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ARTICLE INFO ABSTRACT

Keywords: The synthesis of carbon quantum dots using cassava (Manihot esculenta) waste peels by simple hydrothermal
Carbon quantum dots method. Carbon quantum dots were studied using PXRD, and HRTEM analysis, signifying an amorphous graphite
Fluorescence

carbon structure. The carbon quantum dots have two absorption peaks in the UV-vis spectrum, around 272 and
304 nm which lead to the n—* and n-rn* transitions. The produced CQDs exhibit excitation dependent fluo-
rescence characteristics, with a fluorescence quantum yield of 4.664% at an excitation wavelength of 330 nm.
The CQDs revealed a white light emitting diode with the Commission Internationale d’Eclairage (CIE) co-
ordinates (0.35, 0.35). The nonlinear optical absorption 0.294x10~* (cm/W), nonlinear refractive index
1.8138x10°® (cm?/W), and third-order NLO susceptibility 5.5 x 10~® (esu) were calculated using Z-Scan
analysis. The synthesized CQDs were utilized for their antibacterial activity used S. aureus (23 mm), B. cereus (33
mm), E. coli (43 mm), and P. aeruginosa (30 mm) as harmful microbes. Our results suggest that Manihot esculenta

Light emitting diode
Nonlinear optical
Antibacterial activity

waste peels CQDs have potential for application in NLO devices, optical switching, and pharmaceuticals.

1. Introduction

“Carbon” is obviously a very famous term for all and abundantly,
which is among the most prevalent elements in the universe. It is
commonly found in nature in the form of allotropes, (i.e., diamond,
graphite, and amorphous carbon). Recently developed innovative
luminescent carbon dots (CDs) have prompted tremendous attention in
numerous area’s such as bio-imaging, medical treatment, electro-
catalysis, and photovoltaic systems owing to their superior ease of
processing, low biological toxicity, excellent biocompatibility, and
special physico-chemical properties [1,2]. Since the erratic origins of
CDs in 2004, numerous methods for the manufacture and production of
CDs have been developed to investigate the different characteristics,
synthesis processes, and fascinating applications of CDs [3].

In the recent scenario, researchers have been concerned with the
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formation of environmentally sustainable green methods for the syn-
thesis of CDs using organic byproducts that consume low-cost raw ma-
terials. In the synthesis of CQDs, different methods have been employed,
including (i) top-down methods (breaking large carbon materials), like
electrochemical exfoliation and laser ablation, or (ii) bottom-up ap-
proaches (constructing from smaller precursors), such as microwave and
plasma methods, and hydrothermal techniques. Among these, owing to
its significant features such as a simple process, the prevention of so-
phisticated instrumental needs, and the development of strong fluores-
cence CDs, hydrothermal synthesis has substantially advanced over
other current physical approaches [4]. Several byproducts have been
used for the synthesis of CQDs, to encourage the manufacture of
renewable materials and minimize material waste. Heteroatom (nitro-
gen, sulfur, phosphorous, florine, and boron) doping is a very effective
and easy approach to tuning the optical characteristics and passivating
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the surface of the CDs [5,6]. For example, Adams et al. [7] reported
tunable fluorescence CDs as material passivating agents by combustion
route carbonization of aqueous starch suspension facilitated by phos-
phoric and sulfuric acids, respectively [7]. Wang et al. [8] reported
cassava starch, a non-food product, which shows potential applications
in bio-hydrogen production [8]. Pudza et al, [9] described
tapioca-based CDs that are appropriate for sensing and biomedical ap-
plications [9]. Reddy Mallem et al. [10] stated that trichromophore
doped cassava-based bio-polymers are a hugely exciting luminous
component. Device efficiency and excellent reliability underscore the
promise of bio-related emission technology using the bio-polymer, cas-
sava, as a platform for the frontier and subsequent generations [10].
Nima et al. [11] synthesized blue-light emitting fluorescent carbon
nanospheres with a mean size of 23.6 nm using tapioca via the hydro-
thermal carbonization process and the luminescent quenching of these
performed CNs was strongly selective to the Fe>* ions [11]. In one step,
the CDs used to produce the PL chemo-sensor are prepared by mild
process conditions from a very inexpensive source of starch (Tapioca
sago) were investigated by Basu et al. [12]. Pudza et al. [13] has syn-
thesized CDs which are fantastic fluorescent resources suggested for the
adsorption of heavy metal ions [13]. Zhu et al. [14] have investigated a
hydrothermal process to prepare N—CDs using ethylenediamine and
citric acid as precursors [14]. An organic sustainable hydrothermal re-
action of fluorescent N—CQDs with citrus lemon as a source of carbon is
stated by Tadesse et al. [15]. Significant attention has been given to
increasing the QY and optical performance of CQDs, whereas doping
CQDs with other elements, particularly nitrogen, been found to be an
appropriate mechanism [16-23].

The objectives of this work were to synthesize fluorescent CQDs with
Manihot esculenta waste peels and garlic juice extracts using a low-cost
hydrothermal method. Various approaches were utilized to investigate
the physicochemical properties of CQDs, such as surface functional
groups, morphological analysis, elemental analysis, optical properties,
and fluorescent studies with quantum yield measurement. In particular,
nonlinear optical and antibacterial activities were investigated for op-
tical switching and medical applications.

2. Experimental procedures
2.1. Materials and method

The fresh manioc cassava (Manihot esculenta) were collected in the
cultivation area and washed several times with double-distilled water.
They were then cut into small pieces and placed in a juicer. The juice was
then filtered to remove impurities. Finally, fresh Manihot esculenta juice
(without pulp and without added preservatives) was obtained. Simi-
larly, garlic was bought from the local market and extracted from the
juice and ammonia was purchased from E-Merck (99.99%).

Briefly, CQDs were synthesized using 20 mL of Manihot esculenta
juice and 2 mL of garlic juice mixed with 8 mL of double distilled water.
Followed by the ammonia, which was gradually added to the mixture
until pH 7 was reached, the mixture was heated in a Teflon-stainless
steel autoclave at a temperature of 200 °C for 6 h After the reaction
period, the obtained brown colored solution was further centrifuged at
5000 rpm for 1 h The finally obtained supernatant solution was kept at 5
°C for further analysis.

2.2. Characterization

HRTEM images were captured at 200 kV using a JEOL/JEM 2100
transmission electron microscope. X-ray diffraction analyses were car-
ried out on a PANalytical/ X Pert3 Powder XRD instrument with CuK
(1.5404 A) radiation. X-ray photoelectron spectroscopy (XPS) mea-
surements were measured on a PHI-VERSAPROBE III (XPS) surface
analysis. The FTIR spectrum was acquired over the range of 400-4000
cm™! using a Perkin Elmer spectrometer. As part of the preliminary
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characterization, the UV-vis and fluorescence spectra were measured
through the SHIMADZU/UV 2600 spectrophotometer and JY Fluorolog-
3-11 spectrofluorometer, respectively. Z-scan analysis was used to
assess the third-order nonlinear optical properties of CQDs (HOLMARC
Z-scan model: HO-ED-LOE-03).

3. Results and discussion
3.1. Morphological and structural characteristics

The morphologically characterization of CQDs was analyzed with
HRTEM. The distributions of particles as well as the surface morphology
of the synthesized CQDs are observed by HRTEM (Fig. 1a, b). The
HRTEM images revealed that the fluorescence CQDs were spherical in
shape. Fig. 1(c) displays the particle size distribution of CQDs, which
ranges from 3 to 10 nm, with an average diameter was found to be 6.9 +
0.5 nm.

Fig. 1(d) demonstrates the XRD pattern of CQDs. The pattern in-
dicates a wide diffraction peak centered at 20=23°, which is similar to
the (0 0 2) lattice plane and is due to the disordered structure of the
CQDs. This finding was identical to the CQDs that were previously re-
ported [24,25].

The FTIR spectrum suggests the presence of -COOH, C = O, C—H,
C—N, and C-S functional groups. It is evident from Fig. 2 that, absor-
bance band position at 3417 cm_l, is related to the v(O—H), weak peaks
at 2932 cm ™! and 2853 cm ! are related to v(C—H). The peak is found at
about 1635 cm’l, which is associated with (C = O) and the absorption
band is located at 1409 cm™!, which belongs to bending vibrations
(C—N). The peak position of 1023 cm ™! could be ascribed to the v(C-S).
Consequently, the FTIR findings attribute that the CQDs surfaces were
completely hydrophilic and hydroxyl, carbonyl, and amine groups are
identified [26,27]. The hydrophilic surface is possibly the cause of the
appropriate water dispersibility which increases the antibacterial
activity.

XPS was used to determine the elemental composition of the syn-
thesized CQDs. According to Fig. 3(a), N—CQDs are mostly composed of
O 1 s (oxygen), C 1 s (Carbon), N 1 s (nitrogen), and S 2p (sulfur). Fig. 3
(b), shows the two strong binding energy bands at 531 and 532 eV, in the
documented spectrum at C-OH/C-O-C, and C = O at respective posi-
tions. The C 1 s peaks at 284 and 285 eV shown in Fig. 3(c) indicate that
carbon typically exists in the form of C = C, and C—N bonds, respec-
tively. Fig. 3(d) displays two binding energy peaks at 398.8 eV (C-N-C)
and 397.7 eV (C-N), respectively [28-31].

3.2. Optical characteristics

In electronic configuration, bandgap, and electronic transformation,
the photophysical property has a similar significance. The UV-vis ab-
sorption spectrum (Fig. 4) shows two absorption peaks observed at 272
nm and 304 nm, which are ascribed to the n-n* and n-zn* transitions
[32]. The inset Fig. 4 shows that pictures of diluted CQDs obtained
under visible light and a UV lamp (365 nm) clearly illustrate that the
CQDs reveal a sky blue color when the UV lamp is stimulated. The ab-
sorption co-efficient (a) is estimated to be 9.548 and refractive index
(np) found to be 3.1433 at the wavelength of 532 nm, which can be
determined by standard relations [33]. It can be used in the Z-scan
section to calculate the NLO susceptibility x® parameter.

The excitation-dependent emission spectra are shown in Fig. 5.
Excitation wavelength is increased from 270 to 370 nm, while emission
wavelength is increased from 406 to 442 nm, when the excitation was
set to 330 nm, the maximum emission intensity of CQDs was found to be
416 nm. Moreover, the figure depicts the excitation dependent fluores-
cence emission intensity, which is due to the surface of the CQDs with
the quantum effect and numerous emission trap sites such as O-con-
taining groups for illustration and the carboxylate group [34,35].

For CQDs, the fluorescence quantum yield (QY) values were obtained
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Fig. 1. (a, b) TEM images, (c) corresponding size distribution histogram, and (d) XRD pattern of CQDs.
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Fig. 2. FTIR spectrum of CQDs.

using an aqueous solution of quinine sulfate (0.1 M) as a standard
reference along with the following formulae;
',I)ZC I:/d Ax

Y, = QYyy X 3 X — X
Q Q std ’ﬁzd Ix Astd

@

where QY represents the quantum yield of the prepared sample (CQDs)
and reference sample (quinine sulfate); while “n” describes the solvent
refractive index, “I” denote integrated fluorescence intensity, and “A”
denotes absorption at 350 nm, the excitation wavelength. The QY was
found to be 4.664%.

The CIE created fundamental criteria and measurement techniques

for the lighting industry in order to provide a set of technical re-
quirements for defining and measuring colors. To establish a set of
technical standards for defining and measuring colors, CIE developed
basic standards and measurement procedures in lighting field. The color
coordinate diagram of the CQDs is shown in Fig. 6. The color value is
(0.35, 0.35), which is quite near to the value of pure white light (0.33,
0.33). Longshi Rao et al. [36] reported the solvent regulation synthesis
of single component white emission CQDs for white LED [36]. G. Ma
et al. (2023) has reported Nitrogen-doped carbon dots produced sol-
vothermal using PET waste as a precursor, and their use in LEDs and
water sensing [37]. Light-emitting carbon dots derived from naturally
growing Torreya grandis seeds were reported by Zhang et al. [38]. CQDs
produced with these values can be utilized in white LED applications.

3.3. Z-scan analysis

The third-order nonlinear optical property of the synthesized CQDs
was explored by the widely known open and closed aperture Z-scan
method. Open aperture Z-scan pattern clearly demonstrates that the
CQDs show nonlinear absorption, and valley transmittance at the focus
is due to the action of the reverse saturable absorption (RSA). It could be
seen that when the sample is shifted away from the point, the normal-
ized transmission first decreases to the target (z = 0) and then increases
as the material returns to the source. Fig. 7(b) shows the obtained open
aperture Z-scan experimental data, whereas the redline fitted theoreti-
cally with respect to the equation established by Sheik-Bahae et al. [39].

Toa = SN S— (2)
1+ (ﬁ X Lefr [%])

where f is the absorption coefficient, Ij is the on-axis irradiance at the
focus (Z = 0) and Legr = (1-exp (-aL)/a) is the effective path length. To
find out the nonlinear refractive index of the CQDs, take the difference
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Fig. 4. UV-vis spectrum of synthesized CQDs.

between the normalized transmission peak and valley (AT,.) in the
ratio of CA and OA normalized Z-scan patterns as shown in Fig. 7(c). The
closed aperture Z-scan method was used to calculate the nonlinear
refractive index (np) of CQDs. Fig. 7(a) depicts the normalized propa-
gation of CQDs via a closed aperture at a wavelength of 532 nm. Stan-
dard relations are used to determine the nonlinear optical properties
[40]. The nonlinear optical susceptibility y® of CQDs can be calculated
using the formula,

27 =\ (Re ) + (1m0 ®

The third-order NLO susceptibility of CQDs is calculated as 5.5 x
10°° (esu). Table 1 summarizes all the estimated values. Table 2 shows
that the NLO susceptibility is greater than that of other NLO materials
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Fig. 5. Fluorescence spectra of synthesized CQDs at different wavelengths.

[41-46]. The comparative data shows that synthesized CQDs have
higher NLO susceptibility values, therefore being more suitable for NLO
applications. If the CQDs are to be employed in optical switches, the
requirements W>1 and T<1 should be fulfilled. The following re-
lationships were used to assess W and T:

_ n,l
= “4)
r- ®)
np

The calculated figure of merit value is found to be (W = 5.2776) and
T= (0.00086232), which perfectly fulfills the condition of suitability for
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optical switching devices at 532 nm. Because of their reverse saturable
properties, the synthesized CQDs are useful for optical switching tools,
optical limiters, optical detectors, and sensors for numerous scientific

applications.

3.4. Antibacterial activity

Fig. 7. (a) Closed aperture, (b) Open aperture, and (c) ratio of CA/OA aperture Z-scan pattern of CQDs.

The antibacterial activity of the CQDs was tested using Gram-
negative (E. coli, P. aeruginosa) and Gram-positive (B. cereus, S. aureus)
microorganisms. Using the disk diffusion technique, clinically isolated



P. Surendran et al.

Table 1
The nonlinear optical parameters of CQDs.
Parameters Values
Laser wavelength 532 (nm)
Focal length of lens used 130 (mm)
Radius of aperture used 1.5 (mm)
Radius of the beam on aperture 3 (mm)
Intensity of the laser at the focus 0.01478 (MW/cm?)
Reighley range (Zgr) 1.271 (mm)

Nonlinear refractive index (n5)

Nonlinear absorption coefficient (§)

Real part of NLO susceptibility (Re 3©)
Imaginary part of NLO susceptibility (Im y
Third-order nonlinear susceptibility ()

(3))

1.8138 x 1078 (em?/W)
0.294 x 10~* (cm/W)
4.5388 x 107° (esu)
3.11425x107° (esu)

5.5 x 107° (esu)

Table 2
provides a comparison of CQDs third-order NLO susceptibility (x*®) values for
various materials.

Materials Higher-order NLO susceptibility (y ) Refs.
(esu)
Orange CQDs 2.7742 x 10 7 41
Cr:CdS QDs 0.7428 x 107% 42
Antimonene QDs 2.87 x 107%° 43
CQD/GO SiO, 1.63 x 10711 44
N-CDs 12,5 x 10 ~ 12 45
carbon dots (CDs) 11.3x 10~ 13 46
Manihot esculenta 5.5 x 107° (esu) Present
CQDs work
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pathogens were sub-cultured in nutritional broth for 24 h at 37 °C.
Around, 20 mL of germ free Muller-Hinton agar was loaded into culture
petri dishes. The medium containing 10 pg/mL of carbon quantum dots
was loaded as well and incubated at 37 °C for 24 h the zone of inhibition
(mm) is displayed in Fig. 8. The most notable finding of carbon quantum
dots is a 43 mm inhibitory zone against gram-negative organisms E. coli.

Fig. 9 illustrates that CQDs restrict the activity of antimicrobial
agents. Growth inhibition can be described as membrane lysis caused by
the interaction of positive charges on CD surfaces with negative charges
on bacterial cell membranes. This adhesion causes physical and me-
chanical breakdown of the bacterial barrier, allowing CDs to penetrate
the interior membranes. The membranes gradually collapse owing to a
lack of electrolytes and cytoplasmic fluids [47-50]. Furthermore, the
literature analysis indicates that amine groups on the surface of CDs
denature DNA, resulting in cell death [51,52]. The antimicrobial assay is
considered high (if the diameter of the inhibition region is >6 mm). So
far, if the diameter of the ZOI is less than <6 mm, the activity is low [53].
Shahshahanipour et al. [54] has stated that the antibacterial tests of CDs
led to intriguing findings indicating that Henna as raw materials.
Therefore, the synthesized CDs destroy Gram +Ve and Gram -Ve anti-
microbial agents [54]. Mahat et al. [55] has investigated the modified
membrane of CQDs-PSF that can effectively perform as an antimicrobial
against E. Coli gram +Ve bacteria, thereby improving the anti-fouling
efficiency of the forward osmosis membrane [55]. Zhao et al. [56] has
reported two multifunctional CDs that demonstrated superior bioac-
tivity and function as possible non-toxic agents for fluorescence imaging
of microbial species [56]. Markovi¢ et al. [57] explored how the struc-
tural and morphological characteristics of height-controlled quantum

Fig. 8. Antibacterial activity plate photos of CQDs: (a) B. cereus (b) P. aeruginosa (c) S. aureus and (d) E. coli.
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Fig. 9. Schematic mechanism diagram of antibacterial activity.

dots/polydimethylsiloxane (hCQDs/PDMS) influenced antimicrobial
activity function [57]. Interestingly, in the current investigation, the
CQDs exhibit greater inhibition against B. cereus, S. aureus, P. aeruginosa,
and E. coli, and their antibacterial activity is compared to that of other
CQDs (Table 3) [58-64]. As a result, the synthetic CQDs are suitable for
medicinal applications.

4. Conclusion

In summary, CQDs were synthesized by simple hydrothermal
method. It was then investigated by PXRD, FTIR, and XPS techniques,
which confirmed the formation of CQDs and determined their size using
HRTEM analysis to be 6.9 + 0.5 nm. The obtained CQDs in aqueous
solution exhibited a sky blue color when exposed to UV light, and
fluorescence experiments demonstrated their excitation-dependent
fluorescence emission nature. White light emission of the material has
been confirmed using CIE chromatic coordinate values. Z-scan results
indicate that the synthesized CQDs exhibit significant optical nonline-
arity and also satisfy the optical switching condition (W > 1, (T <1)
representing that CQDs can be a good material for optical switching
applications. CQDs with significant antibacterial activity have a high
potential for bacterial infection resistance. This work also gives a pro-
spective strategy for the development of CQDs-based photonic devices
and biomedical applications.
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