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A B S T R A C T

This paper introduces a mathematical model that simulates the transmission of the dengue
virus in a population over time. The model takes into account aspects such as delays in
transmission, the impact of inhibitory effects, the loss of immunity, and the presence of partial
immunity. The model has been verified to ensure the positivity and boundedness. The basic
reproduction number 𝑅0 of the model is derived using the advanced next-generation matrix
approach. An analysis is conducted on the stability criteria of the model, and equilibrium points
are investigated. Under appropriate circumstances, it was shown that there is local stability
in both the virus-free equilibrium and the endemic equilibrium points when there is a delay.
Analyzing the global asymptotic stability of equilibrium points is done by using the appropriate
Lyapunov function. In addition, the model exhibits a backward bifurcation, in which the virus-
free equilibrium coexists with a stable endemic equilibrium. By using a sensitivity analysis
technique, it has been shown that some factors have a substantial influence on the behavior
of the model. The research adeptly elucidates the ramifications of its results by effortlessly
validating theoretical concepts with numerical examples and simulations. Furthermore, our
research revealed that augmenting the rate of inhibition on infected vectors and people leads
to a reduction in the equilibrium point, suggesting the presence of an endemic state.

. Introduction

Infectious diseases that propagate from one individual to another through intermediary vectors or agents highlight a significant
spect of disease transmission. Vector-mediated infections may come from the pathogen, vector, or host. Mosquitoes, flies, ticks,
ites, and even raccoons all play important roles in the transmission of a wide range of illnesses to people and other animals [1].

Over the recent years, dengue fever, a mosquito-borne infectious illness, has quickly spread across continents, emerging as a
orldwide health problem. Female Aedes aegypti mosquitoes and, to a lesser extent, Aedes albopictus mosquitoes are the primary
ectors responsible for the transmission of the dengue virus between humans and other animals. Even in the year 2021, nations
ike Brazil, India, the Philippines, and Kenya continue to grapple with the impacts of dengue virus transmission [2]. A mosquito
hat becomes infected with the virus has the ability to transmit it during its whole lifecycle, which corresponds to the mosquito’s
xtrinsic incubation period of about 8 to 12 days [3].

According to Ross [4], who created a combination of ordinary differential equations in 1911 to explain the changes in the
ensities of susceptible and infected individuals and vectors, disease modeling may have originated in diseases. This modeling
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approach provided insight into the dynamics and transmission of the illness. The subsequent enhancement of this model resulted
in the creation of the basic reproduction number, a crucial metric in epidemiology that portrays the typical amount of secondary
cases generated by an infected individual over their duration of transmission [5]. Building on Ross’s pioneering work, the extended
Ross-Macdonald model, introduced in 1957, laid the foundation for exploring disease spread more comprehensively. Researchers
such as Aron and May [6], Anderson and May [7], Chitnis et al. [8], Lou and Zhao [9], Jaafar [10], and Wei et al. [11] further
extended the model by incorporating various complexities and factors.

Massawe et al. [12] examined a nonlinear mathematical model of how therapy affects dengue fever transmission. The researchers
kosun and Makinde [13] proposed a model for malaria-cholera co-infection that allows for optimal management. This model
ncompasses five control measures that are reliant on time: malaria prevention using medicated bednets, cholera reduction with
lean water and sanitation, treating malaria, and combo-therapy for malaria-cholera. In order to analyze the spread of malaria
y infected immigrants, Makinde and Okosun [14] use a computational model including affected and contagious immigrants.
kosun and Makinde [15] created a mathematical model with non-linear incidence to study malaria transmission incidence rate
on-linearity. Keno et al. [16] created a SIRS–SI model with a logistic model for temperature fluctuation and malaria outbreaks.

A delay differential model was suggested by Alsakaji et al. [17] to characterize predator–prey systems that had a single predator
nd multiple prey. To protect themselves from predators, the model uses prey cooperation and functional responses such as Monod-
aldane and Holling type II. A stochastic model with time-based delays was suggested by Rihan et al. [18] to explain the dynamics
f cancer by describing the relationships among immune system cells, cells in normal tissue, cancer cells, and effector cells that have
een activated by the immune system. Ullah et al. [19] investigated the dynamics of SARS-CoV-2 in a community after vaccination
nd the development of illness using a stochastic computational model. Using numerical stochastic methods, Umar et al. [20] solved
he HIV prevention category. Sabir et al. [21] offered numerical solutions for the coronavirus robotic system.

Mahata et al. [22] examined a dynamical system with order fractional that includes populations of susceptible, exposed, infected,
ecovered, and vaccinated individuals. A single delay was included into the contagious population to account for the duration needed
or recovery. A computational model and epidemiological modeling were used by Paul et al. [23] to examine trends in COVID-19
ransmission in Italy. The COVID-19 pandemic in Italy prompted the development of the fractionally ordered SEIQRD model. Paul
t al. [24] discussed the benefits of using Caputo fractional-order differential equations in a fractional SEIR model with optimum
ontrol. Paul et al. [25] examined a fractional order SIR model utilizing the Caputo order fractal derivative method. Both the
ncidence rate of saturation and the treatment rate were accounted for in the model. Mahata et al. [26] investigated an optimally
ontrolled SEIRV epidemic model utilizing the Caputo fractional derivative.

Khajanchi et al. [27] examined how external reinfections and contact rate affect eruptive TB. Das et al. [28] enhanced a
omputational model of tuberculosis (TB) spread by including epidemic social awareness. Das et al. [29] constructed and studied an
pidemic model detailing tuberculosis (TB) transmission dynamic with re-infections and rapid disease development. Using a non-
inear vector-host model, Dwivedi et al. [30] examined dengue virus transmission dynamics, which can be regulated by vaccination
nd therapy. Das et al. [31] examined a TB transmission model including external re-infections and recurrent TB.

The dynamics of infectious diseases have been significantly influenced by mathematical modeling, with time delay playing a
ivotal role in understanding system behavior and disease burdens. Herz et al. [32] introduced a model with time delay, shedding
ight on the interplay between infection and infectiousness. The time it takes for an illness to manifest before a person may infect
thers is a manifestation of this delay phenomenon. Consequently, epidemiological studies have increasingly employed diverse
odels to decipher disease dynamics [33].

.1. Motivation of the study

The vector-host disease model [34] has proven to be a valuable framework for understanding disease dynamics, encompassing el-
ments such as consistent human immunity loss and re-susceptibility. Jinhu Xu et al. [35] extended this framework by incorporating
atent periods within vector populations and accounting for partial immunity. In the context of vector-borne diseases, researchers
ike Hu. Z et al. [36] and Yanxia Zhang et al. [37] have delved into saturation incidence rates and inhibitory impact rates. Wan and
ui [38] specifically investigated the local steady state of the equilibrium points in models that include two time delays, uncovering

ascinating findings. Prakash Raj et al. [39] examined the stability of a dengue transmission model with two delays and found
vidence of Hopf bifurcation, providing valuable insights into the propagation of the illness.

.2. Structure of the study

The article is organized in the following manner. In Section 2, a time-delayed vector-host dengue epidemic model which
ncorporates an inhibitory effect rate, immunity loss, and partial immunity is proposed. The model is formulated using single-delay
ifferential equations. The analysis of the model’s positivity, boundedness, and equilibrium points is conducted in Section 3. The
nalysis of the model’s local and global stability, as well as the study of the backward bifurcation, are conducted in Section 4.
n Section 5, sensitivity analysis of the model parameters and utilizing the MATHEMATICA software, graphical significance and
umerical simulations are analyzed. Section 6 pertains to the conclusion of the work.
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2. Model development for dengue epidemics involving vectors and hosts

In the context of this section, we have developed a mathematical framework for a dengue epidemic that takes into consideration
ime-based delays, inhibitory effects, loss of immunity, and partial immunity.

The framework’s development depends on the dynamic relationship among human and vector populations with respect to time 𝜏.
he complete human community 𝐻 (𝜏) is composed of three categories: susceptible individuals (𝜏), those who have been infected
(𝜏), and the recovered 𝑍(𝜏). Thus, the expression for 𝐻 (𝜏) becomes:

𝐻 (𝜏) = (𝜏) + (𝜏) +𝑍(𝜏)

imilarly, the entire vector population 𝑉 (𝜏) comprises two subsets: the susceptible vectors denoted as  (𝜏) and the infected vectors
enoted as (𝜏). This yields the expression for 𝑉 (𝜏) as follows:

𝑉 (𝜏) =  (𝜏) + (𝜏)

ompared to the work by Hu. Z et al. [36], our study has incorporated three main modifications:

1. We have integrated a parameter representing the rate of decline in immunity within human populations across host compart-
ments [40].

2. Additionally, we introduced the dengue virus-induced mortality rate for both human [41] and vector populations [42],
incorporating it into both vector and host compartments.

3. Furthermore, we have included a saturation incidence rate, which accounts for the restraining influence exerted by humans on
infected vectors within the vector compartments.

The incorporation of new individuals into the population, whether by birth or migration (at a rate denoted by 𝛱1), results in a
ecline in immunity among those who have made it through the first illness (at the rate indicated by 𝜎). Consequently, a susceptible

human population is created. The variable 𝜂1 quantifies the pace at which the virus spreads from humans to vectors, and 𝛿 shows the
verage quantity of mosquito attacks each day. The rate of inhibition caused by virus-carrying vectors within the host population
at a rate denoted as 𝛾1), along with the intrinsic mortality (occurring at a rate denoted as 𝜓1), are incorporated into the formula
or the rate of saturation for incidence ( 𝛿𝜂1(𝜏)(𝜏)

1+𝛾1(𝜏)
). Consequently, the subsequent equations depict the changes in the susceptible

population’s rate:

 ′(𝜏) = 𝛱1 −
𝛿𝜂1(𝜏)(𝜏)
1 + 𝛾1(𝜏)

− 𝜓1(𝜏) + 𝜎𝑍(𝜏)

The number of infected individuals increases as susceptible individuals are infected at a rate that has attained its maximum capacity.
In contrast, this population decreases due to natural factors such as regular mortality (with a rate denoted by 𝜓1), virus-induced
mortality (with a rate denoted by 𝜇1), and the transition of infected individuals to a recovered state (with a rate denoted by 𝜌). It is
essential to note that 𝛼 indicates the amount of partial immunity that people who have already gotten over this virus and are now
healthy again get. Consequently, the subsequent equations represent the rate of change in the infected human population.

 ′(𝜏) =
𝛿𝜂1(𝜏)(𝜏)
1 + 𝛾1(𝜏)

+ 𝛼𝛿𝜂1𝑍(𝜏)(𝜏) − (𝜓1 + 𝜌 + 𝜇1)(𝜏)

The group denoted as 𝑍 in the third division consists of individuals who have successfully recuperated from a recent infection (with
a rate of 𝜌). This category encompasses those who were previously infected, and its size is diminished by the occurrence of natural
mortality (with a rate of 𝜓1) as well as the immune system decline (at a rate of 𝜎). Hence, the resulting equations elucidate the
changes in the population’s recuperation rate after to the illness:

𝑍′(𝜏) = 𝜌(𝜏) − 𝛼𝛿𝜂1𝑍(𝜏)(𝜏) − (𝜓1 + 𝜎)𝑍(𝜏)

When vectors are recruited into the population at a rate defined by 𝛱2, whether via birth or migration, the population of susceptible
vectors is established. This recruitment may take place. Simultaneously, 𝜂2 represents the infection rate of vector-to-human. This
infection rate is modulated by a complex term associated with the saturation incidence rate and multiple parameters, including the
term 𝛿, the function  (𝜏−⊺), and the function (𝜏−⊺). This modulation considers the impact of infected humans on the population
of vectors, which occurs at a rate represented by 𝛾2. In addition, the term 𝛾2 encompasses the effect of natural mortality on the
vector population, which is denoted by 𝜓2.

The ⊺ variable represents the extrinsic incubation period of the vector population. The exponential factor 𝑒−𝜓2⊺ represents the
osquito population’s ability to endure over time.

Consequently, the resultant equations explain the changes in the rate of the susceptible vector population, taking into account
he complex interplay of the aforementioned variables.

 ′(𝜏) = 𝛱2 −
𝛿𝜂2 (𝜏 − ⊺)(𝜏 − ⊺)𝑒−𝜓2⊺

1 + 𝛾2(𝜏 − ⊺)
− 𝜓2 (𝜏)

The increase in the infected population occurs as a result of the infection of susceptible vectors at a rate that has reached its maximum
3
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Fig. 1. Visual representation of the dengue epidemic model.

quantified by the rates at the rates 𝜓2 and 𝜇2, respectively. Therefore, the resulting equations show the rate of change of the infected
vector population.

 ′(𝜏) =
𝛿𝜂2 (𝜏 − ⊺)(𝜏 − ⊺)𝑒−𝜓2⊺

1 + 𝛾2(𝜏 − ⊺)
− (𝜓2 + 𝜇2)(𝜏)

The subsequent assumptions are employed as guiding principles for the dynamics of the model:

(a) The model assumes that both the human and vector populations are changing, with a constant chance that any given bite will
infect a susceptible member of the community.

(b) Over time, the immunity of rehabilitated human populations declines.
(c) Those who have recuperated from the infection experience partial protection.
(d) Under the assumption of a prevalence at saturation, the effect of inhibiting caused by an virus-carrying vectors on humans is

influenced by the parameter 𝛾1, while the impact of infected humans on vectors is influenced by 𝛾2.
(e) The death rate associated with the illness in humans is depicted as 𝜇1, whereas the mortality rate in mosquitoes is designated

as 𝜇2.
(f) Infected mosquitoes will die soon after contracting the disease.

The mathematical framework of the dengue epidemic model is shown in Fig. 1, which incorporates both the vector and host
populations, is expressed as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

 ′(𝜏) = 𝛱1 −
𝛿𝜂1(𝜏)(𝜏)
1+𝛾1(𝜏)

− 𝜓1(𝜏) + 𝜎𝑍(𝜏)

 ′(𝜏) = 𝛿𝜂1(𝜏)(𝜏)
1+𝛾1(𝜏)

+ 𝛼𝛿𝜂1𝑍(𝜏)(𝜏) − (𝜓1 + 𝜌 + 𝜇1)(𝜏)

𝑍′(𝜏) = 𝜌(𝜏) − 𝛼𝛿𝜂1𝑍(𝜏)(𝜏) − (𝜓1 + 𝜎)𝑍(𝜏)
 ′(𝜏) = 𝛱2 −

𝛿𝜂2 (𝜏−⊺)(𝜏−⊺)𝑒−𝜓2⊺

1+𝛾2(𝜏−⊺) − 𝜓2 (𝜏)

 ′(𝜏) = 𝛿𝜂2 (𝜏−⊺)(𝜏−⊺)𝑒−𝜓2⊺

1+𝛾2(𝜏−⊺) − (𝜓2 + 𝜇2)(𝜏)

(1)

With initial conditions

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝜑) = 0(𝜑),(𝜑) = 0(𝜑), 𝑍(𝜑) = 𝑍0(𝜑)
 (𝜑) = 0(𝜑),(𝜑) = 0(𝜑)
𝐻 (𝜑) = 0𝐻 (𝜑), 𝑁 (𝜑) = 0 (𝜑)
𝜑 ∈ [−⊺, 0]

(2)

It is evident that  = {( , , 𝑍, ,) ∈ 𝑅5
+ ∶ 0 ≤  +  + 𝑍 ≤ 𝛱1

𝜓1
, 0 ≤  +  ≤ 𝛱2

𝜓2
} is positively invariant, system (1) is

destructive, and the entire attraction is included in .

The complete dynamics of human population are  ′
𝐻 (𝜏) ≤ 𝛱1 − 𝜓1𝐻 (𝜏) and the entire dynamics of vector population are

 ′
𝑉 (𝜏) ≤ 𝛱2 −𝜓2𝑉 (𝜏). Without losing generality, we can assume that 𝐻 (𝜏) ≤ 𝛱1

𝜓1
for all 𝜏 ≥ 0 given that (0) +(0) +𝑍(0) ≤ 𝛱1

𝜓1
and  (𝜏) ≤ 𝛱2 for all 𝜏 ≥ 0 given that  (0) + (0) ≤ 𝛱2 .
4
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Table 1
Model parameters and their values.

Parameters Descriptions Data values Source

𝛱1 Recruiting rate of humans Varies –
𝛱2 Recruiting rate of vectors Varies –
𝜂1 Infection rate of human-to-vector 0.0033 [36]
𝜂2 Infection rate of vector-to-human 0.0059 [36]
𝜓1 Human mortality rate 0.0029 [36]
𝜓2 Vector mortality rate 0.02 [36]
𝛾1 Rate of inhibition caused by the infected vector Varies –
𝛾2 Rate of inhibition caused by the infected human Varies –
𝜇1 Death rate of humans caused by infections 0.01 [43]
𝜇2 Death rate of vectors caused by infections 0.22 [44]
𝛿 The daily average amount of bites from mosquitoes 0.29 [36]
𝜎 The rate of immunity depletion in the human population 0.0009 [38]
𝛼 Protection level for people who have already 0.48 [36]

gotten over the sickness.
𝜌 Infected person recovery rates are indicated as an 0.56 [36]

amount of the total population.
⊺ Extrinsic incubation time 9 [3]

On , 𝑍 = 𝛱1
𝜓1

−  −  and  = 𝛱2
𝜓2

−  , the subsequent system from system (1) are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 ′(𝜏) = 𝛱1 −
𝛿𝜂1(𝜏)(𝜏)
1+𝛾1(𝜏)

− 𝜓1(𝜏) + 𝜎(𝛱1
𝜓1

− (𝜏) − (𝜏))

 ′(𝜏) = 𝛿𝜂1(𝜏)(𝜏)
1+𝛾1(𝜏)

+ 𝛼𝛿𝜂1(
𝛱1
𝜓1

− (𝜏) − (𝜏))(𝜏) − (𝜓1 + 𝜌 + 𝜇1)(𝜏)

 ′(𝜏) =
𝛿𝜂2(

𝛱2
𝜓2

−(𝜏−⊺))(𝜏−⊺)𝑒−𝜓2⊺

1+𝛾2(𝜏−⊺) − (𝜓2 + 𝜇2)(𝜏)

(3)

3. Basic properties of the model

3.1. Positivity and boundedness of solution

A population cannot turn negative at any point and grow shortly in general. Thus, the proposed system (3) must demonstrate
biological feasibility and positivity. The following theorem completes the natural demand and proves our model’s biological
feasibility.

Demonstrating the essential aspect involves establishing the consistent non-negativity of every state variable within the system
(3). This condition is crucial to ensure the system’s applicability in epidemiological contexts. To put it differently, maintaining 𝜏 ≥ 0
at all instances and having positively valued initial data guarantees that the solution to the system (3) remains exclusively positive.
Notably, the viable parameter space is denoted as  = {( , ,) ∈ 𝑅3

+ ∶ 0 ≤  +  ≤ 𝛱1
𝜓1
, 0 ≤  ≤ 𝛱2

𝜓2
}.

heorem 1. The possible region  = {( , ,) ∈ 𝑅3
+ ∶ 0 ≤  +  ≤ 𝛱1

𝜓1
, 0 ≤  ≤ 𝛱2

𝜓2
} is non-negatively consistent for the system (3).

roof. The first three equations of the system (1) provide the change in the rate of the global human population, denoted by

 ′
𝐻 (𝜏) = 𝛱1 − 𝜓1𝐻 (𝜏) − 𝜇1(𝜏) (4)

he boundedness of  ′
𝐻 (𝜏) may be inferred from the RHS of system (4), which is bounded by 𝛱1 −𝜓1𝐻 (𝜏). By using the standard

omparison theorem [45], it can be shown that,

𝐻 (𝜏) ≤
𝛱1
𝜓1

+ [0𝐻 −
𝛱1
𝜓1

]𝑒𝑥𝑝(−𝜓1⊺)

It is evident that 𝐻 (𝜏) ≤ 𝛱1
𝜓1

as 𝜏 approaches ∞. If 𝜏 = 0 at the beginning, then 𝐻 (𝜏) = 0𝐻 .

𝑖.𝑒., 0𝐻 ≤ 𝐻 (𝜏) ≤
𝛱1
𝜓1

(5)

Thus, 𝐻 (𝜏) is positive and bounded. To demonstrate the positivity of solutions for the nonlinear system [46], which
ncompasses the equations within system (3), we systematically analyze each equation, confirming that its solution is indeed
on-negative.

Initially, we establish that (𝜏) is always non-negative for all 𝜏 ≥ 0. However, if there exists a first non-negative value of 𝜏1
uch that (𝜏1) = 0, then, based on the first equation in system (3), we have  ′(𝜏1) = 𝛱1

𝜓1
> 0, which implies that (𝜏) < 0 for

𝜏 ∈ (𝜏1 − 𝜉, 𝜏1), where 𝜉 > 0 is suitably small. This contradicts the fact that (𝜏) > 0 for 𝜏 ∈ [0, 𝜏1). Consequently, for 𝜏 > 0, we
5

onclude that (𝜏) > 0.
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Next, we demonstrate that (𝜏) > 0 for 𝜏 > 0. Conversely, suppose there exists a very small 𝜏2 such that (𝜏2) = 0 and  ′(𝜏2) ≤ 0.
This inference is drawn from the second equation in the system (3).

 ′(𝜏2) =
𝛿𝜂1(𝜏2)(𝜏2)
1 + 𝛾1(𝜏2)

+ 𝛼𝛿𝜂1(
𝛱1
𝜓1

− (𝜏) − (𝜏))(𝜏) ≤ 0

Therefore, it is necessary that (𝜏2 − ⊺) ≤ 0. In order to maintain the continuity of the second equation within the system (3),
there must exist a smaller value of 𝜏3 such that 𝜏3 ≤ 𝜏2 − ⊺, implying (𝜏3) = 0 and  ′(𝜏3) ≤ 0. If we substitute 𝜏 = 𝜏3 into the third
equation of system (3), we get (𝜏3 − ⊺) ≤ 0 from  (𝜏) = 𝛱2

𝜓2
− (𝜏) > 0.

The lowest value (𝜏2) = 0 is 𝜏2, hence 𝜏3 − ⊺ ≥ 𝜏2, indicating 𝜏3 > 𝜏2. This contradicts 𝜏3 ≤ 𝜏2 − ⊺ < 𝜏2. Therefore, (𝜏) > 0 for
𝜏 > 0. The same techniques demonstrate that (𝜏) > 0 for 𝜏 > 0.

Thus, the region  is non-negatively consistent of the system (3). □

3.2. Virus-free equilibrium and basic reproduction number

Two types of equilibrium points are recognized in epidemiology. There is an endemic equilibrium point and a virus-free
equilibrium point. The former describes a situation in which the infected population does not exist anymore, while the latter
describes a situation in which it does. In this section, we examine the suggested model’s virus-free equilibrium.

𝐹0 is the virus-free equilibrium in system (3). Both humans and vectors in the system (3) are sick with dengue. So, the number
of people who are not contagious is 0 = 0 = 0 then 0 =

𝛱1
𝜓1+𝜎

Thus,

𝐹0 =
{

𝛱1
𝜓1 + 𝜎

, 0, 0
}

(6)

The basic reproduction number, often denoted as 𝑅0, serves as a conceptual framework within epidemiological models. The
inear stability of 𝐹0 is investigated by using the matrix technique of the next generation [47,48] to the system (3). Based on the

rovided notations [47], it can be deduced that the newly introduced infection terms are denoted as 𝐹𝑖 =
⎛

⎜

⎜

⎜

⎝

𝛿𝜂1
1+𝛾1

𝛿𝜂2(
𝛱2
𝜓2

−)𝑒−𝜓2⊺

1+𝛾2

⎞

⎟

⎟

⎟

⎠

, whereas

the existing transfer terms are represented by the symbol 𝐺𝑖 =
(

(𝜓1 + 𝜌 + 𝜇1)
(𝜓2 + 𝜇2)

)

.

𝐹 =

(

0 𝛿𝜂1
𝛱1
𝜓1+𝜎

𝛿𝜂2
𝛱2
𝜓2
𝑒−𝜓2⊺ 0

)

𝑎𝑛𝑑 𝐺 =
(

𝜓1 + 𝜌 + 𝜇1 0
0 𝜓2 + 𝜇2

)

where 𝐹 = 𝜕𝐹𝑖
𝜕( ,) , and G = 𝜕𝐺𝑖

𝜕( ,) , 𝑖 = 1, 2 .
The next generation matrix 𝐹𝐺−1 is,

𝐹𝐺−1 =
⎛

⎜

⎜

⎝

0 𝛿𝜂1𝛱1
(𝜓1+𝜎)(𝜓2+𝜇2)

𝛿𝜂2𝛱2𝑒−𝜓2⊺

𝜓2(𝜓1+𝜌+𝜇1)
0

⎞

⎟

⎟

⎠

(7)

Thus, the basic reproduction number is

𝑅0 =
𝛿2𝜂1𝜂2𝛱1𝛱2𝑒−𝜓2⊺

𝜓2(𝜓1 + 𝜎)(𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1)
(8)

3.3. Existence of endemic equilibrium

System (3) should exhibit an endemic equilibrium rather than a virus-free equilibrium. This signifies a persistent positive solution
in which the illness continues to exist within the population. Consequently, the endemic equilibrium is,

𝐹∗ =
{

∗,∗,∗
}

(9)

From (3),

∗ =
𝜓2(𝛱1(𝜓1 + 𝜎) − 𝜎𝜓1∗)(𝛿𝜂2𝑒−𝜓2⊺∗(1 + 𝛾1(

𝛱2
𝜓2

)) + (𝜓2 + 𝜇2)(1 + 𝛾2∗))

𝛿2𝜂1𝜂2𝜓1𝛱2𝑒−𝜓2⊺∗ + 𝜓1𝜓2(𝜓1 + 𝜎)[𝛿𝜂2𝑒−𝜓2⊺∗(1 + 𝛾1(
𝛱2
𝜓2

)) + (𝜓2 + 𝜇2)(1 + 𝛾2∗)]
(10)

∗ =
𝛿𝜂2𝛱2𝑒−𝜓2⊺∗

𝜓2[𝛿𝜂2𝑒−𝜓2⊺∗ + (𝜓2 + 𝜇2)(1 + 𝛾2∗)]
(11)

Here, ∗ represents the non-negative solution to the following quadratic equation

𝑄 2 +𝑄  +𝑄 = 0 (12)
6
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where,

𝑄1 = (𝜓1 + 𝜌 + 𝜇1)[ − 𝛿𝛾1𝜂2𝛱2𝜓
2
1 𝑒

−𝜓2⊺ − 𝛿𝜎𝜂2𝜓1𝜓2𝑒
−𝜓2⊺ − 𝜎𝛾2𝜇2𝜓1𝜓2 − 𝛿𝜎𝛾1𝜂2𝛱2𝜓1𝑒

−𝜓2⊺] + (𝛼𝛿𝜂1 + 𝜌 + 𝜇1)𝜓2
1𝜓2[ − 𝛿𝜂2𝑒−𝜓2⊺−

𝛾2𝜇2] − 𝛿2𝜂1𝜂2𝜓1𝛱2𝑒
−𝜓2⊺[(𝜓1 + 𝜌 + 𝜇1 + 𝜎) + 𝛼𝛿(𝜂1 + 𝛾1𝜓1)] − 𝛾2𝜓1𝜓

2
2 [𝜓1(𝜌 + 𝜎 + 𝛼𝛿𝜂1 + 𝛾2𝜇1 + 𝜓1) + 𝜎(𝜌 + 𝜎)]−

𝛿𝜌𝜎𝛾1𝜂2𝛱2𝜓1𝑒
−𝜓2⊺ − 𝜓3

1𝜓2(𝛾2𝜇2 + 𝛿𝜂2𝑒−𝜓2⊺)

𝑄2 = −(𝜌 + 𝜎)𝜎𝜇2𝜓1𝜓2 − (𝜓2 + 𝜇2)𝜓2
1𝜓2(𝜓1 + 𝜌 + 𝜇1 + 𝜎) + 𝛿2𝛼𝜂1𝜂2𝛱1𝑒

−𝜓2⊺[𝜓2(𝛱1 + 𝜓2) + 𝛾1𝛱2𝜓1] + 𝛼𝛿𝜂1𝜓2(𝜓2 + 𝜇2)

[𝛾2𝛱1(𝜓1 −𝛱1) − 𝜓2
2 ] + 𝛿

2𝜂1𝜂2𝛱1𝛱2𝑒
−𝜓2⊺[(𝜎 +𝛱1) + 𝛼𝛿𝜂1 − 𝛼𝛾1𝛱1] − (𝜌 + 𝜇2)𝜎𝜓1𝜓

2
2

𝑄3 = (𝜓1 −𝛱1)(𝜓2 + 𝜇2)𝛼𝛿𝜂1𝛱1𝜓2

1 =
−𝑄2+

√

𝑄2
2−4𝑄1𝑄3

2𝑄1
and 2 =

−𝑄2−
√

𝑄2
2−4𝑄1𝑄3

2𝑄1
be the roots of (12).

It is observe that, 𝑄1 > 0, 𝑄2 > 0, and 𝑄3 > 0 if 𝑅0 < 1, and 𝑄1 > 0, 𝑄3 < 0 if 𝑅0 > 1. If 𝑅0 < 1, 1 and 2 exhibit distinct
negativity, whereas 1 demonstrates positivity when 𝑅0 > 1. The subsequent theorem arises from the correlation between the roots
of (12) and the system (3).

Theorem 2. If 𝑅0 is less than 1, the system (3) exhibits a virus-free equilibrium 𝐹0. However, when 𝑅0 exceeds 1, the system (3) displays
both a virus-free equilibrium 𝐹0, and an endemic equilibrium 𝐹∗.

4. Analysis of equilibrium points

Analyzing the equilibrium points in epidemiological models allows us to understand the stability and behavior of disease
transmission dynamics, which can inform effective strategies for preventing and control of epidemics.

4.1. Analysis of local stability for the equilibrium points

This section will show the following well-known facts by analyzing the local behavior of the two equilibria for system (3):

Theorem 3. The virus-free equilibrium 𝐹0 in the system (3) exhibits local asymptotic stability when 𝑅0 is less than 1, while it becomes
unstable when 𝑅0 exceeds 1.

Proof. In the state of 𝐹0, the Jacobian matrix of the system (3) is

𝐽 (𝐹0) =

⎛

⎜

⎜

⎜

⎜

⎝

−𝜓1 − 𝜎 −𝜎 𝛿𝜂1𝛱1
𝜓1+𝜎

0 −(𝜓1 + 𝜌 + 𝜇1)
𝛿𝜂1𝛱1(𝜓1+𝛼𝜎)
𝜓1(𝜓1+𝜎)

0 𝛿𝜂2𝛱2𝑒−𝜓2⊺𝑒−𝜆⊺

𝜓2
−(𝜓2 + 𝜇2)

⎞

⎟

⎟

⎟

⎟

⎠

(13)

The characteristic equation for system (13) is represented by

(𝜆 + 𝜓1 + 𝜎)(𝜆2 + 𝑃𝜆 +𝑄) = 0 (14)

Here,

𝑃 = (𝜓2 + 𝜇2) + (𝜓1 + 𝜌 + 𝜇1)

𝑄(𝜆, ⊺) = (𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1)[1 −
𝛿2𝜂1𝜂2𝛱1𝛱2𝑒−𝜓2⊺(𝜓1 + 𝛼𝜎)𝑒−𝜆⊺

𝜓2𝜓1(𝜓1 + 𝜎)(𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1)
]

The equation 𝜆 + 𝜓1 + 𝜎 = 0 yields a single negative root.
The quadratic formula corresponding to the remaining two roots can be expressed as follows:

𝜆2 + 𝑃𝜆 +𝑄(𝜆, ⊺) = 0 (15)

The steady state of the virus-free equilibrium, as indicated in [47], depends on the condition 𝑅0 < 1. Let us initially examine the
scenario where 𝑅0 > 1. Subsequently, it can be demonstrated that system (15) has a positive real root.

Let ℎ(𝜆) = 𝜆2 + 𝑃𝜆 +𝑄(𝜆, ⊺), here ℎ is a continuous function of [0,+∞]. Furthermore,

ℎ(0) = (𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1)[1 − 𝑅0
(𝜓1 + 𝛼𝜎)

𝜓1
] > 0 and lim

𝜆→+∞
ℎ(𝜆) = +∞

Considering the continuity of ℎ(𝜆), we can conclude that there exists at least one non-negative root for the function ℎ. Consequently,
the virus-free equilibrium 𝐹0 exhibits instability. Let us reorganize the system (15) into the following format:

𝜆2 + 𝑃𝜆 = (𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1)[1 − 𝑅0
(𝜓1 + 𝛼𝜎)

𝜓1
] (16)

Following, let us explore the scenario where 𝑅0 is less than 1. We can represent the left-hand side of Eq. (16) as 𝐴(𝜆) and the
right-hand side as 𝐵(𝜆).
7
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In this scenario, 𝐴(𝜆) rises when 𝜆 ≥ 0, whereas 𝐵(𝜆) falls, with

𝐵(0) = −(𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1)[𝑅0
(𝜓1 + 𝛼𝜎)

𝜓1
− 1] < 0

Therefore, when the system (15) comprises roots with a positive real components, it is imperative that these roots be of a complex
haracter and arise from a collection of complex conjugate roots that intersect the imaginary axis. Consequently, for some ⊺ > 0,

the system (15) must possess a purely imaginary solution.
Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of the equation of the system (15) that is completely imaginary. Then

−𝜔2 + 𝑃𝜔𝑖 + (𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1) − (𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1)(𝑅0
(𝜓1 + 𝛼𝜎)

𝜓1
)(cos𝜔 ⊺ −𝑖 sin𝜔⊺) = 0 (17)

⎧

⎪

⎨

⎪

⎩

−𝜔2+(𝜓2+𝜇2)(𝜓1+𝜌+𝜇1)

(𝜓2+𝜇2)(𝜓1+𝜌+𝜇1)(𝑅0
(𝜓1+𝛼𝜎)
𝜓1

)
= cos𝜔⊺

[(𝜓2+𝜇2)+(𝜓1+𝜌+𝜇1)]𝜔

(𝜓2+𝜇2)(𝜓1+𝜌+𝜇1)(𝑅0
(𝜓1+𝛼𝜎)
𝜓1

)
= − sin𝜔⊺

(18)

𝜔4 + [((𝜓2 + 𝜇2) + (𝜓1 + 𝜌 + 𝜇1))2 + 2(𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1)]𝜔2 + (𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1)(1 − 𝑅0
(𝜓1 + 𝛼𝜎)

𝜓1
)2 = 0 (19)

Hence, it becomes evident that the system (19) possesses a non-negative root denoted as 𝜔 when 𝑅0 is less than 1. Conversely, in
the case where ⊺ is greater than 0, the equations in the system (15) imply the absence of any imaginary roots. All the eigenvalues
of the system (15) exhibit negative real parts, implying that the real components of all the roots of the system (15) are negative for
⊺ greater than or equal to 0. Consequently, the virus-free equilibrium denoted as 𝐹0 achieves local asymptotic stability if 𝑅0 is less
than 1. □

Theorem 4. For given ⊺ ≥ 0, the 𝑅0 is greater than 1, then the endemic equilibrium 𝐹∗ exhibits local asymptotic stability.

roof. In the state of 𝐹∗, the Jacobian matrix for the system (3) is as follows,

𝐽 (𝐹∗) =

⎛

⎜

⎜

⎜

⎜

⎝

− 𝛿𝜂1𝑉∗
1+𝛾1𝑉∗

− 𝜓1 − 𝜎 −𝜎 𝛿𝜂1𝑋∗
(1+𝛾1𝑉∗)2

𝛼𝛿𝜂1𝑉∗ +
𝛿𝜂1𝑉∗
1+𝛾1𝑉∗

𝛼𝛿𝜂1𝑉∗ − (𝜓1 + 𝜌 + 𝜇1)
𝛿𝜂1𝑋∗

(1+𝛾1𝑉∗)2
+ 𝛼𝛿𝜂1(

𝛱1
𝜓1

−𝑋∗ − 𝑉∗)

0
𝛿𝜂2(

𝛱2
𝜓2

−𝑉∗)𝑒−𝜓2⊺𝑒−𝜆⊺

(1+𝛾2𝑌∗)2
−(𝜓2 + 𝜇2) −

𝛿𝜂2𝑌∗𝑒−𝜓2⊺𝑒−𝜆⊺

(1+𝛾2𝑌∗)2

⎞

⎟

⎟

⎟

⎟

⎠

(20)

The characteristic equation is

𝜆3 + 𝑚2𝜆
2 + 𝑚1𝜆 + 𝑚0 + (𝑛2𝜆2 + 𝑛1𝜆 + 𝑛0)𝑒−𝜆⊺ = 0 (21)

In this equation, the coefficients are

𝑚2 =
𝛿𝜂1𝑉∗

1 + 𝛾1𝑉∗
− [𝛼𝛿𝜂1𝑉∗ + (𝜓1 + 𝜌 + 𝜇1)] + (𝜓2 + 𝜇2) + (𝜓1 + 𝜎)

𝑚1 = −(𝛼𝛿𝜂1𝑉∗ + (𝜓1 + 𝜌 + 𝜇1))(
𝛿𝜂1𝑉∗

1 + 𝛾1𝑉∗
+ (𝜓2 + 𝜇2) + (𝜓1 + 𝜎)) + (𝜓2 + 𝜇2)(

𝛿𝜂1𝑉∗
1 + 𝛾1𝑉∗

+ (𝜓1 + 𝜎)) + 𝜎(
𝛿𝜂1𝑉∗

1 + 𝛾1𝑉∗
+ 𝛼𝛿𝜂1𝑉∗)

𝑚0 = −(𝜓2 + 𝜇2)[𝛼𝛿𝜂1𝑉∗ + (𝜓1 + 𝜌 + 𝜇1)][(𝜓1 + 𝜎) +
𝛿𝜂1𝑉∗

1 + 𝛾1𝑉∗
] + 𝜎(𝜓2 + 𝜇2)(

𝛿𝜂1𝑉∗
1 + 𝛾1𝑉∗

+ 𝛼𝛿𝜂1𝑉∗)

𝑛2 =
𝛿𝜂2𝑌∗𝑒−𝜓2⊺

(1 + 𝛾2𝑌∗)2

𝑛1 =
𝛿𝜂2𝑌∗𝑒−𝜓2⊺

(1 + 𝛾2𝑌∗)2
[
𝛿𝜂1𝑉∗

1 + 𝛾1𝑉∗
− (𝜓1 + 𝜌 + 𝜇1) + (𝜓1 + 𝜎)] −

𝛼𝜂2(
𝛱2
𝜓2

− 𝑉∗)𝑒−𝜓2⊺

(1 + 𝛾2𝑌∗)2
[

𝛿𝜂1𝑋∗

(1 + 𝛾1𝑉∗)2
+ 𝛼𝛿𝜂1(

𝛱1
𝜓1

−𝑋∗ − 𝑌∗)]

𝑛0 =
𝛿𝜂2𝑌∗𝑒−𝜓2⊺

(1 + 𝛾2𝑌∗)2
[−𝛼𝛿𝜂1𝑉∗(

𝛿𝜂1𝑉∗
1 + 𝛾1𝑉∗

+ 𝜓1) − (𝜓1 + 𝜌 + 𝜇1)(
𝛿𝜂1𝑉∗

1 + 𝛾1𝑉∗
+ (𝜓1 + 𝜎)) +

𝜎𝛿𝜂1𝑉∗
1 + 𝛾1𝑉∗

] −
𝛼𝜂2(

𝛱2
𝜓2

− 𝑉∗)𝑒−𝜓2⊺

(1 + 𝛾2𝑌∗)2

[
𝛿𝜂1𝑋∗

(1 + 𝛾1𝑉∗)2
((𝜓1 + 𝜎) + 2(

𝛿𝜂1𝑉∗
1 + 𝛾1𝑉∗

) − 𝛼𝛿𝜂1𝑉∗) + 𝛼𝛿𝜂1(
𝛱1
𝜓1

−𝑋∗ − 𝑌∗)((𝜓1 + 𝜎) +
𝛿𝜂1𝑉∗

1 + 𝛾1𝑉∗
)]

Case 1: ⊺ = 0
The characteristic equation of system (21) becomes

𝜆3 + 𝑟2𝜆2 + 𝑟1𝜆 + 𝑟0 = 0 (22)

Where 𝑟 = 𝑚 + 𝑛 , 𝑟 = 𝑚 + 𝑛 , 𝑟 = 𝑚 + 𝑛
8
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When ⊺ = 0, the eigenvalues of system (22) exhibit negative real components. According to the Routh–Hurwitz Criterion, the
oefficients of 𝑟𝑖 are positive, and each matrix 𝐻𝑖 are positive for the values 𝑖 = 0, 1, 2. It is evident that all of the 𝑟𝑖 are positive,

leading to the conclusion that 𝑟2 > 0, 𝑟1 > 0, 𝑟0 > 0. Consequently, we can deduce that 𝑟2𝑟1 − 𝑟0 > 0.
So, when ⊺ = 0, the 𝐹∗ is asymptotically stable in the local region.

Case 2: ⊺ > 0
Suppose that 𝜆 = 𝑖𝜔 (𝜔 > 0) is a root of (21),

{

𝑚2𝜔2 − 𝑚0 = (𝑛0 − 𝑛2𝜔2) cos𝜔 ⊺ +𝑛2𝜔 sin𝜔⊺
𝜔3 − 𝑚1𝜔 = −(𝑛0 − 𝑛2𝜔2) sin𝜔 ⊺ +𝑛2𝜔 cos𝜔⊺

(23)

Squaring and adding on above equations

𝜔6 + (𝑚2
2 − 2𝑚1 − 𝑛22)𝜔

4 + (𝑚2
1 − 𝑛

2
2 − 2𝑚0𝑚2 + 2𝑛0𝑛2)𝜔2 + 𝑚2

0 − 𝑛
2
0 = 0 (24)

put 𝑧 = 𝜔2 in (24),

𝑓 (𝑧) = 𝑧3 + (𝑚2
2 − 2𝑚1 − 𝑛22)𝑧

2 + (𝑚2
1 − 𝑛

2
2 − 2𝑚0𝑚2 + 2𝑛0𝑛2)𝑧 + (𝑚2

0 − 𝑛
2
0) = 0 (25)

Let 𝐷3 = 𝑚2
2 − 2𝑚1 − 𝑛22, 𝐷2 = 𝑚2

1 − 𝑛
2
2 − 2𝑚0𝑚2 + 2𝑛0𝑛2, 𝐷1 = 𝑚2

0 − 𝑛
2
0 then system (25) becomes

𝑓 (𝑧) = 𝑧3 +𝐷3𝑧
2 +𝐷2𝑧 +𝐷1 = 0 (26)

𝑓 ′(𝑧) = 3𝑧2 + 2𝐷3𝑧 +𝐷2 = 0 has two roots are 𝑧1 =
−𝐷3+

√

𝐷2
3−3𝐷2

3 and 𝑧2 =
−𝐷3−

√

𝐷2
3−3𝐷2

3
Clearly, if 𝐷1 ≥ 0, 𝐷2 ≥ 0 and 𝐷3 ≥ 0, then system (26) has no positive real roots. Hence, the system (21) for all ⊺ ∈ (0, ⊺∗), it

an be observed that the system exhibits no pure imaginary roots. Thus, the endemic equilibrium 𝐹∗ is regarded as stable, while
very solutions to the system’s (21) have negative real parts. □

.2. Analysis of global stability for the equilibrium points

By analyzing local dynamics, one may discover how a system behaves in a tiny neighborhood surrounding an equilibrium point;
he primary determinant of the trajectory’s convergence is the beginning size. However, in an epidemiological process, dynamics
hould be investigated regardless of the population’s starting size. As a result, in this section, the global asymptotic stability of both
quilibrium points is shown by creating an appropriate Lyapunov function.

heorem 5. For given ⊺ > 0, the system (3) is said to be globally asymptotically stable at 𝐹0, which is contained in region  if 𝑅0 < 1.
Otherwise unstable.

Proof. We have considered the Volterra-type Lyapunov function :  → 𝑅 defined as follows:

(𝜏) = ( − 0 − 0𝑙𝑜𝑔

0

) + (𝜏) + (𝜏)

′(𝜏) = (1 −
0


) ′(𝜏) +  ′(𝜏) +  ′(𝜏)

′(𝜏) = (
 − 0


)[𝛱1 −

𝛿𝜂1
1 + 𝛾1

− 𝜓1 + 𝜎(
𝛱1
𝜓1

−  − )] +
𝛿𝜂1
1 + 𝛾1

+ 𝛼𝛿𝜂1(
𝛱1
𝜓1

−  − ) − (𝜓1 + 𝜌 + 𝜇1)+

𝛿𝜂2(
𝛱2
𝜓2

− )𝑒−𝜓2⊺

1 + 𝛾2
− (𝜓2 + 𝜇2)

= ( − 0)[
𝛱1


−
𝛿𝜂1

1 + 𝛾1
− 𝜓1 +

𝜎

(
𝛱1
𝜓1

− ) − 𝜎] +
𝛿𝜂1
1 + 𝛾1

+ 𝛼𝛿𝜂1(
𝛱1
𝜓1

−  − ) − (𝜓1 + 𝜌 + 𝜇1)+

𝛿𝜂2(
𝛱2
𝜓2

− )𝑒−𝜓2⊺

1 + 𝛾2
− (𝜓2 + 𝜇2)

Since, 𝐹0 = (0,0,0) is an virus-free equilibrium, for system (3),

 ′(𝜏) =  ′(𝜏) = 0, gives 𝜓1 =
𝛱1 −

𝜎𝛱1 − 𝜎,
9
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P

∗)
′(𝜏) = ( − 0)[
𝛱1


−
𝛿𝜂1

1 + 𝛾1
+ 𝜎


(
𝛱1
𝜓1

− ) − 𝜎 −
𝛱1
0

+
𝜎𝛱1
0𝜓1

+ 𝜎] − (𝜓2 + 𝜇2)[1 −
𝛿𝜂10

(𝜓2 + 𝜇2)(1 + 𝛾1)
] − (𝜓1 + 𝜌 + 𝜇1)

[1 −
𝛿𝜂2(

𝛱2
𝜓2

− 0)𝑒−𝜓2⊺

(𝜓1 + 𝜌 + 𝜇1)(1 + 𝛾2)
] + 𝛼𝛿𝜂1(

𝛱1
𝜓1

−  − )

= ( − 0)[−
𝛱1( − 0)

0
+
𝜎𝛱1( + 0)

0𝜓1
− 𝜎


−

𝛿𝜂1
1 + 𝛾1

] − (𝜓2 + 𝜇2)[1 −
𝛿𝜂10

(𝜓2 + 𝜇2)(1 + 𝛾1)
] − (𝜓1 + 𝜌 + 𝜇1)

[1 −
𝛿𝜂2(

𝛱2
𝜓2

− 0)𝑒−𝜓2⊺

(𝜓1 + 𝜌 + 𝜇1)(1 + 𝛾2)
] + 𝛼𝛿𝜂1(

𝛱1
𝜓1

−  − )

= −
𝛱1( − 0)2

0
+
𝜎𝛱1( + 0)( − 0)

0𝜓1
−
𝜎( − 0)


−
𝛿𝜂1( − 0)

1 + 𝛾1
− (𝜓2 + 𝜇2)[1 −

𝛿𝜂10
(𝜓2 + 𝜇2)(1 + 𝛾1)

]

− (𝜓1 + 𝜌 + 𝜇1)[1 −
𝛿𝜂2(

𝛱2
𝜓2

− 0)𝑒−𝜓2⊺

(𝜓1 + 𝜌 + 𝜇1)(1 + 𝛾2)
] + 𝛼𝛿𝜂1(

𝛱1
𝜓1

−  − )

⟹ ′
(𝜏) ≤ 0 for 𝑅0 < 1 and ′

(𝜏) = 0 only if  = 0, =  = 0.

Therefore, the only trajectory of the system (3) on which ′(𝜏) = 0 is 𝐹0.
It follows that 𝐹0 is globally asymptotically stable in  according to Lasalle’s invariance principle [49]. □

heorem 6. For given ⊺ > 0, the system (3) is said to be globally asymptotically stable at 𝐹∗, which is contained in region  if 𝑅0 > 1.
therwise unstable.

roof. We have considered the Volterra-type Lyapunov function :  → 𝑅 defined as follows:

(𝜏) = 𝐾1( − ∗ − ∗𝑙𝑜𝑔

∗

) +𝐾2( − ∗ − ∗𝑙𝑜𝑔

∗

) +𝐾3( − ∗ − ∗𝑙𝑜𝑔

∗

)

where 𝐾𝑖 ∶ (𝑖 = 1, 2, 3) are positive constants

′(𝜏) = 𝐾1(1 −
∗


) ′(𝜏) +𝐾2(1 −
∗


) ′(𝜏) +𝐾3(1 −
∗


) ′(𝜏)

= 𝐾1
( − ∗)


[𝛱1 −

𝛿𝜂1
1 + 𝛾1

− 𝜓1 + 𝜎(
𝛱1
𝜓1

−  − )] +𝐾2
( − ∗)


[
𝛿𝜂1
1 + 𝛾1

+ 𝛼𝛿𝜂1(
𝛱1
𝜓1

−  − ) − (𝜓1 + 𝜌 + 𝜇1)]+

𝐾3
( − ∗)


[
𝛿𝜂2(

𝛱2
𝜓2

− )𝑒−𝜓2⊺

1 + 𝛾2
− (𝜓2 + 𝜇2)]

= 𝐾1( − ∗)[
𝛱1


−
𝛿𝜂1

1 + 𝛾1
− 𝜓1 + 𝜎(

𝛱1
𝜓1

− 1) − 𝜎


] +𝐾2( − ∗)[
𝛿𝜂1

(1 + 𝛾1)
+
𝛼𝛿𝜂1


(
𝛱1
𝜓1

− ) − 𝛼𝛿𝜂1−

(𝜓1 + 𝜌 + 𝜇1)] +𝐾3( − ∗)[
𝛿𝜂2𝛱2𝑒−𝜓2⊺

𝜓2(1 + 𝛾2)
−
𝛿𝜂2𝑒−𝜓2⊺

1 + 𝛾2
− (𝜓2 + 𝜇2)]

Since, 𝐹∗ = (∗,∗,∗) is an endemic equilibrium, for system (3),  ′
∗(𝜏) =  ′

∗(𝜏) =  ′
∗(𝜏) = 0, gives

𝜓1 =
𝛱1
∗

−
𝛿𝜂1∗

1 + 𝛾1∗
+ 𝜎(

𝛱1
∗𝜓1

− 1) −
𝜎∗
∗

(𝜓1 + 𝜌 + 𝜇1) =
𝛿𝜂1∗∗

∗(1 + 𝛾1∗)
+
𝛼𝛿𝜂1∗
∗

(
𝛱1
𝜓1

− ∗) − 𝛼𝛿𝜂1∗

(𝜓2 + 𝜇2) =
𝛿𝜂2𝛱2∗𝑒−𝜓2⊺

𝜓2(1 + 𝛾2∗)∗
−
𝛿𝜂2∗𝑒−𝜓2⊺

1 + 𝛾2∗

′(𝜏) = 𝐾1( − ∗)[
𝛱1


−
𝛿𝜂1

1 + 𝛾1
+ 𝜎(

𝛱1
𝜓1

− 1) − 𝜎


−
𝛱1
∗

+
𝛿𝜂1∗

1 + 𝛾1∗
− 𝜎(

𝛱1
∗𝜓1

− 1) +
𝜎∗
∗

] +𝐾2( − ∗)[
𝛿𝜂1

(1 + 𝛾1)
+

𝛼𝛿𝜂1


(
𝛱1
𝜓1

− ) − 𝛼𝛿𝜂1 −
𝛿𝜂1∗∗

∗(1 + 𝛾1∗)
−
𝛼𝛿𝜂1∗
∗

(
𝛱1
𝜓1

− ∗) + 𝛼𝛿𝜂1∗] +𝐾3( − ∗)[
𝛿𝜂2𝛱2𝑒−𝜓2⊺

𝜓2(1 + 𝛾2)
−
𝛿𝜂2𝑒−𝜓2⊺

1 + 𝛾2

−
𝛿𝜂2𝛱2∗𝑒−𝜓2⊺

𝜓2(1 + 𝛾2∗)∗
−
𝛿𝜂2∗𝑒−𝜓2⊺

1 + 𝛾2∗
]

= −𝐾1[
𝛱1( − ∗)2

∗
−
𝛿𝜂1( − ∗)( − ∗)
(1 + 𝛾1)(1 + 𝛾1∗)

−
𝜎𝛱1
𝜓1

( − ∗)2 −
𝜎( − ∗)(∗ − ∗)

∗
] −𝐾2[

𝛿𝜂1(∗∗ − ∗)( − 
∗(1 + 𝛾1)(1 + 𝛾1∗)

−
𝛿𝜂1𝛾1∗(∗ − ∗)( − ∗)

∗(1 + 𝛾1)(1 + 𝛾1∗)
−
𝛼𝛿𝜂1𝛱1(∗ − ∗)( − ∗)

𝜓1∗
−
𝛼𝛿𝜂1(∗ − ∗∗)( − ∗)

∗
− 𝛼𝛿𝜂1( − ∗)

( − ∗)] −𝐾3[
𝛿𝜂2𝛱2𝑒−𝜓2⊺(∗ − ∗)( − ∗) −

𝛿𝜂2𝛱2𝛾2𝑒−𝜓2⊺∗( − ∗)2 −
𝛿𝜂2𝑒−𝜓2⊺( − ∗)( − ∗) ]
10
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𝑅

a

𝑅

For 𝐾1 = 𝐾2 = 𝐾3 = 1, we have

′(𝜏) = −[
𝛱1( − ∗)2

∗
−
𝛿𝜂1( − ∗)( − ∗)
(1 + 𝛾1)(1 + 𝛾1∗)

−
𝜎𝛱1
𝜓1

( − ∗)2 −
𝜎( − ∗)(∗ − ∗)

∗
] − [

𝛿𝜂1(∗∗ − ∗)( − ∗)
∗(1 + 𝛾1)(1 + 𝛾1∗)

−
𝛿𝜂1𝛾1∗(∗ − ∗)( − ∗)

∗(1 + 𝛾1)(1 + 𝛾1∗)
−
𝛼𝛿𝜂1𝛱1(∗ − ∗)( − ∗)

𝜓1∗
−
𝛼𝛿𝜂1(∗ − ∗∗)( − ∗)

∗
− 𝛼𝛿𝜂1( − ∗)

( − ∗)] − [
𝛿𝜂2𝛱2𝑒−𝜓2⊺(∗ − ∗)( − ∗)

𝜓2∗(1 + 𝛾2)(1 + 𝛾2∗)
−
𝛿𝜂2𝛱2𝛾2𝑒−𝜓2⊺∗( − ∗)2

𝜓2∗(1 + 𝛾2)(1 + 𝛾2∗)
−
𝛿𝜂2𝑒−𝜓2⊺( − ∗)( − ∗)

(1 + 𝛾2)(1 + 𝛾2∗)
] ≤ 0

⟹ ′
(𝜏) ≤ 0 for 𝑅0 > 1 and ′

(𝜏) = 0 only if  = ∗, = ∗, = ∗.

Therefore, the only trajectory of the system (3) on which ′(𝜏) = 0 is 𝐹∗.
It follows that 𝐹∗ is globally asymptotically stable in  according to Lasalle’s invariance principle [49]. □

4.3. Bifurcation analysis

Studies on the dynamics of disease transmission have shown that backward bifurcation occurs when stable virus-free equilibrium
and stable endemic equilibrium point coexist [50,51]. The following result is asserted:

Let 𝑥1 =  , 𝑥2 =  , 𝑥3 =  . Further, let 𝑓 = [𝑓1, 𝑓2, 𝑓3]𝑇 stand for the vector field of the system (3). Thus, the system (3) can be
re-written as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥′1 = 𝛱1 −
𝛿𝜂1𝑥1𝑥3
1+𝛾1𝑥3

− 𝜓1𝑥1 + 𝜎(
𝛱1
𝜓1

− 𝑥1 − 𝑥2)

𝑥′2 = 𝛿𝜂1𝑥1𝑥3
1+𝛾1𝑥3

+ 𝛼𝛿𝜂1(
𝛱1
𝜓1

− 𝑥1 − 𝑥2)𝑥3 − (𝜓1 + 𝜌 + 𝜇1)𝑥2

𝑥′3 =
𝛿𝜂2(

𝛱2
𝜓2

−𝑥3)𝑥2𝑒−𝜓2⊺

1+𝛾2𝑥2
− (𝜓2 + 𝜇2)𝑥3

(27)

Without loss of generality, consider the case when 𝑅0 = 1. Furthermore, let 𝜂1 = 𝜂∗1 be a bifurcation parameter. solving for 𝜂1 from
0 = 1 gives

𝜂1 = 𝜂∗1 =
𝜓2(𝜓1 + 𝜎)(𝜓2 + 𝜇2)(𝜓1 + 𝜌 + 𝜇1)

𝛿2𝜂2𝛱1𝛱2𝑒−𝜓2⊺

At 𝑅0 = 1, one of the eigenvalues of 𝐽 (𝐹0) has a real part that is negative and the other has an eigenvalue of zero. The linearization
method is therefore incapable of predicting the behavior of the system (3). Thus, the behavior of the system at the point of virus-free
equilibrium is investigated by employing the central manifold theorem [52]. The bifurcation constants are

𝑢1 =
3
∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑤𝑖𝑤𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0, 0)

nd

𝑢2 =
3
∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑤𝑖

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝜙

(0, 0)

The right eigenvector of 𝐽 (𝐹0)|𝜂1=𝜂∗1 is given by 𝑤 = (𝑤1, 𝑤2, 𝑤3)𝑇 , 𝑤1 = ( 𝛿𝜂1𝛱1
(𝜓1+𝜎)2

− 𝜎𝜓2(𝜓2+𝜇2)
𝛿𝜂2𝛱2(𝜓1+𝜎)𝑒−𝜓2⊺

)𝑤3, 𝑤2 = 𝜓2(𝜓2+𝜇2)
𝛿𝜂2𝛱2𝑒−𝜓2⊺

𝑤3, 𝑤3 =
𝑤3 > 0.

Similarly, 𝐽 (𝐹0)|𝜂1=𝜂∗1 has a left eigenvector 𝑣 = (𝑣1, 𝑣2, 𝑣3), 𝑣1 = 0, 𝑣2 =
𝛿𝜂2𝛱2𝑒−𝜓2⊺

𝜓2(𝜓1+𝜌+𝜇1)
𝑣3, 𝑣3 = 𝑣3 > 0.

It follows from [51], and the associated non-zero partial derivatives of the RHS functions 𝑓𝑖(𝑖 = 1, 2, 3), of the system (27) at
0 = 1 and 𝜂1 = 𝜂∗1 are

𝜕2𝑓2
𝜕𝑥2𝜕𝑥3

(0, 0) = −𝛼𝛿𝜂∗1 , 𝜕2𝑓2
𝜕𝑥23

(0, 0) = −
2𝛱1𝛾1𝛿𝜂∗1
𝜓1+𝜎

, 𝜕2𝑓3
𝜕𝑥2𝜕𝑥3

(0, 0) = −𝛿𝜂2𝑒−𝜓2⊺,
𝜕2𝑓1
𝜕𝜂∗1 𝜕𝑥3

(0, 0) = − 𝛿𝛱1
𝜓1+𝜎

, 𝜕2𝑓2
𝜕𝜂∗1 𝜕𝑥3

(0, 0) = 𝛿𝛱1
𝜓1+𝜎

Therefore,

𝑢1 = −
𝛿2𝜂22𝛱2𝑒−𝜓2⊺

𝜓2(𝜓1 + 𝜌 + 𝜇1)
𝑣3 +

𝛼𝛿𝜂∗1 (𝜓2 + 𝜇2)
(𝜓1 + 𝜌 + 𝜇1)

𝑣3𝑤3 < 0 (28)

and

𝑢2 =
𝛿2𝛱1𝛱2𝜂2𝑒−𝜓2⊺

𝜓2(𝜓1 + 𝜎)(𝜓1 + 𝜌 + 𝜇1)
𝑣2𝑤3 > 0

The bifurcation coefficient, 𝑢1, is positive whenever,

𝛱2 >
𝜂∗1𝛼𝜓2(𝜓2 + 𝜇2)

𝛿𝜂22𝑒
−2𝜓2⊺

(29)

Thus, the system (3) undergoes a backward bifurcation at 𝑅0 = 1 whenever the inequality (29) holds.
Fig. 2 depicts the backward bifurcation property of the system (3) and 𝜂1 ∈ {0.0025, 0.0038} (red indicates stable equilibria, and
11

blue indicates unstable equilibria).
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Fig. 2. Backward bifurcation of system (3).

Table 2
Sensitivity indices pertaining to the parameterization of 𝑅0.

Parameters Sensitivity index of 𝑅0 Sign

𝛿 𝑆𝑅0
𝛿 = 𝜕𝑅0

𝜕𝛿
𝑋 𝛿

𝑅0
= 2 +ve

𝜂1 𝑆𝑅0
𝜂1 = 𝜕𝑅0

𝜕𝜂1
𝑋 𝜂1

𝑅0
= 1 +ve

𝜂2 𝑆𝑅0
𝜂2 = 𝜕𝑅0

𝜕𝜂2
𝑋 𝜂2

𝑅0
= 1 +ve

𝛱1 𝑆𝑅0
𝛱1

= 𝜕𝑅0

𝜕𝛱1
𝑋 𝛱1

𝑅0
= 1 +ve

𝛱2 𝑆𝑅0
𝛱2

= 𝜕𝑅0

𝜕𝛱2
𝑋 𝛱2

𝑅0
= 1 +ve

𝜓1 𝑆𝑅0
𝜓1

= 𝜕𝑅0

𝜕𝜓1
𝑋 𝜓1

𝑅0
= − 𝜓1 (2𝜓1+𝜎+𝜌+𝜇1 )

(𝜓1+𝜎)(𝜓1+𝜌+𝜇1 )
= −0.76822 −ve

𝜓2 𝑆𝑅0
𝜓2

= 𝜕𝑅0

𝜕𝜓2
𝑋 𝜓2

𝑅0
= − (2𝜓2+𝜇2+𝜏𝜓2 (𝜓2+𝜇2 ))

(𝜓2+𝜇2 )
= −1.26696 −ve

𝜎 𝑆𝑅0
𝜎 = 𝜕𝑅0

𝜕𝜎
𝑋 𝜎

𝑅0
= − 𝜎

(𝜓1+𝜎)
= −0.236842 −ve

𝜇1 𝑆𝑅0
𝜇1 = 𝜕𝑅0

𝜕𝜇1
𝑋 𝜇1

𝑅0
= − 𝜇1

(𝜓1+𝜌+𝜇1 )
= −0.0174551 −ve

𝜇2 𝑆𝑅0
𝜇2 = 𝜕𝑅0

𝜕𝜇2
𝑋 𝜇2

𝑅0
= − 𝜇2

(𝜓2+𝜇2 )
= −0.91666 −ve

𝜌 𝑆𝑅0
𝜌 = 𝜕𝑅0

𝜕𝜌
𝑋 𝜌

𝑅0
= − 𝜌

𝜓1+𝜌+𝜇1
= −0.977483 −ve

5. Computational simulations

5.1. Sensitivity analysis

In disease transmission, sensitivity analysis shows the relative importance of parameter. This technique identifies major features
ffecting 𝑅0, highlighting intervention opportunities [53]. In response to a parameter change, sensitivity indices quantify the

proportionate change in a variable. We can identify factors that significantly affect 𝑅0 and simulate system (3) dynamics using
this index.

The normalized forward sensitivity index [54] is calculated as the ratio of the relative change in a parameter ‘𝑤’ to the relative
change in a variable ‘𝑝’. It signifies the degree of sensitivity of the variable to a specified parameter 𝑆𝑝 and is denoted by the
expression 𝑆𝑝 =

𝑝
𝑤
𝜕𝑤
𝜕𝑝 .

In the event that the outcome is negative, the association between the parameters and 𝑅0 exhibits an inverse connection. In this
cenario, the modulus of the sensitivity index will be computed in order to determine the magnitude of the impact resulting from
he change of this parameter. Conversely, a positive sensitivity index indicates a rise in the magnitude of a given parameter.

Analytical expressions for the sensitivity of 𝑅0 may be computed as

𝑆𝑅0
𝑝 =

𝜕𝑅0
𝜕𝑝

𝑋
𝑝
𝑅0

(30)

It is possible to easily derive a quantitative equation representing the sensitivity of 𝑅0 to each of its constituent quantities if the
explicit formula of system (30) for 𝑅0 is provided. The sensitivity indices for the benchmark values of quantities listed in Table 1 are
resented in Table 2. The findings of the sensitivity index illustrate that the most significant positive sensitivity index is associated
ith the vector biting rate. This indicates that increasing the bite rate indicated as 𝛿 would immediately increase the 𝑅0. This can

be compared to the situation where an rise in the transmission rate between a vector and a human, from human to vector, and the
rates of human and vector recruits (denoted as 𝜂1, 𝜂2, 𝛱1, 𝛱2, respectively), would result in an elevated 𝑅0.

Turning to the values indicating a negative sensitivity index, the highest magnitudes are attributed to the natural and virus-
induced death rates. This implies that an increase in 𝜓2 and 𝜇2 would decrease the 𝑅0, and conversely. Additionally, the remaining
12

parameters also exhibit negative sensitivity indices. A visual representation of the sensitivity indices for 𝑅0 can be seen in Fig. 3.
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Fig. 3. Forward normalized sensitivity indices of 𝑅0 with time delay.

Fig. 4. When ⊺ = 0, convergence of ∗ for the time series solution of  .

In summary, the parameters that significantly impact the progression of dengue transmission that correspond to time delay are
determined through the analysis of dengue sensitivity. It’s noteworthy that the values of these crucial parameters align with the
time delay (⊺ = 9) within the model. The investigation reveals that manipulating these sensitive parameters upward will inherently
result in the escalation of the 𝑅0, and conversely. This relationship also extends to the inverse correlation involving the 𝑅0 and the
parameters deemed insensitive.

5.2. Time-dependent solution trajectories

In this section, the analytical results will be graphically represented through the use of computational simulations. According to
Table 1, the given parameter values are shown.

Case 1: ⊺ = 0
When ⊺ = 0, for the data provided in Table 1, the equilibrium state is determined to be 𝐹∗ = (∗,∗,∗). Fig. 4 represents the

force exerted by the susceptible population tends to approach the value of endemic equilibrium ∗= 532.935 as it moves towards
equilibrium. Fig. 5 illustrates the tendency of the infected population to converge towards the endemic equilibrium value of force
exerted. The value of ∗ is 447.217 as it approaches equilibrium. Fig. 6 represents the force exerted by the infected population tends
to approach the value of endemic equilibrium ∗= 303.572 as it moves towards equilibrium. Fig. 7 represents the three-dimensional
visualization of the solution of 𝐹∗ trajectories for ⊺ = 0. Our analysis reveals that this equilibrium state exhibits asymptotic stability.
The eigenvalues’ characteristic equation, as shown in system (21), indicates that the real components of the eigenvalues have
negative values. Specifically, the eigenvalues are (−1.01513,−0.348475,−0.0187748). Finally, 𝐹∗ is asymptotically stable in the local
region.

Case 2: ⊺ > 0
In Table 3, it is observed that when the fixed value of 𝛾2 is assumed to be 0.0012, there is a positive correlation between 𝛾1 and

∗, indicating that an rise in 𝛾1 leads to an rise in ∗. Conversely, there is a negative correlation between 𝛾1 and ∗, suggesting
that an rise in 𝛾 results in a fall in  . Additionally,  exhibits a negative relationship with 𝛾 , implying that an rise in 𝛾 leads to
13
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Fig. 5. When ⊺ = 0, convergence of ∗ for the time series solution of  .

Fig. 6. When ⊺ = 0, convergence of ∗ for the time series solution of  .

Fig. 7. Phase plots for the system (3) when ⊺ = 0.

a fall in ∗. The results demonstrate, we assumed a fixed value of 𝛾1 to be 0.06. Our results indicate that as 𝛾2 rises, ∗ also rises.
Additionally, we observed a fall in ∗ and ∗ with increasing values of 𝛾2, as presented in Table 4.

When ⊺ = 9, the equilibrium state is determined to be 𝐹∗ = (∗,∗,∗). Fig. 8 represents the force exerted by the susceptible
population tends to approach the value of endemic equilibrium ∗= 535.746 as it moves towards equilibrium. Fig. 9 illustrates the
tendency of the infected population to approach the endemic equilibrium value via the exertion of force. The value of ∗ is 420.308
as it approaches equilibrium. Fig. 10 represents the force exerted by the infected population tends to approach the value of endemic
equilibrium ∗= 281.159 as it moves towards equilibrium. Fig. 11 represents the three-dimensional visualization of the solution of
𝐹∗ trajectories for ⊺ = 9. Our analysis reveals that this equilibrium state exhibits asymptotic stability. The eigenvalues’ characteristic
equation, as shown in system (21), indicates that the real components of the eigenvalues have negative values. Specifically, the
eigenvalues are (−0.979497, −0.298514, −0.0187365). Finally, 𝐹 is asymptotically stable in the local region.
14
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Fig. 8. When ⊺ = 9, convergence of ∗ for the time series solution of  .

Fig. 9. When ⊺ = 9, convergence of ∗ for the time series solution of  .

Fig. 10. When ⊺ = 9, convergence of ∗ for the time series solution of  .

Fig. 11. Phase plots for the system (3) when ⊺ = 9.
15
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Table 3
Correlation between inhibitory effect 𝛾1 and endemic equilibrium 𝐹∗ at 𝛾2 = 0.0012.
𝛾1 0.06 0.07 0.08 0.09 0.1

∗ 535.746 536.408 536.738 537.069 537.163
∗ 420.308 418.292 416.632 415.784 414.807
∗ 281.159 280.719 280.484 280.277 280.166

Table 4
Correlation between inhibitory effect 𝛾2 and endemic equilibrium 𝐹∗ at 𝛾1 = 0.06.
𝛾2 0.0012 0.0015 0.0017 0.0019 0.002

∗ 535.746 537.706 538.709 539.387 540.781
∗ 420.308 407.581 399.245 391.598 387.917
∗ 281.159 270.416 263.629 257.362 254.31

6. Conclusion

A dengue epidemic model with a time-based delay in the interaction between the vector and the host was developed in this study.
he model’s positivity and boundedness were confirmed. The basic reproduction number was determined as 9.424. The model’s
tability analysis reveals that the system exhibits asymptotical stability on a local and global scale at the virus-free equilibrium point
0 for values of 𝑅0 less than 1, and at the endemic equilibrium point 𝐹∗ for values of 𝑅0 greater than 1. The backward bifurcation of

the model is demonstrated by both the existence of a stable endemic equilibrium and a virus-free equilibrium. Sensitivity analysis
demonstrates that the basic reproduction number (𝑅0) is positively correlated with the biting rate of the vector (𝛿), the rate of
infection from human to vector (𝜂1), and the rate of infection from vector to human (𝜂2). These factors are influenced by the loss of
immunity and partial immunity in humans. The numerical simulation demonstrates that the susceptible humans, infected humans,
and infected vectors tend to converge towards the endemic equilibrium value as they approach equilibrium. Our findings suggest that
a higher rate of inhibitory effect results in a decrease in the equilibrium point, which represents the endemic condition of infected
persons and infected vectors. In the subsequent work, we want to enhance the control mechanisms included into our model. This
strategic improvement tries to get more advantageous results. We prioritize attaining enhanced efficiency with these enhancements.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The data used for this work is publicly available at [3,43,44].

Acknowledgments

We would like to thank Reviewers for taking the time and effort necessary to review the manuscript. We sincerely appreciate
all valuable comments and suggestions, which help us to improve the quality of the manuscript.

References

[1] Martcheva M. An introduction to mathematical epidemiology. Texts in applied mathematics, Springer: New York; 2015, xiv–453.
[2] World Health Organization. 2023, Available online: https://who.int/news-room/fact-sheets/detail/dengue-and-Severedengue. (Accessed on: 17 June 2023).
[3] Centers for disease control and prevention. 2023, Available online: https://www.cdc.gov.in. (Accessed on: 10 June 2023).
[4] Ross R, Murray J. Prevention of malaria. London, UK; 1911.
[5] Macdonald G. The epidemiology and control of malaria. Oxford University Press: London; 1957.
[6] Aron JL, May RM. The population dynamics of malaria. In: Anderson RM, editor. The population dynamics of infectious diseases: Theory and applications.

Boston, MA: Springer US; 1982, p. 139–79.
[7] Anderson RM, May RM. Infectious diseases of humans: Dynamics and control. Oxford University Press: Oxford; 1991.
[8] Chitnis N, Cushing JM, Hyman JM. Bifurcation analysis of a mathematical model for malaria transmission. SIAM J Appl Math 2006;67:24–45.
[9] Lou Y, Zhao X. A climate-based malaria transmission model with structured vector population. SIAM J Appl Math 2010;70:2023–44.

[10] Jaafar EK. Asymptotic behavior of an SIS epidemic model with delay. Discontin, Nonlinearity, Complex 2022;11:149–60.
[11] Wei HM, Li XZ, Martcheva M. An epidemic model of a Vector-Borne disease with direct transmission and time delay. J Math Anal Appl 2008;342:895–908.
[12] Massawe LN, Massawe ES, Makinde OD. Temporal model for dengue disease with treatment. Adv Infect Dis 2015;5:21–36.
[13] Okosun K, Makinde O. A co-infection model of malaria and cholera diseases with optimal control. Math Biosci 2014;258:19–32.
[14] Makinde O, Okosun K. Impact of chemo-therapy on optimal control of malaria disease with infected immigrants. Biosystems 2011;104:32–41.
[15] Okosun KO, Makinde OD. Optimal control analysis of malaria in the presence of non-linear incidence rate. Appl Comput Math 2013;12:20–32.
[16] Keno TD, Makinde OD, Obsu LL. Impact of temperature variability on SIRS malaria model. J Biol Systems 2021;29:773–98.
[17] Alsakaji HJ, Kundu S, Rihan FA. Delay differential model of one-predator two-prey system with Monod-Haldane and holling type II functional responses.

Appl Math Comput 2021;397:125919.
16

http://refhub.elsevier.com/S2666-7207(24)00045-6/sb1
https://who.int/news-room/fact-sheets/detail/dengue-and-Severedengue
https://www.cdc.gov.in
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb4
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb5
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb6
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb6
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb6
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb7
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb8
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb9
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb10
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb11
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb12
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb13
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb14
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb15
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb16
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb17
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb17
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb17


Results in Control and Optimization 15 (2024) 100415A. Venkatesh et al.
[18] Rihan F, Alsakaji H, Kundu S, Mohamed O. Dynamics of a time-delay differential model for tumour-immune interactions with random noise. Alex Eng J
2022;61:11913–23.

[19] Ullah R, Mdallal QA, Khan T, Ullah R, Alwan BA, Faizullah F, Zhu Q. The dynamics of novel corona virus disease via stochastic epidemiological model
with vaccination. Sci Rep 2023;13.

[20] Umar M, Amin F, Al-Mdallal Q, Ali MR. A stochastic computing procedure to solve the dynamics of prevention in HIV system. Biomed Signal Process
Control 2022;78:103888.

[21] Sabir Z, Said SB, Al-Mdallal Q, Bhat SA. A reliable stochastic computational procedure to solve the mathematical robotic model. Expert Syst Appl
2024;238:122224.

[22] Mahata A, Paul S, Mukherjee S, Roy B. Stability analysis and hopf bifurcation in fractional order SEIRV epidemic model with a time delay in infected
individuals. Part Differ Equ Appl Math 2022;5:100282.

[23] Paul S, Mahata A, Mukherjee S, Mali PC, Roy B. Fractional order SEIQRD epidemic model of Covid-19: A case study of Italy. PLoS One 2023;18:e0278880.
[24] Paul S, Mahata A, Mukherjee S, Mali PC, Roy B. Dynamical behavior of fractional order SEIR epidemic model with multiple time delays and its stability

analysis. Ex Counterexamples 2023;4:100128.
[25] Paul S, Mahata A, Mukherjee S, Mali P, Roy B. Dynamical behavior of a fractional order SIR model with stability analysis. Results Control Optim

2023;10:100212.
[26] Mahata A, Paul S, Mukherjee S, Das M, Roy B. Dynamics of Caputo fractional order SEIRV epidemic model with optimal control and stability analysis.

Int J Appl Comput Math 2022;8.
[27] Khajanchi S, Das DK, Kar TK. Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation. Physica A 2018;497:52–71.
[28] Das DK, Khajanchi S, Kar T. The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Appl Math Comput

2020;366:124732.
[29] Das DK, Khajanchi S, Kar T. Transmission dynamics of tuberculosis with multiple re-infections. Chaos Solitons Fractals 2020;130:109450.
[30] Dwivedi A, Keval R, Khajanchi S. Modeling optimal vaccination strategy for dengue epidemic model: A case study of India. Phys Scr 2022;97:085214.
[31] Das DK, Khajanchi S, Kar TK. Influence of multiple re-infections in tuberculosis transmission dynamics: A mathematical approach. In: 2019 8th international

conference on modeling simulation and applied optimization. 2019.
[32] Herz A, Bonhoeffer S, Anderson RM, May RM, Nowak MA. Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay. In:

Proceedings of the national academy of sciences of the United States of America, vol. 93, 1996, p. 7247–51.
[33] Amine B, Khalid H. Global dynamics of an SIRSI epidemic model with discrete delay and general incidence rate. Discontin, Nonlinearity, Complex

2021;10:547–62.
[34] Ali LAbid, Khalid H, Zaman ZGul. A delay differential equation model of a Vector-Borne disease with direct transmission. Int J Ecol Econ Stat 2012;27.
[35] Xu J, Zhou Y. Hopf bifurcation and its stability for a Vector-Borne disease model with delay and reinfection. Appl Math Model 2016;40:1685–702.
[36] Hu Z, Yin S, Wang H. Stability and Hopf bifurcation of a Vector-Borne disease model with saturated infection rate and reinfection. Comput Math Methods

Med 2019;17:1352698.
[37] Zhang Y, Li L, Huang J, Liu Y. Stability and Hopf bifurcation analysis of a Vector-Borne disease model with two delays and reinfection. Comput Math

Methods Med 2021;2021:6648959.
[38] Wan H, Cui J. A malaria model with two delays. Discrete Dyn Nat Soc 2013;2013:601265.
[39] Prakash Raj M, Venkatesh A, Vinoth S, Prasantha Bharathi D, Dumitru B. Analysis of dengue transmission dynamic model by stability and hopf bifurcation

with two-time delays. Front Biosci-Landmark 2023;28:117.
[40] Katzelnick LC, Montoya M, Gresh L, et al. Longitudinal analysis of antibody cross-neutralization following Zika virus and dengue virus infection in Asia

and the Americas. J Infect Dis 2017;218:536–45.
[41] Hossain MS, Nayeem J, Podder C. Effects of migratory population and control strategies on the transmission dynamics of dengue fever. J Appl Math

Bioinform 2015;5:43–80.
[42] Olaniyi S, Obabiyi OS. Mathematical model for malaria transmission dynamics in human and mosquito populations with nonlinear forces of infection. Int

J Pure Appl Math 2013;88:125–56.
[43] Chagas GCL, Rangel AR, Noronha LM, Veloso FCS, Kassar SB, Oliveira MJC, et al. Risk factors for mortality in patients with dengue: A systematic review

and meta-analysis. Trop Med Int Health 2022;27:656–68.
[44] Gerry AC, Mullens BA. Seasonal abundance and survivorship of Culicoides sonorensis (Diptera: Ceratopogonidae) at a southern California dairy, with

reference to potential bluetongue virus transmission and persistence. J Med Entomol 2000;37:675–88.
[45] Lakshmikantham V, Leela S, Martynyuk AA. Stability analysis of nonlinear systems. SIAM Rev 1989;33:152–4.
[46] Chunqing W, Wong Patricia JY. Dengue transmission: Mathematical model with discrete time delays and estimation of the reproduction number. J Biol

Dyn 2019;13:1–25.
[47] Derouich M, Boutayeb A. Dengue fever:Mathematical modelling and computer simulation. Appl Math Comput 2006;177:528–44.
[48] Hethcote HW, Thieme HR. Stability of the EE is epidemic models with subpopulation. Math Biosci 1985;75:205–27.
[49] Lasalle JP. The stability of dynamical system. Pa, USA: Society for Industrial and Applied Mathematics Philadelphia; 1976.
[50] Garba SM, Gumel AB, Abu Bakar MR. Backward bifurcations in dengue transmission dynamics. Math Biosci 2008;215:11–25.
[51] Forouzannia F, Gumel A. Dynamics of an age-structured two-strain model for malaria transmission. Appl Math Comput 2015;250:860–86.
[52] Castillo-Chavez C, Song B. Dynamical models of tuberculosis and their applications. Math Biosci Eng 2004;1:361–404.
[53] Rodrigues HS, Monteiro MTT, Torres DFM. Sensitivity analysis in a dengue epidemiological model. In: Conf papers math. 2013. 2013, p. 1–7.
[54] Muhammad O, Abid Ali L, Il Hyo J, Kazeem Oare O. Stability analysis and optimal control of a Vector-Borne disease with nonlinear incidence. Discrete

Dyn Nat Soc 2012;2012:595487.
17

http://refhub.elsevier.com/S2666-7207(24)00045-6/sb18
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb18
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb18
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb19
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb19
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb19
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb20
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb20
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb20
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb21
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb21
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb21
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb22
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb22
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb22
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb23
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb24
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb24
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb24
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb25
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb25
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb25
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb26
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb26
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb26
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb27
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb28
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb28
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb28
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb29
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb30
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb31
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb31
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb31
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb32
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb32
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb32
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb33
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb33
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb33
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb34
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb35
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb36
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb36
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb36
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb37
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb37
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb37
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb38
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb39
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb39
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb39
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb40
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb40
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb40
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb41
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb41
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb41
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb42
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb42
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb42
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb43
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb43
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb43
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb44
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb44
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb44
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb45
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb46
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb46
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb46
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb47
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb48
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb49
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb50
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb51
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb52
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb53
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb54
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb54
http://refhub.elsevier.com/S2666-7207(24)00045-6/sb54

	Analyzing dynamics and stability of single delay differential equations for the dengue epidemic model
	Introduction
	Motivation of the study
	Structure of the study

	Model Development for Dengue Epidemics Involving Vectors and Hosts
	Basic properties of the model
	Positivity and boundedness of solution
	Virus-free Equilibrium and basic reproduction number
	Existence of Endemic Equilibrium

	Analysis of Equilibrium points
	Analysis of Local Stability for the Equilibrium Points
	Analysis of Global Stability for the Equilibrium Points
	Bifurcation Analysis

	Computational simulations
	Sensitivity Analysis
	Time-dependent solution trajectories

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


