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Stability window of trapless polariton Bose-Einstein condensates
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We theoretically explore the possibility of stabilizing the trapless polariton Bose-Einstein condensates
(pBECs). Exploiting the variational method, we solve the associated nonlinear, complex Gross-Pitaevskii
equation and derive the equation of motion for the amplitude and width of the condensate. These variational
results described by ordinary differential equations are rewritten to perform a linear stability analysis to generate
a stability window in the repulsive domain. A set of coupled nonlinear ordinary differential equations obtained
through the variational approach are then solved by numerical simulations through the fourth-order Runge-Kutta
method, which are further supported by the split-step Crank-Nicholson method, thereby setting the platform for
stable pBECs. In particular, we generate a window containing system parameters in the g1 − γeff space within
which the system can admit stable condensates. The highlight of the results is that one observes beating effects in
the real time evolution of the condensates with attractive interactions much similar to multicomponent BECs, and
their periodicity can be varied by manipulating linear and nonlinear loss/gain terms. For repulsive condensates,
one notices the stretching of the density.
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I. INTRODUCTION

The recent upsurge in the field of nanophotonics de-
vices and optical computing can be attributed to the strong
interaction between photons and excitons, the composite par-
ticle being commonly known as polaritons [1]. Excitons are
the bound states of electron and hole pairs via Coulom-
bian interaction. Polaritons are essentially hybrid light-matter
quasiparticles resulting from the strong coupling between
excitons and photons [1–5]. This strong coupling leads to
nonlinear interaction between them, thereby creating a unique
laboratory for the investigation of nonlinear collective phe-
nomena like Bose-Einstein condensation [1,5,6], superfluidity
[7], quantized vortices [8,9], and so on. The extremely small
effective mass of the polaritons (essentially arising from the
photonic part) of the order of 10−5 of the mass of free
electrons and their large coherence length in the mm scale
combined with the strong nonlinearity arising from the exci-
tonic part results in a strong nonlinear optical response, which
can have wider ramifications in optical switching [10], optical
computing [11], photonic neural networks [12], and so on.
Such quantum microcavities present a unique platform for
the investigation of quantum collective phenomena like po-
lariton Bose-Einstein condensates (pBECs) in nonequilibrium
systems in the temperature regime ranging from a few kelvins
to room temperature [4]. The later case may offer significant
potential for practical applications as it enables one to realize
a new source of coherent light and optical switching via the
Kerr nonlinearity [10].

The pBECs are often described by the complex Gross-
Pitaevskii (cGP) equation [9], which represents the non-
equilibrium dynamics with pumping and decaying terms, un-
like the conventional Gross-Pitaevskii (GP) equation widely
used in the realm of equilibrium systems describing ultracold
atoms. Considering the slow dynamics of the polariton con-
densates, one can eliminate the reservoir effects so that the
complex-Gross-Pitaevskii equation reduces to a single partial
differential equation. The above assumption can be vindicated
by the fact that the lifetime of the polaritons is much larger
than the cavity round-trip time. In addition, the pumping
threshold for condensates is much smaller than the threshold
for photon lasing with electronic population inversion.

The nonlinear nature and the interplay of the intrinsic
nonlinearity due to interparticle interactions and the loss/gain
nature of the nonlinear interactions of the system has led
to a wide variety of remarkable observations including, but
certainly not limited to, solitons [13–16], bright solitons
[16,17], dark solitons [18,19], gap solitons [20,21], oblique
dark solitons [22], dissipative solitons [23], studies in spin-
orbit coupled (SOC)-pBECs [24], and dipolar-pBECs [25].

Despite several experimental explorations on pBECs, the
bottom line is that the pBECs are highly unstable and sta-
bilizing them continues to be challenging even today. Also,
in recent times, the study of trapless systems has attracted
considerable attention in many fields, including, nonlinear
physics [26], optics [26,27], and BECs [28–33]. Hence, in the
present investigation, we plan to study the stability properties
of trapless pBECs in both attractive and repulsive regimes.
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The organization of the present paper is as follows. In Sec. II,
we present the theoretical model that describes the pBECs.
Then, we discuss the variational analysis of the problem and
point out the possible means of stabilization of the pBECs in
Sec. III besides showing the stability domains. In Sec. IV, we
report the numerical results of the time-dependent GP equa-
tion through the split-step Crank-Nicholson (SSCN) method.
Section V summarizes our results, opening up new avenues in
the investigation of pBECs.

II. THEORETICAL MODEL

The GP equation is a mean-field model developed to deal
with many-body problems. This equation has a form similar
to the nonlinear Schrödinger equation, which incorporates
the external potential and interparticle interaction properly.
The nonresonantly pumped pBEC can be modeled with a
generalized complex GP equation to describe the dynamics
of the polariton condensates having the population of the
ground state being consistently replenished from a reservoir
of incoherent excitons. The classical field ψ , known as the
macroscopic wave function or order parameter of the polariton
condensate, is used to replace the field operator by ignoring
the noncondensate part from quantum and thermal fluctua-
tions. Under the assumption that the polariton gas is weakly
nteracting at low-temperatures, the condensate dynamics can
be described by the GP-type equation without microscopic
physics of the polaritons involved. Here, a theoretical model
is presented for a pBEC as [9]

ih̄
∂

∂t
ψ (r, t ) =

[
− h̄2

2mp
∇2 + V3D + i �eff

]
ψ (r, t )

+ [
g|ψ (r, t )|2 − i g1|ψ (r, t )|2]ψ (r, t ), (1)

where the external trapping potential assumes the harmonic
form V3D = mpω

2r2/2, with ω being the angular frequency,
mp the polariton mass, r the radial coordinate. g is the interac-
tion energy and �eff(= γ − κ ) is the linear net gain describing
the balance of the stimulated scattering of polaritons into the
condensate and the decay of polaritons out of the cavity. The
above GP Eq. (1) is subjected to the following normalization
condition:

N =
∫

|ψ |2dr, (2)

where N is the total number of polaritons and dr is the volume
element. Due to the presence of gain and loss terms in Eq. (1),
N need not be constant.

It is more convenient to use the GP Eq. (1) in a dimension-
less form. For this purpose, we shall make the transformation
of variables as r̄ = r/l , t̄ = tω, and ψ̄ = ψ/

√
h̄ω, where the

harmonic oscillator length l = √
h̄/(mpω). After removing

the overbar, Eq. (1) can be rewritten as

i
∂

∂t
ψ (r, t ) =

[
−1

2
∇2 + (�2r2)

2
+ i γeff

]
ψ (r, t )

+ [
g|ψ (r, t )|2 − i g1|ψ (r, t )|2]ψ (r, t ), (3)

where γeff = �eff/h̄ω. The range of the physical parame-
ters provided based on the experiments of Refs. [1,6] are
γeff = 0 ∼ 20 h̄ ω, g = 0 ∼ 50 h̄ ω, and g1 = 0 ∼ 50 h̄ ω.

In the case of strong radial confinement, the motion of the
atoms is free in the axial direction, but restricted in the radial
direction. Under this condition, the dynamics of the pBECs
can be effectively studied by the following one-dimensional
GP equation[

i
∂

∂t
+ 1

2

∂2

∂x2
− V1D − g|ψ (x, t )|2

]
ψ (x, t ) = W, (4a)

where

W = i
[
γeff − g1|ψ (x, t )|2]ψ (x, t ), (4b)

and V1D = d (t )�2x2/2 where �2 is the trap frequency and
d (t ) represents the strength of the external trap, which is to be
reduced from 1 to 0 when the trap is switched off.

III. VARIATIONAL RESULTS

To obtain the governing equations of motion for the system
parameters, we use the variational approach with the follow-
ing Gaussian ansatz as a trial wave function:

ψ (x, t ) = A(t ) exp

[
− x2

2R(t )2
+ iβ(t )x2 + iα(t )

]
, (5)

where A(t ), R(t ), β(t ), and α(t ) are the time-dependent
amplitude, width, chirp, and phase, respectively. Since the
dissipative and amplifying terms have no influence on the
center-of-mass coordinate in the Gaussian ansatz, we ignore
it in the present study. The variational approach is applied to
the averaged Lagrangian of the conservative system

L =
∫

L dx, (6)

where the Lagrangian density L ≡ L(x, t ), is given by

L(t ) = i

2
(ψ̇ψ∗ − ψ̇∗ψ ) − 1

2
|∇ψ |2 − V1D|ψ |2 − 1

2
g|ψ |4.

(7)

The trial wave function (5) is substituted into Eqs. (7) and (6)
to find the averaged Lagrangian in terms of the condensate
wave-function parameters as

L = −
√

π

2
A(t )2R(t )

[
1

R(t )2
+ 1√

2
gA(t )2 + 2 α̇

+ d (t )�2

2
R(t )2 + R(t )2

(
β(t )2 + β̇

2

)]
. (8)

We formally add LW to Eq. (7) with the property that
δLW /δψ∗ = −W , where W is given by Eq. (4b). By applying
the Euler-Lagrange equations to L′ ≡ L + LW , with respect
to ψ∗, we obtain[

∂L′

∂ψ∗ − d

dt

∂L′

∂ψ̇∗

]
=

[
∂L
∂ψ∗ − d

dt

∂L
∂ψ̇∗

]
− W (ψ,ψ∗) = 0,

(9)

that leads to Eq. (4a) (the conjugate equation is obtained in a
similar way).

The corresponding variational principle is given by

δ

∫ t

0
L′dt = δ

∫ t

0
(L + LW )dt = 0, (10)
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where, as in Eq. (6), LW = ∫
drLW . Taking into account the

fact that, for a small shift δη of some variational parameter η,
we have

f (η + δη) = f (η) + δη
∂ f

∂η
, (11)

where f ≡ f (ψ,ψ∗) = L or LW , we obtain a system of equa-
tions for the variational parameters ηi:

∂L

∂ηi
− d

dt

∂L

∂η̇t
=

∫
ds

[
W

∂ψ∗

∂ηi
+ W ∗ ∂ψ

∂ηi

]
, (12)

where ηi ∈ (A, R, β, α). By substituting Eqs. (5) and (8) into
Eq. (12), we obtain the following set of coupled nonlinear
ordinary differential equations (ODEs) [34]:

Ȧ = (γeff − β )A − 5g1

4
√

2
A3, (13a)

Ṙ = 2βR + g1

2
√

2
A2R, (13b)

β̇ = −d (t )�2

2
+ 1

2R4
+ gA2

2
√

2R2
− 2β2, (13c)

α̇ = − 1

2R2
− 5g

4
√

2
A2. (13d)

Now, the normalization condition (2) leads to

Ṅ = 2
√

πγeffA
2R −

√
2πg1A4R. (13e)

The above equation displays the distinct signature of
nonequilibrium systems with reservoir terms where the num-
ber of atoms does not remain a constant.

Multiplying Eq. (13a) by 2A and Eq. (13b) by 2R, and
redefining A2 = X and R2 = Y , we get

Ẋ = 2(γeff − β )X − 5g1

2
√

2
X 2, (14a)

Ẏ = 4βY + g1√
2

XY, (14b)

β̇ = −d (t )�2

2
+ 1

2Y 2
+ g

2
√

2

X

Y
− 2β2. (14c)

A stationary solution to the above problem can be given as

X ∗ =
√

2γeff

g1
, (15a)

Y ∗ =
2g0γeff ± 2

√
g2

1γ
2
eff + g2

0γ
2
eff + 4g2

1�

g1γ
2
eff + 4g1�

, (15b)

β∗ = −γeff

4
. (15c)

As X and Y , respectively, represent A2 and R2, both X ∗
and Y ∗ should be positive. We perform a linear stability anal-
ysis of the equilibrium points to identify the regions in the
γeff − g1 plane. Figure 1 illustrates the regions of stability of
(X ∗,Y ∗, β∗) (with X ∗ > 0 and Y ∗ > 0) in the γeff − g1 plane
for a repulsive pBEC with g = 5 in the presence of trap with
different strengths. It is pretty obvious from Fig. 1 that the
area of the stability domain decreases as the trap gets weaker
and weaker. It is also interesting to note that an unstable equi-
librium point gets converted into a stable equilibrium point

FIG. 1. Plot showing the stability regions (black) where the equi-
librium point (X ∗,Y ∗, β∗) with g = 5 and d (t ) = 1 is stable: (a) � =
0.25, (b) � = 0.1, (c) � = 0.01, and (d) � = 0.001.

as the trap strength gets reduced. For example, (g1, γeff ) =
(10−2, 10−4), which represents an unstable equilibrium point
in Fig. 1(a) for trap strength ω = 0.25, which attains stability
in Fig. 1(d) at ω = 0.001. In addition, the maximum value
of nonlinear loss/gain (g1) representing a stable equilibrium
point remains constant and is independent of the trap strength.
We also verify the stability regimes of the equilibrium point
by numerically solving the above coupled system of equa-
tions given by Eq. (14) using the fourth-order Runge-Kutta
method with initial conditions chosen in the neighborhood of
the equilibrium point for further confirmation. Figures 2(a)
and 2(b) depict the time evolution of the amplitude (A) and
the corresponding width (R) in the unstable and stable regimes
of the phase diagram shown in Fig. 1(c) with � = 0.01,
g = 5, g1 = 10−2, and γeff = 10−3 (stable equilibrium) and
γeff = 10−2 (unstable equilibrium). The sustenance of the am-
plitude and width of the condensates for a longer interval
of time is a clear signature of their stability in the repulsive
regime. Next, to analyze the stability of the pBECs in de-
tail, we solve Eq. (13) through the fourth-order Runge-Kutta
method and the results are reported below.

FIG. 2. Plots showing the time evolution of (a) amplitude (A)
and (c) width (R) in the stable and unstable regimes with � = 0.01,
g = 5, g1 = 10−2, and with (i) γeff = 10−3 (stable: dashed-blue line)
and (ii) γeff = 10−2 (unstable: solid-red line).
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FIG. 3. Amplitude (A) and corresponding width (R) of the
trapless [d (t ) = 0] attractive pBECs are shown in left and right
panels, respectively. (a) g = −10.0, g1 = 0.0, and γeff = 0.0; (b) g =
−5.0, g1 = 0, and γeff = 0; and (c) g = −10.0, g1 = 0.0142, and
γeff = 0.01.

A. Attractive pBEC

In this section, by solving Eqs. (13a) to (13c), we study the
stability of the trapless attractive pBEC.

In Fig. 3, we show the dynamics of the two variational
parameters, amplitude (A) and corresponding width (R) of the
pBECs shown in left and right panels, respectively. First, we
begin with the following set of parameters to study the dynam-
ics of the pBEc, g = −10.0, g1 = 0, γeff = 0, and d (t ) = 0,
shown in Fig. 3(a). The amplitude of the condensates start
to stabilize once we ramp down the interaction strength from
g = −10 to g = −5 as shown in Fig. 3(b). One also observes
that the width of the condensates remains constant. When
we ramp up the interaction strength again from g = −5 to
g = −10 and introduce linear and nonlinear loss/gain terms,
we witness small fluctuations in the amplitude and width of
the condensates as shown in Fig. 3(c), indicating that the rein-
forcement of the cubic nonlinearity with nonlinear loss/gain
terms in the attractive domain will render the condensates
unstable.

B. Repulsive pBEC

Next, we study the stability of the repulsive pBEC in the
presence of weak trap, � = 0.01 and d (t ) = 1. In Fig. 4, we
show the dynamics of the two variational parameters, ampli-
tude (A) and corresponding width (R) of the repulsive pBECs
shown in the left and right panels, respectively. First, we begin
with the following set of parameters to study the dynamics
of the pBEc, g = 5.0, g1 = 0, and γeff = 0, shown in the first
row [cf. Fig. 4(a)]. The amplitude (A) and the corresponding
width of the (R) of the condensate are found to be smooth

FIG. 4. Amplitude (A) and corresponding width (R) of the repul-
sive pBECs with weak trap, � = 0.01, and d (t ) = 1 are shown in left
and right panels, respectively: (a) g = 5.0, g1 = 0.0, and γeff = 0.0;
(b) g = 5.0, g1 = 0.0, and γeff = 0.1; and (c) g = 5.0, g1 = 0.3, and
γeff = 0.1.

up to time t = 200. In the second row [cf. Fig. 4(b)], small
variation starts to appear in the amplitude (A) and correspond-
ing width (R) of the condensate for g = 5.0, g1 = 0.142, and
γeff = 0.1. However, this instability can be overcome in the
bottom row by manipulating the nonlinear loss/gain term and
one witnesses both the amplitude (A) and the corresponding
width (R) of the condensate starting to stabilize for g = 5.0,
g1 = 0.3, and γeff = 0.1 as shown in third row [cf. Fig. 4(b)].
It is pretty obvious from the dynamics of the above analysis
that it is indeed possible to stabilize the condensates in the
repulsive domain in the presence of a weak trap while the
quantum of instability witnessed in attractive pBECs as shown

FIG. 5. Density profiles for attractive case for (a) g = −10.0,
g1 = 0.0, and γeff = 0.0 and (b) g = −10.0, g1 = 0.0142, and
γeff = 0.01.
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FIG. 6. Density profiles for attractive case for (a) g = −5.0,
g1 = 0.01, and γeff = 0.01 and (b) g = −5.0, g1 = 0.03, and
γeff = 0.01.

in Fig. 3(c) is inevitable. This instability can be attributed
to the reinforcement of nonlinear loss/gain terms with cubic
nonlinearity in the realm of nonequilibrium systems.

IV. NUMERICAL RESULTS

In this section, we solve the time-dependent GP Eq. (4a)
numerically through the split-step Crank-Nicholson method
[35,36]. In the course of the time evolution of the GP equation,
certain initial conditions are necessary to stabilize a trapless
system with a specific nonlinearity above a critical value. If
we choose the size of the system close to the desired size,
then the system gets stabilized after a finite length of time.
This procedure could be employed in an experimental setup
to stabilize a trapless system. In the numerical simulation, it
is necessary to remove the external trap while increasing the
nonlinearity for obtaining stability. In the course of the time
iteration, the coefficients of the nonlinear terms are increased
from 0 at each time step as g(t ) = f (t )g, where f (t ) = t/τ
for 0 � t � τ and f (t ) = 1 for t � τ . At each time, the trap
is removed by changing d (t ) from 1 to 0 by d (t ) = 1 − f (t ).
During this process, the harmonic trap is removed and the
nonlinearity g attained at time τ . The density profiles for

FIG. 7. Density profiles for attractive case for (a) g = −5.0,
g1 = 0.03, and γeff = −0.01 and (b) g = −5.0, g1 = 0.1, and
γeff = −0.01.

FIG. 8. Density profiles for repulsive case for (a) g = 5.0,
g1 = 0.0, and γeff = 0.0 and (b) g = 5.0, g1 = 0.05, and γeff = 0.05.

attractive condensates for g = −10, g1 = 0, and γeff = 0 is
shown in Fig. 5(a). In Fig. 5(a), one witnesses the “beating
effect,” which corresponds to the linear superposition of the
condensates at periodic intervals of time. We also find that
the periodicity of the beating effect can be manipulated by the
simultaneous introduction of linear and nonlinear loss/gain
terms as shown in Figs. 5(b), 6, and 7. On the other hand,
the density profiles of the condensates with repulsive inter-
actions with weak trap are shown in Figs. 8–10. From the
figures, we again observe the beating effect. But, unlike the
attractive pBECs, we witness the stretching of the density of
the condensates when we increase the strength of nonlinear
loss/gain terms. In addition, the stretching occurs periodically
and the density pattern looks like a classical stretched string
with nodes and antinodes.

V. CONCLUSION

We theoretically studied the stability properties of trapless
polariton BECs through a judicious interplay between two-
body interaction, linear, and nonlinear loss/gain. We then
solved the complex Gross-Pitaevskii equation through the
variational approach and obtained the ordinary differential
equations for the amplitude and width of the condensate.

FIG. 9. Density profiles for repulsive case for (a) g = 5.0,
g1 = 0.1, and γeff = 0.1 and (b) g = 5.0, g1 = 0.2, and γeff = 0.1.

224315-5



SABARI, KUMAR, RADHA, AND MURUGANANDAM PHYSICAL REVIEW B 105, 224315 (2022)

FIG. 10. Density profiles for repulsive case for (a) g = 5.0,
g1 = 0.3, and γeff = 0.1 and (b) g = 5.0, g1 = 0.5, and γeff = 0.1.

These ordinary differential equations are then rewritten to per-
form a linear stability analysis to generate a stability window
in the repulsive domain. We then supported our variational re-
sults by numerical simulations through Runge-Kutta method,
which are then reaffirmed by the split-step Crank-Nicholson
method. The density profiles of attractive pBECs exhibit
“beating effects” wherein the condensates superpose at peri-

odic intervals of time and the periodicity can be manipulated
by the introduction of linear and nonlinear loss/gain terms.
For repulsive pBECs, we witness the stretching of the density
while the periodicity of the loop remains a constant. We do
believe that this simple protocol to identify the possible sta-
bility windows of pBECs, particularly in the repulsive regime,
will open up many avenues in the future from an experimental
perspective.
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