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Abstract

In this paper, we discuss the quantum dynamics of a nonlinear system that admits temporally localized
solutions at the classical level. We consider a general ordered position-dependent mass Hamiltonian
in which the ordering parameters of the mass term are treated as arbitrary. The mass function here is
singular at the origin. We observe that the quantum system admits bounded solutions but importantly
the coupling parameter of the system gets quantized which has also been confirmed by the
semiclassical study as well.

1. Introduction

Several studies on physical systems with position-dependent effective mass have emerged in recent years due to
their wide applications in the study of electronic properties of semiconductors [ 1], inhomogeneous crystals,
quantum dots, quantum liquids [2—4] and so on. The time-independent Schrodinger equation gets generalized
when the effective mass depends on the position and it is solved using both numerical and analytical techniques.
Though difficult, it is of general interest to get exact solutions for such position-dependent mass Schrodinger
equation (PDMSE) for specific potentials. Certain nonlinear systems, specifically quadratic Liénard type
nonlinear oscillators, are found to possess position-dependent mass Hamiltonians. For example, Mathews-
Lakshmanan oscillator and Higgs oscillator are considered to describe the dynamics of harmonic oscillators in
curved space [5, 6]. Different studies have been carried out on these systems in the literature since their
introduction in the literature[7—10]. While quantizing these position-dependent mass (PDM) quantum systems,
one should consider (i) the possible choices of ordering between momentum and mass operators in their kinetic
energy term and (ii) appropriate modification on the boundary conditions. The ordering may lead to Hermitian
or non-Hermitian Hamiltonians. The most general ordering form had been introduced by Trabelsi etal[11]. In
arecent study, it has been shown that the Mathews-Lakshmanan oscillator is exactly solvable for the general
ordered form [12]. Motivated by the problem of ordering ambiguity of position-dependent mass Hamiltonian,
two of the present authors studied the quantum dynamics of the Higgs oscillator and a k-dependent
nonpolynomial oscillator by considering the general ordered form introduced by Trabelsi et al., in [13].
Classically both the systems, Mathews-Lakshmanan oscillator and Higgs oscillator admit non-isochronous
solutions. It is recently reported that certain quadratic Liénard type nonlinear oscillators can possess
isochronous solutions as well [ 14]. We solved these nonlinear oscillators quantum mechanically and discussed
their exact and quasi-exact solvable nature [15]. It is also worth mentioning that one can also derive a
conservative description for the nonlinear oscillators of position dependent linearly damped Liénard type
systems classically. Such studies have been carried out on generalized modified Emden equation in [16, 17]. The
associated Hamiltonians obtained are non-standard. The Hamiltonian description for such a nonlinear
oscillator, governed by a modified Emden equation with certain constraints on its parameters, paves a way to
solve the system quantum mechanically. It is also shown that the Hamiltonian is invariant under combined
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coordinate reflection and time reversal transformation and exhibits linear energy spectrum as that of the
standard harmonic oscillator [18].

Based on all these studies, we are here interested to study the quantum dynamics of a quadratic Liénard type
nonlinear oscillator which shows a special behavior at its classical level. In this work, we consider such a type of
nonlinear system that exhibits temporally localized solutions [14]. It is observed that the associated Hamiltonian
is of the form of position-dependent mass type. The mass profile has a resemblance to a 6-function form. A
related model that has been used for describing electron systems in §-doped semiconductors in the Thomas-
Fermi field has been shown to be quantum mechanically exactly solvable [19]. In our work, we use a general
ordering procedure to write down the appropriate quantum Hamiltonian in order to solve the underlying
generalized Schrodinger equation. We also study the role of ordering parameters on obtaining well defined
eigenfunctions as the mass function is not a continuous one here.

In this paper, we discuss the classical solvability of the system in section 2. In section 3, we implement a
semiclassical quantization rule to analyze the quantum solvability of the system and find that the coupling
parameter of the system gets quantized. The system is observed as a position-dependent mass one. We consider
the generalized Schrodinger equation corresponding to a non-Hermitian ordered form to analyze the quantum
solvability of the system which is discussed in section 4. Finally, we summarize our results.

2. A -type mass system and its classical dynamics

Consider a Hamiltonian of the form studied by Tiwari et al [14],

x4 pZ

H= + Ax? (1)
and the corresponding Lagrangian is
L=% e @
Itis of the position-dependent mass form, H = 5 ri Z(x) + V (x), where the mass profile is of the form
m(x) = % and V(x) = \x2% 3)

Here the mass is singular at x=0.
The equation of motion for the Hamiltonian Hin (1) reads as

2
X— =X+ x> =0. 4
X
It can be integrated once on using the integrating factor, say %, as
.2
% + =G, (5)

where C, is an integration constant. Integrating this equation (5) once more, we find that equation (4) admits the
general solution,

1
Jo+ G+ Gy

where C, is the second integration constant. For A > 0, we have a temporally localized solution. And for A < 0,

x(t) = (6)

we have a singular solution when t = L( (LI CZ) in which case we consider that C; and C, are positive.

Ja G
The plot of x(f) against ¢ is depicted in figure 1 (i) for certain values of C;, C, and A. The figure 1 (ii) depicts the

contour plot of x(f) given in equation (6) for various values of A\with C; = 1,and C, = — 5.

3. Semiclassical quantization

To understand the possibility of quantization of the above type of position-dependent mass system, we first
apply the semiclassical quantization procedure to the system. The standard leading order WKB quantization
condition for the potential having two turning points is [20],

fxz pdx = (n + %)ﬁ mn n=20,1,2,.., 7)

1
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Figure 1. (i) The plot of x(¢) in equation (6) for C; = 1, C; = — 5 and A = 1 and (ii) the contour plot of x(f) given in equation (6) for

various values of A\with C; = 1,and C, = — 5, where the blue shaded region denotes the possible values of A for which the solutions
are well defined and the white region denotes the values of A for which the solutions are singular.

Figure 2. The phase portrait of Hamiltonian (1) for different values of energy E = 0.5,0.7, 0.8, 1 with A = 0.5.

where x; and x;, are the classical turning points and the conjugate momentum, p = \/ 2m(x)(E — V(x)).Here,
7= %, where h is Planck’s constant. From the Hamiltonian (1), with H = E, one can express the momentum as

4E 4\
P=\a 2 )

At the turning points, say (x;, x;) = ( — A, A), the momentum is zero, which is shown in the figure 2. Hence,
from (1), the total energy, H=E = A% and the integral (7) becomes,

A 2 N2
2ﬁf —“Azxdxz(wrl)ﬁ o on=0,1,2,.. 9)
—A X 2
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To evaluate (9), consider the integral

(10)

A A2 _ xz
LR,
—A x?

One can also use the classical solution x(¢), (vide (6)) and evaluate the closed integral around contour C
(given in figure 2) in the modified Bohr—Sommerfeld quantization rule [21],

f pac = (n + %)h (11)

Here, the momentum, p(t), takes the form as

p(t) = i’;gﬁ — 2/G(C + Et)J% (G4 VT2 (12)
1

We integrate the integral (10) by considering u = VA? — x? and dv = —dx and get
X

[ VA* — x? : fA dx
x . —A JA? — x2 ’
A
=0 - [arcsin(ﬁ)] R
AV,
I=-—m. (13)

On substituting the integral (13) in (9), one obtains the following relation on the coupling parameter, A, as
1\2 /32
)\:(Tl+—) ﬁ—, n=20,1,2,3,.. (14)
2) 4

Hence, the coupling parameter A gets related with the quantum number n, asin (14).

While studying the quantum dynamics of the above type of position-dependent mass system (1) with a
singular mass function, we meet with two difficulties: (i) how to define the configuration space and (ii) how to
ensure the continuity of the eigenfunctions of the corresponding Schrédinger equation? We proceed to
incorporate these two aspects in our further study as indicated below.

4. Quantization: general ordered form of Hamiltonian

We now consider the most general form of the associated Hamiltonian operator that provides a complete
classification of Hermitian and non-Hermitian orderings [11],
. N

H ==Y wim“pmPipm + V (x), (15)
i=1
where N is an arbitrary positive integer and p is the one dimensional momentum operator. The ordering
parameters should satisfy the constraints, o; + 3; + v, = — 1, i = 1,2, 3,...N, and w;’s are real weights which are
summed to be 1. The above form globally connects all the Hermitian orderings and also provides a complete
classification of Hermitian and non-Hermitian orderings [11]. The operator H in (15) possesses 2N free

ordering parameters, after taking into account the above constraints.
The corresponding Hamiltonian for the potential V can be written as

A1, iid (1Y, /A|_d*(1 m'?
— y — a)——| — —|7—|=+ a7 — v, 16
PP+ (G a)de(m)p+ 5 [vdxz(m)+aw(m3)]+ (16)

where p = —i/ %. In (16), the over bar over the parameters represent their total value, X = Z,N w; X;.

H:

N | =

The study on the effective-mass Hamiltonians for abrupt heterojunctions indicates that the single-term
ordering forms of kinetic energy operator are viable candidates that ensure continuity of the associated matching
conditions [22]. As the mass m(x) is singular at x = 0, we use the single term of the general ordered form of the
Hamiltonian as

N 1 ~ Ao
A= ZmepmPpoi £ V@), ont Bt = -1, (17)

Here, we are considering non-Hermitian ordered form of the Hamiltonian (16) as the non-Hermitian ordered
form can be related with the Hermitian ordered form through similarity transformation [23] as

4
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Hyy = m™H m™,  2n=m— o, . (18)
Consequently, for (18) we have
N 1 +(~1A
Hyer = E = pm! lpm SR V(x). (19)

As the non-Hermitian ordered form (16) is being related with the Hermitian ordered form through
similarity transformation (18), we use the non-Hermitian ordered form of the Hamiltonian in this present work
and analyze the possibility of obtaining a complete set of solutions of the operator (16).

The time-independent Schrédinger equation for the non-Hermitian ordered Hamiltonian (17), Hi = Ey,
can be written as

" 12

B+ (= g — 1)%1// + (% % — (um + 2%)%)1/) + zﬁ—”j(E — V(@) =0, (20)

where’ = ix.

As the above Hamiltonian depicts the dynamics of the one dimensional potential (1), we use the generalized
position-dependent mass Schrodinger equation resulting from the non-Hermitian ordering (17), to study the
solvability of the system (1). It results that

4\
40+ o —m) 4 16+ 2+ 3
x‘ R pels = 2 4 = 0. Q1)

wl/ +

By using the transformation, {(x) = x d @(x), where d is a parameter to be determined, we can reduce the
equation (21) to the form

4\
2d + 41 + o — 1) o dd+ 3+ 4(u — 1) — (1604171 + 12y + ;) . 4F

" —
o x? 7 x* ¢=
(22)
We further use the transformation, g (x) = 7550 that equation (22) can be rewritten as
2 + 2810 — 201 — 1 —d)] ¢, +[dd + 3 + 41 — W)
4\ 16 E
(1604171 + 12y + fiz) + — g2]¢) =0, (23)
where ¢, = i]i—@
In order to map equation (23) to the known form, we again use the transformation,
4JE
T = —— > 24
P (24)
with
d= 2")/1 — 20&1 — %, (25)
to transform equation (23) as
736, + T b+ (12— v =0, (26)
where
3 4A
2 _
V2= (2a1 + 2y + E) + w7 (27)

Equation (23) is of the form of Bessel’s differential equation. Hence, the corresponding general solution is
¢, (1) = CJ,(1) + DY, (1), (28)

where ], (1) and Y, (7) are the first and second kind of Bessel polynomials [24] and Cand D are arbitrary
constants. Now we can obtain the general solution for the equation (21) for the region x € (0, 00 ) as

() = P (x) = [CJV(ZI) + DY(ZI)], x € (0, ). (29)
7 x 5 x
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And we can write down the general solution for the region x < 0, as

P(x) = (— |x|)d[C],(2\/x—)+DY(2};/x_)], x € (—o0, 0), (30)

where C and D are arbitrary constants and d (vide equation (25)).

Here we are interested to derive bounded solutions for the system (1) and so analyze the boundary
conditions for the Bessel polynomials.

By choosing d = 27y, — 2a;; — 1, equation (23) can now be reduced to the constant mass Schrodinger
equation as

4
16E 5 + Qo+ 2+ 2)Qau + 2m + 1))
e+ |57 £ = ¢ =0. (1)

This equation can also be deduced by means of a point canonical transformation method, which relates the
PDM Schrodinger equation with the canonical form of constant mass Schrédinger equation and it is a widely
used method in solving position-dependent mass Schrodinger equations [25]. The potential of (31), U (g) o —,

is similar to the effective potential that arose while studying the Efimov effect in the quantum three body system
that describes the dynamics of two heavy particles interacting through a light particle [26].

4.1. Boundary conditions
In equation (29), when x — oo the polynomials J, become zero for positive values of v and become complex
infinity for v < 0. And Y, becomes co provided v = 0. Hence, we take D = 0 and v > 0 to get the solutions which
areboundedasx — oco.

To proceed further, we now expand (29) around x = oo,

2JE C E\/?
(+) = C x? ~ d—v.
1% (x) ]z/( 7 x ) X— 00 Tw+ 1) ( ﬁz) X (32)

The boundary condition on 9" (x) at x — oo fixes a constraint d — v < 0. As v > 0, the value of d fixes the lower
bound of v.

Secondly we analyze the bounded nature of 1" (x) at x=0. When x approaches zero, J, ( 2E ) oscillates

vastly as % goes to 0o . On expanding near zero, we obtain

&) xd 2VE) _ /e x 2‘/—_2( l)
Y, (x) = ],,( x)Nx>OC 7T\/Ex co (fx S\t ) ) (33)

Here we use the squeeze theorem which states that if a function g(x) is squeezed between the functions f (x)
and h(x) near a point a and if f (x) and h(x) have the same limit L at the point g, then g(x) is trapped and will be

forced to have also the same limit L at a [27]. Since near x = 0, the cosine function is not well defined as

—1 < cos (i -z (1/ + %)) < 1, in accordance with the squeeze theorem, if we consider the functions,

7 2
f(x) = Vxand h(x) = —/x, then the lim,_-o+/* = 0 makes lim,_~¢ /X cos (% - E(1/ + l)) =0.

2 2

+ Hence, for the values of d < 0, the solutions ¢/{" (x) are not well defined near zero. It restricts that d > 0.

» Butwehave d — v < 0 which fixes the lower bound of v. To consider the lower bound value of v as the least of
the value of v, we consider d = 0.

Hence, the eigenfunction, equation (29) becomes
P (x) = CJV(N;), x € (0, 00). (34)
Similarly, the eigenfunction, equation (30) takes the form,
1/) )(x )—C](Z\/—), x € (—o0, 0). (35)

We also consider that v > 0 from the fact that the Bessel functions J,(0) are not well defined at v = 0.

6
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4.2. Parity
Now we use the parity condition on J,.. The solution (35), defined in the region x € ( — 00, 0), may be symmetric
or anti-symmetric with 1" (x). Consider a point € near x = 0, then we have

CY () e e = CUSI(X) e s (36)

and so
€~ (- 1)”C)]y(2f) 0. (37)

The odd parity determjnes v=1,3,5,...,0dd integers, and so C = —C, whereas even parityleadstov = 2,4,...,
even integers, so that C = C.
Hence, the parity condition fixes

v=mn, n=1,2,3,.. (38)
As aresult, we find that the coupling parameter (27) is now related with the quantum number ‘n’ as
52
A= (2041—&—271—}— ) 2 — n=1,2,3,.. (39)

and so it is quantized which has also been confirmed by the semiclassical quantization method, vide
equation (14).
Hence, the bound states from (34) and (35) become

P (x) = C]n(%)’ x€(0,0) n=1,2,3,.. (40)
P (x) = C(— 1)"],1(?'_') x€(—=00,0) n=1,2,3,.. (41)

The parity nature of the eigenfunctions (40) and (41) restricts the coupling parameter to take discrete values,
that is expressed in terms of quantum number %’ in (39). Subsequently we analyze the energy eigenvalues in the
following section.

4.2.1. Energy
As m(x) = = issingular at x = 0, the eigenfunctions ) (x) (vide equations (40) and (41)) are restricted to be
zero at that pomt x =0, thatis

lim % (x) = 0. (42)
x—>0

xlirgo\/WJ_ (2*/— - %(n + %)) = 0. (43)

The above relation establishes that the energy eigenvalues are continuous, while the coupling parameter \is
quantized as in equation (39).

Consequently, we have

4.3. Normalizability condition of the states (40) and (41)

As the non-Hermitian ordered form of the Hamiltonian can be related with the Hermitian ordered form
through similarity transformation, one can express the normalization condition for non-Hermitian ordered
Hamiltonian as [23],

L= (57 myi), (44)
. On substituting (40) in (44), we can get

0 1 2
= C22A/1—(1’1 Lfo x4’Y1*4”1] ( )]n[ /;/:) (45)

Asd=0,wehavey, — a; = %. By applying a simple transformation p = i to (45), we can get

_ 293/4 o0 2\/_p Zx/?p
1=c2 j; (f e L (46)

&3

where 5 = Wl;

—_
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Figure 3. The plots of (i) 1/ (x) and (ii) ?,(x) in equation (50).

On using the identity,
foo K, (ka)J, (kbydk = 166 — @),  n=0,1,2,., (47)
0 a

we can obtain the condition

293/4 7
L C2lh (2VE 2VE 48)
2VE V
where d(a — b) is the Dirac delta function which becomes infinity when a = b, otherwise it has zero value.
We now obtain,
172
C— V2E . (49)
7 s> E  2JE
/i

As the energy eigenvalue of the system is arbitrary and continuous, we have obtained the normalization constant
in terms of Dirac delta function. This is analogous to the quantization of a free particle on a cone studied recently
by Kowalski et al [28].

Hence, we obtained the bounded states (29) in both the regions, x € (0, 00 )and x € ( — 00, 0), as
U7 (%) = C, (N_) n=1273,. (50)
7 x

The first two states (unnormalized) are plotted in the figure 3.
One can reinterpret the normalization condition,

1= [ v (51

by omitting the singular region ( — ¢, €) and reconsidering the integral (44) by

© 1 2JE
1 =2C? — . dx, 52
j; x3](ﬁ )I(/Zx)x 2)
in which we considered (50).

Leti = p. Theintegral (52) becomes

1€ 2JVE 2WE
1 =2C? A ==0 7. dp. 53
fo pl(ﬁp)](ﬁp)p (53)
Now we use the identity [29]
j; pJV(ama)Jy(am )dp— U1 (o) P (54)

where 6, is Kronecker delta function that takes the value 1 when n = m otherwise it takes zero. Here, cv,,,,,
m=1,2,3,... 00, is the mth zero of the Bessel function J,, thatis J,(c,,,,,) = 0.

8
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The integral (53) now becomes

2

C2 2.JEN
1= ? ]n+1 7 e (55)

which makes the energy eigenvalues to take the values,

V7N
Erf\] = T]”N €2, €= 0, (56)

where jnN , N=1,2,3,.00, n=1, 2, 3,...are zeroes of the Bessel function, J,,. The normalization constant

reads as
CN=—° ___ (57)
2JEN
]n+1 7 e
The normalized eigenstates, vide (56) and (57), can be written as
24JEN
PNy =CcNj | —=|, n=1,2,3,... N=1,2,3,., e=0. (58)

/i x

We have observed that one can possibly obtain the normalized eigenfucntions with the corresponding
eigenvalues by restricting the motion of the particle around a point near to the origin €( = 0).

4.4. Hermitian ordering

In the previous section, we considered non-Hermitian ordered Hamiltonian (17) and solved the corresponding
generalized Schrodinger equation that resulted in the general solution (50). In this sub-section, we discuss about
the solution of the Hermitian ordered form of the Hamiltonian (19),

Y1+a
)

Ay = %mwﬁmﬂlﬁmiq + V(x). (59)

Instead of solving the Schrodinger equation corresponding to the Hermitian ordered Hamiltonian (19), we
can obtain the solution from the relation (18) that relates the non-Hermitian ordered form (16) with the
Hermitian ordered form through similarity transformation.

Hq/} = m*”Hhe,m"w, 2n=m— Q. (60)

Letm™p=¢.Aswehave2n = v, — oy = % from d = 0, we can write down the solution for (19) from (50),

WE)_ oy (BE) a5 (61)
7 x h x

G (x) = Cmnfn(

where the normalization constant Cis the same as obtained in (49). The solution (61) is singular at x = 0. Hence,
for the system (1), the non-Hermitian ordered form (17) only yields bounded solutions (50).

5. Conclusion

In this work, we considered a nonlinear system of the quadratic Liénard type which admits temporally localized
solutions at the classical level. Depending upon the positive and negative values of the coupling parameter A, the
solution is well defined or has a singular value in its domain. To start with, we implemented the WKB
quantization condition which ensures that the coupling parameter A would be quantized. While studying the
quantum dynamics of the system, we considered a single term of the general ordered position-dependent mass
Hamiltonian as the mass function which is singular at the origin and solved the underlying Schrodinger
equation. We observed that the quantum system admits bounded solutions. Specifically, we find that the
coupling parameter of the system gets quantized. We believe that such an observation is quite new to the
literature as far as the quantization is concerned. The position dependent mass with 6-type mass profile
considered in this paper may find application in the field of semiconductor physics, as in the case of Thomas-
Fermi potential with § — doped semiconductor [19]. We believe that our study widens the scope of quantizing
other solvable classical nonlinear oscillators exhibiting novel dynamical features in a broader sense.

9
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