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ARTICLE INFO ABSTRACT

Dataset link: https://data.covid19india.org/csv In this study, a novel mathematical model for the dissemination dynamics of COVID-19 is
/latest/case_time_series.csv developed. The main objective is to analyze the effectiveness of pharmaceutical interventions
Keywords: in lowering the COVID-19 contagions. We first demonstrate the positivity and boundedness
COVID-19 of the solutions of the model and then compute the fundamental reproduction number. The
Sensitivity analysis stability analysis of contagion-free equilibrium is performed. The model is fitted to the COVID-
Vaccine efficacy 19 reported data for a period of twelve months in India and estimate three parameters. The
Vaccine coverage sensitivity analysis is conducted to identify the significant factors which impact the COVID-
Optimal control problem 19 disease prevalence. We then define an optimum control problem using pharmaceutical
Cost effectiveness interventions vaccination and treatment as the control functions to minimize the dissemination

of COVID-19 contagions and disease-related mortality. Cost-effectiveness analysis is employed
to determine the most effective and least costly strategy. The results are determined that the
combination of vaccination and treatment is the most effective and least costly strategy in
mitigating the spread of COVID-19 contagions. Furthermore, the impact of different levels
of vaccine efficacy on contagion trajectories is examined, and it is shown that COVID-19
contagions and disease related fatalities would decrease as vaccination efficacy increases. The
outcomes would assist administrators in developing efficient strategies to reduce the scope of
the COVID-19 pandemic.

1. Introduction

Almost all countries in the world have experienced economic damage as a result of the COVID-19 disease. Although various
prevention techniques are implemented to slow down the spread of the disease, it is still unclear when this devastating contagion
will disappear completely from the population. Currently the majority of countries experience COVID-19 contagions and fatality
cases. Up to October 4, 2023, there are a total of 771,151,224 confirmed COVID-19 cases, including 6,960,783 death cases [1].
India is also struggling with this pandemic with a large number of contagions and fatalities. On October 4, 2023, there have been
44,998,838 COVID-19confirmed cases reported in India, including 532,032 fatality cases. To control the COVID-19 contagions,
scientists, researchers, and medical professionals constantly searching for effective vaccines, preventative measures, and strategies
for better treatment. Due to numerous COVID-19 variants, scientists are striving to develop a more effective vaccine to reduce
contagion. It is predicted that the immunization programme will avert between 2-3 million fatalities annually [2]. The impact of
different COVID-19 vaccines in reducing the spread of the disease can be discussed in [3]. The effectiveness of COVID-19 vaccines
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has been shown to be up to 95% in reducing symptomatic COVID-19 contagions. According to the literature, numerous research
articles with various perspectives have recently been created and published in related to minimizing this COVID contagion.

The mathematical modeling of contagious diseases is a significant tool for the analysis of transmission dynamics of contagious
disease, to predict the trajectory of an epidemic and to evaluate best strategies to control an epidemic. It can also provide
useful insights concerning transmission patterns and detection of biological parameters that influence the disease spread and
most effective control strategies. To comprehend the dissemination dynamics of COVID-19 pandemic, numerous mathematical
models are proposed [4-6]. Shirouyehzad et al. [7] conducted an assessment of the effectiveness of countries impacted by the
COVID-19 pandemic, employing Data Envelopment Analysis(DEA) to examine the influence of population density and health
system infrastructures. Radha et al. [8,9] examined the properties of pentapartitioned neutrosophic (PN) sets and interval-valued
pentapartitioned neutrosophic sets (IVPN) while focusing on the enhancement of correlation coefficients. Mujahid et al. [10]
conducted a decision-making analysis aimed at lowering the mortality rate associated with the COVID-19 pandemic. They employed
the gq-rung orthopair fuzzy soft Bonferroni mean operator as a computational tool for their investigation. Mohsen et al. [11]
developed a numerical methodology to analyze a distributed order time fractional model of the COVID-19 contagion. The finite
difference scheme and the midpoint quadrature approach are utilized to solve this problem. Momena et al. [12] focused on the
identification of illness symptoms, followed by the application of a Multi-Criteria Decision Making (MCDM) diagnosis approach
to identify the probable ailment. For modeling and forecasting of COVID-19 contagion, Imo et al. [13] developed a novel hybrid
intelligent methodology for the optimization of parameter tuning in Interval Type-2 Intuitionistic Fuzzy Logic Systems (IT2IFLS).

In order to effectively mitigate the supply chain disruptions caused by the pandemic in Bangladesh, Doulotuzzaman et al. [14]
proposed a number of potential strategies, including contactless delivery, e-commerce adoption, robust collaborative demand
forecasting, decentralization of food manufacture and production, and effective information sharing. Imo et al. [15] created a
time series analysis of COVID-19 utilizing intuitionistic fuzzy logic, which enables in reluctance and provides membership and
non-membership functions which are optimized to forecast COVID-19 contagion cases. Singh et al. [16] constructed a mathematical
model to examine the transmission of malaria in individuals with severe infections, considering both crisp and fuzzy environments.
Alamin et al. [17] examined the resolution of the dissemination of contagious diseases using the SI model within a fuzzy environment.
In [18], Mobasshira investigated the effects of the pandemic on household expenditure in the United States. Specifically, it use
analysis of variance (ANOVA) to compare household expenses over two distinct periods. Erinle et al. [19] developed a deterministic
model to analyze the dynamic dissemination of the Lassa fever virus including relapse and reinfection rates. Idowu et al. [20]
introduced SQEIRVS model and provide empirical evidence supporting a positive association between an increase in transmission
rates and the contact with surfaces polluted by droplets from individuals infected with COVID-19. Joshua et al. [21] introduced an
innovative and viable human-bat (host-vector) model to predict the transmission and impact of the Ebola virus from bats to humans.
Erinle et al. [22] formulated a mathematical model to investigate the transmission dynamics and effect of control strategies bed
nets and treatment for malaria infection. Idowu & Loyinmi [23] created a SEQIHRV model to examine the dissemination dynamics
of COVID-19 illness and evaluate the influence of control measures as time-dependent measures on the spread of the COVID-19.
Soyoung Kim et al. [24] developed an optimal control model to mitigate the spread of influenza. Based on the government’s
intervention strategies, the simulation period is divided into three subsequent phases. In Period 2, the non-pharmaceutical and
antiviral techniques implemented, and in Period 3, the vaccine strategy added.

Mandal et al. [25] developed an epidemic model incorporates quarantine measures and government intervention strategies in
order to mitigate the dissemination of COVID-19 disease. Venkatesh and Ankamma Rao [26] formulated the SEAIQHRDP model
by using nonpharmaceutical interventions as control strategies to minimize the spread of the COVID disease. Libotto et al. [27]
introduced two optimum control problems namely mono-objective multi-objective to evaluate strategy for vaccine in the COVID-19
pandemic. Tchuenche et al. [28] created a an optimal control model with three controls vaccine effectiveness, vaccine waning,
and treatment. They also performed a sensitivity analysis on the model. The Khachanji et al. [29] formulated a compartmental
model that categorized contagion into nine steps and applied intervention strategies to mitigate the COVID-19 spread. Deng and
Zang [30] devised an epidemiological model to evaluate the magnitude of the pandemic and investigate potential control measures,
such as the utilization of media campaigns in conjunction with home isolation and the adoption of face-mask wearing strategy to
limit the recurrence of the epidemic in Brazil. Alemzewde et al. [31] proposed a deterministic model to evaluate the effectiveness
of two therapeutic interventions vaccination and treatment for controlling the COVID-19 pandemic. Venkatesh et al. [32] created
a multistrain epidemic model consisting of sixteen compartments to minimize the dissemination of COVID-19 by utilizing vaccine
and treatment measures. In this study the cost effective analysis method is applied to determine the best control strategy. For the
dynamics of COVID-19 in Ethiopia, Temesgen and Hana [33] constructed the optimal control problem, incorporating three controls
namely personal protection, vaccine, and treatment. This study employed a cost-effectiveness analysis to determine the optimum and
inexpensive. Acune et al. [34] proposed an optimum control problem that incorporates mixed constraints to analyze various vaccine
profiles and determine the most effective vaccination policies for COVID-19. Bishal et al. [35] constructed a optimal control model
that integrates age-specific dissemination dynamics of COVID-19 and evaluate the impact of vaccination and treatment strategies
on mitigating the burden of COVID-19.

Motivated by the above study, we developed a novel deterministic model consisting of ten compartments to analyze and control
the dissemination dynamics of COVID-19 in India. In this study, the individuals who received vaccinations are categorized into
three distinct groups: (1) individuals who have received vaccination but remain susceptible to contagion, (2) individuals who have
received vaccination with ineffective efficacy and (3) individuals who have received vaccination and are effectively protected from
the contagion. Moreover this model extends onto optimal control model to examine the impact of optimal vaccination and treatment
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Fig. 1. Flowchart of SVFPEAITRD model.

strategies in mitigating COVID-19 contagions and disease induced mortality. Finally the optimal Vaccination Strategy under varying
levels of vaccine efficacy and different vaccination coverages are also evaluated.

The rest of the article is structured as follows. In Section 2, the assumption and formulation of mathematical model is described.
In Section 3, the qualitative properties of proposed model are performed. In Section 4, parameters are estimated and sensitivity
analysis of R is discussed. In Section 5, the assumption and formulation of the optimal control model are briefly explained. The
single and double control strategies are conducted and also vaccination efficacy levels is examined. In Section 6, cost effectiveness
analysis is performed to determine the effective control strategy. Finally Section 7 concludes with summary of the results.

2. Model formulation

In this study, the entire population (N) is partitioned into ten distinct groups: susceptible population (S), exposed population
(E), effectively vaccinated but still unprotected population (V), ineffectively vaccinated population (F), protected population (P),
asymptomatic infected population (I), symptomatic infected population (A), hospitalized population (T), recovered population (R),
and deceased population (D). Thus

NO=SO+V@t)+ Ft)+ Pt)+ A@®)+ I(t) +T(t) + R(?) + D(1)

Compartment S(t) represents the number of individuals who are susceptible to a particular condition or disease. This compartment .S
is growing by recruitment rate A and decreasing by the natural mortality rate . Compartment .S reduces by the amount of ﬁcjaA%,
which denotes the number of individuals who contracted the virus through interaction with asymptomatic infected individuals,
decreases by a factor of ¢, I %, which represents the amount of individuals who have contracted the virus through contact with
symptomatic infected individuals and declines by a factor of ¢, T %, which depicting the number of individuals who have contracted
the virus through contact with infected individuals who are currently hospitalized. Additionally this compartment S falls by the
individuals who have received vaccination at a rate v. Hence, the rate of change of susceptible population per unit time is given by

% = A= BGA+GT + (,T)% -+ mS
Compartment V(t) depicts the number of individuals who received vaccination effectively yet remain susceptible to contagion.
A fully vaccinated individuals might not be totally protected against reinfection and might instead become susceptible to being
infected again. The compartment V' decreases by the quantity of ﬂg’aA%, which indicating the number of vaccinated persons who
got the virus by contact with the asymptomatic individuals, falls by the amount of ¢; I %, which illustrates the number of vaccinated
individuals who acquired the virus through interaction with the symptomatic infected individuals and diminishes by the amount
of ﬂg“,T%, which represents the number of vaccinated individuals who contracted the virus through contacting with the infected
individuals in hospital. This compartment V' increases by the amount of 5v.S, which shows that the number of susceptible individuals
who received perfected vaccination and secured. This compartment V' decreases by the rate 6 at which the vaccinated individuals
are protected and also declines by natural death rate . Thus the rate of change of vaccinated population per unit time is represented
by

dv

dr
Compartment F(t) shows the number of individuals who received vaccination ineffectively. The compartment F experiences a
decrease in value equal to the quantity of ﬁg“aAﬁ. This quantity represents the number of vaccinated individuals who are ineffective
in preventing the virus and got it through contact with asymptomatic individuals. Additionally, this compartment F decreases by
the amount of g¢; 1 %, which illustrates the number of ineffective vaccinated individuals who acquired the virus through interaction
with symptomatic infected individuals. Furthermore, the compartment F diminishes by the amount of ﬂg’,Tﬁ, which demonstrates
the number of ineffective vaccinated individuals who contracted the virus through contact with infected individuals admitted to

=P A+CT+ g,T)% VS — (6 +pV
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hospitals. This compartment F also decreases by the amount of #v.S, which denotes the number of susceptible individuals who are
perfectly vaccinated and secured. The compartment F grows at a rate of v for those who have received vaccinations and falls at
a rate of yu for those who have died naturally. Therefore the rate of change of ineffectively vaccinated population per unit time is
described by

dF F

a5 = PCAFTGI+ LT+ (L= mvS —uF

Compartment P(t) displays the quantity of individuals who have been protected as a result of getting a vaccination. The size of
this compartment P grows by the number of vaccinated individuals who are protected at a rate 6, while it is diminished by the

natural death rate u. The rate change of protected individuals per unit time is represented by

% =06V —uP
Compartment E(t) depicts the number of individuals who have been exposed to COVID-19 but have not yet exhibited clinical
symptoms. As a result of the susceptible, effectively vaccinated, and ineffectively vaccinated individuals who contracted the virus
through contact with asymptomatic infected individuals, symptomatic infected individuals and the individuals who admitted to
hospitals due severe contagion, this compartment E grows by the amount of (¢, A + {1 + C,T)(% + % + %). The decline in this
compartment E occurs at a rate of a due to the exposed individuals becomes infected at a rate of . This compartment E also
decreases by the natural mortality rate u. The rate of change of exposed individuals per unit time is illustrated by

L8 A+ GT+ETI + 1+ 1) — @+ E

Compartment A(t) denotes the number of individuals who are infected with a disease but do not exhibit any disease symptoms.
Compartment A grows by the amount of apE because a portion p of exposed individuals transition to asymptomatic infected (A) at
the rate a. This compartment A diminishes by the rate ¢ because the asymptomatic infected becomes symptomatic infected at the
rate o. This compartment A also reduces by both the recovery rate y, of asymptomatic infected individuals and the natural mortality
rate y. The rate of change asymptomatic individuals per unit time is represented by

a4 =apE—(c+7,+ WA

dt
Compartment I(t) shows the number of infected individuals who have symptoms of the disease. Given that the remaining portion
(1-p) of exposed individuals transition to symptomatic infected (/) at a rate of «, the population within this compartment I increases
by the quantity (1 — p)aE. The rate = at which infected individuals are admitted to hospitals due to severe contagion produces a
reduction in Compartment . This compartment I also decreases by the rate ¢. Furthermore this compartment I reduces by both the
mortality rate y; of symptomatic infected individuals and the natural mortality rate u. The rate of change of symptomatic infected
individuals per unit time is depicted by

% ={1-plaE+cA—(z+u; +pl
Compartment T(t) represents the number of infected individuals who were admitted to the hospital for treatment due to a severe
contagion. This compartment T increases by the rate z. The decline in this compartment T occurs by both the mortality rate y, of

hospitalized individuals and the natural mortality rate u. The rate of change of hospitalized individuals per unit time is denoted by

e AT R

t

Compartment R(t) depicts the number of individuals who have successfully recovered from the disease. This compartment R
increases by the recovery rates y, and y,, which correspond to asymptomatic infected individuals and hospitalized patients,
respectively. This compartment reduces by the natural mortality rate u. The rate of change of recovery individuals per unit time is
illustrated by

YaA+vT —puR

Compartment D(t) defines the number of individuals who have died as a result of severe contagion. This compartment D rises by
the death rate y; of symptomatic infected individuals and increases by the mortality rate y, of individuals who are hospitalized. The
rate of change of deceased individuals per unit time is demonstrated by

dD
- uill +pu, T

A schematic representation of the model is depicted in Fig. 1. The dynamics of the COVID-19 epidemic model are determined
by the following system of nonlinear ordinary differential equations:

83— AP A+ GI+EDIS v+ S
% =—p(A+ (,-I+C,T)% +nvS =G+ vV
LE — pEA+ T+ + (1 =S — uF
%§=5V—MP
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Table 1
Description of all parameters in SV FPEAITRD model.
Parameter Description Value Source
A Human recruitment rate Varies -
&, Modification factor of asymptomatic infected 0.4(0,1) [36]
individuals
& Modification factor of symptomatic infected 0.4(0,1) [37]1
individuals
& Modification factor of treatment individuals 0.3(0,1) [371
p Disease transmission rate 0.7571 Estimated
n vaccine efficacy 0.2814 Estimated
8 The rate at which vaccinated individuals are 0.1673 Estimated
protected
v Vaccination rate 0.67 [38]
P Portion of exposed individuals becomes 0.3[0.15,0.7] [39]
asymptomatic infected
a The rate at which the exposed individuals became infected 0.2[0.071,0.33] [39]
The rate at which symptomatic infected individuals 0.1840 [26]
are hospitalized
c The rate at which the individuals in asymptomatic 0.0125 [40]
infected transition to symptomatic infected
Ya Recovery rate of asymptomatic infected individuals 0.034 [40]
2 Recovery rate of hospitalized individuals 0.017 [40]
U Mortality rate of symptomatic individuals 0.003 [41]
Hy Mortality rate of hospitalized individuals 0.0014 [41]
U Natural mortality rate 0.0000391 [42]
dE S |4 F
i B A+ + §1T)(N v N) —(a+wE
% =apE—-(c+y,+ A
dl
ar =1 =-paE+cA—(r+u +pl
ar =xl = +pu+ )T
dt
dR
ar =y,A+yT —uR
dd_lt) =ul +uT (€8}

The primary conditions of the system (1) are taken as .S(0) > 0, V(0) > 0, F(0) > 0, P(0) > 0, E(0) > 0, A(0) > 0, I(0) > O,
T(0) > 0, R(0) > 0 and D(0) > 0.
Table 1 provides the explanation of all model parameters.

3. SVFPEAITRD model analysis

3.1. Positivity and boundedness of the solutions

Theorem 1. All the solutions of the system (1) with primary conditions remain positive and uniformly bounded in the region
& ={(S.V,F,P,E,A,I,T,RD)ER : 0<(S+V+F+P+E+A+I+T+R+D)< f}

Proof. Let (S(1),V(»), F(t), P(1), E(), A(t), I(1), T(1), R(®), D(1)) € R1? be solution of (1) for 7 € [0, 7]
From the first equation of system (1), we have
ds

—A- S_ —A-
E—A ﬂ(CaA+C,-I+C,T)N V+u)S=A-¥S

where V(1) = B(G,A + G 1 +§T) 5 + (v + )
Then &3 +¥S =420
After integration, we get

t t 1
S() =85, exp <—/ Y(s) ds> + Aexp (—/ ‘P(s)ds) / eo ¥Wdu g5 5
0 0 0

The second equation of system (1) gives
a@
dt
where @(1) = ({,A + &1 +§T)w + (6 + )

=-Bl A+ T+ C,T)% +nvS =G+ pV > -0V
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Then ‘il—‘: > -0V
By integrating, we get

1
V() > VO)exp <— / oW du) >0
0

From the third equation of system (1), we obtain
dF

O o —pEA+ I +ETIT + (1= nvS = uF 2~ F

where y = B, A+ T+ T +n
Following the integration, we get

1
F(t) > F(0)exp <—/ xW) du) >0
0

The fourth equation of system (1) provides
dP
— =6V —uP >—-uP
dr pE ==

After the integration process, we obtain

t
P(t) > P(O)exp (— / u du> >0
0

From the fifth equation of system (1), we get
dE S |4 F
— = . — e — 4+ =)= >
T /i(CaA+QI+C,T)(N+ N+ N) (a+wE > —(a+ uE

By integrating, we obtain

'
E(t) > E(0)exp (—/ (a+ p) du) >0
0

Through the sixth equation of system (1), we have

I8 wpE =1+ A2 =G+ 7,4 A

After the integration, we gain

'
A(t) > A(0) exp (—/ (c+y,+m du) >0
0

Similarly we prove that I(r) > 0, T(r) > 0, R(t) > 0 and D(t) > 0
Consider the total population

N@E) = S + V(@) + Ft) + P(t) + EG) + A@®) + 1) + T(t) + R() + D)

By adding all equations of system (1) and using above formula, we get

dN
— =A-uN
dt #

Following the integration, we have

N = A1 e )+ N©O)e ™ fori 20
U

If N(0) < £ then N(1) < 4
If N(O) > %, then N(t) asymptotically approaches to % and the number of infected population approach to zero for larger t.
Hence, all the solution trajectories initiating in R.? will enter in & with finite time.

Therefore @ is an attracting set. []
3.2. Contagion-free equilibrium and fundamental reproduction number

Finding an equilibrium points of differential equation is always the first phase in understanding it. In epidemiology there are two
different types of equilibrium points. the contagion-free equilibrium point, where the infected population is zero and the endemic
equilibrium point at which infection population does not vanish. The local stability of contagion-free and endemic equilibria indicates
that these states can be persisted in minor perturbations whereas global stability implies that these states can persist even in the
presence of significant perturbations. The global stability of the contagion-free equilibrium point signifies the complete eradication
of the disease from the system, while the global stability of the endemic equilibrium point indicates the sustained presence of the
disease, leading to its endemic disease. In this section, we discuss about the contagion-free equilibrium of proposed model.
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The last equation of the system (1) can be omitted because the preceding nine equations are independent of it. The contagion-free
equilibrium E* of the proposed model is obtained by setting the equations of the system (1) to zero and thenusing E=A=1=T =0
to solve the resulting algebraic system for the state variables. Therefore the contagion-free equilibrium is

2 ( A Anv A(l —n)v Anvé
TR WG+ Ve uv+ @+ )
The fundamental reproduction number R, [43-45] is a significant epidemiological factor in discerning the characteristics of a given
disease. It measures the dissemination potential of contagious disease in a population. The fundamental reproduction number is
defined as the expected number of secondary infected cases that will arise from a single primary infected case in a population that
is otherwise susceptible.

When R, < 1, the existing contagions are less than a single new contagion. In this scenario, the prevalence of the disease will
diminish over time and ultimately disappear from existence. If R, = 1, there exists single contagion only. There will not be an
increase in cases or outbreak; the illness will continue to exist in a stable state. When R, > 1, each contagion that currently exists
causes numerous contagions. The transmission of the disease can occur through interaction with others, potentially leading to the
emergence of a disease outbreak or epidemic. We find the fundamental reproduction number by using the Next Generation Matrix
Method as follows:

=B A+EGI+ETHS+V + F)

0,0,0,0,0)

0
F= 0
0
0
(a+mwE
Vo —apE+(c+y,+nA

—(1=p)aE —cA+ (r+ p; + )l
=l + @+ p + T

The Jacobian matrices of two matrices F and V are

0 Blux BGx BGx
0 0 0 0

=lo o 0 0
0 0 0 0
(o + ) 0 0 0
v=| “®  (@tratw 0 0
—(1=pa -0 (m+ p + 1) 0
0 0 -z e+ w1+ 1)
— — AGHW)(v+m+Av(u—ns)
where y =S+ V + F = prETwsT
Hence the fundamental reproduction number, the spectral radius of the matrix FV~! is
R = A+ w)(v + p) + Av(u — nd) BL.po BEi(ry + py + 1) + (B ) + po) + (o + 7, + 1)1 — o)
0 u@ + (v + p) (@a+ o +y,+m (a+ (o +y, + W@+ p; + 1, + e + 1)

Theorem 2. When R, < 1, then the contagion-free equilibrium E* is locally asymptotically stable and unstable otherwise.

Proof. The Jacobian matrix corresponding to the system (1) at contagion-free equilibrium E* is

v+ p) 0 0 0 0 —BL,S° -p¢;S° -p¢,S° 0

v —G+mw 0 0 0 B0 —B&v° -pg V0 0

(1=n)v 0 -u 0 0 -p¢,F° —BLF° —pg, FO 0

0 5 0 —u 0 0 0 0 0

Jpe = 0 0 0 0 —(a+p Blax BCix Bex 0
0 0 0 0 ap —(c+y,+n 0 0 0

0 0 0 0 (1-pa o —(7 + p; + p) 0 0

0 0 0 0 0 0 r “itutw 0

0 0 0 0 0 Ya 0 2 —u

Here y = SO+ V0 + FO = AG+(v+)+AV(H=n5)
.. . H@G+p)(vH), .
The characteristic equation of the matrix Jg« is | Jg« — AT |=0.

A+ WA+ @6 + WA+ (v + p)
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—(a+u) Bl x BCix BEx
ap —(c+vy,+H 0 0 -0
(1-pa c —(r+ p; + ) 0 e
0 0 T =+ e+ 0

S A+ A+ G+ A+ v+ A+ B+ a4 +azd+a,) =0

where

ap =@+ +@+y,+)+@+up+uw)+ G+ p+p,
a = (a+m)+@+y,+u)+@+p+ )+ @+ +0)y + p+ )+ (@ + )
(c+yv,+mw+@+y,+w+ @+ p + W@+ p+ ) — (1 = p)apé; + appl,),
a; = @+l +y, + )@+ u+ )+ (0 +y,+ 1)+ @+ 4 + 1)
@+ v+ W@+ p+ W+ i+ ) — x (T + p+ apl, + (0 +y, + 1)
(1 = p)apl; + oapl, + x(1 = p)apl; + (apl, + (1 = p)afC)(y, + p; + w1,
ag = (a+pu)o+7,+ @+ p + W@ + p; + 1)1 — Ry)
Here -u, -u, -u, (6 + p), and (v + p) are the first five eigen values of J. and the remaining four eigen values will be attained from
the fourth degree equation (A* + a; A% + a, 4> + azA+ay) =0
By Routh-Hurwitz criterion, E* is locally asymptotically stable if a; > 0, a, > 0, a3 > 0, a4 > 0 and a,a3a, > a% + alai
Clearly a; >0, a, >0, a3 >0, and a4 >0 if Ry < 1
It is simple to verify that aya3a, > a3 +a;a? if Ry < 1
Hence the contagion-free equilibrium point E* is locally asymptotically stable if R, < 1

Based on Descartes’ rule of signs, it can be deduced that there exists at least one positive eigenvalue when a, > 0 at R > 1.
Therefore E* is locally asymptotically unstable for Ry > 1. [

Theorem 3. The contagion free equilibrium E* = ( ﬁ,O, 0,0,0,0,0) of system (1) is globally asymptotic stable if Ry < 1
Proof. From the system (1), it can be observed that S, V, F, P and R are contagion-free classes, and E, A, I, and T are infected

classes. So that (1) can be written as
dXx

— =MX,Y
P X,Y)
% = W(X,Y), W(X,0) =0,

where X = (S,V,F,P,R) € Rfr denotes the uninfected population and Y = (E, A,I,T) € Ri represents the infected populations.
Thus E* = (X*,0) identifies the contagion free equilibrium of system (1).
For the system (1), M(X,Y) and W (X,Y) are described as follows:

A= BLA+GT+ET)R = (v +w)S
—BCA+GT+ET) 5 +1vS =6+ pV
MX,Y) == A+ T+ T % + (1= mvS — uF |-

SV — uP
YaA+yT —uR

—BCA+GI+ LT + 5 + 3) — @+ WE
E—(c+y,+mnA
WX.Y) = apE —(c+y,+n)
(1=p)aE+0cA—(m+pu; +pl
ol =y, +p + )T
From the expression M(X,Y), it easily show that M(X,0) =0
To prove that E* is asymptomatically stable globally, the following two conditions shall be satisfied.

1. % = M(X,0) where X* is asymptotically stable globally.
2. W(X,Y)=KY - W(X,Y), W(X,Y) >0, for (X,Y)e¥

where K = Dy W (X*,0) is Metzler Matrix
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The equations of system (1) can be written as

S A—W+p)S
d 14 nvS — (6 + wV
pr F|l=MX,00=|(0-nvS —uF
P oV —uP
R —uR

After integrating, we get

A, SO g

S =
® V+u V+u
) = Anv VO  —wtuerun
vV+w@+u) v+ +mw
F@) = A(l —n)v F(0) e OHmmt,
V+wu v+ wu
P@) = Anvé PO —uwruerun

v+ +p)  puv+p)6+ p
R(t) = R(0)e™

As t —» o0, we get
_ A _ A _ Ad=nv __ A _
SO = VO = oo FO= 50 P g() wrnerm nd R =0.
Thus X* is globally asymptotically stable for S =M(X,0).
Therefore the first condition is satisfied.
Now the matrices K and W (X,Y) of system (1) can be written as K =

—(a+p) Bax Beix BEix 0
ap —(c+y,+u) 0 0 0
1-pa o —(+ p; + 1) 0 0
0 0 k4 -G+ tp) 0
_ AG+m)(v+p)+AV(u—nd)
where y = HE+H) (V)

BEAU = )+ LI — )+ LT = 3)

0

&W(X,Y)= 0

0

0

Since all non-diagonal elements of matrix K is non-negative, K is Metzler matrix and as S(t) < N(t), W(X,Y) > 0.
Thus the second condition also satisfied.
Hence the contagion-free equilibrium E* is globally asymptotically stable in the region @ for Ry < 1. [J

4. Numerical simulation
4.1. Model calibration

The method of data fitting involves fitting the proposed model to the collected data and evaluating the fit accuracy. Results are
more accurate when a model is well-fitted. We fit the SVFPEAITRD model to the daily confirmed COVID-19 cases in India [46]
collected from January 30, 2020 to January 12, 2021 The procedure of fitting the model to COVID-19 data has been executed using
the nonlinear least-square function Isgnonlin in MATLAB. By fitting the model to daily confirmed cases, three parameters §, v and
6 are estimated. For simulation the initial values of stated variables are taken as .S(0) = 1247185021, V' (0) = 0, F(0) = 0, P(0) =0,
E(0) = 6000, A(0) = 10, I(0) =5, T(0) = 1, R(0) =1 and D(0) = 0. The values of model parameters are mentioned in Table 1. The
Fig. 2 depicts the SVFPEAITRD model fit to COVID-19 data in India. In this Figure, the red solid curve displays the model simulation
and the blue dotted curve represents the daily confirmed COVID-19 cases.

4.2. Sensitivity analysis

Sensitivity analysis is a significant tool for examining the importance of various factors in disease dissemination. It aids in
understanding of how the reproduction number value varies with respect to various factors. Once these factors are known, a range
of techniques can be used to achieve the best results. In [47] presents a thorough investigation of dengue disease sensitivity. The
ratio of the relative change in a variable to the relative change in the factor is known as the Normalized forward sensitivity index
of the variable with respect to a factor. The sensitivity index can also be constructed using partial derivatives when the variable
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Fig. 2. Model fitting with daily confirmed COVID-19 cases.
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Fig. 3. Sensitivity indices of R, with respect to various parameters.

is a function that can be differentiated of the factor. The normalized forward sensitivity index of R,, which relies differently on a
parameter b, is given by [48], and it is defined as follows:

Ry _ Ry b

b T ob Ry

Fig. 3 depicts the normalized forward sensitivity indices of R,. From this Fig. 3, we examined that the parameters A, ¢,, ¢, &, a,
p and ¢ have positive correlations with R, as well as the parameters 6, v, n, v,, 7;» H;» My, and p have negative correlations with
R,. It is undoubtedly that the three factors protection rate (§), vaccination rate (v) and vaccine efficacy (1) have a major impact on
the lowering of R,. The fundamental reproduction number will also decrease with an increase in treatment rate of hospitalization
individuals.

Fig. 4 demonstrates the contour plots of the fundamental reproduction number R, with respect to the disease dissemination rate
(p) versus vaccination rate (v) and protection rate (§) versus vaccination rate (v) respectively. As shown in Fig. 4(a), R, decreases
when vaccination rate and protection rate rise. Through increasing the vaccination rate v, the number of vaccinated individuals
increases and the rate of protection is also increases. In Fig. 4(b), it is illustrated that R, will rise as disease dissemination rate
increases and vaccination rate decreases.

10
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Fig. 4. Contour plots of R, as a functions of (a) R, versus (5, v) (b) R, versus (f, v).

5. Optimal control
5.1. Optimal control problem

The effective implementation of control measures, such as vaccination or drug therapy, is a significant concern for policymakers,
health authorities, and government organizations. Since the substantial financial resources required for the implementation of these
control measures, it is crucial to effectively control the dissemination of the disease while simultaneously minimizing overall costs.
In this section, we develop an optimum control problem to analyze the impact of optimal vaccine and treatment strategies on
minimizing the number of COVID-19 contagions and the total costs associated with the implementation of these control techniques.

Vaccination: Vaccination has been widely recognized as the most effective method for controlling and minimizing the spread
of infectious illnesses. Vaccines are administered to the susceptible sub-population in order to activate an immune response that
enables the body to identify the pathogen as a potential threat and subsequently eliminate it. This mechanism effectively prevents
the propagation of the disease within the susceptible individuals. Vaccination additionally aids in the identification and elimination
of any microbes connected with that particular agent, which may be detected in future. The efficacy of COVID-19 vaccines in
preventing symptomatic COVID-19 contagions has been demonstrated to be as high as 95%. Therefore the first preventive measure
u; is the implementation of vaccination. This strategy involves administering vaccines to all susceptible individuals, which results
a significant reduction in the propagation of the COVID disease.

Treatment: In order to mitigate the burden of disease and minimize the propagation of contagion, it is crucial to provide
better treatment for the infected and hospitalized populations. Based on studies in [49,50], the administration of a combination
therapy involving various antiviral drugs (such as Remdesivir, favipiravir, interferon, lopinavir, or arbidol) has the potential to
mitigate inflammation in individuals with severe cases of COVID-19. The utilization of a combination therapy involving antiviral
medications and immune-modulating drugs is a rational approach, particularly for infected individuals in critical conditions. So
that the other two controls u, and u; are best treatment for the symptomatic infected and hospitalized populations. These treatment
would include the administration of immunomodulators like INF or zinc to strengthen the immune system or various prescribed
antiviral medications like remdesivir, arbidol, etc. that prevent replication of the virus.

The following optimal control model is created based on above assumptions:

ds
dr
v
dr
dF

= A— P A+CT + c,r)% —y + WS
= PEA+GT + T2+ S = G+ WV

= <PEA+ G+ ETIT + (1 =0 S = uF

dt
dE _ S,V F
I —ﬂ(éaA+C,-I+C,T)(N+ N+N> (a+nE

% =6V —uP
dA
dt
dI
dt
dT
dt
dR
dt

=apE—(c+y,+ A

=0 -paE+0cA—(uy+ 7+ p; +pu)l
=xl —(uz+y, +uy +w)T

=y, A+yT +uyl +usT — uR

11
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dD

For the fixed time 7, the objective functional is defined by

7 ol C, G
J(uy (), up (1), uz(1) = /0 I+T+ Tu% + ?ug + Tugdt 3)
where C,, C, and Cj; are weight constants and ¢, is final time.

We aim to determine the optimum controls, u;(¢), u,(f) and u5(1), such that

J i, uy,uy) = ming, ) cp J (g, Uy, u3),
where U = {u;(#), u(t), u(t): measurable and 0 < u; (1), u,(1),u3(1) <1, t€[0,2/]}

The Pontryagin’s Maximum Principle theory [51] provides the necessary requirements that an optimal control system must
satisfy.

For our optimal problem, the Hamiltonian H is given by

Cir G, G, ds dv dF dP
H=I+T+—2+ 22+ 22+ 1,2 + L, + 4,55 + 4,5
T T I T AT TR T T Ty,
dE dA dI dT dR dD
tAs— + Ag—— + Ag— + Adg— + dg— + Ajg—
Sar % T ar T % ar T ar T M0y

where Ay, 4y, 43, A4, 45, Ag, A7, Ag, 49 and 4, are the adjoint variables correspond to the state variables S, V, F, P, E, A, I, T, R
and D.

Theorem 4. If the couple (S*,V*, F*, P*, A* I*,T*, R*, D*) is the solution of the control system (2) corresponding to an optimal
control uj, u3, w3 in U then there exist adjoint variables 4; that satisfying % = —% with the transversality conditions, A,(t;) = 0 for
i=S,V,F,P,E,A I,T,R,D. Additionally, fort € [0,t I the optimal controls uT, u;, u§ are obtained by

wi(r) = min{1, max 0, L=RSHATINS )

|
. (A—Ag)I
u;(l) = min{1, max{0, C—}},

(1) = min{1, max{0, M}}
G

Proof. The Hamiltonian function is

H=T+T+ 202+ 202+ B 4 (A= BEA+ T+ 6T — (g + 1) + In(PCuA + T +ETVL 40 S = 5+ )
= Ty T 1 a i N 1 TH 2 a i N nuy H
+ Ay (=BG A+ T + C,T)% + (1= muS) + A48V — uP) + As(—pC A+ &I + Z_,‘,T)(% + % + %) —(@+d)E)

+ Ag(apE—(c+y, + WA+ (1 = p)aE+0cA—(uy + 7+ p; + )+ Ag(wl — (uz + v, + pu, + wT)
+ Ag(,A+y, T +uyl +u3T — uR) + Ayo(p; L + u,T)

Using an adequate partial derivatives of H with respect to the state variables, the system of adjoint equations can be derived as

& ——ﬁ—(/l —A)ﬂ(CA+¢I+CT)l+(/1 — Anuv+ (A — Auv+ A
. s WM 5 a i "IN 3 2Ny 1 34 1M
&——ﬂ—(i —A)ﬂ(§A+§l+§T)i+(/1 — A6+ A

i ov V2 5 a i "IN 2 4 2H

dip oH 1

ey (43 —ﬂs)ﬂ(CaA"'CfiI"'CzT)ﬁ + Azu

dip _ M _,

dr op M

di oH

d_tE = - 5 = (A7 — Ag)pa + (A5 — A)a + Asp

diy oH S 14 F

L =-i= =1+ = A5)Pl— + (4, — '15)ﬂiaﬁ + (4 - is)ﬁgaﬁ + (e = A7)0

+(Ag — Ag)y, + Agu

S o T 1 Gy AP+ Uy = ABE Y+ (= ARG 4y =
+ (A = Agluy + (A7 — Ay + Au

DT L4 Gy = ARG+ (g = G+ (= A
+ (A = Ag)m + (Ag — Agluz + (Ag — A1)y, + (Ag — A1)y + Ag

dig _ _oH _,

7 - _ﬁ = AgH

dip _ M _,

dt = oD
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By differentiating the Hamiltonian M with respect to optimum controls u, u,, u; and using optimum conditions % =0, % =0,
1 2

oM _
and Pl 0, we get

A = A3)S + (4 = ApnS
S—H=C1u1+/11(—S)+/12(;15)+/13(1—r/)S;"ul I B e e i
uy G
oH (A9 = 49)I
@=C2u2—/17l+/19]=>u2=c—2
oH (4g = AT
Gy = Cots = AT+ doT =y = 2

Hence, for these controls u’f, u;, u;, we get optimum values of J [

5.2. Optimal control model simulation

In this section numerical simulation is performed to evaluate the effectiveness of both vaccination and treatment strategies over
a period of 300 days. The results are simulated in MATLAB software using a combination of forward and backward difference
approximations methods [52]. The extended system (2) is solved by using forward difference approximation, whereas the adjoint
state system is solved by employing backward difference approximation.

The parameter values that are listed in Table 1 are used for this simulation. It is assumed that the value of weight constant C,
is 1015 based on the studies in [35,53] and the values of the weight constants C, and C; are taken as 200 and 100 respectively.

We analyze three different cases in this simulation.

1. Optimal vaccination and treatment strategy
2. Optimal vaccination strategy under various vaccination coverages
3. Optimal vaccination strategy under various vaccine efficacy levels

5.3. Optimal vaccination and treatment strategy

This section analyze the impact of optimal vaccination and treatment strategies in reducing the COVID -19 contagions.
Fig. 5 displays the proportions of asymptomatic infected, symptomatic infected, treatment and dead populations under different
combinations of optimal controls strategies. This Fig. 5 reveals that the combination of vaccination and treatment strategies is more
effective at minimizing COVID-19 contagions and disease-related fatalities than the vaccination strategy or treatment strategy alone.
Comparing the vaccine strategy to the treatment strategy, we also observe that the vaccination strategy is more effective at lowering
COVID-19 contagions and fatalities. Fig. 6 illustrates the changes in control profile when the cost of different controls decreases. It is
observed that a decline in the cost of control parameters leads to an increase in the duration required to maintain these controls at
1. This phenomenon is demonstrated that as the costs associated with vaccines and drugs for implementing these controls decrease,
the probability of more investment on these measures would increase.

5.4. Optimal vaccination strategy under various vaccination coverages

In this section, we examine the impact of an optimal vaccination strategy on the COVID-19 contagions at various vaccine coverage
levels. The values of weight constant C, are taken as 10!, 10'> and 10'%. In this cases larger value indicates that the cost related
to vaccination is high, which results in lower vaccination coverages. Fig. 7 represents the variations in total infected and deceased
populations with respect to C,. This Fig. 7 illustrates that a decrease in the weight constant value leads to a reduction in the
proportions of both infected and deceased populations. This happens due to implementation of more expensive vaccines results in
lower vaccination rates, which increases the incidence of contagions and fatalities. Therefore widespread use of vaccines can limit
the dissemination of COVID-19 which leads to a reduction in deaths and contagions peaks.

5.5. Optimal vaccination strategy under various vaccine efficacy levels

The efficacy of vaccines may vary over time as new variants with various mutations appear. In this section, we alter the
vaccination efficacy levels against COVID-19 disease and evaluate their impact on the proportion of COVID-19 contagions and
fatalities. Using three distinct vaccine efficacy levels 60%, 80%, and 90% of the vaccine, we plot the proportions of both infected
and dead populations in Fig. 8. This Fig. 8 demonstrates that as vaccine efficacy levels increase, the total number of COVID-19
contagions and fatalities decline. This concludes that the COVID-19 contagions peak can be reduced by the implementation of
vaccines with higher efficacy.

13



A. Venkatesh and M. Ankamma

Asymptomatic infected population

Hospitalized population

Fig. 5. Variations in asymptomatic infected, symptomatic infected, hospitalized, and dead populations under different optimal control strategies.
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Fig. 8. Under various vaccine efficacy levels (a) the infected population (A+I) (b) the dead population.

6. Cost-effectiveness analysis

In order to effectively minimize the dissemination of COVID-19 at the lowest feasible cost, it is crucial to identify the most
cost-effective optimal control strategy among the single and combined control strategies. The cost effectiveness analysis enables
the demonstration of the economic advantages related to each control strategy. It is used to compare the relative costs as well
as outcomes of various strategies. In this study the cost effectiveness is comprehensively investigated using the incremental cost
effectiveness ratio (ICER) [32,54], which evaluates the variances between the costs and health outcomes of the two competing
intervention techniques. Let C},, C; and Cy; represent the vaccination control strategy, treatment control strategy and combination
of vaccination and treatment strategy. The ICER is determined by dividing the difference in costs between strategies X and Y by
the difference in the number of contagions averted between strategies X and Y where X,Y € {Cr, Cy,,Cyr}.

Given two competing strategies X and Y, where strategy Y is more effective than strategy X (T A(Y) > T A(X)), the ICER values
are computed as follows:

_ TC(X)
ICER(X) = TAD
[CER(Y) = LEX) =TCX)

TAY)-TAX)

where the total cost (TC) of each strategy is calculated using the objective functional (3) and the total contagions averted (TA) is
computed by subtracting the total number of COVID-19 contagions with strategy from the total number of COVID-19 contagions
without strategy.

The values of total averted COVID-19 contagions and total costs of control strategies Cy,, C; and Cy is listed in Table 2 in an
ascending order of total averted COVID-19 contagions.

Now we compute and compare the strategy C; with strategy Cj, as shown Table 3

The ICER of C; and Cy; are calculated as follows:

4
ICERCy) = 23X _ 0175

3.3x 100
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Table 2
Control strategies in increasing order averted contagions.
Strategy Total averted contagions (TA) Total cost (TC)
Cr 3.3 x10° 5.8 x 10*
Cy 4.1 x10° 7.6 x 10*
Cyr 6.7 x 10° 7.1 x10*

Table 3

Total averted contagions, total costs and ICER values of C,, and Cy .
Strategy Total averted contagions (TA) Total cost (TC) ICER
Cr 3.3 x10° 5.8 x 10* 0.0175
Cyr 6.7 x 10° 7.1 x10* 0.0038

Table 4

Total averted contagions, total costs and ICER for control strategies C,, and Cy .
Strategy Total averted contagions (TA) Total cost (TC) ICER
Cy 4.1 x10° 7.6 x10* 0.0185
Cyr 6.7 x 10° 7.1 x10* —-0.0019

(7.1 =5.8) x 10*
(6.7 —3.3) x 10°
Comparing Cy to Cy, the ICER of Cy is higher than ICER of C} ;. This reveals that C; is more expensive and less efficient than
Cyr. Hence the implementation of treatment control strategy C removed from the list. The next comparison of strategy C,, with
strategy Cy, is mentioned in Table 4.
The ICER for Cy, and C); are computed as follows:

ICER(Cyy) = =0.0038

.6) x 10*
1CER(Cy) = LOX10 0185
@.1)x 10°
_ 4
ICER(Cyp) = TLZTOXIC 0019

(6.7 —4.1)x 106

Since ICER of Cy,t is less than ICER of Cy,, strategy Cy+ is less expensive and more effective than C},. Hence the implementation
of vaccination control strategy C,, is eliminated from the list. In light of this, it can be shown that the combination of vaccination
and treatment control strategy is effectively minimizing the COVID-19 contagions and disease induced mortality in the population.

6.1. Limitations

» This study focuses exclusively on the effects of pharmaceutical interventions on COVID-19 infections, and does not encompass
non-pharmaceutical interventions such as awareness programs and safety measures.

» This model does not incorporate the stability analysis of the endemic equilibrium of the model due to the presence of ten
compartments.

6.2. Future research scope

There will be scope on creating an optimal control model to analyze the dynamics of COVID-19 and TB or HIV/AIDS co-contagion
and evaluate the impact of pharmaceutical and non-pharmaceutical interventions on this co-contagion problem.

7. Conclusions

In this study a ten compartment mathematical model was formulated to analyze and mitigate the dissemination of COVID-19
contagion in India. The positivity and boundedness of the model were first established, and then its fundamental reproduction
number was determined to be 1.847. The contagion-free equilibrium was both locally and globally asymptotically stable if R, is
below unity. By fitting the proposed model to the daily confirmed COVID-19 cases in India and estimated the disease transmission
rate, vaccine efficacy and protection rate. Sensitive analysis of R, was determined that if vaccination rate rises then the vaccine
effectiveness, protection rate, and recovery rate increase. As a result, the dissemination of COVID-19 can be controlled. Furthermore
the proposed model was extended to an optimal control problem to evaluate the impact of treatment and vaccination strategies
on COVID-19 contagions over a 300 days period. Single and combined control strategies were conducted. The numerical analysis
shown that each strategy has potential to mitigate the dissemination of COVID disease. Cost-effectiveness analysis was revealed that
the combination of vaccination and treatment strategy was most effective and least costly strategy in minimizing the COVID-19
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contagions and disease-induced deaths. Finally, it was determined that if vaccine efficacy risen, COVID-19 contagions and disease-
related deaths were significantly reduced. The goal of this study is to better understand the role that treatment and vaccination
as preventive strategies in reducing COVID-19 contagions, in order to aid policymakers in developing techniques that effectively
prevent the further spread of the COVID-19 disease.
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