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Abstract. In this paper, we present a method for deriving quantifiers of the extended Prelle—Singer (PS) method
using Darboux polynomials for third-order nonlinear ordinary differential equations. By knowing the Darboux
polynomials and their co-factors, we extract the extended PS method’s quantities without evaluating the PS method’s
determining equations. We consider three different cases of known Darboux polynomials. In the first case, we prove
the integrability of the given third-order nonlinear equation by utilising the quantifiers of the PS method from the
two known Darboux polynomials. If we know only one Darboux polynomial, then the integrability of the given
equation will be dealt as Case 2. Likewise, Case 3 discusses the integrability of the given system where we have
two Darboux polynomials and one set of PS method quantity. The established interconnection not only helps in
deriving the integrable quantifiers without solving the underlying determining equations, but also provides a way to
prove the complete integrability and helps us in deriving the general solution of the given equation. We demonstrate

the utility of this procedure with three different examples.
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1. Introduction

Identifying the integrable systems is of great interest
due to their importance and significance in the field
of science and engineering. Integrability is the unique
property of these integrable systems. Though there exist
many methods exist in the literature to deal with the inte-
grability of a given system, there is no unique method
to study all the integrable systems. Each integrable sys-
tem has to be studied and analysed separately. These
integrable systems are governed by either nonlinear
partial differential equations (PDEs) or nonlinear ordi-
nary differential equations (ODESs). Several studies had
already been reported in the literature [1-6] to analyse
the integrability of the systems governed by nonlinear
PDEs. For more details about the integrability of non-
linear PDEs, one can refer to refs [7—11] and references
therein. Likewise, methods have been developed to inte-
grate and find the solutions of nonlinear ODEs [12,13].
Some of the well-known mathematical methods that are
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being used in the recent literature to derive the solu-
tions of nonlinear ODEs are: (i) Lie symmetry analysis
[14-17], (ii) extended Prelle—Singer procedure [18-23],
(ii1) Darboux method [24-28], (iv) Jacobi last multiplier
method [29-31], (v) A-symmetry analysis [32-37], (vi)
homogeneous balance method [38], its extended ver-
sions and so on [39-43]. Each method has its own
benefits and limitations. As far as the limitations of these
methods are concerned, one has to go for an ansatz
to determine the Darboux polynomials (DPs) in the
Darboux method. Suppose the system admits a trigono-
metric form of integral, it then becomes very difficult to
obtain through the DP method. As far as the extended
Prelle-Singer (PS) procedure is concerned, a proper
ansatz should be made to determine the underlying inte-
grable quantifiers, namely the null forms (P, Q) and
integrating factors (R). It has been shown that certain
equations are to be integrable even though they do not
possess Lie point symmetries. In such circumstances,
to construct the integrals, it is informative to search for
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more generalised symmetries. Determining those gen-
eralised symmetries is often a cumbersome task.

Recently, efforts have been made to interlink the
analytical methods [34,44-46]. By interconnecting the
methods, we can derive one integrability quantifier from
the other. For example, suppose we know PS quantities,
that are null forms and integrating factors, then the estab-
lished interconnections will help in deriving the other
integrability quantifiers, namely DPs, Lie symmetries,
Jacobi last multipliers and integrating factors without
recourse to the respective method.

In one of our earlier works, by considering second-
order ODEs, we have shown a method to derive extended
PS quantities from DPs [44]. We have also analysed the
connection between the various analytical methods for
third-order ODEs and nth-order ODEs in refs [45,46],
respectively. From the analysis, we have observed that
some of the interconnections remain the same for any
order ODEs except their order. However, the rare con-
nections are more complex than the corresponding
lower-order connections. In this paper, we create an
interlink between DPs and the extended PS quantities
for third-order ODEs. We begin our work with DP and
its co-factor at hand. Using this co-factor, we determine
another function which in turn helps to identify second
null form from the first null form. Finding this func-
tion plays a major role in this procedure. Determination
of this function enables us to derive other integrability
quantifiers algebraically. We explain the interconnection
in three categories. In the first category, we consider
a situation in which we know two sets of DPs and
their co-factors. Here, we aim to determine three null
forms, three integrating factors and three integrals for
the considered system from the two known DPs and their
co-factors. Interestingly, we also explore the third DP
and its co-factor through the established interconnec-
tions without solving the DP determining equation. In
the second category, we consider a situation in which we
know only one DP and its co-factor for the given ODE.
The method of deriving the other unknown quantifiers,
namely two more DPs and their co-factors and three
sets of PS quantities and their associated integrals from
the known quantifier will be discussed in the second
case. In the third category, we consider a case in which
we know two DPs and their co-factors and also one set
of PS quantities. In this case, we show that the other
quantifiers and the complete integrability of the given
ODE can be established by mere algebraic calculations.
The main advantage of the proposed procedure is that
instead of solving the cumbersome determining equa-
tions in the concerned method, one can derive a number
of integrability quantifiers from the known quantifier.

This framework of the article is as follows: In §2, we
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recall the two analytical methods for third-order nonlin-
ear ODEs, namely Darboux method and the extended PS
procedure. In §3, we connect DPs and their co-factors
with extended PS quantities. In §4, we demonstrate the
method of deriving unknown quantifiers from known
quantifiers for three different situations. In §5, we illus-
trate the procedure with suitable examples. Finally, we
conclude our article in §6.

2. Analytical methods for the third-order ODEs

In this section, in order to be self-contained, we briefly
recall the analytical methods, namely Darboux method
and the extended PS procedure, which we intend to inter-
connect.

2.1 Darboux method

Let us consider a third-order nonlinear ODE of the form
X =t x, X, %), (1

where ¢ is a function of ¢, x, X and X and over-
dot denotes differentiation with respect to 7. Let us
suppose that eq. (1) admits an integral of the form
I = Li(t,x,x,X)/1r(t, x, x,X) where [} and [, are
functions of their arguments. Upon differentiating this
integral with respect to ¢, we find

dr dn

—=__:0 l‘=hts7"“l
a0 hi=htx e nl

= DI[l1] = h(t,x, x, X)I;. 2)

Equation (2) is the determining equation for the DP [24,
25,28]. Here
p=C i yzl 4y

ot ax 0x 0x
is the total differential operator and h(¢, x, x, X) is the
DP cofactor. Solving (2), we can determine DPs (/) and
their co-factors (h) of eq. (1). The ratio of two DPs
whose co-factors are the same provides an integral for
eq. (1) [25]. Even though it is sufficient to know particu-
lar solutions of (2) to explore those solutions, one often
assumes an ansatz for the functions / and A.

2.2 Extended PS procedure

In this procedure, we rewrite eq. (1) in the form dx —
¢ dr = 0. Now adding the terms Q(¢, x, X, X)X df —
O(t,x,x,X)dx and P(¢t, x, x,X)xdr— P(t,x,x, X)dx
in this equation, we get

(¢ + Pi + Qi)dt — Pdx — Qdi — dit = 0. 3)
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Note that the terms which we appended above reshape
the third-order ODE (1) into a more general 1-form. The
functions P and Q are called null forms. Upon multi-
plying eq. (3) by an integrating factor (R(z, x, X, X)), it
can be rewritten as a perfect differential function, that is

R(¢+ Px+ Qi)dt — RPdx — RQd% — Rdi = dI = 0,
4)

where [/ is an integral of eq. (1).
Let us recall that the total differential I of (1) can also
be written as

dl 8Idt%—ald +81d'+81d" 0
= — —dx + —dx + —dx¥ =0.
ot 0x X 0X
Comparing this total differential with the one obtained

in (4), we can identify the following relations:

I, = R(¢p + %P + Q%), I, = —RP,
I; = —RQ, I; = —R. (5)

Upon integrating the first-order ODEs (5), we find

d
—/(RQ-FT[PI —P2]>dff
X
R d
—/( +a[191 )
d
_f[RQ-FT[Pl _PZ]:|d).€i|)de',
X

(6)

where

p1= / R(¢ + Px + QXx)dt,

d
p2=/<RP+—/p1>dx.
dx

Substituting the expressions P, Q and R in (6) and
integrating the resultant expressions, we can obtain the
integrals of (1).

The null functions (P and Q) and the integrating
factor (R) can be determined from the integrability con-
ditions, Iy = Iy, Ity = Ly, Lz = Iz, Lii = Ly,
I,y = Iz and Iz = Iz, where the first-order par-
tial derivatives of the integral I are given in (5). These
six integrability conditions provide six equations among
which three of them turn out to be the determining equa-
tions for the unknowns (P, Q and R) and the other three
turn out to be a set of constraints that have to be satisfied
by these functions. The determining equations and the
constraints read as

D[P] = —¢x + Ppi + QP, (N
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D[Q] = —¢i + Q¢ — P + 0%, (8)
D[R] = —R(Q + ¢3), 9)
R, = Ry P + RP;, (10)
R;P=—P;R+ R0+ RQ,, (11)
R; = Rz Q + RQj. (12)

The method of solving these equations has already been
discussed in ref. [20].

Let the three independent solutions of eqs (7)—(12) be
Pi, Q;i, R;,i = 1,2, 3. For each set, we can construct
an integral through (6). Let us designate these integrals
as

I = Nl(t,x,)'c,)'c'), (13)
I = Na(t, x, x, X), (14)
Iy = N3(t, x, %, ¥). (15)

Thus, the complete integrability of eq. (1) can be
established through the extended PS procedure by deter-
mining three sets of null forms (P and Q) and the
integrating factors (R).

3. Extracting one integrability quantifier from
another known quantifier

Now, we connect DPs with the PS quantities. By suc-
ceeding in this task, we can construct the integrability
quantifiers of the second method from the integrability
quantifiers of the first method itself. Rearranging expres-
sion (13) for X and substituting it in (14), we find
L= No(t,x, %, I). (16)

Differentiating eq. (16) with respect to x, x and X sepa-
rately, we obtain

Iy = Noy + Noj Iix = —pa Pa, (17)
Ly = Noz + Noj 1k = —p2Qa, (18)
by = Nap L1z = pa, (19)

where we have considered the expressions given in (5)
to obtain the right-hand side of eqs (17)—(19). Replacing
the terms /13 and I3 by p; and p; respectively in eq.
(19), we find

L = ]\7211.

p2 =lip1, (20)

Substituting the relations, /1, = —p1 Py and Iy =
NZII I1z = pa, given in (5) in (19) and simplifying the
resultant equation, we arrive at the following expression
for the second null form Ps:

P, =m + Py, (21)
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where the unknown function m (= 1\72)(/1\7211 Ii;) is to
be determined. Expression (21) connects the first null
form P; with the second null form P».

Let us consider eq. (18) and replace the terms /i;
by —p1 Q1 and p; by —Nyl I1x. This action yields the
following expression for Q5:

0> =c1+ Q1,

where the function cj(= NQ;C /1\7211 I13) is yet another
function. Expression (22) connects the first null form
Q1 with the second null form Q5. Relations (20)—(22)
provide a way to determine the second integrating fac-
tor (p2) and the second set of null forms (P> and Q»)
from the quantities (P;, Q1 and p;) by determining the
functions m 1, ¢; and /1. The functions m, c; and /; are
functions of 7, x, X and X. Now, we lay out a procedure
to determine these three functions.

Let us differentiate eq. (21) with respect to ¢ and sub-
stitute itinto (7). In this process, we replace the functions
Q> and P by expressions (21) and (22). Implementing
this, we end up at

(22)

D[mi] =m(¢z +c1 + Q1) +c1 P1. (23)

A similar equation can also be derived for the unknown
function c; by differentiating eq. (22) with respect to
¢t and substituting the resultant expression along with
(21) and (22) in the PS method determining equation
(8). Here, we find

Dlci] = ¢t + c1(¢s +201) —mj.

On the other hand, differentiating eq. (20) with respect
to ¢ and substituting the determining equation (9) into
it, we get

(24)

D[] = —c1lh. (25)

Equation (25) is nothing other than the determining
equation for DP (see eq. (2)) in which /; is the DP and
(—c1 = h) is the co-factor. We note that the third set
of quantifiers (P3, O3, R3) can be determined using the
same expressions (20), (21) and (22) by considering P,
0> and py as known quantities and P3, Q3 and R3 as
unknowns.

4. Methodology to derive the integrability of the
third-order ODEs

4.1 Case 1: Two DPs are known

To begin, let us assume that we know two DPs (/1 and
[) and their associated co-factors (c; and ¢;) of eq. (1).
These two polynomials are solutions of eq. (25), that
is D[l;] = ¢il;, i = 1,2. Now we determine the PS
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from the two known DPs.

Substituting the known expression cj in eq. (24), we
express the null form Qg in terms of the function m.
Inserting this expression into (23), we get an equa-
tion which involves P; and m;. Now plugging this
expression into (7) and solving the resultant differen-
tial equation, we obtain an explicit form of m.

Substituting the determined function m | back in (24),
we can obtain the form of Q. Inserting this null form Q
in (8) we can get the null form Pj. The integrating factor
p1 can be calculated from the last expression given in
(9). With the known expressions P; and m1, eq. (21)
yields the expression for second null form P,. Since ¢
and Q; are known, inserting them in (22) helps us in
identifying Q,. The second integrating factor p, can
be obtained from expression (20). In this way, we can
generate two sets of PS quantities, namely U;, S; and R;,
i = 1, 2, from the known DP /; and its co-factor ¢;. We
note that one can also reformulate the steps given above
and alternatively derive the quantifiers U;, S; and R;,i =
1, 2,. This essentially depends upon the difficulties one
may come across while following the steps given before.
However, in either of the methods one has to solve only
one differential equation. The rest of the calculations
involve only algebra.

To explore the third null form @3, we reconsider
expression (22) in the form

03 =c2+ Q>. (26)

Here c¢; is the co-factor of the second DP (/») and Q>
18 the second null form. Since both are known, the third
null form Q3 can be identified from (26). To determine
the other null form P3, we consider eq. (21) in the form

P3 =my + Ps. 27

Following our earlier footsteps, the function m, can be
determined from eq. (24) by considering it in the form
Dlcy] = c% + c2(¢z +20Q2) — mo. Plugging the known
functions ¢, and Q> in this equation and rewriting, we
can obtain the expression for mj. Since the functions
my and P, are known, we can fix the third null form Ps.
The integrating factor R3 can be fixed from the relation

(28)

Substituting each set of the functions P;, Q; and R;,
i = 1,2, 3, separately in (6) and evaluating the integrals,
we can obtain the first integrals of eq. (1).

Thus, knowledge of the DPs and their co-factors help
to identify the integrability quantifiers and the integrals
for the given ODE. One may observe that the function
Q3 can be obtained from Q5 and only the co-factor c¢;
associated with the second DP is known. In some cir-
cumstances, we may know only one DP and its co-factor

R3 =1lp».
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for the given equation. In this case, we adopt another
way and determine the second DP (/») and its co-factor
(c2). We investigate this situation as a separate case in
the following.

4.2 Case 2: Only one DP is known

Let us suppose that we know only one DP (/1) and its
associated co-factor (c1). In this case, we need to deter-
mine the second DP (/) and its co-factor (c2) to capture
other integrability quantifiers. To succeed in this case,
we proceed as follows.

We start the procedure from eq. (28). By substituting
eq. (20) into it we find R3 = I»/1 p1 from which we can
obtain the relation
bl = &

p1
Since /| and [; are two DPs, their product (/1/;) can also
be considered as a DP [28]. Since the left-hand side in
(29) is a polynomial, the right-hand side (R3/p1) may
also be considered as a polynomial. Considering this
fact, we identify the following relation:

_/
I

where f = R3/p;. Since the function f is a DP, it
should satisfy the equation

D[f] = gf,

where g is the associated co-factor.

Differentiating eq. (30) with respect to ¢ and replacing
the terms D[/2] by —c2ly and D[ f] by gf and simpli-
fying the resultant equation, we find

(29)

I (30)

€29

(32)

Substituting (32) in the determining equation for c;
(refer eq. (24)), the latter equation becomes

Dlci]+ Dlgl = — (¢f + g% 4 2gc1)
+(c1+8) (s +202) +ma.  (33)

The unknown functions in eq. (33) are g and mj. Con-
sidering eq. (23) for m» in the form D[m3y] = ma(¢z +
c2 + 02) + c2 P> and substituting eq. (32) into it and
rearranging the resultant equation, we end up with

D[mz] =ma(¢ps —c1 — g+ Q2) — (c1 + ) P2. (34)

Inserting the expression my from (33) in eq. (34), the
latter equation turns out to be the determining equa-
tion for g. Solving this equation, we can determine the
explicit form of g, from which we can identify the func-
tion m, through (33). The DP (f) can be found by
substituting the expression g back in eq. (31) and solv-
ing the resultant equation. In this way, we can identify

cy=—(c1+9).
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not only the second DP (/) and its co-factor g but also
the needed functions my and ¢;. The third DP, its co-
factor and the extended PS procedure quantities can be
derived in the same way as we did in Case 1.

4.3 Case 3: Two DPs and first set of PS method
quantities are known

Suppose we know two DPs, their co-factors and the
first set of PS method quantities, then the remaining
quantifiers of the considered system can be determined
algebraically. By substituting the co-factor c¢; and the
null form Q; in (24) and simplifying the resultant
expression, we can obtain the function m . Substitut-
ing the DP (/}), its cofactor (cy), the function m| and
the first set of PS quantities in expressions (20)—(22)
and simplifying the resultant equations, we can iden-
tify the second set of PS quantities (P2, Q2, p2). Now
repeating the same procedure with the second set of PS
quantities (Pa, Q2, p2), DP (I») and its co-factor (c3),
we can derive the third set of PS method quantities. The
function m> can be derived using the expression (vide

eq. (24))

Dlca] = &3 + c2(ds +202) — my. (35)

The associated integrals can be constructed with the help
of (6).

5. Illustrations for the procedure

In this section, we consider three examples and apply
the theory developed in the previous section to these
examples. In the first example, we consider the situation
in which two DPs are known and in the second example
we consider the situation where only one DP is known.
In the third example, we consider a situation in which we
have partial information on DP and PS quantifiers. With
these partial information at hand, in the third example,
we demonstrate that the complete integrability of the
given equation can be established in an algebraic manner
through the interconnections found in this work.

5.1 Example 1

We consider Chazy equation of the form [20]

X 4 dxk 4+ 352 + 6x%% +xF = 0. (36)

Equation (36) admits two DPs of the form

; t(x(tx —2) + 1X)(x> + 3xx + )2
1= s

(x2 + x) (—tx3 —3txx —tX +x2+ )'c)z
(37)
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2P+ %) —3tx +3

. (38)
3(x(tx —2) +tx)
The associated co-factors are given by
o = 2x(—tx3 —. 3txx — t¥ + x? ji-)'c) (39)
t(x% 4+ x) (x(tx —2) + 1)
(tx — 3)(tx3 + 3txx + 15 — x% — %)
0 =— .
2T tx —2) 4 t0) (2 (X + %) — Bix £ 3)
(40)

One can check that expressions (37)-(40) satisfy eq.
(2). In the following, we derive the PS quantifiers and
establish the integrability of (36).

Substituting the co-factor c; in (23), the latter equation
becomes

2x(—tx3 = 3txx — tX + x2 4+ %)
t (x + x2) (tx +x@x —2))

D[ml]—ml(

—4x + Q1)

(2x(—tx3 — 31xx — 1§ + x? +x)>P _o
t(x 4 x2) (1% + x(1x —2)) b=

(41)

Rewriting eq. (41) for the null form Q1, we find

1
01 = —[D[mﬂ

nji
<2x(—tx3 — 3txk — t¥ + x> + %) )
1 - - —4x
1 (x4 x2) (% +x(1x —2))
B <2x(—tx3 —3txfc—t)'é+x2+)é)) i|
t(x +x2) (tx +x(@x —2)) H

(42)

Substituting this expression into eq. (8) and rewriting
it, we obtain an evolution equation for P; in terms m|.
Now plugging this expression into (7) we can obtain
a determining equation for the unknown m . Since the
resultant expression is lengthy, we do not reproduce the
equation here. Equation (42) admits a particular solution
of the form

2(x2 = X)(tx3 4 3txx + 1§k —x2 = %)

t (x2 + x) (x(tx —2) 4+ tx) “43)

mip =

To determine the null form O, we substitute the func-
tions m and ¢ back in eq. (24) which in turn yields the
following expression for the null form Q1, that is

2x3 — %

x24+x

01 =

(44)
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Substituting this expression in eq. (8) and simplifying
it, we find

P
P ==
X

(45)

To determine the integrating factor pj, we use eq. (9).
Upon solving this equation, we find

x2 4%

(x3 +3xi + ¥)°

p1= (46)

Thus, from the knowledge of one DP (/1) and its associ-
ated co-factor (c1) we can obtain the PS quantifiers (Q1,
Pla pl)

Now inserting the functions Py, p1 and Q1 in (6), and
evaluating the integrals, we find an integral of (36), in
the from

2 .
L=t

47
x3 4+ 3xx 4+ ¥ @47

Now we proceed to calculate the second set of null
forms (P>, Q7) and the integrating factor (p») from the
known expressions m1, c1, 1, Q1, P1 and p; (eqs (21),
(22) and (20)). Following the procedure given in §4.1
we obtain the following expression for P>, Q», p», that
is

2t — 2070 % + 1 (3125 — 2) — d1xd + 205 + 242

P, = - ,
t(x(tx —2)+tx)
(43)
_ 2x(rx(tx —3) + 1) — %%
= D+ 1D “9)
by = — t(x(tx —2)+1tx) (50)

(—tx3 = 3txx — 1§ +x2 + ).C)z.

Inserting expressions (48)—(50) in (6) and evaluating the
integrals, we identify the second integral of eq. (36) in
the form

(=7 4 3xx + §)) 4 20(x + &) — 2x

L= 51
? —1 (83 3wk + §) + 42+ GD

To obtain the third set of integrable quantifiers (P3,
03, R3), we need to determine the function m,. To do
so, we consider eq. (24) in the form
Dlea] = &5 + ea(¢s +202) — mo. (52)
Inserting the known null form Q5 and the DP co-factor

¢ in (52) and rearranging the resultant equation for m»,
we find
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0 2 4 6 8 10
t

Figure 1. Solution plot for eq. (36) with the initial conditions
I, =0.1, b, =0.1, I3 =0.1.
my =

(t(x(tx — 6) — tX) + 6)(tx> + 3tx% + 15 — x2 — %)

1(x(tx —2) + 1x) (1> (x2 + X) — 3tx + 3)
(53)
With the help of the functions m; and c», the third set
of null forms Pz, Q3 and the integrating factor R3 can

be captured using expressions (27), (26) and (28). Our
results show

P3

_Pxt =2 (% 4 3) — 612x7 4 31 (G (1% +2) + 1) 4 1207
- t (12 (x2 +x) = 3tx +3) '

(54)
P (=E) A x(xQix —9) +12) =3
0= t (12 (x2 + %) — 3tx +3) (55)
202 | ey
Rs— — t(t°(x“+x) —3tx 4+ 3) (56)

3 (—tx? = 3txi — ¥ +x2 4+ %)
This third set of null forms (P3, Q3) and the integrating
factor (R3) helps to construct the third integral of eq.
(36) and the resultant form becomes

I

(= 3xk + §) + 32 (e + %) + 6(1 — 1)
a 6 (—t (x3 + 3xk + i) + x2 + x) '

7

The general solution of (36) can be derived using the
integrals /1, I and I3 and it is given by

12
5>+ ht+ L1
() = 5 (58)

€+11%+11]2t+11[3‘

This solution is plotted in figure 1.
5.2 Example 2

In the second example, we consider a situation in which
we know only one DP and its co-factor. Now the task

Page 7 of 10 28

is to determine the remaining two sets of DPs and other
integrability quantifiers used in the PS procedure. To
demonstrate this, we consider an equation of the form
[14]

. 6tx3  6x?

X=—+— (59)

X2 X

The above equation admits a DP of the form

I = x, (60)

with the co-factor

e =—2. 61)
X

In the following, we adopt the procedure given in §4.1
and obtain the null forms and its integrating factors.

- Now, following the steps given in the previous example

(see eqs (41)—(46)) we can deduce the first set of null
form and the integrating factor in the form

252 0 —61X2% — 2%% x2
1 = .2 9

o5 o
x2 X

P = p1==. (62
X
While deriving the above functions, we also come across

the following expression for m1:

252
mp=——5.

(63)
Using (62) and (63), we can obtain the second set of null
forms (P>, Q2) and the integrating factor (p;) with the
help of eqs (21), (22) and (20). The resultant outcome
shows that

—61%2% — 3x%% x3
QD=—"7T"" P=123
X X

P, =0, (64)
To obtain the third set of null forms (P3, Q3) and the
integrating factor (R3), we need to determine the second
DP (I») and its co-factor (cp) from the first DP (/1).
Substituting the known expressions c; and Q5 in eq.
(33) and simplifying it, we obtain the following deter-
mining equation for g:

X(3tx + 4)&))

D[g]+g2—2g< 5

X
552
—my + 2;(5)& + 61%) = 0. (65)
Rewriting the above expression for m, and substi-
tuting this expression in (34) we obtain a differential
equation in terms of the unknown function m,. To pro-
ceed further, we choose a trivial solution for m,, that
is

my = 0. (66)
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Substituting this trivial form in eq. (65) and solving the
resultant expression, we identify the following particu-
lar solution for the function g,

2%

8=
X

(67)

Plugging this expression in (31) and solving the latter
equation, we find a particular solution for f as

f=i (68)

Since the functions f and /; are now determined, the
second DP (/) can be readily identified from /» = f/I1,
which in turn reads as

(69)

We note here that the second DP is the same as the
first DP (I;). The associated co-factor turns out to be
c) = —X/X.

Equations (26)—(28) yield the third set of null forms
and integrating factor in the form

I =x.

—61%% — 4% it
G=—p k=g
The functions P;, Q;, R;,i = 1, 2, 3, help in building
the necessary integrals of (59) whose explicit forms are
given by

P; =0, (70)

-2 x3

I =6k —2x + . I, =32+,
X

X

-4

=2 (2tx3 + x.—.) .
X

(71)

Using the integrals /1, I and /3 we can derive an implicit
solution for eq. (59) in the form

L(2x + 1)? — 12t1h)* + 3t 9tz + L (I} — 2x))?

—Qx+IN(QRx+11) =12t 1) (9t 3+ L (2x +11)) = 0.
(72)

5.3 Example 3

Here, we consider a situation in which we have partial
information on DPs and also have partial information on
PS quantifiers. In this case, the procedure developed in
this article supports to study the complete integrability
of the considered equation in an algebraic manner, as
shown below.

Let us consider a third-order nonlinear ODE, of the

form [47]

. oo ..2
=t (73)
X X

Suppose that we know two DPs of this equation, say

-
I =2i - 2%
X

(74)
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xX(1x%2 — x(tX + %))

L= (75)
4= (x - 242) (x - i)
and their corresponding co-factors
(1= (76)
X% —xX
XX (x¥ —2x2)
0 =- (77)

()&2 - x)'c') (t)'CZ —x(txX + )'c))'

Let us also assume that we know the null forms
(P1, Q1) and the integrating factor (p;) of eq. (73), say
X X 1

Ph=—, O1=—7, p1=——.
x X XX

(78)

Now we deduce the other quantifiers in an algebraic way
as follows:

Since ¢; and Qi are known, m; can be fixed from
(24). Here, we find

552

my = (79)

Coxk —x2
Substituting expression (78) in eqs (21), (22) and (20),
we can obtain the following quantifiers:

Py — x2x
27 X (xy'c' — )%2)’
xx?

0= 5—0=
X0 — xxX
2x 2

P2=—5 -~ (80)
X X

To obtain the third set of integrable quantifiers Pz, O3
and R3, we have to determine the function m,. It can be
derived from (52) through a direct path. The function
my turns out to be

xX(x¥ — 2x2)
()'62 — xjc') (t)'cz —x(tx + )é))'

my = — (1)

‘We can capture the third set of integrable quantifiers with
the help of eqs (26)—(28). The resultant expressions read
as

XX(tx 4+ x)
Py = T 5
x (x(E +1¥) — 1x?)
XX(tX + 2x)
Q3= "
tx° — xx(tx + x)
.2 . .
t — x(t
Ry = X x(tx + x) (82)

2i [xi (22 — xi)

The integrals can be constructed from eq. (6) by appro-
priately substituting the functions P;, Q;, R;, i =
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x(t)
[—}

-10 -5 0 5 10
t

Figure 2. Solution plot for eq. (73) with the initial conditions
L=1 5L=1, Iz =1.

1, 2, 3, into it and the integrals are

X (2 X
Il=_.’ 12=x<__._2>a
XX x X
he-t [Xoe—xp)tan! [—
3T TV x x(2x2 —xx¥)"

(83)
We can write the general solution of (73) with the help
of these three integrals and it takes the form

x(t) = \/%tan |:% <\/ I It —|—2]3> :|

The solution plot for eq. (73) is displayed in figure 2.
It is clear from this demonstration that one can estab-

lish the integrability of the given equation in an algebraic

manner with the help of the procedure developed here.

(84)

6. Conclusion

In this paper, we have presented a procedure to obtain the
integrable quantifiers that are being used in the extended
PS procedure from the DPs and their co-factors. In this
procedure, one has to determine a function by solving
a first-order differential equation. The rest of the proce-
dure involves only algebraic calculations. Interestingly,
any particular solution of the aforementioned first-order
differential equation is sufficient to proceed further and
identify the other quantifiers. The main advantage of
this interconnection is that the underlying quantifiers
can be derived without solving the determining equa-
tion in the respective method. Such determination helps
in establishing the complete integrability as well as the
general solution for the given nonlinear ODE. We have
determined the usefulness of the interconnections by
considering three different examples.
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