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One of the most frequently used transition conducting oxides (TCO) is indium tin oxide. Indium is very expensive
because of the lack of availability. So Most of the researchers focused on cost-effective materials and they have
developed Dielectric/Metal/Dielectric (DMD) structures for ITO-free applications. Examples of dielectric mate-
rials are AZO, MoOs, TiOy, and WOs3. The dielectric material is sandwiched between metals such as Au, Ag, Pt,
Cu, and Al The efficacy of these DMD structures is purely based on the thickness of the dielectric and metal
layers. Once the metal layer thickness is more than 15 nm, the transmittance is much less due to the thickness of
the material and it will work as a reflector. Moreover, as WO3 is the most widely and frequently used material we
focus on the fabrication of WO3/Ag/WO3 (WAW) for replacing TCO in the electrochromic device and making it
indium-free. WAW structures are widely used in smart windows, gas sensors, solar cells, photodetectors, etc. For
electrochromic applications, these WAW structures showed good transmittance, fast switching speed, best
coloration efficiency, and best optical modulation in comparison to WO3/ITO structure and are also cost-
effective.

TCO are semiconductor metal oxides with large bandgaps such as zinc
oxide, tin oxide, indium oxide, and cadmium doped with group III (Al)

1. Introduction

Indium Tin Oxide (ITO) is one of the most frequently used TCO
materials. High electrical conductivity and transmittance are the major
requirements for an ideal transparent conducting electrode (TCE)
application such as touch panels, organic light-emitting diodes, gas
sensors, flat panel displays, solar cells, plasma displays, etc.[1]. An ideal
TCO should have low resistivity and optical transmittance of 80% or
more in the range of 400 to 800 nm [2]. Different metal oxide semi-
conductors like SnO,, TiO2, ZnO, and In,03 have been used to fabricate
transparent conducting oxide (TCO) thin films [3]. The most common
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[4-8], B [9], Ga [10]or group VII (F [11], Cl [12]. These elements have
low resistivity and maintain high transmittance in the visible range.
Amidst all, Indium tin oxide (ITO) is the most frequently used Trans-
parent conducting oxide (TCO) material. However, it is rarely available
and hence expensive. To overcome this problem researchers are dedi-
cated to finding new transparent conductive electrodes such as nano-
wires, nanotubes, dielectric-metal-dielectric (D/M/D), graphene, and
related structures. Amidst sandwiching a thin metal layer between two
dielectric layers D/M/D has been recently introduced as an ideal
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Fig. 2. XRD plots of WAW 4 and WAW 5 strucutre.

alternative approach to obtain the combined benefits of high trans-
mission as well as excellent conductivity [13,14]. The efficacy of
multilayer transparent DMD structures is dependent on the optimization
of the thickness of the dielectric and metal layers [15].

Xuanjie Liu et al. designed flat panel displays with a multilayer
structure of ZnS/Ag/ZnS. The electrical and optical performance of the
device depends on the thickness of the silver layer approximately 12 nm
[16]. For the electrochromic applications, various structures of DMD are
there, such as MoOs3/Ag/MoOs [17], TiOp/Ag/TiO2 [18], and
WO3/Ag/WO3 [19]. Among these DMD structures, the WO3/Ag/WO3
structure is the best for electrochromic applications.

For the electrochromic applications, we have several electrochromic
materials. These materials are classified into organic and inorganic
materials. Inorganic materials such as TiO, [20], NiO [21], V205 [22],
WO3 [23-25] and organic materials are viologens [26], poly (3,4
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Fig. 3. Raman analysis of WAW 4 and WAW 5 structure.

ethylene dioxythiophene) (PEDOT) [27], polyaniline (PANI) [28].
Among all materials, inorganic material tungsten oxide (WO3) has a
quick response, good optical transmittance, long life, coloration effi-
ciency, a wide bandgap, and good semiconductor properties. It is best for
electrochromic applications and gas sensors [29]. WO3 films also possess
photochromic [30], gasochromic [31], and good hydrophilic [32]
properties. The first electrochromic study on WO3 was reported in 1969
[33]. In the preparation of WO3 thin films, several deposition methods
are there, they are electron beam evaporation [34-36], thermal evap-
oration [37,38], DC and RF magnetron sputtering [39-58], hydrother-
mal methods [59-66], plasma spraying method [67], and sol-gel method
[68]. With above stated physical vapor deposition techniques we first try
to optimize the thickness of WOs; to realize DMD structure by
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Fig. 4. The optical transmittance of WAW structure with different thicknesses.

incorporating WAW configuration.

WAW is not only for electrochromic applications but also for solar
cells [69] and light-emitting diodes[70]. In transparent conducting DMD
structures, the major role is played by the thickness of the metal layer.
The metal layer could be of Al, Cu, Au, Pt, and Ag. In higher thickness,
these metals work as reflectors. The preferred thickness of the metal
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layer is around 10 to 20 nm. In this range, the metal layer works as
transparent and conducting material. Amidst all metals, Ag exhibits the
best conducting and photodetector characteristics and is lower in work
function compared to other metals [2].

The aim of this study is to develop the indium-free transparent
electrode WO3/Ag/WO3 (WAW) thin film for electrochromic applica-
tions because of the lack of availability of the Indium tin oxide (ITO) and
its cost. In this structure, we have varied the thickness of the bottom and
top layers of WOj5 thin film thickness and we have kept the metal layers’
thickness constant as Ag (12 nm), and W (3 nm). The WOs5 films and Ag
films were deposited on the coring glass by using DC and RF magnetron
sputtering. The structural, optical, and Electrochromic properties of
WOj5 thin films were discussed.

2. Materials and experimental method
2.1. Materials used

The specifications of the corning glass are pre-cleaned 28,947-75 x
25 mm, thickness 0.96 to 1.06 mm from Corning Incorporated, USA. The
DI water, HySOy4, soap solution, and beakers, were purchased from the
Vasa scientific Bangalore, India. Hgy/HgCly and platinum wire were
purchased from Sinsil International Pvt Ltd, Bangalore, India. Argon gas
(99.999%) and Oxygen gas (99.999%) gas cylinders were purchased
from the Bhuruka gas agencies, in Bangalore, India. A pure 3-inch dia
tungsten (W) and Silver (Ag) metallic disk were purchased from the
scientific and analytical instruments, in New Delhi, India.
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Fig. 5. CV plots of (a) WAW 1, (b) WAW 2, (c) WAW 3 (d) WAW 4 and (e) WAW 5 structure.
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WAW structure.

2.2. Experimental method

Indium-free transparent electrochromic material was deposited as a
WO3/Ag/WOs thin film structure at room temperature using RF and DC
magnetron sputtering. These thin films are deposited on corning glass
substrates. The sputtering chamber was evacuated 1 x 10~% mbar by
using the mechanical pump as a Rotary pump (up to 1 x 10~3 mbar) and
the backing pump as a turbo molecular pump (up to 1 x 10~® mbar).
Inside the chamber pressure was measured using penning and pirani
gauges. Before loading the substrate inside the chamber substrates were
cleaned ultrasonically following soap solution, DI water and dried with
nitrogen gas. A pure 3-inch dia tungsten (W) and Silver (Ag) metallic
disk were used. In this work, we have used pure Argon gas (99.999%) as
a sputtering gas with a flow rate of 25 SCCM and oxygen gas (99.999%)
as a reactive gas with a partial pressure of 8 x 10~* mabr. For the
deposition of tungsten oxide (WO3) and Silver (Ag) thin films, the dis-
tance between the substrate and the target was maintained at 9 cm and 7
cm respectively. The WO3 and Ag thin films were coated using DC and
RF magnetron sputtering respectively. For every deposition before W
and Ag metal targets were presputtered in the Argon environment for 10
min and 2 min to remove the adsorbed contaminations from the targets.
The Schematic representation of the sputtering system is shown in Fig. 1.
The films with pattern of WAW 1 (WO3/Ag/W/WOs3, 25/10/3/25 nm),
WAW 2 (WO3/Ag/W/WOs3, 50/10/3/50 nm), WAW 3 (WO3/Ag/W/
WOs, 75/10/3/75 nm), WAW 4 (WO3/Ag/W/WOs3,100/10/3/100 nm),
and WAW 5 (WO3/Ag/W/WO3, 125/10/3/125 nm).
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3. Materials and characterization

The deposited WAW films have been carefully characterized. Raman
and XRD were used to examine the structural characteristics (Rigaku-
MiniFlex). A UV-vis spectrometer (SPECORD S600, Analytikzena) was
used to record the optical transmittance spectra of WAW thin films in the
200-1100 nm range. Using an electrochemical analyzer, the electro-
chromic behavior of WAW thin films was investigated This electro-
chemical device includes a three-electrode configuration (SP-300,
Biologic) with platinum, Hga/HgCly, and WAW thin film electrodes are
counter electrode, reference electrode and working electrode respec-
tively. The CV tests were conducted in a solution with a concentration of
0.5 M of HySOy4, using potential ranges from -1 V to 1 V, and a scan rate
of 30 mVs ™! was used.

4. Results and discussions
4.1. XRD analysis

Fig. 2. shows the XRD results of WAW 4 and WAW 5 thin films
deposited by using DC and RF magnetron sputtering at RT. The figure
shows the diffraction peaks of crystalline Ag metal. The diffraction angle
260 values are 29.08° of (001), 35.77° of (100), 39.05° of (111), 42.89° of
(220), 47.17° of (200), and 48.27° of (211). The crystallite size (D) of the
WOs films was calculated by using Debye-Scherrer’s relation shown in
the equation.

b 0964

= Peosd M

Where 6, B, and A, are the diffraction angle, FWHM, and wavelength.
The calculated Full width at half maximum (FWHM) and crystallite sizes
of WAW 4 and WAW 5 are 27.72° and 0.6 nm respectively [71-75]. It’s
worth noting that none of the patterns show any WOs3 peaks, indicating
that the WO3 layer was amorphous under the deposition conditions,
which is good for EC performance [33]. The possible reason is that
during the process of depositing the coating layer, the oxygen of the
reaction gas flowing into the chamber was dissociated into oxygen ions
by the plasma, and the silver was easily combined with oxygen, yet the
active oxygen ions were made before the deposition of the tungsten
oxide.

4.2. Raman analysis

Raman spectroscopy was used to characterize the crystalline nature
and chemical bonding of the WAW films deposited by using DC and RF
magnetron sputtering shown in Fig. 3. Raman spectra of WOj5 thin films
show two broad bands, one is lower frequency and another higher fre-
quency ie 200-400 cm ™! and 700-1000 cm™!. In the low-frequency
region, the band observed at around 241 cm ! is attributed to & (O-W-
0). At higher frequencies, broad Raman peaks were observed at around
943 cm ™! and 771 ecm™! attributed to stretching mode vibration modes
of the bridging oxygen W = O and O-W-O, respectively.

4.3. Optical properties

The thickness of each layer has a significant impact on the optical
and electrical properties of stacked WAW films. The films have a thin but
continuous center metal layer that ensures low absorption and sheet
resistance. High transmittance and great EC performance would be
possible if the inner and outer dielectric layers were of sufficient
thickness. The optical transmittance of WAW thin film structure with
different thicknesses is shown in Fig. 4. The transmittance varied from
73%, 61%, 64%, 55%, and 43% at a wavelength of 600 nm. Fig. 2 shows
the WAW 3 structure shows the higher the transmittance and the lower
at WAW 5. We have deposited the WO3 thin film layer on the glass
substrate as a bottom layer, on top of the silver layer was coated. To
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Fig. 7. bleached and colored states of (a) WAW 1, (b) WAW 2, (c¢) WAW 3 (d) WAW 4 and (e) WAW 5 structure.

avoid the silver oxidation, we have introduced a sacrificial layer of the
tungsten metal layer with a fixed thickness, then we have coated the top
layer of WOj5 thin film. We have observed that without a sacrificial layer
of tungsten metal, the entire device is insulating and it is not working
due to the oxidation of silver and the conductivity of the silver decrease.
we can see that as we increase on top and bottom layer thickness the
transmittance was decreased with a fixed thickness of Ag and W. The
calculated bandgap values are 3.20 eV, 2.83 eV, 3.32 eV, 3.39 eV, and
3.25 eV for WAW-1, WAW-2, WAW-3, WAW-4, and WAW-5 respec-
tively. The calculated sheet resistance is 16.75, 16.28, 15.45, 13.25 and
14.4 Q/[1 for WAW-1, WAW-2, WAW-3, WAW-4, and WAW-5

respectively [76,77].

4.4. Electrochemical studies

Fig. 5 shows the Cyclic Voltammetry (CV) plots of WAW thin films
deposited by using DC and RF magnetron sputtering on corning glass
substrate at room temperature. The electrochromic studies were done by
using a programmable three-electrode electrochemical setup. The elec-
trodes are WE as WAW, RE as Hg/Hg»Cly, and AE as platinum wire. The
CV analysis was done with the electrolyte of 0.5 M of HySO4 and with a
scan rate of 30 mVs ! in the potential range of +1 V. From CV plots the
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reduction current was shown as 1.11 mA, 5.09 mA, 8.27 mA, 6.10 mA,
and 6.01 mA for WAW-1 to WAW-5 respectively. A higher reduction
current was shown in the sample WAW-3.

Fig. 6. (a & b) show the charge and current density vs timOe plots of
the WAW structures and observed high values for both the charge and
current density for the WAW-3 structure. The transmittance for the
bleached and colored state of the WAW structure is shown in Fig. 7. The
observed bleached transmittance values are 58%, 55%, 31%, 24%,22%
and colored transmittance values are 56%, 41%, 22%, 2%, and 7% for
WAW-1 to WAW-5 respectively. From these transmittance results, the
optical modulation was shown higher for WAW-4. The diffusion coef-
ficient plots of the WAW structure are shown in Fig. 7(a). It is varied
from 4.54 x 1071, 9.54 x 1079, 2.52 x 1075, 1.35 x 1078 and 1.33 x
1078 em?s~! for WAW-1 to WAW-5 respectively, and the higher diffu-
sion coefficient was observed in WAW-3 structure. The coloration effi-
ciency (CE) of the WAW structure is shown in Fig. 7(b). It varied from
1.6, 5.88, 7.8, 57.87, and 25.19 cm?C ™! for WAW-1 to WAW-5 respec-
tively at the wavelength of 600 nm and the higher CE was observed in
the WAW-4 structure [78,79], (Fig. 8).

Chemical Physics Impact 8 (2024) 100566
5. Conclusions

Indium-free transparent WAW thin films have been successfully
deposited by using the DC and RF magnetron sputtering. The structural,
optical, and electrochromic properties of WAW thin films were sys-
tematically analyzed. From the optical transmittance data, trans-
mittance varied from 73%, 61%, 64%, 55%, and 43% with respect to the
thickness of the WAW thin film was observed. From electrochemical
analysis higher current and diffusion coefficients were observed for
WAZW 13 thin film. The coloration efficiency was observed at 57.87
cm“C
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