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Abstract. We have constructed empirical formulae for the fusion and interaction barriers using a large number
of experimental values chosen randomly from the literature available till date. The obtained fusion barriers
have been compared with different model predictions based on the proximity, Woods—Saxon and double folding
potentials along with several empirical formulas, time-dependent Hartree—Fock theories and experimental results.
The comparison allows us to find the best model, which is nothing but the present empirical formula only. Most
remarkably, the fusion barrier and radius show excellent consonance with the experimental findings for the reactions
meant for the synthesis of superheavy elements also. Furthermore, it is seen that substitution of the predicted fusion
barrier and radius in classic Wong formula (Wong, Phys. Rev. Lett. 31:766 (1973) for the total fusion cross-sections
agrees very well with the experiments. Similarly, current interaction barrier predictions have also been compared
well with a few experimental results available and Bass potential model meant for the interaction barrier predictions.
Importantly, the present formulae for the fusion as well as interaction barrier will have practical implications in
carrying out physics research near the Coulomb barrier energies. Furthermore, the present fusion barrier and radius
provide us with a good nucleus—nucleus potential which is useful for numerous theoretical applications.
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1. Introduction

The basic characteristics of nuclear reactions are usu-
ally described by an interaction consisting of a repulsive
Coulomb potential and a short-range attractive nuclear
potential. The resultant potential can be expressed as
a function of the distance between the centres-of-mass
of the target and the projectile nuclei. When a projec-
tile ion approaches the target nucleus, it experiences the
maximum force at a certain distance where the repul-
sive and attractive forces cannot balance each other,
the repulsive Coulomb force is always higher. The pro-
jectile ion needs to overcome the barrier for coming
closer to the target nucleus. This barrier is referred to
as the fusion barrier (Bg;), which is a basic param-
eter in describing the nuclear fusion reactions and is
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simply defined as the maximum of the total potential
without the centrifugal term. The kinetic energy of the
projectile ion must be adequate to surmount this bar-
rier to enter a pocket adjacent to the barrier at shorter
distances, where the nuclei undergo the nuclear fusion
processes. Furthermore, the fusion barrier height and its
width play a crucial role in the tunnelling process during
the sub-barrier fusion. The situation is further compli-
cated by the presence of multiple barriers. The fusion
barrier is determined by measuring the excitation func-
tion of the nuclear fusion experiments [1] and the same
is estimated by many theoretical models such as the
Bass potential model [2,3], proximity potential model
[4], double folding model [5] and semi-empirical mod-
els such as Christensen and Winther (CW) model [6],
Broglia and Winther (BW) model [7], Aage Winther
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(AW) model [8], Denisov potential (DP) model [9],
Siwek-Wilczyniska and Wilczyfiski (SW) model [10],
Skyrme energy density function (SEDF) model [11] and
Sao Paulo optical potential (SPP) [12].

In contrast, the quasielastic (QEL) processes, involv-
ing energy transfer due to single nucleons or clusters
such as a-particles which are smaller than the fusion
reactions, excite only nuclear levels in either one of the
participating nuclei or in both as soon as the two bodies
approach within the range of nuclear forces. The posi-
tion where the resultant of the Coulomb and nuclear
forces is still repulsive and additional energy is required
to get the two nuclei interacting over their mutual poten-
tial barrier is a barrier which is somewhat smaller than
the fusion barrier and is known as the interaction bar-
rier (Bjyt). This barrier is measured by the excitation
function studies of QEL scattering experiment [13].
Obviously, both the barriers are Coulomb barriers, but
they are different from each other. One is characterised
by the fusion reaction when the two nuclei fuse to form a
compound nucleus and the other by the QEL scattering
when the two nuclei enter barely into the strong force
regime [2,3] keeping their identities almost intact. How-
ever, many a time the distinction is overlooked, see, for
example [13,14], though the concept was introduced in
the seventies [2,3]. It is worth noting here that it is only
Bass who has segregated the appearance of the Coulomb
barrier in the two different ways mentioned above: one
is the Bass interaction model and the other is the Bass
fusion model [2,3].

The above discussions show that the fusion barrier
concerns the total reaction process, whereas the inter-
action barrier indicates a bare minimum effect of the
reaction process. Hence, the latter is a measure of the
reaction threshold. It appears at the low-energy side rel-
ative to the fusion barrier because at all incident energies
the total reaction cross-section is larger than the cross-
section of any specific channel (quasi-elastic channel).
For light nuclear systems, these barriers are quite close,
but for heavy ones they may significantly differ. For very
heavy nuclear combinations, the fusion barrier loses
its meaning altogether whereas the interaction barrier
maintains its correct physical meaning. This is the fact
according to Bass [2,3], but Zagrebaev [15] is against
using different names. However, for convenience we
continue here with Bass conventions.

Recently, Sharma and Nandi [16] demonstrated the
coexistence of the atomic and nuclear phenomena on
the elastically scattered projectile ions while approach-
ing the Coulomb barrier. Here the projectile ion X-ray
energies were measured as a function of ion beam ener-
gies for three systems 120 (36Fe S0Fe), 12C(8Ni,%8Ni)
and 12C(%3Cu,%Cu) and observed unusual resonance-
like structures as the beam energy approaches the fusion
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barrier energy, according to the Bass model [2,3]. How-
ever, resonance would have occurred near the interaction
barrier as the technique involved only the elastic phe-
nomenon and thus resembling the quasi-elastic (QEL)
scattering experiment [13]. It implies that resonance
should have appeared adjacent to the interaction barrier.
To resolve this anomaly, we planned to examine both
the fusion and interaction barriers in a greater detail.
Note that the present attempt is not to make a concrete
theoretical model to describe various possible steps of
a reaction leading to the final products, but to find the
best model available till date so that the above anomaly
be resolved. Besides the existing models, we have used
a large number of experiments found in the literature to
construct an empirical formula for estimating the fusion
barriers from the fusion excitation function measure-
ments alone and another for the interaction barriers from
the QEL scattering experiments only.

In the next step, we compare the empirical model pre-
dictions for fusion barrier with various models based on
proximity type of potentials such as Bass potential [2,3]
and Christensen and Winther (CW) [6] and Woods—
Saxon type of potentials such as Broglia and Winther
(BW) [7], Aage Winther (AW) [8], Siwek-Wilczyriska
and Wilczynski (SW) [10], SEDF [11] models and the
Sao Paulo optical potential (SPP) [12]. Further, the
present interaction barrier formula has been compared
with the Bass interaction model [2,3]. It is seen that
this work will be useful in various applications [1], for
example, prediction of Bg, or Vg for the formation of
the superheavy elements [17] and By, and Bjy for the
significant physics research near the Coulomb barriers
[16].

2. Determination of the barrier heights

Mean fusion barrier height may be obtained from the
Gaussian fit of the barrier distribution plot, which is
defined as the second derivative of the energy-weighted
cross-section d%(o E) JdE 2 (point difference) vs. beam
energy in the centre-of-mass frame [18,19]. In many
articles only the excitation function is reported, and we
have converted it into a barrier distribution plot to obtain
the mean fusion barrier.

Similarly, the interaction barrier can be obtained from
either the QEL excitation function studies or a variety of
fusion and fission excitation function measurement. The
QEL scattering is affected by the sum of elastic, inelastic
and transfer processes, which is measured at backward
angles of nearly 180°, where the head-on collisions are
dominant. The barrier distribution is obtained by taking
the first derivative, with respect to the beam energy, of
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the QEL cross-section relative to the Rutherford cross-

section, that is, g—g(%) [20]. This method has been
examined in several intermediate-mass systems [21,22].
One can notice that the QEL barrier distribution behaves
similar to the fusion barrier distribution, although the
former is less sensitive to the nuclear structure effects.
On the other hand, the thresholds of the reactions cor-
responding to the low Coulomb barriers are determined
using various derivatives of fusion and fission excitation
function measurement. One of these has used detection
of the recoiling nuclei by the helium-jet technique [23].
In fact, the low Coulomb barriers are the interaction bar-
riers [2].

3. General background

Theoretically, the total nucleus—nucleus interaction
potential Vr(r) between the projectile and the target
nuclei, in general, is written as a function of the dis-
tance r between the two nuclei

I(I + 1)h?
Vr(r) = Vn(r) + ——5—+ Ve(r), ey
ur

where Vy(r) is the model-dependent nuclear poten-
tial, the second term is the centrifugal potential so that
w=1[ApA;/(A, + Ay)]is the reduced mass of the pro-
jectile mass A, and the target nuclei mass A; inMeV/ c?
units and / represents the angular momentum of the two-
body system. When we consider the fusion barrier of the
system, / is set to zero which means the centrifugal or
the second term is zero. The third term is the Coulomb
potential which is given by [24]

Ve(r)
1
lezez ; fOI'I’ZRB
= 1 Rp\2
4o —[3—(—3) ] for r < Rp.
2RB r
(2)
. . . 1/3 1/3
Here the fusion barrier radius Rp = R.(A, ™ + A,"7)

where R. depends on the system as discussed below.
Putting the first term of eq. (1) from any particular
model, one can solve the fusion barrier radius Rp by
using the conditions

dVr(r)
Vr(r = Rg) = B 5 -0
r r=Rp
and
dv.
T(r) <0. 3)
dr2 r=Rp

Also, Vr(r = Rint) = Bint, Wwhere Rjy is the interac-
tion barrier radius. Of course, Vy (r) in eq. (1) needs to
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be replaced by another appropriate potential to obtain
the interaction barrier; for example, the Bass potential
model [3] uses different potential forms to estimate the
fusion and interaction barriers.

4. Present empirical formula

According to the definition for Coulomb potential given
earlier and the shape of the nuclear potential discussed
below the barrier radius, Bg, and Bj; may be written
as a function of Z,, Z;, A, and A;. Hence, the exper-
imentally obtained Bg, from fusion excitation function
measurements and Bj,; from QEL measurements can be
plotted against the Coulomb interaction parameter
Z,7Z;

L=

= 1/3.°
(A7 + A7)

as shown in figures la and 1b, respectively. The fusion
experiments used for figure la and the QEL experi-
ments used for figure 1b are given in tables 1 and 2,
respectively. Fusion data are available for 8 < z < 286,
whereas QEL data are available for 59 < z < 313. We
can notice that both By, vs. z and Bjy vs. z are nonlinear.
The whole range of Bp, data has been fitted by two non-
linear functions of a sixth-degree polynomial to obtain
the reduced chi-square nearly equal to one, whereas the
full range of Bjy data is fitted with a single non-linear
function.

The polynomial function that fits the By, vs. z data
extremely well is as follows:

B = —1.2725 + 0.9106z + 5.6932 x 10747
+2.335 x 107°7
— 4.4975 x 1077z* +2.7836 x 1077
—5.2482 x 107125 for 8 <z < 128 4)
and
By = —34488.7618 + 1100.66662
— 14.40662> +9.9275 x 10723
—3.7959 x 1074z* + 7.6357 x 10772°
—6.3136 x 107190 for 128 < 7 <286  (5)

and the other function that fits the Bjy vs. z data is given
by
Bin = 0.09295z%/% — 21601z + 35.5879z!/2

— 132.8943 for 59 < z < 313. (6)
By, can be predicted using eq. (4) for any system within
8 < z < 128 and eq. (5) for any system within 128 <

z < 286. Such an empirical formula was constructed in
the past [25] as follows:
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Figure 1. Fusion barrier, interaction barrier, fusion barrier radius and percentage of deviation plots: (a) the fusion barrier By,
(MeV), obtained from the fusion excitation function experiments, (b) the interaction barrier Biy (MeV) from the QEL scattering
experiments, (¢) the fusion barrier radius Rp (fm), (d) percentage of deviation of the present value from the experimental Bjy
against the dimensionless parameter z. The percentage of deviation for By, and Rp are shown in figures 2 and 3.

By = 0.85247z + 0.001361z% — 0.00000223z> MeV.
(N

It was a third degree polynomial function of z, whereas
our empirical formula is a sixth degree polynomial func-
tion of z.

To obtain Rp, we follow a method involving the
reduced fusion barrier position Sp (the separation
between the half-density surfaces of the two nuclei) [26]

Sp=Ry" —Ci—Ca, ®)
where the half-density radius of the matter distribution
C; = (R — %) (for i = 1,2) [27], the sharp radius

R = 1.233Ai1/3 — O.98Ai_1/3 and the measure of the
diffuseness of the nuclear surface b = 0.99 fm. Sp is

fitted with fourth-order polynomial as a function of z as

Sp = —46.089 + 2.04787 — 3.0962 x 10272
+1.9278 x 107473 —4.2492 x 107 77*

(€)

and Rp is obtained from the reduced fusion barrier posi-
tion as

Rp = Sp+C1 + Ca. (10)

5. Nuclear potential models in literature

In this section, we present different nucleus—nucleus
potentials Vi (r), which can be used for obtaining fusion
and interaction to compare with the available measured
values.

5.1 Bass potential model

Bass potential model [2,3] suggests that the Coulomb
barrier for the QEL surface reaction is in general dif-
ferent from the Coulomb barrier for fusion. The former
results from the QEL processes, where not much mass or
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Table 1. The fusion barriers (By,) for the following two-
body systems have been used in figure la to obtain the
empirical formula for estimating By, for any system in the
bound 8 < z < 286 region.
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Table 2. The interaction barriers (Bin) for the following
two-body systems have been used in figure 1b to obtain
the empirical formula for estimating Bjy for any unknown
systems in the range 59 < z < 313.

System z Br, (MeV) System Z Bine MeV)
2Cc4 BN 8.83 6.80 [74] 120420571 59.37 56.0 [2,23]
2c4160 9.98 7.50 [75] 12C4209B;4 60.55 57.0 [2,23]
2Cc420Mmg 13.71 11.5 [76] 2c4238y 65.04 62.2 [2,90]
1204305 15.57 13.2 [74] I4N4238y 74.82 73.4[2,90]
160427 A1 18.84 43.6 [77] 1604205T] 76.99 77.0 [2,23]
2Mg+*Mg 24.63 20.8 [78] 1604238y 84.43 82.5 [2,90]
Mg+328 31.28 27.5[79] 20Ne+238U 103.23 102 [2,90]
R2c427r 35.27 32.3[80] 40Ar4-164py 133.57 135[2,92]
1604+72Ge 38.32 35.4[81] 0Ar4+238y 172.19 171 [3,92]
3284+40Ca 48.52 43.3 [32] 48Tj4208pp 188.72 190.1 [13]
BCa+*8Ca 55.03 51.7 [32] 4Cr4-208pp 202.78 205.8 [13]
2T A14+9Ge 58.42 55.1 [32] S6pe4208pp 218.65 223 [13]
328 438Ni 63.58 59.5 [82] S8Ni+208pp 234.38 236 [13]
40 Ar+38Ni 69.13 66.32 [32] 707n++208pp 244.86 250.6 [13]
TC14+73Ge 72.42 69.20 [32] 84Kr+232Th 307.86 332 [3,93]
40Ca+92Ni 75.9 72.3 [74] 84K 4238y 313.14 33 [3,94]
25489y 81.68 77.8 [83]
1604238y 84.43 80.8 [32]
288i+1208n 87.84 85.9 [32] .
4804207y 97.41 05084 Vi(r) =L 4 BB g g3 AP Lo,
40Ca4+97r 100.01 93.6 [82] ’ - " .
0Ar+1218p 109.72 111 [85] an
;‘ZC_a-i-l;?Sn 118.95 113 [86] where d is the range of nuclear interaction. The influence
4051+ 154Pt 123.18 121871 of fragment (projectile or target nuclei) properties on this

Ar+ °"Sm 127.11 121 [88] potential can be expressed in terms of the dimensionless
S0Ar+'9Ho 135.43 1414321 parameters
40Ca+1920s 165.42 168.1 [32]
$4Kr4-110Cd 186.67 204 [89] o2 Z,Z;
74Ge+232Th 278.45 310[89] X = A A1) (12)
86K r+208pp 285.52 299.00 [9] rodsATe0 AT A (AT + A

and
o Ap+ A a3)

energy transfer takes place, whereas maximum mass and
energy transfer take place in the latter. Further, the QEL
processes become significant as the projectile and the
target nuclei approach the range of nuclear force, where
the resultant of the Coulomb and nuclear forces is still
repulsive. Thus, additional energy is required to get the
nuclei within the resultant attractive force, where fusion
can occur. According to the Bass interaction model, the
barrier responsible in the QEL reactions is called the
interaction barrier Bjy; and it can be determined from
the elastic scattering experiments [13]. The other bar-
rier is significant in fusion reactions and is defined as
the fusion barrier By,. The latter is equal to the height
of the potential barrier for zero angular momentum.

The total effective Bass potential consists of Coulomb,
nuclear and centrifugal terms

y= 2 43 43, 41/3 /3.5’

2moras 474 A + APy
where x is the ratio of the Coulomb force to the nuclear
force and yl? is the ratio of the centrifugal force to the
nuclear force at the point of contact, i.e., r = Ry =

ro(Ay> + A;) and ry =1.07 fm. Here, a; = 17.23
MeV is the surface constant as used in the liquid drop
model of fission, m is the mass of a nucleon and other
notations have usual significance. By, acts atr = R+
dr, where dfy, is the fusion distance. Bjy is applicable for
an interaction distance between the two surfaces (dint)
or the centre to centre distance, Riny = Rp; + dint. dint
is always longer than dp,, which can be approximately
obtained from the relation

du Inx

~ . 14
TRy (14)
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Figure 2. Comparison of the percentage of deviation of different theoretical models and the experimental fusion barriers as
a function of z.

dg, varies with the fragments in the nuclear interactions. Z, Z,e? A },/ 3A tl/ 3
The barriers By, and By can be obtained from Bint = Ry + dint =290 ( A},/S LA t1 7 (16)
dint =2d =2 x 1.35 = 2.70fm. 17
ZpZie* [ Ry Ld (~dw) , . -
Bgy = AR {R S dn )_cR_e d } (15)  Here, in eq. (17) it is assumed that d is independent of
0fpr = fpt 7 Cu pt the mass of the nuclei.
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Figure 3. Comparison of the percentage of deviation of different models and the experimental barrier radius as a function

of z.

5.2 Christensen and Winther model

Christensen and Winther (CW) [6] used elastic scat-
tering trajectory leading to the rainbow pattern that
is strongly connected to low-lying target excitation.
Hence, the phenomenon happens above the fusion
barrier. They derived the nucleus—nucleus interaction
potential to represent the nuclear fusion on the basis of
semi-classical arguments given by

_ r—=Rpt
a

viV(r) = —50R o ) Mev, (18)

where
R, R;

R=—"—
R, + R,

R pt — R )4 + Ry,
and a is the diffuseness parameter (@ = 0.63 fm). This
form is similar to that of the Bass model [2] with differ-
ent sets of radius parameter.

Ri = 123347 —0.98A; " tm (i = p, 1). (19)
Here, the radius of the fusion barrier has the form
Rg = 1.07(A) + A) +2.72fm (20)
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and the total nucleus—nucleus potential for / = 0 is
Z,Ze?
4 eor

and thus, the fusion barrier can be obtained from
UV (r = Rp).

UV = +VviVr) 1)

5.3 Broglia and Winther model

Broglia and Winther (BW) [7] have refined the CW
potential [6] to make it compatible with the value of
the maximum nuclear force of the proximity potential
[4]. This refined force is taken as the standard Woods—
Saxon potential given by

-V

Vn(r) = 2 MeV (22)
14+e 4
with
R,R,

Vo = l6may ————, a = 0.63fm

Rp + Rl
and
Ryi = Ry + R, +0.29 fm. (23)
Here the nucleus radius R; is given by
Ri=1233A)7 —0.984; P fm (i =p,1). (24)

The surface energy coefficient () has the form

N,—Z,\(N:—Z
= ol 1 — k[ 2—=2 L) eV fm?,
penfrn (L) (B fevem
(25)

where y9 = 0.95MeV fm~2 and k; = 1.8. The total
interaction potential of the two heavy ions is

2
UBW(r) _ szte

VBW
dmwegr TV

(26)
and it displays a maximum, i.e., the fusion barrier and
the barrier radius (Rp) is the solution of the following
equation:

dUBV(r)
dr r=Rp
Rp—Rp;
Z,7Z;e* Voe @
:—4;’6 ’R2 0 =0 27)
O%B gl 4e )

and UBW (Rp) is the fusion barrier.
5.4 Aage Winther model

Aage Winther (AW) [8] slightly adjusted the parame-
ters of the Broglia and Winther potential through an

Pramana — J. Phys. (2022) 96:84
extensive comparison with the experimental data for
heavy-ion elastic scattering. The resulting values of a
and R; are as follows:

1 )
0= fm  (28)
[1.17(1 +0.53(A,' 7 + A7)

and
1/3

R; =1.20A;" —0.09fm (i = p,1) (29)

and R, of the BW model is written as R,; = R, + R;
only.

5.5 Siwek-Wilczyriska and Wilczyriki model

Siwek-Wilczyniska and Wilczynski (SW) [10] have
used many reactions to determine an effective nucleus—
nucleus potential for reliable prediction of the fusion
barriers for the systems that are studied. In this approach,
the nucleus—nucleus potential is taken also as the
Woods—Saxon shape and is given in eq. (22), where
Rpr = Rp+ R;and R; = RCAil/3 (i = p,t), theradius
parameter R, is constant, a is the diffuseness parameter
and V) is the depth of the potential. Vj is given by

Vo = Vi + Sen, (30)
where S, is the shell correction energy [28] and
Vg = (Mp+ M; — Mep)c> + Cen — Cp — G

= qu+Ccn_Cp_Ct- (31)

Here Qy, is the ground state Q value for fusion and C;
are the intrinsic Coulomb energies [10] as given by

Cen — Cp — C; = Co, (32)
where
Z,+2) Z, 72
Co = 0.7054[ 2+ ’)1 - - - 1’3]MeV.
(Ap+ A3 A a)

The Coulomb energy constant is taken from the standard
liquid-drop model fit to nuclear masses [29]. Now, eq.
(30) can be written as

VO = qu + CO + Scn- (33)

For determining the fusion barrier, one considers the
nucleus—nucleus potential in the region R > R, as

Z,Ze?

V(r)=Vn(r)+ (34)

Aregr

r—Rpt
For the region r < Rp—l—Rt,e[ "

nucleus potential takes the form

V(r)=Co— Vo =—0tu — Sen-

I 5 0, the nucleus—

(33)
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Thus, eq. (34) gives the fusion barrier. It has only two
free parameters R, and a as Vjp is known from eq.
(33). These parameters are obtained by fitting the bar-
riers from eq. (34). The experimental Bg, values can be
obtained where the measured fusion excitation functions
are fitted with the following expression:

w
E\27
x[X /(1 + erf(X)) + exp(—X?)],

2
Ofys = T,

(36)
where
E — Bgy

V2w

and erf(X) is the Gaussian error integral of argument X
given as

1 X 5
erf(X) = ﬁ/(; e dr.

The fitting gives three parameters: the fusion barrier By,
the relative distance corresponding to the position of the
approximate barrier r, and the width of the barrier w.
However, the values of R, and a depend on the Coulomb
barrier parameter z. For example,

R.=125fm and a =0.481fm forz <70
R, =1.18fm and a =0.675fm for70 < z < 130
R.=1.11fm and a =0.895fm forz > 130.

X =

(37)

5.6 Skyrme energy density function model

Skyrme energy density function (SEDF) model has been
introduced by Wang et al [11,30], where the total bind-
ing energy of a nucleus is represented as the integral of
the energy density function [31]

E=/Hdr.

Here energy-density function H has three parts: kinetic
energy, Coulomb and nuclear interactions and is gener-
ally defined as follows:

(38)

h2
H(r) = %[rp(") + T (r)]

+ Hcoulomb () + Hpyclear (1),

where 7, and T, are the kinetic energy density for pro-
ton and neutron, respectively. The interaction potential
Vg (R) is defined as

VB(R) = Eo(R) — Ep — E;,

(39)

(40)

where E(R) is the total energy of the interacting
nuclear system, E, and E; are the energies of the projec-
tile and the target, respectively, at completely separated

Page 9 of 24 84

distance R. These energies can be calculated by the fol-
lowing relation:

Ewi(R) = / Hip1p(r) + pap(r — R),
pln(r) + /02n(r - R)]dr
E,(R) = f HIp1 (), pin(F)]dr

E/(R) = / H{[p2p(r), p2n(r)ldr. (41
The densities of the neutron p, and proton p, for the
projectile and the target can be described by the spheri-
cally symmetric Fermi function

£0
(r—c)’

l4+e a

p(r) = (42)

where pg, ¢ and a are the parameters of the densities
of the participating nuclei in the reactions, which are
obtained by using the density-variation approach and
minimising the total energy of a single nucleus given by
the SEDFM [11,30].

Using the Skyrme energy density formalism, Zan-
ganeh et al [32] have constructed a pocket formula for
fusion barriers and positions in the range 8< z < 168
with respect to the charge and mass numbers of the inter-
acting nuclei as follows:

1/3

VET = —0.01[(Z,Z)(AY + A

+0.20(Z,Z;) + 0.60 (43)
Ry = 1404, + 7,
—0.07(Z,Z1)*% 4 1.40. (44)

We have used eqs (43) and (44) for SEDFM predic-
tions for various reactions as shown in tables 2 and 3.
Since the SEDFM is based on the frozen density approx-
imation, the predicted values for each of the considered
fusion systems are a bit higher than the corresponding
experimental data.

5.7 Sao Paulo optical potential (SPP)

This model [12] also takes a Woods—Saxon form for the
nuclear potential as given in eq. (22). In the approxi-
mation of exp ((Rgp —r)/a) > 1, Rp can be written
as

Rp =r+0.65Inx, 45)
where
1/3 1/3
A A
x=271x 2 AT

7,7
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is a positive dimensionless parameter. Note that the
parameter x, which appears in the argument of the log-
arithm of the above equation, can also be written as
x = exp((Rp —r)/a) and is larger than one in most
cases. The barrier potential Vp is given by

Z,Ze? 15

_x+1' (46)

B= dwegRp
5.8 Moustabchir—Royer (MR) formula

Moustabchir and Royer [33] proposed two formulas for
the fusion barrier height and radius from a fitting pro-
cedure on generalised liquid drop model [34] data on a
large number of fusion reactions as follows:

1/3 1/3 Z,Z,
2.1388Z,Z; 4+ 59.427(A,/" + A,’") —27.07In (W)

Pramana — J. Phys. (2022) 96:84

gives a clear impression that the deviation between the
experiment and theory for the fusion barrier radius is
much larger than the fusion barrier. Whatsoever, we can
find that the present empirical formula (figure 3a) is
within +20%, deviations of the SEDF data are within

t‘go(;;’ (figure 3b), Bass model estimates within +_4601Z) (fig-

ure 3c) and SW predictions within ts(%’ (figure 3d).
Similar deviations found with CW (figure 3e), BW data
(figure 3f) and AW data show about t;‘g;ig (figure 3g)
deviations, while SPP data show an overestimation of
40%. Further, to have a quantitative evaluation on the
model predictions, we have obtained the sum of the
squared residuals (SSR= Z;’:l el.z), where ¢; is the
ith residual or difference and » is the number of data
points. The mean squared errors (GE2 = SSR/(n — 2))

Vp = —19.38 + 17 (47)
(A7 +A,)(2.97 = 0.121n(Z,, Z,))
3.94
Rp= (A + 4,7 [1.908 —0.0857In(Z,Z) + } : (48)
pLt

The rms deviations are found to be 0.15 MeV and 0.08
fm in Vp and Rp, respectively.

6. Results and discussions

We have constructed the empirical formulae for the
fusion and interaction barriers using the experimental
results available in the literature as mentioned already.
The fusion barriers By, can be obtained from eqs (4)
and (5), and fusion barrier radius Rp from eq. (10).
In table 3, Bg, values obtained from various theoreti-
cal models for different systems are compared with the
experimental results in the rage of 9 < z < 129, which
are not used to construct the present fusion barrier for-
mula. Similar comparisons have also been done for Rp
in table 4 for the range 55 < z < 170. To check which
model gives the best agreement with the experimen-
tal results, the differences of both By, and Rp values
between the experiment and a specific model have been
plotted as a function of z in figures 2 and 3, respectively.
From figure 2, it is seen that the present empirical for-
mula (figure 2a) is within +4%, most of the SEDF data
overestimates up to 7% (figure 2b), Bass model under-
estimates for z < 60 and overestimates for z > 60
(figure 2¢), SW predicts within 5% (figure 2d). Simi-
lar comparison is found with CW data (figure 2e), BW
data (figure 2f) and AW data (figure 2g), while SPP data
show an underestimation for z up to 40 and overestima-
tion up to 10% for z > 40. On the other hand, figure 3

are shown in table 5. The lowest mean squared error
on both the fusion barrier and radius is obtained for the
present model, thus far the best available formula. Note
that the empirical formula of SJW [25] does not predict
fusion barrier radius. It is considered to be disqualified
in this test. The BW model is the second best and the
AW model is the third best in the region considered here.

We can see from figure 1 that very few data exist for
z > 150, because the reaction mechanism at this region
is complex and the data analysis is a tricky affair. If the
experimental apparatus is powerful enough in the sense
of measuring the number of physical parameters, right
kind of data analysis can be possible. Often such appara-
tus is not available, thereby appropriate analysis method
cannot be straightforwardly chosen as discussed below.
Therefore, available experimental results are very lim-
ited. Whatsoever, the available experimental results for
the heavy-ion reactions aiming to form actinide and
transactinide elements have been compared with the
present formula, WIS formula [25], W D Myers (WDM)
model [27] and H C Manjumatha (HCM) formula [26]
in table 6. The mean square errors in the present for-
mula, WDM model, WIS formula and HCM formula
are found to be 2.26, 4.98, 4.42 and 5.72, respectively.
Hence, the predictions from the present formula is the
best of all.

The heavy-ion fusion reactions are considered as a
dynamic process from the capture of the projectile by
the target to the formation of the fully equilibrated com-
pound nucleus [35]. From this, the ‘extra push’ energy
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needed to create the compound nucleus was obtained.
The values of this energy are in good agreement for
the projectile—target combination with Z; - Z, < 1600.
However, synthesis of the superheavy elements with
Z = 110-112 and Z; - Z, > 1600 shows a small
‘extra push’ energy is required [36,37] in contrast to
the one predicted by the macroscopic dynamic model
[38]. Hence, the capture barriers and fusion barriers are
nearly equal for the projectile—target combination with
Z1 - Z> > 1600.

Recently, Banerjee et al [39] have precisely measured
the capture barriers for the reactions of *3Ca, >°Ti and
S4Cr with 2%8Pb. Since the capture barriers for these
reactions are close to the fusion barriers, we can com-
pare these with the fusion barriers and they agree very
well with the present formula. Hence, the present for-
mula is an appropriate formula that may be useful for
synthesising the superheavy elements also (discussed
later). This formula is thus useful for the entire region
of 8 < z < 286. Of course, for the region 0 < z < 8
where nuclear astrophysics experiments [40] are often
conducted, the BW model can be used.

Very recently, Ganiev and Nasirov [41] discussed pre-
dictive power of various nucleus—nucleus potentials.
The proximity potential [4] and its use in AW model
[8] give a deviation of more than 4 MeV from the
experimental values of Vp for several fusion reactions.
More importantly, the difference increases for the reac-
tions with massive nuclei including the mostly used
Bass potential [2,3,18,42] of the proximity potential.
For some fusion systems, the results of CW [6] and BW
models [43] are close to the experimental data, but these
models cannot describe the heavy-ion reactions such as
86K r+208pPb, In contrast, predictions of a double-folding
model (DFM) [41] based on density-dependent Migdal
potential [44] are close to all the experimental val-
ues including the heavy-ion reactions. We compare the
present results for Vp with this DFM model along with
the DFM using M3YReid interaction with zero-range
exchange part [45] and the Paris CDM3Y3 interaction
with finite-range exchange part [46] and experimental
data obtained from the cited references in table 7. The
mean squared error analysis gives a clear impression
that predictions from our formula are the best of all these
models.

Synthesis of superheavy elements by heavy-ion reac-
tions is a complex problem because of quasi-fission
etc. A fully equilibrated compound system needs to
be formed to produce new elements. This depends on
entrance channel parameters [47], deformation parame-
ters, orientation, internal excitation, transfer and initial
kinetic energy of the projectile [48], which can be picked
by the knowledge of theoretical Bg,. However, the bar-
rier distributions of many heavy-ion reactions used for

Pramana — J. Phys. (2022) 96:84
the synthesis of superheavy nuclei shows double hump
behaviour, for example, less mass asymmetric cold
fusion reactions. Out of the two humps, the inner peak
is the higher peak, while warm fusion reactions, due to
higher mass asymmetry, exhibit no double hump barri-
ers [49]. Ata given mass asymmetry up to aboutn = 0.5
the potential barrier exhibits a two-hump shape, but for
larger 7 it displays only one hump [50]. Hence, double
hump problems appear only for the cold fusion type of
reactions and the present predictions might represent the
higher potential barrier of the corresponding distribution
for such reactions. Such scenarios have been discussed
later by several researchers from time to time, for exam-
ple, a very recent article by Royer et al [51]. Hence, a
precisely known value from this present formula will
thus allow us to select the kinetic energy judiciously.
Recently, a reaction contact time experiment [52] has
made use of the WJS formula [25] (not the WDM model
[27], although it is quoted there). We showed just above
that uncertainty in the WJS formula [25] is much higher
than the present formula. The fusion barriers of the reac-
tions aiming for the superheavy nucleus = 120 have also
been compared with different formulae in table 6.

Though the present empirical formula is not specific
to a particular form of the nucleus—nucleus potential,
the second as well as the third best models are based on
the Woods—Saxon potential (eq. (22)) and characterised
by the three potential parameters including the potential
height parameter Vj, the diffuseness parameter ap and
the radius parameter ro. The present formula predicts
the fusion barrier and radius pretty well, if we substitute
these values in the three equations involved in eq. (3)
and solve for these three parameters for a reaction, we
can constitute the concerned nucleus—nucleus potential
quite well. Such an exercise is followed for several
reactions and the Woods—Saxon potential parameters
are shown in table 8 and compared with the potential
parameters used in the earlier analysis, where mostly
the Akyuz Winther parameters [53] have been used, for
example [54]. Sometimes the parameters are altered to
have an agreement with the fusion cross-section mea-
surements [55]. Even at times, modified Akyuz Winther
parameters are chosen by fixing the potential height
at 100 MeV [56]. Note that in some models, another
parameter is kept fixed, for instance, ag is fixed for the
BW and AW models as 0.63 fm. In contrast, we have
kept all the parameters free while the basic equations are
solved (eq. (3)). The values of Vy, ap and ro span over
26-135 MeV, 0.92-1.76 fm and 0.85-1.24 fm, respec-
tively. In contrast, earlier Akyuz Winther parameters for
Vo, ap and rg fall in the range of 76—-105 MeV, 0.67-1.06
fm and 1.06-1.19 fm, respectively.

Once we solve the potential parameters Vy, ag and rg
by the above prescriptions and assume the tail of the
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nuclear potential to be exponential with diffuseness ag,
one can readily obtain Rp from [57]

Z1Z»e?
vy = 21226 (1 _ ﬂ). (49)
Rp

[55]
[56]
(561
[54]
[56]

Ref.

We can obtain now another important parameter called
the barrier width (%) from the relation given by Rowley
et al [19] as follows:

W2V"(Rp)  Z1Zre*h* [ 1 2
8 _ 2 22 (___). (50)
URp

Model
AKW*
MAKW
MAKW
AkW
MAKW

(hw)? =

74

ay Rp

how
5.21
3.85
4.34
5.06
3.

Use of these barrier radius and width in the Wong’s
phenomenological formula [58] gives us the fusion
cross-section as follows:

fiw R? 2n(E — Vg)
W B
o'fuong = 2—bln |:1 —|—CXp T]

Other models

ro
1.120
1.019
1.059
1.190
1.070

(51

We made an attempt to check whether the predicted
fusion barrier and radius from the present formula can
reproduce the measured excitation fusion, i.e., fusion
cross-section as a function of the centre of mass energy
of the projectile. It is done by a direct substitution of Rp
and % in the classic Wong formula [58] given above
for many reactions. For example, figure 4 shows a com-
parison for four reactions: R4 181y [55], 1604298 pp,
160+154Sm and 8Ni+>*Fe [56]. The comparison of
the total fusion cross-section between the phenomeno-
logical formula [58] and experiment displays a very
good agreement for E., > By, and a departure starts
appearing at low energies, E.,y < By, except for the
reaction '°04-134Sm, because of the strong channel cou-
pling effects for some reactions in the sub-barrier region
[59]. The present scenario reiterates the fact that no
single, energy-independent potential can simulate the
fusion cross-sections at the sub-barrier region, where
the well-known influence of the coupling effects is vital.
A recent study [60] has discussed the sub-barrier fusion
properties on a different view point, which shows the
importance of the projectile mass and surface energy
coefficients in heavy-ion fusion at sub-barrier energies.
Further, it finds the essence of the fusion Q-value rule
[61] for some fusion systems.

Itis worth mentioning that owing to deformation in the
projectile and/or target nuclei, a distribution of barrier
heights is observed in the experiments. The fusion bar-
rier height from the present empirical formula represents
an average value in the case of such distributions. Obvi-
ously, the barrier width also shows an average value and
its value for certain reactions are compared with other
models in table 8.

In recent years, microscopic mechanisms which can
impact the nucleus—nucleus potential has been stud-
ied in the framework of time-dependent Hartree—Fock

ao
0.700
1.060
1.060
0.676
0.970

Vo
104.5
100.0
100.0

75.98
100.0

ho
3.79
4.19
3.51
2.6
3.27

ro
1.15
1.24
1.06
0.85
1.12

Present work

0.92
1.45
1.76

18

ao
1.1

26.40

67.73
53.72

Vo
45.30
135.07

Table 8. Comparison of the Woods—Saxon potential parameters Vo (MeV), ro (fm), ap (fm) and 7w from the present empirical formula and other models. The value
marked with the superscript (*) indicates that Akyuz Winther (AkW) parameters [53] are altered to have agreement with the measurements. Modified Akyuz Winther
(MAKW) parameters are obtained by fixing Vy = 100 MeV and then calculating the values of ag and ¢ from the AkW model. The width Zw is obtained from eq. (48).

Systems
19F+181T21
16O+154Sm
19F+208Pb
64Ni+64Ni
08 +90Zr
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Figure 4. Comparison of total fusion cross-section between the theory and the experiment as a function of Ep, for the reactions
(a) F+'81Ta [55], (b) '°0+'3*Sm [56], (¢) '°0+298Pb [102] and (d) 8Ni +°* Fe. The dashed vertical line indicates the

fusion barrier for the corresponding reaction.

(TDHF) approach [62] to provide a rather unique tool for
describing nuclear structure and nuclear reactions over
the whole nuclear chart. Assuming that the densities of
the target and projectile remain constant and equal to
their respective ground-state densities, this leads to the
so-called frozen density TDHF (FD-TDHF) approxima-
tion. Washiyama and Lacroix [63] considered a different
approach based on a macroscopic reduction of the mean-
field dynamics, called dissipative dynamics in TDHF
(DD-TDHF). We have compared the DD-TDHF predic-
tions for the fusion barrier and barrier radius for several
reactions with our predictions and available experimen-
tal values in table 9, and noticed a good agreement.
In recent years, Simenel and his co-workers [64,65]
and Yilmaz et al [66] have applied TDHF without any
approximation to verify the FD-TDHF and DD-TDHF
predictions in several cases and found good accordance.
Mean squared error is given in the bottom row of the
table, which implies that the DD-TDHF predictions with
low E.p, are the best if we judge both Vp and Rp simul-
taneously.

Let us briefly discuss the data analysis issue of the
heavy-ion reactions here. When a projectile collides
with a target nucleus near the fusion barrier energy,
besides the evaporation residues (ER) and binary fission
[67], the quasi-fission [38,68] is another process that
contributes considerably in the reaction cross-sections.
Furthermore, quasi-fission occurs before the target and
projectile fuse into a compound nucleus not only for
the heavy systems z; - z, > 1600 but also in much
lighter systems z; - z;, ~ 800 [69], which results in
the hindrance of the formation of ER from the equili-
brated compound nucleus. The fusion—fission can also
take place from an incomplete fusion reaction [70,71],
in which only a part of the projectile fuses with the target
and the incompletely fused binary system equilibrates in
the compound nucleus. Often, the quasi-fission products
are considered as the products of deep inelastic colli-
sions [72] in the experimental data analysis and their
contribution is obviously not included in the capture
cross-section, and the estimation of the fusion probabil-
ity from such analyses appears unreliable. If the effect
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As discussed in the introduction, the motivation of
the present work was to check the correct position of
the observed resonance-like structures [16] with respect
to the interaction or the fusion barrier. According to the
Bass model [2,3], it is closer to the fusion barrier than the
interaction barrier. It is thus opposite to the expectation.
The scenario remains unchanged with the refined fusion
and interaction barrier energies found in the present
work for the systems 12C(36Fe, 3°Fe), 12C(38Ni, *8Ni)
and '2C(%3Cu, ©Cu). The physical reason for this
anomaly is identified as a process called the nuclear
orbiting resonance (dinuclear complexes) [73]. Details
of this aspect are out of the scope of this work and will
be published elsewhere.

7. Conclusion

In this paper, using the experimental values available
in the literature, empirical formulae for the fusion and
interaction barriers have been obtained. The experimen-
tal values available for the fusion barrier radius give
us an option to find a formula for the fusion barrier
radius also. The present study is restricted to the fusion
and interaction barriers for the reactions in the regime
8 <z <286 and 59 < z < 313, respectively. We have
carried out a comparative study of the fusion barriers as
well as the barrier radius between the present empirical
formula and various empirical, semi-empirical models
and microscopic theories along with the experimental
results. After a thorough comparison with the experi-
mental values, the present formula is found to be the
best of all the models considered in this study for the said
regions. Further, to examine its predictability, the fusion
barrier and barrier radius have been used in the classic
Wong fusion cross-section formula and the total fusion
cross-sections are found to compare well with the exper-
imental values. The fusion barrier and barrier radius
obtained from the present formulae are used to solve
the potential parameters of the Woods—Saxon potential
using the three basic equations involved in eq. (3). The
parameters so obtained are quite different from the ones
used in the earlier studies.

The present fusion barrier formula is shown to be
in excellent accordance with the experimental data in
table 6. This comparison includes mostly the heavy-ion
reactions aiming to synthesise the superheavy elements.
Further, the agreement between the experimental and
present interaction barrier formulae is pretty good.
Hence, the present fusion and interaction barrier for-
mulae together can be confidently used for planning
experiments for the synthesis of the new superheavy
elements. Similarly, current interaction barriers have
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been compared with the experimental interaction bar-
riers quite well. We revealed in this work that the fusion
and interaction barriers from the present work can be
estimated very well and the predictions are better than
the other models due to the wider experimental data con-
sidered. After all, it is an empirical formula. A refined
and complete theoretical model such as DD-TDHF [63]
is found to be even better than the present formula. More
such theoretical calculations are highly desirable to shed
better light on the reaction mechanism of the heavy-ion
collisions. At the same time, a benchmark experiment
that takes care of quasi-elastic events, deep inelastic col-
lisions, capture reactions, etc. is of high demand for the
heavy-ion reactions, in a proper manner.
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