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Abstract
In this paper, we discuss the quantumdynamics of a nonlinear system that admits temporally localized
solutions at the classical level.We consider a general ordered position-dependentmassHamiltonian
inwhich the ordering parameters of themass term are treated as arbitrary. Themass function here is
singular at the origin.We observe that the quantum system admits bounded solutions but importantly
the coupling parameter of the system gets quantizedwhich has also been confirmed by the
semiclassical study aswell.

1. Introduction

Several studies on physical systemswith position-dependent effectivemass have emerged in recent years due to
their wide applications in the study of electronic properties of semiconductors [1], inhomogeneous crystals,
quantumdots, quantum liquids [2–4] and so on. The time-independent Schrödinger equation gets generalized
when the effectivemass depends on the position and it is solved using both numerical and analytical techniques.
Though difficult, it is of general interest to get exact solutions for such position-dependentmass Schrödinger
equation (PDMSE) for specific potentials. Certain nonlinear systems, specifically quadratic Liénard type
nonlinear oscillators, are found to possess position-dependentmassHamiltonians. For example,Mathews-
Lakshmanan oscillator andHiggs oscillator are considered to describe the dynamics of harmonic oscillators in
curved space [5, 6]. Different studies have been carried out on these systems in the literature since their
introduction in the literature[7–10].While quantizing these position-dependentmass (PDM) quantum systems,
one should consider (i) the possible choices of ordering betweenmomentum andmass operators in their kinetic
energy term and (ii) appropriatemodification on the boundary conditions. The orderingmay lead toHermitian
or non-HermitianHamiltonians. Themost general ordering formhad been introduced by Trabelsi et al [11]. In
a recent study, it has been shown that theMathews-Lakshmanan oscillator is exactly solvable for the general
ordered form [12].Motivated by the problemof ordering ambiguity of position-dependentmassHamiltonian,
two of the present authors studied the quantumdynamics of theHiggs oscillator and a k-dependent
nonpolynomial oscillator by considering the general ordered form introduced byTrabelsi et al., in [13].

Classically both the systems,Mathews-Lakshmanan oscillator andHiggs oscillator admit non-isochronous
solutions. It is recently reported that certain quadratic Liénard type nonlinear oscillators can possess
isochronous solutions aswell [14].We solved these nonlinear oscillators quantummechanically and discussed
their exact and quasi-exact solvable nature [15]. It is alsoworthmentioning that one can also derive a
conservative description for the nonlinear oscillators of position dependent linearly damped Liénard type
systems classically. Such studies have been carried out on generalizedmodified Emden equation in [16, 17]. The
associatedHamiltonians obtained are non-standard. TheHamiltonian description for such a nonlinear
oscillator, governed by amodified Emden equationwith certain constraints on its parameters, paves away to
solve the systemquantummechanically. It is also shown that theHamiltonian is invariant under combined
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coordinate reflection and time reversal transformation and exhibits linear energy spectrum as that of the
standard harmonic oscillator [18].

Based on all these studies, we are here interested to study the quantumdynamics of a quadratic Liénard type
nonlinear oscillator which shows a special behavior at its classical level. In this work, we consider such a type of
nonlinear system that exhibits temporally localized solutions [14]. It is observed that the associatedHamiltonian
is of the formof position-dependentmass type. Themass profile has a resemblance to a δ-function form. A
relatedmodel that has been used for describing electron systems in δ-doped semiconductors in the Thomas-
Fermifield has been shown to be quantummechanically exactly solvable [19]. In ourwork, we use a general
ordering procedure towrite down the appropriate quantumHamiltonian in order to solve the underlying
generalized Schrödinger equation.We also study the role of ordering parameters on obtainingwell defined
eigenfunctions as themass function is not a continuous one here.

In this paper, we discuss the classical solvability of the system in section 2. In section 3, we implement a
semiclassical quantization rule to analyze the quantum solvability of the system and find that the coupling
parameter of the system gets quantized. The system is observed as a position-dependentmass one.We consider
the generalized Schrödinger equation corresponding to a non-Hermitian ordered form to analyze the quantum
solvability of the systemwhich is discussed in section 4. Finally, we summarize our results.

2. A δ-typemass system and its classical dynamics

Consider aHamiltonian of the form studied byTiwari et al [14],

H
x p

x
4

1
4 2

2 ( )l= +

and the corresponding Lagrangian is

L
x

x
x . 2

2

4
2 ( )

l= -

It is of the position-dependentmass form, H V x ,
p

m x2

2

( )
( )

= + where themass profile is of the form

m x
x

V x x
2

and . 3
4

2( ) ( ) ( )l= =

Here themass is singular at x=0.
The equation ofmotion for theHamiltonianH in (1) reads as

x
x

x x
2
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It can be integrated once on using the integrating factor, say x

x

2
4

 , as

x

x
x C , 5

2

4
2

1 ( )
l+ =

whereC1 is an integration constant. Integrating this equation (5) oncemore, wefind that equation (4) admits the
general solution,

x t
C C t

1
, 6

C 2 1
2

1

( )
( )

( )=
+ +l

whereC2 is the second integration constant. Forλ> 0, we have a temporally localized solution. And forλ< 0,

we have a singular solutionwhen t C
C C

1
2

1 1( )∣ ∣= -l inwhich case we consider thatC1 andC2 are positive.

The plot of x(t) against t is depicted infigure 1 (i) for certain values ofC1,C2 andλ. Thefigure 1 (ii) depicts the
contour plot of x(t) given in equation (6) for various values ofλwithC1= 1, andC2=− 5 .

3. Semiclassical quantization

Tounderstand the possibility of quantization of the above type of position-dependentmass system,wefirst
apply the semiclassical quantization procedure to the system. The standard leading orderWKBquantization
condition for the potential having two turning points is [20],

pdx n n
1

2
, 0, 1, 2 ,..., 7
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( )ò p= + =
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where x1 and x2 are the classical turning points and the conjugatemomentum, p m x E V x2 ( )( ( ))= - . Here,

 ,h

2
=

p
where h is Planck’s constant. From theHamiltonian (1), withH= E, one can express themomentum as

p
E

x x

4 4
. 8

4 2
( )l

= -

At the turning points, say (x1, x2)= (− A,A), themomentum is zero, which is shown in thefigure 2.Hence,
from (1), the total energy,H= E= λA2 and the integral (7) becomes,

A x

x
dx n n2

1

2
, 0, 1, 2 ,.... 9

A

A 2 2

2
⎛
⎝

⎞
⎠

( )òl p
-

= + =
-

Figure 1. (i)The plot of x(t) in equation (6) forC1 = 1, C2 = − 5 andλ = 1 and (ii) the contour plot of x(t) given in equation (6) for
various values ofλwithC1 = 1, andC2 = − 5 , where the blue shaded region denotes the possible values ofλ forwhich the solutions
are well defined and thewhite region denotes the values ofλ forwhich the solutions are singular.

Figure 2.The phase portrait ofHamiltonian (1) for different values of energy E = 0.5, 0.7, 0.8, 1withλ = 0.5.
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To evaluate (9), consider the integral

I
A x

x
dx. 10
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2
( )ò=

-
-

One can also use the classical solution x(t), (vide (6)) and evaluate the closed integral around contourC
(given infigure 2) in themodifiedBohr–Sommerfeld quantization rule [21],
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2
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Here, themomentum, p(t), takes the form as
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We integrate the integral (10) by considering u A x2 2= - and dv dx
x

1
2= and get
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On substituting the integral (13) in (9), one obtains the following relation on the coupling parameter,λ, as


n n

1

2 4
, 0, 1, 2, 3 ,.... 14

2 2
⎛
⎝

⎞
⎠

( )l = + =

Hence, the coupling parameterλ gets relatedwith the quantumnumber n, as in (14).
While studying the quantumdynamics of the above type of position-dependentmass system (1)with a

singularmass function, wemeet with two difficulties: (i) how to define the configuration space and (ii) how to
ensure the continuity of the eigenfunctions of the corresponding Schrödinger equation?We proceed to
incorporate these two aspects in our further study as indicated below.

4.Quantization: general ordered formofHamiltonian

Wenow consider themost general formof the associatedHamiltonian operator that provides a complete
classification ofHermitian and non-Hermitian orderings [11],

H w m pm pm V x
1

2
, 15

i

N

i
1

i i iˆ ˆ ˆ ( ) ( )å= +a b g

=

whereN is an arbitrary positive integer and p̂ is the one dimensionalmomentumoperator. The ordering
parameters should satisfy the constraints,αi+ βi+ γi=− 1, i= 1, 2, 3,...N, andwiʼs are real weights which are
summed to be 1. The above form globally connects all theHermitian orderings and also provides a complete
classification ofHermitian and non-Hermitian orderings [11]. The operator Ĥ in (15) possesses 2N free
ordering parameters, after taking into account the above constraints.

The correspondingHamiltonian for the potentialV can bewritten as

 
H p

m
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p
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ˆ ˆ ˆ ( ¯ ¯ ) ˆ ¯ ( )g a g ag= + - + +
¢

+

where p i d

dx
ˆ = - . In (16), the over bar over the parameters represent their total value, X w Xi

N
i i¯ = å .

The study on the effective-massHamiltonians for abrupt heterojunctions indicates that the single-term
ordering forms of kinetic energy operator are viable candidates that ensure continuity of the associatedmatching
conditions [22]. As themassm(x) is singular at x= 0, we use the single termof the general ordered formof the
Hamiltonian as

H m pm pm V x
1

2
, 1. 171 1 1

1 1 1ˆ ˆ ˆ ( ) ( )a b g= + + + = -a b g

Here, we are considering non-Hermitian ordered formof theHamiltonian (16) as the non-Hermitian ordered
form can be relatedwith theHermitian ordered form through similarity transformation [23] as

4
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H m H m , 2 , . 18her 1 1ˆ ˆ ( )h g a= = -h h-

Consequently, for (18)wehave

H m pm pm V x
1

2
. 19her

1 1
2 1

1 1
2ˆ ˆ ˆ ( ) ( )= +bg a g a+ +

As the non-Hermitian ordered form (16) is being relatedwith theHermitian ordered form through
similarity transformation (18), we use the non-Hermitian ordered formof theHamiltonian in this present work
and analyze the possibility of obtaining a complete set of solutions of the operator (16).

The time-independent Schrödinger equation for the non-Hermitian orderedHamiltonian (17), H E ,ˆy y=
can bewritten as


m

m
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m
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where d

dx
¢ = .

As the aboveHamiltonian depicts the dynamics of the one dimensional potential (1), we use the generalized
position-dependentmass Schrödinger equation resulting from the non-Hermitian ordering (17), to study the
solvability of the system (1). It results that


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x x
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By using the transformation,ψ(x)= xd f(x), where d is a parameter to be determined, we can reduce the
equation (21) to the form
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We further use the transformation, g x
x
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2
( ) = , so that equation (22) can be rewritten as
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where g
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f = f .

In order tomap equation (23) to the known form,we again use the transformation,
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to transform equation (23) as
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Equation (23) is of the formof Bessel’s differential equation.Hence, the corresponding general solution is

CJ DY , 28( ) ( ) ( ) ( )f t t t= +n n n

where Jν(τ) andYν(τ) are thefirst and second kind of Bessel polynomials [24] andC andD are arbitrary
constants. Nowwe can obtain the general solution for the equation (21) for the region x ä (0,∞ ) as
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Andwe canwrite down the general solution for the region x< 0, as
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where C̃ and D̃ are arbitrary constants and d (vide equation (25)).
Here we are interested to derive bounded solutions for the system (1) and so analyze the boundary

conditions for the Bessel polynomials.
By choosing d= 2γ1− 2α1− 1, equation (23) can nowbe reduced to the constantmass Schrödinger

equation as
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This equation can also be deduced bymeans of a point canonical transformationmethod, which relates the
PDMSchrödinger equationwith the canonical formof constantmass Schrödinger equation and it is a widely
usedmethod in solving position-dependentmass Schrödinger equations [25]. The potential of (31),U g

g

1
2( ) µ ,

is similar to the effective potential that arose while studying the Efimov effect in the quantum three body system
that describes the dynamics of two heavy particles interacting through a light particle [26].

4.1. Boundary conditions
In equation (29), when x→∞ the polynomials Jν become zero for positive values of ν and become complex
infinity for ν< 0. AndYν becomes∞ provided ν≠ 0. Hence, we takeD= 0 and ν> 0 to get the solutions which
are bounded as x→∞ .

To proceed further, we now expand (29) around x=∞ ,
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The boundary condition on x( )( )yn
+ at x→∞ fixes a constraint d− ν< 0. As ν> 0, the value of dfixes the lower

bound of ν.

Secondly we analyze the bounded nature of x( )( )yn
+ at x=0.When x approaches zero,
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Herewe use the squeeze theoremwhich states that if a function g(x) is squeezed between the functions f (x)
and h(x)near a point a and if f (x) and h(x)have the same limit L at the point a, then g(x) is trapped andwill be
forced to have also the same limit L at a [27]. Since near x= 0, the cosine function is not well defined as


1 cos 1E

x

2

2

1

2( )( )n- - +p  , in accordancewith the squeeze theorem, if we consider the functions,
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• Hence, for the values of d< 0, the solutions x( )( )yn
+ are notwell defined near zero. It restricts that d� 0.

• Butwe have d− ν< 0which fixes the lower bound of ν. To consider the lower bound value of ν as the least of
the value of ν, we consider d= 0.

Hence, the eigenfunction, equation (29) becomes


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Similarly, the eigenfunction, equation (30) takes the form,
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Wealso consider that ν> 0 from the fact that the Bessel functions Jν(0) are notwell defined at ν= 0.
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4.2. Parity
Nowwe use the parity condition on Jν. The solution (35), defined in the region x ä (−∞ , 0), may be symmetric
or anti-symmetric with x( )( )yn

+ . Consider a point ò near x= 0, thenwe have

 C x C x , 36x x˜ ( )∣ ( )∣ ( )( ) ( )y y=n n
-

=-
+

=

and so
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2
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( ( ) ˜ ) ( )- - =n
n

The odd parity determines ν= 1, 3, 5,..., odd integers, and so C C,˜ = - whereas even parity leads to ν= 2, 4,...,
even integers, so that C C˜ = .

Hence, the parity condition fixes

n n, 1, 2, 3 ,.... 38( )n = =

As a result, wefind that the coupling parameter (27) is now relatedwith the quantumnumber ‘n’ as
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2 4
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and so it is quantizedwhich has also been confirmed by the semiclassical quantizationmethod, vide
equation (14).

Hence, the bound states from (34) and (35) become
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The parity nature of the eigenfunctions (40) and (41) restricts the coupling parameter to take discrete values,
that is expressed in terms of quantumnumber ‘n’ in (39). Subsequently we analyze the energy eigenvalues in the
following section.

4.2.1. Energy
As m x

x

2
4( ) = is singular at x= 0, the eigenfunctions xn ( )( )y  (vide equations (40) and (41)) are restricted to be

zero at that point x= 0, that is
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Consequently, we have
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The above relation establishes that the energy eigenvalues are continuous, while the coupling parameterλ is
quantized as in equation (39).

4.3. Normalizability condition of the states (40) and (41)
As the non-Hermitian ordered formof theHamiltonian can be relatedwith theHermitian ordered form
through similarity transformation, one can express the normalization condition for non-Hermitian ordered
Hamiltonian as [23],

m1 , 44n n
2 ∣ ( )( ) ( )y y= á ñh 

where
2

1 1h = g a-
. On substituting (40) in (44), we can get

 
C

x
J

E

x
J

E

x
dx1 2

1 2 2
. 45n n

2

0 4 4
1 1

1 1
⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
( )ò=

¢g a
g a

-
¥

-

As d= 0, we have 1 1
3

4
g a- = . By applying a simple transformation

x

1r = to (45), we can get

 
C J

E
J

E
d1 2

2 2
. 46n n

2 3 4

0
⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
( )ò r

r r
r=

¢¥
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Onusing the identity,

kJ ka J kb dk
a

b a n
1

, 0, 1, 2 ,..., 47n n
0

( ) ( ) ( ) ( )ò d= - =
¥

we can obtain the condition


 

C

E

E E
1

2

2

2 2
48

2 3 4

⎜ ⎟
⎛

⎝

⎞

⎠
( )d=

¢
-

where δ(a− b) is theDirac delta functionwhich becomes infinity when a= b, otherwise it has zero value.
We nowobtain,


 

C
E2

. 49
E E2 2

1 2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟( ) ( )

d
=

- ¢

As the energy eigenvalue of the system is arbitrary and continuous, we have obtained the normalization constant
in terms ofDirac delta function. This is analogous to the quantization of a free particle on a cone studied recently
byKowalski et al [28].

Hence, we obtained the bounded states (29) in both the regions, xä (0,∞ ) and x ä (−∞ , 0), as


x CJ

E

x
n

2
, 1, 2, 3 ,.... 50n n⎜ ⎟

⎛
⎝

⎞
⎠

( ) ( )( )y = =

Thefirst two states (unnormalized) are plotted in the figure 3.
One can reinterpret the normalization condition,

x x dx1 , 51n n( ) ( ) ( )*ò y y=
-¥

¥

by omitting the singular region (− ò, ò) and reconsidering the integral (44) by

 
C

x
J

E

x
J

E

x
dx1 2

1 2 2
, 52n n

2
3 ⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
( )ò=

¢¥

inwhichwe considered (50).
Let

x

1 r= . The integral (52) becomes

 


C J

E
J

E
d1 2

2 2
. 53n n

2

0

1

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
( )ò r r r r=

¢

Nowwe use the identity [29]

J
a

J
a

d
a

J
2

, 54
a

m m m nm
0

2

1
2⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

[ ( )] ( )ò r a
r

a
r

r a d=n n n n n n+

where δnm is Kronecker delta function that takes the value 1when n=m otherwise it takes zero.Here,ανm,
m= 1, 2, 3,...∞ , is themth zero of the Bessel function Jν, that is Jν(ανm)= 0.

Figure 3.The plots of (i)ψ1(x) and (ii)ψ2(x) in equation (50).
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The integral (53)nowbecomes

  
C

J
E

1
2

55n
n
N2

2 1

2
⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

( )= +

whichmakes the energy eigenvalues to take the values,

  E j
4

, 0, 56n
N

n
N

2
2

2

( )= ¹

where j N n, 1, 2, 3 ,... , 1, 2, 3 ,...
n
N = ¥ = are zeroes of the Bessel function, Jn. The normalization constant

reads as


 

C

J

. 57n
N

n
E

1
2 n

N

⎛
⎝

⎞
⎠

( )=

+

The normalized eigenstates, vide (56) and (57), can bewritten as


x C J

E

x
n N

2
, 1, 2, 3 ,.... 1, 2, 3 ,..., 0. 58n

N
n
N

n
n
N⎛

⎝
⎜

⎞

⎠
⎟( ) ( )y = = = ¹

Wehave observed that one can possibly obtain the normalized eigenfucntions with the corresponding
eigenvalues by restricting themotion of the particle around a point near to the origin ò(≠ 0).

4.4.Hermitian ordering
In the previous section, we considered non-Hermitian orderedHamiltonian (17) and solved the corresponding
generalized Schrödinger equation that resulted in the general solution (50). In this sub-section, we discuss about
the solution of theHermitian ordered formof theHamiltonian (19),

H m pm pm V x
1

2
. 59her

1 1
2 1

1 1
2ˆ ˆ ˆ ( ) ( )= +bg a g a+ +

Instead of solving the Schrödinger equation corresponding to theHermitian orderedHamiltonian (19), we
can obtain the solution from the relation (18) that relates the non-Hermitian ordered form (16)with the
Hermitian ordered form through similarity transformation.

H m H m , 2 . 60her 1 1ˆ ˆ ( )y y h g a= = -h h-

Letm ηψ= f. Aswe have 2 1 1
3

2
h g a= - = from d= 0, we canwrite down the solution for (19) from (50),

 
x Cm J

E

x
C x J

E

x
n

2 2
, 1, 2, 3 ,..., 61n n n

3 2
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )f = = =h -

where the normalization constantC is the same as obtained in (49). The solution (61) is singular at x= 0.Hence,
for the system (1), the non-Hermitian ordered form (17) only yields bounded solutions (50).

5. Conclusion

In this work, we considered a nonlinear systemof the quadratic Liénard typewhich admits temporally localized
solutions at the classical level. Depending upon the positive and negative values of the coupling parameterλ, the
solution is well defined or has a singular value in its domain. To start with, we implemented theWKB
quantization conditionwhich ensures that the coupling parameterλwould be quantized.While studying the
quantumdynamics of the system,we considered a single termof the general ordered position-dependentmass
Hamiltonian as themass functionwhich is singular at the origin and solved the underlying Schrödinger
equation.We observed that the quantum system admits bounded solutions. Specifically, wefind that the
coupling parameter of the system gets quantized.We believe that such an observation is quite new to the
literature as far as the quantization is concerned. The position dependentmasswith δ-typemass profile
considered in this papermayfind application in thefield of semiconductor physics, as in the case of Thomas-
Fermi potential with δ− doped semiconductor [19].We believe that our studywidens the scope of quantizing
other solvable classical nonlinear oscillators exhibiting novel dynamical features in a broader sense.
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