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A B S T R A C T

In this study, a novel mathematical model for the dissemination dynamics of COVID-19 is
developed. The main objective is to analyze the effectiveness of pharmaceutical interventions
in lowering the COVID-19 contagions. We first demonstrate the positivity and boundedness
of the solutions of the model and then compute the fundamental reproduction number. The
stability analysis of contagion-free equilibrium is performed. The model is fitted to the COVID-
19 reported data for a period of twelve months in India and estimate three parameters. The
sensitivity analysis is conducted to identify the significant factors which impact the COVID-
19 disease prevalence. We then define an optimum control problem using pharmaceutical
interventions vaccination and treatment as the control functions to minimize the dissemination
of COVID-19 contagions and disease-related mortality. Cost-effectiveness analysis is employed
to determine the most effective and least costly strategy. The results are determined that the
combination of vaccination and treatment is the most effective and least costly strategy in
mitigating the spread of COVID-19 contagions. Furthermore, the impact of different levels
of vaccine efficacy on contagion trajectories is examined, and it is shown that COVID-19
contagions and disease related fatalities would decrease as vaccination efficacy increases. The
outcomes would assist administrators in developing efficient strategies to reduce the scope of
the COVID-19 pandemic.

. Introduction

Almost all countries in the world have experienced economic damage as a result of the COVID-19 disease. Although various
revention techniques are implemented to slow down the spread of the disease, it is still unclear when this devastating contagion
ill disappear completely from the population. Currently the majority of countries experience COVID-19 contagions and fatality

ases. Up to October 4, 2023, there are a total of 771,151,224 confirmed COVID-19 cases, including 6,960,783 death cases [1].
ndia is also struggling with this pandemic with a large number of contagions and fatalities. On October 4, 2023, there have been
4,998,838 COVID-19confirmed cases reported in India, including 532,032 fatality cases. To control the COVID-19 contagions,
cientists, researchers, and medical professionals constantly searching for effective vaccines, preventative measures, and strategies
or better treatment. Due to numerous COVID-19 variants, scientists are striving to develop a more effective vaccine to reduce
ontagion. It is predicted that the immunization programme will avert between 2–3 million fatalities annually [2]. The impact of
ifferent COVID-19 vaccines in reducing the spread of the disease can be discussed in [3]. The effectiveness of COVID-19 vaccines
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has been shown to be up to 95% in reducing symptomatic COVID-19 contagions. According to the literature, numerous research
articles with various perspectives have recently been created and published in related to minimizing this COVID contagion.

The mathematical modeling of contagious diseases is a significant tool for the analysis of transmission dynamics of contagious
isease, to predict the trajectory of an epidemic and to evaluate best strategies to control an epidemic. It can also provide
seful insights concerning transmission patterns and detection of biological parameters that influence the disease spread and
ost effective control strategies. To comprehend the dissemination dynamics of COVID-19 pandemic, numerous mathematical
odels are proposed [4–6]. Shirouyehzad et al. [7] conducted an assessment of the effectiveness of countries impacted by the
OVID-19 pandemic, employing Data Envelopment Analysis(DEA) to examine the influence of population density and health
ystem infrastructures. Radha et al. [8,9] examined the properties of pentapartitioned neutrosophic (PN) sets and interval-valued
entapartitioned neutrosophic sets (IVPN) while focusing on the enhancement of correlation coefficients. Mujahid et al. [10]
onducted a decision-making analysis aimed at lowering the mortality rate associated with the COVID-19 pandemic. They employed
he q-rung orthopair fuzzy soft Bonferroni mean operator as a computational tool for their investigation. Mohsen et al. [11]
eveloped a numerical methodology to analyze a distributed order time fractional model of the COVID-19 contagion. The finite
ifference scheme and the midpoint quadrature approach are utilized to solve this problem. Momena et al. [12] focused on the
dentification of illness symptoms, followed by the application of a Multi-Criteria Decision Making (MCDM) diagnosis approach
o identify the probable ailment. For modeling and forecasting of COVID-19 contagion, Imo et al. [13] developed a novel hybrid
ntelligent methodology for the optimization of parameter tuning in Interval Type-2 Intuitionistic Fuzzy Logic Systems (IT2IFLS).

In order to effectively mitigate the supply chain disruptions caused by the pandemic in Bangladesh, Doulotuzzaman et al. [14]
roposed a number of potential strategies, including contactless delivery, e-commerce adoption, robust collaborative demand
orecasting, decentralization of food manufacture and production, and effective information sharing. Imo et al. [15] created a
ime series analysis of COVID-19 utilizing intuitionistic fuzzy logic, which enables in reluctance and provides membership and
on-membership functions which are optimized to forecast COVID-19 contagion cases. Singh et al. [16] constructed a mathematical
odel to examine the transmission of malaria in individuals with severe infections, considering both crisp and fuzzy environments.
lamin et al. [17] examined the resolution of the dissemination of contagious diseases using the SI model within a fuzzy environment.

n [18], Mobasshira investigated the effects of the pandemic on household expenditure in the United States. Specifically, it use
nalysis of variance (ANOVA) to compare household expenses over two distinct periods. Erinle et al. [19] developed a deterministic
odel to analyze the dynamic dissemination of the Lassa fever virus including relapse and reinfection rates. Idowu et al. [20]

ntroduced SQEIRVS model and provide empirical evidence supporting a positive association between an increase in transmission
ates and the contact with surfaces polluted by droplets from individuals infected with COVID-19. Joshua et al. [21] introduced an
nnovative and viable human–bat (host–vector) model to predict the transmission and impact of the Ebola virus from bats to humans.
rinle et al. [22] formulated a mathematical model to investigate the transmission dynamics and effect of control strategies bed
ets and treatment for malaria infection. Idowu & Loyinmi [23] created a SEQIHRV model to examine the dissemination dynamics
f COVID-19 illness and evaluate the influence of control measures as time-dependent measures on the spread of the COVID-19.
oyoung Kim et al. [24] developed an optimal control model to mitigate the spread of influenza. Based on the government’s
ntervention strategies, the simulation period is divided into three subsequent phases. In Period 2, the non-pharmaceutical and
ntiviral techniques implemented, and in Period 3, the vaccine strategy added.

Mandal et al. [25] developed an epidemic model incorporates quarantine measures and government intervention strategies in
rder to mitigate the dissemination of COVID-19 disease. Venkatesh and Ankamma Rao [26] formulated the SEAIQHRDP model
y using nonpharmaceutical interventions as control strategies to minimize the spread of the COVID disease. Libotto et al. [27]
ntroduced two optimum control problems namely mono-objective multi-objective to evaluate strategy for vaccine in the COVID-19
andemic. Tchuenche et al. [28] created a an optimal control model with three controls vaccine effectiveness, vaccine waning,
nd treatment. They also performed a sensitivity analysis on the model. The Khachanji et al. [29] formulated a compartmental
odel that categorized contagion into nine steps and applied intervention strategies to mitigate the COVID-19 spread. Deng and
ang [30] devised an epidemiological model to evaluate the magnitude of the pandemic and investigate potential control measures,
uch as the utilization of media campaigns in conjunction with home isolation and the adoption of face-mask wearing strategy to
imit the recurrence of the epidemic in Brazil. Alemzewde et al. [31] proposed a deterministic model to evaluate the effectiveness
f two therapeutic interventions vaccination and treatment for controlling the COVID-19 pandemic. Venkatesh et al. [32] created
multistrain epidemic model consisting of sixteen compartments to minimize the dissemination of COVID-19 by utilizing vaccine

nd treatment measures. In this study the cost effective analysis method is applied to determine the best control strategy. For the
ynamics of COVID-19 in Ethiopia, Temesgen and Hana [33] constructed the optimal control problem, incorporating three controls
amely personal protection, vaccine, and treatment. This study employed a cost-effectiveness analysis to determine the optimum and
nexpensive. Acune et al. [34] proposed an optimum control problem that incorporates mixed constraints to analyze various vaccine
rofiles and determine the most effective vaccination policies for COVID-19. Bishal et al. [35] constructed a optimal control model
hat integrates age-specific dissemination dynamics of COVID-19 and evaluate the impact of vaccination and treatment strategies
n mitigating the burden of COVID-19.

Motivated by the above study, we developed a novel deterministic model consisting of ten compartments to analyze and control
he dissemination dynamics of COVID-19 in India. In this study, the individuals who received vaccinations are categorized into
hree distinct groups: (1) individuals who have received vaccination but remain susceptible to contagion, (2) individuals who have
eceived vaccination with ineffective efficacy and (3) individuals who have received vaccination and are effectively protected from
2

he contagion. Moreover this model extends onto optimal control model to examine the impact of optimal vaccination and treatment
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Fig. 1. Flowchart of 𝑆𝑉 𝐹𝑃𝐸𝐴𝐼𝑇𝑅𝐷 model.

strategies in mitigating COVID-19 contagions and disease induced mortality. Finally the optimal Vaccination Strategy under varying
levels of vaccine efficacy and different vaccination coverages are also evaluated.

The rest of the article is structured as follows. In Section 2, the assumption and formulation of mathematical model is described.
In Section 3, the qualitative properties of proposed model are performed. In Section 4, parameters are estimated and sensitivity
analysis of 𝑅0 is discussed. In Section 5, the assumption and formulation of the optimal control model are briefly explained. The
single and double control strategies are conducted and also vaccination efficacy levels is examined. In Section 6, cost effectiveness
analysis is performed to determine the effective control strategy. Finally Section 7 concludes with summary of the results.

2. Model formulation

In this study, the entire population (N) is partitioned into ten distinct groups: susceptible population (S), exposed population
(E), effectively vaccinated but still unprotected population (V), ineffectively vaccinated population (F), protected population (P),
asymptomatic infected population (I), symptomatic infected population (A), hospitalized population (T), recovered population (R),
and deceased population (D). Thus

𝑁(𝑡) = 𝑆(𝑡) + 𝑉 (𝑡) + 𝐹 (𝑡) + 𝑃 (𝑡) + 𝐴(𝑡) + 𝐼(𝑡) + 𝑇 (𝑡) + 𝑅(𝑡) +𝐷(𝑡)

Compartment S(t) represents the number of individuals who are susceptible to a particular condition or disease. This compartment 𝑆
is growing by recruitment rate 𝛬 and decreasing by the natural mortality rate 𝜇. Compartment 𝑆 reduces by the amount of 𝛽𝜁𝑎𝐴

𝑆
𝑁 ,

which denotes the number of individuals who contracted the virus through interaction with asymptomatic infected individuals,
decreases by a factor of 𝛽𝜁𝑎𝐼

𝑆
𝑁 , which represents the amount of individuals who have contracted the virus through contact with

symptomatic infected individuals and declines by a factor of 𝛽𝜁𝑎𝑇
𝑆
𝑁 , which depicting the number of individuals who have contracted

the virus through contact with infected individuals who are currently hospitalized. Additionally this compartment 𝑆 falls by the
individuals who have received vaccination at a rate 𝜈. Hence, the rate of change of susceptible population per unit time is given by

𝑑𝑆
𝑑𝑡

= 𝛬 − 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑆
𝑁

− (𝜈 + 𝜇)𝑆

Compartment V(t) depicts the number of individuals who received vaccination effectively yet remain susceptible to contagion.
A fully vaccinated individuals might not be totally protected against reinfection and might instead become susceptible to being
infected again. The compartment 𝑉 decreases by the quantity of 𝛽𝜁𝑎𝐴

𝑉
𝑁 , which indicating the number of vaccinated persons who

got the virus by contact with the asymptomatic individuals, falls by the amount of 𝛽𝜁𝑖𝐼
𝑉
𝑁 , which illustrates the number of vaccinated

individuals who acquired the virus through interaction with the symptomatic infected individuals and diminishes by the amount
of 𝛽𝜁𝑡𝑇

𝑉
𝑁 , which represents the number of vaccinated individuals who contracted the virus through contacting with the infected

individuals in hospital. This compartment 𝑉 increases by the amount of 𝜂𝜈𝑆, which shows that the number of susceptible individuals
who received perfected vaccination and secured. This compartment 𝑉 decreases by the rate 𝛿 at which the vaccinated individuals
are protected and also declines by natural death rate 𝜇. Thus the rate of change of vaccinated population per unit time is represented
by

𝑑𝑉
𝑑𝑡

= −𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑉
𝑁

+ 𝜂𝜈𝑆 − (𝛿 + 𝜇)𝑉

Compartment F(t) shows the number of individuals who received vaccination ineffectively. The compartment 𝐹 experiences a
decrease in value equal to the quantity of 𝛽𝜁𝑎𝐴

𝐹
𝑁 . This quantity represents the number of vaccinated individuals who are ineffective

in preventing the virus and got it through contact with asymptomatic individuals. Additionally, this compartment 𝐹 decreases by
the amount of 𝛽𝜁𝑖𝐼

𝑉
𝑁 , which illustrates the number of ineffective vaccinated individuals who acquired the virus through interaction

with symptomatic infected individuals. Furthermore, the compartment 𝐹 diminishes by the amount of 𝛽𝜁𝑡𝑇
𝐹
𝑁 , which demonstrates

the number of ineffective vaccinated individuals who contracted the virus through contact with infected individuals admitted to
3
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hospitals. This compartment 𝐹 also decreases by the amount of 𝜂𝜈𝑆, which denotes the number of susceptible individuals who are
erfectly vaccinated and secured. The compartment 𝐹 grows at a rate of 𝜈 for those who have received vaccinations and falls at
rate of 𝜇 for those who have died naturally. Therefore the rate of change of ineffectively vaccinated population per unit time is

escribed by
𝑑𝐹
𝑑𝑡

= −𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝐹
𝑁

+ (1 − 𝜂)𝜈𝑆 − 𝜇𝐹

Compartment P(t) displays the quantity of individuals who have been protected as a result of getting a vaccination. The size of
this compartment 𝑃 grows by the number of vaccinated individuals who are protected at a rate 𝛿, while it is diminished by the
natural death rate 𝜇. The rate change of protected individuals per unit time is represented by

𝑑𝑃
𝑑𝑡

= 𝛿𝑉 − 𝜇𝑃

ompartment E(t) depicts the number of individuals who have been exposed to COVID-19 but have not yet exhibited clinical
ymptoms. As a result of the susceptible, effectively vaccinated, and ineffectively vaccinated individuals who contracted the virus
hrough contact with asymptomatic infected individuals, symptomatic infected individuals and the individuals who admitted to
ospitals due severe contagion, this compartment 𝐸 grows by the amount of 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )(

𝑆
𝑁 + 𝑉

𝑁 + 𝐹
𝑁 ). The decline in this

compartment 𝐸 occurs at a rate of 𝛼 due to the exposed individuals becomes infected at a rate of 𝛼. This compartment 𝐸 also
decreases by the natural mortality rate 𝜇. The rate of change of exposed individuals per unit time is illustrated by

𝑑𝐸
𝑑𝑡

= 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )(
𝑆
𝑁

+ 𝑉
𝑁

+ 𝐹
𝑁

) − (𝛼 + 𝜇)𝐸

Compartment A(t) denotes the number of individuals who are infected with a disease but do not exhibit any disease symptoms.
Compartment 𝐴 grows by the amount of 𝛼𝜌𝐸 because a portion 𝜌 of exposed individuals transition to asymptomatic infected (𝐴) at
he rate 𝛼. This compartment 𝐴 diminishes by the rate 𝜎 because the asymptomatic infected becomes symptomatic infected at the
ate 𝜎. This compartment 𝐴 also reduces by both the recovery rate 𝛾𝑎 of asymptomatic infected individuals and the natural mortality
ate 𝜇. The rate of change asymptomatic individuals per unit time is represented by

𝑑𝐴
𝑑𝑡

= 𝛼𝜌𝐸 − (𝜎 + 𝛾𝑎 + 𝜇)𝐴

Compartment I(t) shows the number of infected individuals who have symptoms of the disease. Given that the remaining portion
(1−𝜌) of exposed individuals transition to symptomatic infected (𝐼) at a rate of 𝛼, the population within this compartment 𝐼 increases
by the quantity (1 − 𝜌)𝛼𝐸. The rate 𝜋 at which infected individuals are admitted to hospitals due to severe contagion produces a
reduction in Compartment 𝐼 . This compartment 𝐼 also decreases by the rate 𝜎. Furthermore this compartment I reduces by both the
mortality rate 𝜇𝑖 of symptomatic infected individuals and the natural mortality rate 𝜇. The rate of change of symptomatic infected
individuals per unit time is depicted by

𝑑𝐼
𝑑𝑡

= (1 − 𝜌)𝛼𝐸 + 𝜎𝐴 − (𝜋 + 𝜇𝑖 + 𝜇)𝐼

Compartment T(t) represents the number of infected individuals who were admitted to the hospital for treatment due to a severe
contagion. This compartment 𝑇 increases by the rate 𝜋. The decline in this compartment 𝑇 occurs by both the mortality rate 𝜇𝑡 of
hospitalized individuals and the natural mortality rate 𝜇. The rate of change of hospitalized individuals per unit time is denoted by

𝑑𝑇
𝑑𝑡

= 𝜋𝐼 − (𝛾𝑡 + 𝜇𝑡 + 𝜇)𝑇

Compartment R(t) depicts the number of individuals who have successfully recovered from the disease. This compartment 𝑅
increases by the recovery rates 𝛾𝑎 and 𝛾𝑡, which correspond to asymptomatic infected individuals and hospitalized patients,
respectively. This compartment reduces by the natural mortality rate 𝜇. The rate of change of recovery individuals per unit time is
illustrated by

𝛾𝑎𝐴 + 𝛾𝑡𝑇 − 𝜇𝑅

Compartment D(t) defines the number of individuals who have died as a result of severe contagion. This compartment 𝐷 rises by
the death rate 𝜇𝑖 of symptomatic infected individuals and increases by the mortality rate 𝜇𝑡 of individuals who are hospitalized. The
rate of change of deceased individuals per unit time is demonstrated by

𝑑𝐷
𝑑𝑡

= 𝜇𝑖𝐼 + 𝜇𝑡𝑇

A schematic representation of the model is depicted in Fig. 1. The dynamics of the COVID-19 epidemic model are determined
by the following system of nonlinear ordinary differential equations:

𝑑𝑆
𝑑𝑡

= 𝛬 − 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑆
𝑁

− (𝜈 + 𝜇)𝑆

𝑑𝑉
𝑑𝑡

= −𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑉
𝑁

+ 𝜂𝜈𝑆 − (𝛿 + 𝜇)𝑉

𝑑𝐹
𝑑𝑡

= −𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝐹
𝑁

+ (1 − 𝜂)𝜈𝑆 − 𝜇𝐹

𝑑𝑃 = 𝛿𝑉 − 𝜇𝑃
4

𝑑𝑡
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𝑇

3

3

T
𝛷

P

Table 1
Description of all parameters in 𝑆𝑉 𝐹𝑃𝐸𝐴𝐼𝑇𝑅𝐷 model.

Parameter Description Value Source

𝛬 Human recruitment rate Varies –
𝜁𝑎 Modification factor of asymptomatic infected 0.4(0,1) [36]

individuals
𝜁𝑖 Modification factor of symptomatic infected 0.4(0,1) [37]

individuals
𝜁𝑡 Modification factor of treatment individuals 0.3(0,1) [37]
𝛽 Disease transmission rate 0.7571 Estimated
𝜂 vaccine efficacy 0.2814 Estimated
𝛿 The rate at which vaccinated individuals are 0.1673 Estimated

protected
𝜈 Vaccination rate 0.67 [38]
𝜌 Portion of exposed individuals becomes 0.3[0.15,0.7] [39]

asymptomatic infected
𝛼 The rate at which the exposed individuals became infected 0.2[0.071,0.33] [39]
𝜋 The rate at which symptomatic infected individuals 0.1840 [26]

are hospitalized
𝜎 The rate at which the individuals in asymptomatic 0.0125 [40]

infected transition to symptomatic infected
𝛾𝑎 Recovery rate of asymptomatic infected individuals 0.034 [40]
𝛾𝑡 Recovery rate of hospitalized individuals 0.017 [40]
𝜇𝑖 Mortality rate of symptomatic individuals 0.003 [41]
𝜇𝑡 Mortality rate of hospitalized individuals 0.0014 [41]
𝜇 Natural mortality rate 0.0000391 [42]

𝑑𝐸
𝑑𝑡

= 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )(
𝑆
𝑁

+ 𝑉
𝑁

+ 𝐹
𝑁

) − (𝛼 + 𝜇)𝐸

𝑑𝐴
𝑑𝑡

= 𝛼𝜌𝐸 − (𝜎 + 𝛾𝑎 + 𝜇)𝐴

𝑑𝐼
𝑑𝑡

= (1 − 𝜌)𝛼𝐸 + 𝜎𝐴 − (𝜋 + 𝜇𝑖 + 𝜇)𝐼

𝑑𝑇
𝑑𝑡

= 𝜋𝐼 − (𝛾𝑡 + 𝜇𝑡 + 𝜇)𝑇

𝑑𝑅
𝑑𝑡

= 𝛾𝑎𝐴 + 𝛾𝑡𝑇 − 𝜇𝑅

𝑑𝐷
𝑑𝑡

= 𝜇𝑖𝐼 + 𝜇𝑡𝑇 (1)

The primary conditions of the system (1) are taken as 𝑆(0) ≥ 0, 𝑉 (0) ≥ 0, 𝐹 (0) ≥ 0, 𝑃 (0) ≥ 0, 𝐸(0) ≥ 0, 𝐴(0) ≥ 0, 𝐼(0) ≥ 0,
(0) ≥ 0, 𝑅(0) ≥ 0 and 𝐷(0) ≥ 0.

Table 1 provides the explanation of all model parameters.

. 𝑺𝑽 𝑭𝑷𝑬𝑨𝑰𝑻𝑹𝑫 model analysis

.1. Positivity and boundedness of the solutions

heorem 1. All the solutions of the system (1) with primary conditions remain positive and uniformly bounded in the region
= {(𝑆, 𝑉 , 𝐹 , 𝑃 , 𝐸,𝐴, 𝐼, 𝑇 , 𝑅,𝐷) ∈ R10

+ ∶ 0 ≤ (𝑆 + 𝑉 + 𝐹 + 𝑃 + 𝐸 + 𝐴 + 𝐼 + 𝑇 + 𝑅 +𝐷) ≤ 𝛬
𝜇 }

roof. Let (𝑆(𝑡), 𝑉 (𝑡), 𝐹 (𝑡), 𝑃 (𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼(𝑡), 𝑇 (𝑡), 𝑅(𝑡), 𝐷(𝑡)) ∈ R10
+ be solution of (1) for 𝑡 ∈ [0, 𝑡0]

From the first equation of system (1), we have
𝑑𝑆
𝑑𝑡

= 𝛬 − 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑆
𝑁

− (𝜈 + 𝜇)𝑆 = 𝛬 − 𝛹𝑆

where 𝛹 (𝑡) = 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
1
𝑁 + (𝜈 + 𝜇)

Then 𝑑𝑆
𝑑𝑡 + 𝛹𝑆 = 𝛬 ≥ 0

After integration, we get

𝑆(𝑡) = 𝑆0 exp
(

−∫

𝑡

0
𝛹 (𝑠) 𝑑𝑠

)

+ 𝛬 exp
(

−∫

𝑡

0
𝛹 (𝑠) 𝑑𝑠

)

∫

𝑡

0
𝑒∫

𝑠
0 𝛹 (𝑢) 𝑑𝑢 𝑑𝑠 > 0

The second equation of system (1) gives
𝑑𝑉
𝑑𝑡

= −𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑉
𝑁

+ 𝜂𝜈𝑆 − (𝛿 + 𝜇)𝑉 ≥ −𝛷𝑉

where 𝛷(𝑡) = (𝜁 𝐴 + 𝜁 𝐼 + 𝜁 𝑇 ) 1 + (𝛿 + 𝜇)
5
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Then 𝑑𝑉
𝑑𝑡 ≥ −𝛷𝑉

By integrating, we get

𝑉 (𝑡) ≥ 𝑉 (0) exp
(

−∫

𝑡

0
𝛷(𝑢) 𝑑𝑢

)

≥ 0

From the third equation of system (1), we obtain
𝑑𝐹
𝑑𝑡

= −𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝐹
𝑁

+ (1 − 𝜂)𝜈𝑆 − 𝜇𝐹 ≥ −𝜒𝐹

where 𝜒 = 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
1
𝑁 + 𝜇

Following the integration, we get

𝐹 (𝑡) ≥ 𝐹 (0) exp
(

−∫

𝑡

0
𝜒(𝑢) 𝑑𝑢

)

≥ 0

The fourth equation of system (1) provides
𝑑𝑃
𝑑𝑡

= 𝛿𝑉 − 𝜇𝑃 ≥ −𝜇𝑃

After the integration process, we obtain

𝑃 (𝑡) ≥ 𝑃 (0) exp
(

−∫

𝑡

0
𝜇 𝑑𝑢

)

≥ 0

From the fifth equation of system (1), we get
𝑑𝐸
𝑑𝑡

= 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )(
𝑆
𝑁

+ 𝑉
𝑁

+ 𝐹
𝑁

) − (𝛼 + 𝜇)𝐸 ≥ −(𝛼 + 𝜇)𝐸

By integrating, we obtain

𝐸(𝑡) ≥ 𝐸(0) exp
(

−∫

𝑡

0
(𝛼 + 𝜇) 𝑑𝑢

)

≥ 0

Through the sixth equation of system (1), we have
𝑑𝐴
𝑑𝑡

= 𝛼𝜌𝐸 − (𝜎 + 𝛾𝑎 + 𝜇)𝐴 ≥ −(𝜎 + 𝛾𝑎 + 𝜇)𝐴

After the integration, we gain

𝐴(𝑡) ≥ 𝐴(0) exp
(

−∫

𝑡

0
(𝜎 + 𝛾𝑎 + 𝜇) 𝑑𝑢

)

≥ 0

Similarly we prove that 𝐼(𝑡) ≥ 0, 𝑇 (𝑡) ≥ 0, 𝑅(𝑡) ≥ 0 and 𝐷(𝑡) ≥ 0
Consider the total population

𝑁(𝑡) = 𝑆(𝑡) + 𝑉 (𝑡) + 𝐹 (𝑡) + 𝑃 (𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐼(𝑡) + 𝑇 (𝑡) + 𝑅(𝑡) +𝐷(𝑡)

By adding all equations of system (1) and using above formula, we get
𝑑𝑁
𝑑𝑡

= 𝛬 − 𝜇𝑁

Following the integration, we have

𝑁(𝑡) = 𝛬
𝜇
(1 − 𝑒−𝜇𝑡) +𝑁(0)𝑒−𝜇𝑡 for 𝑡 ≥ 0

If 𝑁(0) ≤ 𝛬
𝜇 then 𝑁(𝑡) ≤ 𝛬

𝜇
If 𝑁(0) ≥ 𝛬

𝜇 , then N(t) asymptotically approaches to 𝛬
𝜇 and the number of infected population approach to zero for larger t.

Hence, all the solution trajectories initiating in R10
+ will enter in 𝛷 with finite time.

Therefore 𝛷 is an attracting set. □

.2. Contagion-free equilibrium and fundamental reproduction number

Finding an equilibrium points of differential equation is always the first phase in understanding it. In epidemiology there are two
ifferent types of equilibrium points. the contagion-free equilibrium point, where the infected population is zero and the endemic
quilibrium point at which infection population does not vanish. The local stability of contagion-free and endemic equilibria indicates
hat these states can be persisted in minor perturbations whereas global stability implies that these states can persist even in the
resence of significant perturbations. The global stability of the contagion-free equilibrium point signifies the complete eradication
f the disease from the system, while the global stability of the endemic equilibrium point indicates the sustained presence of the
isease, leading to its endemic disease. In this section, we discuss about the contagion-free equilibrium of proposed model.
6
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The last equation of the system (1) can be omitted because the preceding nine equations are independent of it. The contagion-free
quilibrium 𝐸∗ of the proposed model is obtained by setting the equations of the system (1) to zero and then using 𝐸 = 𝐴 = 𝐼 = 𝑇 = 0
o solve the resulting algebraic system for the state variables. Therefore the contagion-free equilibrium is

𝐸∗ = ( 𝛬
(𝜈 + 𝜇)

,
𝛬𝜂𝜈

(𝜈 + 𝜇)(𝛿 + 𝜇)
,
𝛬(1 − 𝜂)𝜈
(𝜈 + 𝜇)𝜇

,
𝛬𝜂𝜈𝛿

𝜇(𝜈 + 𝜇)(𝛿 + 𝜇)
, 0, 0, 0, 0, 0)

The fundamental reproduction number 𝑅0 [43–45] is a significant epidemiological factor in discerning the characteristics of a given
disease. It measures the dissemination potential of contagious disease in a population. The fundamental reproduction number is
defined as the expected number of secondary infected cases that will arise from a single primary infected case in a population that
is otherwise susceptible.

When 𝑅0 < 1, the existing contagions are less than a single new contagion. In this scenario, the prevalence of the disease will
diminish over time and ultimately disappear from existence. If 𝑅0 = 1, there exists single contagion only. There will not be an
increase in cases or outbreak; the illness will continue to exist in a stable state. When 𝑅0 > 1, each contagion that currently exists
causes numerous contagions. The transmission of the disease can occur through interaction with others, potentially leading to the
emergence of a disease outbreak or epidemic. We find the fundamental reproduction number by using the Next Generation Matrix
Method as follows:

 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )(𝑆 + 𝑉 + 𝐹 )
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

 =

⎛

⎜

⎜

⎜

⎜

⎝

(𝛼 + 𝜇)𝐸
−𝛼𝜌𝐸 + (𝜎 + 𝛾𝑎 + 𝜇)𝐴

−(1 − 𝜌)𝛼𝐸 − 𝜎𝐴 + (𝜋 + 𝜇𝑖 + 𝜇)𝐼
−𝜋𝐼 + (𝛾𝑡 + 𝜇𝑡 + 𝜇)𝑇

⎞

⎟

⎟

⎟

⎟

⎠

The Jacobian matrices of two matrices  and  are

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎝

0 𝛽𝜁𝑎𝜒 𝛽𝜁𝑖𝜒 𝛽𝜁𝑡𝜒
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

(𝛼 + 𝜇) 0 0 0
−𝛼𝜌 (𝜎 + 𝛾𝑎 + 𝜇) 0 0

−(1 − 𝜌)𝛼 −𝜎 (𝜋 + 𝜇𝑖 + 𝜇) 0
0 0 −𝜋 (𝛾𝑡 + 𝜇𝑡 + 𝜇)

⎞

⎟

⎟

⎟

⎟

⎠

where 𝜒 = 𝑆 + 𝑉 + 𝐹 = 𝛬(𝛿+𝜇)(𝜈+𝜇)+𝛬𝜈(𝜇−𝜂𝛿)
𝜇(𝛿+𝜇)(𝜈+𝜇)

Hence the fundamental reproduction number, the spectral radius of the matrix 𝐹𝑉 −1 is

𝑅0 =
𝛬(𝛿 + 𝜇)(𝜈 + 𝜇) + 𝛬𝜈(𝜇 − 𝜂𝛿)

𝜇(𝛿 + 𝜇)(𝜈 + 𝜇)
[

𝛽𝜁𝑎𝜌𝜎
(𝛼 + 𝜇)(𝜎 + 𝛾𝑎 + 𝜇)

+
(𝛽𝜁𝑖(𝛾𝑡 + 𝜇𝑡 + 𝜇) + (𝛽𝜁𝑡𝜋))(𝛼 + 𝜌𝜎) + (𝜎 + 𝛾𝑎 + 𝜇)(1 − 𝜎)𝛼

(𝛼 + 𝜇)(𝜎 + 𝛾𝑎 + 𝜇)(𝜋 + 𝜇𝑖 + 𝜇)(𝛾𝑡 + 𝜇𝑡 + 𝜇)
]

Theorem 2. When 𝑅0 < 1, then the contagion-free equilibrium 𝐸∗ is locally asymptotically stable and unstable otherwise.

Proof. The Jacobian matrix corresponding to the system (1) at contagion-free equilibrium 𝐸∗ is

𝐽𝐸∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(𝜈 + 𝜇) 0 0 0 0 −𝛽𝜁𝑎𝑆0 −𝛽𝜁𝑖𝑆0 −𝛽𝜁𝑡𝑆0 0

𝜂𝜈 −(𝛿 + 𝜇) 0 0 0 −𝛽𝜁𝑎𝑉 0 −𝛽𝜁𝑖𝑉 0 −𝛽𝜁𝑡𝑉 0 0

(1 − 𝜂)𝜈 0 −𝜇 0 0 −𝛽𝜁𝑎𝐹 0 −𝛽𝜁𝑖𝐹 0 −𝛽𝜁𝑡𝐹 0 0

0 𝛿 0 −𝜇 0 0 0 0 0

0 0 0 0 −(𝛼 + 𝜇) 𝛽𝜁𝑎𝜒 𝛽𝜁𝑖𝜒 𝛽𝜁𝑡𝜒 0

0 0 0 0 𝛼𝜌 −(𝜎 + 𝛾𝑎 + 𝜇) 0 0 0

0 0 0 0 (1 − 𝜌)𝛼 𝜎 −(𝜋 + 𝜇𝑖 + 𝜇) 0 0

0 0 0 0 0 0 𝜋 −(𝛾𝑡 + 𝜇𝑡 + 𝜇) 0

0 0 0 0 0 𝛾𝑎 0 𝛾𝑡 −𝜇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Here 𝜒 = 𝑆0 + 𝑉 0 + 𝐹 0 = 𝛬(𝛿+𝜇)(𝜈+𝜇)+𝛬𝜈(𝜇−𝜂𝛿)
𝜇(𝛿+𝜇)(𝜈+𝜇)

The characteristic equation of the matrix 𝐽𝐸∗ is ∣ 𝐽𝐸∗ − 𝜆𝐼 ∣= 0.

(𝜆 + 𝜇)3(𝜆 + (𝛿 + 𝜇))(𝜆 + (𝜈 + 𝜇))
7
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|

|

|

|

|

|

|

|

|

−(𝛼 + 𝜇) 𝛽𝜁𝑎𝜒 𝛽𝜁𝑖𝜒 𝛽𝜁𝑡𝜒
𝛼𝜌 −(𝜎 + 𝛾𝑎 + 𝜇) 0 0

(1 − 𝜌)𝛼 𝜎 −(𝜋 + 𝜇𝑖 + 𝜇) 0
0 0 𝜋 −(𝛾𝑡 + 𝜇𝑡 + 𝜇)

|

|

|

|

|

|

|

|

|

= 0.

⇒ (𝜆 + 𝜇)3(𝜆 + (𝛿 + 𝜇))(𝜆 + (𝜈 + 𝜇))(𝜆4 + 𝑎1𝜆
3 + 𝑎2𝜆

2 + 𝑎3𝜆 + 𝑎4) = 0

where

𝑎1 = (𝛼 + 𝜇) + (𝜎 + 𝛾𝑎 + 𝜇) + (𝜋 + 𝜇𝑖 + 𝜇) + (𝛾𝑡 + 𝜇𝑡 + 𝜇),

𝑎2 = ((𝛼 + 𝜇) + (𝜎 + 𝛾𝑎 + 𝜇) + (𝜋 + 𝜇𝑖 + 𝜇) + (𝛾𝑡 + 𝜇𝑡 + 𝜇))(𝛾𝑡 + 𝜇𝑡 + 𝜇) + (𝛼 + 𝜇)

(𝜎 + 𝛾𝑎 + 𝜇) + (𝜎 + 𝛾𝑎 + 𝜇) + (𝜋 + 𝜇𝑖 + 𝜇)(𝛾𝑡 + 𝜇𝑡 + 𝜇) − 𝜒((1 − 𝜌)𝛼𝛽𝜁𝑖 + 𝛼𝜌𝛽𝜁𝑎),

𝑎3 = (𝛼 + 𝜇)[(𝜎 + 𝛾𝑎 + 𝜇)(𝜋 + 𝜇𝑖 + 𝜇) + (𝜎 + 𝛾𝑎 + 𝜇) + (𝜋 + 𝜇𝑖 + 𝜇)]

+ (𝜎 + 𝛾𝑎 + 𝜇)(𝜋 + 𝜇𝑖 + 𝜇)(𝛾𝑡 + 𝜇𝑡 + 𝜇) − 𝜒(𝜋 + 𝜇𝑖 + 𝜇)𝛼𝜌𝜁𝑎 + (𝜎 + 𝛾𝑎 + 𝜇)

(1 − 𝜌)𝛼𝛽𝜁𝑖 + 𝜎𝛼𝜌𝜁𝑎 + 𝜋(1 − 𝜌)𝛼𝛽𝜁𝑖 + (𝛼𝜌𝜁𝑎 + (1 − 𝜌)𝛼𝛽𝜁𝑖)(𝛾𝑡 + 𝜇𝑡 + 𝜇),

𝑎4 = (𝛼 + 𝜇)(𝜎 + 𝛾𝑎 + 𝜇)(𝜋 + 𝜇𝑖 + 𝜇)(𝛾𝑡 + 𝜇𝑡 + 𝜇)(1 − 𝑅0)

Here -𝜇, -𝜇, -𝜇, (𝛿 + 𝜇), and (𝜈 + 𝜇) are the first five eigen values of 𝐽𝐸∗ and the remaining four eigen values will be attained from
the fourth degree equation (𝜆4 + 𝑎1𝜆3 + 𝑎2𝜆2 + 𝑎3𝜆 + 𝑎4) = 0

By Routh–Hurwitz criterion, 𝐸∗ is locally asymptotically stable if 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0, 𝑎4 > 0 and 𝑎2𝑎3𝑎4 > 𝑎22 + 𝑎1𝑎24
Clearly 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0, and 𝑎4 > 0 if 𝑅0 < 1
It is simple to verify that 𝑎2𝑎3𝑎4 > 𝑎22 + 𝑎1𝑎24 if 𝑅0 < 1
Hence the contagion-free equilibrium point 𝐸∗ is locally asymptotically stable if 𝑅0 < 1
Based on Descartes’ rule of signs, it can be deduced that there exists at least one positive eigenvalue when 𝑎4 > 0 at 𝑅0 > 1.
Therefore 𝐸∗ is locally asymptotically unstable for 𝑅0 > 1. □

Theorem 3. The contagion free equilibrium 𝐸∗ = (𝛬𝜇 , 0, 0, 0, 0, 0, 0) of system (1) is globally asymptotic stable if 𝑅0 < 1

Proof. From the system (1), it can be observed that 𝑆, 𝑉 , 𝐹 , 𝑃 and 𝑅 are contagion-free classes, and 𝐸, 𝐴, 𝐼 , and 𝑇 are infected
classes. So that (1) can be written as

𝑑𝑋
𝑑𝑡

= 𝑀(𝑋, 𝑌 )

𝑑𝑌
𝑑𝑡

= 𝑊 (𝑋, 𝑌 ),𝑊 (𝑋, 0) = 0,

where 𝑋 = (𝑆, 𝑉 , 𝐹 , 𝑃 , 𝑅) ∈ R5
+ denotes the uninfected population and 𝑌 = (𝐸,𝐴, 𝐼, 𝑇 ) ∈ R4

+ represents the infected populations.
Thus 𝐸∗ = (𝑋∗, 0) identifies the contagion free equilibrium of system (1).
For the system (1), 𝑀(𝑋, 𝑌 ) and 𝑊 (𝑋, 𝑌 ) are described as follows:

𝑀(𝑋, 𝑌 ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛬 − 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑆
𝑁 − (𝜈 + 𝜇)𝑆

−𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑉
𝑁 + 𝜂𝜈𝑆 − (𝛿 + 𝜇)𝑉

−𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝐹
𝑁 + (1 − 𝜂)𝜈𝑆 − 𝜇𝐹

𝛿𝑉 − 𝜇𝑃

𝛾𝑎𝐴 + 𝛾𝑡𝑇 − 𝜇𝑅

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

𝑊 (𝑋, 𝑌 ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )(
𝑆
𝑁 + 𝑉

𝑁 + 𝐹
𝑁 ) − (𝛼 + 𝜇)𝐸

𝛼𝜌𝐸 − (𝜎 + 𝛾𝑎 + 𝜇)𝐴

(1 − 𝜌)𝛼𝐸 + 𝜎𝐴 − (𝜋 + 𝜇𝑖 + 𝜇)𝐼

𝜋𝐼 − (𝛾𝑡 + 𝜇𝑡 + 𝜇)𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎠

From the expression 𝑀(𝑋, 𝑌 ), it easily show that 𝑀(𝑋, 0) = 0
To prove that 𝐸∗ is asymptomatically stable globally, the following two conditions shall be satisfied.

1. 𝑑𝑋
𝑑𝑡 = 𝑀(𝑋, 0) where 𝑋∗ is asymptotically stable globally.

2. 𝑊 (𝑋, 𝑌 ) = 𝐾𝑌 − 𝑊̄ (𝑋, 𝑌 ), 𝑊̄ (𝑋, 𝑌 ) ≥ 0, for (𝑋, 𝑌 ) ∈ 𝛹
where 𝐾 = 𝐷 𝑊 (𝑋∗, 0) is Metzler Matrix
8

𝑌
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The equations of system (1) can be written as

𝑑
𝑑𝑡

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑆
𝑉
𝐹
𝑃
𝑅

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 𝑀(𝑋, 0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛬 − (𝜈 + 𝜇)𝑆
𝜂𝜈𝑆 − (𝛿 + 𝜇)𝑉
(1 − 𝜂)𝜈𝑆 − 𝜇𝐹

𝛿𝑉 − 𝜇𝑃
−𝜇𝑅

⎞

⎟

⎟

⎟

⎟

⎟

⎠

After integrating, we get

𝑆(𝑡) = 𝛬
𝜈 + 𝜇

+
𝑆(0)
𝜈 + 𝜇

𝑒−(𝜈+𝜇)𝑡,

𝑉 (𝑡) =
𝛬𝜂𝜈

(𝜈 + 𝜇)(𝛿 + 𝜇)
+

𝑉 (0)
(𝜈 + 𝜇)(𝛿 + 𝜇)

𝑒−(𝜈+𝜇)(𝛿+𝜇)𝑡,

𝐹 (𝑡) =
𝛬(1 − 𝜂)𝜈
(𝜈 + 𝜇)𝜇

+
𝐹 (0)

(𝜈 + 𝜇)𝜇
𝑒−(𝜈+𝜇)𝜇𝑡,

𝑃 (𝑡) =
𝛬𝜂𝜈𝛿

𝜇(𝜈 + 𝜇)(𝛿 + 𝜇)
+

𝑃 (0)
𝜇(𝜈 + 𝜇)(𝛿 + 𝜇)

𝑒−𝜇(𝜈+𝜇)(𝛿+𝜇)𝑡

𝑅(𝑡) = 𝑅(0)𝑒−𝜇𝑡

As 𝑡 → ∞, we get
𝑆(𝑡) = 𝛬

(𝜈+𝜇) , 𝑉 (𝑡) = 𝛬𝜂𝜈
(𝜈+𝜇)(𝛿+𝜇) , 𝐹 (𝑡) = 𝛬(1−𝜂)𝜈

(𝜈+𝜇)𝜇 , 𝑃 (𝑡) = 𝛬𝜂𝜈𝛿
𝜇(𝜈+𝜇)(𝛿+𝜇) and 𝑅(𝑡) = 0.

Thus 𝑋∗ is globally asymptotically stable for 𝑑𝑋
𝑑𝑡 = 𝑀(𝑋, 0).

Therefore the first condition is satisfied.
Now the matrices 𝐾 and 𝑊̄ (𝑋, 𝑌 ) of system (1) can be written as 𝐾 =

⎛

⎜

⎜

⎜

⎝

−(𝛼 + 𝜇) 𝛽𝜁𝑎𝜒 𝛽𝜁𝑖𝜒 𝛽𝜁𝑡𝜒 0
𝛼𝜌 −(𝜎 + 𝛾𝑎 + 𝜇) 0 0 0

(1 − 𝜌)𝛼 𝜎 −(𝜋 + 𝜇𝑖 + 𝜇) 0 0
0 0 𝜋 −(𝛾𝑡 + 𝜇𝑡 + 𝜇) 0

⎞

⎟

⎟

⎟

⎠

where 𝜒 = 𝛬(𝛿+𝜇)(𝜈+𝜇)+𝛬𝜈(𝜇−𝜂𝛿)
𝜇(𝛿+𝜇)(𝜈+𝜇)

& 𝑊̄ (𝑋, 𝑌 ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛽𝜁𝑎𝐴(1 −
𝑆
𝑁 ) + 𝛽𝜁𝑖𝐼(1 −

𝑆
𝑁 ) + 𝛽𝜁𝑡𝑇 (1 −

𝑆
𝑁 )

0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Since all non-diagonal elements of matrix 𝐾 is non-negative, 𝐾 is Metzler matrix and as 𝑆(𝑡) ≤ 𝑁(𝑡), 𝑊̄ (𝑋, 𝑌 ) ≥ 0.
Thus the second condition also satisfied.
Hence the contagion-free equilibrium 𝐸∗ is globally asymptotically stable in the region 𝛷 for 𝑅0 < 1. □

. Numerical simulation

.1. Model calibration

The method of data fitting involves fitting the proposed model to the collected data and evaluating the fit accuracy. Results are
ore accurate when a model is well-fitted. We fit the SVFPEAITRD model to the daily confirmed COVID-19 cases in India [46]

ollected from January 30, 2020 to January 12, 2021 The procedure of fitting the model to COVID-19 data has been executed using
he nonlinear least-square function lsqnonlin in MATLAB. By fitting the model to daily confirmed cases, three parameters 𝛽, 𝜈 and
are estimated. For simulation the initial values of stated variables are taken as 𝑆(0) = 1247185021, 𝑉 (0) = 0, 𝐹 (0) = 0, 𝑃 (0) = 0,
(0) = 6000, 𝐴(0) = 10, 𝐼(0) = 5, 𝑇 (0) = 1, 𝑅(0) =1 and 𝐷(0) = 0. The values of model parameters are mentioned in Table 1. The
ig. 2 depicts the SVFPEAITRD model fit to COVID-19 data in India. In this Figure, the red solid curve displays the model simulation
nd the blue dotted curve represents the daily confirmed COVID-19 cases.

.2. Sensitivity analysis

Sensitivity analysis is a significant tool for examining the importance of various factors in disease dissemination. It aids in
nderstanding of how the reproduction number value varies with respect to various factors. Once these factors are known, a range
f techniques can be used to achieve the best results. In [47] presents a thorough investigation of dengue disease sensitivity. The
atio of the relative change in a variable to the relative change in the factor is known as the Normalized forward sensitivity index
9

f the variable with respect to a factor. The sensitivity index can also be constructed using partial derivatives when the variable
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Fig. 2. Model fitting with daily confirmed COVID-19 cases.

Fig. 3. Sensitivity indices of 𝑅0 with respect to various parameters.

s a function that can be differentiated of the factor. The normalized forward sensitivity index of 𝑅0, which relies differently on a
parameter 𝑏, is given by [48], and it is defined as follows:

𝛤𝑅0
𝑏 =

𝜕𝑅0
𝜕𝑏

𝑏
𝑅0

.

ig. 3 depicts the normalized forward sensitivity indices of 𝑅0. From this Fig. 3, we examined that the parameters 𝛬, 𝜁𝑎, 𝜁𝑖, 𝜁𝑡, 𝛼,
𝛽 and 𝜎 have positive correlations with 𝑅0 as well as the parameters 𝛿, 𝜈, 𝜂, 𝛾𝑎, 𝛾𝑡, 𝜇𝑖, 𝜇𝑡, and 𝜇 have negative correlations with
0. It is undoubtedly that the three factors protection rate (𝛿), vaccination rate (𝜈) and vaccine efficacy (𝜂) have a major impact on

he lowering of 𝑅0. The fundamental reproduction number will also decrease with an increase in treatment rate of hospitalization
ndividuals.

Fig. 4 demonstrates the contour plots of the fundamental reproduction number 𝑅0 with respect to the disease dissemination rate
𝛽) versus vaccination rate (𝜈) and protection rate (𝛿) versus vaccination rate (𝜈) respectively. As shown in Fig. 4(a), 𝑅0 decreases
hen vaccination rate and protection rate rise. Through increasing the vaccination rate 𝜈, the number of vaccinated individuals

increases and the rate of protection is also increases. In Fig. 4(b), it is illustrated that 𝑅0 will rise as disease dissemination rate
10

increases and vaccination rate decreases.
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Fig. 4. Contour plots of 𝑅0 as a functions of (a) 𝑅0 versus (𝛿, 𝜈) (b) 𝑅0 versus (𝛽, 𝜈).

5. Optimal control

5.1. Optimal control problem

The effective implementation of control measures, such as vaccination or drug therapy, is a significant concern for policymakers,
health authorities, and government organizations. Since the substantial financial resources required for the implementation of these
control measures, it is crucial to effectively control the dissemination of the disease while simultaneously minimizing overall costs.
In this section, we develop an optimum control problem to analyze the impact of optimal vaccine and treatment strategies on
minimizing the number of COVID-19 contagions and the total costs associated with the implementation of these control techniques.

Vaccination: Vaccination has been widely recognized as the most effective method for controlling and minimizing the spread
of infectious illnesses. Vaccines are administered to the susceptible sub-population in order to activate an immune response that
enables the body to identify the pathogen as a potential threat and subsequently eliminate it. This mechanism effectively prevents
the propagation of the disease within the susceptible individuals. Vaccination additionally aids in the identification and elimination
of any microbes connected with that particular agent, which may be detected in future. The efficacy of COVID-19 vaccines in
preventing symptomatic COVID-19 contagions has been demonstrated to be as high as 95%. Therefore the first preventive measure
𝑢1 is the implementation of vaccination. This strategy involves administering vaccines to all susceptible individuals, which results
a significant reduction in the propagation of the COVID disease.

Treatment: In order to mitigate the burden of disease and minimize the propagation of contagion, it is crucial to provide
better treatment for the infected and hospitalized populations. Based on studies in [49,50], the administration of a combination
therapy involving various antiviral drugs (such as Remdesivir, favipiravir, interferon, lopinavir, or arbidol) has the potential to
mitigate inflammation in individuals with severe cases of COVID-19. The utilization of a combination therapy involving antiviral
medications and immune-modulating drugs is a rational approach, particularly for infected individuals in critical conditions. So
that the other two controls 𝑢2 and 𝑢3 are best treatment for the symptomatic infected and hospitalized populations. These treatment
would include the administration of immunomodulators like INF or zinc to strengthen the immune system or various prescribed
antiviral medications like remdesivir, arbidol, etc. that prevent replication of the virus.

The following optimal control model is created based on above assumptions:
𝑑𝑆
𝑑𝑡

= 𝛬 − 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑆
𝑁

− (𝑢1 + 𝜇)𝑆

𝑑𝑉
𝑑𝑡

= −𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑉
𝑁

+ 𝜂𝑢1𝑆 − (𝛿 + 𝜇)𝑉

𝑑𝐹
𝑑𝑡

= −𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝐹
𝑁

+ (1 − 𝜂)𝑢1𝑆 − 𝜇𝐹

𝑑𝐸
𝑑𝑡

= 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )(
𝑆
𝑁

+ 𝑉
𝑁

+ 𝐹
𝑁

) − (𝛼 + 𝜇)𝐸

𝑑𝑃
𝑑𝑡

= 𝛿𝑉 − 𝜇𝑃

𝑑𝐴
𝑑𝑡

= 𝛼𝜌𝐸 − (𝜎 + 𝛾𝑎 + 𝜇)𝐴

𝑑𝐼
𝑑𝑡

= (1 − 𝜌)𝛼𝐸 + 𝜎𝐴 − (𝑢2 + 𝜋 + 𝜇𝑖 + 𝜇)𝐼

𝑑𝑇
𝑑𝑡

= 𝜋𝐼 − (𝑢3 + 𝛾𝑡 + 𝜇𝑡 + 𝜇)𝑇

𝑑𝑅 = 𝛾 𝐴 + 𝛾 𝑇 + 𝑢 𝐼 + 𝑢 𝑇 − 𝜇𝑅
11
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𝑑𝐷
𝑑𝑡

= 𝜇𝑖𝐼 + 𝜇𝑡𝑇 (2)

For the fixed time 𝑡𝑓 , the objective functional is defined by

𝐽 (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)) = ∫

𝑡𝑓

0
𝐼 + 𝑇 +

𝐶1
2
𝑢21 +

𝐶2
2
𝑢22 +

𝐶3
2
𝑢23𝑑𝑡 (3)

where 𝐶1, 𝐶2 and 𝐶3 are weight constants and 𝑡𝑓 is final time.
We aim to determine the optimum controls, 𝑢1(𝑡), 𝑢2(𝑡) and 𝑢3(𝑡), such that
 (𝑢∗1 , 𝑢

∗
2 , 𝑢

∗
3) = min𝑢1 ,𝑢2 ,𝑢3∈𝑈 𝐽 (𝑢1, 𝑢2, 𝑢3),

here 𝑈 = {𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡): measurable and 0 ≤ 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡) ≤ 1, 𝑡 ∈ [0, 𝑡𝑓 ] }
The Pontryagin’s Maximum Principle theory [51] provides the necessary requirements that an optimal control system must

atisfy.
For our optimal problem, the Hamiltonian  is given by

 = 𝐼 + 𝑇 +
𝐶1
2
𝑢21 +

𝐶2
2
𝑢22 +

𝐶3
2
𝑢23 + 𝜆1

𝑑𝑆
𝑑𝑡

+ 𝜆2
𝑑𝑉
𝑑𝑡

+ 𝜆3
𝑑𝐹
𝑑𝑡

+ 𝜆4
𝑑𝑃
𝑑𝑡

+ 𝜆5
𝑑𝐸
𝑑𝑡

+ 𝜆6
𝑑𝐴
𝑑𝑡

+ 𝜆7
𝑑𝐼
𝑑𝑡

+ 𝜆8
𝑑𝑇
𝑑𝑡

+ 𝜆9
𝑑𝑅
𝑑𝑡

+ 𝜆10
𝑑𝐷
𝑑𝑡

here 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7, 𝜆8, 𝜆9 and 𝜆10 are the adjoint variables correspond to the state variables 𝑆, 𝑉 , 𝐹 , 𝑃 , 𝐸, 𝐴, 𝐼 , 𝑇 , 𝑅
and 𝐷.

Theorem 4. If the couple (𝑆∗, 𝑉 ∗, 𝐹 ∗, 𝑃 ∗, 𝐴∗, 𝐼∗, 𝑇 ∗, 𝑅∗, 𝐷∗) is the solution of the control system (2) corresponding to an optimal
ontrol 𝑢∗1, 𝑢

∗
2, 𝑢

∗
3 in 𝑈 then there exist adjoint variables 𝜆𝑖 that satisfying

𝑑𝜆𝑖
𝑑𝑡 = − 𝜕

𝜕𝑖 with the transversality conditions, 𝜆𝑖(𝑡𝑓 ) = 0 for
= 𝑆, 𝑉 , 𝐹 , 𝑃 , 𝐸,𝐴, 𝐼, 𝑇 , 𝑅,𝐷. Additionally, for 𝑡 ∈ [0, 𝑡𝑓 ], the optimal controls 𝑢∗1, 𝑢

∗
2, 𝑢

∗
3 are obtained by

𝑢∗1(𝑡) = min{1,max{0, (𝜆1−𝜆3)𝑆+(𝜆3−𝜆2)𝜂𝑆𝐶1
}},

𝑢∗2(𝑡) = min{1,max{0, (𝜆7−𝜆9)𝐼𝐶2
}},

𝑢∗3(𝑡) = min{1,max{0, (𝜆8−𝜆9)𝑇𝐶3
}}

Proof. The Hamiltonian function is

 = 𝐼 + 𝑇 +
𝐶1
2
𝑢21 +

𝐶2
2
𝑢22 +

𝐶3
2
𝑢23 + 𝜆1(𝛬 − 𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )

𝑆
𝑁

− (𝑢1 + 𝜇)) + 𝜆2(−𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝑉
𝑁

+ 𝜂𝑢1𝑆 − (𝛿 + 𝜇))

+ 𝜆3(−𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
𝐹
𝑁

+ (1 − 𝜂)𝑢1𝑆) + 𝜆4(𝛿𝑉 − 𝜇𝑃 ) + 𝜆5(−𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )(
𝑆
𝑁

+ 𝑉
𝑁

+ 𝐹
𝑁

) − (𝛼 + 𝛿)𝐸)

+ 𝜆6(𝛼𝜌𝐸 − (𝜎 + 𝛾𝑎 + 𝜇)𝐴) + 𝜆7((1 − 𝜌)𝛼𝐸 + 𝜎𝐴 − (𝑢2 + 𝜋 + 𝜇𝑖 + 𝜇)𝐼) + 𝜆8(𝜋𝐼 − (𝑢3 + 𝛾𝑡 + 𝜇𝑡 + 𝜇)𝑇 )

+ 𝜆9(𝛾𝑎𝐴 + 𝛾𝑡𝑇 + 𝑢2𝐼 + 𝑢3𝑇 − 𝜇𝑅) + 𝜆10(𝜇𝑖𝐼 + 𝜇𝑡𝑇 )

Using an adequate partial derivatives of  with respect to the state variables, the system of adjoint equations can be derived as
𝑑𝜆𝑆
𝑑𝑡

= − 𝜕
𝜕𝑆

= (𝜆1 − 𝜆5)𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
1
𝑁

+ (𝜆3 − 𝜆2)𝜂𝑢1𝜈 + (𝜆1 − 𝜆3)𝑢1𝜈 + 𝜆1𝜇

𝑑𝜆𝑉
𝑑𝑡

= − 𝜕
𝜕𝑉

= (𝜆2 − 𝜆5)𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
1
𝑁

+ (𝜆2 − 𝜆4)𝛿 + 𝜆2𝜇

𝑑𝜆𝐹
𝑑𝑡

= − 𝜕
𝜕𝐹

= (𝜆3 − 𝜆5)𝛽(𝜁𝑎𝐴 + 𝜁𝑖𝐼 + 𝜁𝑡𝑇 )
1
𝑁

+ 𝜆3𝜇

𝑑𝜆𝑃
𝑑𝑡

= − 𝜕
𝜕𝑃

= 𝜆4𝜇

𝑑𝜆𝐸
𝑑𝑡

= − 𝜕
𝜕𝐸

= (𝜆7 − 𝜆6)𝜌𝛼 + (𝜆5 − 𝜆7)𝛼 + 𝜆5𝜇

𝑑𝜆𝐴
𝑑𝑡

= − 𝜕
𝜕𝐴

= −1 + (𝜆1 − 𝜆5)𝛽𝜁𝑎
𝑆
𝑁

+ (𝜆2 − 𝜆5)𝛽𝜁𝑎
𝑉
𝑁

+ (𝜆3 − 𝜆5)𝛽𝜁𝑎
𝐹
𝑁

+ (𝜆6 − 𝜆7)𝜎

+ (𝜆6 − 𝜆9)𝛾𝑎 + 𝜆6𝜇
𝑑𝜆𝐼
𝑑𝑡

= − 𝜕
𝜕𝐼

= −1 + (𝜆1 − 𝜆5)𝛽𝜁𝑖
𝑆
𝑁

+ (𝜆2 − 𝜆5)𝛽𝜁𝑖
𝑉
𝑁

+ (𝜆3 − 𝜆5)𝛽𝜁𝑖
𝐹
𝑁

+ (𝜆7 − 𝜆8)𝜋

+ (𝜆7 − 𝜆9)𝑢2 + (𝜆7 − 𝜆10)𝜇𝑖 + 𝜆7𝜇
𝑑𝜆𝑇
𝑑𝑡

= − 𝜕
𝜕𝑇

= −1 + (𝜆1 − 𝜆5)𝛽𝜁𝑖
𝑆
𝑁

+ (𝜆2 − 𝜆5)𝛽𝜁𝑖
𝑉
𝑁

+ (𝜆3 − 𝜆5)𝛽𝜁𝑖
𝐹
𝑁

+ (𝜆7 − 𝜆8)𝜋 + (𝜆8 − 𝜆9)𝑢3 + (𝜆8 − 𝜆10)𝛾𝑡 + (𝜆8 − 𝜆10)𝜇𝑡 + 𝜆8𝜇
𝑑𝜆𝑅
𝑑𝑡

= − 𝜕
𝜕𝑅

= 𝜆9𝜇

𝑑𝜆𝐷 = − 𝜕 = 0
12
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By differentiating the Hamiltonian  with respect to optimum controls 𝑢1, 𝑢2, 𝑢3 and using optimum conditions 𝜕
𝜕𝑢1

= 0, 𝜕
𝜕𝑢2

= 0,
and 𝜕

𝜕𝑢3
= 0, we get

𝜕
𝜕𝑢1

= 𝐶1𝑢1 + 𝜆1(−𝑆) + 𝜆2(𝜂𝑆) + 𝜆3(1 − 𝜂)𝑆 ⇒ 𝑢1 =
(𝜆1 − 𝜆3)𝑆 + (𝜆1 − 𝜆2)𝜂𝑆

𝐶1

𝜕
𝜕𝑢2

= 𝐶2𝑢2 − 𝜆7𝐼 + 𝜆9𝐼 ⇒ 𝑢2 =
(𝜆7 − 𝜆9)𝐼

𝐶2

𝜕
𝜕𝑢3

= 𝐶3𝑢3 − 𝜆8𝑇 + 𝜆9𝑇 ⇒ 𝑢3 =
(𝜆8 − 𝜆9)𝑇

𝐶3
Hence, for these controls 𝑢∗1, 𝑢

∗
2, 𝑢

∗
3, we get optimum values of  □

.2. Optimal control model simulation

In this section numerical simulation is performed to evaluate the effectiveness of both vaccination and treatment strategies over
period of 300 days. The results are simulated in MATLAB software using a combination of forward and backward difference

pproximations methods [52]. The extended system (2) is solved by using forward difference approximation, whereas the adjoint
tate system is solved by employing backward difference approximation.

The parameter values that are listed in Table 1 are used for this simulation. It is assumed that the value of weight constant 𝐶1
s 1015 based on the studies in [35,53] and the values of the weight constants 𝐶2 and 𝐶3 are taken as 200 and 100 respectively.

We analyze three different cases in this simulation.

1. Optimal vaccination and treatment strategy
2. Optimal vaccination strategy under various vaccination coverages
3. Optimal vaccination strategy under various vaccine efficacy levels

.3. Optimal vaccination and treatment strategy

This section analyze the impact of optimal vaccination and treatment strategies in reducing the COVID −19 contagions.
Fig. 5 displays the proportions of asymptomatic infected, symptomatic infected, treatment and dead populations under different
combinations of optimal controls strategies. This Fig. 5 reveals that the combination of vaccination and treatment strategies is more
effective at minimizing COVID-19 contagions and disease-related fatalities than the vaccination strategy or treatment strategy alone.
Comparing the vaccine strategy to the treatment strategy, we also observe that the vaccination strategy is more effective at lowering
COVID-19 contagions and fatalities. Fig. 6 illustrates the changes in control profile when the cost of different controls decreases. It is
observed that a decline in the cost of control parameters leads to an increase in the duration required to maintain these controls at
1. This phenomenon is demonstrated that as the costs associated with vaccines and drugs for implementing these controls decrease,
the probability of more investment on these measures would increase.

5.4. Optimal vaccination strategy under various vaccination coverages

In this section, we examine the impact of an optimal vaccination strategy on the COVID-19 contagions at various vaccine coverage
levels. The values of weight constant 𝐶1 are taken as 1011, 1013 and 1015. In this cases larger value indicates that the cost related
to vaccination is high, which results in lower vaccination coverages. Fig. 7 represents the variations in total infected and deceased
populations with respect to 𝐶1. This Fig. 7 illustrates that a decrease in the weight constant value leads to a reduction in the
proportions of both infected and deceased populations. This happens due to implementation of more expensive vaccines results in
lower vaccination rates, which increases the incidence of contagions and fatalities. Therefore widespread use of vaccines can limit
the dissemination of COVID-19 which leads to a reduction in deaths and contagions peaks.

5.5. Optimal vaccination strategy under various vaccine efficacy levels

The efficacy of vaccines may vary over time as new variants with various mutations appear. In this section, we alter the
vaccination efficacy levels against COVID-19 disease and evaluate their impact on the proportion of COVID-19 contagions and
fatalities. Using three distinct vaccine efficacy levels 60%, 80%, and 90% of the vaccine, we plot the proportions of both infected
and dead populations in Fig. 8. This Fig. 8 demonstrates that as vaccine efficacy levels increase, the total number of COVID-19
contagions and fatalities decline. This concludes that the COVID-19 contagions peak can be reduced by the implementation of
13

vaccines with higher efficacy.
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Fig. 5. Variations in asymptomatic infected, symptomatic infected, hospitalized, and dead populations under different optimal control strategies.

Fig. 6. Control Profiles of 𝑢1, 𝑢2, and 𝑢3.
14
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Fig. 7. Under various vaccination Coverages (a) the infected population (A+I) (b) the dead population.

Fig. 8. Under various vaccine efficacy levels (a) the infected population (A+I) (b) the dead population.

6. Cost-effectiveness analysis

In order to effectively minimize the dissemination of COVID-19 at the lowest feasible cost, it is crucial to identify the most
cost-effective optimal control strategy among the single and combined control strategies. The cost effectiveness analysis enables
the demonstration of the economic advantages related to each control strategy. It is used to compare the relative costs as well
as outcomes of various strategies. In this study the cost effectiveness is comprehensively investigated using the incremental cost
effectiveness ratio (ICER) [32,54], which evaluates the variances between the costs and health outcomes of the two competing
intervention techniques. Let 𝐶𝑉 , 𝐶𝑇 and 𝐶𝑉 𝑇 represent the vaccination control strategy, treatment control strategy and combination
of vaccination and treatment strategy. The ICER is determined by dividing the difference in costs between strategies 𝑋 and 𝑌 by
the difference in the number of contagions averted between strategies 𝑋 and 𝑌 where 𝑋, 𝑌 ∈ {𝐶𝑇 , 𝐶𝑉 , 𝐶𝑉 𝑇 }.

Given two competing strategies 𝑋 and 𝑌 , where strategy 𝑌 is more effective than strategy 𝑋 (𝑇𝐴(𝑌 ) > 𝑇𝐴(𝑋)), the ICER values
are computed as follows:

𝐼𝐶𝐸𝑅(𝑋) =
𝑇𝐶(𝑋)
𝑇𝐴(𝑋)

𝐼𝐶𝐸𝑅(𝑌 ) =
𝑇𝐶(𝑌 ) − 𝑇𝐶(𝑋)
𝑇𝐴(𝑌 ) − 𝑇𝐴(𝑋)

where the total cost (TC) of each strategy is calculated using the objective functional (3) and the total contagions averted (TA) is
computed by subtracting the total number of COVID-19 contagions with strategy from the total number of COVID-19 contagions
without strategy.

The values of total averted COVID-19 contagions and total costs of control strategies 𝐶𝑉 , 𝐶𝑇 and 𝐶𝑉 𝑇 is listed in Table 2 in an
ascending order of total averted COVID-19 contagions.

Now we compute and compare the strategy 𝐶𝑇 with strategy 𝐶𝑉 𝑇 as shown Table 3
The ICER of 𝐶𝑇 and 𝐶𝑉 𝑇 are calculated as follows:

𝐼𝐶𝐸𝑅(𝐶 ) = 5.8 × 104 = 0.0175
15
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𝐶

Table 2
Control strategies in increasing order averted contagions.

Strategy Total averted contagions (TA) Total cost (TC)

𝐶𝑇 3.3 ×106 5.8 ×104

𝐶𝑉 4.1 ×106 7.6 ×104

𝐶𝑉 𝑇 6.7 ×106 7.1 ×104

Table 3
Total averted contagions, total costs and ICER values of 𝐶𝑉 and 𝐶𝑉 𝑇 .

Strategy Total averted contagions (TA) Total cost (TC) ICER

𝐶𝑇 3.3 ×106 5.8 ×104 0.0175
𝐶𝑉 𝑇 6.7 ×106 7.1 ×104 0.0038

Table 4
Total averted contagions, total costs and ICER for control strategies 𝐶𝑉 and 𝐶𝑉 𝑇 .

Strategy Total averted contagions (TA) Total cost (TC) ICER

𝐶𝑉 4.1 ×106 7.6 ×104 0.0185
𝐶𝑉 𝑇 6.7 ×106 7.1 ×104 −0.0019

𝐼𝐶𝐸𝑅(𝐶𝑉 𝑇 ) =
(7.1 − 5.8) × 104

(6.7 − 3.3) × 106
= 0.0038

Comparing 𝐶𝑇 to 𝐶𝑉 𝑇 , the ICER of 𝐶𝑇 is higher than ICER of 𝐶𝑉 𝑇 . This reveals that 𝐶𝑇 is more expensive and less efficient than
𝑉 𝑇 . Hence the implementation of treatment control strategy 𝐶𝑇 removed from the list. The next comparison of strategy 𝐶𝑉 with

strategy 𝐶𝑉 𝑇 is mentioned in Table 4.
The ICER for 𝐶𝑉 and 𝐶𝑉 𝑇 are computed as follows:

𝐼𝐶𝐸𝑅(𝐶𝑉 ) =
(7.6) × 104

(4.1) × 106
= 0.0185

𝐼𝐶𝐸𝑅(𝐶𝑉 𝑇 ) =
(7.1 − 7.6) × 104

(6.7 − 4.1) × 106
= −0.0019

Since ICER of 𝐶𝑉 𝑇 is less than ICER of 𝐶𝑉 , strategy 𝐶𝑉 𝑇 is less expensive and more effective than 𝐶𝑉 . Hence the implementation
of vaccination control strategy 𝐶𝑉 is eliminated from the list. In light of this, it can be shown that the combination of vaccination
and treatment control strategy is effectively minimizing the COVID-19 contagions and disease induced mortality in the population.

6.1. Limitations

• This study focuses exclusively on the effects of pharmaceutical interventions on COVID-19 infections, and does not encompass
non-pharmaceutical interventions such as awareness programs and safety measures.

• This model does not incorporate the stability analysis of the endemic equilibrium of the model due to the presence of ten
compartments.

6.2. Future research scope

There will be scope on creating an optimal control model to analyze the dynamics of COVID-19 and TB or HIV/AIDS co-contagion
and evaluate the impact of pharmaceutical and non-pharmaceutical interventions on this co-contagion problem.

7. Conclusions

In this study a ten compartment mathematical model was formulated to analyze and mitigate the dissemination of COVID-19
contagion in India. The positivity and boundedness of the model were first established, and then its fundamental reproduction
number was determined to be 1.847. The contagion-free equilibrium was both locally and globally asymptotically stable if 𝑅0 is
below unity. By fitting the proposed model to the daily confirmed COVID-19 cases in India and estimated the disease transmission
rate, vaccine efficacy and protection rate. Sensitive analysis of 𝑅0 was determined that if vaccination rate rises then the vaccine
effectiveness, protection rate, and recovery rate increase. As a result, the dissemination of COVID-19 can be controlled. Furthermore
the proposed model was extended to an optimal control problem to evaluate the impact of treatment and vaccination strategies
on COVID-19 contagions over a 300 days period. Single and combined control strategies were conducted. The numerical analysis
shown that each strategy has potential to mitigate the dissemination of COVID disease. Cost-effectiveness analysis was revealed that
16

the combination of vaccination and treatment strategy was most effective and least costly strategy in minimizing the COVID-19
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contagions and disease-induced deaths. Finally, it was determined that if vaccine efficacy risen, COVID-19 contagions and disease-
related deaths were significantly reduced. The goal of this study is to better understand the role that treatment and vaccination
as preventive strategies in reducing COVID-19 contagions, in order to aid policymakers in developing techniques that effectively
prevent the further spread of the COVID-19 disease.
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