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Quantum synchronization in quadratically coupled quantum van der Pol oscillators
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We implement nonlinear anharmonic interaction in the coupled van der Pol oscillators to investigate the quan-
tum synchronization behavior of the systems. We study the quantum synchronization in two oscillator models,
coupled quantum van der Pol oscillators and anharmonic self-oscillators. We demonstrate that the considered
systems exhibit a high-order synchronization through coupling in both classical and quantum domains. We
show that, due to the anharmonicity of the nonlinear interaction between the oscillators, the system exhibits
phonon blockade in the phase-locking regime, which is a pure nonclassical effect and has not been observed
in the classical domain. We also demonstrate that, for coupled anharmonic oscillators, the system shows a
multiple resonance phase-locking behavior due to nonlinear interaction. We point out that the synchronization
blockade arises due to strong anticorrelation between the oscillators, which leads to phonon antibunching in
the same parametric regime. In the anharmonic oscillator case we illustrate the simultaneous occurrence of
bunching and antibunching effects as a consequence of simultaneous negative and positive correlation between
the anharmonic oscillators. We examine the aforementioned characteristic features in the frequency entrainment
of the oscillators using a power spectrum where one can observe normal mode splitting and the Mollow triplet
in the strong coupling regime. Finally, we propose a possible experimental realization for the considered system

in the trapped ion and optomechanical setting.
DOI: 10.1103/PhysRevA.106.012422

I. INTRODUCTION

Synchronization is the adjustment of rhythms of coupled
self-sustained systems around a common frequency, which
were once independent systems with different frequencies [1].
It is a ubiquitous phenomenon occurring in different physical,
biological, and chemical systems such as neuronal networks,
power-grid networks, circadian rhythm in mammmals, elec-
trical circuits, lasers, orbital resonances in planetary systems,
and so on. Some noted examples with an interesting appli-
cation of synchronization are heart cardiac pacemaker cells,
chaotic laser signals, and micromechanical oscillators [2-6].
Synchronization is a well-understood phenomenon in clas-
sical systems and it was studied in different contexts. For
example, self-sustained oscillators with external drive, two
coupled systems, and globally coupled systems with random
frequencies such as the Kuramoto model [7,8].

Recent developments of quantum systems such as nanome-
chanical oscillators [9], superconducting circuits [10,11],
quantum electrodynamics [12], and trapped ions [13], have
witnessed significant progress. Since these systems exhibit
synchronization properties like limit cycle oscillations, non-
linearity, and so on, the idea of synchronization in the
quantum regime emerged. With these developments, syn-
chronization effects in different quantum systems such as
atomic ensembles [14—16], Josephson circuits [17], stochas-
tic systems [18], Kerr-anharmonic oscillators [19], micro-
masers [20], and spin systems [21-24] have been studied
recently. Synchronization behaviors were also investigated
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in experimental platforms such as optomechanical systems
[25-33], nanomechanical oscillators [34], and superconduct-
ing devices [35] in the quantum domain. These works shed
light on several quantum aspects of quantum synchronization
where quantum effects play a dominant role in the synchronic-
ity of the systems. Several measures of synchronization were
also proposed in these works to analyze the synchronization
behavior in the quantum regime [25,36,37].

Van der pol oscillators are self-sustained systems which are
simple and excellent models to study synchronization. Recent
works characterized different synchronization behaviors in the
context of quantum van der Pol oscillator. In these works,
different quantum synchronization behaviors such as limit
cycle [38], frequency entrainment [39,40], amplitude death
phenomena [41], quantized synchronization behavior [19],
and the enhancement of synchronizaton through squeez-
ing [42] were investigated. An effective quantum model was
also proposed to capture the underdamped phase dynamics,
which helped to identify a quality factor for the quantum
coherence [43]. In dissipative coupled quantum van der Pol
oscillators the existence of entanglement between the coupled
oscillators [44], frequency entrainment [40], and amplitude
death [41] was investigated. The quantum van der Pol oscil-
lator has its relevance in the trapped ion experiment as well.
Quantum synchronization in the context of trapped ions was
investigated by the authors of [38]. A trapped ion is an ideal
platform for quantum information processing and quantum
computations due to their better coherence time and quantum
control. The trapped ions experience nonlinear Coulomb in-
teractions between ion modes. The cross-Kerr nonlinear terms
arising in the Coulomb interaction can be implemented as a
nonlinear interaction between the ion modes, which shifts the
normal mode frequency of the ion motion [45].
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In this work, we consider such nonlinear Coulomb in-
teraction between two van der Pol oscillators. In nonlinear
susceptible materials this kind of interaction is called x®
nonlinearity and is known to exhibit nonclassical effects
like phonon or photon blockade and strong anticorrelation
between photon or phonons in optical systems [46-50].
Recently, phonon antibunching was investigated in the quan-
tum van der Pol oscillator, which significantly depended
on two-phonon loss [51]. Quantum correlations due to en-
tanglement were investigated in the coupled cavities with
second-harmonic generation [47]. Motivated by the above, in
this work, we investigate the effect of nonlinear interaction
in the phase-locking dynamics of two quantum van der Pol
oscillators. We also investigate the phase dynamics of anhar-
monic self-oscillators with this nonlinear interaction. Using
perturbation analysis, we obtain expressions for the steady
state and also for the synchronization measure, and analyze
the system analytically and numerically. Our results show
that, due to strong correlations between the oscillators, the
synchronization peaks suppress at resonance with increasing
coupling strength. Further, strong anticorrelations between the
oscillators also lead to antibunching. We demonstrate that the
nonlinear interaction between the anharmonic self-oscillators
causes the system to exhibit multiple resonances in the phase-
locking regime. Further, we show that, in the phase-locking
parametric regime, the oscillators are simultaneously corre-
lated and anticorrelated at different resonances and as a result
the system exhibits bunching and antibunching effects simul-
taneously. We show that these synchronization behaviors are
purely nonclassical and were not observed in the classical
regime. Finally, we illustrate the above characteristics using
the power spectrum, where we can observe normal mode
splitting and the Mollow triplet in the strong coupling regime.

We organize the paper as follows. In Sec. II, we describe
the system with cross-Kerr interactions using the master
equation of the van der Pol oscillator. We also describe the
coupled self-oscillators and also the coupled anharmonic self-
oscillators. In Sec. III, we discuss the steady-state dynamics
of the system in the classical regime. In Sec. IV, we illustrate
the synchronization dynamics due to the nonlinear coupling
in the quantum regime. We analytically obtain the expression
for steady states of the master equation as well as the ex-
pression for the synchronization measure using perturbation
theory in the coupling strength and demonstrate the quantum
effects in the phase-locking dynamics in the considered sys-
tem. We also discuss the phonon statistics of the system in
the phase-locking parametric regime. In Sec. V, we discuss
these characteristics in frequency entrainment using the power
mechanical spectrum. Finally, we summarize our results in
Sec. VL.

II. MODEL

We consider a nonlinear anharmonic coupling between two
quantum van der Pol oscillators. This nonlinear anharmonic
interaction is generated by the nonlinear Coulomb interac-
tion between two normal modes of motion of two cotrapped
ions [45]. The master equation governing the time evolution
of the density matrix p of two nonlinearly coupled quantum
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FIG. 1. The schematic energy level diagram of the nonlinearly
coupled quantum van der Pol oscillator (without Kerr anharmonicity)
in the noncoupling (left) and coupling basis (right).

van der Pol oscillators is described by [38]

2
p = —ilHo+ Hy. pl + Y _nLlajlp + vaL[ai]p. (1)

i=1

where a,»(aj') are the annihilation (creation) operators of the
ith oscillator. The system Hamiltonian is given by

2
Hy = Z a),-a;fa,- + K,-ajzaiz, 2)
i=1

where wj; is the natural frequency and K; is the Kerr strength
of the ith oscillator. In the absence of Kerr nonlinearity, the
system has an energy spectrum as illustrated in Fig. 1 in
the noncoupling basis. The presence of Kerr nonlinearity in
the system Hamiltonian Hy brings the anharmonicity in the
energy spectrum and this leads to a spacing of w; + (m + 1)K;
between the mth and (m + 1)th levels of the energy spec-
trum of the ith oscillator, which in turn brings a shift in the
energy levels of the Fock states [41]. The Lindbland opera-
tor L[b]p = dpo’ — 1{070p + pd'0} describes the nonunitary
dynamics of the system and the parameter y; in (1) denotes
the rate of phonon gain and y; is the rate of nonlinear phonon
loss. As the nonlinear phonon rate (y,) increases the oscillator
occupies fewer phonon Fock states. Therefore, in the limit
y2/y1 — oo the system shows a discrete level structure and
this corresponds to the quantum limit where the radius of the
limit cycle decreases. On the other hand, if the limit y»/y; —
0, the radius of the limit cycle increases and the system be-
comes highly excited. As a result, the system approaches the
classical limit. The nonlinear interaction Hamiltonian H; is
considered in the following form:

H = g‘(alfzaz + a%az), 3)

with ¢ as the coupling strength. The nonlinear interaction H;
mediates the conversion of the phonon of the first oscillator
into two phonons of the second oscillator and vice versa and as
a result the eigenenergies of the system changes. We study the
dynamics of the system (1) using this nonlinear interaction (3)
in two oscillator models, namely (i) quantum self-oscillators
[K =0 in (2)] and (ii) anharmonic self-oscillators [K # 0
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FIG. 2. Phase-locking behavior of steady states in classical regime. Synchronization regime plotted as a function ¢ and A for (a) K = Oy,
(b)K = 0.1y, (¢c) K = 5y1, and (d) K = 10y, with y,/y; = 10. Panel (e) illustrates the phase-locking behavior of the steady state as a function
of K and A with ¢ =5 and y,/y; = 10. Panel (f) shows the phase-locking behavior as a function of y,/y; and A with K = 10and ¢ = 5. In

all the figures relative phase ¢ is plotted using the color scale.

in (2)]. We illustrate the energy spectrum of the Hamilto-
nian Hy + H; with K = 0 in Fig. 1. In the noncoupling basis
|n1, ny) represents the Fock states of the coupled system,
where |n;) and |n,) correspond to Fock states of the first and
second oscillator, respectively. In Fig. 1, |00) represents the
ground state and |10) represents the first excited state. In the
absence of the coupling ({ = 0) the bare energy eigenstates
|20) and |01) and the energy eigenstates |30) and |11) are
degenerate in the second excitation manifold (n =2) and
third excitation manifold (n = 3), respectively. In the cou-
pling basis |0) = |00) and |1) = |10) represents the ground
and first excited states. In the second excitation manifold
(n = 2) the coupling lifts the degeneracy of the eigenstates
|20) and |01) and thes? eigenstates split into two nonde-

generate states [24) = —2(|20) 4 |01)) with a separation of

2ﬁ{. Similarly, in the third excitation manifold (n = 3) the
degeneracy between the states |30) and |11) is lifted off, giv-
ing rise to two nondegenerate states |31) = \%(BO) +|11))

with a separation of 2+/6¢. In the following, we analyze the
phase-locking behavior in the classical and quantum domains
of the coupled systems with K = 0 and K # 0 in (2) and point
out the features that exist only in the quantum regime.

III. SYNCHRONIZATION IN CLASSICAL REGIME

First we consider the system (1) in the limit y,/y; — 0
where the limit cycle amplitude of the system becomes large.
Applying the Heisenberg equation of motion followed by

the mean-field approximation, the equations of motion for
the limit cycle amplitudes o = (a;) and oy = (a;) can be
formulated as

i = (—ion = 2Klaa P+ 2 = ol P — 2icaran,

. . . Y1 .
@ = (—lwz — 2iK o |* + > )/2|012|2)012 —ita;. (4

Using polar coordinates, «; = rjexp(it)) and oy =
ryexp(if;), (4) can be rewritten as a phase and amplitude
equation in the form

r o= (& - )/21’12)1’1 + 2¢rirysin @,

2
};'2 = (% — )/21'%)}’2 — é‘rlz sin¢, (5)
. 2_42
¢ =—A— 2K(r§ — 2r12) - C(u> cos ¢,
r

where ¢ = 6, — 20, is the phase difference and A = w; —
2w is the frequency detuning. From (5) we can say that the
system (4) is synchronized when the frequency of the sec-
ond oscillator becomes twice the frequency of first oscillator
(w2 = 2wy), and a fixed relative phase relation is established
between them. Therefore, in the rotating frame, finding the
stable fixed point can determine the synchronized regime of
the system. In Fig. 2 the synchronized regime (dark col-
ored region showing the Arnold tongue) is illustrated which
corresponds to a stable fixed point of (4) and we plotted the
relative phase ¢ as the color scale in Fig. 2.
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In the steady-state regime the amplitude and phase of the
system are given by the expressions

« « o« [N @+2)
"12\/2”27 r = 2_)/2(Z2+2)’

T N e e
¢" =tan [ A+2Ki(1—-22)  (z+2) }’(Q

where r, 5, and ¢* represent the steady-state amplitudes and
phase of the coupled system (4) and the expression of z can be
obtained by solving the following quintic polynomial, that is,

Vi 2 2 2 V12 2 2
—Z+2)T+2Dz -4 - —@—-1D(z—-4)
2)/2 4

2
- (ZKA(I —2Z)(Z+2)+A(Z2+2)> =0. ()
2y

Using linear stability analysis, we find that out of five pos-
sible roots of z only two are stable and as we increase the value
of K one of these stable stationary states becomes unstable. In
Fig. 2 we illustrate the region where the nonlinearly coupled
system (4) is synchronized corresponding to the stationary
states given in (6) and (7) for different values of K. Figure 2(a)
shows the synchronization regime (or Arnold tongue) of the
coupled system for K = 0. We studied the dynamics of the
system (4) for K = 0 in detail very recently [52]. Here we
show that the system exhibits high-order synchronization and
multistable behavior, which arises due to the presence of ro-
tational symmetry in the system. For A = 0 (and K = 0) we
obtain steady-state solutions corresponding to cos ¢* = 0 and
r{ = 2r; from the phase equation given in (5). For cos ¢* = 0,
there exists two solutions for ¢*, that is, ¢* = 7 /2 and ¢* =
37 /2. Among these two, only the steady state corresponding
to ¢* = m /2 is stable for { < .. When we increase the value
of the coupling strength, beyond a critical coupling strength
(¢ > ¢.), the steady-state solution corresponding to ¢* = 7 /2
loses its stability. One may find that the following two stable
solutions for ¢* [52],

" =¢o and ¢"=—¢o+m,

—sint (L 1 ©
¢o = sin <2§ z )

corresponding to r{ = 2r5 arise from the critical point. For
both the values of ¢*, since the solutions given in Eq. (8)
are stable, the system exhibits a multistable behavior and as
a result the system exhibits clockwise and anticlockwise ro-
tations in the same periodic orbit. Therefore, the values of ¢*
corresponding to lower values of coupling strength (7 /2) and
higher values of coupling strength [given in (8)] determines
the synchronization regime for A = 0, which is presented in
Fig. 2(a). For A # 0, the phase deviates from the aforemen-
tioned values and attains values corresponding to one of the
stable stationary states given in (6) (for K = 0) and the Arnold
tongue is obtained as shown in Fig. 2(a). For A # 0 the
system exhibits multistability and oscillators move along the
clockwise and anticlockwise directions in different periodic
orbits. For K # 0, we demonstrate the synchronization regime
of the system (4) in Figs. 2(b) to 2(d). As mentioned earlier,
the system exists in two stable stationary states and displays

clockwise and anticlockwise motions in two periodic orbits.
As we increase the value of K, one of the stable stationary
states becomes unstable. From (6) we can infer that, for lower
values of K, the tip of the Arnold tongue coincides with A = 0
as shown in Fig. 2(b). For higher values of K there is a shift in
the tip of the Arnold tongue from A = 0 as shown in Figs. 2(c)
and 2(d). The phase locking also increases with increasing
Kerr strength for a range of A values as shown in Fig. 2(e).
The damping parameter y,/y; rescales the synchronization
regime as presented in Fig. 2(f), which enters into the steady
state through r{ and r;.

IV. SYNCHRONIZATION IN QUANTUM REGIME

Now we explore the dynamical features of the system (1)
that comes out due to the presence of nonlinear coupling in the
quantum limit (y,/y; — 00). The phase-locking behavior in
the classical regime discussed in Sec. I1I is also maintained in
the quantum regime with stronger phase-locking features [38].
In this section, we demonstrate certain quantum features that
exist in the system due to the presence of coupling. To be-
gin, we analytically obtain the steady-state approximation of
the master equation (1) using perturbation theory and derive
the synchronization measure to gain some analytical under-
standing about the synchronization behavior in the quantum
regime.

A. Perturbation analysis

The steady-state density matrix of the uncoupled oscilla-
: 0 _ 5O 0) ©0)
tors can be factorized as p™ = p;”’ ® p,’, where p;” has a

diagonal form and is given by the expression

0 _ [ /)'OU+n, yi/vat+n, yi/y2)]
' [(1/y2)n O, Y1/v2, 2y1/v2)]

where (y1/y2), denotes the Pochammer symbol and ® is the
Kummer’s confluent hypergeometric function [53]. When the
oscillators are uncoupled the quantum van der Pol oscillators
are said to exhibit limit cycle oscillations both in the absence
(K = 0) and presence (K # 0) of Kerr nonlinearity [41]. This
is clear from (9) since ,ol.(o) only depends on the parameter
y1/v>. Therefore, in the limit y,/y; — oo, ,oi(o) can be ap-
proximated as ,0(0) — %|0) 0] + %|1)(1| + O(1/y>). Now we

. i=12 (9

apply perturbatilon theory to obtain the steady-state operator
of the coupled system. In the weak coupling limit the steady-
state operator can be expanded as a power-series expansion in
coupling strength ¢ in the following form [19], that is,

p=p"+cpV 4+, (10)

where p© is given in (9) and p'V is the first-order correc-
tion to the density operator. To obtain p(!) we decompose
the master equation (1) into the perturbation operator L;p =
—i[Hj, p] and the unperturbed Lindblandian Lop = Lp —
i[Hy, p]. Therefore, the first-order correction to the steady-
state density operator can be defined as p'V = —Ly "Lip,
where L, !'is the Moore-Penrose pseudoinverse of the unper-
turbed Liouvillian Ly [54]. The inverse of the superoperator
Ly can be found by inverting the diagonal elements in the
off-diagonal subspace such that L0_1|n +2,m—1)n,m| =
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FIG. 3. Synchronization measure |S| for coupled system (1) plotted as a function of frequency detuning A with different coupling strengths

for (a) K = 0 and (b) K = 250y, with damping rate y,/y; = 10

A7 Nn 42, m — 1) {n, m| with

A=i[A—2KQn—m+2)]—T, (11)

where A = wy —2w; is the frequency detuning and T" =
BL2(n+m) + 51+ yl(n +2)* + (m — 1)* = 2(n + 3)].
Hence the first-order correction to the density matrix can be
obtained in the form

(1)
'On+2 m—1;n,m

IR N R e e V)
A

n=0,m=1

12)

Since the degeneracy of the eigenstates of the system is
lifted up due to the coupling as shown in Fig. 1, it leads to a
shift in the eigenstate that can block the transition of phonons
for finite detuning in the absence of Kerr nonlinearity (K = 0)
and multiple resonances in the presence of Kerr nonlinearity
(K # 0) for the first-order response to the coupling strength.
In the following subsection, we will discuss the significance
of these two effects in the phase-locking behavior of the sys-
tem (1).

B. Phase-locking measure

Classically, we identified the relative phase between the
oscillators as ¢ = 6, — 26, [(5)]. To quantify the synchroniza-
tion in the quantum domain, we define the correlator (aTaTaz)
as the measure of the relative phase between the coupled sys-
tem, in which (a;) = |a;le™" (j = 1, 2) determines the phase
of the uncoupled oscillators. Thus, we define the absolute
value of the phase synchronization measure in the form [25]
S = |Sle™i = (ajaja)

(ajar)(ajan)

Z\/merZm 1

(ala)(ajas)

, 13)

where ¢ = 6, — 20, is the relative phase difference between
the quantum oscillators. By substituting the expression (12)
into (13) we can obtain the synchronization measure for the

first-order correction of density matrix o) in the form

S(pMy = Z (0@ — P,S(J)r)zmq)i{(m(n + D+ 2))’ (14)

nm A (a;ra])(azaz)

where A is given in (11).

For K =0, S(p'") given in (14) turns out to be the sum
over the terms in (11) at A =0 and around A = :t2\/§§
(£2+/6¢ for higher phonon transition) for ¢ < y»/y; and ¢ <
v2/v1, respectively, of width I". For K # 0, the expression for
the synchronization measure is a coherent sum of resonances
at A =2K(2n —m+ 2) and width T". In the limit y»/y; —
00, the resonances are more resolved for K > I', but as the
limit y»/y; — 0 the resonances are no longer resolved as we
can see from Fig. 2(e).

In Fig. 3, we plot the absolute value of synchronization
measure S as a function of A for different coupling strengths
using the steady-state solver of QUTIP [55,56]. In Fig. 3(a)
we present the synchronization measure for K = 0. We can
observe that, for very weak coupling strength ¢ < y»/y1, the
system exhibits resonance peaks at A = 0 and as the coupling
strength is increased the phase synchronization is suppressed
at the resonance A = 0 with some finite value such that |S]|
has a local minima and we observe a split in the synchro-
nization peak around A = 0. As we increase the coupling
strength, the suppression at the resonance also increases. This
can be understood from the energy level diagram given in
Fig. 1. For very low values of ¢ we observe a |0) to |1)
transition with resonant phonon absorption at w, = 2w; and
as a result we obtain single-phase synchronization peaks at
A = 0. As we increase the coupling strength, the transition
from 1) to |2) gets blocked for detuning V/2¢, hence the
synchronization is suppressed at A = 0 and we obtain syn-
chronization peaks at A = £2+/2. Any further increase in the
coupling strength ¢ also blocks the |2.) to |34) transition
for detuning (\/6 — «/i)(. This leads to an increase in the
suppression of phase synchronization and a split in the syn-
chronization peaks as demonstrated in Fig. 3(a). In Fig. 3(b),
we illustrate the phase synchronization measure as a function
of A for K # 0. Here we observe that the system exhibits
multiple resonances which is clear from (14). The reason
for the occurrence of multiple resonances in the presence of
Kerr anharmonicity in the energy spectrum of the quantum
van der Pol oscillators can be explained by considering the
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FIG. 4. Different behaviors of the phase-locking measure S for the steady state. Synchronization measure |S| plotted as a function of ¢ and
A in (a) with K = 0 and (d) with K = 250y, for y»/y1 = 10. The same measure |S| is plotted as a function of y, and A with K = 0 in (b) for
¢ = 5y, (¢) for ¢ = 15y, and with K = 250y, for (e) { = Sy, and (f) ¢ = 15y,.

multiple phonon transitions due to the nonlinear interaction
term present in (3) where the creation (annihilation) of two
phonons is accompanied by the annihilation (creation) of a
phonon. This allows a resonant interaction between the states
[In+2,m— 1) and |n, m) where |n) and |m) are the Fock
states of the first and second oscillator. Thus it is required
that the energy eigenvalues satisfies the condition E (|n, m)) =
E(ln+ 2, m — 1)), which corresponds to Hy|n, m) = Hy|n +
2, m — 1) such that we obtain a resonance condition of the
following form:

A+2K(2n—m) =+ 4K =0. (15)

In [19] the authors obtained a resonance condition which
confirmed that coupled identical oscillators (with equal am-
plitudes) with Kerr anharmonicity in the energy spectrum can
show a synchronization blockade and the synchronization can
be enhanced by making the oscillators more heterogenous.
For the interaction given in (3), classically, we observed that
the system exhibits high-order synchronization and for K = 0
the synchronization is maximum for the resonance conditions
wy = 2w, and r{ = 2r; [52]. For K # 0 the maximal syn-
chronization occurs for the resonance condition w, = 2w; and
amplitude ratio ] : 5 = /z : 1 (where z can take the range of
parametric values) as given in (6). Therefore, it is clear from
the resonance condition (15) that the system is heterogenous
and exhibits multiple resonances at A = 2K(2n — m + 2).

In Figs. 4 and 5, we present an overall picture of
the synchronization measure |S| of the steady state (10).
Figures 4(a) and 4(d) illustrate the synchronization regimes
for K = 0 and K # 0, respectively. In these two figures, we
plot the phase-locking measure |S| as a function of A and ¢.
Figure 4(a) reveals that, for very low values of ¢, there is no

blockade, and when we increase the coupling strength we can
visualize a split in the synchronization tongue at A = 0. In
Fig. 4(d) we observe the synchronization tongues for K # 0
and upon increasing the coupling strength, we observe a split
in the synchronization tongues at A = 2K and A = 6K. We
will explain the blockade in more detail in the following
subsection. Classically, we observed from Fig. 2 that there
is no blockade in the synchronization tongue at A = 0 for
K =0 and no multiple resonances are present for K ## 0.
Figures 4(b) and 4(c) illustrate how the blockade increases
for lower values of the damping parameter y,/y; at the res-
onance A =0 and K = 0, as the Fock levels become more
populated. For K # 0, we can also observe the blockade for
different A values for decreasing y»/y) in Figs. 4(e) and 4(f).
The resonances are more resolved with the increasing values
of K for different coupling strengths, which can be seen
from Figs. 5(a) and 5(b). Classically, we observed broad-
ening of the resonance [Fig. 2(e)] for the increasing value
of K.

250 |SlO..’:‘»O

0.15 125
X

S 0.00 0 ) 0.00

A /ﬁg’mn,‘ A /is’,,,,,,f

FIG. 5. Absolute value of synchronization measure S plotted as
a function of frequency detuning A and Kerr parameter K for the
damping rate y,/y; = 10 with coupling strength (a) { = 5.0y, and
(b) ¢ = 7.0y, and Kpux = 250y;.
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FIG. 6. The phonon number of individual quantum van der Pol
oscillators. Here, orange curve represents first oscillator phonon
number and blue curve represents second oscillator phonon number.
Panels (a)—(c) are plotted for K = 0 with (a) ¢ = 3y, (b) { = 5y,
and (c) ¢ = 10y,. Panels (d)—(f) are plotted for K = 250y, with
(d) ¢ =3y, (e) £ = 5y1, and (f) ¢ = 10y;. In all these figures we
consider y, = 10y;.

C. Mutual correlation and antibunching

In the previous subsection we observed a blockade due to
the presence of anharmonicity in the energy spectrum due to
the nonlinear interaction between two quantum van der Pol os-
cillators, which is a crucial feature to realize phonon blockade
and antibunching in the quantum oscillators. A strong phonon
(or photons) correlation between the oscillators causes the
system to exhibit limit cycle oscillations such that the system
synchronizes with each other, leading to bunching and anti-
bunching [47]. The phonon correlation between two quantum
oscillator modes can be calculated using the second-order
correlation function [47]

il il )

(ayarayas (16)

al, ) = —
g(ay, az) (alal)(d;az)
where g, is the steady-state second-order correlation func-
tion. The two oscillator modes are positively correlated when
g» > 1, leading to simultaneous emission of phonons known
as bunching. When g, < 1 the oscillator modes are nega-
tively correlated and the simultaneous emission of phonons
is blocked, known as antibunching. When g, = 1, there are
no correlations between the two osc111ator modes. Figure 6
demonstrates the phonon number (a a;) of the first (orange
curve) and second (blue curve) oscillator. Figures 6(a) to 6(c)
show the phonon correlation between the first and second
oscillator for different values of coupling strength ¢ for K =
0. We can see that the oscillators are anticorrelated with
each other and as the coupling strength is increased the
oscillators become more negatively correlated. The Wigner
dynamics of the first and second oscillator for A = 0 is plotted
for differrent coupling strengths in Fig. 7. From Figs. 6(a)
to 6(c) we can observe that the phonon number increases
very slightly with the increase in coupling strength at A = 0,
which can be observed in the Wigner function representation
in Figs. 7(a), 7(c), and 7(e). We can see that there is no
change in the limit cycle of the first oscillator for different

W(a, 8)
0.2

0.0
W(a, B)
0.24
0.00 O 00
4 W(a, B) —4 4 W(a, B)
0.12 0.28
4 (e) & (f)
N o
E E
.00
Re(a) Re

FIG. 7. Wigner distribution function for the steady state of the
individual oscillators for K = 0. Panels (a), (c), and (e) represent the
limit cycle of the first oscillator and panels (b), (d), and (f) represent
the limit cycle of the second oscillator. In panels (a), (b) ¢ = 3y, (c),
(d) ¢ = 5y1, and (e), (f) ¢ = 10y,. In all these figures we consider

=10y, and A = 0.

¢ values. In Figs. 6(a) to 6(c) a negative increase in the
phonon number (a;a2> is observed, which is confirmed from
the shrink in the limit cycle as presented in the Wigner dis-
tribution function of the second oscillator in Figs. 7(b), 7(d),
and 7(f). For K # 0, the phonon number of the first and
second oscillators are plotted in Figs. 6(d) to 6(f). In these
figures we can observe the phonon number peaks of the two
oscillators at different resonances which are simultaneously
correlated and anticorrelated, and this correlation and anti-
correlation increases with increasing coupling strength. In
Figs. 6(d) to 6(f) we can also observe that the phonon numbers
of the first and second oscillators are negatively correlated at
A =2K and A = 6K and positively correlated at A = 4K.
The Wigner function distribution of the first and second os-
cillator for different resonance conditions (horizontally) and
different coupling strengths (vertically) are plotted in Fig. 8.
The limit cycle of the first oscillator remains the same for all
values of ¢ and A, which can be seen from Figs. 8(a), 8(e),
and 8(i). The limit cycle of the second oscillator is illustrated
in Figs. 8(b) to 8(d) for ¢ = 3y, Figs. 8(f) to 8(h) for ¢ = 5y,
and Figs. 8(j) to 8(1) for ¢ = 10y;. We can observe that, for
anticorrelated phonons, the limit cycle of the second oscillator
shrinks as presented in Figs. 8(b), 8(f), and 8(j) for A = 2K
and Figs. 8(d), 8(h), and 8(1) for A = 6K. For positively
correlated phonons the limit cycle of the first and second
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FIG. 8. Wigner distribution function for the steady state of the individual oscillators for K = 250y, and y, = 10y,. Panels (a), (e), and (i)
represent the limit cycle of the first oscillator. The limit cycle of the second oscillator is presented in panels (b)—(d) for A = 2K, (f)—(h) for
A = 4K, and (j)~(1) for A = 6K. In panels (2)(d) £ = 3y1, (€)~(h) ¢ = 5y;, and ()~(1) ¢ = 10y;.

oscillators remains the same as shown in Figs. 8(c), 8(g),
and 8(k) for A = 4K.

With the results now at hand, we analyze the mutual corre-
lation between the quantum van der Pol oscillators through the
second-order correlation function given in (16). In Figs. 9(a)
and 9(b), we plot the second-order correlation function g, as
a function of coupling strength for K = 0 and K # 0, respec-
tively. In Figs. 9(c) and 9(d) we illustrate g, as a function of
the damping parameter y», respectively, for K = 0 and K # 0.
For K = 0, we observe that the phonons are anticorrelated,
and as such, the second-order correlation function g, turns out
to be less than 1 for all values of {. Hence the system exhibits
antibunching, and as we increase the coupling strength, the
antibunching also increases as observed from Fig. 9(a). We
also notice a split in the antibuching dip, which increases with
increasing damping parameter y,/y; as shown in Fig. 9(c).
For lower values of y»/y; we do not observe any split due to
resonant absorption during the transition from |0) to |1). Due
to this antibunching phenomenon we observe anticorrelation,
and as a result, the phonon blockade in the synchronization
peaks due to different phonon transitions between the Fock
states in the coupling basis is shown in Fig. 1. For K # 0 we
observe simultaneous bunching and antibunching at different
resonances as illustrated in Figs. 9(b) and 9(d). At A = 2K
and 4K we observe bunching since g, > 1, which increases
with increasing ¢ [Fig. 9(b)] and at A = 6K we can see
that g, < 1 and the phonons are antibunched. Because of the
presence of this nonclassical effect in the system (1), we
observe a synchronization blockade in the quantum regime.

V. POWER SPECTRUM

In the previous section we observed a phonon blockade
in the phase-locking regime, and as a consequence of the
phonon blockade, we observed antibunching effects in the
same parametric region in the coupled quantum van der Pol
oscillators. The phonon blockade occurs due to the appre-
ciable excitation-dependent frequency detuning present in the
system. In the case of anharmonic quantum van der Pol oscil-
lators, we observed multiple resonance synchronization peaks
and simultaneous bunching and antibunching effects at differ-
ent resonances as a result of anharmonic interaction. We can
also investigate these attributes using the power mechanical
spectrum defined by [39]

P,-,-(w):/ dte™ (al ()a;(0), i=1,2, (17)

o0

which characterizes the frequency entrainment present in the
system. Equation (17) describes the energy spectrum of the
oscillators. In Fig. 10 we plot the power spectra Pj;(w) and
P> (w) against the dimensionless frequency @&; = (o — w;)/ ¥
(i=1,2) of the first and second oscillators for different
coupling strengths. In Figs. 10(a) and 10(c), for K = 0, we
observe spectral peaks at @; = 0 with w, = 2w;. As we in-
crease the coupling strength, the heights of the spectral peaks
decrease and split to form a Mollow triplet in the case of
the first oscillator as demonstrated in Fig. 10(a). We observe
a normal-mode split in the spectra [Py (w)] of the second
oscillator when the coupling is strong as shown in Fig. 10.
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FIG. 9. In panels (a), (b) the correlation function g, shown
against detuning frequency A for different coupling strengths [values
of ¢ given in the inset of panel (b)] with damping rate y»/y;, = 10 and
panels (c), (d) for different damping rates [values of y,/y; given in
the inset of panel (d)] with ¢ = 5.0 for K = 0 in panels (a), (c) and
K = 250y, in panels (b), (d).

In the case of the anharmonic oscillator we observe multiple
spectral peaks corresponding to the resonance condition given
in (15) for increasing frequency (&; > 0) for the first and
second oscillators as presented, respectively, in Figs. 10(b)
and 10(d). Upon increasing the coupling strength we observe

K/y =0 K/ = 250

0.44 0.010 K/m =20
(a) (b)

3022 0.005 B

— — (/M =50

A ——— (/=100

_ . = ¢/ =150
0.00550.00 008 x108 V-000=5——F—%

(w—wi)/m (w—w)/K

0.008

0.004

g\ .
0.00%50:00 008 x10* O-000=F—=F—F%

(w—wa)/m (w—w)/K

FIG. 10. Power spectra of first oscillator [P;(w)] in panels (a)
and (b) and second oscillator [P, (w)] in panels (c) and (d) shown for
different coupling strengths ¢ [values given in the inset of panel (b)]
for y,/y1 = 10and A = 0.

Ep=0 K=20

i

0.70 (a) 0.2 (b) — /=07
——m /7 =50
Py — /1 = 10.0
3035 0.1
o
I
00—001 0.0 01><103 R
(w—wi)/m (w—wi)/K
03857 01507y
3019 0.075
i)
0.00 3 0.000 L
0.1 0 0 0.1%x1 2 4 6
(w—w)/m (W —wy)/K

FIG. 11. Power spectra of first oscillator [P;(w)] in panels (a)
and (b) and second oscillator [Py (w)] in panels (c) and (d) shown
for different damping parameters y,/y, [values given in the inset of
panel (b)] for ¢ = 3.5y, and A = 0.

that the Mollow triplet is formed in the spectral peaks of
both oscillators at @; = 0 and @; = 2 as shown in Figs. 10(b)
and 10(d). The effect of damping parameters in the spectrum
of the oscillators is captured in Fig. 11. By fixing the coupling
strength at { = 3.5y, we illustrate the spectral characteristics
for increasing damping parameters for K =0 and A =0 in
Figs. 11(a) and 11(c). For y»/y1 < ¢, we observe that the
Mollow triplet is formed in the spectra of the first oscillator
as shown in Fig. 11(a). In the case of the second oscillator, we
observe a spectral peak at @, = 0. For y»/y; > ¢, we observe
a slight depression in the spectral peak of the second oscillator
at @, = 0 as presented in Fig. 11(c). For y»/y; > ¢ the height
of the spectral peaks gets reduced and we do not observe
any strong coupling characteristics. The spectral peaks of
anharmonic oscillators for K # 0 are illustrated in Figs. 11(b)
and 11(d). For very low values of the damping parameter we
observe the prominent spectral peaks of the first oscillator for
different resonance conditions (15) at &; = 0, &; = 2, and
@) = 4 as depicted in Fig. 11(b). For the second oscillator
the spectral peaks are dominant for &; = 0, &; = 2 and less
prominent for @; = 4. With increasing damping parameters
the height of the spectral peaks of the anharmonic oscillators
gets suppressed as illustrated in Figs. 11(b) and 11(d).

As discussed previously the transition from the ground
state |0) and first excited state |1) is enhanced at resonance
A = 0 for lower values of ¢ and there we obtain single spec-
tral peaks for the first and second oscillators for K = 0 and
multiple spectral peaks for @; > 0 in the anharmonic case
(K # 0). As we increase the coupling strength, the transitions
between the second and third excited states are far from res-
onance. Phonon blockade occurs there, and as a result, we
observe antibunching effects. The normal mode splitting in
the form of the Mollow triplet and two-mode splitting in the
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spectral peaks of first and second oscillators, respectively,
are the consequences of the aforementioned effects. In the
strong coupling regime, the formation of the Mollow-triplet
is because of four different allowed transitions (|]3,) — |2_),
[31) = 124), [3-) — |2_), and |3_) — |24)) between the
second and third excited states and the sideband frequencies
occur at @; & wj+ where wj+ (j = 1, 2) are the frequencies of
the nondegenerate states |2, ) and |3.), respectively. The two-
peak normal-mode splitting is due to the blocked transition
of the second and third excited states (|24) and |34)) with
peaks occuring at @; = w;+. The allowed transition between
the Fock states depends on the two-phonon loss rate (y2/y1)
of the quantum van der Pol oscillators.

Experimental realization

The system represented by (1) can be experimentally
achieved via a trapped-ion setup by implementing side-band
transitions for two motional modes of frequencies wy and
2wy, respectively [38]. Then driving the side-band transition
of both the modes of resonantly from an excited state we can
obtain the coupling described by the Hamiltonian in Eq. (3).
The system can be characterized by the Wigner-parity func-
tion. The interaction brings out a strong coupling between the
modes, which is a desirable property in quantum information
processing [45]. Large Kerr nonlinearities can be engineered
in trapped ions [19,57,58]. The nonlinearly coupled quantum
van der Pol oscillator can also be realized in a cavity optome-
chanical system [40]. The nonlinear interaction between the
mechanical van der Pol oscillators can be realized by quadrat-
ically coupling the “membrane-in-the-middle” setup [40,50].
The cavity mode ¢ can be added to the nonlinearly coupled
mechanical oscillator and driven with laser at frequency w,,.
The total Hamiltonian is given by

H = wyc'c + Ee 't + E*e'c

+ Z a),-a:fa,- + gicTc(ai + a;r)z, (18)
i=12

where wy is the cavity frequency, g; is the optomechani-
cal coupling strength, and E is the driving strength of the
laser. Large Kerr anharmonicities are difficult to realize in
the optomechanical setup, but can be realized in hybrid sys-
tems [41,59,60].

VI. CONCLUSION

In this work we investigated the synchronization dynam-
ics of nonlinearly coupled quantum van der Pol oscillators
and those of anharmonic self-oscillators. We showed that the

system exhibits certain novel features in the quantum domain
which are not present in the classical domain. We identified
that, due to the anharmonicity of the nonlinear coupling,
the system exhibits a synchronization blockade in the phase-
locking regime. We also showed a quantized phase-locking
behavior in nonlinearly coupled anharmonic self-oscillators,
which comes out due to the heterogeneity that is present in the
system. We illustrated that the phonon blockade in the system,
which arises due to anticorrelation between the oscillators, in-
creases with coupling strength. Further, we also demonstrated
that, due to the negative correlation between the oscillators,
the system shows antibunching effects in the phase-locking
parametric regime. In the case of anharmonic self-oscillators,
we observed simultaneous correlation and anticorrelation be-
tween the oscillators at different resonance peaks, which also
leads to simultaneous bunching and antibunching in the sys-
tem. We identified that the limit cycle of the anticorrelated
oscillator shrinks with increasing coupling strength in the
Wigner distribution function. We also showed these attributes
in the frequency entrainment of the system. The system shows
the normal-mode splitting for higher values of the coupling
strength, a feature of strong nonlinear interactions. We also
observed the Mollow triplet due to multiphonon transitions in
the system with increasing coupling strengths.

Phonon and photon blockades in the quantum systems
have been an important topic of research since they are a
pure quantum effect that leads to antibunching effects in
the system. In single-photon detectors, photon correlation
is an important tool and has applications in quantum infor-
mation processing such as quantum teleportation [61-63],
quantum cryptography [64,65], and so on. Several theoretical
and experimental studies were conducted for the detection
of the phonon blockade in optomechanical systems [16,47—
50], nanomechanical resonators [66], optical cavity with one
trapped atom [67], cavity QED [32], and superconducting
microwave resonator [68]. The quantum van der Pol oscil-
lator also provides a feasible phonon source and our studies
can help in the realization of phonon detection and quantum
information tasks.
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