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A B S T R A C T   

The synthesis of carbon quantum dots using cassava (Manihot esculenta) waste peels by simple hydrothermal 
method. Carbon quantum dots were studied using PXRD, and HRTEM analysis, signifying an amorphous graphite 
carbon structure. The carbon quantum dots have two absorption peaks in the UV–vis spectrum, around 272 and 
304 nm which lead to the π–π* and n–π* transitions. The produced CQDs exhibit excitation dependent fluo
rescence characteristics, with a fluorescence quantum yield of 4.664% at an excitation wavelength of 330 nm. 
The CQDs revealed a white light emitting diode with the Commission Internationale d’Eclairage (CIE) co
ordinates (0.35, 0.35). The nonlinear optical absorption 0.294×10− 4 (cm/W), nonlinear refractive index 
1.8138×10− 8 (cm2/W), and third-order NLO susceptibility 5.5 × 10− 6 (esu) were calculated using Z-Scan 
analysis. The synthesized CQDs were utilized for their antibacterial activity used S. aureus (23 mm), B. cereus (33 
mm), E. coli (43 mm), and P. aeruginosa (30 mm) as harmful microbes. Our results suggest that Manihot esculenta 
waste peels CQDs have potential for application in NLO devices, optical switching, and pharmaceuticals.   

1. Introduction 

“Carbon” is obviously a very famous term for all and abundantly, 
which is among the most prevalent elements in the universe. It is 
commonly found in nature in the form of allotropes, (i.e., diamond, 
graphite, and amorphous carbon). Recently developed innovative 
luminescent carbon dots (CDs) have prompted tremendous attention in 
numerous area’s such as bio-imaging, medical treatment, electro- 
catalysis, and photovoltaic systems owing to their superior ease of 
processing, low biological toxicity, excellent biocompatibility, and 
special physico-chemical properties [1,2]. Since the erratic origins of 
CDs in 2004, numerous methods for the manufacture and production of 
CDs have been developed to investigate the different characteristics, 
synthesis processes, and fascinating applications of CDs [3]. 

In the recent scenario, researchers have been concerned with the 

formation of environmentally sustainable green methods for the syn
thesis of CDs using organic byproducts that consume low-cost raw ma
terials. In the synthesis of CQDs, different methods have been employed, 
including (i) top-down methods (breaking large carbon materials), like 
electrochemical exfoliation and laser ablation, or (ii) bottom-up ap
proaches (constructing from smaller precursors), such as microwave and 
plasma methods, and hydrothermal techniques. Among these, owing to 
its significant features such as a simple process, the prevention of so
phisticated instrumental needs, and the development of strong fluores
cence CDs, hydrothermal synthesis has substantially advanced over 
other current physical approaches [4]. Several byproducts have been 
used for the synthesis of CQDs, to encourage the manufacture of 
renewable materials and minimize material waste. Heteroatom (nitro
gen, sulfur, phosphorous, florine, and boron) doping is a very effective 
and easy approach to tuning the optical characteristics and passivating 
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the surface of the CDs [5,6]. For example, Adams et al. [7] reported 
tunable fluorescence CDs as material passivating agents by combustion 
route carbonization of aqueous starch suspension facilitated by phos
phoric and sulfuric acids, respectively [7]. Wang et al. [8] reported 
cassava starch, a non-food product, which shows potential applications 
in bio-hydrogen production [8]. Pudza et al., [9] described 
tapioca-based CDs that are appropriate for sensing and biomedical ap
plications [9]. Reddy Mallem et al. [10] stated that trichromophore 
doped cassava-based bio-polymers are a hugely exciting luminous 
component. Device efficiency and excellent reliability underscore the 
promise of bio-related emission technology using the bio-polymer, cas
sava, as a platform for the frontier and subsequent generations [10]. 
Nima et al. [11] synthesized blue-light emitting fluorescent carbon 
nanospheres with a mean size of 23.6 nm using tapioca via the hydro
thermal carbonization process and the luminescent quenching of these 
performed CNs was strongly selective to the Fe3+ ions [11]. In one step, 
the CDs used to produce the PL chemo-sensor are prepared by mild 
process conditions from a very inexpensive source of starch (Tapioca 
sago) were investigated by Basu et al. [12]. Pudza et al. [13] has syn
thesized CDs which are fantastic fluorescent resources suggested for the 
adsorption of heavy metal ions [13]. Zhu et al. [14] have investigated a 
hydrothermal process to prepare N–CDs using ethylenediamine and 
citric acid as precursors [14]. An organic sustainable hydrothermal re
action of fluorescent N–CQDs with citrus lemon as a source of carbon is 
stated by Tadesse et al. [15]. Significant attention has been given to 
increasing the QY and optical performance of CQDs, whereas doping 
CQDs with other elements, particularly nitrogen, been found to be an 
appropriate mechanism [16–23]. 

The objectives of this work were to synthesize fluorescent CQDs with 
Manihot esculenta waste peels and garlic juice extracts using a low-cost 
hydrothermal method. Various approaches were utilized to investigate 
the physicochemical properties of CQDs, such as surface functional 
groups, morphological analysis, elemental analysis, optical properties, 
and fluorescent studies with quantum yield measurement. In particular, 
nonlinear optical and antibacterial activities were investigated for op
tical switching and medical applications. 

2. Experimental procedures 

2.1. Materials and method 

The fresh manioc cassava (Manihot esculenta) were collected in the 
cultivation area and washed several times with double-distilled water. 
They were then cut into small pieces and placed in a juicer. The juice was 
then filtered to remove impurities. Finally, fresh Manihot esculenta juice 
(without pulp and without added preservatives) was obtained. Simi
larly, garlic was bought from the local market and extracted from the 
juice and ammonia was purchased from E-Merck (99.99%). 

Briefly, CQDs were synthesized using 20 mL of Manihot esculenta 
juice and 2 mL of garlic juice mixed with 8 mL of double distilled water. 
Followed by the ammonia, which was gradually added to the mixture 
until pH 7 was reached, the mixture was heated in a Teflon-stainless 
steel autoclave at a temperature of 200 ◦C for 6 h After the reaction 
period, the obtained brown colored solution was further centrifuged at 
5000 rpm for 1 h The finally obtained supernatant solution was kept at 5 
◦C for further analysis. 

2.2. Characterization 

HRTEM images were captured at 200 kV using a JEOL/JEM 2100 
transmission electron microscope. X-ray diffraction analyses were car
ried out on a PANalytical/ X Pert3 Powder XRD instrument with CuKα 
(1.5404 Å) radiation. X-ray photoelectron spectroscopy (XPS) mea
surements were measured on a PHI-VERSAPROBE III (XPS) surface 
analysis. The FTIR spectrum was acquired over the range of 400–4000 
cm− 1 using a Perkin Elmer spectrometer. As part of the preliminary 

characterization, the UV–vis and fluorescence spectra were measured 
through the SHIMADZU/UV 2600 spectrophotometer and JY Fluorolog- 
3–11 spectrofluorometer, respectively. Z-scan analysis was used to 
assess the third-order nonlinear optical properties of CQDs (HOLMARC 
Z-scan model: HO-ED-LOE-03). 

3. Results and discussion 

3.1. Morphological and structural characteristics 

The morphologically characterization of CQDs was analyzed with 
HRTEM. The distributions of particles as well as the surface morphology 
of the synthesized CQDs are observed by HRTEM (Fig. 1a, b). The 
HRTEM images revealed that the fluorescence CQDs were spherical in 
shape. Fig. 1(c) displays the particle size distribution of CQDs, which 
ranges from 3 to 10 nm, with an average diameter was found to be 6.9 ±
0.5 nm. 

Fig. 1(d) demonstrates the XRD pattern of CQDs. The pattern in
dicates a wide diffraction peak centered at 2θ=23◦, which is similar to 
the (0 0 2) lattice plane and is due to the disordered structure of the 
CQDs. This finding was identical to the CQDs that were previously re
ported [24,25]. 

The FTIR spectrum suggests the presence of –COOH, C = O, C–H, 
C–N, and C-S functional groups. It is evident from Fig. 2 that, absor
bance band position at 3417 cm− 1, is related to the ν(O–H), weak peaks 
at 2932 cm− 1 and 2853 cm− 1 are related to ν(C–H). The peak is found at 
about 1635 cm− 1, which is associated with (C = O) and the absorption 
band is located at 1409 cm− 1, which belongs to bending vibrations 
(C–N). The peak position of 1023 cm− 1 could be ascribed to the ν(C-S). 
Consequently, the FTIR findings attribute that the CQDs surfaces were 
completely hydrophilic and hydroxyl, carbonyl, and amine groups are 
identified [26,27]. The hydrophilic surface is possibly the cause of the 
appropriate water dispersibility which increases the antibacterial 
activity. 

XPS was used to determine the elemental composition of the syn
thesized CQDs. According to Fig. 3(a), N–CQDs are mostly composed of 
O 1 s (oxygen), C 1 s (Carbon), N 1 s (nitrogen), and S 2p (sulfur). Fig. 3 
(b), shows the two strong binding energy bands at 531 and 532 eV, in the 
documented spectrum at C–OH/C–O–C, and C = O at respective posi
tions. The C 1 s peaks at 284 and 285 eV shown in Fig. 3(c) indicate that 
carbon typically exists in the form of C = C, and C–N bonds, respec
tively. Fig. 3(d) displays two binding energy peaks at 398.8 eV (C–N–C) 
and 397.7 eV (C–N), respectively [28–31]. 

3.2. Optical characteristics 

In electronic configuration, bandgap, and electronic transformation, 
the photophysical property has a similar significance. The UV–vis ab
sorption spectrum (Fig. 4) shows two absorption peaks observed at 272 
nm and 304 nm, which are ascribed to the π–π* and n–π* transitions 
[32]. The inset Fig. 4 shows that pictures of diluted CQDs obtained 
under visible light and a UV lamp (365 nm) clearly illustrate that the 
CQDs reveal a sky blue color when the UV lamp is stimulated. The ab
sorption co-efficient (α) is estimated to be 9.548 and refractive index 
(n0) found to be 3.1433 at the wavelength of 532 nm, which can be 
determined by standard relations [33]. It can be used in the Z-scan 
section to calculate the NLO susceptibility χ(3) parameter. 

The excitation-dependent emission spectra are shown in Fig. 5. 
Excitation wavelength is increased from 270 to 370 nm, while emission 
wavelength is increased from 406 to 442 nm, when the excitation was 
set to 330 nm, the maximum emission intensity of CQDs was found to be 
416 nm. Moreover, the figure depicts the excitation dependent fluores
cence emission intensity, which is due to the surface of the CQDs with 
the quantum effect and numerous emission trap sites such as O-con
taining groups for illustration and the carboxylate group [34,35]. 

For CQDs, the fluorescence quantum yield (QY) values were obtained 
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using an aqueous solution of quinine sulfate (0.1 M) as a standard 
reference along with the following formulae; 

QYx = QYstd ×
η2

x

η2
std

×
Istd

Ix
×

Ax

Astd
(1)  

where QY represents the quantum yield of the prepared sample (CQDs) 
and reference sample (quinine sulfate); while “η” describes the solvent 
refractive index, “I” denote integrated fluorescence intensity, and “A” 
denotes absorption at 350 nm, the excitation wavelength. The QY was 
found to be 4.664%. 

The CIE created fundamental criteria and measurement techniques 

for the lighting industry in order to provide a set of technical re
quirements for defining and measuring colors. To establish a set of 
technical standards for defining and measuring colors, CIE developed 
basic standards and measurement procedures in lighting field. The color 
coordinate diagram of the CQDs is shown in Fig. 6. The color value is 
(0.35, 0.35), which is quite near to the value of pure white light (0.33, 
0.33). Longshi Rao et al. [36] reported the solvent regulation synthesis 
of single component white emission CQDs for white LED [36]. G. Ma 
et al. (2023) has reported Nitrogen-doped carbon dots produced sol
vothermal using PET waste as a precursor, and their use in LEDs and 
water sensing [37]. Light-emitting carbon dots derived from naturally 
growing Torreya grandis seeds were reported by Zhang et al. [38]. CQDs 
produced with these values can be utilized in white LED applications. 

3.3. Z-scan analysis 

The third-order nonlinear optical property of the synthesized CQDs 
was explored by the widely known open and closed aperture Z-scan 
method. Open aperture Z-scan pattern clearly demonstrates that the 
CQDs show nonlinear absorption, and valley transmittance at the focus 
is due to the action of the reverse saturable absorption (RSA). It could be 
seen that when the sample is shifted away from the point, the normal
ized transmission first decreases to the target (z = 0) and then increases 
as the material returns to the source. Fig. 7(b) shows the obtained open 
aperture Z-scan experimental data, whereas the redline fitted theoreti
cally with respect to the equation established by Sheik-Bahae et al. [39]. 

TOA =
1

1 +

(

β × Leff

[
IO

1+x2

]) (2)  

where β is the absorption coefficient, I0 is the on-axis irradiance at the 
focus (Z = 0) and Leff = (1-exp (-αL)/α) is the effective path length. To 
find out the nonlinear refractive index of the CQDs, take the difference 

Fig. 1. (a, b) TEM images, (c) corresponding size distribution histogram, and (d) XRD pattern of CQDs.  

Fig. 2. FTIR spectrum of CQDs.  
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between the normalized transmission peak and valley (ΔTp-v) in the 
ratio of CA and OA normalized Z-scan patterns as shown in Fig. 7(c). The 
closed aperture Z-scan method was used to calculate the nonlinear 
refractive index (n2) of CQDs. Fig. 7(a) depicts the normalized propa
gation of CQDs via a closed aperture at a wavelength of 532 nm. Stan
dard relations are used to determine the nonlinear optical properties 
[40]. The nonlinear optical susceptibility χ(3) of CQDs can be calculated 
using the formula, 

χ(3) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Re χ(3))
2
+ (Im χ(3))

2
√

(3) 

The third-order NLO susceptibility of CQDs is calculated as 5.5 ×
10− 6 (esu). Table 1 summarizes all the estimated values. Table 2 shows 
that the NLO susceptibility is greater than that of other NLO materials 

[41–46]. The comparative data shows that synthesized CQDs have 
higher NLO susceptibility values, therefore being more suitable for NLO 
applications. If the CQDs are to be employed in optical switches, the 
requirements W>1 and T<1 should be fulfilled. The following re
lationships were used to assess W and T: 

W =
n2I
αλ

(4)  

T =
βλ
n2

(5) 

The calculated figure of merit value is found to be (W = 5.2776) and 
T= (0.00086232), which perfectly fulfills the condition of suitability for 

Fig. 3. XPS spectrum of CQDs: (a) XPS survey spectrum, (b) binding energy spectrum of O1s, (c) C1s, and (d) N1s.  

Fig. 4. UV–vis spectrum of synthesized CQDs.  Fig. 5. Fluorescence spectra of synthesized CQDs at different wavelengths.  
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optical switching devices at 532 nm. Because of their reverse saturable 
properties, the synthesized CQDs are useful for optical switching tools, 
optical limiters, optical detectors, and sensors for numerous scientific 
applications. 

3.4. Antibacterial activity 

The antibacterial activity of the CQDs was tested using Gram- 
negative (E. coli, P. aeruginosa) and Gram-positive (B. cereus, S. aureus) 
microorganisms. Using the disk diffusion technique, clinically isolated 

Fig. 6. CIE plot of prepared fluorescent carbon quantum dots.  

Fig. 7. (a) Closed aperture, (b) Open aperture, and (c) ratio of CA/OA aperture Z-scan pattern of CQDs.  
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pathogens were sub-cultured in nutritional broth for 24 h at 37 ◦C. 
Around, 20 mL of germ free Muller-Hinton agar was loaded into culture 
petri dishes. The medium containing 10 μg/mL of carbon quantum dots 
was loaded as well and incubated at 37 ◦C for 24 h the zone of inhibition 
(mm) is displayed in Fig. 8. The most notable finding of carbon quantum 
dots is a 43 mm inhibitory zone against gram-negative organisms E. coli. 

Fig. 9 illustrates that CQDs restrict the activity of antimicrobial 
agents. Growth inhibition can be described as membrane lysis caused by 
the interaction of positive charges on CD surfaces with negative charges 
on bacterial cell membranes. This adhesion causes physical and me
chanical breakdown of the bacterial barrier, allowing CDs to penetrate 
the interior membranes. The membranes gradually collapse owing to a 
lack of electrolytes and cytoplasmic fluids [47–50]. Furthermore, the 
literature analysis indicates that amine groups on the surface of CDs 
denature DNA, resulting in cell death [51,52]. The antimicrobial assay is 
considered high (if the diameter of the inhibition region is >6 mm). So 
far, if the diameter of the ZOI is less than <6 mm, the activity is low [53]. 
Shahshahanipour et al. [54] has stated that the antibacterial tests of CDs 
led to intriguing findings indicating that Henna as raw materials. 
Therefore, the synthesized CDs destroy Gram +Ve and Gram -Ve anti
microbial agents [54]. Mahat et al. [55] has investigated the modified 
membrane of CQDs-PSF that can effectively perform as an antimicrobial 
against E. Coli gram +Ve bacteria, thereby improving the anti-fouling 
efficiency of the forward osmosis membrane [55]. Zhao et al. [56] has 
reported two multifunctional CDs that demonstrated superior bioac
tivity and function as possible non-toxic agents for fluorescence imaging 
of microbial species [56]. Marković et al. [57] explored how the struc
tural and morphological characteristics of height-controlled quantum 

Table 1 
The nonlinear optical parameters of CQDs.  

Parameters Values 

Laser wavelength 532 (nm) 
Focal length of lens used 130 (mm) 
Radius of aperture used 1.5 (mm) 
Radius of the beam on aperture 3 (mm) 
Intensity of the laser at the focus 0.01478 (MW/cm2) 
Reighley range (ZR) 1.271 (mm) 
Nonlinear refractive index (n2) 1.8138 × 10− 8 (cm2/W) 
Nonlinear absorption coefficient (β) 0.294 × 10− 4 (cm/W) 
Real part of NLO susceptibility (Re χ(3)) 4.5388 × 10− 6 (esu) 
Imaginary part of NLO susceptibility (Im χ(3)) 3.11425×10− 6 (esu) 
Third-order nonlinear susceptibility (χ(3)) 5.5 × 10− 6 (esu)  

Table 2 
provides a comparison of CQDs third-order NLO susceptibility (χ(3)) values for 
various materials.  

Materials Higher-order NLO susceptibility (χ (3)) 
(esu) 

Refs. 

Orange CQDs 2.7742 × 10 − 7 41 
Cr:CdS QDs 0.7428 × 10‒08 42 
Antimonene QDs 2.87 × 10‒09 43 
CQD/GO SiO2 1.63 × 10‒11 44 
N-CDs 12.5 × 10 − 12 45 
carbon dots (CDs) 11.3 × 10 − 13 46 
Manihot esculenta 

CQDs 
5.5 × 10− 6 (esu) Present 

work  

Fig. 8. Antibacterial activity plate photos of CQDs: (a) B. cereus (b) P. aeruginosa (c) S. aureus and (d) E. coli.  
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dots/polydimethylsiloxane (hCQDs/PDMS) influenced antimicrobial 
activity function [57]. Interestingly, in the current investigation, the 
CQDs exhibit greater inhibition against B. cereus, S. aureus, P. aeruginosa, 
and E. coli, and their antibacterial activity is compared to that of other 
CQDs (Table 3) [58–64]. As a result, the synthetic CQDs are suitable for 
medicinal applications. 

4. Conclusion 

In summary, CQDs were synthesized by simple hydrothermal 
method. It was then investigated by PXRD, FTIR, and XPS techniques, 
which confirmed the formation of CQDs and determined their size using 
HRTEM analysis to be 6.9 ± 0.5 nm. The obtained CQDs in aqueous 
solution exhibited a sky blue color when exposed to UV light, and 
fluorescence experiments demonstrated their excitation-dependent 
fluorescence emission nature. White light emission of the material has 
been confirmed using CIE chromatic coordinate values. Z-scan results 
indicate that the synthesized CQDs exhibit significant optical nonline
arity and also satisfy the optical switching condition (W > 1, (T <1) 
representing that CQDs can be a good material for optical switching 
applications. CQDs with significant antibacterial activity have a high 
potential for bacterial infection resistance. This work also gives a pro
spective strategy for the development of CQDs-based photonic devices 
and biomedical applications. 
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Fig. 9. Schematic mechanism diagram of antibacterial activity.  

Table 3 
shows a comparison of antibacterial activity for various quantum dots.  

Bacterial 
species 

Samples Zone of inhibition 
(mm) 

Refs. 

B. cereus ZnS QDs 3.1 [58] 
Sugarcane CQDs 30 [59] 
Manihot esculenta 
CQDs 

33 Present 
work 

S. aureus Curcumin QDs 14 [60] 
Ananas comosus CQDs 25 [61] 
Nonylphenol CQDs 13 [62] 
Manihot esculenta 
CQDs 

23 Present 
work 

P. aeruginosa Curcumin CQDs 13 [60] 
Nonylphenol CQDs 11 [62] 
Sugarcane CQDs 24 [59]  
Manihot esculenta 
CQDs 

30 Present 
work 

E. coli Ananas comosus CQDs 39 [61] 
Cu QDs 11 [63] 
Tetracycline 19 [64] 
Manihot esculenta 
CQDs 

43 Present 
work  
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