.9) and simplifying we get,

q:(4n2—2)(4n4—12n3+ 6t + 6n- 1)

c,=(8r° -16n" - 4’ + 16— 3( af- 24f+ 4+ 287 & )

It is seen that each of the quadrufasb, ¢, ¢) and(a,b, g, ¢,) represents diophantine
quadruples with propert (1).

In general, it is observed that the quaer(piﬁb, Goy» (‘S) ,S=1,2,3,...... is a diophantine

guadruple with propert{p (1) . Some numerical examples are given in Table 1€ldwb

Table 10.1: D(l) Diophantine-quadruples

n (a,b,c,,c,) (a,b,c,,c,) (a,b,c,,c.)

3| (6,20,48,23188) (6,20,23188,11176620) (6,20,1620(787107704)
4| (2,12,24,2380) (2,12,2380,233244) (2,12, 2332285560

5 | (12,30,80,115444)(12,30,115444,166470252)12,30,166470252,24004998802
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X.2 Two special Dio-quadruples generated through Har Polynomials

Subsection X.2A: Formulation of D(2) Dio-quadruples

Consider the Euler polynomials (x) and E,(x) given by
1
E(9=x-2, B()=X—>

Let a=[2E(X)] =4%-4>+1andb=E,(X = ¥~ be two polynomials such that
ab-(a+ b) +2 is a perfect square.
Let c, (x) be any non-zero polynomial such that
(a-1)c (¥-a+2= [ (10.10)
(b-1)c (- b+2= ¢ (10.11)

Eliminating ¢, (x) from (10.10) and (10.11), we get

(b-1) 2 - (a-1) ¢t =(b- (10.12)
Setting
by = X, +(a-1) T, (10.13)
Oy = Xy +(b=1) T, (10.14)

in (10.12), we have
X5 =(b-1)(a-1) T +1 (10.15)
whose initial solution iF, =1, X,=2xX - 2>

The general solution of (10.15) is

X, :%f T, = N (10.16)
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where

fN:(X0+ (a—l)(b—l)'IB)N+l+(X0_ (a_])(b_])_!;)ml
v =%+ @ (o) 7) [ x-(& (1)

Substitution of (10.16) in (10.13) gives
1
2{(a-1)(b-1

From (10.17) and (10.10) we get

(Pi-1)
(a-1)

1
Py =3 fy+(a-1)0 N (10.17)

cy (X) =1+ (10.18)

SubstitutingN =0 in (10.18) we have,

-y
Co(x)—l”’m

(i.e) & () =9(¥ - ¥-2
Note that the tupléa, b, ¢, (»)) is Dio-triple with propertyD(2).
Again, substitutingN =1, 2 in (10.18) and simplifying we get,

¢.(x) =144 E,(] - 199 E( ] + 76E( }-
(¥ =1+{ 48 E,(X] - 56E.( )+ 19{ 46 B( 3] - 5B &( ¥]'+ 158 X- |

It is seen tha{a,b, ¢, (%), ¢(:)) and(a,b,¢ (%), (:)) represent Dio-quadruples with
property D (2) respectively.
In general, it is observed that the quadruf@eb, (¥, G (%), N=1,2,3,...... is a

Dio-quadruple with propert;D(Z). Some numerical examples are given in Table 10.2

below:
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Table 10.2: D(2) Dio-quadruples

X (a,b,cy(x),c,(x))

(a,b,c,(x),c,(x))

(a,b,¢,(x),C4(x))

(9,2,16,529)

(9,2,529,17956)

(9,2,17956,609961)

(25,6,52,24641)

(25,6,24641,118764¢

3825,6,11876488,572444215
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Subsection X.2B:Formulation of D(5) Dio-quadruples

Consider the Euler polynomials,(x) and E,(x) given by

E() =1, B(X)= x>

Let a= E,(¥) =1 and b =[2E,(X)]| = 2> 1 be two polynomials such thab-(a+ b)+5
is a perfect square.

Let ¢ be any polynomial. Observe thatg - ( a+ c) +5 is automatically a perfect square.
Now, consider
bc—(b+ g+5= (10.19)
After some calculations, it is seen that (10.1%assfied wherc =2x+ 3.
Note that the tripld1, 2x— 1, 2+ %) is a Dio-triple with propertyD(5).
Let d be any non-zero polynomial such that
bd-(b+ d)+5=0a’ (10.20)
cd—(c+ d)+5=p (10.21)

Eliminating d between the above two equations we have,

(2x+2)a® - (2x- 2 B* = 1 (10.22)
Taking

a=X+(2x-2)T (10.23)

B=X+(2x+2)T (10.24)

in (10.22), we get
X2 :(4x2—4)T2+4

which is satisfied by
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T=1 X=2x (10.25)
Using (10.25) in (10.23) and in view of (10.20)eoobtains

d=8x+1
Observe thafl,2x~-1, 2+ 3, &+ } is a Dio-quadruple with propert® (5).
The repetition of the above process leads to tinergéon of Dio-quadruples given by
(1, 2x+ 3, &+ 1,1&+ ), (1,8x+1,1&+ 7,56+ 1), (1,18x+ 7,50+ 11,128+ 3

and so on.
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CHAPTER - Xl
SPECIAL FAMILY OF 3-TUPLES

Chapter XI deals with special family of 3-tuples intwo sections XI.1 to XI.2

Section Xl.1concerns with the study of formulating 3-tuples sisting of polygonal
and pyramidal numbers such that, in each three tiipé sum of any two members is

a perfect square.

Section Xl.2deals with the study of formulation of special fgnof 3-tup|es(a, b, c)

suchthat the product of any two elements of the seeddalith their sum is a perfect

square.

251



Chapter-XI Special Family of 3-Tuples

XI.1 On a Graceful Family of 3-Tuples

Triple 1
Let a=2t,, =4k’ + Zk andb =2k +1

a+b=(2k+1)’
Let ¢ be any non-zero integer such that

atc=a’

b+c=p
Using some algebra
we have
c=24k P’ - Zk
Here (2t,,,.2k+1,2& R, - :k) is the required triple such that the sum of any tw

members is a perfect square.

Properties
e c-a+2b+2is a perfect square
* c+3a-2b+ € is a perfect square

e 2a-b+c+1=8kCFE

Triple 2

Let a=Ct,, =20k’ +10k+ 1 andb =5t , =80k* - 3(k
a+b=(10k-1)°

Let ¢ be any non-zero integer such that
a+c=a’

b+c=p
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Using some algebra

we have

¢ =100(t,, ) = Stiop 1 K>

Here (Ctlo,zk,Stlo,2k 100(t,,) - 510,3) is the required triple such that the sum of any
two members is a perfect square.

Properties
* 4(a-1)-b=0( mod7)
* 3(a-1)+b=0( mod14)

* c-4b-15a= 0 mod1)

Triple 3

Let a=8t,, = 4k’ + 4k ,k>Jandb=1
a+b=(2k+1)’

Let ¢ be any non-zero integer such that
atc=a’
b+c=p

Using some algebra

we have

c=2kSQ+12C$+ 4y, ,— ¢
Here (8t3,k 1,k SQ +12C$+ 4, ,— | ) is the required triple such that the sum of

any two members is a perfect square.
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Properties

* c-2ka=8kCPF -t -1t
* 2k’a-c=8kCP -1, +El

For simplicity some more triples satisfying theuigd condition are given below:

Triple 4 (toon + 2ty +1t,, = 20,0+ 200CP, )

Triple 5 (t%n +1,,,,11GNO, - 10,4 1,5, ) -~ 48, ~ 68, + 14 r2)
Triple 6 (s,.61,,+18,360CR,,,+ 783+ 1)

Triple 7 (4PR,,1,8nF - 24CP + 1 )

Triple 8 (7(6Pn3 - 2P°) 4, + 4, 3€(t3,n)2 - 2333’”)
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XI.2 Formulation of Curious Family of 3-Tuples

Sequence 1
Let a=2k* + 6k+ 4,¢ = 8K+ 16k+ !
It is observed that
ac, + a+ g :(4k2+10k+ 7)2
Let c, be any integer such that
(a+1)g+a=a? (11.1)
(o+l)g+g=p" (11.2)
Eliminating ¢, between (11.1) and (11.2), we have
(c+Da*-(a+1)p*=(a-¢) (11.3)
Introducing the linear transformations
a=X+(a+]T, B= X+(g+1) T (11.4)
in (11.3) and simplifying we get
X?=(a+1)(g+1) T*-1
which is satisfied byl =1, X = 4k* + 10k+

In view of (11.4) and (11.1), itis seen that

c, =18K* + 42k + 2¢

Let c, be any integer such that
(a+1)c,+a=a’ (11.5)
(c+l)c+q=p (11.6)
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Eliminating ¢, between (11.5) and (11.6), we have

(¢, +l)a*-(a+1]) B> =(a-¢) (11.7)
Introducing the linear transformations

a=X+(a+1)T, = X+(c+1)1 (11.8)
in (11.7) and simplifying we get

X?=(a+1)(g+1) T*-1
which is satisfied byl =1, X = 6k* + 16k+ 1.
In view of (11.8) and (11.5), itis seen that

c, =32k? + 80k+ 5
Let c, be any integer such that

(a+1)c,+a=a’ (11.9)

(.+)c+c=p (11.10)
Eliminating c, between (11.9) and (11.10), we have

(c,+1)a*-(a+1) B*=(a- ) (11.11)
Introducing the linear transformations

a=X+(a+1)T, B= X+(c+1) 1 (11.12)
in (11.11) and simplifying we get

X?=(a+1)(c,+1) T° -1
which is satisfied byl =1, X = 8k* + 22k+ 1
In view of (11.12) and (11.9), it is seen that

c, =50k* + 130k + 9!
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The repetition of the above process leads to thmergéion of sequence of 3-tuples
whose general form is given f@,c_ , ¢,) where
C,=(28 +4s+2) K+(68+ 8% J k(55 4)s, 51,23,

A few numerical examples are presented in Tabl& hélow:

Table 11.1: Numerical Examples

k (a,c,.c,) (a,c,,c,) (a,c,,c.) (a,c,,c,)

2 | (24,73,184) | (24, 184, 345) (24, 345,556 (56,817)

3 | (40,129,316) | (40, 316, 585) (40, 585, 936 (&8,9.369)

4 | (60,201,484) | (60, 484,889) (60,889,1416 (60,12065)

5 (84,289,688) (84,688,1257) (84,1257,1996) (84612805)
Sequence 2

Let a=1,¢ = 2K - Zk
It is observed that

ac, +a+ ¢ =(2k-1)°
Let ¢, be any integer such that

(a+1)g+a=a’ (11.13)

(+Y)e+g=p (11.14)
Eliminating ¢, between (11.13) and (11.14), we have

(e, +1)a*-(a+1) B*=(a- ) (11.15)
Introducing the linear transformations

a=X+(a+]T, B= X+(g+1) T (11.16)
in (11.15) and simplifying we get

X?=(a+1)(¢+1) T*-1
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which is satisfied byl =1, X = 2k-1

In view of (11.16) and (11.13), it is seen that
c, = 2k* + 2k

Let c, be any integer such that

(a+1)c,+a=a’

(q+l)c,+g=p

Eliminating ¢, between (11.17) and (11.18), we have

(c.+1)a®-(a+1)p*=(a-¢)

Introducing the linear transformations
a=X+(a+lT, B= X+(¢+1)1

in (11.19) and simplifying we get
X?=(a+1)(g+1T°-1

which is satisfied byl =1, X = 2k+1

In view of (11.20) and (11.17), it is seen that
c, =2k* + 6k+ 4

Let ¢, be any integer such that

(a+1)c,+a=a’

(C2+1)C3+Cz:/32

Eliminating c, between (11.21) and (11.22), we have

(c2+1)a2—(a+1),82 :(a_ (2)
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Introducing the linear transformations
a=X+(a+)T, B= X+(c+1)1 (11.24)
in (11.23) and simplifying we get
X?=(a+1)(c+1) T°-1
which is satisfied byl =1, X = 2k+ &
In view of (11.24) and (11.21), it is seen that
c, = 2k* +10k+ 1z

The repetition of the above process leads to tmergéion of sequence of 3-tuples

whose general form is given @, c_, ¢,) where
C., =2k’ +(4s-6) k+(28-63% 4, = 1,2,3,

A few numerical examples are presented in Tabl2 bé&low:

Table 11.2: Numerical Examples

k (a.cy.cy) (a,c,.c,) (a,c,,c;) (a,c,.c,)
2 (1, 4, 12) (1, 12, 24) (1, 24, 40) (1, 40, 60)
3 (1, 12, 24) (1, 24, 40) (1, 40, 60) (1, 60, 84)
4 (1, 24,40) (1, 40, 60) (1,60, 84) (1, 84, 112)
5 (1, 40, 60) (1, 60, 84) (1, 84, 112) (1,112,144
Sequence 3
Leta=1,¢, =2k + 2k
It is observed that
ag, +a+ g =(2k+1)°
Let c, be any integer such that
(a+l)g+a=a? (11.25)
(1) e+ =4 (11.26)
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Eliminating ¢, between (11.25) and (11.26), we have
(o +Da*-(a+1) p*=(a-¢) (11.27)
Introducing the linear transformations
a=X+(a+]T, B= X+(g+1) T (11.28)
in (11.27) and simplifying we get
X?=(a+1)(gq+1) T -1
which is satisfied byl =1, X = 2k+1
In view of (11.28) and (11.25), it is seen that
¢, = 2k* + 6k + 4
Let c, be any integer such that
(a+1)c,+a=a’ (11.29)
(¢ +Y)c,+g=p (11.30)
Eliminating ¢, between (11.29) and (11.30), we have
(+1)a’~(a+1)5*=(a=q) (11.3)
Introducing the linear transformations
a=X+(a+l)T, = X+(c+1)1 (11.32)
in (11.31) and simplifying we get
X?=(a+1)(g+1]) T*-1
which is satisfied byl =1, X = 2k+ &
In view of (11.32) and (11.29), it is seen that

c, = 2k* +10k+ 1:
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Let ¢, be any integer such that

(a+1)c,+a=a’ (11.33)

(. +)c+c=p (11.34)
Eliminating ¢, between (11.33) and (11.34), we have

(c,+1)a*-(a+1) B*=(a-¢,) (11.35)
Introducing the linear transformations

a=X+(a+)T, B=X+(cg+1)1 (11.36)

in (11.35) and simplifying we get
X?=(a+1)(c+1) T*-1
which is satisfied byl =1, X = 2k+ &
In view of (11.36) and (11.33), it is seen that
c, = 2K* +14k+ 2¢
The repetition of the above process leads to tmergéion of sequence of 3-tuples

whose general form is given @, c_, , ¢,) where
C., =2k +(4s-2) k+(28-23, =1,2,3,.

A few numerical examples are presented in Tabld hélow:

Table 11.3: Numerical Examples

K (a,c,.c,) (a,c,,c,) (a,c,,c;) (a,c;,cy)

2 (1,12,24) (1,24,40) (1, 40, 60) (1, 60, 84)
3 (1,24,40) (1,40,60) (1, 60, 84) (1, 84, 112)
4 (1,40,60) (1,60,84) (1, 84, 112) (1,112,144)
5 (1,60,84) (1,84,112) (1,112, 144) (1,144,180
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Sequence 4
Let a=4,¢ = 5K + 4k
It is observed that
ag, +a+ g =(5k+2)°
Let c, be any integer such that
(a+l)c +a=a’ (11.37)
(+)g+e=p (11.38)
Eliminating ¢, between (11.37) and (11.38), we have
(e, +1)a*-(a+1) B*=(a- ) (11.39)
Introducing the linear transformations
a=X+(a+lT, B= X+(g+1) T (11.40)
in (11.39) and simplifying we get
X?=(a+1)(g+1) T -1
which is satisfied byl =1, X =5k+ 2
In view of (11.40) and (11.37), it is seen that
c, =5k +14k+ ¢
Let ¢, be any integer such that
(a+l)c,+a=a? (11.41)
(¢+Y)c,+g=p (11.42)
Eliminating ¢, between (11.41) and (11.42), we have
(¢ +1)a*-(a+1)p*=(a-q) (11.43)
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Introducing the linear transformations

a=X+(a+lT, B= X+(¢+1)1 (11.44)
in (11.43) and simplifying we get

X?=(a+1)(gq+1) T°-1
which is satisfied byl =1, X = 5k+ 7
In view of (11.44) and (11.41), it is seen that

C, =5k + 24k + 2¢
Let c, be any integer such that

(a+l)c,+a=a’ (11.45)

(. +)c+c=p° (11.46)
Eliminating c, between (11.45) and (11.46), we have

(c,+1)a*-(a+1) B*=(a-,) (11.47)
Introducing the linear transformations

a=X+(a+)T, B=X+(cg+1)1 (11.48)
in (11.47) and simplifying we get

X?=(a+1)(c+]) T° -1
which is satisfied byl =1, X = 5k+ 12
In view of (11.48) and (11.45), it is seen that

c, =5k* + 34k+ 57
The repetition of the above process leads to tmergéion of sequence of 3-tuples
whose general form is given g, ¢, , ¢;) where

C., =5K’ +(10s- 6 k+(58- 6%} , s 1,2,3,

263



Chapter-XI

Special Family of 3-Tuples

A few numerical examples are presented in Tablé hélow:

Table 11.4: Numerical Examples

k (a,cy.cy) (a,c,.c,) (a,c,,c;) (a,c;.c,)
2 (4,28,57) (4, 57, 96) (4,96,145) (4,145,204)
3 (4,57,96) (4,96, 145) (4,145,204) (4,204,273
4 (4,96,145) (4,145,204) (4,204,273) (4,273,352
5 (4,145,204) (4,204,273) (4,273,352) (4,352,441
Sequence 5
Let a=4,¢ = 5K - 2k
It is observed that
ag +a+ ¢ =(5k-2)°
Let ¢, be any integer such that
(a+1)g+a=a’ (11.49)
(+l)c+g=p (11.50)
Eliminating ¢, between (11.49) and (11.50), we have
(c+Da*-(a+1) p*=(a-¢) (11.51)
Introducing the linear transformations
a=X+(a+]T, B= X+(g+1) T (11.52)

in (11.51) and simplifying we get
X?=(a+1)(g+1) T*-1

which is satisfied byl =1, X =5k- 2

In view of (11.52) and (11.49), it is seen that
c, =5k* +6k+1
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Let c, be any integer such that

(a+l)c, +a=a? (11.53)

(c+Y)c,+q=p" (11.54)
Eliminating c,between (11.53) and (11.54), we have

(q+Y)a®-(a+1]) B =(a-¢) (11.55)
Introducing the linear transformations

a=X+(a+])T, B= X+(¢+1) 1 (11.56)
in (11.55) and simplifying we get

X?=(a+1)(g+1) T*-1
which is satisfied byl =1, X = 5k+ &
In view of (11.56) and (11.53), it is seen that

c, =5k* +16k+ 1Z
Let c, be any integer such that

(a+1)c,+a=a’ (11.57)

(.+)c+c=p (11.58)
Eliminating c, between (11.57) and (11.58), we have

(c,+1)a*-(a+1) B*=(a- ) (11.59)
Introducing the linear transformations

a=X+(a+1)T, B=X+(c+1)1 (11.60)
in (11.59) and simplifying we get

X?=(a+1)(c,+1) T*-1
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which is satisfied byl =1, X = 5k+ ¢
In view of (11.60) and (11.57), it is seen that
c, =5k* + 26k + 3¢
The repetition of the above process leads to tmergéion of sequence of 3-tuples

whose general form is given g, ¢, , ¢;) where
C., =5K +(10s-14 k+( 58 - 143 § , s 1,2,3,

A few numerical examples are presented in Tablg hélow:

Table 11.5: Numerical Examples

K (a,c,.c,) (a,c,.c,) (a,c,.c,) (a,c,.c,)

2 (4,12,33) (4, 33, 64) (4, 64, 105) (4,105,156
3 (4,33,64) (4,64, 105) (4,105,156) (4,156,217
4 (4,64,105) (4,105,156) (4,156,217) (4,217,288
5 (4,105,156) (4,156,217) (4,217,288) (4,288,369
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Chapter-XIi Equality of Polygonal Numbers
CHAPTER - XII
EQUALITY OF POLYGONAL NUMBERS

Chapter XII focuses on Equality of Polygonal Numbes in two sections XII.1 to XIlI.2

Section XII.1 illustratesformulas for the ranks of Triangular numbers, Hexad

numbers, star numbers satisfying the relatign=t,, =S, .

Section XIl.2 exhibits formulas for the ranks of Triangular num#)eHexagonal
numbers, Centered Hexagonal numbers, Centered @athgwumbers, Centered
Decagonal numbers and Centered Dodecagonal nundagisying the relations

t3,N = tG,h = Ct6,H ' t3,N = t6,h = CtB,M ' t3,N = t6,h = Cth,M ! t3,N :t6,h = CtlZ,D b
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XII.1 Triangular Numbers Simultaneously Equal to Hexagonal and Star Numbers

LetN, h, n be the ranks of Triangular, Hexagonal and Starbersirespectively.

The relation
tn =l
leads to
N=2h-1 (12.1)

The assumption, =S, gives

2h* —h=6n°-6r+1

Treating the above equation as a quadratic in rsahdng for n, one obtains
1
n:6(3+ R) (12.2)

where

R? =12h - 6h+ ¢ (12.3)
On completing the squares on R.H.S in (12.3), dnaios

AR? -3X%=¢ (12.4)
where X =4h-1 (12.5)
To solve (12.4), the introduction of the transfotimas

X =P+4Q, R= P+3( (12.6)
lead to

P? =12Q° +¢ (12.7)
whose smallest positive integer solutipR, Q,) is

P,=21,Q,=¢
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To obtain the other solutions of (12.7), considher pell equation
P?=12Q%+1

whose general solution is given by

If)s = fS’ QS:

N

Qs

N
2w

where
:(7+4\/—3)s+1+(7_ 4‘\/_3)3+1 ,gS:( - 4/—991_( 2 4—)391 s=— 101
Applying Brahmagupta Lemma betwee(rlPo,Qo) and (If;(js) the other integer

solutions of (12.7) are given by
Ps+l :% fs+6\/§gs

21
Q.. =3f+ .
' PNER

Substituting the values d?,,,, Q,,, in (12.6), we have

s+1?

45/_

45
=22 +13/39_, R, -—f+
2 39 2

In view of (12.5), (12.2) and (12.1), we get

hs+1 :%(4_25 fs+13\/_3gs+ ]j

Note that the values df , =S,,s=0,2,4,..

6hs+1 N !
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A few numerical examples satisfying the relatiors given in the Table 12.1 below:

Table 12.1 Numerical Examples

S f. g, N.., h,,, n,, gy, = ten, =S,

0 14 8 313 157 91 49141

2 2702 1560 60817 30409 17557 1849384153
4 | 524174 302632 11798281 5899141 3405871 6.959F E+
6 | 101687054 58709048 2288805793 1144402897 660721321  2.61932E+18

To conclude, one may search for the ranks of wipdé other special polygonal

numbers with the same value.
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XII.2 On Three Figurate Numbers With Same Values

1. Equality of t,, =t =ct,,

Let N, h, H be the ranks of Triangular, Hexagonal and Centétexhgonal numbers
respectively.
The relation

Gy =l
leads to

N =2h-1 (12.8)
The assumption | =ct;, gives

2h* —h=3H?*-3H +1
which is written as

Y2=6X2+3 (12.9)
where

Y =4h-1, X= 2H-1 (12.10)
To obtain the other solutions of (12.9), considher pell equation

Y?=6X*+1

whose general solution is given by

where
f,=(5+2V6) +(5-2/8 .g,=(5 2§ -(5dp n=- 101
Applying Brahmagupta Lemma betwee{rxo,Yo) and ()Zn,\?n), the other integer

solutions of (12.9) are given by
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1 3
x+:_fn+_/_ n
n+l 2 2 Gg

3 3
Y, == f+—=
n+l 2 n \/6 gn

In view of (12.8) and (12.10), we get

1(3 3
=—|—-f +—=gqg +1
hn+1 4(2 n \/ggn J

N :§f+ig +_:l
n+l 4n 2\/6 n 2

Hn+1 :1(& fn +_39n+1j

212" 26
Note that the values d¢f , =t;,.,=ct;, ,n=01,2,.

A few numerical examples satisfying the relatiors given in the Table 12.2 below:

Table 12.2: Numerical Examples

n N, ., ... H.., ton,., = ten., = Clen .
0 13 7 6 91

1 133 67 55 8911

2 1321 661 540 873181

3 13081 6541 5341 85562821
4 129493 64747 52866 8384283271

2. Equality of t,, =t;, =ctg,

Let N, h, M be the ranks of Triangular, Hexagonal and Cent&ethgonal numbers
respectively.

The relation

t3,N = t6,h

leads to
N =2h-1 (12.11)
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The assumption , =ct, ,, gives

2h*—h=4M?-4M +1
which is written as

Y2=8X2+1 (12.12)
where

Y =4h-1, X=2M-1 (12.13)

The general solution of (12.12) is given by

where
f=(3+2/2)" +(3- 2/ g,=(3 ¥ -(3 LY n=- 101

In view of (12.11) and (12.13), we get

n=5(f+2

1, 1
M, ==|4+——
” 8( ng")

Note that the values df , =t,,, =cty, , n=0,2,4,.

A few numerical examples satisfying the relatiors given in the Table 12.3 below:

Table 12.3: Numerical Examples

n N, h, M, ton, = ten =Clgy
0 1 1 1 1

2 49 25 18 1225

4 1681 841 595 1413721
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3. Equality of t,, =t;, =ct,

Let N, h, M be the ranks of Triangular, Hexagonal and Cent&echgonal numbers

respectively.

The relation
Ly =l
leads to
N =2h-1 (12.14)

The assumption, =ct,;,, gives

2h* —h=5M?-5M +1
which is written as

Y2 =10X%-1 (12.15)
where

Y =4h-1, X= 2M~] (12.16)
To obtain the other solutions of (12.15), constitherpell equation

Y?=10X*+1

whose general solution is given by

\?S:1 f, X.=
2
where
f,=(19+6/10 +(19- /10" g,=(19 ¢ 1 -( 296 40" s=- 10,
Applying Brahmagupta Lemma betwee(rxo,Yo) and (XS,\?S), the other integer

solutions of (12.15) are given by
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x+_ s+ s
s+l 2 2\/1—(:9
3 5
Y, == f+——o¢,

s+l 2 \/E

In view of (12.14) and (12.16), we get

1( 3 5
h,==|2f+—=g.+1
1 4(2 Ji0° j

3 5 1

N+_ s+— s A
s+l 4 2\/1_09 2

Ms+1 :1[& f +_393+1j

2\2° 2410

Note that the values af , =t;,.,=ct,, ,s=-113,.

A few numerical examples satisfying the relatiors given in the Table 12.4 below:

Table 12.4: Numerical Examples

S N.., h,., M., '[3YNS+1 = ts,hsﬂ =ct 10M,.,
-1 1 1 1 1

2221 1111 703 2467531
3 3203401 1601701 1013005 5.13089E+12

4. Equality of t, =t;, =ct,,

Let N, h, D be the ranks of Triangular, Hexagonal and CentBx@decagonal numbers
respectively.
The relation

t

3,N

= t6,h

leads to

N =2h-1 (12.17)
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The assumption, , =ct,, , gives

2h* -h=6D’-6D+1
which is written as

Y2=12X?- ¢ (12.18)
where

Y =4h-1, X= 2D~ (12.19)
To obtain the other solutions of (12.18), consitherpell equation

Y?=12X*+1

whose general solution is given by

f, X, =

n n

Y, =

N -
(@]

N
2w

where
f=(7+av3) +(7- 47 g, =(# Y (7 4F n=- 101
Applying Brahmagupta Lemma betwee(rxo,YO) and (Xn,\?n), the other integer

solutions of (12.18) are given by

1, /3

X ==f +3°
n+l 2 n 4 gn
Yn+1:gfn+\/§gn

In view of (12.17) and (12.19), we get

13
=—| = f +43g,+1
hn+1 4(2 n \/_gn )

3., V3 1
N,==f+°g -=
n+l 4 n 2 gn 2
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Dn+l :%(E fn +£3’gn+1J

2 4

Note that the values daf , =t ct , n=-1,1,3,..

6,hn+1 = 12 Dyq
A few numerical examples satisfying the relatiors given in the Table 12.5 below:

Table 12.5: Numerical Examples

n N, .. n,.. D,., tan,, = ten ., = Clisp .
-1 1 1 1 1
313 157 91 49141
60817 30409 17557 1849384153
11798281 5899141 3405871 6.95997E+13
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ON HOMOGENEOUS QUADRATIC WITH FIVE UNKNOWNS
4w’ —x* —y* +72* =16t

A. VIJAYASANKAR, SHARADHA KUMAR AND M. A. GOPALAN

ABSTRACT
The homogeneous quadratic diophantine equation fiviéhunknowns given by:

4w? —x* —y”> +z* =16t> Is analyzed for determining its non-zero distificteger solutions through
employing linear transformations.

Keywords: homogeneous quadratic, quadratic with fimknowns, integer solutions

INTRODUCTION

The theory of diophantine equations offers a riahety of fascinating problems. In particular, hajeneous or
non-homogeneous quadratic diophantine equatione tvib or more variables have been an interest to
mathematicians since antiquity [1-4]. In this comtene may refer [5-11] for different choices afagratic
diophantine equations with four unknowns. In [12le¢ quadratic diophantine equation with five unknew

given by 10w” —x* —y* + z° =t’is analysed for obtaining its non-zero distinceger solutions.

This motivated me for finding integer solutionsdther choices of quadratic equations with five wowns.
This paper deals with the problem of determiningh-mero distinct integer solutions to the quadratic

2 2 22 1.2
Diophantine equation with five unknowns given By —X —¥ +z =16t".

METHOD OF ANALYSIS
The second degree diophantine equation with fik@awns to be solved is

4w? —x*> -y’ +7° =16t> @
The process of obtaining different sets of non-zistinct integer solutions to (1) is exhibited de!
Set 1:

The substitution of the linear transformations
x=4P+12Q,y=8Y,z=4P-Q),w=4P+Q),t=2T 3]

in (1) leads to the space pythagorean equation

P?=Q*+Y*+T? (3)
which is satisfied by

P=a’+b’+c*,T=a’-b>-c’,Q=2ab,Y =2ac (4)
In view of (2), one has the integer solutions tpditen by

x=4(a’+b* +c’ +6ab),

y=16ac,

z=4(a’ +b’> +c’ —2ab),

w=4(a’+b>+c’+2ab),

t=2(°-b>-c?)

Set 2:
Introducing the linear transformations
x=(8a’—-1)s,y=4aY,z=s,w=4a’s,t=aT (5)
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in (1), it simplifies to the Pythagorean equation

s2=Y2+T? (6)
whose solutions may be taken as

s=p’+q°,T=p’-q’,Y=2pq (7)
In view of (5), the integer solutions to (1) arean by

x=@a’ -1 (p*+q’),y=8apq.z=(p" +q’),w=4a’(p’ +q°) ,t=a(p’ —q")

Note 1:
The solutions to (6) is also taken as

s=p’+q",Y=p’-q’,T=2pq
In this case, the integer solutions to (1) are mgive
x=B8a’ =D (p*+q°),y=4a(p’ —q*),z=(p’ +q*),w =4a’(p’ +q*) ,t=2apq

Set 3:
Taking

x=4P+Q),y=4P-Q),w=4P,z=4Q (8)
in (1), it reduces to

Q’ +t* =2P° 9
After some algebra, it is seen that (9) is satiskig

t=a’-b*+2ab,

Q=a’-b’-2ab,

P=a’+b’

In view of (8), it is seen that

x =8a(a—b),

y=8b(a+b),

z=4(a> -b*-2ab),

w=4("+b%)

Thus, the above values af y,z, w,t satisfies (1).

Note 2:
After performing a few calculations, (9) is alsdisi@ed by

t=2a>-b’,

Q=2a’+b’ +4ab,

P=2a’+b’*+2ab

In view of (8), the corresponding values ©fy, z, w are found to be
x=4(4a’ +2b*+6ab),

y=-8ab,

z=4(2a° +b’> +4ab),

w=4(2a’>+b>+2ab)
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Set 4:

The choice

z=x+4t (20)
in (1) leads to

y* —4w? =8xt (11)

which is expressed as the system of double eqatasnshown in Table: 1 below:

Table: 1 System of double equations
System 1 2 3 4
y+2w | 8x | 4x | 8t | 2x

y—2w t 2t X 41

Solving each of the above systems, one obtainwahees of X,y,w,t. In view of (10), the corresponding
value of zis obtained. For simplicity, the integer solutioits the corresponding system of equations are
exhibited below:

Solutions to system 1.
x=s,y=4s+2k,z=s+16k,w=2s—-k,t=4k

Solutions to system 2:
x=8,y=2s+2k,z=s+8k,w=s—k,t=2k

Solutions to system 3:
x=4s,y=2s+4k,z=4s+4k,w=2k-s,t=k

Solutions to system 4:
x =2s,y=2s+2k,z=2s+4k,w=s—-k,t=k

CONCLUSION
In this paper, an attempt has been made to obtairzaro distinct integer solutions to the quadrdimphantine
equation with five unknowns given byw> —x*> —y* +z° =16t>.

The readers of this paper may search for findingger solutions to other choices of quadratic daopine
equations with five or more unknowns.
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ON THE HOMOGENEOUS CONE
2 = (k% =2k +22)x* + 37

A. VIJAYASANKAR, SHARADHAKUMAR AND M. A. GOPALAN

ABSTRACT
The homogeneous ternary quadratic equation given’ by(2k2 —2k+22)x2 +y’is analysed for its non-

zero distinct integer solutions through differergthods. A few interesting properties between thetisas are
presented. Also, formulae for generating sequenfcénteger solutions based on the given solution are
presented.

Keywords:Ternary quadratic, Integer solutions, Homogeneowrsec

INTRODUCTION
It is well known that the quadratic Diophantine &tions with three unknowns (homogeneous or non-
homogeneous) are rich in variety [1, 2]. In pattcuthe ternary quadratic Diophantine equationshefform

z*> = Dx* + y” are analysed for values of D=29,41,43,47, 53, 568, 67in [3-11]. In [12], the homogeneous
cone represented by the ternary quadratic equatior- 74x> + y* has been studied. This result motivated us
for determining integer solutions to the homogeiseconez® = Dx” + y* when D takes even values. In this
communication, yet another interesting homogenedesnary quadratic Diophantine equation given by

z? = (2k2 —2k+22)x2 +y”is analysed for its non-zero distinct integer sohg through different methods.

A few interesting properties between the solutians presented. Also, formulas for generating sexpier
integer solutions based on the given solution aesgnted.

METHODS OF ANALYSIS
The ternary quadratic equation to be solved fointisger solutions is

z* = 2k =2k +22)x% + (1)
We present below different methods of solving (1):

METHOD: 1
(1) Is written in the form of ratio as
z+y X r

(2k2—2k+22)x z—=y S @)

which is equivalent to the system of double equmstio

(Zk2 -2k +22)rx—sy —sz=0

sx+ry—rz=0

Applying the method of cross-multiplication to taleove system of equations,
xX= x(r,s)z 2rs

y=y(r,s)= (Zk2 -2k + 22)1”2 -5’

z=z(r,s)= (Zk2 -2k + 22)r2 +s°

which satisfy (1)

NOTE: 1
It is observed that (1) may also be representddeirfiorm of ratio as below:

2
Z+y:(k —k+11)x=£,S¢0
2x z—y s

@
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The corresponding solutions to (1) are given as:

x=2rs,y=2r" —(k2 —k+11)sz,z =27 +(k2 —k+11)s2
2z+y _ 2x ZK,S;tO

(k —k+11)x z—y s

The corresponding solutions to (1) are given as:

x=2rs,y=(k2 —k+11)r2 —2sz,z=(k2 —k+11)r2 +2s?

(ii)

METHOD: 2
(1) Is written as the system of double equation in &dbas follows:
Table: 1 System of Double Equations
System 1 2 3 4
z+ty 2x (0 —k+11)x* | (2% —2k+22)x | (K> —k+11)x
zy | (kP —k+11) 2 X 2x

Solving each of the above system of double equstithe value ofx, y & z satisfying (1) are obtained. For
simplicity and brevity, in what follows, the integsolutions thus obtained are exhibited.

Solutions for system: |

x=2s .y = (K2 —k+9)s,,=(k* —k +13)g

Solutions for system: I

x=2s, y=252(k" —k+11)-1 z=25"(k* —k+11)+1

Solution for system: Il
x=2s y=(2k> =2k +21)s, z = (2k*> -2k +23)s

Solution for system: IV
x=2s, y=s(k> —k+11)-2s, z=s(k> —k+11)+2s

METHOD: 3
1) Is written as
v+ (2K — 2k + 22 =27 =27 %1 3)
Assume z as
z=a® +(2k> =2k + 22)p° @)
Write 1 as
- ok =2k +22)r — 5 +i2rs k% — 2k + 22 |# |2k — 2k + 22)2 =5 —i2rs 2 — 2k 4 22 )
(k> =2k +22)7 + 57
Using (4) & (5) in (3) and employing the methodf@ttorization, consider
ey awiv 2w —2k1 22 |k —2k+ 227 57 + 12K 2k 1 22 2rs]
Y Lk —2k+22)" +5°
Equating real & imaginary parts, it is seen that
99
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1
(2k% -2k +22)% + 5
~ 1
2k -2k +22)% + 57
Since our interest is to find the integer solutjomeplacing: by [(2](2 —2k +22)r2 +s2]A & bby
[(2k2 —2k+22)r2 +s2]B in (6) & (4), the corresponding integer solutidag1) are given by

r= [{2k? 2k +22)r> — 5 fa> — (2> — 2k + 22)p° |- 4abrs ok — 2k + 22

ab{2k? — 26+ 22)> =5 b+ 2rsla® — (262 - 2k + 22)p7 ] (6)

x = x(4,B) = (26> = 2k + 222 + 57 ) [(A? = (2> = 2k + 22)B” )2rs + 24B((2k> — 2k + 22)* - 57)]
B ) (A2 = (2k2 =2k +22)B2 )[(2k — 2k + 22)2 - 5°]
y=y(AB)=(pk 2k 22} ) —44Brs(2k> — 2k +22)

i)

z=2(A,B)=((2k> — 2k +22)” + 5> (A% + (2k* — 2k + 22)B?)
Following the above procedure,one may obtain diffiee sets of integer solutions to (1).

METHOD: 4
1) Is written as

22— (2K =2k + 227 = y? = ? #1 ()
Assumey as
y=a’ —(2k> =2k +22)p? (8)
Write 1 as

I ok — 26+ 22)r + 57 N2 —2k + 2220 ) (267 — 2k +22)r 4 5> —2k® — 2k + 22 25

(2k? =2k +22)r> =57

©)
Using (8) & (9) in (7) and employing the methodf@ttorization, consider

i . a* + (2K =2k + 22)°
(2k> =2k +22) + 5> + 205V 2k7 — 2k +22
| 2abak —2k <22

(2k% -2k +22)r% - 5°

z+~N2k* =2k +22x =

Equating rational and irrational parts, it is sHeat,
(o? + (k> — 2k +22)b2 )2 + 2ab (2K — 2k + 22)r + 52)
- (2k% -2k +22)r2 — 5
(@ + 2k =2k + 22)p2 (2K — 2k + 22)r2 + 57 )+ 4abrs(2k> — 2k +22)
- (26% — 2k +22)r2 - 52

(10)

Since our interest to find the integer solutionplaeing aby ((Zk2 —2k+22)r2 —sz)A &b by
((Zk2 —2k+22)r2 —sZ)B in (10) & (8), the corresponding integer solutiaag1) are given by
x=x(A,B)=((2k> =2k +22)r% =57 ) [(A% + (247 — 2k +22)B? J2ris + 2AB((2k> — 2k + 22)r> + 57|
y=(A,B)=((2k> -2k +22)r> — s>V [A> - (2k> — 2k + 22)B?]

oo AB)= (2K 2k 22) ) (A% +(2k> =2k +22)B )((2k> — 2k +22)r + 52)
’ +44Brs (2k> - 2k +22)

Following the above procedure,one may obtain diffiee sets of integer solutions to (1).
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GENERATION OF SOLUTIONS
Different formulas for generating sequence of integplutions based on the given solution are pteddvelow:

Let (xo, yoyzo)be any given solution to (1)

Formula: 1
Let (xl, yl,zl)given by

X, =3x0, ¥, =3y, +h,z, =3z, +2h (11)
be the2" solution to (1). Using (11) in (1) and simplifyinane obtains

h=2y,-4z,

In view of (11), the values of andz, are written in the matrix form as

(y1’ Zl)t =M (yo’ Zo)t

where

M= >4 7
4 -5
andtis the transpose

The repetition of the above proses leads ta:theolutionsy, , z, givenby

v,2.) =M" (. 2,)

If «, f are the distinct eigen values of M, then
a=3,p=-3

We know that

M- a’ (1 —pi)+ (ﬂ/iﬂa)(M_a[), 1 =2x2 Identity matrix

_Qn
=3"x,

_1|4a" =" =2a"+2B" | v,
3 2an_2ﬂn _an+4ﬂn ZO

‘xn
Thus, the general formulas for integer solutionéljcare given b(yn
Zn

Formula: 2
Let (xl,yl,zl)given by

X, = h—(2k? =2k + 23)x,, y, = h—(2k? — 2k + 23)y, , 7, = (2k? — 2k + 23)z, 12)

be the2™ solution to (2). Using (12) in (1) and simplifyingne obtains
h = (4k> — 4k +44)x, +2y,

In view of (12), the values of, andy, are written in the matrix form as

(Xl’ 3/1)t =M (Xo' YO)t

2k* =2k +21 2
Where M
4K -4k +44 - (267 -2k +21)

101
Special Issue on Recent Research on Managemeried\@eiences and Technology



Stochastic Modeling & Applications ISSN: 0972-3641
Vol. 26 No. 1 (January - June, Special Issue 20322 P1) UGC CARE APPROVED JOURNAL

And t is the transpose

The repetition of the above process leads toz‘t‘im)lutionsxn, v, givenby
1 n 1

(‘xn’yn) :M (‘xo9y0)

If «, § arethe distinct eigen values of M, then

a=2k> -2k +23, = —(2k* -2k +23)

Thus, the general formulas for integer solutionéljcare given by

[xnj_ 1 (2k2—2k+22)a"+ﬂ" a"-p" X,
v,) @k =2k+23) (2> =2k +22)(@" = B") " +(2k> =2k +22)B" | v,

z, = (2k* =2k +23) 2,

Formula: 3
Let (xl, ylzl)given by

x, =h—(2k* =2k +21)x, , y, =(2k* =2k +21)y,, z, = (2k> =2k + 21)z, +4 13)

be the2" solution to (1). Using (13) in (1) and simplifgnone obtains
h=2z,+(4k> — 4k + 44)x,

In view of (13), the valuesof andz, are written in the matrix form as

(xlﬂzl)t = M(xmzo)[

2k* =2k +23 2
Where M=
4k* — 4k +44 2k* =2k +23

andt is the transpose

The repetition of the above process leads torlﬁhe solutionsx_,z_ given by
t t

(Xn’zn) :MH(XO’ZO)

If «, § are the distinct eigen values of M, then

a =2k* =2k +23+ 22k =2k +22,
B= 2k =2k +23-22k* -2k +22

Thus, the general formulas for integer solutionéljcare given by

v, =(2k> =2k +21)'y,

; ., aﬂ _ n
xn 1 a +ﬂ 2 ﬂ xO
== 22k —2k+22
z,) 2 z,
V2K <2k + 22 (2" - ) a'+ p"
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CONCLUSION
In this paper, an attempt has been made to obtairzaro distinct integer solutions to the ternamadratic

Diophantine equation® =(2k2 —2k+22)x2 + y®representing homogeneous cone. As there are eariefi
cones, the readers may search for other formsrescto obtain integer solutions for the correspugdiones.
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