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ARTICLE INFO ABSTRACT

Keywords: The superior photocatalytic, biological, and electrochemical properties of metal oxide nanocomposites have
Chemical precipitation made them an important part of contemporary nanotechnology research. Nanocomposite involving MnO, and
nanocomposite CuO has been widely utilized for catalytic and electrochemical applications. However, the different oxidation
energy band gap states of MnO, and lower band gap of CuO limits the efficiency of the devices involving the composite of these
photodegradation

two semiconductors. As a result, reduced graphene oxide (rGO) is integrated into the MnO3/CuO matrix. rGO-
MnO2/CuO and MnO2/CuO nanocomposites (NCs) were synthesized using one-pot green synthesis and chemical
precipitation respectively. rGO decorated MnO,/CuO NC was green synthesized from graphene oxide using
Alternanthera sessilis leaf extract. XRD detected peaks related to orthorhombic structured MnO, and monoclinic
structured CuO for both the composites. Star shaped nanostructures are observed for rGO incorporated MnO2/
CuO nanocomposite. MC and rMC composites have band gaps of 2.16 and 2.04 eV, respectively. FTIR spectrum
showed the characteristic peaks for MnO, and CuO in the rGO-MnO»/ CuO composite. Raman active Ag and Bg
CuO modes occur at 270 and 450 cm ™! and Mn-O symmetric vibrations at 590 and 540 cm™*. The incorporation
of rGO into the MnO,/CuO composite increased its photocatalytic activity from 87 % to 96 % against the
degradation of metanil yellow dye by increasing its electron conductivity, adsorption capacity, and light ab-
sorption capacity. The MnO,/CuO nanocomposite with rGO demonstrated enhanced antibacterial activity, with a
zone of inhibition of 24 mm compared to 13 mm for the control and 18 mm for the MnO2/CuO composite.

reduced graphene oxide

1. Introduction regulation of odor, the production of hydrogen, and the inactivation of

bacteria and cancer cells. Metal oxide semiconductors like ZnO [4], TiO5

The surrounding ecosystem and human health are seriously threat-
ened by the growing amount of waste water carrying dangerous organic
contaminants from diverse enterprises [1]. Water pollution is exacer-
bated by dyes, which are poisonous and often produced in industrial
settings. The removal of organic contaminants from water has been
attempted using advanced oxidation processes (AOPs). Photocatalysis,
which may be carried out with just a catalyst and light, is the most
efficient AOP for cleaning pollutants out of water [2]. Metal oxide
semiconductors have become popular for environmental pollution
cleanup due to their photosensitivity and non-toxicity [3]. With the
application of photocatalytic semiconductors, water and air can be pu-
rified in a scientifically sound manner. Furthermore, it is used for the
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[5], NiO [6], SnO3 [7], etc. are often used in catalytic applications. In
addition to these wide band oxides, lower band gap oxides such as CdO
[8], CugO [9], MnO [10], BiVO4 [11] are also used for catalytic appli-
cations. However, using a single semiconductor has problems such as
sluggish photocatalyst deactivation, low visible light harvest, poor se-
lective adsorption, and quick electron-hole pair recombination.
Combining two distinct types of metal oxides to produce a composite
material that enables the effective mutual movement of charge carriers
from one semiconductor to another is the strategy that has proven to be
the most successful in meeting the requirements of these problems. Two
semiconductors MnO; and CuO were coupled to form composite in this
work.
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Fig. 2. Diffraction patterns of MC and rMC composites

The stable oxide manganese dioxide (MnO,) has a high surface area,
strong chemical resistance, and catalytic behavior [12]. MnO; is a
possible pseudo-capacitive oxide with a capacitance of up to 1370 F/g
[13]. MnOs nanostructures suited for catalytic activities have been
controlled synthesized by Sun et al. [14]. Catalytic combustion of
toluene using hierarchical MnO; via HoO3 selectively reducing KMnOg4
has been reported by Chen et al. [15]. Two dimensional MnO, nano-
sheets has been reported to promote ultra-sensitive pH-triggered
theranostics of cancer by Chen et al. [16]. MnO2 NPs with biomedical
properties has been synthesized by Chen et al. [17]. However, poor
electron conductivity and instability are drawbacks that limit MnO5’s
use in pseudo-capacitors and catalytic applications.

Among the applications of CuO, a p-type semiconductor with a

narrow band gap, are high temperature superconductors, photovoltaic
materials, field emission, and catalysis [18]. The anticancer, antibacte-
rial, and antioxidant properties of CuO nanoparticles make them an
attractive biomedical material [19]. Green CuO nanoparticles possess
antibacterial activity against urinary tract pathogens [20]. Singh et al.
[21] bio-synthesised CuO NPs suitable for electrochemical sensing and
remediation of 4-nitrophenol. Photocatalytic and antibacterial proper-
ties of CuO NPs biosynthesized using Verbascum thapsus leaf extract has
been reported by Getu et al. [22]. In a study by Azam et al. [23], CuO
NPs were reported to exhibit antimicrobial properties that depend on
their size. Antioxidant and DNA cleavage properties have been reported
for green synthesized CuO NPs by Duman et al. [24].

There are several reasons why CuO is preferred over MnO; loading,
including its large specific surface area, chemical stability, non-toxicity,
high conductivity, and remarkable electrochemical properties [25].
Because of the synergistic effects and morphological structures of MnO,
and CuO, the MnO5/CuO nanocomposite seems to be ideal material for
catalysis and antimicrobial applications. With CuO introduction into
MnO; matrix as reinforcing element, the MnOy/CuO NC exhibited
improved capacitive performance [26]. Researchers Zhang et al. [27]
and GuO et al. [28] have developed CuO@MnO; core-shell nano-
structures with high supercapacitive performance. MnO,/CuO catalyst
for co oxidation has been synthesized by Qian et al. [29]. Supercritical
oxidative degradation of ethyl acetate in water has been reported by
Martin et al. [30]. Lithium-ion batteries with CuO@MnO; core-shell
nanosheet arrays synthesized by Qing et al. [31] have been found to
exhibit high performance.

In spite of the good synergistic effects between MnO5 and CuO, the
photodegradation efficiency is somewhat reduced due to the different
oxidation states of MnO; and the low band gap value of CuO. To over-
come this limitation, rGO is incorporated into the MnOy/CuO matrix.
The surface of the sp>-C atoms in rGO is adorned with oxygenated
functional groups and defect sites, giving it a distinctive 2D honeycomb
structure. With its variable band gap and exceptional mechanical,
chemical, and thermal capabilities, rGO is well suited for composite
functioning [32]. Therefore, rGO incorporation is expected to
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Fig. 3. SEM images of MC and rMC composites

significantly improve the catalytic and antibacterial properties of
MnOy/CuO nanocomposite. Studies on the electrochemical, catalytic
and antibacterial properties of rGO embedded MnO,/CuO is very scarce
in the literature and the results obtained for the rGO incorporated
MnOy/CuO NC in this work will address the current research gaps or
challenges that arise while utilizing this composite.

2. Experimental
2.1. Materials Used

The materials used included graphite powder (purity 98%), sulfuric
acid (purity 98.5%), potassium permanganate (purity 99%), phosphoric
acid (purity 99%), hydrochloric acid (purity 98%), hydrogen peroxide
(purity 99%), manganese chloride (purity 99.6%), cupric chloride (pu-
rity 99.2%). An extract of Alternanthera sessilis leaf was used to reduce
graphene oxide to rGO.

2.2. Synthesis of MnO2/CuO (MC) composite

280 mL of demineralized water and 5 mL of weak hydrochloric acid
were added to a 500 ml beaker with 0.1 M manganese (II) chloride and
cupric chloride. The mixture was stirred rapidly until the salts were
dissolved. After adding 15 mL of liquid NH3, the solution’s pH was
neutralised and allowed to mature for 12 hours. Finally, MC nano-
composite was obtained by crushing the precipitates after they had been
rinsed and calcined at 400°C for 2 hours.

2.3. Synthesis of graphene oxide (GO)

In a 500 mL beaker containing a 9:1 volume mixture of phosphoric
acid and sulphuric acid, graphite powder (1 g) was gradually added and

thoroughly mixed while on ice. A constant stirring was performed while
potassium permanganate (6 g) was gradually added. For 12 hours, the
solution’s temperature was raised steadily to 50°C while being vigor-
ously stirred. 800 mL of frozen water and 1 mL of 30% hydrogen
peroxide progressively diluted the mixture. Three rounds of washing
with deionized water and 10% HCI neutralized the pH. By washing with
ethanol and drying for 12 hours at 60°C, brown GO powder was
obtained.

2.4. Leaf extract preparation

At 95°C, 10 g of cleaned Alternanthera sessilis leaves were cooked for
45 minutes in 200 mL of water. After filtering the solution, the obtained
extract was kept at 4°C in the fridge.

2.5. Synthesis of rMC composite

A mixture of 100 mL distilled water and 100 mg (optimized value) of
GO powder was mixed before ultrasonically treating for 30 minutes.
Thirty minutes after adding MnO,/CuO precipitates, the mixture was
stirred. Afterwards, 25 mL of extract was added and mixed for five hours
at 95°C. The concoction was filtered as soon as it reached ambient
temperature. After being cleaned and dried for five hours at 80°C, rGO-
MnOy/CuO (rMC) nanocomposite was created. Fig. 1 illustrates the
entire synthesizing process.

2.6. Characterization

The chemical structure, morphology, optical nature and lumines-
cence properties were studied using X-ray diffractometer (PRO Analyt-
ical X' pert), scanning electron microscope (S-3000H HITACHI),
spectrophotometers (Lambda-35) and Varian Cary Eclipse. Functional
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3.5

groups and Raman analyses were performed using spectrophotometers
(Perkin Elmer RX-1 and Renishaw Invia Laser).

2.7. Photocatalytic test

MC and rMC catalysts were evaluated for their ability to degrade
metanil yellow dye under visible light. In 100 mL water, 0.05 g of MY
dye was dissolved and swirled for 30 minutes with and without the
catalysts of 6 mg concentration. As visible source, incandescent bulb
with a power output of 100 W was used. For every 15 min, absorption
spectra was recorded for the dye solution at A = 435 nm.

2.8. Antibacterial activity

MC and rMC NCs were tested against Pseudomonas Aeruginosa
(P. aeruginosa) bacteria using agar well diffusion method. Bacterial
culture was spread over the petriplates containing freshly prepared
Muller - Hinton agar medium. Two mg each of the control (Amikacin),
MC and rMC NPs were dissolved in 25 pL. DMSO and incubated at 37° C
for 24 hours.

3. Outcomes of the findings
3.1. X-ray diffraction studies

The orthorhombic structure of MnO5 [JCPDS No. 82-2169] was
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Fig. 6. FTIR spectra of MC and rMC composites

coincident with the peaks (200),(110),(210),(011),and (410)
denoted by * (Fig. 2). The monoclinic structure of CuO [JCPDS No. 41-
0254] was coincident with the diffraction peaks (11 0), (002), (11 1),
(11 2), and (0 2 0) denoted by the symbol # (Fig. 2). The observed peaks
for both composites clearly show MnO; and CuO coexistence. rGO
exhibited a broad (0 0 2) peak at around 24.8° (Fig. 2). However, no
peaks related to rGO were observed in the rMC composite due to its
weaker intensity than that of MnO, and CuO [33]. The average crys-
tallite size of MC and rMC composites was 42 and 33 nm, respectively,
according to Scherrer’s equation. Consistent with previous findings
[34], the rMC composite was shown to have smaller crystallites. Malik
et al. [35] observed a similar reduction in crystallite size for rGO-ZnO
composite, which they attributed to ZnO crystal nucleation distur-
bances. With decreased crystallite size, the rMC composite exhibits a
high surface-to-volume ratio, which could have enhanced its photo-
catalytic activity (Section 3.6).

3.2. SEM analysis

Fig. 3 shows the SEM images with two different magnifications of MC
and rMC nanocomposites. Clustered tiny nanorods with different sizes
are seen for the MC composite. Star shaped nanostructures are seen for
the rMC composite. Thus, with rGO incorporation morphology of the MC
composite changes significantly. Observed star-shaped structure for the
rMC composite inhibits self-aggregation, as well as the creation of a
larger surface area and more active sites, increasing the production of
reactive oxygen species and enhancing its catalytic and antibacterial
properties.

3.3. UV-Vis analysis

The absorbance peaks at 258 and 399 nm observed for the MC
composite got shifted to 253 and 392 nm with rGO incorporation which
exhibited absorbance peak at 236 nm (Fig. 4). Similar shifting of
absorbance peaks towards smaller wavelengths with rGO incorporation
has been reported earlier [36]. Since rGO has a non-zero visible ab-
sorption, rMC composites containing rGO have increased absorption in
the visible range. The band gap energies (Eg) of the MC and rMC
nanocomposites was calculated using absorption coefficient () and
photon energy (hv) via Tauc plot method with the equation:

(ahv)’ = (hv — Ey) @

The calculated Eg values are 2.16 and 2.04 eV, respectively for the
MC and rMC composites (Fig. 5). Oxygen vacancies and strong interfa-
cial interaction between rGO and MnO,/CuO nanoparticles may be
responsible for the synergistic impact reported in the rMC composite,
resulting in a smaller band gap [37]. RMC composite’s reduced band gap
can also be attributed to surface charge and electronic coupling between
MnOy/CuO and rGO [38]. Due to decreased band gap, antibacterial
activity of the rMC composite is enhanced due to more ROS generation
(Section 3.7).

3.4. Functional group analysis

In FT-IR spectra of MC and rMC (Fig. 6) O-H bending occurs at 3406
and 3437 [39]. C-H stretching occurs at 2953 and 2925 em~ ! for MC and
at 2923 and 2854 cm™! for rMC [40]. The 2338 and 2356 peaks
correspond to HCC=H stretching. The absorption that occurs at a fre-
quency of 1665 cm ™! in MC can be traced back to the bending vibration
of O-H atoms that are connected with Mn atoms [41]. Adding rGO
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caused this peak to move to 1640 cm 1. A band at 1433 was detected for
the MC composite, and it was shown to be due to the anti-symmetric
vibration of adsorbed CO, [42]. C-OH vibration occurs at 1363, 1319
em ™! for MC and at 1383, 1329 cm ™! for rMC composites. C-O bond
occurs at 1061 cm ™! [40]. The MC peak at 822 cm™! correlates with
Mn-O vibrations, which shift to 825 cm~ ! in the rMC [43]. The O-Mn-O

vibrational mode occurs at 780 cm ™ in the rMC composite [44]. The MC
composite has a CuO-related peak at 678, 557 and the rMC composite at
605 cm~! [45]. The MC composite’s peak at 504 em ! caused by
Mn-O-Mn symmetric stretching vibration shifted to 515 em ™! for rMC
[46].
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3.5. Raman studies

A prominent peak at 3360 appears in the Raman spectrum of rMC NC
(Fig. 7) resulting from the OH stretching vibrations of moisture and rGO
[47]. rGO D and G bands are represented by the 1350 and 1600 cm
peaks, respectively [48]. The D band is an indication that there are faults
in the atomic layers that make up the graphite, whereas the G band is the
result of the stretching of in-plane bonds between sp? C atoms [49]. The
C-O stretching vibration of rGO causes the peak at 1470 [50]. Peaks at
590 and 540 [51] are due to Mn-O symmetric vibrations. Raman active
Ag and Bg CuO modes occur at 270 and 450 em ! [52]. Thus, the rMC
nanocomposite contains the Raman characteristic bands of rGO, MnO,
and CuO materials.

3.6. Photocatalytic test

The UV-Vis spectra of MY with MC and rMC catalysts are depicted in
Fig. 8. It is discovered that MY’s 435 nm distinctive absorption rapidly
declines with exposure to visible light and nearly vanishes after 90 mi-
nutes. The spectral absorption peak is eliminated by additional

Chemical Physics Impact 6 (2023) 100246

Table 1
Comparison on the photodegradation efficiencies of rMC catalyst with other rGO
based composites

Composite Dye Light Irradiation Degradation Reference
Source time efficiency

Cdo/ MO Ultrasonic 150 min 85 % [56]
CeOy/ irradiation
RGO

PANI/ MB Visible 120 min 91% [57]
rGO/
MnO,

TiO2/ MB uv 90 min 81% [58]
RGO/Ag

ZnO/ CdO/ MO, Ultrasonic 120 min 84,80 % [59]
rGO RhB irradiation

rGO/ CdO/  CR, Visible 120 min 82%, 94% [601]
SnO, MG

WOs3/ RhB Visible 90 min 93% [61]
CuO/
rGO

rGO- MY Visible 90 min 96% This work
MnOy/
CuO

exposure, demonstrating complete decay of MY. Y>* and Sm®* co-doped
NiO nanocomposite reported by Kannan et al. [53] are consistent with
this. Fig. 9 shows the results of MY degradation under the condition of
MC and rMC catalysts. Without the catalyst, the MY concentration drops
very slightly when subjected to irradiation in a blank test.

The degradation percentage of MY solutions using MC and rMC
catalysts for 90 min is 87 and 96 %, respectively (Fig. 10). This clearly
indicates that with rGO incorporation, the photodegradation ability of
MC nanocomposite is enhanced substantially. The introduction of rGO
into the MC catalyst enhanced the surface area, which led to a greater
degrading efficiency. rGO’s higher surface area and more active areas
lower electron and hole recombination [34]. rGO addition enhances the
MC catalyst’s light absorption via the n-n stacking interface and
increased degradation efficiency [42]. The reduced band gap and star
morphology of the rMC catalyst also contributed to its degradation ef-
ficiency [55]. A comparison on the degradation efficiency of the rMC
catalyst with previously reported rGO decorated nanocomposites is
compiled in Table 1.

The Ecpg and Eyp potentials of MnO5 and CuO computed using the
following relations can be used to explore the photocatalytic mechanism
involved in the rMC catalyst:

Ep=X-E +05E, (2)

Ecp = Evs — E,; 3

MnO, and CuO have Ecg values of -0.757 and 0.24 eV and Eyg values
of 1.563 and 2.05 eV, respectively, according to calculations. The higher
positive edge potential of CuO contributes to its stronger oxidative
ability, thus dominating the photocatalytic activity of MnOy/CuO. The
photocatalytic mechanism of the rMC catalyst is illustrated in Fig. 11. As
the CB potential of MnO; is negative, electrons diffuse from the CB of
MnO3 to CuO through rGO under visible light exposure. Similarly, holes
diffuse from the VB of CuO to MnO, through rGO. As a result, charge
carriers are effectively segregated, lengthening their life time and
improving interfacial charge transfer efficiency. Complete mineraliza-
tion of MY occurred when photogenerated electrons were neutralised by
dissolved oxygen molecules in water, creating O2*~ radicals, and pho-
togenerated holes interacted directly with HyO to create OH* radicals
[54].

The photodegradation rate constants (k) of MC and rMC catalysts
were investigated usiong the relation:

In(Cy/C)

k= — @
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where Cg and C are the dye concentration under dark and light condi-
tions. The k values estimated from the plots between In (%) vs. irradiant
time were 0.0157 and 0.0284 min~! for the MC and rMC catalysts,
respectively. rMC catalyst’s high k value confirmed its higher degrada-
tion capability.

The recyclability of the rMC catalyst was examined by doing the
degradation experiment five times. Recycle experiments of the rMC
catalyst with MY are shown in Fig. 12. No discernible efficiency loss was
seen for the first four cycles, but an abnormal efficiency decline was seen
for the fifth. The acquired results validated the photocatalyst’s
remarkable stability, which is further substantiated by the FTIR spec-
trum (Fig. 13) of the recovered photocatalyst.

3.7. Antibacterial activities

MC and rMC nanocomposites were tested for their antibacterial ac-
tivity against P. aeruginosa bacteria. The antibacterial activity was
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Fig. 13. FTIR spectrum of recycled rMC catalyst

studied with an optimum concentration of the composites (25uL). The
measured ZOI values (Fig. 14) are 13, 18 and 24 mm for the control
(Amikacin), MC and rMC nanocomposites. As shown in Table 2, rMC NC
has superior antibacterial performance when compared with previously
reported rGO nanocomposites.

The MC and rMC composites resisted the bacterial growth effectively
better than the control. The highest ZOI observed for the rGO-MnOy/
CuO nanocomposite confirmed its best potentiality against the tested
bacteria. Metal ion release (Mn2*, Cu?"), reactive oxygen species pro-
duction (H202, OH*, 0% "), and the surface area of the composites were
all cited as contributing to the composites’ antibacterial activity [66].
02*” is one type of ROS that is harmful to numerous cellular compo-
nents like nucleic acid, lipids, proteins, DNA, and carbohydrates [67].
The bacterial cell is extremely sensitive to the severe oxidative effects of
both H30, and OH* radicals. As a result, several crucial biological
functions of the cell are harmed, which may prevent cell division and
growth [68]. According to Kannan et al. [69], lipid peroxidation, DNA
damage, and protein oxidation all cause bacteria to die, but not
nonbacterial cells. Freed metal ions are attracted by the thiol groups
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Fig. 14. Antibacterial activity of control, MC and rMC nanocomposites

Table 2
Comparison on the antibacterial performance of rMC NC with previously re-
ported rGO based nanocomposites

Composite Bacteria ZOI (mm) Reference
rGO-WO3/Cu0 Klebsiella pneumoniae 2 [61]
Palladium-rGO/ZnO Pseudomonas aeruginosa 16 [62]
RGO-Ag/ZnO Escherichia coli 16 [63]
rGO-Sn0,-NiO-CuO Staphylococcus aureus 16 [64]
LayCuOy4/ Ce0y/rGO Escherichia coli 16 [65]
1GO-MnO,/CuO Pseudomonas aeruginosa 24 This work

(-SH) on the outer surface proteins of the cell membrane, which damages
the membrane by denaturement of the proteins [70]. Differences in
antibacterial activity between MC and rMC NCs are due to their size or
ROS generation capacity. More ROS were generated due to the smaller

rGO-Mn0O,/Cu0 Generation of reactive
O oxygen species

3

Chemical Physics Impact 6 (2023) 100246

crystallite size and band gap found for the rMC nanocomposite, leading
to improved antibacterial activity. In addition, the rGO in the MC
composite triggers a chain reaction of biological processes that ulti-
mately kills the bacteria. When bacteria come into touch with rGO, they
frequently experience a loss of cell membrane integrity. Graphene-based
nanoparticles can lower mitochondrial membrane potential, resulting in
increased ROS generation and death through activation of the mito-
chondrial pathway [71]. A graphene-based nanomaterial’s interactions
with genetic material are usually caused by DNA intercalation and
breakage. Therefore, nanoparticles made of graphene interact directly
with certain genes that code for important enzymes and proteins [72].
The antibacterial activity of the rMC nanocomposite is represented in
Fig. 15.

4. Conclusion

NCs of MnOy/CuO and rGO-MnO;CuO were prepared through
chemical precipitation and one-pot green synthesis. Leaf extract from
the plant Alternanthera sessilis was used to transform graphene oxide
made using Hummer’s technique into rGO. Comparison on the struc-
tural, optical, photocatalytic and antibacterial properties of MnO5/CuO
composite with that of rGO-decorated MnO5/CuO composite is very
scarce and this work presented the comparative results obtained. The
rMC composite exhibited smaller crystallites. Within 90 minutes, the MC
and rMC nanocomposites destroyed roughly 87 and 96% of the metanil
yellow dye, respectively. rGO-MnO,/CuO nanocomposite showed
improved antibacterial activity. Thus, MnOy/CuO nanocomposite
incorporated with rGO showed good antimicrobial properties and effi-
ciently degraded toxic metanil yellow dye.
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