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Abstract

SOME CONTRIBUTIONS TO DOMINATION

THEORY IN GRAPHS

By

S. VIGNESH

Ph.D Research Scholar (P.T)

P.G and Research Department of Mathematics

Tranquebar Bishop Manickam Lutheran College,

Porayar, Tamil Nadu, India.

The field of Mathematics plays a vital role in various fields.

One of the important areas in mathematics is graph theory, which is

used in structural models. This structural arrangements of various

objects or technologies lead to new inventions and modifications in

the existing environment for enhancement in those fields.Graphs are

among the most ubiquitous models of both natural and human-made

structures.

During the later part of the twentieth century, the areas of graph

theory in computer engineering and operations research had an ex-

plosive growth. Graphs are used to represent networks of communi-

cation, data organization, computational devices, the flow of compu-
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tation etc. Graphs have an intuitive and aesthetic appeal because of

their diagrammatic representation.

One of the fastest growing areas in graph theory is the study

of domination and related subset problems such as independence,

covering, matching and inverse domination. In 1958, the concept

‘Domination’ was introduced interms of stability number of a graph

by Berge. In 1962, Oystein Ore [45] gave the formal mathematical

name as “Dominating set” and “Domination number” of a graph. In

1977, Cockayne and Hedetniemi [9] made an interesting and extensive

survey of the results known at that time about dominating sets in

graphs through their survey paper. Domination has a wide range

of applications in radio stations, modelling social networks, coding

theory and nuclear power plants problems.

Acharya, Sampath Kumar and Walikar [55] are some Indian Math-

ematicians who have made substantial contributions to the study of

domination in graphs. There are more than 75 models of domi-

nating and relative types of sets in graphs, which have appeared in

the research literature for the past 30 years. Many domination pa-

rameters are formed by combining domination with another graph

theoretic property P. In an attempt to formalise the concept, Haynes
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et al. defined the conditional domination number γ(G : P ) as the

smallest cardinality of a dominating set D ⊆ V (G) such that the in-

duced subgraph 〈D〉 and 〈V −D〉 satisfy some property P. Some of

the domination parameters are independent domination, connected

domination total domination, paired domination, split domination,

non-split domination and so on.

In 1991, Kulli and Sigarkanti considered the problem of selecting

two disjoint sets of transmitting stations D1(D2) so that every sta-

tion not belonging to D1(D2) has a link with atleast one station in

D1(D2), where |D1| and |D1 ∪D2| are minimum among all points of

disjoint transmitting stations. This leads then to define the inverse

dominating sets in a graph. The concept “Inverse Domination Num-

ber in Graphs” was introduced and determined for many classes of

graphs with interesting results by Kulli and Sigarkanti [30].

The idea of dominating atleast half of the vertex set is a crucial

one and it gave an inspiration for defining majority dominating sets

instead of functions to a graph structure. Incidentally, it also has a

good application. In decision making process, sometimes it may not

be necessary to have the consent of all but a majority opinion will

do. In democratic institutions, majority rule is given importance.
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In administration, it is enough if the executive body convinces a

majority of the employees. In order to model this concept, Joseline

Manora and Swaminathan [50] defined majority dominating sets and

majority domination number γM(G) on graphs in 2006.

Let G = (V,E) be a simple, finite and undirected graph with p

vertices and q edges and V −D is the complement of a dominating

set D of G then the conditional number γ(G;C) is the minimum

cardinality of a dominating set D ⊆ V (G) such that the set (V −D)

satisfies condition C. Obviously γ(G) ≤ γ(G : C), for any condition

C. The conditional domination property provides a method for find-

ing many parameters by considering different conditions C on the

complement of a various dominating sets of a graph G.

The researcher has been motivated by the above parameter to de-

fine a new graph theoretical parameter “Inverse Majority Dominating

Sets in Graphs”. The researcher consider the parameters defined by

imposing some constraints on the complement of a dominating set.

It produces many interesting results, some beautiful inequalities and

bounds in the field of domination theory on graphs.

This thesis entitled “Some Contributions to Domination
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Theory in Graphs” consists of Seven chapters.

In the first chapter, the researcher presents the basic definitions

and results on domination theory which are necessary to write this

Thesis. Survey of the literature,the motivation and the scope of the

thesis are also mentioned.

Chapter two consists of six sections. The new parameter an

inverse majority dominating set of a graph has been defined with an

illustrative example. Then an inverse majority domination number

γ−1
M (G) is determined for various families of graphs. Also bounds of

γ−1
M (G) in terms of p, characterization theorems for γ−1

M –set and some

interesting inequalities are established. In the next sections, results

on the inverse majority domination and majority independence num-

ber of a graph are discussed. Particularly the relationship between

γ−1
M (G) and βM(G) for cubic bipartite graphs are studied. An appli-

cation for this Inverse Majority Dominating Set and an algorithm for

finding a Minimal Inverse Majority Dominating Set and its number

γ−1
M (G) for a given graph are established.

Chapter three deals with the exact values of γ−1
M (G) for some

special graph structures. Inverse Majority Domination Number on

subdivision graphs of some special graphs and splitting graph of a
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graph are also discussed. In the subsequent sections, inverse majority

domination number for a complementary graph Ḡ of a graph G and

γ−1
M (G − u), for some vertex u ∈ V (G) which is deleted from G are

also discussed.

Chapter four discusses the new concept an “Inverse Indepen-

dent Majority Dominating Sets of a Graph”. The inverse indepen-

dent majority domination number i−1
M (G) for some standard graphs,

bounds of i−1
M (G) and relationship between i−1

M (G), iM(G), i(G) and

γ−1
M (G) are also studied. The characterization theorem for a minimal

inverse independent majority dominating set of G and the inverse

independent majority domination number i−1
M (G) for disconnected

graphs have been found. Nordhus –Gaddum type of results are also

established for i−1
M (G).

In the fifth chapter, the parameter “Inverse Connected Majority

Dominating Sets of a Graph” has been defined with an example.

Then Inverse Connected Majority Domination number γ−1
CM(G) is

determind for various families of graphs and also grid graphs. A

minimal inverse connected majority dominating set of a graph is

characterised. The algorithm and application to an inverse connected

majority domination number of a graph G is discussed.
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Chapter six includes the “Inverse Split Majority Dominating

Sets of a Graph”. The Inverse Split Majority Domination Number

γ−1
SM(G) for some classes of graphs and bounds of γ−1

SM(G) interms

of ∆(G) and ∆′(G) are determined. The necessary and sufficient

condition for a Minimal Inverse Split Majority Dominating Set of G

and the relationship between γ−1
SM(G), γSM(G) and γ−1

M (G) have been

produced.

Chapter seven deals with the concept of an “Inverse Non-Split

Majority Dominating Sets and an inverse non split majority domi-

nation number γ−1
NSM(G) of a graph G”. Lower and upper bounds of

γ−1
NSM(G) and Characterisation theorem for a minimal inverse non-

split majority dominating set have been established.

The Conclusion includes total summary of the Thesis highlight-

ing all new findings developed using the newly coined parameter of

various Inverse Majority Domination Parameters of a Graph. Also

some references which are needed to the Thesis are given at the end.



Chapter 1

PROLEGOMENON

ABSTRACT

This chapter is introductory in nature which unlocks the fundamental

theoretical background of the thesis. This chapter comprises the de-

tails of chronological survey of all literature, basic concepts of graph

theory, domination theory and objectives of the study. The motiva-

tion, scope and organization of the thesis are also given at the end.

1



Ch. 1: Prolegomenon 2

1.1 Introduction

Graph Theory is a branch of Mathematics which is most flour-

ishing and interesting area for several reasons. In last three decades

hundreds of research articles have been published in Graph Theory.

There are many other areas of graph theory which have received good

attention from mathematicians. Some of these areas are coloring of

Graphs, Matching Theory, Domination Theory, Labeling of Graphs

and areas related to Algebraic Graph Theory.

Domination in graphs has been an extensive research branch of

graph theory. The theory of domination has been the nucleus of re-

search activity in graph theory in recent times. One of the fastest

growing area in graph theory is the study of domination and related

subset problems such as independence, covering, matching and in-

verse domination, the reason being its many and varied applications

in such fields as social sciences, communication networks, algorithm

designs, computational complexity etc. Henda C. Swart [15] has

rightly commented that the theory of domination in graphs is like a

growth industry.
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1.2 Survey of Literature

The rigorous study of dominating sets in graph theory began

around 1960, even though the subject has historical roots dating back

to 1862 when de Jaenisch studied the problems of determining the

minimum number of queens which are necessary to cover or dominate

an n × n chess board. The eminent mathematicans Berge [5] and

Oystein Ore [45] gave the formal mathematical definition to the topic

of domination. Berge called the domination as external stability and

domination number as coefficient of external stability.

Ore [45], a well known lattice theorist, introduced the concept of

domination in graphs in his famous book Theory of Graphs. It was

only Claude Berge’s [6] pioneering book Graphs and Hyper Graphs in

1973 which included a bound on the domination number of a graph

and Vizing’s bound on the size of a graph with a given order and

domination number. Besides, this book also contains application

to surveillance networks and game theory. Today, Ore’s concept of

domination in graphs has indeed become an independent theory. This

concept lived almost in hibernation until 1975. When Cockayne and
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Hedetniemi [9] published their paper Towards a theory of Domination

in Graphs which appeared in Networks in 1977. This paper brought

to light new ideas and potentiality of being applied in a variety of

areas.

There are many origins to domination theory. The earliest idea

of domination sets data back to the origin of game of chess in In-

dia. In 1979, Walikar et. al. [55] published a lecture notes volume

titled Recent Developments in the Theory of Domination in Graphs

and its Applications. In 1990 [24], Hedetniemi and Laskar published

their Bibliography on domination in graphs and some basic defini-

tions of domination parameters. This book contained at that time

about 400 references. Towards the end of 1977, Haynes et. al brought

out a comprehensive two volume text book namely, Fundamentals of

Domination in Graphs [21] and Domination in Graphs : Advanced

Topics [22], which contain more than 1200 bibliographical entries.

Then, few eminent indian mathematicians Walikar, Acharya and

Sampathkumar [55], have made substantial contribution to the field

of domination in graphs. More than fifty types of domination param-

eters such as independent domination, connected domination, total

domination, paired domination etc... have been studied by different
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graph theorists. The split domination number [31] and the non-split

domination number of a graph [32] were introduced by Kulli and

Janakiram.

In 1995 [8], Broere et. al., introduced the concept of majority

dominating function in graphs. Tara S. Holm [26] found the majority

domination numbers of certain families of graphs and showed that the

decision problem corresponding to computing majority domination

number of an arbitrary disjoint union of complete graphs is NP-

complete. The idea of dominating half of the vertex set is a crucial

one and it gave the inspiration for defining majority dominating sets

instead of functions. Incidentally, it also has good application. In

decision making process, sometimes it may not be necessary to have

the consent of all; but a majority opinion will do.

In democratic institutions, majority rule is given importance. In

administration it is enough if the executive body convinces a major-

ity of the employees. In order to model this concept in graph theory.

Joseline Manora and Swaminathan in 2006 [50], defined majority

dominating sets and majority domination number on graphs. Fur-

ther, this concept was developed into many area of domination and

in 2010 [51], lot of interesting results on majority dominating sets
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are introduced in their research article. In 2011 [35], they studied

various parameters in this area such as majority domatic number,

vertex and edge critical graphs on majority domination number. In

2015 [41], the construction of intersection graphs on majority dom-

inating sets of a graph were introduced and analysed with their

properties.

1.3 Basic Concepts in Graphs and

Domination Theory

The following definitions are the preliminaries of a graph theory.

Definition 1.3.1. A graph G = (V,E) consists of a set objects

V (G) = {v1, v2, . . .} called vertices and another set E(G) = {e1, e2, e3,

. . .}, whose elements are called edges, such that each edge ek is iden-

tified with an unordered pair (vi, vj) of vertices. Then ei = vjvk, vj

and vk are called end vertices of an edge ei.

Definition 1.3.2. The cardinality of the vertex set |V (G)| = p and

the cardinality of the edge set |E(G)| = q are respectively called the

order and size of the graph G. A graph G with p vertices and q
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edges is called a (p, q)-graph and it is denoted by G = (V,E) = (p, q).

The (1, 0) = K1-graph is called a trivial graph.

Definition 1.3.3. If e = {v1, v2} ∈ E(G), v1 and v2 are called ad-

jacent vertices; Further, the vertices v1 and v2 are incident with

an edge e. If two vertices are not joined by an edge, then they are

non-adjacent. If two distinct edges e1 and e2 are incident with a

common vertex, then it is said to be adjacent edges.

Definition 1.3.4. The degree of a vertex v in a graph G is the

number of edges of G incident with v and is denoted by degG(v) or

deg(v). The minimum and maximum degrees of vertices of G

are denoted by δ(G) and ∆(G) respectively.

Definition 1.3.5. A vertex of degree zero in G is called an isolated

vertex and a vertex of degree one is called a pendent vertex or an

end vertex of G. Any vertex which is adjacent to a pendent vertex

is called a support vertex.

Definition 1.3.6. A graph H is called a subgraph of a graph G if

V (H) ⊆ V (G) and E(H) ⊆ E(G). A spanning subgraph of G is a

subgraph H with V (H) = V (G). For any set S of vertices of G, the
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induced subgraph 〈S〉 is the maximal subgraph of G with vertex

set S such that two vertices of S are adjacent in 〈S〉 if and only if

they are adjacent in G.

Definition 1.3.7. Let v ∈ V (G). Then the graph G − v is the

subgraph of G obtained by the removal of the vertex v and edges

incident with v. If e ∈ E(G) then the spanning subgraph denoted by

G− e is the subgraph of G obtained by the removal of the edge e.

Definition 1.3.8. The distance d(u, v) between two vertices u and

v in a graph G is the length of a shortest u − v path in G. The

diameter of a connected graph G is the length of any longest path.

The diameter of G is denoted by diam(G).

Definition 1.3.9. A graph G is connected if every pair of distinct

vertices of G are joined by a path. A disconnected graph has at

least two components. If a graph G has no edges between the vertices

then it is called totally disconnected or a null graph.

Definition 1.3.10. A connected graph without cycles is called a

tree. A spanning tree of a graph G is a spanning subgraph of G

that is a tree.
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Definition 1.3.11. A vertex of a graph G is said to be a full degree

or a dominating vertex if it is adjacent to all other vertices in G.

That is, d(v) = p− 1.

Definition 1.3.12. A graph G is said to be regular of degree r if

every vertex of G has degree r. Such graphs are called r-regular

graphs. Any 3-regular graph is called a cubic graph.

Definition 1.3.13. A graph G is complete if every pair of its ver-

tices are adjacent. A complete graph on p vertices is denoted by Kp.

A clique of a graph G is a maximal complete subgraph of G.

Definition 1.3.14. The complement G of a graph G is the graph

with vertex set V (G) such that two vertices are adjacent in G if and

only if they are not adjacent in G.

Definition 1.3.15. A bipartite graph is a graph whose vertex set

V (G) can be partitioned into two subsets V1(G) and V2(G) such that

every edge of G has one end in V1(G) and the other end in V2(G). If

every vertex of V1(G) is joined to all the vertices of V2(G) and vice

versa, then G is called a complete bipartite graph. If |V1(G)| = m

and |V2(G)| = n then it is denoted by Km,n,m, n ≥ 1. The complete
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bipartite graph with (V1(G), V2(G)) = (1, p− 1) is called a star and

it is denoted by K1,p−1.

Definition 1.3.16. A walk of G is a finite, alternating sequence of

vertices and edges beginning and ending with vertices i.e.) u1e1, u2e2,

. . . , un−1en−1. The number n is called the length of the walk. The

walk is said to be closed walk if u1 = un and is an open walk

otherwise.

Definition 1.3.17. A walk in which all the vertices are distinct is

called a path and a path on p vertices is denoted by Pp. A closed walk

u0, u1, u2, . . . , uk in which the vertices u0, u1, u2, . . . , uk−1 are distinct

is called a cycle and a cycle on p vertices is denoted by Cp.

Note 1.3.18. Let G1 and G2 be two graphs. If one of the graphs say

G2 = K1 then the graph G1 ∨G2 is obtained by joining every vertex

of G1 with every vertex of G2 and is denoted by G1 +K1. Hence the

wheel graph Wp = Cp−1 +K1 and the fan graph Fp = Pp−1 +K1.

Definition 1.3.19. A cut-vertex(cut-edge) of a graph G is a ver-

tex(edge) whose removal leaves the graph disconnected.
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Definition 1.3.20. A caterpillar is a tree C for which the removal

of all end vertices leaves a path, which is called the spine of C.

A spider is a tree which has at most one vertex of degree ≥ 3. A

double star is a graph obtained by taking two stars and joining the

vertices of maximum degrees with an edge and is denoted by Dr,s.

Definition 1.3.21. A graph is called acyclic, if it has no cycles.

A connected acyclic graph is called a tree. A tree is a wounded

spider if the tree is K1,r, r ≥ 0, in which at most r − 1 of the edges

are subdivided.

Next, in definitions of some special graphs structures are given

below.

Definition 1.3.22. A subdivision of an edge e = uv of a graph G

is obtained by introducing a new vertex w and replacing the edge uv

with edges uw and wv. The graph obtained from G by subdividing

each edge of G exactly once is called the subdivision graph and is

denoted by S(G).

Definition 1.3.23. Let G1 be an (n1,m1)-graph and let G2 be an

(n2,m2)-graph. Then the corona G1 ◦G2 is defined as the graph G
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obtained by taking one copy of G1 and n1 copies of G2, and joining

the ith vertex of G1 to every vertex in the ith copy of G2. The corona

H ◦K1 is denoted by H+, for any connected graph H.

Definition 1.3.24. Let G and H be any two connected graphs with

the vertex set (u1, u2, . . . , un) and (v1, v2, . . . , vn) respectively. The

(Cartesian) Product graphK = G×H has V (K) = V (G)×V (H)

and vertices (u1, v1) and (u2, v2) in V (K) are adjacent if and only if

either u1 = u2 and v1v2 in E(H) or v1 = v2 and u1u2 in E(G). The

Grid is Pi × Pj; the Cylinder is Ci × Pj, for i ≥ 3 and j ≥ 3; and

the Torus Ci × Cj, for i ≥ 3 and j ≥ 3.

Definition 1.3.25. For each n ≥ 3 and 0 < k < n, P (n, k) de-

notes the Generalized Petersen graph with vertex set V (G) =

{u1, u2, . . . , un, v1, v2, . . . , vn} and the edge setE(G) =
{
uiui+1(mod n),

uivi, vivi+k(mod n)

}
, 1 ≤ i ≤ n.

Definition 1.3.26. Let G be a graph and v be a vertex of G. G− v

is the induced subgraph 〈V (G)− v〉 of G and it is obtained from

G by removing v and the edges incident with v. If e ∈ E(G), then
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G − e is the spanning subgraph with edge set E(G) − {e} and it is

obtained from G by removing the edge e from G.

Definition 1.3.27. The Dutch windmill graph D
(m)
n , is the graph

obtained by taking m copies of the cycle graph Cn with a vertex in

common.

Definition 1.3.28. The open neighborhood N(v) of a vertex v in

a graph G is the set of all vertices adjacent to v in G. The closed

neighborhood N [v] of v is the set N(v) ∪ {v}.

Definition 1.3.29. Let G = (V,E) be a simple graph. Let a vertex

v ∈ V (G) and the set S ⊆ V (G). A vertex v is a private neighbor

of u (with respect to S) if N [v] ∩ S = {v}. Further, the private

neighbor set of u with respect to S is pn[u, S] = {v : N [v] ∩ S =

{v}}.

Definition 1.3.30. A set S ⊆ V (G) is said to be independent if

no two vertices in S are adjacent. The maximum number of vertices

in an independent set of a graph G is called the independence

number of G and is denoted by β(G).
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Definition 1.3.31. The vertex connectivity κ = κ(G) of a graph

G is the minimum number of vertices whose removal results in a

disconnected graph.

Definition 1.3.32. For any real number x, dxe denotes the smallest

integer greater than or equal to x, and bxc denotes the largest integer

less than or equal to x.

Next, the following definitions are regarding domination theory

and its domination parameters.

Definition 1.3.33. LetG = (V,E) be a finite, undirected and simple

graph. A subset S of V (G) is said to be a dominating set of G if

every vertex in (V − S) is adjacent to at least one vertex in S. A

dominating set is called minimal dominating set if no proper subset

of S is a dominating set. The minimum cardinality of the minimal

dominating set of G is called the domination number of G, denoted

by γ(G) and Γ(G) denotes the cardinality of the largest minimal

dominating sets of G and Γ(G) is called the upper domination

number of a graph G.

Definition 1.3.34. A subset S of V (G) is called an independent

set if no two vertices in S are adjacent. The minimum cardinality of
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a maximal independent set is called the independent domination

number of G and it is denoted by i(G).

Definition 1.3.35. A dominating set S is said to be a connected

dominating set if the subgraph 〈S〉 induced by S is connected in

G. The minimum cardinality of a minimal connected dominating

set of G is called the connected domination number, denoted by

γC(G).

Definition 1.3.36. A dominating set D of a graph G = (V,E) is

a split dominating set if the induced subgraph 〈V −D〉 is dis-

connected. The split domination number γs(G) is the minimum

cardinality of a minimal split dominating set of G.

Definition 1.3.37. A dominating set D of a graph G = (V,E) is

a non-split dominating set if the induced subgraph 〈V −D〉 is

connected. The non-split domination number γns(G) is the min-

imum cardinality of a non-split dominating set of G.

Definition 1.3.38. A vertex v in a graph G is said to be a majority

dominating vertex if d(v) ≥ dp2e − 1.
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Definition 1.3.39. Let G = (V,E) be a finite graph with p vertices

and q edges. A subset S ⊆ V (G) of vertices in a graph G is called

a majority dominating set if at least half of the vertices of V (G)

are either in S or adjacent to vertices of S (i.e.) |N [S]| ≥ dp2e.

A majority dominating set D is said to be a minimal majority

dominating set of G if no proper subset of D is a majority domi-

nating set of G.

The minimum cardinality of a minimal majority dominating set is

called the majority domination number and is denoted by γM(G).

If S ⊆ V (G) is a majority dominating set of minimum cardinality,

then it is called a γM - set of G.

Definition 1.3.40. A set S of vertices of a graph G is said to be

a majority independent set if it induces a totally disconnected

subgraph with |N [S]| ≥ dp2e and |pn[v, S]| > |N [S]| − dp2e, for every

v ∈ G. The minimum cardinality of a maximal majority independent

set is called the lower majority independent set of G and it is also

called independent majority domination number of G, denoted

by iM(G). The independent majority domination number of a graph
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G is the minimum cardinality of a minimal IMD set of G. The

maximum cardinality of a maximal majority independent set is called

the majority independence number and it is denoted by βM(G).

Definition 1.3.41. A set S ⊆ V (G) is a Connected Majority

Dominating (CMD) set if the set S is a majority dominating set

and the subgraph 〈S〉 induced by S is connected in G.

The connected majority dominating set S is minimal if no proper

subset of S is a connected majority dominating set. The minimum

cardinality of a minimal connected majority dominating set is called

the Connected Majority Domination Number and is denoted

by γCM(G). The maximum cardinality of a Minimal Connected Ma-

jority Dominating Set of G is called Upper Connected Majority

Domination of G, denoted by ΓCM(G).

Definition 1.3.42. LetG = (V,E) be a simple, finite and undirected

graph with p vertices and q edges. A subset D of V (G) is said to

be a split majority dominating set of G if the set D satisfies the

following conditions: (i) |N [D]| ≥ dp2e and (ii) The induced subgraph

〈V −D〉 is disconnected.
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Definition 1.3.43. The minimum cardinality of a minimal split ma-

jority dominating set is called the split majority domination number

of a graph G and it is denoted by γSM(G).

Definition 1.3.44. LetG = (V,E) be a simple, finite and undirected

graph on p vertices. A set D ⊆ V (G) is said to be a non-split

majority dominating set of G if the subsetD satisfies the following

conditions: (i) |N [D]| ≥ dp2e and (ii) The induced subgraph 〈V −D〉

is connected.

Definition 1.3.45. The minimum cardinality of a minimal non-split

majority dominating set of the graph G is called the non-split ma-

jority domination number and it is denoted by γNSM(G).

Definition 1.3.46. Let D be a minimum dominating set in a graph

G. If the set (V − D) contains a dominating set D′ then D′ is

called an inverse dominating set of G with respect to D. The

cardinality of a minimum inverse dominating set is defined as the

inverse domination number of a graph G and it is denoted by

γ−1(G).
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Definition 1.3.47. Let D be a minmum independent dominating

set of G. If (V −D) contains an independent dominating set D′ then

the set D′ is called an inverse independent dominating set with

respect to D. The inverse independent domination number

i−1(G) is the minimum cardinality of a minimal inverse independent

dominating set of G.

Definition 1.3.48. Let D be a minimum dominating set of G and D′

be the minimum inverse dominating set of G with respect to D. Then

D′ is called an inverse split dominating set of G if the induced

subgraph 〈V −D′〉 is disconnected. The inverse split domination

number is denoted by γ−1
S (G) and it is the minimum cardinality

taken over all the minimal inverse split dominating sets of G.

Definition 1.3.49. Let D be a minimum dominating set of G and

D′ be the minimum inverse dominating set of G with respect to D.

Then D′ is called an inverse non-split dominating set of G if the

induced subgraph 〈V −D′〉 is connected. The inverse non-split

domination number is denoted by γ−1
ns (G) and it is the minimum

cardinality taken over all the minimal inverse non-split dominating

sets of G.
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1.4 Some Results on γM(G)[50], βM(G)[33],

iM(G)[34], γCM(G)[37], γSM(G)[39]

and γNSM(G)[40]

1. Let G = Cp, a cycle on p vertices. Then γM(G) = dp6e.

2. Let G, be a caterpillar graph. Then γM(G) = dp8e.

3. Let G = K1,p−1. Then βM(G) = bp−1
2 e.

4. For any cubic bipartite graph G, Then βM(G) ≤ dp4e − 1.

5. Let G = Wp. Then βM(G) = dp−2
6 e, if 5 ≤ p ≤ 18 and

βM(G) = dp−3
4 e, if p ≥ 19.

6. Let G be a cycle of p vertices, p ≥ 3. Then βM(G) = dp6e, if

3 ≤ p ≤ 16 and βM(G) = dp−4
4 e, if p ≥ 17.

7. For a path G = Pp, p ≥ 2, βM(G) = dp4e, if 2 ≤ p ≤ 10 and

βM(G) = dp−2
6 e, if p > 11.

8. Let G = Fp. Then βM(G) = dp6e.

9. For any cubic graph, βM(G) = dp8e.

10. Let G = K1,p−1. Then βM(G) = bp−1
2 c.

11. For a complete graph G = Kp, γM(G) = γ−1
M (G) = 1.

12. Let G = mK2. Then iM(G) = dp4e.

13. If G = Pp be a path with p ≥ 2 and Cp a cycle with p ≥ 3 then

iM(G) = dp6e.
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14. Let G = Pp be a path, p ≥ 3. Then γCM(G) = dp2e − 2.

15. For a grid graph G = P2 × Pj, j ≥ 3

γCM(G) =

 b
p
4c, if j is odd

bp−1
4 c, if j is even

.

16. Let G be a uniform caterpillar with p vertices, e ≥ 2 pendants

and k ≥ 3 central vertices. Then

γCM(G) =


p
e+1 − b

k
2c, if k is odd

p
e+1 −

k
2 , if k is even

.

17. Let G = Wp be a wheel graph of p vertices. Then γSM(G) = 3.

18. Let G = Pp be a path on p vertices. Then γNSM(G) = dp4e if

p ≤ 8 and γNSM(G) = dp2e − 2 if p ≥ 9.

19. Let G be any graph with p vertices and G1 = G ◦ K1 be the

corona of G and K1. γNSM(G1) = dp2e

20. Let G be a caterpillar graph with p vertices. Then γNSM(G) =

dp4e

1.5 Motivation and Scope of the Thesis

z In 2006 [50], Swaminathan and Joseline Manora introduced the

concept “Majority Domination” with respect to sets with the

idea of dominating atleast half of the vertices of a graph. Fur-

ther the concept inverse domination in graphs is introduced by

Kulli and Sigarkanti [30]. The researcher is motivated by these

concepts to introduce new graph theoretical parameter “Inverse

Majority Dominating set of a graph”.
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z In 1998, Haynes et. al. [21], introduced the independent dom-

inating set of a graph and the same concept was extended to

inverse independent dominating set of a graph by Kulli et. al.

[29]. In 2014 [33], Joseline Manora and John introduced ma-

jority independent dominating set of a graph and they devel-

oped this concept into independent majority dominating set

of a graph [34]. The researcher was motivated by this idea

and extended to the concept of “Inverse Independent Majority

Dominating set of a Graph”.

z In 1979, The concept “Connected Domination in Graphs” was

introduced by Sampath Kumar and Walikar [48]. Then it is

extended to “Connected Majority Dominating set of a Graph”

and this idea was studied by Joseline Manora and Muthukani

Vairavel in 2017 [37]. This inspired the researchers to enter into

the area of “Inverse Connected Majority Dominating set of a

Graph.

z In 1997, Kulli and Janakiram [31] introduced split dominating

set of a graph. Another work in 2015, Joseline Manora and

Veeramanikandan [39] studied the extension of the idea and

defined the parameter “The Split Majority Domination Num-

ber of a Graph”. In 2008 [2], the inverse split dominating set

of a graph G was introduced by Ameenal Bibi and Selvakumar.

These eminent mathematicans discussed the parameter with

another domination parameters and produced many results on

the inverse split domination number of G, denoted by γ−1
S (G).

Here the researcher has developed this concept to “Inverse Split
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Majority Dominating Sets and its number of a graph”.

z In 2000, and Janakiram [32] defined a Non-Split dominating

set of a graph. This concept was extended to the non-split

majority dominating set of a graph by Joseline Manora and

Veeramanikadan [40] in 2015. Then Ameenal Bibi and Sel-

vakumar defined an inverse nonsplit dominating set of a graph

G and they determined bounds of the inverse nonsplit domina-

tion number γ−1
ns (G) and some theorems were produced by these

mathematicions. Now, the researcher has studied the concept

“Inverse Non-Split Majority Dominating set of a Graph” and

developed this notion to some extent.

1.6 Objectives of the Thesis

The objectives of this research work are:

z To introduce a new parameter inverse majority dominating set

of a graph G and inverse majority domination number, denoted

by γ−1
M (G).

z To find the exact values of inverse majority domination num-

ber for various families of graphs and to obtain the bounds of

γ−1
M (G).

z To study the comparison of γ−1
M (G) with the majority indepen-

dence number βM(G).

z To find the particular values of γ−1
M (G) for some special graph

structures.



Ch. 1: Prolegomenon 24

z To establish an algorithm to find an inverse majority dominat-

ing set in a given graph G.

z To define another new parameter in the complement of a inde-

pendent majority dominating set namely, an inverse indepen-

dent majority domination.

z To determine the inverse independent majority domination num-

ber i−1
M (G) for various classes of graphs and bounds of i−1

M (G).

z To characterise the value of i−1
M (G) with another parameters

such as i−1(G), iM(G) and γ−1
M (G).

z To study the Nordhaus – Gaddum type results for i−1
M (G).

z To study another new concept “Inverse connected majority

dominating sets in graphs” and its number γ−1
CM(G) for vari-

ous classes of graphs.

z To determine the exact values of γ−1
CM(G) for product graphs

and lower and upper bounds of γ−1
CM(G).

z To determine the characterisation theorem for a minimal in-

verse connected majority dominating set of a graph.

z To check the existence of an inverse connected majority domi-

nating set for a disconnected graph.

z To introduce a new inverse parameter in the domination theory

with respect to the complement of the majority dominating set

of a graph G namely inverse split majority domination and

inverse non-split majority domination.
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z To investigate some properties of graph G with respect to the

inverse split majority domination and inverse non-split major-

ity domination.

z To determine the exact values of γ−1
SM(G) and γ−1

NSM(G) for

various families of graphs.

z To obtain some relationships among the domination parameter

such as γ−1
M (G), γ−1

SM(G), γSM(G), γNSM(G) and γ−1
NSM(G).

z To establish algorithms and applications for the above said in-

verse parameters.

1.7 Organisation of the Thesis

This thesis entitled “Some Contributions to Domination The-

ory in Graphs” comprises of seven chapters with conclusion and

bibliography. The organization of the thesis follows the pattern given

below.

1. Prolegomenon.

2. Inverse Majority Dominating Sets in Graph.

3. γ−1M (G) for Some Special Graph Structures.

4. Inverse Independent Majority Dominating Sets of a

Graph.

5. Inverse Connected Majority Dominating Sets of a Graph.

6. Inverse Split Majority Domination in Graphs.



Ch. 1: Prolegomenon 26

7. Inverse Non- Split Majority Domination in Graphs.

Conclusion.

Bibliography.

In the first chapter, the researcher presents the basic definitions

and results on domination theory which are necessary to write this

thesis. Survey of the literature, the motivation and the scope of the

thesis are also mentioned.

Chapter two consists of six sections .The new parameter inverse

majority dominating set of a graph has been defined with an exam-

ple. Then inverse majority domination number γ−1
M (G) is determined

for various families of graphs. Also bounds of γ−1
M (G) interms of p,

characterization theorem for γ−1
M (G)– set and some interesting in-

equalities are established. The content of this section are published

in American International Journal of Research in Science,

Technology, Engineering & Mathematics.

In the next sections, Results on the inverse majority domination

and majority independence number of a graph are discussed. In par-

ticular, relationship between γ−1
M (G) and βM(G) for cubic bipartite

graphs are studied.This concept is published in TWMS Journal

of Applied and Engineering Mathematics. An application of

Inverse Majority Dominating Set and an algorithm for finding a min-

imal Inverse Majority Dominating set and its number γ−1
M (G) for a

given graph are established.

Chapter three deals with the exact values of γ−1
M (G) for some

special graph structures in six sections. Inverse Majority Domination
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Number on subdivision graphs of special graphs and splitting graph

of a graph are also discussed. This work is published in Advances

and Application in Mathematical Science. In the subsequent

section, inverse majority domination number for a complementary

graph Ḡ and γ−1
M (G−u), for some vertex u ∈ V (G) are also discussed.

This content is published in Malaya Journal of Mathematik.

Chapter four discusses the new concept “Inverse Independent Ma-

jority Dominating Sets of a Graph”. The inverse independent ma-

jority domination number i−1
M (G) for some standard graphs, bounds

of i−1
M (G) and relationship between i−1

M (G) and γ−1
M (G) are also stud-

ied. The characterization theorem for a minimal inverse independent

majority dominating set of G and the inverse independent majority

domination number i−1
M (G) for disconnected graphs have been found.

Nordhus–Gaddum type of results are also established. This work is

published in Malaya Journal of Mathematik.

In the fifth chapter, the parameter “Inverse Connected Major-

ity Dominating Sets of a Graph” has been defined with an example.

Then, Inverse Connected Majority Domination Number γ−1
CM(G) is

determined for some classes of graphs and also grid graphs. A mini-

mal inverse connected majority dominating set of a graph is charac-

terised. The algorithm and application to find an inverse connected

majority domination number of a graph G is discussed. This work

is accepted to Advances and Applications in Discrete Mathe-

matics.

Chapter six includes the “Inverse Split Majority Dominating Sets

of a Graph”. The Inverse Split Majority Domination Number γ−1
SM(G)
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for some families of graphs and bounds of γ−1
SM(G) interms of ∆(G)

and ∆′(G) are determined. The necessary and sufficient theorem for

an Inverse Split Majority Dominating Set of G and the relationship

between γ−1
SM(G) and γ−1

M (G) have been produced. The concept of

this Chapter is published in Communications in Mathematics

and Applications.

Chapter seven deals with the concept of “Inverse Non-Split Ma-

jority Dominating Sets and inverse non split majority domination

number γ−1
NSM(G) of a graphG”. Lower and upper bounds of γ−1

NSM(G)

and Characterisation theorem for a minimal inverse non-split major-

ity dominating set have been established. This work is communicated

to Advances and Application in Mathematical Science.

Conclusion includes the total summary of the thesis highlighting

all new findings developed using the newly coined concepts of various

Inverse Majority Domination Parameters of a Graph.



Chapter 2

Inverse Majority

Dominating Sets in Graphs

Abstract

This chapter introduces a new notion an inverse majority domi-

nation of a graph G. For any graph G, the inverse majority dom-

inating set with respect to a minimum majority dominating set of

G is defined and its number inverse majority domination num-

ber denoted by γ−1
M (G) is determined for various classes of graphs.

Bounds of γ−1
M (G) is found interms of ‘p’ vertices and a maximum

degree ∆(G). Then the relationship of γ−1
M (G) with other domination

parameters γM(G), γ−1(G) and βM(G) are also discussed in detail.

The contents of this chapter are published in

1. American International Journal of Research in Science, Technology, Engineering
& Mathematics, ISSN (O) 2328-3580, Feb 2019, pp 111-117.

2. TWMS J.App. and Eng. Math. V.11, Special Issue, 2021, pp. 103-111.
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2.1 Introduction

The study on domination in graphs was initiated by Ore [45] and

Berge [5]. In 1977, Cockayne and Hedetniemi [9] made a fascinating

and broad overview of the outcomes known around with regards to

dominating sets in graphs. The first paper on the inverse domination

in graphs was contributed by Kulli and Sigarkanti [30] in 1991. In

their article, they produced the exact values of γ−1(G) for certain

classes of graphs. Kulli and Sigarkanti gave an upper bound involv-

ing the independence number and the inverse domination number

and a lower bound interms of the number of vertices p and edges q.

Additionally, they fostered this area by determining few inequalities

for γ−1(G) and interesting results.

In 2004, Domke et.al. [11], concentrated on this concept exhaus-

tively and characterized the connected graphs with minimum degree

atleast one and two for which γ(G) + γ−1(G) = p. Then they de-

termined some lower bound and upper bound of γ−1(T ) for any tree

T . Recently this idea “Inverse Domination” is considered by sev-

eral graph theorists and numerous new domination parameters are

described in the books of Kulli.
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The concept of majority dominating set in graphs was intro-

duced and presented by Swaminathan and Joseline Manora [50]. It

has great applications in real life circumstances. In any equitable

arrangement, any of the findings are taken by the endorsement of the

majority of the individuals of the set up. Accordingly majority rule

is given significance in any decision making process. Enlivened by

the two notions specifically inverse domination and majority dom-

ination, the new parameter “Inverse Majority Dominating Sets in

Graphs” is introduced and its inverse majority domination number

of G is studied in detailed way by producing many intriguing results

and propositions.

The organization of this chapter is as follows. Section 2.1 is the in-

troducing part of the chapter and it contains the motivation of defin-

ing the parameter inverse majority domination in graphs. Section

2.2 defines the concept of inverse majority domination for a graph G

and illustrates the defined idea with an example. The inverse ma-

jority domination number γ−1
M (G) is determined for various classes of

graphs in Section 2.3. In Section 2.4, bounds of γ−1
M (G) are estab-

lished with sharpness and in Section 2.5, relationship between γ−1
M (G)
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and an independence number βM(G) is examined. Also algorithm for

γ−1
M (G) and its real life application are likewise given in Section 2.6.

2.2 Inverse Majority Dominating Sets in

Graphs

In this section, the definitions of inverse majority dominating set,

minimal inverse majority dominating set, inverse majority domina-

tion number of a graph G are stated. An example illustrating these

definitions is also shown.

Definition 2.2.1: Let G be a simple, finite graph and undirected

graph with p vertices and q edges and D be a minimum majority

dominating set of G. If the set (V − D) contains a majority dom-

inating set say D′ then D′ is called an inverse majority dominating

set with respect to D.

Definition 2.2.2: An inverse majority dominating set D′ is minimal

if there exists no proper subset D′1 of D′ such that D′1 is an inverse

majority dominating set of G with respect to D.
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Definition 2.2.3: The minimal inverse majority domination num-

ber, say γ−1
M (G) of a graph G is the minimum cardinality of all

minimal inverse majority dominating sets of G and the maximum

cardinality of all minimal inverse majority dominating sets of G is

called upper inverse majority domination number of G, denoted by

Γ−1
M (G).

Example 2.2.4: Consider the following graphG with p = 13 vertices.

v v v

v

v

v v

v

v

v

v

v1 2

3

4

5 6

7 8

9

10

11

12
13

G:

v

Let V (G) = {v1, v2, · · · , v13} with |V (G)| = p = 13. The follow-

ing are some of the minimal majority dominating sets of G. D1 =

{v1, v5, v9}, D2 = {v2, v6}, D3 = {v3, v12}, D4 = {v4, v10, v13}, D5 =

{v1, v7, v8, v13}. Clearly D2 and D3 are the minimum majority dom-

inating sets for G. Consequently γM(G) = 2 and ΓM(G) = 4. The

inverse majority dominating sets with respect to D2 and D3 are

D′2 = {v5, v10} and D′3 = {v6, v1}. Infers that γ−1
M (G) = 2. Also,

the maximum cardinality of D′2 = {v1, v7, v8, v12} ⊆ (V − D2) is
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a minimal inverse majority dominating set with respect to D2 and

Γ−1
M (G) = 4.

Example 2.2.5: Consider the following graph with p = 13 vertices.

G:

v

v

v
v

v v

v10 11 12
13

v

v

v

v
v
v

1

2

3

4

5 6 7 8

9

Let |V (G)| = p = 13. Let D = {v3, v7, v9, v11, v13} and D′ = {v1, v6,

v8, v10, v12} ⊆ (V − D) be the dominating set and inverse domi-

nating set with respect to D. Then γ(G) = γ−1(G) = 5. The

following are some of the minimal majority dominating sets of G.

D1 = {v3, v8}, D2 = {v9, v10, v13}, D3 = {v2, v5, v8}. Hence D1 is a

minimum majority dominating set of G. The inverse majority dom-

inating set with respect to D1 is D′1 = {v6, v10, v13} ⊆ (V − D1).

Accordingly, γM(G) = |D1| = 2 and γ−1
M (G) = |D′1| = 3.

Then γM(G) < γ−1
M (G) and γ−1

M (G) < γ−1(G).

Proposition 2.2.6:

(i) For any graph G, γM(G) ≤ γ−1
M (G).

(ii) For any graph G, γ−1
M (G) ≤ γ−1(G).
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(iii) Let G be any graph. Then γM(G) ≤ γ−1
M (G) ≤ γ−1(G).

Proof: Since each inverse majority dominating set of G is a ma-

jority dominating set of G, γM(G) ≤ γ−1
M (G). Also, since every in-

verse dominating set of G is an inverse majority dominating set for

G, γ−1
M (G) ≤ γ−1(G). Therefore we get the inequality (iii).

Example 2.2.7:

1. Let G = S(K1,10) be a subdivision graph of a star K1,10.

Then γ−1(G) = 11, γ−1
M (G) = 5 and γM(G) = 1. It implies that

γM(G) < γ−1
M (G) < γ−1(G).

2. For G = Kp, a complete graph,

γM(G) = γ−1
M (G) = γ−1(G) = 1.

2.3 Inverse Majority Domination

Number for Some Classes of Graphs

The inverse majority domination number γ−1
M (G) for some classes

of graphs is determined in the following results and propositions.

2.3.1 Results on γ−1
M (G)

(1) For a Complete graph G = Kp, γ
−1
M (Kp) = 1.
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(2) For a Path G = Pp, γ
−1
M (Pp) = dp6e, p ≥ 2.

(3) Let G = Km,n,m, n ≥ 2 be a Complete bipartite graph. Then

γ−1
M (G) = 1.

(4) For a Fan graph G = Fp, p ≥ 4, γ−1
M (G) = dp−1

6 e.

(5) For a Star G = K1,p−1, p ≥ 2, γ−1
M (G) = bp−1

2 c.

(6) Let G = K̄p be a totally disconnected graph with p vertices.

Then γ−1
M (G) = p

2 , if p is even and γ−1
M (G) does not exist for p

is odd.

(7) If G = mK2,m ≥ 1 then γ−1
M (G) = dp4e.

(8) For a Generalized Petersen graph G = P (n, k), γ−1
M (G) = dp8e.

Proposition 2.3.1: For any cycle Cp with p ≥ 3, γ−1
M (Cp) = dp6e.

Proof: By the result (1.4) for a cycle Cp, γM(Cp) = dp6e. Let

D ⊆ V (G) be a minimum majority dominating set of G with |D| =

dp6e then D′ = {ui+1/ui ∈ D} ⊆ V −D with |D′| = dp6e is an inverse

majority dominating set of G with respect to D with |D′| = |D| and

D′ ⊆ V −D. Hence γ−1
M (G) = dp6e.

Proposition 2.3.2: Let G = S(K1,p−1) be a subdivision graph of a

star K1,p−1 with p vertices. Then γ−1
M (G) = dp−2

4 e.
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Proof: Let V (G) =
{
u, v1, v2, . . . , vp

2
, u1, u2, . . . , up

2

}
where u is a

central vertex, u1, u2, . . . , up
2

are pendants and v1, v2, . . . , vp
2

are the

middle vertex of each edge of G. Then D = {u} is the mini-

mum majority dominating set of G and γM(G) = 1. Let D′ ={
v1, v2, . . . , vdp−24 e

}
such that N [vi] ∩ N [vj] = {u} for i 6= j. Then

|N [D′]| =
t∑
i=1

d(vi) + 1 = 2t + 1, where t = dp−2
4 e and |N [D′]| =

2dp−2
4 e+1. When p = 4r, 4r+1, 4r+2, 4r+3, |N [D′]| = p

2 . Therefore

D′ is a majority dominating set which is a subset of (V −D) which is

also minimum. It is inferred that D′ is an inverse majority dominat-

ing set of G with respect to D of G. Hence γ−1
M (G) ≤ |D′| = dp−2

4 e.

Let S ′ =
{
u1, . . . , uγ−1M

(G)
}

be an inverse majority dominating

set of G. Then |N [S ′]| ≥ dp2e and S ′ ⊆ (V − D). Now |N [S ′]| ≤
γ−1M (G)∑
i=1

d(ui) + 1 = 2γ−1
M (G) + 1. Accordingly dp2e ≤ |N [S ′]| ≤ 2γ−1

M (G)

+ 1. Therefore, γ−1
M (G) ≥ 1

2 d
p
2e − d

1
2e, γ

−1
M (G) ≥ dp−2

4 e.

Hence γ−1
M (S(K1,p−1)) = dp−2

4 e.

Proposition 2.3.3: For the Double starG = Dr,s, r < s and r, s ≥ 2,

γ−1
M (G) =


1, if s = r, r + 1, r + 2

|ei|+ 1, if s ≥ r + 3,where |ei| = dp2e − |N [u]|.
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Proof: Let V (G) = {u, v, u1, u2, . . . , ur, v1, v2, . . . , vs} with p = r +

s+2. Let u and v be the two central vertices of G with (u1, u2, . . . , ur)

and (v1, v2, . . . , vs) pendants attached to u and v respectively and

dp2e = dr+s+2
2 e = dr+s2 e+ 1.

Case (i). When s = r, r + 1, r + 2.

Let D = {v} be a minimum majority dominating set of G such that

|N [v]| = s+ 2. When s = r, r+ 1, r+ 2, |N [v]| ≥ r+ 2 ≥ dp2e. Choose

another central vertex {u} ⊆ V −D dominates |N [u]| = r+ 2 = dp2e

vertices. It implies that D′ = {u} ⊆ V − D is an inverse majority

dominating set of G with respect to D. Hence γ−1
M (G) = 1, if s =

r, r + 1, r + 2.

Case (ii). When s ≥ r + 3 and r < s.

Let D = {v} is a minimum majority dominating set of G. In the

graph G, there are (r + s) = E1 ∪ E2 = pendants such that |E1| = r

and |E2| = s. Select another centre vertex {u} ⊆ V − D which

dominates |N [u]| = r + 2 < dp2e, if s ≥ r + 3.

Let |ei| =
⌈p

2

⌉
− |N [u]|, for ei ∈ E2. (2.1)

Let D′ = ({u} ∪ {ei}) ⊆ V − D where ei ∈ E2. Then |N [D′]| =

|ei| + d(u) + 1 . By the condition (2.1), |N [D′]| = |ei| + r + 2 =
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dp2e − (r + 2) + (r + 2), |N [D′]| = dp2e. It indicates that D′ is an

inverse majority dominating set of G with respect to D and

γ−1
M (G) ≤ |D′| = |ei|+ 1, ei ∈ E2. (2.2)

Suppose |D1| = |D′| − 1 ⊆ V −D. Then |N [D1]| < dp2e and clearly

D1 is not an inverse majority dominating set of G. Hence

γ−1
M (G) ≥ |D′| = |ei|+ 1. (2.3)

From (2.2) and (2.3), We obtain γ−1
M (G) = |ei|+ 1, where ei ∈ E2.

Proposition 2.3.4: Let G = Wp be the wheel graph of p vertices

with p ≥ 5. Then γ−1
M (G) = dp−2

6 e.

Proof: Let G = Wp = K1 + Cp−1 and V (G) = {v1, v2, . . . , vp−1, vp},

where vp is the centre of wheel graph. The only minimum majority

dominating set of G is D = {vp} and γM(G) = 1. Now, consider

the inverse majority dominating set D′ with respect to D in the set

(V − D) = V (Cp−1). Let D′ =
{
v2, v5, v8, . . . , vdp−26 e

}
⊆ (V − D)

with d(vi, vj) ≥ 3 for i 6= j, |D′| = t = dp−2
6 e. Then |N [D′]| =

t∑
i=1

d(vi) + t − (t − 1) and |N [D′]| = 3t + 1 = 3dp−2
6 e + 1. When

p = 6r, 6r+1, . . . , 6r+5, |N [D′]| = dp2e and D′ ⊆ (V −D). It implies
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that D′ is an inverse majority dominating set of G with respect to D

of G. Hence γ−1
M (G) ≤ |D′| =

⌈
p−2

6

⌉
.

Let S ′ = {v1, . . . , vγM−1(G)} be an inverse majority dominating set of

G with respect to D and |S ′| = γ−1
M (G). Then |N [S ′]| ≥ dp2e and

S ′ ⊆ (V −D). Now, |N [S ′]| =
γ−1M∑
i=1

d(vi) + 1, for vi ∈ V (Cp−1). Now

dp2e ≤ |N [S ′]| ≤ 3γ−1
M (G) + 1 and γ−1

M (G) ≥ dp6e −
1
3 = dp−2

6 e.

Therefore, γ−1
M (G) ≥ dp−2

6 e. Thence γ−1
M (G) = dp−2

6 e.

Proposition 2.3.5: Let G be a caterpillar such that each vertex is

attached with exactly one pendant. Then γ−1
M (G) = dp8e.

Proof: By the result (1.4), γM(G) = dp8e. ThenD =
{
v2, v5, . . . , vdp8e

}
is a minimum majority dominating set of G such that N [vi]∩N [vj] =

∅ for i 6= j and |D| = dp8e. Choose D′ = {vi+1/vi ∈ D} ⊆ (V − D)

with |D′| = |D|. It is inferred that D′ is an inverse majority domi-

nating set of G with respect to D of G. Hence γ−1
M (G) = dp8e.

The next theorem is the characterization of a minimal inverse

majority dominating set of G.

Theorem 2.3.6: Let G be an any graph with p vertices and D be a

minimum majority dominating set of G. Then the set D′ is a minimal
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inverse majority dominating set of G with respect to D if and only

if for each u ∈ D′, either the following condition (i) or (ii) holds.

(i) D′ ⊆ V −D such that |N [D′]| > dp2e and |pn(u,D′)| > |N [D′]|−

dp2e.

(ii) D′ ⊆ V −D such that |N [D′]| = dp2e and either u is an isolate

of D′ or pn(u,D′) ∩ (V −D′) 6= ∅.

Proof: Let D be a γM -set of G. Let D′ be a minimal inverse majority

dominating set with respect to G. Then D′ ⊆ V − D such that

|N [D′]| > dp2e. Let u ∈ D′ since D′ is minimal, the set D′ − {u} is

not an inverse majority dominating set of G. Then

|N [D′ − {u}]| <
⌈p

2

⌉
. (2.4)

Since |pn[u,D′]| = |N [D′]| − |N [D′ − {u}]|. Subsequently |N [D′ −

{u}]| = |N [D′]| − |pn[u,D′]|. By the condition (2.4), |N [D′]| −

|pn[u,D′]| < dp2e. Therefore, |pn[u,D′]| > |N [D′]| − dp2e and D′ ⊆

V −D such that |N [D′]| > dp2e. Thus, the condition (i) holds.

Assume that |N [D′]| = dp2e. Suppose the vertex u is neither an

isolate of D′ nor u has a private neighbor in the induced subgraph

〈V −D′〉. That is, |pn[u,D′]| = ∅. Then |N [D′ − {u}]| = |N [D′]| −
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|pn[u,D′]| implies that |N [D′ − {u}]| = |N [D′]| = dp2e. Hence,

|N [D′ − {u}]| = dp2e and D′ ⊆ V −D, which implies that D′ − {u}

is an inverse majority dominating set with respect to D, which is a

contradiction to the assumption. Therefore condition (ii) holds.

Conversely, Let D′ be an inverse majority dominating set and

suppose the conditions (i) and (ii) hold. To prove that D′ is minimal.

Suppose D′ is not minimal inverse majority dominating set of G.

Then (D′ − {u}) is an inverse majority dominating set of G and

|N [D′ − {u}]| >
⌈p

2

⌉
, for some u ∈ D′ (2.5)

Since |N [D′−{u}]| = |N [D′]|−|pn[u,D′]| and by (2.5), |pn[u,D′]| <

|N [D′]| − dp2e, which is a contradiction to condition (i). Thence D′ is

a minimal inverse majority dominating set of G.

Let the condition (ii) be true. Then the subset D′ ⊆ V − D in

such a way that |N [D′]| = dp2e. Suppose D′ is not minimal, then

D′ − {u} is an inverse majority dominating set and

|N [D′ − {u}]| =
⌈p

2

⌉
, for some vertex u ∈ D′. (2.6)

Since |N [D′−{u}]| = |N [D′]|−|pn[u,D′]| and by (2.6), |N [D′]|−

|pn[u,D′]| = dp2e. Therefore |N [D′]| = dp2e + |pn[u,D′]| implies that
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|pn[u,D′]| = ∅. Then pn[u,D′]∩ (V −D′) = ∅. Also, for some vertex

u ∈ D′, N(u) * V − D′. It implies that u is not an isolate of D′

which is a contradiction to the condition (ii). Hence D′ is a minimal

inverse majority dominating set for G.

2.4 Bounds of γ−1
M (G)

In this section, bounds of the inverse majority domination num-

ber γ−1
M (G) are determined for a connected and disconnected graphs

interms of p and ∆′(G), which is a maximum degree in (V −D).

Proposition 2.4.1: For a connected graph G, 1 ≤ γ−1
M (G) ≤ dp2e−1.

Proof: Suppose that the graph is minimally connected with p ver-

tices. Then the graph G could have (p−1) pendants and a full degree

vertex ‘u’. Therefore D = {u} is a majority dominating set of G.

Now choose D′ = {u1, u2, . . . , ut} ⊆ (V −D) with |D′| = t = dp2e − 1

and all are pendants. So, |N [D′]| = t + 1 = dp2e. It implies that D′

is an inverse majority dominating set G with respect to D. Thus,

γ−1
M (G) ≤ |D′| = dp2e − 1.

Suppose the connected graph G has less than (p− 1) pendants, then

γ−1
M (G) < dp2e − 1. Suppose G has atleast 2 pendants, then G = Pp
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and γ−1
M (G) = dp6e < d

p
2e − 1. If the graph G has no pendants then

γ−1
M (G) < dp6e < d

p
2e − 1 and if G is not a complete graph then

γ−1
M (G) ≥ 1. Hence 1 ≤ γ−1

M (G) ≤ dp2e − 1. This upper bound is

sharp if G = K1,p−1, a star and the lower bound is sharp if G = Kp,

a complete graph.

Proposition 2.4.2: For a tree T with p vertices, dp6e ≤ γ−1
M (T ) ≤

dp2e − 1. These bounds are sharp.

Proof: This result is proved by induction on the number of pendants

‘e’. Since every tree T has atleast two pendants, if e = 2 then a tree

T = Pp, a path of p vertices. By the results (2.3.1)(2), γ−1
M (Pp) = dp6e.

If e = 3 then G is any connected graph with three pendants or

T = K1,3 or D1,2. By the results (2.3.1)(5) and proposition (2.3.3),

We get γ−1
M (T ) = bp−1

2 c = dp6e. This is true for e = 2, 3, 4, . . . , (p− 2)

pendants. When e = p − 1 then T = K1,p−1,a star. By the results

(2.3.1)(5), γ−1
M (K1,p−1) = bp−1

2 c = dp2e − 1. Hence, dp6e ≤ γ−1
M (T ) ≤

dp2e − 1, for any tree T .

Corollary 2.4.3:

(i) For any graph G with isolates, γ−1
M (G) ≤

(
p
2

)
. The bound is

sharp if G = K̄p, p is even.
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(ii) For a disconnected graph G without isolates, γ−1
M (G) ≤ dp4e.

This bound is sharp for G = mK2,m ≥ 1 and for G = mP5 or

mC7, γ
−1
M (G) < dp4e.

Theorem 2.4.4: Let G be a disconnected graph with p vertices, l-

isolates and maximum degree ∆′(G) in (V −D). Let D be a γM - set

of G. Then γ−1
M (G) < dp4e, if ∆′(G) ≥ 3.

Proof: To prove γ−1
M (G) < dp4e, if ∆′(G) ≥ 3.

Let D be a γM -set of G and ∆′(G) be a maximum degree in

(V − D). Let g1, g2, . . . , gk be ‘k’ components of G with g′is are

components and g′js are isolates such that (gi ∪ gj) = gk.

Case (i): When |l| < dp2e and ∆′(G) ≥ 3. Let G = g1∪g2∪, . . . .∪gk

such that |N [gi]| ≥ dp2e and |N [gi]| < dp2e where |gj| = |l|. Let

D′ = {u1, u2, . . . , ut} ⊆ (V − D). Since |N [gi]| ≥ dp2e, D
′ contains

no isolates such that each ui ∈ V (gi). Since ∆′(G) ≥ 3 in (V −

D), d(ui) ≥ 3 and |N [D′]| ≥ dp2e with |D′| = t < dp4e. If gi’s are all

complete then ui ∈ V (gi), for every gi, i = 1, 2, . . . , t and |D′| = t <

dp4e. It implies that D′ is an inverse majority dominating set of G

with respect to D and γ−1
M (G) < |D′| < dp4e. If gi’s are not complete

and ∆′(G) ≥ 3 then each ui ∈ D′ dominates atleast 4 vertices and
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|N [D′]| ≥ dp2e with |D′| < dp4e. Therefore D′ is an inverse majority

dominating set of G and γ−1
M (G) ≤ |D′| < dp4e. Hence γ−1

M (G) < dp4e,

if ∆′(G) ≥ 3.

Case (ii): when |l| > dp2e and ∆′(G) ≥ 3. Since G contains more

than dp2e isolates, the remaining components gi such that |N [gi]| <

dp2e. Since ∆′(G) ≥ 3 in (V −D), each ui ∈ V (gi) dominates nearly

p
2 vertices. Then D′ = {u1, . . . , ui, uj} ⊆ (V −D) such that d(ui) ≥ 3

and d(uj) = 0. Therefore |N [D′]| = dp2e and |D′| = t = |i+ j| < dp4e.

Since D′ ⊆ (V − D), D′ is an inverse majority dominating set of G

with respect to D and γ−1
M (G) < |D′| < dp4e. Hence γ−1

M (G) < dp4e, if

∆′(G) ≥ 3.

Theorem 2.4.5: Let G be a disconnected graph with p vertices and

l-isolates with a γM - set D of G and ∆′(G) is a maximum degree in

(V −D). Then γ−1
M (G) > dp4e, if ∆′(G) ≤ 2.

Proof: Let G = (g1 ∪ g2∪, . . . ∪ gk) be a disconnected graph with

gi ∪ gj = k components and l – isolates. When ∆′(G) = 0, then G =

K̄p. If p is even then γ−1
M (G) = dp2e > d

p
4e and γ−1

M (G) does not exist

if p is odd. When ∆′(G) = 1, then (V −D) contains some pendants

with l-isolates. If |l| > dp2e then D′ = {u1, . . . , ui, uj} ⊆ V −D where
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ui ∈ V (gi) and uj’s are all isolates. Since ∆′(G) = 1, d(ui) = 1, for

every ui ∈ D′ and d(uj) = 0. Then |N [D′]| = dp2e and |D′| = t =

(i + j) > dp4e. It implies that D′ is an inverse majority dominating

set of G and γ−1
M (G) > dp4e.

If |l| < dp2e and ∆′(G) = 1, then the graph G consists of pendants

attached to a ∆- degree vertex of G. In this case, D′ = {u1, . . . , ui} ⊆

V −D such that each ui ∈ V (gi), where gi’s connected components.

Then |N [D′]| = dp2e and since ∆′(G) = 1, |D′| = t > dp4e. Hence D′

is an inverse majority dominating set of G and γ−1
M (G) > dp4e. When

∆′(G) = 2, the (V − D) contains some vertices of degree ≤ 2 and

isolates. Apply the above argument for |l| > dp2e and |l| < dp2e, D
′

is an inverse majority dominating set of G and γ−1
M (G) > dp4e, if

∆′(G) ≤ 2.

Corollary 2.4.6: For a disconnected graph G with l isolates and

∆′(G) = 2,

(i) γ−1
M (G) = bp4c, if |l| < dp2e

(ii) γ−1
M (G) = dp4e, if |l| > dp2e, where ∆′(G) is a maximum degree

in (V −D) and D is a γM -set of G.
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Example 2.4.7:

1. Let G = 2K4 ∪ 7K1. Then γ−1
M (G) = 2 < bp4c = 3, |l| <

dp2e,∆
′(G) ≥ 3.

2. Let G = K6 ∪ 9K1. Then γ−1
M (G) = 3 < dp4e = 4, if |l| >

dp2e,∆
′(G) ≥ 3.

3. Let G = K1,7 ∪ 7K1. Then γ−1
M (G) = 7 > bp4c, if |l| < dp2e and

∆′(G) ≤ 1.

4. If G = K1,5 ∪ 9K1 then γ−1
M (G) = 7 > dp4e, if ∆′(G) ≤ 2.

5. If G = 2K3 ∪ 9K1 then γ−1
M (G) = 4 = dp4e, if |l| > dp2e,

∆′(G) = 2.

6. If G = K3∪K1,4∪7K1 then γM(G) = 2 and γ−1
M (G) = 5 > bp4c,

if ∆′(G) = 2.

Proposition 2.4.8: If G is any r-regular graph with p vertices then

γ−1
M (G) = γM(G).

Proof: Let G be a r-regular graph with p vertices such that d(ui) =

r, for all ui ∈ V (G). Let D be a minimum majority dominating set

of G and |D| = γM(G).

Choose D′ = {ui+1/ui ∈ D} and D′ ⊆ V −D such that |D′| = |D|.
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Then |N [D′]| ≤
|D|∑
i=1

d(ui+1) + |D| ≤ (r + 1)|D|. Since |D| = γM(G),

|N [D]| ≥ dp2e and also |N [D′]| ≥ dp2e. It implies that D′ is a ma-

jority dominating set in V − D and therefore D′ is an inverse ma-

jority dominating set of G with |D′| = |D|. Hereafter, γ−1
M (G) ≤

|D′| = |D| = γM(G). Then by Proposition (2.2.6) (ii), for any graph

G, γM(G) ≤ γ−1
M (G). Hence we obtain γ−1

M (G) = γM(G).

Example 2.4.9: For a Cycle Cp,mK2, Kp a Complete graph, Petersen

graph and Tutte graph, γ−1
M (G) = γM(G) and all are r - regular

graphs.

Next result gives the comparison for γ−1
M (G) with an inverse dom-

ination number γ−1(G).

Theorem 2.4.10: Let G be any connected graph with ‘p’ vertices.

Then γ−1
M (G) ≤ dγ

−1(G)
2 e, where γ−1(G) is the inverse domination

number of G.

Proof: Let D be a minimum dominating set of G. Let D′ ⊆ V −D

be an inverse dominating set and D′ is a γ−1 – set of G with respect to

D. Then |N [D′]| = |V (G)|. Let D′ = D1∪D2, where |D1| = dγ
−1(G)

2 e

and |D2| = bγ
−1(G)

2 c. Therefore |N [D1] ∪N [D1]| = |N [D′]| = |V (G)|.
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Since the dominating set D is also a majority dominating set of G

and D′ ⊆ V − D,D1 ⊆ V − D and D2 ⊆ V − D. Then either

|N [D1]| ≥ dV (G)
2 e or |N [D2]| ≥ bV (G)

2 c. It implies that either D1

is an inverse majority dominating set or D2 is an inverse majority

dominating set of G with respect to D. Therefore γ−1
M (G) ≤ |D1| =

dγ
−1(G)

2 e or γ−1
M (G) ≤ |D2| = bγ

−1(G)
2 c. Hence γ−1

M (G) ≤ dγ
−1(G)

2 e.

Example 2.4.11: Let G be the graph obtained from (K1,10) by

dividing each edge exactly once and G = S(K1,10) with p = 21 and

q = 20. Then γ(G) = 10, γ−1(G) = 11, γM(G) = 1 and γ−1
M (G) = 5.

Therefore γ−1
M (G) = 5 <

⌈
11
2

⌉
=
⌈
γ−1(G)

2

⌉
= 6.

Example 2.4.12: Let D3,10 be a double star with p = 15. Then

γ(G) = 2, γ−1(G) = 13 and γM(G) = 1, By Proposition (2.3.3),

γ−1
M (G) = |ei| + 1 =

⌈
p
2

⌉
− |N [u]| + 1 = 4. Hence γ−1

M (G) = 4 <⌈
γ−1(G)

2

⌉
= 7.

Proposition 2.4.13: In a graph G, all the vertices of G are majority

dominating vertex if and only if γ−1
M (G) = 1.

Proof: Since each vertex vi ∈ V (G) is a majority dominating vertex,

vi satisfies d(vi) ≥ dp2e− 1. Any single vertex is a minimum majority



Ch. 2: Inverse Majority Dominating Sets in Graphs 51

dominating set D of G then we could find another majority domi-

nating vertex D′ in (V −D) of G. Hence γ−1
M (G) = γM(G) = 1.

Corollary 2.4.14:

(i) If the graph G has exactly one majority dominating vertex then

γ−1
M (G) ≥ 2.

(ii) Let D be a minimum majority dominating set of a graph G. If

graph G has atleast one majority dominating vertex in (V −D)

then γ−1
M (G) = 1.

Proposition 2.4.15: If a tree has a ∆-supports and ∆-pendants

then γ−1
M (T ) =

⌊
∆(T )

2

⌋
.

T:

u

u u u u
...

u

vv v v

1
2 3

1 2 3

D - 1 D

D - 1

Proof: Since T has a ∆-supports and ∆-pendants, the tree has a

wounded spider with a exactly one edge is not divided.
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Let V (G) = {u, u1, u2, . . . , u∆, v1, v2, . . . , v∆−1} and |V (G)| = p =

2∆ = even. Let u be a support vertex of the pendant vertex u∆. Then

D = {u} is a majority dominating set of T . Let D′ = {u1, u2, . . . , ut}

⊆ V −D with |D′| = t = b∆
2 c. Since all the vertices of D′ are supports

of a tree T, |N [D′]| = 2b∆
2 c+1. As p is even, |N [D′]| = ∆+1 > p

2 and

D′ ⊆ V − D. It implies that D′ is an inverse majority dominating

set of T and γ−1
M (T ) ≤ |D′| = b∆(t)

2 c. Supposing take |D1| < |D′| and

D1 ⊆ V −D. Therefore |N [D1]| = 2
(⌊

∆
2

⌋
− 1
)

= ∆ − 2 < p
2 . Then

D1 is not an inverse majority dominating set of T . γ−1
M (T ) > |D1|

and γ−1
M (T ) ≥ |D′| = b∆

2 c. Hence γ−1
M (T ) =

⌊
∆(T )

2

⌋
.

Proposition 2.4.16: Let T be a tree with ∆-supports, ∆-pendants

and a majority dominating vertex. Then γ−1
M (T ) = d∆

2 e if and only

if T = S(K1,p−1).

Proof: Let u be a majority dominating vertex of a tree T with

d(u) ≥ dp2e − 1. The tree T has ∆-supports S = {v1, v2, . . . , vs} with

d(vi) ≥ 2 and ∆-pendants P = {w1, w2, . . . , wp} with d(wi) = 1.

Then d(u) = ∆(T ) ≥ dp2e − 1 and |V (G)| = 2∆ + 1. Since |N [u]| =

dp2e, D = {u} is a majority dominating set of T . If d(vi) > 2 then the

number of pendants ∆(T ) will be increased. Therefore d(vi) = 2, for
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every vi ∈ S. Let D′ = {v1, v2, . . . , vt} ⊆ S such that |D′| = t = d∆
2 e.

Then |N [D′]| = 2t+ 1 = 2d∆
2 e+ 1 =


∆ + 1, if ∆ is even

∆ + 2, if ∆ is odd

.

In both cases, |N [D′]| ≥ dp2e and D′ ⊆ V −D. It implies that D′

is an inverse majority dominating set of T and γ−1
M (T ) ≤ |D′| = d∆

2 e.

Suppose |D1| < |D′| then |N [D1]| < dp2e and γ−1
M (T ) ≥ |D′| = d∆

2 e.

Hence γ−1
M (T ) = d∆

2 e.

Conversely, assume that γ−1
M (T ) = d∆

2 e. Since T has ∆-supports,

∆-pendants and a majority dominating vertex ‘u’, p = 2∆ + 1, odd.

Let D = {u} be a majority dominating set of T and |N [D]| ≥ dp2e.

Then the set (V − D) contains ∆-supports and ∆-pendants. By

assumption, let D′ ⊆ (V −D) be an inverse majority dominating set

of T with |D′| = d∆
2 e with respect to D. If the set D′ = {v1, . . . , vt}

such that |D′| = t = d∆
2 e and all vertices vi are only pendants meet at

u, then |N [D′]| = t+1 = d∆
2 e+1 = 1

2d
p−1

2 e+1 < dp2e. It implies that

D′ is not an inverse majority dominating set of T with respect to D.

Therefore by proposition (2.3.1)(5), if T = K1,p−1 then γ−1
M (T ) = b∆

2 c

and hence the corresponding tree T 6= K1,p−1.

Since T has ∆-supports, take D′ = {u1, u2, . . . , ut} ⊆ V −D with

|D′| = t = d∆
2 e and ui’s are all support such that d(ui) ≥ 2. If
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d(ui) > 2 then the number of pendants increase beyond ∆-pendants

of T . Hence d(ui) = 2 and D′ ⊆ V − D then |N [D′]| = 2t + 1.

Therefore |N [D′]| = 2d∆
2 e + 1 ≥ dp2e. It implies that ∆(T ) = bp2c

and the corresponding tree T is a subdivision of (K1,p−1). Thus

G = S(K1,p−1).

2.5 Results on γ−1
M (G) and βM(G)

Example 2.5.1: Consider the following graph G = T5k, k = 5 with

p = 25 vertices. The graph G contains five P5 paths which is con-

nected in the middle vertex of each path P5. The vertex set is labeled

as {y1, . . . , y10} are pendants, {x1, . . . , x10} are two degree vertices

and (a, b, c, d, e) are middle vertices of each P5.

a

b

c

d

e

y

y

y

y

y

y

y

y

y

y

x

x

x

x

x

x

x

x

x

x

1

2

3

4

5

1

2

3

4

5x

6

7

8

9

10

G: 8

9

10

6

7

In G, the set D1 = {a, b, c, d} is a majority dominating set and

γM(G) = |D1| = 4. Following the set D2 = {x1, x2, x3, e} is a inverse

majority dominating set ofG with respectD1 and γ−1
M (G) = |D2| = 4.
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Next, the set D3 = {y1, y2, y3, y4, y5, y6, y7} is a majority independent

set of G and βM(G) = |D3| = 7. Hence γ−1
M (G) < βM(G).

Proposition 2.5.2: For any graph G, the following inequalities are

true. (i) γ−1
M (G) ≤ βM(G) and (ii) γM(G) ≤ γ−1

M (G) ≤ βM(G).

Proof:

(i) Let D be a minimum majority dominating set and D′ ⊆ V −D

be an inverse majority dominating set with respect to D of

a graph G. Let S be any maximal majority independent set

S of G. Meanwhile S ⊆ (V − D) any majority independent

set S is an inverse majority dominating set of G. Henceforth

γ−1
M (G) ≤ βM(G).

(ii) By Proposition (2.2.6)(i), γM(G) ≤ γ−1
M (G) and by above out-

come, we have γM(G) ≤ γ−1
M (G) ≤ βM(G).

Proposition 2.5.3: If a graph G has a full degree vertex and others

are pendants then γ−1
M (G) = βM(G).

Proof: Let G be a graph with p vertices in which the only vertex u is

a full degree and other (p− 1) are pendants. Therefore D = {u} is a

γM -set of G. Then D′ =
{
u1, u2, . . . , udp2e−1

}
⊆ (V −D) is an inverse
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majority dominating set with |D′| = dp2e − 1. Since all vertices of

D′ are pendants, |N [D′]| = dp2e. It is inferred that γ−1
M (G) = |D′| =

dp2e − 1. By the result (1.4), βM(G) = bp−1
2 c, p ≥ 2. When p is odd

and even, dp2e − 1 = bp−1
2 c. Hence D′ is also a majority independent

set of G and βM(G) = |D′| = dp2e − 1. Thus γ−1
M (G) = βM(G).

Corollary 2.5.4:

(i) Let G be a totally disconnected graph with even number of

vertices. Then γ−1
M (G) = βM(G) = p

2 .

(ii) If p is odd then γ−1
M (G) does not exist and βM(G) = dp2e.

Theorem 2.5.5: Let G be a disconnected graph with k components.

Then γ−1
M (G) ≤ βM(G).

Proof: LetG be a disconnected graph with ‘k’ components g1, g2, . . . , gk

(say).

Case (i). If all ‘k’ components are regular then all vertices are of

equal degree. Therefore γM – set D and inverse majority dominating

set D′ ⊆ V −D both are equal that is |D| = |D′|. Also βM -set S is

equal to D′. Hence |S| = |D′| implies that βM(G) = γ−1
M (G).

Case (ii). If ‘k’ components are not regular but G has no isolates.

Then the γM – set D contains ∆- degree vertices and the inverse
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majority dominating set D′ ⊆ (V −D) contains some next maximum

degree vertices with |D| ≤ |D′|. It implies that γM(G) ≤ γ−1
M (G).

But the maximal majority independent set S consists of vertices ui

which satisfies the condition |pn[ui, s]| > |N [s]|−dp2e. It implies that

|S| ≥ |D′| and γ−1
M (G) ≤ βM(G).

Case (iii). If the disconnected graph G with isolates then γM(G) ≤

γ−1
M (G) = |D′|. But the maximal majority independent set S contains

isolates to get maximum size. Therefore |S| > |D′| and γ−1
M (G) <

βM(G). Hence γ−1
M (G) ≤ βM(G).

Corollary 2.5.6: If the components of a disconnected graph G are

regular then γ−1
M (G) = βM(G).

Next, the relationship between the two parameters namely γ−1
M (G)

and βM(G) for Cubic Bipartite Graphs is deliberated in detail.

Let G be a cubic bipartite graph with a partition of the vertex

set V1(G) and V2(G) such that |V1| + |V2| = p. A cubic bipartite

graph G with minimum number of vertices is K3,3. Also graphs

that have an odd number of vertices cannot be a cubic bipartite

graph. We presently focus on the cubic bipartite graphs when p =

6, 8, 10, 12, 14, 16, . . .
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Theorem 2.5.7: For all cubic and cubic bipartite graph G, γ−1
M (G) =

dp8e.

Proof: Let V (G) = {v1, v2, . . . , vp} be the vertex set of the given

graph G. Let D be a majority dominating set of G and D′ =

{v1, v2, . . . , vt} be the inverse majority dominating set of G with re-

spect to D with |D′| = t = γ−1
M (G).Then, we have

|N [D′]| ≥
⌈p

2

⌉
and D′ ⊆ (V −D) (2.7)

Now, |N [D′]| ≤
t∑
i=1

d(vi) + t = 4t = 4γ−1
M (G). By Condition (2.7),

dp2e ≤ 4γ−1
M (G). Therefore, γ−1

M (G) ≥ dp8e.

Suppose D′ = {u1, u2, . . . , udp8e} is a subset of vertices in (V −D) such

thatN [ui]∩N [uj] = ∅, for i 6= j and |D′| = dp8e. Then |N [D′]| = 4dp8e.

In all cases of p = r(mod 8), when 0 ≤ r ≤ 7, |N [D′]| = 4dp8e ≥ d
p
2e

and D′ ⊆ V −D. Therefore D′ is an inverse majority dominating set

of G and γ−1
M (G) ≤ |D′| = dp8e. Hence γ−1

M (G) = dp8e.

The following results are the characterization theorem of an

inverse majority dominating sets and majority independent set of

a graph G.
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Proposition 2.5.8: γM(G) = γ−1
M (G) = βM(G) = 1 if and only if

the cubic bipartite graph G has all vertices ui ∈ V (G) with d(ui) ≥

dp2e − 1.

Proof: Let G be a cubic bipartite graph with p vertices. If the given

graph G has vertices of degree d(ui) ≥ dp2e − 1, for all ui ∈ V (G),

then every vertex is a majority dominating vertex of G. It is inferred

that D = {u1} is a minimal majority dominating set of G and D′ =

{u2} ⊆ V − D is a minimal inverse majority dominating set of G.

Similarly any one vertex of G forms a majority independent set of

G. Henceforth γM(G) = γ−1
M (G) = βM(G) = 1.

Conversely, suppose D1 = {u1}, D2 = {u2} ⊆ (V − D1) and D3 =

{u3} are a majority dominating set an inverse majority dominating

set and a majority independent set of G respectively. Then |N [Di]| ≥

dp2e, for i = 1, 2, 3 and each vertex ui of degree d(ui) ≥ dp2e − 1, for

ui ∈ V (G). Hence the result.

Observation 2.5.9: Let G be any cubic bipartite graph with p ver-

tices. Then the exact values of γM(G), γ−1
M (G) and βM(G) are given

in the following way for the graph G.
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1. If p = 6 or 8, then γM(G) = γ−1
M (G) = βM(G) = 1.

2. If p = 10 or 12, then γM(G) = γ−1
M (G) = βM(G) = 2.

3. The following graph G1 is a cubic bipartite with p = 14.

In G1, D1 = {v1, v4} is a majority dominating set of G1 and

D2 = {v2, v6} is an inverse majority dominating set of G with

respect to D1. Then γM(G1) = γ−1
M (G1) = 2. Similarly

S = {v1, v2, v3} is a majority independent set ofG1 and βM(G) =

|S| = 3.

4. For p = 16, γM(G) = γ−1
M (G) = 2 and βM(G) = 3.

5. For p = 18, 20, 22 γM(G) = γ−1
M (G) = 3 and βM(G) = 4.

6. For p = 24, γM(G) = γ−1
M (G) = 3 and βM(G) = 5.

and so on...
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Next the result γ−1
M (G) < βM(G), p ≥ 14 is characterised in the

following theorem.

Theorem 2.5.10: Let G be an cubic bipartite graph with p vertices.

The subsets D, D′ and S of V (G) are the minimum majority domi-

nating set, an inverse majority dominating set with respect to D and

a majority independent set of G respectively. Then γ−1
M (G) < βM(G)

when p ≥ 14 if and only if

(i) |pn[vi, D
′| ≥ 2, for every vi ∈ D′ and

(ii) |pn[vi, S| ≤ 2, for every vi ∈ S.

Proof: Let D be the majority dominating set of G. Let γ−1
M (G) <

βM(G). Then the inverse majority domination number γ−1
M (G) = |D′|

and the majority independence number βM(G) = |S|. Also, D′ is the

minimum inverse majority dominating set with respect to D of G

and S is the maximum majority independent set of a cubic bipartite

graph G. Let V1(G) = {v1, v2, . . . , vp1} and V2(G) = {u1, u2, . . . up2}

be the bipartition of V (G) with p = (p1+p2). By the theorem (2.5.7),

γ−1
M (G) ≤ dp8e.
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Let D′ = {v1, v2, . . . , vdp8e} ⊆ V1(G) such that d(vi, vj) ≥ 2 for

any vi and vj ∈ D′ and i 6= j. Since each vertex of degree d(vi) =

3, N(vi) = {ui, uj, uk} ⊆ V2(G), for each vertex vi ∈ D′. Then

|N(vi) ∩ N(vj)| 6= ∅, for any vi, vj ∈ D′ and i 6= j. Therefore there

exists atmost two vertex ‘u’ such that N(vi) ∩ N(vj) = {u} and

|N(vi) ∩N(vj)| ≤ 2. The private neighbour of each vertex vi ∈ D′ is

{vi, ui} or {vi, ui, uj} or {vi, ui, uj, uk}. It implies that |pn[vi, D
′]| ≥

2, for each vi ∈ D′. Hence the condition (i) is true.

By the result (1.4), For any cubic bipartite graph G, βM(G) ≤

dp4e − 1. Let S = {v1, v2, . . . , vt} ⊆ V1(G) be a majority independent

set of G where t = dp4e − 1 such that d(vi, vj) = 2 for any i, j and

i 6= j. For every vertex vi ∈ S, |N(vi) ∩ N(vj)| 6= ∅ and there exists

atleast one vertex such that |N(vi) ∩ N(vj)| ≥ 1, for any vi, vj ∈ S.

Since d(vi) = 3, |pn[vi, S]| = 2 or 1 and |pn[v, S]| ≤ 2, for every

vi ∈ S. Thence the condition (ii) holds.

Conversely, assume that the conditions (i) and (ii) are true.

Let D′ = {v1, v2, . . . , vt} ⊆ V –D be an inverse majority dominating

set of G with respect to D with |D′| = t. Since |pn[vi, D
′]| ≥ 2, for

every vi ∈ D′, |N(vi)∩N(vj)| ≤ 2, for any vi, vj ∈ D′. It implies that

2 ≤ |N [vi]| ≤ 4, for every vi ∈ D′ and each vertex vi ∈ D′ dominates
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atmost four vertices. Hence D′ is an inverse majority dominating

set of G with minimum cardinality. Therefore the inverse majority

domination number is γ−1
M (G) = |D′| = dp8e.

Let S = {v1, v2, . . . , vr} ⊆ V (G) be a majority independent set

of a cubic bipartite graph of G with |S| = r. Since |pn[vi, S]| ≤

2, |N(vi) ∩ N(vj)| ≥ 1, for any vi, vj ∈ S and i 6= j and it satis-

fies |pn[vi, S]| > |N [S]| − dp2e, for every vi ∈ S. Thus we obtain a

majority independent set with maximum cardinality for G and ma-

jority independence number of G is βM(G) = |S| = dp4e − 1. Since

γ−1
M (G) ≤ dp8e and βM(G) ≤ dp4e − 1, we get γ−1

M (G) ≤ βM(G).

Corollary 2.5.11: Let G be a cubic bipartite graph with p ≤ 13

vertices and D be an majority dominating set of G. If |pn[v,D′]| ≥ 3,

for every v ∈ D′ and |pn[v, S]| = 3, for atleast one vertex v ∈ S

then γ−1
M (G) = βM(G), where D′ and S are the inverse majority

dominating set with respect to D and majority independent set of G.

Proof: Let D be a minimum majority dominating set and S be a

maximal majority independent set of G. Since for atleast one vertex

v ∈ S, |pn[v, S]| = 3, |N(vi) ∩ N(vj)| = 1, for any vi and vj ∈ S.

Then |N [S]| ≥ dp2e and |pn[v, S]| > |N [S]| − dp2e, for every v ∈ S.
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It implies that S is also a minimal majority dominating set with

minimum cardinality which is in (V −D). Hence γ−1
M (G) ≥ βM(G).

By proposition (2.5.2)(i), for any graph G, γ−1
M (G) ≤ βM(G). Thus,

γ−1
M (G) = βM(G).

The succeeding results are the relation between the inverse major-

ity domination number γ−1
M (G) and majority independence number

βM(G) for some families of graphs.

Proposition 2.5.12: If G = Kp is a complete graph with p vertices,

γM(G) = γ−1
M (G) = βM(G) = 1.

Proof: Since the graph G is complete, it is a regular graph of degree

(p− 1). Each vertex of G is a full degree vertex. The majority dom-

inating set, the inverse majority dominating set and also majority

independent set are all equal to any one vertex {v} of G. Hence the

result is attained.

Proposition 2.5.13: [33] For a wheel graph Wp, p ≥ 5, βM(G) =

dp−2
6 e, if 5 ≤ p ≤ 18 and βM(G) = dp−3

4 e, if p ≥ 19.

Theorem 2.5.14: Let G = Wp be a wheel of p ≥ 5 vertices. Then
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(i) γ−1
M (G) = βM(G) = dp−2

6 e, if 5 ≤ p ≤ 18 and

(ii) γ−1
M (G) < βM(G), if p ≥ 19.

Proof: By the Proposition (2.3.4), γ−1
M (G) = dp−2

6 e. Then by the

above result, γ−1
M (G) = βM(G) = dp−2

6 e, if 5 ≤ p ≤ 18.

Similarly when p ≥ 19, γ−1
M (G) = dp−2

6 e and by the above result we

obtain, γ−1
M (G) < βM(G).

Proposition 2.5.15: [33] For a cycle Cp, p ≥ 3, (i) βM(G) = dp6e, if

3 ≤ p ≤ 16 and (ii) βM(G) = dp−4
4 e, if p ≥ 17.

Theorem 2.5.16: Let G = Cp, be a cycle p ≥ 3 vertices. Then

(i) γ−1
M (G) = βM(G) = dp6e, if 3 ≤ p ≤ 16 and

(ii) γ−1
M (G) < βM(G) = dp−4

4 e, if p ≥ 17.

Proof: By the Proposition (2.3.1) and the above result, γ−1
M (G) =

βM(G) = dp6e, if 3 ≤ p ≤ 16. Also, when p ≥ 17, γ−1
M (G) = dp6e and

βM(G) = dp−4
4 e. Hence γ−1

M (G) < βM(G).

Proposition 2.5.17: [33] For a path G = Pp, p ≥ 2, βM(G) = dp4e,

if 2 ≤ p ≤ 10 and βM(G) = dp−2
6 e, if p > 11.
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Theorem 2.5.18: Let G be a path of p ≥ 2 vertices then γ−1
M (G) =

βM(G) = dp6e,if 2 ≤ p ≤ 10 and γ−1
M (G) < βM(G) = dp−2

6 e, if p ≥ 11.

Proof: By the results (2.3.1)(2) and the above proposition, γ−1
M (G) =

βM(G) = dp6e, if 2 ≤ p ≤ 10 and when p ≥ 11, γ−1
M (G) = dp6e <

βM(G) = dp−2
6 e.

Proposition 2.5.19: [33] Let Fp, be a fan with p ≥ 4 vertices. Then

(i) When p ≡ 1(mod 6), γ−1
M (G) < βM(G) and

(ii) When p \≡ 1(mod 6), γ−1
M (G) = βM(G).

Proof: By the results (2.3.1)(4) and the above proposition, γ−1
M (G) =

dp−1
6 e and βM(G) = dp6e. When p ≡ 1(mod 6), dp−1

6 e < d
p
6e. Then

γ−1
M (G) < βM(G). When p ≡ 0, 2, 3, 4, 5(mod 6), dp−1

6 e = dp6e.

Thus γ−1
M (G) = βM(G), if p \≡ 1(mod 6).

Proposition 2.5.20: If the cubic graph G is a Generalized Petersen

P (n, k) graph then γ−1
M (G) = βM(G).

Proof: Since G is a 3-regular graph and by the result (1.4), we have

βM(G) = dp8e. Also by the results (2.3.1)(8), for a Generalized Pe-

tersen graph P (n, k), γ−1
M (G) = dp8e = βM(G).



Ch. 2: Inverse Majority Dominating Sets in Graphs 67

Proposition 2.5.21: Let G = K1,p−1 be a star with p ≥ 2 vertices.

Then γ−1
M (G) = βM(G).

Proof: By the results (2.3.1)(5) and [1.4], γ−1
M (G) = bp−1

2 c = βM(G).

Results 2.5.22: There exists a graphG for which γM(G) = γ−1
M (G) =

2 and βM(G) = 2t = dp2e − γ
−1
M (G) where t ≥ 3.

Proof: The graph G is obtained by adding one pendant at each

vertex of a complete graph and then add a pendant each time at each

vertex of K4. Finally we acquire a new structure with p = 4 + 4t,

where t is the number of pendants at each time on each vertex of K4.

G
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Let |V (G)| = p = 4 + 4t when t = 1 then the vertex set V (G) =

{u1, u2, u3, u4, v1, v2, v3, v4} where (u1, u2, u3, u4) ⊆ V (K4) and other

vertices are pendants with p = 8.

Then D = {u1} and D′ = {u2} and S = {v1, v2} are major-

ity dominating set, inverse majority dominating set and majority

independent set of G. It implies that γM(G) = γ−1
M (G) = 1 and

βM(G) = 2 where v1 and v2 are pendants which are adjacent to u1 and

u2 in G. When t = 2, p = 4 + 8 = 12 then γM(G) = γ−1
M (G) = 1 and

βM(G) = |{v1, v2, v5, v6}| = 4 = 2t. When t = 3, p = 4+(4×3) = 16.

Now, in the graph G, there are 3 pendants at each vertex of

K4. Let D = {u1, u2} be a majority dominating set of G and

D′ = {u3, u4} ⊆ V −D is an inverse majority dominating set of G.

Therefore γM(G) = γ−1
M (G) = 2. The set S = {v1, v2, v5, v6, v9, v10}

such that |N [S]| = 8 and since |pn[v, S]| = 1, S satisfies the condition

|pn[v, S]| > |N [S]| − dp2e for every ui ∈ S and βM(G) = |S| = 6 = 2t,

if t = 3 and so on. Therefore dp2e − γ
−1
M (G) = 8 − 2 = 6 = βM(G) if

t = 3. Thus, βM(G) = 2t = dp2e − γ
−1
M (G).

In general, in this structure has the difference between γ−1
M (G)

and βM(G) is very large. Hence γ−1
M (G) < βM(G) and the difference

between these two numbers is very large when p is large and t ≥ 3.
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2.6 Algorithm and Application for an

Inverse Majority Dominating Set

2.6.1 Algorithm for an Inverse Majority

Dominating Set of a graph G

To find an Inverse Majority Dominating set for the given simple,

connected and undirected graph G with p vertices and q edges.

Step 1: Find the adjacency matrix [A(G)]p×p for the given

graph G.

Step 2: Change all diagonal entries of A(G) with the value one

u1 u2 . . . up |N [ui]|

[A(G)] =

u1

u2

u3

·

·

up



1 1 · · · 0

1 1 · · · 0

0 1 · · · 1

· · · · · ·

· · · · · ·

0 1 · · · 1


∆(G)

·

·

Step 3: Let D be a minimum majority dominating set of G such

that |N [D]| ≥ dp2e.
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Step 4: Initially choose the set D′ ⊆ V −D and D′ = ∅.

Step 5: Next, choose the maximum degree vertex ui ∈ (V −D) in

the column |N [ui]| of A(G). If |N [ui]| ≥ dp2e then D′ = {ui}

is an inverse majority dominating set of G with respect to

D. If |N [ui]| < dp2e then go to step 6.

Step 6: Choose next maximum degree vertex uj in the zero entry of

row of the vertex ui such that d(ui, uj) ≥ 3. Now consider

the set D′ = {ui, uj} ⊆ V −D.

Step 7: If N [D′] ≥ dp2e then D′ is an inverse majority dominating

set of G with respect to D. If not, go to step (6) and apply

the procedure to get an inverse majority dominating set D′

of G with respect to the majority dominating set D of G.

2.6.2 Algorithm for γ−1
M (G)

Using algorithm (2.6.1), find out all the inverse majority dominating

sets for the given graph G.

Step 1: Let D ′ = {D′1, D′2, . . . , D′t} be the set of all inverse majority

dominating set of G with respect to D.
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Step 2: Verify that the proper subset D′′i of each D′i, for D′i ∈ D ′ is

an inverse majority dominating set of G.

Step 3: If the proper subset D′′i in any D′i is an inverse majority

dominating set of G with respect to D then the set D′i is

not a minimal inverse majority dominating set of G.

Step 4: Suppose there exists no such inverse majority dominating

subset D′′i in the set D′i then D′i is a minimal inverse ma-

jority dominating set of G.

Step 5: Repeat the process to every D′i ∈ D ′ and collect all the min-

imal inverse majority dominating sets for G with respect to

D.

Step 6: Let D′ = {D′1, D′2, . . . , D′r}, r ≤ t be the set of all minimal

inverse majority dominating set of G with respect to the

majority dominating set D of G.

Step 7: Find the cardinality of each set D′i ∈ D ′, for i = 1, 2, . . . , r.

Pick up the minimum and maximum cardinality of D′i ∈ D′

among all D′i, i = 1, 2, . . . , r.
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Step 8: The minimum cardinality of D′i = γ−1
M (G) = inverse major-

ity domination number of G and the maximum cardinality

of D′i = Γ−1
M (G) = upper inverse majority domination num-

ber of G.

2.6.3 Application for γ−1
M (G)

Let D be a set of ministers of administering party and (V − D) be

a set of rest of administering party and adversary party. Presently,

the elements in opponent party will attempt to take advantage of

the circumstances by drawing in or convincing few indiviudal mem-

bers from the rest of ruling party who might be denied the Portfolio

(or) Ministership. In the event that a few individuals move from dis-

appointed or denied administering party to the adversary party on

conspiracy, the opponent party may gain simple majority and they

will move for no confidence motion and thereby defeating the ruling

party. Then the rival party with the support of disagreeing and ex-

isting individuals from ruling party may prove majority and form a

new government which may be called an inverse majority dominating

set D′ in (V −D).
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γ−1
M

(G) for Some Special

Graphs

Abstract

This chapter includes majority domination number and inverse ma-

jority domination number for some special classes of graphs and its

subdivision S(G) graphs. Some results on the subdivision graphs

S(G) are discussed. The results on γ−1
M (G−u), the deletion of a ver-

tex u from G are studied. The relationship between majority domi-

nation number and inverse majority domination number for splitting

graph namely γM(Sp(G)) and γ−1
M (Sp(G))is determined. Also, inverse

majority domination number for a complement Ḡ namely γ−1
M (G) of

G are found for some classes of graphs.
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3.1 Introduction

Any graph model of a system provides a powerful means to un-

derstand the topology of any structure. In this chapter, some graph

structures from a given graph G such as subdivision S(G) of a graph

G, deletion of a vertex u from G, splitting graph Sp(G) of G and the

complement Ḡ of a graph G are discussed.

An edge subdivision of an edge e = uv in graph G is the graph

obtained from G by replacing e by a path 〈u,w, v〉 where w is a new

vertex of degree two. A refinement of G is a graph obtained from

G by a finite number of subdivisions. This property of this graph

structure is studied by many mathematicians and many results are

produced interms of graph theoretic parameters.

A vertex or an edge is critical with respect to an invariant if the

removal of a vertex or an edge changes the value of the invariant.

In 1979, Walikar and Acharya [54] studied this invariant interms of

domination and some results were produced in their research arti-

cle. In 1985, Sampath Kumar and Neeralagi [47] have studied the

relationship among such types of elements where t = γ. Since t can

decrease by atmost one when a vertex v is deleted, it follows that v

is t - critical if and only if t(G–v) = t(G)− 1.
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In 1980, Splitting graph Sp(G) was introduced by Sampath Ku-

mar and Walikar [49]. For each vertex v of a graph G, take a new

vertex v′ and join v′ to all vertices of G adjacent to v. Based on some

applications, many results were determined using this graph on dom-

ination parameter. This graph structure motivated the researcher to

find its majority domination number and an inverse majority domi-

nation number.

In 2015, an inverse complementary domination graph was intro-

duced by Pethanachi Selvam and Padmashiri [46] for any graph G,

one could find a complement graph Ḡ. Thence finally inverse major-

ity domination number γ−1
M (Ḡ) is determined for standard

graphs.

The organization of this Chapter as follows. Section 3.1 is the

introductory part for various special classes of graph and Section 3.2

defines an inverse majority domination number on subdivision graphs

of some special graph structures. In Section 3.3 some results on

γM(G′) and γ−1
M (G′) are established where G′ is the subdivision graph

of G, γ−1
M (G−u), for some vertex u ∈ V (G) is studied in Section 3.4.

Majority domination number and an inverse majority domination

number for some families of splitting graph are also discussed in
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Section 3.5. Finally, an inverse majority domination number for a

complement graph Ḡ of a graph is determined.

3.2 Inverse Majority Domination

Number on Subdivision Graphs

In this section, subdivision graphs S(G) = G′ of some special

graph structures G are considered and an inverse majority dominat-

ing set for such structures G′ are determined. Then majority domi-

nation number γM(G), Inverse majority domination number γ−1
M (G),

majority domination number for the subdivision graph G′ of G =

γM(G′) and Inverse Majority Domination number of G′ = γ−1
M (G′)

are all established in the following propositions.

Proposition 3.2.1: Let G be the Dodecahedron graph and G′ =

S(G) be the subdivision graph. Then γM(G) = 3 = γ−1
M (G) and

γM(G′) = 7 = γ−1
M (G′).

Proof: LetG be the platonic solid dodecahedron andG is a 3-regular

graph with p = 20 and q = 30. Let D = {v1, v4, v6} such that

d(vi, vj) = 3. Then |N [D]| = 11 > dp2e. Hence D is a majority

dominating set of G and γM(G) = 3. Let D′ = {v2, v5, v8} ⊆ V −D,



Ch. 3: γ−1M (G) for Some Special Graphs 77

such that d(vi, vj) = 3. By the above similar argument, Dx′ is an

inverse majority dominating set of G and γ−1
M (G) = 3.

Let G′ be a subdivision graph of dodecahedron with p′ = 50 and

V (G′) = {v1, . . . , v20, u1, u2, . . . , uq} with d(vi) = 3, i = 1, 2, . . . , 20

and d(ui) = 2, i = 1, 2, . . . , 30. Let S = {v1, v3, v6, v7, v11, v13, v17}

such that d(vi, vj) = 4, for every i, j and i 6= j. Then |N [S]| =

28 > dp2e. It implies that S is a majority dominating set of G′ and

γM(G′) = |S| = 7. Next choose S ′ = {v2, v4, v5, v7, v8, v15, v18} such

that d(vi, vj) = 4 and S ′ ⊆ V −S. By the above similar argument, S ′

is an inverse majority dominating set of G and γ−1
M (G′) = 7. Hence

γM(G′) = 7 = γ−1
M (G′).

Proposition 3.2.2: LetG be the Tetrahedron graph and Octahedron

graph. Then γM(G) = 1 = γ−1
M (G) and γM(G′) = 2 = γ−1

M (G′), where

G′ is the subdivision of G.

Proof: The proof is obvious.

Proposition 3.2.3: Let G be an icosahedral graph and S(G) be the

subdivision graph of G. Let G′ = S(G). Then γM(G) = 1 = γ−1
M (G)

and γM(G′) = 4 = γ−1
M (G′).
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Proof: Let G be an icosahedral graph with p vertices and it is a

5-regular graph. Since each vertex dominates six vertices, γM(G) =

1 = γ−1
M (G).

Figure 3.1: Subdivision of G− S(G)

Let G′ be the subdivision graph of icosahedral with p′ = 42.

and V (G′) = {v1, v2, . . . , v12, u1, u2, . . . , u30} Now G′ is not a regular

graph with d(vi) = 5, for all i = 1, 2, . . . , 12 and d(ui) = 2, for all

i = 1, 2, . . . , 30. Let S = {v1, v4, v11, v12} such that d(vi, vj) = 4.

Then |N [S]| =
S∑
i=1

d(vi)+ |S| = [(3×5)+4+4] > dp2e. It implies that

S is a majority dominating set of G′ and γM(G′) = 4. Choose S ′ =

{v2, v7, v9, v10} ⊆ V − S. By the similar argument, γ−1
M (G′) = 4.
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Proposition 3.2.4: Let G be a Frucht graph and G′ = S(G). Then

γM(G) = 2 = γ−1
M (G) and γM(G′) = 4 = γ−1

M (G′).

Proof: The proof is obvious.

Proposition 3.2.5: Let G be a Doyle graph. Then γM(G) = 3 =

γ−1
M (G). If G′ = S(G) is the subdivision of G then γM(G′) = 8 =

γ−1
M (G′).

Proof: Let G be a Doyle graph and G is a 4-regular graph. The

vertex set V (G) can be partitioned into three vertex sets V1, V2 and

V3 each comprising of 9 vertices with degree 4 and V1, V2 and V3

are vertices of a outer cycle C1, inner circle C2, innermost cycle C3

respectively. Let D = {v1, v4, v7} and D′ = {v2, v5, v8} ⊆ V − D.

Since G is a 4-regular graph, |N [D′]| =
∑
d(vi) + 3 = 15 > dp2e.

Hence the sets D and D′ are the majority dominating set and the

inverse majority dominating set of G with respect to D respectively

and γM(G) = γ−1
M (G) = 3.

Let G′ be the subdivision graph of a Doyle graph with p′ = 72 ver-

tices. Let V (G′) = {v1, v2, . . . , v27, u1, u2, . . . , u45} where d(vi) = 4,

for i = 1 to 27 and d(uj) = 2, for j = 1 to 45 and V1(G
′) =
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Figure 3.2: G:Doyle graph

{v1, . . . , v9}, V2(G
′) = {v10, . . . , v18}, V3(G

′) = {v19, . . . , v27} and

U(G′) = {u1, . . . , u45}. Let S = {v1, v4, v7, v13, v17, v18, u20, u25} such

that d(vi, vj) = 3, for i 6= j and vi, vj ∈ S. Then |N [S]| =
∑
vi∈s

d(vi) +

|S| = (8 × 4) + 8 = 40 > dp2e. Hence S is a majority dominat-

ing set of G′ and γM(G′) = |S| = 8. In V − S, choose S ′ =

{v2, v5, v8, v10, v14, v15, v22, v26} and |N [S ′]| = 40 > dp2e. It implies

that S ′ is an inverse majority dominating set of G′ and γ−1
M (G′) =

|S ′| = 8. Hence γM(G′) = γ−1
M (G′) = 8.

Proposition 3.2.6: (i) Let G be a Folkman graph. Then γM(G) =

2 = γ−1
M (G), γM(G′) = 6 and γ−1

M (G′) = 8, where G′ is the subdivision

graph of G.
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Proof: Let G be a Folkman graph and it is a bipartite, 4-regular,

Hamiltonian graph and a four edge connected perfect graph. Let

D = {u1, v1} and D′ = {u3, v3} ⊆ V − D such that d(ui, vj) ≥ 4.

Since each vertex dominates 5 vertices, |N [D]| = |N [D′]| = 10 = dp2e

and γM(G) = γ−1
M (G) = 2.
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Figure 3.3: G:Folkman graph

Let G′ be a subdivision graph of a Folkman graph with the vertex

set V (G′) = {u1, . . . , u4, v1, . . . , v4, w1, . . . , w4, x1, . . . , x4, y1, . . . , y4,

z1, z2, . . . , z40} and |V (G′)| = 60, where the vertices ui, vi, wi, xi and

yi are in the outer square to inner square of totally 5 squares in G′

and zi, i = 1, . . . , 40 denotes the newly added vertices in G. Let

S = {u1, v1, w1, x1, y1, y3} in which all are non-adjacent vertices in

G′ and |N [S]| =
∑
d(vi) + 6 = 30 = dp2e. Hence S is a major-

ity dominating set of G′ and γM(G′) = |S| = 6. Now choose S ′ =
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{u3, v3, w3, x3, u4, v4, w4, x4} ⊆ V − S and |N [S ′]| =
∑
vi∈S′

d(v) + 8 =

32 > dp2e. It implies that S ′ is an inverse majority dominating set of

G′ and γ−1
M (G′) = |S ′| = 8. Hence γ−1

M (G) < γ−1
M (G′).

Proposition 3.2.7: Let G be a Levi graph and G′ = S(G). Then

γM(G) = 4 = γ−1
M (G) and γM(G′) = 9 = γ−1

M (G′).
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Figure 3.4: G: Levi graph

Proof: Let G be a Levi graph with p = 30, q = 45 and it is not a

regular graph. Let V (G) = {w1, w2, . . . , w10, v1, . . . , v10, u1, . . . , u10}

in which the vertices wi, vi and ui, for i = 1, . . . , 10 from a outer circle

to inner circle and d(wi) = 3, d(vi) = 2, d(ui) = 4, i = 1, . . . , 10. Let

D = {u1, u3, w2, w5} and |N [D]| =
∑
d(ui)+

∑
d(wi)+4 = 18 > dp2e.

Hence D is a majority dominating set of G and γM(G) = |D| = 4.
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Next, choose D′ = {u5, u7, w5, w8} ⊆ V − D. Then |N [D′]| = 18 >

dp2e andD′ is a inverse majority dominating set ofG. Hence γ−1
M (G) =

4 = γM(G).

Let G′ be the subdivision graph of a Levi graph G with p′ = 75.

V (G′) = {w1, . . . , w10, v1, . . . , v10, u1, . . . , u10, x1, x2, . . . , x45} where

d(wi) = 3, d(vi) = 2, d(ui) = 4 for i = 1 to 10 and d(xj) = 2, j = 1 to

45. Let S = {u1, u2, u3, u9, w1, w3, w5, w7, w9} ⊆ V (G′) and |N [S]| =∑
i

d(ui) +
∑
i

d(wi) + |S| = 40 > dp2e. It implies that γM(G′) = |S| =

9. Next, choose S ′ = {u4, u5, u6, u10, w2, w4, w6, w8, w10} ⊆ V − S.

By the above calculations, |N [S ′]| = 40 > dp2e. Hence S ′ is an

inverse majority dominating set of G′ and γ−1
M (G′) = |S ′| = 9. Thus,

γM(G′) = 9 = γ−1
M (G′).

Proposition 3.2.8: Let G be Platonic Solid Cube and G′ = S(G)

be the subdivision of G. Then γM(G) = 1 = γ−1
M (G) and γM(G′) =

3 = γ−1
M (G′).

Proof: The proof is obvious.

Proposition 3.2.9: Let G = S(Cp) be a subdivision graph of a cycle

with p vertices. Then γM(G) = γ−1
M (G) = dp3e.
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Proof: Let G = S(Cp) and V (G) = {u1, u2, . . . , up, v1, v2, . . . , vp}

and |V (G)| = 2p. Then S(Cp) is also a cycle with 2p vertices. By the

result (1.4), Proposition (2.3.1), γM(Cp) and γ−1
M (Cp) = dp6e. Since

S(Cp) is a cycle, γ−1
M (G) = d2p

6 e = dp3e. Thus γM(G) = γ−1
M (G) =

dp3e.

Proposition 3.2.10: If G is a subdivision of a complete graph Kp

then γM(G) = 2 and γ−1
M (G) = 2 where G = S(Kp).

Proof: Since Kp is complete graph, there are p vertices and p(p−1)
2 =

q edges. Let G = S(Kp) with V (G) = {u1, u2, . . . , up, v1, v2, . . . , vq}

and |V (G)| = p′ = (p + q), where d(ui) = p − 1, for every ui, . . . , up

and d(vi) = 2, for every vi, . . . , vq and p′ = p + p(p−1)
2 = p(p+1)

2 and

dp
′

2 e = dp(p+1)
4 e. Let D = {u1, u3} such that d(vi, vj) = 4. Then

|N [D]| = (p − 1) + (p − 2) + 2 = 2p − 1 > dp
′

2 e. It implies that

D is a majority dominating set of G and γM(G) = |D| = 2. Let

D′ = {u2, u4} ⊆ V − D such that d(v2, v4) = 4. Then |N [D′]| =

2p−1 > dp
′

2 e and γ−1
M (G) = |D′| = 2. Hence γM(G) = 2 = γ−1

M (G).

Proposition 3.2.11: Let G = S(Pp) be a subdivision graph of a

path with p ≥ 2 vertices. Then γ−1
M (G) = dp3e.
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Proof: Since the subdivision graph of path Pp is also a path, the

result is obvious.

Proposition 3.2.12: Let G = S(Wp) be a subdivision graph of a

wheel. Then γ−1
M (G) = γM(G) = dp

′

8 e, where p′ = (p+ q).

Proof: LetG = S(Wp) and V (G) = {u, u1, u2, . . . , up−1, v1, v2, . . . , vq}

and |V (G)| = p + q = p′, where u is a central vertex d(vi) = 2, for

every vi, i = 1, . . . , q and d(ui) = 3, for every ui, i = 1, 2, . . . , p − 1.

Let D = {u1, u3, . . . , ut} such that t = dp
′

8 e and d(ui, uj) ≥ 4, for

i 6= j. Then |N [D]| =
t∑
i=1

d(vi) + t = 4t = 4dp
′

8 e ≥ d
p′

2 e. It implies

that D is a majority dominating set of G and γM(G) = |D| = dp
′

8 e.

Now, choose the set D′ = {u2, u5, . . . , ut} ⊆ V − D such that

t = dp
′

8 e and d(ui, uj) ≥ 4, for i 6= j. By the above argument, the

set D′ is an inverse majority dominating set of G and γ−1
M (G) ≤

|D′| = dp
′

8 e. Suppose D1 ⊆ V −D be a set with |D1| < |D′| = dp
′

8 e.

Then |N [D1]| < dp
′

2 e. It implies that D1 is not an inverse majority

dominating set of G and γ−1
M (G) ≥ dp

′

8 e. Hence γ−1
M (G) = dp

′

8 e.

Proposition 3.2.13: If G = S(Dr,s) is a subdivision graph of a

double star then γM(G) = 2 and
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γ−1
M (G) =


r + 1, if r = s

r + t,


if r < s and s = r + i,

t = 1 and i = (0, 1), t = 2 and i = (2, 3), . . .

Proof: Let G = S(Dr,s) and V (G) = {u, v, u1, u2, . . . , uq, v1, v2, . . . ,

vr+s} and |V (G)| = p′ = p + q = 2(r + s) + 3. Let u and v

be the two central vertices with (u1, u2, . . . , uq) of deg(ui) = 2 and

(v1, v2, . . . , vr+s) are pedants in G.

Case (i): When r = s.

Since the graph Dr,s has exactly two majority dominating vertices

u and v the subdivision graph of Dr,s has the same two vertices u

and v with d(u) = d(v) = r+ 1 but u and v not majority dominating

vertices in S(Dr,s).

Let D = {u, v} with d(u, v) = 2. Then |N [D]| = d(u)+d(v)+1 =

r + s + 3 = 2r + 3 ≥ dp
′

2 e, if r = s. Therefore D = {u, v} is the

minimum majority dominating set of G and γM(G) = 2. Now, choose

D′ = {u1, . . . , ut} ⊆ V −D with |D′| = t = r + 1 and d(ui) = 2, for

every ui. Then |N [D′]| =
t∑
i=1

d(ui) + 1 = 2t + 1 = 2(r + 1) + 1 =
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2r + 3 ≥ dp
′

2 e. It implies that D′ is an inverse majority dominating

set of G with respect to D and γ−1
M (G) ≤ |D′| = r + 1. Suppose

D1 < D′ then |N [D1]| < dp
′

2 e and γ−1
M (G) > D1 ≥ |D′| = r + 1 and

D1 ⊆ V −D. Hence γ−1
M (G) = r + 1, if r = s.

Case (ii): When r < s and s = r + 1, r + 2, . . ..

By case (i), γM(G) = 2. Let D′ = {ur+1, ur+2, . . . , ur+t} ⊆ V −D

with |D′| = t. Since d(ui) = 2, |N [D′]| = 2(r + t) + 1.

Subcases:

a. If s = r + i and i = 0 and 1 then t = 1 and p′ = 2p− 1. Now,

|N [D′]| = 2r+ 3 = dp
′

2 e, for i = 0&1 and t = 1. Hence D′ is an

inverse majority dominating set of G.

b. If s = r + i, i = 2 and 3 then t = 2 and p′ = 4r + 7 i.e.,

[p′ = 2(r + r + 2 + 2)− 1]. Therefore |N [D′]| = 2(r + 2) + 1 =

2r + 5 > dp
′

2 e and so on. . .

Hence D′ is an inverse majority dominating set of G if r < s

and s = r + i, where i = (0, 1), (2, 3), . . . and when t = 1, 2, . . .

It implies that γ−1
M (G) = |D′| = r + t if t = 1&i = (0, 1), t =

2 & i = (2, 3), . . .
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3.3 Results on γM(G′) and γ−1
M (G′)

The following results provide some properties of a subdivision

graph G′ = S(G) of G and the relationship between the numbers

γM(G′) and γ−1
M (G′) is also discussed.

Observation 3.3.1:

1) A full degree vertex of a graph becomes a majority dominating

vertex in the subdivision graph S(G) of G.

2) The degree of each vertex vi of G will never change in the

subdivision graph S(G) and the degree of a newly added vertex

is always two in S(G).

3) The regular graph G is not a regular in S(G) except G = Cp.

4) Any pendant edge becomes a path K2 in S(G).

Proposition 3.3.2: Let G and G′ be the disconnected graph and

its Subdivision graph S(G) with p and p′ vertices respectively. Then

γM(G′) = γ−1
M (G′) where G′ = S(G).

For Example: Let G = 5K2. Since γM(G) = dp4e, γM(G) = 3 =

γ−1
M (G) = 3. Let the subdivision graph S(G) = G′ = 5P3 with

p′ = 15. Now, the set D = {u1, u2, u3}, where dG′(ui) = 2, with
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|N [D]| > dp
′

2 e and D is a majority dominating set of G′ and γM(G′) =

3. D′ = {u4, , u5, , v1} ⊆ V −D is an inverse majority dominating set

of G′ and γ−1
M (G′) = 3 = γM(G′).

(ii) Let G = 5K3 with p = 15 and V (G) = {v′1, v′2, v′3, . . . , v5
1, v

5
2, v

5
3}.

Then D = {v1
1, v

2
1, v

3
1} and D′ = {v1

2, v
2
2, v

3
2} ⊂ (V − D) are the

majority dominating set and an inverse majority dominating set of

G and γ−1
M (G) = γM(G) = 3. Let G′ = 5C6 be the subdivision

graph of G with p′ = 30. Then {u1
1, u

1
2, u

1
3, . . . , u

5
1, u

5
2, u

5
3} is the newly

added vertex set of G. Let D = {u1
1, u

2
1, u

3
1, u

4
1, u

5
1} with each ui1

belongs to each C6 and 1 ≤ i ≤ 5. Then |N [D]| = dp
′

2 e and D is

a majority dominating set of G′, γM(G′) = |D| = 5. Now the set

D′ = {u1
2, u

2
2, u

3
2, u

4
2, u

5
2} ⊆ V −D is an inverse majority dominating

set of G′ and γ−1
M (G′) = |D′| = 5. Hence γM(G′) = γ−1

M (G′).

Proposition 3.3.3: If the graph G is regular then γM(G′) = γ−1
M (G′)

where G′ = S(G) is the subdivision graph of G.

Proof: Since G is a regular graph and by the Proposition (2.4.8),

γM(G) = γ−1
M (G). Let G′ = S(G) be the subdivision graph of G.

Then G′ is not a regular graph except G = Cp, a cycle. Since the

degree of the vertices of G is equal to the degree of the vertices of
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G′ except the newly added vertex ui with d(ui) = 2, i = 1, 2, . . . , q.

To get the minimality select the vertices vi of G with the distance

d(vi, vj) ≥ 4 in G′ then it will form a minimum majority dominating

set and minimum inverse majority dominating set in G′ with the

same cardinality. Hence γM(G′) = γ−1
M (G′).

Theorem 3.3.4: If a graph G with p > 8 vertices has a full degree

vertex and others vertices vi are of degree d(vi) ≤ 3 then γM(G′) <

γ−1
M (G′) where G′ is the subdivision graph of G.

Proof: Since any full degree vertex v of G becomes a majority dom-

inating vertex v of G′, the set D = {u} is a majority dominating set

of G′ and γM(G′) = 1. Since dG(vi) ≤ 3, for i = 1, 2, . . . , p − 1 and

the newly added vertex ui such that dG′(vi) = 2, i = 1, 2, . . . , q, the

vertices of vi ⊆ V −D will form an inverse majority dominating set

D′ with |D′| > 1 of G′ with respect to D. It implies that γ−1
M (G′) > 1.

Hence γM(G′) < γ−1
M (G′).

Corollary 3.3.5: If the graph G contains a full degree vertex and

others are pentants then γM(G′) < γ−1
M (G′) where G′ = S(G).
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Proof: By the observation (3.3.1), since any full degree vertex v of G

becomes a majority dominating vertex v of G′, D = {v} is a majority

dominating set of G′ and γM(G′) = 1. Since G has pendant vertices,

d(ui) = 2, for i = 1, 2 . . . , q then the vertices ui of G′ ⊆ V −D will

form an inverse majority dominating set D′ with |D′| > 1 of G′ with

respect to D. It implies that γ−1
M (G′) > 1 and γM(G′) < γ−1

M (G′).

Proposition 3.3.6: If the graph G has exactly one majority domi-

nating vertex and other are pendants then γM(G′) > 1 and γM(G′) <

γ−1
M (G′) where G′ is the subdivision graph of G.

Proof: Let |V (G)| = p and |V (G′)| = (p + q) = p′. Since the

majority dominating vertex v of degree dG(v) ≥ dp2e − 1, dG′(v) <

dp
′

2 e − 1. Then the majority dominating set D will contain atleast

two vertices of G′ and γM(G′) = |D| > 1. Since other vertices vi

are pendants and the new vertices d(ui) = 2, the inverse majority

dominating set D′ contains the vertices of ui ⊆ V − D of G′. It

implies that γ−1
M (G′) > 2 and γM(G′) < γ−1

M (G′).
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3.4 Inverse Majority Domination

Number in Vertex Deletion

In this section, the removal of a vertex u from the vertex set V (G)

is discussed and the inverse majority domination number γ−1
M (G−u)

for the graph G–{u} is determined. Then how this removal of a

single vertex u can affect the inverse majority domination number

γ−1
M (G− u) at various level is surveyed.

Theorem 3.4.1: If a graph G has atleast a full degree vertex u

without pendants then γ−1
M (G− u) = γM(G− u).

Proof: Let u be a full degree vertex of G. Since G has no pendants,

the graph G − u is connected. Let G′ = G − {u} with p′ = p − 1

vertices. Then the degree of each vertex ui in G′ is d(ui) ≥ 1. Also,

1 ≤ d(ui) ≤ p− 2, for every ui ∈ V (G′).

Case (i): When d(ui) = p− 2, for every ui ∈ V (G′).

If d(ui) = p − 2 then |N [ui]| > dp2e, for every ui ∈ V (G′). It implies

that each vertex of G′ form a majority dominating set and an inverse

majority dominating set of G′. Therefore γM(G′) = 1 = γ−1
M (G′).

Case (ii): When d(ui) = 1, for every ui ∈ V (G′). Then G has a

structure of some triangles meet at a full degree vertex u and (G −
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u) consists of only m-edges i.e., mK2. By the results (2.3.1)(7),

γM(G′) = dp
′

4 e and γ−1
M (G′) = dp

′

4 e where |V (G′)| = p′, Hence γM(G−

u) = γ−1
M (G− u).

Case(iii): When d(ui) ≥ 2, for every ui ∈ V (G′).

Then G may be a Wheel or a Fan graphs or other graph structure

with u. Then G − u is a Cycle or a Path or any other structure

contains at most equal degree vertices. By the results (2.3.1)(2), We

have γM(G′) = dp6e = γ−1
M (G′) or γM(G′) > dp6e and γ−1

M (G′) > dp6e.

Hence in all cases, γM(G− u) = γ−1
M (G− u).

Corollary 3.4.2: If a tree T with a full degree vertex u and others are

pendants then γM(G−u) 6= γ−1
M (G−u), if p is odd and γM(G−u) =

γ−1
M (G− u), if p is even.

Proposition 3.4.3: For a tree with a full degree vertex ‘u’ and others

are pendants, γ−1
M (G) = γM(G−u), if p is odd and γ−1

M (G) < γM(G−

u), if p is even. Also γ−1
M (G− u) does not exist.

For Example: Let G = K1,p−1, p is odd and p − 1 is even. Then

γM(G) = 1, γM(G − u) = p−1
2 , where u is a central vertex. Also,

γ−1
M (G) =

(
p−1

2

)
= γM(G − u), if p is odd. When p is even and
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(p − 1) is odd, γM(G) = 1, γ−1
M (G) = bp−1

2 c. If u be a central vertex

of G then γM(G− u) = dp−1
2 e and γ−1

M (G− u) does not exist. Hence

γ−1
M (G) < γM(G− u), if p is even.

Proposition 3.4.4: Let G = S(Fn) be a subdivision of a Fan graph

Fn. Then γ−1
M (G) = dp−1

8 e = γ−1
M (G− u).

Proof: Let Fn = Pn−1 ∨ K1 and G = S(Fn) with |V (G)| = p =

2n + 1. Then V (G) = {u, v1, v2, . . . , vn, u1, u2, . . . , un} where u is

a majority dominating vertex of G with d(u) = dp2e − 1, d(vi) = 2

where vi’s are newly added vertices, d(ui) = 2, for u1, un and d(ui) =

3, i = u2, . . . , un−1. It implies that γM(G) = |D| = |{u}| = 1. Let

D′ = {u2, u5, . . . , ut} such that |D′| = t = dp−1
8 e and D′ ⊆ V − D

with d(ui, uj) ≥ 3, ui 6= uj. Then |N [D′]| =
t∑
i=1

d(vi) + t = 4dp−1
8 e ≥

dp−1
2 e, therefore D′ is an inverse majority dominating set of G and

γ−1
M (G) ≤ |D′| = dp−1

8 e.

Suppose D1 ⊆ V − D be a set with |D1| < |D| = dp−1
8 e. Then

|N [D1] < dp2e and D1 is not an inverse majority dominating set of G

with respect to D. Therefore γ−1
M (G) > |D1| and γ−1

M (G) ≥ |D′| =

dp−1
8 e. Hence γ−1

M (G) = dp−1
8 e.

Let G′ = G− u and D1 be a majority dominating set of (G− u).

Since the set D′ ⊆ V (G − u), we could find D′1 = {u3, u6, . . . , ut} ⊆
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(V − D1) with |D′1| = |D′|. Hence D′1 is an inverse majority domi-

nating set of G′ with respect to D1 and γ−1
M (G− u) = |D′1| = d

p−1
8 e.

Hence γ−1
M (G) = γ−1

M (G− u) = dp−1
8 e.

Proposition 3.4.5: If a graph G has exactly one vertex u such that

d(u) = dp2e−1 and other vertices d(ui) ≤ 3, for every ui ∈ V (G) then

γ−1
M (G) = γM(G− u), if p is odd.

Proof: Let V (G) = {u, u1, . . . , ur, v1, . . . , vs} with p = r+s+1. Let

u be a vertex of G with degree d(u) = dp2e − 1. Then D = {u} is a

majority dominating set of G. Since the remaining vertices of G in

(V −D) are of degree < dp2e−1, the inverse majority dominating set

of G contains atleast two vertices.

Case(i): when d(ui) ≤ 2 and ui 6= u, for every ui ∈ V (G).

Let D′ = {u1, u2, . . . , ut} ⊆ V −D with |t| = dp−1
4 e such that d(ui) =

2 for every ui ∈ D′. Then |NG[D′]| = 2dp−1
4 e+ 1 ≥ dp2e and D′ is an

inverse majority dominating set of G and

γ−1
M (G) = |D′| =

⌈
p− 1

4

⌉
, if p is odd (3.1)

Let G′ = (G−u) and |V (G′)| = p−1 = even. In G′, since every ver-

tex ui ∈ V −D of degree d(ui) = 1, the induced subgraph 〈G′〉 = mK2
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is disconnected, where m =
(
p−1

2

)
. Choose D1 = {u1, u2, . . . , ut} with

|D1| = |t| = dp−1
4 e. Then |NG[D1]| = 2dp−1

4 e ≥
(
p
2

)
and D1 is a ma-

jority dominating set of G′. Hence γM(G′) = |D1| = dp−1
4 e.

Therefore γM(G− u) =

⌈
p− 1

4

⌉
. (3.2)

Thus, γ−1
M (G) = γM(G− u) = dp−1

4 e, if p is odd.

Case(ii): when d(vi) ≤ 3, ui 6= u and for every ui ∈ V (G).

Let D be a majority dominating set of G with |D| = dp8e. Then

Choose D′ = {v2, v5, . . . , vt} ⊆ V −D with |D′| = |t| = dp8e such that

d(vi) = 3, for every vi ∈ V −D and |NG[D′]| = 3dp8e+ dp8e = 4dp8e ≥

dp2e. It implies that D′ is an inverse majority dominating set of G

with respect to D and

γ−1
M (G) = |D′| =

⌈p
8

⌉
, if p is odd. (3.3)

Since d(ui) ≤ 3, for every ui ∈ V (G′) the induced subgraph 〈G′〉

is connected and it has a caterpillar structure or (Pp−1 ◦K1) where

G′ = G− u.

Choose D1 = {v2, v5, . . . , vt} ⊆ V (G′) and D′1 = {v3, v6, . . . , vt+1} ⊆

(V − D1) with |D′1| = |D1| = dp8e. Then |N [D′1]| = |N [D1]| ≥ dp2e.
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It implies that D1 is a majority dominating set of G′ and D′1 is an

inverse majority dominating set of G′ with respect to D1.

γM(G′) = γ−1
M (G′) =

⌈p
8

⌉
and γM(G− u) =

⌈p
8

⌉
. (3.4)

From (3.3) and (3.4), γ−1
M (G) = γM(G− u), if p is odd.

3.5 γ−1
M (G) for a Splitting graph of G

An interesting structure is splitting graph Sp(G) of any graph G

by adding new vertex set and joining these vertices according to some

rules. In this section, splitting graph Sp(G) for some classes of graphs

are determined. Then the numbers γM(Sp(G)) and γ−1
M (Sp(G)) are

found and the relationship between these numbers is also studied.

Definition 3.5.1: [49] For each vertex v of a graph G, take a new

vertex v′. Join v′ to all the vertices of G adjacent to v. The graph

S(G) thus obtained is called splitting graph of G.

Example 3.5.2: Consider the following graph G and its splitting

graph with p = |V (G)| = 7 and p′ = |V (Sp(G))| = 14.



Ch. 3: γ−1M (G) for Some Special Graphs 98

G:

v

v

v v v v v

1

2

3 4 5 6 7

For a graph G, the degree of each vertex vi of G is d(vi) = t. Then

γM(G) = 1, γ−1
M (G) = 2.

Sp(G) - Splitting Graph

In Sp(G), the degree of a vertex vi is d(vi) = 2t and d(v′i) = t =

d(vi), where v′is are newly added vertices then γM(Sp(G)) = 1. Let

D′ = {v5, v6} ⊆ V − D. Such that |N [D′]| = 8 > dp2e. Therefore

γ−1
M (Sp(G)) = |D′| = 2.

Observation 3.5.3:

(i) If Sp(G) is a splitting graph of G then all the degree of the

vertices of Sp(G) is twice of d(vi), i.e.) if dG(vi) = t then

ds(vi) = 2t.
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(ii) The degree of the newly added vertices v′i of Sp(G) will get the

same degree of G. i.e.) if ds(v
′
i) = t = dG(vi).

(iii) γM(Sp(G)) ≤ γ−1
M (Sp(G)), for the splitting graph Sp(G) of any

graph G.

(iv) γ−1
M (Sp(G)) ≤ γ−1

M (G), for any G and its splitting graph Sp(G).

Proposition 3.5.4: Let G = Sp(Pp) be a splitting graph of a path,

p ≥ 2. Then γM(G) = γ−1
M (G) = dp5e.

Proof: Let |V (G)| = {v1, . . . , vp, v
′
1, . . . , v

′
p} = 2p and ds(v1, vp) = 2

and ds(v2, . . . , vp−1) = 4 also, ds(v
′
1, v
′
p) = 1 and ds(v

′
2, . . . , v

′
p−1) = 2.

Choose D = {v2, v5, . . . , vt} ⊆ V (G) such that d(vi, vj) ≥ 3 with

|D| = t = dp5e. Then |N [D]| =
t∑
i=1

d(vi) + t = 4t+ t = 5t = 5dp5e ≥ p.

It implies that D is a majority dominating set of G and γM(G) = dp5e.

Also, choose D′ = {v3, v6, . . . , vt} ⊆ V − D such that d(vi, vj) ≥ 3

with |D′| = t = dp5e. By the same argument, |N [D′]| ≥ dp2e and D′ is

an inverse majority dominating set and γ−1
M (G) = |D′| = dp5e. Hence

γM(G) = γ−1
M (G) = dp5e.

Corollary 3.5.5: If G = Sp(Cp) is a cycle with p ≥ 3 then γM(G) =

dp5e = γ−1
M (G).
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Proposition 3.5.6: Let G = Sp(Kp) be a splitting graph of a com-

plete graph Kp. Then γM(Sp(G)) = γ−1
M (Sp(G)) = 1.

Proof: Let V (G) = 2p. In Kp every full degree vertex vi ∈ V (Kp)

becomes a vertex of degree ds(vi) = 2p − 2 in Sp(G). Then any one

vertex D = {vi} ∈ G is a majority dominating set of Sp(G) and any

other vertex vj ∈ V (G)−{vi} and vj ⊆ V −D, is an inverse majority

dominating set of Sp(G). Hence γM(Sp(G)) = γ−1
M (Sp(G)) = 1.

Proposition 3.5.7: If a graph G is a Caterpillar with p vertices,

then γM(Sp(G)) = γ−1
M (Sp(G)) = dp7e.

Proof: Let Sp(G) be the splitting graph of a caterpillar graph with

|Sp(G)| = 2p. Let V (G) = {v1, v2, . . . , vp
2
, u1, . . . , up

2
} where v′is are

lying in a path such that d(vi) = 3 and u′is are pendants of G.

Also, the degree of the vertices in Sp(G) are ds(vi) = 6, i = 2, . . . ,

(p2 − 1), ds(vi) = 4, for i = 1, (p2) and for the new vertices, ds(v
′
i) = 3

or 2, ds(ui) = 2, i = (p2 + 1), . . . , p and ds(u
′
i) = 1. Choose D =

{v2, v5, . . . , vt} ⊆ V (G) with d(vi, vj) ≥ 3 and |D| = t = dp7e. Then

|N [D]| =
∑
vi∈D

d(vi) + t = 7t = 7dp7e ≥ p. Therefore, D is a majority

dominating set of Sp(G) and γM(Sp(G)) ≤ dp7e.
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Let D′ = {v3, v6, . . . , vt} ⊆ V − D with the same conditions as

in the set D with |D′| = dp7e. By the same argument, γ−1
M (Sp(G)) ≤

dp7e. Suppose choose a set D1 with |D1| = t − 1 then |N [D1]| < p

implies that D1 is not a majority dominating set of Sp(G). Hence

γM(Sp(G) > |D1| and γM(Sp(G)) ≥ |D| = dp7e. Also, by the same

argument for an inverse majority dominating set of Sp(G), we get,

γ−1
M (Sp(G)) ≥ dp7e. Hence γM(Sp(G)) = γ−1

M (Sp(G)) = dp7e.

Results 3.5.8:

1. Let G = Sp(Fp). Then γM(G) = γ−1
M (G) = 1, where Fp is a fan

with p vertices.

2. If G = Sp(Dr,s) is a double star, γM(G) = γ−1
M (G) = 1.

3. Let G = Sp(Wp), where Wp is a wheel with p vertices. Then

γM(G) = γ−1
M (G) = 1.

4. If G = Sp(K1,p−1) then γM(G) = 1 = γ−1
M (G).

5. If G = Sp(Km,n) then γM(G) = 1 = γ−1
M (G).

Observation 3.5.9:

1. If a graph G(p, q) has all the vertices of degree d(vi) = p–1 then

in the splitting graph Sp(G), the vertex has degree ds(vi) =

2p–2 and γM(Sp(G)) = γ−1
M (Sp(G)) = 1.
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2. If a graph G(p, q) has exactly one vertex vi of degree d(vi) = p–1

then the degree of vertex ds(vi) = 2p–2 and ds(v
′
1) = p − 1,

where v′1 is a newly added vertex in Sp(G) and γM(Sp(G)) =

γ−1
M (Sp(G)) = 1.

3. If a graph G has vertices of degree d(vi) = dp2e or dp2e − 1 then

ds(vi) = p or p− 1 and γM(Sp(G)) = γ−1
M (Sp(G)) = 1.

4. If a graph G contains atleast one majority dominating vertex

‘v’ such that d(v) ≥ dp2e−1 then γM(Sp(G)) = γ−1
M (Sp(G)) = 1.

5. If graph G contains all vertices vi of degree d(vi) < dp2e−1 then

γM(Sp(G)) ≥ 2 and γ−1
M (Sp(G)) ≥ 2.

6. If γM(G) < γ−1
M (G) then γM(Sp(G)) < γ−1

M (Sp(G)), for any

graph G.

Theorem 3.5.10: If a graph G contains atleast one vertex ‘v’ of

degree d(v) ≥ dp2e − 1 if and only if γM(Sp(G)) = γ−1
M (Sp(G)) = 1.

Proof: By Observation (3.5.9)(4), we get the result.

Proposition 3.5.11: If a graphG contains atleast half of the vertices

of V (G) have the same degree then γM(Sp(G)) = γ−1
M (Sp(G)).
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Proof: Let D be a majority dominating set of Sp(G). Since the

graph G contains more than half of the vertices have the same degree,

we could choose an inverse majority dominating set D′ ⊆ (V −D) in

Sp(G) with |D′| = |D|. Hence γM(Sp(G)) = γ−1
M (Sp(G)).

Corollary 3.5.12: If a graph G is regular then γM(Sp(G))

= γ−1
M (Sp(G)).

Theorem 3.5.13: Let γ−1
M (G) and γ−1

M (Sp(G)) be the inverse major-

ity domination number of G and the splitting graph Sp(G) respec-

tively. Then γ−1
M (Sp(G)) ≤ γ−1

M (G).

Proof: Since every degree of a vertex ‘v’ of G, dG(v) = t is increased

twice in Sp(G) i.e., ds(v) = 2t, the cardinality of a minimal inverse

majority dominating set of Sp(G) is minimum that of the cardi-

nality of a minimal inverse majority dominating set of G. Hence

γ−1
M (Sp(G)) ≤ γ−1

M (G).

Proposition 3.5.14: If a graph G has exactly one vertex ‘v’ such

that d(v) ≥ dp2e−1 and others are d(vi) < dp2e−1 then γM(Sp(G)) <

γ−1
M (Sp(G)).
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Proof: Let v ∈ V (G) such that dG(v) ≥ dp2e − 1 and |N [v]| ≥ dp2e.

In Sp(G), the degree of the vertex v is ds(v) ≥ p− 1 and |Ns[v]| ≥ p.

Hence D = {v} is a majority dominating set of Sp(G).

Since other vertices vi are of degree dG(vi) < dp2e−1, ds(vi) < p−1

and there is no majority dominating vertex in (V − D) of Sp(G).

Therefore, choose a set D′ ⊆ V − D such that |D′| ≥ 2. Then

|Ns[D
′]| ≥ dp2e and D′ is an inverse majority dominating set of Sp(G).

Hence γ−1
M (Sp(G)) = |D′| ≥ 2. Since γM(Sp(G)) = 1, γM(Sp(G)) <

γ−1
M (Sp(G)).

3.6 Inverse Majority Domination

Number for Complement Ḡ of G

In this section, the majority domination number and an inverse

majority domination number for the complement Ḡ of a graph G are

determined for some standard graphs. Then few results regarding

various domination numbers γM(Ḡ) and γ−1
M (Ḡ) are produced in the

case of complement Ḡ of G.

Proposition 3.6.1: For the complement of G = Km,n,m ≤ n, with

m,n ≥ 2, γM(K̄m,n) = γ−1
M (K̄m,n) = 1.
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Proof: Let G = Km,n be a complete bipartite graph with |V1(G)| =

m and |V2(G)| = n, m, n ≥ 2. Then Ḡ = Km ∪ Kn where two

complete graphs Km and Kn with m ≤ n.

Case (i): when n = m,m+ 1,m+ 2.

Since Ḡ contains complete graph, each vertex of V1 or V2 is a majority

dominating set and an inverse majority dominating set of Ḡ and

γM(K̄m,n) = γ−1
M (K̄m,n) = 1.

Case (ii): when n ≥ m + 3. Let Ḡ = Km ∪ Kn with m < n. Let

ui ∈ V (Kn) and vi ∈ V (Km). Then the sets D = {u1} and D′ = {u2}

are majority dominating and inverse majority dominating sets of Ḡ

and γM(K̄m,n) = γ−1
M (K̄m,n) = 1.

Proposition 3.6.2: Let G = Dr,s, r ≤ s be a tree with p = r+ s+ 2

vertices. Then

(i) γM(Ḡ) = γ−1
M (Ḡ) = 1, if s = r, r + 1, r + 2 and

(ii) γM(Ḡ) = γ−1
M (Ḡ), if s ≥ r + 3.

Proof: Let G = Dr,s, r ≤ s be a tree with p vertices and V (G) =

{u, v, u1, u2, u3, . . . , ur, v1, v2, . . . , vs} where ui and vj are pendants,

i = 1, . . . , r and j = 1, . . . , s at u and v respectively,
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Case (i): When s = r, r + 1, r + 2.

The graph G has two majority dominating vertex u and v. It gives

that γM(G) = γ−1
M (G) = 1. In the complement Ḡ of G, each pendant

vertex ui or vi of G becomes a majority dominating vertex of Ḡ (i.e.,)

d(ui) = p− 2 = d(vi). It implies that γM(Ḡ) = γ−1
M (Ḡ) = 1.

Case (ii): When s ≥ r + 3 and r < s.

Then the graph G has exactly one majority dominating vertex ‘v’

and γM(G) = |D| = |{v}| = 1. Suppose s = r + 3. Choose D′ =

{u, v1} ⊆ V − D and |N [D′]| = |N [u]| + |N [v1]| = dp2e − 1 + 1 =

dp2e. It implies that D′ is an inverse majority dominating set of G.

Hence γ−1
M (G) = |D′| = 2. Thus, if s ≥ r + 3, γ−1

M (G) ≥ 2. Hence

γM(G) < γ−1
M (G). By the same argument as in case (i), we obtain

γM(Ḡ) = γ−1
M (Ḡ) = 1.

Proposition 3.6.3: Let Ḡ be the complement of a graph G = Pp or

Cp with p ≥ 3. Then γ−1
M (P̄ p) = γ−1

M (C̄p) = 1.

Proof: Let Ḡ = P̄ p, p ≥ 2. Since the graph G = Pp contains exactly

two pendent vertices u1 and up, d̄(ui) = p−2, for ui ∈ V (P̄ p), i = 1, p

and all other vertices vi of G such that dG(vi) = 2 becomes d̄(vi) =

p − 3 in Ḡ, i = 2, . . . , p − 1. Then the two vertices ui and up are

majority dominating vertices of Ḡ and γ−1
M (P̄ p) = 1 = γM(P̄p).
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Let Ḡ = C̄p, p ≥ 3 and δ(G) = ∆(G) = 2. Then all the degree of

the vertices of G becomes d̄(vi) = p − 3 in Ḡ. Therefore any single

vertex would form a majority dominating set and an inverse majority

dominating set for Ḡ, γ−1
M (C̄p) = 1.

Proposition 3.6.4: There exists a graph G which is disconnected

with p vertices such that γ−1
M (G)− γ−1

M (Ḡ) = 1.

Proof: There exists a disconnected graph G with p vertices such

that G = Kbp2c∪ K̄dp2e. Let V (G) = {v1, · · · , vbp2c, udp2e, · · · , up} where(
udp2e, . . . , up

)
are isolates and vi ∈ V (Kdp2e). Let D =

{
v1, udp2e

}
.

Then |N [D]| = |N [v1]| + |N [udp2e]| = bp2c + 1 = dp2e. Therefore D

is a majority dominating set of G and γM(G) = |D| = 2. By the

similar argument, choose the set D′ =
{
v2, udp2e+1

}
⊆ V − D, such

that |N [D′]| = dp2e. Therfore D′ is an inverse majority dominating

set of G with respect to D. Hence

γ−1
M (G) = |D′| = 2. (3.5)

Let Ḡ = K̄bp2c∪Kdp2e be a complement of G and V (Ḡ) =
{
x1, · · · , xbp2c,

ydp2e, · · · , yp
}

where xi’s are isolates in Ḡ and dḠ(yj) = p − 1, for

j = 1, · · · , dp2e. From these vertices of Ḡ, any single vertex yj, yj ∈
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∨(Kdp2e) would form a majority dominating set D̄ of Ḡ an inverse

majority dominating set D̄′ of Ḡ. Hence

γM(G) = γ−1
M (Ḡ) = 1. (3.6)

From (3.5) and (3.6) we obtain, γ−1
M (G)− γ−1

M (Ḡ) = 1.

Proposition 3.6.5: If a graph G contains only full degree vertices

with p = 2n then γM(Ḡ) = γ−1
M (Ḡ) = p

2 .

Proof: Let the graph G has all vertices are of degree d(vi) = p− 1,

for every vi ∈ V (G) with p is even. The complement of G is a totally

disconnected graph. Then γM(Ḡ) = p
2 = γ−1

M (Ḡ), since p is even.

Corollary 3.6.6: If a graph G contains only full degree vertices

with p = (2n + 1) then the inverse majority domination number

of Ḡ, γ−1
M (Ḡ) does not exist.

Proof: Let the graph G be a complete graph and p is odd. Then

G = Kp, p is odd. Therefore γM(G) = γ−1
M (G) = 1. The complement

of G is Ḡ = (K̄p), p is odd. Then the majority dominating set |D| =

γM(Ḡ) = dp2e and the remaining vertices bp2c in (V − D) could not
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form an inverse majority dominating set for Ḡ. Hence the inverse

majority domination number γ−1
M (Ḡ) does not exist.

Proposition 3.6.7: If a graph G has all vertices of degree d(u) =

dp2e − 1 and dp2e then γM(G) = γ−1
M (G) = γM(Ḡ) = γ−1

M (Ḡ) = 1.

Proof: Since the graphG has all vertices of degree d(u) = dp2e−1 and

dp2e, then G has only majority dominating vertices and |N [u]| = dp2e.

It implies that each vertex forms an inverse majority dominating set

of G and γM(G) = γ−1
M (G) = 1.

Then the complement of Ḡ of this graph G is having vertices

of degree d̄(u) = bp2c + 2 and bp2c + 1. Therefore |[NḠ[u]| = dp2e.

From these vertices, any single vertex would form a majority domi-

nating set and an inverse majority dominating set in Ḡ and γM(Ḡ) =

γ−1
M (Ḡ) = 1.

Theorem 3.6.8: For any tree T with p ≥ 7, inverse majority dom-

ination number γ−1
M (T ) is reduced to γ−1

M (T̄ ) = 1 in the complement

T̄ of T .

Proof: Let T be a tree with p ≥ 7. Let γM(T ) and γ−1
M (T ) be the

majority domination number and an inverse majority domination

number of a tree T .
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Case (i): Since T has atleast two pendant vertices u1 and u2, then

T = Pp. By the results (2.3.1)(2), when p ≥ 7, we have γ−1
M (T ) =

⌈
p
6

⌉
and hence γ−1

M (T ) ≥ 2.

In T̄ , there are two vertices with degree d̄(ui) = p − 2 and

|NḠ[ui]| = p − 1, i = 1, 2. It implies that D = {u1} and D′ = {u2}

are the majority dominating set and inverse majority dominating set

of T̄ . Hence γM(T̄ ) = γ−1
M (T̄ ) = 1.

Thus, in the case of the complement T̄ of a tree T , γ−1
M (T ) is

reduced to γ−1
M (T̄ ) = 1.

Case (ii): Suppose T has atmost (p − 1) pendants. Then T =

K1,p−1. By the results (2.3.1)(5), γ−1
M (T ) = bp−1

2 c and γ−1
M (T ) ≥

2. In T̄ , there are p − 1 vertices with degree d̄(ui) = p − 2, i =

1, 2, . . . , p − 1. It implies that any single vertex ui would form a

majority dominating set and an inverse majority dominating set of

T̄ and γM(T ) = γ−1
M (T̄ ) = 1. Since γ−1

M (T ) ≥ 2, γ−1
M (T ) will take any

integer value for a tree T but γ−1
M (T ) is reduced to γ−1

M (T̄ ) = 1 in the

complement T̄ . Thus the result.



Chapter 4

Inverse Independent Majority

Dominating Set of a Graph

Abstract

This chapter introduces an inverse independent majority dom-

inating set of a graph G with respect to an independent majority

dominating set of a graph G. An inverse independent major-

ity domination number i−1
M (G) is determined for some families of

graphs. Some Characterisation theorems on i−1
M (G) are discussed.

Bounds of an inverse independent majority domination number for

a connected and disconnected graphs are found and its relationship

with other domination parameters namely i−1(G), γ−1
M (G) and iM(G)

are also established.
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4.1 Introduction

In 1991, Kulli and Sigarkanti [30] initialy introduced the concept

inverse domination and produced many results in their research pa-

per. In 2006, majority dominating set in graphs was studied by

Swaminathan and Joseline Manora [50]. The concept of an indepen-

dent majority dominating sets in graphs was introduced and pro-

pelled by Joseline Manora and John in 2014 [34]. In this work, they

have defined an independent majority domination number iM(G) of a

graph. Then bounds of an independent majority domination number

and many interesting results with inequality are determined. Moti-

vated by these concepts, an inverse independent majority dominating

set of G and an inverse independent majority domination number

i−1
M (G) of a graph G are introduced in this chapter.

The chapter includes the following sections. The introductory

part is given in the first Section and Section 4.2 defines the concept

of an inverse independent majority dominating set for a graph G

and illustrates the defined concept with an example. The inverse

independent majority domination number i−1
M (G) is determined for

various classes of graphs in Section 4.3. Section 4.4 contains some
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characterisation theorems on i−1
M (G) of a graph. In the next two

Sections 4.5 and 4.6, bounds of i−1
M (G) are determined with sharpness

and comparative study of the parameters i−1(G), i−1
M (G), γ−1

M (G) and

iM(G) is discussed. Section 4.7 deals with the bounds of i−1
M (G)

for disconnected graphs. Finally Nordhus-Gaddum type results are

studied in Section 4.8.

4.2 Inverse Independent Majority

Dominating Set

In this section, the definitions of an inverse independent major-

ity dominating set with respect to a minimum independent majority

dominating set of a graph G, an inverse independent majority domi-

nation number of a graph G are given. An example illustrating these

definitions is also shown.

Definition 4.2.1: Let G = (V,E) be a simple graph with p vertices

and q edges. Let D ⊆ V (G) be a minimum independent majority

dominating set of a graph G. If V − D contains an independent

majority dominating set D′ then the set D′ is called an Inverse In-

dependent Majority Dominating set of G with respect to D.
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An inverse independent majority dominating set D′ is minimal

if there exists no proper subset D′1 of D′ such that D′1 is an inverse

independent majority dominating set of G with respect to D.

Definition 4.2.2: The Inverse Independent Majority Domination

number, denoted by i−1
M (G) of a graph G is the minimum cardinality

taken over all the minimal inverse independent majority dominating

sets of a graph G.

Example 4.2.3: Consider the graph G as given below with p = 13.

G:
v

v v v

v v v v v v

v

v

1

2 3 4 5

6 7

8

9

10 1211

v

In G, |V (G)| = p = 13. D = {v6} is a minimum independent ma-

jority dominating set of G and iM(G) = |D| = 1. An independent

domination number i(G) = |{v6, v8, v9, v11, v13}| = 5. Choose D′ =

{v7, v12} such that |N [D′]| = 7 and D′ ⊆ V −D such that 〈D′〉 has no

edges. Therefore D′ is an Inverse Independent Majority Dominating

set of G with respect to D and i−1
M (G) = |D′| = 2. Then inverse inde-
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pendent domination number i−1(G) = |{v1, v2, v3, v4, v5, v7, v12}| = 7.

Hence i−1
M (G) < i−1(G) and iM(G) < i−1

M (G).

Example 4.2.4: Let G = C4 ◦K2 be a corona graph with p = 12.

G:
v v

vv

v

v
v

v v

v

v

v

1 2

34

5

6

7

8 9

10

11

12

For the graph G, a majority dominating set and an independent

majority dominating set D = {v1, v9} and their numbers γM(G) =

iM(G) = |D| = 2. Next, an inverse majority dominating set and

an inverse independent majority dominating set D′ = {v2, v11} ⊆

V − D and their numbers γ−1
M (G) = i−1

M (G) = |D′| = 2. Also an

independent set S = {v6, v8, v10, v12} and the independence number

is i(G) = |S| = 4. An inverse independent set S ′ = {v5, v7, v9, v11} ⊆

V −S and the inverse independence number i−1(G) = |S ′| = 4. Thus

i−1
M (G) < i−1(G) and γ−1

M (G) = i−1
M (G).

Example 4.2.5: Consider the following graph G with p = 20.
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a b

cd

v
v
v
v

v

v
v

v
v

vv
v

v
v
v

12

13

14
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16v 1
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3
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5

6

7
8

9

1011

Let D = {a, b} be a majority dominating set and D′ = {c, d}

is an inverse majority dominating set with respect to D such that

D′ ⊆ V − D. Then γM(G) = 2 and γ−1
M (G) = 2. Let Di = {b, v6}

be an independent majority dominating set and D′i = {d, v1, v2} ⊆

V−Di is an inverse independent majority dominating set with respect

to Di. Then iM(G) = |Di| = 2 and i−1
M (G) = |D′i| = 3. Hence

γ−1
M (G) < i−1

M (G) and γM(G) = iM(G).

Example 4.2.6: Consider the graph G with p = 20 and G has an

induced subgraph K4 with 4 pendants at each vertex (a, b, c, d).

Let D = {a, b} be a majority dominating set and D′ = {c, d} is

an inverse majority dominating set with respect to D such that D′ ⊆

V −D. Then γM(G) = 2 and γ−1
M (G) = 2. Let Di = {a, v1, v2} be an

independent majority dominating set and D′i = {b, v5, v6} ⊆ V −Di is
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an inverse independent majority dominating set with respect to Di.

Then iM(G) = 3 = i−1
M (G). It gives the inequality, γM(G) < iM(G)

and γ−1
M (G) < i−1

M (G).

Proposition 4.2.7: (i) For any graph G, iM(G) ≤ i−1
M (G).

Proof: Since every inverse independent majority dominating set of

G is an independent majority dominating set of G, the independent

majority domination number iM(G) and inverse independent major-

ity domination number i−1
M (G) satisfies iM(G) ≤ i−1

M (G).

(ii) For any graph G, i−1
M (G) ≤ i−1(G)

Proof: Since every inverse independent dominating set of G is an

inverse independent majority dominating set of G, i−1
M (G) ≤ i−1(G).

(iii) For any graph G, γ−1
M (G) ≤ i−1

M (G).

Proof: Since every inverse independent majority dominating set of

G is an inverse majority dominating set of G, γ−1
M (G) ≤ i−1

M (G).

Observation 4.2.8: For every graph G, an inverse independent ma-

jority dominating set exists whereas an inverse independent domi-

nating set does not exist for every graph without isolated vertices.
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4.3 Inverse Independent Majority

Domination Number for Some Classes

of Graphs

The inverse independent majority domination number i−1
M (G) for

various classes of graphs is established in the following results.

Results 4.3.1:

1. Let G = Kp, p ≥ 2 be a complete graph. Then i−1
M (G) = 1.

2. Let G = K1,p−1 be a star with p ≥ 2. Then i−1
M (G) = bp−1

2 c.

3. If G = Pp a path with p ≥ 2 and Cp a cycle with p ≥ 3,

i−1
M (G) = dp6e.

4. If G = Wp is a wheel with p ≥ 5, i−1
M (G) = dp−2

6 e.

5. If G = Fp is a fan graph with p ≥ 4, i−1
M (G) = dp−2

6 e.

6. Let G = Km,n,m, n ≥ 2 be a complete bipartite graph. Then

i−1
M (G) = 1.

7. Let G = mK2,m ≥ 1. Then i−1
M (G) = dp4e.

Proposition 4.3.2: Let G = D3(Ct) be a windmill graph with only

three cycles of different size t ≥ 4. Then (i) iM(G) = bp−2
6 c and

i−1
M (G) = dp6e (ii) iM(G) < i−1

M (G).
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Proof: Let G = D3(Ct) be a windmill graph with only three cycles

and each cycle is of size t ≥ 4. Then V (G) = {u, c11, c12, . . . , c21, c22,

· · · , c31, c32, . . .} with |V (G)| = p = 3t − 2. All these three cycles

C1, C2, C3 meet at a vertex u. When t = 4 and G = D3(C4). Then

V (G) = {u, c11, c12, c13, c21, c22, c23, c31, c32, c33} and p = 10. Here

iM(G) = |{u}| = 1 and i−1
M (G) = |{c12, c22}| = 2. When t = 5

and G = D3(C5). Then |V (G)| = p = 13. Here, iM(G) = |{u}| = 1

and i−1
M (G) = |{c12, c22, c32}| = 3.

If t = 6 then G = D3(C6) and p = 16. Choose a set D =

{u, c13} and a set D′ = {c12, c22, c32} ⊆ V − D such that |N [D]| =

|N [D′]| ≥ dp2e. It implies that iM(G) = 2 and i−1
M (G) = 3. In

general, let V (G) = p = 3t − 2 and dp2e = d3t
2 e − 1. Now, select the

set D = {u, c13, c23, . . . , cij} with |D| = bp−2
6 c such that d(xi, xj) ≥ 3,

where the vertices xi, xj ∈ D. Then |N [D]| = |N [u]| + 3(|D| −

1) = 7 + 3bp−2
6 c − 3. Therefore |N [D]| = 3bp−2

6 c + 4 ≥ dp2e. Since

d(xi, xj) ≥ 3, the induced subgraph 〈D〉 has only isolates. Thus D is

an independent majority dominating set of G and

iM(G) ≤ |D| =
⌊
p− 2

6

⌋
. (4.1)



Ch: 4. Inverse Independent Majority Dominating Set of a Graph 120

Suppose |D1| < |D| and |D1| = |D| − 1. Then |N [D1| < dp2e

and the induced subgraph 〈D1〉 has only isolates. But D1 is not an

independent majority dominating set of G and

iM(G) > |D1| ≥ |D| =
⌊
p− 2

6

⌋
(4.2)

Combining (4.1) and (4.2), we obtain iM(G) = bp−2
6 c.

LetD′ = {C13, C16, . . . , C1i, C23, C26, . . . , C2j, C33, C36, . . . , C3k} such

that d(xi, xj) ≥ 3 with |D′| = dp6e. Then |N [D′]| =
∑
xi∈D′

d(xi) =

3|D′| = 3dp6e ≥ d
p
2e. Also D′ ⊆ V − D and the induced subgraph

〈D′〉 has only isolates. Therefore D′ is an inverse independent ma-

jority dominating set with respect to D and

i−1
M (G) ≤ |D′| =

⌈p
6

⌉
(4.3)

Suppose |D′1| < |D′| and |D′1| = |D′|−1. Apply the above argument,

D′1 is not an inverse independent majority dominating set of G. Then

i−1
M (G) > |D′1| and i−1

M (G) ≥ |D′| =
⌈p

6

⌉
(4.4)

Thus, by (4.3) and (4.4), i−1
M (G) = dp6e.
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For Example; Consider the following graph G = D3(C6).

u
c c

c

1 2

3

u3
G:

w

w

w

v

1

2

3

3

When t = 6, in this graph G = D3(c6) with 3 cycles c6 meet at

a vertex ‘u’ and p = 16. By the above result, iM(G) = |{u, u3}| = 2

and i−1
M (G) = |{v3, w3, w1}| = 3.

Theorem 4.3.3: Let G = Dt(7) be a windmill graph with the num-

ber t ≥ 2 of 7-cycles.Then

(i) iM(G) =


dp6e − b

∆+1
3 c, if p ≡ 1, 2

(
mod

(
∆+1

3

))
.

dp6e − b
∆+1

3 c+ 1, if p ≡ 0
(
mod

(
∆+1

3

))
.

(ii) i−1
M (G) = dp6e.

(iii) iM(G) < i−1
M (G)

Proof: By the same argument of Proposition (4.3.2), the result (i)

and (ii) are obtained and it implies that iM(G) < i−1
M (G).
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4.4 Characterization Theorems on

Inverse Independent Majority

Domination Number

This section deals with characterization theorems for i−1
M (G) and

a necessary and sufficient theorem for a minimal inverse independent

majority dominating set of a graph G.

Proposition 4.4.1: Let D be a iM - set of a connected graph G.

Then i−1
M (G) = 1 if and only if the set (V −D) contains atleast one

majority dominating vertex of G.

Proof: Let i−1
M (G) = 1. Then D′ = {u} is an inverse independent

majority dominating set of G and D′ ⊆ (V −D). Then |N [D′] ≥ dp2e

and |N [u]| ≥ dp2e. It implies that the degree a vertex ‘u’ such that

d(u) ≥ dp2e − 1 and u ∈ V − D. Hence the vertex u is a majority

dominating vertex of G in (V − D). Suppose (V − D) contains

more than one majority dominating vertex of G, then one majority

dominating vertex is enough to find an inverse independent majority

dominating set for G. Hence (V −D) contains atleast one majority

dominating vertex of G. The converse is obvious.
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Results 4.4.2: Given any positive integer k > 1, there exists a graph

G such that i−1
M (G) = 1.

Proof: Let k ≥ 2 be any positive integer. Then there is a complete

graphG = Kk. By the result (4.3.1)(1), i−1
M (G) = 1, for any k ≥ 2.

Theorem 4.4.3: Let D be a iM -set of a connected graph G. Then

i−1
M (G) ≥ 2 if and only if all the vertices ui are of degree such that

d(ui) < dp2e − 1, for every ui ∈ (V −D).

Proof: Let i−1
M (G) ≥ 2 and D′ be a i−1

M -set of G. Then the inverse

independent majority dominating set D′ which contains more than

one vertex. Suppose D′ = {u1, u2} such that |N [D′]| ≥ dp2e and

D′ ⊆ (V − D). Then dp2e ≤ |N [D′]| =
∑

[d(u1) + d(u2)]. It implies

that either d(u1) < dp2e − 1 and d(u2) ≥ 1 or vice versa. Since

D′ ⊆ (V −D), all the vertices ui ∈ D′ with degree d(ui) < dp2e − 1.

Conversely, if the set (V −D) consists of the vertices with the degree

d(ui) < dp2e− 1. Then any single vertex ui could not form an inverse

independent majority dominating set for G with respect to D. Hence

i−1
M (G) ≥ 2.
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Theorem 4.4.4: Let G be any connected graph with p ≥ 2 vertices.

Then i−1
M (G) = p−κ(G) if and only if G is a complete graph of order

p, where κ(G) is a vertex connectivity of G.

Proof:

Let i−1
M (G) = p− κ(G). (4.5)

Let D and D′ be the independent majority dominating set and in-

verse independent majority dominating set of G respectively. Let u

be a vertex of G such that d(u) = ∆(G) = |N(u)|. Since N [V (G)−

N(u)] = V (G), [V (G)−N(u)] = D′ is an inverse independent major-

ity dominating set of G. Hence i−1
M (G) ≤ |D′| = |V (G)| − |N(u)| =

p − ∆(G). By assumption, p − κ(G) = i−1
M (G) ≤ p − ∆(G). It im-

plies that κ(G) ≥ ∆(G). By the known inequality “for any graph

G, κ(G) ≤ δ(G) ≤ ∆(G)”. Thus, we obtain κ(G) = δ(G) = ∆(G)

and G is a regular graph, say κ-regular graph.

Let u be any vertex of κ-regular graph G. Then the vertex ‘u’

dominates (κ+1) vertices ofG. If (κ+1) < dp2e thenD1 = [N [u]∪S] is

an inverse independent majority dominating set of G with respect to

D where S is a set of [dp2e− (κ+1)] vertices disjoint from the vertices
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of N [u]. Therefore i−1
M (G) ≤ 1+dp2e− (κ+1) = dp2e−κ. Then by the

condition (4.5), p − κ(G) ≤ dp2e − κ(G), which is impossible. Hence

(κ+1) ≥ dp2e and (κ+1) vertices are dominated by one and only one

vertex ‘u’ and i−1
M (G) = 1. By assumption, p− κ(G) = 1. It implies

that κ(G) = p−1, vertex connectivity of G. Thus, the corresponding

graph G is a complete graph of order p.

Conversely, let G = Kp then the vertex connectivity of G with

κ(G) = p − 1. The independent majority dominating set D and

inverse independent majority dominating set D′ set of a complete

graph G is D = {u1} and D′ = {u2} respectively, for u1, u2 ∈ V (G)

and u2 ⊆ V −D. It implies that i−1
M (G) = |D′| = 1 and i−1

M (G) = 1 =

p−(p−1). Therefore, by the result κ(G) = p−1, i−1
M (G) = p−κ(G).

Hence i−1
M (G) = p− κ(G) if and only if G = Kp.

The following theorem provides a necessary and sufficient condi-

tion for the two sets iM(G) and i−1
M (G) which are equal.

Theorem 4.4.5: Let G be a connected graph with p vertices. Let

D and D′ be the iM -set and i−1
M -set of G respectively. Then iM(G) =

i−1
M (G) if and only if one of the following conditions holds.
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(i) The graph G contains atleast two vertices with degree d(ui) ≥

dp2e − 1.

(ii) The graph G is regular.

(iii) The graph G contains atleast dp2e vertices with equal degree r

and other vertices ui such that d(ui) < r.

(iv) The graphG contains an induced complete subgraph with equal

degree and δ(G) ≤ 2.

Proof: Assume that iM(G) = i−1
M (G). Since the sets D and D′ are

an independent majority dominating set and an inverse independent

majority dominating set of G, |D| = |D′| and |N [D]| = |N [D′]| ≥

dp2e. Then D′ ⊆ (V − D) and an induced subgraphs 〈D〉 and 〈D′〉

both have no edges.

Case (i): Suppose |D| = |D′| = 1. Then D = {u1} and D′ = {u2} ⊆

(V −D) such that d(ui) ≥ dp2e − 1, for i = 1, 2. It implies that the

graph G has atleast two vertices with d(ui) ≥ dp2e− 1 and others are

d(ui) < dp2e − 1. Hence the condition (i) holds.

If all the vertices of G may have the degree d(ui) ≥ dp2e − 1,

for all ui ∈ V (G) then all vertices ui with same degree such that
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either d(ui) = p − 1 or d(ui) ≥ dp2e − 1. Suppose d(ui) = p − 1, for

every ui ∈ V (G), then G = Kp, a complete graph with p vertices.

Suppose d(ui) = p
2 , for every ui ∈ V (G) then G = Km,n, a complete

bipartite graph. If all the vertices ui are having equal degree such

that d(ui) ≥ dp2e − 1 then the graph G must be regular. Hence the

condition (ii) holds.

Case(ii): Suppose |D| = |D′| ≥ 2. Then the vertices ui of G are

of degree d(ui) < dp2e − 1. By the assumption, the independent

majority dominating set D and the inverse independent majority

dominatimg set D′ both have the same cardinallity. Therefore iM -set

is D = {u2, u5, u8, . . . , ut} and i−1
M -set is D′ = {u3, u6, u9, . . . , ut} ⊆

(V − D) such that d(ui, uj) ≥ 3, for ui, uj ∈ D, ui, uj ∈ D′ and

|N [D]| = |N [D′]|. Since the set D and D′ are having vertices such

that each vertex of D is adjacent to the vertices of D′, either all

the vertices ui ∈ V (G) are having equal degree say ‘r’or atleast dp2e

vertices with equal degree r. Hence the graph G must be r-regular

thus the condition (ii) holds. If the graph G has atleast dp2e vertices

with equal degree r then other remaining vertices ui are having degree

d(ui) < r. Thus the condition (iii) holds.
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Case(iii): Suppose |D| = |D′| ≥ 2. It is proved by induction on

|D| and |D′|. When |D| = |D′| = 2. Then D = {u1, v1} and D′ =

{u2, v2} ⊆ (V − D) where d(v1) = d(v2) ≤ 2 and d(u1) = d(u2) <

dp2e − 1. It implies that the equal degree vertices u1 and u2 such

that u1 and u2 are adjacent it to a complete subgraph ‘g’ with degree

r = dp2e − 2 and other vertices vi are of degree either d(v1) = 1 or

d(v2) = 2, for i = 1, 2.

When |D| = |D′| = 3. Then D = {u1, v1, v2} and D′ = {u2, v3, v4}

⊆ (V − D) such that d(xi, xj) ≥ 2, for any xi, xj ∈ D and D′ and

N(u1) = u2 and N(u2) = u1 with equal degree r = dp2e − 3. These

vertices u1 and u2 belong to a complete subgraph g with d(u1) = d(u2)

and other vertices vi in D and D′ are of degree either d(vi) = 1 or 2

for i = 1, 2, 3, 4. This result is true for |D| = |D′| = 1, 2, 3, . . . , (t−1).

When |D| = |D′| = t. Then D = {u1, v1, v2, . . . , vt−1} and D′ =

{u2, vi, vj, . . . , vt−1} ⊆ (V−D) such that d(xi, xj) ≥ 2, for any xi, xj ∈

D, D′. Also, u1 = N(u2), N(u1) = u2 with equal degree r = dp2e − t

and d(vi) ≤ 2 for all vi. It implies that |N [D]| ≥ d(u1) +
∑
i

d(vi) ≥

dp2e − t + (t − 1) + 1 and |N [D]| ≥ dp2e. In a similar way, we obtain

|N [D′]| ≥ dp2e. Hence ui’s are adjacent in an induced subgraph of

G and its forms an induced complete subgraph ‘g’ of G with equal
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degree r. All other vertices vi are of degree d(vi) ≤ 2 and hence

δ(G) ≤ 2. Thus the condition (iv) holds. The converse part is

obvious.

Theorem 4.4.6: Let D and D′ be the iM -set and i−1
M - set of a graph

G with p vertices. Then iM(G) < i−1
M (G) if and only if one of the

following conditions holds.

(i) The graph G contains exactly one vertex u with d(u) ≥ dp2e−1

and other vertices ui such that d(ui) < dp2e − 1.

(ii) The graph G contains atleast one vertex u with d(u) < dp2e− 1

and other vertices vi such that d(vi) < d(u) with 〈vi, vj〉 = ei,

if d(vi) = d(vj), for every vi, vj ∈ V −D.

(iii) The graph G contains an induced complete subgraph Kk, k ≥ 3

with vertices ui such that d(ui) ≤ dp2e− 2 and other vertices xi

such that d(xi) ≤ 2.

Proof: Let D and D′ be the iM - set and i−1
M - set of G. Assume that

iM(G) < i−1
M (G). Then |D| < |D′| and |D′| ≥ |D|+ 1.

Case (i): Suppose iM(G) = |D| = 1 and i−1
M (G) = |D′| = 2. It

implies that D = {u} and G contains only one vertex ‘u’ such that
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d(u) ≥ dp2e − 1. Since i−1
M (G) = |D′| = 2, all other vertices (ui) ⊆

V − D, are of degree d(ui) < dp2e − 1. If d(ui) < dp2e − 1 then

ui’s may also be pendants and ui ∈ V − D, for every ui. In this

case, i−1
M (G) ≥ 2. Hence G contains exactly one vertex u such that

d(u) ≥ dp2e − 1 and other vertices ui such that d(ui) < dp2e − 1.

Case (ii): Suppose iM(G) = |D| = 2 and i−1
M (G) = |D′| ≥ 3. By

assumption, |D| < |D′|. By case (i), iM - set D must have two vertices

and D = {u1, u2} with d(u1, u2) ≥ 2 such that |N [D]| ≥ dp2e and 〈D〉

has no edges. Then the vertices ui of D satisfies d(ui) < dp2e − 1, i =

1, 2. Since i−1
M (G) = |D′| ≥ 3, D′ = {v1, v2, v3} ⊆ V − D such that

d(vi, vj) ≥ 2, for every vi, vj ∈ D′ and |N [D′]| ≥ dp2e with 〈D′〉 has

no edges. Then the vertices of D′ such that d(vi) < d(ui), for every

vi ∈ D′ and ui ∈ D.

If any of these vertices vi ∈ V −D with equal degree, then they

must be adjacent. Suppose vi, vj ∈ V −D and both are not adjacent

with d(vi) = d(vj). Then the i−1
M -set D′ includes these vertices and

|D′| = |D|. Therefore iM(G) = i−1
M (G), which is a contradiction to

our assumption. Hence the vertices vi ∈ V − D with equal degree

such that 〈vi, vj〉 = ei.
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Case (iii): Suppose |D| ≥ 2 and |D′| ≥ 3. Then the iM - set D

contains atleast 2 vertices u1 and u2 with degree d(u1) ≤ dp2e− 2 and

d(u2) ≤ 2. Also, the i−1
M - set D′ contains atleast 3 vertices namely

{v1, v2, v3} ⊆ V − D with 2 ≤ d(vi) ≤ dp2e − 3, i = 1, 2, 3 and 〈D′〉

has no edges. It implies that the vertices u1 and v1 are adjacent in

G and they form a compelete subgraph Kk, k ≥ 3. All other vertices

xi such that d(xi) ≤ 2, xi 6= u1, v1. Hence the graph G contains an

induced complete subgraph Kk, k ≥ 3 with d(ui) ≤ dp2e−2 and other

vertices are d(xi) ≤ 2.

Next, relationships among three different inverse parameters i−1(G),

i−1
M (G) and γ−1

M (G) are discussed below.

Theorem 4.4.7: Let G be a connected graph with p vertices. The

i−1
M (G) = i−1(G) if and only if the graph G has atleast two full degree

vertices.

Proof: Assume that i−1
M (G) = i−1(G). Let D and D′ be an indepen-

dent dominating set and an inverse independent set with respect to D

of G. Suppose ∆(G) 6= p− 1 then i−1(G) 6= 1 and i−1(G) = |D′| ≥ 2

is an inverse independent domination number of G. Let D′ = D1∪D2
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where D1 6= ∅ and D2 6= ∅ such that D1 ∩D2 6= ∅. Since |N [D′]| 6= ∅

and D1 ∩D2 6= ∅, |N [D1]| ≥ dp2e or |N [D2]| ≥ dp2e. Hence either the

set D1 or D2 is an inverse independent majority dominating set of

G and i−1
M (G) ≤ |D1| or i−1

M (G) ≤ |D2|. Since D1 6= ∅ and D2 6= ∅,

i−1
M (G) < |D′| = i−1(G), which is a contradiction to the assumption.

Hence ∆(G) = p−1. It implies that the graph G contains atleast one

full degree vertex ‘u’ such that d(u) = p− 1. Suppose G has exactly

one vertex u with d(u) = p − 1, then i(G) = 1 and iM(G) = 1 but

i−1(G) ≥ 2 and i−1
M (G) ≥ 2, which is a contradiction to the assump-

tion. Hence the graph G has atleast two full degree vertices. The

converse is obvious.

Theorem 4.4.8: Let D and D′ be the independent majority domi-

nating set and the inverse independent majority dominating set of G.

Then iM(G) = i−1
M (G) = 1 if and only if the graph contains atleast

two majority dominating vertices.

Proof: Let iM(G) = |D| = |D′| = i−1
M (G) = 1. Since iM(G) =

1, D = {u} such that |N [u]| ≥ dp2e, G contains a vertex ‘u’ with

d(u) ≥ dp2e − 1. Since i−1
M (G) = 1, D′ = {v} ⊆ V −D and (V −D)
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contains a vertex ‘v’ with d(v) ≥ dp2e−1. It implies that the vertices u

and v are the majority dominating vertices of G. Suppose G contains

more than two majority dominating vertices then certainly |D| =

|D′| = 1. Thus G contains atleast two majority dominating vertices.

The converse is obvious.

Corollary 4.4.9: If the graph G contains exactly one majority dom-

inating vertex then i−1
M (G) ≥ 2.

Proposition 4.4.10: The connected graphG satisfies i−1
M (G) = γ−1

M (G)

= 1 if and only if the graph G contains atleast two vertices of degree

≥ dp2e − 1.

Proof: Let i−1
M (G) = γ−1

M (G) = 1. Then iM(G) = γM(G) = 1. It

implies that D = {u1} is a majority dominating set and also an

independent majority dominating set of G. Then |N [D]| ≥ dp2e and

vertex u1 has degree d(u1) ≥ dp2e − 1. By the hypothesis, D′ = {u2}

is an inverse independent majority dominating set and an inverse

majority dominating set of G with |N [D′]| ≥ dp2e. It implies that the

vertex u2 is of degree d(u2) ≥ dp2e − 1. Thus if i−1
M (G) = γ−1

M (G) = 1

then there are two vertices u1 and u2 in G with d(ui) ≥ dp2e − 1, i =
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1, 2. These two vertices are enough to obtain the value i−1
M (G) = 1 =

γ−1
M (G). Hence the graph G contains atleast two vertices of degree

≥ dp2e − 1.

4.5 Bounds of the Inverse Independent

Majority Domination Number

In this section, lower and upper bounds for the inverse indepen-

dent majority domination number with respect to the vertices p and

maximum degree ∆ of G.

Proposition 4.5.1: For any graph G, 1 ≤ i−1
M (G) ≤ p

2 . The bound

is sharp when G = Kp, p is even and G = Kp, a complete graph.

Proof: If a graph G has all vertices are of full degree then each

single vertex forms an independent majority dominating set and an

inverse independent majority dominating set for G. Hence iM(G) =

i−1
M (G) = 1. Suppose the graph G contains all vertices are of degree

d(ui) ≥ dp2e − 1, then each single vertex is a majority dominating

vertex of G. Therefore each vertex forms an independent majority

dominating set and an inverse independent majority dominating set

for G. Hence iM(G) = i−1
M (G) = 1.
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If the graph G is minimally connected graph then δ(G) ≥ 1 and

∆(G) ≤ p− 1. Then iM(G) = 1 and i−1
M (G) ≥ 2. Suppose the graph

G is disconnected without isolates, then iM(G) ≥ 2 and i−1
M (G) ≥ 2.

If the graph G has components with isolates then iM(G) <
(
p
2

)
and

i−1
M (G) <

(
p
2

)
. The bound is sharp. Let G = Kp, p is even then

iM(G) = p
2 and i−1

M (G) = p
2 and i−1

M (G) = 1, if G = Kp. Hence

1 ≤ i−1
M (G) ≤

(
p
2

)
.

Proposition 4.5.2: For a tree T with p vertices, dp6e ≤ i−1
M (T ) ≤

dp2e − 1. These bounds are sharp.

Proof: This result is proved by induction on the number of pendants

‘e’. Since every tree has e ≥ 2 pendants, if e = 2, then T = Pp is a

path of p vertices. By the result (4.3.1)(3), i−1
M (Pp) = dp6e. If e = 3

then G is any connected graph with three pendants. The graph G

is either T = K1,3, a star or T = D1,2, a double star or a caterpillar

with e = 3 pendants. Then i−1
M (G) = 1 =

(
p
2

)
− 1, if T = K1,3 and

i−1
M (G) = 1 < dp2e − 1, if T = D1,2 and i−1

M (G) = 2 < dp2e − 1, if T is

a caterpillar. Suppose the tree T takes the caterpillar structure with

(p − e) intermediate vertices and e = 3 pendants. Then iM(G) =

i−1
M (G) = dp6e.
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Hence this is true for e = 2, 3, 4, . . . , (p − 2) pendants. Then

i−1
M (T ) ≥ dp6e and i−1

M (T ) ≤ dp2e − 1. If e = p − 1 pendants then

the graph T becomes T = K1,p−1, a star. By the result (4.3.1)(2),

i−1
M (K1,p−1) = bp−1

2 c = dp2e − 1, If p is odd. Hence dp6e ≤ i−1
M (T ) ≤

dp2e − 1, for any tree T .

Proposition 4.5.3: For any connected graph G, i−1
M (G) ≤ bp−1

2 c and

i−1
M (G) = bp−1

2 c if and only if G = K1,p−1.

Proof: Let D be an i−1
M -set of G. The theorem is proved by induction

on the number of pendants ‘e’. If e = 1 then the connected graph

G with only one pendant with atleast one cycle C and ∆(G) ≥ 3.

Suppose G contains exactly one vertex ‘u’ such that d(u) = ∆(G) = 3

and other vertices d(ui) < 3. Then iM(G) ≤ dp6e. Since d(ui) = 2,

by the result (4.3.1)(3), i−1
M (Cp) = dp6e < b

p−1
2 c. If e = 2 then

G = Pp is a path with two pendants and by the result (4.3.1)(3) and

i−1
M (Pp) = dp6e < b

p−1
2 c.

This result is true for all pendants e = 1, 2, 3, . . . , (p−3)(p−2) and

we obtain i−1
M (G) < bp−1

2 c. Suppose e = p− 1 then G is a star K1,p−1

with (p − 1) pendants. By the result (4.3.1)(2), i−1
M (G) = bp−1

2 c.

Hence for any connected graph G, i−1
M (G) ≤ bp−1

2 c. Also equality
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holds only for G = K1,p−1. Thus i−1
M (G) = bp−1

2 c if and only if

G = K1,p−1.

Theorem 4.5.4: For any graph G with p vertices, i−1
M (G) ≥ d p

2(∆+1)e.

The bound is sharp.

Proof: Let D = {v2, v4, . . . , viM} be a iM -set of a graph G. Then

|N [D]| ≥ dp2e and 〈D〉 has only isolates such that d(vi, vj) ≥ 2,

for any vi, vj ∈ D, i 6= j. Let D′ = {v3, v5, . . . , vt} ⊆ V − D be

a i−1
M -set of G with |D′| = t. Then |N [D′]| ≥ dp2e and D′ contains

independent vertices. Since each vertex of D′ is adjacent to the vertex

of D and D′ contains the maximum degree vertices ∆(G), |N [D′]| =∑
vi∈D′

d(vi) + t and dp2e ≤ |N [D′]| =
∑
vi∈D′

∆(G) + t = t(∆(G) + 1)

where d(vi) = ∆(G). Therefore dp2e ≤ |D
′|(∆ + 1). It implies that

dp2e ≤ i−1
M (G)(∆+1). Hence i−1

M (G) ≥ dp2e
(∆+1) = d p

2(∆+1)e. The bound is

sharp for G = Kp and Pp, p ≥ 2. By the result (4.3.1)(1), i−1
M (Kp) =

1 = d p
2(∆+1)e, when ∆ = p − 1 and i−1

M (Pp) = dp6e = d p
2(∆+1)e, when

∆ = 2.

Corollary 4.5.5: For any connected graph G, d p
2(∆+1)e ≤ i−1

M (G) ≤

b∆
2 c. This upper bound is sharp if G = K1,p−1 when (p− 1) is odd.
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Proposition 4.5.6: Let G = (V,E) be any graph with an inverse

independent domination number i−1(G). Then i−1
M (G) ≤ d i

−1(G)
2 e.

Proof: Let DM and D be an independent majority dominating set

and independent dominating set of G respectively. Suppose D′ is an

inverse independent dominating set of G. Then D′ is a i−1-set of

G and |N [D′]| = |V (G)|. Let D′ = D1 ∪ D2 where |D1| = b i
−1(G)

2 c

and |D2| = d i
−1(G)

2 e. Now N [D] = |(N [D1] − N [D2]) ∪ (N [D2])|

and |N [D]| = |N [D1] − N [D2]| ∪ |N [D2]|. It implies that either

|N [D1] − |N [D2]| ≥ dp2e or |N [D2]| ≥ dp2e If |N [D2]| ≥ dp2e and

D2 ⊆ V −DM then D2 is a i−1
M -set of G where DM is an independent

majority dominating set of G. If |N [D1] − N [D2]| ≥ dp2e and D2 ⊆

V − DM then D2 is an inverse independent majority dominating

set of G when p is even. Hence i−1
M (G) ≤ |D2| = d i

−1(G)
2 e. Thus

i−1
M (G) ≤ d i

−1(G)
2 e.

For Example: Let cycle G = C12. Then i−1(G) = 4 and i−1
M (G) =

2 = d i
−1(G)

2 e. Let G = S(K1,10) be a subdivision of a star by dividing

each edge exactly once. Then i−1(G) = 11 and i−1
M (G) = 5 < d i

−1(G)
2 e.
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Theorem 4.5.7: Let D be a iM - set of a connected graph with p

vertices. Let ∆1(G) and ∆2(G) be the first maximum degree and

second maximum degree of a graph (V − D) ⊆ V (G) respectively.

Then

(i) i−1
M (G) ≤ dp2e−∆2(G), if ∆2(G) < dp2e−1. This bound is sharp

if G = P7.

(ii) i−1
M (G) ≤ dp−∆2(G)

2 e, if ∆2(G) ≥ dp2e− 1. This bound is sharp if

G = Kp.

Proof:

Case (i): Let ∆1(G) = ∆2(G) ≥ dp2e − 1. If ∆2(G) ≥ dp2e − 1

then certainly ∆1(G) ≥ dp2e − 1. Therefore D1 = {u1} and D2 =

{u2} ⊆ V −D1 are iM -set and i−1
M -set of G such that |N [D1]| ≥ dp2e

and |N [D2]| ≥ dp2e with d(u1) = ∆1(G) and d(u2) = ∆2(G). Hence

iM(G) = |D1| = 1 and i−1
M (G) = |D2| = 1.

Subcase (i): Let ∆2(G) = dp2e−1. Then |N [u2]| = dp2e and i−1
M (G) =⌈

p−dp2e+1

2

⌉
=
⌈
bp2c+1

2

⌉
= bp4c+1 < dp−∆2(G)

2 e. Thus i−1
M (G) < dp−∆2(G)

2 e,

if ∆2(G) ≥ dp2e − 1.

Subcase (ii): Let ∆1(G) = ∆2(G) = (p − 1).Then the graph

G contains atleast two vertices u1, u2 and D1 = {u1} such that

|N [D1]| = p and D2 = {u2} ⊆ V −D such that |N [D2]| = p. Hence
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iM(G) = |D1| = 1 and i−1
M (G) = |D2| = 1 = dp−(p−1)

2 e = dp−∆2(G)
2 e.

Thus i−1
M (G) = dp−∆2(G)

2 e, if ∆2(G) > dp2e− 1.This bound is sharp for

a complete graph G = Kp, p ≥ 2.

Case (ii): Let ∆1(G) ≥ dp2e−1 and ∆2(G) < dp2e−1. Then the graph

G contains exactly one majority dominating vertex u1 and D1 = {u1}

such that |N [D1]| ≥
⌈
p
2

⌉
. It implies that iM(G) = |D1| = 1.

Subcase (i): Suppose ∆2(G) = 1 < dp2e − 1. Then choose the

set D2 = {u2, . . . , ut} ⊆ V − D1 such that |D2| = t = dp−1
2 e where

u2, . . . , ut are pendants and |N [D2]| = dp−1
2 e+1 = dp2e. Hence D2 is a

i−1
M -set of G with respect to D1 and i−1

M (G) = |D2| ≤ dp−1
2 e ≤ d

p
2e−1.

Thus i−1
M (G) = dp2e−∆2(G) if ∆2(G) < dp2e− 1. This bound is sharp

when G = K1,p−1, if p is odd with ∆2(G) = 1.

Subcase (ii): Suppose ∆2(G) = 2 < dp2e − 1, Then choose the set

D2 = {u2, u5, . . . , ut} ⊆ V − D1 with |D2| = |t| = dp6e such that

d(ui, uj) ≥ 3 for ui, uj ∈ D2. Therefore |N [D2]| ≥
t∑
i=1

d(ui)+ t ≥ 3t =

3dp6e ≥ d
p
2e. Since D2 ⊆ V −D1 and 〈D2〉 has no edges, D2 is a i−1

M -set

of G with respect to D1 and i−1
M (G) ≤ |D2| = dp6e ≤ d

p
2e − ∆2(G).

This bound is sharp if G = P7 with ∆2(G) = 2. By the result

(4.3.1)(3), i−1
M (G) = 2 = dp6e = dp2e − ∆2(G). For G = P19 with

∆2(G) = 2, i−1
M (Pp) = dp6e = 4 < dp2e −∆2(G).
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Subcase (iii): Suppose 3 ≤ ∆2(G) < dp2e − 1. Then the set D2 =

{u2, . . . , ut} ⊆ V − D1 such that |D2| = t = dp8e and |N [D2]| ≥

4t = 4dp8e = dp2e. Hence D2 is a i−1
M -set of G with respect to D1 and

i−1
M (G) = |D2| = dp8e < d

p
2e−∆2(G). The bound is sharp. IfG = W15,

a wheel graph with ∆2(G) = 3 then i−1
M (G) = 3 < dp2e−∆2(G). Thus,

in all cases of ∆2(G) < dp2e − 1, i−1
M (G) ≤ dp2e −∆2(G).

Case(iii): Let ∆1(G) = ∆2(G) < dp2e − 1. Let D1 and D2 be the

independent majority dominating set and inverse independent major-

ity dominating set of G and iM(G) = i−1
M (G). Since G is connected

graph ∆1(G) = ∆2(G) = 2. Then the graph becomes G = Pp or

Cp. By the result (4.3.1)(3), iM(G) = i−1
M (G) = dp6e < d

p
2e −∆2(G),

if p ≥ 9 and i−1
M (G) = dp6e = dp2e − ∆2(G), if G = P7, P8, C7, C8.

Suppose ∆1(G) = ∆2(G) ≥ 3 then the graph G becomes a cater-

pillar structure. Hence i−1
M (G) ≥ dp8e and i−1

M (G) < dp2e − ∆2(G).

Thus in all these three cases, we find that i−1
M (G) ≤ dp2e −∆2(G), if

∆2(G) < dp2e − 1 and i−1
M (G) ≤ dp−∆2(G)

2 e, if ∆2(G) ≥ dp2e − 1.

4.6 Comparison of i−1
M (G), γ−1

M (G), i−1(G)

and iM(G)

The following results are concerned with the comparison of dom-

ination parameters i−1
M (G), γ−1

M (G), i−1(G) and iM(G) of a graph G.
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Proposition 4.6.1: If a graph G is a path or a cycle for p ≥ 7 with

i−1
M (G) ≥ 2 and γ−1

M (G) ≥ 2 then i−1
M (G) = γ−1

M (G).

Proof: Let G = Pp or G = Cp, p ≥ 7. Let the inverse independent

majority domination number i−1
M (G) ≥ 2 and the inverse majority

domination number γ−1
M (G) ≥ 2. Let D1 and D2 be the inverse

majority dominating sets and majority dominating sets of G. By

the Proposition [2.3.1](2), γ−1
M (G) = dp6e and by the result (4.3.1)(3),

i−1
M (G) = dp6e. Since |D1| ≥ 2, D1 = {ui, uj} such that d(ui, uj) ≥ 3

and D′1 = {ui+1, uj+1} ⊆ V − D1 such that d(ui+1, uj+1) ≥ 3 is an

inverse independent majority dominating set of G. By the results

(4.3.1)(3), i−1
M (G) = dp6e, p ≥ 7. Similarly, since |D2| ≥ 2, D2 and D′2

are taken by the above argument in G. Then by the results (2.3.1)(2),

γ−1
M (G) = dp6e, p ≥ 7, Hence i−1

M (G) = γ−1
M (G) = dp6e, p ≥ 7.

Corollary 4.6.2: If a graph G contains atleast two full degree ver-

tices then i−1
M (G) = γ−1

M (G).

Proof: Since u1 and u2 are full degree vertices of G, d(ui) = p−1, i =

1, 2. Then d(ui) ≥ dp2e−1 and ui’s, are majority dominating vertices

of G. By the Proposition [4.4.10], i−1
M (G) = γ−1

M (G).
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Proposition 4.6.3: If a graph G contains one majority dominating

vertex and other vertices of degree d(ui) ≤ 2, then i−1
M (G) = γ−1

M (G).

Proof: Let V (G) = {u, u1, u2, . . . , up−1} where d(u) ≥ dp2e − 1 and

d(ui) ≤ 2, for i = 1, 2, . . . , p − 1. Then D = {u} be a majority

dominating set and an independent majority dominating set of G.

Let D′ = {u1, u2, . . . , ut} ⊆ (V − D) such that d(ui, uj) ≥ 2 and

|N [D′]| ≥ dp2e with |D′| = t. Then D′ is an inverse majority domi-

nating set of G and γ−1
M (G) = |D′| = t. Since each ui, i = 1, 2, . . . , t

is a pendant vertex or d(ui) = 2 with d(ui, uj) ≥ 2, 〈D′〉 has no edges

and D′ is also an inverse independent majority dominating set of G.

Then i−1
M (G) = |D′| = t. It implies that i−1

M (G) = γ−1
M (G) = t.

Corollary 4.6.4: If a graph G contains a complete subgraph g =

Kk, k ≥ 4 with d(ui) ≤ dp2e − 3, for every ui ∈ V (g) and pendants at

each vertex of the subgraph ‘g’ then γ−1
M (G) ≤ i−1

M (G).

Corollary 4.6.5: If the graph G contains one vertex u such that

d(u) = dp2e− 2 and other vertices ui such that d(ui) < dp2e− 2 and G

includes an induced complete subgraph Kk then γ−1
M (G) < i−1

M (G).

Result 4.6.6: (i) Given any positive integer k ≥ 1, there exists a

graph G which is not complete with p = 2k+1 such that i−1
M (G) = k.



Ch: 4. Inverse Independent Majority Dominating Set of a Graph 144

Proof: There exists a graph G = K1,p−1, a star with p vertices and

i−1
M (G) = bp−1

2 c. Then
(
p−1

2

)
= k, if p = 2k+ 1. Let G = K1,2k, k ≥ 1

be the graph with p = 2k + 1 vertices. By the result (4.3.1)(2),

i−1
M (G) = 2k

2 = k. Hence for a given integer k ≥ 1, there exists a

graph G = K1,2k which is not complete such that i−1
M (G) = k.

Results 4.6.7: Given any positive integer k ≥ 1, there exists a graph

G with p = 2k + 1 for which i−1(G)− i−1
M (G) = k.

Proof: Let k ≥ 1 be any given integer. Let G = K1,p−1, p is odd.

By the result (4.3.1)(2), i−1
M (G) = p−1

2 and i−1(G) = p − 1. When

p = 2k + 1, then i−1
M (G) = p−1

2 = 2k
2 = k and i−1(G) = 2k. Thus, we

obtain i−1(G)− i−1
M (G) = 2k − k = k, k ≥ 1.

Results 4.6.8: There exists a graph G with p vertices for which

i−1
M (G)− γ−1

M (G) = 1.

Proof: There exists a graph structure G = K
(4)
4 with a complete

subgraph K4 and four pendants at each vertex of K4. Let V (G) =

{v1, v2, v3, v4, v11, . . . , v14, v21, . . . , v24, v31, . . . , v34, v41, . . . , v44} and p =

|V (G)| = 20. The set D = {v1, v2} and D′ = {v3, v4} ⊆ V − D are

the majority dominating set and the inverse majority doiminating

set of G. Then we get γM(G) = 2 = γ−1
M (G).
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Now, the set S = {v1, v21, v22} and S ′ = {v3, v41, v42} ⊆ V −

S such that |N [S]| = |N [S ′]| = dp2e and the vertices of S and S ′

are independent. Then iM(G) = |S| = 3 = |S ′| = i−1
M (G). Hence

i−1
M (G) = 3 and γ−1

M (G) = 2. This graph G always satisfies i−1
M (G)−

γ−1
M (G) = 1.

The next result shows the property to satisfy the result iM(G) =

i−1
M (G).

Theorem 4.6.9: If a connected graph G contains an induced com-

plete subgraph 〈Kk〉, k ≥ 3 with equal degree and other vertices are

pendants then iM(G) = i−1
M (G).

Proof: Let G be a connected graph which contains an induced com-

plete subgraph ‘g’ = 〈Kk〉, k ≥ 3. Let V (G) = {u1, u2, . . . , uk, v1, v2, . . . ,

vp−k}and V (g) = {u1, u2, . . . , uk} ⊆ V (G) such that d(ui) = d(uj),

for every ui, uj ∈ V (g) and the vertices vi ∈ V (G)− V (g) such that

d(vi) = 1. The theorem is proved by induction on k ≥ 3.

When k = 3, V (g) = {u1, u2, u3} and the remaining (p − 3) ver-

tices are pendants in G. If d(u1) ≥ dp2e − 1 then D = {u1} is an

independent majority dominating set of G. Since d(u1) = d(u2) =

d(u3), D
′ = {u2} is an inverse independent majority dominating set of

G with respect to D. Hence iM(G) = i−1
M (G) = 1. If d(u1) < dp2e − 1
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then D = {u1, v1, v2, . . . , vt} with |D| = t+ 1 such that |N [D]| ≥ dp2e

and it forms an independent majority dominating set for G where

(v1, v2, . . . , vt) are pendants. Since the vertices ui, i = 1, 2, 3 are equal

degree, the set D′ = {u2, vt+1, vt+2, v2t} ⊆ V − D with |D′| = t + 1

such that |N [D′]| ≥ dp2e and it forms an inverse independent major-

ity dominating set for G with respect to D. Since vi’s are pen-

dants, the induced subgraphs 〈D〉 and 〈D′〉 both have no edges.

Then iM(G) = |D| = t + 1 and i−1
M (G) = |D′| = t + 1. Hence

iM(G) = i−1
M (G).

When k = 4, V (g) = {u1, u2, u3, u4} and the remaining (p − 4)

vertices are pendants in G. If d(ui) ≥ dp2e − 1, i = 1, . . . , 4 then

iM(G) = i−1
M (G) = 1. Suppose d(ui) < dp2e − 1. Then D =

{u1, v1, v2, . . . , vt} with |D| = t + 1, where d(vi) = 1, i = 1, 2, . . . , t

and D′ = {u2, vt+1, vt+2, . . . , v2t} ⊆ V − D with |D′| = t + 1, where

d(vj) = 1 for j = t + 1, . . . , 2t. Then |N [D]| = |N [D′]| ≥ dp2e

and the induced subgraph 〈D〉 and 〈D′〉 both have no edges. It im-

plies that D and D′ are the independent majority dominating set

and the inverse independent majority dominating set for G. Hence

iM(G) = |D| = t + 1 = |D′| = i−1
M (G). This result is true for

k = 3, 4, . . . , t.
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Suppose the graph G contains (p − k) pendants and a complete

subgraph Kk, k ≥ 3. Then if d(ui) > dp2e − 1, for any ui ∈ V (g)

and all ui’s are equal degree then iM(G) = 1 = i−1
M (G). Suppose

d(ui) < dp2e − 1. Then the independent majority dominating set

D contains atleast two vertices in which any one vertex ui ∈ V (g)

and other vertices vi’s are pendants. Therefore in general, the set

D = {u1, v1, v2, . . . , vt} such that |N [D]| ≥ dp2e and |D| = t + 1.

Since ‘g’ is a complete subgraph, all vertices of D are non-adjacent

vertices and iM(G) = |D| = t+ 1.

Next the set D′ = {u2, vt+1, . . . , v2t} ⊆ V − D with the same

property |N [D′]| ≥ dp2e and 〈D′〉 has no edges. It implies that D′ is

an inverse independent majority dominating set of G with respect to

D with |D′| = t + 1. Hence i−1
M (G) = |D′| = t + 1 = iM(G). In all

values of k ≥ 3, iM(G) = i−1
M (G).

Proposition 4.6.10: Let G be a disconnected graph with isolates

and p vertices. If the graph G contains exactly one vertex u such

that d(u) ≥ dp2e − 2 and δ(G) ≤ 1 then iM(G) < i−1
M (G).

Proof: Let g1, g2, . . . , gm be the m-component of a disconnected graph

G. If the component g1 contains a vertex u such that d(u) ≥ dp2e− 2
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then D = {u, u1} is an independent majority dominating set of G.

Since δ(G) ≤ 1, |N [D]| ≥ dp2e − 1 + 1 = dp2e and iM(G) = |D| = 2.

Let D′ = {u2, . . . , ut+1} ⊆ (V −D) with |D′| = t such that |N [D′]| ≥

dp2e. Since other vertices ui ∈ V (G) are all pendants and isolates,

|D′| = t ≥ 3 and D′ is an inverse independent majority dominat-

ing set of G with respect to D. Hence i−1
M (G) = |D′| ≥ 3. Thus

iM(G) < i−1
M (G).

4.7 Bounds of i−1
M (G) for Disconnected

Graphs

In this section, the bounds of an inverse independent majority

domination number for a disconnected graph with isolates and without

isolates are discussed in detail.

Proposition 4.7.1: If a disconnected graph G with isolates and p

vertices then i−1
M (G) ≤ dp2e − 1.

Proof: This result is proved by induction on the number of edges

‘q’. Let q = 1,then G = K2 ∪ Kp−2 and V (G) = {u1, u2, ui} where

ui’s are isolates for i = 3, . . . , p. Let D = {u1, ui}, where u1 ∈ V (K2)
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and |ui| = dp2e − 2 such that |D| = dp2e − 1 and |N [D]| = |N [u1]| +

|ui| = dp2e. Therefore D is an independent majority dominating set

of G and iM(G) = dp2e − 1. Let D′ = {u2, ui} with |D′| = dp2e − 1

where u2 ∈ V (K2) and by the above argument, |N [D′]| = dp2e and

D′ ⊆ V −D. Then D′ is an inverse independent majority dominating

set of G and i−1
M (G) = |D′| = dp2e − 1.

When q = 2 then G = P3 ∪ Kp−3 and V (G) = {u1, u2, u3, ui}

where ui’s are isolates. Let D = {u2, ui} where u2 ∈ V (P3) and

|D − {u2}| = |ui| = dp2e − 3 with |D| = dp2e − 2. Then |N [D]| ≥ dp2e

and iM(G) = |D| = dp2e − 2. Let D′ = {u1, ui} where u1 ∈ V (P3)

and |D′ − {u1}| = |ui| = dp2e − 2 isolates with |D′| = dp2e − 1. Then

|N [D′]| = dp2e and D′ ⊆ (V − D). It implies that D′ is an inverse

independent majority dominating set of G with respect to D and

i−1
M (G) = |D′| = dp2e − 1. Hence i−1

M (G) = dp2e − 1.

If q = 1, 2, . . . , (q− 2), then i−1
M (G) ≤ dp2e− 1. Suppose q = q− 1

and ui = 1 or 2 isolates. If any component with (q − 1) edges then

i−1
M (G) < dp2e − 1. If the graph G consists of a complete graph

Kp−1 with one isolate or Kp−2 with two isolates then iM(G) = 1 =

i−1
M (G) < dp2e − 1. Hence i−1

M (G) ≤ dp2e − 1. This bound is sharp if

G = K2 ∪Kp−2.
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Corollary 4.7.2: If a graph G is a totally disconnected graph with

p vertices then i−1
M (G) = p

2 , when p is even.

Remark 4.7.3: For any disconnected graph G, the inverse indepen-

dent majority domination number i−1
M (G) never reach the bound dp2e.

When p is odd, iM(G) = dp2e but i−1
M (G) does not exist. This is true

for, G = Kp, p is odd.

Theorem 4.7.4: Let G be a disconnected graph without isolates and

with p vertices. Then i−1
M (G) ≤ dp4e and i−1

M (G) ≤ dp4e if and only if

G = mK2,m ≥ 2.

Proof: LetG be a disconnected graph with no isolates and p vertices.

Then G has g1, g2, . . . , gm components.

Case (i): In a graph G, each component gi, i = 1, . . . ,m are r-regular

subgraphs.

Subcase (i): If the degree of each vertex in each components gi

is one then G = mK2 and gi’s are 1-regular. Since ∆(G) = 1, By

the result (1.4), iM(G) = dp4e. Therefore D = {u1, u2, . . . , udp4e} is

a iM - set of G. In a similar way, D′ = {v1, v2, . . . , vdp4e} ⊆ V − D
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and 〈ui, vi〉 = ei = K2 such that |N [D′]| ≥ dp2e and 〈D′〉 no isolates.

Therefore D′ is an inverse independent majority dominating set of G

with respect to D. Hence i−1
M (G) = dp4e.

Subcase (ii): If the degree of each vertex in each components

gi ≥ 2, then G = mgr, each gr is r-regular graph and r ≥ 3 with

degree d(ui) ≥ 2. When r = 2, then G = mci, all are Cycles.

By the results (4.3.1)(3), i−1
M (G) = dp6e < d

p
4e. When r ≥ 3, let

V (G) = {v1, v2, . . . , vg1, u1, u2, . . . , ug2, . . . , w1, w2, . . . , wg3, . . .}, such

that d(xi) ≥ 3, for every xi ∈ V (G).

Choose the set D = {v1, u1, . . . , w1} with |D| = t where each

vertex belongs to each component gi, i = 1, 2, . . . ,m. Such that

|N [D]| ≥ dp2e and 〈D〉 has isolates. Suppose d(x) = r = 3, then

|D| = dp8e and |N [D]| ≥ dp2e. Therefore iM(G) ≤ |D| = dp8e. Simi-

larly, choose the set D′ = {v2, u2, . . . , w2} ⊆ V −D with |D′| = dp8e

such that |N [D′]| ≥ dp2e. Since 〈D′〉 has no edges, D′ is an inverse

independent majority dominating set of G with respect to D and

i−1
M (G) ≤ |D′| ≤ dp8e < d

p
4e.

The result is true for r = 1, 2, . . . , (r − 1) and the degree of each

vertex (r − 1). Suppose gr, r ≥ 2 and the value of r increases, the
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degree of each vertex in gr will increase. It implies that the inverse in-

dependent majority domination number i−1
M (G) < dp6e < d

p
4e. Hence

iM(G) ≤ dp4e, if the components gi are r-regular.

Case (ii): In the graph G, each component gi, i = 1, 2, . . . ,m are

not regular.

Subcase (i): If the components gi contains all the vertices of degree

d(ui) ≥ dp2e − 1, for all i = 1, 2, . . . ,m. Then iM(G) = i−1
M (G) = 1.

Hence i−1
M (G) < dp4e.

Subcase (ii): If the components gi contains the vertices of degree

d(ui) < dp2e−2, for all i = 1, 2, . . . ,m. Then iM(G) ≥ 2 and i−1
M (G) ≥

2. Thus i−1
M (G) < dp4e.

Subcase (iii): In general, if the components gi contains the vertices

of degree d(ui) ≤ 2 then iM(G) = dp6e and i−1
M (G) = dp6e < d

p
4e. Hence

in all cases, i−1
M (G) < dp4e. Thus for a disconnected graph G without

isolates, i−1
M (G) ≤ dp4e and by the result (4.3.1)(7), G = mK2, if and

only if i−1
M (G) = dp4e.

4.8 Nordhus-Gaddum Type Results

The following theorem gives a famous property Nordhus-Gaddum

type results with respect to iM(G) and i−1
M (G).
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Theorem 4.8.1: If a connected graph G has iM -set and i−1
M -sets then

(i) 2 ≤ iM(G) + i−1
M (G) ≤ dp2e and (ii) 1 ≤ iM(G) · i−1

M (G) ≤
(
dp6e
)2

.

These bounds are sharp.

Proof: Case (i): Suppose all the vertices ui of G are of full degree

then d(ui) = p−1, for every ui ∈ V (G). Let D = {u1} and D′ = {u2}

be a iM -set and i−1
M -set ofG such that |N [D]| ≥ dp2e and |N [D′]| ≥ dp2e

with D′ ⊆ V − D respectively. Then iM(G) = 1 = i−1
M (G). Thus

iM(G)+ i−1
M (G) = 2. The lower bound is sharp if G = Kp, a complete

graph p ≥ 2. Also iM(G) · i−1
M (G) = 1.

Case (ii): If the graph G contains exactly one full degree vertex

and others are pendants then d(u1) = p − 1 and d(ui) = 1, for

every ui ∈ V (G), i = 2, . . . , p. Then D = {u1} is a iM -set of G

and iM(G) = 1. Since all other vertices are pendants, the graph

structure is K1,p−1, a star. By the results (4.3.1)(2), i−1
M (G) = bp−1

2 c.

Therefore iM(G) + i−1
M (G) = 1 + bp−1

2 c = dp2e, p ≥ 2. Hence iM(G) +

i−1
M (G) = dp2e. The upper bound is sharp if G = K1,p−1, p ≥ 2. Also,

iM(G) · i−1
M (G) = bp−1

2 c = dp2e − 1.

Case (iii): Suppose all vertices are majority dominating vertices

then d(ui) ≥ dp2e − 1, for every ui ∈ V (G). Then D = {u1}
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and D′ = {u2} ⊆ V − D are the iM -set and i−1
M -set of G with re-

spect to D respectively. In particular, suppose G contains atleast

two majority dominating vertices, then iM(G) = i−1
M (G) = 1. Thus

iM(G) + i−1
M (G) = 2 and iM(G) · i−1

M (G) = 1.

Case (iv): SupposeG has exactly one majority dominating vertex u1

and other vertices are of degree < dp2e−1. Then d(u1) ≥ dp2e−1 and

d(ui) < dp2e−1, for every ui ∈ V (G), i = 1, 2, . . . , p. Now D = {u1} is

a iM -set of G and iM(G) = |D| = 1. Let D′ = {u2, . . . , vt} ⊆ V −D

such that d(ui, uj) ≥ 2, for i 6= j and ui, uj ∈ D′ and |D′| = t ≤ dp6e.

Then |N [D′]| ≥ (2t+ t) = 3t = 3dp6e > d
p
2e. Therefore D′ is a i−1

M -set

of G and i−1
M (G) = |D′| ≤ dp6e. Thence iM(G) + i−1

M (G) ≤ 1 + dp6e <

dp2e and iM(G) · i−1
M (G) ≤ dp6e < d

p
6e

2.

Case (v): Suppose G contains all vertices of degree d(ui) < dp2e− 1,

for every ui ∈ V (G).

Subcase (i): Suppose G is regular and d(ui) < dp2e − 1, for all

ui ∈ V (G) then iM(G) = i−1
M (G) and i−1

M (G) ≥ 2 and iM(G) ≥ 2. By

case (iv), iM(G) = i−1
M (G) ≥ dp6e and iM(G) + i−1

M (G) ≥ dp6e+ dp6e =

2dp6e ≥ d
p
3e. Thus, iM(G) + i−1

M (G) < dp2e and iM(G) · i−1
M (G) = dp6e

2.
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Subcase (ii): Suppose all the degree of ui of G are not equal such

that d(ui) < dp2e − 1, for every ui ∈ V (G). Then iM(G) ≥ 2 and

i−1
M (G) ≥ 3. It implies that iM(G) ≥ dp6e and i−1

M (G) ≥ dp8e. Hence

iM(G) + i−1
M (G) ≥ dp6e+ d

p
8e ≤ d

p
3e+ 1 and iM(G) + i−1

M (G) < dp2e and

iM(G) · i−1
M (G) ≤ dp6e · d

p
8e <

(
dp6e
)2

. Thence in all cases, we obtain

2 ≤ iM(G) + i−1
M (G) ≤ dp2e and iM(G) · i−1

M (G) ≤ dp6e
2.

Hence the result.

Theorem 4.8.2: Let G be a disconnected graph without isolates

and with iM -set and i−1
M -set. Then iM(G) + i−1

M (G) ≤ p
2 + 1 and

iM(G) · i−1
M (G) ≤ dp

2

16e. These bounds are sharp if G = mK2.

Proof: LetG be a disconnected graph with p vertices and g1, g2, . . . , gm

are components of G. Let D and D′ be the iM -set and i−1
M -set of

G respectively. The theorem is proved by induction on the degree

∆1(G) and ∆2(G) where ∆1 is the maximum degree of G and ∆2 is

a maximum degree of (V −D).

Case (i): When ∆1(G) ≥ dp2e − 1.

Subcase (i): Suppose ∆1(G) = ∆2(G) ≥ dp2e − 1. Then, iM(G) =

1 = i−1
M (G). Hence iM(G)+i−1

M (G) = 2 < (p2)+1 and iM(G)·i−1
M (G) =

1 < bp
2

16c.
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Subcase (ii): Suppose ∆1(G) ≥ dp2e−1 and ∆2(G) < dp2e−1. Then

iM(G) = 1 and i−1
M (G) ≥ 2 = dp6e. Hence iM(G) + i−1

M (G) ≥ dp6e + 1

and iM(G) · i−1
M (G) ≥ dp6e. Thence iM(G) + i−1

M (G) ≤ p
2 + 1 and

iM(G) · i−1
M (G) < bp

2

16c.

Case (ii): When ∆1(G) < dp2e − 1.

Subcase (i): If the degree of the vertices ui such that d(ui) = 1,

for every ui ∈ V (G) and G = g1 ∪ . . . ∪ gm. Then the graph G is

mK2,m ≥ 1. By the results (1.4) and (4.3.1)(7), iM(G) = dp4e =

i−1
M (G). Then iM(G) + i−1

M (G) = dp4e + dp4e = 2dp4e = dp2e. Hence

iM(G) + i−1
M (G) = p

2 + 1 and iM(G) · i−1
M (G) ≤ dp4ed

p
4e ≤ d

p2

16e. This

bound is sharp if G = mK2,m is even.

Subcase (ii): If the degree of vertices ui such that d(ui) = 2, for

every ui ∈ V (G) and G = g1 ∪ . . . ∪ gm. Then the graph becomes

G = mCp, p ≥ 3 or G = mPp, except d(ui) and d(up), p ≥ 4 and

m ≥ 2. By the result (1.4), iM(G) = dp6e and i−1
M (G) = dp6e. Hence

iM(G) + i−1
M (G) = 2dp6e = dp3e+ 1 < p

2 + 1 and iM(G) · i−1
M (G) < bp

2

16c.

Subcase (iii): Suppose d(ui) ≥ 3, for every ui ∈ V (Gi) and Gi =

g1, g2, . . . , gm. Then iM(G) + i−1
M (G) ≥ dp8e + dp8e = dp4e + 1 and

iM(G) ·i−1
M (G) ≥ dp8e·d

p
8e = dp

2

64e+3. Hence iM(G)+i−1
M (G) <

(
p
2

)
+1

and iM(G) · i−1
M (G) < dp

2

16e.
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Theorem 4.8.3: Let G be a disconnected graph with isolates and

with iM -set and i−1
M -set then 2 ≤ iM(G) + i−1

M (G) ≤ p and iM(G) ·

i−1
M (G) ≤ p2

4 . The bound is sharp if G = Kp, p is even.

Proof: This theorem is proved by induction on the number of iso-

lates ‘t’. Let G = (g1 ∪ g2 ∪ . . . ∪ gm) where g1, g2, . . . , gm are ‘m’

components of G with p vertices. When t = 1 and gm = {up}. All

other components are connected subgraph gi of G.

Suppose G = g1 ∪ g2, where g1 = K1,p−2 and g2 = {up} then

iM(G) = 1 and i−1
M (G) ≤ bp−1

2 c. Hence iM(G)+ i−1
M (G) ≤ 1+bp−1

2 c <

p and iM(G) · i−1
M (G) ≤ bp−1

2 c <
p2

4 . Suppose G = gi ∪ gm, i ≥ 2

with gm = {up} and gi’s are any connected subgraphs of G. Since G

contains only one t = 1 isolate, iM(G) ≤ dp4e and i−1
M (G) ≤ dp4e, if

gi = iK2, i ≥ 2. Then iM(G) + i−1
M (G) ≤ dp2e + 1 < p and iM(G) ·

i−1
M (G) ≤ dp4e

2 < p2

4 .

Suppose G = g1 ∪ tr where tr ≤ p
2 isolates and the component g1.

If the subgraph g1 contains atleast two majority dominating vertices

u1 and u2 such that d(ui) ≥ p
2 − 1, i = 1, 2, then iM(G) = i−1

M (G) =

1. In this case, iM(G) + i−1
M (G) = 2, the lower bound exists and

iM(G) + i−1
M (G) = 1.
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Therefore this result is true for t = 1, 2, . . . , p2 . When tr = dp2e,

then the graph G contains dp2e isolates and G = gi ∪ tr, i ≥ 1 and

iM(G) = 2 and i−1
M (G) ≤ dp2e − 1. Therefore iM(G) + i−1

M (G) ≤

dp2e + 1 < p and iM(G) · i−1
M (G) ≤ 2

(
p
2 − 1

)
+ 1 = p + 1 < p2

4 .

When tr = dp2e + 1 then iM(G) ≥ 3 and i−1
M (G) ≤ dp2e − 2. Hence

iM(G) + i−1
M (G) ≤ dp2e+ 5 < p and iM(G) · i−1

M (G) ≤ 3
(
p
2 + 1

)
− 2 ≤(

3p
2 + 1

)
< p2

4 . This result is true for tr = dp2e, d
p
2e + 1, . . . , (p − 1)

isolates. When tr = p isolates. Then G = Kp, p is even and iM(G) =(
p
2

)
= i−1

M (G). Hence iM(G) + i−1
M (G) = p and iM(G) · i−1

M (G) = p2

4 . If

G = Kp, p is odd then iM(G) = dp2e and i−1
M (G) does not exist. Hence

in all cases of isolates tr = 1, 2, . . . , p, a disconnected graph G with

isolates satisfy iM(G) + i−1
M (G) ≤ p and iM(G) · i−1

M (G) ≤ p2

4 . The

equality holds if and only if G = Kp, p is even. Thus the result.



Chapter 5

Inverse Connected Majority

Dominating Set of a Graph

Abstract

This chapter introduces an inverse connected majority domi-

nating set with respect to minimum connected majority dominating

set of a graph G and an inverse connected majority domination

number γ−1
CM(G). Characterisation of a minimal inverse connected

majority dominating set, exact values of γ−1
CM(G) for some families of

graphs and bounds of γ−1
CM(G) are also determined. Algorithm and

application for an inverse connected majority dominating set are also

discussed.

159
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5.1 Introduction

In 1979, Sampath Kumar and Walikar [48] introduced connected

domination number of a graph. The concept of Cartesian product

graph was initially defined by Faudree and Schelp in 1990 [14]. In

2006, Swaminathan and Joseline Manora [50] studied the concept

Majority Dominating set of a graph and they elucidated the param-

eter in various levels by establishing many results. In 2017, Joseline

Manora and Muthukani Vairavel [37] have studied connected major-

ity dominating set of a graph. Bounds of a connected majority domi-

nation number γCM(G) and many interesting results with inequalities

were determined in their research articles. The concept of an inverse

majority dominating set in graphs was introduced and propelled by

Joseline Manora and Vignesh in 2019 with the help of the above con-

cepts, the researcher has travelled in the next direction and defined

the parameter namely an inverse connected majority dominating set

of a graph.

The chapter aims at the study of a new concept called an inverse

connected majority dominating set and its number. The organiza-

tion of this chapter as follows: Section 5.1 is the introductory part
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and Section 5.2 defines the concept of inverse connected majority

domination for a graph G and illustrates the defined concept with

an example. The inverse connected majority domination number

γ−1
CM(G) is determined for various classes of graphs in section 5.3.

Section 5.4 contains characterization of minimal inverse connected

majority dominating set of a graph and also some necessary and

sufficient condition for γ−1
CM(G) to satisfy some property. In section

5.5, bounds of γ−1
CM(G) are determined with sharpness. Final sec-

tion deals with algorithm and application for an inverse connected

majority dominating set of a graph G.

5.2 Inverse Connected Majority

Dominating Set

Definition 5.2.1: Let G be a connected and simple graph with p

vertices. Let D ⊆ V (G) be a minimum connected majority dominat-

ing set of a graph G. A subset D′ of V (G) is an Inverse Connected

Majority Dominating set of G (ICMD) if (i) D′ ⊆ V − D is a ma-

jority dominating set and (ii) The subgraph induced by the set D′ is

connected in G. The inverse connected majority dominating set D′
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is minimal if no proper subset of D′ is an inverse connected majority

dominating set of G with respect to D of G.

5.2.1 Inverse Connected Majority Domination

Number

The minimum and maximum cardinality of a minimum inverse con-

nected majority dominating set of G is called an inverse connected

majority domination number, denoted by γ−1
CM(G) and a upper in-

verse connected majority domination number, denoted by Γ−1
CM(G)

of a graph G respectively.

5.2.2 Example for γ−1
CM(G) and Γ−1

CM(G)

Consider the following connected graph with p = 15 vertices.

G:v v v

v

v

v v v v vv

v

v vv151 2 3

4

5

6 7 8 9 10 11

12

13 14

Let V (G) = {v1, v2, · · · , v15} with p = 15. The setD = {v2, v3, v4,

v6, v7, v8, v9, v10, v11, v12, v13, v14} is a connected dominating set of G

implies γC(G) = 12. An inverse connected dominating set D′ ⊆
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V − D does not exist for the above graph G. The following are

some of the minimal connected majority dominating sets of G. D1 =

{v2, v3, v4, v6, v7}. It implies that |D1| = 5, D2 = {v9, v10, v11, v12, v13,

v14} and |D2| = 6. But D1 is a minimum connected majority dom-

inating set of G. Therefore γCM(G) = |D1| = 5 and ΓCM(G) = 6.

Then the inverse connected majority dominating set with respect to

D1 is D′1 = {v9, v10, v11, v12, v13, v14} ⊆ V −D1 and γ−1
CM(G) = |D′1| =

6 = Γ−1
CM(G).

Proposition 5.2.2: For any graph G, γCM(G) ≤ γ−1
CM(G) where

γCM(G) is the connected majority domination number of G.

Proof: Since every inverse connected majority dominating set of G

is a connected majority dominating set of G, the result is true.

Proposition 5.2.3: For any connected graph G, γ−1
CM(G) ≤ γ−1

C (G)

where γ−1
C (G) is an inverse connected domination number of G.

Proof: Since every inverse connected dominating set of G with re-

spect to a connected dominating set is an inverse connected majority

dominating set of G, we get the result.
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Proposition 5.2.4: Let γ1
M(G) be an inverse majority dominating

set of G. Then γ−1
M (G) ≤ γ−1

CM(G) ≤ γ−1
C (G) for any connected graph

G.

Proof: Since an inverse connected majority dominating set of G is

an inverse majority dominating set of G, γ−1
M (G) ≤ γ−1

CM(G). Then

by proposition (5.2.3), we obtain this inequality.

Example 5.2.5: Consider the following Wheel graph G = W11.

G: u

v

v

v

v
v

v

v

v

v

v

1

2

3

4

5

6

7

8

9

In this graph G, |V (G)| = p = 11. The set D = {u} is a con-

nected dominating set of G and γC(G) = 1. The inverse connected

dominating set is D′ = {v2, v5, v8, v10} ⊆ V − D and γ−1
C (G) = 4.

The set D1 = {u} is a majority dominating set of G and γM(G) = 1.

The inverse majority dominating set D′1 ⊆ V − D, |D′1| = |{v2, v5}|
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and γ−1
M (G) = 2. Let S1 and S ′1 be a connected and inverse con-

nected majority dominating sets of G. The set S1 = {u} and S ′1 =

{v2, v3, v4} ⊆ V − S1, |S ′1| = 3 and |S1| = 1. Hence γ−1
CM(G) = 3 and

γCM(G) = 1. Thus γ−1
M (G) < γ−1

CM(G) < γ−1
C (G).

Observation 5.2.6:

1. If γ−1
CM(G) = 1 then γCM(G) = 1 but the converse need not

be true. For example, in a comet graph, γCM(G) = 1 and

γ−1
CM(G) = dp2e − 2.

2. If the graph G contains only the vertices ui such that d(ui) ≥

dp2e − 1 then γCM(G) = γ−1
CM(G) = 1.

3. If a graph G contains the vertices ui such that d(ui) ≤ 2 then

γCM(G) = γ−1
CM(G) ≥ 2.

4. Let G be a regular connected graph with degree r ≤ dp2e − 1.

Then γCM(G) = γ−1
CM(G) ≥ 1.

5.3 γ−1
CM(G) for Various Classes of Graphs

In this section, particular values of γ−1
CM(G) is determined for

some classes of graphs and product graphs.
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Proposition 5.3.1: For a path G = Pp, γ
−1
CM(G) = dp2e − 2, if p ≥ 3.

Proof: Let G = Pp be a path on p ≥ 5 vertices and V (G) ={
u1, u2, u3, · · · , udp2e−1, udp2e, · · · , up

}
. Let D be a minimum connected

majority dominating set of G and by the result (1.4), γCM(Pp) =

dp2e−2. This proposition is proved by induction on ‘p’ vertices. When

p = 3, 4, 5, 6 then D = {u2} is a γCM - set of G and γCM(G) = 1. Also,

the inverse connected majority dominating set D′ = {u3} ⊆ V −D

and γ−1
CM(G) = 1 = dp2e − 2. When p = 7, 8 then D = {u2, u3}

is a γCM - set and D′ = {u4, u5} ⊆ V − D is an inverse connected

majority dominating set of G with respect to D. It implies that

γ−1
CM(G) = |D′| = 2 and γ−1

CM(G) = dp2e − 2.

This result is true for p = 3, 4, 5, 6, 7, 8, · · · , (p − 1). For the

graph G has p vertices. Let D =
{
u2, u3, u4, · · · , udp2e−1

}
⊆ V (G)

is a γCM - set of G. For p is odd, D′ =
{
udp2e, ud

p
2e+1, · · · , up−2

}
⊆

V − D such that d(ui, uj) = 1, for i 6= j and |D′| = dp2e − 2. Then

|N [D′]| =
p−2∑
i=dp2e

d(ui) + 2 = (p− 2)−
(
dp2e − 1

)
+ 2 =

(
bp2c
)

+ 1 = dp2e,

if p is odd. For p is even, D′ =
{
udp2e, ud

p
2e+1, · · · , up−3

}
⊆ V − D

and |N [D′]| =
p−3∑
i=dp2e

d(ui) + 2 = (p − 3) −
(
bp2c − 1

)
+ 2 = p

2 , if p

is even. Hence |N [D′]| = dp2e, D
′ ⊆ V − D and since d(ui, uj) = 1,
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the induced subgraph 〈D′〉 is connected. It implies that D′ is an

inverse connected majority dominating set of G with respect to D

and γ−1
CM(G) ≤ |D′| = dp2e − 2.

Suppose take the set D1 such that |D1| < |D′| = dp2e − 2. Then

|N [D1]| < dp2e, D1 ⊆ (V − D) and 〈D1〉 is connected. It leads to

D1 is not an inverse connected majority dominating set of G and

γ−1
CM(G) > |D1|. Hence γ−1

CM(G) ≥ |D′| = dp2e − 2. Thus γ−1
CM(G) =

dp2e − 2.

Proposition 5.3.2: Let G = Wp, be a wheel graph of p vertices

with p ≥ 5. Then (i) γ−1
CM(G) = 1, when p = 5, 6 and (ii) γ−1

CM(G) =

dp2e − 3, when p ≥ 7.

Proof: Let G = Wp = Cp−1 ∪K1 and V (G) = {v1, v2, · · · , vp−1, vp}

where vp is the centre of the wheel graph with d(vp) = p − 1. The

only minimum connected majority dominating set of G is D = {vp}

and γCM(G) = 1. Let D′ = {v1, v2, · · · , vt} ⊆ V − D such that

|D′| = t = dp2e − 3 with d(ui, uj) = 1 for any i, j and i 6= j. Then

|N [D′]| =
t∑
i=1

d(vi)+3 = |t|+3 = dp2e−3+3 = dp2e. Since d(vi, vj) = 1,

the induced subgraph 〈D′〉 is connected. Hence D′ is an inverse
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connected majority dominating set of G with respect to D. Therefore

γ−1
CM(G) ≤ |D′| =

⌈
p
2

⌉
− 3.

Suppose D1 ⊆ V − D with |D1| < t. Then |D1| < dp2e − 3

and |N [D1]| ≤ dp2e. It implies that D1 is not an inverse connected

majority dominating set of G with respect to D. γ−1
CM(G) ≥ |D′| ≥⌈

p
2

⌉
−3. Then combining these two inequalities, we obtain γ−1

CM(G) =

dp2e − 3.

Proposition 5.3.3: For a Fan graph Fp, p ≥ 5 (i) γ−1
CM(G) = 1, if

p ≤ 8 and (ii) γ−1
CM(G) = dp2e − 3, if p ≥ 9.

Proof: Let G = Fp = Pp−1 ∪K1 and V (G) = {v1, v2, · · · , vp−1, vp}.

Applying the same arguments as in Proposition (5.3.2), D = {vp}

and D′ = {v2, · · · , vt} ⊆ V − D with |D′| = dp2e − 3 are the con-

nected majority dominating set and the inverse connected majority

dominating set of G with respect to D respectively. Hence γ−1
CM(G) =

|D′| = dp2e − 3.

Results 5.3.4:

1. Let G = Cp be a cycle, p ≥ 3. Then γ−1
CM(G) = dp2e − 2.

2. For a star K1,p−1, p ≥ 2, γ−1
CM(G) does not exist.
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3. Let G = Km,n, n ≥ 2 and m ≤ n. Then γ−1
CM(G) = 1.

4. For a complete graph G = Kp, γ
−1
CM(G) = 1.

5. For a double star G = Dr,s, r ≤ s and r, s ≥ 2,

γ−1
CM(G) =


1, if s = r, r + 1, r + 2

not exist, if s ≥ r + 3

.

6. For a petersen graph G with p = 10 vertices and q = 15 edges

γ−1
CM(G) = 2.

7. For a subdivision graph G = S(K1,p−1), γ
−1
CM(G) does not exist.

8. For a generalized petersen graph P (n, k) = P (9, 2),

γ−1
CM(G) = 3.

Next, the product graph namely Grid graph G = Pi × Pj, i, j ≥ 3

is considered and the exact values of γ−1
M (G) and γ−1

CM(G) are deter-

mined. Also, the interesting inequality γ−1
M (G) < γ−1

CM(G) is found in

this grid graphs.

Theorem 5.3.5: For a grid graph G = P2 × Pj, j ≥ 3, γM(G) =

γ−1
M (G) = dp8e and γ−1

CM(G) = bp−2
4 c.
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Proof: Consider the grid graph G = P2 × Pj (Ladder graph) with

vertex sets (u11, u12, · · · , u1j) in the first row and (u21, u22, · · · , u2j)

in the second row respectively. Now, choose a set D ⊆ V (G) such

that D = {u12, u15, u18, · · · , u1t} with d(u1i, u1j) ≥ 4, for every i 6= j

and |D| = t = dp8e. Then |N [D]| ≥
t∑
i=1

d(u1i, u1j) = 4t ≥ 4
⌈
p
8

⌉
≥
⌈
p
2

⌉
.

Therefore D is a majority dominating set of G. Hence γM(G) ≤

|D| = dp8e.

Suppose D is a majority dominating set then, |N [D]| ≤
t∑
i=1

d(u1i,

u1j)+γM(G). By the assumption, dp2e ≤ 4.γM(G) and it implies that

γM(G) ≥ 1
4d

p
2e ≥ d

p
8e. Hence γM(G) = dp8e. Let D′ = {u13, u16, u19,

· · · , u1t} ⊆ V − D such that each vertex of D′ is adjacent to the

vertex of D. It leads to D′ is an inverse majority dominating set of

G with respect to D. Apply the similar argument in (V −D), we get

γ−1
M (G) = dp8e.

Let S = {u12, u13, · · · , u1(t−1)} be a connected majority dominat-

ing set of G. By the result (1.4), γCM(G) =


bp4c, if j is odd

bp−1
4 c, if j is even.

Choose the set S ′ = {u22, u23, · · · , u2(t−1)} ⊆ V − S with |S ′| =

bp−2
4 c = t and d(u2i, u2j) = 1, for ui, uj ∈ S ′. Then |N [S ′]| ≤

t∑
r=2

d(u2r)−(|S ′|−2) = 3
(
p−2

4

)
−|S ′|+2 = p

2 +1. Hence |N [S ′]| ≥ dp2e
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and 〈S ′〉 is connected. That implies S ′ is an inverse connected major-

ity dominating set of G with respect to S and γ−1
CM(G) ≤ |S ′| =

⌊
p−2

4

⌋
.

Suppose S ′ = S − {v} with |S ′| = bp−2
4 c − 1 then |N [S ′]| ≤

t−2∑
r=2

d(u2r)−(|S ′|−1) < dp2e and S ′ would not be an inverse connected

majority dominating set of G. Hence γ−1
CM(G) > |S ′| and γ−1

CM(G) ≥

|S| =
⌊
p−2

4

⌋
. Therefore γ−1

CM(G) = bp−2
4 c.

Theorem 5.3.6: For a grid graph G = P3 × Pj, j ≥ 4, γM(G) =

γ−1
M (G) = d p10e and γ−1

CM(G) = dp6e.

Proof: Consider the grid graph G = P3 × Pj, j ≥ 4. Let V (G) =

{u1, u2, · · · , uj, v1, v2, · · · , vj, w1, w2, · · · , wj} and it forms I row , II

row and III row respectively for G.

G:

u u . . . . .

. . . .

. . . . .

u

v v

w w w

1

v1

1

2

2

2

j

j
.

Let D = {u22, u25, · · · , u2t} ⊆ V (G) with |D| = t = d p10e such that

d(ui, uj) ≥ 3, for every i 6= j and ui, uj ∈ D. Then |N [D]| ≥ dp2e and

therefore D is a majority dominating set of G. Hence γM(G) = d p10e.
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Now choose a set D′ = {u23, u26, · · · , u2t} ⊆ V − D such that each

vertex D′ is adjacent to the vertices of D with |D′| = |D| = d p10e

such that |N [D′]| ≥ dp2e. It implies that D′ is an inverse majority

dominating set of G with respect to D and γ−1
M (G) = d p10e.

Let S = {v1, v2, . . . , vt} be a connected majority dominating set of

G with |S| = dp6e. Now, choose a set S ′ = {vt+1, vt+2, . . . , vj, wt+1} ⊆

V − S such that d(vi, vj) = 1 with |S ′| = dp6e and the induced sub-

graph 〈S ′〉 is a connected. Since each vertex of S ′ in G dominates

three vertices vertically and the first vertices of S ′ dominates 4 ver-

tices then wt+1 dominates only one vertex of G, |N [S ′]| = 3(j−t)+1+

1 = |N [S ′]| = 3(|S ′| − 1) + 3 = 3dp6e ≥ d
p
2e. Therefore |N [S ′]| ≥ dp2e

and S ′ ⊆ V −S. Hence S ′ is an inverse connected majority dominat-

ing set of G with respect to S and γ−1
CM(G) ≤ |S ′| = dp6e. Suppose the

set |S1| = |S ′|−1 with |S1| = dp6e−1. Then |N [S1]| = p
2−1. It implies

that S1 would not be an inverse connected majority dominating set

of G and γ−1
CM(G) ≥ |S ′| = dp6e. Hence γ−1

CM(G) = dp6e, j ≥ 4.

Proposition 5.3.7: Let G = P4 × Pj, be a grid graph with j ≥ 4.

Then γ−1
M (G) = d p10e and γ−1

CM(G) = bp6c.

Proof: Apply the same argument as in Theorem 5.3.6.
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Proposition 5.3.8: Let G = Pi×Pj be a grid graph with p vertices

and i, j ≥ 2. Then γ−1
M (G) ≤ γ−1

CM(G).

Proof: From the above results of Proposition (5.3.5) to (5.3.7), the

result is obtained.

Theorem 5.3.9: LetG be a uniform caterpillar with p vertices, e ≥ 2

pendants and k ≥ 3 central vertices. Then

γ−1
CM(G) =


p

2(e+1) , if k is even

not exist, if k is odd

Proof: Let V (G) = {v1, v2, . . . , vk, e11, e21, e22, . . . , e2i, . . . , ek1, ek2, . . . ,

eki} i ≥ 1 and |V (G)| = p = k(e + 1). Let D = {v2, v3, . . . , vt1} be a

γCM -set of G . By the result (1.4),

γCM(G) =


p

(e+1) − b
k
2c, if k is odd

p
(e+1) −

k
2 , if k is even

Case (i): Let k be even.

Let D′ =
{
vk

2+1, . . . , vk

}
⊆ (V − D) with |D′| = t where t =

1
2

(
p
e+1

)
.|N [D′]| =

k∑
j=k

2+1

d(vj) − |D′| + 2 = (|D′| − 1)d(vj) + d(vk) −
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|D′| + 2, where
(
k
2 + 1 ≤ j ≤ k − 1

)
. Then |N [D′]| = (t − 1)d(vj) +

d(vk) − t + 2 = (t − 1)(e + 2) + (e + 1) − t + 2 = t(e + 1) + 1,

where t = p
2(e+1) and |N [D′]| = p

2 + 1 ≥ dp2e. Since d(vr, vs) = 1, for

vr, vs ∈ D′, the induced subgraph 〈D′〉 is connected. Therefore D′ is

an inverse connected majority dominating set of G with respect to

D and γ−1
CM(G) ≤ |D′| = t =

(
p

2(e+1)

)
, if k is even.

Case (ii): Let k be odd and D be a γCM -set of G. Since G is mini-

mally connected, 〈V −D〉 is disconnected with components gi, i ≥ 2.

In (V –D), if each components gi with |N [gi]| < p
2 then there ex-

ists no connected majority dominating set D′ in (V −D) such that

D∩D′ = ∅. Hence there is no inverse connected majority dominating

set for a graph G with respect to D or any other γCM -set D. If k is

odd. Thus γ−1
CM(G) does not exist.

5.4 Characterization Theorems

The following result gives a necessary and sufficient condition for

a minimal inverse connected majority dominating set for a graph G.

Theorem 5.4.1: Let D be a minimum connected majority domi-

nating set of a graph G. Let D′ be an inverse connected majority
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dominating set with respect to D. Then D′ ⊆ V − D is minimal if

and only if for every vertex v ∈ D′ either the following condition (i)

or condition (ii) holds.

(i) If |N [D′]| = dp2e then either v is an enclave of D′ or pn[v,D′]∩

(V −D′) 6= ∅ and 〈D′〉 is connected.

(ii) If |N [D′]| > dp2e then |pn[v,D′]| > |N [D′]| − dp2e and 〈D′〉 is

connected.

Proof: Let D′ ⊆ V −D be a minimal connected majority dominating

set of a graph G. Then |N [D′]| ≥ dp2e is connected in (V −D).

Case (i): Let |N [D′]| = dp2e. Suppose the condition (i) is not true

for any v ∈ D′. Then v is neither an enclave of D′ nor v has a private

neighbour in (V −D′). Therefore pn[v,D′] ∩ (V −D′) = ∅ and 〈D′〉

is not connected. We know that pn[v,D′] = |N [D′]| − |N [D′ − v]|,

for every v ∈ D′. Since pn[v,D′] = ∅, |N [D′ − v]| = |N [D′]| = dp2e.

It implies that D′−{v} is an inverse connected majority dominating

set with respect to D, which contradicts that D′ is minimal.

Suppose v is not an enclave of D′ then N [v] * D′ and N(v) ⊆

V −D′, for atleast one vertex w ∈ N(v). It implies that pn[v,D′] ≥ 1

and pn[v,D′] ⊆ V −D′. Therefore, pn[v,D′] ∩ (V −D′) 6= ∅. Since
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pn[v,D′] = ∅, V − D′ = ∅ and D′ = V (G), which is a contradiction

to D′ ⊆ V − D. If 〈D′〉 is not connected then D′ is not an inverse

connected majority dominating set which is a contradiction to the

result. Hence the condition (i) is true if |N [D′]| = dp2e.

Case (ii): Let |N [D′]| > dp2e. Since D′ is a minimal inverse con-

nected majority dominating set, D′−{v} is not an inverse connected

majority dominating set of G. It implies that |N [D′−v]| < dp2e. But

|N [D′]| − |pn[v,D′]| < dp2e. Therefore |pn[v,D′]| > |N [D′]| − dp2e, for

every v ∈ D′. Also the set D′ ⊆ V − D consists of vertices with

distance d(vi, vj) = 1 for every vi, vj ∈ D′ and i 6= j and the induced

subgraph 〈D′〉 is a connected subgraph of G. Thus the condition (ii)

holds for every v ∈ D′.

Conversely, let D′ be an inverse connected majority dominating

set with respect to D and the conditions (i) and (ii) are true for

every v ∈ D′. To prove that D′ is minimal. Suppose D′ is not

minimal. Then either |N [D′ − v]| ≥ dp2e, for any v ∈ D′ or the

induced subgraph 〈D′〉 is not connected. We know that |pn[v,D′]| =

|N [D′]| − |N [D′ − v]|. If |N [D′ − v]| > dp2e. Then |N [D′ − v]| =

|N [D′]| − |pn[v,D′]| > dp2e. Therefore |pn[v,D′]| < |N [D′]| − dp2e and

〈D′〉 is not connected which is a contradiction to the condition (ii).
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Next, if |N [D′ − v]| = dp2e then |N [D′ − v]| = |N [D′]| − |pn[v,D′]| =

dp2e and |pn[v,D′]| = |N [D′]| − dp2e. which is absurd. Hence D′ is a

minimal inverse connected majority dominating set of G.

Theorem 5.4.2: The graph G has atleast two vertices vi of degree

d(vi) ≥ dp2e − 1 if and only if γ−1
CM(G) = 1.

Proof: Let vi ∈ V (G) such that d(vi) ≥ dp2e − 1, i ≥ 2. Then

|N [vi]| ≥ dp2e, i ≥ 2. Hence D = {vi} is a γCM -set and D′ = {vj} ⊆

V −D is a γ−1
CM -set of G with respect to D, for any vj ∈ V (G). Hence

γ−1
CM(G) = |D′| = 1. Conversely, if γ−1

CM(G) = 1 then by observation,

γCM(G) = 1. It implies that D = {v1} and D′ = {v2} ⊆ V − D

are the γCM -set and γ−1
CM -set of G. Also, |N [v1]| = |N [v2]| ≥ dp2e.

Therefore, d(vi) ≥ dp2e − 1, for i ≥ 2. Hence the graph G has atleast

two vertices (vi, vj) ∈ V (G) with this condition.

Proposition 5.4.3: Let G be a connected graph with a γCM -set D.

Then γ−1
M (G) = γ−1

CM(G) = 1 if and only if there exists atleast one

majority dominating vertex in (V −D).

Proof: Let D be a connected majority dominating set of G. Sup-

pose there exists a majority dominating vertex u ∈ (V − D), then
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d(u) ≥ dp2e − 1. Let D′ = {u} ⊆ V − D such that |N [D′]| ≥ dp2e

and 〈D′〉 connected in 〈V −D〉. It implies that D′ is an inverse con-

nected majority dominating set of G with respect to D and D′ is also

an inverse majority dominating set of G with respect to D. Hence

γ−1
M (G) = γ−1

CM(G) = 1. Suppose there is more than one majority

dominating vertex in G then also both inverse majority dominat-

ing sets and inverse connected majority dominating sets exist with

respect to D and γ−1
M (G) = γ−1

CM(G) = 1. The converse is obvious.

Corollary 5.4.4: If a connected graph G with p ≥ 9 vertices and

there is no majority dominating vertices then γ−1
M (G) < γ−1

CM(G).

Proof: Suppose p = 7, 8 and d(ui) ≤ 2, for all ui ∈ V (G). Then

γ−1
M (G) = 2 = γ−1

CM(G). If p ≥ 9 and d(ui) ≤ 2, then the graph

G is a path or a cycle structure. By the known results [2.3.1](2),

γ−1
M (G) = dp6e and γ−1

CM(G) = dp2e − 2. Hence γ−1
M (G) < γ−1

CM(G), if

p ≥ 9. Also, if d(ui) ≥ 3 then by the known results, γ−1
M (G) = dp8e

and γ−1
CM(G) > dp8e. Thus, γ−1

M (G) < γ−1
CM(G).

Proposition 5.4.5: Let G be any connected graph with p vertices.

Then γ−1
CM(G) = dp2e − 2 if and only if G = Pp, Cp, p ≥ 3.
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Proof: Let γ−1
CM(G) = dp2e − 2. Then D′ is an γ−1

CM - set of G with

respect to a connected majority dominating setD ofG with
(
dp2e − 2

)
vertices. It implies that |N [D′]| ≥ dp2e and 〈D′〉 is connected in G.

Also D′ is connected in (V −D) then it gives that all vertices ui such

that d(ui) ≤ 2 in G. Hence G = Cp or Pp, p ≥ 3. For the converse

part, by the Proposition (5.3.1) and results [5.3.4](1) we obtain the

result.

5.5 Bounds of γ−1
CM(G)

The following theorem gives lower and upper bounds for the in-

verse connected majority domination number of G, interms of p and

∆′(G) which is a maximum degree in the set (V −D).

Theorem 5.5.1: For any connected graph G, dp−∆′

2 e ≤ γ−1
CM(G) ≤

dp2e −∆′(G). The bounds are sharp.

Proof: Let D be a γCM -set of G this theorem is proved by induction

on the maximum degree in (V −D). Let ∆(G) and ∆′(G) be the max-

imum degree of G and the maximum degree in 〈V −D〉 respectively.

If ∆′(G) = p − 1 then ∆(G) = p − 1. Let ui be a maximum degree
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vertex in (V −D) and D′ = {ui} ⊆ (V −D) such that |N [D′]| ≥ dp2e.

It implies that γ−1
CM(G) = |D′| = 1 = dp−∆′

2 e. If ∆′(G) ≥ dp2e − 1

then D′ = {ui} ⊆ (V − D) such that |N [D′]| ≥ dp2e. Therefore,

γ−1
CM(G) = dp−∆′

2 e. If ∆′(G) ≤ dp2e − 2 then D′ = {ui, uj} ⊆ V − D

with d(ui, uj) = 1 and d(uj) ≤ dp2e − 2.

Now, |N [D′]| = d(ui) + d(uj) ≥ dp2e and the induced subgraph

〈D′〉 is connected. Hence γ−1
CM(G) = 2 = dp4e + 1 ≥ dp−∆′

2 e. This

result is true for all ∆′(G) = p − 1, p − 2, . . . , 4, 3. If ∆′(G) = 2

then the graph becomes G = Pp or Cp. By the Proposition (5.3.1),

γ−1
CM(G) = dp2e − 2 = dp2e − ∆′(G). If ∆′(G) = 1 then 〈V −D〉 has

only isolates and γ−1
CM(G) does not exist. Hence dp−∆′

2 e ≤ γ−1
CM(G) ≤

dp2e −∆′(G).

Theorem 5.5.2: Let D be a γCM - set of a connected graph G. If

∆′(G) < dp2e − 1 and the induced subgraph 〈V −D〉 is connected

then γ−1
CM(G) exists and γ−1

CM(G) ≤ dp2e − ∆′(G) where ∆′(G) is a

maximum degree in (V −D).

Proof: Let D be a γCM -set of G with the vertex u1 such that d(u1) =

∆(G) = maximum degree of G. Let ∆′(G) < dp2e − 1 and d(u2) =

∆′(G) in (V –D). Then the vertex u2 dominates the vertices of N [u2]
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and atleast half of the vertices of V (G) in (dV (G)
2 e−N(u2)) dominates

themselves in the induced subgraph 〈V −D〉. Hence D′ = (dV (G)
2 e−

N(u2)) is a majority dominating set in (V − D). Since ∆′(G) <

dp2e − 1, choose the vertices such that d(u2, uj) = 1, where uj ∈

D′, u2 ∈ V − D. Then the induced sub graph 〈D′〉 is connected in

〈V −D〉 and D′ is an connected majority dominating set in (V −D)

with (dp2e−d(u2)). It implies that D′ is an inverse connected majority

dominating set of G. Hence in this case. Therefore γ−1
CM(G) exists

and γ−1
CM(G) ≤ |D′| = dp2e −∆′(G).

Theorem 5.5.3: Let D be a γCM - set of a connected graph in

G. If the induced subgraph 〈V −D〉 contains a component gi with

|N [gi]| ≥ dp2e then γ−1
CM(G) exists.

Proof: Let D be a γCM - set of G. Then the induced subgraph

〈V −D〉 is disconnected with ‘n’ components gi, i = 1, 2, . . . , n. Let

|N [gi]| ≥ dp2e, for any gi.

Case (i): Let u ∈ V (gi) and d(u) = ∆′(G). If |N [u]| ≥ dp2e then

D′ = {u} is a connected majority dominating set in (V –D) and D′

is an inverse connected majority dominating set of G. Therefore

γ−1
CM(G) exists and γ−1

CM(G) = 1.
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Case (ii): If |N [u]| < dp2e then form a set D′ = {u1, u2, . . . , ui} such

that d(ui, uj) = 1 |N [D′]| ≥ dp2e and the induced subgraph 〈D′〉 is

connected in (V − D). Hence D′ is an inverse connected majority

dominating set of G and γ−1
CM(G) = |D′|. Hence γ−1

CM(G) exists.

Corollary 5.5.4: Let D be a γCM - set of G . If the induced subgraph

〈V −D〉 is disconnected with |N [gi]| < dp2e, for all components gi, i =

1, 2, . . . , n of 〈V −D〉 then γ−1
CM(G) does not exist.

Theorem 5.5.5: If a connected graph G contains a γCM - setD and

d(ui) ≤ 2, for all ui ∈ (V −D) then γ−1
CM(G) = dp2e − 2.

Proof: LetD be a γCM -set ofG with all vertices ui ∈ V−D such that

d(ui) ≤ 2. Since the induced subgraph 〈D〉 is connected, there may

exist some isolates in (V −D). It leads to all vertices ui in (V −D)

are of degree 0 ≤ d(ui) ≤ 2 and the induced subgraph 〈V −D〉

is disconnected with some components gi. Therefore, there exists

atleast one component gi with |N [gi]| ≥ dp2e. Since d(ui) ≤ 2, for

ui ∈ V −D, there exists atleast one connected majority dominating

set D′ ⊆ V −D such that |N [D′]| ≥ dp2e and d(ui, uj) = 1, for ui, uj ∈

D′ with |D′| = dp2e−2. Since d(ui, uj) = 1, the induced subgraph 〈D′〉
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is connected. Hence D′ is an inverse connected majority dominating

set of G with respect to D and γ−1
CM(G) = |D′| = dp2e − 2. Suppose

d(ui) ≥ 3 then γ−1
CM(G) < dp2e − 2.

Theorem 5.5.6: Let D be a γCM -set of a connected graph G. If the

induced subgraph 〈V −D〉 contains only isolates then γ−1
CM(G) does

not exist.

Proof: Let D be a γCM -set of G. In 〈V −D〉, if there are only

isolates then D = {u} where u is a full degree vertex of G. Since

〈V −D〉 is totally disconnected, there exists no connected majority

dominating set D′ ⊆ (V −D) such that D ∩D′ = ∅. Hence γ−1
CM(G)

does not exist for this structure.

Remark 5.5.7: For a disconnected graph G, there is no connected

dominating set and γC(G) does not exist. But γCM(G) and γ−1
CM(G)-

sets exist for a disconnected graph.

Proposition 5.5.8: Let G be a disconnected graph with components

gi, i ≥ 2 and D be a γCM(G)– set of G. If |N [gi]| ≥ dp2e, for any

gi ∈ (V −D) then γ−1
CM(G)-set exists for this structure.
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Proof: Let g1, g2, . . . , gi, i ≥ 2 be the componenets ofG and |V (G)| =

|V (g1)∪ . . .∪V (gi)| = p and D be a γCM– set of G. Each component

gi, i ≥ 2 is non-empty and each gi ∈ (V − D) may be an isolate or

a connected subgraph of G. Let g1 and g2 be any two connected

subgraphs gi of G such that |N [gi]| ≥ dp2e. Then connected majority

dominating set D is formed by V (g1) and inverse connected majority

dominating set D′ ⊆ V −D is formed by V (g2) such that g2 ⊆ (V −D)

both are exist for G.

Suppose the induced subgraph 〈V −D〉 contains only isolates

then inverse connected majority dominating set does not exist. Sup-

pose 〈V −D〉 contains all the vertices ui such that d(ui) ≥ 1 and

∆′(G) ≤ dp2e where ∆′(G) is the maximum degree in (V − D).

Then the inverse connected majority dominating set D′ ⊆ V − D

with |N [D′]| ≥ dp2e the set D′ contains the vertices of a component

gi ∈ (V −D). Certainly, where γ−1
CM(G) exists and γ−1

CM(G) = |D′|.

5.6 Algorithm and Application

The final section provides an algorithm to an ICMD set and

ICMD number γ−1
CM(G) of a given graph G. A real life application is

also discussed for this parameter.
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5.6.1 Algorithm for an Inverse Connected

Majority Dominating Set of G

To find an Inverse Connected Majority Dominating (ICMD) set for

the given connected graph G with p vertices.

Let G be a given connected graph G with p vertices.

Step:1 Find the adjacency matrix [A(G)]p×p for the given graph G.

Step:2 Change all the diagonal entries zero by the value one (be-

cause a vertex dominates itself)

u1 u2 · · · up |N [ui]|

[A(G)]p×p =

u1

u2

·

·

·

up



1 1 · · 1 0

0 1 · · 1 0

1 0 1 · · 1

· · · · · ·

· · · · · ·

0 1 1 · 0 1



↓

p× p
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In [A(G)]p×p, every row total is equal to the corresponding

vertex degree d(ui) = |N(ui)| and |N [ui]| = d(ui) + 1.

Step:3 LetD be a minimum connected majority dominating (CMD)

set of G. Initially choose the set D′ ⊆ V −D and D′ = ∅.

Step:4 Choose the maximum degree vertex ui ∈ (V −D) in the last

column of [A(G)] and if |N [ui]| > dp2e then D′ = {ui} is an

ICMD set of G with respect to D. Otherwise go to step 5.

Step:5 Pickup all non-zero entries of the row of ui and choose a

maximum degree vertex uj ∈ V −D in that row itself among

all non-zero entries vertices.

Step:6 Let D′ = {ui, uj} ⊆ V −D such that induced subgraph 〈D′〉

is connected. If |N [D′]| ≥ dp2e then D′ is an ICMD set of G

with respect to D. Otherwise go to step 7.

Step:7 Pick up all non-zero entries of the rows of ui, uj and choose

the next maximum degree uk in that rows ui and uj among

all non-zero entries such that d(ui, uk) = 1 = d(uj, uk).

Step:8 Let D′ = {ui, uj, uk} ⊆ V −D such that 〈D′〉 is connected.
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If |N [D′]| ≥ dp2e then D′ is an ICMD set of G with respect

to D. Otherwise go to step 7.

Apply the same procedure to get finally an ICMD set D′ ⊆

V −D such that |N [D′]| ≥ dp2e and 〈D′〉 is connected for the

given graph G with respect to the CMD set D of G.

5.6.2 Algorithm for ICMD Number γ−1
CM(G)

To find the Inverse Connected Majority Domination number γ−1
CM(G)

for a given graph G. First of all, find a minimal inverse connected

majority dominating set and then find its inverse connected majority

domination number γ−1
CM(G) for the given connected graph G.

Let D be a minimum CMD set of G. By using algorithm 5.6.1,

collect all the inverse connected majority dominating sets D′ of the

given connected graph G.

Step:1 Let D ′ = {D′1, D′2, . . . , D′t} be the set of all Inverse Con-

nected Majority Dominating (ICMD) sets of the graph G

with respect to D.
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Step:2 Test that the proper subset D′′i of D′i ∈ D ′, for each i, is an

ICMD set of G with respect to D.

Step:3 If there exists an ICMD set D′′i in any D′i ∈ D ′ then D′i is

not a minimal ICMD set of G with respect to D and remove

the set D′i from the set D ′.

Step:4 If there is no proper subset D′′i of the sets D′i ∈ D ′ for any

i, then the set D′i is a minimal ICMD set of G with respect

to D.

Step:5 Repeat the process to every D′i ∈ D ′ and collect all minimal

ICMD sets D′i ⊆ V −D for each i, from D ′ with respect to

D.

Step:6 Let S = {D′1, D′2, . . . , D′n}, n ≤ t be the set of all minimal

ICMD sets of G with respect to D.

Step:7 Find the cardinality of each set D′i ∈ S, i = 1, 2, . . . , n and

n ≤ t.

Step:8 Pick up the minimum cardinality among all D′i ∈ S, for

i = 1, 2, . . . , n and it gives the ICMD number of G, denoted

by γ−1
CM(G) = |D′i|, for any D′i ∈ S.
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Step:9 Find the maximum cardinality among all D′i ∈ S, for i =

1, 2, . . . , n and it gives the upper ICMD number of G, de-

noted by Γ−1
CM(G) = |D′i|, for any D′i ∈ S.

Hence the inverse connected majority domination number

γ−1
CM(G) and the upper inverse connected majority domina-

tion number Γ−1
CM(G) for the given connected graph G with

respect to D are determined.

5.6.3 Application

Suppose that V is a political party comprising P members. Of this,

a few closely associated members (D) may try to influence and per-

sude other members covering atleast one half of the total strength and

they form a first group / faction that will be taken as N [D] such that

|N [D]| ≥ dp2e. Similarly, in this same party another few homogenous

persons (D′) may try to discuss the party members and form another

group covering similarly atleast one half of the total members, inclu-

sive of first group members N(D) and exclusive of the organizers or

formers of first group (D). If first group could not reach a consensus
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on any point, another group (D′) will take advantage of it and exploit

the situation.

In all these cases, the organisers of the group will not switch over

/ move from. All the organisers of the group D or D′ are connected

and likeminded with one another within the group only and then they

could execute the programs effectively. This is the situation where

the concept of connected majority dominating set D and an inverse

connected majority dominating set D′ ⊆ (V −D) with respect to the

connected majority dominating set D of a group structure G.



Chapter 6

Inverse Split Majority

Dominating Set of a Graph

Abstract

This chapter introduces a new notion an inverse split majority dom-

ination of a graph G. For a connected graph G, the inverse split

majority dominating set with respect to split majority dominating

set of a graph G is defined and an inverse split majority domina-

tion number, denoted by γ−1
SM(G) is determined for various classes

of graphs. Bounds of γ−1
SM(G) and relationship of γ−1

SM(G) with other

domination parameters are also discussed in detail.

The contents of this chapter is published in
Communications in Mathematics and Applications, Vol. 12, No. 4, pp. 941–950,
2021.
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6.1 Introduction

In 1997, Kulli and Janagiram [31] introduced the concept split

domination in graphs. In 2010, Ameenal Bibi and Selvakumar [2]

defined the notion inverse split and non-split domination in graphs.

Now, the area of the research in an inverse domination with many

branches has its long roots. In 2015, Joseline Manora and Veera-

manikandan [39, 40] studied the split majority domination and non-

split majority domination of a graph. Particular values of the num-

bers γSM(G) and γNSM(G) for various classes of graphs, bounds of

these numbers and some characterization theorems on these param-

eters are also established in their work.

In this thesis, the concept of an inverse majority dominating set in

graphs was introduced and developed by the researcher by producing

new results and new parameters. It has good applications in practical

situations. Motivated by the concepts of the inverse split and non-

split domination, the inverse split majority domination in graphs is

defined and studied in detail by establishing many theorems.

The organization of this chapter is as follows, Section 6.1 is the

introductory part of the chapter and it contains the motivation of
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defining a new parameter, inverse split majority dominating set of a

graph. Section 6.2 defines the concept of an inverse split majority

dominating set with respect to the split majority dominating set

and its number for a graph G illustrates the defined concept with

examples. The inverse split majority domination number γ−1
SM(G) is

determined for various classes of graphs in Section 6.3. Relationship

of γ−1
SM(G) with other domination parameters are discussed in Section

6.4. In Section 6.5, bounds of γ−1
SM(G) are established with sharpness.

Section 6.6 contains the main results and characterization theorems

of an inverse split majority domination of a graph G.

6.2 Inverse Split Majority Dominating

Sets in Graphs

Definition 6.2.1: Let G be any simple, finite, undirected and con-

nected graph with p vertices and q edges. Let D be a minimum

majority dominating set of a graph G. Let D′ be an inverse majority

dominating set of G with respect to D. Then D′1 ⊇ D′ is called an

inverse split majority dominating set of G if the induced subgraph

〈V −D′1〉 is disconnected. The inverse split majority domination
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number, say γ−1
SM(G) of G is the minimum cardinality of a minimal

inverse split majority dominating set of a graph G.

Example 6.2.2: Consider the following graph G with p = 11 ver-

tices.

G:

Let D = {v4} be a majority dominating set and a split major-

ity dominating set of G. Then γM(G) = γSM(G) = 1. Then

D′ = {v2, v9} ⊆ V –D is an inverse majority dominating set with

respect to D and γ−1
M (G) = 2. Since the induced subgraph 〈V −D′〉

is connected, choose D′1 = {v2, v6, v9} ⊆ V –D and 〈V −D′1〉 is dis-

connected and γ−1
SM(G) = |D′1| = 3. Hence γ−1

M (G) < γ−1
SM(G) and

γSM(G) < γ−1
SM(G).

Next, the following inequalities are immediate using the property

of this number γ−1
SM(G).
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Proposition 6.2.3: For a connected graph G, γ−1
M (G) ≤ γ−1

SM(G)

where γ−1
M (G) is an inverse majority domination number of G.

Proof: Since every inverse split majority dominating set of G is also

an inverse majority dominating set of G, γ−1
M (G) ≤ γ−1

SM(G).

Proposition 6.2.4: For a connected graph G, γSM(G) ≤ γ−1
SM(G)

where γSM(G) is the split majority domination number of G.

Proof: Since every inverse split majority dominating set of G is a

split majority dominating set of G, the split majority domination

number γSM(G) is less than or equal to the inverse split majority

domination number of G. Therefore, γSM(G) ≤ γ−1
SM(G).

Proposition 6.2.5: Let i−1
M (G) be an inverse independent major-

ity domination number of a connected graph G. Then γ−1
M (G) ≤

i−1
M (G) ≤ γ−1

SM(G).

Proof: By the proposition (4.2.7)(iii), we have γ−1
M (G) ≤ i−1

M (G)

and by proposition (6.2.3), γ−1
M (G) ≤ γ−1

SM(G). Also, since every

inverse split majority dominating set of G is an inverse independent
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majority dominating set of G, i−1
M (G) ≤ γ−1

SM(G). Combining these

inequalities, we obtain γ−1
M (G) ≤ i−1

M (G) ≤ γ−1
SM(G).

Proposition 6.2.6: For a connected graph G, γM(G) ≤ γ−1
M (G) ≤

γ−1
SM(G).

Proof: By the proposition (2.2.6) and proposition (6.2.3), we obtain

the result.

Example 6.2.7: For a connected graphG, γM(G) < γ−1
M (G) < γ−1

SM(G).

Let G = B5,6 be a bipartite graph with p = 11 vertices.

G:

Let V1(G) = {v1, v2, v3, v4, v5} and V2(G) = {u1, u2, u3, u4, u5, u6}

with d(v1) = 5. Let D = {v1} such that |N [D]| = dp2e and γM(G) =

1. Let D′ = {v2, v3} ⊆ (V − D) and γ−1
M (G) = 2 = i−1

M (G). Let
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D′1 = {v2, v3, v5} and D′1 ⊇ D′ such that |N [D′1]| > d
p
2e and the

induced subgraph 〈V −D′1〉 is disconnected. Hence D′1 is an inverse

split majority dominating set of G and γ−1
SM(G) = |D′1| = 3. Thus

γM(G) < γ−1
M (G) < γ−1

SM(G).

This section brings out the exact values of γ−1
SM(G) for some

classes of graphs.

6.3 Inverse Split Majority Domination

Number for Some Classes of Graphs

Results 6.3.1:

1. Let G = Kp, p ≥ 2 be a complete graph. Then γ−1
SM(G) = 0.

2. Let G = K1,p−1 be a star with p ≥ 2. Then γ−1
SM(G) = 0.

3. For any cycle Cp, p ≥ 3, γ−1
SM(G) =


2, if 3 ≤ p ≤ 6

dp6e, if p ≥ 7

4. For a corona graph G = Kp ◦K1, γ
−1
SM(G) = 1, where Kp is a

complete graph.

5. For the Petersen graph with p = 10 and q = 15, γ−1
SM(G) = 3.
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6. For the graph G = Kp − {e}, γ−1
SM(G) = p − 2 where e is any

edge in Kp.

7. For the Double star G = Dr,s,r ≤ s and r, s ≥ 2,

γ−1
SM(G) =


1, if s = r, r + 1, r + 2

|ei|+ 1, if s ≥ r + 3.

Proposition 6.3.2: For a path Pp, p ≥ 2, γ−1
SM(G) = dp6e.

Proof: Let G be a path with p ≥ 2 vertices. Let D = {u2, u5, u8, . . . ,

ut} be a majority dominating set of G with d(ui, uj) ≥ 3, for every

i 6= j and |D| = t = dp6e. Choose D′ = {u3, u6, u9, . . . , ut} ⊆ V –D

such that d(ui, uj) ≥ 3, for every i 6= j and ui, uj ∈ D′ with |D′| = t =

dp6e. Then |N [D′]| ≥
t∑
i=1

d(ui) + t = 3t. |N [D′]| ≥ 3dp6e ≥ d
p
2e. Since

D′ ⊆ V –D and |N [D′]| ≥ dp2e, D
′ is an inverse majority dominating

set of G with respect to D. Since the path Pp is minimally con-

nected, the induced subgraph 〈V −D′〉 is disconnected and splitted

into many components. It implies that D′ is an inverse split majority

dominating set of G with respect to D and γ−1
SM(G) ≤ |D′| = dp6e.

Let D′ be a γ−1
SM -set of G with |D′| = t = γ−1

SM(G). Then

by the definition of γ−1
SM - set, |N [D′]| ≥ dp2e. Since D′ ⊆ V –D
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and 〈V −D′〉 is disconnected, |N [D′]| ≤
t∑
i=1

d(ui) + γ−1
SM(G). Then

|N [D′]| ≤ γ−1
SM(G)(d(ui) + 1) and dp2e ≤ 3γ−1

SM(G). Since 1
3d

p
2e = dp6e,

if p = 2r, 2r + 1, γ−1
SM(G) ≥ dp6e. Hence we obtain γ−1

SM(G) = dp6e.

Proposition 6.3.3: For a Generalized Petersen P (n, k), n ≥ 5 and

0 < k < n, γ−1
SM(G) = dn4e+ 1.

Proof: Let G = P (n, k) and V (G) = {u1, u2, . . . , un, v1, v2, . . . , vn}

where {u1, u2, . . . , un} lies in the outer cycle C1 and {v1, v2, . . . , vn}

lies in the inner cycle C2 with p = |V (G)| = 2n. Let D be an

γSM -set of G. Let D′ = {v1, un, u2, u5, . . . , ut} ⊆ V − D such that

d(ui, uj) ≥ 3, for ui, uj ∈ C1 and v1, un are adjacent to u1. Since

G is a 3 – regular graph and vertex connectivity number κ(G) =

3, the vertex u1 is adjacent to S = {v1, un, u2} such that S ⊆ D′

and |N [S]| = 8. It implies that the induced subgraph 〈V −D′〉 is

disconnected. If n ≤ 8 then the set D′ = {v1, u2, un} ⊆ V −D such

that |N [D′]| ≥ dp2e is an inverse split majority dominating set of G

and γ−1
SM(G) = |D′| = 3 = dn4e+ 1, if n ≤ 8.

Suppose n ≥ 9 and D′ = {v1, un, u2, u5, . . . , ut} ⊆ V − D with

|D′| = t = dn4e+ 1. Then |N [D′]| =
t−3∑
i=1

d(vi) + |N [S]|+ t− 3 = 3(t−
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3)+8+(t−3). Therefore |N [D′]| = 4(t−3)+8 = 4t−4 = 4(dn4e+1)−4.

|N [D′]| =


4
(
n
4

)
+ 4− 4 = n = p

2 , if n is even

4
(
n
4

)
+ 5− 4 = n+ 1 > p

2 , if n is odd

Since D′ ⊆ (V −D), induced subgraph 〈V −D〉 is disconnected and

|N [D′]| ≥ dp2e, D
′ is an inverse split majority dominating set of G.

Hence γ−1
SM(G) ≤ |D′| = dn4e + 1, n ≥ 9. Suppose |D′| < t then

|N [D′]| < dp2e. It leads to D′ would not be an inverse split majority

dominating set of G. Hence γ−1
SM(G) ≥ |D′| = dn4e + 1, n ≥ 9. Thus,

γ−1
SM(G) = dn4e+ 1, n ≥ 5.

Proposition 6.3.4: Let G = Wp be a wheel graph of p vertices.

Then γ−1
SM(G) = 0.

Proof: Let V (G) = {u1, u2, . . . , up−1, up} where u1 is a full degree

vertex and d(ui) = 3, for all i. Let D = {u1} be a majority domi-

nating set of G. Choose a set D′ = {u2, u5, . . . , up−1} ⊆ (V –D) and

D′ is an inverse majority dominating set of G such that d(ui, uj) ≥ 3

for every i 6= j. By the Proposition (2.3.4), γ−1
M (Wp) = dp−2

6 e.

Since the graph G = Wp has a full degree vertex u1 and u1 is

adjacent to all the (p− 1) vertices, the induced sub graph 〈V −D′〉
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is not disconnected. In any way, one could not find a set D′ such

that 〈V −D′〉 is disconnected. By the result (1.4), γSM(Wp) = 3 and

D = {u1, u2, u5} is a γSM - set of G. Now, choose a set D′ ⊆ V −D

such that |N [D′]| ≥ dp2e but 〈V −D′〉 is not disconnected since D′

does not contains full degree vertex u1. Hence γ−1
SM(G) = 0.

Proposition 6.3.5: Let G = Km,n be a complete bipartite graph.

Then γ−1
SM(G) =


n, if m = n

n = max(m,n), if m < n

Proof: Case (i): When m = n. Let V1(G) = {u1, u2, . . . , um}

and V2(G) = {v1, v2, . . . , vn}. Since all the vertices of G are ma-

jority dominating vertices, D = {u1} is a majority dominating set

and D′ = {v1} ⊆ V –D is an inverse majority dominating set of

G but the induced subgraph 〈V −D′〉 remains connected since the

graph G is a complete bipartite. Now , there exists a subset D′1 =

{v1, v2, . . . , vn} ⊆ V –D such that |N [D′1]| >
p
2 and the induced sub-

graph 〈V −D′1〉 is disconnected. This implies that D′1 is a minimal

inverse split majority dominating set of G. Thus γ−1
SM(G) = |D′1| = n.

Case (ii): When m < n. Let D = {u1} be a majority dominating

set of G. Let D′ = {u2} ⊆ V –D, where u2 ∈ V1(G). Then |N [D′]| =
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n + 1 > dp2e and D′ ⊆ V –D. Therefore D′ is a minimum inverse

majority dominating set of G but the induced subgraph 〈V −D′〉 is

connected. Now choose a subset D′1 = {v1, v2, . . . , vn} ⊆ V –D, where

vi ∈ V2(G) such that the induced subgraph 〈V −D′1〉 is disconnected

with m components and |N [D′1]| > d
p
2e. Hence D′1 is an inverse

split majority dominating set of G and γ−1
SM(G) = |D′1| = n. Hence

γ−1
SM(G) = max{m,n} = n, if m < n.

Example 6.3.6: LetG = K3,10 and V (G) = {u1, u2, u3, v1, v2, . . . , v10}

with d(ui) = 10 and d(vi) = 3. Then D = {u1}, D′ = {u2} and D′1 =

{v1, v2, . . . , v10} are the majority dominating set an inverse majority

dominating set and an inverse split majority dominating set of G

respectively. Hence γM(G) = 1 = γ−1
M (G) and γ−1

SM(G) = |D′1| = 10,

if m < n.

Proposition 6.3.7: Let Cp, p ≥ 3 be any cycle. Then,

γ−1
SM(G) =


2, if 3 ≤ p ≤ 6

dp6e, if p ≥ 7

Proof: Case (i): When 3 ≤ p ≤ 6. Let G = Cp, be a cycle with

d(vi) = 2 for all vi ∈ V (G). Let D = {v2} and D′ = {v3} ⊆ V –D be
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a majority dominating set and an inverse majority dominating set of

G. Since 〈V −D′〉 is connected, choose D′1 = {v1, v3} ⊆ V –D such

that |N [D′1]| >
p
2 and 〈V −D′1〉 is disconnected. Hence γ−1

SM(G) =

|D′1| = 2.

Case (ii): When p ≥ 7. By the similar arguments as in Proposition

(6.3.2) of G = Pp, a path, we obtain γ−1
SM(G) = dp6e.

Theorem 6.3.8: Let G = S(K1,p−1) be a subdivision of a star with

p vertices. Then γ−1
SM(G) = dp−2

4 e.

Proof: Let V (G) =
{
u, u1, u2, . . . , ubp2c, v1, v2, . . . , vbp2c

}
where u is

a central vertex, v1, v2, . . . , vbp2c are pendants and u1, u2, . . . , ubp2c are

middle vertices of each edge of G. Since d(u) = dp2e−1, D = {u} be a

majority dominating set of G. Choose D′ = {u1, u2, . . . , ut} ⊆ V −D

with |D′| = t = dp−2
4 e such that d(ui, uj) ≥ 2 for every i 6= j. Then

|N [D′]| ≥ 2t + 1.Therefore |N [D′]| ≥ 2dp−2
4 e + 1 ≥ dp2e and D′ ⊆

V −D. Hence D′ is an inverse majority dominating set of G. Since

the graph S(K1,p−1) has cut vertices, the induced subgraph 〈V −D′〉

is disconnected. Hence D′ is an inverse split majority dominating set

of G and γ−1
SM(G) = |D′| = dp−2

4 e.
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Theorem 6.3.9: Let G be a uniform caterpillar with p vertices and

t pendants attached to each vertex of G. Then γ−1
SM(G) = d p

2(t+3)e.

Proof: Let Pn be a path with n vertices and t pendants attached to

every vertex of G. Therefore p = (t+ 1)n in which u1 and un are end

vertices of G and (u2, . . . , un−1) are intermediate vertices of G with

d(u1) = (t + 1) = d(un) and d(ui) = (t + 2), for i = 2, . . . , (n − 1).

This theorem is proved by induction on the number of pendants ‘t’.

If t = 1 then p = 2n and all intermediate vertices ui such that

d(ui) = 3, for all i = 2, . . . , (n − 1). Let D = {u2, u5, . . . , ur} with

d(ui, uj) = 3, for every i 6= j and ui, uj ∈ D such that |D| = r = dp8e

with |N [D]| ≥ dp2e. Then D is a γM - set of G.

Let D′ = {u3, u6, . . . , ur+1} ⊆ V − D with d(ui, uj) = 3 and

|D′| = r = dp8e. Then |N [D′]| = r|N [ui]| = 4r = 4dp8e ≥ d
p
2e

and D′ ⊆ (V −D). Therefore D′ is an inverse majority dominating

set of G. Since (V − D) has cut vertex, 〈V −D′〉 is disconnected.

Therefore, D′ is an inverse split majority dominating set of G and

if t = 1, γ−1
SM(G) ≤ |D′| = dp8e = d p

2(t+3)e. If t = 2, then p = 3n

and d(ui) = 4, for i = 2, 3, . . . , (n − 1). Therefore choose D′ ⊆

(V −D) with |D′| = d p10e. Since (V –D) has cut vertex, 〈V −D′〉 is
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disconnected. Therefore γ−1
SM(G) ≤ |D′| = d p10e = d p

2(t+3)e, if t = 2.

This result is true for t = 1, 2, 3, . . . , (t − 1). If t = (t − 1)

pendants then p = tn vertices in G and d(ui) = (t − 1 + 2) = t + 1,

for i = 2, . . . , (n − 1). Hence γ−1
SM(G) ≤ |D′| = d p

2(t+4)e = d p
2(t+3)e,

if t = t − 1. Suppose G has t pendants at each of the ‘n’ vertices.

Then p = (t + 1)n and d(ui) = (t + 2), for i = 2, . . . , (n − 1).

Let D′ = {u3, u5, . . . , ur} ⊆ (V − D) with d(ui, uj) = 3, for i 6= j

and |D′| = r = d p
2(t+3)e. Then |N [D′]| = r|N [ui]| = r(t + 1) =

d p
2(t+3)e(t+3)e ≥ dp2e. Since (V −D) has cut vertex, D′ includes some

cut vertices and 〈V −D′〉 is disconnected. HenceD′ is an inverse split

majority dominating set of G and γ−1
SM(G) ≤ |D′| = d p

2(t+3)e, if G has

t– pendants and p = n(t+ 1).

Suppose |D1| < |D′|. Then |N [D1]| < dp2e and D1 ⊆ V −D. Also,

〈V −D1〉 is disconnected. But D1 is not an inverse split majority

dominating set of G. Hence γ−1
SM(G) > |D1| and γ−1

SM(G) ≥ |D′| =

d p
2(t+3)e combining the above results, we obtain γ−1

SM(G) = d p
2(t+3)e.

Proposition 6.3.10: Let G = Fn◦K1 be a Corona graph with n ≥ 4.

Then γ−1
SM(G) = d p10e, where Fn = Pn−1 ∨K1.

Proof: Let Fp = Pn−1 ∨ K1 and the Corona graph G = Fn ◦ K1



Ch. 6: Inverse Split Majority Dominating Set of a Graph 206

with p = 2n = |V (G)|. Let V (G) = {u1, u2, . . . , un, v1, v2, . . . , vn}

where ui ∈ V (Fn) and vi’s are pendants. Since d(u1) = p
2 , D =

{u1} is a majority dominating set of G. Now, choose a set D′ =

{u2, u5, . . . , ut} ⊆ V −D with |D′| = t = d p10e such that d(ui, uj) ≥ 3.

Let ∆′(G) be the maximum degree of (V−D) and ∆′(G) = d(ui), ui 6=

u1. Since d(ui) = 4, |N [D′]| =
t∑
i=1

d(ui) + t–(t–1) = 4t + 1 = 4d p10e +

1 ≥ dp2e and the induced subgraph 〈V −D′〉 is disconnected with ‘t’

isolates. Hence D′ is an inverse split majority dominating set and

γ−1
SM(G) ≤ |D′| = d p10e. Suppose choose the set D′ with |D′| = t− 1.

Then |N [D′]| < dp2e and D′ ⊆ V − D. It leads to the set D′ is not

an inverse split majority dominating set of G and γ−1
SM(G) ≥ d p10e.

Hence γ−1
SM(G) = d p10e.

The following graph structure determines the two numbers γ−1
SM(G)

and γ−1
M (G) are equal.

Theorem 6.3.11: For a binary tree T with k level and p vertices,

γ−1
SM(G) = dp8e and γ−1

SM(G) = γ−1
M (G).

Proof: This result is proved by induction on the level ‘k’ of a tree T .

Let T be a binary tree with p vertices such that d(u1) = 2, d(ui) = 3,
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where ui’s are intermediate vertices and others are pendants. Let

D = {u1} and D′ = {u2} be a majority dominating set and an

inverse majority dominating set of G. Since a tree T has a cutvertex,

D′ is also an inverse split majority dominating set of G.

At level 1, p = 1 + 21 = 3 and γ−1
M (G) = γ−1

SM(G) = 1. At level

2, p = 3 + 22 = 7. Since T has two intermediate vertices u1 and

u2, γM(G) = |D| = {u1} = 1 and γ−1
M (G) = |D′| = {u2} = 1. Since

u2 is a cut vertex of T , D′ is also an inverse split majority dominating

set of G. Hence γ−1
SM(G) = 1 = γ−1

M (G). At level 3, p = 7 + 23 = 15,

there are 4 intermediate vertices {u1, u2, u3, u4}. Let D = {u1, u3}

and D′ = {u2, u4} ⊆ V −D such that |N [D]| = |N [D′]| = 8 = dp2e.

Hence D is a majority dominating set of G and D′ is an inverse

majority dominating set of G. Since D′ has cut vertex and 〈V −D′〉

is disconnected, D′ is also an inverse split majority dominating set

of G. It implies that γM(G) = γ−1
M (G) = γ−1

SM(G) = 2.

This result is true for (k−1) level. Now, at level k, p = [V (lk−1)]+

2k, where 2k pendants and (p−2k−1) intermediate vertices. Let D′ =

{u1, u3, u4} ⊆ (V − D) such that |D′| = t = dp8e with d(ui, uj) = 2

and |N [D′]| =
t∑
i=1

d(ui)+ t = 4t = 4dp8e ≥ d
p
2e. Hence D′ is an inverse

majority dominating set of G and γ−1
M (G) = dp8e. Since (V − D)
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contains cut vertices, induced subgraph 〈V −D′〉 is disconnected. It

implies that D′ is also an inverse split majority dominating set of G

and γ−1
SM(G) = |D′| = dp8e = γ−1

M (G).

6.4 Relationship with Other Parameters

In this section, the relationship of γ−1
SM(G) with the inverse ma-

jority domination number γ−1
M (G) and connectivity number of κ(G)

of a graph G is discussed.

Theorem 6.4.1: Let D be a γM -set of G. If the induced subgraph

〈V −D〉 contains a cut vertex then γ−1
SM(G) = γ−1

M (G).

Proof: Let D be a minimum majority dominating set of G. Let

u ∈ V −D be a cut vertex of G.

Case (i): When d(u) ≥ dp2e − 1. Then D′ = {u} is an inverse

majority dominating set of G and γ−1
SM(G) = |D′| = γ−1

M (G) = 1.

Case (ii): When d(u) ≤ dp2e − 2. Then γ−1
M (G) ≥ 2. Since the

γ−1
M - set D′ contains a cut vertex u, the induced subgraph 〈V –D′〉 is

disconnected. It implies that γ−1
SM(G) ≥ 2. Since the cut vertex u of

degree d(u) ≥ 2, u is not a pendant. If d(u) = 2 and u ∈ V − D,
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the subset D′ = {u, u1, . . . , ut} ⊆ V − D such that d(ui, uj) ≥ 3,

for i 6= j and |D′| = t + 1 where t = dp6e − 1. Then |N [D′]| =

3(t+ 1) ≥ dp2e. It implies that D′ is an inverse majority dominating

set of G and γ−1
M (G) = t+1. Since D′ contains a cut vertex u and the

induced subgraph 〈V −D′〉 is disconnected the set D′ is an inverse

split majority dominating set of G and γ−1
SM(G) = |D′| = t+1. Hence

γ−1
M (G) = γ−1

SM(G).

If d(u) ≥ 3 and u ∈ V − D then the set D′ = {u, u1, . . . , ut} ⊆

V − D with d(ui, uj) ≥ 3, for i 6= j and ui, uj ∈ D′ and |D′| =

t + 1, where t ≥ dp8e − 1. Then |N [D′]| ≥ 4(t + 1) ≥ dp2e implies

that D′ is an inverse majority dominating set of G and γ−1
M (G) =

t + 1. Since D′ includes the cut vertex u, 〈V −D′〉 is disconnected

and γ−1
SM(G) = |D′| = t + 1. Hence, in all degrees of a cut vertex

u, if the induced subgraph 〈V −D〉 contains a cut vertex ‘u’ then

γ−1
SM(G) = γ−1

M (G).

Theorem 6.4.2: Let D be a minimum majority dominating set of a

connected graph G. If the induced subgraph 〈V –D〉 does not contain

a cut vertex then γ−1
SM(G) ≥ κ(G) where κ(G) is a vertex connectivity

of G.
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Proof: Let D be a γM -set of a connected graph G with p vertices.

Let S ⊆ V −D and S = {u1, u2, . . . , ut} be a vertex cut of G. Then

〈V − S〉 is disconnected with atleast two components g1 and g2 and

each vertex is the end vertex of every edge connecting the components

g1 and g2.Therefore the vertex connectivity number κ(G) = |S| = t.

Case (i): If |N [S]| ≥ dp2e and S ⊆ V −D, then S is an inverse split

majority dominating set of G and γ−1
SM(G) = |S| = κ(G).

Case (ii): If |N [S]| < dp2e then choose a subset D1 = {S} ∪ {S1},

where S = {u1, u2, . . . , ut1} with |S| = t1 is a vertex cut and S1 =

{v1, v2, . . . , ut2} ⊆ V −D with |S1| = t2 such that |N [D1]| ≥ dp2e and

|D1| = t = t1 + t2. If γ−1
SM(G) > κ(G) = |S|. Since D1 includes a

vertex cut, the induced subgraph 〈V −D1〉 is disconnected. Since

S ⊆ V − D and S1 ⊆ V − D,D1 ⊆ V − D and |D1| = t = t1 + t2.

It implies that D1 is an inverse split majority dominating set of G

and |S| ⊆ |D1|. Therefore |S| = κ(G) < γ−1
SM(G) = |D1|. Thus

γ−1
SM(G) > κ(G). Hence from case (i) and (ii), we obtain γ−1

SM(G) ≥

κ(G), where κ(G) is the vertex conectivity of G. This bound is

sharp if G = C19. By the results (6.3.1)(3), γ−1
SM (C19) = dp6e = 4 and

κ(G) = 2. Hence γ−1
SM(G) > κ(G). Also for Petersen graph, κ(G) = 3

and γ−1
SM(G) = 3.
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6.5 Bounds of γ−1
SM(G)

The following theorem gives a lower and upper bound of a tree

interms of the number of vertices p, maximum degree ∆(G) and max-

imum degree ∆′(G) in (V −D) where D is a γM - set of G.

Theorem 6.5.1: For any tree T 6= K1,p−1, dp8e ≤ γ−1
SM(G) ≤ dp4e+ 1.

These bounds are sharp.

Proof: The theorem is proved by induction on the number of pen-

dants ‘e’. Since every tree T has atleast two pendants, if e = 2 then

T = Pp, a path. By the Proposition (6.3.2), γ−1
SM(Pp) = dp6e > d

p
8e. If

e = 3, then the tree T has the structure a caterpillar or a double star.

By the result (6.3.9), we have γ−1
SM(T ) = dp8e and if T is a double star,

by the result (6.3.1)(7), γ−1
SM(Dr,s) ≥ dp8e. If e = 4, then T is a binary

tree and by the Theorem (6.3.11), γ−1
SM(T ) = dp8e.

This result is true for e = 2, 3, 4, . . . , p − 3. If e = p − 2 then

T = Dr,s, a double star with (r + s) = (p − 2). By the result

(6.3.1)(7), γ−1
SM(G) = 1, if r = s. The lower bound is sharp if T is a

caterpillar with p vertices. The upper bound exists if T = D1,10 is a

double star with p = 13. Let D = {v} be majority dominating set
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S = {u, v1, v2, v3, v4} ⊆ V −D, where d(u) = 2 and vi’s are pendants

such that |N [S]| ≥ dp2e. It implies that S is an inverse split majority

dominating set of G and γ−1
SM(G) = |S| = 5 = dp4e+ 1.

Theorem 6.5.2. If G is a connected graph and H is a connected

spanning subgraph of G then γ−1
SM(G) ≤ γ−1

SM(H).

Proof: Since G is connected, any connected spanning subgraph of G

is a minimally connected subgraph H of G. It implies that γSM(G) ≤

γSM(H) and γSM(G) ≤ γ−1
SM(G). Since H is a spanning subgraph of

G, γ−1
SM(G) ≤ γ−1

SM(H).

Theorem 6.5.3. Let G = G1 ◦G2 be a corona graph with p vertices

where G1 and G2 are any two connected graphs. Then γ−1
SM(G) =

d p
2(∆′(G)+1)e where ∆′(G) is a maximum degree of (V −D).

Proof: Let G1 and G2 be any two connected graphs with p1 and

p2 such that p1 ≥ p2. Let V (G1) = {v1, v2, . . . , vp1} and V (G2) =

{u1, u2, . . . , up2} with |V (G1)| = p1 and |V (G2)| = p2 and |V (G)| =

p = (p1 ◦ p2) + p1. Let ∆(G) is the maximum degree of G and ∆′(G)

be the maximum degree of (V −D).
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Case (i): When ∆(G) > ∆′(G). Let ∆(G) = d(vi) ≥ dp2e − 1, for

exactly one v1 ∈ V (G1). Then D = {v1} be a majority dominating

set of G. Since the corona graph G contains cutvertices, 〈V −D〉 is

disconnected. Therefore D is a split majority dominating set of G

and γSM(G) = |D| = 1. Now, take ∆′(G) is the maximum degree

〈V −D〉 with ∆′(G) < dp2e − 1 and ∆′(G) = d(vi), for vi 6= v1.

Let D′ = {v2, v5, . . . , vt} ⊆ V − D such that d(xi, xj) ≥ 3,

for i 6= j and all vi ∈ V (G1) with |D′| = t = d p
2(∆′+1)e. Then

|N [D′]| =
t∑
i=1

d(vi) + t = t∆′(G) + t = t(∆′(G) + 1) = dp2e. Since

G contains cutvertices which are all vi ∈ V (G1). Induced subgraph

〈V −D′〉 is disconnected. It implies that D′ is an inverse split ma-

jority dominating set of G and γ−1
SM(G) ≤ |D′| = d p

2(∆′+1)e.

Case (ii): When ∆(G) = ∆′(G). Let D be a γSM– set of G

with |D| = d p
2(∆+1)e. Let D′ = {v2, v5, . . . , vt} ⊆ V − D such that

d(vi, xj) ≥ 3, for i 6= j with |D′| = t = d p
2(∆′+1)e. Then by the argu-

ment, |N [D′]| = dp2e and D′ is an inverse split majority dominating

set of G. Hence γ−1
SM(G) ≤ |D′| = d p

2(∆′+1)e.

Suppose the set D1 ⊆ V − D such that |D1| < |D′|. Then

|N [D1]| < dp2e and 〈V −D1〉 is disconnected. It implies that D1 is

not an inverse split majority dominating set of G. Hence γ−1
SM(G) ≥
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|D1| ≥ |D′| =
⌈

p
2(∆′+1)

⌉
. From the above inequalities, we obtained

γ−1
SM(G) = d p

2(∆′(G)+1)e.

The next result produces a bound for any connected graph interms

of p and ∆(G).

Theorem 6.5.4: For any connected graphG 6= Kp, a complete graph

with p vertices, d p
2(∆+1)e ≤ γ−1

SM(G) ≤ p− 2. The bounds are sharp.

Proof: Since γ−1
M (G) ≤ γ−1

SM(G) and γ−1
M (G) ≥ d p

2(∆+1)e. Then

γ−1
SM(G) ≥ d p

2(∆+1)e. Next inequality is proved by induction on ∆(G).

If ∆ = 2, then G = Cp, a Cycle or Pp, a Path with p vertices. By

the Proposition (6.3.2), γ−1
SM(G) = dp6e = d p

2(∆+1)e. If ∆ = 3, then G

is a Caterpillar with one pendant at each vertex of the path. By the

Theorem (6.3.9), γ−1
SM(G) = dp8e = d p

2(∆+1)e.

This result is true for all ∆ = 2, 3, . . . , (p− 2). If ∆ = p− 1 and

G 6= Kp, then G = Kp − {e} and γ−1
SM(G) = κ(G) = p − 2. Thus

γ−1
SM(G) = (p − 2). Hence d p

2(∆+1)e ≤ γ−1
SM(G) ≤ (p − 2). These

bounds are sharp for G = Cp, cycle and G = Kp − {e}.
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Theorem 6.5.5. For any tree T, γ−1
SM(T ) ≤ dp2e − k + 1 where k is

the degree of a cut vertex in (V –D).

Proof: Let D be a γM - set of T . Let v be a cut vertex in (V –D) such

that d(v) = k. If k = dp2e, then the cut vertex v of degree d(v) = dp2e.

Let D′ = {v} ⊆ V −D such that |N [D′]| ≥ dp2e and 〈V −D′〉 is dis-

connected. It implies that D′ is an inverse split majority dominating

set of T and γ−1
SM(G) ≤ |D′| = 1 = dp2e − d

p
2e + 1 = dp2e − d(v) + 1.

It implies that γ−1
SM(G) ≤ dp2e − k + 1. If k = dp2e − 1 = d(v) then

|N [v]| = dp2e. By the same argument as before, γ−1
SM(G) ≤ dp2e−k+1.

If k = dp2e − 2 = d(v) then |N [v]| = dp2e − 1.

Let D′ = {v, v1} ⊆ (V −D) such that |N [D′]| ≥ dp2e. Since v is a

cut vertex in (V –D), 〈V −D′〉 is disconnected. It implies that D′ is

an inverse split majority dominating set of T and γ−1
SM(T ) ≤ |D′| =

2 = dp2e − d
p
2e+ 2 = dp2e −

(
dp2e − 2

)
.

Therefore γ−1
SM(T ) ≤ dp2e − k. Hence γ−1

SM(G) < dp2e − k + 1.

This result is true for k = dp2e, d
p
2e − 1, dp2e − 2, . . . , 3. When k =

2 = d(v) then |N [v]| = 3. Let D′ = {v, v1, v2, . . . , vt} ⊆ V − D

such that |N [D′]| ≥ dp2e and |D′| = dp6e. Since v ∈ D′ is a cut
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vertex 〈V −D′〉 is disconnected. It implies that D′ is an inverse split

majority dominating set of T and γ−1
SM(G) ≤ |D′| = dp6e = dp2e −

dp2e+d
p
6e = dp2e−d

p
3e < d

p
2e−k+1. Therefore γ−1

SM(T ) < dp2e−k+1.

Hence γ−1
SM(T ) ≤ dp2e − k + 1.

The bound is sharp if T = Dr,s, r ≤ s. If T = D5,5 with p = 12

and k = 6. Then γM(G) = 1 and γ−1
SM(G) = 1 = dp2e − k + 1. If

T = D3,10 with p = 15 and k = 4 then γM(G) = 1 and γ−1
SM(G) =

3 < dp2e − k + 1.

The following section exhibits the necessary and sufficient condi-

tions for the existence of a minimal inverse split majority dominating

set with respect to a split majority dominating set D with two classi-

fications such as (V −D) has a cut vertex and (V −D) contains no

cut vertex.

6.6 Characterisation Theorem for

Minimal Inverse Split

Majority Dominating Set

Theorem 6.6.1: Let D be a γSM - set of a connected graph G and

(V −D) has a cut vertex. Then the inverse split majority dominating
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set D′ ⊆ V −D is minimal if and only if for each u ∈ D′, either the

following condition (a) or (b) holds.

(a) (i) If |N [D′]| > dp2e then |pn[u,D′]| > |N [D′]| − dp2e and

(ii) 〈(V −D′) ∪ {ui}〉 is connected, for all ui ∈ D′.

(b) (i) If |N [D′]| = dp2e then either u is an isolate of D′ or pn[u,D′]∩

(V −D′) 6= ∅ and

(ii) 〈(V −D′) ∪ {ui}〉 is connected, for all ui ∈ D′.

Proof: Let D be a γSM - set of connected graph G and (V −D) has

a cut vertex. Assume that D′ ⊆ V − D is a minimal inverse split

majority dominating set of G with respect to D.

Case(i) Let u ∈ D′. Since D′ is minimal and |N [D′]| ≥ dp2e, the set

(D′−{u}) is not an inverse split majority dominating set of G. Then

either |N [D′ − {u}]| < dp2e or 〈V −D′〉 is connected. Let |N [D′]| >

dp2e. Since, |N [D′−{u}]| < dp2e, |pn[u,D′]| = |N [D′]|− |N [D′−{u}]|

and |N [D′]|−|pn[u,D′]| < dp2e. It implies that |pn[u,D′]| > |N [D′]|−

dp2e, for some u ∈ D′. Hence the condition (a) (i) holds.

Since D′ is a minimal inverse split majority dominating set of

G, the induced subgraph 〈V −D′〉 is disconnected. If D′ = {u1} ⊆
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(V−D) and (V−D) has a cut vertex u1 then 〈V −D′〉 is disconnected

with atleast 2 components contains isolates. Now add this cut vertex

u1 to 〈V −D′〉, the induced subgraph 〈(V −D′) ∪ {u1}〉 would be

connected in G for some u ∈ D′. If D′ = {u1, . . . , ui}, i ≥ 2 and

D′ ⊆ (V−D) contains a vertex cut ‘S’ with |S| ≥ 2 and |N [D′]| ≥ dp2e

then the induced subgraph 〈V −D′〉 is disconnected with atleast two

components. Now, if add all vertices ui ∈ D′ to (V − D′) then

〈(V −D′) ∪ {ui}〉 would be connected in G. Hence the condition

(a)(ii) holds.

Case (ii): Let |N [D′]| = dp2e and D′ ⊆ (V − D) and u ∈ D′.

Suppose u is neither an isolate of D′ nor u has a private neighbour

in 〈V −D′〉. Then pn[u,D′] = ∅. Since |N [D′ − {u}]| = |N [D′]| −

|pn[u,D′]|, |N [D′ − {u}]| = |N [D′]| = dp2e. It implies that (D′ −

{u}) ⊆ (V−D) is an inverse split majority dominating set ofG, which

is a contradiction. Also, By the above arguments, 〈(V −D′) ∪ {ui}〉

is connected in G, for all ui ∈ D′.

Conversely, suppose one of the above conditions (a) or (b) is true.

Let D′ be an inverse split majority dominating set of G. Then prove

that D′ is a minimal inverse split majority dominating set of G.
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Suppose D′ is not minimal. Then D1 = (D′ − {u1}) ⊆ (V − D) is

an inverse split majority dominating set of G, for some u1 ∈ D′. It

implies that |N [D1]| ≥ dp2e and 〈V −D1〉 is disconnected.

Case (i): Suppose the condition (a) (i) holds, for some u ∈ D′. Then

|N [D′]| > dp2e and |pn[u,D′]| > |N [D′]| − dp2e. Since |pn[u,D′]| =

|N [D′]| − |N [D′ − {u}]| and D1 = D′ − {u}, |N [D′]| − |N [D1]| =

|pn[u,D′]| > |N [D′]| − dp2e. It implies that |N [D1]| < dp2e, which is a

contradiction to the assumption. Also , if the condition (a) (ii) holds

then 〈(V −D′) ∪ {ui}〉 is connected, for some ui ∈ D′. If for any

u1 ∈ D′ and u1 is a cut vertex in (V −D), then 〈(V −D′) ∪ {u1}〉 =

〈V − (D′ ∪ {u1})〉 is connected. It implies that 〈V −D1〉 is con-

nected for any u1 ∈ D′, which is a contradiction. Hence D′ is a

minimal inverse split majority dominating set of G with respect to

D.

Case (ii): Suppose the condition (b) (i) holds for some u ∈ D′.

Then |N [D′]| = dp2e and either u is an isolate of D′ or pn[u,D′] ∩

(V − D′) 6= φ. If u is an isolate of D′ then u ∈ pn[u,D′] and

|pn[u,D′]| ≥ 1. If pn[u,D′] ∩ (V − D′) 6= φ then |pn[u,D′]| ≥ 2.

Since |N [D′]| − |N [D1]| = |pn[u,D′]| ≥ 2, dp2e − |N [D1]| ≥ 2. Then
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|N [D1]| ≤ dp2e − 2, which is contradiction. Also by the above argu-

ments the induced subgraph 〈V −D1〉 is connected, for any u1 ∈ D′,

which is a contradiction. Hence D′ is a minimal inverse split majority

dominating set of G with respect to D.

Theorem 6.6.2: Let D be a γSM - set of a connected graph G and

(V−D) has no cut vertex. Then the inverse split majority dominating

set D′ ⊆ V −D is minimal if and only if for each u ∈ D′, one of the

following conditions holds.

(a) (i) If |N [D′]| = p, |pn[u,D′]| ≤ 1 and

(ii) 〈(V −D′) ∪ {ui}〉 is connected, for all ui ∈ D′.

(b) (i) If |N [D′]| ≥ dp2e, |pn[u,D′]| ≥ |N [D′]| − dp2e+ 1 and

(ii) 〈(V −D′) ∪ {ui}〉 is connected, for all ui ∈ D′.

Proof: Let D be a γSM - set of a connected graph G and (V –D) has

no cut vertex. Assume that D′ ⊆ (V −D) is a minimal inverse split

majority dominating set of G with respect to D.

Claim (1): The condition (a) is true.

Case (i): Let |N [D′]| = p and let u ∈ D′. Since D′ is minimal,
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|N [D′]| ≥ dp2e and 〈V −D′〉 is disconnected. Then (D′ − {u}) is not

an inverse split majority dominating set of G. It implies that either

|N [D′ − {u}]| < dp2e or 〈V − (D′ − {u})〉 is not disconnected. Since

(V −D) has no cut vertex, there exists a vertex cut S ⊆ D′ such that

|S| ≥ 2 and |N [D′]| = p. Now |pn[u,D′]| = |N [D′]| − |N [D′ − {u}]|.

Since, |N [D′−{u}]| ≤ p− 1, |pn[u,D′]| ≤ p− (p− 1) ≤ 1. It implies

that |pn[u,D′]| ≤ 1, for some u ∈ D′. Hence condition (a)(i) holds.

By the above result suppose 〈(V −D′) ∪ {ui}〉 is connected, for some

ui ∈ D′. Then 〈(V −D′) ∪ {ui}〉 is connected for some ui ∈ D′.

Since (V –D) has no cut vertex, there exists a vertex cut S ⊆

(V − D) and S ⊆ D′ ⊆ (V − D) such that |S| ≥ 2. Let S =

{u1, u2, . . . , ut} ⊆ D′ ⊆ V − D and D′ = {u1, u2, . . . , ut1, . . . , ui}

such that |N [D′]| ≥ dp2e. By the above result, since 〈V −D′〉 is

disconnected, it consists of atleast three components in G. If add

all vertices ui ∈ D′ to 〈V −D′〉 then only the induced subgraph

〈(V −D′) ∪ {ui}〉 would be connected in G. Thus condition (a) (ii)

holds.

Claim (2): The Condition (b) is true.
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Case(ii): Let |N [D′]| ≥ dp2e. Since D′ is a minimal inverse split

majority dominating set of G, 〈V −D′〉 is disconnected. Then (D′−

{ui}) is not an inverse split majority dominating set. It implies that

either |N [D′ − {ui}]| < dp2e or 〈V − (D′ − {ui}〉 is not disconnected,

for some ui ∈ D′.

Let |N [D′ − {ui}]| < dp2e. Since (V –D) has no cut vertex, there

exists a vertex cut S ⊆ (V −D) such that |S| ≥ 2. Then S ⊆ D′ ⊆

(V −D) such that |S| ≤ |D′|. Now, for some u ∈ D′, |N [D′−{u}]| =

|N [D′]|−|pn[u,D′]| < dp2e−1 implies that |pn[u,D′]| ≥ |N [D′]|−dp2e+

1, for any u ∈ D′. Therefore condition (b) (i) holds, for any u ∈ D′.

By the above result, if 〈(V −D′) ∪ {ui}〉 is not disconnected then

〈(V −D′) ∪ {ui}〉 is connected. By applying the argument as in case

(i), we obtain the induced subgraph 〈(V −D′) ∪ {ui}〉 is connected,

for all ui ∈ D′. Therefore condition (b) (ii) holds.

Conversely, assume that either the condition (a) or the condition

(b) holds. Let D′ be an inverse split majority dominating set.

To prove that D′ is minimal inverse split majority dominating set

of G. Suppose D′ is not minimal. Then (D′ − {u}) ⊆ (V −D) is an

inverse split majority dominating set ofG, for some u ∈ D′. It implies
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that |N [D′ − {u}]| ≥ dp2e and 〈V − (D′ − {u}〉 is disconnected.

Case (i): Suppose the condition (a) holds, for some u ∈ D′. Let

|N [D′]| = p and |pn[u,D′]| ≤ 1. Since |pn[u,D′]| = |N [D′]|−|N [D′−

{u}]|, |N [D′]| − |N [D′ − {u}]| ≤ 1. It implies that |N [D′ − {u}]| ≥

p − 1, which is a contradiction. Also, if the condition (a) (ii) holds

then 〈(V −D′) ∪ {ui}〉 is connected, for all ui ∈ D′. Since (V –D) has

no cut vertex and all ui ∈ D′, 〈(V −D′) ∪ {ui}〉 is connected. So, for

any u ∈ D′, 〈V − (D′ ∪ {u}〉 is connected, contradiction. Hence D′

is a minimal inverse split majority dominating set of G with respect

to D.

Case (ii): Suppose condition (b) holds, for each ui ∈ D′. Let

|N [D′]| ≥ dp2e and |pn[u,D′]| ≥ |N [D′]| − dp2e + 1. Since |N [D′]| −

|N [D′−{u}]| = |pn[u,D′]| ≥ |N [D′]| − dp2e+ 1, implies that |N [D′−

({u}]| < dp2e−1, which is a contradiction. By the similar argument as

in case (i), 〈V − (D′ ∪ {ui}〉 is connected, for any ui ∈ D′. Hence D′

is a minimal inverse split majority dominating set of G with respect

to D.
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Theorem 6.6.3: Let D be a γSM - set of a graph G. Then γ−1
SM(G)

= 0 if and only if the graph G has atleast one full degree vertex.

Proof: Let D and D′ be the γSM -set and γ−1
SM - set of G respectively.

Let γ−1
SM(G) = |D′| = 0. Then there is no such set D′ ⊆ (V − D)

such that the induced subgraph 〈V −D′〉 is disconnected. It implies

that 〈V −D′〉 is connected. Since γSM(G) = 1, D = {u1} such that

|N [D]| ≥ dp2e and 〈V −D〉 is disconnected. Then this vertex u1 ∈

(V −D′). Since 〈V −D′〉 is connected, u1 is adjacent to all vertices

of 〈V −D′〉. Also since (V − D) is disconnected, all the remaining

vertices are of degree d(ui) ≤ 1, i ≥ 2 and d(u1) = p − 1. It implies

that u1 is a full degree vertex of G.

Since 〈V −D′〉 is connected, the vertices of the set D are in

〈V −D′〉 and 〈V −D〉 is disconnected. Suppose there is no full de-

gree vertex u1 ∈ V (G). Then u1 is not adjacent to all the vertices

of G. Now, there exists a set D′ ⊆ V − D such that |N [D′]| ≥ dp2e

and 〈V −D′〉 is disconnected. It implies that D′ is a γ−1
SM -set of G

and γ−1
SM(G) = |D′| ≥ 2, which is a contradiction to the assumption.

Hence the graph G has atleast one full degree vertex.

Conversely, the theorem is proved by an induction on the number
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of full degree vertices ui. Suppose G has exactly one full degree vertex

u1. Then D = {u1} is a majority dominating set of G and γM(G) = 1.

Since δ(G) ≥ 1, D′ ⊆ V − D is an inverse majority dominating set

of G with cardinality |D′| ≥ 2 and the induced subgraph 〈V −D′〉

is not disconnected. Since u1 is adjacent to all vertices of G and

D′ ⊆ V −D, u1 ∈ (V −D′) and D ⊆ V −D′. Then 〈V −D′〉 is still

connected to the full degree vertex u1. Hence one could not find an

inverse split majority dominating set for G and γ−1
SM(G) = 0.

If the graph G has two full degree vertices u1 and u2 then the

subset D = {u1} and D′ = {u2} ⊆ (V −D) are the majority domi-

nating set and an inverse majority dominating set of G respectively.

Since the induced subgraph 〈V −D′〉 contains the full degree vertex

u1 ∈ D, 〈V −D′〉 is again connected to the vertex u1, for any inverse

majority dominating D′. Hence there is no existence for γ−1
SM– set of

G and γ−1
SM(G) = 0.

This result is true for (p − 1) full degree vertices. Suppose all

vertices of G are full degree then the graph G is complete. Then

γM(G) = |D| = 1 and γ−1
M (G) = |D′| = 1. Since every vertex is

adjacent to all vertices of G, the induced subgraph 〈V −D′〉 would



Ch. 6: Inverse Split Majority Dominating Set of a Graph 226

never be disconnected, for any inverse majority domnating set D′ ⊆

V –D. Hence there is no existence for γ−1
SM - set of a graph G and

γ−1
SM(G) = 0.



Chapter 7

Inverse Non-split Majority

Domination in Graphs

Abstract

This chapter introduces an inverse non-split majority dominat-

ing set of a graph G. Inverse non-split majority domination

number γ−1
NSM(G) is determined for some families of graphs. Charac-

terization theorem on minimal inverse non-split majority dominating

sets is discussed. Bounds of an inverse non-split majority dominat-

ing set and some interesting results of γ−1
NSM(G) for connected and

disconnected graphs are also established.

227
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7.1 Introduction

Many domination parameters are obtained by combining domi-

nation with another graph theoretical property. In this chapter, the

parameters are defined by imposing additional constraint on the com-

plement of a dominating set. In 2000, Kulli and Janakiraman [32] in-

troduced the new domination parameter namely the Non-Split domi-

nating set of a graph G in domination theory. In 2008 [2], the inverse

split dominating set and inverse non-split dominating set of a graph

are defined and studied in detail by Amennal Bibi and Selvakumar.

They produced many inequalities and theorems on these two inverse

parameters. Then the concept “Non-Split Majority Dominating set

of a graph” was studied by Joseline Manora and Veeramanikandan

in 2015 [40].

The researcher is motivated by the above defined parameters and

introduced new concept an “Inverse Non-split Majority Domination

in Graphs”.

A study of the inverse non-split majority dominating set of any

graph structure is made in this chapter to some extent. The orga-

nization of this chapter is as follows. Section 7.1 is the introduction
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about the parameter. In Section 7.2, the concept of an inverse non-

split majority dominating set for a graph G is defined and illustrates

the concept with an example and some inequalities are also estab-

lished. The inverse non-split majority domination number γ−1
NSM(G)

is determined for various families of graphs in Section 7.3. Main re-

sults of γ−1
NSM(G) and characterization theorem for a minimal inverse

non-split majority dominating set of a graph G are determined in

Section 7.4. For a connected and disconnected graphs G, bounds of

γ−1
NSM(G) is discussed in the final Section 7.5.

7.2 Inverse Non-Split Majority

Dominating Sets

Definition 7.2.1: Let G be a graph with p vertices and q edges and

let D be a minimum non-split majority dominating set of G. Then

the set D′ ⊆ V −D is called an inverse non-split majority dominating

set of G with respect to D if |N [D′]| ≥ dp2e and the induced subgraph

〈V −D′〉 is connected.

Definition 7.2.2: The minimum and maximum cardinality of a

minimal inverse non-split majority dominating set D′ of G with
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respect to D is called the inverse non-split majority domination num-

ber, denoted by γ−1
NSM(G) and upper inverse non-split majority dom-

ination number by Γ−1
NSM(G) respectively.

Example 7.2.3: Consider the graph G with p = 9 vertices.

G:v

v

v

v

v

v

v

v

v1

2

3

4

5

6

7

8

9

Let D and D′ be a majority and inverse majority dominating set

of G. In the graph G, D = {v1, v2} and D′ = {v6, v7} ⊆ V − D.

Hence, γM(G) = |D| = 2 and γ−1
M (G) = |D′| = 2.

Let D1 = {v1, v2} be a non-split majority dominating set of G.

Let D′1 = {v6, v7, v8, v9} ⊆ V −D1 and D′2 = {v3, v4, v9} ⊆ V −D1 be

any two minimal inverse non-split majority dominating set of G with

respect to D1. Hence γNSM(G) = |D1| = 2, γ−1
NSM(G) = |D′2| = 3 and

Γ−1
NSM(G) = |D′1| = 4.

Observation 7.2.4:

1) For any connected graph G, γ−1
M (G) ≤ γ−1

NSM(G).
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2) For any connected graph G, γNSM(G) ≤ γ−1
NSM(G).

3) For any connected graph G, γ−1
SM(G) ≤ γ−1

NSM(G).

4) For any connected graph G, γ−1
M (G) ≤ γ−1

SM(G) ≤ γ−1
NSM(G).

7.3 γ−1
NSM(G) for Some Families of Graphs

The inverse non-split majority domination number γ−1
NSM(G) for

some classes of graph is determined in the following results.

Proposition 7.3.1: For a path Pp, p ≥ 2, then γ−1
NSM(G) = dp2e − 1.

Proof: Let G be a path with p ≥ 2. Let D =
{
u1, u2, . . . , udp2e−1

}
be

a non-split majority dominating set of G with |D| = dp2e−1. Choose

D′ =
{
up, up−1, . . . , udp2e+1

}
⊆ V − D such that d(ui, uj) = 1, for

ui, uj ∈ D′ and i 6= j and |D′| = p−
(
dp2e+ 1

)
+ 1 = dp2e − 1. Then

|N [D′]| = |D′|+ 1 = dp2e. Since d(ui, uj) = 3, for ui, uj ∈ D′ and u′is

are at the end of a path, 〈V −D′〉 is connected. HenceD′ is an inverse

non-split majority dominating set and γ−1
NSM(G) ≤ |D′| = dp2e − 1.

Suppose a subset D1 ⊆ (V − D) with |D1| < |D′| such that

|D1| = dp2e−2. Then |N [D1]| = |D1|+1 < dp2e. Since all vertices inD1

are of distance one, the induced subgraph 〈V −D′〉 is connected but
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|N [D1]| < dp2e. It implies that D1 is not an inverse non-split majority

dominating set of G. Hence γ−1
NSM(G) > |D1| and γ−1

NSM(G) ≥ |D′| =

dp2e − 1. Thus, γ−1
NSM(G) = dp2e − 1.

Proposition 7.3.2: Let G = S(K1,n) be a subdivision of a star with

p = (2n+ 1) vertices. Then γ−1
NSM(G) does not exist.

Proof: Let V (G) = {u, u1, u2, · · · , un, v1, v2, · · · , vn} where u is a

central vertex v1, v2, · · · , vn are pendants and u1, u2, · · · , un are middle

vertices of degree d(ui) = 2 and |V (G)| = 2n + 1 = p = odd.

Let D = {v1, v2, · · · , vt} be a γNSM -set of G with |D| = t = dp4e

such that 〈V −D〉 is connected. Choose the set D′ ⊆ V − D and

D′ = {vt+1, · · · , vn, un} such that |D′| = n − t + 1.Then |N [D′]| =

2(n− t) + 1. When t = dp4e and p = 2n+ 1, |N [D′]| = n− 1 < dp2e =

n + 1. Then |N [D′]| < dp2e and 〈V −D′〉 is connected. Therefore,

one could not form a set D′ ⊆ (V − D) such that |N [D′]| ≥ dp2e

and 〈V −D′〉 is connected in G. Otherwise the induced subgraph

〈V −D′〉 is not connected. Hence the inverse non-split majority dom-

inating set does not exist to this structure G.

Proposition 7.3.3: Let G = Wp be a wheel graph of p vertices.

Then γ−1
NSM(G) = dp−2

6 e.
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Proof: Let G = Wp = Cp−1 ∨K1 and ∨(G) = {u1, u2, · · · , up−1, up}

where u1 is a full degree vertex and d(ui) = 3, for all i. Let D =

{u1} be a majority dominating set of G. By the proposition (2.3.4),

γ−1
M (Wp) = dp−2

6 e. Choose a set D′ = {u2, u5, · · · , up−1} ⊆ (V −

D) and D′ is an inverse majority dominating set of G such that

d(ui, uj) ≥ 3 for every i 6= j with |D′| = dp−2
6 e. Since the graph G =

Wp has a full degree vertex u1, u1 is adjacent to all the (p−1) vertices

and the induced subgraph 〈V −D′〉 is connected with a vertex u1.

Hence D′ is also an inverse non-split majority dominating set of G

and γ−1
NSM(G) = |D′| = dp−2

6 e.

Proposition 7.3.4: Let G = H ◦K1 be a corona graph with p = 2n

vertices. Then γ−1
NSM(G) = dn2e.

Proof: Let G = H ◦ K1, where H is any connected graph with n

vertices. Let V (G) = {v1, · · · , vn, u1, · · · , un} for vi ∈ V (H) and u
′

is

are pendants and |V (G)| = p = 2n. By the result (1.4), γNSM(G) =

dp2e. Let D =
{
u1, · · · , un

2

}
⊆ V (G) with |D| = dp4e be a non-split

majority dominating set of G. If
(
p
2

)
= n is even, choose the set

D′ =
{
un

2 +1, · · · , un
}
⊆ V − D such that |D′| = n − n

2 = n
2 and

|N [D′]| = 2|D′| = n = dp2e. Since
{
un

2 +1, · · · , un
}

are all pendants,
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the induced subgraph 〈V −D′〉 is connected. If
(
p
2

)
= n is odd, D′ ={

un
2 +1, · · · , un, vn

}
⊆ V −D, where u

′

is are pendants and vn ∈ V (H)

with |D′| = dn2e and |N [D′]| = 2(|D′| − 1) + d(vn) = 2
(
dn2e − 1

)
+

1 = 2
(
n
2

)
+ 1 = n + 1. Then |N [D′]| = n + 1 > p

2 . Since un

is adjacent to vn ∈ V (H) and others are only pendants in D′, the

induced subgraph 〈V −D′〉 is connected. Hence in both cases, D′ is

an inverse non-split majority dominating set of G with respect to D

and γ−1
NSM(G) ≤ |D′| = dn2e.

Suppose D′1 =
{
v1, · · · , vdn2 e−1

}
⊆ V −D such that |D′1| = dn2e−1

and |D′1| < |D′|. Since vi ∈ V (H), the induced graph 〈V −D′1〉 is not

connected and 〈V −D′1〉 contains isolates. Therefore |N [D′1]| < d
p
2e

and D′1 is not an inverse non-split majority dominating set of G.

Hence γ−1
NSM(G) > dn2e − 1 and γ−1

NSM(G) ≥ |D′| = dn2e. Thus,

γ−1
NSM(G) = dn2e.

Proposition 7.3.5: Let G be a caterpillar graph with p vertices.

Then γ−1
NSM(G) =


dp4e, if

(
p
2

)
is even(

p
2

)
− 1, if

(
p
2

)
is odd.

Proof: Let G be a caterpillar with one pendant at each vertex and
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V (G) = {u1, u2, · · · , un, v1, v2, · · · , vn} where v1, v2, · · · , vn are pen-

dants and u1, u2, · · · , un are the vertices of a path in G with p = 2n.

By the result (1.4), γNSM(G) = dp4e and let D = {v1, v2, · · · , vt}

be a non – split majority dominating set of G with |D| = t = dp4e

such that 〈V −D〉 is connected and |N [D]| ≥
(
p
2

)
.

Case (i): when dp2e = n is even. Choose the setD′ = {vt+1, · · · , vn} ⊆

V −D with |D′| = n− t = dp4e and vt+1, · · · , vn are pendants. Then

|N [D′]| = 2|D′| = 2dp4e ≥
p
2 . Therefore |N [D′]| =

(
p
2

)
and the

induced subgraph 〈V −D′〉 is connected because vi ∈ D′ are all pen-

dants. Hence D′ is an inverse non-split majority dominating set of

G with respect to D and γ−1
NSM(G) ≤ |D′| = dp4e.

Suppose the set |D1| < |D′| and |D1| = |D′| − 1. Then |N [D1]| <(
p
2

)
and 〈V −D1〉 is connected but D1 is not an inverse majority

dominating set with respect to D. Hence γ−1
NSM(G) > |D1| and

γ−1
NSM(G) ≥ |D′| = dp4e. Thus γ−1

NSM(G) = dp4e, if dp2e is even.

Case (ii): when dp2e = n is odd. Choose the setD′ = {vt+1, · · · , vn} ⊆

V −D with |D′| = n− t where t = |D| = dp4e. Then |N [D′]| = dp2e−

1 < p
2 . Now choose another set D′ = {vt+1, · · · , vn, ut+1, · · · , un} ⊆

V −D with |D′| = 2(n− t). Then |N [D′]| = |D′|+1 = 2(n− t)+1 =

p − 2dp4e + 1 = dp2e. Since all the vertices vi and ui of D′ are
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adjacent, 〈V −D′〉 is connected. Hence D′ is an inverse non-split

majority dominating set of G with respect to D and γ−1
NSM(G) ≤

|D′| = 2(n − t) = dp2e − 1. Hence γ−1
NSM(G) ≤ dp2e − 1. Then

applying the same argument as in case (i), D1 is not an inverse

non-split majority dominating set of G with |D1| < |D′|. There-

fore γ−1
NSM(G) ≥ |D′| = dp2e − 1. Thus γ−1

NSM(G) = dp2e − 1, if p
2 is

odd.

Results 7.3.6:

1) For a Complete graph G = Kp, γ
−1
NSM(G) = 1.

2) For a Cycle Cp, γ
−1
NSM(Cp) = dp2e − 2, p ≥ 3.

3) Let G = Km,n,m, n ≥ 2 and m ≤ n be a Complete bipartite

graph. Then γ−1
NSM(G) = 1.

4) For a Star G = K1,p−1, γ
−1
NSM(G) = bp−1

2 c, p ≥ 3.

5) If G = mK2,m ≥ 1 then γ−1
NSM(G) = 1.

6) For a Double star G = Dr,s, r ≤ s, γ−1
NSM(G) = dp2e − 1, if

s = r, r + 1, r + 2.

7) For G = Kp − {e} and Kp − {2e}, γ−1
NSM(G) = 1.
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7.4 Results on γ−1
NSM(G)

This following theorem characterizes a minimal inverse non-split

majority dominating set of a graph G.

Theorem 7.4.1: Let D be a non-split majority dominating set of

graph G with p vertices. Then an inverse non-split majority domi-

nating set D′ ⊆ V −D of G is minimal with respect to D if and only

if for each vertex v ∈ D′, one of the following conditions holds.

(i) If |N [D′]| > dp2e, then |pn[v,D′]| > |N [D′]| − dp2e and N(v) ∩

(V −D′) 6= φ.

(ii) If |N [D′]| = dp2e then either v is an isolate of D′ or N(v)∩ (V −

D′) = φ or |pn[v,D′]| ∩ (V −D′) 6= φ.

Proof: Let D be a γNSM -set of a graph G. Suppose D′ is minimal

non-split majority dominating set of G with respect to D. Then

|N [D′]| ≥ dp2e and the induced subgraph 〈V −D′〉 is connected. Let

v ∈ D′.

Case (i): Suppose |N [D′]| > dp2e. Since D′ is minimal, the set

D′1 = D′ − {v} is not an inverse non-split majority dominating set

of G with respect to D. It implies that either |N [D′1]| < d
p
2e or
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〈V −D′1〉 is not connected.

Subcase (i): When |N [D′1]| < d
p
2e. Since |pn[v,D′]| = |N [D′]| −

|N [D′1]|, |pn[v,D′]| > |N [D′]| − dp2e, for every v ∈ D′. Hence the

condition (i) holds.

Subcase (ii): When 〈V −D′1〉 is not connected. Then for any

v ∈ D′, 〈V − (D′ − {v})〉 = (〈V −D′〉 ∪ {v}) is disconnected. This

implies that N(v) ⊆ V −D′ and N(v)∩(V −D′) 6= φ, for any v ∈ D′.

Thus the condition (i) holds.

Case (ii): Assume that |N [D′] = dp2e. Suppose that v is neither an

isolate of D′ nor v has a private neighbour in the induced subgraph

〈V −D′〉 that is, pn[v,D′] ∩ (V − D′) = φ. Then |N [D′ − v]| =

|N [D′]| = dp2e which implies that |D′ − {v}| is an inverse non-split

majority dominating set, which is a contradiction to the assumption.

Hence the condition (ii) holds.

Conversely assume that the above condition (i) hold. Let D′ be

an inverse non-split majority dominating set of G. Suppose D′ is

not minimal. Then D′1 = D′ − {v} is an inverse non-split majority

dominating set of G for some v ∈ D′ with respect to D. Then

|N [D′1]| ≥
⌈p

2

⌉
and 〈V −D′1〉 is connected. (7.1)
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Suppose the condition (i) holds for v ∈ D′. Then |N [D′]| > dp2e and

|pn[v,D′]| > |N [D′]| − dp2e. Since |N [D′]| − |N [D′ − v] = |pn(v,D′)|

and |N [D′]|−|N [D′−v]| > |N [D′]|−dp2e. It implies that |N [D′−v]| <

dp2e and |N [D′1]| < d
p
2e, which is a contradiction. If |N [D′]| > dp2e

then N(v) ∩ (V − D′) 6= φ. It implies that N(v) ⊆ (V − D′) and

〈(V −D′) ∪ {v}〉 = 〈V −D′1〉 is disconnected, which is a contradic-

tion. Hence D′ is minimal.

Suppose the condition (ii) holds for v ∈ D′. Then |N [D′]| = dp2e

and v is an isolate of D′ or N(v)∩ (V −D′) = φ or |pn[v,D′]| ∩ (V −

D′) 6= φ. Since |N [D′]| − |pn[v,D′]| = |N [D′ − v]| and by the result

(7.1), we obtain,

|N [D′]| ≥ |pn[v,D′]|+
⌈p

2

⌉
. (7.2)

If v is an isolate of D′, then |pn[v,D′] ≥ 1. Hence, the result (7.2)

becomes |N [D′]| ≥ dp2e + 1, which is a contradiction to |N [D′]| =

dp2e. If the condition N(v) ∩ (V − D′) = φ holds, for any v ∈ D′

then 〈V −D′〉 ∪ {u} is disconnected. It implies that 〈V −D′1〉 is

disconnected, which is a contradiction to the result (7.1). Suppose

|pn[v,D′]|∩(V −D′) 6= φ, then N(v) ⊆ (V −D′). By the result (7.2),
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|N [D′]| ≥ |pn[v,D′]|+dp2e. Since |N [D′]| = dp2e, |pn[v,D′]| ≤ 0, which

is contradiction to |pn[v,D′]| ≥ 1. Hence D′ is a minimal inverse non-

split majority dominating set with respect to D for G.

Proposition 7.4.2: If any tree T contains exactly (p− 1) pendants

then γ−1
NSM(T ) = dp2e − 1.

Proof: Since G contains exactly (p−1) pendants, V (T ) = {v, v1, v2,

· · · , vp−1} where v is a central vertex and (v1, v2, · · · , vp−1) are pen-

dants. Let D = {v1, v2, · · · , vt} be a non-split majority dominating

set of G with |D| = t = dp2e − 1. Choose D′ = {vp, vp−1, · · · , vt} ⊆

V − D with |D′| = dp2e − 1. Then |N [D′]| = |D′| + 1 = dp2e.

Since the graph G has a full degree vertex v and v ∈ (V − D′),

the induced subgraph 〈V −D′〉 is connected. Hence D′ is an in-

verse non – split majority dominating set of G with respect to D and

γ−1
NSM(G) = dp2e − 1.

Theorem 7.4.3: For any tree T , every γ−1
NSM– set contains atleast

one pendant.

Proof: Let T be any tree with p ≥ 2 vertices and e pendants. This

theorem is proved by induction on the number of pendants ‘e’. Let D
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be a γNSM -set of G. Since every tree T has atleast two pendants, e =

2 and T = Pp, a path. By Proposition (7.3.1), γ−1
NSM(Pp) = dp2e − 1

and the γ−1
NSM -set D′ =

{
up, up−1, · · · , udp2e+1

}
⊆ V −D, where up is

a pendant of a path. If e = 3, the tree structure is like a caterpillar

T and T has e ≥ 3 pendants. By Proposition (7.3.5), the γ−1
NSM -set

D′ = {vt+1, · · · , vn} ⊆ V − D, if p
2 is even and vt+1, · · · , vn are all

pendants so that 〈V −D′〉 is connected. If p
2 is odd, the γ−1

NSM -set

D′ = {vt+1, · · · , vn, ut+1, · · · , un} ⊆ V − D where vt+1, · · · , vn are

pendants and d(ui) ≥ 2, t + 1 ≤ i ≤ n. Hence every γ−1
NSM -set D′

contains atmost dp4e pendants.

The result is true for e = 2, 3, · · · , (p − 2) pendants. Suppose

e = (p − 1) pendants. Then the structure becomes T = K1,p−1, a

star with (p− 1) pendants. By results (7.3.6)(4), the γ−1
NSM -set D′ ={

vp, vp−1, · · · , vdp2e−1

}
⊆ V − D and all vertices of D′ are pendants

so that the remaining vertices in the 〈V −D′〉 is connected with a

central vertex. Thus, in all cases of e ≥ 2, every γ−1
NSM -set D contains

atleast one pendant vertex in a tree T .

Corollary 7.4.4: IfG be a regular graph with p vertices then γNSM(G) =

γ−1
NSM(G).
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7.5 Bounds on γ−1
NSM(G)

This section provides some bounds and exact values of an inverse

non-split majority domination number of a connected and discon-

nected graph G.

Theorem 7.5.1: Let D and D′ be the γNSM -set and γ−1
NSM– set of G

respecteively. Then γ−1
NSM(G) = 1 if and only if the graph G contains

atleast two vertices of degree ≥ dp2e and the induced graph 〈V −D′〉

is connected.

Proof: Let γ−1
NSM(G) = 1. Then γNSM(G) = 1, D = {u1} and

D′ = {u2} ⊆ V − D are the γNSM– set and γ−1
NSM– set of G with

respect to D. Hence the induced subgraphs 〈V −D〉 and 〈V −D′〉

are connected and |N [D]| = |N [D′]| ≥ dp2e. It implies that the graph

G contains atleast two vertices u1 and u2 such that d(ui) ≥ dp2e for

i ≥ 2 and the induced subgraph 〈V −D′〉 is connected. The converse

is obvious.

Theorem 7.5.2: If a connected graph G contains atmost (p − 1)

pedants then γ−1
NSM(G) ≤ dp2e − 1.
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Proof: Let ‘e’ denotes the number of pendants of G. when e = 1,

then the graph G becomes any connected graph or unicyclic graph

with only one pedant vertex u. Let D be a non-split majority dom-

inating set of G containing that pedant vertex u such that 〈V −D〉

is connected. Suppose G has at least two majority dominating ver-

tices v1 and v2 with one pedant, then d(vi) ≥ dp2e − 1, for i = 1, 2.

An inverse non-split majority dominating set D′ with respect to D

contains either v1 or v2 such that the induced subgraph 〈V −D′〉 is

connected. Hence γ−1
NSM(G) ≥ 1 and γ−1

NSM(G) < dp2e − 1.

When e = 2, the graph G = Pp, a path, by Proposition (7.3.1),

γ−1
NSM(G) = dp2e−1. Therefore, the result is true for e = 1, 2, · · · ,

(
p
2 − 1

)
pedants. When e = p

2 , then the graph structure becomes like a cater-

pillar or a corona graph G = H ◦ K1, for any connected graph H.

By the proposition (7.3.5), γ−1
NSM(G) = dp4e < d

p
2e − 1, if

(
p
2

)
is

even and γ−1
NSM(G) =

(
p
2

)
− 1, if

(
p
2

)
is odd. Hence in every case,

γ−1
NSM(G) ≤ dp2e − 1. Suppose G = H ◦ K1 with p = 2n and

(
p
2

)
pendants then by the proposition (7.3.4), γNSM(G) = γ−1

NSM(G) =

dn2e. Hence γ−1
NSM(G) = dp4e < d

p
2e − 1.

Where e = p−2, the graph becomes a double star Dr,s with r ≤ s

and s = r, r+1, r+2. In this graph u1 and u2 are majority dominating
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vertices with r and s pendants. Then |D1| = r and |D2| = s are

the γNSM(G) and γ−1
NSM(G) respectively and by the result (7.3.6)(6),

γ−1
NSM(G) = s = dp2e − 1. If s ≥ r + 3 with (p − 2) pendants then

γ−1
NSM(G) does not exist. When e = p− 1, then G = K1,p−1. By the

result (7.3.6)(4), γ−1
NSM(G) = dp2e−1. Thus , in all cases, if any graph

G has atmost (p− 1) pendants then γ−1
NSM(G) ≤ dp2e − 1.

Theorem 7.5.3: Let G be a disconnected graph with p = 2n ver-

tices. If G has exactly two components g1 and g2 with |N [gi]| = p
2

then γ−1
NSM(G) = p

2 .

Proof: Let G = g1 ∪ g2 and |V (G)| = p = 2n. Since |N [gi]| = p
2 ,

for i = 1, 2. Let D be a γNSM - set of G and D = {v1, v2, · · · , vn}

such that the induced subgraph 〈V −D〉 = 〈g2〉 is connected. Let

D′ = {vn+1, vn+2, · · · , v2n} ⊆ (V −D) with |N [D′]| = n = p
2 and the

induced subgraph 〈V −D′〉 = 〈g1〉 is connected. It implies that D′

is an inverse non-split majority dominating set of G and γ−1
NSM(G)

= p
2 .

Corollary 7.5.4: If a disconnected graph G contains more than two

components then γ−1
NSM -set does not exist for G.
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Corollary 7.5.5: If a disconnected graph G contains exactly two

components g1 and g2 such that |N [g1]| < dp2e and |N [g1]| > dp2e then

γ−1
NSM -set does not exist for G.



Conclusion

The research work primarily concentrates on inverse majority

dominating sets of a graph G. The researcher has related his newly

defined parameters with other graph theoretical parameters and ex-

tensive works on this defined parameters for a graph G are studied.

Exact values of an inverse majority domination number γ−1
M (G) are

determined for various classes of graphs. Also, inverse split major-

ity domination number γ−1
SM(G) and inverse non-split majority dom-

ination number γ−1
NSM(G), inverse connected majority domination

number γ−1
CM(G), inverse independent majority domination number

i−1
M (G) are introduced and studied to some extent. Algorithms and

Applications to inverse majority dominating sets and inverse con-

nected majority dominating sets are also discussed. Further it is also

opened the gateway for doing more work on inverse majority dom-

ination in graphs by imposing more conditions on them. It is very

fruitful area in the field of domination theory.
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RESULTS ON THE INVERSE MAJORITY DOMINATION AND

MAJORITY INDEPENDENCE NUMBER OF A GRAPH

J. JOSELINEMANORA1, S. VIGNESH1, §

Abstract. In this article,the relationship between Inverse Majority Domination number
γ−1
M (G) and Majority Independence number βM (G) of a graph G is discussed for some

classes of graphs. In particular, γ−1
M (G) and βM (G) for cubic and cubic bipartite graph

are studied with examples. Also characterization theorem for this relation and some
results are determined.
Keywords: Majority Dominating Set, Inverse Majority Domination Number, Majority
Independence Number , Cubic Bipartite Graphs.
AMS Subject Classification: 05C69

1. Introduction

Domination in graph provide numerous applications both in the position or location
and protection strategies. This concepts was introduced by Claude Berge in 1958 [1]. In
1962, Ore used the name “Dominating set” and “Domination number”. In 1977, Cockayne
and Hedetniemi made an interesting and extensive survey of the results known at that
time about dominating sets in graphs. The survey paper of Cockayne and Hedetniemi has
generated a lot of interest in the study of domination in graphs. Domination has a wide
range of application in radio stations, modeling social networks, coding theory, nuclear
power plants problems. One of the fastest growing areas in graph theory is the study of
domination and related subset problems such as independence, covering, matching and
inverse domination.

Let G = (V (G), E(G)) be a simple graph with vertex set V(G) of finite order and
edge set E(G). Let v ∈ V (G). The neighborhood of v is the set NG(v) = N(v) =
{u ∈ V (G) : uv ∈ E(G)}. If S ⊆ V (G), then the open neighborhood of S is the set
NG(s) = N(S) = Uv∈SNG(v). The closed neighbourhood of S is NG(S) = N [S] =
S ∪N(S).

A set S ⊆ V (G) of vertices in a graph G = (V,E) is a dominating set if every vertex
v ∈ V is either an element of S or is adjacent to an element of S. A dominating set S
is called a minimal dominating set if no proper subset of S is a dominating set. The
minimum cardinality of a minimal dominating set is called the domination number and
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the maximum cardinality of a minimal dominating set is called the upper domination
number in a graph G. It is denoted by γ(G) and Γ(G) respectively.

The concept of inverse domination was introduced by V. R. Kulli. If a non-empty subset
D ⊆ V (G) is called the minimum dominating set, then if v − D contains a dominating
set D′,then D′ is called the inverse dominating of G with respect to D and γ′(G) is the
inverse domination number of G.

A set D ⊆ V (G) of vertices in a graph G = (V,E) is called a Majority Dominating set
of G [4] if atleast half of the vertices of V(G) are either in S or adjacent to the elements
of S. A majority dominating set [4] D is minimal if no proper subset of D is a majority
dominating set of a graph G. The minimum cardinality of a minimal majority dominating
set of G is called majority domination number of G, is denoted by γM (G) and the minimum
majority dominating set of G is denoted by γM − set. If a vertex u of degree satisfies the
condition d(u) ≥ dp2e− 1, then the vertex u is called majority dominating vertex of G. All
full degree vertices are majority dominating vertices but all majority dominating vertices
are not full degree vertices.

A set S ⊆ V (G) of vertices in a graph G is said to be a Majority Independent set [5] if
it induces a totally disconnected subgraph with |N [S]| ≥ dp2e and |pn[v, S]| > |N [S]|−dp2e,
for every v ∈ S. If any vertex set S is properly containing S is not majority independent
then S is called a maximal majority independent set. The maximum cardinality of a
maximal majority independent set of G is called majority independence number of G and
it is denoted βM (G).

2. Basic Results on γM (G),βM (G) and γ−1M (G)

Definition 2.1. [7] Let G be simple and finite graph with p vertices and q edges and D be a
minimum majority dominating set of G. If the set (V −D) contains a majority dominating
set say D′ then the set D′ is called Inverse Majority Dominating set with respect to D. The
Inverse Majority Domination number [7] γ−1M (G) of a graph G is the minimum cardinality
of a minimal inverse majority dominating set of G.

Proposition 2.1. [4] For any graph G, γM (G) = 1 if and only if G has atleast one vertex
u with degree d(u) ≥ dp2e − 1.

Proposition 2.2. [6]

1. For any graph G, βM (G) = 1 if and only if G has all vertices u with degree
d(u) ≥ dp2e − 1, for all u ∈ V (G).

2. For a cubic bipartite graph G, the majority independence number βM (G) = dp4e−1.
3. For any cubic graph G, βM (G) = dp8e.
4. For a Fan graph G = Fp.βM (G) = dp6e, p ≥ 3.

5. For a star graph G = K(1,p−1), βM (G) = b (p−2)2 c, p ≥ 2.

Proposition 2.3. [7]

1. For any graph G, γM (G) ≤ γ−1M (G).

2. For a path Pp, p ≥ 2 and cycle Cp, p ≥ 3 with p vertices, γ−1M (G) = dp6e.
3. For a wheel Wp, p ≥ 5, γ−1M (G) = d (p−2)6 e.
4. For a complete graph Kp, γ

−1
M (G) = 1.

5. For a fan graph Fp, γ
−1
M (G) = 1.

6. For a star graph G = K(1,p−1), γ
−1
M (G) = b (p−2)2 c, p ≥ 2.
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Proposition 2.4. [7] For any graph G,γ−1M (G) = 1 if and only if G has atleast one
majority dominating vertex u in (V −D), where D is a minimum majority dominating set
of G.

3. Inverse Majority Dominating Set and Majority Independent Set

Example 3.1. Consider the following graph G = T5k, k = 5 with p = 25 vertices. The
graph G contains five P5 paths which is connected in the middle vertex of each path P5.
The vertex set is labeled as {y1, . . . , y10} are pendants, {x1, . . . , x10} are two degree vertices
and (a, b, c, d, e) are middle vertices of each P5.

Figure 1

In G, D1 = {a, b, c, d} is a majority dominating set ⇒ γM (G) = |D1| = 4
D2 = {x1, x2, x3, e} is a inverse majority dominating set of G with respect to D1 ⇒
γ−1M (G) = |D2| = 4. D3 = {y1, y2, y3, y4, y5, y6, y7} is a majority independent set of
G.⇒ βM (G) = |D3| = 7.
Hence γ−1M (G) < βM (G).

Proposition 3.1. For any graph G, it satisfies the following inequalities.
i) γ−1M (G) ≤ βM (G) and

ii) γM (G) ≤ γ−1M (G) ≤ βM (G).

Proof: i) Let D be a minimum majority dominating set and D′ be an inverse majority
dominating set with respect to D of a graph G. Since any maximal majority independent
set S of G , S ⊆ (V −D) is also a inverse majority dominating set of G. Hence γ−1M (G) ≤
βM (G).
ii) By Proposition (2.4), (i)γM (G) ≤ γ−1M (G) and by proposition(3.2)(i) γ−1M (G) ≤ βM (G).
We obtain the inequality (ii). �

Proposition 3.2. If a graph G has a full degree vertex and others are pendants then
γ−1M (G) = βM (G).

Proof: Let G be a graph with p vertices in which u is a full degree vertex and (p − 1)

pendants. Therefore, D = {u} is γM set of G.Then D
′

= {u1, u2, . . . , ud p
2
e−1} ⊆ (V −D)

is a inverse majority dominating set with |D′| = dp2e − 1. Since all vertices in D′ are

pendants, |N [D′]| = dp2e. It implies that γ−1M (G) = |D′| = dp2e − 1. By proposition(2.3)

(5), βM (G) = b (p−1)2 c, p ≥ 2. When p is odd and even dp2e − 1 = b (p−1)2 c. D′ is also a
majority independent set of G and βM (G) = dp2e − 1.

Hence γ−1M (G) = βM (G). �

Corollary 3.1. Let G be a totally disconnected graph with even number of vertices. Then
γ−1M (G) = βM (G) = p

2 .
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Corollary 3.2. Let G be a disconnected graph without isolates. Thenγ−1M (G) = βM (G).

4. γ−1M (G) and βM (G) for Cubic Bipartite Graphs

Definition 4.1. Let G be a cubic bipartite graph with a partition of the vertex set V1(G)
and V2(G) such that |V1|+ |V2| = p. A cubic bipartite graph G with minimum number of
vertices is K3,3. Also graphs that have an odd number of vertices cannot be a cubic bipartite
graph. We now concentrate the cubic bipartite graphs when p = 6, 8, 10, 12, 14, 16, . . . .

Theorem 4.1. For all cubic and cubic bipartite graph G, γ−1M (G) = dp8e.

Proof: Let V (G) = {v1, v2, . . . , vp} be the vertex set of the given graph G. Let D be a
majority dominating set of G and D′ = {v1, v2, . . . , vt} be the inverse majority dominating
set of G with respect to D with |D′| = t = γ−1M (G).Then

|N [D′]| ≥ dp
2
eandD′ ⊆ (V −D) (1)

Then, |N [D′]| ≤
∑t

(i=1) d(vi) + t = 4t = 4γ−1M (G)

By (1), dp2e ≤ 4γ−1M (G). Therefore,

γ−1M (G) ≥ dp
8
e (2)

Suppose D′ = {u1, u2, ud p
8
e} is a subset of vertices in (V −D) such that N [ui] ∩N [uj ] =

∅, i 6= j and |D′| = dp8e. Then |N [D′]| = 4dp8e.
In all cases of p = r(mod 8), when 0 ≤ r ≤ 7, |N [D′]| = 4dp8e ≥ d

p
2e.

And D′ ⊆ V −D. Therefore D′ is a Inverse Majority Dominating set of G.
Hence,

γ−1M (G) ≤ |D′| = dp
8
e (3)

from (1) and (2) we obtain γ−1M (G) = dp8e.
The following results are the characterization theorem of an inverse majority dominating
sets and majority independent set. �

Proposition 4.1. γM (G) = γ−1M (G) = βM (G) = 1 if and only if the cubic bipartite graph
G has all vertices u ∈ V (G) of degree d(u) ≥ dp2e − 1.

Proof: Let G be a cubic bipartite graph with p vertices. If the given graph G has vertices
of degree d(u) ≥ dp2e − 1, for all u ∈ V (G), then every vertex is a majority dominating
vertex of G.
Therefore, D = {u} is a minimal majority dominating set of G and D′ = {v} ⊆ V −D is a
minimal inverse majority dominating set of G, also any one vertex of G forms a majority
Independent set of G. Hence the result
For the converse, by the Propositions (2.2), (2.3) and (2.5), we get the condition. �

Observation 4.1. 1. For a cubic bipartite graph with p = 6 or 8,

γM (G) = γ−1M (G) = βM (G) = 1.

2. For a cubic bipartite graph with p = 10 or 12,

γM (G) = γ−1M (G) = βM (G) = 2.

3. The following graph G1 is a cubic bipartite with p = 14,
In G1;D1 = {v1, v4} is a Majority Dominating set of G1 and D2 = {v2, v6} is a Inverse
Majority Dominating set of G1 with respect to D1. γM (G1) = γ−1M (G1) = 2. Also,
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Figure 2

S = {v1, v2, v3} is a majority independent set of G1. Hence, βM (G) = 3.
4. For p = 16, we have

γM (G) = γ−1M (G) = 2 and βM (G) = 3.

5. For p = 18, We have

γM (G) = γ−1M (G) = 3 and βM (G) = 4.

6. For p = 20, we have

γM (G) = γ−1M (G) = 3 and βM (G) = 4.

7. For p = 22 ,we have

γM (G) = γ−1M (G) = 3 and βM (G) = 4.

8. For p = 24, we have

γM (G) = γ−1M (G) = 3 and βM (G) = 5.

and so on. . .

Theorem 4.2. Let G be an cubic bipartite graph with p vertices. The subsets D and D
′

and S are the majority domination, inverse majority domination and majority independent
sets of G respectively. Then γ−1M (G) < βM (G), when p ≥ 14 If and only if

(i) |pn[v,D
′ | ≥ 3 , for every v ∈ D′ and

(ii) |pn[v, S| ≤ 2, for every v ∈ S.

Proof: Let D be the majority dominating set of G. Let γ−1M (G) < βM (G). Then the

inverse majority domination number γ−1M (G) = |D′| and the majority independence num-
ber βM (G) = |S|. Also, D′ is the minimum inverse majority dominating set with respect
to D of G and S is the maximum majority independent set of a cubic bipartite graph
G. Let V1(G) and V2(G) be the bipartition of V(G). V1(G) = {v1, v2, . . . , vp1}V2(G) =

{u1, u2, . . . , up2} with p = (p1 + p2). By the theorem (4.2), γ−1M (G) ≤ dp8e. Let D′ =
{v1, v2, . . . , vd p

8
e} ⊆ V1(G) such that d(vi, vj) ≥ 2 for any vi and vj ∈ D′ and i 6= j. Since

each vertex has degree d(vi) = 3, N(vi) = (ui, uj , uk) ⊆ V2(G),
For each vertex vi ∈ D′, |N(vi) ∪ N(vj)| 6= ∅, for any vi, vj and i 6= j. Then there exists
atmost one vertex u such that N(vi) ∪N(vj) = {u}.
|N(vi) ∪ N(vj)| ≥ 1 and the private neighbour of each vertex vi ∈ D′ is {vi, ui, uj} or
{vi, ui, uj , uk} ⇒ |pn[vi, D

′]| ≥ 3, for each vi ∈ D′. Hence the condition (i) is true, Simi-
larly By proposition (2.3) (2), For any cubic bipartite graph G, βM (G) ≤ dp4e − 1.
Let S = {v1, v2, . . . , vt} ⊆ V1(G) be a majority independent set of G where t = dp4e − 1
such that d(vi, vj) = 2 for any i, j and i 6= j. For every vertex vi ∈ S,
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N(vi) ∪ N(vj) = {(ui, uj)or(ui, uj , uk)} ⇒ |N(vi) ∪ N(vj)| = 2 or 3, for any vi, vj ∈ S.
Since d(vi) = 3, |pn[vi, S]| = 2 or 1 respectively.
⇒ |pn[v, S]| ≤ 2, for all vi ∈ S. Hence the condition (ii) holds.
LetD′ be a Inverse Majority Dominating set of a cubic bipartite graph G. Since |pn[v,D′]| ≥
3, for all v ∈ D′, |N(vi) ∪ N(vj)| = 1 or ∅, for i 6= j and for v(i), v(j) ∈ D′. Then
|N(v)| = 3or4 and |pn[v,D′]| = 3 or 4, for every v ∈ D′ It implies that each vertex v ∈ D′
dominates atleast 3 vertices.
Hence, we get an inverse majority dominating set D′ with minimum cardinality for G. The
inverse majority dominating number is γ−1M (G) = |D′|. Let S be a majority independent
set of a cubic bipartite graph of G. Since |pn[vi, S]| ≤ 2, |N(vi) ∪N(vj)| = 3 or 2, for any
vi, vj ∈ S and i 6= j. Then we obtain a majority independent set with maximum cardinal-

ity for G. Majority independence number of G = |S| = βM (G). Since γ−1M (G) ≤ dp8e and

βM (G) ≤ dp4e − 1, we get γ−1M (G) < βM (G). �

Corollary 4.1. Let G be a cubic bipartite graph with p ≤ 13 vertices and D be majority
dominating set of G. If |pn[v,D′]| ≥ 3, for all v ∈ D′ and |pn[v, S]| = 3, for atleast one
vertex v ∈ S then γ−1M (G) = βM (G), where D′ and S are the inverse majority dominating
set and majority independent set of G.

Proof. Let D be a minimum majority dominating set and S be a maximal majority
independent set of G. Since for atleast one vertex v ∈ S, |pn[v, S]| = 3, |N(vi)∪N(vj)| = 1,
for any vi and vj ∈ S. Then |N [S]| ≥ dp2e and |pn[v, S]| > |N [S]| − dp2e, for all v ∈ S. ⇒
S is also a minimal majority dominating set which is in (V −D). Hence γ−1M (G) ≥ βM (G)

By proposition (3.2) (i), for any graph G, γ−1M (G) ≤ βM (G). Thus, γ−1M (G) = βM (G). �

5. γ−1M (G) and βM (G) for Some Families of Graphs

Proposition 5.1. If G = Kp is a complete graph with p vertices, γM (G) = γ−1M (G) =
βM (G) = 1.

Proof: Since the graph G is complete, it is a regular graph of degree (p− 1). Each vertex
of G is a full degree vertex. The majority dominating set, the Inverse majority dominating
set and also majority Independent set are all equal to any one vertex {v} of G.
Hence γM (G) = γ−1M (G) = βM (G) = 1 �

Proposition 5.2. For a wheel graph Wp, p ≥ 5, βM (G) = d (p−2)6 e, if 5 ≤ p ≤ 18 and

βM (G) =

⌈
(p− 3)

4

⌉
, if p ≥ 19

Theorem 5.1. Let G = Wp be a wheel of p ≥ 5 vertices. Then

(i). γ−1M (G) = βM (G) = d (p−2)6 e, if 5 ≤ p ≤ 18 and

(ii). γ−1M (G) < βM (G), if p ≥ 19.

Proof: By the proposition (2.4), and the proposition (5.2),

γ−1M (G) = βM (G) = d(p− 2)

6
e, 5 ≤ p ≤ 18.

Thus the result (i) is true. Also when p ≥ 19, using the above results, We get γ−1M (G) <
βM (G). �

Proposition 5.3. For a cycle Cp, p ≥ 3,

(i). βM (G) = dp6e, if3 ≤ p ≤ 16 and (ii). βM (G) = d (p−4)4 e, if p ≥ 17.
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Theorem 5.2. Let G = Cp, be a cycle p ≥ 3 vertices Then

(i). γ−1M (G) = βM (G) = dp6e, 3 ≤ p ≤ 16

(ii). γ−1M (G) < βM (G) = d (p−4)4 e, p ≥ 17

Proof: By the proposition (2.4) (2) and the proposition (5.4), we obtain
γ−1M (G) = βM (G) = dp6e, 3 ≤ p ≤ 16. Hence result (i) is true.
Also, when p ≥ 17,

Using the above results, We get γ−1M (G) = dp6e and βM (G) =e (p−4)4 e.
Hence γ−1M (G) < βM (G). �

Proposition 5.4. For a path (Pp)p ≥ 2, βM (G) = dp4e, if 2 ≤ p ≤ 10,

βM (G) = d (p−2)6 e, if p > 11.

Theorem 5.3. Let G be a path of p ≥ 2, vertices then
γ−1M (G) = βM (G) = dp6e, if 2 ≤ p ≤ 10, and

γ−1M (G) < βM (G) = d (p−2)6 e, if p ≥ 11.

Proof: By the proposition (2.4) (2) and the proposition (5.6), we get,
γ−1M (G) = βM (G) = dp6e, if 2 ≤ p ≤ 10,

Also, when p ≥ 11, γ−1M (G) < βM (G) = d (p−2)6 e. �

Proposition 5.5. Let Fp, be a fan with p ≥ 4 vertices. Then

(i). When p ≡ 1(mod 6), γ−1M (G) < βM (G) and

(ii). When p 6≡ 1(mod 6), γ−1M (G) = βM (G).

Proof: By the proposition (2.3) and propostion (2.4)

γ−1M (G) = d(p− 1)

6
e and βM (G) = dp

6
e. (4)

(i). When p ≡ 1(mod 6). Since d (p−1)6 e < d
p
6e, γ

−1
M (G) < βM (G).

(ii). When p 6≡ 1(mod 6),Then p ≡ 0, 2, 3, 4, 5(mod6)

d (p−1)6 e = dp6e, if p = 6r, 6r + 2, 6r + 3, 6r + 4, 6r + 5

By using (4), We obtain, γ−1M (G) = βM (G). �

Proposition 5.6. If the cubic graph G is a Generalised Petersen P (n, k) graph. Then
γ−1M (G) = βM (G).

Proof: Since G is a 3-regular graph and by theorem (2.3) (3), We have βM (G) = dp8e.
Also, by theorem (4.2), For a Generlised Petersen graph P (n, k), γ−1M (G) = dp8e = βM (G).
�

Proposition 5.7. Let G = K(1,p−1) be a star with p ≥ 2 vertices. Then γ−1M (G) = βM (G).

Proof: By the Proposition (2.4) (6) and Proposition (2.3) (5), We have γ−1M (G) =

b (p−1)2 c = βM (G). �

Result 5.1. There exists a graph G for which γM (G) = γ−1M (G) = 2 and βM (G) = 2t =

dp2e − γ
−1
M (G), where t ≥ 3.

Proof: The graph G is obtained by adding one pendant at each vertex of a complete
graph and then add a pendant each time at each vertex of K4. Finally we obtain a new
structure with p = 4 + 4t, where t is the number of pendants at each time at one vertex
of K4.
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Figure 3

Let |V (G)| = p = 4+4t, when t = 1 then the vertex set V (G) = {u1, u2, u3, u4, v1, v2, v3, v4}
where (u1, u2, u3, u4) ⊆ V (K4) and other vertices are pendants. Then p = 4 + 4 = 8, and
γM (G) = |{u1}| and γ−1M (G) = |{u2}|.γM (G) = γ−1M (G) = 1 and βM (G) = |v1, v2| = 2,
where v1 and v2 are adjacent to u1 and u2 in G.
when t = 2, p = 4 + 8 = 12, γM (G) = γ−1M (G) = 1 and βM (G) = |{v1, v2, v5, v6}| = 4 = 2t,
if t = 2.
when t = 3, p = 4 + (4× 3) = 16. In G1, there are 3 pendants at each vertex of K4.
Let D = {u1, u2} be a majority dominating set of G and D′ = {u3, u4} ⊆ V −D is a inverse
majority dominating set of G Therefore γM (G) = γ−1M (G). Now S = {v1, v5, v9, v2, v6, v10}
such that |N [S]| = 8 and |pn[v, S]| = 1 > |N [S]| − dp2e = 0, for all u ∈ S. Hence
βM (G) = |S| = 6 = 2t, if t = 3 and so on.
Also,when t = 3, dp2e − γ

−1
M (G) = 8− 2 = 6 = βM (G),

Thus, βM (G) = 2t = dp2e − γ
−1
M (G).

In general In this structure, the difference between γ−1M (G) and βM (G) is very large. Hence

γ−1M (G) < βM (G) and the difference between these two numbers is very large when p is
large and t ≥ 3. �

6. Conclusion

In this article, we have discussed the relation between inverse majority domination
number and majority independence number of a graph is discussed. Also some classes of
graphs, characterisation theorem for this relation are studied
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Abstract 

In this article, Majority domination number  GM  and Inverse Majority domination 

number  G
M
1  are found for some special graphs and its subdivision graphs. Then  G

M
1  for 

some families of the subdivision graphs  GS  is determined. Some results on   GSM  and 

  GS
M
1  are also studied. 

1. Introduction 

The Domination theory in graphs was defined by ore and Berdge, in 1977, 

Cockayne et al., developed the domination concept and it has been discussed 

extensively in their seminal paper. Then many eminent graph theorists 

defined various domination parameters and produced many interesting 

results in this area. Also the new parameter inverse domination in graphs 

was initiated by Kulli et al., in 1991. 

Let G be a simple, un  directed and finite with p vertices and q edges. 

      GEuvGVuVN   and      vvNvN   be the open 
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neighbourhood and the closed neighbourhood of v respectively. 

A set  GVS    of vertices in a graph  EVG ,  is called a majority 

dominating (MD) set of G if at least half of the vertices of  GV  are either in 

S or adjacent to the elements of S the Majority dominating set S is minimal if 

no proper subset of S is a majority dominating set of a graph G. 

A subdivision of an edge uve   of a graph G is the replacement of an 

edge e by a path  .,, wvu  The graph obtained from a graph G by subdividing 

every edge e of G exactly once and is called the subdivision graph of G 

denoted by  .GS  

Let G be simple and finite graph with p vertices and q edges and D be a 

minimum majority dominating set of G. If the set  DV   contains a 

majority dominating set say D  then D  is called Inverse majority 

dominating (IMD) set with respect to D. 

1.2. Results on  GM  and  GM
1  [3] and [5] 

The following are the results on  GM  and  GM
1  

1. For 2,  pPG p  and cycle   .
6

,3,






p

GpC Mp   

2. Let .2,,,  nmKG nm  Then   .1 GM   

3. For a Path 2, pPp  and cycle  





 

6
,3, 1 p

GpC Mp   

4. Let .2,,,  nmKG nm  Then   .1 GM  

5. Let   .2,
2

1
, 1

1,1 





 
 

 p
p

GKG Mp   

6. For a   .1, 1  
pMp KKG   

7. Let .2mkG   Then   ,
4

1







p

GM  where .2mp    
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8. For any regular graph with p vertices then    .1 GG MM
  

2. Inverse Majority Domination number for some Special Graphs 

Proposition 1. Let G be the Dodecahedron graph and  GSG   be the 

subdivision graph. Then  

(i)    GG MM
13   and 

(ii)    .7 1 GG MM      

Proof. Let G be the platonic solid dodecahedron, Then G is a 3-regular 

graph 20p  and .30q  Let  641 ,, vvvD   such that   .3, ji vud   

Then   .
2

11






p

DN  Hence D is a MD set of G and   .3 GM  Let 

  ,,, 852 DVvvvD   Such that   .3, ji vud  By similar argument, D  

is a IMD-set of G and   .31  GM   

Let G  be a subdivision graph of dodecahedron with 50p  and 

   quuuvvGV ,,,,,, 21201   with   20,,2,1,3  ivd i  and  iud  

.30,,2,1,2  i  Let  ,,,,,,, 1713117631 vvvvvvvS   such that 

  ,4, ji vud  for .,, jiji   Then   .
2

28






p

SN  It implies that S is a 

majority dominating set of G  and   .7 SGM  Next choose 

 158187542 ,,,,,, vvvvvvvS    such that   ,4, ji vud  and .SVS   By 

the similar argument, S  is a Inverse majority dominating set of G and 

  .71  GM  Hence,    .7 1 GG MM     

Proposition 2. Let G be the Tetrahedron graph and Octahedron graph. 

Then 

(i)    GG MM
11   and 

(ii)    .2 1 GG MM      

Proof. The proof is obvious.  
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Proposition 3. Let G be an icosahedral graph and  GS  be the 

subdivision graph of G. Then 

(i)    GG MM
11   

(ii)    ,2 1 GG MM    if  .GSG    

Proof. (i) Let G be an icosahedral graph with 12p  vertices and it is a 

5-regular graph. Since each vertex dominates six vertices   1 GM  

 .1 GM
   

 

Figure 1. Subdivision of  .- GSG  

Let G  be the subdivision graph of icosahedral with 42p  and 

   30211221 ,,,,,,, uuuvvvGV   Now G  is not a regular graph with 

  ,5ivd  for all 12,,2,1 i  and   ,2jvd  for all .30,,2,1 i  Let 

 121141 ,,, vvvvS    such that   .4, ji vud  Then      SvdSN i  

 






2

4453
p

 And   .
2

23






p

SN  Then S is a majority 

dominating set of G  and   .4 GM  

Choose   .,,, 10792 SVvvvvS   By the similar argument, 

  .41  GM   

Proposition 4. Let G and G  be the Frucht graph and its subdivision 

graph respectively. 
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(i)    GG MM
12   and  

(ii)    GG MM  14  

Proof. The proof is obvious. 

Proposition 5. (i) Let G be a Doyle graph. Then    GG MM
13   and 

(ii) If  GSG   is the subdivision of G then    .8 1 GG MM      

Proof. Let G be a Doyle graph with 27p  vertices and G is a 4 regular 

graph. The vertex set  GV  can be partitioned into three vertex sets 21, VV  

and ,3V  each comprising of 9 vertices with degree 4 and 21, VV  and 3V  are 

vertices of a outer cycle ,1C  inner circle ,2C  innermost cycle 3C  respectively. 

Let  852 ,, vvvD   and   .,, 852 DVvvvD   Since G is a 4-regular 

graphs,       




 .
2

153
p

vdDNDN i   

Hence, the sets D and D  are the MD-set and the IMD-set of G 

respectively and     .31   GG MM  

 

Figure 2. G: Doyle graph. 

Let G  be the subdivision graph of a Doyle graph with 72p  vertices. 

Let    45212721 ,,,,,,, uuuvvvGV   where   1,2  jud j  t for 

1i  to 27 and   1,2  jud j  to 45 and        ,,,, 102911 vGVvvGV    

    2719318 ,,,, vvGVv     

Let  2520181713741 ,,,,,,, uuvvvvvvS   such that   .4, ji vud  for 
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ji   and ., Svv ji    

Then      









Sv

i

i

p
SvdSN .

2
40848  Hence S is a 

MD- set of G  and   8 SGM  In ,SV   choose  ,,,, 10852 vvvvS    

22181613 ,,, uuvv  and   .
2

40






p

SN  Hence, S  is a IMD-set of G  and 

  .8 SGM  Hence,     .81   GG MM  

Proposition 6. (i) Let G be a Folkman graph. Then    GG MM
12   

and (ii)   6 GM  and   .81  GM  

Proof. Let G be a Folkman graph with 20p  vertices. It is a bipartite, 

4-regular, Hamiltonian graph and it is a four edge connected perfect graph. 

Let    11, vuD  and   DVvuD  33,  such that   .4, ji vud  Since 

each vertex dominates 5 vertices,     .
2

10






p

DNDN  Hence 

    .21   GG MM  

 

Figure 3. G: Folk man graph. 

Let G  be a subdivision graph of a Folkman graph with the vertex set 

   40214141414141 ,,,,,,,,,,,,,,,, zzzyyxxwwvvuuGV   

and   ,60GV  where the vertices iiii xwvu ,,,  and iy  are in the outer 

square to inner square of totally 5 squares in RG  and 40,,1, izi  

denotes the newly added vertices in G. Let  311111 ,,,,, yyxwvuS   in 

which all are non-adjacent vertices in G  and      306ivdSN  
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.
2 





p

 Hence S is a majority dominating set of G  and   .6 SGM  In 

,SV   Choose   SVxwvuxwvuS  44443333 ,,,,,,,  and 

.
2

32






p

 It implies that set S  is an inverse majority dominating set of 

G  and   .81  SGM   

Proposition 7. (i) Let G be a Levi graph, Then    GG MM
14   and 

(ii) Let  GSG   be the subdivision of G. Then    .9 1 GG MM    

Proof. Let G be a Levi graph with 30p  and ,45q  and it is not a 

regular graph. 

Let    1011011021 ,,,,,,,,, uuvvwwwGV   in which the vertices 

ii vw ,  and ,iu  for 10,,1 i  from a outer circle to inner circle and 

      .10,,1,4,2,3  iudvdwd iii   

Let  5231 ,,, wwuuD   and         4ii wdudDN  

.
2

18






p

 Hence D is a MD-set of G and   .4 DGM  

Next, choose   .,,, 8165 DVwwuuD   Then   .
2

18






p

DN  

It implies that D  is aIMD-set of G and   .41  GM  

 

Figure 4. G: Levi graph. 

Let G  be the subdivision graph of a Levi graph G with .75p   
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   4521101101101 ,,,,,,,,,,,, xxxuuvvwwGV   where   ,3iwd  

    1.4,2  iudvd ii  to 10 and   1,2  jxd j  to 45. 

Let    GVuwwwwuuuS  99531321 ,,,,,,,  and    
3

1 iudDN  

    





5

1 9 .
2

39
p

Sudwd i   It implies that   .9 SGM   

Next, choose,   .,,,,,,,, 10108642654 SVuwwwwwuuuS    

By the above calculations,   .
2

39






p

SN  

Hence S  is a IMD-set of G  and   .91  SGM  

Thus,    .9 1 GG MM    

Proposition 8. Let G be Platonic Solid Cube and  GS  be the subdivision 

of G. Then 

(i)    GG MM
11   and 

(ii)    ,3 1 GG MM
  if  .GSG    

Proof. The proof is obvious.  

3.  GM
1  for Some Classes of Subdivision Graphs 

Proposition 1. Let  pCSG   be a subdivision graph of a cycle with p 

vertices then     .
3

1






  p
GG MM    

Proof. Let  pCSG   and    pp vvvuuuGV ,,,,,,, 2121   and 

  .2pGV   Then  pCS  is also a cycle with p2  vertices. By the result (1.3) 

1 and (3)  pM C  and   ,
6

1







p

CpM  where   .pCV p   Hence 

   .
36

21
pMM C

pp
G 












  Thus     .
3

1






  p
GG MM   

Proposition 2. If G is a subdivision of a complete graph then   2 GM  
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and   .21  GM  

 Proof. Since pK  is complete graph, there are p vertices and 

 
q

pp




2

1
 edges. Let  pKSG   with    qp vvvuuGV ,,,,,, 211   

and    ,qppGV   where   ,1 pud i  for pi uu ,,   and 

  fvd i  ,2  or 
 

2

1
,,,




pp
pvv qi   and 

 
.

4

1

2 




 







 ppp
 Let 

 31, uuD   such that   .4, ji vud  Then      21  ppDN  

  .
2

12122






p

pDNp  It implies that D is a MD-set of G and 

  .2 DGM  

Let   DVuuD  42,  such that   .4, 42 vvd  Then  DN  

    D
p

ppp 






2

12221 ’ is a IMD-set of G and 

  .21  DGM  Hence    .2 1 GG MM
  

Proposition 3. Let  .1,1  pKSG  Then   1 GM  and 

  .
2

11






 


p
GM   

Proof. Let    1111 ,,,,,,  pp vvuuuGV   where   ,2iud  for 

iu  and iv ’s are all pendants,   1 pud  and   .12 ppGV   Since 

u is a MD vertex of G,   .1 GM   

Let   .,,

2

11 DVvvD p 






   Then   1
2

1
2 






 


p
DN  

p
p

1
2

1
2 







 
  or   pDNp  1  or ,1p  if p is odd or even. 

  .
2 




 


p
DN  It implies that D  is a IMD-set of G. Hence 

  .
2

11






 


p
GM   

Proposition 4. Let  pPSG   be a subdivision graph of a path with 
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2p  vertices. Then   .
3

1







p

GM   

Proof. Since the subdivision graph of path pP  is also a path, the result is 

obvious.  

Proposition 5. For a graph  pWSG   be a subdivision graph of a 

wheel with 5p  vertices. Then     ,
8

1






 


p
GG MM  where  .qpp    

Proof. Let  pWSG   and    ,,,,,,,,, 21121 qp vvvuuuuGV    

and   ,pqpGV   where u is a central vertex,   ,2ivd  for 

qivi ,,1,   and   ,3iud  for .1,,2,1,  piui   Let 

 tuuuD ,,, 31   such that 





 


8

p
t  and   ,4, ji uud  for .ji   Then 

    .
28

44
1 




 







 
  

pp
ttvdDN

t

i i  Then D is a MD-set of G and 

  .
8 




 


p
DGM  Now, choose the set   DVuuuD t  ,,, 52   

Such that 





 


8

p
t  and   ,4, ji uud  for .ji   By the above argument, the 

set D  is a IMD- set of G. 

 





 


8
1 p

DGM   (1) 

 Suppose DVD 1  be a set with .
81 




 


p
DD  Then 

  .
21 




 


p
DN  It implies that 1D  is not a IMD-set of G and  

  1
1 DGM   and  






 


8
1 p

GM   (2) 

Hence It implies that   ,
8

1






 


p
GM  and   ,

8

1











p
GM  where 

.qpp    
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4. Results on  GM   and  GM 1   

Observation 1. 

(1) A full degree vertex of a graph becomes a majority dominating vertex 

in the subdivision graph  GS  of G. 

(2) The degree of a vertex of G will never change in the subdivision graph 

 GS  and the degree of a newly added vertex is always two in  .GS  

(3) The regular graph G is not a regular in  GS  except .pCG    

(4) Any pendant edge becomes a path .2K   

Proposition 2. Let G and G  be the disconnected graph and its 

Subdivision graph with p and p  vertices respectively. Then 

   .1 GG MM     

For Example  

(i) Let 25KG   By the result,       .33,
4

1 





  GG
p

G MMM  

Let the subdivision graph   35PGGS   with .15p  Now, the set 

 ,,, 321 uuuD   where   ,2iG ud  for iu,  and D is a MD-set of G  and 

  .3 GM  And Now the set   DVuuuD  154 ,,  is a IMD- set of G  

and    .1 GG MM    

(ii) Let 35KG   with 15p  vertices. Then  111 ,, vvvD   is a MD-set 

of G and     .31  GG MM  Let 65KG   be the subdivision graph of G 

with .30p  Now, the set  33111 ,,,, vuuuuD   is a MD-set of G  and 

  .5 DGM  Now the set   DVvvuuuD  11222 ,,,,  is a IMD-

set of G  and     .51   DGG MM  Hence    .1 GG MM     

Proposition 3. If the graph G is regular then    .1 GG MM     

Proof. Since G is a regular graph, and G by the result [1.3] (10), 

   .1 GG MM
  Let  GSG   be the subdivision graph of G. Then G  is 
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not a regular graph except ,pCG   a cycle Since the degree of the vertices of 

G is equal to the degree of the vertices of G  except the newly added vertex 

iu   with   ,2iud  for .,,2,1, qIui   To get the minimality select the 

vertices iv  of G with the distance   4, ji vvd  in G  then it will form a 

minimum MD-set and minimum IMD-set in G  with the same cardinality. 

Hence,    .1 GG MM     

Proposition 4. If the graph G contains a full degree vertex and others are 

pendants then    .1 GG MM     

Proof. By the observation (4.1) (1), any full degree vertex v of G becomes 

a majority dominating vertex v of .G  Then  vD   is a majority dominating 

set of G  and   .1 GM  Since G has pendant vertices,   ,2iud  for every 

,,,2,11, qui   and the vertices iu  of DVG   will form a inverse 

majority dominating set of G  with respect to D. It implies that   .11  GM  

Hence    .1 GG MM    

Proposition 4.5. If the graph G has exactly one majority dominating 

vertex and other are pendants then   1 GM  and    .1 GG MM    

Proof. Let   pGV   and    .pqpGV   Since the majority 

dominating vertex v of degree   ,1
2








p

vdG    .1
2








p

vdG  Then the 

majority dominating set D will contain at least two vertices of .G  Hence 

  .1 DGM  Since other vertices iu  are pendants, the newly added 

vertices   .2iud  Such that for .,,2,1 qi   Now the IMD-set  D  

contains the vertices of DVui   of .G  It implies that   .21  GM  Hence 

   .1 GG MM    
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1. Introduction
Domination as a graph theoretic concept was introduced by
C. Berge in 1958 and O. Ore in 1962. EJ.Cockayne and
S.T.Hedetniemi presented a paper on domination and it has
been studied extensively in this article in 1977. T.W.Haynes.et
al published a book entitled ”Fundamentals of Domination in
Graphs” [2] contains various domination parameters. In 1991,
Kulli and Sigarkanti [7] initiated a new parameter inverse
domination in graphs.

By a graph, we mean a finite, simple graph which is undi-
rected and nontrivial. Let G= (V,E) be a graph of order p and
size q. For every vertex v ∈ V (G), the open neighbourhood
N(v)= {u∈V (G)/uv∈E(G)} and the closed neighbourhood
N[v] = N(v)∪{v}.The open neighbourhood of a set S⊆V (G)

is N(S) = Uv∈S N(v) and the closed neighbourhood of S is
N[S] = N(S)∪S.

A set D⊆V (G) is a dominating set of G if every vertex in
V −D is adjacent to some vertex in D.The minimum cardinal-
ity of a minimal dominating set is known as the domination
number is denoted by γ(G). Let D be a minimum dominating
set in a graph G. If the set V −D contains a dominating set
D′ then D′ is called an inverse dominating set of G [7] with
respect to D.The cardinality of a minimum inverse dominating
set is defined as the inverse domination number of a graph G
and it is denoted by γ−1(G).

A subset S of V (G) is called an independent set if no two
vertices in S are adjacent. The minimum cardinality of a max-
imal independent set is called the independent domination
number of G and is denoted by i(G). Let D be a minimum
independent dominating set of G. If (V −D) contains an inde-
pendent dominating set D′ then the set D′ is called an Inverse
independent dominating set with respect to D.The inverse
independent domination number i−1(G)[7] is the minimum
cardinality of a minimal inverse independent dominating set
of G.

A set S⊆V (G) of vertices in a graph G = (V,E) is called
a majority dominating set of G if atleast half of the vertices
of V (G) are either in S or adjacent to the elements of S. The
majority dominating set S is minimal if no proper subset of
S is a majority dominating set of a graph G. The minimum
cardinality of a minimal majority dominating set of G is called
majority domination number of G, denoted by γM(G)[4]. Let
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G be simple and finite graph with p vertices and q edges and
D be a minimum majority dominating set of G. If the set
(V −D) contains a majority dominating set say D′ then D′

is called an Inverse majority dominating set [6] with respect
to D. The inverse majority domination number γ

−1
M (G) of a

graph G is the minimum cardinality of all Inverse majority
dominating sets of a graph G.

A majority dominating set D of a graph G is called an
independent majority dominating (IMD) set if the induced
subgraph 〈D〉 has no edges. The independent majority domina-
tion number iM(G)[3] of a graph G is the minimum cardinality
of a minimal independent majority dominating set of G.

Result 1.1 ([3]). The following are the results of some classes
of graphs regarding γM(G), iM(G) and γ

−1
M (G)

(i) For a Path Pp, p≥ 2 and cycle Cp, p≥ 3,γM(G) =
[ p

6

]
.

(ii) iM(G) =
[ p

4

]
, if G = mK2

(iii) If G is without isolated vertices then iM(G)≤
∣∣ p

4

∣∣.
(iv) For a G = K1,p−1, γ

−1
M (G) =

⌊
p−1

2

⌋
, p≥ 2

(v) For a G = Kp,γ
−1
M (Kp) = 1.

(vi) Let G = mK2.Then γ
−1
M (G) = [p] where p = 2 m

(vii) For a Path Pp, p ≥ 2 and Cycle Cp, p ≥ 3,γ−1
M (G) =[ p

6

]
.

2. Inverse Independent Majority
Dominating Set

Definition 2.1. Let G be a graph with p vertices and q edges.
Let D be a minimum Independent Majority Dominating set of
a graph G.If the set (V−D) contains an Independent Majority
Dominating set D′ of G,then the set D′ is called an Inverse In-
dependent Majority Dominating set of G with respect to D.The
Inverse Independent Majority Dominating number i−1

M (G) of
a graph G is the minimum cardinality of a minimal Inverse
Independent Majority Dominating set of G.

Example 2.2. Consider the following graph G with p = 20
vertices.

Let D = {a,b} be a majority dominating set and D′ =
{c,d} is an Inverse majority dominating set with respect to D
such that D′ ⊆V −D. Then γM(G) = 2 and γ

−1
M (G) = 2.Let

DM = {a,v1,v2} be an independent majority dominating set
and D′M = {b,v5,v6} ⊆ V −DM is an inverse independent
majority dominating set with respect to DM . Then iM(G) =
3 = i−1

M (G).
Hence ,γM(G)< iM(G) and γ

−1
M (G)< i−1

M (G).Thus MγM(G)
≤ γ

−1
M (G)≤ iM(G)≤ i−1

M (G)

Example 2.3. Consider the following graph G with p = 20
vertices.

Figure 1

Figure 2

Let D = {a,b} be a majority dominating set and D′ =
{c,d} is an Inverse majority dominating set with respect to
D such that D′ ⊆V -D.Then γM(G) = 2 and γ

−1
M (G) = 2.Let

DM = {b,v6} be an independent majority dominating set and
D′M = {d,v1,v2}⊆V−DM is an inverse independent majority
dominating set with respect to DM . Then iM(G) = 2 and
i−1
M (G) = 3. Hence M(G)< i−1

M (G).

Proposition 2.4. (i) For any graph G, iM(G)≤ i−1
M (G)≤

i−1(G).

(ii) For any graph G,γ−1
M (G)≤ i−1

M (G)≤ i−1(G).

Proof. (i) Since every inverse independent majority domi-
nating set of G is an independent majority dominating
set of G the independent majority domination number
iM(G) and inverse iM(G)≤ i−1

M (G).since every inverse
independent dominating set of G is an inverse inde-
pendent majority dominating set of G,their numbers
satisfies i−1

M (G)≤ i−1(G),we obtain iM(G)≤ i−1
M (G)≤

i−1(G)

(ii) Since every inverse independent majority dominating
set of G is an inverse majority dominating set of G, their
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number gives an in equality ,γ−1
M (G)≤ i−1

M (G), by the
inequality (i),we obtain γ

−1
M (G)≤ i−1

M (G)≤ i−1(G)

3. Inverse Independent Majority
Domination Number for Some Classes of

Graphs

Result 3.1. 1. Let G = Kp, p ≥ 2 be a complete graph.
Then i−1

M (G) = 1.

2. Let G = K1,p−1 be a star with p ≥ 2. Then i−1
M (G) =⌊

p−1
2

⌋
.

3. If G = Pp a path, p ≥ 2 and Cp a cycle, p ≥ 3 then
i−1
M (G) =

[ p
6

]
.

4. If G =Wp a wheel with p≥ 5 then i−1
M (G) =

⌈
p−2

6

⌉
.

5. If G = Fp be a fan graph with p ≥ 4, then i−1
M (G) =⌈

p−2
6

⌉
6. Let G = Km,n,m,n ≥ 2 be a complete bipartite graph.

Then i−1
M (G) = 1

7. Let G = mK2, m≥ 1.Then i−1
M (G) =

[ p
4

]
Proposition 3.2. Let G = D3 (Ct) be a windmill graph with

only three cycles of different size t ≥ 4. Then iM(G) =
⌊

p−2
6

⌋
and i−1

M (G) =
[ p

6

]
. Also iM(G)< i−1

M (G)

Proof. Let G = D3 (Ct) be a windmill graph with only three
cycles and each cycle is of size t ≥ 4. Then the vertex set

V (G) = {u,c11,c12, . . . ,c21,c22, . . . ,c31,c32, . . .} .

All these three cycles C1,C2,C3 meet at a vertex u. When
t = 4 and G = D3 (C4). Then

V (G) = {u,c11,c12,c13,c21,c22,c23,c31,c32,c33}

and p = 10. Here iM(G) = |{u}|= 1 and

i−1
M (G) = |{c12,c22}|= 2.

When t = 5 and G = D3 (C5) . Then |V (G)| = p = 13. Here
iM(G) = |{u}|= 1 and i−1

M (G) = |{c12,c22,c32}|= 3. If t = 6
then G = D3 (C6) and p = 16. Then iM -set D = {u,c13}
and i−1

M -set D′ = {c12,c22,c32} . It implies that iM(G) = 2
and i−1

M (G) = 3. In general, Let V (G) = p = 3t −
2 and

[ p
2

]
=
[ 3t

2

]
− 1. Let, D =

{
u,c13,c23, . . . ,ci j

}
such

that d (xi,x j) ≥ 3, where the vertices xi,x j ∈ D and |D| =⌊
p−2

6

⌋
.Then |N[D]|= |N[u]|+3(|D|−1) = 7+3 | p−2

6

⌋
−3.

Therefore |N[D]| = 3
[

p−2
6

⌋
+4 ≥

[ p
2

]
. Since d (xi,x j) ≥ 3,

the induced subgraph 〈D〉 has only isolates. Hence D is an
Independent Majority Dominating set of and

iM(G)≤ |D|=
⌊

p−2
6

⌋
(3.1)

Suppose |D1|< |D| and |D1|= |D|−1. Then |N
[
D1]|< | p2 |

and 〈D1〉 has only isolates. But D1 is not an Independent Ma-
jority Dominating set of G and

iM(G)> |D1| ≥ |D|=
⌊

p−2
6

⌋
(3.2)

Combining (3.1) and (3.2), we obtain iM(G) =
⌊

p−2
6

⌋
. Let

D′ =
{

C13,C16, . . . ,C1i,C23,C26, . . . ,C2 j,C33,C36, . . . ,C3k
}

such that d (xi,x j)≥ 3 with |D′|=
[ p

6

]
. Then

∣∣N [D′]∣∣= 3

∑
x=1

d (Cxy) = 3
∣∣D′∣∣= 3

[ p
6

]
≥
[ p

2

]
.

Also, D′ ⊆V −D and 〈D′〉 has only isolates. Then

i−1
M (G)≤

∣∣D′∣∣= d[ p
6
e] (3.3)

Suppose |D′1|< |D′| and |D′1|= |D′|−1. Apply the above
argument, we obtain |N [D′1]|<

⌈ p
2

]
and D′1 ⊆V −D1. But

D′1 is not an inverse independent majority dominating set of
G. Hence i−1

M (G)> |D′1| and

i−1
M (G)≥

∣∣D′∣∣= [ p
6

]
(3.4)

From the results (3.3) and (3.4), i−1
M (G)=

[ p
6

]
. Since iM(G)=⌊

p−2
6

]
and i−1

M (G) =
[ p

6

]
, iM(G)< i−1

M (G).

Theorem 3.3. Let G = Dt(7) be a windmill graph with t ≥ 2
the number of 7-cycles. Then

(i)

iM(G) =
[ p

6

]
−
⌊

∆+1
3

⌋
, if p≡ 1,2

(
mod

(
∆+1

3

))
=
[ p

6

]
−
⌊

∆+1
3

⌋
+1, if p≡ 0

(
mod

(
∆+1

3

))

(ii) i−1
M (G) =

[ p
6

]
.

(iii) iM(G)< ) i−1
M (G)

Proof. By the same argument of Proposition (3.3), the results
(i) and (ii) are obtained. Then from (ii) and (iii) in it implies
that iM(G)< i−1

M (G).
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4. Characterisation Theorems on Inverse
Independent Majority Dominating Set.

Theorem 4.1. Let D be a iM - set of a connected graph G.
Then i−1

M (G) = 1 if and only if the set (V −D) contains atleast
one majority dominating vertex of G.

Proof. Let D be a iM− set of a connected graph G. Let
i−1
M (G) = 1. Then D′ = {u} is an inverse independent ma-

jority dominating set of G and D′ ⊆ (V −D). Since D′ is an
inverse independent majority dominating set, |N[u]| ≥

[ p
2

]
. It

implies that the degree a vertex ”u” such that d(u)≥
[ p

2

]
−1

and u is a majority dominating vertex of G such that u∈V−D.
Hence (V −D) contains the majority dominating vertex ’u’ of
G. Suppose (V −D) contains more than one majority Domi-
nating vertex in V (G), then one majority Dominating vertex
is enough to find an inverse independent majority dominating
set for G.Thus the set (V −D) contains atleast one majority
dominating vertex of G. The converse is obvious.

Theorem 4.2. Let D be a iM -set of a connected graph G.
Then i−1

M (G) ≥ 2 if and only if all vertices ui are of degree
such that d (ui)<

[ p
2

]
−2, for every i and ui ∈ (V −D).

Proof. Let i−1
M (G) ≥ 2. Ler D be a iM -set of G. Then the

inverse independent majority dominating set D′ which con-
tains more than one vertex. Suppose D′ = {u1,u2} such
that |N [D′]| ≥

∣∣ p
2

∣∣ and D′ ⊆ (V −D). Then
[ p

2

]
≤ |N [D′]|=

Σ [d (u1)+d (u2)]+|D′| . It implies that either d (u1)<
[ p

2

]
−

2 and d (u2)≥ 1 or vice versa. Since D′⊆ (V−D), all vertices
ui with degree d (ui)<

[ p
2

]
−2. Conversely, if the set (V −D)

consists of the vertices with the degree d (ui)<
[ p

2

]
−1, then

any single vertex ui could not form an inverse independent
majority dominating set for G. Hence i−1

M (G)≥ 2.

Theorem 4.3. i−1
M (G) = i−1(G) if and only if the graph G

has atleast two full degree vertices.

Proof. Assume that

i−1
M (G) = i−1(G) (4.1)

Let D and D′ be an independent dominating set and an inverse
independent dominating set of G. Suppose ∆(G) 6= p− 1
then i−1(G) 6= 1 and i−1(G) = 9 = |D′| ≥ 2 is an inverse in-
dependent domination number of G. Let D′ = D1∪D2 where
D1 6= φ and D2 6= φ such that D1∩D2 6= φ .Since |N [D′]|= φ

and D1 ∩D2 6= φ , |N [D1]| ≥
[ p

2

]
or |N [D2]| ≥| p

2

]
. Hence

D1 or D2 is an inverse independent majority dominating set
of G and i−1

M (G) ≤ |D1| or i−1
M (G) ≤ |D2|. Since D1 6= φ ,

and D2 6= φ · i−1
M (G) < |D′| = i−1(G), which is a contradic-

tion to the assumption (1). Hence ∆(G) = p− 1.It implies
that the graph G contains atleast one full degree vertex ”u’
with d(u) = p−1. Suppose G has exactly one vertex u with
d(u) = p− 1,then i(G) = |{u}| = 1 and iM(G) = |{u}| = 1
but i−1(G) ≥ 2 and i−1

M (G) ≥ 2. Suppose the graph G con-
tains any vertex v of degree

[ p
2

]
− 1 ≤ d(v) < p− 1, then

D1 = {u) ⊆ V −D such that |N [D1]| ≥
[ p

2

]
and D1 is a in-

verse majority dominating set of G. It implies that i−1
M (G) =

|D1| = 1 i−1(G) > |D1| = 1. Hence i−1
M (G) < i−1(G) con-

tradiction to the assumption(1). Hence the graph G has atleast
two full degree vertices. The converse is obvious.

Result 4.4. Given any positive integer k > 1,there exists a
graph G such that i−1

M (G) = 1.

Proof. Let k ≥ 2 be any positive integer. Then there is a com-
plete graph G = Kk, with k -vertices. By the result (3.1)(1),
i−1
M (G) = 1, for any k ≥ 2.

Result 4.5. Given any positive integer k ≥ 1. There exists a
graph G with p = 2k+1 for which i−1(G)− i−1

M (G) = k.

Proof. Let k≥ 1 be any given integer.Let G=K1,p−1, p is odd.
By the result (3.1)(2) i−1

M (G) = p−1
2 and i−1(G) = p−1.If p=

2k+1.k≥ 1,Then i−1
M (G) = 2k

2 = k and i−1(G) = 2k.Hence
i−1(G)− i−1

M (G) = 2k− k = k.

Theorem 4.6. Let D and D′ be an Independent majority domi-
nating set and an inverse independent majority dominating set
of G. Then its numbers iM (G) = i−1

M (G) = 1 if and only if the
graph G contains atleast two majority dominating vertices.

Proof. Let iM(G) = i−1
M (G) = 1.Since iM(G) = 1,D = {u}

such that |N[u]| ≥| p
2

]
and the graph G contains a vertex u′

with d(u)≥
[ p

2

]
−1 Since i−1

M (G) = 1,D′ = {v} ⊆V −D and
(V −D) contains a vertex v with d(v) ≥

[ p
2

]
− 1. It implies

that the vertices u and v are the majority dominating vertices
of G. Suppose the graph G contains more than two vertices
then |D| = |D′| = 1. Hence G contains atleast two majority
dominating vertices. The converse is obvious.

5. Bounds of the Inverse Independent
Majority Domination Number

Proposition 5.1. For any graph G,1 ≤ i−1
M (G) ≤ p

2 . The
bound is sharp when G = Kp, p is even.

Proof. If a graph G has all vertices are of full degree then
each single vertex forms an independent majority dominating
set and an inverse independent majority dominating set for
G. Hence iM(G) = i−1

M (G) = 1.Suppose the graph G contains
all vertices are of degree d (ui) ≥

[ p
2

]
− 1, then each single

vertex forms an independent majority dominating set and an
inverse independent majority dominating set for G. Hence
iM(G) = i−1

M (G) = 1.
If the graph G is minimally connected graph then δ (G)≥

1 and ∆(G) ≤ p− 1. Then iM(G) = 1 and i−1
M (G) ≥ 2. Sup-

pose the graph G is disconnected without isolates, then iM(G)≥
2 and i−1

M (G)≥ 2. If the graph G has components with isolates
then iM -set D iM(G)<

( p
2

)
and i−1

M (G)<
( p

2

)
. The bound is

sharp. Let G = Kp, p is even then iM(G) = p
2 and i−1

M (G) = p
2 .

Hence 1≤ i−1
M (G)≤

( p
2

)
.
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Proposition 5.2. Let G = (V,E) be any graph with p vertices.

Then i−1
M (G)≤

[
i−1(G)

2

]
.

Proof. Let DM and D be an independent majority dominating
set and independent dominating set of G respectively. Suppose
D′ ⊆ V −D is an inverse independent dominating set of G.
Then D′ is an i−1 -set of G with |N [D′] =|V (G) |. Let D′ =

D1 ∪D2 where |D1| =
⌊

i−1(G)
2

⌋
and |D2| =

⌈
i−1(G)

2 | Now
N[D] = (N [D1]−N [D2])∪ (N [D2]) and |N[D]| =| N [D1]−
N [D2] |∪ |N [D2] | . It implies that either |N [D1]−|N [D2] |≥[ p

2

]
or |N [D2]| ≥

[ p
2

]
. If N [D2] |≥

[ p
2

]
and D2 ⊆ V −DM

then D2 is an inverse independent majority dominating set
of G. If |N [D1]−N [D2]| ≥

⌈ p
2

]
and D1 ⊆ V −DM then D1

is a inverse independent majority dominating set of G when
p is even . Hence i−1

M (G) ≤ |D2| =
⌈

i−1(G)
2

]
.Thus i−1

M (G) ≤⌈
i−1(G)

2

]
.

Example 5.3. Let G be a subdivision of star S (K1,10) by di-
viding each edge exactly once. Then p(G) = 21 and q(G) =
20.The inverse independent domination number i−1(G) =
11 and Inverse independent majority domination number
i−1
M (G) = 5 Hence i−1

M (G)<
⌈ 11

2

⌉
=
⌈

i−1(G)
2

⌉
.

Theorem 5.4. Let G be any connected graph with p≥ 2 ver-
tices. Then i−1

M (G) = p−κ(G) if and only if G is a complete
graph of order p where κ(G) is a vertex connectivity of G.

Proof. Let G be any connected graph and

i−1
M (G) = p−κ(G) (5.1)

Let D and D′ be an independent majority dominating set and
an inverse independent majority dominating set of G. Let
u be a vertex of G such that d(u) = ∆(G) = |N(u)|.Since
N[V (G)−N(u)] =V (G), [V (G)−N(u)] = D′,D′ is a inverse
independent majority dominating set of G. Hence i−1

M (G)≤
|D′|= |V (G)|−|N(u)|= p−∆(G). by p−κ(G) = i−1

M (G)≤
p−∆(G) It implies that κ(G)≥ ∆(G). By known inequality
$ ”for any graph G,κ(G)≤ δ (G)≤ ∆(G),” combining these
results, we obtain κ(G) = δ (G) = ∆(G). Hence G is a regular
graph say κ - regular graph.

Let D = {u1} be a γM− set of G. Let u2 be any vertex of
κ− regular graph G. Then the vertex u2 ’ dominates (κ +1)
vertices of G.If (κ +1)<

[ p
2

]
then D1 = [N[u]∪S]⊆V −D

is an inverse independent majority dominating set of G where
S is a set of

[[ p
2

]
− (κ +1)

]
vertices disjoint from the ver-

tices of N[u].Therefore, i−1
M (G) ≤ 1+

[ p
2

]
− (κ +1) =

⌈ p
2

]
-

κ . Then by (5.1), p−κ(G)≤
[ p

2

]
−κ(G), which is impossi-

ble.Hence (κ +1)≥
[ p

2

]
and (κ +1) vertices are dominated

by one and only one vertex u′2 and D1 = {u2} . It implies that
i−1
M (G) = 1. By (5.1) p−κ(G) = 1⇒ κ(G) = (p− 1) is a

vertex connectivity of G. Thus, the corresponding graph G is
a complete graph of order p. Conversely, let G = Kp then the
vertex connectivity of

G = κ(G) = p−1 (5.2)

The independent majority dominating set D and inverse inde-
pendent majority dominating set D′ set of a complete graph G
is D= {u1} and D′ = {u2} respectively, for u1,u2 ∈V (G) and
u2 ⊆V −D. It implies that i−1

M (G) = |D′|= 1 and i−1
M (G) =

1= p−(p−1). There fore, By(2), i−1
M (G) = p−κ(G). Hence

i−1
M (G) = p−κ(G) if and only if G = Kp.

Proposition 5.5. For any graphG with p vertices, i−1
M (G) =

γ
−1
M (G) = 1 if and only if the graph G contains atleast two

vertices of degree ≥
⌈ p

2

]
−1.

Proof. Let G be any graph with p vertices Let

i−1
M (G) = γ

−1
M (G) = 1 (5.3)

Then iM(G) = γM(G) = 1.It implies that D = {u1} is a In-
dependent majority dominating set and majority dominat-
ing set of G and |N[D]| ≥

[ p
2

]
. Hence the vertex u1 has

degree d (u1) ≥
[ p

2

]
− 1. By the hypothesis (1), D′ = {u2}

is an Inverse independent majority dominating set and an
inverse majority dominating set of G with |N [D′]| ≥

∣∣ p
2

∣∣.It
implies that the vertex u2 is of degree d (u2)≥

[ p
2

]
−1. Hence

there are two vertices u1 and u2 in G with d (ui) ≥
[ p

2

]
−

1, i = 1,2.These two vertices are enough to obtain the value
i−1
M (G) = 1 = γ

−1
M (G).Thus, the graph G contains atleast two

vertices of degree ≥
[ p

2

]
−1.The converse is obvious.

Proposition 5.6. If a graph G is a Path or a Cycle p≥ 7 with
i−1
M (G)≥ 2 and γ

−1
M (G)≥ 2, then i−1

M (G) = γ
−1
M (G).

Proof. Let G= Pp or G=Cp, p≥ 7.Then the inverse indepen-
dent majority domination number i−1

M (G)≥ 2 and the Inverse
majority domination number γ

−1
M (G)≥ 2. Let D1 and D2 be

the Independent majority dominating set and majority dom-
inating set of G.By the result (3.1)(3), iM(G) =

[ p
6

]
.Since

|D1| ≥ 2,D1 =
{

ui,u j
}

such that d (ui,u j)≥ 3 and
D′1 =

{(
ui+1,u j+1

}
⊆V −D1 such that d

(
ui+1,u j+1

)
≥ 3

and Then |N [D′1]| ≥
[ p

2

]
is an inverse independent majority

dominating set of G. By the proposition (3.1), [1], i−1
M (G) =[ p

6

]
= |D′1| p ≥ 7.Similarly since |D2| ≥ 2,D2 and D2

′ are
taken by the above argument in G. Then By the result (1.2)(vii),
γ
−1
M (G) =

[ p
6

]
, p ≥ 7. Hence i−1

M (G) = γ
−1
M (G) =

⌈ p
6

]
, p ≥

7

Proposition 5.7. For a tree T with p vertices, | p
6

]
≤ i−1

M (T )≤⌈ p
2

]
−1. These bounds are sharp.

Proof. This result is proved by induction on the number of
pendants ”e’. Since every tree has e ≥ 2 pendants, when
e = 2 then T = Pp, a path of p vertices . By the result
(3.1)[3], i−1

M (Pp) =
[ p

6

]
If e = 3 then G is any connected

graph with three pendants. The graph G is either T = K1,3,a
star or T = D1,2,a double star or a Caterpillar with e=3 pen-
dants.Then If T = K1,3 then i−1

M (G) = 1 =
( p

2

)
−1, T = D1,2

then, i−1
M (G) = 1 <

[ p
2

]
−1 and i−1

M (G) = 2 <
⌈ p

2

]
−1,if T is

Caterpillar. Suppose the tree T takes the Caterpillar structure
with (p− e) intermediate vertices and e = 3 pendants. Then
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iM(G) = i−1
M (G) =

[ p
6

]
.This is true for e = 2,3,4, . . .(p−2)

pendants. Then i−1
M (T ) ≥

[ p
1

]
and i−1(T ) ≤

[ p
2

]
− 1 If e =

p−1 pendants then the graph T becomes T = K1,p−1,a star.

By the result (3.1)(2), i−1
M (K1,p−1) =

⌊
p−1

2

⌋
. If p is odd then

i−1
M (K1,p−1) =

[ p
2

]
−1. Hence for any tree T with p vertices

,
[ p

6

]
≤ i−1

M (T )≤
[ p

2

]
−1

Theorem 5.8. For any graph with p vertices and

∆(G), i−1
M (G)≥

⌈
p

2(∆+1)

]
The bound is sharp.

Proof. Let D= {v2,v4 . . . ,viM} be a iM− set of a graph G.Then
|N[D]| ≥| p

2

]
and <D>. has only isolates such that d (vi,v j)≥

2, for vi,v j ∈ D, i 6= j, Let D′ = {v3,v5, . . . ,vt} ⊆V −D be a
i−1
M - set of G with |D′| = t.Then |N [D′]| ≥

[ p
2

]
and D′ con-

tains independent vertices. Also each vertex of D′ is adjacent
to the vertex of D and D′ contains the maximum degree ver-
tex ∆(G).Then |N [D′]|= ∑i=1 d (vi)+ t i.e)

[ p
2

]
≤ |N [D′]|=

t(∆(G)) + 1. Therefore
[ p

2

]
≤ |D′|(∆ + 1). It implies that[ p

2

]
≤ i−1

M (G)(∆ + 1). Hence i−1
M (G) ≥ [ p

2 ]
(∆+1) =

[
p

2(∆+1)

]
.

The bound is sharp for G = Kp a complete graph, and a

path Pp, p≥ 2. By the result (3.1)[1], i−1
M (Kp) = 1=

[
p

2(∆+1)

]
where ∆ = p− 1 and i−1

M (Pp) =
[ p

6

]
=
[

p
2(∆+1)

]
where ∆ =

2.
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