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Abstract

A STUDY ON DOMINATION PARAMETERS

OF GRAPHS
By
R. MEKALA

Ph.D Research Scholar (P.T)
P.G and Research Department of Mathematics
Tranquebar Bishop Manickam Lutheran College,
Porayar, Tamil Nadu, India.

Graph theory had witnessed an unprecedented growth in the
twentieth century. A major impetus for this growth has certainly
been the wide applicability of graph theory especially in computer
science and in many areas. Graphs serve as Mathematical mod-
els to analyze successfully many concrete real-world problems. The
Swiss Mathematician Leonard Euler learned of the society’s frustrat-
ing phenomenon of seven bridges of Konigsberg River and in 1736,
he wrote an article about the “Konigsberg Bridge Problem”. Later,
his work is considered by many to be the beginning of the field of
Graph Theory. This field began to blossom in the twentieth cen-

tury as more and more, modelling possibilities were recognized and
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the growth continues. It is interesting to note that specific applica-
tions have increased in number and in scope, the theory itself has
developed beautifully as well. Perhaps Domination Theory is one of
the fastest-growing area of graph theory with variety of domination
parameters and its applications.

In 1958, Berge [5] introduced the concept ‘domination’ and this
inception made drastic change in the field of Graph Theory and Ore
[49] who gave the formal mathematical definition to the topic of domi-
nation in 1962. Cockayne and Hedetniemi [14] published their article
“Towards a theory of domination in graphs” in 1977. This paper
became the point of interest for many researchers to step into domi-
nation. Then many eminent mathematicians have expansively devel-
oped this theory and numbers of domination parameters are formed
by the combination of common property and some specific graph the-
oretic property. Domination has a wide range of applications in radio
stations, modelling social networks, coding theory and nuclear power
plants problems.

Graph colouring and domination are major areas in graph theory.
These concepts also give rise to a number of practical applications

in real life. In recent years, several graph-theoretic parameters that
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combine the concepts of domination and colouring have been inves-
tigated by several graph theorists effectively. One such parameter is
the concept of dom-colouring which was introduced by Janakiraman
and Poobalaranjani [31] in 2012. To find a dominating set having
the same chromatic number as that of the graph, the chromatic pre-
serving set (cp - set) is introduced to serve this purpose. Thus, a
dom-chromatic set is a dominating cp-set. Then Swaminathan and
Joseline Manora [40] introduced the concept “Majority Domination”
with respect to sets with the idea of dominating atleast half of the
vertices of a graph in 2006. They elucidated the parameter in various
levels by establishing many results [41].

The researcher has motivated by these concepts to introduce new
graph theoretical parameter “Majority Dominating Chromatic (MDC)
Set of a graph” and “Majority Dominating Chromatic Number” on
graphs. In this type of domination, the elements of the dominating
set must be a majority dominating set S and the chromatic number of
a graph must equal to the chromatic number of an induced subgraph
(S). This new parameter is also called majority dom-chromatic sef
of G. Thus, majority dom-chromatic sets play a vital role in domina-

tion theory. The relationship among majority domination, cpn — set
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and chromatic number with dom-chromatic sets and the newly de-
fined parameter majority dom-chromatic sets have yet to be closely
studied in the context of domination theory.

This thesis entitled “A Study on Domination Parameters
of Graphs” consists of six chapters. The organization of the thesis
follows the pattern given below.

In the first chapter, the researcher presents the basic definitions
and results on domination theory which are necessary to write this
thesis. Survey of the literature, the motivation and the scope of the
thesis are also mentioned.

In chapter [, the new parameter Majority dom-chromaticset of
a graph has been defined with an example. Then Majority dom-
chromatic number 7,7, (G) is determined for some families of graphs.
The necessary and sufficient condition for a minimal Majority dom-
chromatic number is produced. Also the lower and upper bounds
on Yary(G) is given. In the next section, some results on Majority
dom-chromatic set of a graph are determined and some beautiful
inequalities on vy, (G)) are also investigated. Then vy, (G) for bi-
partite graph is studied and bounds on s, (G) for bipartite graph

is established. Finally algorithm of majority dom-chromatic set, its
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number 7yr, and application of majority dom-chromatic set are dis-
cussed.

Chapter |3 includes the exact values of majority dom-chromatic
number for product graphs such as Grid, Cylinder and Torus are
investigated. Also the parameter values of vy, (G) for Corona, Gen-
eralized Petersen graph P(n, k), rooted product graphs and discon-
nected graphs with p vertices are determined.

In chapter [, majority dom-chromatic partition set of G and its
number dys, of G is defined. The particular value of dys, (G) for some
classes of graphs is found and bounds on majority dom-chromatic
partition number are also discussed. The majority dom-chromatic
partition number djs, for Generalized Peterson graph, friendship
graph and Dutch windmill graphs has been determined. The relation-
ship among d.(G), dy(G), den(G) and dar, (G) has been investigated
in terms of maximum degree of a vertex.

Chapter 5| deals with the effects of the majority dom-chromatic
number when the graph G is modified by removing a vertex. The
classification of Vi) (G), Vy;, (G) and Vy; (G) are defined and char-
acterization theorems on C'V Ry, and UV Ry, are studied. In next

section, the changing and unchanging of vy, (G) due to the dele-
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tion of an edge is investigated. The edge critical classifications of
E3 (G), By, (G) and Ey; (G) are discussed. The characterization
theorems on connected and disconnected graphs are determined for
CERy, and UE Ry, In the last section, the effects of the majority
dom-chromatic number when the graph G is modified by adding an
edge e from the complement of G between any two vertices of a graph
are discussed. Then the classifications namely &3, (G), &y, (G) and
ary (G), for any edge e € E(G°) are investigated for connected as
well as disconnected graphs.

Chapter [0] discusses the definition of the connected majority dom-
chromatic set of a connected and disconnected graphs. The majority
dom-chromatic number ycar, (G) is determined for product graphs
such as Grid and Cylinder. The comparison of yop(G), Yeen(G) and
Yoy (G) is studied. Also some inequalities of year, (G) is established
in terms of diameter of a graph.

Finally, the total summary of the research work in the thesis high-
lighting all new findings developed using the newly coined concept of
majority dom-chromatic set of a graph. Also some references which

are needed to the Thesis are given at the end.



Chapter 1

Prolegomenon

Abstract

This chapter is introductory in nature which unlocks the fundamental
theoretical background of the thesis. This chapter comprises the de-
tails of chronological survey of all literature, basic concepts of graph
theory, domination theory and objectives of the study. The motiva-

tion, scope and organization of the thesis are also given at the end.
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In this chapter, the basic definitions and results are given which

are needed in the subsequent chapters.

1.1 Introduction

Graph theory had witnessed an unprecedented growth in the twen-
tieth century. A major impetus for this growth has certainly been
the wide applicability of graph theory especially in computer science
and in many areas. Graphs serve as Mathematical models to analyse
successfully many concrete real-world problems.

It is interesting to note that specific applications have increased
in number and in scope, the theory itself has developed beautifully
as well. Perhaps Domination Theory is one of the fastest-growing
area of graph theory with variety of domination parameters and its

applications.

1.2 Survey of Literature

In 1892, W. Rouse Ball [52] studied some basic types of problems
on N-Queen problem. In 1958, Claude Berge [5] wrote a book on

graph theory, in which he defined for the first time the concept of the
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domination number. In the year 1962, Oystein Ore [49] published
his book Theory of Graphs on Graph Theory. In this he used for the
first time, the name “Domination Number”.

In 1976, More contributions on the theory of domination was
given by Walikar and Acharya [60] and these results were published
in National Academic Science. This concept survived almost in hi-
bernation until 1975 when Cockayne and Hedetniemi [I4] published
their paper Towards a Theory of Domination in Graphs which ap-
peared in Networks in 1977. This survey paper brought to light new
ideas and potentially of being applied in variety of areas. Some thirty
years later more than 2000 research papers have been published on
this topic, and the number of papers is steadily growing. The re-
searcher is inspired by the explosive growth of this field of study.
He is also motivated by a desire to put some order into this huge
collection of research papers, to organize the study of dominating
sets in graphs into meaningful subareas, and to attempt the place
of the study of dominating sets in even broader mathematical and
algorithmic contexts.

Walikar, Acharya and Sampathkumar are some of the Indian

mathematicians who have made substantial contribution to the study
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of domination theory in graphs. More than fifty types of domination
parameters have been studied by different authors. In 1979, Walikar
et. al. [60] published a technical report as lecturer notes on -MRI.
In 1990, Hedetniemi and Laskar [26] published their Bibliography on
domination wn graphs and some basic definitions of domination pa-
rameters. This book contained about 400 references at that time.
In 1991, the concept was then developed by Carrington, Harary and
Haynes [11] published an article on “Changing and Unchanging the
domination number of a graph G”. Further in 1991, ElZahar and
Pareck [I7], determined domination number of Cartesian Products
of graphs. In 1995, [9] Broere, Hattingh, Henning and Mcrae in-
troduced the concept of majority dominating function in graphs and
gave a detailed account of results in the book Domination in Graphs:
Advanced Topics (chapter 4, 91-104). Towards the end of 1998,
Haynes, Hedetniemi and Slater [24] brought out a comprehensive two
volumes of text book - Fundamentals of Domination in Graphs and
Domination in Graphs: Advance Topics which contain more than
1200 bibliographical entries. Within last 25 years many researchers
worked in this domination field at different aspects and produced so

many results with new types of domination parameters.
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The idea of dominating half of the vertex set is a crucial one
and it gives the inspiration for defining majority dominating sets
instead of functions. In 2006, Swaminathan and Joseline Manora
[40] introduced the new parameter “Majority Dominating Sets of a
Graph” in domination theory. Further in 2011, this concept was
further developed into many area of domination. In 2011, [41] many
results on majority dominating sets are introduced in research paper
and in 2011 [39], they studied various parameters in this area such as
majority domatic number [37], vertex and edge critical graphs [38],39]
on majority domination number.

Graph colouring and domination are major areas in graph theory.
These concepts also give rise to a number of practical applications
in real life. In recent years, several graph-theoretic parameters that
combine the concepts of domination and colouring have been inves-
tigated by several graph theorists effectively. One such parameter is
the concept of dom-colouring which was introduced by [31] Janaki-
raman and Poobalaranjani in 2010. To find a dominating set having
the same chromatic number as that of the graph, the chromatic pre-
serving set (cp - set) is introduced to serve this purpose. Thus, a

dom-chromatic set is a dominating cp-set.
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1.3 Preliminaries on Graph Theory

Definition 1.3.1. A graph is a finite non-empty set of objects called
vertices together with a set of unordered pairs of distinct vertices of
(G, called edges. The vertex set and the edge set of G' are respectively
denoted by V(G) and E(G).

If e = {u,v} is an edge, we write e = uv and we say e joins the
vertices u and v; u and v are adjacent vertices; u and v are incident
with e. If two vertices are not joined by an edge, then we say that

they are non-adjacent.

Definition 1.3.2. The number of elements in the vertex set of a
graph is called the order of G and is denoted by n. The number
of elements in the edge set of a graph is called the size of G and is
denoted by m. A graph with n vertices and m edges is called as (n,

m )-graph. The (1, 0)-graph is called as trivial graph.

Definition 1.3.3. A graph H is called a subgraph of a graph G if
V(H) CV(G) and E(H) C E(G). A spanning subgraph of G is
a subgraph H with V(H) = V(G). For any set S of vertices of G, the
induced subgraph (S) is the maximal subgraph of G with vertex

set S.



Ch. 1: Prolegomenon 7

Definition 1.3.4. If G is a graph with the vertex v then G — v is
the induced subgraph (V(G) — v) of G and obtained from G by
removing v and the edges incident with v. If e € E(G),G — e is the
spanning subgraph with edge set E(G) — {e} and it is obtained from

G by removing the edge e from G.

Definition 1.3.5. The degree of a vertex v in a graph G is the
number of edges of G incident with v and is denoted by deg(v) or
d(v). The maximum and the minimum degrees of the vertices of G
are respectively denoted by A(G) and 6(G). A vertex of degree 0
in G is called an isolated vertex, and a vertex of degree 1 is called a
pendant vertex or an end vertex of G. Any vertex adjacent to a

pendent vertex is called a support.

Definition 1.3.6. A graph G is said to be regular graph of degree
r if every vertex of G has degree r Such graphs are called r-regular

graphs. A 3-regular graph is called a cubic graph.

Definition 1.3.7. A graph G is Complete if every pair of its ver-
tices are adjacent. A complete graph on p vertices is denoted by K.

A clique of a graph is a maximal complete subgraph.
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Definition 1.3.8. A bipartite graph is a graph G whose vertex
set V(G) can be partitioned into two subsets Vi and V5 such that
every edge in G has one end vertex in Vi and the other end vertex
in V4. The vertex set (Vi,V3) is called a bipartition of G. Further, if
every vertex of Vi is adjacent to every vertex of V5 then G is called
a complete bipartite graph. The complete bipartite graph with
bipartition (Vi,Vs) such that |Vi| = r and |V3| = s is denoted by
K, ;. The graph K, is called a star. When r > 2 the vertices of
degree 1 of a star are called claws of the star and the vertex of degree

(p — 1) is called the centre of the star.

Definition 1.3.9. A double star is a graph obtained by taking two
stars and joining the vertices of maximum degrees with an edge. It

is denoted by D, .

Definition 1.3.10. A graph G is said to be connected if any two
distinct vertices of G are joined by a path. A maximal connected
subgraph of G is called a component of G. Thus, a disconnected

graph has at least two components.
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Definition 1.3.11. A subdivision of an edge uv of a graph G is
obtained by introducing a new vertex w and replacing the edge uv
with edges uw and wv. The graph obtained from G by subdivid-
ing each edge of G exactly once is called the subdivision graph (or

subdivision) of G and is denoted by S(G).

Definition 1.3.12. The distance between two vertices u and v in a
graph G is the length of a shortest w — v path in G. It is denoted by
d(u,v). The diameter of a connected graph G is the length of any

longest geodesic. The diameter of G is denoted by diam/(G).

Definition 1.3.13. For any real number x, [x] denotes the smallest
integer greater than or equal to x and | x| denotes the largest integer

less than or equal to .

Definition 1.3.14. Let G; = (V4, Ey) and Gy = (Va, Ey) be any two
graphs. Then their union G| U G5 is the graph whose vertex set is

Vi UV, and edge set is Fy U Ej.

Definition 1.3.15. An open neighbourhood N (v) of a vertex v
in a graph G is the set of all vertices adjacent to v in G. The closed

neighbourhood N [v] of v is the set N(v) U {v}.
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Definition 1.3.16. The open neighbourhood N (S) of a set S
of vertices is the set of all vertices adjacent to the vertices in S. The
closed neighbourhood N[S] of S is the set N(S)U S. Ifx € S,

a private neighbour of x with respect to S is a vertex v such that

v € N[z] — N[S — {z}].

Definition 1.3.17. For S C V, a vertex v € S is called an enclave

of S if N[v] C 8S.

Definition 1.3.18. A subset S of V(G) is said to be a dominating
set of GG if every vertex in V — S is adjacent to at least one vertex in
S. A dominating set is called minimal dominating set if no proper
subset of S is a dominating set. The minimum cardinality of the
minimal dominating set of G is called the domination number
of G, denoted by v(G) and I'(G) denotes the maximum cardinality
of a minimal dominating set of G and I'(G) is called the upper

domination number of .

Theorem 1.3.19. A dominating set S of a graph G is minimal if
and only if for every u € S one of the following conditions holds. (i)

N(u)NS=¢ (ii) There is a vertex v € V—S such that N(v)NS={u}.
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Theorem 1.3.20. Every connected graph G of order n > 2 has a

dominating set S whose complement V' — S is also a dominating set.

Theorem 1.3.21. If GG is a graph with no isolated vertices then the
complement V — S of every minimal dominating set S is a dominating

set.

Definition 1.3.22. A domatic partition (d-partition) of a graph
G is a partition of V(G) into dominating sets. The maximum cardi-
nality of a partition V (G) into dominating sets is called the domatic

number and is denoted by d(G).

Definition 1.3.23. A dominating set S is said to be a connected
dominating set if the subgraph (S) induced by S is connected in
GG. A connected dominating set S is minimal if no proper subset
of S is a connected dominating set. The minimum cardinality of
the minimal connected dominating set of G is called the connected

domination number, denoted by vc(G).

Definition 1.3.24. A graph G is said to be a CVR- graph if v(G —
v) # v(G), for every v € V(G) and graph G is said to be a UVR-

graph if v(G — v) = v(G), for every v € V(G)
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Definition 1.3.25. A graph G is said to be a CER- graph if (G —
e) # v(G), for every e € E(G) and the graph G is said to be a UER-

graph if v(G — e) = v(G), for every e € E(G).

Definition 1.3.26. A graph G is said to be a CEA- graph if (G +
e) # v(G), for every e € E(G) and the graph G is said to be a UEA-

graph if v(G + e) = y(G), for every e € E(Q).

Definition 1.3.27. A subset S of V(G) is said to be a majority
dominating set if at least half of the vertices of V(G) are either
in S or adjacent to elements of S i.e. |N|[S]| > [@] A majority
dominating set S is minimal if no proper subset of S is a major-
ity dominating set. The minimum cardinality of a minimal majority
dominating set is called majority domination number and de-

noted by vy (G).

Definition 1.3.28. A majority domatic partition of a graph G
is a partition of the vertex set V(G) into majority dominating sets of
GG. The maximum number of sets of majority domatic partition of G

is called the majority domatic number of GG, denoted by dy(G).
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Definition 1.3.29. A subset S C V(G) is a connected majority
dominating(CMD) set if S is a majority dominating set and the
induced subgraph (S) is connected in G. The minimum cardinality
of the minimal connected majority dominating set S of G is called

the connected majority domination number and denoted by

Yom (G).

Definition 1.3.30. Let G be any graph with p vertices and let u €
V(G). Then u is said to be Majority Dominating (MD) vertex

if d(u) > [2] - 1.

Definition 1.3.31. A vertex v of a graph G is said to be a full
degree vertex or a dominating vertex if it is adjacent to all

other vertices in G. i.e., d(v) =p— 1.

Definition 1.3.32. A graph G is said to be a C'V Ry;- graph if
Y (G —v) # v (G), for every v € V(G) and the graph G is said to

be a UV Rpy- graph if vy/(G — v) # yu(G), for every v € V(G).

Definition 1.3.33. A graph G is said to be a CERy;- graph if
(G —e) # ~(Q), for every e € E(G) and the graph G is said to be

a UER;- graph if v(G — e) = v(G), for every e € E(G).
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Definition 1.3.34. The chromatic number x(G) is the minimum
k such that G is k-colourable. If x(G) = k then G is said to be
k-chromatic. If x(G) = k, but x(G) < k for every proper subgraph

H of G then G is said to be a k- critical graph.

Definition 1.3.35. A graph G is said to be vertex-color-critical
graph or x — critical if x(G —v) < x(G), for every v € V(G) and
called edge-critical if x(G —e) < x(G), for every e € E(G). A
graph is called color-critical graph if which each vertex and edge

are critical.

Definition 1.3.36. A set S € V(G) is said to be a chromatic
preserving set or a cp-set if x((S)) = x(G) and the minimum
cardinality of a cp-set in G is called the chromatic preserving
number or cp-number of G and is denoted by cpn(G). A cp-set of

cardinality cpn(G) called cpn-set.

Definition 1.3.37. A subset S of V(G) is said to be a dom-chromatic
set or dc-set if S is a dominating set and x((S)) = x(G). The
minimum cardinality of a dom-chromatic set in a graph G is called

the dom-chromatic number or dc-number of G' and is denoted by

vh(G) or v, (G).
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Definition 1.3.38. A dom-chromatic partition of a graph G is
a partition of V(G) into dom-chromatic sets. The maximum cardi-
nality of a partition of V(G) into dom-chromatic sets is the dom-

chromatic partition number and denoted by d.,(G).

Definition 1.3.39. A dom-chromatic set S is said to be connected
dom-chromatic set if the induced subgraph (S) is connected. The
minimum cardinality of a connected dom-chromatic set S is called

connected dom-chromatic number and is denoted by e (G) or

Vex (G)-

Definition 1.3.40. A graph G is said to be a CV R, graph if
Yeh (G — V) # Yen(G), for every v € V(G) and the graph G is said to

be a UV Ry~ graph if v.,(G — v) = v.,(G), for every v € V(G).

Definition 1.3.41. A graph G is said to be a CER., graph if
Yen (G — €) # ven(G), for every e € E(G) and the graph G is said to

be a UE R, graph if v,4,(G — e) = v,(G), for every e € E(G).

Definition 1.3.42. A graph G is said to be a CEA., graph if
Ve (G + €) # ven(G), for every e € E(G) and the graph G is said to

be a UE A.p, graph if v.,(G + €) = v.,(G), for every e € E(G).
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Results 1.3.43: (i) For G = K1 ,-1, D, 5, Wy, F,7m(G) = 1.

(ii) For any path G = P, and any cycle C,, vi(G) = [£].

(iii) Let G be a cycle with p vertices. a) Then v.,(G) = p,
(

—(p;:g), if p = 0(mod3)

b) Yen(G) = 4 @%2), if p = 1(mod3)

_@;4)7 if p = 2(mod3)
L

(iv) For a path G = P, v.(G) =p — 2.

(v) For a Cycle G = C),
2, if p is even
X(G) =
3, if pis odd

(vi) For a G be a Wheel graph. Then

3, if pis odd
X(G) =

4, if p is even

(vii) Let G be a tree of diameter 3. Then v, (G) = p — A(G).

1.4 Motivation and Scope of the Thesis

4 In 2006, Swaminathan and Joseline Manora [4()] introduced the

concept “Majority Domination” with respect to sets with the
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idea of dominating atleast half of the vertices of a graph. Fur-
ther, the concept of dom-colouring which was introduced by
Janakiraman and Poobalaranjani in 2010 [31] finding a dom-
inating set having the same chromatic number as that of the
graph, the chromatic preserving set (cp - set).The researcher
has motivated by these concepts to introduce new graph theo-

retical parameter “Majority Dom-Chromatic Sets in Graphs”.

4 In 1997, Cockayne and Hedetneimi [I4] introduced “Domatic
Number of a Graph” and the same concept was extended to ma-
jority domatic number of a graph by Swaminathan and Joseline
Manora [37] in 2010. Then dom-chromatic partition number is
studied by Janakiraman and Poobalaranjani in [31] 2012. The
researcher has discussed this idea to Majority dom-chromatic

partition number of a graph to some extent.

X In 1982, Harary [21] introduced and suggested the changing and
unchanging dominating invariants for graphs. This concept
was extended to majority dominating sets by Swaminathan

and Joseline Manora in [38, [39] 2011 and 2013. They stud-

ied and produced many results in critical vertex and critical
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edge with respect to majority domination number of a graph G.
Changing and unchanging properties of Dom-chromatic prop-
erties due to vertex deletion, edge deletion from G and edge
addition was introduced by Janakiraman, Poobalaranjani [31]
in 2012. With the help of these articles, the researcher has
extended to find Changing and unchanging properties of Ma-
jority Dom-chromatic number of a graph G when removal of a

single vertex, an edge deletion from a graph and edge addition

to E(G) from the complement E(G°).

¢ In 1979, the concept “Connected Domination Number in Graphs”
was introduced by Sampathkumar and Walikar [53] and they
produced many interesting results in their article. In 2012, the
parameter “connected dom-chromatic number” was studied by
Janakiraman and Poobalaranjani. In 2017, Joseline Manora
and Muthukani Vairavel [34] introduced “Connected majority
dominating set of a graph”. Further the researcher has defined
Connected majority dom-chromatic set and Connected major-
ity dom-chromatic number yoa, (G). Using this parameter,
many theorems and bounds on yeoar, (G) are established in this

research work.
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Y4 The relationship among majority domination, cpn-set and chro-
matic number with dom-chromatic sets and the newly defined
parameter majority dom-chromatic sets have yet to be closely

studied in the context of domination theory.

1.5 Objectives of The Thesis

X To introduce a new parameter majority dom-chromatic set (MDC-
set) in a graph and majority dom-chromatic number ~;/, of a

graph.

Y To obtain the lower and upper bounds of majority dom-chromatic

number of a graph in terms of order and size of a graph G.

Y To determine some inequalities on 77, (G) and the 7/, for

complement of G.

"I To find the existence of a MDC set in the case of disconnected

graphs.

Y4 To find the exact values of majority dom-chromatic number for
some families of graphs, product graphs, rooted product graphs

and some special graph structures.
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4 To study the necessary and sufficient for a minimal MDC set

of a graph G.

"4 To define another parameter majority dom-chromatic partition

set and its number dys, (G) of a graph G.

¥4 To establish the bounds of dy(G) and the exact values of

dary (G) for various classes of graphs.

"4 To investigate the changing and unchanging properties of the
removal of a single vertex from the graph G with respect to

majority dom-chromatic number of G.

" To study the effects of a single edge deletion in G with respect

to majority dom-chromatic number ~,, of a graph G.

Y To investigate the changes in the value of majority dom-chromatic

number when adding an edge from the complement of G.

Y4 To find another parameter connected majority dom-chromatic

set and its number voar, (G) of a graph G.

4 To establish an Algorithm for a majority dom-chromatic set

and majority dom-chromatic number ~,, of a given graph G.
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1.6 Organisation of the Thesis

This thesis entitled “A Study on Domination Parameters of
Graphs” consists of six chapters. The organisation of the thesis

follows the pattern given below.

1. Prolegomenon.

2. Majority Dom-Chromatic Set of a Graph.

3. Majority Dom-Chromatic Set of Special Graph Struc-
tures.

4. Majority Dom-Chromatic Partition Number of Graphs.

5. Changing and Unchanging Properties of Majority Dom-

Chromatic Number.

6. Connected Majority Dom-Chromatic Set of a Graph.

Conclusion.

In the first chapter, the researcher presents the basic definitions
and results on domination theory which are necessary to write this
thesis. Survey of the literature, the motivation and the scope of the

thesis are also mentioned.
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In chapter [2, the new parameter Majority dom-chromatic set of
a graph has been defined with an example. Then Majority dom-
chromatic number 7y, (G) is determined for some families of graphs.
The necessary and sufficient condition for a minimal Majority dom-
chromatic number is produced. Also the lower and upper bounds
on Y (G) are given. The content of this section is published in
“Bulletin of Pure and Applied Sciences”.

In the next section, some results on Majority dom-chromatic
set of a graph are determined and some beautiful inequalities on
Yy (G) are also investigated. This work is published in “Turkish
World Mathematical Society Journal of Applied and Engi-
neering Mathematics” (Indexed in SCOPUS). Then v, (G)
for bipartite graph are studied and bounds on vy, (G) for bipartite
graph is established. The content of this section is communicated in
“International Journal on Soft Computing”.

Chapter |3 includes the exact values of majority dom-chromatic
number for product graphs such as Grid, Cylinder and Torus. Also
the particular values of 7y, (G) for Corona, Generalized Petersen
graph P(n, k), rooted product graphs and disconnected graphs with
p vertices are determined. This work is communicated to “Journal

of Graph Theory”.
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In chapter [, majority dom-chromatic partition set of G and its
number dys, of G is defined. The particular value of dys, (G) for some
classes of graphs is found and bounds on majority dom-chromatic
partition number are also discussed. The majority dom-chromatic
partition number dj, for Generalized Petersen graph, friendship
graph and Dutch windmill graphs has been determined. The relation-
ship among d¢(G), dy(G), den(G) and dar, (G) has been investigated
in terms of maximum degree of a vertex. This work is published in
“Malaya Journal of Matematik”.

Chapter 5| deals with the effects of the majority dom-chromatic
number when the graph G is modified by removing a vertex. The
classification of Vi) (G), Vy;, (G) and Vy; (G) are defined and char-
acterization theorems on CV Ry, and UV Ry, are studied. This
content is published in “Advances and Applications in Math-
ematical Sciences” (Indexed in WEB of Science). In next
section, the changing and unchanging of vy, (G) due to the dele-
tion of an edge is determined. The edge critical classifications of
E3 (G), By, (G) and Ey; (G) are discussed. The characterization
theorems on connected and disconnected graphs are determined for

CERy, and UER)s,. This work is published in “International
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Journal of Recent Scientific Research”. In the last section, the
effects of the majority dom-chromatic number when the graph G is
modified by adding an edge e from the complement of G between any
two non-adjacent vertices of a graph are discussed. Then the classifi-
cations namely &5, (G), &y, (G) and &y, (G), for any edge e € E(G°)
are investigated for connected as well as disconnected graphs. This
concept is accepted in “Communications in Mathematics and
Applications”.

Chapter [0] discusses the definition of the connected majority dom-
chromatic set of a connected and disconnected graphs. The majority
dom-chromatic number ycary (G) is determined for product graphs
such as Grid, Cylinder and Torus. The comparison of the parame-
ters You (G), Yeen(G) and youry (G) are studied. Also some inequali-
ties of youry (G) are established in terms of diameter of a graph. This
concept is published in “Advances and Applications in Mathe-
matical Sciences” (Indexed in WEB of Science).

Finally, the total summary of the research work in the thesis high-
lighting all new findings developed using the newly coined concept of

majority dom-chromatic set of a graph.



Chapter 2

Majority Dom-Chromatic

Set of a Graph

Abstract

This chapter introduces a new notion majority dom-chromatic set
(MDC-set) of a graph G. For a graph G, the majority dom-chromatic
number yas, (G) is investigated for some families of graphs. Bounds
on Yary (G) and its relationship with other graph theoretic parameters
are studied. Some inequalities on majority dom-chromatic sets of a
connected and disconnected graph G are determined. Also charac-
terization theorems on vy, (G) and majority dom-chromatic number

for the complement of a bipartite graphs are investigated.

The contents of this chapter are published in

1. Bulletin of Pure and Applied Sciences, Vol. 38E (Math & Stat.), No.1, 289-296
(2019), ISSN 0970 6577.

2. Turkish World Mathematical Journal of Applied and Engineering Mathematics,
Vol. 11, Special Issue (2021), 30-41, ISSN 2146-1147.

25
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2.1 Introduction

In 2006, Swaminathan and Joseline Manora [40] introduced the
concept “Majority Domination” with respect to sets with the idea of
dominating atleast half of the vertices of a graph. They elucidated
the parameter in various levels by establishing many results. They
produced the exact values of v,,(G) for some classes of graphs. Also
they developed some inequalities for v,,(G) and interesting results
on it.

Graph coloring and domination are major areas in graph the-
ory. These concepts also give rise to a number of practical applica-
tions in real life. In recent years, several graph-theoretic parameters
that combine the concepts of domination and coloring have been
investigated by several graph theorists effectively. One such param-
eter is the concept of dom-coloring which was introduced by [31]
Janakiraman and Poobalaranjani. To find a dominating set having
the same chromatic number as that of the graph, the chromatic pre-
serving set (cp - set) is introduced to serve this purpose. Thus, a dom-
chromatic set is a dominating cp-set. Its number 7.,(G) was defined

and the exact values for various classes of graphs are determined.
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They established bounds of 7. (G) and more results on ~.,(G) for
connected and disconnected graphs.

These two parameters v,,(G) and .4, (G) gave the motivation to
introduce new graph theoretical parameter “Majority Dominating
Chromatic (MDC) Set of a graph” and “Majority Dominating Chro-
matic Number” on graphs. In this type of domination, the elements
of the dominating set must be a majority dominating set S and the
chromatic number of a graph must equal to the chromatic number of
an induced subgraph S of G. This parameter is also called majority
dom-chromatic set of G. Thus, majority dom-chromatic sets play a
vital role in domination theory.

Organization of this chapter is as follows. The introduction is
given in section [2.1] and it contains the motivation of defining the pa-
rameter majority dom-chromatic number in graphs. In section [2.2]
the concept of majority dom-chromatic set of a graph G and its num-
ber var, (G) are defined with examples. The exact values of v/, (G)
for various families of graphs are determined in section 2.3} In the
subsequent section [2.4] and section [2.5, characterization theorems,
bounds on vy, (G) and some inequalities on majority dom-chromatic

set of connected and disconnected graphs are obtained. The relation-
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ship of yar, (G) with other domination parameters v/ (G), ver(G) and
(@) is studied in section with an example. In section and
section 2.8] results on 7, (G) for the complement of graph G, con-
nected bipartite and disconnected bipartite graphs. In section [2.9]
bounds on v, (G) for both connected and disconnected bipartite
graphs are investigated with regard to diam(G) and A(G). Finally
in section [2.10] algorithm for a MDC — set and its number vy, (G)

are given and real life application for this parameter is also given.

2.2 Majority Dom-Chromatic Set

of a Graph

In this section, majority dom-chromatic set of a graph G, minimal
majority dom-chromatic set and its number are defined. An example

tllustrating these definitions are also given.

Definition 2.2.1: A subset S of V(G) is said to be Majority Dom-
inating Chromatic Set (MDC- set) if (i) S is a majority dominating
set of G and (ii) the induced subgraph of (S) satisfies x((5)) = x(G).
It is also called majority dom-chromatic set of G. The majority dom-
chromatic set S is minimal if no proper subset S’ of S such that S’

is majority dom-chromatic set of G.
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Definition 2.2.2: The minimum cardinality of a minimal majority
dom-chromatic set of GG is called a majority dom-chromatic number

and is denoted by vy (q)-

Example 2.2.3: Consider the following graph with p = 11 vertices.

Y%

Figure 2.1: G
The chromatic number of G in Fig. (2.1) is x(G) = 3 and v, (G) = 7.

(i) The sets S; = {v1, vy, v5, v, 07, U8}, S9 = {v4, v, v, v7, vg} and
Sy = {wy,vs,v6, 07,058,011} are majority dom-chromatic sets
where as D = {vs,v11} is a majority dominating set of G.

Therefore v/ (G) = 2.

(ii)) The set Sy = {vy, vs, v, v7,v8} is the minimal majority dom-

chromatic set of G. Hence vy, (G) = |S2| = 5.
Observation 2.2.4: (i) Since V(G) is the majority dominating
set and x((V(G))) = x(G), majority dom-chromatic set exists

for all graphs.
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(ii) For a vertex x-critical (vertex color critical) graph, the vertex
set V(@) itself is the only majority dom-chromatic set for G.

For example, C), p is odd and K, are vertex color critical graphs.

Proposition 2.2.5: For any graph G, v, (G) < v (G).

Proof: Since all the dom-chromatic sets of a graph G are majority

dom-chromatic sets of G, var, (G) < Yen(G). ]

Proposition 2.2.6: For any graph G, yy(G) < vary (G).

Proof: Since every MDC set of G is a majority dominating set of

G,y (G) < 7y (G)- .
Corollary 2.2.7: For any graph G,v(G) < 1nMx(G) < v, (G).
Example 2.2.8: (i) For the graph G in Fig (2.1), v (G) = 5,

Yen(G) = 7 and vy (G) = 2. Hence, vy(G) < vy (G) <

Yen(G)-

(ii) For a star G = Kj p—1,7uy(G) = Yer(G) = 2 and v (G) = L.

Hence, 7 (G) < 7y (G) < ven(G).
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Theorem 2.2.9: For any graph G with an isolate, there exists a

Y- set of G not containing that isolate.

Proof: Let v be an isolate of G. If S is a vy~ set of G' containing
v then [N[S]| > 2] and v((S)) = x(G).

Case (i): If [N[S]] > [2] then [N[S — {v}]| = [£] and x((S — v)) =
X(G). It implies that S — {v} is a vy~ set. Hence S — {v} = 5" is a
Y- set of G without an isolate v.

Case (ii): If [N[S]| = [§] then |[N[S — {v}]| < [§] —1 and v ¢
N[S]. Now, if [N[S — {v}] U {vi}| > [§], for any v; € V(G) then
S = S v} Ufu}. Also, v((S) = x((S) and |S'] = |S] = a1, (G).

Hence S’ is a vy~ set of G without an isolate v. |

2.3 Majority Dom-Chromatic Number of
Some Standard Graphs

In this section, the exact value of the majority dom-chromatic number

Yy (G) is determined for some classes of graphs.

2.3.1 Results on vy x(G)

(i) Let G = mKy,m > 1 with p = 2m. Then v, (G) = [{ﬂ +

Lp=>2.
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(ii) Let G = K, be a totally disconnected graph of p vertices. Then

Ty (Kp) = Pﬁf‘ :
(iii) For the Petersen graph P(10,15), yary(P) = 5.
(iv) For a double star graph, D, s, vary(G) = 2, if r < s.
(v) Let G be a caterpillar in which exactly one pendant at each

vertex

2] +1,if p = 0,5,6, 7(mod 8)
Yy (G) =
(g‘ 71fp = 17273;4(m0d 8)

Proposition 2.3.2: (i) Let G = K,,p > 1 be a complete graph.

Then var, (G) = p.

(ii) Let G = Kj,-1 be a star. Then v, (G) = 2.

Proof: (i) Since G = K, is color critical, By observation (2.2.4)(ii),
the vertex set V(G) = {v1,v2,v3,...,v,} is the MDC set of G. Hence
(@) = [V(G)| = p.

(ii) For a star G = Kj,_1,x(G) = 2. The set S = {v1,v2}, where
d(v1) = p—1 and d(vi,v2) = 1 is the subset of G. Since [N[S]| > [£]

and x((S)) = x(G), S is the MDC set of G and vy, (G) = [S| =2. =



Ch. 2: Majority Dom-Chromatic Set of a Graph 33

Proposition 2.3.3: Let G = C), be a cycle of p vertices, p > 3. Then

)
5], if p = 2(mod 6)
Miy(G) =4 [2] +1, if p = 0,4(mod 6)
D, if p is odd.
\
Proof: Let {v1,v9,v3,---,v,} beaset of vertices of C,, and d(v;) = 2,

for all v; € V(G). By the result ((1.3.43)) (v)

2, if p is even (2.1)

X(Cp) = o
3, if p is odd.

Case: (i) When p = 2(mod 6). Since C, is even, x(G) = 2. Let
S = {v1,v9,v5, -+ , vy, (@} be a majority dom-chromatic set of G
such that d(vi,v2) = 1 and d(v;,vj) = 3,0 ¢ J, 0,7 = 2,5, , Yy (G)
and v;,v; € S. So that the induced sub graph (S) contains Kj or
Ky UtKy,t > 0. Then [N[S]| > [£], where |S| = 7 (G). By
and since y(K3) = 2, x((5)) = x(G).

Then |N[S]| < gd(vi) + Yy (G) = 1 < 3y (G) — 1, and
(5] < IN[S]| < 3y (G) — 1. Implies that yar (G) > 5 ([5] +1).

If p= 6r + 2 then 1 ([g] + 1) = %({%] + 1) = (%1. Therefore,

w

T (G) = {%W :
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Suppose the set S = {vy,vs,---, v} C V(G) with d(v;,v;) =
3,1 ¢ j and exactly one pair d(vi,v2) = 1 and |[S] = [t| = [£].

Then |[N[S]| = 3[¢] —2 =3[%2] —2 =3 (%2) +1 > [L]. Since

d(vi,v9) = 1, the induced subgraph (S) contains Ks. It implies that

X((S)) = 2 = x(G). Hence, the set S is a majority dom-chromatic

set of G. Thus, 711, (G) < |S| = [£]. Combine the results, we obtain

the result.

Case: (ii) Let p = 0,4(mod 6).

Let S = {v1,v9,v5,...,vy, (@} be a majority dom-chromatic set

of G with the same properties as in case (i). Now, since (§) =
ix(G)

2(mod 3),|N[S]] < Z:z:l d(vi) + Yy (G) — 4 < 3y, (G) — 4 and

2] < [NIS) < 3y, (G) — 4. Tt inuplies that 7y (G) > & (2] +4).

If p=6r then 3 ([$] +4) = (84 2) = [5]+1 and if p = 6r+4 then

5 ([%547 +4). Therefore, yar, (G) > [E] + 1. Applying the same

argument as in case (i), we obtain, yas,(G) < [£]| + 1. Combining

these results, v, (G) = [£] + 1, if p = 0,4(mod 6).

Case: (iii) When pis odd. Then by the result (1.3.43)(v), x(C,) = 3.

By observation ([2.2.4))(ii), C, is vertex x - critical graph, and the

vertex set V(G) is the majority dom-chromatic set of G. Hence

Yy (G) = |V(G)| = p, if p is odd. -



Ch. 2: Majority Dom-Chromatic Set of a Graph 39

Corollary 2.3.4: Let GG be a path on p vertices. Then its majority
dom-chromatic number is
(2], if p=1,2(mod 6)

(2] +1, if p=0,3,4,5(mod 6).

Proof: Applying the same arguments as in proposition (2.3.3), we

obtain the result. [

Proposition 2.3.5: For a complete bipartite graph G = K,,,,

’}/MX(G) = 2.

Proof: Let G = K,,,. Then vy (G) = 1. Since x(G) = 2,5 =
{uy,v1} is a majority dominating chromatic set of G such that u; € Vj

and v; € V5 and x((S)) = x(G). Therefore, 1, (G) = 2. |

Proposition 2.3.6: Let G = W, = C,_1 V K be a wheel graph with

p vertices, p > 5. Then
3,if p is odd

T (Wp) = o
p,if p is even.

Proof: Let G =W, = C,_1VK;. From the results in ([1.3.43)(i),(vi),

3,if p is odd

Y (Wp) =1 and x(W,) = S
4,if p is even.
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When (p—1) is odd, C,_; is vertex color critical graph, the vertex
set V(Cp-1) is majority dom-chromatic set for the graph. When
(p — 1) is even, two colors are enough to C,_;. Therefore,

3, if (p —1) is even
p, if (p — 1) is odd.

TMx(G) =

Then for a graph G = W,,, we obtain the required result. |

Proposition 2.3.7: For a Fan graph with p vertices, vas (F,) =

3, p=>3.

Proof: Let F,=PF, ;V K;. Since G = F}, has a full degree vertex and

G contains triangles, 7y/(G)=1 and x(G)=3. Hence, 711, (G) = 3. n

2.4 Characterization Theorems and

Bounds on s, (G)

In this section, the characterization of a minimal majority dom-

chromatic set of a graph G and bounds on vy, (G) are discussed.

Theorem 2.4.1: Let G(p, q) be any graph. A majority dom-chromatic
set S of G is minimal if and only if for each u € S, one of the following

conditions holds.
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() X({S — fu})) < x(G)

(ii) S —{u} is not a majority dominating set of G.
Proof: Let S be a minimal majority dom-chromatic set for G. Then
G is a majority dominating set and x((S)) = x(G). To prove that for
each u € 9, either (i) or (ii) holds. Suppose x((S — {u})) = x(G).
Then for any v € S, (S — {u}) is a majority dom-chromatic set of
(G, which is a contradiction to S is minimal. Therefore condition
(i) holds. Suppose for any vertex u € S, (S — {u}) is a majority
dominating set of G. Then the induced subgraph (S — {u}) such
that x((S — {u})) = x(G), it is a contradiction to the assumption.
Hence condition (ii) holds.

Conversely, suppose that S is not a minimal majority dom-chromatic
set, then there exists a vertex u € S such that (S — {u}) is a major-
ity dom-chromatic set of G. It implies that, (S — {u}) is a majority
dominating set and x((S — {u})) = x(G), for any vertex u € S5,
which is a contradiction to the conditions (i) and (ii). Hence the
result. _
Proposition 2.4.2: A graph G is vertex color critical with order p

if and only if v, (G) = p.
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Proof: Since every 7~ set is a ya- set of G,y (G) > v (G)
and since any majority dom-chromatic set of G contains atleast one
vertex from each color class vy, (G) > x(G). Thus, the lower bound
follows. For a color critical graph, V(&) is the only MDC set of G
and hence vy (G) < p. The lower bound is sharp for G = K, or

G = l_(p and the upper bound attains for G = C),, when p is odd. =

Proposition 2.4.3: Let G be any graph with p vertices. Then

Yy (G) = 1 if and only if G = K; or K.

Proof: Assume that 7y,,(G) = 1. Then by proposition ((2.4.2),
max{x(G),ym(G)} < vy (G) = 1. It implies that vy (G) = 1
and y(G) = 1. Then there is no edge in G. Hence G = K,,
which is totally disconnected graph. But by the result in (?77?)(ii),
Yary (Kp) = [£]. So, when p = 2,7y (K2) = 1. Tt implies that

G = K5 or Ki. The converse is obvious. ]

Proposition 2.4.4: Let G be any graph of order p. Then v, (G) =

p if and only if G is vertex color critical.

Proof: Assume that G is a vertex colorcritical graph. Then x(G—v)

< x(G), for any v € V(G). It implies that x(G) = p and x(G —
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v) = p— 1. Then vy (G) > 1. Since vy (G) > 1 and x(G) = p,
the set S = {v1,v9,...,v,} is the majority dom-chromatic set of
G with |S| = p. Thus yux(G) < |S| = p. By the proposition
(2.4.2), v (G) > max{yu(G), x(G)}. Then vyx(G) > p. Hence
1 x(G) = p.

Conversely, the graph G on p vertices with vy x(G) = p. It
means that x(G) = p and vy (G) > 1. Hence S = {v,v9,...,v,} is
a majority dom-chromatic set for G and |S| = p. Hence, x({S() =
p = X(G). It is clear that the graph G is either K, or an odd cycle.
Claim: x(G —v) < x(G), for any v € V(G).

Suppose that G; = K, or Gy = C), p is odd. Then by the propo-
sition (2.3.2)(i), we would have vy x(G1) = p and by proposition
(2.3.3), Ymry(G2) = p,p is odd. It follows easily that x(G1) = p and
X(G2) = 3,pis odd. For a subgraph H = (G; —v),x((H)) =p—1<
X(G1). It shows that G; = K, is vertex color critical graph.

Consider now H = (G5 — v), the induced subgraph (H) is a
path and its chromatic number x((H) = 2 < x(Gs2). It implies that
G2 = C), p is odd, is vertex color critical. As a result we obtain G is

a vertex color critical graph. |
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The following theorem gives the characterization of var(G) =

p — q, where G 1is any graph with p vertices and q edges.

Theorem 2.4.5: Let G be a graph with p vertices and q edges. Then

Yy(G) =p—qifandonly it G = K,,p = 1.

Proof: The sufficiency follows by the fact that var, (G) = p—q, yary (G) >

L(p—q) > 1.
Case: (i) Let the graph G be connected. Then ¢ > p—1= (p—q) <
1. Hence we get p — ¢ = 1. Obviously G is a tree. In view of this
property x(G) = 2 and and by the result (1.3.43))(ii) 1 < v (G) <
[£1]. Also by proposition (2.4.2), v, (G) > max{x(G), yu(G)}.
since p — ¢ = 1 = v (G), the two numbers x(G) and v (G)
must be one. When G is a tree and it has x(G) = 2 and vy(G) = 1,
then the graph becomes G = K, and then vy, (G) = 2, but it is
contradiction to vy, (G) =p — ¢ =1. Hence G ¢ K.
Case: (ii) Suppose G is disconnected. Then the results (2.3.1)(ii),
(2] < yuy(EKp) < [5]. The lower bound is attained for G = mK,. If
m = 1,y (K2) = 2 # p—q = 1 and the upper bound is attained for
G = K, when p = 2 then vy, (Ks) =1 # p— ¢ = 2. Hence G # K,
or Ks. It follows that the graph must be G = Kj.

The converse is obvious. [
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Next, result is the characterization of |V — S| =0, where S is a

MDC set of vertex color critical graph G.

Theorem 2.4.6: A majority dom-chromatic set S belongs to a vertex

color critical graph if and only if |V — S| = 0.

Proof: Suppose |V — S| = 0. Then the majority dom-chromatic set
S = {uy,ug, -+ ,up} CV(G). It implies that |S| = |V (G)|. Suppose
we remove one vertex from S then S may not be a majority dom-
chromatic set of G. Hence G is vertex color critical graph.
Conversely by the proposition ([2.4.4)), if G is vertex color critical
graph with p vertices then 7y, (G) = p. Hence |V — S| = 0. n
Proposition 2.4.7: A majority dom-chromatic set S belongs to a

vertex color critical graph if and only if |V — S| = 0.

Proof: If G is vertex color critical graph with p vertices, it follows
that yar,(G) = p. Hence |V — S| = 0.

Conversely, |V — S| = 0. Then |S| = |V(G)| = p. Suppose
if x(G —v) < x(G), immediately it follows that G is vertex color

critical graph. |
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Theorem 2.4.8: Let G be a graph of order p with y(G) > 3 and it

has no triangles. Then 7,7, (G) > 5.

Proof: Let x(G) > 3 and G has no triangles. Then G # K, com-
plete graph and G is not a tree. Therefore, G contains a cycle. If
X(G) > 3, then G contains only odd cycles with atleast p > 5. By the

proposition (2.3.3), yary(Cp) = p, pis odd, p > 5, and vy (G) > 1.

Since x(G) > 3,p > 5, we obtain vy, (G) > 5. n

2.5 Inequalities on MDC Set

In this section, inequality between the sum of the degrees of all ver-
tices of a majority dom-chromatic set S of G and the complement
of Sie. (V —295)in a graph G is discussed. We determine some in-

equalities such as |V — S| < > d(v;) and |V =S| > >

v, €S

d(UZ) with

’UZ'GS

respect to the majority dom-chromatic set S of a connected graph G.

Theorem 2.5.1: If S is a majority dom-chromatic set with two ma-

jority dominating vertices of a connected graph G then

|V =5[] < Zd(vi)-

’UiES
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Proof: Let v € V(G) be a majority dominating vertex such that
d(v) > [§] =1 and S = {v;,v2} be a majority dom-chromaticset
with only two majority dominating vertices of G.

Case (i): The graph G is a tree. Then d(v;) > [§] — 1,4 = 1,2 for

all v; € S. It implies that x(G) = 2,y(G) =1 then

N d(v;) = d(vr) + d(vz) > %’] 14 Vﬂ 1

p — 2, if p is even

p, if p is odd

> d(v;) =p—2 or p. Therefore, [V —S|=p—2< > d(v;).

;€S ;€S

Case (ii): The graph G is not a tree and G contains two majority
dominating vertices. Then G is not complete but G consist of trian-
gles. It implies that x(G) = 3,7 (G) = 1. Then S = {vy, vs,v3} be
a majority dom-chromatic set of G where v, and v3 are joined with

a majority dominating vertex vy such that d(v;) = A(G). Therefore,

> d(vi) = d(vy) +d(vz) +d(v3) > [5]+4. Hence, |V =S| =p—-3<

v, €S

> d(v;). It implies that |V — S| < > d(v;). ]

;€S v; ES

Example 2.5.2: Consider the following Hajas graph G with p = 10.
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Figure 2.2: G

For G, x(G) = 3,ym(H) = 1. Then S = {vy, vs,v5} is the majority

dom-chromatic set of G and ) d(v) = 44446 = 14 and |V -S| =T.

vES

Theorem 2.5.3: Let G be a non-trivial connected graph with atleast

one full degree vertex. If S is a majority dom-chromatic set of G then

u; ES

Proof: The graph G contains atleast one full degree vertex u €
V(G). Then d(u) =p — 1.

Case (i): The graph G is a tree. Consider S = {uj,us} be the
majority dom-chromatic set of G and x(G) = 2. Hence |V — S| <

p—2. Also > d(w;) =d(uy) +d(ug) >p—1+1=np.

'LLZ'ES

Hence, |V — S| < > d(w).

u; €S

Case (ii): The graph G is complete. Then the graph G contains ver-

tices are of full degree vertices. Since x(G) =p, S = {u1,ug, - ,up}
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is a majority dom-chromatic set of G. Therefore, |V — S| = 0 and

> d(u;) = p(p —1). It implies that, |V — S| < > d(u;).

u; €S u; €S

Case (iii) The graph G is not complete.

Subcase (i): If G has only one full degree vertex u and it is not a
tree then G contains a triangle. Since x(G) = 3,5 = {uy, us, us} is
a majority dom-chromatic set of G. It implies that |V — S| =p—3

and ) d(u;) =(p—1)+3+3=p+5. Hence, |V -S| < > d(w).

u; €S u; €S

Subcase (ii): Suppose the graph G has two full degree vertices u;
and wug, then G contains a triangle. Hence, x(G) = 3. Let S =
{u1,u2,u3} be a majority dom-chromatic set of G. Then |V — S| =

p—3and ) d(w) = (p—1)+ (p—1)+2 = 2p. It implies that,

u; €S

V=S| < > d(u;). In all cases, the vertices of S majority dominates
UiGS

the graph GG and also addition with its coloring number. Thus,

V=8| < 3 d(w). .

u; €S

Theorem 2.5.4: If a connected graph GG contains only majority dom-
inating vertices then |V — S| < > d(w;), where S is the MDC-set

u; €S

of GG.

Proof: Let G be a connected graph which contains only majority

dominating vertices. Then v)/(G) = 1 and x(G) > 2. Consider the
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set S = {uy,ug, - ,u} with |S| = ¢ be a majority dom-chromatic
set of G and vy, = |S] > 2. Then |V — S| < p—2. Since G contains
only majority dominating vertices, d(u;) > [§] — 1, for each u; € S.
Case (i): The graph G has no triangles. Let S = {uj,us} be a

majority dom-chromatic set of G. Then »° d(u;) = d(uy) + d(us) >

UZ‘GS

Bl —1+[E]—1>p—2and [V -8 < Y d(w).

u; €S
Hence |V — S| < > d(u;).
u; €S
Case (ii): The graph G has triangles. Then v/(G) = 1 and x(G) >
3. It implies that S = {uy, uz, us} is a majority dom-chromatic set of
G. Hence |V — S| =p—3. Then > d(u;) >3 ([4] —1) > 2 or L.

u; €S

Hence, |V — S| < > d(w). |

u; €S

Theorem 2.5.5: If a connected graph GG has no majority dominating

vertices then |V — S| > >~ d(u;), where S is the MDC set of G.

u; ES

Proof: Let S be the majority dom-chromatic set of a connected
graph G of p vertices and ¢ edges. Since the graph G has no majority
dominating vertices, it contains all vertices with d(u;) < [§] — 1.
Assume that S = {uy, us, - - -} be the majority dom-chromatic set of

G. Then |V =S| <p—2,p>6.
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Also, zejsd(ui) =d(u) +d(ug) +--- <[] =24+ 5] —2+--- <

2[5] —4<(p—2)or (p—4).

Hence we obtain, |V — S| > > d(u;). ]

u; €S

Theorem 2.5.6. If a MDC set S contains a majority dominating

vertex v and other vertices u; such that d(u;) < [§] — 3 then

V-S| > Z deg(u;).

u; €S

Proof: Let u be the majority dominating vertex such that d(u) =
[£] — 1 and other vertices u; with degree d(u;) < [§] —3 in G. Then
Y (G) = [{u}| =1 and x(G) = 2. Therefore S = {u,u;} is a MDC

set of Gand |V — S| <p-—2.
Then Y deg(u) = d(u) + d(w) < [2] ~ 1+ [2] - 3
u; €S e ’
P—1+8-3=p—4, ifpiseven

E+24+1—-4=p—3, ifpisodd

<

Therefore > deg(u;) < (p —4) or (p — 3). Hence |V — S| >

u; €S

> deg(u;). u

u; €S

Corollary 2.5.7: If the majority dom-chromatic set S contains a

majority dominating vertex and pendants only then [V —S| > Y d(u;).

u; €S
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Theorem 2.5.8: Let G be a connected graph with atleast one vertex

v such that [§] —1 < d(v) < [§] +2. Then |V =S| > > d(v),

;€S

where S is majority dom-chromatic set which contains a vertex v.

Proof: Let [5] —1<d(v) <[] + 2, for any vertex,v € V(G)
Case (i): The graph G is a tree. Let S = {v,u1} be a majority dom-

chromatic set in which v is a pendent. Suppose d(v) = [§] —1. Then

V=S| =p—2. Now, > d(v;) =d(v)+d(w)=1[5]-1+1=[5].

v; €S
It implies that, |V — S| =p—2 > ZS d(v;).
V€
Suppose d(v) = [§]+2. Then ZS d(vi) = d(v)+d(uy) = [F]4+2+1 =
v; €
5] +3 < |V -S| But ZS d(v;) takes the value from [£] to [£] 4 3.
(S
Hence |V — S| > > d(v;).

v, ES

Case (ii): The graph G is not a tree. Let S be a majority dom-
chromatic set of G and let S = {v,v;} where v is a majority domi-

nating vertex and vy is not a pendent of G. Then

Y d(v;) = d(v) + d(vy) = g 142= Pﬂ 1, if d(o) > Fﬂ 1

;€S

p (D] . p
A > L < |= :
> d(vy) u+2+2_ AR 1fd(v)_u+2
v; €S
Hence |V — S| =p—2> > d(v). n

;€S
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2.6 Relationship of vy, (G) with v (G)
and Yer(G)

Proposition 2.6.1: Let G be a complete bipartite graph with a ma-

jority dominating vertex. Then v/, (G) = 2 and vy (G) < vary (G).

Proof: Let G = K,,,,, m < n, be a complete bipartite graph.

Case (i): Since G has a majority dominating vertex uy, v (G) = 1
and x(G) = 2. Then S = {uy,v1} is a majority dom-chromatic set
of G, where u; € V1(G) and v; € Vo(G). It implies that vy, (G) = 2

and v (G) < vy (G).

Case (ii): If G is not a complete bipartite graph then G may contains
pendants. Since G has a majority dominating vertex u; € V(G) and
X(G) = 2,8 = {uy,v1} is a majority dom-chromatic set of G where
u; € Vi(G) and vy € Va(G). It implies that v, = 2 and v (G) = 1.

Hence v/ (G) < vy (G). |

Theorem 2.6.2: Let G be any graph on p vertices with dom-chromatic

number Y, (G). Then v, (G) < [%hQ(G)L if ve,(G) is odd and

Yy (G) = <MT(G>) + 1 if 7e,(G) is even.
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Proof: Let S be the minimum dom-chromatic set of G. Then v.,(G) =
|S| and |N[S]| = |[V(G)|. Let S = 51 U Sy, where |S1| = [%’L )] and
8] = [ 244€]. Therefore [N[$\] U N[S,] = [|N[S]| = [V(G)].

Case (i): Since every 7~ set of G is also a v, — set of G and
1(G) = IS is odd, S| = [Si] U |S,| when |N[Si]| > [¢] and
[N[Sa]| < [5]. Since x((5)) = x(G), x((51)) = x(G) and x((S52)) #
X(G). It implies that S; is a yary- set of G and Y (G) < [S1] =
(2097 if o, (G) s odd.

Case (ii): Let v.,(G) = |S| be even. Then S = S; U Sy with
[S1] = [Saf- But [N[S]| = p and [N[S]| <[] and [N[So]| > [5]. I
Sy contains the vertices u;, u; such that d(u;, u;) =1 then x(({S)) =
X(G). If Sy contains the vertices u;, u; such that d(u;, u;) > 3 then
x((S1)) # x(G). Hence both S; and S are not 7y~ set of G.
Let 8" = Sy U {u}, for any w, € V' — S;. Then |[N[S']| > [£] and
x((S")) = x(G). It implies that S’ is a vas,- set of G and |S'| = |S|+1.

Therefore v, (G) = <%”( )> + 1 if v, (G) is even. ]

Example 2.6.3: (i) Let P, be a path with p = 0(mod 6). Con-

sider G = Pyg then vy, (G) = 4, Y (G) = 7 and [%hg(G” _

—
JR—

[%} = 4. Hence ’VMX(G) = (%
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(ii) Let G = S(K,t), then S; = {uy,ug,- - ,u:} is a dom-chromatic
set of G. It implies that 7., (G) = |S1| =t+1 and Sy = {u, u;}

is a MDC of G. Hence vu,(G) = 2 and v, (G) < P”T(G)]

Construction 2.6.4: For every integer £ > 0, there exists a graph

G such that [2:9] —~, (G) = k.

Proof: Let G be the subdivision of a Star K ;492 by dividing each
edge exactly ones. Then |V(G)| =22k +2)+ 1,7 (G) =2k +2+1

and vus, (G) = 2. Then WC”T(G)] —n(G)=k+2-2=k. n

Observation 2.6.5: Let GG be any Connected graph with p vertices.
Let x(G),vm(G) and v, (G) be the chromatic number of majority
domination number and MDC number respectively. Then y(G) and
v (G) are not comparable. (i) v (G) < X(G) < Yy (G) and x(G) <

1 (G) < 7 (G).

2.7  ~my for Complement of Graph

Proposition 2.7.1: Let the complete bipartite graph G with diam(G) =
3. Then 1, (G) = Y (G) if and only if G = Ky, where G is the

complement of G.
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Proof: Let the equality holds and let uv be the dominating edge of
G. Let |[N[u]| = m,|N[v]] = n and p = m + n. In the graph G,
both N(u) and N(v) are of cardinality 2. The set {N(u)UN(v)} is a
Kppin_o graph, x(G) = m+n—2 and {N(u) UN (v)} be the majority
dom-chromatic set for G. It implies that vy, (G) = m +n — 2. Since
Y (G) = 1 (G), 2 = m + n — 2. It implies that m +n = 4.

Hence the graph must be Ks5. The converse is obvious. |

Proposition 2.7.2: If the graph G = K, is the vertex color critical

then 1 < v, (G) < [E].

Proof: Since the complete graph G' = K, is the vertex color critical
graph, 1 < 7, (G) < p. The complement of K, is G = K,. By
the proposition (2.3.1)(ii), the majority dom-chromatic number is

Yy (G) = [5] and the lower bound attains for G = K. |

Proposition 2.7.3: Let G = K, ,, m < n and m,n > 3 be a com-
plete bipartite graph. Then majority dom-chromatic number of a

complement G is yary (G) > [5] and Yar (G) < vy (G).

Proof: Let G = K,, U K,, be the complement of G where K,, and

K, both are complete graphs with m and n vertices.
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Case (i): Suppose m = n,n + 1,n + 2. Since K,, and K, are
vertex color critical and p = m +n, var,(G) = n,n+1,n + 2. Hence
Yary (G) = max{m,n}.

Case (ii): Let m < n and n > m + 3. Since K,, and K, are
vertex color critical and p = m +n,m < [§] and n > [§]. Hence

Yy (G) = max{m,n}. If G = K,,,,, m < n, then by the proposition

2.3.5), 7ary(G) = 2. By case (i), 7uy(G) = nor n+1 = [§] and

Yy (G) = n+2> [5]. Then, yar, (G) = n, if m < n. It implies that

'yMX(C_?) > [g} Hence, v, (G) < ’yMX(C_?), if m,n > 3. N

Proposition 2.7.4: Let G be a bipartite graph with diam(G) > 6.
Then a1, (G) > v (G) + 1, if G is the complement of G and ), (G)

is the majority domination number of G.

Proof: If diam(G) > 6, then G = P,,p > 7. The complement G
contains two vertices with degree d(u;) = p — 2,7 = 1,p and d(v;) =
p—3,1=2,---,p—1. It gives that there are atleast two vertices with
degree d(u;) > [2] — 1 and the majority domination number of G is
v (G) = 1. Since G contains a triangle, y(G) = 3 and vy, (G) > 3.

Hence, v, (G) > yu(G) + 1. |
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2.8 MDC Number for Bipartite Graph

In this section, the characterization theorems of yary(G), where the

graph G 1s a bipartite are investigated.

Theorem 2.8.1: Let G be a connected bipartite graph with p ver-
tices. Then 7y, (G) = 2 if and only if G; = K,,,,,m < n, a Path
G2 = H,i S 8 and Gg = BX,Y such that \N[ul] U N[Ulﬂ Z g and

d(u1,v1) = 1, where uy € Vi(G) and v; € V5(G).

Proof: Let vy (G) = 2. Then x(G) = 2 = x((5)), where S is a
majority dom-chromatic set of G with |S| = 2.

Case (i): Suppose diam(G) = 1 then the graph G = K. Since K,
is vertex color critical, v (G) = p. By assumption, the only graph
G = Ky = K;; = G is a complete bipartite.

Case (ii): Suppose diam(G) = 2 then the graph G becomes K, ,,, m <
n, Py and K;,_1, a star. Since 7y, (G) = 2, we obtain the graph
structures such as G; = Cy = Ko and G| = K 1,Gy = P53 and

also G3 = Bxy includes the following structure with diam(G) = 2.
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Figure 2.3: G3

For the graph structure G3, S = {us,v2} C V(G) such that
d(uz, v2) = 1,[N[S]| = [N[us] UNTwo]| > [£] and x((S)) = 2 = x(G).
It implies that S is a majority dom-chromatic set of GG3. Hence
G3 = By y with these properties.

Case (iii): Suppose diam(G) = 3. The bipartite graph G becomes
Py and D, , a double star. Since v, (G) = 2, by the corollary
(2.3.4), Yary(Py) = 2. Hence Gy = Py. In D, 4,7 < s, by assumption,
S = {u1,v1} is the subset of G such that d(u;) < [§] — 1, and
d(vi) > [5] — 1 with d(u1,v1) = 1, where u; € Vi(G) and v; € V2(G)

and |N[S]| = |N{ug] U N[v]| > [5]. Also x((S)) =2 = x(G). Hence
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S is a majority dom-chromatic set of G. It implies that G = Bxy =
D, g, r <s.

Case (iv) Suppose diam(G) > 4. Then the bipartite graphs are
P,.p > 5 and any bipartite graph Bxy. By the corollary (2.3.4),
Yy (Pp) = [§] = 2,p = 5,6,7,8 and Y, (F,) > 2, if p > 9. Since
Yy (G) = 2, the only bipartite graph Go = P5 to Fs. For a bipartite
graph By, if S = {u;,v1} € V(G) such that [N[u;] U N[v]| > [§]
and d(uy,v1) = 1, where uy; € V1(G) and v; € Vo(G) with diam(G) =
4, then S is a majority dom-chromatic set of Byy. Also, clearly
X((S)) = 2 = x(G) and satisfies the assumption. Hence the bipartite
graph G5 = Bxy with the above said properties and also the only
bipartite graphs are Gy = P5 to Fx.

Conversely, let G = K, ,,,m < n which is complete bipartite
with p = m 4+ n. Then by the proposition (2.3.5), yar(G) = 2 and
for a path Gy = P,,i = 2,---,8, by corollary (2.3.4), v (G) =
2. Let G35 = Bxy be a graph with bipartition Vi(G) and Va2(G).
Let uy € Vi(G) and v; € Vo(G) such that d(uj,v;) = 1. Since
|N[ui] U N[v1]| > § and x((S)) = 2 = x(G), S = {ui,v1} is a

majority dom-chromatic set of G' and vy, (G3) = 2. ]
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Proposition 2.8.2: Let GG be any bipartite graph Bxy with p ver-
tices and without isolates. Then vy, (G) < [£] + 1 and v (G) =

(2] +1if and only if G = K, ; if j = 1,2,3, Ko, P and mKy,m > 1.

Proof: Let G = Byxy be a bipartite graph with {uy,ug, -+, up}
and {vy,v9, -+ ,v,} and |V(G)| =p=m +n.

Case(i): Suppose G = K, is a complete bipartite with m < n.
Let S = {u,v1}, where u; € V(X) and v; € V(Y). Then |N[S]| =
IN[uwi]| + |[N[vy]| = (n+ 1) + (m + 1) > [§]. Therefore S is a
majority dominating set of G. Since G is complete bipartite, x(G) =
2 = x((5)). It implies that S is a majority dom-chromatic set of
G. Hence vy (G) < |S| = 2 = [§] + 1, where p = 2,3,4. Thus
the graph becomes G = K1, K2, K13 and Ky5. When p > 5, for
G = Kyn, m < n, by the proposition (2.3.5), v (G) =2 < [§] + 1.
Hence, v, (G) < [§] + 1, for G = Ky, m <.

Case (ii): The graph G is not complete and connected bipartite.
Then the minimally connected bipartite graph is a path P,,p > 2.
By the corollary (2.3.4), var(F,) = [%] or [§] + 1. Hence in this
structure, when p = 2,3,4, 7, (G) =2 = [£] + 1 = [§] + 1. When
P> 5,7y (G) = [E] or [E]+1 < [£]41. Hence, var (G) < [5]+1,

if p > 2.
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Case (iii): The graph G is not complete and disconnected bipartite.
Then the graph structure becomes mKs, mP,, mCy and mFPy. In such
cases, by the result (2.3.1)(i), var(m&2) = [§] + 1 and all other
graphs the majority dom-chromatic number is vy, (G) < [§] + 1.
Hence )7, (G) < [§]+1. From the above cases, we obtain v/, (G) <
41,

Conversely, let a7, (G) = [§] + 1. By case (i), if G is a complete
bipartite graph, we obtain the graphs G = K ;,7 = 1,2,3 and Ky».
By case (ii), if G is not complete bipartite then the graphs are G =
Py = Ki1,P; = Ky and P,. Also by case (ii), if G is not complete
and disconnected bipartite, the graph G = mKy,m > 1. Hence
Yux(G) = [§] +1if and only if G = Ky ;,5 = 1,2,3, Ky, Py and

mKs,m > 1. |

Proposition 2.8.3: Let GG be any connected bipartite graph with p

vertices. Then vy, (G) = [§] if and only if G = P3, Py, Cy and K 3.

Proof: Assume that v, (G) = [£]. Since G is connected bipartite
graph, x(G) = 2.
Case (i): If diam(G) = 1, then G = K, and vy, (G) = 2 = p, which

is a contradiction to the assumption. Hence G # Ko.
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Case (ii): If diam(G) = 2, then G = P3,Cy, K1,,. By the corollary
(2.3.4), v (P3) = 2 = [§]. By proposition (2.3.3), v (Cy) = [5].
Suppose G = K 3, by the proposition (2.3.5), v, (G) = 2 = [§].
Case (iii): If diam(G) = 3, then G = P, and D, 4. By the corollary
(2.3.4), 7yuy(G) = 2 = [§]. For D, by the proposition(??)(iv),
Yy (G) =2 = [§], when r = 5 = 1.

Case (iv): If diam(G) > 4, then G = P,,C,,p > 5 and any other
graphs. By the corollary (2.3.4), v, (G) = [E] +1 =2 < [F], which
is a contradiction to the assumption.

Thus, from the above 4 cases, G must be P, Py,Cy and K;3. The

converse is obvious. [ |

Observation 2.8.4: Suppose (' is a disconnected bipartite graph. If
the graph structures are G; = K 3UmKsy, misevenand m > 2, Gy =

mP,,m=4,p =3 and G3 = mK; 3, m = 3 then v, (G) =

=13

Corollary 2.8.5: Let G be a disconnected bipartite graph. If the

graph structure is K3 UmK,, m is odd then v, (G) = § + 1.

Proposition 2.8.6: Let G be a disconnected bipartite graph without

isolates. Then a7, (G) = § if and only if G = mKs, 1 <m < 3.
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Proof: Let 73/, (G) = §. Since G is a disconnected bipartite graph,
let G1,Go, -+, Gy are the components of G and V(G) = V(Gy) U
- UV (Gy).

Case (i): All components are of diam(G) = 1. Then the graph
G = mK,. By the assumption, when G = mK, if m = 2 and 3
then G = 2K, and 3K,. It implies that vy, (G) = 2 = §, if m = 2

and vy (G) = 3 =

o3

, if m = 3. Suppose m > 4, then by the
proposition (??)(i), yar (G) = [§] +1 < §. It is a contradiction to
the assumption.

Case (ii): Suppose G contains the components which are of diam(G) =
1 and 2. Then G = K;; UmKs, where G; = K4, G2 = mk, and
V(G) ={u,uy, -+ ,up,v1, -+, Uy fwith p =14+t + 2m.
Subcase(i): If [¢{] > [5] — 1 and 2m = p — ([5] — 1) then the
majority dom-chromatic set S = {u,u;} where u,u; € V(G;) such
that |N[S]| > [§] and x(G1) = 2 = x((5)). It implies that S is a
majority dom-chromatic set of G and vy, (G) = 2 < §, if [t| > [§]—1,
which is a contradiction to the assumption. Therefore G # K;; U
miKs.

Subcase (ii): If |t| < [§] — 2 then the MDC-set S = {u,uy, vy, v2,

-, U}, where |k| = [§] —(1+¢) such that [N[S]| = 1+t+2k > [£].
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Also x(G) =2 = x((5)). Hence vy (G) =|S| = (2+k) <§,itisa
contradiction. Hence the graph G' # K;; U mKo.

Case (iii): If the components G; of G with diam(G;) > 2,i =
1,2,---,k then v, (G) < £. From the above cases, we get the
graph structures become G = mKjy, 1 < m < 3. Conversely, let

G = mKy,m < 3. Then by the proposition (??)(i), v (G) =

HERE

o3

Corollary 2.8.7: Let G be a disconnected graph which is not bipar-
tite with isolates. Then v, (G) < [§] and v (G) = [5] if and only

2.9 Bounds of v, (G) for Bipartite

Graphs

In this section, the bounds of v (G) with respect to yar(G) for a

bipartite graph are established.

Proposition 2.9.1: Let G be a connected bipartite graph with p

vertices. Then vy, (G) = p if and only if G = K,,p = 2.

Proof: Let G be a connected bipartite graph with p vertices. Since

Yy (G) = p, then the graph must be a vertex color critical. The only
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connected bipartite vertex color critical graph is Ks. It implies that

G = K,. The converse is obvious. ]

Proposition 2.9.2: If the graph G is bipartite with diam(G) < 2
then var (G) < p—A(G)+1 and v (G) = p— A(G) + 1 if and only
it G =Ky, Pyand Ky )_1,p > 2.
Proof: Let GG be a bipartite graph with diam(G) < 2. The theorem
is proved by induction on A(G). If A(G) = 1, the graph G becomes
K5. By the proposition (2.3.2))(i), yuy(G) = 2 = p— A(G) + 1, if
G = K,. If A(G) = 2, the graph structures becomes P,, a path
and K. Since diam(G) < 2, and by corollary ([2.3.4), v (G) =
2=p—A(G)+1,if G =p3and v (Ks2) =2 < p—AG) + L
Suppose A(G) = 3. Then G = Kj3. By the proposition(2.3.5),
Yy(Ks3) = 2 < p—A(G) + 1. If A(G) > 4 then the graph G
becomes K,,,,m = n > 4. By the proposition , Ty (G) =
2<p—A(G)+1

This is true for A(G) = 1,2,3,--- ,(p — 2). Suppose A(G) =
p— 1. Then the only bipartite graph G = K ,_;. By the proposition
(??7)(iv), Ymy(G) = 2 = p — A(G) + 1. Hence from the above cases,
Yy (G) < p—A(G) + 1. Also, yur (G) = p— A(G) + 1 is true if and

only if G = K3, P3 and Ky ,-1,p > 2. ]
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Proposition 2.9.3: Let G be a bipartite graph with diam(G) = 3.
Then v, (G) < p — A(G). Also Y (G) = p — A(G) if and only if

G=PFP and D,s,r=1and s =p— 3.

Proof: Let G be a bipartite graph with diam(G) = 3. By the result
(1.3.43) (vii), 7en(G) < p = A(G). Since 1 (G) < 7en(G), 1y (G) <
Yer(G) < p—A(G) and Yy (G) < p—A(G). Let vy (G) = p—A(G).
Case (i): Since diam(G) = 3, the graph G has a dominating edge uv
with some pendants at u and v. Let V(G) = {u,v,uy, -+, u,, vy, va,
- ,Us} where u;,i =1,--- ,rand v;,j =1,--- s are pendants with
r <p-—3and s > 1. Clearly, since G is bipartite, x(G) = 2. By the
assumption, S = {u,v,vy, -+, v} is a majority dom-chromatic set
with [S] =p — A(G).
Subcase (i): Let d(u) = p — 2 and d(v) = 2. Since G has a
dominating edge e = uv, v (G) = |S| = 2. By the assumption,
Yy (G) = p—A(G). It implies that 2 =p—d(u) = 2=p— (p—2).
It gives the structure of the graph G with d(u) = p—2,d(v) = 2 and
the graph is G = D, 4,r < s withr =1 and s = p — 3.
Subcase (ii): Let d(u) < p — 3 and d(v) > 3. The majority dom-

chromatic set for the graph G is S = {u, v}. It implies that vy, (G) =
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|S| = 2. By the assumption, v (G) = p — A(G) = p —d(u) =
p— (p—3) = 3. Hence, 7 (G) < p—A(G).

Subcase (iii): If d(u) = p — 2 and d(v) = p — 2 = A(G) then
the majority dom-chromatic set becomes S = {u,v}. It implies that
Yy (G) = |S| = 2. By the assumption, v (G) = p — A(G) =
p—du)=2=p—(p—2). Sinced(u) =p—2and d(v) =p—2,r =
s=1=p=r-+s+2=4. Hence the graph G with p = 4 vertices
and diam(G) = 3 is P;.

Case (ii): Suppose G has no dominating edge e = wv. Then the
graph G is a wounded spider with diam(G) = 3 and the graph

contains a vertex u with d(u) = £ = A(G) and d(u;) < 2,u; €

o

(V(G) — {u}). Hence S = {u,u;} be the majority dom-chromatic
set of G with d(u;) = 2, where d(u,u;) = 1 and v (G) = |S| = 2.
By the assumption, vi,(G) = p — A(G) = p — § = §. Therefore
My (G) <p—A(G).

Thus, va(G) = p — A(G) if and only if G = Py and D, 5,r =1

and s = p — 3. Hence the result. |

Proposition 2.9.4: If G be a bipartite graph of diam(G) = 3 then

Yy (G) = Y (G) + 1.
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Proof: Let G be a connected bipartite graph with diam(G) = 3.
Then the graph G has the structure with two central vertices u and
v which are adjacent with some pendants. Then G = P, and G =
D, s,7 < s where r and s number of pendants at u and v respectively.
Since v and v are MD vertices of G, vy (G) = |[{v}| = 1.

Case (i): If s = r,r + 1,r + 2 then both u and v are adjacent to
some number of pendant vertices. Since x(G) = 2,5 = {u,v} be
the majority dom-chromatic set of G and vy, (G) = |S| = 2. Hence
i(G) = e(G) + 1.

Case(ii): If r < s and s > r 4+ 3. Choose S = {u, v}, where u and
v are central vertices of G. Then |N[S]| = d(u) + d(v) = r+ s +
2 = p > [£]. Therefore, S is majority dominating set of G. Also,
X(G) =2 = x((5)). Hence S will be the majority dom-chromatic set
of G and v, (G) = |S| = 2. Since Y (G) = 1, vy (G) = vu(G) + 1.
This result is true for G = P. |
Proposition 2.9.5: Let G be a bipartite graph of diam(G) < 5.
Then v, (G) = yu(G) + 1.

Proof: Since the graph G is bipartite, the graph structures are

Py,p <6, Ky,,Cs and Ko.
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Case (i): Suppose diam(G) = 1, then the bipartite graph G becomes
only Ks. Then vy/(G) =1 and x(G) = 2 and by proposition (2.3.2),
iy (G) =2 =yu(G) + 1.

Case (ii): If diam(G) = 2, then the graph structures becomes G =
Ps or Ki,. By the result (1.3.43))(ii), vas(G) = 1. Also, by corollary
([2-3.4), var,(G) = 2. In both graphs, vy (G) = v (G) + 1.

Case (iii): Let diam(G) = 3. Then the graph becomes G = P, or
and D, ;. By proposition , the result is true.

Case (iv): When diam(G) = 4 and 5, the bipartite graph is Py, p <
6. By the result (1.3.43)(il), vm(G) = 1. Since x(G) = 2, the
set S = {wvy,v3} be the majority dom-chromatic set of GG, where

vy, v3 € V(P5). Hence var, (G) = 2 = v (G) + 1. Hence for all cases,

0G) = 1as(G) + 1. .

Proposition 2.9.6: Let G be a bipartite graph with diam(G) > 6.
Then (i) yary(G) = Ym(G), if p = 1,2(mod 6)

(ii) Yary(G) = vm(G) + 1, if p =0, 3,4, 5(mod 6).

Proof: If the bipartite graph G with diam(G) > 6, then G = P,

a Path with p > 6. By the result (1.3.43))(ii), vas(G) = [£], for all

p > 7 and by corollary (12.3.4]),
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(5] = (@), if p=1,2(mod 6)
Ty (G) =
B +1=(G)+1, if p =0,3,4,5(mod 6).

Hence the result. [

Proposition 2.9.7: Let G be a 3-regular bipartite graph with p

vertices. Then
) = [£], if p = 2,4(mod 8)
21+ 1, if p=0,6(mod 8).
Proof: Let Vi(G) = {v1,v2,-+ ,vp} and Va(G) = {uy,ug, -+ ,ur}
with p = 2m.
Case (i): Let p = 2,4(mod 8). Let S = {vi,u1,v;,vj41, - ,Vj4r}
be the subset of G with |S| =t = v, (G) such that d(vy,u;) = 1 and
d(vi,u1) > 4. Then |N[S]| = |[N]v1] + N[w]| + tijd(vj) —(t-2) =
iz

64 4(t —2) =4t —2 > [£].

Let p = 8r+2. Then |[N[S]| =4t—2 =48] -2=5-2+2 = [F].
Let p = 8 +4. Then |N[S]| = 4t -2 =4[f] -2 =80 -2+4+2 =
[£]. Since d(vi,u;) = 1, the induced subgraph (S) contains K> and

X((S)) =2 = x(G). Thus S is a majority dom-chromatic set of G

and v, (G) < |S| = [§].
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Suppose that S = {v1,u1,vj,--- ,vj4,} with |[S]| =t = 1 (G)
such that d(vi,u;) = 1,d(v;,v;) > 4 and |[N[S]| > [§]. Since S
contains the induced subgraph K5 and x({S)) = 2 = x(G). Therefore
INIS)| < 4t = 4, (G). Since [NIS]| > [41.8] < 4 (G). It
implies that yar(G) > 1[5]. Hence 71, (G) > [£]. Combining
these two results, ya7,(G) = [£], if p = 2,4(mod 8).

Case (ii): Let p = 0,6(mod 8). Let Sy = {v1,u1,vj,- -+ ,vj4r} be the
subset of V(G) with |Si| =t = [£] + 1 = 7 (G) and x((S1)) = 2.
Let p = 8r. Then |N[Sy]| =4t—2 =4 ([§] +1)—2 = 4[§]+2 > [§].
Let p=8r+6. Then |N[Si]| =4t -2 =4 ([§] +1) -2 =4[§]+2 >
[£]. Hence |N[S1]] > [£] and x((S1)) = x(G). Therefore S; is a
majority dom-chromatic set of G and v (G) < |S1| = t1 = [§] + 1.

Applying the same arguments as in case (i), a7, (G) > [£]+1. Hence

Yy (G) = [§] + 1, if p = 0,6(mod 8). =

2.10 Algorithm and Applications for a
MDC Set of Graph G

2.10.1 Algorithm for MDC Set of a Graph

To find a MDC set for the given graph G with pvertices andq edges.
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Step 1: Find the chromatic number y for the given graph G.
Step 2: Choose a vertex v such that d(v) = A(G) and the set S = ¢.

Step 3: Select the vertex set S C V(G) which contains the vertex

v and obtain its induced subgraph (S).

Step 4: Find the chromatic number for the induced subgraph (S)
and verify x((S)) = x(G). If it is not true then go to step

(3). If it is true then go to step (5).

Step 5: Find the neighborhoods of S and check whether the set S
satisfies [N[S]| > [£] or not. If [N[S]| > [£] then the set

S is the MDC set of G.

Step 6: If |[N[S]| < [£], choose a vertex u from V — S with the
next maximum degree and form a new set S = {v,v;, u}
such that d(v;,u) > 3,d(v,u) > 3 where v; € S. Then go

to step (5).

Hence from the above steps we could find all MDC sets of a given

graph S.
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2.10.2

Algorithm for ~v,,x of Graph G

Using Algorithm ([2.10.1]), find out all the Majority Dom-Chromatic

sets for the given graph G.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Let S" = {S51,S5s,---,5:} be the set of all majority dom-

chromatic sets of .

Verify that the proper subset S! of each S; € S",i =1,2,--- |t

is a majority dom-chromatic sets of G.

If the proper subset S; of S; is a majority dom-chromatic
sets of G then the set S; is not a minimal majority dom-

chromatic set of G.

Suppose there exists no such majority dom-chromatic sub-
set S! in the set S; then S; is a minimal majority dom-

chromatic sets of (.

Repeat the process to every S; € S’ and collect all the

minimal majority dom-chromatic set of G.

Let S = {51,959, ,5,:},7 <t be the set of all minimal

majority dom-chromatic set of G.
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Step 7: Find the cardinality of each set S; € S’,¢ =1,2,--- ,r. Pick

up the minimum cardinality of S; among all S;’s in S’

Step 8: The minimum cardinality of S; € S’ is the majority dom-

chromatic set of G. It is denoted by v x(G).

2.10.3 Applications of MDC Number

When frequencies are assigned to towers, frequencies assigned to all
towers at the same location must be different. How to assign fre-
quencies with this constraints ? What is the minimum number of
frequencies needed? Due to the minimum financial constraints this
has to be done at as minimum cost. It is possible that, it does not
bother about facilities reduction or increasing the number of loca-
tions. It is possible to identify the best thing that, MDC set can be
done to the villages if the geographical structure is known.

If the villages are marked as vertices and roads are marked as
edges and finding the majority dom-chromatic number of the graph
representing the communal structure. Majority dom-chromatic con-

cept can be used in security system also.
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Suppose we product a building at all entries by attaching various
security devices with the least number at the entrance, the build-
ing may be represented by a graph with the entries as vertices and
adjacency can be done if two the entries can be viewed form one an-
other. Hence finding majority dom-chromatic number gives the best

solution.



Chapter 3

Majority Dom-Chromatic
Number for Special Graphs

Abstract

In this chapter, majority dom-chromatic sets are discussed for various
graph structures. The majority dom-chromatic (MDC) number vy,
is determined for Corona graphs, Cartesian Product graphs, Gener-
alized Petersen graphs and Rooted product graphs. The characteri-
zation on MDC number is established for disconnected graphs with
isolates and without isolates. Also some inequalities on the comple-
ment of a MDC set S namely, |V — S| and >  d(u;) are investigated

u; €S
for disconnected graphs.

The contents of this chapter is published in
Turkish World Mathematical Society Journal of Applied and Engineering Mathe-
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3.1 Introduction

In 1970, Faudre and Schelp [I8] studied a product graphs in “The
Domination Number for the Product of Graphs” and in 1997, Gravier
and Mollard [19] studied Cartesian Products of Paths in “On Dom-
ination Numbers of Cartesian Products of Paths”. Then in 2012,
Jankiraman and Poobalaranjani [31] studied Cartesian Product graphs
with respect to you(G). In 2017, Joseline Manora and Muthukani
Vairavel [35, B6] determined many results on product graphs with
respect to you(G). They produced the exact values of yoy(G) for
some standard graphs. These concepts gave the motivation to inves-
tigate vour (G) on product graphs and corona graphs.

Organization of this chapter is as follows. The introduction of
this chapter is given in section 3.1. In section 3.2, the exact values
of yary for Corona graphs are determined. In section 3.3, the par-
ticular values of MDC number are investigated for Cartesian Prod-
uct graphs. The MDC number for generalized Petersen graphs and
Rooted Product graphs are studied in section 3.4 and 3.5. In section
3.6, the characterisation on 7, and some inequalities on |V — S|

and ) d(u;) are investigated for disconnected graphs.
u; €S
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3.2  ~py for Corona Graph

In this section, the majority dom-chromatic number yar,, for corona
graphs with respect to cycles, complete graph and complete bipartite

graph are determined.

Proposition 3.2.1: Let G = (), o Ky be a corona graph with p

vertices. Then va, (G) = [{5] + 2.

Proof: Let G = C,,0K5 be a corona graph. Let V(G) = {uy, u11, w12,
Us, UL, U2, -+« Uy, Up1, Up2 b and |V (G)| = p = 3n, where u; € V(C),)
and u;; € V(K3),i# j,1 <i<mn,j=1,2. Since this graph structure
contains n triangles, x(G) = 3. Let S = {uy, u11, u12, Uy, . .., us } be
the subset of V/(G) with |S| = [{5] + 2 such that d(u;,u;) > 3 and
{1, u11, w10} is the triangle in G. Since every vertex in S have degree
4, IN(S)| =5t —10 =5 ([£] +2) — 10 > [4]. Since S contains a
triangle, x((S)) = 3 = x(G). Hence S is a majority dom-chromatic
set of G and v (G) < [f] +2.

Suppose S’ = § — {w;} with |S"| = |S| =1 = [{5] + 1. Then
IN(S")| =5t —10 =5([&]+1) — 10 < [5]. Hence 5" would not
be a majority dominating set for G and yar, (G) > |S'| > [{5] + 2.

Thus, v, (G) = [{5] + 2. |
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Proposition 3.2.2: Let G = K; o K,,,,, be a Corona graph with p
vertices and ¢ > 3,m,n > 3. Then vy, (G) = t.

Proof: Let G = K, 0 K,,, be a Corona graph with p =t(m+n-+1)
vertices. Since this graph structure contains a vertex color critical
graph K; as a subgraph, x(G) =t,t > 2. Let {vy,v9,..., v} C V(K})
and {uy, ug, ..., Uy, wi, ws, ..., w,} C V(K,,,) be the vertex sets of
G. Since K; is vertex color critical as a subgraph, any vy~ set .S of
G must contain the full vertex set of K;. Since each vertex of K; is
adjacent to all vertices of Ky, ,,, X((S)) =t = x(G) and [N(S)| > [§].
Hence S is a majority dom-chromatic set of G and v (G) =t. n
Example 3.2.3: Consider the graph G = K3 o K39 with p = 18
vertices.

Since G contains a vertex color critical K3, x(G) = 3. Hence

S = {v1,v2,v3} C V(K3) is a yar,- set of G and v, (G) = 3.

Proposition 3.2.4: Let G = C,, o (), be a Corona graph with p

vertices and m = 3, n > 3. Then v/, (G) = m.

Proof: Let G = (), o), be a corona graph with p vertices and m =
3, n > 3. Let V(G) = {ul, U1, U122y -« -+« 5 Ulp, U2, U1, U292, . . ., Udp, U3,

usl, ..., ugyt and |V(G)| = p = m(n + 1), where u; € V(Cy,) and
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Figure 3.1: G : K30 K3

u;j € V(C,). Since G contains triangles, x(G) = 3 and v, (G) > 3.
Let S = {uy,us,u3} be the subset of V(G), where {uy,us,us} €
V(C,,). Since the degree of each vertex in C, is (n + 2),|N[S]| =
id(ui) =n+1)+(n+1)+(n+1)=3n+1)=3(&)>[L].

_ Then the set S is majority dominating set of G and since {uy, us, us}

forms a triangle, x({S)) = 3 = x(G). Hence the set S is majority

dom-chromatic set of G and vy, (G) = m = 3. ]

Corollary 3.2.5: Let G = (3 o (3 be a Corona graph with two

cycles. Then vy, (G) = 4.



Ch. 3: Majority Dom-Chromatic Number for Special Graphs 78

Proof: Since the graph G = (5 o (5 contains a clique K, as a sub-
graph, x(G) = 4. So that any 7y~ set of G must contain the full

vertex set of Ky and v, (G) = 4. u

3.3  ~ymy for Product Graphs

In this section, MDC number is determined for grid G = P; x P;,
cylinder G = P; x C; and torus G = C; x C; graphs for 1 > 2 and

i>3.

Proposition 3.3.1: For a grid G = P» x Pj, 5 > 3,

) = (2], if p =2,4(mod 8)
[E1+1, if p =0,6(mod 8).

Proof: Let G = P» x P;,j > 3. Let {vi1,vi9,v13,...,v1;} and
{va1, vag, Va3, ..., v9;} be the vertex sets in first and second row re-
spectively and x(G) = 2.

Case (i): When p = 2,4(mod 8). Let Sy = {v12, v13, V16, - - -, V14, } C
V(G) such that d(vis, vi;) > 3, for 3 < j <ty with |S1] = |t1] = [£].
Let p = 8k + 2. Since every vertex of S has degree 3, |N[S1]| =

Aty —2 =48] —2 =4[] — 2 =4k +2 =4 (52) +2 > [£]. Let
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p = 8k + 4. Then |N[Si]| = 4t; — 2 = 4[2] — 2 = 4[%H] 2 =
4 (1%4) +2 => [§]. It implies that S} is a majority dominating set of
G. Since d(v12,v13) = 1, x((S1)) = 2 = x(G). Hence S is a majority
dom-chromatic set of G and v, (G) < [£].

Suppose S; = S1 — {v;}. Then [S]| = [§] — 1 and |N[S}]| =
4ty —2 = 4([8]—1) —2. If p = 8k + 2 and p = 8k + 4 then
|N[S1]| < [5]. Therefore S7 would not be a majority dom-chromatic
set of G and hence vy, (G) > [S]| = [£] — 1. Thus 1 (G) > [£].
Hence we obtain, yar,(G) = [£], if p = 2,4(mod 8).
Case (ii): When p = 0,6(mod 8). Let Sy = {vi2,v13, V16, - - -, V1, }
be the subset of G such that d(vs,v;;) > 3, for 3 < j < ty with
|So| = [ta| = [E] + 1. If p = 8k, 8k + 6 then |N[Ss]| = 4[ts| — 2 =
4 +1)—2=4([2]+1)—2=4dk+2=4(L) +2=[L]+ 1. If
p = 8k+6 then |[N[So]| = 4ts]—2 =4 ([E] +1)—2 =4 ([2] + 1)
2 =4k+6 =4(%°) +6 = [E] +2. Hence [N[S,]| > [£]. Since
X((S2)) = 2 = x(G), the set S5 is a majority dom-chromatic set of G
and v, (G) < [§] + 1.

Applying the same arguments as in case (i), we obtain vy, (G) >

[£]1 4 1. Thus, v, (G) = [§] + 1, if p = 0,6(mod 8). n
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Proposition 3.3.2: Let G = P, x Pj,© > 3,7 > 2, be a grid graph.

Then

[£1+1, if p =0,7,8,9(mod 10)
My (G) =
(L], if p =1,...6(mod 10).

Proof: Let G = P, x P; with i, j > 3 be a gird graph. Let {v11, vi2, v13,
e UL, V1, V22, « ey U2, ., Vil, Vi2, Vi3, - - -, Vij }, De the vertex sets of

the first, second and third row respectively. For the graph G =

& - 3 P &
>—9_ o e o9V,
Vo Vio | Y, ?

- ' 5 9 : .1

- 4 £ L ® :
. —eo—o & o—o,
i

Viih, Vi V;

Figure 3.2: G = P, x P;

Case (i): When p =0,7,8,9(mod 10). Let S = {v9g, 23, vog, - . . , U2 }
C V(G) such that d(vag,ve;) > 3, for 3 < j < ¢t with |S| = |t| =
[{51+1. The degree of each vertex of S is 4. If p = 10k then [N[S]| =

5t—2=5([5£]4+1)—2=5[&]+3=50k+3=5+3. If p=10k+7



Ch. 3: Majority Dom-Chromatic Number for Special Graphs 81

then |[N[S]| =5 (M) £3 =5k +7=5 (%) +8=2+3. If p=

10k +8 then [N[S]| =5 ([L&E8]) + 3 =5k +7 =5 (&42) +7 =L +3.

If p = 10k +9 then |[N[S]| = 5 ([{£27]) +3 = 5k +8 =5 (&°) +8 =
£ +4. Therefore in all cases, |[N[S1]| > [5] and S is a majority dom-
inating set of G. Since d(vge,v93) = 1, x((5)) = 2 = x(G). Hence S
is a majority dom-chromatic set of G' and v, (G) < |S| = [{5] + 1
Suppose S’ = S — {vy}. Then [S'| = [{5] and |[N[S']| =5t -2 =
5 ([1%}) — 2. If p = 10k, 10k + 7,10k + 8 and p = 10k + 9 then
IN[S]| < [5]. Therefore S’ not be a majority dom-chromatic set of
G and hence v, (G) > |S'| = [{5]. Thus, we obtain, v (G) =
(&1 +1,if p=10,7,8,9(mod 10).
Case (ii): Let p=1,...,6(mod 10). Applying the same arguments

as in case (i), we obtain, 7 (G) = [{5]. u

Proposition 3.3.3: For a cylinder G = C3 x P}, j > 3,

(45142, if p=0,9(mod 10)
Ty (G) =
[ &1+ 1, otherwise

Proof: Let G = (3 x P; be a cylinder with j > 3. Let V(G) =

{v11, vi2, V13, . . ., V1, V21, V22, U3, . . ., Uy, U1, Vs, Uss, . . ., U3} be the ver-
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tex set of G and since G contains a triangle, x(G) = 3.

Case (i): when p = 0,9(mod 10). Consider the set S = {v12, V99, V32,
Uzs,...,Va} a subset of G with |S| = [t| = [{5] + 2 such that
d(va2,v9;) > 3,2 <t < j and {v12,v2,v32} € S be the vertices of a
triangle. Since the degree of each vertex of S is 4, |[N[S]| =5t — 6 =
5([&]+2) —6=[8]+4. If p=10k then |N[S]| =5k +4 =15 + 4.
If p = 10k + 9 then |N[S]| = 5k +8 = 5 (&) + 8 = £ + 4. In these
two cases, |N[S]| > [§] and S is a majority dominating set of G.
Since S contains a triangle, x((S)) = 3 = x(G). Hence S is a yur,-
set of G and a1, (G) < [{5] + 2. Suppose S" = S — {vy } with || =
S| —=1=[2Z]+1. Then [N[S]| =5t —6=5([2]+1) -6 < [L],
if p = 10k and 10k 4+ 9. It implies that, S’ would not be a 7y, - set

of G and vy, (G) > [{5] + 1. Hence var (G) > [{5] + 2. Thus, we
obtain, yar (G) = [{5] +2,p = 0,9(mod 10).

Case(ii): whenp =1,...,8(mod 10). Consider the set S = {v12, V92, V39,
Vgs, ..., Uy} a subset of G with |S| = [t| = [{] + 1 such that
d(va2,v9;) > 3,2 < t < j and {wia,v92,us2} € S be the vertices

of a triangle. Applying the same arguments as in case (i), we get the

result. [
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Proposition 3.3.4: Let G = C; x P;,i > 4,7 > 2 be a cylinder. Ifi

is even then

(L7, if p = 2,4,6(mod 10)
Ty (G) =
27+ 1, if p=0,8(mod 10).

Proof: Let G =C; x Pj,i > 4,j > 2 be a cylinder. Let {vi1, vi2, v13

y ooy U15,V21,022, ... ,0V2j5,...,0i1,Vi2, Vi3, ... 7Uij} be the vertex set of G.

Figure 3.3: G = Cy x P,

For G = C; x Pj, x(G) = 2 when i is even. Let S = {vja, v13, v15,
.., Uy} € V(G) such that d(vij,vi;) > 3,1 # j,1 < i,j <t with
|S| = |t| = [{5] + 1. Applying the same arguments as in proposition

(3.3.2)) we obtain the result. .

Proposition 3.3.5: Let G = C3 x C},j > 3 be a torus. Then

[{5] +2, if p =0,9(mod 10)
i (G) =
[45] 41, otherwise.
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i Viz Vi3

3 . N ! Vv
lj
Vyp ) Y3 Y

31 v, Vi, : : vy

Figure 3.4: G = C3 x C}

Proof: By proposition (3.3.3]), we obtain the result. u

Proposition 3.3.6: Let G = Cy x C},j > 3 be a torus. Then

(1) vary(G) = 7, if 7 is odd

. . ({51 + 1, if p=0,8(mod 10)
(ii) If j is even then v (G) =

(451, if p = 2,4,6(mod 10).
Proof: Let G = CyxCj,j > 3 be a torus. Let {v11, v12, v13, ..., v15},
{va1, vag, Va3, ..., Vs }, {vs1, Us2, U3, . . ., U3 } and {var, vag, Va3, . .., V4 }
be the vertex sets of the first, second, third and fourth row respec-
tively.
Case (i): when j is odd. Then C; becomes a vertex color critical
graph and therefore by proposition (2.3.3), var (G) = J.
Case (ii): when j is even. Then x(G) = 2.
Subcase (i): Let p = 0,8(mod 10). Let S = {vi11,v12, 015, ..., 01}

be a subset of G with |S| = |t| = [{;] + 1 such that d(vi2,v1j) > 3,
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for 2 <t < 7. Since the degree of vertices of S is 4, if p = 10k then
IN[S]| =5t—2=5([&]+1) —2 =543 If p =10k + 8 then
IN[S]| =5t —2=5([4]+1) —2 =5 +4. Therefore, |[N[S]| > &
and the set S is the vy~ set of G. Since d(vi1,v12) = 1, where
{vi1,v12} € S, x((S)) =2 = x(G). Hence S is a v~ set of G and
1y(G) < {51 + 1.

Suppose the set S = S — {vy;} and |S'| = |S| =1 = [{;]. Then

IN[S')| =5t —2=5([%]) —2

£ —2. If p= 10k + 8 and 10k then
IN[S]]| =5t —2=5([4]) —2 < [5]. Therefore, the set 5" wouldn’t
be a - set of G and Y, (G) > [{5]. Hence 7 (G) > [{5] + 1.
Thus, v, (G) = [{5] + 1, if p = 0,8(mod 10).

Subcase (ii): Let p = 2,4,6(mod 10). Let S = {v11, v12, V15, ..., V1¢}
a subset of G with |S| = [t| = [{5] such that d(viz,v1;) > 3,2 <t <
j. Since d(v;j) = 4,|N[S]| = 5t — 2 =5[{5] — 2. If p =10k + 2 then
INIS] = 5 (T51) = 2 = 5(11%2]) 2 = 5k +3 =5 (52) +3 > [2].
If p =10k + 4 then |[N[S]| =5t —2 =5([&]) —2 =5k +3 =
5(2)+3 > [B]. If p = 10k+6 then |[N[S]| = 5t—2 =5 ([£]) -2 =
bk+3 =5 (’71;06) +3 > [£]. Hence the set S is the yy- set of G. Since

d(vi1,v12) = 1, where vi1,v12 € S, x((S)) = 2 = x(G). Therefore S

is a a7y~ set of G and a1, (G) < [5].
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Applying the same arguments as in subcase(i), we get v, (G) >

[&]. Hence a1, (G) = [&], if p = 2,4, 6(mod 10). .

3.4 ~ny for Generalized Petersen Graphs

In this section, the Majority dom-chromatic number vyary, s investi-

gated for the generalized Petersen graph P(n, k).

Definition 3.4.1: For each n > 3 and 0 < k < n, P(n, k) denotes the

Generalized Petersen graph with vertex set V(G) = {uy, ua, . . ., uy, vy,
v, ..., Uy} and the edge set E(G) = {wiUi11(mod n), WiVis Vi kmod n)}> 1 <
1 < n.

Proposition 3.4.2: Let G = P(n, k), k is odd, be a generalized Pe-

tersen graph. Then

L, if p =2,6(mod 8)

Ty (G) = S (2], if p = 4(mod 8)

(8] +1, if p = 0(mod 8).

\
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Figure 3.5: G = p(11, 3)

Proof: Let G = P(n, k), k is odd, be a generalized Petersen graph.
The vertex set V(G) can be partitioned into two subsets Vi and V5
such that V' = V; U V5, where the inner polygon has the vertex set as
Vi(G) = {v1,v9,...,v,} and the outer polygon has the vertex set as
Vo(G) = {u1, ug, ..., u,} with p=2n.

Case (i): when p = 2,6(mod 8). i. e, § = n is odd. Then G
contains two odd cycles C} and Cy with |V(Cy)| = [V(Cy)| = § and
hence x(C1) = x(C2) = 3 = x(G). Any v, set must contain the full
vertex set of any one odd cycle. Let S = {uy, us, us, ..., u,} € V(Cy)
be the subset of V(G). Clearly |[N[S]| > [§] and x((S)) = 3 = x(G).

Hence S is a vy~ set of G and v/, (G) = £, if § is odd.
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Case (ii): Let n be even. Then G contains only even cycles. Then
X(G) = 2.

Subcase (i): When p = 4(mod 8). Consider the set S = {uy, us, us,
...,us} be the subset of V(G) such that |S| = [t| = [£] with
d(ur,u2) = 1 and d(u;,u;) > 3,7 # j. Since G is a 3-regular graph,
IN[S]] = 4t—2 =4 ([8])—2. If p = 8r+4 then |[N[S]| = 4[] -2 =
4 (p—;l) +2 > [§]. It implies that S is a majority dominating set of
G. Since d(uy,u2) = 1, x((S)) = 3 = x(G). Hence S is a vy~ set of
G and 1 (G) < [§]-

Suppose, consider the set S" = S — {w;}. Then || = |5] -1 =
[£] — 1. Now, if p = 8r + 4 then [N[S']| = 4t —2 =4 ([§] - 1) —
2 = 4 (&%) — 2 < [£]. Therefore S wouldn't be a vy~ set of G
and i (G) > [§] — 1. It implies that, vy, (G) > [£]. Thus,
Yux(G) = [£], if p = 4(mod 8).

Subcase (ii): when p = 0(mod 8). Let S = {uy,us,us,...,u} be
the subset of V(G) such that [S| = [t| = [£]41 with d(u;, uz) = 1 and
d(uj,uj) > 3,0 # 5. lf p=_8rthen |N[S]| =4t—2=4([E] +1)-2 =
4([%]+1) —2==4(8) +2 > [5]. It implies that S is a majority
dominating set of G. Since d(uy,uz) =1, x({(S)) =3 = x(G). Hence

S is a yary- set of G and yy, (G) < [£] + 1.
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Applying the same arguments as in case (i), we obtain v, (G) >

(2] + 1. Therefore yar, (G) = [§] + 1, if p = 0(mod 8). n

Proposition 3.4.3: Let G be a generalized Petersen graph G =
P(n,k),k =2. Then

(2] +2, if p =2,4(mod 8)
Ty (G) =

[B1+3, if p =0,4(mod 8)
Proof: Consider V; and V5 be the vertex partition of inner and
outer polygon of the generalized Petersen graph G = P(n,2) such
that V' = V; U Vs, where Vi(G) = {v1,v9,...,v,} and Vo(G) =
{uy,uz, ..., u,} with p = 2n. Since G contain 5 - cycles with the
vertex set {vj, Vito, Ui, Uit1, Uire }, X(G) = 3, any yar,- set must con-

tain 5 - cycle.

Case (i): whenp = 2,4 (mod 8). Let S = {uy, ug, ug, vy, v3, ug. .., s}
be the subset of V(G) such that |S| = |¢| = [£] 42 with d(ug, us) > 3
and the vertex set {uy, ug, us, vy, v3} forms a 5-cycle and the degree
of each vertex of §is 3. If p = 8 + 2 then |[N[S]| = 4t — 10 =
A([E2)142) 10 =4r +2=4(Z2) +2>[2]. Ifp= & +4

then |N[S]| = 4([E21+2) - 10 =4(22) +2 > [£]. It implies

B &
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that S is a majority dominating set of G. Since S contains 5-cycle
{ur, u2, ug, vy, 3}, X({S)) = 3 = x(G). Hence S is a yar,- set of G
and 5, (G) < [E] + 2.
Suppose, consider the set $' = 5 — {u;}. Then |§'| = |5|-1=
P] 4+ 1. Now, if p = 8 + 2 then |N[S']| = 4t — 10 = 4 ([2] + 1) —
10 =4r—2=4(22) -2 < [2]. If p = 8 + 4 then |N[S]| =
4 —10=4([8]+1) =10 = 4r — 2 = 4(Z2) — 2 < [2]. Therefore
S wouldn’t be a yy- set of G and 7, (G) > [£] +1. It implies that,

Ty (G) 2 [B] + 2. Thus, yary (G) = [E] + 2, if p = 2,4(med 8).

Case (ii): when p = 0,6(mod 8). Let S = {uy, ug, ug, v, V3, Ug ..., Uz}

be the subset of V(G) such that |S| = [t| = [§] +3. If p = 8r
then |N[S]| = 4t — 10 = 4([E]+3) — 10 = 4([Z]+3) - 10 =

4r+2=4(5)+2 > [5]. If p= 8 + 6 then

N[S]| = 4t - 10 =
A([E]+3) —10=4([EE)+3) -10=4r +6=4(E2) +6 > [E].
It implies that S is a majority dominating set of (G. Since S con-
tains S5-cycle {uy,us, ug, v1,v3}, x((5)) = 3 = x(G). Hence 5 is a
Yary—setofG and yyp, (G) < [£]43. Applying the same arguments as
in case (i), we obtain yar (G) > [§]+43. Therefore yay(G) = [§] +3,

if p=0,6 (mod 8). |
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3.5 ~my for Rooted Product Graphs

In this section, the particular values of yar, for rooted product graph

and some results on yar, with respect to cpn(G) are discussed.

Definition 3.5.1: Given a graph G of order n(G) and a graph H
with a root vertex v, the rooted product graph G o, H is defined as
the graph obtained from G and H by taking one copy of G and n(G)
copies of H and identifying the i'h vertex of G with the root vertex

v in the ith copy of the H for every the i € {1,2,...,n(G)}.

Example 3.5.2: Let G = (G; 0, G be a rooted product graph where

G1 = C5 and Gy = K4 with p = 20 vertices.

Figure 3.6: G = (50, K4
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For the graph G, x(G) = 4. The v, - set of G is {v1, v11, V12, V13, V4 }

and v, (G) = 5.

Theorem 3.5.3: Let G = (G 0, G4 be a rooted product graph where

G and Gy are cycles. Then v, (G) > cpn(G).

Proof: Since the graph G = G; o, G5 contains cycles, x(G) = 2 or
X(G) = 3. Since G is connected, yu,(G) > 2. If G contains odd

cycle ecpn(G) > 3. If G contains even cycle cpn(G) > 2. Hence

iy (G) = epn(G). "

Theorem 3.5.4: Let G; and Gy be any two vertex color critical
which are complete graphs and G = G; o, Gy be a rooted product
graph. Let v be any root vertex in Gy. Then (i) yary (G) = epn(Gr),

if epn(G1) > epn(Ga) (ii) Yy (G) > cpn(G), if epn(Gr) < epn(Gs).

Proof: Let G = G; o, G5 be a rooted product graph where Gy and
G5 are any two complete graphs with order m and n. Let S; and S
be the cp-sets of G7 and G5. Since G; and G5 are complete graphs,
S1 = V(Gp) and Sy = V(Gsy) are cp- sets of G; and G3. Then

|S1| = epn(G1) = m and |Ss| = epn(Gs) = n.
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Case (i): When cpn(G1) > cpn(Gs). Then x(G1) = x(G) and any
Yary- set S contain the full vertex set of S1. Let S = {v1,va,..., 0} C
V(G1) with |S| = m. Since v be any root vertex in G, all vertices
of G are adjacent to the vertices of G. It implies that |[N[S]| > [£]
and x((S)) = x(G). Hence the set S is the ya- set of G and
My (G) = m = cpn(Gh).

Case (ii): When cpn(G1) < epn(Gz). Then x(G2) = x(G) and any
Yary- set S contain the full vertex set of Go. Let S = {v1,v11, ..., V1p,
Vg, ..., v} € V(G) with |[S| = n 4 t. Since v be any root vertex in
(9, all vertices of (G; are adjacent to the vertices of G9. It implies
that |[N[S]| > [5] and x((S)) = x(G). Hence the set S is the vjs,-

set of G and vy (G) =n +t > cpn(G). u

Theorem 3.5.5: Let G = (G0, G5 be a rooted product graph where

G and Gy are cycles. Then v, (G) > cpn(G).

Proof: Since the graph G = G; o, G5 contains cycles, x(G) = 2 or
X(G) = 3. Since G is connected, yar (G) > 2. If G contains odd

cycle ecpn(G) > 3. If G contains even cycle c¢pn(G) > 2. Hence

ix(G) = epn(G). .
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3.6 vy for Disconnected Graphs

In this section, the characterization on MDC number is determined-
for disconnected graphs with isolated and without isolates. Also some
inequalities between |V — S| and > d(u;) for disconnected graphs are

u; ES

1nvestigated.

Proposition 3.6.1: Let G be a disconnected graph of order p. Then

Yy (G) = [B] if and only if the graph G is totally disconnected K.

Proof: Let GG be a disconnected graph with p vertices. Assume that
Y (G) = [5]. It implies that vy/(G) = [§] and x(G) > 1. Let
S = {vl,vg, e ,v@} be a majority dom-chromatic set of G with
S| = [%] and [N[S]| > [4]. Then x((S)) < [§]. Since G contains
n components say Gi,Go,...,G,, and vy (G) = [§], the majority
dominating set S conmsists of only [£] isolates and the maximum
color used for this induced subgraph x((S)) = 1 = x(G). Therefore,
if x((S)) = x(G) = 1 and vy(G) = [§] then the resulting graph is
totally disconnected graph G = K.

Conversely, suppose G = K. Then vy/(G) = [§] and £(G) = 1.

Therefore yar, (G) = maz {[£],1} = [£]. Hence the result. ]
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Theorem 3.6.2: Let G be a disconnected graph. Then v, (G) =
[£] if and only if G = K,or G = gUK, ;,p> 2, where g, is a vertex

color critical component with [¢[ < [£].

Proof: Let G be a disconnected graph with p vertices. Assume
Yy (G) = [B]. To prove that G = K, or G = g; U K,,_;.

Case (i): Suppose G # K,,p > 2 then G has atleast one edge
between a pair of vertices. It implies that G is a disconnected graph
without isolates. By result (2.3.1) (i), vy (G) = [§{] + 1. It is a
contradiction to the assumption v, (G) = [£]. Hence G = K,,.
Case (ii): Suppose G # g; U K, , where g; is not a vertex color
critical graph with |¢| < [§]. Then the graph G contains a path, an
even cycle or any other component g; with [t| < [£]. Since x(g:) > 2
and (i) > 2],

Subcase (i): Suppose [t| = [§]. Then S = {u1,uz,...,urr}, is a
MDC set of G, where u; € V(g;). It implies that vy, (G) = [£], it
condradicts the assumption.

Subcase (ii): Suppose |t| < [£]. Then S = {uy, ug, ([5] — ¢) K1} is
a MDC set of G where u; € V(g;). It follows that vy, (G) = |S| =

[E1 = 1t| +2=[5] — [5] + 1+ 3. It implies that vy, (G) = 4 < [§].
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It is a contradiction. Hence g¢; is a vertex color critical component in
G with [t| < [£].

Case (iii): Suppose g; with [t| < [£]. Since g; is a vertex color
critical component of G, g; is a complete graph or an odd cycle. If g; is
an odd cycle with [¢t| < [£]+1 then vy, (G) = [5]+1. It contradicts
the assumption. If g, is a complete graph with [t| < [§ 4 1] then
Yy (G) = [5] + 1 is a contradiction to the assumption. Hence g; is

a vertex color critical component of G with [t| < [£]. Therefore G

must be K, or (g: U K, ;).
Conversely, let G = K, or (g, U K,_;). To prove that v, (G) =

[£]. Suppose G = K, then y(G) = [5] and x(G) =1 = 71, (G) =

[£]. Suppose G = (g;UK,_). Since g; is a vertex critical component
with [t] = [5], x(g;) = [§] and 7(g;) = 1 It implies that ya (G) =
[2]. Suppose g; is a vertex critical component with |¢t| = [§]. Then
S = {ul,u2, ey Ug, V1, Vo, --U@—t} is a MDC set of G where u; €

V(g:) and v; € V(K,—;). Now, |S| = t+ [5] —t = [§]. Thus,

(@) = [S] = [5]. .

Observation 3.6.3: For a disconnected graph G, x(G),va(G) are

not comparable
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(1) X(G) < (G) < 7y (G).

(i) 7a(G) < X(G) < (G).

Example: Consider the disconnected graph with isolates with p = 16.
Let G = Py UK;5. Let |[V(G)| = [{v1,v9,...,011,u1,...,us}| = 16.
Then vy (G) = [{va, vs5, v7}| = 3 and Y (G) = [{va, vs, v7, v} = 4.
Since P is a tree, x(G) = 2. Therefore x(G) < 7 (G) < Yary(G).
(ii)) For a disconnected graph G with isolates, vy/(G) < x(G) <
1y (G).

Example: Let G = C3 U K; and V(G) = {vy,v9,v3,uq,...,us}.
Since (3 is an odd cycle, x(G) = 3 and vy (G) = [{v1,u1}| = 2.
Then S = {vy, v9,v3,u1} be the MDC set of G where v; € V(C3) and
u; € V(K3). = yuy(G) = |S| = 4. Therefore vy(G) < x(G) <

Ty (G).

Theorem 3.6.4: Let G be a disconnected graph with any vertex

critical component then |V — S| < > d(uw;).

u; €S

Proof: Let G = G; U G, be a disconnected graph with p vertices.
Since G has a vertex color critical component, x(G) > 3. Consider

S = {Gy,uy, ...} be the MDC set of G, where G; is the vertex color
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critical component, such that [t| > 3 and u; € G,. If [N[Gt)]| = [§]
then S| > 3. If [N[G(t)]| < [§] then |S| > 4. It implies that |S| =3
or4and |V -S| <p—-3orp—4 Let V(Git)) = {ur,ug,...,ul,
Then

o d(u;) = d(ur) + d(ug),...,>3(t—2)+1>3t—5, if [t| > 3.

’LLZ'QS

Then, certainly we get |V — S| < > d(u;). u

u; €S

Theorem 3.6.5: For a disconnected graph G without any vertex
color critical components, |V — S| > > d(u;) where S is the MDC

uiGS

set of 5.

Proof: Let GG be a disconnected graph with not vertex color critical
component. Let S be a majority dom-chromatic set of G.

Case (i): The graph G is totally disconnected.

Then S = {u1,uz,...,urz)} be the MDC set of G and deg(u;) = 0,

for each w; € S. It implies that ) d(u;) = 0. Hence, |V — S| >

u; €S
2 d(uy).
u; €S
Case (ii): The graph G is disconnected with isolates.
Then G contains some connected component ‘g’ along with isolates.

Subcase (i): If the component ‘g’ such that |N[g]| > [§] then S'is a

MDC set of G with 1 < |S| = [£]. Suppose |S| =1 = 5 = {u} such
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that |N[S]| =[] — 1. Then |V = S| =p—1> ¥ d(u;) = [£] — 1.

u; €S

Suppose |S| = [£].
Then d(u;) < 2, for all u; € V(g). Now,
2 d(u;) = 2[§]

’LLiES

Therefore, |V — S| > > d(u;).

uiES

Subcase (ii): If the component ‘g’ such that |N[S]| < [§] then S

§0r§+2and|V—S|:p—f§]:%—1.

is a MDC set with isolates. Then ) d(u;) < £. Since S contains
u; €S

more isolates, the value ) d(u;) will be reduced. Then |V — S| >

u; €S
2. d(uy).

u; €S

Case (iii): The graph G is a disconnected graph without isolates.
Then G contains only connected components. Suppose G = mKo.

Then by the proposition (2.3.1)(i), yar(G) = |S| = [§]+1. It implies

that 3 d(u;) = [2] + 1. But |V -S| =|p— ([E]+1)| =2 - 1.

u; €S

If the size of the component g increases such as = mKy, mKy g, . ..

then | S| will be decreased. i.e., [S| < [f{]+1and > d(u;) > [§]+1.

u; €S

But in all structures, We obtain, |V — S| > > d(u;). n

u; €S

Theorem 3.6.6: Let GG be a disconnected graph without any vertex

critical components then [V — S| = | 2] if and only if G = K,,.
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Proof: Let G has no vertex color critical subgraph. Let G = Fp, p is
odd. Then S = {uy,ug,...,uz1} is a MDC set of G and v, (G) =
S| = [%]. Hence |V — S| = |§], if p is odd. When p is even ,

2
S = {u1,ug,...,up} is the MDC set and vy, (G) = |S| = § and
|V — S| =%. Hence |V = 5| = [§].

Conversely, suppose G # Fp. Then either G is disconnected
graph without isolates or GG contains atleast one component which is
not a vertex color critical with some isolates. Let [V — S| = |§].
Case (i): If G has components which is not vertex color critical with
no isolates then the structure like G = mK,. By the proposition
(2.3.1)(i), we have v (G) = [S| = [4] + 1. If |S| = [§]+1 =
V=S| =|p—=T15]1+1] > [§]. It is a contradiction to the assumption.
Case (ii): Suppose G = Cs U Kp_g, where Cg is not a vertex color
critical. Then S = {uy, us, ([4] — 6) K1}, where ug,us € V(Cg). It
implies that |S| = [§] —6 4+ 2 = |[§] — 4|. Therefore |V — 5| =
lp—[51+4| = 5] +4 > [5]. It is acontradiction. Hence G = K, if

and only if |V — S| = |£]. ]
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Abstract

This chapter introduces a new notion majority dom-chromatic par-
tition of a graph G. The majority dom-chromatic partition num-
ber dy, (G) is investigated for some families of graphs. Bounds on
dary(G) and its relationship with other graph theoretic parameters
are studied. Some inequalities on dys, (G) are determined. Also char-

acterization theorems on dy, (G) are established.
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4.1 Introduction

In 1977, Cockayane and Hedetniemi [14] introduced a concept do-
matic number in their seminal paper “Towards a Theory of Domina-
tion in Graphs”. This paper became the point of interest for many
researchers to step into domatic number. Then in 2010 Swaminathan
and Joseline Manora [37] introduced the concept “Majority domatic
number dy/(G)” as the maximum number of elements in a partition
of V(@) into majority dominating sets. They elucidated the param-
eter in various levels by establishing many results. They produced
the exact values of dj;(G) for some standard graphs, characterisation
theorems on dys, (G) and some inequalities for dy(G).

In recent years, several graph-theoretic parameters that combine
the concepts of domination and coloring have been investigated and
studied by many mathematicians effectively. Dom-chromatic parti-
tion was introduced by Janakiraman and Poobalaranjani [31]. Its
number d.,(G) was defined and the exact values for various classes
of graphs were determined. They established more results on d.,(G)
with other parameters for connected and disconnected graphs. Lower

and upper bounds of d.;,(G) are also found interms of p and A(G).
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These two parameters dy/(G) and d.,(G) gave the motivation to
introduce a graph theoretical parameter “Majority Dom-Chromatic
Partition (MDC Partition) of a graph” and its number dys, (G) on
graphs.

Organization of this Chapter is as follows. Section {.1] contains
an introduction and of the defined parameters. In section [4.2] the
concept of majority dom-chromatic partition of a graph G and its
number dys, (G) is defined with examples. The exact value of dys, (G)
for various families of graphs is determined in section 4.3} In sections
and [4.5] Bounds on dy, (G), the relationship of das, (G) with other
domatic number such as dy/(G),dq,(G) and d(G) and characteriza-

tion theorems on djys, (G) are also determined.

4.2 Majority Dom-Chromatic Partition

In this section, the concept of Majority Dom-Chromatic Partition
(MDC' Partition)- set of a graph and its number defined with some

examples.

Definition 4.2.1: Let GG be a simple, finite and undirected graph

with p vertices. A Majority Dom-Chromatic Partition (MDC - Par-
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tition) of a graph G is a partition of the vertex set V (G) into majority

dom-chromatic sets of G.

Definition 4.2.2: The maximum cardinality of a partition of V(G)
into majority dom-chromatic sets is the majority dom-chromatic par-

tition number and is denoted by das, (G).

Example 4.2.3: Consider the following graph with p = 16.

V14 Vis

Figure 4.1: G
In the above graph G, x(G) = 2 and S; = {vg,v7,v13},5; =
{01705, 716}, Sy = {03, US,U9}, Sy = {711077112,014} and S5 = {714,011,@15,
v1g} are the minimal majority dominating chromatic sets. Hence

Y x(G) = 3. Also, all the sets are only disjoint majority dominating

chromatic sets of graph G. Therefore dyx(G) =5 and du,(G) = 2.

Example 4.2.4: For the unicyclic graph G = (g o K7 with p =

18, x(G) = 3. Since Cy is the vertex color critical graph, the set
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S = {v1,v9, -+ ,v9} is the only majority dom-chromatic set of G and

YuX(G) =9 = v, (G). Hence dyx(G) =1 = da(G).

Example 4.2.5: Consider the graph G = K¢ + Cs + Cg + K.

Figure 4.2: G
Let V1 (Kg) = {u1,u, -+ ,ug} with d(w;) = 6, Va(C) = {v1,v2, -+ ,v6}

with d(v;) = 14,V3(Cs) = {wy,ws, -+ ,wg} with d(w;) = 14 and
Vi(Kg) = {1,209, , 26} with d(z;) = 6. For the graph x(G) =
3, Yen(G) = 3 = yurx(G). The dom- chromatic sets are S; = {vy, vo, w1 },
Sy = {ws, w3, v3}, S5 = {vg,v5,ws} and Sy = {ws, wg, v6} and the
remaining vertex set R = {uy,us, - ,ug, 1,22, -+ , ¢} will be the
dominating set but the set R does not satisfies x((R)) = x(G). Hence

there is no other disjoint dom- chromatic set exists. It implies that

dCh(G) = 4.
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The majority dom-chromatic sets are S; = {uy, vy, v2}, So = {us, us,
v3}, 83 = {ug, v, vs5}, Sa = {us, ug, ve }, S5 = {wy, 21, T2}, Sg = {w2, ws,
x3}, S7 = {wy, x4, x5} and Sy = {ws, we, v6}. Therefore the vertex set
V(@) partitioned into eight majority dom-chromatic sets for G.

Let S’ = {51,599, -+ ,Ss} be the majority dom-chromatic par-
tition for G and |N[S']| = p and since |N|[S;]| = p, there exists no
other disjoint majority dom-chromatic set for G. Hence dy;x(G) = 8.

Therefore, dp(G) < dury (G).

Proposition 4.2.6: For any graph G, (i) da,(G) < dy(G) and

(i) dn(G) < dary(G)

Proof: (i) Since every majority dom-chromatic set of a graph G
is a majority dominating set of G,var(G) > v (G). Then
dury (G) < du(G).

(ii) Since every dom-chromatic set of a graph G is a majority dom-
chromatic set of G, v, (G) > Yy (G). Hence doi (G) < dary (G).

4.3 dpry for Various Families of Graphs

In this section, the exact value of dar is determined for some classes

of graphs.
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Proposition 4.3.1: Let the graph G = K, 1, a star, G = [}, a

Fan and G = W), p > 5, a wheel. Then dys(q) = 1.

Proof: Since the graphs K ,_1, I}, and W, contains the central ver-
tex {v} is of degree d(v) = p — 1, any majority dom-chromatic set of
G must include the central vertex v. Hence V(G) wouldn’t be parti-
tioned into many disjoint majority dom-chromatic sets of G. Hence

dury(G) = 1. N

Proposition 4.3.2: For a complete graph G = K,,, dy, (G) = 1.

Proof: Since the graph G is vertex color critical, by proposition

(2.3.2)(1), vary(G) = p. Hence dj;, (G) = 1. ]

Proposition 4.3.3: Let G = C), be a cycle with p > 3. Then

1, if p is odd
2, iftp=4
dux(G) =14 3. if p=6,10

4, if p= 8,12, 14,16, 18, 22, 24, 28, 34

5, if p = 20, 26,30, 32 and p > 36.
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Proof: Let V(G) = {v1,v9,--- ,v,}be the vertex set of G. For the
graph G, x(G) = 3, if pis odd and 2, if p is even and by the propo-

sition (2.3.3),

(&1, if p =2 (mod 6)

Mix(G) = 2] +1, if p=0,4 (mod 6) (4.1)

p, if p is odd.
\

Case (i): Suppose p is odd. Then all the odd cycles C,,p > 3 are
vertex color critical graphs. By the condition (4.1), v, (G) = p and
hence dyx(G) = 1.

Case (ii): Let p = 4. Then S; = {v,v2} and Sy = {vs, v4} be the
only majority dom-chromatic partition set of G. Hence dys, (G) = 2.
Case (iii): Let p = 6,10. For p = 6,5 = {(v1,v9), (v3,v4), (v5,v6) }
and for p = 10,5 = {(v1, v2,v7), (v3, V4, vs), (U5, V6, Vg) }. Therefore S
is the only majority dom-chromatic partition set of G for p = 6, 10.
Hence dy, (G) = 3.

Case (iv): Suppose p = 8,12,14,16, 18,22, 24, 28, 34. By the condi-

tion (4.1), when p = 8,14, (i.e) p = 6k + 2, | —Fm| = 4 if k= 1,2.

When p =12,18,24, (i.e) p = 6k, [ 7] =4 if k = 2,3,4. When
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p=16,22,28,34, (i) p =6k +4, [ L] =4if k = 2,3,4,5. Let

Sy = {U17U2, s Ud(yany (G)=2)+15 Vd(yary (G +1}
= {v3, 04, Va0, (6)-2)425 Va(ann(@)-1)42
= {vs,v6, " - - 7U4(7MX(G)72)+3,U4(WMX(G)71)+3} and
= {717,718, “ s Ud(yag, (G)—2)+45 Vd(yar, (G +4}

Now, S1,59,53 and S; are majority dom-chromatic sets of G
such that the first two vertices v; and v; are adjacent in all sets
Sy and d(vj,vr) > 4,05 # v, v, € St = 1,2,3,4. There-
fore in all the sets, the last vertex is vy, @)-1+it = 1,2,3,4.
Then {51, 5,53, S4(V(G) — UL, S;)} is a majority dom-chromatic
partition of V(G) and therefore dy;x(G) > 4. Since dyx(G) <
Lmj ,dary (G) < 4. Then dyrx(G) = 4 when p = 8,12, 14, 16, 18, 22,
924,98, 34.

Case (v): Let p = 20,26, 30,32 and p > 36.
Subcase (i): Suppose p = 20,26,30,32. By the condition (4.1]),
When p = 20,26,32, (ie.) p = 6k + 2, | J—51fl€—345

When p = 30, (i.e.) p = 6k, [ J =5if k=5. Let

S1 = {01,092, Vs (3 (@)=2)4+ 15 Us(yar (G)—1)+1 )5

= {Ug, Udy " 5 Us(yary (G)—2)425 U5(yary (G +2}
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S3 = {U57 U6y """ 5 Us(yary (G)—2)+35 Us(yary (G +3}
= {07, U8, "+ 5 Us (0 (@)—2)+45 Us(yar (G)—1)4+4 ) and
S5 = {vg, v10, - - - 3 Us(yary (G)—2)+55 Us(yary (G +5}

Now, the sets S;,t = 1,2, 3,4,5 are majority dom-chromatic sets
of G' such that the first two vertices v; and v; are adjacent in all sets
Sy and d(vj,vg) > 4,v; # vg,vj,v, € St = 1,2,3,4,5. Observe
that in all five sets, the last vertex is vs(,,, (@)-1)+i,? = 1,2,3,4,5.
Then {S1, S5, 53, S4U (V(G) —U;_,S;)} is a majority dom-chromatic
partition of V(G) and therefore dyx(G) > 5. Since dy(G) <
LWX j dary(G) < 5. Hence dy (G) = 5.

Subcase (ii): Let p > 36. Let p = 0,2,4(mod 6). By the condition
(4.1), vy (G) = [£] and [£] + 1. When p > 36,p = 6k, Lmj =5
if k> 6. When p > 38,p = 6k+2,Lmj = 5if kK > 6. When
p>36p—6k—|—4L J—51fk>6 Then Sy, Ss, S3, S and
S5 are taken as in the subcase (i) and applying the same arguments,
we get dar, (G) = 5. Therefore dyrx(G) = 5 if p = 20,26, 30, 32 and

p > 36. |
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Proposition 4.3.4: For a graph G' = P,, a Path with p > 3 vertices,

’

,ifp=3

iftp=4,5

if6 <p<11,15

if p=12,13,14,33,34 and 16 < p < 29
, if p=30,31,32 and p > 35.

- -

-

9
=
=<
—~
Q
N~—
|
7\
O R L N

Proof: Let G = P,,p > 3 and V(G) = {v1,v,--- ,vp}. For G =

P,,x(G) = 2. By corollary (2.3.4),

2], if, ifp=1,2
Ty (G) = (4.2)
8] +1, ifp=0,3,4,5.
Case (i): Let p = 3. Then {(v1,v2)} is the only disjoint majority
dom-chromatic set of G. Hence dy, (G) = 1.
Case (ii): Let p = 4,5. Then {(v1,v2), (vs,v4)} is the only disjoint
majority dom-chromatic partition of G. Hence dy, (G) = 2.
Case (iii): When 6 < p < 11 and p = 15. Then {(v1, v2), (v3, v4), (v5,v6)}
is the disjoint majority dom-chromatic partition of G' for p = 6.
When p = 7,8, {(vs, v3), (v4,v5), (vg, v7) } is the only disjoint majority
dom-chromatic partition of G. Hence dps, (G) = 3. If p=19,10,11,15

then dy, (G) < Lﬁj = 3. Let
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S1 = {Uh U2, 5 U3(yary (G)—2)+15 U(yary (G +1}
Sy = {3, vy, -+ ,vg(WX(G)_z)+2,Ug(yMX(G)—1)+2} and
— {U57 Vg, * - - 7v3(’YMX(G) 2)+3 U'?’ (vmx (G +3}

be the MDC sets of G such that d(v;, v;) = 1 and d(v;, v) > 3,v; # v;
and [N[S,]| > [§] for all r = 1,2,3 and x((S,)) = 2 = x(G). Then
{S1USUSsU(V(G)—US,)},r = 1,2, 3 is the majority dom-chromatic
partition of G, dyr,(G) > 3. Since dar (G) < 3,dary (G) = 3.

Case (iv): When p = 12,13,14,16 < p < 29,33,34. By the condi-

tion ([A.2), if p = 12,16,17,18 then dy, (G) < |—L—| = 4. Let

= tux(G)
= V1,02, Vs i (6)-2)41 Vi i (@) -1) 1
= {03,040 Vs i (6)-2)420 VL2 i (@) -1) 2
=105, U6, 5 U2 | (ran(G)-2)+3: ULWJ(WX(G)*D%} and
= {01, 08, V2 (aa (@244 Vs | (an G) -1 +4)

be the MDC sets of G for p = 12,16,17,18. Also, if p = 13,14,19 <

p < 29,33, 34 then by condition (4.2), dar, < L#@j = 4 and the

MDC sets are Sl - {UZ’ U3y =ty ULWJ('YMX(G)_”‘*‘% ULA/M:;(G)J(VMX(G)_U"Q}’
S2 = {Va, U, 3 V]2 | andG)-2)+3) Vg i (@)-1)+3
S3 = {ve, v, - 7ULWJ(’7MX(G)—2)+47 ULWJ(WMX(G)A)H} and

Sy = {1}8, Vg, - 7ULWJ(VMX(G)*2)+5’ LWJ Thx (G +5}
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In the above two classifications of p,d(vj,vy) > 4,v; # vy, for
all vj,v, € Sp,r = 1,2,3,4. Then {Si, S, 53, S4(V(G) — U_,S,)}
is a majority dominating chromatic partition of V(G) and therefore
dary(G) > 4. Since dpyr(G) < 4. Hence dy,(G) = 4 when p =
12,13,14,16 < p < 29,33, 34.

Case (v): Let p =30,31,32 and p > 35.

Subcase (i): Suppose p = 30,35, 36,40,41,42. By the condition

1.2), When p = 30,35, 36,40, 41,42, da (G) < [s=L] = 5. Let

S1 = {01, V2, Vs (3 (@)=2)4+ 15 Us(yar (G)—1)+1 )5
= {v3, Va5 U (a0, (6)-2) 425 Vs (G)-1)+2
- {U5, U6y " " 5 Us(ary (G)=2)+35 Us(yary (G +3}
= {vr, U8, U (0, (6)-2) 445 Us(nry (G)-1)+4} and
S5 = {U9a U105 "+ 5 Us(yary (G)—2)+55 Us(yary (G +5}
Now, the sets S,,r = 1,2,3,4,5 are majority dom-chromatic sets

of G such that the first two vertices v; and v; are adjacent for all
Sy and d(vj,vr) > b,v; # v, v, v € Sp,r = 1,2,3,4,5. There-
fore in all five sets the last vertex is vs(y,, @)-1)+i ¢ = 1,2,3,4,5.
Then {Si, Sy, S3, S4U (V(G) —U>_,S,)} is a majority dom-chromatic
partition of V(G) and therefore dy;, (G) > 5. Since dy(G) <

5, dary (G) = 5.



Ch. 4: Majority Dom-Chromatic Partition Number of Graphs 114

Subcase (ii): Let p = 31,32,37,38,39 and p > 43. By the result

4.2 ) VMX(G) = ’%1 and [%r‘ + LdMX(G) < Lmj = 5. Then the

MDC sets are, S1 = {02, 03, 3 V| (ain(G)-2)25 V2o i (G)-1) 2
S = U4, V5, UL i (6)-2)43 Vs ain () -1) 43

S3 = {06, U7, 3 U2 | iy (6)-2)+45 V2 | i G) 1)+

Sa = {U8, 09, 3 U 2ios | iy (G)-2)+51 U2 | G)-1)+5 } and

S5 = {V10, V115 5 V] ain(G)-2)460 U2y (i (G)-1) 46

Applying the same arguments as in subcase (i), we get

dMX(G) = b. B

Proposition 4.3.5: For the graph G = K,,, dy, (G) = 1, if p is odd,

and dy, (G) = 2, if p is even.

Proof: Let G = K,. By the result (2.3.1)(ii), v (G) = [4] and
X(G) =1. Let V(G) = {v1,v2,- -+ ,v,} be the vertex set of G.

Case (i): Suppose p = 2m. Let S1 = {v1,v9,- -+ , v}, 59 = {Uma1,
Uma2, "+ , U2yt be the two disjoint majority dominating chromatic
subsets of V(G). Hence d, (G) = 2.

Case (ii): Let p =2m + 1. Let S} = {v1,v9,- -+ ,vp11} and Sy =
{Um+2, Umis,* * ,Voams1} be the two vertex subsets of V(G). Then

1S1| = [5], |S2] < § and S; is the majority dom-chromatic set of G
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and S5 couldn’t form the majority dom-chromatic set of G. Hence

dary(G) = 1. N

Proposition 4.3.6: Let G = K,,,,, m < n be a complete bipartite

graph. Then dy;, (G) = min{m,n} and dy;,(G) = §, if m = n.

Proof: Let Vi(G) = {uy,ug, -+ ,up} and Vo(G) = {vy,v9, -+ ,v,}
be the two vertex sets of G with p = m + n.

Case (i): If m = n and then d(u;) > [§] and d(v;) > [§]. Therefore
each {w;},i = 1,2,--- ;m and {v;},i = 1,2,--- ,n are the majority

dominating sets of G. Since x(G) = 2, each {u;,v;},i =1,2,...,m =

m-+n
2

n is the majority dom-chromatic set of G. Hence dj, (G) = :

V]S

if m =n.

Case (ii): If m < n then d(u;) = n and d(v;) = m. Since n >
m+1,|N(u;)| > m+2 > [5] and [N (v;)| < [§]. Hence each {u;} is
only a majority dominating set of G. Since x(G) = 2, choose dom-
inating edges of G such as {(uy,v1), (ug,v2), -, (U, V) }. These
subsets of G become the disjoint majority dom-chromatic sets of

V(G). Therefore dpr (G) = m = min(m,n), if m < n. n

Proposition 4.3.7: If G = D, 5, a double star then dy;, (G) = 2.
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Proof: Let u and v be the central vertices of the graph G. Let
{u1,ug, -+ ,u,} and [{v1,ve, -+ ,vs}| be the number of pendants at
uw and v with p=1r + s+ 2.

Case (i): Suppose s = r,7 + 1,7+ 2. Then d(u) > [§] and d(v) >
[£]. It implies that the graph G has two majority dominating vertices
at the centre. Since x(G) = 2,5; = {u,u1} and Sy = {v, v} are the
majority dom-chromatic sets for G. Hence dy, (G) = 2.

Case (ii): Let r < s and s > r + 3. Then d(u) < [§] — 1 and
d(v) > [§]+1. Hence the graph G has only one majority dominating
vertex v. Since x(G) = 2,51 = {v,vn1} and Sy = {u,uy,ve, -+ , v}
with ¢t = [£] — (r +2) — 1. Then [N[Si]| > [4] and |N[So]| =
du) + 1+t =r+2+[5] —(r+2) = [§]. Hence, S; and 5,
are majority dom-chromatic sets of G and majority dom-chromatic
partition is {57, 52 U R} where R is the remaining pendants. Thus,

dMX(G) = 2. B

Proposition 4.3.8: Let G = G%m) be a graph which contains m

copies of the complete graph K,,. Then dy, (G) = 1.

Proof: Let V(G) = {v,vi1,v12, -+, Vi(n—1), V21, V22, " =, Va(n—1)5" " *

U1, Um2, "+ > Umn—1)} be the vertex set of G and p = m(n — 1) +
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1. In the structure, all mcopies of K, meet at a central vertex v.
Since the degree of a vertex v is d(v) = p — 1,{v} is the majority
dominating set of G. The graph G contains a complete subgraph
K,. Since the graph K, is a vertex color critical, x(G) = n. Let S =
{v,v11,v12, - -+, Vim—1)} be the subset of G such that |[N[S]| > p—1 >
[2] and x((S)) = n = x(G). Hence S is a majority dom-chromatic
set of G. Since there is no other disjoint majority dom-chromatic
set without having the central vertex v. Hence the majority dom-

chromatic partition of V(G) is one and dys (G) = 1. ]

Corollary 4.3.9: Let G = Dz(,)m) ,m > 2 be a friendship graph.

Then dy (G) = 1.

Proof: The graph G contains ‘m’ triangles attached at a single cen-
tral vertex ‘v’ and d(v) = p—1. Since Y (G) = 3, D = {v, uy, ua} is
a majority dom-chromatic set of G with a central vertex v. So V(G)
would not be partitioned into many sets including v and das, (G) = 1.

Definition 4.3.10: Let G be a graph with p vertices and the max-
imum degree A(G). If dy(G) = 2A(G) + 1 then the graph G is

called majority domatically chromatic full.
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For example, let G = Cy. By proposition (4.3.3), da (G) = 5

and A(G) = 2. Hence dy,(G) =2A(G) +1=5.

4.4 Bounds on dy,(G)

In this section, bounds on dyr(G) with respect to yary(G),p and

A(G) are investigataed.

Theorem 4.4.1. Let G be any graph. Then d;, (G) < LWP(G)]

Proof: Let {V1, V5, -+, Vi} be the majority dom-chromatic parti-
tions of G. Then, p = |Vi| + |Vo| + -+ + |Vi| = i1|VL\ Let
dyy(G) = k. Therefore |V;| > vy (G), for each i. _Then p =
VA [Va| -+ Vi] = Brany(G)and p > Eyan(G) > dary(G)rany (G).
Hence dyr, (G) < Lmj |

Corollary 4.4.2: For any graph G, dy, (G)vary (G) < p.

Theorem 4.4.3: For any graph G,

These bounds are sharp.
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Proof: (i) If A(G) < [5§] — 1, the majority domination number

satisfies vy (G) > (2—] Since Y (G) < Y (G), Yy (G) >

o] = Taadrr]. It implies that 2A(G) +1 > |2 >
dry(G). Hence, dyy (G) < 2A(G) + 1, if A(G) < [2] — 1. This

bound is sharp if G = (), a cycle with p = 20. By the proposition

(33, duy(G) = 5= 28(G) + 1

(ii) Suppose A(G) > [§] — 1. Then vy(G) = 1. But for any graph

G, 7y (G) > 2 and duy (G) < Lva(Gﬂ = va(G)' It implies that

Ty (G) < dMX(G) and 2 < 1, (G) < W Hence

2y (G) < p and dyry (G) < (g) . (4.3)

This bound is sharp if G = Dy, Py, K 3. Since dMX(G) < 'YM)Z:(G)

and Yy (G) < A(G) + 1,7y (G) < < A(G) + 1. Then

de(

p
AG) 11 = nd©) 4

Hence from (4.3]) and (4.4)), (W) <duy(G) < (B). IfG =K,

then dy(G) =1 = (A(é’)+1). Therefore the lower bound is sharp.

If G = P, then dy (G) =2

(%’) and the upper bound is sharp. =

Proposition 4.4.4: For a graph G = K, pis odd, dy;, (G) = du(G) =
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Proof: Let p be odd. Let [S1| = [{v1,v2,--- oz} > [5] and [Ss| =
[{vre11, vreyaa, - s vpt| < [5] be two subsets of G. Clearly Sy be
the majority dominating set of G and Sy couldn’t be the majority
dominating set of G. Hence dy/(G) = 1. Since x(G) = 1,d4(G) =1
and dy,(G) = 1. Also since the graph G is totally disconnected,
V(G) is the only dominating set of G and d(G) = 1. Hence dys, (G) =

d(G) = dy(G) = d(G). .

Result 4.4.5: For given any positive integer p > 4, there exists

always a connected graph for which dys, (G) — den(G) = 1.

Proof: For p > 4, there exists a graph G = D,.;,7 < s be a double
star with p = r + s + 2. Then d.;(G) = 1 and by proposition (4.3.7,

dary(G) = 2. Hence, dyr (G) — dep(G) = 1. u

Result 4.4.6: For given any positive integer k, there exists a graph

which is not complete for which dy, (G) = den(G).

Proof: For any positive integer £ > 1, there exists a graph G =
K -1, astar which is not complete graph. By the proposition (4.3.1)),

dary(G) = 1. Since Y (G) = 2,den(G) = 1 = dr (G). u
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Result 4.4.7: Given any positive integer k, there exists a graph G
which is not complete for which dy, (G) = k.

Proof: Suppose G = K,k = 1 with p = 2k, Since v, (G) =

B

2, the vertex set V() can be partitioned into £ majority dom-

]|

chromatic sets. Hence dy;, (G) = £ = k. [

Proposition 4.4.8: Let P be a Petersen graph. Then dy, (P) = 2.
Proof: The graph P contains two pentagons C5. Since Cj is a vertex
color critical graph and Cs is a subgraph of P, var, (P) = 5. Therefore
the vertex set V' (G) can be partitioned into only two majority dom-

chromatic sets S; and Sy. Hence dy (P) = 2. ]

4.5 Characterization Theorems on

de(G)

The necessary and sufficient conditions on dyr, (G) with respect to

diameter of the graph are discussed in this section.

Theorem 4.5.1: Let G be a connected bipartite graph. Then dj/, (G)

< % and dy (G) = § if and only if G = Py, Cy, Ky, m = n and K.

Proof: The theorem is proved by induction on diam(G). If diam(G)

1 then the graph structures become G = K, and K,,,. If G = K,
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then G is vertex color critical and 7, (G) = p. Hence dy (G) =
1 <& If G = Ky, by proposition (4.3.6), dy(G) = &, if m = n.
When diam(G) = 2, the graph G becomes P53 and Cy. By the propo-
sition , dyy(P3) = 1 < £ and by the proposition (4.3.3)),
dyy(Cy) = 2 = 5. If diam(G) = 3, the graph structures be-
come G = Py and D, a double star with p = r + s 4+ 2. By the
proposition , dyry(Ps) = 2 = § and by the proposition (4.3.7)),
dary(Dys) =2 < 5.

Therefore the result is true for diam(G) = 1,2,3,---,(p — 2).
Suppose diam(G) = p — 1. Then the graph G = P,. By proposition

@.3.9)), dary(FPp) < §. Hence, dy (G) < 5.

Now, assume that dj;,(G) = §. From the above arguments, if

diam(G) < 2, dyr, = § holds for G = K, ,,m = n,Cy and K,. If
diam(G) = 3, the graph has two central vertices v and v with the de-
gree d(u) > 2 and d(v) > 2. Let {uy, ug, -+ ,up} and {v1,v9, -+ ,v,}
be the pendants at v and v and p = m+n+ 2, where m,n > 1. Sup-
pose m = n. Then [N[u]| > § and |N[v]| > §. It implies that {u}
and {v} are the majority dominating sets of GG. Since x(G) = 2, the

sets S1 = {(u,u;)} and Sy = {(v,v;)} where u; and v; are the only

majority dom-chromatic set for G. Hence dj;, (G) = 2. By assump-
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tion, dyry(G) = £ and implies that § = 2, %’”2 =2=>m=n=1
Therefore the graph G has one pendant vertex at both u and wv.
Hence G = P,. The converse is obvious. ]
Theorem 4.5.2: If the graph G is vertex color critical then dy, (G) =
1 and dry (G) Yy (G) = p.
Proof: Since the graph G is vertex color critical, x(G —u) < x(G)
for all u € V(G) Let S be the majority dom-chromatic set of G.
By the definition of majority dom-chromatic set, x({S)) = x(G).
Then the majority dom-chromatic set S contains all vertices of G.
Therefore S = {v1,vq,--- ,v,} and a1, (G) = |S| = p. Also, since
Yy (G) = p,duy(G) =1 = dep(G). Hence dar (G)yary (G) = p. n
Theorem 4.5.3: Let GG be any connected graph of p vertices. Then
dary(G) = 1 if and only if

(i) The graph G contains a full degree vertex,

(ii) The graph G is vertex color critical and

(iii) The graph G contains an induced vertex color critical subgraphs
which are not disjoint.
Proof: Let G be any connected graph of p and dy, (G) = 1.
Case (i): Then the vertex set V(G) is partitioned into only one

majority dom-chromatic set S. Therefore S = {v1, v, -+ ,v,} and
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Yy (G)|S| = p. It implies that the graph G with full vertex set is a
vertex color critical graph. Hence condition (ii) holds.
Case (ii): Suppose the majority dom-chromatic set S = S;US, such
that [N[Si]| > [§] and [N[So]| < [§]. It implies that S is the only
majority dom-chromatic set of G. Since for any connected graph G,
X(G) 2 2,|51] = 2 and [N[S1]] = [5].
Subcase (i): Suppose |S1] = 2. If G is a tree, x(G) = 2. Therefore
S1 = {ug,us}, where uy is of degree d(uy) < p— 1 and uy is of degree
d(uz) > 1 such that |N[S1]| = p. Hence the graph G contains a full
degree vertex uy. If d(u;) = p—1 and d(uz) = 1 then |N[Si]| =p >
[£]. Therefore G contains a full degree vertex uy. If d(u;) < p—1
and d(ug) > lthen there are two disjoint majority dom-chromatic
sets and dpr, (G) = 2, which is a contradiction to to the assumption.
Hence G contains a full degree vertex and then condition (i) holds.
Subcase (ii): If |S1| = 3, the graph G is a tree or it contains
a triangle. If G is a tree, S; = {uy,us,uz} is the majority dom-
chromatic set of G. Suppose d(u;) < p— 1 and d(u;) > 1,7 = 2,3.
Then there exists atleast two disjoint majority dom-chromatic set in
G. Hence dy, (G) > 2, which is a contradiction to the assumption.
Suppose G contains a triangle, x(G) = 3 and v, (G) > 3. Since

d(u;) <p—1and d(w;) > 2,i = 2,3,5] is a majority dom-chromatic
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set of G. By the above arguments, dj,(G) > 2, which is also a
contradiction. Hence the set S; with d(u;) = p — 1 and d(u;) > 2.
Therefore G contains a full degree vertex u; and the condition (i)
holds.

Subcase (iii) Suppose |S;| > 4. Then the graph G is a tree or
it contains a vertex color critical graph as an induced subgraph. If
G is a tree then S7 = {uq,us, us, us}, where d(u;) < p — 1 and by
the similar arguments as in the above case, dy, (G) > 2, which is a
contradiction to the assumption. Suppose the MDC set S = 57 U Sy
such that |[N[S1]| < [5] and [N[So]| > [§]. Then S is the majority
dom-chromatic set of G and apply the same argument as in case (i).
Hence the condition (ii) holds.

Subcase (iv) Suppose G contains a vertex color critical subgraphs
g1 and gy and let the induced subgraphs ¢g; and g9 such that |v(g;)| =
[v(g2)| are disjoint. If [N[g]| > [§] and [N[gs]| > [5] then there are
atleast two disjoint majority dom-chromatic sets in G and dys, (G) >
2, which is a contradiction to dy, (G) = 1. If |[N[gi]| < [4] and
|N{go]| > [5] and vice versa then there exists atleast two majority
dom-chromatic sets in G and dy(G) > 2. If [N[gi]| < [§] and

|Nge]| < [§] then there exists atleast two majority dom-chromatic
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Figure 4.3: G

sets in G and dpr, (G) > 2. Hence from the above cases, if the vertex
color critical induced subgraphs are disjoint then dys, (G) > 2, which
is a contradiction. Thus, the vertex color critical induced subgraphs
are not disjoint. Thus the condition (iii) holds.

Case (iii): Suppose S = 51 U Sy such that |[N[Si]| = [§] = |[N[5,]].
It implies that S; and S5 are majority dominating chromatic partition

sets of G and djr, (G) = 2, which is a contradiction to dy;, (G) = 1.

Hence by propositions (4.3.1]) and (4.3.2)), the converse is true. =

Proposition 4.5.4: Let G be a cycle on p vertices. Then dy;, (G) =

’VMp(G_) if and only if (i) p is odd (ii) p = 4, 6,8, 12, 16, 20, 30, 40.

Proof: Let G = C, be a cycle. By the proposition (2.3.3),



Ch. 4: Majority Dom-Chromatic Partition Number of Graphs 127

[£], if p = 2(mod 6)

Mix(G) = 2]+ 1, if p = 0,4(mod 6) (4.5)

p, if p is odd.
\

Assume that dy (G) = WS(G), (ie), dary (G) vy (G) = p.
Case (i): Suppose dy(G) = 1. Then vy, (G) = p. Then the
majority dom- chromatic set contains the whole vertex set V(G).
It implies that the graph G is vertex color critical. By proposition
(4.5.2) dpr(G) = 1if p is odd. Hence the condition (i) holds.

Case (ii): Let dps, (G) = 2. Then by proposition ([4.3.5)), if dyr (G) =
2 then p = 4 and vy (G) = 2. Therefore, dy, (G)Vary (G) = 2(2) =
4 = p. Hence the result is true for p = 4.

Case (iii): If da,(G) = 3 then by proposition (4.3.5]), p = 6,10. By
the result (4.5), var (G) = [£] + 1 if p = 6,10. Then vy, (G) = 2
and 3. From the assumption, d (G)var(G) = 3(2) = 6 = p and
dary (G) vy (G) = 3(3) = 9 < p. Hence if dy (G) = % then
p = 6 only.

Case (iv): Let dy(G) = 4. Then by proposition ([£3.5), p =
8,12,14,16, 18, 22,24, 28, 34. When p = 6k + 2, va1,(G) = 2 and 3, if

k =1and 2. When p = 6k, v (G) = 3,4,5,if k =2,3,4. When p =

6k + 4, Yary (G) = 4,5,6,7 if k = 2,3,4,5. Then dyp, ()71, (G) = p
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if p=8,12,16. For all other vertices, dar, (G)vary(G) < p. Hence if

dary (G) = then p = 8,12, 16.

P
Ymx(G)

Case (v): Let dy(G) = 5. Then by proposition (4.3.5), p =
20, 26, 30,32 and p > 36.
Subcase (i): Let p = 6k + 2. Then v/, (G) = [£]. When p =

20, vy (G) =4 and - = 5. When p = 26, then vy, (G) = 5 and

( )

= 5. When p = 32, then v/, (G) =6 and - = 5. When

Tux(G)
=5if k= 5.

’YMX( )

p = 6k and p = 30,7, (G) = [p}+1_6a,nd ()

Therefore in all sets, wa(G) =5 = du(G) if p = 20, 30.

Subcase (ii): Let p > 36. Then by proposition (4.3.5 b~ =5,

7 My (G)
By the (4.5)), if p = 40, then vy, (G) = 8 and m =5 = dyy(G)
When p = 6k,7,(G) = [£] + 1 and WS(G) = du(G) if k > 6.
When p = 6k + 2,7, (G) = [%] and wf(G) = du(G) if £ > 6.
When p = 6k + 4,7, (G) = [£] + 1 and m =dy(G) if k> T.
Therefore in all cases, Wf(G) =5 = du(G) if p = 20, 30, 40. N

Proposition 4.5.5: Let G be a Path on p vertices. Then dy;, (G) =

if and only if p =4,6,9,12, 16, 30, 35, 40, 45.

7]\4)(( )

Proof: Applying the same arguments as in Proposition (4.5.3), we

obtain the result. [



Chapter 5

Changing and Unchanging
Properties of Majority

Dom-Chromatic Number

Abstract

In this chapter, the effects of majority dom-chromatic number v/, (G)
when removing any vertex, edge and adding any edge in the graph
G are investigated. Nine classification of the vertex set and the edge
set are discussed accordingly the vertex sets namely Vyy (G), Vy,, (G)
and Vj7 (G) by vertex removal and the edge sets E3, (G), Ey (G)
and Ey; (G) by edge removal and &5, (G), &5, (G) and &y, (G) when
adding any edge in G. Also results on these classifications and some

characterization theorems are determined.
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5.1 Introduction

In 1982, Harary [2I] and Haynes [25] surveyed the classification
of graphs as (i) domination number changes when any vertex is re-
moved (ii) domination number changes when any edge is removed
(iii) domination number changes when new edge is added (iv) dom-
ination number unchanged when any vertex is removed (v) domina-
tion number unchanged when any edge is removed (vi) domination
number unchanged when new edge is added. They established many
results on these six types. In 2012, Janakiraman and Poobalaran-
jani [31] were studied the changing and unchanging properties with
respect to dom-chromatic number of a graph. They produced more
results with the property such as degree, diameter and chromatic
number on the effects of removing vertex, edge and adding any edge
in the graph G.

In 2011, Joseline Manora and Swaminathan [38] were surveyed
the effects of majority domination number when removal of any edge
from the graph. Also, in 2013 [39] they studied vertex critical on
majority domination with respect to the deletion of a vertex from

the graph GG. They established many results about these two effects
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on graphs.These concepts gave the motivation to study this concept,
changing and unchanging properties of majority dom-chromatic num-
ber when removal of a vertex, an edge and adding an edge in the

graph G.

5.2 Changing and Unchanging of MDC

Number by Vertex Removal

In this section, changing and unchanging of Majority Dom-Chromatic
(MDC) number vy, (G) is defined for the graphs by vertex removal

with some examples.

Definition 5.2.1: For any graph G, the vertex set V(G) can be
partitioned into three sets Vy; (G), Vy;, (G) and Vy; (G) with respect
to MDC sets by a vertex deletion and is defined by,

Vi G) = {v e V(G) /(G = v) = 1 (@)},

Vi (G) = {v € V(G) /1y (G = v) < 7y (G)} and

Vi (G) = {v € V(G) /721, (G = v) > 1y (G)}-

Definition 5.2.2: A graph G is said to be a CVRjs- graph if
Yy (G — v) # Yy (G), for every v € V(G). A graph G is said
to be a UVR /- graph if v, (G —v) = Yy (G), for every v € V(G).

Example 5.2.3: Consider the graph G with p = 16.
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Figure 5.1: G

In this graph G,S = {vs, vs,v7,vs,v15} is the v~ set of G.
Then 7y, (G) = 5. For the graph G — {vs}, v (G — {v5}) =
[{va, v3,v4, v3}| = 4. Therefore 1, (G — v5) < Yy (G). Hence vs €
Vi, (G). For the graph G—{vs}, vary (G —v2) = [{vs, v6, v7, vs, V15 }| =
5. Therefore vy, (G — vs) = Yary (G). It implies that vs € Vyy, (G).

Example 5.2.4: Consider the graph G = F,,p = 17 a Fan.

Figure 5.2: G

In this graph G, var, (G) = [{v1, v2, v3}| = 3. For G—{va}, yary (G—
vy) = |{v1,v3,v4}| = 3. Therefore vas (G — v2) = Yary(G) and vy €
Vi (G). For the graph {G —v1}, yar (G —v1) = [{vs, v4,v7, v10}| = 4.
Hence va1, (G — v2) > 7ary(G) and vy € Vi (G).
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Theorem 5.2.5: If a graph G is a vertex color critical then G €
CV Ry

Proof: Since the graph G is vertex color critical, v, (G) = p. If
the removal of any vertex v from V(G), x(G —v) # x(G). It implies
that ya (G — v) < Yy (G), for every vertex v € V(G). Hence
G € CV Ry ]

Corollary 5.2.6: Let G = K),,p > 2. Then G € C'V Ryy,.

Proof: By the proposition (2.3.2)(i), vary(G) = p. For the graph
Yy (G —v1) = p — 1. Hence (G — v1) < Y (G). Therefore
v1 € Vi (G). For every vertex v € V(G), 7y (G — v) < yuy(G).
and G € CV Ryyy. ]

Proposition 5.2.7: Any Path P,, p = 3(mod 6) is a C'V Ry, graph.

Proof: Let G = P,,p = 6k+3,k < 1. Then by the corollary (2.3.4),
Yy (G) = k + 2. For each vertex v € V(G), v (G —v) =k +1<
k + 2, where p = 6k + 2. Hence P, € CV Ry, if p = 3(mod 6). n

Proposition 5.2.8: A Wheel graph G = W,,,p > 5 is a CV Ry,

graph when p is even.

Proof: Let G = W, = C,_; V K;. By the proposition (2.3.6),
Yy (G) = p, when p is even. Let V(G) = {v1,v2,...,vp-1,v,} where
v € Cp1,i =1,2,--- ,p—1and v, € K; such that d(v,) = p — 1.
Suppose G' = G — {v,}.
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Case (i): Let {v,} be the central vertex of G. Then G—{v,} = G’ =
Cp_1. Since pis even, C),_; is an odd cycle. By the proposition (2.3.3),
Yy (G') = p — 1. Therefore vy, (G') < vary (G), for v, € V(G).
Case (ii): Suppose {v;} be any vertex in C,_;. Then the graph G
becomes a Fan G' = (G — {v}) = P,_2 V K;. By the proposition
(2.3.7), var(G") = 3. Hence a1 (G') < vy (G).

In these two cases, the removal of any vertex {v;} in V(G),

Yy (G — i) < Yy (G). Hence G € CV Ry, n

5.3 Results on Vy, (G) and V]\J/_?X(G)

In this section, the vertex sets Vi, (G) and Vy; (G) are discussed for
the graph G with the property such as majority dominating verter,

private neighborhood and cp-set.

Proposition 5.3.1: Let G = K;,_1. Then v, € VA}X(G) and v; €

Vir (G) where vy is a central vertex and vjs are pendants.

Proof: Let V(G) = {v1,v2,...,v,}, where v; is the central vertex
and others are pendants. The set S = {vy,v9} is the MDC set of

G and Y1, (G) = 2. For a graph G — {v1}, 7, (G — v1) = [51].

Therefore yur, (G — v1) > 7y (G). Hence vy € Vi (G). Suppose
any pendant v;,7 = 2, , p, Ya (G — vi) = 2 = Y (G). Therefore

vi € Vy;, (G), where vjs are pendants. |

Theorem 5.3.2: If G has exactly one full degree vertex and other

vertices are of degree d(v;) < p%l then |VAJ/}X(G)\ = 1.
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Proof: Let G be a graph which contains a full degree vertex ‘v’ and
S be a MDC set of G v must be in a majority dominating set S and a
minimal cp - set of G. Then |[N[S]| > [§] and x((S)) = x(G). Let &’
be the var,- set of G' = {G — v} and {G — v} contains isolates, then
iy (G') > |S| = Y1y (G). Tt implies that v € Vi (G). If {G — v}
contains the vertices v; with d(v;) < [251] then |S’| > 2. Therefore
S| > |S|+1. Tt implies that v, (G —v) > Y, (G) and v € Vi (T).
Thus, all other vertices are Vyy, (G). Hence Vi (G)] = 1. ]

Theorem 5.3.3: Let T be a tree with p vertices. If a vertex v € V(7))

satisfies one of the following conditions.

(i) v is in a dominating edge e = {uv} with d(v) > [§] — 1 and
d(u) < [5] =1
(ii) v is a vertex with degree d(v) = p — 1 and others are pendants
(ili) v is in every yas,- set of T'.
then v € VﬁX(T).

Proof: Let T be a tree with p vertices and v € V(7).

Case (i): Let e = {uv} is a dominating edge with d(v) > [§] —1
and d(u) < [§] — 1. Since x(G) = 2,S = {u,v} be a vy~ set of T
Let S1 = {u,u1,v;} be a set of T'— {v}, where u and u; are adjacent
and v;s are isolates such that |N[S;]| > [§] with |S;| > |S|. Then
X(T) = x((S1)) = x(T —v). Thus S; is a MDC set of T"— {v} and
T = v) < |81, Since [Si] > [SL (T - v) > 8] = 1y (T).
Hence v € Vy; (7).

Case (ii): Let d(v) = p—1 and d(v;) = 1, for all v; € V(T'). Then
Yy (T) = [{v,v1}| = 2, for some v; such that d(v;) = 1. Since v is
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adjacent to all vertices v; of T, (T' — {v}) is disconnected with only
isolates. Now, there exists a MDC set S in T'— {v} with only isolates
and |S| = [551]. It implies that |S| = yar, (T — {v}) > var,(T) and
v e Vi (T).

Case (iii): If the vertex v is in every minimum MDC set of T', then
v is in a dominating edge e = uv or v is a full degree vertex of T'. It
implies that d(v) > [§]—1,d(u) < [§]—1 and other vertices v;s are of

degree with d(v;) < [§] — 1. By Case (i), the vertex v € V37 (T). m
Theorem 5.3.4: For any graph G, [V3} (G)] < vy (G).

Proof: Let S be a - set of G. Let v € VAJ/}X(G). It implies that
v is in every s, - set S of G. Then v € S and VA}X(G) C S. Hence
Vi (G <151 = (@) .

Theorem 5.3.5: If v € V}; (G) and v is in every minimal cp- set of

G then |Pnlv, S]| > 2, for all vy, set S of G.

Proof: Let S be a var,- set of G. Let v be a vertex in every minimal
cp-set of G. Then x({S —v)) = x(G —v) < x(G). Let Pn[v,S] =
¢. Then {S — v} is a 7y~ set of {G — v}. It is a contradiction
to v € Vj7 (G). Suppose |Pn[v,S]| = {v}. Then v is an isolated
vertex in S and hence v € V]\OIX(G), which is a contradiction. If
|Pnfv, S]| = {u} then {S — v} U{u} is a yar,- set of {G —v}. Thus
Ty (G —v) < |S| = 7, (G), which is a contradiction to v € Vy; (G).
Hence, |Pnlv, S]| > 2. n

Theorem 5.3.6: If v is an isolated of G then v € VJ\(}X(G).
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Proof: Let v be an isolated vertex of G. Then v is not in minimal
cp-set of G. Let S be a a1~ set of G and not containing the vertex
v. Then |N[S]| > [£] and x((S)) = x(G). Then vy, (G) = |S|. For
the graph {G — v}, x((G —v)) = x(G) and S is again the ~v/,~ set
of {G —v}. Therefore v37, (G —v) = Y (G) and v € Vi (G).  m

Theorem 5.3.7: If a vertex v € V(@) is not in any minimal cp-set

of G then v € Vi, (G).

Proof: Let S be a vy~ set of G. If a vertex v which is not in any
minimal cp-set of G then x((S —v)) = x(G). Hence Pnlv,S] # ¢.
Let |Pnfv, S]] = 1. If Pn[v, S] = {v} then v is an isolated vertex in
S. By the theorem (5.3.6), v € Vyy, (G). |

Proposition 5.3.8: Let G = W, = C,_; V Kj,p is odd be a wheel.
Then

(1) V; € VJ\%X(G)’ if v; € Cp_l.

(ii) v € Vyp, (G), if v is a central vertex of G and p < 17.

Proof: ForG =W, =C,_1VKy,pisodd, V(G) = {vi,va, - -+, vp_1,Up}.
By the proposition (2.3.6), yar,(G) = 3. The removal of any vertex

v from V(G), there exists two cases.

Case (i): Suppose any vertex v; € Cp—1. Then G' = G — {v;} and
G' = F, 1 = P,V Kj, where (p — 1) is even. By the proposition
(2.3.7), 7y (G") = 3. Hence yar, (G') = s (G) and v; € Vi) (G).
Case (ii): Suppose v, is a central vertex and p < 17. The ;- set

of G is S = {v1,v9,vp}. Then v (G) = |S| = 3. If the removal of
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a central vertex v,, G’ = G — {v,} and G’ becomes C,_; even cycle.

By the proposition (2.3.(3),
p, if p 1sodd

i (G) = {0 [B], if p = 2(mod 6) (5.1)
\ (8] + 1, if p = 0,4(mod 6).

For p < 16, by the result (5.1), yar (G') = 5’| = 3. If p < 17, by the
result (5.1), var (G') = |9'| < 4. Therefore, yar, (G') > vy (G) and
vp € Vi (G). Hence v, € Vi1 (G), if p < 17. ]

Theorem 5.3.9: Let v be a vertex of G with v € V]\}}X(G). Then
there exists a vertex u € V(G) such that v, (G — u) = vy (G).

Proof: Let S be the vy~ set of G. Then |N[S]| > [£].

Case (i): Suppose |N[S]| # V(G). Then there exists a vertex u ¢
N[S]| and implies that u ¢ S,u € V — N[S]. Then S C V — u and
IN[S]| < [%] and [Ng_,[S]| < [2]. It implies that |Ng_,[S]] = [25].
Therefore S is a MDC set of {G — u}. Then vy (G —u) < |S| =
Tux(G). I Y (G — u) < Yy (G) then u € Vi, (G), which is a
contradiction to v € Vyj (G). Hence yar, (G — u) = 7, (G).

Case (ii): Suppose N[S] = V(G). Let u ¢ S and u € N|[S]. Then
INg_u[S]| =p—1< P’%ﬂ Therefore S is a majority dom-chromatic
set of {G — u}. Then Y (G — u) < |S| = Y (G). I yar (G —
u) < Yy (G) then v € Vi (G) and V(G) = Vy; (G), which is a
contradiction to v € Vyj (G). Hence yar (G —u) = yar (G).

Case (iii): Suppose |N[S]| < V(G). Then there exists a vertex
we S and |N[S]| < [E]. For 8 — {u}, x({S — w)) < x((S)) = x(G)
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and S is not a yur,- set of G. Therefore choose S1 =5 — {u} U{w}
where w € V' — S such that |[N[S;]| < [£] and w is adjacent to any
vertex of S with |S;| = |S|. Hence S; is a yary- set of {G — u} and
(G = u) = [91] = [5] = 10y (G)- .

5.4 Results on V;, (G) and CV Ry,

In this section, the vertex set Vy (G) is investigaled when a vertex

is removed from the graph G and CV Ryt graphs are also discussed.

Theorem 5.4.1: If GG is a vertex color critical graph then V(G) =

V]V_[X(G) but the converse is not true.

Proof: Let GG be vertex color critical graph with p vertices. Then
by observation (2.2.4)(ii), vy (G) = p and for all v,y (G — v) <
Yy (G). It implies that v € Vy; (G) for all v € (G) and V), (G) =
V(G). For the converse, Let G = P,,p = 9. Then 7y, (G) = 3. For
any vertex v, Py — {v} = P and v (%) = 2 < v (G). Hence
V(G) =V (G) and G € CV Ry, but G = Py is not a vertex color

critical graph. n
Proposition 5.4.2: If G is a C'V Ry, - graph then Vy, (G) # ¢.

Proof: Since G is a CV Ry~ graph, V = VA}X U V]\}X. Suppose
Vir (G) = ¢. Then V(G) = Vy; (G) and 7, (G — v) > yary (G), for
all v € V(G). Let S be a yary- set of G with |S| = p — 1. Then
V—8S+#¢ LetuecV—Sand {u} CV(G)—S. It implies that
S C V(G)—{u} = G—u. Since G is a CV Ry, - graph, x((S)) = x(G)
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and x((S)) = x((G — w)). It implies that S is a yar,- set of (G — u)
and Y (G — u) < [S| = Yy (G). Therefore u € Vy, (G), which
is a contradiction to the assumption. Hence V]\}X(G) # ¢, for any

CV Ry graph G. N

Theorem 5.4.3: Let G be a CV Ry, graph with p vertices. Then
Vi (Gl = p = 7 (G).

Proof: Let S be a vary- set of G. If G is a CV Ry~ graph then
Tax(G—v) < Yy (G). Suppose |S| = iy (G) = p. Then [V}, (G)] <
p — Yy (G) holds. Suppose |S| = var (G) < p. Then V — S # ¢.
Now choose any vertex v € V' — S. Since v, (G —v) < vy (G), v €
Viry(G). Therefore V. — S C Vy, (G). It implies that [V — S| <
Viry (G)]. Hence [Vir (G)] = p— sy .

Theorem 5.4.4: Let vy, (G) be the MDC number of a graph G and
Yy (@) = [V(G)]. Then [Vy (G)| = [V(G)].

Proof: Let S be a v/~ set of G and vy, (G) = |V(G)| = p. Then G
is a vertex color critical graph. For any v € V(G), x(G —v) < x(G)
and it implies that ya (G — v) < yuy(G). Hence v € Vy, (G), for
all v € V(G). For every v € S, va (G — v) <y (G) is true. Hence
Vi) = V(@) .

Theorem 5.4.5: If G is a graph with 7,/ (G) = |V(G)] then G €
OV Ru,.

Proof: Let G be a graph with p vertices and vas, (G) = |V(G)| = p.
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Then G is a vertex color critical graph. Therefore, for any vertex
v € V(G), the graph G’ = G — {v} has the value 7, (G') < p.
It implies that var (G') < Yy (G), for every v € V(G). Hence
G € CV Ry ]

The following theorem establishes the characterization on CV Ry, (G)

Theorem 5.4.6: Let G be a connected C'V Ry, - graph with x(G) <
3. Then G has a unique 7y~ set of G if and only if v/, (G) = |V(G)].

Proof: Let the graph G have a unique 7~ set S.Then we claim
that V(G) — S = ¢. Suppose V — S # ¢. Since G is a CV Ryyy-
graph, yar (G — v) < Yy (G), for every v € V' — S. Then for each
v eV —5x({(s—v)) < x((s)) and the induced subgraph (s) is a
vertex color critical. Hence for any u € V — 5,5 is a MDC set of
G —{u}, which is a contradiction to the assumption. Therefore there
exist v € V' — § such that x((s —v)) < x((s)). Then Pnlu, S] # ¢,
for any u € S.

Case (i): Let |Pn[u,S]| = 1. If Pn[u,S] = {u} then u is an isolate
in (S). Since G is connected, N(u) # ¢ and N(u) C V — S. Also
some vertex w € V' — .S is adjacent to any vertex in S. Let w € N(u).
Then (S —u) U{w} is a vyar,- set of G, which is a contradiction to
the assumption. So Pnfu,s] = {v}. Then (S —u) U {v} is yar,- set
of GG, which is a contradiction to the assumption. Hence V — S = ¢.
Thus [V/(G)] = yary (G).

Case (ii): Suppose |Pnlv,S]|| < 2. Let v € Pn[v,S]. Then there
exists a vertex w # v such that w € Pnfv, S]. It implies that (S—v)U
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{w} is a yary- set of G, which is a contradiction to the assumption.
Let x,w € Pn[v,S]. Then (S—u)U{w} is a yar,- set of G—xz. Thus,
V(G| = [S] = 11, (G).

Conversely, yary(G) = |V(G)| = p. It implies that the graph G
have a unique MDC set of G. |

5.5 Changing and Unchanging of MDC
Number by Edge Deletion

In this section, Changing Edge Removal and Unchanging Edge Re-
moval with respect to the MDC number of vary, graphs are investi-

gated.

Definition 5.5.1: The edge set E(G) is partitioned into three sets,

each depending on the effect of the removal of an edge on 7,,(G) and
X(G@).

BN (G) = {e € E(G) /(G =€) = (G)}

Eyy (@) =A{e € BE(G) /1y (G =€) < (G)}

By (G) = {e € E(G) /7 (G =€) > 1 (G)}-

Example 5.5.2: Consider the graph G with p = 15 vertices.
In this graph G, the vy, - set of G is S; = {v1,v3,v4,v12} and

Yy (G) = |S1| = 4. The dominating set is Sy = {v1, v7, vip, v12} and
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Via

15

Figure 5.3: G
v(G) = |S2| = 4. The - set and vy- sets are S3 = {vy, v3, v4, V7, V10,

vio} and Sy = {v1,v12} respectively. Therefore v.,(G) = |Ss| = 6
and vy (G) = |Ss] = 2. Thus for the graph {G — e1}, the v, - set is
{v1,v5,v10} and a7, (G — e1) = 3. Therefore v, (G — e1) < Yy (G)
and e; € Ey; (G). Again for the graph {G — ea}, yary (G — e2) = 4.

Hence var, (G — e2) = vary (G) and ey € ER/[X(G)-

Example 5.5.3: Consider the following graph G with p = 13 ver-

tices.

L

Figure 5.4: G
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For the graph G, the vy~ set is S1 = {vs,v9} and v (G) =
|S1| = 2. Then for the graph {G —e}, the MDC set is Sy = {vy, v5, v }
and Yary (G —e) = |S3| = 3. Therefore vy, (G —€) > yury(G). Hence

e € E;\}X(G).
Observations 5.5.4:
(i) Let G = Ky p_1 be a Star graph. Then e € E]%X(G), for all
e € E(G).
(ii) For G = D, a Double star, e € ERIX(G), for all e € E(G).

(ili) If G =W, = Cp_1V K; is a Wheel graph then e € ER/_,X(G), for
all e € E(G),p is odd and e € Ey; (G), for all e € E(Cp-1),p

1S even.

(iv) Let G = F, be a Fan graph. Then e € E}; (G), for all e €

E(G).
(v) For G = K, a complete graph, e € E, (G), for all e € E(G).

(vi) Let G = K, — {e} be a graph. Then e € Ej, (G), for all

e € E(G).

(vii) If G is a caterpillar graph then e € Ef; (G), for all e € E(G).
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(viii) Let G be a Petersen graph. Then e € E}; (G), foralle € E(G).

(ix) Let G = K,,, be a complete bipartite graph. Then e €

ER, (G), for all e € E(G).

Proposition 5.5.5: Let G be any Cycle C), with p vertices. Then
(i) e € Ey, (G), if pis odd

(i) e € E&X(G), if p is even.

Proof: Let G = C, be a Cycle. Then by proposition (2.3.3),

p
p, if p is odd

My (G) = S [£1, if p = 2(mod 6) (5.2)

(&1 +1,if p = 0,4(mod 6).
\

Case (i): When p is odd. Then the graph G becomes an edge color
critical. i.e. x(G —e) < x(G). If the removal of any edge e = v;v;,

the graph (G — e) becomes P,, a Path. By corollary (2.3.4),

(2], if p = 1,2(mod 6)
1ux(G) = (5.3)
[£]+1, if p=0,3,4,5(mod 6)

Therefore, yary (G—e) = Yar (Fy) < p = iy (G). Hence yar, (G —

e) < Yux(G) and e € Ey; (G). Thus (i) holds.
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Case (ii): When p is even. Let e = v;v; be an edge in G and the

removal of the edge e from G, (G — e) becomes P,, a Path and p is

even. By the result (5.3)), yar (G —€) = v (FP,), p is even. Hence

from (5.2) and (5.3), var (G — €) = s (G) and e € EY;, (G), if p is

evell. |

5.6 Results on E}, (G), E}y, (G)
and E]'\"IX(G)

In this section, the edge set E(G) is classified into three sets namely

ES, (G), Eq (G) and Ejy (G).

Proposition 5.6.1: Let G = P, be a path. Then e € E}; (G), for

any edge e € F(G).

Proof: Let G = P, be a path of p vertices with d(v;) = 2, for all

i=2,3,---,(p—1). By the corollary (2.3.4),

[£1, if p=1,2(mod 6)
(@) = (54)
[E1+1, if p=0,3,4,5(mod 6).

Let S be a vy, - set of G with this cardinality of (5.4). Then the
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removal of any edge e = v;v; from G, it creates two paths P, and P
in (G—e) and x(G —e) =2 = x(G). Then there exists another yy/,-
set 57 for (G — e) with the same cardinality of vy, of G in any of
these Paths P, or P. Therefore vy, (G — e) = |S1| = |S] = vy (G)
and e € ERIX(G), for any edge e € F(G). u
Theorem 5.6.2: Let T be any tree with p > 3 vertices and S be a
Ty~ set of T. If e ¢ ((N[S])) then e € EY (T).

Proof: Let T be any tree with p > 3. Then x(7) = 2. Let S
be a vary- set of T. Then [N[S]| > [£] and x((S)) = x(T). Let
e ¢ ((N[S])). Then the removal of such edge e, would not affect
its MDC — number and S is also a MDC — set of (T" — e). Thus
Yy (T =€) = 1y (T) and e € EY; (T). ]
Theorem 5.6.3: Let e € E(G) be any edge of a graph G. If x(G —
e) = x(G) then e € E%X(G).

Proof: Let x(G —¢) = x(G), for any e € E(G). Suppose e #
E%X(G). Then either e € Ey; (G) or e € Eyx(G). If e € By (G)
then v (G — e) < yuy(G). It implies that x(G —e) < x(G),
which is a contradiction to the assumption. If e € E&X(G) then
Yy (G — €) > vy (G). It implies that x(G — e) > x(G), which is a

contradiction to the assumption and e € £, (G). |
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Theorem 5.6.4: If an edge e € E(G) is not in every v~ set of G

then e € ngX(G)-

Proof: Let e = uv be any edge in G and S be a v/, set of G. Let e ¢
S, for every yary- set S of G. Suppose e ¢ Ej;, (G). Then either e €
Ey (G)oree B (G). If e € By (G) then 7, (G —e) < 7y (G).
It implies that e is in every 7y, - set of G. It is a contradiction to the
assumption. If e € Ey; (G) then v, (G — €) > qar, (G). Tt implies
that v/ (G —e) > yu(G). Hence e is in every 7ur,- set of GG, which

is a contradiction to the assumption. Thus, e € ERIX(G). N

Theorem 5.6.5: Let G be any graph. If x(G —e) < x(G) then

e € Ey; (G), for any edge e € E(G).

Proof: Let x(G —e) < x(G).To prove that e € E}; (G). Suppose
that Yar (G — €) £ Y (G). Then vy (G —€) > v (G). Let
S and S’ be the 7y~ sets of G and (G —e). If v (G —e) =
13x(G) then |8] = |S']. Tt implies that x((S")) = x((S)) = x(G).
which is a contradiction to the assumption. Also if v/, (G —e) >
Yy (G), then S’ > |S] and x((S)) > x((S)) = x(G). It follows
that x(G — e) > x(G) which is a contradiction to the assumption.

Hence e € Ey; (G). n
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Theorem 5.6.6: If the graph G is vertex color critical then e €

By (G), for any edge e € E(G).

Proof: Let the graph G be vertex color critical. Then x(G —e) <
X(G) and Y1, (G) = p. Let e € E(G). Then v (G — e) < v (G),
for any edge e = wv. Since x(G —e) < x(G), Yy (G —e) < Yy (G).
Hence e € Ey; (G), for any edge e € E(G).

For example, let G = Cy be a vertex color critical graph. For any
edge e € E(G), (G —e) = Py. By proposition (2.3.3), var,(Cy) = 9
and by the corollary (2.3.4), vary(FPy) = 2. Therefore vy, (G —e) <

Tux(G), for any edge e and e € By (G). N

Theorem 5.6.7: If ¢ = uv be an edge of a graph GG and both u and

v are in every Y- set of G then e € Ey; (G).

Proof: Let G be any graph with p vertices and S be the yu/,- set
of G. Then |N[S]| > [§] and x((S)) = x(G). Let e = uv be an
edge in G. Since v and v are in every 7,,- set of G, the edge e must
be in every cp- set of G. Hence the removal of an edge e from G, it
affects the chromatic number of G. Then x(G —e) < x(G). Hence

by theorem (5.6.6), e € £y, (G). ]
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The next theorem gives the necessary and sufficient condition for
an edge ‘e’ belongs to the set By (G).
Theorem 5.6.8: Let G be any graph with p vertices and ¢ edges.
Then an edge e € E‘{“{G} if and only if either the condition (i) or

the condition (ii) is true.

(i) The graph (7 is vertex color critical

(ii) The graph G contains a clique H with |V(H)| = 3.

Proof: Let e € E}; (G). Then vy (G — €) < 7ary(G). To prove the
conditions (i) and (ii) are true. Since yar (G — €) < 7 (G), x(G —
e) < y(G). It implies that the graph G is edge color critical and
therefore the graph G is vertex color critical. Hence (i) is true. If
X(G — e) < x(G) then the end vertices u and v of an edge e = uv
must be in c¢p- set of G. Then the graph  contains a complete
subgraph H as a clique. Suppose |V(H)| = 2 then there will be
another vy, - set of (G —e) with the same cardinality of 4, of G and
My (G — €) = yry(G), which is a contradiction to the assumption.

Hence |V(H)| > 3. Therefore condition (ii) is true.

Conversely, suppose the conditions (i) and (ii) are true. By theo-

rem (5.6.7), if GG is a vertex color critical then e € EL}‘{G}. Let H be
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a clique of G such that |V(H)| = 3. If the removal of any edge ¢ in
the subgraph (H) then x(G —e) < x(G) and 71, (G — €) < yary (G).

Hence e € E-‘I_M"((':-]' |

5.7 Results on CERy/, (G)
and UERMX(G)

In this section, some conditions for changing Edge trmowval graphs
and vertex Edge removal graph with respect to the MDC number of
Yy of a graph are discussed and the characterization on CERyr, s

also determined.

Theorem 5.7.1: If the graph G has a unique 7,/,- set then G is a

CE R~ graph.

Proof: Let the graph G has a unique 7,/,- set S. Suppose the graph
G is UER),. Then vy (G —€) = v (G), for all e € E(G). Now
let 57 and Sy be any two subsets of G such that S; NSy = ¢ with
IN[S1]] = [5] and |[N[Sy|] > [5§]. Consider an edge e = uv with
uwe V(S)) and v € V(S2). Since yary (G — €) = Yy (G), the removal
of any edge e would not affect the chromatic number of G. Therefore

x((S1)) = x((S2)) = x(G). Thus, the two sets S; and Sy are vy~
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sets of GG. It is a contradiction to the assumption that G has a unique

Y- set.Hence G € CER)yy,. -

Theorem 5.7.2: If a graph GG has a unique cpn-set with x(G) > 3

then G is a connected C'E Ry~ graph.

Proof: Let G has a unique cpn-set with x(G) > 3. Suppose G €
UERyy. Then S is a v~ set of G and v (G — e) = Y (G),
for every e € E(G). Therefore, the graph (G — e) has two or more
Yary- sets. Let S; and Sy be the vy, - sets of the graph (G — e) with
X((S1)) = x(G) and x((S2)) = x(G). Hence the graph G has atleast
two cpn-sets, which is a contradiction to the assumption. Thus,

G e CERMX |

Theorem 5.7.3: If every 7u,- set S of a graph G induces a color

critical graph then the graph G is CE Ry

Proof: Let S be a vy~ set of G and it induces a color critical graph.
Then there exists an edge e = uv such that x(G —e) < x(G), for all

edges e € E(S). Then vy (G —€) < vy (G), for all e € E(G). n

Theorem 5.7.4: If the graph G is a connected C'E Ry~ graph then

dar (G) = 1.
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Proof: Let G € CER)y. This result is proved by the induction on
diam(G). When diam(G) = 1. Then G becomes K, and v, (G) =
cpn(G) = p. Hence dy (G) = 1. When diam(G) = 2. Then = K ,.
Since G has no independent edges, var, (G — €) = v (G), for all
e € F(G) and e € ER“(G). Then the graph € UER)y,, which is
a contradiction to the assumption. When diam(G) > 3. Then the
graph G has atleast two cpn-sets. It implies that G' has two or more
Yary- sets and Yar (G — €) = Y (G), for any e € E(G). Therefore
G € UER)yy, which is a contradiction to the assumption. Hence the

graph G has a unique cpn- set. Thus d;, (G) = 1. N

The following theorem establishes the characterization of CE Ry

for a connected graph G.

Theorem 5.7.5: Let G be any graph and S be a ~yr- set of G.

Then G € CERyy, if and only if

(i) Each edge e = uv joins either S and V' — S or lies in S itself
(ii) The graph G is vertex color critical
(iii) The graph G contains a Clique H with V(H) > 3.
Proof: Let G be a CERy- graph and S be its vy~ set. Then

(G — €) # i (G). Tt implies that either v, (G — €) < Yary (G)
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or Yary (G — €) > Yy (G), for any edge e € E(G). If va, (G —e) <
Tux(G) then e € By (G). Hence x(G —e) < x(G). It implies that
e € F((S)) and the end vertices of e = uv both are in S. Otherwise
e € ((N[S])) and e = uv joins S and V — S. Hence (i) holds. Also
suppose x(G—e) < x(G) then the graph G becomes edge color critical
and e € By (G). If e € Ey; (G), by theorem (5.6.8), conditions (ii)
and (iii) are true.

Conversely, conditions (i), (ii) and (iii) holds. Then by theorem

(5.7.3) and (5.6.8), the graph G € CERyy,. n
Theorem 5.7.6: All trees are UL R~ graph.

Proof: Let T be a tree with e pendants and p vertices. The result is
proved by induction on pendants e of T'. Since each tree has pendants

e > 2, tree is a path if e = 2. If T'= P,, by corollary (2.3.4),

(2], if p = 1,2(mod 6)
Yy (1) = (5.5)
(81 +1, if p=0,3,4,5(mod6).

Therefore any edge in 7', (1" — e) is also a path with 2 components.

By the result (5.5)), Yary (T — €) = yary (1), for any e € E(T'). Hence
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T ¢ UERyy ife=2. If e =3 then T'= K, 3 or Dy, or caterpillar
structure. For T' = K 3 and D o, yary (1) = 2 and vy (T — €) = 2.
By result (2.3.1)(v), v (T) = [§] +1 = 2 = 7 (T — e). Hence
T € UERyy, if e = 3. This result is true if e = 2,3,--- | (p — 2).
When e = p — 1 then the tree T'= K, ,_1. By proposition (2.3.2)(ii),
Y(T)=2. In (T —e),x(T —e) =2=x(T) and Y, (T —e) =2 =
Yary(T). Hence T' € UER)y. In all cases, all trees are belonging to

the class UE Ry |

Theorem 5.7.7: If a graph G contains an induced subgraph as an

even cycle then G € UER)yy,.

Proof: Let G be a graph which contains an induced subgraph as an
even cycle. Then x(G) = 2. Let S = {uy,ug, us, - -+ ,u} be the yar,-
set of GG such that |[N[S]| > [§] with |S| = t. Now delete an edge
e = wuy € E(G) and form the vy, —set S = {ug, ug, uz,--- ,u;} for
(G — e) such that |[N[S]| > [§] with |S’| = t. Since uz and wuy are
adjacent, x(G — 2) = 2 = x(G). Hence 7 (G —e) = |5 = || =
1y (G) and e € By (G), for all e € E(G). Thus, G € UERy,.

Suppose the graph G itself is an even cycle. Then by proposition

5.5.9), e € ER“(G), for all edge e € E(G). Hence G € UERy,. ®
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Theorem 5.7.8: If the graph G is a complete bipartite then G €

UERyy,.

Proof: For the complete bipartite graph, x(G) = 2. By proposition
(2.3.5), 7ar(G) = 2. Now the deletion of any edge e = u,u;, where
u; € Vi(G) and v; € Va(G), vary (G —e) = 2. Therefore vy, (G —e) =

vy (G) and G € UE Ry, .

5.8 Results on ER/[X, My and E]T/_,X for

Disconnected graphs

In this section, the effects of an edge removal from G and its three
classifications namely E?V[X, Eyy, and E]J\}X are studied with respect to

the chromatic preserving property for disconnected graphs.

Observations 5.8.1:

(i) Let G = Ko U K, 5 be a graph. Then e € E&X(G), for e €
E(K5) and yan (G — €) = [§] = 7y (G).
(ii) Let G = K3 U K, 3 be a graph. Then e € Ey (G), for all
e € E(K3). Also v (G) = [§] and var (G —e) = [5] — 1.
(i) Let G = CyUK,_s. Since Cy is an even cycle, e € E (G), for

all e € E(Cs).
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(iv) Let G = CyU K, 4. Since Cy is vertex color critical component
of G, e € By (G), for all e € E(Cy).

(v) Let G = P, UK, 4 be a graph. Then e € Ey, (G), for all
e € E(Fy).

(vi) Let G = C7 U Cy be a graph. Then e € EJJ\}X(G), for all e €

E(C7) and e € Ef;, (G), for all e € E(Cy).

Theorem 5.8.2: Let G be a disconnected graph with atleast two
color critical components g; and g, and cpn(g1) < cpn(ge). If x(g1) >
X(g2) then (i) e € Eyrc) forall e € E(q) (i) e € ER/_,X(G), for all

e € F(go).

Proof: Let g; and g» be the color critical components of a discon-
nected graph G. Then x(g;1 —e) < x(g1) and x(g2 — e) < x(g2).
Let x(g1) > x(92). Then x(¢1) = x(G). Hence any vy~ set of G
must contain the full vertex set of g;. Let S = {vy,v9, -+ ,v,.} be a
subset of V(G), where {vy,vy,--- ,v,} C V(g1). Since S contains the
full vertex set of g1. It implies that x({S)) = x(g1) = x(G). Since
cpn(g1) < epn(ge), |N[S]| < [§]. Hence S wouldn’t be a MDC set of
G and S will be a MDC set by adding some vertices u; from other

components such that |[N[S]| > [§]. Suppose that, the deletion of
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any edge e in g1 then x(g1 —e) < x(g1) > x(g2)- If x(91 —e) = x(G)
then the set S = {vy,v9, -+ ,v,_1} is the MDC set of G — e. Since
1S < S,y (G —€) = |5 < |S] = vy (G). It implies that
e € Ey;, (G), for all e € E(g1). Hence (i) holds.

Suppose that the deletion of any edge e in go then it does not
affect the cp-set of G. Hence the MDC set of G will be the MDC
set of G — e. Therefore, vy (G —e€) = || = |S] = vy (G) and

e € B}, (G), for all e € E(gz). Hence (ii) holds. ]

Theorem 5.8.3: Let G be a disconnected graph with color critical
components g; and go, such that cpn(g1) < cpn(g2). If x(g1) = x(92)
then (i) e € Ey (G), for all e € E(gq) (i) e € E};, (G), for all

e c E(gz)

Proof: Let GG be a disconnected graph with the components g1, g2, g3,
-+, g such that g; and gy are color critical. Then x (g1 —e) < x(g1)
and x(g2 —e) < x(g2)- If x(g1) = x(g2) then either x(g1) = x(G) or
X(g2) = x(G). Since cpn(g1) < cpn(g2), the var,- set of G contain
the full vertex set of g;. Let S = {v1,v9,---,v,,u;} be a yar,- set of
G, where {vy,v9,--- ,u,} C V(g1) and u;’s are the vertices of other

component with ¢ = |u;|. Then v, (G) = |S| = r +t. Now the
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deletion of any edge e € E(¢1),x(g1 —e) < x(G). Hence x(g2) =
X(G). In {G —e},S" = {u,ug, -+ ,us,v;} be the vy~ set, where
{v1,v9, -+ ,vs} € V(ge) and u;’s are the vertices of other components
with ¢t = |u;|. Then v (G —e) = |S'| = s +t. Since epn(g1) <
cpn(ge), |r| < |s|. Hence yar (G —e) = |S'] > |S| = vy (G) and
e € Eyx(G), if e € E(g1). Thus, condition (i) holds.

Suppose that the deletion of any edge e € E(g2),x(g92 — €) <
X(G). Hence x(g1) = x(G).InG —¢e,S" = {v1,v9,- -+ ,v,,u;} be a
Yary- set, where {vq,ve,--- ,v,} € V(g1) and u;’s are the vertices of
other component with ¢t = |u;|. Then v, (G —€) = |5 = r + .
Hence yar (G) = yar (G —€) and e € Ef, (G), if e € E(gz). Thus,

condition (ii) holds. u

Corollary 5.8.4: If cpn(g1) < cpn(gz2) and x(g1) < x(g2) then (i)

e € By, (G), for all e € E(g1) (ii) e € By, (G), for all e € E(gy).

5.9 Changing and Unchanging of MDC
Number by Edge Addition

In this section, the effects of changing and unchanging of MDC num-
ber by edge addition are introduced and defined the three classifica-

tions for this parameter.
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Definition 5.9.1: Let G be a simple graph without parallel edges.
Let yary(G) be the Majority Dom-Chromatic Number (MDC num-
ber) of G. A graph G is said to be a CE Ay~ graph if vur, (G +¢€) #
Yy (G), for each e € E(G¢) and a graph G is said to be UE Ay, -
graph if yu7, (G + €) = Y (G), for each e € E(G®) where G is the

complement of G.

Definition 5.9.2: The following are the notations of changing and
unchanging of y,7,(G) when an edge is added to the given graph G

(from the complement G¢ of G).
() &1, (G) = A{e € E(G) /(G + €) =y (G)}
(i) &y (G) = {e € E(G)/ux(G + €) > muy(G)}
(iil) &7, (G) = {e € E(G°) /7y (G + €) <7y (G)}-
Example 5.9.3: Consider the following graph G with p = 21.

Vio Vi3

L 4
vl v2 VS

V4
1"'IIIS Vi7 Vig Vo
. 4 . 2 L 4 . 4
Ve

Figure 5.5: G :
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In this graph, S = {vs, v5, v12, V19 } is the minimal MDC-set of G.
Hence vy, (G) = 4. The set Sy = {vg, v, v17} is the minimal ;- set
of G and v, (G) = 3. Also the sets S3 = {vs, vy, v7, Vg, V12, V15, V19, Vo1 }
and Sy = {v9, vg, Vg, V12, V15, V19} are the 7.~ set and - set of G re-
spectively. Therefore v, = 8 and v(G) = 6. In the above graph
G, add an edge e = (vip,v13) and G' = {G + e}. Here, S =
{va, v9, V10, V11, V12, V13} s the yar— set of G'. Hence v, (G') = 6.

Therefore yary (G') > 7ary (G) and e € &5, (G).

5.10 Results on 5?\4X(G)7£JJ\F4X(G)
and &,/ (G)

In this section, the effects of an edge addition e € E(G€) are classified
into three cases with respect to MDC number of the graphs, where G¢

s the complement of G. Also some results are established on these
classifications &3y, (G), &4y (G) and §y; (G).

Proposition 5.10.1: Let G be an even Cycle with p vertices and
p = 0(mod 6). If d(vi,v;) = n and e = v;v; € E(G°) then (i) e €

Eary (G), nis even (i) e € &y (G), nis odd (iii) G € CEAx, p > 6.

Proof: Let p = 0(mod 6) and p = 6k. By the proposition (2.3.3),
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Yuy(G) =[] +1=k+ 1. If k =1, 7ar(G) = 2. Adding an edge
e = v1v4 and it creates two even cycles. It implies that v/, (Cs+e€) =
2. Thus var, (Cs +€) = vary (G). It is a contradiction to yas, (G). Let
k > 2. By adding an edge e = v;v; € E(G°) such that d(v;,v;) = n,
we obtain G’ = G + e.

Case (i): If d(v;,v;) = n,nis odd then G’ constitutes two even cycle
C} and Cy with the common edge e = v;v; and |Nv]| = |N[v,]| =
3 = A(G). Hence any 7y, - set of G’ must contain the end vertices
of an edge e. Then vy, (G') = [E] + 1 —1 = [%] = k. Therefore,
Tux(G') < vy (G) and e € &y (G).

Case (ii): Let d(v;,v;) = n and n is even. Then G’ creates two odd
cycles with C and Cy with |V(Cy)| = |[V(Cs)| < p and x(G') = 3.
Each cycles are vertex color critical, any 7~ set of {G + e} must
contain any one cycle with the edge e. Let S” = {vy,v9,v3,- -+ , v} be
the vary-set of G’ such that |[N[S']]] > [5] and x((S")) = 3 = x(G').
Hence, 1 (G') = [V(C)|+ ] +1—-2 >34+ [%]+1-2 >
k+ 2. But v (G) = k+ 1. Therefore, var,(G') > vy (G) and
e € fj\j_,X(G),p > 6. In both cases, for all e = vv; € E(G°) of C,
p = 0(mod6), we obtain e € & (G) and e € £JJ\}X(G). Hence the

even cycle Cp, p =0 (mod 6) is a CEA,- graph. |
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Proposition 5.10.2: Let G = C), be an even cycle. If p = 2(mod 6)
and d(v;,v;) = n and e = vv; € E(G°) then (i) e € &y, (G), n is odd

(i) e € £y, (G),n is even.

Proof: Let p = 2(mod 6) and p = 6k+2. Then vy, (G) = [£] = k+
1,k > 1. By adding an edge e = v;v; € E(G°) such that d(v;,v;) =n
in G, we obtain G' = {G + e}.

Case (i): Let n be odd. Then the graph G’ constitutes two even
cycles C; and Cy with the common edge e = v;v; and x(G') = 2. If
the vertices of e = v;v; has the maximum degree of G, any yar,- set
of G’ will contain the end vertices v; and v;. Therefore vyrx(G') =
3+ 2] —3=3+[%] —3 =k + 1. Hence 7 (G') = 7y (G) and
e € §iy, (G).

Case(ii): Let n be even. Then G’ creates two odd cycles Cy and Cy
with [V(Cy)| = |V(Cs)| < pand x(G’') = 3. Then |V (Cy)|+|V(Cy)| =
[21-([5] + 2). Since the odd cycles are vertex color critical, yar, (G')

must be the minimum value of V(C}) or V(Cy). Hence v, (G') =

(5] = %2 = 3k + 1 > 71, (G). Thus, e € £ (G). "

Proposition 5.10.3: Let G be an even cycle with p vertices. If

p = 4(mod 6) and d(v;,v;) = n and e = vv; € E(GY). Then (i)
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¢ € &y, (G), if e = vywg (i) e € £ (G), if nis odd (iii) e € Eux T (G),

if n is even.

Proof: Let p = 4(mod 6) and p = 6k + 4,k = V%l]. Then by
proposition (2.3.3), v (G) = [£§] +1 = k + 2,k > 1. By adding
an edge e = vv; € E(GY) such that d(v;,v;) = n we obtain G’ =
{G +e}.

Case (i): If d(v;,vj) = 2 then e = vjvg such that G’ contains a
triangle and a (p — 1)- cycle. It implies that x(G’) = 3 and any yas,-
set of G' contains the triangle. Let S = {wvy,v9,v3,v5,vs, - , 04}
with (v1,ve,v3) = a triangle and other vertices are of d(v;v;) > 2 be
the 7y~ set of G’ such that |[V[Si]| > [5] and x((S1)) = 3 = x(G').
Therefore vy, (G') = [B]+1 = [£H] 41 = k+2. Hence, 11, (G') =
k+2=yuy(G) and e € §; (G), if e = vyvs.

Case (ii): If d(v;,v;) = n and n is odd then G’ constitutes two even
cycles €y and Cy with [V(Cy)| + |[V(C2)| = p+ 2. Then x(G') = 2.
Both the cycles contain the edge e = (v;v;) and any ~vus,- set of G’
contains the end vertices of e. Let Sy = {v;,vj,v1,v4,--- ,v¢} be the
Yy~ set of G with d(v,, vs) > 3forr, s # i, j such that [N[Ss]| > [§].

Then x((Ss)) = 2 = x(G"). Hence v, (G') = [E] +1—2 = [S+d]
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1 =k+1—1=k. Therefore, yar,(G') = k < yuy(G) = k + 2 and
e € &1, (G).

Case (iii): Suppose d(v;,vj) = n,n > 2, is even then {G} consists
of two odd Cycles Cy and Cy with [V(Cy)| = [V(Cs)| < p. Then
X(G') = 3. Both the Cycles are vertex color critical. Thus any yas,-
set S3 of G’ contains at least one cycle. Hence, [§] —3 < vy, (G') <
p — 1. Tt implies that [%H] — 3 < 74, (G') < 6k + 3. Therefore

Yy (G') > 7 (G) and e € Eux ™ (G). N

Proposition 5.10.4: Let G be an odd cycle with p vertices and

p =1,3,5(mod6). Then e € &, (G) and G is CE Ay~ graph.

Proof: Let G = C, and p = 1,3, 5(mod 6). Since p is odd and vertex
color critical, yar,(G) = p. If adding any edge e € E(G¢) between
any two vertices in G then G’ = G+ e contains either two odd cycles
or one odd and one even cycle.

Case (i): Let G’ contains only two odd cycles C; and Cy with
V(Ch)| = [V(Cy)| < p. Let Sy and Sy be the a7~ sets of C and
Cs. Since the two cycles are vertex color critical, vy, (C1) = [S1]| < p
and yary (Co) = |S2| < p. Therefore v, (G') < p = Yar,(G). Hence,

e € &1, (G).
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Case (ii): If G’ contains one odd cycle C and one even cycle Cy
with |V(C1)| = |[V(Cs)| < p. Since C} is vertex color critical graph,
Yy (C1) < p. Since Cy is even cycle, x(Cy) = 2. Then by proposition
(2.3.3), Yy (C2) = [E] + 1 < p. Therefore a1, (G') < p = Yy (G)
and e € &£y (G€). In both cases, e € &y, (G) or e € &y, (G), for all

e € E(G°). Hence G € CEAyy,. u

Proposition 5.10.5: For the wheel graph G = W), var, (G+e) = 4 if

and only if e = v;v; € E(G¢) such that d(v;,v;) =2 and e € fj\}X(G).

Proof: Let G = W, be a wheel graph. By the proposition (2.3.6),

3, if p is odd
M (G) = (5.6)

p, if p is even.
The graph G contains (p—1) triangle. Since v, (G +e) = 4, there is
a clique Ky in (G +e) where e € E(G®) and e = v;v;. The clique K,
in (G +e) will be obtained only by adding any edge e = v;v; between
any two of adjacent triangles. By the condition (5.6), yar (G +¢€) >
My (G), for any e = vv; with d(vv;) = 2 and e € &y, (G). Hence,

for Ky in (G + e) such that d(v;,v;) = 2. Conversely, if an edge
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e = vv; € E(G) such that d(v;,v;) = 2 is added to G, then there

exist a clique Ky in (G + e). Therefore v, (G +¢) = 4. ]

Proposition 5.10.6: Let G = P, be a Path with p vertices. If
e = viv; € E(G°) with d(v;,v;) = n is odd then (i) e € &3/, (G), if

p = 1,2(mod 6) (ii) e € &/, (G), if p=0,3,4,5(mod 6).

Proof: Let G = P, a Path. If adding any edge e = v;v; € E(G°)
with d(v;,v;) = n,n being odd between any two internal vertices v;
and v; in a Path, the degree of the end vertices of e is increased by
one and the resultant graph is G’ = G +e. Since n is odd, G’ creates
even cycle (), as an induced subgraph and x(G') = 2.

Case(i): when p = 1,2(mod 6). Let S = {v;,v;,v3,v6,- - , 0} C
V(G") with [t| = [%] such that d(v;) = d(v;) = 3,d(v;,v;) = 1 and
d(ve,vg) > 3, for r;s # i, and x((5")) =2 = x(G’). Let p = 6k + 1.
Then |N[S]| = 3t = 3[2] = 3[%] = 3 (1) +3 = [B] + 1. Let
p = 6k + 2. Then |N[S]| = 3t = 3[£] = 3[%2] =3 (2) +3 =
[£] + 1. It implies that S would be a 7y~ set of G'. Therefore
Yy (G') = [E]. By corollary (2.3.4), ya, (G") = Yy (G) and hence
e € £R4X(G).

Case(ii): whenp =0,3,4,5(mod 6). Let S = {v;, vj,v3,v6, -+ , v} C
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V(G') with [t| = |[S] = [£] 4 1 such that d(v;) = d(v;) = 3,|N(5)| =
3t—2)+4=3t—-6+4=3t—2,d(v;,v;) = 1 and x((5)) =

= x(G'). For p = 6k,|N[S]| = 3t = 3 ([e] +1) = 3([%] +1)

3(2) +3> [2]+3. If p= 6k + 3 then |N[S]| = 3t = 3 ([2] + 1)

3([EE]+1) = 3(%2) +6 > [E] +3. If 6k + 4 then |N[S]| =
st = 3(18141) = 3([%2141) = 3(5) +6 2 [4] +3. Fo
6k + 5, |N[S]| = 3t = 3 ([2] + 1) = 3 ([£E2] +1]) = 3(&2) + 6 >
[£] + 3. It implies that S would be a vy~ set of G' but not min-
imal. If [S| —1 = [&] then |[N[S]| = [£]. Hence the set S will be
a Yy~ set of G'. Therefore va1, (G') = [§]. By corollary (2.3.4),

Yy (G') < Yy (G) and hence, e € &, (G). |

Theorem 5.10.7: Let G be any graph with p vertices and e € E(G*).
If a graph (G + e) contains an even cycle then v, (G +€) < Y1, (G)

and an added edge e € £y, (Er )i

Proof: Let G = (), be a cycle. Suppose G is an odd cycle, 11, (G) =
p. Let e € E(G¢) and adding in @ it creates an odd cycle and an
even cyvcle. Since both cycles containing an edge e, the degree of
end vertices of e increased by three. Suppose the odd cycle contains

[£] vertices, ary (G + €) = [§] < Yay(G). If even cycle contains
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the remaining g] + 1 vertices, then by result (3.2)[5], var (G +€) =

. B42 : y , . .
%] +1= {-’j —‘ +1= [%| < Yumy(G). Hence 11, (G +€) < Yary(G)

and e € £;f1{{;}' |

Theorem 5.10.8: If a graph G consists of exactly two pendants with
p vertices then (i) var (G+e) > vy (G), if pis odd (ii) yary (G +e) =

Yy (G), if p is even.

Proof: Let G be any graph which consists of two pendants. For any
tree G, x(G) = 2. Suppose joining the two pendants by an edge e, it
creates a cycle.

Case (i): Let p be odd. Then (G + e) becomes an odd cycle. Hence
Ty (Gte) = p. Since 1ap (G) = [§] or [§141, 7 (G+e) > 1y (G),
if p is odd.

Case (ii): Let p be even. Then (G + e) becomes an even cycle. By

proposition (2.3.3), var (G + €) = yar (G), if p is even. u
Theorem 5.10.9: Let T be a tree with diam(7T) = 3. Then
(1) ’}/MX(T + 6) = ’}/MX(T), if e = ViUy such that d(’Ui, ’Uj) =3

(i) yar (T +€) > vy (1), if e = vjv; such that d(v;,v;) = 2.
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Proof: Let T be a tree and x(7') = 2. Since diam(T) = 3, it has
two central u and v vertices with (p — 2) vertices and e = uv is a
dominating edge of T'. Let S be the yus,- set of T" which consists of
w and v. Then v, (T) = |S] = 2.

Case (i): Let e = vyv; € E(T°). Adding the edge e in T' with
d(vi,v;) = 2, {T+e} constitutes a triangle. It implies that x{T+e} =
3. Hence any 7y~ set of {T'+ e} must contain the triangle and
Ty (T +e) = 3. Thus Y1, (T + €) >y (T) and e € {5 (T).

Case (ii): If d(v;,v;) = 3 then {T + e} constitutes a 4 - Cycle
and x(T +e) = 2. It does not affect the value of x(7'). Hence

V(T +e) =2 =y (T) and e € §3, (T). n

Theorem 5.10.10: Let T be a tree with atleast one vertex v such
that d(v) > [5] — 1 and d(v;) < 2. If e = v;v; is any edge of T*
such that d(v;,v;) = n then (i) e € &3, (T), if d(vi, v;) = n is odd (ii)

e € §]T4X(T), if d(v;,v;) = n is even.

Proof: Let T be a tree and x(7) = 2. Since T" has a vertex v such
that d(v) > [5§] — 1, any v set of T' contains the vertex v. Since
x{((T)) = 2,5 = {v,u} is the subset of T" with d(v,u) = 1. Then

IN[S]| > [5]+1and x((S)) = 2 = x(T). Therefore S is the v, set
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of T and 7y, (T) = 2. Suppose adding an edge e = v;v; € T to a
tree T such that d(v;,v;) = n, then two cases arise.

Case (i): Let d(v;,v;) = n be odd. Then (1" + e) contains an even
cycle and x(T'+e) = 2 = x(T'). Then v, of (T' + e) is same as the
Yary set S of T It implies that yar (T +€) = 2 = yar (') and hence
e e §R4X(T), if n is odd.

Case (ii): Let d(v;,vj) = n be even. Then (T + e) constitutes an
odd cycle and x (7 + e) = 3. Hence any s, set S’ of (T + e) must
contain the odd cycle. Therefore vy, (T +€) = |S’| > 3. Since
My (T) = 2,7, (T + €) > yar (T). Tt implies that e € £y, (T), if n

1S even. [}

Theorem 5.10.11: If there exists a clique K, in (G+e) then v, (G+

e) # Yy (G) for some edge e € {5, (G).

Proof: Let G be a graph with x(G) = t. Then any 7, set of G
must contains the cpn-set of G with cpn(G) = k. Suppose there is any
clique K, in (G + e) when adding any edge e in G, x(G +¢€) = s > t.
Then cpn(G +e) = m > k. Hence any v, set of (G + e) must
contains the cpn-set of (G + e). Therefore, yar (G + €) > v (G)

and e € &y, (G). |
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5.11 CFEA)p;, and UFEA)y;, Graphs

In this section, CE Ay, and UE Ay, - graphs are investigated for the

graphs.

Theorem 5.11.1: Let GG be a connected graph of diameter 2. Then

G € CEAy,.

Proof: Since diam(G) = 2, the graph G contains a cycle or pen-
dants. The graph structure becomes like G' = K, a star and Cj,
an even cycle. By proposition (2.3.2)(ii) and (2.3.3), v (G) = 2.
By adding an edge e to G, it creates at least a triangle. Then

Yy (GHe) =3 > v (G), for all e € E(G¢). Hence G € CEAy,. 1

Theorem 5.11.2: Let G be a cycle on p vertices. Then G € CE Ay,
if and only if one of the following holds. (i) G is an odd cycle, p > 5

(i) G=Cyand G =C,,p=0 (mod 6),p > 7.

Proof: Let G = C), be a cycle with p vertices and G € CEAyy,.
Then to prove the conditions (i) and (ii) are true. Let G' = G + e.
Since the graph G is CE Ay, either var (G') < vary(G) or yary (G') >

Yy (G). Suppose Yary (G') < Yary(G), for any e € E(G®). Then there
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exists either two odd cycles or one odd and one even cycles in G’.
These two odd cycles are color critical. Now, let yar, (G') > vary (G).
Then G’ must contain either odd cycles or one odd and one even
cycles. Therefore, we get p = 0(mod 6), and G = Cj.

Conversely, if G is an odd cycle and G = Cy,G = Cp,p =

0(mod 6), by proposition ([5.10.1)), we obtain G € CEAyy,. N

Theorem 5.11.3: Let G; and G5 be any two connected graphs. If

either the graph GG; or G is not complete then (G UG2) € CEAyy,.

Proof: Suppose G; and Gy both are complete graphs with p; and
py vertices. Then both are vertex color critical graphs. Let G =
G1 U Gs. Let p1 = py and p = p; + py then x(G1) = x(G2) and
Yy (G) = x(G1). If an edge e = wv € E(G*) is added to G where
u e V(Gy) and v € V(Gy) then var, (G+e) = yar (G). It implies that
G € UEA),. It is a contradiction to the assumption. If p; < py then
X(G1) < x(G2) and Yy (G) = x(Ga). If e = wv € E(G°) is added
to G where u € V(G;) and v € V(G2) then v (G + €) = vy (G).
It implies that G € UE Ay, which is a contradiction. Hence, G €

CEAMX [ |
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Proposition 5.11.4: Let G = W, be a wheel graph on p > 5 ver-
tices. Then W, € UEAyy,, for an edge e = vv; € E(G) such that

d(Ui, Uj) > 2.

Proof: Let G = W, = C,.1VKi,p > 5 with (vi,v9,--- ,0,1) €
V(Cy-1) and v, is a central vertex.

Case (i): When p is odd. Then x(W,) = 3. By the proposition
(2.3.6), Ymy(G) = 3. If adding any edge e = v;v; € E(G°) such
that d(v;,v;) > 2, it creates another triangle and it does not affect
the chromatic number of G. Hence x(G + ¢) = x(G) = 3. Thus
Yy (G + €) = Yy (G) for any e € E(GY) and W, € UERy, (G).
Case (ii): When pis even. Then by the proposition (2.3.6), var (G) =
p. Let e = vv; € E(G) such that d(v;,v;) > 2, it creates another
triangle and it does not affect the chromatic number of G. Hence
X(G+e) = x(G) =4 and (G +e) is vertex color critical graph. Thus
Yy (G +e) = p. Hence a1 (G + €) = var (G). Thus W, € UE Ay,

when d(v;,v;) > 2 and p is even. u

Proposition 5.11.5: Let G = W, be a wheel graph with p > 5.

Then W, € CEAyy,, for an edge e = v;v; such that d(v;,v;) = 2.
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Proof: For G = W), a wheel, by the proposition (2.3.6),

3, if p is odd
T (G) =

p, if p is even.
Case (i): When p is odd. Let e = v;v; such that d(v;,v;) = 2. If add

an edge e € E(G®) in G then {G 4 ¢} contains a clique K. It implies
that x{G'+e} = 4 and hence any 7y, - set of {G+e} must contain Kj.
Therefore v, (G+e€) = 4. Since Yar (G) = 3,7y (G +¢€) > Y1y (G).
It implies that e € £y, (G) and G € CEAyy, if p is odd.

Case (ii): When p is even. By adding an edge e = v;v; € E(GY)
such that d(v;,v;) = 2 in G, {G + e} contains a clique K4. Hence any
Yary- set of {G +e} contains Ky and it satisfies x(G+e) = x(G) = 4.
Therefore v, {G+e} = 4. Since Yar (G) = p, " {G+e} < vy (G).

Hence, e € §; (G) and G € CEAyy, if p is even. N

The following theorem gives the characterization of CE Ay, of

graph G. When adding an edge ‘e’ from the complement of a graph

G.

Theorem 5.11.6: Let G be any connected graph and e € E(G°).
Then G € CEA)y, if and only if (i) {G + e} contains a clique (ii) G

is a vertex color critical graph.
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Proof: Let G € CEA),. Then the graph G satisfies the condition
either yary (G + €) < Yy (G) or Yar (G + €) > Y (G).
Case (i): If yar (G +e) < var (G) then x(G+e) < x(G). It implies
that the graph G is vertex color critical graph. Hence the condition
(ii) holds.
Case(ii): If yar (G +e€) > yary (G) then x(G+e) > x(G). It implies
that the graph (G + e) contains a vertex color critical subgraph as
aclique. Hence the condition (i) holds.

Conversely, if the conditions (ii) then by theorem ([5.10.11)), G €
CEApy. Let the graph G be vertex color critical. Then c¢pn(G) = p
and vy, (G) = p. If adding any edge in G, x(G +¢e) < x(G) and

cpn(G + e) < p. Hence vy (G +e) < pand G € CEAyy,. |
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6.1 Introduction

In 1979, the concept “Connected Domination Number in Graphs”
was introduced by Sampathkumar and Walikar [53] and they pro-
duced many results in their article. In 2012, the parameter “con-
nected dom-chromatic number” was studied by Janakiraman and
Poobalaranjani [31]. They established more results on v.,(G) with
other parameters for connected and disconnected graphs. In 2017,
Joseline Manora and Muthukani Vairavel [34] introduced “Connected
majority dominating set of a graph” and its number ycp/(G). They
elucidated the parameter ¢y (G) in various levels by establishing
many results and inequalities. They produced the exact values of
~vour for some standard graphs and particularly product graphs. Also
they developed some inequalities for yop/(G) with other parameters.

These two parameters V., (G) and vop(G) gave the motivation
to define a new graph theoretical parameter “Connected Majority
Dom-Chromatic set of a graph” and its number yo, (G) on graphs.

Organization of this chapter is as follows. In section [6.1] the in-
troduction of this chapter is given and in section [6.2] the concept

of connected majority dom-chromatic set of a graph G and its num-
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ber you,(G) are defined with examples. The particular values of
Youy(G) for various structures such as some standard graphs, grid,
cylinder, Torus, corona graphs are determined in section (6.3 In
section [6.4] characterization theorems and bounds on yeary (G) are

discussed.

6.2 Connected Majority Dom-Chromatic
Set of a Graph

In this section, the concept of Connected Majority Dom-Chromatic

set of a graph and its number are defined with an example.

Definition 6.2.1: A Majority Dom-Chromatic (MDC) set S is said
to be a connected Majority Dom-Chromatic (connected MDC) set if
the induced subgraph (S) is connected in G. The connected MDC

set is minimal if no proper subset of S is a connected MDC set.

Definition 6.2.2: The minimum cardinality of a minimal connected
MDC set is called the connected MDC number and is denoted by
Yoy (G). The maximum cardinality of a minimal connected MDC

set is called the upper connected MDC number of G and it is denoted

by FCMx(G)
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Example 6.2.3: Consider the graph G with p = 21 vertices.

Figure 6.1: G

For the above graph, S; = {v2,v3,vs,v6, Vs, v10}, S2 = {vs, V10, V16 }
are the minimal connected MDC sets of G. Hence vou, (G) = 3
and I'cary (G) = 6. For the graph G,y (G) = 3,7 (G) = 7 and

’}/M(G) = 2.

Proposition 6.2.4: For any connected graph G, (1) vary (G) < voury (G)

(i) Yea(G) < 70n(G) < 7een(@) and (i) 7(G) < verr (@)

Proof: (i) Since any connected MDC set is a MDC set of G, yar, (G) <
vony(G).
(ii) Since any connected dom-chromatic set of G is dom-chromatic

set, Yeen(G) > Yen(G). Also since every dom-chromatic set contains

a connected MDC set of G, Yoy (G) < 7en(G). Hence voury (G) <

Yeh (G) < 'V/cch(G)'
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(iii) Since any .- set dominates the full vertex set of G and any yeary-

set dominates half of the vertices and it preserving the chromatic set,

7(G) < VCMX(G)- u

Observations 6.2.5: (i) If the graph G is vertex color critical
graph then vou, (G) = vy (G) = p.
(ii) If G is a triangle free graph with x(G) > 5, veumy(G) > 5.
(iii) For any bipartite graph with dominating edge, vour, (G) = 2.
(iv) If a connected graph G has at least one full degree vertex then
Yc(G) < vemy(G). For example, G = K p-1,7¢(G) = 1 and
Yomy(G) = 2.
(v) For any vertex color critical graph G, 7¢(G) < vouy(G).
(vii) If a connected graph G with at least one majority dominating
vertex v then your (G) = Yo (G).

For example, G = D, 5,7 < 5,70(G) = 2 and you (G) = 2.

Results 6.2.6: (i) For G = D, 5, K1,-1,p > 2, vouy(G) = 2.
(ii) Let G = Ky . Then vy (G) = 2.
(ili) Let G = K, be a complete graph. Then you (G) = p.

(iv) For any caterpillar graph G, vear (G) = [§] — 1.
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Proposition 6.2.7: For any cycle G = C,,p > 8,

p, if p is odd
Yomy(G) =
(2] —2, if p is even.

Proof: Let V(G) = {v1,v2,--- ,v,} be the vertex set of G. For a
cycle G = C,, x(G) =2, if p is even and x(G) = 3, if p is odd.
Case (i): Let p be odd. Then the graph G = C), becomes an odd
cycle. Since the graph G is vertex color critical, by the propsition
(2.3.5), vary(G) = p. It implies that yar, (G) = |S| = [{v1, v2, -+, Up}]
where S is a MDC set of G and the induced subgraph (S) is con-
nected. Therefore S is a connected MDC set of G. Thus your, (G) = p.
Case (ii): Let p be an even. Let S = {vy,v9,--- , v} be any set
with |S| =t = [§] — 2 and d(vi,vi1q) = 1,1 = 1,2,--- ,(t — 1).
Then |N[S]| = [4] —2+2 = [£]. Since x(G) = 2, x((S)) = X(G).
Therefore S is a vary- set of G. Since d(v;, vi+1) = 1, the vertices of
S are in consecutive. Thus, the induced subgraph (S) is connected.
Hence S is a yoary- set of G and yeour (G) < [5] — 2.

Let 8" = S — {v} with 8" = [§] — 3. Then |N[S']| = [§] -3 +
2 = [§] =1 < [5]. Hence the set S will not be a y-set of G.
Therefore yon (G) > [S] = [§] — 3 and veur (G) > [5] — 2. Hence,

veux(G) = [5] —2. "



Ch. 6: Connected Majority Dom-Chromatic Number of a Graph 183

Proposition 6.2.8: Let G be a path P,,p > 7. Then you, (G) =

51 =2

Proof: From the similar arguments as in case (ii) of proposition

(6.2.7), Yeary(G) = [2] — 2. .

6.3 ¢ for Product and Corona Graphs

The particular value of youry for Corona graph and product graph

such as Grid, Torus and Cylinder are discussed in this section.

Proposition 6.3.1: Let the product graph G = P, x P}, 5 > 5, be a

Grid. Then youry(G) = [§] — 1.

Proof: Let G = P, x Pj,j > 5. Let {vi,va,...,vj,u1,ug,...,u;j} be
the vertex set of V(G) in the first and second row respectively and
X(G) = 2. Consider the set S = {vy,v3,..., v} with [S| = [£] — 1
such that d(v;,v;) = 1,i # j. Then [N[S]| =2t+2=2([8] -1) +
2 = 2[8] = [5] > [5]. It implies that the set S is the majority
dominating set of G. Since d(v;,v;) = 1, x((S)) = 2 = x(G) and the
induced subgraph (S) is connected. Hence S is connected MDC set

of G and year (@) < 18] = [4] - 1.
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Suppose the set |S’| =S| —1 = [§] —2. Then |[N[S"]| =2t +2 =
2([51—2)+2=2[§] =2 < [§]. It implies that the set 5" would not

be a connected majority dom-chromatic set for G. Hence v, (G) >

S| = [58] =2 or yeumy (G) > [§] = 1. Thus, your (G) =[] —1. =
Remark 6.3.2: For the graph G = P> x P}, j < 5,7cmy(G) = 2.

Proposition 6.3.3: For a grid graph G = P3 x P}, j > 4,

[£], if j is odd
Youy(G) =
£, if j is even.

Proof: Let G = P3x P;,j > 4 and V(G) = {vi1,v12, . . ., V15, V21, V22,
..., U9;,V31,V32,...,Us;} be the vertex set of first, second and third
row respectively and |V (G)| = p = 34,5 > 4. Then x(G) = 2.

Case (i): Let j be odd. Consider theset S C V(G), S = {vag, vas, .. .,

var} with [ S| = |§]. Now, [N[S]| =3t +2=3[§] +2=§+2> [5].

3]

5 and S is a majority dominating set of G'. Since

It implies that £ =
every vertex in S is of distance one, x((S)) = 2 = x(G) and the
induced subgraph (S) of G is connected. Therefore, the set S is a
Yo~ set of G. Hence yonr (G) < |S| = [£].

Let, S" = S —{vy;} with |.S’| = [£] — 1. Then |[N[5]| = 3(t+2) =

3(l8])+2 =3k —1=5—-1 < [5]. Hence S" would not be a
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majority dominating set of G. Therefore you (G) > |S'| = [£] — 1.
Then your (G) > [£]. Hence, your (G) = [£], if j is odd.

Case (ii): Let j be even. Let S = {v91,v99,...,v%} C V(G) with
S| =t =& Now, N[S]| =3t +2=3() +2 > [5]. It implies
that S is a majority dominating set of G' and the induced subgraph
(S) of G is connected. Therefore, the set S is a Yo~ set of G and

Youy (G) < S| = . Applying the same arguments as in case (i), we

get, youy(G) > £, Thus yeour (G) = £, if j is even. N

Corollary 6.3.4: For a grid graph G = Py x Pj, 5 > 3,

(2], if p =0 (mod 6)
’}/CMx(G) = °
[£] =1, if p =2,4 (mod 6).

Proof: By similar arguments as in proposition (6.3.3]), we obtain the

result. [

Proposition 6.3.5: Let the product graph G = Cs x P;,j > 3 be a

cylinder. Then oy (G) = [£] + 1.

Proof: Consider the graph G = C3 x P;,j > 3. Let V(G) =
{UH, v12,...,015, V21, V22, ..., U2, U31, V32, . .. ,Ugj} be the vertex set of

G and |V(G)| = p = 3j. Since the graph G contains a triangle,
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X(G) = 3. Consider the subset S = {vi2,v22, V32, V13, ...,01;} C
V(G) with |S| = [£] 4 1 such that the vertices {vi2, vz, v32} forms
a triangle and d(vy;,v15) = 1,4 # j. Then |N[S]| = 3(t —2)+ 4 =
3([E1—1) +4 = [5]1+1 > [5]. It implies that the set S is the
majority dominating set of G. Since the set S contains a trian-
gle, x((5)) = 3 = x(G) and since d(vy;,v1;) = 1, the induced sub-
graph (S) is connected. Hence S is the connected MDC set of G and
Youy(G) < 1§+ 1.

Suppose the set |S'| = [S|—1 = [£]. Then [N[S']| =3 ([%W — 2)+
4 = [8] =2 < [§]. Hence the set S’ will not be a connected MDC
set for G. Therefore, youry (G) > [E] or veur (G) > [£] + 1. Thus,

voux(G) = [§] + 1. "

Proposition 6.3.6: Let G = Cy x P}, j > 4 be a cylinder. Then

£, if 5 = 0 (mod 3)
’YCMx(G) =
[&]—1,if j = 1,2 (mod 3).

Proof: Let G = C4><Pj,j > 4. Let V(G) = {Ull,vlg, ..., V15, V21, V29,
Co., V2, V31, V32, . .., Usj, Va1, Va2, . - ., U4j  De the vertex set of first, sec-

ond, third and fourth rows of G respectively and x(G) = 2.
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Case (i): Let j = 0(mod 3). Then p = 0(mod 6) and p = 6r.
Let S = {vll,vlg,...,vl(%)} C V(G) with |S| = £. Now, |[N[S]| =
3[S|+1 =3()+1=2+12> [£]. Therefore S is a majority
dominating set of G. Since every vertex of S is of distance one,

X((S)) =2 = x(G) and the induced subgraph (S) of G is connected.

Therefore, the set S is a yeoary- set of G. Hence, your, (G) < |S| =

[SNiS]

Suppose, let S = § — {vyj} with |S'| = £ — 1. Then |N[S']| =
318 =3 = 3(8 —1) =3 < [§]. It implies that S’ could not be
majority dominating set of G and yoar (G) > |S| = &€ —1. Therefore
Yeuy(G) > &. Thus, your, (G) = £, if j = 0(mod 3).
Case (ii): Let j = 1,2(mod 3). Then p = 2(mod 6) such that p
is divided by 4. Let S = {wvi1,v19,...,v1¢} € V(G) with |S| =t =
[&€]—1. Now, |[N[S]| = 3|S|+1 = 3{[£] —1}+1. Let p = 6r+2. Then
VIS =3[ — 1] + 1= 22— 31— 3(5) — 12 T3]
Let p = 4(mod 6) such that p is divided by 4. Let S = {v12,v13,
vy € V(G) with S| =t = [£] — 1. Now, |[N[S]| = 3|S[+1 =
3{[] =1} + 2. Let p = 6r +4. Then |N[S]| =3[*H -1] +2 =
67”2—+4 —1=3r+1=3 (2%4) —1> [£]. It implies that S be a majority
dominating set of G. Since all vertices of S are of distance one, the

vertex set of S is connected. Hence S is connected MDC set of G.
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Therefore yoar (G) < [&] — 1.

Now, suppose S’ = S — {vy;} with |S’| = [£] — 2. Then |N[5']| =
318 =3 = 3([§] —1) —3 < [5]. It implies that S” could not be
a majority dominating set of G and your (G) > |5 = [§] — 2.
Therefore yonr (G) > [§] — 1. Hence, veu (G) = [§] —1if j =

1,2(mod 6). u

Corollary 6.3.7: For the graph G = Cs x P;,j > 6 be a cylinder,

[£], if p = 1,2(mod 6)
’YCMX(G) -
[E]+1, if p=10.3,4,5(mod 6).

The following results are concerned with the corona graph struc-

ture for various two graphs.

Proposition 6.3.8: Let G = Cy o0 K;,t = 6 and j > 2 be a corona
graph with a cycle C; and a complete graph K;. Then you (G) =

(BT + 2.

Proof: Let V(G) = {1}1, V11, V12,4 - - - ,Ulj, V2, V21, V22, . .. ,Ugj, ..., Vg,
Vg1, - - -, Vgj } With |V(G)| = p = 6546, wherev; € Cyand v;; € K;,1 =
1,...,6,7 > 2. Let S = {vy,v11,019, . .. JVy(p1)s 2s- ,v%} C V(G)

6 2
with |S] = £ — 143 = [£] +2. Now, |N[S]| > ;d(%) + ;d(vi) >
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3[E1+2 > [E]1+2 > [§] = 3(j +1). It implies that S is a
majority dominating set of G. Since GG contains a complete graph
Kj,j =%—1,x((5) = § =1 = x(G). Since all the vertices of S
are connected, the S is a your,- set of G. Hence vour (G) < [£] +2.
Now, suppose S’ = S — {v;} with |S’| = [£] +2 — 1. Then |N[5']| =
3d(vi) + 2 —d(v;) = £+ 2 < [§]. It implies that S” could not be

a majority dominating set of G. Hence your (G) < |S'| = [£] + 1.

Therefore yoar (G) > [£] + 2. Thus, we get your (G) = [£] +2. =

Proposition 6.3.9: Let G be any vertex color critical graph of ¢
vertices and H be any graph with order s <t Let G’ = G o H be any

corona graph. Then vou (G') = vouy(G) = t.

Corollary 6.3.10: For a Corona graph G = K; o K, ,, m < n,
Youmy (G) = t, where K; and K, ,, are complete and complete bipar-

tite graph respectively.

Theorem 6.3.11: Let G = K,, o K,, be a Corona graph with Com-
plete graphs of order m and n. Then you, (G) = m, if m > n and

Your(G) = [£] + 2, if m < n.

Proof: Consider the graph G = K,,, o K, with p = m(n + 1). Let
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{v11,v19, - -, 1}y {V21, Vo2, - o Vot oo {UmL, U2, - - -, U | De the vertex
set of G.

Case (i): When m > n. Then x(K,,) > x(K,) and x(K,) =
cpn(K,,) = x(G). Hence any s~ set must contain the full vertex
set of Kp,. Let S = {v11,v91,...,0m1} C V(K,,) with |S| = m. Then
x((S)) = x(G). Since the graph G contains K,, as a central graph,
it dominates all vertices in m copies of K,,. Then |[N[S]| > [§] and
since the set S contains the vertices of K,,, the induced subgraph (.5)
is connected and S is connected MDC set of G. Therefore your, (G) =
m, if m > n.

Case (ii): When m < n. Then x(K,,) < x(K,) and x(K,) =
cpn(K,) = x(G). Hence any 7y~ set must contain the full vertex set
of any one copy of K,,. Let S = {v11,v12,..., 01,021, .., }, Where
{v11,v19, ..., v1,} € V(K,,) and other vertices are from K, such that
d(vit,vj1) = 1,4 # j with |S| = [2] + 2. Then x(({S)) = x(G). Now,
IN[S]|=n+ ([E]+2—-n)n=n+ (n+3—n)n=4n > [£]. Since
d(vi1,vj1) = 1,4 # j, the induced subgraph (S) is connected and S' is

connected MDC set of G. Therefore o, (G) < [£] 4 2.

m
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Suppose the set [S'| = |S| =1 = [2] +1. Then |[N[S']| = n +
([Z]+1-nn=n+nm+1+1-n)n = 3n < [§]. It implies
that the set S’ wouldn’t be a connected MDC set of G. Therefore
Yem(G) > [E1+1or vemy (G) 2 [£]+2. Thus, yeu (G) < [E]+2,

if m <n. |

Theorem 6.3.12: Let G = C),,0C,, with m > 3,n > 4, be a Corona

graph with two cycles pf order m and n. Then you, (G) = [5] + 2.

Proof: Let G = C,,0C, be a graph with p = m(n + 1). Let
{v11,v19, - -, V1 by {v21, Vo2, - o Vo b, oo {UmL, U2, -+ U} be the
vertex set of GG. Since G contains a triangle, y(G) = 3. Let S =
{v11, V12, V13, Va1, . . ., v } € V(G), where (v11,v19,v13) a triangle and
d(vi,vj1) = 1,i # j with [S| =t = [§] + 2. Then x((5)) = x(G).
Now, [N[S]| = (2] +2) (n+1)—2(n+1)+2 = [E(n+1)]+2 > [2].
S is connected MDC set of G. Therefore vou, (G) < [5] + 2.
Suppose the set |S'| = |S| =1 = [%] + 2. Then [N[S']| =
(2] +1)(n+1) —2m+1)+2=[2n+1)] - (m+1)+2<[L].
It implies that the set S’ wouldn’t be a connected MDC set of G.
Therefore your (G) > [5] + 1 or vemy(G) > [%] + 2. Thus,

Youy(G) = [5] +2. n
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Corollary 6.3.13: Let G = C),, o C,, with m > 3,n = 3 be a graph
with Cycles of order m and n. Then
(1) vemy(G) = [F] + 2, if m is odd,

(i) youy(G) = [F] + 3, if m is even.

Theorem 6.3.14: Let G be a connected graph with x(G) = v, (G).

Then ’)/CMX(G) = ’}/MX(G).

Proof: Let x(G) = vy (G) and S be a yar,- set of G. Suppose
X(G) = x((S)) = k then (S) = Kj. It implies that var, (G) = |S| =
k. The induced subgraph (S) is connected and yoar, (G) = k. Hence

Yomy(G) = Yy (G)- u

Proposition 6.3.15: Let GG be a connected graph which contains all

its vertices of degree d(v;) < [§] — 1. Then your (G) < ve(G).

6.4 Characterization Theorems on
YCMx (G)
In this section, the necessary and sufficient conditions for the con-

nected MDC number voury(G) and bounds on you, (G) are investi-

gated for the graphs.
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Theorem 6.4.1: Let G be a connected graph p > 2. Then G is

vertex color critical if and only if ycoar, (G) = p.

Proof: Let GG be a vertex color critical graph. Then by the observa-
tion [2.2.4](ii), Yary(G) = |S| = p, where S is a yur,- set of G. Since
Yy (G) = p, all vertices are in consecutive and (S) is connected. It
implies that S is a connected MDC set of G and vcoary (G) = p. The

converse is obvious. [ |

Theorem 6.4.2: Let G be a tree with p vertices. Then you, (G) =
v¢(G) if and only if diam(G) = 3, where 7¢(G) is the connected

domination number of a graph G.

Proof: Let vou,(G) = 7¢(G). Let S and S’ be the vor-set and
vo-set of G.

Case (i): Suppose diam(G) = 1 then the graph structures become
G = Kj. Then by result (6.2.6)(iii), you,(G) = 2. The vyeo-set of G
is S’ = {v}. It implies that 7¢(G) = || =1 < voum(G), which is a
contradiction to the assumption.

Case (ii): Suppose diam(G) = 2 then the graphs are like G = P

and G = Ky,1. For G = Ps, the yoar-set is S = {vy,v2} and
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Youy(G) = 2. The ye-set is S" = {va} and Yo (G) = 1 < you (G).
It is a contradiction to the assumption. From cases (i) and (ii) we
obtain then diam > 3.

Case (iii): Suppose diam(G) > 4. Then the graph structures being
G = P,,p > 5. By the result (6.2.8), (iv), Yoy (G) = [5] —
2 < v¢(G) = p— 2. Hence the condition you (G) < vc(G) gives the
contradicton to our assumption. Hence the graph G with diam = 3
is true if your (G) = 70G.

Conversely, if diam(G) = 3 then the graph G has a dominating
edge e = uv and both u and v have some pendants. Let S = {u,v} C
V(G) with d(u,v) = 1. Then x((S)) = 2 = x(G) and (S) is con-
nected. Clearly |[N[S]| = p > [§], then S is both y¢- set and yonry-

set of G. Hence, you (G) = 2 = v¢(G). |

Theorem 6.4.3: For even cycle G = Cp, vouy (G) = vy (G) if and

only it G = C), p < 10.

Proof: Let voury(G) = vy (G). For even cycle, x(G) = 2. By the
proposition (6.2.7), youy(G) = [5] — 2, if p is even. The yonry-
of even cycles with p > 4 are 2,2,2,3,4,5,..., By the proposition

(2.3.3), 7y (G) = 2, it 4 < p < 8 and yeu(G) = 3, if p = 9,10.
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Also it gives vour (G) = vy (G) if p < 10. Suppose p > 11. Let
G be an even cycle and youa, = Yary. Then x(G) = 2. By the
proposition(6.2.8) and (2.3.4) vouy (G) = [5] — 2 and v (G) =
[£1]. It implies that vy, < Yo, (G), which is a contridiction to the
assumption. Hence G = C), p < 10.

Conversely for G = Cp, vouy(G) = 2,2,2,3,...,3 < p < 10 and

Ty (G) =2,2,...,3 < p < 10. Hence yeury (G) = Yy (G). ]

Remark 6.4.4: For any path, vou (G) = Yeen(G) if and only if
G = P,,p = 3,4 where ycq,(G) is connected dom-chromatic number

of GG.

Theorem 6.4.5: Let T be a tree with p vertices. Then year (1) =
Yy (T') if and only if one of the following conditions holds.

(i) T has a vertex of degree d(u) > [§] — 1,

(ii) Each non-pendant vertex is adjacent to a pendant vertex and

(iii) diam(T) < 9.

Proof: Let yeary(T) = Yary(T). Then S is a v, and vyeary- set of
T with same cardinality. If diam(T) = 1 then T becomes K, and

S = {u,v} is the yar, and yeoary- set of T" where d(u) > [5] — 1. If
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diam(T") = 2 then the graph structures like P3, K 1. Let S = {u, v}
be set with d(u,v) = 1 where u is non-pendent and v is pendent of
G. Then d(u) = p —1 > [5] — 1. Therefore the tree T' satisfies
the conditions (i) and (ii). Suppose diam(T) = 3. Then T has a
dominating edge e = uwv and x(7T') = 2. Let S = {u,v} be the yar,
and ycoary- set of T' with d(u) > [§] — 1 and d(v) = 1. Hence both
vertices u and v are adjacent and the non pendent vertex u is alwaus
adjacent to a pendent v and vice versa. Hence condition (i) and (ii)
holds.

Next consider a tree T with diam > 4. Then T path P, with
4 < diam(T) < 7. By the corollary (2.3.4), var,(T) = 2 and by
proposition (6.2.8), yeary (1) = 2. Hence this result is true only if
p=05,6,7,8 and diam(T) = 4,5,6,7. Thus 4 < diam(T) <7< 9
and the condition (iii) holds. Let S = {v;, vj, vy} be the yar,- set of T
such that d(v;,v;) = 1. Then |N[S]| > [£] and x((S)) = 2 = x(T)).
It implies that vy (7)) = |S| = 3. Since d(v;,vj) = 1 = d(v;, vg),
the induced subgraph (S) is connected and S is ycary- set of T and
Yomy(T) = |S| = 3. Then the tree T" has diam(T) = 8 or 9. Hence
the condition (iii) holds. Now, suppose diam(T) > 10. Then by

corollary (2.3.4), yar, (T') = [%] or [£]+1 and by proposition (6.2.8),
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Yoy (T) = [5] — 2. It implies that youry (7)) > Yar(T), which is
a contradiction to the assumption. Hence 7" has diam < 9 and the

condtion (iii) holds. The converse is obvious. ]

Theorem 6.4.6: For any tree T, vour, (1) = 2 if and only if 7" has

for at least two vertices v; with d(v;) > [§] — 2.

Proof: Let voury (1) = 2. Let S be a yeary- set of T and yeour (1) =
|S| = 2. Then S = {v;,v;} with d(v;,v;) = 1. To prove that T has at
least two vertices v; with d(v;) > [§] — 2. Suppose T" has vertices v;
with d(v;) < [5]—3. Then |N[S]| = d(v;) +d(v;) < [5]=3+[5]-3 <
p—6 < [§]. It implies that S is not be a majority dominating set
of T with |S| = 2. It is a contradiction to the assumption that
S is a yowmy- set of T'. Hence T' has at least two vertices v; with
d(vi) = [5] — 2.

Conversely, suppose 1" has at least two vertices v; and v; with
d(v;) > [5] — 2, for i and j. To prove youy(T) = 2. Let § =
{vi,v;} € V(T) with d(v;,v;) = 1. If d(v;) = [§] —2 = d(v;) then
INIS]| = [N[oil + Vo)l = 2] =2+ 8] =2 = p— 4 = [£]. T
implies that S is a majority dominating set of T". If d(v;) = [§] — 2

and d(vj) > 2 then |[N[S]| = [§]. Hence S is a majority dominating
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set of T'. Since x(T') = 2,x((S)) = 2 and (S) is connected. Hence
S is a connected MDC set of T" and you (1) < |S| = 2. Suppose
S" = {v;} and |S"| < |S|. Then |[N[S']| < [£] and S’ is not a majority
dominating set of T'. Since x(T') = 2, x((S)) = 1 # x(T"). Therefore
S is not a connected M DC' set of T. Hence vou (1) > |5’ and

Yemy(T) 2 S| = 2. Thus, yeu (T) = 2. n

Theorem 6.4.7: If GG is a vertex color critical graph with p vertices

and ¢ edges then (7%((;)] + 1 < veuy(G) < 2q —p.

Proof: The theorem is proved by induction on A(G). Since the
graph G is vertex color critical, youry (G) = p. When A(G) = 1, then
the graph G = Ky and you (G) =2 = [#(G)} +1= [1%(0)} + 1.
When A(G) = 2, then the graphs are cycles C,. Since odd cycle
C, is a vertex color critical, your (G) = p,p > 3. Since |V(G)| =
p = |E(G)| = ¢,yomy(G) = 2¢ — p. Therefore the upper bound
exists for odd cycle. Since A(G) = 2,G = K3 is a complete graph
and you(G) = 3 = 2¢ —p. When A(G) > 3 and G is a vertex

color critical graph then G = K,,p > 4 is a complete graphs. Since

B(G)] = q="2Y 700 (G) =p <20—p =2 (p—(p;”) —p =

(p? — 2p). Hence you, (G) < 2q — p, if A(G) > 3. The lower bound



Ch. 6: Connected Majority Dom-Chromatic Number of a Graph 199

is sharp for G = K3 and the upper bound is sharp for G' = C),, odd

cycle. |

6.5 ~cwmy for Disconnected Graphs

In this section, results on yeour, (G) are investigated for disconnected

graphs.

Theorem 6.5.1: Let G be a disconnected graph with G, Go, ..., Gy,
components which are all vertex color critical. If any one component
G; such that cpn(G;) > [§] then voun (G) = |V(Gy)|, for any 1 <

1< m.

Proof: Let G1,Go,...,G,, be the m components which are vertex
color critical. Then x((G; —v)) < x(G;), for all i = 1,2,...,m. Let
r1,72,...,Tm be the chromatic preserving numbers of G, G, . .., G,,.
Then cpn(G) = max{ry,re,...,rym}t. Suppose cpn(G) = r; for any
i = 1,2,...,m such that |r;| > [§]. Hence any 7o~ set S must
contain the full vertex set of G; such that cpn(G;) = r;, for any .

Case (i): Consider |V(G;)| < [5]. Then the set S wouldn’t be a

majority dominating set of G. It implies that S would be a majority
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dominating set by adding some vertices from different components.
But the induced subgraph (S) is not connected. Hence ~ycas, does
not exist for [V(G;)| < [§].

Case (ii): Let [V(G;)| > [5]. Since the set S contains the full
vertex set of G;, the induced subgraph (S) is connected. Also, if
\V(Gi)| = [5] and epn(G;) = cpn(G), x((S)) = x(G). Therefore

Youy(G) = |V(G)|, for any i <i < m. -

Theorem 6.5.2: Let G be a disconnected graph with m components.
If all components G; such that [V(G;)| < [§],i = 1,2,...,m then

Yoy (G) does not exist.

Proof: Let S = {vy,v9,...,0.} C V(G;) for i = 1,2,...,r and
r < m. Since each component G; has the vertex set |V (G;)| <
21,7 = 1,2,...,m, the set S contains vertex set of any one com-
ponent GG; and some vertices from other components to satisfies the
condition |[N[S]| > [§]. Hence the induced subgraph (S) would not
be connected. Therefore yoar, (G) does not exist for the disconnected

graph such that [V(G;)| < [§], for all 4. |
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Theorem 6.5.3: Let GG be a disconnected graph with m components

which are not vertex color critical. If any one component G; such that

V(Gy)| = [5] then 2 < veour (G) < [5] — 2.

Proof: Let G1,Gs,...,G,, be the components of a disconnected
graph G. Let x(G) > 2 and S be the subset of any one compo-
nent G; of G such that x((S)) = x(G) and |V(G;)| > [§]. Since the
components of G are not vertex color critical, G’s are not either K,
or Cp,p is odd. If diam(G;) = 1 then the component G; is a path
Py and you (G) = 2. If diam(G;) = 2 then G; = P3 or K; and
Youmy(G) = 2. If diam(G;) = 3 then G; = D, ,, a double star and
G = Py and by the corollary (2.3.4) and (2.3.1)(iv), youy(G) = 2.
Suppose diam(G;) > 4 and G} are all paths. Then G = Gy UG, U
... UG, where |V(G1)| > [§] and |V(G;)| < [§] for ¢ > 2. Since
the component G has [§] vertices and d(u;) < 2 for u; € V(G),
the set S C V(G1) such that S = {ug, us,...,urz11} is a majority
dom-chromatic set with [S| = [§] — 2 and |N[S]| > [5]. Since
d(ui, u;) = 1 and G is a path, the induced subgraphs (.5) is connected
and x((S)) = x(G). Hence S is a connected MDC set of G and

Yoy (G) < [5] — 2. Therefore the upper bound exists.
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Suppose any one component (G; of G which is not tree. Since
[V(G1)] = [5], the set S would be a connected majority dom-
chromatic set of G such that |S| > 2 and you (G) > 2. Hence the
bounds of vy (G) lies between 2 and [£] —2. Thus 2 < youy (G) <

521, .



Conclusion

The research work primarily concentrates on majority dom-chromatic
set of a graph G. The researcher has related the newly defined param-
eters with other graph theoretical parameters and extensive works
were made on this new parameters for a graph G. The exact values
of major dom-chromatic number 7,7, were determined. Algorithms
and Applications to majority dom-chromatic sets were also discussed.
Majority dom-chromatic partition number dys, (G), connected ma-
jority dom-chromatic number yoar, (G), Edge critical, Vertex critical
and Edge addition regarding MDC number were studied and many
theorems were produced. Further, the researcher has also opened the
gateway for doing more work with majority dom-chromatic sets by

imposing more conditions on them.
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RESULTS ON MAJORITY DOM-CHROMATIC SETS OF A GRAPH
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ABSTRACT. A majority dominating set S C V(@) is said to be majority dominating
chromatic set if S satisfies the condition x(({S)) = x(G). The majority dom-chromatic
number vary (G) is the minimum cardinality of majority dominating chromatic set. In
this article we investigated some inequalities on Majority dominating chromatic sets of a
connected and disconnected graph GG. Also characterization theorems and some results
on majority dom-chromatic number vy (G) for a vertex color critical graph and biparte
graph are determined. we established the relationship between three parameters namely
X(G),vm(G) and yary (G) for some graphs.

Keywords: Majority dominating set, Majority dominating chromatic set, Majority dom-
chromatic number.
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1. INTRODUCTION

All the graphs G = (V, E) considered here are simple, finite and undirected. The
concept of domination is early discussed by Ore and Berge in 1962. Then Haynes et.al [2]
defined the domination number ~(G) as the minimum cardinality of a minimal dominating
set D C V(G) such that each vertex of (V — D) is adjacent to some vertex in D. The
majority dominating number 77 (G) was introduced by Joseline Manora and Swaminathan
[6] is the smallest cardinality of a minimal majority dominating set S C V(G) of vertices

and S satisfies |N[S]| > H@-‘ ‘

Janakiraman and Poobalaranjani [3] defined the dom-chromatic set as a dominating
set S C V(@) such that the induced subgraph (S) satisfies the property x((S)) = x(G).
The minimum cardinality of a dom-chromatic S is called dom-chromatic number and it is
denoted by 7ch(G’) or ’}/X(G).
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Definition 1.1. [}/ A majority dom-chromatic number yur,(G) is defined as the smallest
cardinality of the majority dom-chromatic set (MDC set) S of V(G) if S is a majority
dominating set and it satisfies the property x({S)) = x(G).

Results 1.2.
(i) /4] Let G = mKao,m > 1 with p=2m. Then vy (G) = [§] +1,p > 2.

(ii) /4] For any graph G, max{x(G), ym(G)} < ymy(G) <p

(iii) /4] Let G be any graph of order p. Then vy (G) = p if and only if G is vertex x
- critical.

(iv) [6] For a cycle Cp, v (Cp) = [£].

(v) [6] For a path Py, ya(Pp) = [£].

Definition 1.3. [5] If a vertex with degree d(u) > [§] — 1 then u is called a magjority
dominating verter. A full degree vertex is a majority dominating verter but a majority

dominating vertex is not a full degree verter.

2. SOME INEQUALITIES ON MAJORITY DOM-CHROMATIC SETS.

In this section, Inequality between the sum of the degrees of all vertices of a MDC set
S of G and the complement of S i.e., (V — ) in a graph G is discussed. We determine
some inequalities such as

[V =8| < > deg (v;) and |V — S| > > deg (v;) with respect to the MDC set S of a
v, €S v; €S
connected graph G.

Theorem 2.1. If S is a MDC set with two majority dominating vertices of a connected
graph G then |V — S| < > deg(v;).

v, €S

Proof: Let v; € V(G) be a majority dominating vertex such that d(v;) > [5] — 1 and
S = {v1,v2} be a MDC set with only two majority dominating vertices of G.

Case 1. The graph G is a tree.
Since d(v;) > [§] — 1,4 = 1,2, for all v; € S. It implies that x(G) = 2,ym(G) = 1

then Z deg(v;) = d(v1) + d(va) > {21 -1+ {B-‘ -1

2 2
v; €S
Z deg(vi) =p—2or pif piseven or odd
v, €S
Therefore |V —S|=p—-2< Z deg(v;).

v €S

Case 2. The graph G is not a tree and G contains two majority dominating vertices.
Then G is not complete but G consists of triangles. It implies that x(G) = 3,vm(G) = 1.
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Then S = {v1,v2,v3} be a majority dominating chromatic set of G where vs is joined with
a majority dominating vertex vi or vy of G.

Therefore Z deg(vi) = d(v1) + d(v2) + d(v3) > [8—| -1+ Pz—‘ —142

2 2
v; €S
>porp+2
Hence |[V—-S|=p—-3< Z deg(v;).
(’L)ies)
In the above cases, we obtain [V — S| < > deg(v;). O
(UiES)

Example 2.2. Consider the following Hajos graph with p = 10.

V,

10

For the graph H,x(H) = 3,vym(H) =1
Then S = {va,v3,v5} is the MDC set of H.

> " deg(vi) = d(va) + d(v3) + d(vs) = 14 and [V = S| =7 < )~ deg(v;).
v; €S v; €S
O

Proposition 2.3. Let G be a non-trivial connected graph with atleast one full degree
vertex. If S is a magority dom-chromatic set of G then

|V -S| < Z deg(u;).

u; €S
Proof: The graph G contains atleast one full degree vertex u; € V(G) then d(u;) =p—1.

Case 1. The graph G is complete.
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Then the graph G contains all vertices are full degree vertices. Since x(G) = p,
S ={uy,ug, - ,up} is a MDC set of G.

Therefore |V — S| =0 and Z deg(u;)) =p(p—1)= |V -5 < Z deg(u;).
uiES uiES

Case 2. The graph G is not complete.

SubCase 1. If G has only one full degree vertex u and it is not tree then G contains a
triangle. Since x(G) = 3,5 = {u,u1,us} is a MDC set of G. It implies that |V —S| = p—3.

Z deg(u;) = (p—1)+3+3=p+5. Hence, |V — 5| < Z deg(u;).
u; €S u; €S

SubCase 2. If G has only one full degree vertex and the graph G is a tree.

Consider S = {uy,us} be the MDC set of G which contains a full degree vertex uy. Then
Yy (G) =2 . Hence |V — S| <p—2.

Also Z deg(u;) = d(ur) + d(uz) >p—1+4+1=p. Hence, |V -S| < Z deg(u;).
uiES uiES

SubCase 3. Suppose the graph G has two full degree vertices uy and us, then G contains
a triangle. Hence, x(G) = 3. Let S = {u1,u2,us} be a majority dominating chromatic set
of G. Then |V —S|=p—3.

Now, Z deg(uj) =(p—1)+p—-1)+2=2p.= |V -5|< Z deg(u;).
uiES uz‘ES
In all cases, the vertices of S majority dominates the graph G and also addition with its

coloring number. Thus [V — S| < > deg(u;). O
u; €S

Corollary 2.4. If the graph G is a vertex color critical and S is a MDC set of G then
[V —S|=0.

Proof. Let G be a vertex color critical graph with p vertices. Then S = {vy,va, -+ ,vp}
is a MDC set for G. It implies that vy, (G) = |S| = p. Hence [V — S| = 0. O

Proposition 2.5. If a connected graph G contains all vertices are magjority dominating

vertices then |V — S| < > deg(u;), where S is the MDC set of G.
u; €S

Proof: Let G be a connected graph which contains only majority dominating vertices.
Then yp(G) = 1 and x(G) > 2. Consider the set S = {ui,u2,---,u} be a MDC
set of G. Then |V — S| < p — 2. Since G contains only majority dominating vertices,
d(u;) > [§] — 1for each u; € S.

Case 1. The graph G has no triangles. Let S = {ui,us} be a majority dominating
chromatic set of G.

Then Z deg(u;) = d(u1) + d(ug) > {gw -1+ %W -1
u; €S

Z deg(u;) >porp—2and |V -S| =p—2. Hence |V -S| < Z deg(u;).
’U,Z'ES U»;ES
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Case 2. The graph G has triangles.

Then vy (G) = 1 and x(G) > 3. It implies that S = {u1,uz,uz} is a MDC set of G.
Hence |V — S| =p—3.

Then Z deg(u;) =3 ([gw - 1) > 3?]) or <32p - 3) Hence |V — S| < Z deg(u;).

U €S
[l

Proposition 2.6. If a connected graph G has mo majority dominating vertices then

[V =8| > > deg(u;), where S is the MDC set of G.
u; €S

Proof: Let S be the MDC set of a connected graph G of p vertices and ¢ edges. Since the
graph G has no majority dominating vertices, it has no full degree vertex and it contains
all vertices with degree of d(u;) < [5] — 1. Assume that S = {u1,u,---} be the MDC
set of G. Then |V — S| <p—2,p > 6.

Also, l;gdeg(ui)zd(uﬂ—l-d(l@)-f-“'S @ —2+{§] —2+--.32[§] 4

Z deg(u;) < (p—2) or (p—4), if pis odd or even.
U ES
Hence we obtain, |V — S| > Z deg(u;).
u; €S
]

Proposition 2.7. If a MDC set S contains a majority dominating vertex v and other
vertices u; such that d(u;) < [5] — 3 then

|V —35| > Z deg(u;).

u; €S

Proof: Let u be the majority dominating vertex such that d(u) = [g] — 1 and other
vertices u; with degree d(u;) < [5] — 3 in G. Then vy(G) = [{u}| = 1 and x(G) = 2.
Therefore S = {u,u;} is a MDC set of G and |V — S| <p—2.

Then Z deg(u;) = d(u) + d(uy) < %—‘ -1+ [gw -3
u; €S
E—1+L-3=p—4, if piseven
<
P+l +1-4=p-3, if pisodd
Therefore Z deg(u;) < (p—4) or (p—3). Hence |V — S| > Z deg(u;).

uiES uiES
O

Theorem 2.8. Let G be a connected graph with exactly one wvertex v
such that [§] —1 < d(v) < [§] 42 and d(u;) < 3, for all u; € V(G). Then

|V —S5|> Z deg(v;), where S is MDC' set such that v € S.
v;ES

Proof: Let v € V(G) with the condition [5]-1 < d(v) < [§]+2. (1)



J. JOSELINE MANORA, R. MEKALA: RESULTS ON MAJORITY DOM-CHROMATIC ... 35

Case 1. The graph G is a tree. Let S = {v,u1} be a MDC set in which u; is a pendant
or d(uwy) =3. Then by (1), d(v) = [§] =1 and [V — S| =p — 2.

i =) = 3] 11 7] o 1] 1
A
It implies that |V — S| =p—2> Z deg(v;).
v, €S
Suppose d(v) = {g] + 2.

Then, Z deg(v;) = d(v) + d(uy) = %ﬂ +241= %ﬂ +3 or %ﬂ +4.
v; €S8
Therefore by (1), Z deg(v;) takes the value from {g-‘ to %W +4.

v; €S

Hence |V — S| > Z deg(v;).
v, €S

Case 2. The graph G is not a tree.

Let S be a MDC set of G and S = {v,v1} where v is a majority dominating vertex and
vy 1s not a pendant of G. Then |V — S| <p—2.

Then Z deg(v;) = d(v) + d(v1) > {Q—‘ —143

2
A
o . p
Therefore vlzesdeg(vi) = [§-| +2,if d(v) > {51 —1 and

Z deg(v;) = [g} +5, if dv) < [g} +2

v; €S

Hence, [V —-S|=p—2> Z deg(v;).
v;ES

3. RESULTS ON 71, (G)

Proposition 3.1. Let G be any bipartite graph with a majority dominating vertex. Then
Yy (G) =2 and v (G) < vy (G).
Proof: Let G = K,,, ,,,m < n, be a complete bipartite graph.

Case 1. Since G has a majority dominating verter, yp(G) = 1 and x(G) = 2. Then
S = {ui,v1} is a MDC set of G, where uy € V1(G) and vy € Va(QG).

= Yy (G) = 2 and ym(G) < Yy (G).

Case 2. If G is not a complete bipartite graph then G may contains pendants. Since
G has a majority dominating vertex u; € V(G), S = {ui,u2} is a MDC set of G where
u1 € Vi(G) and v, € Va(G).

= Yy (G) =2 and Yy (G) = 1. Hence ym(G) < vy (G). O

The following theorem gives the characterization of vy, (G) = p — ¢, where G is any
graph with p vertices and ¢ edges.
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Theorem 3.2. Let G be any graph with p vertices and q edges. Then vy (G) =p — q if
and only if G = K,,p=1.

Proof: Let yary(G) = p—q. Since yary (G) > 1, (p—¢q) > 1. (1)
Case 1. The graph G is connected.

Then q>p—1= (p—q) < 1. Hence by (1) we obtain p—q =1 = v, (G). (2)
It implies that G is a tree. If G is a tree then x(G) = 2 and for any connected graph,
1 <yu(G) < [§]-

By (2), since p—q =1 = yuy(G), the two numbers v(G) and v (G) must be one. In a
tree, suppose x(G) =2 and yp(G) = 1, then the graph becomes G = Ky. By the result (ii)
of (1.2), ymy(G) > max{x(G),ym(G)}. We have vy (G) = 2. But it is contradiction to
the result (2). Hence G # Ko and G = Kj.

Case 2. Suppose G is disconnected. If G is disconnected with isolates and without isolates.
Then by the result (i) of (1.2), [§] 4+ 1 < yuy(G) < [5]. The lower bound is attained
for G =mKs. If m = Lymy(K2) =2 # p—q = 1. Also the upper bound is attained for

G = ky, when p =2 then vy (K2) =1 # p—q=2. Hence G # Ko or K. It follows that
the graph must be G = K1. The converse is obvious.

O
Next result is the characterization of |V — S| = 0, where S is a MDC set of vertex color
critical graph G.

Proposition 3.3. A MDC set S belongs to a vertex color critical graph if and only if
|V -S| =0.

Proof: Suppose |V — S| =0. = |V(G)| = |S| = p. Then the set S = {uj,uz--- ,up} is a
MDC set for GG. Suppose we remove one vertex from S then S may not be a MDC set of
G. Hence G is vertex color critical graph.

Conversely by the definition (iv) in (1.1), if G is vertex color critical graph with p
vertices then vyr, (G) = p. Hence |V — S| = 0. O

Proposition 3.4. Let G be any graph with p vertices. Then vy, (G) < v (G), where
Y (G) is the dom-chromatic number of G.

Proof: Let vy, (G) be the majority dom-chromatic number of graph G. Since every dom-
chromatic set of a graph G is a majority dom-chromatic set of a graph G, ya1, (G) < 7y (G).

Case 1. When G is vertex color critical graph.
By the known results (3.2.6) of [3] and (i) of (1.2), 7 (G) = p = vy (G).

Case 2. The graph G is a tree.

If diam (G) < 3, then vy (G) = vuy(G) = 2.

Suppose diam(G) > 4, then the graph structures like Py, p > 5, Caterpillar, etc. By the
known results, 7y (G) < pJg?’ and Yy (G) <[] + 1.

Hence vuy(G) < 7y (G).

Case 3. When the graph G is not a tree and not a vertex color critical graph.

Then the graph structures like C), (cycle, p is even), F, (Fan), W, (wheel), etc. By the
known results, Yary(G) < [B]+ 1 and 7,(G) < B2,

Hence vur1y(G) < 9y (G). O
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Corollary 3.5.
(i) If the graph G is a sub division of a star, then yu, < [%]
(ii) If G is a path or cycle then,
a) yary < [2497:p=0,1,2,5( mod 6),
b) yary < [ +15p = 3,4( mod 6).
Example 3.6.
(i) Let P, be a path with p = 0(mod6). Consider G = Pig then yuy(G) = 4 and
G G
Y (G) =T7. Now, {%-‘ = [%] = 4. Hence vy (G) = [#—‘
(i) Let G = S(Ki1yt). Then S1 = {u,ui,u2, - ,u} is a dom-chromatic set which
contains a central vertex u of G. = v, (G) = |S1| =t +1 and S2 = {u,u1} is a
MDC set of G. = yuy(G) = 2. Hence yuy(G) < {@—‘

Construction 3.7. For every integer k > 0, there exist a graph G such that
G
{Lé )W — Yux(G) = k.

Proof. Let G be the subdivision of a star K o542 by dividing each edge exactly once.
Then |V(G)| =22k +2) + 1,7(G) = 2k + 2 + 1 and vy, (G) = 2.

Then {@]—Wx(a)zkm—z:k. O

Observation 3.8. Let G be any connected graph with p vertices. Let x(G),vm(G)
and Yary(G) be the chromatic number, magjority domination number and majority dom-
chromatic number respectively. Then x(G) and ypr(G) are not comparable.

i.e., YM(G) < X(Q) < Yy (G) and x(G) < 7m(G) < 7my(G).

For Example:-

(i) Let G = Cp,p < 11 and p is odd. Since C), is vertex x-critical, by the result (iv)
of (1.2), ym(G) = [E] ,x(G) = 3 and ya,(G) = 5.
Hence, 7 (G) < x(G) < vux(G).
(ii) Let G = Cp,p is odd and p > 19. By the result (iv) of (1.2),
i (G) = [§],x(G) = 3 and 1, (G) = p. Hence, x(G) < yu(G) < 1y (G).
(iii) If p =13,15,17 for G = C) then x(G) = 7m(G) < 7my(G).

4. RESULTS OF vpry(G) FOR A DISCONNECTED GRAPH

Theorem 4.1. Let G be a disconnected graph then vy (G) = {%1 if and only if G = K,
or G =gt UKy, p> 2, where g¢ is a vertex color critical component with |t| < [g]

Proof: Let G be a disconnected graph with p vertices.

Assume that, a7, (G) = [£] . (1)

Case 1. Suppose G # fp,p > 2 then G has atleast one edge between a pair of vertices.
It implies that G is a disconnected graph without isolates or G = Ko U Kj,_o. By known
result (i) of (1.2),ymx(G) = [B] +1 or v (G) = [B] = 1. But it is a contradiction to

(1). Therefore G = Kp,p > 2.

Case 2. Suppose G = g; U K,,_, where g; is not a vertex color critical component with

it] < [5]. Then the graph G contains a path, an even cycle or any other component g

with [t| < [5]. Since x(g¢) > 2 and v (g:) > [%1,
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SubCase 1. Suppose |t| = [5]. Then S = {ul,u%...,u(%]}, is a MDC set of G, where
u; € V(g¢). It implies that yary(G) = [§], it condradicts the condition (1).

SubCase 2. Suppose |t| < [5]. Then S = {uy,us, ([5] —t) K1} is a MDC set of G
where u; € V(gt).

Therefore iy (G) = [S| = [§] = [tl+2 = [5] = [5] + 1+ 3 (if [t| = [5] - 1)

= Yy (G) = 4 < [B]. It is a contradiction to (1). Hence g; is a vertex color critical

component in G with |t| < [5].

Case 3. Suppose gy with [t| > [5]. Since g; is a vertex color critical component of G,
gt is a complete graph or an odd cycle. If g; is an odd cycle with |t| = [§] + 1 then
Yy (G) = [5] + 1. It contradicts our assumption.

If gi is a complete graph with |t| = [5]41 then yary (G) = [5] 41, it is a contradiction
to (1). Hence, g; is a vertex color critical component of G with |t| < [§]. Therefore G
must be K, or (g: U Kp—¢) with |t| < [5]. In all the three cases if yar (G) = [5], then
G = Kp or (gt U Kp—t)~

Conversely, let G = K, or (gt UK,—). Suppose G = Ky, then yy(G) = [5] and x(G) =
1 = Yy (G) = [§].Suppose G = (9: U Kp_¢). Since g; is a vertex critical component with

it = [51,x(9e) = [5] and va(g:) > 1. It implies that yary(G) = [5].Suppose g; is a

vertex critical component with [t| < [5]. Then S = {ul,u2,...,utjvl,v%...?v[g]_t} is a

MDC set of G where u; € V(g¢) and v; € V(Kp—). Now, |S| =t + [5] —t=[5]. Hence
ix(G) = [S] = [5].

O
Observation 4.2. (i) For a disconnected graph G, x(G) < ym(G) < vamy(G).
Example: Consider the disconnected graph with isolates with p = 16.
Let G = P UKs. Let |[V(G) = [{vi,v2, -+ ,v11,u1, -+ ,us}| = 16. Then

Ym(G) = [{vz,vs,v7}] = 3 and vy (G) = [{v2,vs,v7,v8} = 4. Since Piy is a tree,
X(G) = 2. Therefore x(G) < vm(G) < Ymy(G).

(ii) For a disconnected graph G with isolates, var(G) < x(G) < vy (G).

Example: Let G = C3UK5 and V(G) = {v1,v2,v3,u1, - ,us}. Since C3 is an odd cycle,
X(G) = 3 and Y (G) = [{vi,u1}| = 2. Then S = {v1,v2,v3,u1} be the MDC set of G

where v; € V(C3) and w; € V(K5). = vuy(G) = |S| = 4.  Therefore
1 (G) < X(G) <7y (G).

(iii) Let G be a disconnected graph without isolates. Then x(G) < var(G) < Ymy(G).

Example: Consider the graph G = P U Cg U K1 3. For a tree with p = 17 and an even
cycle, x(G) = 2.

V(G) = {u,-- ,ur,v1,- - ,v6, w,wy,wp, wz}. Then v (G) = [{w,ug,us}| = 3 and
My (G) = [{w, uz, us, us}| = 4. Hence x(G) < ym(G) < vy (G).
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(iv) For a disconnected graph G with vertex color critical component,
X(G) < m(G) < ymx(G).

Example: Let G = Cj3 U K be a graph with p = 19.

And V(G) = {uy,--- ,u13,v1, - ,v6}. Since Cy3 is an odd cycle, x(G) = 3. The set
{ua, us,ug} be the yps-set of G and v, (G) = 3. By the result (iii) of (1.2), Ci3 is a vertex
color critical component , yasy (G) = 13. Therefore x(G) < v (G) < Ymy(G).

Proposition 4.3. G be a disconnected graph with any vertex color critical
component then |V — S| < Z deg(u;).
u; €S

Proof: Let G = G; U G, be a disconnected graph with p vertices . Since G has a vertex
color critical component , x(G) > 3. Consider S = {Gt,u1,---} be the MDC set of
G, where Gy is the vertex color critical component, such that |t| > 3 and u; € G,. If
IN[G]| = [§] then [S| > 3. If [N[Gy]| < [§] then |S| > 4. It implies that |[S| = 3 or 4
and |V — S| <p—3orp—4. Let V(G¢) = {u1,ug, - ,u}, then

> deg(ui) = d(ur) + d(ug) -+ > 3(t—2)+1 >3t — 5, if |t| > 3.

u; €S

Then, certainly we get |V — S| < Z deg(u;)
u; €S

O

Proposition 4.4. For a disconnected graph G without any vertex critical component,
V=5[> > deg(ui).
u; €S

Proof: Let G be a disconnected graph with not vertex color critical component. Let S

be a MDC set of G.
Case 1. The graph G is totally disconnected.

Then S = {uy,ug, - ,u(g]} be the MDC set of G and deg(u;) = 0, for each u; € S. It
implies that »_ deg(u;) = 0. Hence, |V — S| > > deg(u;).

uZ'ES uiES

Case 2. The graph G is disconnected with isolates.

Then G contains some connected component ‘g’ along with isolates.

SubCase 1. If the component ‘g’ such that |Ng]| > [§] then S is a MDC set of G with
1 <|S|=TE]. Suppose |S| =1 =S = {u} such that [N[S]| = [5§] — 1.

Then |V —S|=p—1> 3 deg(u;) = [§] — 1. Suppose |S| = [E].
u; €S

Then d(u;) < 2, for all u; € V(g). Now, ) deg(u;) = 2[§] = § or £ +2 and
u; €S

V-Sl=p-—[E]=2-1

Therefore, |V — S| > > deg(u;).
u; €S
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SubCase 2. If the component ‘g’ such that |[N[S]| < [§] then S is a MDC set with
solates.

= 3 deg(u;) < £. Since S contains more isolates, the value 3 deg(u;) will be
u; ES u; €S
reduced. Then |V — S| > > deg(u;).
u; €S

Case 3. G is a disconnected graph without isolates.

Then G contains only connected components . Suppose G = mKsy. Then by the result
(i) of (1.2), vmx(G) = |S| =[] + 1. It implies that

u%;gdeg(ui)z %1 +1. But |V -S| = ‘p— ([g-‘ _4_1)‘ :??Tp_l

If the size of the component g increases such as G = mCy,mKi4,--- then |S| will be
decreased. i.e.,

|S] < {21 +1 and Z deg(u;) > [g-‘ + 1. But in all structures,
u; €S

We obtain, |V — S| > Z deg(u;).
u; €S
U

Proposition 4.5. Let G be a disconnected graph without any vertex color critical compo-
nent then |V — S| = | §] if and only if G = K,,.

Proof: Let G has no vertex color critical subgraph. Let G = Fp, p is odd. Then
S ={u1,uz, -+ urzy} is a MDC set of G and 1y (G) = [S] = [£]. Hence |V — S| = |§],
if p is odd. When p is even, S = {uj,ug,- - ,u§} is the MDC set and vy (G) = |S| = §
and |V — S| =2 . Hence [V — S| = |§].

Conversely , suppose G # K. Then either G is disconnected graph without isolates or
G contains atleast one component which is not a vertex color critical with some isolates.
Let [V -S| = [%]. (1)

Case 1. If G has components which is not vertex color critical with no isolates then the
structure like G = mKy. By the result (i) of (1.2), we have yury (G) = |S| = [§]+ 1. If
S| =[81+1=|V-=S|=p—[51+1] > |5]. It is a contradiction to (1).

Case 2. Suppose G = Cg U Kp_g, where Cg is not a wverter color critical. Then
S = {ug,us, ([5] — 6)K1}, where ug,us € V(C).

151 = [§1-6+2= 3] -4
Therefore |V — S| = |p—[5] +4| = | 5] +4 > [5]. It is a contradiction to (1).

Hence G = K, if and only if |V — S| = 1&].
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5. CONCLUSION

In this article, we have discussed the inequality between the sum of the degrees of
the vertices of majority dominating chromatic set S and its complement (V — 5) of a
graph. The comparison between the domination parameters var(G), x(G) and vy (G)
are discussed. Also some results of vy, (G) of a disconnected graph with isolates and
without isolates are studied.
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Abstract

In this article, how the removal of a single vertex from a graph G can change the majority
dom-chromatic number is determined for any graph. A graph is majority dom-chromatic critical
if the removal of any vertex decreases or increases its majority dom-chromatic number. There
are two types namely CVR and UVR with respect to majority dom-chromatic sets of a graph.

Also the vertex classification Vl(l)lx (G), Vi (G) and VJJ\}X (G) are studied and its characterisation

theorems are determined.
1. Introduction

Let G be a finite and simple graph with p vertices and g edges. A subset D
of vertices in a graph G = (V, E) is called a dominating set [1] of G if every

vertex in (V — D) is adjacent to some vertex in D. A dominating set D is

called a minimal dominating set if no proper subset of D is a dominating set.

The domination number y(G) of a graph G is the minimum cardinality of a
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minimal dominating set in G. A set S < V(G) of vertices in a graph
G = (V, E) is called a majority dominating set [4] of G if at least half of the
vertices of V(G) are either in S or adjacent to the elements of S. A majority

dominating set S is minimal if no proper subset of S is a majority dominating
set of a graph G. The minimum cardinality of a minimal majority dominating
set is called majority domination number of G, is denoted by v,,(G). It is the

minimum majority dominating set of G.

A dominating set S < V(G) such that the induced sub graph (S)
satisfies the property x((S)) = x(G) is called as dom-chromatic set [2] of a
graph G. The minimum cardinality of a dominating chromatic set is called
dom-chromatic number and it is denoted by 7v.,(G) or yX(G). A dom-
chromatic set S of G such that | S| = v.4(G) is the minimum dom-chromatic

set of a graph G.

[6] For any graph G, CVR and UVR with respect to domination numbers
are defined by, CVR : y(G —v) # y(G), for all v € V(G) and UVR : y(G - v)
= y(G), for all v € V(G).

[6] For any graph G, CVRy; and UVR); with respect to majority
domination numbers are defined by, CVRy; : v(G —v) = yp(G), for all
v e V(G) and UVRy; : v1(G —v) = v4(G), for all v € V(G).

[2] A graph G said to be a CVR-graph if v.,(G — u) # y.4(G), for all
u € V(G) and a graph G said to be a UVR -graph if y.;(G — u) # y.5(G), for
all u € V(G).

A set S < V(G) is said to be a chromatic preserving set or a cp -set if
x((S)) = x(G) and the minimum cardinality of a ¢p -set in G is called the

chromatic preserving number or ¢p -number of G and is denoted by cpn(G).

[1] The private neighbour set of u with respect to S denoted by pnu, S]
is defined by pnfu, S] = {v: N[v]N S = {u}}
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2. CVRy, and UVRy;, Graphs

Definition 2.1 [3]. A subset S of V(G) is said to be Majority Dominating

Chromatic set (MDC set) if S is a majority dominating set and S satisfies

x((S)) = x(G). The minimum cardinality of a majority dominating chromatic

set of G is called a majority dominating chromatic number and is denoted by
YMx(G)'

Definition 2.2. For any graph G, the vertex set can be partitioned with
respect to MDC sets into three sets V]?/_,X(G), Vg, (G) and Vi (G) and is
defined by,

Vg, (G) = {v € V(G)/ v31,(G - v) = 134, (G)},
Vig,(G) = {v € V(G)/ 135,(G — v) < 735, (G)} and

Vig (G) = {v € V(G)/ va5,(G = v) > 124 (G}

Definition 2.3. A graph G is said to be a CVRypy -graph if
Y (G =) # v (G), for every v e V(G). A graph G is said to be a UVRyy, -
graph if v, (G - v) = (G), for every v € V(G).

Example 2.4. Consider the graph G with p = 16.

v L1
(3 T Vi
‘IH
X ] /

o i o ] i i |
¥ f\ % v | v v . LR Vig
ff \ |
—, :

G. Figure - (i)
In the graph G, S = {vs, vg, U7, Us, U5} 1is the Yy -set of G. Then
va5(G) = 5. For the graph G —{vs}, vp(G — {vs}) = | {vg, v3, vy, vg} | = 4.

Therefore vp5(G —v5) < vp/(G). Hence wv5 € Vyy(G). For the graph
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G — {vgh v (G —vg) = | {vs, U6, U7, Vg, 115} | = 5. Therefore 5 (G - 1g)
= va1,(G). It implies that vg € Vyy, (G).

Example 2.5. Consider the graph G = F,, p=17 aFan.

¥1
J'_!' I,'l \ '\.\ \\\\
FL N .
i "n A
G. Figure- (ii)

In this graph G, yp(G) =| {vy, vg, v} | = 8. For G —{va}, vp,(G - vg)
= | {v1, vs, v4} | = 3. Therefore vz (G —vy) = yp5(G) and vy € V]?/[X(G). For
the graph {G —v}, yag (G —vy) = | {vg, vy, V7, o} | = 4. Hence
YMx(G - UZ) > YM)((G) and U € V]-l‘—lx(G)

Theorem 2.6. If a graph G is a vertex color critical then G € CVR)y, .

Proof. Since the graph G is vertex color critical, ypz(G) = p. If the

removal of any vertex v from V(G), x(G —v) # x(G). It implies that
Y (G —v) < v (G), for every vertex v e V(G). Hence G € CVRyy, .

Corollary 2.7. Let G = K, p > 2. Then G < CVRMX.

Proof. By the result (3.1) [3], ypp(G)=p. For the graph

Y (G —vp) = p—1. Hence v (G —vp) < ypp (G). Therefore v € Vyy (G).
For every vertex v € V(G), vp5(G —v) < yp5(G) and G € CVRyy, .

3. Results on Vj (G)

Proposition 3.1. Let G = K ,_;. Then v, € V35, (G) and v; € V&X(G)

where vy is a central vertex and v;’s are pendants.
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Proof. Let V(G) = {vy, vy, ..., Uy}, where v; is the central vertex and

others are pendants. The set S = {v;, vy} is the MDC set of G and

Ym(G) = 2. For a graph G —{uv}, vpp(G -vy) = [pT—l—‘ Therefore

Yo (G —v1) > vp5(G).  Hence vy € V3 (G).  Suppose any pendant
Ui 8 =2, .., D, Vg (G — ;) = 2 = yp5(G). Therefore v; € V&X(G), where
v;’s are pendants.

Proposition 3.2. If G has exactly one full degree vertex and other vertices

-1
are of degree d(v;) < p2 then | V]T/.IX(G” =1

Proof. Let G be a graph which contains a full degree vertex v such that
d(v)=p—-1. Let S be a MDC set of G. Since d(v) = p —1, v must be in
majority dominating set S and minimal ¢p -set of G. Then | N[S]| > {g—‘ and
x((S)) = x(G). Let S" be the yuz -set of G' = {G —v} and {G — v} contains

isolates, then vz (G') > | S| = yp4/(G). It implies that v e V&X(G). If {G - v}

contains the vertices v; with d(y;) < {p 2_ 1—‘ then |S'|> 2. Therefore

| S'| = |S|+1. It implies that v (G —v) > v (G) and v € Vjp (G). Thus,
all other vertices are V]%X(G). Hence | V3 (G) | = 1.

Proposition 3.3. Let T be a tree with p vertices. If a vertex v € V(T)

satisfies one of the following conditions.

(i) v is in a dominating edge e = {uv} with d(v)z{g—‘—l and

by
d(u) < {2] 1.
(i1) v is a vertex with degree d(v) = p — 1 and others pendants.

(iii) v is in every ypy, -set of T. Then VJ\JZIX(T).
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Proof. Let T be a tree with p vertices.
Case (i) Let e = {uv} is a dominating edge with d(v) > (%W -1 and

d(u) < (g—l —-1. Since x(G)=2,S={u v} be a yp,-set of T. Let
S, = {u, u, v;} be aset of T — {v}, where u and u; are adjacent and v;’s are
isolates such that | N[S;]| > {g] with | S| >|S|. Then %(T)=x(S))
= x(T —v). Thus S; is a MDC set of T'— {v} and ypp(T —v) <[ S; |. Since
|Si|>[S1] vam(T —v) > | S| = yp(T). Hence v e Vi (T).

Case (i) Let d(v)=p-1 and d(y;)=1, for all v; € V(T). Then
Y (T) = | {v, v} = 2, for some v; such that d(v;) = 1. Since v is adjacent to

all vertices v; of T, (T — {v}) is disconnected with only isolates. Now, there

exists a MDC set S in 7 —{v} with only isolates and |S|= [pT_l—l It
implies that | S| = ypz (T - {v}) > va/(T) and v € V5 (T).

Case (ii1) If the vertex v is in every minimum MDC set of 7, then visin a

dominating edge e = uv or v is a full degree vertex of T. It implies that

d(v) > [g—l -1, du) < [g—‘ —1 and other vertices v;’s are of degree with
d(v;) < [g—l — 1. By Case (i), the vertex v € Vy (T).
Proposition 3.4. For any graph G, | Vi (G) | < v4,(G).

Proof. Let Sbe a yyy, - set of G. Let v e Vjz (G). By proposition (3.3), v is

in every yp,-set S of G. Then veS and Vj(G)<S. Hence

Theorem 3.5. If v € Vj; (G) and v is in every minimal cp -set of G then

| pplv, SI| = 2, for all vy, -set of G.
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Proof. Let Sbhe a y My -Set of G. Let v be a vertex in every minimal ¢p -set

of G. Let v be a vertex in every minimal ¢p-set of G. Then
(S -v)) =G -v) < x(G). Let Pnfv, S] = ¢. Then {S — v} isa yyy, - set of

{G - v}. Tt is a contradiction to v € Vjy, (G). Suppose | Prfv, S]| = {v}. Then
v is an isolated vertex in S and hence v € V](&IX(G). It is a contradiction to
v e Vap(G). If | Prfv, S]| = {u} then {S —v} U {u} is a yyy, -set of {G —v}.
Thus v (G —v) <[ S| = 735(G). It is a contradiction to v € Vyp, (G).

Hence, | Pnfv, S]| = 2.

Proposition 3.6. For any graph G with an isolate, there exists a Y My -Set
of G not containing that isolate.

Proof. Let v be an isolate of G. If S is a vy, -set of G containing v then

| VS) 2 | B and 2(S)) = 1(G)

Case (i) If | N[S]| 4 ] then | N[S - {u]]| > [g] and 7((S - v) = %(G).
It implies that S —{v} is a yjy -set. Hence S - {v} = S" is a yyy, -set of G

without an isolate v.

Case (i) If | N[S] :{ —‘ then | N[S - {v}]| > [5—‘—1 and v # N[S].
P

D
2
Now, if | N[S - }]U {v,} | = (

—‘ for any v; € V(G) then S' =S - {v} U {1y }.

Also, x((S") = x((S)) and |S"| =| S| = ypp(G). Hence S’ is a yyy -set of G

without an isolate v.

4. Results on V]?/IX(G) and Vy (G)

Proposition 4.1. If G is a graph with vy, (G) = | V(G)| then € CVRyy, .

Proof. Let G be a graph with p vertices and v, (G) = | V(G)| = p. Then
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G is a vertex color critical graph. Therefore, for any vertex v e V(G), the
graph G =G -{v} has the value v,4(G)<p. Tt implies that
Va5 (G) < a1 (G), for every v e V(G). Hence G € CVRyy, .

Proposition 4.2. If G is a vertex color critical graph then V(G) = Vyz (G)

but the converse is not true.

Proof. By Proposition (4.1), ypp(G)=p and for all v, ypp(G -v) <
Y (G) = Vg (G) = V(G). For the converse, Let G = P,, p=9. Then
Ym(G) =38. For any vertex v, By —{v}=F; and yp,(Ps)=2. Hence
V(G) = V35 (G) and G € CVRy;, but G = Py is not a vertex color critical
graph.

Proposition 4.3. Any Path P,, p = 3(mod 6) is a CVRy;, graph.

Proof. Let G = P,, p=6k+3, k=1 Then by the result (3.3) [3],

Y (G) = B+ 2. TFor each vertex ve V(G) ypp(G—-v)=Fk+1, where
p = 6k + 2. Hence P, € CVRy; where p = 3(mod 6).

Proposition 4.4. If G is a CVRyy, graph then Vi, (G) # ¢.
Proof. Since G is a CVRyy, graph, V = V]T/IX U Vi .-
Suppose Vyp (G) # 6. 1)

Then V = Vy, (G) and y4/(G —v) > y4(G), for all v € V(G). Let Sbe a
Ymy-set with |[S|=p-1 of G. Then V-S=¢ Let ueV-S and
{u} < V(G) - S. It implies that S < V(G) — {u} = G — u. Since Gisa CVRy,
graph, x((S)) = x(G) and %((S)) = x((G — ). It implies that S is a vy - set
of (G-u) and ypp(G—u) <|S|=ypp(G). Therefore u e Vi (G), it is a

contradiction to (1). Hence Vjy, (G) # ¢, for any CVRy;, graph G.
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Proposition 4.5. A Wheel graph G =W,, p>5 is a CVRMX graph
when p is even.

Proof. Let G =W,, C,_; v K;. By the result (3.5) [3], v,5(G) = p,
when p is even. Let V(G)={vy, vy, ..., U, 1, 0,} where v; € Cp 4,1

=1,2,..., p—1and v, € k. Suppose G' = G — {v}.

Case (i) Let {v;,} be the central vertex of G. Then G —{v;} = G' = Cp_;.
Since p is even, C,,_; is an odd cycle. By the result (3.2) [3], y34(G) = p -1,
Therefore vz, (G') < va5,(G).

Case (ii) Suppose {v;} be any vertex in Cp_1- Then the graph G becomes
a Fan G'=(G-{y}) = P,_g v K;. By the result (3.6) [3], ypp(G')=3.
Hence yp5,(G') < 75, (G).

In these two cases, the removal of any vertex {v;} in G,

Y (G —v;) < Y4, (G). Hence G € CVRyy, .

Proposition 4.6. Let G = W,,, p is odd. Then

@) v; € Vg (G) if v; € Cp .

(il) v; € Vg (G) if vis a central vertex of G and p > 17.

Proof. For G =W,, C,,_.; v K, p is odd, V(G) = {vy, g, ..., Up_1, Up}-
By the result (3.5) [3], ¢ MX(G) = 3. (1) The removal of any vertex v from
V(G), there exists two cases.

Case (i) Suppose any vertex v; € C,;. Then G =G -{y} and
G=F,,=p,9Vv K, where (p-1) is even. By the result (3.6) [3],
Y (G) = 3. By the result (1), vp(G') < vp(G) and v; € V]%X(G), for any

vertex v; € Cp,_;.

Case (ii) Suppose v,, is a central vertex and p > 17. The yyy -set of G is

p
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S = {vy, vy, v,}. Then v (G) =| S| = 3. If the removal of a central vertex
Up, G' = G —{v,} and G’ becomes C,_; even cycle. By the proposition (3.2)
(3],

p, if p is odd
(@)= {2 it p = (mods) @)
(%—‘ +1, if p =0, 4(mod 6).

For p <16, by the result (2), yp5(G') =|S"| = 8. If p > 17, by the result
@), vup(G) =8| > 4. Therefore, by the result (1), ypp(G') > ypp(G) and

v, € Vag (G). Hence v, € Vg (G), if p > 17.

Theorem 4.7. Let G be a CVRy, graph with p vertices. Then
| Vg (G) | = p = 724, (G).

Proof. Let S be a ypy-set of G. If G is a CVRyy -graph then
1 (G —u) < yp5/(G). Suppose |S|=71p5(G)=p. Then |Vp(G)|2p
~Ym,(G) holds. Suppose | S| =y (G) < p. Then V —S = ¢. Now choose
any vertex v eV —S. Since yyp(G —u) < 1p5/(G), v € Vpp (G). Therefore
V-8 c Vap(G). Tt implies that [V -S| <|Vpp(G)|. Hence |V (G)|
> p —v,(G).

Theorem 4.8. Let vy, (G) be the ypp -number of a graph G. If
124,G) = | V(G)| then V(G) = Vi (G).

Proof. Let S be a v,y -set of G and vy (G) = | V(G)| = p. Then G is a
vertex color critical graph. For any v € V(G), x(G - v) < x(G) and it implies

that vy, (G — 1) < v (G). Hence v € Vyy, (G). Forevery v e S,
Yo (G — u) < vp5/(G) is true. Hence V. (G) = | V(G)|.
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Theorem 4.9. Let G be a connected CVRyy, graph with y(G) > 3. Then G

has a unique vy, -set of G if and only if v (G) = | V(G)|.
Proof. Let the graph G have a unique y My -set S. Then we claim that
V(G)-S =4 6))

Suppose V — S = ¢. Since G is a CVRyp, graph, v(G —u) < vp5(G),
for every v e V —S. Then for each v eV -8, x((S -v)) = x((S)) and the
induced sub graph (S) is a vertex color critical. Hence for any u e V - S, S
is a MDC set of G — {u}, which is a contradiction to the assumption (1).
Therefore there exist v eV -8 such that (S -v))=x(S)). Then
Pnfu, S] # ¢, forany u € S,

Case (i) Let | Pnfu, S]| = 1. If Pnfu, S] = {u} then u is an isolate in (S).
Since G is connected, N(u)= ¢ and N(u) <V —S. Also some vertex
w eV — S is adjacent to any vertex in S. Let w € N(u). Then (S - u) U {w}
is a vy My -set of G, which is a contradiction to the assumption (1). So
Pnlu, S] = {v}. Then (S —u)U {v} is vy, -set of G, which is a contradiction to
(1). Hence V — S = ¢. Thus | V(G)| = 7,5 /(G).

Case (ii) Suppose | Pnfv, S]| > 2. Let v € PnJv, S]. Then there exists a
w # v such that w e Prfv, S]. It implies that (S —u)U {w} is a ypy -set of

G, which is a contradiction to (1). Let x, w € Pnfv, S]. Then (S —u) U {w} is
a ypp -set of G —x. Thus, |V(G)| = | S| = vpp(G).

Conversely, yp5(G) =|V(G)| = p. It implies that the graph G have a
unique MDC set of G.

Theorem 4.10. If v is an isolated of G then v € V&X(G).

Proof. Let v be an isolated vertex of G. Then v is not in minimal ¢p -set of

G. Let S be a ypp-set of G and not containing the vertex v. Then
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| N[S]| = {g—l and ((S)) = x(G). Then y,(G)=|S| For the graph
{G - v}, x(G - v)) = 2(G) and S is again the yj -set of {G —v}. Therefore
V(G ~ ) = 125, (G) and v € Vi (G).

Theorem 4.11. If a vertex v € V(G) is not in any minimal cp -set of G
then v e VJ(\)/.IX(G)~

Proof. Let S be a vy -set of G. Let v be a vertex which is not in any

minimal ¢p -set of G. Then y((S -v))=x(G). Hence Pnlv, S]# ¢. Let
Pnv, S| =1. If Pnfv, S] = {v} then v is an isolated vertex in S. By the

Proposition (4.10), v e V]%X(G).
Theorem 4.12. Let v be a vertex of G with v € VA}X(G). Then there exists
a vertex u € V(G) such that v (G — u) = vpp(G).

Proof. Let S be as MDC set of G. Then | N[S]| > [ﬂ

Case (i) Suppose | N[S]| # v(G). Then there exists a vertex u e N[S]
and implies that © ¢ S, u € v — N[S]. Then S < V —u and | N[S]| 2 [ gw
and | Ng_,[S]| = {g—‘ It implies that | Ng_,[S]| = [pT—l—‘ Therefore S is a
MDC set of {G-v}. Then ypp(G—-u)<|S|=7ypp(G). If vp5(G-uw)
< vp(G) then u e Vjz (G), which is a contradiction to v € Vay, (G).

Hence 5 (G — ) = vp/(G).

Case (il) Suppose N[S]=V(G). Let ueg¢S and u e N[S]. Then

| Ng_ [S]|=p-12 (pz—l—" Therefore S is a MDC set of {G —v}. Then

Vg (G —u) <[ S| =7vp(G). I vp (G —u) < vp(G) then u e Vi (G) and
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V(G) € V3 (G), which is a contradiction to v e Vjg(G). Hence
Y (G — 1) = vpp(G).

Case (iii) Suppose| N[S]| < V(G). Then there exists a vertex u € S and
| N[S]| = (%W For S —{u}, x((S —v)) < x((S)) = x(G) and S'is not a y,y, -set
of G. Therefore choose S; =S —{u}U{w} where weV —-S such that
| N[S:]| = [g—‘ and w is adjacent to any vertex of S with | S; | =|S|. Hence

Sy isa ypp -set of {G — v} and vp/(G —uw) = | Sy | =| S| = vp/(G).

5. Conclusion

In this article, it has been discussed that the removal of any vertex of a
graph G how affects the majority dom-chromatic number of G. Also the vertex

critical classifications V&X(G), Vg, (G) and Vyp(G) are discussed. The

characterisation theorems are also determined for V]?/[X(G), Vg, (G) and

Vg, (G).
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1. Introduction

By a graph G = (V,E), we mean a finite and undirected graph
with neither loops nor multiple edges. This article introduces
a new parameter namely majority dom-chromatic partition
number of G. A subset D of V(G) is said to be a dominating
set [1] and [4] of G if every vertex in (V — D) is adjacent
to at least one vertex in D. The minimum cardinality of the
minimal dominating set of G is called the domination number
of G, denoted by y(G). A domatic partition of a graph G is a
partition of V(G) into dominating sets of G. The maximum
number of sets of a domatic partition of G is called the domatic
number of G, denoted by d(G).

The majority dominating number ¥,(G)[8] of a graph G
is the smallest cardinality of a minimal majority dominat-
ing set (MD-set) S C V(G) of vertices and the set S satisfies

IN[S]| > H@H A majority domatic partition [6] of a graph

G is a partition of the vertex set V(G) into majority domi-
nating sets of G. The maximum number of sets of majority
domatic partition of G is called the majority domatic num-
ber of G, denoted by dy(G). A dominating set S C V(G) is
called the dom-chromatic set [2] and [3] such that the induced
subgraph set < S > satisfies the property x (< S >) = x(G).
The minimum cardinality of a dom-chromatic set S is called
dom-chromatic number and is denoted by ¥.,(G) or 1(G).
A dom-chromatic- partition [4] of a graph G is a partition
of V(G) into dom-chromatic sets. The maximum cardinality
of a partition of V(G) into dom-chromatic sets is the dom-
chromatic -partition number and denoted by d.;,(G).

A subset S of V(G) is majority dominating chromatic set
(MDC — set)[5] if (i) S is a majority dominating set and (ii)
x(< S >) = x(G). The minimum cardinality of a minimal
majority dominating chromatic set is called a majority dom-
chromatic number denoted by yix (G).

1.1 Results of 1/, (G) [5]
(i) Foragraph G =K p—1,Ymy(G) =2.
(ii) For G =W, a wheel,
_fJ p ,ifpisodd
Ty (G) = { 3, if piseven.

(iii)) LetG= I?,E a totally disconnected graph of p vertices.
Then uy (Kp) = [5].
(iv) Let G = C, be a cycle of p vertice, p > 3. Then
(2], if p=2(mod6)

+1, if p=0,4(mod6)

Yy (G) = %
D, if p is odd.
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(v) Let G= P, be a path. Then

YMx(G):{ ;ﬂ;rl,

if p=1,2(mod6)
if p=0,3,4,5(mod6)

(vi) Foracomplete bipartite graph G = Ky, 5, m < 1, Yy (G) =
2

(vil) If a graph G is vertex color critical then Yy, (G) = p.

2. Majority Dom-chromatic Partition
Number in a Graph

Definition 2.1. A majority dom-chromatic partition (MDC -
Partition) of a graph G is a partition of V(G) into majority
dom-chromatic sets of G. The maximum cardinality of a
partition of V(G) into majority dom-chromatic sets is the
majority dom-chromatic partition number and denoted by
dyy (G).

Example 2.2. Let G = Kg + Cg + Cg + K be a graph. Let
V (Ke) = {ur,ua,...,ug} withd (uj) =6, V (Cg) = {vi,v2,...,
ve} withd (v;) =13,V (Cg) = {w1,wa,...,we} with d (w;) =
13andV (76) ={x1,x2,...,X6 } withd (x;) = 6. For the graph
X(G) =3,Yn(G) = 3 = Yuy (G). The dominating chromatic
setsare S1 = {vi,va,w1},82 = {wa,w3,v3},83 = {v4,vs5, w4}
and Sy = {ws,ws, v} and the remaining vertex set

R={uy,ua,...,u6,x1,x2,...,%}

will be the dominating set but the set R does not satisfies (<
R >) = x(G). Hence there is no other disjoint dominating
chromatic set exists. It implies that d.,(G) = 4.

3. Main Results

3.1 Results on dy;,(G).
(i) Let the graph G = K p—1. Then duyy (G) = 1.

(ii) If the graph G = F}, is a Fan , p > 3 then dyy (G) = 1.

(iii) For a complete graph G =K, dy,(G) = 1.
(iv) Let G=W, be awheel ,p > 5. Then djy,(G)=1.
1, ifpisodd

(v) For the graph G =K, dy, (G) = { 2 if piseven

(vi) If the graph G = D, a double star then dyx (G) = 2, if
r<s
(vii) Let G = K, ,,m < n be a complete bipartite graph.
L ifm=n
Then dyy (G) = { 2

m L,ifm<n
G = P,, a path with p > 3 vertices,

viii) For a graph

1, ifp=3
2. ifp—4,5
)3 ite<p<i11s
dur(G) =190 4 it p=12,1314.3334
and 16 < p <29
5, if p=30,31,32and p > 35

Proposition 3.1. Let G = C,, be a cycle with p > 3. Then

if p=8,12,14,16,18,22,24,28, 34
if p = 20,26,30,32 and p > 36

1, ifpisodd

2, ifp=4
duy,(G)=< 3, ifp=6,10

4

5

Proof. LetV(G) = {vl JV2yeees vp} be the vertex set of G. For
the graph G,

_J 1, ifpisodd
X(G)_{Z, if p is even

and by the result (1.1)(iv),

El, if p=2(mod6)
Yy (G) = Bl+1, if p=0,4(mod6) 3.1
D, if p is odd.

Case (i): Suppose p is odd. Then the all odd cycles Cp,p >3
are vertex color critical graphs. By the result (1.1) (vii),
Yy (G) = p. Hence dyy(G) = 1.

Case (ii): Let p=4. Then S| = {V],Vz} and Sp = {V3,V4}
be the only majority dominating chromatic partition set of G.
Hence djy(G) = 2.

Case (iii): Let p =6,10. For p =6,

S={(v1,v2),(v3,v4),(v5,v6)}.

For p =10, S = {(v1,v2,v7), (v3,v4,v8), (v5,V6,v9) } . There-
fore S is the only majority dominating chromatic partition set
of G for p = 6, 10. Hence dy;, (G) = 3.

Case (v): Let p =20,26,30,32 and p > 36.

Subcase (i): Suppose p = 20,26,30,32. By the result (3.1),

When p = 20,26,32, (i.e) p = 6k +2, [mJ —5ifk=

3,4,5. When p = 30, (i.c.) p = 6k, {WJ —5ifk=S5. Let

St={vi,va,-ovs (Mg (G) = 2) + Vs (G)-1)41
$2= {"3”4’ = »Vs<ny<G>—2>+22V5<ny<c>71>+2}
S3 = {V5,v6, Vs (Y (G) —2) + }/VS(VMX(G)’I)%}
S4 = {W,VS, e 7V5(YMX(G)*2)+4VVS()/MX(G)—1)+4}

S5 = {V9,V10: - VS(ux (6)-2)+ 5"V (G)—1)+5 |

Now the sets S,z = 1,2,3,4,5 are majority dominating chro-
matic sets of G such that d (v;,v;) = 1, where the first two
vertices v; and v; are adjacent for all S; = 1,2,3,4,5 and
d(vj,vi) >4,vj #vi,vj,vi €S, =1,2,3,4,5. Therefore in
all five sets the last vertex is vs (Y, (G) — 1)+i,i=1,2,3,4,5.
Then {S1,5,83,54U (V(G) —U;_,S;) } is a majority domi-
nating chromatic partition of V (G) and therefore dyy (G) > 5.

Since dy, (G) <| m%(G)J dy1y(G) < 5 Hence dy, (G) = 5.

Subcase (ii): Let p > 36. Let p = 0,2,4( mod 6) By the result

0020
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0,7 42
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(1), % (G) =[] and [] +1. When p > 36,p = 6k, | 5L |
_ : — P — 3
—5ifk>6. When p>38,p=6k+2,| m(G)J —5ifk>

_ )4 _ :
6. When p > 36,p = 6k + 4, MMX(QJ — 5 if k> 6. Then

S1,82,83,54 and S5 are taken as in the subcase (i) and ap-
plying the same arguments, we get dy, (G) = 5. Therefore
dyiy (G) = 5 if p =20,26,30,32 and p > 36. 0

Definition 3.2. Let G be any graph with p vertices and the
maximum degree A(G). If du,(G) = 2A(G) + 1 then the
graph G is called majority dogmatically chromatic full.

Example 3.3. Let G = Cyg. By proposition (3.2), dy, (G) =5
and A(G) = 2. Hence dyy(G) =2A(G)+1=5

4. Bounds on dy, (G)

Theorem 4.1. Let G be any graph. Then dyy(G) < ‘WL(G) ’

Proof. Let {V|,V,,...,V,} be the majority dominating chro-
matic partitions of G. Then, p = |[Vi|+|Va|+-- + V| =
Y, |Vil. Let dyx (G) = k. Therefore |V;| > yx (G), for each
i. p=Vil+[Va|+ -+ |Vi| = kyuy and p > kyy (G) >
dyy (G) Yy (G) Hence dyy, (G) < ML@‘ O

Corollary 4.2. For any graph G,dyy (G)ymux(G) < p.

5. Charecterization Theorems on dy, (G)
Theorem 5.1. Let G be a cycle on p vertices. Then dyy (G) =
YM%(G) if and only if

(i) pisodd
(ii) p=4,6,8,12,16,20,30,40

Proof. Let G = C, be a cycle. By the result (1.1) (iv),

[27, if p=2(mod6)
Yy (G) = f%] +1, if p=0,4(mod6) 6D
D, if p is odd.
Assume that dy, (G) = }'M;(G)'
(i.e.)duy (G) Y, (G) = p (5.2)

. Case (i): Suppose duy (G) = 1. Since by (5.2), Y, (G) = p.
Then the majority dominating chromatic set contains the
whole vertex set V(G). It implies that the graph G is vertex
color critical. By proposition (3.2), in the graph C,,dp, (G) =
1 if p is odd. Hence condition (i) holds.

Case (ii): Let dy, (G) = 2. Then by proposition (3.2), if
du, (G) =2 then p = 4 and Yy (G) = 2. Substitute in (5.2),
duy (G)Wu, (G) = 2(2) = 4 = p. It implies p = 4. Hence (2)
is true for p = 4.

Case (iii): If dy, (G) = 3 then by proposition (3.2),p =
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6,10.By(5.1), 15 (G) = [£] + 1 if p=6,10. Then Y, (G) =
2 and 3. From the assumption (5.2),dy (G)ym(G) =3(2) =
6 =p and du, (G) Yy (G) =3(3) =9 < p. Hence if dy, (G) =
m then p = 6 only.

Case (iv): Let dyy(G) = 4. Then by proposition (3.2), p
8,12,14,16,18,22,24,28, 34. When p = 6k +2, by (5.
m(G) =2 and 3 if k=1 and 2. When p = 6k 1, (G)
3,4,5 if k = 2,3,4. When p = 6k+4, by (1), %, (G)
4,5,6,7ifk=2,3,4,5 Then dyx (G) iy (G) = pif p=8,12,
16. For all other vertices ,dpy (G) Yy (G) < p. Hence if

Iz

dMX (G) - '}’M(G)

then p = 8,12, 16. O

Theorem 5.2. Let G be a Path on p vertices. Then dy,, (G) =
% ifand only if p=4,6,9,12,16,30,35,40,45.

Proof. Applying the same argument as in the theorem 5.2.,
we obtain the result.

Subcase (i): Suppose there exists a vertex color critical sub-
graph in G. Then G contains a complete graph or odd cycles
or an induced subgraph in G. Therefore by result (3.1)(iii)
and the proposition (3.2), dyx (G) = 1. Hence if the graph G
contains a full degree vertex then duy (G) = 1.

Subcase (ii): Suppose |S;| =2.If Gis atree x(G) =2. There-
fore S1 = {u;,ua2}, where u; is of degree d (u;) < p—1 and
up is of degree d (u2) > 1 such that [N [S;]| = p. Hence the
graph G contains a full degree vertex. If d (u;) = p—1 and
d(up) =1 then [N [Si]| = p > [5]. Therefore G contains a
full degree vertex u;. If d(u1) < p—1 and d (uz) > 1 then
there are two disjoint majority dominating chromatic sets
and dy,(G) = 2, which is a contradiction to (5.1). Hence G
contains a full degree vertex with d (u;) = p — 1. Therefore
condition (i) holds.

Subcase (iii): If |S|| = 3, the graph G is a tree or it contains
a triangle. If G is a tree, S| = {uj,up,u3} is the majority
dominating chromatic set of G. Suppose d (1) < p—1 and
d (u;) > 1,i =2,3. Then there exists atleast two disjoint ma-
jority dominating chromatic set in G. Hence dy, (G) > 2,
which is a contradiction to (5.1). Suppose G contains a tri-
angle, x(G) =3 and Yy, (G) > 3. since d (u;) < p—1 and
d(u;) >2,i=2,3, S isamajority dominating chromatic
set of G. By the above arguments, dy, (G) > 2, which is a
contradiction to (5.1). Hence the set S;,d (#;) = p—1 and
d (u;) > 2. Therefore G contains a full degree vertex. Thus
condition (i) holds. O

6. Conclusion

In this article, a new parameter majority dominating chromatic
partition for a graph G is introduced. Majority dom-chromatic
sets in the partition of the vertex set V(G) is studied. Majority
dom-chromatic partition number dy, (G) is determined for
some families of graphs. Also the relationships of dyy (G)
among the other domatic partition such as d.;(G),dy (G) and
d(G) established.
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