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Abstract

A STUDY ON DOMINATION PARAMETERS

OF GRAPHS

By

R. MEKALA

Ph.D Research Scholar (P.T)

P.G and Research Department of Mathematics

Tranquebar Bishop Manickam Lutheran College,

Porayar, Tamil Nadu, India.

Graph theory had witnessed an unprecedented growth in the

twentieth century. A major impetus for this growth has certainly

been the wide applicability of graph theory especially in computer

science and in many areas. Graphs serve as Mathematical mod-

els to analyze successfully many concrete real-world problems. The

Swiss Mathematician Leonard Euler learned of the society’s frustrat-

ing phenomenon of seven bridges of Konigsberg River and in 1736,

he wrote an article about the “Konigsberg Bridge Problem”. Later,

his work is considered by many to be the beginning of the field of

Graph Theory. This field began to blossom in the twentieth cen-

tury as more and more, modelling possibilities were recognized and



Abstract xvi

the growth continues. It is interesting to note that specific applica-

tions have increased in number and in scope, the theory itself has

developed beautifully as well. Perhaps Domination Theory is one of

the fastest-growing area of graph theory with variety of domination

parameters and its applications.

In 1958, Berge [5] introduced the concept ‘domination’ and this

inception made drastic change in the field of Graph Theory and Ore

[49] who gave the formal mathematical definition to the topic of domi-

nation in 1962. Cockayne and Hedetniemi [14] published their article

“Towards a theory of domination in graphs” in 1977. This paper

became the point of interest for many researchers to step into domi-

nation. Then many eminent mathematicians have expansively devel-

oped this theory and numbers of domination parameters are formed

by the combination of common property and some specific graph the-

oretic property. Domination has a wide range of applications in radio

stations, modelling social networks, coding theory and nuclear power

plants problems.

Graph colouring and domination are major areas in graph theory.

These concepts also give rise to a number of practical applications

in real life. In recent years, several graph-theoretic parameters that
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combine the concepts of domination and colouring have been inves-

tigated by several graph theorists effectively. One such parameter is

the concept of dom-colouring which was introduced by Janakiraman

and Poobalaranjani [31] in 2012. To find a dominating set having

the same chromatic number as that of the graph, the chromatic pre-

serving set (cp - set) is introduced to serve this purpose. Thus, a

dom-chromatic set is a dominating cp-set. Then Swaminathan and

Joseline Manora [40] introduced the concept “Majority Domination”

with respect to sets with the idea of dominating atleast half of the

vertices of a graph in 2006. They elucidated the parameter in various

levels by establishing many results [41].

The researcher has motivated by these concepts to introduce new

graph theoretical parameter “Majority Dominating Chromatic (MDC)

Set of a graph” and “Majority Dominating Chromatic Number” on

graphs. In this type of domination, the elements of the dominating

set must be a majority dominating set S and the chromatic number of

a graph must equal to the chromatic number of an induced subgraph

〈S〉. This new parameter is also called majority dom-chromatic sef

of G. Thus, majority dom-chromatic sets play a vital role in domina-

tion theory. The relationship among majority domination, cpn – set
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and chromatic number with dom-chromatic sets and the newly de-

fined parameter majority dom-chromatic sets have yet to be closely

studied in the context of domination theory.

This thesis entitled “A Study on Domination Parameters

of Graphs” consists of six chapters. The organization of the thesis

follows the pattern given below.

In the first chapter, the researcher presents the basic definitions

and results on domination theory which are necessary to write this

thesis. Survey of the literature, the motivation and the scope of the

thesis are also mentioned.

In chapter 2, the new parameter Majority dom-chromaticset of

a graph has been defined with an example. Then Majority dom-

chromatic number γMχ(G) is determined for some families of graphs.

The necessary and sufficient condition for a minimal Majority dom-

chromatic number is produced. Also the lower and upper bounds

on γMχ(G) is given. In the next section, some results on Majority

dom-chromatic set of a graph are determined and some beautiful

inequalities on γMχ(G)) are also investigated. Then γMχ(G) for bi-

partite graph is studied and bounds on γMχ(G) for bipartite graph

is established. Finally algorithm of majority dom-chromatic set, its
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number γMχ and application of majority dom-chromatic set are dis-

cussed.

Chapter 3 includes the exact values of majority dom-chromatic

number for product graphs such as Grid, Cylinder and Torus are

investigated. Also the parameter values of γMχ(G) for Corona, Gen-

eralized Petersen graph P (n, k), rooted product graphs and discon-

nected graphs with p vertices are determined.

In chapter 4, majority dom-chromatic partition set of G and its

number dMχ of G is defined. The particular value of dMχ(G) for some

classes of graphs is found and bounds on majority dom-chromatic

partition number are also discussed. The majority dom-chromatic

partition number dMχ for Generalized Peterson graph, friendship

graph and Dutch windmill graphs has been determined. The relation-

ship among dc(G), dM(G), dch(G) and dMχ(G) has been investigated

in terms of maximum degree of a vertex.

Chapter 5 deals with the effects of the majority dom-chromatic

number when the graph G is modified by removing a vertex. The

classification of V 0
Mχ(G), V −Mχ(G) and V +

Mχ(G) are defined and char-

acterization theorems on CV RMχ and UV RMχ are studied. In next

section, the changing and unchanging of γMχ(G) due to the dele-
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tion of an edge is investigated. The edge critical classifications of

E0
Mχ(G), E−Mχ(G) and E+

Mχ(G) are discussed. The characterization

theorems on connected and disconnected graphs are determined for

CERMχ and UERMχ. In the last section, the effects of the majority

dom-chromatic number when the graph G is modified by adding an

edge e from the complement of G between any two vertices of a graph

are discussed. Then the classifications namely ξ◦Mχ(G), ξ+
Mχ(G) and

ξ−Mχ(G), for any edge e ∈ E(Gc) are investigated for connected as

well as disconnected graphs.

Chapter 6 discusses the definition of the connected majority dom-

chromatic set of a connected and disconnected graphs. The majority

dom-chromatic number γCMχ(G) is determined for product graphs

such as Grid and Cylinder. The comparison of γCM(G), γcch(G) and

γCMχ(G) is studied. Also some inequalities of γCMχ(G) is established

in terms of diameter of a graph.

Finally, the total summary of the research work in the thesis high-

lighting all new findings developed using the newly coined concept of

majority dom-chromatic set of a graph. Also some references which

are needed to the Thesis are given at the end.



Chapter 1

Prolegomenon

Abstract

This chapter is introductory in nature which unlocks the fundamental

theoretical background of the thesis. This chapter comprises the de-

tails of chronological survey of all literature, basic concepts of graph

theory, domination theory and objectives of the study. The motiva-

tion, scope and organization of the thesis are also given at the end.

1



Ch. 1: Prolegomenon 2

In this chapter, the basic definitions and results are given which

are needed in the subsequent chapters.

1.1 Introduction

Graph theory had witnessed an unprecedented growth in the twen-

tieth century. A major impetus for this growth has certainly been

the wide applicability of graph theory especially in computer science

and in many areas. Graphs serve as Mathematical models to analyse

successfully many concrete real-world problems.

It is interesting to note that specific applications have increased

in number and in scope, the theory itself has developed beautifully

as well. Perhaps Domination Theory is one of the fastest-growing

area of graph theory with variety of domination parameters and its

applications.

1.2 Survey of Literature

In 1892, W. Rouse Ball [52] studied some basic types of problems

on N-Queen problem. In 1958, Claude Berge [5] wrote a book on

graph theory, in which he defined for the first time the concept of the
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domination number. In the year 1962, Oystein Ore [49] published

his book Theory of Graphs on Graph Theory. In this he used for the

first time, the name “Domination Number”.

In 1976, More contributions on the theory of domination was

given by Walikar and Acharya [60] and these results were published

in National Academic Science. This concept survived almost in hi-

bernation until 1975 when Cockayne and Hedetniemi [14] published

their paper Towards a Theory of Domination in Graphs which ap-

peared in Networks in 1977. This survey paper brought to light new

ideas and potentially of being applied in variety of areas. Some thirty

years later more than 2000 research papers have been published on

this topic, and the number of papers is steadily growing. The re-

searcher is inspired by the explosive growth of this field of study.

He is also motivated by a desire to put some order into this huge

collection of research papers, to organize the study of dominating

sets in graphs into meaningful subareas, and to attempt the place

of the study of dominating sets in even broader mathematical and

algorithmic contexts.

Walikar, Acharya and Sampathkumar are some of the Indian

mathematicians who have made substantial contribution to the study



Ch. 1: Prolegomenon 4

of domination theory in graphs. More than fifty types of domination

parameters have been studied by different authors. In 1979, Walikar

et. al. [60] published a technical report as lecturer notes on -MRI.

In 1990, Hedetniemi and Laskar [26] published their Bibliography on

domination in graphs and some basic definitions of domination pa-

rameters. This book contained about 400 references at that time.

In 1991, the concept was then developed by Carrington, Harary and

Haynes [11] published an article on “Changing and Unchanging the

domination number of a graph G”. Further in 1991, ElZahar and

Pareek [17], determined domination number of Cartesian Products

of graphs. In 1995, [9] Broere, Hattingh, Henning and Mcrae in-

troduced the concept of majority dominating function in graphs and

gave a detailed account of results in the book Domination in Graphs:

Advanced Topics (chapter 4, 91-104). Towards the end of 1998,

Haynes, Hedetniemi and Slater [24] brought out a comprehensive two

volumes of text book - Fundamentals of Domination in Graphs and

Domination in Graphs: Advance Topics which contain more than

1200 bibliographical entries. Within last 25 years many researchers

worked in this domination field at different aspects and produced so

many results with new types of domination parameters.
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The idea of dominating half of the vertex set is a crucial one

and it gives the inspiration for defining majority dominating sets

instead of functions. In 2006, Swaminathan and Joseline Manora

[40] introduced the new parameter “Majority Dominating Sets of a

Graph” in domination theory. Further in 2011, this concept was

further developed into many area of domination. In 2011, [41] many

results on majority dominating sets are introduced in research paper

and in 2011 [39], they studied various parameters in this area such as

majority domatic number [37], vertex and edge critical graphs [38, 39]

on majority domination number.

Graph colouring and domination are major areas in graph theory.

These concepts also give rise to a number of practical applications

in real life. In recent years, several graph-theoretic parameters that

combine the concepts of domination and colouring have been inves-

tigated by several graph theorists effectively. One such parameter is

the concept of dom-colouring which was introduced by [31] Janaki-

raman and Poobalaranjani in 2010. To find a dominating set having

the same chromatic number as that of the graph, the chromatic pre-

serving set (cp - set) is introduced to serve this purpose. Thus, a

dom-chromatic set is a dominating cp-set.
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1.3 Preliminaries on Graph Theory

Definition 1.3.1. A graph is a finite non-empty set of objects called

vertices together with a set of unordered pairs of distinct vertices of

G, called edges. The vertex set and the edge set of G are respectively

denoted by V (G) and E(G).

If e = {u, v} is an edge, we write e = uv and we say e joins the

vertices u and v; u and v are adjacent vertices; u and v are incident

with e. If two vertices are not joined by an edge, then we say that

they are non-adjacent.

Definition 1.3.2. The number of elements in the vertex set of a

graph is called the order of G and is denoted by n. The number

of elements in the edge set of a graph is called the size of G and is

denoted by m. A graph with n vertices and m edges is called as (n,

m)-graph. The (1, 0)-graph is called as trivial graph.

Definition 1.3.3. A graph H is called a subgraph of a graph G if

V (H) ⊆ V (G) and E(H) ⊆ E(G). A spanning subgraph of G is

a subgraph H with V (H) = V (G). For any set S of vertices of G, the

induced subgraph 〈S〉 is the maximal subgraph of G with vertex

set S.
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Definition 1.3.4. If G is a graph with the vertex v then G − v is

the induced subgraph 〈V (G)− v〉 of G and obtained from G by

removing v and the edges incident with v. If e ∈ E(G), G− e is the

spanning subgraph with edge set E(G)−{e} and it is obtained from

G by removing the edge e from G.

Definition 1.3.5. The degree of a vertex v in a graph G is the

number of edges of G incident with v and is denoted by deg(v) or

d(v). The maximum and the minimum degrees of the vertices of G

are respectively denoted by ∆(G) and δ(G). A vertex of degree 0

in G is called an isolated vertex, and a vertex of degree 1 is called a

pendant vertex or an end vertex of G. Any vertex adjacent to a

pendent vertex is called a support.

Definition 1.3.6. A graph G is said to be regular graph of degree

r if every vertex of G has degree r Such graphs are called r-regular

graphs. A 3-regular graph is called a cubic graph.

Definition 1.3.7. A graph G is Complete if every pair of its ver-

tices are adjacent. A complete graph on p vertices is denoted by Kp.

A clique of a graph is a maximal complete subgraph.
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Definition 1.3.8. A bipartite graph is a graph G whose vertex

set V(G) can be partitioned into two subsets V1 and V2 such that

every edge in G has one end vertex in V1 and the other end vertex

in V2. The vertex set (V1, V2) is called a bipartition of G. Further, if

every vertex of V1 is adjacent to every vertex of V2 then G is called

a complete bipartite graph. The complete bipartite graph with

bipartition (V1, V2) such that |V1| = r and |V2| = s is denoted by

Kr,s.The graph K1,p−1 is called a star. When r ≥ 2 the vertices of

degree 1 of a star are called claws of the star and the vertex of degree

(p− 1) is called the centre of the star.

Definition 1.3.9. A double star is a graph obtained by taking two

stars and joining the vertices of maximum degrees with an edge. It

is denoted by Dr,s.

Definition 1.3.10. A graph G is said to be connected if any two

distinct vertices of G are joined by a path. A maximal connected

subgraph of G is called a component of G. Thus, a disconnected

graph has at least two components.
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Definition 1.3.11. A subdivision of an edge uv of a graph G is

obtained by introducing a new vertex w and replacing the edge uv

with edges uw and wv. The graph obtained from G by subdivid-

ing each edge of G exactly once is called the subdivision graph (or

subdivision) of G and is denoted by S(G).

Definition 1.3.12. The distance between two vertices u and v in a

graph G is the length of a shortest u− v path in G. It is denoted by

d(u, v). The diameter of a connected graph G is the length of any

longest geodesic. The diameter of G is denoted by diam(G).

Definition 1.3.13. For any real number x, dxe denotes the smallest

integer greater than or equal to x and bxc denotes the largest integer

less than or equal to x.

Definition 1.3.14. Let G1 = (V1, E1) and G2 = (V2, E2) be any two

graphs. Then their union G1 ∪ G2 is the graph whose vertex set is

V1 ∪ V2 and edge set is E1 ∪ E2.

Definition 1.3.15. An open neighbourhood N(v) of a vertex v

in a graph G is the set of all vertices adjacent to v in G. The closed

neighbourhood N [v] of v is the set N(v) ∪ {v}.
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Definition 1.3.16. The open neighbourhood N(S) of a set S

of vertices is the set of all vertices adjacent to the vertices in S. The

closed neighbourhood N [S] of S is the set N(S) ∪ S. If x ∈ S,

a private neighbour of x with respect to S is a vertex v such that

v ∈ N [x]−N [S − {x}].

Definition 1.3.17. For S ⊆ V , a vertex v ∈ S is called an enclave

of S if N [v] ⊆ S.

Definition 1.3.18. A subset S of V (G) is said to be a dominating

set of G if every vertex in V −S is adjacent to at least one vertex in

S. A dominating set is called minimal dominating set if no proper

subset of S is a dominating set. The minimum cardinality of the

minimal dominating set of G is called the domination number

of G, denoted by γ(G) and Γ(G) denotes the maximum cardinality

of a minimal dominating set of G and Γ(G) is called the upper

domination number of G.

Theorem 1.3.19. A dominating set S of a graph G is minimal if

and only if for every u ∈ S one of the following conditions holds. (i)

N(u)∩S=φ (ii) There is a vertex v ∈ V−S such that N(v)∩S={u}.
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Theorem 1.3.20. Every connected graph G of order n ≥ 2 has a

dominating set S whose complement V −S is also a dominating set.

Theorem 1.3.21. If G is a graph with no isolated vertices then the

complement V −S of every minimal dominating set S is a dominating

set.

Definition 1.3.22. A domatic partition (d-partition) of a graph

G is a partition of V (G) into dominating sets. The maximum cardi-

nality of a partition V (G) into dominating sets is called the domatic

number and is denoted by d(G).

Definition 1.3.23. A dominating set S is said to be a connected

dominating set if the subgraph 〈S〉 induced by S is connected in

G. A connected dominating set S is minimal if no proper subset

of S is a connected dominating set. The minimum cardinality of

the minimal connected dominating set of G is called the connected

domination number, denoted by γC(G).

Definition 1.3.24. A graph G is said to be a CVR- graph if γ(G−

v) 6= γ(G), for every v ∈ V (G) and graph G is said to be a UVR-

graph if γ(G− v) = γ(G), for every v ∈ V (G)
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Definition 1.3.25. A graph G is said to be a CER- graph if γ(G−

e) 6= γ(G), for every e ∈ E(G) and the graph G is said to be a UER-

graph if γ(G− e) = γ(G), for every e ∈ E(G).

Definition 1.3.26. A graph G is said to be a CEA- graph if γ(G+

e) 6= γ(G), for every e ∈ E(G) and the graph G is said to be a UEA-

graph if γ(G+ e) = γ(G), for every e ∈ E(G).

Definition 1.3.27. A subset S of V (G) is said to be a majority

dominating set if at least half of the vertices of V (G) are either

in S or adjacent to elements of S i.e. |N [S]| ≥ dV (G)
2 e. A majority

dominating set S is minimal if no proper subset of S is a major-

ity dominating set. The minimum cardinality of a minimal majority

dominating set is called majority domination number and de-

noted by γM(G).

Definition 1.3.28. A majority domatic partition of a graph G

is a partition of the vertex set V (G) into majority dominating sets of

G. The maximum number of sets of majority domatic partition of G

is called the majority domatic number of G, denoted by dM(G).
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Definition 1.3.29. A subset S ⊆ V (G) is a connected majority

dominating(CMD) set if S is a majority dominating set and the

induced subgraph 〈S〉 is connected in G. The minimum cardinality

of the minimal connected majority dominating set S of G is called

the connected majority domination number and denoted by

γCM(G).

Definition 1.3.30. Let G be any graph with p vertices and let u ∈

V (G). Then u is said to be Majority Dominating (MD) vertex

if d(u) ≥ dp2e − 1.

Definition 1.3.31. A vertex v of a graph G is said to be a full

degree vertex or a dominating vertex if it is adjacent to all

other vertices in G. i.e., d(v) = p− 1.

Definition 1.3.32. A graph G is said to be a CV RM - graph if

γM(G− v) 6= γM(G), for every v ∈ V (G) and the graph G is said to

be a UV RM - graph if γM(G− v) 6= γM(G), for every v ∈ V (G).

Definition 1.3.33. A graph G is said to be a CERM - graph if

γ(G− e) 6= γ(G), for every e ∈ E(G) and the graph G is said to be

a UERM - graph if γ(G− e) = γ(G), for every e ∈ E(G).
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Definition 1.3.34. The chromatic number χ(G) is the minimum

k such that G is k-colourable. If χ(G) = k then G is said to be

k-chromatic. If χ(G) = k, but χ(G) < k for every proper subgraph

H of G then G is said to be a k- critical graph.

Definition 1.3.35. A graph G is said to be vertex-color-critical

graph or χ− critical if χ(G− v) < χ(G), for every v ∈ V (G) and

called edge-critical if χ(G − e) < χ(G), for every e ∈ E(G). A

graph is called color-critical graph if which each vertex and edge

are critical.

Definition 1.3.36. A set S ∈ V (G) is said to be a chromatic

preserving set or a cp-set if χ(〈S〉) = χ(G) and the minimum

cardinality of a cp-set in G is called the chromatic preserving

number or cp-number of G and is denoted by cpn(G). A cp-set of

cardinality cpn(G) called cpn-set.

Definition 1.3.37. A subset S of V (G) is said to be a dom-chromatic

set or dc-set if S is a dominating set and χ(〈S〉) = χ(G). The

minimum cardinality of a dom-chromatic set in a graph G is called

the dom-chromatic number or dc-number of G and is denoted by

γch(G) or γχ(G).
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Definition 1.3.38. A dom-chromatic partition of a graph G is

a partition of V (G) into dom-chromatic sets. The maximum cardi-

nality of a partition of V (G) into dom-chromatic sets is the dom-

chromatic partition number and denoted by dch(G).

Definition 1.3.39. A dom-chromatic set S is said to be connected

dom-chromatic set if the induced subgraph 〈S〉 is connected. The

minimum cardinality of a connected dom-chromatic set S is called

connected dom-chromatic number and is denoted by γcch(G) or

γcχ(G).

Definition 1.3.40. A graph G is said to be a CV Rch graph if

γch(G− v) 6= γch(G), for every v ∈ V (G) and the graph G is said to

be a UV Rch- graph if γch(G− v) = γch(G), for every v ∈ V (G).

Definition 1.3.41. A graph G is said to be a CERch graph if

γch(G− e) 6= γch(G), for every e ∈ E(G) and the graph G is said to

be a UERch graph if γch(G− e) = γch(G), for every e ∈ E(G).

Definition 1.3.42. A graph G is said to be a CEAch graph if

γch(G + e) 6= γch(G), for every e ∈ E(G) and the graph G is said to

be a UEAch graph if γch(G+ e) = γch(G), for every e ∈ E(G).
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Results 1.3.43: (i) For G = K1,p−1, Dr,s,Wp, Fp, γM(G) = 1.

(ii) For any path G = Pp and any cycle Cp, γM(G) = dp6e.

(iii) Let G be a cycle with p vertices. a) Then γch(G) = p,

b) γch(G) =



(p+3)
3 , if p ≡ 0(mod3)

(p+2)
3 , if p ≡ 1(mod3)

(p+4)
3 , if p ≡ 2(mod3)

(iv) For a path G = Pp, γc(G) = p− 2.

(v) For a Cycle G = Cp,

χ(G) =


2, if p is even

3, if p is odd

(vi) For a G be a Wheel graph. Then

χ(G) =


3, if p is odd

4, if p is even

(vii) Let G be a tree of diameter 3. Then γch(G) = p−∆(G).

1.4 Motivation and Scope of the Thesis

z In 2006, Swaminathan and Joseline Manora [40] introduced the

concept “Majority Domination” with respect to sets with the
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idea of dominating atleast half of the vertices of a graph. Fur-

ther, the concept of dom-colouring which was introduced by

Janakiraman and Poobalaranjani in 2010 [31] finding a dom-

inating set having the same chromatic number as that of the

graph, the chromatic preserving set (cp - set).The researcher

has motivated by these concepts to introduce new graph theo-

retical parameter “Majority Dom-Chromatic Sets in Graphs”.

z In 1997, Cockayne and Hedetneimi [14] introduced “Domatic

Number of a Graph” and the same concept was extended to ma-

jority domatic number of a graph by Swaminathan and Joseline

Manora [37] in 2010. Then dom-chromatic partition number is

studied by Janakiraman and Poobalaranjani in [31] 2012. The

researcher has discussed this idea to Majority dom-chromatic

partition number of a graph to some extent.

z In 1982, Harary [21] introduced and suggested the changing and

unchanging dominating invariants for graphs. This concept

was extended to majority dominating sets by Swaminathan

and Joseline Manora in [38, 39] 2011 and 2013. They stud-

ied and produced many results in critical vertex and critical
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edge with respect to majority domination number of a graph G.

Changing and unchanging properties of Dom-chromatic prop-

erties due to vertex deletion, edge deletion from G and edge

addition was introduced by Janakiraman, Poobalaranjani [31]

in 2012. With the help of these articles, the researcher has

extended to find Changing and unchanging properties of Ma-

jority Dom-chromatic number of a graph G when removal of a

single vertex, an edge deletion from a graph and edge addition

to E(G) from the complement E(Gc).

z In 1979, the concept “Connected Domination Number in Graphs”

was introduced by Sampathkumar and Walikar [53] and they

produced many interesting results in their article. In 2012, the

parameter “connected dom-chromatic number” was studied by

Janakiraman and Poobalaranjani. In 2017, Joseline Manora

and Muthukani Vairavel [34] introduced “Connected majority

dominating set of a graph”. Further the researcher has defined

Connected majority dom-chromatic set and Connected major-

ity dom-chromatic number γCMχ(G). Using this parameter,

many theorems and bounds on γCMχ(G) are established in this

research work.
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z The relationship among majority domination, cpn-set and chro-

matic number with dom-chromatic sets and the newly defined

parameter majority dom-chromatic sets have yet to be closely

studied in the context of domination theory.

1.5 Objectives of The Thesis

z To introduce a new parameter majority dom-chromatic set (MDC-

set) in a graph and majority dom-chromatic number γMχ of a

graph.

z To obtain the lower and upper bounds of majority dom-chromatic

number of a graph in terms of order and size of a graph G.

z To determine some inequalities on γMχ(G) and the γMχ for

complement of G.

z To find the existence of a MDC set in the case of disconnected

graphs.

z To find the exact values of majority dom-chromatic number for

some families of graphs, product graphs, rooted product graphs

and some special graph structures.
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z To study the necessary and sufficient for a minimal MDC set

of a graph G.

z To define another parameter majority dom-chromatic partition

set and its number dMχ(G) of a graph G.

z To establish the bounds of dMχ(G) and the exact values of

dMχ(G) for various classes of graphs.

z To investigate the changing and unchanging properties of the

removal of a single vertex from the graph G with respect to

majority dom-chromatic number of G.

z To study the effects of a single edge deletion in G with respect

to majority dom-chromatic number γMχ of a graph G.

z To investigate the changes in the value of majority dom-chromatic

number when adding an edge from the complement of G.

z To find another parameter connected majority dom-chromatic

set and its number γCMχ(G) of a graph G.

z To establish an Algorithm for a majority dom-chromatic set

and majority dom-chromatic number γMχ of a given graph G.
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1.6 Organisation of the Thesis

This thesis entitled “A Study on Domination Parameters of

Graphs” consists of six chapters. The organisation of the thesis

follows the pattern given below.

1. Prolegomenon.

2. Majority Dom-Chromatic Set of a Graph.

3. Majority Dom-Chromatic Set of Special Graph Struc-

tures.

4. Majority Dom-Chromatic Partition Number of Graphs.

5. Changing and Unchanging Properties of Majority Dom-

Chromatic Number.

6. Connected Majority Dom-Chromatic Set of a Graph.

Conclusion.

In the first chapter, the researcher presents the basic definitions

and results on domination theory which are necessary to write this

thesis. Survey of the literature, the motivation and the scope of the

thesis are also mentioned.
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In chapter 2, the new parameter Majority dom-chromatic set of

a graph has been defined with an example. Then Majority dom-

chromatic number γMχ(G) is determined for some families of graphs.

The necessary and sufficient condition for a minimal Majority dom-

chromatic number is produced. Also the lower and upper bounds

on γMχ(G) are given. The content of this section is published in

“Bulletin of Pure and Applied Sciences”.

In the next section, some results on Majority dom-chromatic

set of a graph are determined and some beautiful inequalities on

γMχ(G) are also investigated. This work is published in “Turkish

World Mathematical Society Journal of Applied and Engi-

neering Mathematics” (Indexed in SCOPUS). Then γMχ(G)

for bipartite graph are studied and bounds on γMχ(G) for bipartite

graph is established. The content of this section is communicated in

“International Journal on Soft Computing”.

Chapter 3 includes the exact values of majority dom-chromatic

number for product graphs such as Grid, Cylinder and Torus. Also

the particular values of γMχ(G) for Corona, Generalized Petersen

graph P (n, k), rooted product graphs and disconnected graphs with

p vertices are determined. This work is communicated to “Journal

of Graph Theory”.
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In chapter 4, majority dom-chromatic partition set of G and its

number dMχ of G is defined. The particular value of dMχ(G) for some

classes of graphs is found and bounds on majority dom-chromatic

partition number are also discussed. The majority dom-chromatic

partition number dMχ for Generalized Petersen graph, friendship

graph and Dutch windmill graphs has been determined. The relation-

ship among dC(G), dM(G), dch(G) and dMχ(G) has been investigated

in terms of maximum degree of a vertex. This work is published in

“Malaya Journal of Matematik”.

Chapter 5 deals with the effects of the majority dom-chromatic

number when the graph G is modified by removing a vertex. The

classification of V 0
Mχ(G), V −Mχ(G) and V +

Mχ(G) are defined and char-

acterization theorems on CV RMχ and UV RMχ are studied. This

content is published in “Advances and Applications in Math-

ematical Sciences” (Indexed in WEB of Science). In next

section, the changing and unchanging of γMχ(G) due to the dele-

tion of an edge is determined. The edge critical classifications of

E0
Mχ(G), E−Mχ(G) and E+

Mχ(G) are discussed. The characterization

theorems on connected and disconnected graphs are determined for

CERMχ and UERMχ. This work is published in “International
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Journal of Recent Scientific Research”. In the last section, the

effects of the majority dom-chromatic number when the graph G is

modified by adding an edge e from the complement of G between any

two non-adjacent vertices of a graph are discussed. Then the classifi-

cations namely ξ◦Mχ(G), ξ+
Mχ(G) and ξ−Mχ(G), for any edge e ∈ E(Gc)

are investigated for connected as well as disconnected graphs. This

concept is accepted in “Communications in Mathematics and

Applications”.

Chapter 6 discusses the definition of the connected majority dom-

chromatic set of a connected and disconnected graphs. The majority

dom-chromatic number γCMχ(G) is determined for product graphs

such as Grid, Cylinder and Torus. The comparison of the parame-

ters γCM(G), γcch(G) and γCMχ(G) are studied. Also some inequali-

ties of γCMχ(G) are established in terms of diameter of a graph. This

concept is published in “Advances and Applications in Mathe-

matical Sciences” (Indexed in WEB of Science).

Finally, the total summary of the research work in the thesis high-

lighting all new findings developed using the newly coined concept of

majority dom-chromatic set of a graph.



Chapter 2

Majority Dom-Chromatic

Set of a Graph

Abstract

This chapter introduces a new notion majority dom-chromatic set

(MDC-set) of a graph G. For a graph G, the majority dom-chromatic

number γMχ(G) is investigated for some families of graphs. Bounds

on γMχ(G) and its relationship with other graph theoretic parameters

are studied. Some inequalities on majority dom-chromatic sets of a

connected and disconnected graph G are determined. Also charac-

terization theorems on γMχ(G) and majority dom-chromatic number

for the complement of a bipartite graphs are investigated.

The contents of this chapter are published in

1. Bulletin of Pure and Applied Sciences, Vol. 38E (Math & Stat.), No.1, 289-296
(2019), ISSN 0970 6577.

2. Turkish World Mathematical Journal of Applied and Engineering Mathematics,
Vol. 11, Special Issue (2021), 30-41, ISSN 2146-1147.

25
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2.1 Introduction

In 2006, Swaminathan and Joseline Manora [40] introduced the

concept “Majority Domination” with respect to sets with the idea of

dominating atleast half of the vertices of a graph. They elucidated

the parameter in various levels by establishing many results. They

produced the exact values of γM(G) for some classes of graphs. Also

they developed some inequalities for γM(G) and interesting results

on it.

Graph coloring and domination are major areas in graph the-

ory. These concepts also give rise to a number of practical applica-

tions in real life. In recent years, several graph-theoretic parameters

that combine the concepts of domination and coloring have been

investigated by several graph theorists effectively. One such param-

eter is the concept of dom-coloring which was introduced by [31]

Janakiraman and Poobalaranjani. To find a dominating set having

the same chromatic number as that of the graph, the chromatic pre-

serving set (cp - set) is introduced to serve this purpose. Thus, a dom-

chromatic set is a dominating cp-set. Its number γch(G) was defined

and the exact values for various classes of graphs are determined.
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They established bounds of γch(G) and more results on γch(G) for

connected and disconnected graphs.

These two parameters γM(G) and γch(G) gave the motivation to

introduce new graph theoretical parameter “Majority Dominating

Chromatic (MDC) Set of a graph” and “Majority Dominating Chro-

matic Number” on graphs. In this type of domination, the elements

of the dominating set must be a majority dominating set S and the

chromatic number of a graph must equal to the chromatic number of

an induced subgraph S of G. This parameter is also called majority

dom-chromatic set of G. Thus, majority dom-chromatic sets play a

vital role in domination theory.

Organization of this chapter is as follows. The introduction is

given in section 2.1 and it contains the motivation of defining the pa-

rameter majority dom-chromatic number in graphs. In section 2.2,

the concept of majority dom-chromatic set of a graph G and its num-

ber γMχ(G) are defined with examples. The exact values of γMχ(G)

for various families of graphs are determined in section 2.3. In the

subsequent section 2.4 and section 2.5, characterization theorems,

bounds on γMχ(G) and some inequalities on majority dom-chromatic

set of connected and disconnected graphs are obtained. The relation-
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ship of γMχ(G) with other domination parameters γM(G), γch(G) and

γ(G) is studied in section 2.6 with an example. In section 2.7 and

section 2.8, results on γMχ(G) for the complement of graph G, con-

nected bipartite and disconnected bipartite graphs. In section 2.9,

bounds on γMχ(G) for both connected and disconnected bipartite

graphs are investigated with regard to diam(G) and ∆(G). Finally

in section 2.10, algorithm for a MDC – set and its number γMχ(G)

are given and real life application for this parameter is also given.

2.2 Majority Dom-Chromatic Set

of a Graph

In this section, majority dom-chromatic set of a graph G, minimal

majority dom-chromatic set and its number are defined. An example

illustrating these definitions are also given.

Definition 2.2.1: A subset S of V (G) is said to be Majority Dom-

inating Chromatic Set (MDC- set) if (i) S is a majority dominating

set of G and (ii) the induced subgraph of 〈S〉 satisfies χ(〈S〉) = χ(G).

It is also called majority dom-chromatic set of G. The majority dom-

chromatic set S is minimal if no proper subset S ′ of S such that S ′

is majority dom-chromatic set of G.
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Definition 2.2.2: The minimum cardinality of a minimal majority

dom-chromatic set of G is called a majority dom-chromatic number

and is denoted by γMχ(G).

Example 2.2.3: Consider the following graph with p = 11 vertices.

Figure 2.1: G

The chromatic number of G in Fig. (2.1) is χ(G) = 3 and γch(G) = 7.

(i) The sets S1 = {v1, v4, v5, v6, v7, v8}, S2 = {v4, v5, v6, v7, v8} and

S3 = {v4, v5, v6, v7, v8, v11} are majority dom-chromatic sets

where as D = {v8, v11} is a majority dominating set of G.

Therefore γM(G) = 2.

(ii) The set S2 = {v4, v5, v6, v7, v8} is the minimal majority dom-

chromatic set of G. Hence γMχ(G) = |S2| = 5.

Observation 2.2.4: (i) Since V (G) is the majority dominating

set and χ(〈V (G)〉) = χ(G), majority dom-chromatic set exists

for all graphs.
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(ii) For a vertex χ-critical (vertex color critical) graph, the vertex

set V (G) itself is the only majority dom-chromatic set for G.

For example, Cp, p is odd and Kp are vertex color critical graphs.

Proposition 2.2.5: For any graph G, γMχ(G) ≤ γch(G).

Proof: Since all the dom-chromatic sets of a graph G are majority

dom-chromatic sets of G, γMχ(G) ≤ γch(G).

Proposition 2.2.6: For any graph G, γM(G) ≤ γMχ(G).

Proof: Since every MDC set of G is a majority dominating set of

G, γM(G) ≤ γMχ(G).

Corollary 2.2.7: For any graph G, γM(G) ≤ γ)Mχ(G) ≤ γch(G).

Example 2.2.8: (i) For the graph G in Fig (2.1), γMχ(G) = 5,

γch(G) = 7 and γM(G) = 2. Hence, γM(G) < γ(Mχ)(G) <

γch(G).

(ii) For a star G = K1,p−1, γMχ(G) = γch(G) = 2 and γM(G) = 1.

Hence, γM(G) < γMχ(G) ≤ γch(G).
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Theorem 2.2.9: For any graph G with an isolate, there exists a

γMχ- set of G not containing that isolate.

Proof: Let v be an isolate of G. If S is a γMχ- set of G containing

v then |N [S]| ≥ dp2e and χ(〈S〉) = χ(G).

Case (i): If |N [S]| > dp2e then |N [S−{v}]| ≥ dp2e and χ(〈S − v〉) =

χ(G). It implies that S −{v} is a γMχ- set. Hence S −{v} = S ′ is a

γMχ- set of G without an isolate v.

Case (ii): If |N [S]| = dp2e then |N [S − {v}]| ≤ dp2e − 1 and v /∈

N [S]. Now, if |N [S − {v}] ∪ {v1}| ≥ dp2e, for any v1 ∈ V (G) then

S ′ = S−{v}∪{v1}. Also, χ(〈S ′〉) = χ(〈S) and |S ′| = |S| = γMχ(G).

Hence S ′ is a γMχ- set of G without an isolate v.

2.3 Majority Dom-Chromatic Number of

Some Standard Graphs

In this section, the exact value of the majority dom-chromatic number

γMχ(G) is determined for some classes of graphs.

2.3.1 Results on γMχ(G)

(i) Let G = mK2,m ≥ 1 with p = 2m. Then γMχ(G) =
⌈
p
4

⌉
+

1, p ≥ 2.
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(ii) Let G = K̄p be a totally disconnected graph of p vertices. Then

γMχ(K̄p) =
⌈
p
2

⌉
.

(iii) For the Petersen graph P (10, 15), γMχ(P ) = 5.

(iv) For a double star graph, Dr,s, γMχ(G) = 2, if r ≤ s.

(v) Let G be a caterpillar in which exactly one pendant at each

vertex

γMχ(G) =


⌈
p
8

⌉
+ 1, if p ≡ 0, 5, 6, 7(mod 8)⌈

p
8

⌉
, if p ≡ 1, 2, 3, 4(mod 8).

Proposition 2.3.2: (i) Let G = Kp, p ≥ 1 be a complete graph.

Then γMχ(G) = p.

(ii) Let G = K1,p−1 be a star. Then γMχ(G) = 2.

Proof: (i) Since G = Kp is color critical, By observation (2.2.4)(ii),

the vertex set V (G) = {v1, v2, v3, . . . , vp} is the MDC set of G. Hence

γMχ(G) = |V (G)| = p.

(ii) For a star G = K1,p−1, χ(G) = 2. The set S = {v1, v2}, where

d(v1) = p−1 and d(v1, v2) = 1 is the subset of G. Since |N [S]| ≥ dP2 e

and χ(〈S〉) = χ(G), S is the MDC set of G and γMχ(G) = |S| = 2.
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Proposition 2.3.3: Let G = Cp be a cycle of p vertices, p ≥ 3. Then

γMχ(G) =


⌈
p
6

⌉
, if p ≡ 2(mod 6)⌈

p
6

⌉
+ 1, if p ≡ 0, 4(mod 6)

p, if p is odd.

Proof: Let {v1, v2, v3, · · · , vp} be a set of vertices of Cp and d(vi) = 2,

for all vi ∈ V (G). By the result (1.3.43) (v)

χ(Cp) =

 2, if p is even

3, if p is odd.
(2.1)

Case: (i) When p ≡ 2(mod 6). Since Cp is even, χ(G) = 2. Let

S = {v1, v2, v5, · · · , vγMχ(G)} be a majority dom-chromatic set of G

such that d(v1, v2) = 1 and d(vi, vj) = 3, i /∈ j, i, j = 2, 5, · · · , γMχ(G)

and vi, vj ∈ S. So that the induced sub graph 〈S〉 contains K2 or

K2 ∪ tK1, t > 0. Then |N [S]| ≥ dp2e, where |S| = γMχ(G). By (2.1)

and since χ(K2) = 2, χ(〈S〉) = χ(G).

Then |N [S]| ≤
|S|∑
i=1

d(vi) + γMχ(G) − 1 ≤ 3γMχ(G) − 1, and⌈
p
2

⌉
≤ |N [S]| ≤ 3γMχ(G) − 1. Implies that γMχ(G) ≥ 1

3

(⌈
p
2

⌉
+ 1
)
.

If p = 6r + 2 then 1
3

(⌈
p
2

⌉
+ 1
)

= 1
3

(⌈
6r+2

2

⌉
+ 1
)

=
⌈
p
6

⌉
. Therefore,

γMχ(G) ≥
⌈
p
6

⌉
.
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Suppose the set S = {v1, v2, · · · , vt} ⊆ V (G) with d(vi, vj) =

3, i /∈ j and exactly one pair d(v1, v2) = 1 and |S| = |t| = dp6e.

Then |N [S]| = 3
⌈
p
6

⌉
− 2 = 3

⌈
6r+2

6

⌉
− 2 = 3

(
p−2

6

)
+ 1 ≥

⌈
p
2

⌉
. Since

d(v1, v2) = 1, the induced subgraph 〈S〉 contains K2. It implies that

χ(〈S〉) = 2 = χ(G). Hence, the set S is a majority dom-chromatic

set of G. Thus, γMχ(G) ≤ |S| =
⌈
p
6

⌉
. Combine the results, we obtain

the result.

Case: (ii) Let p ≡ 0, 4(mod 6).

Let S = {v1, v2, v5, . . . , vγMχ(G)} be a majority dom-chromatic set

of G with the same properties as in case (i). Now, since (p2) ≡

2(mod 3), |N [S]| ≤
γMχ(G)∑
i=1

d(vi) + γMχ(G) − 4 ≤ 3γMχ(G) − 4 and

dp2e ≤ |N [S]| ≤ 3γMχ(G)− 4. It implies that γMχ(G) ≥ 1
3

(
dp2e+ 4

)
.

If p = 6r then 1
3

(
d6r

2 e+ 4
)

=
(
p
6 + 2

)
= dp2e+1 and if p = 6r+4 then

1
3

(
d6r+4

2 e+ 4
)
. Therefore, γMχ(G) ≥

⌈
p
6

⌉
+ 1. Applying the same

argument as in case (i), we obtain, γMχ(G) ≤
⌈
p
6

⌉
+ 1. Combining

these results, γMχ(G) = dp6e+ 1, if p ≡ 0, 4(mod 6).

Case: (iii) When p is odd. Then by the result (1.3.43)(v), χ(Cp) = 3.

By observation (2.2.4)(ii), Cp is vertex χ - critical graph, and the

vertex set V (G) is the majority dom-chromatic set of G. Hence

γMχ(G) = |V (G)| = p, if p is odd.
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Corollary 2.3.4: Let G be a path on p vertices. Then its majority

dom-chromatic number is

γMχ(Pp) =


dp6e, if p ≡ 1, 2(mod 6)

dp6e+ 1, if p ≡ 0, 3, 4, 5(mod 6).

Proof: Applying the same arguments as in proposition (2.3.3), we

obtain the result.

Proposition 2.3.5: For a complete bipartite graph G = Km,n,

γMχ(G) = 2.

Proof: Let G = Km,n. Then γM(G) = 1. Since χ(G) = 2, S =

{u1, v1} is a majority dominating chromatic set ofG such that u1 ∈ V1

and v1 ∈ V2 and χ(〈S〉) = χ(G). Therefore, γMχ(G) = 2.

Proposition 2.3.6: Let G = Wp = Cp−1∨K1 be a wheel graph with

p vertices, p ≥ 5. Then

γMχ(Wp) =

 3, if p is odd

p, if p is even.

Proof: Let G = Wp = Cp−1∨K1. From the results in (1.3.43)(i),(vi),

γM(Wp) = 1 and χ(Wp) =

 3, if p is odd

4, if p is even.
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When (p−1) is odd, Cp−1 is vertex color critical graph, the vertex

set V (Cp−1) is majority dom-chromatic set for the graph. When

(p− 1) is even, two colors are enough to Cp−1. Therefore,

γMχ(G) =

 3, if (p− 1) is even

p, if (p− 1) is odd.

Then for a graph G = Wp, we obtain the required result.

Proposition 2.3.7: For a Fan graph with p vertices, γMχ(Fp) =

3, p ≥ 3.

Proof: Let Fp=Pp−1∨K1. Since G = Fp has a full degree vertex and

G contains triangles, γM(G)=1 and χ(G)=3. Hence, γMχ(G) = 3.

2.4 Characterization Theorems and

Bounds on γMχ(G)

In this section, the characterization of a minimal majority dom-

chromatic set of a graph G and bounds on γMχ(G) are discussed.

Theorem 2.4.1: LetG(p, q) be any graph. A majority dom-chromatic

set S of G is minimal if and only if for each u ∈ S, one of the following

conditions holds.
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(i) χ(〈S − {u}〉) < χ(G)

(ii) S − {u} is not a majority dominating set of G.

Proof: Let S be a minimal majority dom-chromatic set for G. Then

G is a majority dominating set and χ(〈S〉) = χ(G). To prove that for

each u ∈ S, either (i) or (ii) holds. Suppose χ(〈S − {u}〉) = χ(G).

Then for any u ∈ S, 〈S − {u}〉 is a majority dom-chromatic set of

G, which is a contradiction to S is minimal. Therefore condition

(i) holds. Suppose for any vertex u ∈ S, 〈S − {u}〉 is a majority

dominating set of G. Then the induced subgraph 〈S − {u}〉 such

that χ(〈S − {u}〉) = χ(G), it is a contradiction to the assumption.

Hence condition (ii) holds.

Conversely, suppose that S is not a minimal majority dom-chromatic

set, then there exists a vertex u ∈ S such that 〈S − {u}〉 is a major-

ity dom-chromatic set of G. It implies that, 〈S − {u}〉 is a majority

dominating set and χ(〈S − {u}〉) = χ(G), for any vertex u ∈ S,

which is a contradiction to the conditions (i) and (ii). Hence the

result.

Proposition 2.4.2: A graph G is vertex color critical with order p

if and only if γMχ(G) = p.



Ch. 2: Majority Dom-Chromatic Set of a Graph 38

Proof: Since every γMχ- set is a γM - set of G, γMχ(G) ≥ γM(G)

and since any majority dom-chromatic set of G contains atleast one

vertex from each color class γMχ(G) ≥ χ(G). Thus, the lower bound

follows. For a color critical graph, V (G) is the only MDC set of G

and hence γMχ(G) ≤ p. The lower bound is sharp for G = Kp or

G = K̄p and the upper bound attains for G = Cp, when p is odd.

Proposition 2.4.3: Let G be any graph with p vertices. Then

γMχ(G) = 1 if and only if G = K1 or K̄2.

Proof: Assume that γMχ(G) = 1. Then by proposition (2.4.2),

max{χ(G), γM(G)} ≤ γMχ(G) = 1. It implies that γM(G) = 1

and χ(G) = 1. Then there is no edge in G. Hence G = K̄p,

which is totally disconnected graph. But by the result in (??)(ii),

γMχ(K̄p) = dp2e. So, when p = 2, γMχ(K̄2) = 1. It implies that

G = K̄2 or K1. The converse is obvious.

Proposition 2.4.4: Let G be any graph of order p. Then γMχ(G) =

p if and only if G is vertex color critical.

Proof: Assume that G is a vertex colorcritical graph. Then χ(G−v)

< χ(G), for any v ∈ V (G). It implies that χ(G) = p and χ(G −
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v) = p − 1. Then γM(G) ≥ 1. Since γM(G) ≥ 1 and χ(G) = p,

the set S = {v1, v2, . . . , vp} is the majority dom-chromatic set of

G with |S| = p. Thus γMχ(G) ≤ |S| = p. By the proposition

(2.4.2), γMχ(G) ≥ max{γM(G), χ(G)}. Then γMχ(G) ≥ p. Hence

γMχ(G) = p.

Conversely, the graph G on p vertices with γMχ(G) = p. It

means that χ(G) = p and γM(G) ≥ 1. Hence S = {v1, v2, . . . , vp} is

a majority dom-chromatic set for G and |S| = p. Hence, χ(〈S〈) =

p = χ(G). It is clear that the graph G is either Kp or an odd cycle.

Claim: χ(G− v) < χ(G), for any v ∈ V (G).

Suppose that G1 = Kp or G2 = Cp, p is odd. Then by the propo-

sition (2.3.2)(i), we would have γMχ(G1) = p and by proposition

(2.3.3), γMχ(G2) = p, p is odd. It follows easily that χ(G1) = p and

χ(G2) = 3, p is odd. For a subgraph H = (G1− v), χ(〈H〉) = p− 1 <

χ(G1). It shows that G1 = Kp is vertex color critical graph.

Consider now H = (G2 − v), the induced subgraph 〈H〉 is a

path and its chromatic number χ(〈H) = 2 < χ(G2). It implies that

G2 = Cp, p is odd, is vertex color critical. As a result we obtain G is

a vertex color critical graph.
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The following theorem gives the characterization of γMχ(G) =

p− q, where G is any graph with p vertices and q edges.

Theorem 2.4.5: Let G be a graph with p vertices and q edges. Then

γMχ(G) = p− q if and only if G = Kp, p = 1.

Proof: The sufficiency follows by the fact that γMχ(G) = p−q, γMχ(G) ≥

1, (p− q) ≥ 1.

Case: (i) Let the graph G be connected. Then q ≥ p−1⇒ (p−q) ≤

1. Hence we get p − q = 1. Obviously G is a tree. In view of this

property χ(G) = 2 and and by the result (1.3.43)(ii) 1 ≤ γM(G) ≤

dp6e. Also by proposition (2.4.2), γMχ(G) ≥ max{χ(G), γM(G)}.

since p − q = 1 = γMχ(G), the two numbers χ(G) and γM(G)

must be one. When G is a tree and it has χ(G) = 2 and γM(G) = 1,

then the graph becomes G = K2 and then γMχ(G) = 2, but it is

contradiction to γMχ(G) = p− q = 1. Hence G /∈ K2.

Case: (ii) Suppose G is disconnected. Then the results (2.3.1)(ii),

dp4e ≤ γMχ(K̄p) ≤ dp2e. The lower bound is attained for G = mK2. If

m = 1, γMχ(K2) = 2 6= p−q = 1 and the upper bound is attained for

G = K̄p when p = 2 then γMχ(K̄2) = 1 6= p− q = 2. Hence G 6= K̄2

or K2. It follows that the graph must be G = K1.

The converse is obvious.
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Next, result is the characterization of |V − S| = 0, where S is a

MDC set of vertex color critical graph G.

Theorem 2.4.6: A majority dom-chromatic set S belongs to a vertex

color critical graph if and only if |V − S| = 0.

Proof: Suppose |V − S| = 0. Then the majority dom-chromatic set

S = {u1, u2, · · · , up} ⊆ V (G). It implies that |S| = |V (G)|. Suppose

we remove one vertex from S then S may not be a majority dom-

chromatic set of G. Hence G is vertex color critical graph.

Conversely by the proposition (2.4.4), if G is vertex color critical

graph with p vertices then γMχ(G) = p. Hence |V − S| = 0.

Proposition 2.4.7: A majority dom-chromatic set S belongs to a

vertex color critical graph if and only if |V − S| = 0.

Proof: If G is vertex color critical graph with p vertices, it follows

that γMχ(G) = p. Hence |V − S| = 0.

Conversely, |V − S| = 0. Then |S| = |V (G)| = p. Suppose

if χ(G − v) < χ(G), immediately it follows that G is vertex color

critical graph.
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Theorem 2.4.8: Let G be a graph of order p with χ(G) ≥ 3 and it

has no triangles. Then γMχ(G) ≥ 5.

Proof: Let χ(G) ≥ 3 and G has no triangles. Then G 6= Kp, com-

plete graph and G is not a tree. Therefore, G contains a cycle. If

χ(G) ≥ 3, then G contains only odd cycles with atleast p ≥ 5. By the

proposition (2.3.3), γMχ(Cp) = p, p is odd, p ≥ 5, and γM(G) ≥ 1.

Since χ(G) ≥ 3, p ≥ 5, we obtain γMχ(G) ≥ 5.

2.5 Inequalities on MDC Set

In this section, inequality between the sum of the degrees of all ver-

tices of a majority dom-chromatic set S of G and the complement

of S i.e. (V − S) in a graph G is discussed. We determine some in-

equalities such as |V −S| ≤
∑
vi∈S

d(vi) and |V −S| ≥
∑

vi∈S d(vi) with

respect to the majority dom-chromatic set S of a connected graph G.

Theorem 2.5.1: If S is a majority dom-chromatic set with two ma-

jority dominating vertices of a connected graph G then

|V − S| ≤
∑
vi∈S

d(vi).



Ch. 2: Majority Dom-Chromatic Set of a Graph 43

Proof: Let v ∈ V (G) be a majority dominating vertex such that

d(v) ≥ dp2e − 1 and S = {v1, v2} be a majority dom-chromaticset

with only two majority dominating vertices of G.

Case (i): The graph G is a tree. Then d(vi) ≥ dp2e − 1, i = 1, 2 for

all vi ∈ S. It implies that χ(G) = 2, γM(G) = 1 then∑
vi∈S

d(vi) = d(v1) + d(v2) ≥
⌈p

2

⌉
− 1 +

⌈p
2

⌉
− 1

=

 p− 2, if p is even

p, if p is odd

∑
vi∈S

d(vi) = p− 2 or p. Therefore, |V − S| = p− 2 ≤
∑
vi∈S

d(vi).

Case (ii): The graph G is not a tree and G contains two majority

dominating vertices. Then G is not complete but G consist of trian-

gles. It implies that χ(G) = 3, γM(G) = 1. Then S = {v1, v2, v3} be

a majority dom-chromatic set of G where v2 and v3 are joined with

a majority dominating vertex v1 such that d(v1) = ∆(G). Therefore,∑
vi∈S

d(vi) = d(v1) +d(v2) +d(v3) ≥ dp2e+ 4. Hence, |V −S| = p− 3 ≤∑
vi∈S

d(vi). It implies that |V − S| ≤
∑
vi∈S

d(vi).

Example 2.5.2: Consider the following Hajas graph G with p = 10.
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Figure 2.2: G

For G,χ(G) = 3, γM(H) = 1. Then S = {v2, v3, v5} is the majority

dom-chromatic set of G and
∑
v∈S

d(v) = 4+4+6 = 14 and |V −S| = 7.

Theorem 2.5.3: Let G be a non-trivial connected graph with atleast

one full degree vertex. If S is a majority dom-chromatic set of G then

|V − S| <
∑
ui∈S

d(ui).

Proof: The graph G contains atleast one full degree vertex u ∈

V (G). Then d(u) = p− 1.

Case (i): The graph G is a tree. Consider S = {u1, u2} be the

majority dom-chromatic set of G and χ(G) = 2. Hence |V − S| ≤

p− 2. Also
∑
ui∈S

d(ui) = d(u1) + d(u2) ≥ p− 1 + 1 = p.

Hence, |V − S| <
∑
ui∈S

d(ui).

Case (ii): The graph G is complete. Then the graph G contains ver-

tices are of full degree vertices. Since χ(G) = p, S = {u1, u2, · · · , up}
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is a majority dom-chromatic set of G. Therefore, |V − S| = 0 and∑
ui∈S

d(ui) = p(p− 1). It implies that, |V − S| <
∑
ui∈S

d(ui).

Case (iii) The graph G is not complete.

Subcase (i): If G has only one full degree vertex u and it is not a

tree then G contains a triangle. Since χ(G) = 3, S = {u1, u2, u3} is

a majority dom-chromatic set of G. It implies that |V − S| = p− 3

and
∑
ui∈S

d(ui) = (p− 1) + 3 + 3 = p+ 5. Hence, |V − S| <
∑
ui∈S

d(ui).

Subcase (ii): Suppose the graph G has two full degree vertices u1

and u2, then G contains a triangle. Hence, χ(G) = 3. Let S =

{u1, u2, u3} be a majority dom-chromatic set of G. Then |V − S| =

p − 3 and
∑
ui∈S

d(ui) = (p − 1) + (p − 1) + 2 = 2p. It implies that,

|V −S| <
∑
ui∈S

d(ui). In all cases, the vertices of S majority dominates

the graph G and also addition with its coloring number. Thus,

|V − S| <
∑
ui∈S

d(ui).

Theorem 2.5.4: If a connected graphG contains only majority dom-

inating vertices then |V − S| ≤
∑
ui∈S

d(ui), where S is the MDC-set

of G.

Proof: Let G be a connected graph which contains only majority

dominating vertices. Then γM(G) = 1 and χ(G) ≥ 2. Consider the
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set S = {u1, u2, · · · , ut} with |S| = t be a majority dom-chromatic

set of G and γMχ = |S| ≥ 2. Then |V −S| ≤ p− 2. Since G contains

only majority dominating vertices, d(ui) ≥ dp2e − 1, for each ui ∈ S.

Case (i): The graph G has no triangles. Let S = {u1, u2} be a

majority dom-chromatic set of G. Then
∑
ui∈S

d(ui) = d(u1) + d(u2) ≥⌈
p
2

⌉
− 1 +

⌈
p
2

⌉
− 1 ≥ p− 2 and |V − S| ≤

∑
ui∈S

d(ui).

Hence |V − S| ≤
∑
ui∈S

d(ui).

Case (ii): The graph G has triangles. Then γM(G) = 1 and χ(G) ≥

3. It implies that S = {u1, u2, u3} is a majority dom-chromatic set of

G. Hence |V − S| = p− 3. Then
∑
ui∈S

d(ui) ≥ 3
(⌈

p
2

⌉
− 1
)
≥ 3p

2 or 3p
2 .

Hence, |V − S| ≤
∑
ui∈S

d(ui).

Theorem 2.5.5: If a connected graph G has no majority dominating

vertices then |V − S| ≥
∑
ui∈S

d(ui), where S is the MDC set of G.

Proof: Let S be the majority dom-chromatic set of a connected

graph G of p vertices and q edges. Since the graph G has no majority

dominating vertices, it contains all vertices with d(ui) < dp2e − 1.

Assume that S = {u1, u2, · · · } be the majority dom-chromatic set of

G. Then |V − S| ≤ p− 2, p > 6.
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Also,
∑
ui∈S

d(ui) = d(u1) + d(u2) + · · · ≤ dp2e − 2 + dp2e − 2 + · · · ≤

2dp2e − 4 ≤ (p− 2) or (p− 4).

Hence we obtain, |V − S| ≥
∑
ui∈S

d(ui).

Theorem 2.5.6. If a MDC set S contains a majority dominating

vertex v and other vertices ui such that d(ui) ≤ dp2e − 3 then

|V − S| >
∑
ui∈S

deg(ui).

Proof: Let u be the majority dominating vertex such that d(u) =

dp2e− 1 and other vertices ui with degree d(ui) ≤ dp2e− 3 in G. Then

γM(G) = |{u}| = 1 and χ(G) = 2. Therefore S = {u, u1} is a MDC

set of G and |V − S| ≤ p− 2.

Then
∑
ui∈S

deg(ui) = d(u) + d(u1) ≤
⌈p

2

⌉
− 1 +

⌈p
2

⌉
− 3

≤

 p
2 − 1 + p

2 − 3 = p− 4, if p is even
p
2 + p

2 + 1− 4 = p− 3, if p is odd

Therefore
∑
ui∈S

deg(ui) ≤ (p − 4) or (p − 3). Hence |V − S| >∑
ui∈S

deg(ui).

Corollary 2.5.7: If the majority dom-chromatic set S contains a

majority dominating vertex and pendants only then |V−S| >
∑
ui∈S

d(ui).
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Theorem 2.5.8: Let G be a connected graph with atleast one vertex

v such that dp2e − 1 ≤ d(v) ≤ dp2e + 2. Then |V − S| >
∑
vi∈S

d(vi),

where S is majority dom-chromatic set which contains a vertex v.

Proof: Let
⌈
p
2

⌉
− 1 ≤ d(v) ≤

⌈
p
2

⌉
+ 2, for any vertex, v ∈ V (G)

Case (i): The graph G is a tree. Let S = {v, u1} be a majority dom-

chromatic set in which v is a pendent. Suppose d(v) = dp2e−1. Then

|V − S| = p− 2. Now,
∑
vi∈S

d(vi) = d(v) + d(u1) = dp2e − 1 + 1 = dp2e.

It implies that, |V − S| = p− 2 >
∑
vi∈S

d(vi).

Suppose d(v) = dp2e+2. Then
∑
vi∈S

d(vi) = d(v)+d(u1) = dp2e+2+1 =

dp2e+ 3 < |V − S|. But
∑
vi∈S

d(vi) takes the value from dp2e to dp2e+ 3.

Hence |V − S| >
∑
vi∈S

d(vi).

Case (ii): The graph G is not a tree. Let S be a majority dom-

chromatic set of G and let S = {v, v1} where v is a majority domi-

nating vertex and v1 is not a pendent of G. Then∑
vi∈S

d(vi) = d(v) + d(v1) ≥
⌈p

2

⌉
− 1 + 2 =

⌈p
2

⌉
+ 1, if d(v) ≥

⌈p
2

⌉
− 1.

∑
vi∈S

d(vi) =
⌈p

2

⌉
+ 2 + 2 ≥

⌈p
2

⌉
+ 4, if d(v) ≤

⌈p
2

⌉
+ 2.

Hence |V − S| = p− 2 >
∑
vi∈S

d(vi).
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2.6 Relationship of γMχ(G) with γM(G)

and γch(G)

Proposition 2.6.1: Let G be a complete bipartite graph with a ma-

jority dominating vertex. Then γMχ(G) = 2 and γM(G) < γMχ(G).

Proof: Let G = Km,n,m ≤ n, be a complete bipartite graph.

Case (i): Since G has a majority dominating vertex u1, γM(G) = 1

and χ(G) = 2. Then S = {u1, v1} is a majority dom-chromatic set

of G, where u1 ∈ V1(G) and v1 ∈ V2(G). It implies that γMχ(G) = 2

and γM(G) < γMχ(G).

Case (ii): IfG is not a complete bipartite graph thenGmay contains

pendants. Since G has a majority dominating vertex u1 ∈ V (G) and

χ(G) = 2, S = {u1, v1} is a majority dom-chromatic set of G where

u1 ∈ V1(G) and v1 ∈ V2(G). It implies that γMχ = 2 and γM(G) = 1.

Hence γM(G) < γMχ(G).

Theorem 2.6.2: LetG be any graph on p vertices with dom-chromatic

number γch(G). Then γMχ(G) ≤ dγch(G)
2 e, if γch(G) is odd and

γMχ(G) =
(
γch(G)

2

)
+ 1 if γch(G) is even.
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Proof: Let S be the minimum dom-chromatic set ofG. Then γch(G) =

|S| and |N [S]| = |V (G)|. Let S = S1 ∪ S2, where |S1| = dγch(G)
2 e and

|S2| = bγch(G)
2 c. Therefore |N [S1] ∪N [S2] = ||N [S]| = |V (G)|.

Case (i): Since every γch- set of G is also a γMχ– set of G and

γch(G) = |S| is odd, |S| = |S1| ∪ |S2| when |N [S1]| ≥ dp2e and

|N [S2]| < dp2e. Since χ(〈S〉) = χ(G), χ(〈S1〉) = χ(G) and χ(〈S2〉) 6=

χ(G). It implies that S1 is a γMχ- set of G and γMχ(G) ≤ |S1| =

dγch(G)
2 e, if γch(G) is odd.

Case (ii): Let γch(G) = |S| be even. Then S = S1 ∪ S2 with

|S1| = |S2|. But |N [S]| = p and |N [S1]| < dp2e and |N [S2]| > dp2e. If

S1 contains the vertices ui, uj such that d(ui, uj) = 1 then χ(〈S1〉) =

χ(G). If S2 contains the vertices ui, uj such that d(ui, uj) ≥ 3 then

χ(〈S1〉) 6= χ(G). Hence both S1 and S2 are not γMχ- set of G.

Let S ′ = S1 ∪ {uk}, for any uk ∈ V − S1. Then |N [S ′]| ≥ dp2e and

χ(〈S ′〉) = χ(G). It implies that S ′ is a γMχ- set ofG and |S ′| = |S|+1.

Therefore γMχ(G) =
(
γch(G)

2

)
+ 1 if γch(G) is even.

Example 2.6.3: (i) Let Pp be a path with p ≡ 0(mod 6). Con-

sider G = P18 then γMχ(G) = 4, γch(G) = 7 and dγch(G)
2 e =

d7
2e = 4. Hence γMχ(G) = dγch(G)

2 e.
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(ii) LetG = S(K1, t), then S1 = {u1, u2, · · · , ut} is a dom-chromatic

set of G. It implies that γch(G) = |S1| = t+ 1 and S2 = {u, u1}

is a MDC of G. Hence γMχ(G) = 2 and γMχ(G) < dγch(G)
2 e.

Construction 2.6.4: For every integer k ≥ 0, there exists a graph

G such that dγch(G)
2 e − γMχ(G) = k.

Proof: Let G be the subdivision of a Star K1,2k+2 by dividing each

edge exactly ones. Then |V (G)| = 2(2k+ 2) + 1, γch(G) = 2k+ 2 + 1

and γMχ(G) = 2. Then dγch(G)
2 e − γMχ(G) = k + 2− 2 = k.

Observation 2.6.5: Let G be any Connected graph with p vertices.

Let χ(G), γM(G) and γMχ(G) be the chromatic number of majority

domination number and MDC number respectively. Then χ(G) and

γM(G) are not comparable. (i) γM(G) < χ(G) < γMχ(G) and χ(G) <

γM(G) < γMχ(G).

2.7 γMχ for Complement of Graph

Proposition 2.7.1: Let the complete bipartite graphG with diam(G) =

3. Then γMχ(G) = γMχ(Ḡ) if and only if G = K2,2, where Ḡ is the

complement of G.
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Proof: Let the equality holds and let uv be the dominating edge of

G. Let |N [u]| = m, |N [v]| = n and p = m + n. In the graph Ḡ,

both N(u) and N(v) are of cardinality 2. The set {N(u)∪N(v)} is a

Km+n−2 graph, χ(Ḡ) = m+n−2 and {N(u)∪N(v)} be the majority

dom-chromatic set for Ḡ. It implies that γMχ(Ḡ) = m+n− 2. Since

γMχ(G) = γMχ(Ḡ), m+n
2 = m + n − 2. It implies that m + n = 4.

Hence the graph must be K2,2. The converse is obvious.

Proposition 2.7.2: If the graph G = Kp is the vertex color critical

then 1 ≤ γMχ(Ḡ) ≤ dp2e.

Proof: Since the complete graph G = Kp is the vertex color critical

graph, 1 ≤ γMχ(G) ≤ p. The complement of Kp is Ḡ = Kp. By

the proposition (2.3.1)(ii), the majority dom-chromatic number is

γMχ(Ḡ) = dp2e and the lower bound attains for Ḡ = K2.

Proposition 2.7.3: Let G = Km,n,m ≤ n and m,n ≥ 3 be a com-

plete bipartite graph. Then majority dom-chromatic number of a

complement Ḡ is γMχ(Ḡ) ≥ dp2e and γMχ(G) < γMχ(Ḡ).

Proof: Let Ḡ = Km ∪ Kn be the complement of G where Km and

Kn both are complete graphs with m and n vertices.
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Case (i): Suppose m = n, n + 1, n + 2. Since Km and Kn are

vertex color critical and p = m+ n, γMχ(Ḡ) = n, n+ 1, n+ 2. Hence

γMχ(Ḡ) = max{m,n}.

Case (ii): Let m < n and n ≥ m + 3. Since Km and Kn are

vertex color critical and p = m + n,m < dp2e and n > dp2e. Hence

γMχ(Ḡ) = max{m,n}. If G = Km,n,m ≤ n, then by the proposition

(2.3.5), γMχ(G) = 2. By case (i), γMχ(Ḡ) = n or n + 1 = dp2e and

γMχ(Ḡ) = n+ 2 > dp2e. Then, γMχ(Ḡ) = n, if m < n. It implies that

γMχ(Ḡ) > dp2e. Hence, γMχ(G) < γMχ(Ḡ), if m,n ≥ 3.

Proposition 2.7.4: Let G be a bipartite graph with diam(G) ≥ 6.

Then γMχ(Ḡ) > γM(Ḡ) + 1, if Ḡ is the complement of G and γM(Ḡ)

is the majority domination number of Ḡ.

Proof: If diam(G) ≥ 6, then G = Pp, p ≥ 7. The complement Ḡ

contains two vertices with degree d̄(ui) = p− 2, i = 1, p and d̄(vi) =

p−3, i = 2, · · · , p−1. It gives that there are atleast two vertices with

degree d̄(ui) ≥ dp2e − 1 and the majority domination number of Ḡ is

γM(Ḡ) = 1. Since Ḡ contains a triangle, χ(Ḡ) = 3 and γMχ(Ḡ) ≥ 3.

Hence, γMχ(Ḡ) > γM(Ḡ) + 1.
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2.8 MDC Number for Bipartite Graph

In this section, the characterization theorems of γMχ(G), where the

graph G is a bipartite are investigated.

Theorem 2.8.1: Let G be a connected bipartite graph with p ver-

tices. Then γMχ(G) = 2 if and only if G1 = Km,n,m ≤ n, a Path

G2 = Pi, i ≤ 8 and G3 = BX,Y such that |N [u1] ∪ N [v1]| ≥ p
2 and

d(u1, v1) = 1, where u1 ∈ V1(G) and v1 ∈ V2(G).

Proof: Let γMχ(G) = 2. Then χ(G) = 2 = χ(〈S〉), where S is a

majority dom-chromatic set of G with |S| = 2.

Case (i): Suppose diam(G) = 1 then the graph G = Kp. Since Kp

is vertex color critical, γMχ(G) = p. By assumption, the only graph

G = K2 = K1,1 = G1 is a complete bipartite.

Case (ii): Suppose diam(G) = 2 then the graphG becomesKm,n,m ≤

n, P3 and K1,p−1, a star. Since γMχ(G) = 2, we obtain the graph

structures such as G1 = C4 = K2,2 and G1 = K1,p−1, G2 = P3 and

also G3 = BX,Y includes the following structure with diam(G) = 2.
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Figure 2.3: G3

For the graph structure G3, S = {u2, v2} ⊆ V (G) such that

d(u2, v2) = 1, |N [S]| = |N [u2]∪N [v2]| ≥ dp2e and χ(〈S〉) = 2 = χ(G).

It implies that S is a majority dom-chromatic set of G3. Hence

G3 = BX,Y with these properties.

Case (iii): Suppose diam(G) = 3. The bipartite graph G becomes

P4 and Dr,s, a double star. Since γMχ(G) = 2, by the corollary

(2.3.4), γMχ(P4) = 2. Hence G2 = P4. In Dr,s, r ≤ s, by assumption,

S = {u1, v1} is the subset of G such that d(u1) ≤ dp2e − 1, and

d(v1) ≥ dp2e − 1 with d(u1, v1) = 1, where u1 ∈ V1(G) and v1 ∈ V2(G)

and |N [S]| = |N [u2]∪N [v2]| ≥ dp2e. Also χ(〈S〉) = 2 = χ(G). Hence
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S is a majority dom-chromatic set of G. It implies that G2 = BX,Y =

Dr,s, r ≤ s.

Case (iv) Suppose diam(G) ≥ 4. Then the bipartite graphs are

Pp, p ≥ 5 and any bipartite graph BX,Y . By the corollary (2.3.4),

γMχ(Pp) = dp6e = 2, p = 5, 6, 7, 8 and γMχ(Pp) > 2, if p ≥ 9. Since

γMχ(G) = 2, the only bipartite graph G2 = P5 to P8. For a bipartite

graph BX,Y , if S = {u1, v1} ⊆ V (G) such that |N [u1] ∪N [v1]| ≥ dp2e

and d(u1, v1) = 1, where u1 ∈ V1(G) and v1 ∈ V2(G) with diam(G) =

4, then S is a majority dom-chromatic set of BX,Y . Also, clearly

χ(〈S〉) = 2 = χ(G) and satisfies the assumption. Hence the bipartite

graph G3 = BX,Y with the above said properties and also the only

bipartite graphs are G2 = P5 to P8.

Conversely, let G1 = Km,n,m ≤ n which is complete bipartite

with p = m + n. Then by the proposition (2.3.5), γMχ(G) = 2 and

for a path G2 = Pi, i = 2, · · · , 8, by corollary (2.3.4), γMχ(G) =

2. Let G3 = BX,Y be a graph with bipartition V1(G) and V2(G).

Let u1 ∈ V1(G) and v1 ∈ V2(G) such that d(u1, v1) = 1. Since

|N [u1] ∪ N [v1]| ≥ p
2 and χ(〈S〉) = 2 = χ(G), S = {u1, v1} is a

majority dom-chromatic set of G and γMχ(G3) = 2.
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Proposition 2.8.2: Let G be any bipartite graph BX,Y with p ver-

tices and without isolates. Then γMχ(G) ≤ dp4e + 1 and γMχ(G) =

dp4e+1 if and only if G = K1,j if j = 1, 2, 3, K2,2, P4 and mK2,m ≥ 1.

Proof: Let G = BX,Y be a bipartite graph with {u1, u2, · · · , um}

and {v1, v2, · · · , vn} and |V (G)| = p = m+ n.

Case(i): Suppose G = Km,n is a complete bipartite with m ≤ n.

Let S = {u1, v1}, where u1 ∈ V (X) and v1 ∈ V (Y ). Then |N [S]| =

|N [u1]| + |N [v1]| = (n + 1) + (m + 1) ≥ dp2e. Therefore S is a

majority dominating set of G. Since G is complete bipartite, χ(G) =

2 = χ(〈S〉). It implies that S is a majority dom-chromatic set of

G. Hence γMχ(G) ≤ |S| = 2 = dp4e + 1, where p = 2, 3, 4. Thus

the graph becomes G = K1,1, K1,2, K1,3 and K2,2. When p ≥ 5, for

G = Km,n,m ≤ n, by the proposition (2.3.5), γMχ(G) = 2 < dp4e+ 1.

Hence, γMχ(G) ≤ dp4e+ 1, for G = Km,n,m ≤ n.

Case (ii): The graph G is not complete and connected bipartite.

Then the minimally connected bipartite graph is a path Pp, p ≥ 2.

By the corollary (2.3.4), γMχ(Pp) = dp6e or dp6e + 1. Hence in this

structure, when p = 2, 3, 4, γMχ(G) = 2 = dp6e + 1 = dp4e + 1. When

p ≥ 5, γMχ(G) = dp6e or dp6e+ 1 < dp4e+ 1. Hence, γMχ(G) ≤ dp4e+ 1,

if p ≥ 2.
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Case (iii): The graph G is not complete and disconnected bipartite.

Then the graph structure becomes mK2,mP4,mC4 and mP6. In such

cases, by the result (2.3.1)(i), γMχ(mK2) = dp4e + 1 and all other

graphs the majority dom-chromatic number is γMχ(G) < dp4e + 1.

Hence γMχ(G) ≤ dp4e+1. From the above cases, we obtain γMχ(G) ≤

dp4e+ 1.

Conversely, let γMχ(G) = dp4e+ 1. By case (i), if G is a complete

bipartite graph, we obtain the graphs G = K1,j, j = 1, 2, 3 and K2,2.

By case (ii), if G is not complete bipartite then the graphs are G =

P2 = K1,1, P3 = K1,2 and P4. Also by case (ii), if G is not complete

and disconnected bipartite, the graph G = mK2,m ≥ 1. Hence

γMχ(G) = dp4e + 1 if and only if G = K1,j, j = 1, 2, 3, K2,2, P4 and

mK2,m ≥ 1.

Proposition 2.8.3: Let G be any connected bipartite graph with p

vertices. Then γMχ(G) = dp2e if and only if G = P3, P4, C4 and K1,3.

Proof: Assume that γMχ(G) =
⌈
p
2

⌉
. Since G is connected bipartite

graph, χ(G) ≥ 2.

Case (i): If diam(G) = 1, then G = K2 and γMχ(G) = 2 = p, which

is a contradiction to the assumption. Hence G 6= K2.
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Case (ii): If diam(G) = 2, then G = P3, C4, K1,n. By the corollary

(2.3.4), γMχ(P3) = 2 = dp2e. By proposition (2.3.3), γMχ(C4) = dp2e.

Suppose G = K1,3, by the proposition (2.3.5), γMχ(G) = 2 = dp2e.

Case (iii): If diam(G) = 3, then G = P4 and Dr,s. By the corollary

(2.3.4), γMχ(G) = 2 = dp2e. For Dr,s, by the proposition(??)(iv),

γMχ(G) = 2 = dp2e, when r = s = 1.

Case (iv): If diam(G) ≥ 4, then G = Pp, Cp, p ≥ 5 and any other

graphs. By the corollary (2.3.4), γMχ(G) = dp6e+ 1 = 2 < dp2e, which

is a contradiction to the assumption.

Thus, from the above 4 cases, G must be P3, P4, C4 and K1,3. The

converse is obvious.

Observation 2.8.4: Suppose G is a disconnected bipartite graph. If

the graph structures are G1 = K1,3∪mK2,m is even and m ≥ 2, G2 =

mPp,m = 4, p = 3 and G3 = mK1,3,m = 3 then γMχ(G) = p
4 .

Corollary 2.8.5: Let G be a disconnected bipartite graph. If the

graph structure is K1,3 ∪mK2,m is odd then γMχ(G) = p
4 + 1.

Proposition 2.8.6: Let G be a disconnected bipartite graph without

isolates. Then γMχ(G) = p
2 if and only if G = mK2, 1 < m ≤ 3.
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Proof: Let γMχ(G) = p
2 . Since G is a disconnected bipartite graph,

let G1, G2, · · · , Gk are the components of G and V (G) = V (G1) ∪

· · · ∪ V (Gk).

Case (i): All components are of diam(G) = 1. Then the graph

G = mK2. By the assumption, when G = mK2 if m = 2 and 3

then G = 2K2 and 3K2. It implies that γMχ(G) = 2 = p
2 , if m = 2

and γMχ(G) = 3 = p
2 , if m = 3. Suppose m ≥ 4, then by the

proposition (??)(i), γMχ(G) = dp4e + 1 < p
2 . It is a contradiction to

the assumption.

Case (ii): SupposeG contains the components which are of diam(G) =

1 and 2. Then G = K1,t ∪ mK2, where G1 = K1,t, G2 = mK2 and

V (G) = {u, u1, · · · , ut, v1, · · · , v2m}with p = 1 + t+ 2m.

Subcase(i): If |t| ≥ dp2e − 1 and 2m = p −
(
dp2e − 1

)
then the

majority dom-chromatic set S = {u, u1} where u, u1 ∈ V (G1) such

that |N [S]| ≥ dp2e and χ(G1) = 2 = χ(〈S〉). It implies that S is a

majority dom-chromatic set ofG and γMχ(G) = 2 < p
2 , if |t| ≥ dp2e−1,

which is a contradiction to the assumption. Therefore G 6= K1,t ∪

mK2.

Subcase (ii): If |t| ≤ dp2e − 2 then the MDC-set S = {u, u1, v1, v2,

· · · , vk}, where |k| = dp2e−(1+t) such that |N [S]| = 1+t+2k ≥ dp2e.
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Also χ(G) = 2 = χ(〈S〉). Hence γMχ(G) = |S| = (2 + k) < p
2 , it is a

contradiction. Hence the graph G 6= K1,t ∪mK2.

Case (iii): If the components Gi of G with diam(Gi) ≥ 2, i =

1, 2, · · · , k then γMχ(G) < p
2 . From the above cases, we get the

graph structures become G = mK2, 1 < m ≤ 3. Conversely, let

G = mK2,m ≤ 3. Then by the proposition (??)(i), γMχ(G) =

dp4e+ 1 = p
2 .

Corollary 2.8.7: Let G be a disconnected graph which is not bipar-

tite with isolates. Then γMχ(G) ≤ dp2e and γMχ(G) = dp2e if and only

if G = pK1.

2.9 Bounds of γMχ(G) for Bipartite

Graphs

In this section, the bounds of γMχ(G) with respect to γM(G) for a

bipartite graph are established.

Proposition 2.9.1: Let G be a connected bipartite graph with p

vertices. Then γMχ(G) = p if and only if G = Kp, p = 2.

Proof: Let G be a connected bipartite graph with p vertices. Since

γMχ(G) = p, then the graph must be a vertex color critical. The only
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connected bipartite vertex color critical graph is K2. It implies that

G = K2. The converse is obvious.

Proposition 2.9.2: If the graph G is bipartite with diam(G) ≤ 2

then γMχ(G) ≤ p−∆(G)+1 and γMχ(G) = p−∆(G)+1 if and only

if G = K2, P3 and K1,p−1, p ≥ 2.

Proof: Let G be a bipartite graph with diam(G) ≤ 2. The theorem

is proved by induction on ∆(G). If ∆(G) = 1, the graph G becomes

K2. By the proposition (2.3.2)(i), γMχ(G) = 2 = p − ∆(G) + 1, if

G = K2. If ∆(G) = 2, the graph structures becomes Pp, a path

and K2,2. Since diam(G) ≤ 2, and by corollary (2.3.4), γMχ(G) =

2 = p − ∆(G) + 1, if G = p3 and γMχ(K2,2) = 2 < p − ∆(G) + 1.

Suppose ∆(G) = 3. Then G = K3,3. By the proposition(2.3.5),

γMχ(K3,3) = 2 < p − ∆(G) + 1. If ∆(G) ≥ 4 then the graph G

becomes Km,n,m = n ≥ 4. By the proposition (2.3.5), γMχ(G) =

2 < p−∆(G) + 1.

This is true for ∆(G) = 1, 2, 3, · · · , (p − 2). Suppose ∆(G) =

p−1. Then the only bipartite graph G = K1,p−1. By the proposition

(??)(iv), γMχ(G) = 2 = p−∆(G) + 1. Hence from the above cases,

γMχ(G) ≤ p−∆(G) + 1. Also, γMχ(G) = p−∆(G) + 1 is true if and

only if G = K2, P3 and K1,p−1, p ≥ 2.
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Proposition 2.9.3: Let G be a bipartite graph with diam(G) = 3.

Then γMχ(G) ≤ p −∆(G). Also γMχ(G) = p −∆(G) if and only if

G = P4 and Dr,s, r = 1 and s = p− 3.

Proof: Let G be a bipartite graph with diam(G) = 3. By the result

(1.3.43)(vii), γch(G) ≤ p−∆(G). Since γMχ(G) ≤ γch(G), γMχ(G) ≤

γch(G) ≤ p−∆(G) and γMχ(G) ≤ p−∆(G). Let γMχ(G) = p−∆(G).

Case (i): Since diam(G) = 3, the graph G has a dominating edge uv

with some pendants at u and v. Let V (G) = {u, v, u1, · · · , ur, v1, v2,

· · · , vs} where ui, i = 1, · · · , r and vj, j = 1, · · · , s are pendants with

r ≤ p− 3 and s ≥ 1. Clearly, since G is bipartite, χ(G) = 2. By the

assumption, S = {u, v, v1, · · · , vt} is a majority dom-chromatic set

with |S| = p−∆(G).

Subcase (i): Let d(u) = p − 2 and d(v) = 2. Since G has a

dominating edge e = uv, γMχ(G) = |S| = 2. By the assumption,

γMχ(G) = p−∆(G). It implies that 2 = p− d(u)⇒ 2 = p− (p− 2).

It gives the structure of the graph G with d(u) = p− 2, d(v) = 2 and

the graph is G = Dr,s, r < s with r = 1 and s = p− 3.

Subcase (ii): Let d(u) ≤ p − 3 and d(v) ≥ 3. The majority dom-

chromatic set for the graph G is S = {u, v}. It implies that γMχ(G) =
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|S| = 2. By the assumption, γMχ(G) = p − ∆(G) = p − d(u) =

p− (p− 3) = 3. Hence, γMχ(G) < p−∆(G).

Subcase (iii): If d(u) = p − 2 and d(v) = p − 2 = ∆(G) then

the majority dom-chromatic set becomes S = {u, v}. It implies that

γMχ(G) = |S| = 2. By the assumption, γMχ(G) = p − ∆(G) =

p− d(u)⇒ 2 = p− (p− 2). Since d(u) = p− 2 and d(v) = p− 2, r =

s = 1 ⇒ p = r + s + 2 = 4. Hence the graph G with p = 4 vertices

and diam(G) = 3 is P4.

Case (ii): Suppose G has no dominating edge e = uv. Then the

graph G is a wounded spider with diam(G) = 3 and the graph

contains a vertex u with d(u) = p
2 = ∆(G) and d(ui) ≤ 2, ui ∈

(V (G) − {u}). Hence S = {u, u1} be the majority dom-chromatic

set of G with d(u1) = 2, where d(u, u1) = 1 and γMχ(G) = |S| = 2.

By the assumption, γMχ(G) = p − ∆(G) = p − p
2 = p

2 . Therefore

γMχ(G) < p−∆(G).

Thus, γMχ(G) = p −∆(G) if and only if G = P4 and Dr,s, r = 1

and s = p− 3. Hence the result.

Proposition 2.9.4: If G be a bipartite graph of diam(G) = 3 then

γMχ(G) = γM(G) + 1.
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Proof: Let G be a connected bipartite graph with diam(G) = 3.

Then the graph G has the structure with two central vertices u and

v which are adjacent with some pendants. Then G = P4 and G =

Dr,s, r ≤ s where r and s number of pendants at u and v respectively.

Since u and v are MD vertices of G, γM(G) = |{v}| = 1.

Case (i): If s = r, r + 1, r + 2 then both u and v are adjacent to

some number of pendant vertices. Since χ(G) = 2, S = {u, v} be

the majority dom-chromatic set of G and γMχ(G) = |S| = 2. Hence

γMχ(G) = γM(G) + 1.

Case(ii): If r < s and s ≥ r + 3. Choose S = {u, v}, where u and

v are central vertices of G. Then |N [S]| = d(u) + d(v) = r + s +

2 = p > dp2e. Therefore, S is majority dominating set of G. Also,

χ(G) = 2 = χ(〈S〉). Hence S will be the majority dom-chromatic set

of G and γMχ(G) = |S| = 2. Since γM(G) = 1, γMχ(G) = γM(G) + 1.

This result is true for G = P4.

Proposition 2.9.5: Let G be a bipartite graph of diam(G) ≤ 5.

Then γMχ(G) = γM(G) + 1.

Proof: Since the graph G is bipartite, the graph structures are

Pp, p ≤ 6, K1,n, C4 and K2.
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Case (i): Suppose diam(G) = 1, then the bipartite graph G becomes

only K2. Then γM(G) = 1 and χ(G) = 2 and by proposition (2.3.2),

γMχ(G) = 2 = γM(G) + 1.

Case (ii): If diam(G) = 2, then the graph structures becomes G =

P3 or K1,n. By the result (1.3.43)(ii), γM(G) = 1. Also, by corollary

(2.3.4), γMχ(G) = 2. In both graphs, γMχ(G) = γM(G) + 1.

Case (iii): Let diam(G) = 3. Then the graph becomes G = P4 or

and Dr,s. By proposition (2.9.4), the result is true.

Case (iv): When diam(G) = 4 and 5, the bipartite graph is Pp, p ≤

6. By the result (1.3.43)(ii), γM(G) = 1. Since χ(G) = 2, the

set S = {v2, v3} be the majority dom-chromatic set of G, where

v2, v3 ∈ V (P5). Hence γMχ(G) = 2 = γM(G) + 1. Hence for all cases,

γMχ(G) = γM(G) + 1.

Proposition 2.9.6: Let G be a bipartite graph with diam(G) ≥ 6.

Then (i) γMχ(G) = γM(G), if p = 1, 2(mod 6)

(ii) γMχ(G) = γM(G) + 1, if p = 0, 3, 4, 5(mod 6).

Proof: If the bipartite graph G with diam(G) ≥ 6, then G = Pp,

a Path with p > 6. By the result (1.3.43)(ii), γM(G) = dp6e, for all

p ≥ 7 and by corollary (2.3.4),
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γMχ(G) =


dp6e = γM(G), if p ≡ 1, 2(mod 6)

dp6e+ 1 = γM(G) + 1, if p ≡ 0, 3, 4, 5(mod 6).

Hence the result.

Proposition 2.9.7: Let G be a 3-regular bipartite graph with p

vertices. Then

γMχ(G) =


dp8e, if p ≡ 2, 4(mod 8)

dp8e+ 1, if p ≡ 0, 6(mod 8).

Proof: Let V1(G) = {v1, v2, · · · , vp
2
} and V2(G) = {u1, u2, · · · , up

2
}

with p = 2m.

Case (i): Let p ≡ 2, 4(mod 8). Let S = {v1, u1, vj, vj+1, · · · , vj+r}

be the subset of G with |S| = t = γMχ(G) such that d(v1, u1) = 1 and

d(vi, u1) ≥ 4. Then |N [S]| = |N [v1] + N [u1]| +
t−2∑
j=1

d(vj) − (t − 2) =

6 + 4(t− 2) = 4t− 2 ≥ dp2e.

Let p = 8r+2. Then |N [S]| = 4t−2 = 4dp8e−2 = p
2−2+2 = dp2e.

Let p = 8r + 4. Then |N [S]| = 4t − 2 = 4dp8e − 2 = p
2 − 2 + 2 =

dp2e. Since d(v1, u1) = 1, the induced subgraph 〈S〉 contains K2 and

χ(〈S〉) = 2 = χ(G). Thus S is a majority dom-chromatic set of G

and γMχ(G) ≤ |S| =
⌈
p
8

⌉
.
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Suppose that S = {v1, u1, vj, · · · , vj+r} with |S| = t = γMχ(G)

such that d(v1, u1) = 1, d(vi, vj) ≥ 4 and |N [S]| ≥ dp2e. Since S

contains the induced subgraph K2 and χ(〈S〉) = 2 = χ(G). Therefore

|N [S]| ≤ 4t = 4γMχ(G). Since |N [S]| ≥ dp2e, d
p
2e ≤ 4γMχ(G). It

implies that γMχ(G) ≥ 1
4d

p
2e. Hence γMχ(G) ≥

⌈
p
8

⌉
. Combining

these two results, γMχ(G) = dp8e, if p ≡ 2, 4(mod 8).

Case (ii): Let p ≡ 0, 6(mod 8). Let S1 = {v1, u1, vj, · · · , vj+r} be the

subset of V (G) with |S1| = t1 = dp8e+ 1 = γMχ(G) and χ(〈S1〉) = 2.

Let p = 8r. Then |N [S1]| = 4t−2 = 4
(
dp8e+ 1

)
−2 = 4dp8e+2 > dp2e.

Let p = 8r+6. Then |N [S1]| = 4t1−2 = 4
(
dp8e+ 1

)
−2 = 4dp8e+2 >

dp2e. Hence |N [S1]| ≥ dp2e and χ(〈S1〉) = χ(G). Therefore S1 is a

majority dom-chromatic set of G and γMχ(G) ≤ |S1| = t1 = dp8e+ 1.

Applying the same arguments as in case (i), γMχ(G) ≥ dp8e+1. Hence

γMχ(G) = dp8e+ 1, if p ≡ 0, 6(mod 8).

2.10 Algorithm and Applications for a

MDC Set of Graph G

2.10.1 Algorithm for MDC Set of a Graph

To find a MDC set for the given graph G with pvertices andq edges.
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Step 1: Find the chromatic number χ for the given graph G.

Step 2: Choose a vertex v such that d(v) = ∆(G) and the set S = φ.

Step 3: Select the vertex set S ⊆ V (G) which contains the vertex

v and obtain its induced subgraph 〈S〉.

Step 4: Find the chromatic number for the induced subgraph 〈S〉

and verify χ(〈S〉) = χ(G). If it is not true then go to step

(3). If it is true then go to step (5).

Step 5: Find the neighborhoods of S and check whether the set S

satisfies |N [S]| ≥ dp2e or not. If |N [S]| ≥ dp2e then the set

S is the MDC set of G.

Step 6: If |N [S]| < dp2e, choose a vertex u from V − S with the

next maximum degree and form a new set S1 = {v, vi, u}

such that d(vi, u) ≥ 3, d(v, u) ≥ 3 where vi ∈ S. Then go

to step (5).

Hence from the above steps we could find all MDC sets of a given

graph S.
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2.10.2 Algorithm for γMχ of Graph G

Using Algorithm (2.10.1), find out all the Majority Dom-Chromatic

sets for the given graph G.

Step 1: Let S ′ = {S1, S2, · · · , St} be the set of all majority dom-

chromatic sets of G.

Step 2: Verify that the proper subset S ′i of each Si ∈ S ′, i = 1, 2, · · · , t

is a majority dom-chromatic sets of G.

Step 3: If the proper subset S ′i of Si is a majority dom-chromatic

sets of G then the set Si is not a minimal majority dom-

chromatic set of G.

Step 4: Suppose there exists no such majority dom-chromatic sub-

set S ′i in the set Si then Si is a minimal majority dom-

chromatic sets of G.

Step 5: Repeat the process to every Si ∈ S ′ and collect all the

minimal majority dom-chromatic set of G.

Step 6: Let S ′ = {S1, S2, · · · , Sr}, r ≤ t be the set of all minimal

majority dom-chromatic set of G.
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Step 7: Find the cardinality of each set Si ∈ S ′, i = 1, 2, · · · , r. Pick

up the minimum cardinality of Si among all Si’s in S ′.

Step 8: The minimum cardinality of Si ∈ S ′ is the majority dom-

chromatic set of G. It is denoted by γMχ(G).

2.10.3 Applications of MDC Number

When frequencies are assigned to towers, frequencies assigned to all

towers at the same location must be different. How to assign fre-

quencies with this constraints ? What is the minimum number of

frequencies needed? Due to the minimum financial constraints this

has to be done at as minimum cost. It is possible that, it does not

bother about facilities reduction or increasing the number of loca-

tions. It is possible to identify the best thing that, MDC set can be

done to the villages if the geographical structure is known.

If the villages are marked as vertices and roads are marked as

edges and finding the majority dom-chromatic number of the graph

representing the communal structure. Majority dom-chromatic con-

cept can be used in security system also.
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Suppose we product a building at all entries by attaching various

security devices with the least number at the entrance, the build-

ing may be represented by a graph with the entries as vertices and

adjacency can be done if two the entries can be viewed form one an-

other. Hence finding majority dom-chromatic number gives the best

solution.



Chapter 3

Majority Dom-Chromatic

Number for Special Graphs

Abstract

In this chapter, majority dom-chromatic sets are discussed for various

graph structures. The majority dom-chromatic (MDC) number γMχ

is determined for Corona graphs, Cartesian Product graphs, Gener-

alized Petersen graphs and Rooted product graphs. The characteri-

zation on MDC number is established for disconnected graphs with

isolates and without isolates. Also some inequalities on the comple-

ment of a MDC set S namely, |V −S| and
∑
ui∈S

d(ui) are investigated

for disconnected graphs.
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3.1 Introduction

In 1970, Faudre and Schelp [18] studied a product graphs in “The

Domination Number for the Product of Graphs” and in 1997, Gravier

and Mollard [19] studied Cartesian Products of Paths in “On Dom-

ination Numbers of Cartesian Products of Paths”. Then in 2012,

Jankiraman and Poobalaranjani [31] studied Cartesian Product graphs

with respect to γCM(G). In 2017, Joseline Manora and Muthukani

Vairavel [35, 36] determined many results on product graphs with

respect to γCM(G). They produced the exact values of γCM(G) for

some standard graphs. These concepts gave the motivation to inves-

tigate γCM(G) on product graphs and corona graphs.

Organization of this chapter is as follows. The introduction of

this chapter is given in section 3.1. In section 3.2, the exact values

of γMχ for Corona graphs are determined. In section 3.3, the par-

ticular values of MDC number are investigated for Cartesian Prod-

uct graphs. The MDC number for generalized Petersen graphs and

Rooted Product graphs are studied in section 3.4 and 3.5. In section

3.6, the characterisation on γMχ and some inequalities on |V − S|

and
∑
ui∈S

d(ui) are investigated for disconnected graphs.
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3.2 γMχ for Corona Graph

In this section, the majority dom-chromatic number γMχ for corona

graphs with respect to cycles, complete graph and complete bipartite

graph are determined.

Proposition 3.2.1: Let G = Cn ◦ K2 be a corona graph with p

vertices. Then γMχ(G) = d p10e+ 2.

Proof: Let G = Cn◦K2 be a corona graph. Let V (G) = {u1, u11, u12,

u2, u21, u22, . . . , un, un1, un2} and |V (G)| = p = 3n, where ui ∈ V (Cn)

and uij ∈ V (K2), i 6= j, 1 ≤ i ≤ n, j = 1, 2. Since this graph structure

contains n triangles, χ(G) = 3. Let S = {u1, u11, u12, u4, . . . , ut} be

the subset of V (G) with |S| = d p10e + 2 such that d(ui, uj) ≥ 3 and

{u1, u11, u12} is the triangle in G. Since every vertex in S have degree

4, |N(S)| = 5t − 10 = 5
(
d p10e+ 2

)
− 10 ≥ dp2e. Since S contains a

triangle, χ(〈S〉) = 3 = χ(G). Hence S is a majority dom-chromatic

set of G and γMχ(G) ≤ d p10e+ 2.

Suppose S ′ = S − {ui} with |S ′| = |S| − 1 = d p10e + 1. Then

|N(S ′)| = 5t − 10 = 5
(
d p10e+ 1

)
− 10 < dp2e. Hence S ′ would not

be a majority dominating set for G and γMχ(G) > |S ′| ≥ d p10e + 2.

Thus, γMχ(G) = d p10e+ 2.
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Proposition 3.2.2: Let G = Kt ◦ Km,n be a Corona graph with p

vertices and t ≥ 3,m, n ≥ 3. Then γMχ(G) = t.

Proof: Let G = Kt ◦Km,n be a Corona graph with p = t(m+n+ 1)

vertices. Since this graph structure contains a vertex color critical

graphKt as a subgraph, χ(G) = t, t ≥ 2. Let {v1, v2, . . . , vt} ⊆ V (Kt)

and {u1, u2, . . . , um, w1, w2, . . . , wn} ⊆ V (Km,n) be the vertex sets of

G. Since Kt is vertex color critical as a subgraph, any γMχ- set S of

G must contain the full vertex set of Kt. Since each vertex of Kt is

adjacent to all vertices of Km,n, χ(〈S〉) = t = χ(G) and |N(S)| > dp2e.

Hence S is a majority dom-chromatic set of G and γMχ(G) = t.

Example 3.2.3: Consider the graph G = K3 ◦ K3,2 with p = 18

vertices.

Since G contains a vertex color critical K3, χ(G) = 3. Hence

S = {v1, v2, v3} ⊆ V (K3) is a γMχ- set of G and γMχ(G) = 3.

Proposition 3.2.4: Let G = Cm ◦ Cn be a Corona graph with p

vertices and m = 3, n > 3. Then γMχ(G) = m.

Proof: Let G = Cm ◦Cn be a corona graph with p vertices and m =

3, n > 3. Let V (G) = {u1, u11, u12, . . . , u1n, u2, u21, u22, . . . , u2n, u3,

u31, . . . , u3n} and |V (G)| = p = m(n + 1), where ui ∈ V (Cm) and
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Figure 3.1: G : K3 ◦K3,2

uij ∈ V (Cn). Since G contains triangles, χ(G) = 3 and γMχ(G) ≥ 3.

Let S = {u1, u2, u3} be the subset of V (G), where {u1, u2, u3} ∈

V (Cm). Since the degree of each vertex in Cm is (n + 2), |N [S]| =

3∑
i=1

d(ui) = (n+ 1) + (n+ 1) + (n+ 1) = 3(n+ 1) = 3
(
p
m

)
> dp2e.

Then the set S is majority dominating set ofG and since {u1, u2, u3}

forms a triangle, χ(〈S〉) = 3 = χ(G). Hence the set S is majority

dom-chromatic set of G and γMχ(G) = m = 3.

Corollary 3.2.5: Let G = C3 ◦ C3 be a Corona graph with two

cycles. Then γMχ(G) = 4.
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Proof: Since the graph G = C3 ◦ C3 contains a clique K4 as a sub-

graph, χ(G) = 4. So that any γMχ- set of G must contain the full

vertex set of K4 and γMχ(G) = 4.

3.3 γMχ for Product Graphs

In this section, MDC number is determined for grid G = Pi × Pj,

cylinder G = Pi × Cj and torus G = Ci × Cj graphs for i ≥ 2 and

j ≥ 3.

Proposition 3.3.1: For a grid G = P2 × Pj, j ≥ 3,

γMχ(G) =


dp8e, if p ≡ 2, 4(mod 8)

dp8e+ 1, if p ≡ 0, 6(mod 8).

Proof: Let G = P2 × Pj, j ≥ 3. Let {v11, v12, v13, . . . , v1j} and

{v21, v22, v23, . . . , v2j} be the vertex sets in first and second row re-

spectively and χ(G) = 2.

Case (i): When p ≡ 2, 4(mod 8). Let S1 = {v12, v13, v16, . . . , v1t1} ⊆

V (G) such that d(v13, vij) ≥ 3, for 3 ≤ j ≤ t1 with |S1| = |t1| = dp8e.

Let p = 8k + 2. Since every vertex of S has degree 3, |N [S1]| =

4t1 − 2 = 4dp8e − 2 = 4d8k+2
8 e − 2 = 4k + 2 = 4

(
p−2

8

)
+ 2 ≥ dp2e. Let
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p = 8k + 4. Then |N [S1]| = 4t1 − 2 = 4dp8e − 2 = 4d8k+4
8 e − 2 =

4
(
p−4

8

)
+2 =≥ dp2e. It implies that S1 is a majority dominating set of

G. Since d(v12, v13) = 1, χ(〈S1〉) = 2 = χ(G). Hence S1 is a majority

dom-chromatic set of G and γMχ(G) ≤ dp8e.

Suppose S ′1 = S1 − {v1t}. Then |S ′1| = dp8e − 1 and |N [S ′1]| =

4t1 − 2 = 4
(
dp8e − 1

)
− 2. If p = 8k + 2 and p = 8k + 4 then

|N [S ′1]| < d
p
2e. Therefore S ′1 would not be a majority dom-chromatic

set of G and hence γMχ(G) > |S ′1| = dp8e − 1. Thus γMχ(G) ≥ dp8e.

Hence we obtain, γMχ(G) = dp8e, if p ≡ 2, 4(mod 8).

Case (ii): When p ≡ 0, 6(mod 8). Let S2 = {v12, v13, v16, . . . , v1t2}

be the subset of G such that d(vi3, vij) ≥ 3, for 3 ≤ j ≤ t2 with

|S2| = |t2| = dp8e + 1. If p = 8k, 8k + 6 then |N [S2]| = 4|t2| − 2 =

4
(
dp8e+ 1

)
− 2 = 4

(
d8k

8 e+ 1
)
− 2 = 4k + 2 = 4

(
p
8

)
+ 2 = dp2e+ 1. If

p = 8k+6 then |N [S2]| = 4|t2|−2 = 4
(
dp8e+ 1

)
−2 = 4

(
d8k+6

8 e+ 1
)
−

2 = 4k + 6 = 4
(
p−6

8

)
+ 6 = dp2e + 2. Hence |N [S2]| ≥ dp2e. Since

χ(〈S2〉) = 2 = χ(G), the set S2 is a majority dom-chromatic set of G

and γMχ(G) ≤ dp8e+ 1.

Applying the same arguments as in case (i), we obtain γMχ(G) ≥

dp8e+ 1. Thus, γMχ(G) = dp8e+ 1, if p ≡ 0, 6(mod 8).
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Proposition 3.3.2: Let G = Pi × Pj, i ≥ 3, j ≥ 2, be a grid graph.

Then

γMχ(G) =


d p10e+ 1, if p ≡ 0, 7, 8, 9(mod 10)

d p10e, if p ≡ 1, . . . 6(mod 10).

Proof: LetG = Pi×Pj with i, j ≥ 3 be a gird graph. Let {v11, v12, v13,

. . . , v1j, v21, v22, . . . , v2j, . . . , vi1, vi2, vi3, . . . , vij}, be the vertex sets of

the first, second and third row respectively. For the graph G =

Pi × Pj, χ(G) = 2.

vij

.

.

.

Figure 3.2: G = Pi × Pj

Case (i): When p ≡ 0, 7, 8, 9(mod 10). Let S = {v22, v23, v26, . . . , v2t}

⊆ V (G) such that d(v23, v2j) ≥ 3, for 3 ≤ j ≤ t with |S| = |t| =

d p10e+1. The degree of each vertex of S is 4. If p = 10k then |N [S]| =

5t−2 = 5
(
d p10e+ 1

)
−2 = 5d p10e+ 3 = 5k+ 3 = p

2 + 3. If p = 10k+ 7
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then |N [S]| = 5
(
d10k+7

10 e
)
∓ 3 = 5k + 7 = 5

(
p−7
10

)
+ 8 = p

2 + 3. If p =

10k+ 8 then |N [S]| = 5
(
d10k+8

10 e
)

+ 3 = 5k+ 7 = 5
(
p−8
10

)
+ 7 = p

2 + 3.

If p = 10k+ 9 then |N [S]| = 5
(
d10k+9

10 e
)

+ 3 = 5k+ 8 = 5
(
p−9
10

)
+ 8 =

p
2 + 4. Therefore in all cases, |N [S1]| ≥ dp2e and S is a majority dom-

inating set of G. Since d(v22, v23) = 1, χ(〈S〉) = 2 = χ(G). Hence S

is a majority dom-chromatic set of G and γMχ(G) ≤ |S| = d p10e+ 1.

Suppose S ′ = S − {v2t}. Then |S ′| = d p10e and |N [S ′]| = 5t− 2 =

5
(
d p10e

)
− 2. If p = 10k, 10k + 7, 10k + 8 and p = 10k + 9 then

|N [S ′]| < dp2e. Therefore S ′ not be a majority dom-chromatic set of

G and hence γMχ(G) > |S ′| = d p10e. Thus, we obtain, γMχ(G) =

d p10e+ 1, if p ≡ 0, 7, 8, 9(mod 10).

Case (ii): Let p ≡ 1, . . . , 6(mod 10). Applying the same arguments

as in case (i), we obtain, γMχ(G) = d p10e.

Proposition 3.3.3: For a cylinder G = C3 × Pj, j ≥ 3,

γMχ(G) =


d p10e+ 2, if p ≡ 0, 9(mod 10)

d p10e+ 1, otherwise

.

Proof: Let G = C3 × Pj be a cylinder with j ≥ 3. Let V (G) =

{v11, v12, v13, . . . , v1j, v21, v22, v23, . . . , v2j, v31, v32, v33, . . . , v3j} be the ver-
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tex set of G and since G contains a triangle, χ(G) = 3.

Case (i): when p ≡ 0, 9(mod 10). Consider the set S = {v12, v22, v32,

v25, . . . , v2t} a subset of G with |S| = |t| = d p10e + 2 such that

d(v22, v2j) ≥ 3, 2 ≤ t ≤ j and {v12, v22, v32} ∈ S be the vertices of a

triangle. Since the degree of each vertex of S is 4, |N [S]| = 5t− 6 =

5
(
d p10e+ 2

)
− 6 = dp2e+ 4. If p = 10k then |N [S]| = 5k + 4 = p

2 + 4.

If p = 10k + 9 then |N [S]| = 5k + 8 = 5
(
p−9
10

)
+ 8 = p

2 + 4. In these

two cases, |N [S]| > dp2e and S is a majority dominating set of G.

Since S contains a triangle, χ(〈S〉) = 3 = χ(G). Hence S is a γMχ-

set of G and γMχ(G) ≤ d p10e+ 2. Suppose S ′ = S −{v2t} with |S ′| =

|S| − 1 = d p10e + 1. Then |N [S ′]| = 5t − 6 = 5
(
d p10e+ 1

)
− 6 < dp2e,

if p = 10k and 10k + 9. It implies that, S ′ would not be a γMχ- set

of G and γMχ(G) > d p10e + 1. Hence γMχ(G) ≥ d p10e + 2. Thus, we

obtain, γMχ(G) = d p10e+ 2, p ≡ 0, 9(mod 10).

Case(ii): when p ≡ 1, . . . , 8(mod 10). Consider the set S = {v12, v22, v32,

v25, . . . , v2t} a subset of G with |S| = |t| = d p10e + 1 such that

d(v22, v2j) ≥ 3, 2 ≤ t ≤ j and {v12, v22, v32} ∈ S be the vertices

of a triangle. Applying the same arguments as in case (i), we get the

result.
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Proposition 3.3.4: Let G = Ci × Pj, i ≥ 4, j ≥ 2 be a cylinder. If i

is even then

γMχ(G) =


d p10e, if p ≡ 2, 4, 6(mod 10)

d p10e+ 1, if p ≡ 0, 8(mod 10).

Proof: Let G = Ci × Pj, i ≥ 4, j ≥ 2 be a cylinder. Let {v11, v12, v13

, . . . , v1j, v21, v22, . . . , v2j, . . . , vi1, vi2, vi3, . . . , vij} be the vertex set ofG.

Figure 3.3: G = C4 × Pj

For G = Ci × Pj, χ(G) = 2 when i is even. Let S = {v12, v13, v15,

. . . , v2t} ⊆ V (G) such that d(vij, vij) ≥ 3, i 6= j, 1 ≤ i, j ≤ t with

|S| = |t| = d p10e+ 1. Applying the same arguments as in proposition

(3.3.2) we obtain the result.

Proposition 3.3.5: Let G = C3 × Cj, j ≥ 3 be a torus. Then

γMχ(G) =


d p10e+ 2, if p ≡ 0, 9(mod 10)

d p10e+ 1, otherwise.
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v v v v
. . .

v v v v

v v v . . .

11 12 13
1j

21 22 23 2j

31 32 33
3jv

Figure 3.4: G = C3 × Cj

Proof: By proposition (3.3.3), we obtain the result.

Proposition 3.3.6: Let G = C4 × Cj, j ≥ 3 be a torus. Then

(i) γMχ(G) = j, if j is odd

(ii) If j is even then γMχ(G) =


d p10e+ 1, if p ≡ 0, 8(mod 10)

d p10e, if p ≡ 2, 4, 6(mod 10).

Proof: Let G = C4×Cj, j ≥ 3 be a torus. Let {v11, v12, v13, . . . , v1j},

{v21, v22, v23, . . . , v2j}, {v31, v32, v33, . . . , v3j} and {v41, v42, v43, . . . , v4j}

be the vertex sets of the first, second, third and fourth row respec-

tively.

Case (i): when j is odd. Then Cj becomes a vertex color critical

graph and therefore by proposition (2.3.3), γMχ(G) = j.

Case (ii): when j is even. Then χ(G) = 2.

Subcase (i): Let p ≡ 0, 8(mod 10). Let S = {v11, v12, v15, . . . , v1t}

be a subset of G with |S| = |t| = d p10e + 1 such that d(v12, v1j) ≥ 3,
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for 2 ≤ t ≤ j. Since the degree of vertices of S is 4, if p = 10k then

|N [S]| = 5t − 2 = 5
(
d p10e+ 1

)
− 2 = p

2 + 3. If p = 10k + 8 then

|N [S]| = 5t − 2 = 5
(
d p10e+ 1

)
− 2 = p

2 + 4. Therefore, |N [S]| > p
2

and the set S is the γM - set of G. Since d(v11, v12) = 1, where

{v11, v12} ∈ S, χ(〈S〉) = 2 = χ(G). Hence S is a γMχ- set of G and

γMχ(G) ≤ d p10e+ 1.

Suppose the set S ′ = S − {v1t} and |S ′| = |S| − 1 = d p10e. Then

|N [S ′]| = 5t− 2 = 5
(
d p10e

)
− 2 = p

2 − 2. If p = 10k + 8 and 10k then

|N [S ′]| = 5t− 2 = 5
(
d p10e

)
− 2 < dp2e. Therefore, the set S ′ wouldn’t

be a γM - set of G and γMχ(G) > d p10e. Hence γMχ(G) ≥ d p10e + 1.

Thus, γMχ(G) = d p10e+ 1, if p ≡ 0, 8(mod 10).

Subcase (ii): Let p ≡ 2, 4, 6(mod 10). Let S = {v11, v12, v15, . . . , v1t}

a subset of G with |S| = |t| = d p10e such that d(v12, v1j) ≥ 3, 2 ≤ t ≤

j. Since d(vij) = 4, |N [S]| = 5t− 2 = 5d p10e − 2. If p = 10k + 2 then

|N [S]| = 5
(
d p10e

)
− 2 = 5(d10k+2

10 e)− 2 = 5k + 3 = 5
(
p−2
10

)
+ 3 ≥ dp2e.

If p = 10k + 4 then |N [S]| = 5t − 2 = 5
(
d p10e

)
− 2 = 5k + 3 =

5
(
p−4
10

)
+3 ≥ dp2e. If p = 10k+6 then |N [S]| = 5t−2 = 5

(
d p10e

)
−2 =

5k+3 = 5
(
p−6
10

)
+3 ≥ dp2e. Hence the set S is the γM - set of G. Since

d(v11, v12) = 1, where v11, v12 ∈ S, χ(〈S〉) = 2 = χ(G). Therefore S

is a γMχ- set of G and γMχ(G) ≤ d p10e.
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Applying the same arguments as in subcase(i), we get γMχ(G) ≥

d p10e. Hence γMχ(G) = d p10e, if p ≡ 2, 4, 6(mod 10).

3.4 γMχ for Generalized Petersen Graphs

In this section, the Majority dom-chromatic number γMχ is investi-

gated for the generalized Petersen graph P (n, k).

Definition 3.4.1: For each n ≥ 3 and 0 < k < n, P (n, k) denotes the

Generalized Petersen graph with vertex set V (G) = {u1, u2, . . . , un, v1,

v2, . . . , vn} and the edge setE(G) = {uiui+1(mod n), uivi, vi+k(mod n)}, 1 ≤

i ≤ n.

Proposition 3.4.2: Let G = P (n, k), k is odd, be a generalized Pe-

tersen graph. Then

γMχ(G) =



p
2 , if p ≡ 2, 6(mod 8)

dp8e, if p ≡ 4(mod 8)

dp8e+ 1, if p ≡ 0(mod 8).
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Figure 3.5: G = p(11, 3)

Proof: Let G = P (n, k), k is odd, be a generalized Petersen graph.

The vertex set V (G) can be partitioned into two subsets V1 and V2

such that V = V1∪V2, where the inner polygon has the vertex set as

V1(G) = {v1, v2, . . . , vn} and the outer polygon has the vertex set as

V2(G) = {u1, u2, . . . , un} with p = 2n.

Case (i): when p ≡ 2, 6(mod 8). i. e, p
2 = n is odd. Then G

contains two odd cycles C1 and C2 with |V (C1)| = |V (C2)| = p
2 and

hence χ(C1) = χ(C2) = 3 = χ(G). Any γMχ set must contain the full

vertex set of any one odd cycle. Let S = {u1, u2, u3, . . . , un} ∈ V (C1)

be the subset of V (G). Clearly |N [S]| > dp2e and χ(〈S〉) = 3 = χ(G).

Hence S is a γMχ- set of G and γMχ(G) = p
2 , if p

2 is odd.
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Case (ii): Let n be even. Then G contains only even cycles. Then

χ(G) = 2.

Subcase (i): When p ≡ 4(mod 8). Consider the set S = {u1, u2, u5,

. . . , ut} be the subset of V (G) such that |S| = |t| = dp8e with

d(u1, u2) = 1 and d(ui, uj) ≥ 3, i 6= j. Since G is a 3-regular graph,

|N [S]| = 4t−2 = 4
(
dp8e
)
−2. If p = 8r+4 then |N [S]| = 4d8r+4

8 e−2 =

4
(
p−4

8

)
+ 2 ≥ dp2e. It implies that S is a majority dominating set of

G. Since d(u1, u2) = 1, χ(〈S〉) = 3 = χ(G). Hence S is a γMχ- set of

G and γMχ(G) ≤ dp8e.

Suppose, consider the set S ′ = S − {ui}. Then |S ′| = |S| − 1 =

dp8e − 1. Now, if p = 8r + 4 then |N [S ′]| = 4t − 2 = 4
(
dp8e − 1

)
−

2 = 4
(
p−4

8

)
− 2 < dp2e. Therefore S ′ wouldn’t be a γM - set of G

and γMχ(G) > dp8e − 1. It implies that, γMχ(G) ≥ dp8e. Thus,

γMχ(G) = dp8e, if p ≡ 4(mod 8).

Subcase (ii): when p ≡ 0(mod 8). Let S = {u1, u2, u3, . . . , ut} be

the subset of V (G) such that |S| = |t| = dp8e+1 with d(u1, u2) = 1 and

d(ui, uj) ≥ 3, i 6= j. If p = 8r then |N [S]| = 4t−2 = 4
(
dp8e+ 1

)
−2 =

4
(
d8r

8 e+ 1
)
− 2 == 4

(
p
8

)
+ 2 > dp2e. It implies that S is a majority

dominating set of G. Since d(u1, u2) = 1, χ(〈S〉) = 3 = χ(G). Hence

S is a γMχ- set of G and γMχ(G) ≤ dp8e+ 1.
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Applying the same arguments as in case (i), we obtain γMχ(G) ≥

dp8e+ 1. Therefore γMχ(G) = dp8e+ 1, if p ≡ 0(mod 8).

Proposition 3.4.3: Let G be a generalized Petersen graph G =

P (n, k), k = 2. Then

γMχ(G) =


dp8e+ 2, if p ≡ 2, 4(mod 8)

dp8e+ 3, if p ≡ 0, 4(mod 8)

Proof: Consider V1 and V2 be the vertex partition of inner and

outer polygon of the generalized Petersen graph G = P (n, 2) such

that V = V1 ∪ V2, where V1(G) = {v1, v2, . . . , vn} and V2(G) =

{u1, u2, . . . , un} with p = 2n. Since G contain 5 - cycles with the

vertex set {vi, vi+2, ui, ui+1, ui+2}, χ(G) = 3, any γMχ- set must con-

tain 5 - cycle.
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3.5 γMχ for Rooted Product Graphs

In this section, the particular values of γMχ for rooted product graph

and some results on γMχ with respect to cpn(G) are discussed.

Definition 3.5.1: Given a graph G of order n(G) and a graph H

with a root vertex v, the rooted product graph G ◦v H is defined as

the graph obtained from G and H by taking one copy of G and n(G)

copies of H and identifying the ith vertex of G with the root vertex

v in the ith copy of the H for every the i ∈ {1, 2, . . . , n(G)}.

Example 3.5.2: Let G = G1 ◦vG2 be a rooted product graph where

G1 = C5 and G2 = K4 with p = 20 vertices.
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Figure 3.6: G = C5 ◦v K4
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For the graphG,χ(G) = 4. The γMχ- set ofG is {v1, v11, v12, v13, v4}

and γMχ(G) = 5.

Theorem 3.5.3: Let G = G1 ◦vG2 be a rooted product graph where

G1 and G2 are cycles. Then γMχ(G) ≥ cpn(G).

Proof: Since the graph G = G1 ◦v G2 contains cycles, χ(G) = 2 or

χ(G) = 3. Since G is connected, γMχ(G) ≥ 2. If G contains odd

cycle cpn(G) ≥ 3. If G contains even cycle cpn(G) ≥ 2. Hence

γMχ(G) ≥ cpn(G).

Theorem 3.5.4: Let G1 and G2 be any two vertex color critical

which are complete graphs and G = G1 ◦v G2 be a rooted product

graph. Let v be any root vertex in G2. Then (i) γMχ(G) = cpn(G1),

if cpn(G1) > cpn(G2) (ii) γMχ(G) > cpn(G), if cpn(G1) ≤ cpn(G2).

Proof: Let G = G1 ◦v G2 be a rooted product graph where G1 and

G2 are any two complete graphs with order m and n. Let S1 and S2

be the cp-sets of G1 and G2. Since G1 and G2 are complete graphs,

S1 = V (G1) and S2 = V (G2) are cp- sets of G1 and G2. Then

|S1| = cpn(G1) = m and |S2| = cpn(G2) = n.
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Case (i): When cpn(G1) ≥ cpn(G2). Then χ(G1) = χ(G) and any

γMχ- set S contain the full vertex set of S1. Let S = {v1, v2, . . . , vm} ⊆

V (G1) with |S| = m. Since v be any root vertex in G2, all vertices

of G1 are adjacent to the vertices of G2. It implies that |N [S]| > dp2e

and χ(〈S〉) = χ(G). Hence the set S is the γMχ- set of G and

γMχ(G) = m = cpn(G1).

Case (ii): When cpn(G1) < cpn(G2). Then χ(G2) = χ(G) and any

γMχ- set S contain the full vertex set of G2. Let S = {v1, v11, . . . , v1n,

v4, . . . , vt} ⊆ V (G) with |S| = n + t. Since v be any root vertex in

G2, all vertices of G1 are adjacent to the vertices of G2. It implies

that |N [S]| > dp2e and χ(〈S〉) = χ(G). Hence the set S is the γMχ-

set of G and γMχ(G) = n+ t > cpn(G).

Theorem 3.5.5: Let G = G1 ◦vG2 be a rooted product graph where

G1 and G2 are cycles. Then γMχ(G) ≥ cpn(G).

Proof: Since the graph G = G1 ◦v G2 contains cycles, χ(G) = 2 or

χ(G) = 3. Since G is connected, γMχ(G) ≥ 2. If G contains odd

cycle cpn(G) ≥ 3. If G contains even cycle cpn(G) ≥ 2. Hence

γMχ(G) ≥ cpn(G).
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3.6 γMχ for Disconnected Graphs

In this section, the characterization on MDC number is determined-

for disconnected graphs with isolated and without isolates. Also some

inequalities between |V −S| and
∑
ui∈S

d(ui) for disconnected graphs are

investigated.

Proposition 3.6.1: Let G be a disconnected graph of order p. Then

γMχ(G) = dp2e if and only if the graph G is totally disconnected Kp.

Proof: Let G be a disconnected graph with p vertices. Assume that

γMχ(G) = dp2e. It implies that γM(G) = dp2e and χ(G) ≥ 1. Let

S =
{
v1, v2, . . . , vdp2e

}
be a majority dom-chromatic set of G with

|S| = dp2e and |N [S]| ≥ dp2e. Then χ(〈S〉) ≤ dp2e. Since G contains

n components say G1, G2, . . . , Gn, and γM(G) = dp2e, the majority

dominating set S consists of only dp2e isolates and the maximum

color used for this induced subgraph χ(〈S〉) = 1 = χ(G). Therefore,

if χ(〈S〉) = χ(G) = 1 and γM(G) = dp2e then the resulting graph is

totally disconnected graph G = Kp.

Conversely, suppose G = Kp. Then γM(G) = dp2e and ξ(G) = 1.

Therefore γMχ(G) = max
{
dp2e, 1

}
= dp2e. Hence the result.
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Theorem 3.6.2: Let G be a disconnected graph. Then γMχ(G) =

dp2e if and only if G = Kp or G = gt∪Kp−t, p ≥ 2, where gt is a vertex

color critical component with |t| ≤ dp2e.

Proof: Let G be a disconnected graph with p vertices. Assume

γMχ(G) = dp2e. To prove that G = Kp or G = gt ∪Kp−t.

Case (i): Suppose G 6= Kp, p ≥ 2 then G has atleast one edge

between a pair of vertices. It implies that G is a disconnected graph

without isolates. By result (2.3.1) (i), γMχ(G) = dp4e + 1. It is a

contradiction to the assumption γMχ(G) = dp2e. Hence G = Kp.

Case (ii): Suppose G 6= gt ∪ Kp−t where gt is not a vertex color

critical graph with |t| ≤ dp2e. Then the graph G contains a path, an

even cycle or any other component gt with |t| ≤ dp2e. Since χ(gt) ≥ 2

and γM(gt) ≥ dp6e.

Subcase (i): Suppose |t| = dp2e. Then S = {u1, u2, . . . , udp6e}, is a

MDC set of G, where ui ∈ V (gt). It implies that γMχ(G) = dp6e, it

condradicts the assumption.

Subcase (ii): Suppose |t| < dp2e. Then S = {u1, u2,
(
dp2e − t

)
K1} is

a MDC set of G where ui ∈ V (gt). It follows that γMχ(G) = |S| =

dp2e − |t|+ 2 = dp2e − d
p
2e+ 1 + 3. It implies that γMχ(G) = 4 < dp2e.
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It is a contradiction. Hence gt is a vertex color critical component in

G with |t| ≤ dp2e.

Case (iii): Suppose gt with |t| ≤ dp2e. Since gt is a vertex color

critical component ofG, gt is a complete graph or an odd cycle. If gt is

an odd cycle with |t| ≤ dp2e+1 then γMχ(G) = dp2e+1. It contradicts

the assumption. If gt is a complete graph with |t| ≤ dp2 + 1e then

γMχ(G) = dp2e + 1 is a contradiction to the assumption. Hence gt is

a vertex color critical component of G with |t| ≤ dp2e. Therefore G

must be Kp or (gt ∪Kp−t).

Conversely, let G = Kp or (gt ∪Kp−t). To prove that γMχ(G) =

dp2e. Suppose G = Kp then γM(G) = dp2e and χ(G) = 1⇒ γMχ(G) =

dp2e. Suppose G = (gt∪Kp−t). Since gt is a vertex critical component

with |t| = dp2e, χ(gt) = dp2e and γ(gt) ≥ 1 It implies that γMχ(G) =

dp2e. Suppose gt is a vertex critical component with |t| = dp2e. Then

S =
{
u1, u2, . . . , ut, v1, v2, . . . vdp2e−t

}
is a MDC set of G where ui ∈

V (gt) and vi ∈ V (Kp−t). Now, |S| = t + dp2e − t = dp2e. Thus,

γMχ(G) = |S| = dp2e.

Observation 3.6.3: For a disconnected graph G,χ(G), γM(G) are

not comparable
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(i) χ(G) < γM(G) < γMχ(G).

(ii) γM(G) < χ(G) < γMχ(G).

Example: Consider the disconnected graph with isolates with p = 16.

Let G = P11 ∪ K5. Let |V (G)| = |{v1, v2, . . . , v11, u1, . . . , u5}| = 16.

Then γM(G) = |{v2, v5, v7}| = 3 and γMχ(G) = |{v2, v5, v7, v8}| = 4.

Since P11 is a tree, χ(G) = 2. Therefore χ(G) < γM(G) < γMχ(G).

(ii) For a disconnected graph G with isolates, γM(G) < χ(G) <

γMχ(G).

Example: Let G = C3 ∪ K5 and V (G) = {v1, v2, v3, u1, . . . , u5}.

Since C3 is an odd cycle, χ(G) = 3 and γM(G) = |{v1, u1}| = 2.

Then S = {v1, v2, v3, u1} be the MDC set of G where vi ∈ V (C3) and

ui ∈ V (K5). ⇒ γMχ(G) = |S| = 4. Therefore γM(G) < χ(G) <

γMχ(G).

Theorem 3.6.4: Let G be a disconnected graph with any vertex

critical component then |V − S| <
∑
ui∈S

d(ui).

Proof: Let G = Gt ∪ Gr be a disconnected graph with p vertices.

Since G has a vertex color critical component, χ(G) ≥ 3. Consider

S = {Gt, u1, . . .} be the MDC set of G, where Gt is the vertex color
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critical component, such that |t| ≥ 3 and u1 ∈ Gr. If |N [G(t)]| = dp2e

then |S| ≥ 3. If |N [G(t)]| < dp2e then |S| ≥ 4. It implies that |S| = 3

or 4 and |V − S| ≤ p − 3 or p − 4. Let V (G(t)) = {u1, u2, . . . , ut},

Then∑
ui∈S

d(ui) = d(u1) + d(u2), . . . ,≥ 3(t− 2) + 1 ≥ 3t− 5, if |t| ≥ 3.

Then, certainly we get |V − S| <
∑
ui∈S

d(ui).

Theorem 3.6.5: For a disconnected graph G without any vertex

color critical components, |V − S| >
∑
ui∈S

d(ui) where S is the MDC

set of G.

Proof: Let G be a disconnected graph with not vertex color critical

component. Let S be a majority dom-chromatic set of G.

Case (i): The graph G is totally disconnected.

Then S = {u1, u2, . . . , udp2e} be the MDC set of G and deg(ui) = 0,

for each ui ∈ S. It implies that
∑
ui∈S

d(ui) = 0. Hence, |V − S| >∑
ui∈S

d(ui).

Case (ii): The graph G is disconnected with isolates.

Then G contains some connected component ‘g’ along with isolates.

Subcase (i): If the component ‘g’ such that |N [g]| ≥ dp2e then S is a

MDC set of G with 1 ≤ |S| = dp6e. Suppose |S| = 1⇒ S = {u} such
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that |N [S]| = dp2e − 1. Then |V − S| = p− 1 >
∑
ui∈S

d(ui) = dp2e − 1.

Suppose |S| = dp6e.

Then d(ui) ≤ 2, for all ui ∈ V (g). Now,∑
ui∈S

d(ui) = 2dp6e = p
3 or p

3 + 2 and |V − S| = p− dp6e = 5p
6 − 1.

Therefore, |V − S| >
∑
ui∈S

d(ui).

Subcase (ii): If the component ‘g’ such that |N [S]| < dp2e then S

is a MDC set with isolates. Then
∑
ui∈S

d(ui) ≤ p
3 . Since S contains

more isolates, the value
∑
ui∈S

d(ui) will be reduced. Then |V − S| >∑
ui∈S

d(ui).

Case (iii): The graph G is a disconnected graph without isolates.

Then G contains only connected components. Suppose G = mK2.

Then by the proposition (2.3.1)(i), γMχ(G) = |S| = dp4e+1. It implies

that
∑
ui∈S

d(ui) =
⌈
p
4

⌉
+ 1. But |V − S| =

∣∣p− (dp4e+ 1
)∣∣ = 3p

4 − 1.

If the size of the component g increases such as = mK4,mK1,t, . . .

then |S| will be decreased. i.e., |S| < dp4e+1 and
∑
ui∈S

d(ui) > dp4e+1.

But in all structures, We obtain, |V − S| >
∑
ui∈S

d(ui).

Theorem 3.6.6: Let G be a disconnected graph without any vertex

critical components then |V − S| = bp2c if and only if G = Kp.



Ch. 3: Majority Dom-Chromatic Number for Special Graphs 100

Proof: Let G has no vertex color critical subgraph. Let G = Kp, p is

odd. Then S = {u1, u2, . . . , udp2e} is a MDC set of G and γMχ(G) =

|S| = dp2e. Hence |V − S| = bp2c, if p is odd. When p is even ,

S = {u1, u2, . . . , up
2
} is the MDC set and γMχ(G) = |S| = p

2 and

|V − S| = p
2 . Hence |V − S| = bp2c.

Conversely, suppose G 6= Kp. Then either G is disconnected

graph without isolates or G contains atleast one component which is

not a vertex color critical with some isolates. Let |V − S| = bp2c.

Case (i): If G has components which is not vertex color critical with

no isolates then the structure like G = mK2. By the proposition

(2.3.1)(i), we have γMχ(G) = |S| = dp4e + 1. If |S| = dp4e + 1 ⇒

|V −S| = |p−dp4e+1| > bp2c. It is a contradiction to the assumption.

Case (ii): Suppose G = C6 ∪KP−6, where C6 is not a vertex color

critical. Then S = {u2, u5,
(
dp2e − 6

)
K1}, where u2, u5 ∈ V (C6). It

implies that |S| = dp2e − 6 + 2 = |dp2e − 4|. Therefore |V − S| =

|p− dp2e+ 4| = bp2c+ 4 > bp2c. It is acontradiction. Hence G = Kp if

and only if |V − S| = bp2c.
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Majority Dom-Chromatic

Partition Number of Graphs

Abstract

This chapter introduces a new notion majority dom-chromatic par-

tition of a graph G. The majority dom-chromatic partition num-

ber dMχ(G) is investigated for some families of graphs. Bounds on

dMχ(G) and its relationship with other graph theoretic parameters

are studied. Some inequalities on dMχ(G) are determined. Also char-

acterization theorems on dMχ(G) are established.
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4.1 Introduction

In 1977, Cockayane and Hedetniemi [14] introduced a concept do-

matic number in their seminal paper “Towards a Theory of Domina-

tion in Graphs”. This paper became the point of interest for many

researchers to step into domatic number. Then in 2010 Swaminathan

and Joseline Manora [37] introduced the concept “Majority domatic

number dM(G)” as the maximum number of elements in a partition

of V (G) into majority dominating sets. They elucidated the param-

eter in various levels by establishing many results. They produced

the exact values of dM(G) for some standard graphs, characterisation

theorems on dMχ(G) and some inequalities for dM(G).

In recent years, several graph-theoretic parameters that combine

the concepts of domination and coloring have been investigated and

studied by many mathematicians effectively. Dom-chromatic parti-

tion was introduced by Janakiraman and Poobalaranjani [31]. Its

number dch(G) was defined and the exact values for various classes

of graphs were determined. They established more results on dch(G)

with other parameters for connected and disconnected graphs. Lower

and upper bounds of dch(G) are also found interms of p and ∆(G).
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These two parameters dM(G) and dch(G) gave the motivation to

introduce a graph theoretical parameter “Majority Dom-Chromatic

Partition (MDC Partition) of a graph” and its number dMχ(G) on

graphs.

Organization of this Chapter is as follows. Section 4.1, contains

an introduction and of the defined parameters. In section 4.2, the

concept of majority dom-chromatic partition of a graph G and its

number dMχ(G) is defined with examples. The exact value of dMχ(G)

for various families of graphs is determined in section 4.3. In sections

4.4 and 4.5, Bounds on dMχ(G), the relationship of dMχ(G) with other

domatic number such as dM(G), dch(G) and d(G) and characteriza-

tion theorems on dMχ(G) are also determined.

4.2 Majority Dom-Chromatic Partition

In this section, the concept of Majority Dom-Chromatic Partition

(MDC Partition)- set of a graph and its number defined with some

examples.

Definition 4.2.1: Let G be a simple, finite and undirected graph

with p vertices. A Majority Dom-Chromatic Partition (MDC - Par-
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tition) of a graph G is a partition of the vertex set V (G) into majority

dom-chromatic sets of G.

Definition 4.2.2: The maximum cardinality of a partition of V (G)

into majority dom-chromatic sets is the majority dom-chromatic par-

tition number and is denoted by dMχ(G).

Example 4.2.3: Consider the following graph with p = 16.

Figure 4.1: G

In the above graph G, χ(G) = 2 and S1 = {v2, v7, v13}, S2 =

{v1, v5, v6}, S3 = {v3, v8, v9}, S4 = {v10, v12, v14} and S5 = {v4, v11, v15,

v16} are the minimal majority dominating chromatic sets. Hence

γMχ(G) = 3. Also, all the sets are only disjoint majority dominating

chromatic sets of graph G. Therefore dMχ(G) = 5 and dch(G) = 2.

Example 4.2.4: For the unicyclic graph G = C9 ◦ K1 with p =

18, χ(G) = 3. Since C9 is the vertex color critical graph, the set
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S = {v1, v2, · · · , v9} is the only majority dom-chromatic set of G and

γMχ(G) = 9 = γch(G). Hence dMχ(G) = 1 = dch(G).

Example 4.2.5: Consider the graph G = K6 + C6 + C6 +K6.

Figure 4.2: G

Let V1(K6) = {u1, u2, · · · , u6} with d(ui) = 6, V2(C6) = {v1, v2, · · · , v6}

with d(vi) = 14, V3(C6) = {w1, w2, · · · , w6} with d(wi) = 14 and

V4(K6) = {x1, x2, · · · , x6} with d(xi) = 6. For the graph χ(G) =

3, γch(G) = 3 = γMχ(G). The dom- chromatic sets are S1 = {v1, v2, w1},

S2 = {w2, w3, v3}, S3 = {v4, v5, w4} and S4 = {w5, w6, v6} and the

remaining vertex set R = {u1, u2, · · · , u6, x1, x2, · · · , x6} will be the

dominating set but the set R does not satisfies χ(〈R〉) = χ(G). Hence

there is no other disjoint dom- chromatic set exists. It implies that

dch(G) = 4.
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The majority dom-chromatic sets are S1 = {u1, v1, v2}, S2 = {u2, u3,

v3}, S3 = {u4, v4, v5}, S4 = {u5, u6, v6}, S5 = {w1, x1, x2}, S6 = {w2, w3,

x3}, S7 = {w4, x4, x5} and S8 = {w5, w6, x6}. Therefore the vertex set

V (G) partitioned into eight majority dom-chromatic sets for G.

Let S ′ = {S1, S2, · · · , S8} be the majority dom-chromatic par-

tition for G and |N [S ′]| = p and since |N [Si]| = p, there exists no

other disjoint majority dom-chromatic set for G. Hence dMχ(G) = 8.

Therefore, dch(G) < dMχ(G).

Proposition 4.2.6: For any graph G, (i) dMχ(G) ≤ dM(G) and

(ii) dch(G) ≤ dMχ(G).

Proof: (i) Since every majority dom-chromatic set of a graph G

is a majority dominating set of G, γMχ(G) ≥ γM(G). Then

dMχ(G) ≤ dM(G).

(ii) Since every dom-chromatic set of a graph G is a majority dom-

chromatic set of G, γch(G) ≥ γMχ(G). Hence dch(G) ≤ dMχ(G).

4.3 dMχ for Various Families of Graphs

In this section, the exact value of dMχ is determined for some classes

of graphs.
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Proposition 4.3.1: Let the graph G = K1,p−1, a star, G = Fp, a

Fan and G = Wp, p ≥ 5, a wheel. Then dMχ(G) = 1.

Proof: Since the graphs K1,p−1, Fp and Wp contains the central ver-

tex {v} is of degree d(v) = p− 1, any majority dom-chromatic set of

G must include the central vertex v. Hence V (G) wouldn’t be parti-

tioned into many disjoint majority dom-chromatic sets of G. Hence

dMχ(G) = 1.

Proposition 4.3.2: For a complete graph G = Kp, dMχ(G) = 1.

Proof: Since the graph G is vertex color critical, by proposition

(2.3.2)(i), γMχ(G) = p. Hence dMχ(G) = 1.

Proposition 4.3.3: Let G = Cp be a cycle with p ≥ 3. Then

dMχ(G) =



1, if p is odd

2, if p = 4

3, if p ≡ 6, 10

4, if p = 8, 12, 14, 16, 18, 22, 24, 28, 34

5, if p = 20, 26, 30, 32 and p ≥ 36.
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Proof: Let V (G) = {v1, v2, · · · , vp}be the vertex set of G. For the

graph G, χ(G) = 3, if p is odd and 2, if p is even and by the propo-

sition (2.3.3),

γMχ(G) =


dp6e, if p ≡ 2 (mod 6)

dp6e+ 1, if p ≡ 0, 4 (mod 6)

p, if p is odd.

(4.1)

Case (i): Suppose p is odd. Then all the odd cycles Cp, p ≥ 3 are

vertex color critical graphs. By the condition (4.1), γMχ(G) = p and

hence dMχ(G) = 1.

Case (ii): Let p = 4. Then S1 = {v1, v2} and S2 = {v3, v4} be the

only majority dom-chromatic partition set of G. Hence dMχ(G) = 2.

Case (iii): Let p = 6, 10. For p = 6, S = {(v1, v2), (v3, v4), (v5, v6)}

and for p = 10, S = {(v1, v2, v7), (v3, v4, v8), (v5, v6, v9)}. Therefore S

is the only majority dom-chromatic partition set of G for p = 6, 10.

Hence dMχ(G) = 3.

Case (iv): Suppose p = 8, 12, 14, 16, 18, 22, 24, 28, 34. By the condi-

tion (4.1), when p = 8, 14, (i.e) p = 6k + 2, b p
γMχ(G)c = 4 if k = 1, 2.

When p = 12, 18, 24, (i.e) p = 6k, b p
γMχ(G)c = 4 if k = 2, 3, 4. When
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p = 16, 22, 28, 34, (i.e.) p = 6k + 4, b p
γMχ(G)c = 4 if k = 2, 3, 4, 5. Let

S1 = {v1, v2, · · · , v4(γMχ(G)−2)+1, v4(γMχ(G)−1)+1},

S2 = {v3, v4, · · · , v4(γMχ(G)−2)+2, v4(γMχ(G)−1)+2},

S3 = {v5, v6, · · · , v4(γMχ(G)−2)+3, v4(γMχ(G)−1)+3} and

S4 = {v7, v8, · · · , v4(γMχ(G)−2)+4, v4(γMχ(G)−1)+4}.

Now, S1, S2, S3 and S4 are majority dom-chromatic sets of G

such that the first two vertices vi and vj are adjacent in all sets

St and d(vj, vk) ≥ 4, vj 6= vk, vj, vk ∈ St, t = 1, 2, 3, 4. There-

fore in all the sets, the last vertex is v4(γMχ(G)−1)+i, i = 1, 2, 3, 4.

Then {S1, S2, S3, S4(V (G) − ∪4
t=1St)} is a majority dom-chromatic

partition of V (G) and therefore dMχ(G) ≥ 4. Since dMχ(G) ≤

b p
γMχ(G)c, dMχ(G) ≤ 4. Then dMχ(G) = 4 when p = 8, 12, 14, 16, 18, 22,

24, 28, 34.

Case (v): Let p = 20, 26, 30, 32 and p ≥ 36.

Subcase (i): Suppose p = 20, 26, 30, 32. By the condition (4.1),

When p = 20, 26, 32, (i.e.) p = 6k + 2, b p
γMχ(G)c = 5 if k = 3, 4, 5.

When p = 30, (i.e.) p = 6k, b p
γMχ(G)c = 5 if k = 5. Let

S1 = {v1, v2, · · · , v5(γMχ(G)−2)+1, v5(γMχ(G)−1)+1},

S2 = {v3, v4, · · · , v5(γMχ(G)−2)+2, v5(γMχ(G)−1)+2},
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S3 = {v5, v6, · · · , v5(γMχ(G)−2)+3, v5(γMχ(G)−1)+3},

S4 = {v7, v8, · · · , v5(γMχ(G)−2)+4, v5(γMχ(G)−1)+4} and

S5 = {v9, v10, · · · , v5(γMχ(G)−2)+5, v5(γMχ(G)−1)+5}

Now, the sets St, t = 1, 2, 3, 4, 5 are majority dom-chromatic sets

of G such that the first two vertices vi and vj are adjacent in all sets

St and d(vj, vk) ≥ 4, vj 6= vk, vj, vk ∈ St, t = 1, 2, 3, 4, 5. Observe

that in all five sets, the last vertex is v5(γMχ(G)−1)+i, i = 1, 2, 3, 4, 5.

Then {S1, S2, S3, S4 ∪ (V (G)−∪5
t=1St)} is a majority dom-chromatic

partition of V (G) and therefore dMχ(G) ≥ 5. Since dMχ(G) ≤

b p
γMχ(G)c, dMχ(G) ≤ 5. Hence dMχ(G) = 5.

Subcase (ii): Let p ≥ 36. Let p = 0, 2, 4(mod 6). By the condition

(4.1), γMχ(G) = dp6e and dp6e+ 1. When p ≥ 36, p = 6k, b p
γMχ(G)c = 5

if k ≥ 6. When p ≥ 38, p = 6k + 2, b p
γMχ(G)c = 5 if k ≥ 6. When

p ≥ 36, p = 6k + 4, b p
γMχ(G)c = 5 if k ≥ 6. Then S1, S2, S3, S4 and

S5 are taken as in the subcase (i) and applying the same arguments,

we get dMχ(G) = 5. Therefore dMχ(G) = 5 if p = 20, 26, 30, 32 and

p ≥ 36.



Ch. 4: Majority Dom-Chromatic Partition Number of Graphs 111

Proposition 4.3.4: For a graph G = Pp, a Path with p ≥ 3 vertices,

dMχ(G) =



1, if p = 3

2, if p = 4, 5

3, if 6 ≤ p ≤ 11, 15

4, if p = 12, 13, 14, 33, 34 and 16 ≤ p ≤ 29

5, if p = 30, 31, 32 and p ≥ 35.

Proof: Let G = Pp, p ≥ 3 and V (G) = {v1, v2, · · · , vp}. For G =

Pp, χ(G) = 2. By corollary (2.3.4),

γMχ(G) =


dp6e, if, if p ≡ 1, 2

dp6e+ 1, if p ≡ 0, 3, 4, 5.

(4.2)

Case (i): Let p = 3. Then {(v1, v2)} is the only disjoint majority

dom-chromatic set of G. Hence dMχ(G) = 1.

Case (ii): Let p = 4, 5. Then {(v1, v2), (v3, v4)} is the only disjoint

majority dom-chromatic partition of G. Hence dMχ(G) = 2.

Case (iii): When 6 ≤ p ≤ 11 and p = 15. Then {(v1, v2), (v3, v4), (v5, v6)}

is the disjoint majority dom-chromatic partition of G for p = 6.

When p = 7, 8, {(v2, v3), (v4, v5), (v6, v7)} is the only disjoint majority

dom-chromatic partition of G. Hence dMχ(G) = 3. If p = 9, 10, 11, 15

then dMχ(G) ≤ b p
γMχ(G)c = 3. Let



Ch. 4: Majority Dom-Chromatic Partition Number of Graphs 112

S1 = {v1, v2, · · · , v3(γMχ(G)−2)+1, v3(γMχ(G)−1)+1},

S2 = {v3, v4, · · · , v3(γMχ(G)−2)+2, v3(γMχ(G)−1)+2} and

S3 = {v5, v6, · · · , v3(γMχ(G)−2)+3, v3(γMχ(G)−1)+3}

be the MDC sets of G such that d(vi, vj) = 1 and d(vj, vk) ≥ 3, vi 6= vj

and |N [Sr]| ≥ dp2e for all r = 1, 2, 3 and χ(〈Sr〉) = 2 = χ(G). Then

{S1∪S2∪S3∪(V (G)−∪Sr)}, r = 1, 2, 3 is the majority dom-chromatic

partition of G, dMχ(G) ≥ 3. Since dMχ(G) ≤ 3,dMχ(G) = 3.

Case (iv): When p = 12, 13, 14, 16 ≤ p ≤ 29, 33, 34. By the condi-

tion (4.2), if p = 12, 16, 17, 18 then dMχ(G) ≤ b p
γMχ(G)c = 4. Let

S1 = {v1, v2, · · · , vb p
γMχ(G)c(γMχ(G)−2)+1, vb p

γMχ(G)c(γMχ(G)−1)+1},

S2 = {v3, v4, · · · , vb p
γMχ(G)c(γMχ(G)−2)+2, vb p

γMχ(G)c(γMχ(G)−1)+2},

S3 = {v5, v6, · · · , vb p
γMχ(G)c(γMχ(G)−2)+3, vb p

γMχ(G)c(γMχ(G)−1)+3} and

S4 = {v7, v8, · · · , vb p
γMχ(G)c(γMχ(G)−2)+4, vb p

γMχ(G)c(γMχ(G)−1)+4}

be the MDC sets of G for p = 12, 16, 17, 18. Also, if p = 13, 14, 19 ≤

p ≤ 29, 33, 34 then by condition (4.2), dMχ ≤ b p
γMχ(G)c = 4 and the

MDC sets are S1 = {v2, v3, · · · , vb p
γMχ(G)c(γMχ(G)−2)+2, vb p

γMχ(G)c(γMχ(G)−1)+2},

S2 = {v4, v5, · · · , vb p
γMχ(G)c(γMχ(G)−2)+3, vb p

γMχ(G)c(γMχ(G)−1)+3},

S3 = {v6, v7, · · · , vb p
γMχ(G)c(γMχ(G)−2)+4, vb p

γMχ(G)c(γMχ(G)−1)+4} and

S4 = {v8, v9, · · · , vb p
γMχ(G)c(γMχ(G)−2)+5, vb p

γMχ(G)c(γMχ(G)−1)+5}.
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In the above two classifications of p, d(vj, vk) ≥ 4, vj 6= vk, for

all vj, vk ∈ Sr, r = 1, 2, 3, 4. Then {S1, S2, S3, S4(V (G) − ∪4
r=1Sr)}

is a majority dominating chromatic partition of V (G) and therefore

dMχ(G) ≥ 4. Since dMχ(G) ≤ 4. Hence dMχ(G) = 4 when p =

12, 13, 14, 16 ≤ p ≤ 29, 33, 34.

Case (v): Let p = 30, 31, 32 and p ≥ 35.

Subcase (i): Suppose p = 30, 35, 36, 40, 41, 42. By the condition

(4.2), When p = 30, 35, 36, 40, 41, 42, dMχ(G) ≤ b p
γMχ(G)c = 5. Let

S1 = {v1, v2, · · · , v5(γMχ(G)−2)+1, v5(γMχ(G)−1)+1},

S2 = {v3, v4, · · · , v5(γMχ(G)−2)+2, v5(γMχ(G)−1)+2},

S3 = {v5, v6, · · · , v5(γMχ(G)−2)+3, v5(γMχ(G)−1)+3},

S4 = {v7, v8, · · · , v5(γMχ(G)−2)+4, v5(γMχ(G)−1)+4} and

S5 = {v9, v10, · · · , v5(γMχ(G)−2)+5, v5(γMχ(G)−1)+5}.

Now, the sets Sr, r = 1, 2, 3, 4, 5 are majority dom-chromatic sets

of G such that the first two vertices vi and vj are adjacent for all

Sr and d(vj, vk) ≥ 5, vj 6= vk, vj, vk ∈ Sr, r = 1, 2, 3, 4, 5. There-

fore in all five sets the last vertex is v5(γMχ(G)−1)+i, i = 1, 2, 3, 4, 5.

Then {S1, S2, S3, S4∪ (V (G)−∪5
r=1Sr)} is a majority dom-chromatic

partition of V (G) and therefore dMχ(G) ≥ 5. Since dMχ(G) ≤

5, dMχ(G) = 5.
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Subcase (ii): Let p = 31, 32, 37, 38, 39 and p ≥ 43. By the result

(4.2), γMχ(G) = dp6e and dp6e+ 1, dMχ(G) ≤ b p
γMχ(G))c = 5. Then the

MDC sets are, S1 = {v2, v3, · · · , vb p
γMχ(G)c(γMχ(G)−2)+2, vb p

γMχ(G)c(γMχ(G)−1)+2},

S2 = {v4, v5, · · · , vb p
γMχ(G)c(γMχ(G)−2)+3, vb p

γMχ(G)c(γMχ(G)−1)+3},

S3 = {v6, v7, · · · , vb p
γMχ(G)c(γMχ(G)−2)+4, vb p

γMχ(G)c(γMχ(G)−1)+4},

S4 = {v8, v9, · · · , vb p
γMχ(G)c(γMχ(G)−2)+5, vb p

γMχ(G)c(γMχ(G)−1)+5} and

S5 = {v10, v11, · · · , vb p
γMχ(G)c(γMχ(G)−2)+6, vb p

γMχ(G)c(γMχ(G)−1)+6}.

Applying the same arguments as in subcase (i), we get

dMχ(G) = 5.

Proposition 4.3.5: For the graph G = Kp, dMχ(G) = 1, if p is odd,

and dMχ(G) = 2, if p is even.

Proof: Let G = Kp. By the result (2.3.1)(ii), γMχ(G) = dp2e and

χ(G) = 1. Let V (G) = {v1, v2, · · · , vp} be the vertex set of G.

Case (i): Suppose p = 2m. Let S1 = {v1, v2, · · · , vm}, S2 = {vm+1,

vm+2, · · · , v2m} be the two disjoint majority dominating chromatic

subsets of V (G). Hence dMχ(G) = 2.

Case (ii): Let p = 2m + 1. Let S1 = {v1, v2, · · · , vm+1} and S2 =

{vm+2, vm+3, · · · , v2m+1} be the two vertex subsets of V (G). Then

|S1| = dp2e, |S2| < p
2 and S1 is the majority dom-chromatic set of G
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and S2 couldn’t form the majority dom-chromatic set of G. Hence

dMχ(G) = 1.

Proposition 4.3.6: Let G = Km,n,m ≤ n be a complete bipartite

graph. Then dMχ(G) = min{m,n} and dMχ(G) = p
2 , if m = n.

Proof: Let V1(G) = {u1, u2, · · · , um} and V2(G) = {v1, v2, · · · , vn}

be the two vertex sets of G with p = m+ n.

Case (i): If m = n and then d(ui) ≥ dp2e and d(vi) ≥ dp2e. Therefore

each {ui}, i = 1, 2, · · · ,m and {vi}, i = 1, 2, · · · , n are the majority

dominating sets of G. Since χ(G) = 2, each {ui, vi}, i = 1, 2, . . . ,m =

n is the majority dom-chromatic set of G. Hence dMχ(G) = m+n
2 = p

2 ,

if m = n.

Case (ii): If m < n then d(ui) = n and d(vi) = m. Since n ≥

m+ 1, |N(ui)| ≥ m+ 2 ≥ dp2e and |N(vi)| < dp2e. Hence each {ui} is

only a majority dominating set of G. Since χ(G) = 2, choose dom-

inating edges of G such as {(u1, v1), (u2, v2), · · · , (um, vm)}. These

subsets of G become the disjoint majority dom-chromatic sets of

V (G). Therefore dMχ(G) = m = min(m,n), if m < n.

Proposition 4.3.7: If G = Dr,s, a double star then dMχ(G) = 2.
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Proof: Let u and v be the central vertices of the graph G. Let

|{u1, u2, · · · , ur}| and |{v1, v2, · · · , vs}| be the number of pendants at

u and v with p = r + s+ 2.

Case (i): Suppose s = r, r + 1, r + 2. Then d(u) ≥ dp2e and d(v) ≥

dp2e. It implies that the graph G has two majority dominating vertices

at the centre. Since χ(G) = 2, S1 = {u, u1} and S2 = {v, v1} are the

majority dom-chromatic sets for G. Hence dMχ(G) = 2.

Case (ii): Let r < s and s ≥ r + 3. Then d(u) < bp2c − 1 and

d(v) ≥ dp2e+1. Hence the graph G has only one majority dominating

vertex v. Since χ(G) = 2, S1 = {v, v1} and S2 = {u, u1, v2, · · · , vt}

with t = dp2e − (r + 2) − 1. Then |N [S1]| ≥ dp2e and |N [S2]| =

d(u) + 1 + t = r + 2 + dp2e − (r + 2) = dp2e. Hence, S1 and S2

are majority dom-chromatic sets of G and majority dom-chromatic

partition is {S1, S2 ∪ R} where R is the remaining pendants. Thus,

dMχ(G) = 2.

Proposition 4.3.8: Let G = G
(m)
n be a graph which contains m

copies of the complete graph Kn. Then dMχ(G) = 1.

Proof: Let V (G) = {v, v11, v12, · · · , v1(n−1), v21, v22, · · · , v2(n−1), · · · ,

vm1, vm2, · · · , vm(n−1)} be the vertex set of G and p = m(n − 1) +
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1. In the structure, all mcopies of Kn meet at a central vertex v.

Since the degree of a vertex v is d(v) = p − 1, {v} is the majority

dominating set of G. The graph G contains a complete subgraph

Kn. Since the graph Kn is a vertex color critical, χ(G) = n. Let S =

{v, v11, v12, · · · , v1(n−1)} be the subset of G such that |N [S]| ≥ p−1 >

dp2e and χ(〈S〉) = n = χ(G). Hence S is a majority dom-chromatic

set of G. Since there is no other disjoint majority dom-chromatic

set without having the central vertex v. Hence the majority dom-

chromatic partition of V (G) is one and dMχ(G) = 1.

Corollary 4.3.9: Let G = D
(m)
3 ,m ≥ 2 be a friendship graph.

Then dMχ(G) = 1.

Proof: The graph G contains ‘m’ triangles attached at a single cen-

tral vertex ‘v’ and d(v) = p−1. Since γMχ(G) = 3, D = {v, u1, u2} is

a majority dom-chromatic set of G with a central vertex v. So V (G)

would not be partitioned into many sets including v and dMχ(G) = 1.

Definition 4.3.10: Let G be a graph with p vertices and the max-

imum degree ∆(G). If dMχ(G) = 2∆(G) + 1 then the graph G is

called majority domatically chromatic full.
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For example, let G = C20. By proposition (4.3.3), dMχ(G) = 5

and ∆(G) = 2. Hence dMχ(G) = 2∆(G) + 1 = 5.

4.4 Bounds on dMχ(G)

In this section, bounds on dMχ(G) with respect to γMχ(G), p and

∆(G) are investigataed.

Theorem 4.4.1. Let G be any graph. Then dMχ(G) ≤ b p
γMχ(G)c.

Proof: Let {V1, V2, · · · , Vk} be the majority dom-chromatic parti-

tions of G. Then, p = |V1| + |V2| + · · · + |Vk| =
k∑
i=1

|Vi|. Let

dMχ(G) = k. Therefore |Vi| ≥ γMχ(G), for each i. Then p =

|V1|+|V2|+· · ·+|Vk| ≥ kγMχ(G)and p ≥ kγMχ(G) ≥ dMχ(G)γMχ(G).

Hence dMχ(G) ≤ b p
γMχ(G)c.

Corollary 4.4.2: For any graph G, dMχ(G)γMχ(G) ≤ p.

Theorem 4.4.3: For any graph G,

(i) dMχ(G) ≤ 2∆(G) + 1, if ∆(G) < dp2e − 1

(ii)
(

p
∆(G)+1

)
≤ dMχ(G) ≤

(
p
2

)
, if ∆(G) ≥ dp2e − 1.

These bounds are sharp.
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Proof: (i) If ∆(G) < dp2e − 1, the majority domination number

satisfies γM(G) ≥ d p
2(∆(G)+1)e. Since γM(G) ≤ γMχ(G), γMχ(G) ≥

d p
2(∆(G)+1)e ≥ d

p
2∆(G)+1e. It implies that 2∆(G) + 1 ≥ b p

γMχ(G)c ≥

dMχ(G). Hence, dMχ(G) ≤ 2∆(G) + 1, if ∆(G) < dp2e − 1. This

bound is sharp if G = Cp, a cycle with p = 20. By the proposition

(4.3.3), dMχ(G) = 5 = 2∆(G) + 1.

(ii) Suppose ∆(G) ≥ dp2e − 1. Then γM(G) = 1. But for any graph

G, γMχ(G) ≥ 2 and dMχ(G) ≤ b p
γMχ(G)e = p

γMχ(G) . It implies that

γMχ(G) ≤ p
dMχ(G) and 2 ≤ γMχ(G) ≤ p

dMχ(G) . Hence

2dMχ(G) ≤ p and dMχ(G) ≤
(p

2

)
. (4.3)

This bound is sharp if G = D2,2, P4, K1,3. Since dMχ(G) ≤ p
γMχ(G)

and γMχ(G) ≤ ∆(G) + 1, γMχ(G) ≤ p
dMχ(G) ≤ ∆(G) + 1. Then

p

∆(G) + 1
≤ dMχ(G). (4.4)

Hence from (4.3) and (4.4),
(

p
∆(G)+1

)
≤ dMχ(G) ≤

(
p
2

)
. IfG = Kp

then dMχ(G) = 1 =
(

p
∆(G)+1

)
. Therefore the lower bound is sharp.

If G = P4 then dMχ(G) = 2 =
(
p
2

)
and the upper bound is sharp.

Proposition 4.4.4: For a graphG = K̄p, p is odd, dMχ(G) = dch(G) =

dM(G) = d(G).
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Proof: Let p be odd. Let |S1| = |{v1, v2, · · · , vdp2e}| ≥ d
p
2e and |S2| =

|{vdp2e+1, vdp2e+2, · · · , vp}| < dp2e be two subsets of G. Clearly S1 be

the majority dominating set of G and S2 couldn’t be the majority

dominating set of G. Hence dM(G) = 1. Since χ(G) = 1, dch(G) = 1

and dMχ(G) = 1. Also since the graph G is totally disconnected,

V (G) is the only dominating set of G and d(G) = 1. Hence dMχ(G) =

dch(G) = dM(G) = d(G).

Result 4.4.5: For given any positive integer p ≥ 4, there exists

always a connected graph for which dMχ(G)− dch(G) = 1.

Proof: For p ≥ 4, there exists a graph G = Dr,s, r ≤ s be a double

star with p = r + s+ 2. Then dch(G) = 1 and by proposition (4.3.7,

dMχ(G) = 2. Hence, dMχ(G)− dch(G) = 1.

Result 4.4.6: For given any positive integer k, there exists a graph

which is not complete for which dMχ(G) = dch(G).

Proof: For any positive integer k ≥ 1, there exists a graph G =

K1,p−1, a star which is not complete graph. By the proposition (4.3.1),

dMχ(G) = 1. Since γch(G) = 2, dch(G) = 1 = dMχ(G).
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Proposition 4.4.8: Let P be a Petersen graph. Then dMχ(P ) = 2.

Proof: The graph P contains two pentagons C5. Since C5 is a vertex

color critical graph and C5 is a subgraph of P, γMχ(P ) = 5. Therefore

the vertex set V (G) can be partitioned into only two majority dom-

chromatic sets S1 and S2. Hence dMχ(P ) = 2.

4.5 Characterization Theorems on

dMχ(G)

The necessary and sufficient conditions on dMχ(G) with respect to

diameter of the graph are discussed in this section.

Theorem 4.5.1: LetG be a connected bipartite graph. Then dMχ(G)

≤ p
2 and dMχ(G) = p

2 if and only if G = P4, C4, Km,n,m = n and K2.

Proof: The theorem is proved by induction on diam(G). If diam(G) =

1 then the graph structures become G = Kp and Km,n. If G = Kp
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then G is vertex color critical and γMχ(G) = p. Hence dMχ(G) =

1 < p
2 . If G = Km,n, by proposition (4.3.6), dMχ(G) = p

2 , if m = n.

When diam(G) = 2, the graph G becomes P3 and C4. By the propo-

sition (4.3.5), dMχ(P3) = 1 < p
2 and by the proposition (4.3.3),

dMχ(C4) = 2 = p
2 . If diam(G) = 3, the graph structures be-

come G = P4 and Dr,s a double star with p = r + s + 2. By the

proposition (4.3.5), dMχ(P4) = 2 = p
2 and by the proposition (4.3.7),

dMχ(Dr,s) = 2 < p
2 .

Therefore the result is true for diam(G) = 1, 2, 3, · · · , (p − 2).

Suppose diam(G) = p− 1. Then the graph G = Pp. By proposition

(4.3.5), dMχ(Pp) <
p
2 . Hence, dMχ(G) ≤ p

2 .

Now, assume that dMχ(G) = p
2 . From the above arguments, if

diam(G) ≤ 2, dMχ = p
2 holds for G = Km,n,m = n,C4 and K2. If

diam(G) = 3, the graph has two central vertices u and v with the de-

gree d(u) ≥ 2 and d(v) ≥ 2. Let {u1, u2, · · · , um} and {v1, v2, · · · , vn}

be the pendants at u and v and p = m+n+ 2, where m,n ≥ 1. Sup-

pose m = n. Then |N [u]| ≥ p
2 and |N [v]| ≥ p

2 . It implies that {u}

and {v} are the majority dominating sets of G. Since χ(G) = 2, the

sets S1 = {(u, ui)} and S2 = {(v, vi)} where ui and vi are the only

majority dom-chromatic set for G. Hence dMχ(G) = 2. By assump-
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tion, dMχ(G) = p
2 and implies that p

2 = 2, m+n+2
2 = 2 ⇒ m = n = 1.

Therefore the graph G has one pendant vertex at both u and v.

Hence G = P4. The converse is obvious.

Theorem 4.5.2: If the graphG is vertex color critical then dMχ(G) =

1 and dMχ(G)γMχ(G) = p.

Proof: Since the graph G is vertex color critical, χ(G − u) < χ(G)

for all u ∈ V (G) Let S be the majority dom-chromatic set of G.

By the definition of majority dom-chromatic set, χ(〈S〉) = χ(G).

Then the majority dom-chromatic set S contains all vertices of G.

Therefore S = {v1, v2, · · · , vp} and γMχ(G) = |S| = p. Also, since

γMχ(G) = p, dMχ(G) = 1 = dch(G). Hence dMχ(G)γMχ(G) = p.

Theorem 4.5.3: Let G be any connected graph of p vertices. Then

dMχ(G) = 1 if and only if

(i) The graph G contains a full degree vertex,

(ii) The graph G is vertex color critical and

(iii) The graphG contains an induced vertex color critical subgraphs

which are not disjoint.

Proof: Let G be any connected graph of p and dMχ(G) = 1.

Case (i): Then the vertex set V (G) is partitioned into only one

majority dom-chromatic set S. Therefore S = {v1, v2, · · · , vp} and
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γMχ(G)|S| = p. It implies that the graph G with full vertex set is a

vertex color critical graph. Hence condition (ii) holds.

Case (ii): Suppose the majority dom-chromatic set S = S1∪S2 such

that |N [S1]| ≥ dp2e and |N [S2]| < dp2e. It implies that S1 is the only

majority dom-chromatic set of G. Since for any connected graph G,

χ(G) ≥ 2, |S1| ≥ 2 and |N [S1]| ≥ dp2e.

Subcase (i): Suppose |S1| = 2. If G is a tree, χ(G) = 2. Therefore

S1 = {u1, u2}, where u1 is of degree d(u1) ≤ p− 1 and u2 is of degree

d(u2) ≥ 1 such that |N [S1]| = p. Hence the graph G contains a full

degree vertex u1. If d(u1) = p− 1 and d(u2) = 1 then |N [S1]| = p >

dp2e. Therefore G contains a full degree vertex u1. If d(u1) < p − 1

and d(u2) ≥ 1then there are two disjoint majority dom-chromatic

sets and dMχ(G) = 2, which is a contradiction to to the assumption.

Hence G contains a full degree vertex and then condition (i) holds.

Subcase (ii): If |S1| = 3, the graph G is a tree or it contains

a triangle. If G is a tree, S1 = {u1, u2, u3} is the majority dom-

chromatic set of G. Suppose d(u1) < p − 1 and d(ui) ≥ 1, i = 2, 3.

Then there exists atleast two disjoint majority dom-chromatic set in

G. Hence dMχ(G) ≥ 2, which is a contradiction to the assumption.

Suppose G contains a triangle, χ(G) = 3 and γMχ(G) ≥ 3. Since

d(u1) ≤ p− 1 and d(ui) ≥ 2, i = 2, 3, S1 is a majority dom-chromatic
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set of G. By the above arguments, dMχ(G) ≥ 2, which is also a

contradiction. Hence the set S1 with d(u1) = p − 1 and d(ui) ≥ 2.

Therefore G contains a full degree vertex u1 and the condition (i)

holds.

Subcase (iii) Suppose |S1| ≥ 4. Then the graph G is a tree or

it contains a vertex color critical graph as an induced subgraph. If

G is a tree then S1 = {u1, u2, u3, u4}, where d(u1) < p − 1 and by

the similar arguments as in the above case, dMχ(G) ≥ 2, which is a

contradiction to the assumption. Suppose the MDC set S = S1 ∪ S2

such that |N [S1]| < dp2e and |N [S2]| ≥ dp2e. Then S2 is the majority

dom-chromatic set of G and apply the same argument as in case (i).

Hence the condition (ii) holds.

Subcase (iv) Suppose G contains a vertex color critical subgraphs

g1 and g2 and let the induced subgraphs g1 and g2 such that |v(g1)| =

|v(g2)| are disjoint. If |N [g1]| ≥ dp2e and |N [g2]| ≥ dp2e then there are

atleast two disjoint majority dom-chromatic sets in G and dMχ(G) ≥

2, which is a contradiction to dMχ(G) = 1. If |N [g1]| < dp2e and

|N [g2]| ≥ dp2e and vice versa then there exists atleast two majority

dom-chromatic sets in G and dMχ(G) ≥ 2. If |N [g1]| < dp2e and

|N [g2]| < dp2e then there exists atleast two majority dom-chromatic
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Figure 4.3: G

sets in G and dMχ(G) ≥ 2. Hence from the above cases, if the vertex

color critical induced subgraphs are disjoint then dMχ(G) ≥ 2, which

is a contradiction. Thus, the vertex color critical induced subgraphs

are not disjoint. Thus the condition (iii) holds.

Case (iii): Suppose S = S1 ∪ S2 such that |N [S1]| = dp2e = |N [S2]|.

It implies that S1 and S2 are majority dominating chromatic partition

sets of G and dMχ(G) = 2, which is a contradiction to dMχ(G) = 1.

Hence by propositions (4.3.1) and (4.3.2), the converse is true.

Proposition 4.5.4: Let G be a cycle on p vertices. Then dMχ(G) =

p
γMχ(G) if and only if (i) p is odd (ii) p = 4, 6, 8, 12, 16, 20, 30, 40.

Proof: Let G = Cp be a cycle. By the proposition (2.3.3),
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γMχ(G) =


dp6e, if p ≡ 2(mod 6)

dp6e+ 1, if p ≡ 0, 4(mod 6)

p, if p is odd.

(4.5)

Assume that dMχ(G) = p
γMχ(G) , (ie), dMχ(G)γMχ(G) = p.

Case (i): Suppose dMχ(G) = 1. Then γMχ(G) = p. Then the

majority dom- chromatic set contains the whole vertex set V (G).

It implies that the graph G is vertex color critical. By proposition

(4.5.2) dMχ(G) = 1 if p is odd. Hence the condition (i) holds.

Case (ii): Let dMχ(G) = 2. Then by proposition (4.3.5), if dMχ(G) =

2 then p = 4 and γMχ(G) = 2. Therefore, dMχ(G)γMχ(G) = 2(2) =

4 = p. Hence the result is true for p = 4.

Case (iii): If dMχ(G) = 3 then by proposition (4.3.5), p = 6, 10. By

the result (4.5), γMχ(G) = dp6e + 1 if p = 6, 10. Then γMχ(G) = 2

and 3. From the assumption, dMχ(G)γMχ(G) = 3(2) = 6 = p and

dMχ(G)γMχ(G) = 3(3) = 9 < p. Hence if dMχ(G) = p
γMχ(G) then

p = 6 only.

Case (iv): Let dMχ(G) = 4. Then by proposition (4.3.5), p =

8, 12, 14, 16, 18, 22, 24, 28, 34. When p = 6k+ 2, γMχ(G) = 2 and 3, if

k = 1 and 2. When p = 6k, γMχ(G) = 3, 4, 5, if k = 2, 3, 4. When p =

6k + 4, γMχ(G) = 4, 5, 6, 7 if k = 2, 3, 4, 5. Then dMχ(G)γMχ(G) = p



Ch. 4: Majority Dom-Chromatic Partition Number of Graphs 128

if p = 8, 12, 16. For all other vertices, dMχ(G)γMχ(G) < p. Hence if

dMχ(G) = p
γMχ(G) then p = 8, 12, 16.

Case (v): Let dMχ(G) = 5. Then by proposition (4.3.5), p =

20, 26, 30, 32 and p ≥ 36.

Subcase (i): Let p = 6k + 2. Then γMχ(G) = dp6e. When p =

20, γMχ(G) = 4 and p
γMχ(G) = 5. When p = 26, then γMχ(G) = 5 and

p
γMχ(G) = 5. When p = 32, then γMχ(G) = 6 and p

γMχ(G) = 5. When

p = 6k and p = 30, γMχ(G) = dp6e + 1 = 6 and p
γMχ(G) = 5 if k = 5.

Therefore in all sets, p
γMχ(G) = 5 = dMχ(G) if p = 20, 30.

Subcase (ii): Let p ≥ 36. Then by proposition (4.3.5), p
γMχ(G) = 5.

By the (4.5), if p = 40, then γMχ(G) = 8 and p
γMχ(G) = 5 = dMχ(G).

When p = 6k, γMχ(G) = dp6e + 1 and p
γMχ(G) = dMχ(G) if k ≥ 6.

When p = 6k + 2, γMχ(G) = dp6e and p
γMχ(G) = dMχ(G) if k ≥ 6.

When p = 6k + 4, γMχ(G) = dp6e + 1 and p
γMχ(G) = dMχ(G) if k ≥ 7.

Therefore in all cases, p
γMχ(G) = 5 = dMχ(G) if p = 20, 30, 40.

Proposition 4.5.5: Let G be a Path on p vertices. Then dMχ(G) =

p
γMχ(G) if and only if p = 4, 6, 9, 12, 16, 30, 35, 40, 45.

Proof: Applying the same arguments as in Proposition (4.5.3), we

obtain the result.
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Abstract

In this chapter, the effects of majority dom-chromatic number γMχ(G)

when removing any vertex, edge and adding any edge in the graph

G are investigated. Nine classification of the vertex set and the edge

set are discussed accordingly the vertex sets namely V 0
Mχ(G), V −Mχ(G)

and V +
Mχ(G) by vertex removal and the edge sets E0

Mχ(G), E−Mχ(G)

and E+
Mχ(G) by edge removal and ξ◦Mχ(G), ξ+

Mχ(G) and ξ−Mχ(G) when

adding any edge in G. Also results on these classifications and some

characterization theorems are determined.
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5.1 Introduction

In 1982, Harary [21] and Haynes [25] surveyed the classification

of graphs as (i) domination number changes when any vertex is re-

moved (ii) domination number changes when any edge is removed

(iii) domination number changes when new edge is added (iv) dom-

ination number unchanged when any vertex is removed (v) domina-

tion number unchanged when any edge is removed (vi) domination

number unchanged when new edge is added. They established many

results on these six types. In 2012, Janakiraman and Poobalaran-

jani [31] were studied the changing and unchanging properties with

respect to dom-chromatic number of a graph. They produced more

results with the property such as degree, diameter and chromatic

number on the effects of removing vertex, edge and adding any edge

in the graph G.

In 2011, Joseline Manora and Swaminathan [38] were surveyed

the effects of majority domination number when removal of any edge

from the graph. Also, in 2013 [39] they studied vertex critical on

majority domination with respect to the deletion of a vertex from

the graph G. They established many results about these two effects
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on graphs.These concepts gave the motivation to study this concept,

changing and unchanging properties of majority dom-chromatic num-

ber when removal of a vertex, an edge and adding an edge in the

graph G.

5.2 Changing and Unchanging of MDC

Number by Vertex Removal

In this section, changing and unchanging of Majority Dom-Chromatic

(MDC) number γMχ(G) is defined for the graphs by vertex removal

with some examples.

Definition 5.2.1: For any graph G, the vertex set V (G) can be

partitioned into three sets V o
Mχ(G), V −Mχ(G) and V +

Mχ(G) with respect

to MDC sets by a vertex deletion and is defined by,

V o
Mχ(G) = {v ∈ V (G)/γMχ(G− v) = γMχ(G)},

V −Mχ(G) = {v ∈ V (G)/γMχ(G− v) < γMχ(G)} and

V +
Mχ(G) = {v ∈ V (G)/γMχ(G− v) > γMχ(G)}.

Definition 5.2.2: A graph G is said to be a CVRMχ- graph if

γMχ(G − v) 6= γMχ(G), for every v ∈ V (G). A graph G is said

to be a UVRMχ- graph if γMχ(G−v) = γMχ(G), for every v ∈ V (G).

Example 5.2.3: Consider the graph G with p = 16.
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Figure 5.1: G

In this graph G,S = {v5, v6, v7, v8, v15} is the γMχ- set of G.

Then γMχ(G) = 5. For the graph G − {v5}, γMχ(G − {v5}) =

|{v2, v3, v4, v8}| = 4. Therefore γMχ(G − v5) < γMχ(G). Hence v5 ∈

V −Mχ(G). For the graph G−{v8}, γMχ(G−v2) = |{v5, v6, v7, v8, v15}| =

5. Therefore γMχ(G− v8) = γMχ(G). It implies that v8 ∈ V 0
Mχ(G).

Example 5.2.4: Consider the graph G = Fp, p = 17 a Fan.

Figure 5.2: G

In this graphG, γMχ(G) = |{v1, v2, v3}| = 3. ForG−{v2}, γMχ(G−

v2) = |{v1, v3, v4}| = 3. Therefore γMχ(G − v2) = γMχ(G) and v2 ∈

V 0
Mχ(G). For the graph {G−v1}, γMχ(G−v1) = |{v3, v4, v7, v10}| = 4.

Hence γMχ(G− v2) > γMχ(G) and v1 ∈ V +
Mχ(G).
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Theorem 5.2.5: If a graph G is a vertex color critical then G ∈

CV RMχ.

Proof: Since the graph G is vertex color critical, γMχ(G) = p. If

the removal of any vertex v from V (G), χ(G− v) 6= χ(G). It implies

that γMχ(G − v) < γMχ(G), for every vertex v ∈ V (G). Hence

G ∈ CV RMχ.

Corollary 5.2.6: Let G = Kp, p ≥ 2. Then G ∈ CV RMχ.

Proof: By the proposition (2.3.2)(i), γMχ(G) = p. For the graph

γMχ(G − v1) = p − 1. Hence γMχ(G − v1) < γMχ(G). Therefore

v1 ∈ V −Mχ(G). For every vertex v ∈ V (G), γMχ(G − v) < γMχ(G).

and G ∈ CV RMχ.

Proposition 5.2.7: Any Path Pp, p ≡ 3(mod 6) is a CV RMχ graph.

Proof: Let G = Pp, p = 6k+3, k ≤ 1. Then by the corollary (2.3.4),

γMχ(G) = k + 2. For each vertex v ∈ V (G), γMχ(G − v) = k + 1 <

k + 2, where p ≡ 6k + 2. Hence Pp ∈ CV RMχ if p ≡ 3(mod 6).

Proposition 5.2.8: A Wheel graph G = Wp, p > 5 is a CV RMχ

graph when p is even.

Proof: Let G = Wp = Cp−1 ∨ K1. By the proposition (2.3.6),

γMχ(G) = p, when p is even. Let V (G) = {v1, v2, . . . , vp−1, vp} where

vi ∈ Cp−1, i = 1, 2, · · · , p − 1 and vp ∈ K1 such that d(vp) = p − 1.

Suppose G′ = G− {vp}.
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Case (i): Let {vp} be the central vertex of G. Then G−{vp} = G′ =

Cp−1. Since p is even, Cp−1 is an odd cycle. By the proposition (2.3.3),

γMχ(G′) = p− 1. Therefore γMχ(G′) < γMχ(G), for vp ∈ V (G).

Case (ii): Suppose {vt} be any vertex in Cp−1. Then the graph G

becomes a Fan G′ = (G − {vt}) = Pp−2 ∨ K1. By the proposition

(2.3.7), γMχ(G′) = 3. Hence γMχ(G′) < γMχ(G).

In these two cases, the removal of any vertex {vi} in V (G),

γMχ(G− vi) < γMχ(G). Hence G ∈ CV RMχ.

5.3 Results on V ◦Mχ(G) and V +
Mχ(G)

In this section, the vertex sets V ◦Mχ(G) and V +
Mχ(G) are discussed for

the graph G with the property such as majority dominating vertex,

private neighborhood and cp-set.

Proposition 5.3.1: Let G = K1,p−1. Then v1 ∈ V +
Mχ(G) and vi ∈

V 0
Mχ(G) where v1 is a central vertex and v′is are pendants.

Proof: Let V (G) = {v1, v2, . . . , vp}, where v1 is the central vertex

and others are pendants. The set S = {v1, v2} is the MDC set of

G and γMχ(G) = 2. For a graph G − {v1}, γMχ(G − v1) = dp−1
2 e.

Therefore γMχ(G − v1) > γMχ(G). Hence v1 ∈ V +
Mχ(G). Suppose

any pendant vi, i = 2, · · · , p, γMχ(G − vi) = 2 = γMχ(G). Therefore

vi ∈ V 0
Mχ(G), where v′is are pendants.

Theorem 5.3.2: If G has exactly one full degree vertex and other

vertices are of degree d(vi) <
p−1

2 then |V +
Mχ(G)| = 1.
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Proof: Let G be a graph which contains a full degree vertex ‘v’ and

S be a MDC set of G v must be in a majority dominating set S and a

minimal cp - set of G. Then |N [S]| ≥ dp2e and χ(〈S〉) = χ(G). Let S ′

be the γMχ- set of G′ = {G− v} and {G− v} contains isolates, then

γMχ(G′) > |S| = γMχ(G). It implies that v ∈ V 0
Mχ(G). If {G − v}

contains the vertices vi with d(vi) < dp−1
2 e then |S ′| ≥ 2. Therefore

|S ′| ≥ |S|+1. It implies that γMχ(G−v) > γMχ(G) and v ∈ V +
Mχ(T ).

Thus, all other vertices are V 0
Mχ(G). Hence |V +

Mχ(G)| = 1.

Theorem 5.3.3: Let T be a tree with p vertices. If a vertex v ∈ V (T )

satisfies one of the following conditions.

(i) v is in a dominating edge e = {uv} with d(v) ≥ dp2e − 1 and

d(u) < dp2e − 1

(ii) v is a vertex with degree d(v) = p− 1 and others are pendants

(iii) v is in every γMχ- set of T .

then v ∈ V +
Mχ(T ).

Proof: Let T be a tree with p vertices and v ∈ V (T ).

Case (i): Let e = {uv} is a dominating edge with d(v) ≥ dp2e − 1

and d(u) < dp2e − 1. Since χ(G) = 2, S = {u, v} be a γMχ- set of T .

Let S1 = {u, u1, vi} be a set of T −{v}, where u and u1 are adjacent

and v′is are isolates such that |N [S1]| ≥ dp2e with |S1| > |S|. Then

χ(T ) = χ(〈S1〉) = χ(T − v). Thus S1 is a MDC set of T − {v} and

γMχ(T − v) ≤ |S1|. Since |S1| > |S|, γMχ(T − v) > |S| = γMχ(T ).

Hence v ∈ V +
Mχ(T ).

Case (ii): Let d(v) = p − 1 and d(vi) = 1, for all vi ∈ V (T ). Then

γMχ(T ) = |{v, v1}| = 2, for some v1 such that d(v1) = 1. Since v is



Ch. 5: Changing and Unchanging Properties... 136

adjacent to all vertices vi of T, 〈T − {v}〉 is disconnected with only

isolates. Now, there exists a MDC set S in T −{v} with only isolates

and |S| = dp−1
2 e. It implies that |S| = γMχ(T − {v}) > γMχ(T ) and

v ∈ V +
Mχ(T ).

Case (iii): If the vertex v is in every minimum MDC set of T , then

v is in a dominating edge e = uv or v is a full degree vertex of T . It

implies that d(v) ≥ dp2e−1, d(u) < dp2e−1 and other vertices v′is are of

degree with d(vi) < dp2e − 1. By Case (i), the vertex v ∈ V +
Mχ(T ).

Theorem 5.3.4: For any graph G, |V +
Mχ(G)| ≤ γMχ(G).

Proof: Let S be a γMχ- set of G. Let v ∈ V +
Mχ(G). It implies that

v is in every γMχ- set S of G. Then v ∈ S and V +
Mχ(G) ⊆ S. Hence

|V +
Mχ(G)| ≤ |S| = γMχ(G).

Theorem 5.3.5: If v ∈ V +
Mχ(G) and v is in every minimal cp- set of

G then |Pn[v, S]| ≥ 2, for all γMχ set S of G.

Proof: Let S be a γMχ- set of G. Let v be a vertex in every minimal

cp-set of G. Then χ(〈S − v〉) = χ(G − v) < χ(G). Let Pn[v, S] =

φ. Then {S − v} is a γMχ- set of {G − v}. It is a contradiction

to v ∈ V +
Mχ(G). Suppose |Pn[v, S]| = {v}. Then v is an isolated

vertex in S and hence v ∈ V 0
Mχ(G), which is a contradiction. If

|Pn[v, S]| = {u} then {S − v} ∪ {u} is a γMχ- set of {G− v}. Thus

γMχ(G−v) ≤ |S| = γMχ(G), which is a contradiction to v ∈ V +
Mχ(G).

Hence, |Pn[v, S]| ≥ 2.

Theorem 5.3.6: If v is an isolated of G then v ∈ V 0
Mχ(G).



Ch. 5: Changing and Unchanging Properties... 137

Proof: Let v be an isolated vertex of G. Then v is not in minimal

cp-set of G. Let S be a γMχ- set of G and not containing the vertex

v. Then |N [S]| ≥ dp2e and χ(〈S〉) = χ(G). Then γMχ(G) = |S|. For

the graph {G − v}, χ(〈G− v〉) = χ(G) and S is again the γMχ- set

of {G− v}. Therefore γMχ(G− v) = γMχ(G) and v ∈ V 0
Mχ(G).

Theorem 5.3.7: If a vertex v ∈ V (G) is not in any minimal cp-set

of G then v ∈ V 0
Mχ(G).

Proof: Let S be a γMχ- set of G. If a vertex v which is not in any

minimal cp-set of G then χ(〈S − v〉) = χ(G). Hence Pn[v, S] 6= φ.

Let |Pn[v, S]| = 1. If Pn[v, S] = {v} then v is an isolated vertex in

S. By the theorem (5.3.6), v ∈ V 0
Mχ(G).

Proposition 5.3.8: Let G = Wp = Cp−1 ∨K1, p is odd be a wheel.

Then

(i) vi ∈ V 0
Mχ(G), if vi ∈ Cp−1.

(ii) vi ∈ V +
Mχ(G), if v is a central vertex of G and p ≤ 17.

Proof: ForG = Wp = Cp−1∨K1, p is odd, V (G) = {v1, v2, · · · , vp−1, vp}.

By the proposition (2.3.6), γMχ(G) = 3. The removal of any vertex

v from V (G), there exists two cases.

Case (i): Suppose any vertex vi ∈ Cp−1. Then G′ = G − {vi} and

G′ = Fp−1 = Pp−2 ∨ K1, where (p − 1) is even. By the proposition

(2.3.7), γMχ(G′) = 3. Hence γMχ(G′) = γMχ(G) and vi ∈ V 0
Mχ(G).

Case (ii): Suppose vp is a central vertex and p ≤ 17. The γMχ- set

of G is S = {v1, v2, vp}. Then γMχ(G) = |S| = 3. If the removal of
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a central vertex vp, G
′ = G − {vp} and G′ becomes Cp−1 even cycle.

By the proposition (2.3.3),

γMχ(G′) =


p, if p isodd

dp6e, if p ≡ 2(mod 6)

dp6e+ 1, if p ≡ 0, 4(mod 6).

(5.1)

For p ≤ 16, by the result (5.1), γMχ(G′) = |S ′| = 3. If p ≤ 17, by the

result (5.1), γMχ(G′) = |S ′| ≤ 4. Therefore, γMχ(G′) > γMχ(G) and

vp ∈ V +
Mχ(G). Hence vp ∈ V +

Mχ(G), if p ≤ 17.

Theorem 5.3.9: Let v be a vertex of G with v ∈ V +
Mχ(G). Then

there exists a vertex u ∈ V (G) such that γMχ(G− u) = γMχ(G).

Proof: Let S be the γMχ- set of G. Then |N [S]| ≥ dp2e.

Case (i): Suppose |N [S]| 6= V (G). Then there exists a vertex u /∈

N [S] and implies that u /∈ S, u ∈ V − N [S]. Then S ⊆ V − u and

|N [S]| ≤ dp2e and |NG−u[S]| ≤ dp2e. It implies that |NG−u[S]| = dp−1
2 e.

Therefore S is a MDC set of {G − u}. Then γMχ(G − u) ≤ |S| =

γMχ(G). If γMχ(G − u) < γMχ(G) then u ∈ V −Mχ(G), which is a

contradiction to v ∈ V +
Mχ(G). Hence γMχ(G− u) = γMχ(G).

Case (ii): Suppose N [S] = V (G). Let u /∈ S and u ∈ N [S]. Then

|NG−u[S]| = p−1 ≤ dp−1
2 e. Therefore S is a majority dom-chromatic

set of {G − u}. Then γMχ(G − u) ≤ |S| = γMχ(G). If γMχ(G −

u) < γMχ(G) then u ∈ V −Mχ(G) and V (G) = V −Mχ(G), which is a

contradiction to v ∈ V +
Mχ(G). Hence γMχ(G− u) = γMχ(G).

Case (iii): Suppose |N [S]| ≤ V (G). Then there exists a vertex

u ∈ S and |N [S]| ≤ dp2e. For S − {u}, χ(〈S − u〉) < χ(〈S〉) = χ(G)
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and S is not a γMχ- set of G. Therefore choose S1 = S − {u} ∪ {w}

where w ∈ V − S such that |N [S1]| ≤ dp2e and w is adjacent to any

vertex of S with |S1| = |S|. Hence S1 is a γMχ- set of {G − u} and

γMχ(G− u) = |S1| = |S| = γMχ(G).

5.4 Results on V −Mχ(G) and CV RMχ

In this section, the vertex set V −Mχ(G) is investigated when a vertex

is removed from the graph G and CV RMχ graphs are also discussed.

Theorem 5.4.1: If G is a vertex color critical graph then V (G) =

V −Mχ(G) but the converse is not true.

Proof: Let G be vertex color critical graph with p vertices. Then

by observation (2.2.4)(ii), γMχ(G) = p and for all v, γMχ(G − v) <

γMχ(G). It implies that v ∈ V −Mχ(G) for all v ∈ (G) and V −Mχ(G) =

V (G). For the converse, Let G = Pp, p = 9. Then γMχ(G) = 3. For

any vertex v, P9 − {v} = P8 and γMχ(P8) = 2 < γMχ(G). Hence

V (G) = V −Mχ(G) and G ∈ CV RMχ but G = P9 is not a vertex color

critical graph.

Proposition 5.4.2: If G is a CV RMχ - graph then V −Mχ(G) 6= φ.

Proof: Since G is a CV RMχ- graph, V = V +
Mχ ∪ V

−
Mχ. Suppose

V −Mχ(G) = φ. Then V (G) = V +
Mχ(G) and γMχ(G− v) > γMχ(G), for

all v ∈ V (G). Let S be a γMχ- set of G with |S| = p − 1. Then

V − S 6= φ. Let u ∈ V − S and {u} ⊆ V (G) − S. It implies that

S ⊆ V (G)−{u} = G−u. SinceG is a CV RMχ- graph, χ(〈S〉) = χ(G)
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and χ(〈S〉) = χ(〈G− u〉). It implies that S is a γMχ- set of (G− u)

and γMχ(G − u) ≤ |S| = γMχ(G). Therefore u ∈ V −Mχ(G), which

is a contradiction to the assumption. Hence V −Mχ(G) 6= φ, for any

CV RMχ graph G.

Theorem 5.4.3: Let G be a CV RMχ graph with p vertices. Then

|V −Mχ(G)| ≥ p− γMχ(G).

Proof: Let S be a γMχ- set of G. If G is a CV RMχ- graph then

γMχ(G−v) < γMχ(G). Suppose |S| = γMχ(G) = p. Then |V −Mχ(G)| ≤

p − γMχ(G) holds. Suppose |S| = γMχ(G) < p. Then V − S 6= φ.

Now choose any vertex v ∈ V − S. Since γMχ(G− v) < γMχ(G), v ∈

V −Mχ(G). Therefore V − S ⊆ V −Mχ(G). It implies that |V − S| ≤

|V −Mχ(G)|. Hence |V −Mχ(G)| ≥ p− γMχ.

Theorem 5.4.4: Let γMχ(G) be the MDC number of a graph G and

γMχ(G) = |V (G)|. Then |V −Mχ(G)| = |V (G)|.

Proof: Let S be a γMχ- set of G and γMχ(G) = |V (G)| = p. Then G

is a vertex color critical graph. For any v ∈ V (G), χ(G− v) < χ(G)

and it implies that γMχ(G − v) < γMχ(G). Hence v ∈ V −Mχ(G), for

all v ∈ V (G). For every v ∈ S, γMχ(G− v) < γMχ(G) is true. Hence

|V −Mχ(G)| = |V (G)|.

Theorem 5.4.5: If G is a graph with γMχ(G) = |V (G)| then G ∈

CV RMχ.

Proof: Let G be a graph with p vertices and γMχ(G) = |V (G)| = p.
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Then G is a vertex color critical graph. Therefore, for any vertex

v ∈ V (G), the graph G′ = G − {v} has the value γMχ(G′) < p.

It implies that γMχ(G′) < γMχ(G), for every v ∈ V (G). Hence

G ∈ CV RMχ.

The following theorem establishes the characterization on CV RMχ(G)

Theorem 5.4.6: Let G be a connected CV RMχ- graph with χ(G) ≤

3. Then G has a unique γMχ- set of G if and only if γMχ(G) = |V (G)|.

Proof: Let the graph G have a unique γMχ- set S.Then we claim

that V (G) − S = φ. Suppose V − S 6= φ. Since G is a CV RMχ-

graph, γMχ(G − v) < γMχ(G), for every v ∈ V − S. Then for each

v ∈ V − S, χ(〈s− v〉) < χ(〈s〉) and the induced subgraph 〈s〉 is a

vertex color critical. Hence for any u ∈ V − S, S is a MDC set of

G−{u}, which is a contradiction to the assumption. Therefore there

exist v ∈ V − S such that χ(〈s− v〉) < χ(〈s〉). Then Pn[u, S] 6= φ,

for any u ∈ S.

Case (i): Let |Pn[u, S]| = 1. If Pn[u, S] = {u} then u is an isolate

in 〈S〉. Since G is connected, N(u) 6= φ and N(u) ⊆ V − S. Also

some vertex w ∈ V −S is adjacent to any vertex in S. Let w ∈ N(u).

Then (S − u) ∪ {w} is a γMχ- set of G, which is a contradiction to

the assumption. So Pn[u, s] = {v}. Then (S − u) ∪ {v} is γMχ- set

of G, which is a contradiction to the assumption. Hence V − S = φ.

Thus |V (G)| = γMχ(G).

Case (ii): Suppose |Pn[v, S]| ≤ 2. Let v ∈ Pn[v, S]. Then there

exists a vertex w 6= v such that w ∈ Pn[v, S]. It implies that (S−v)∪
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{w} is a γMχ- set of G, which is a contradiction to the assumption.

Let x,w ∈ Pn[v, S]. Then (S−u)∪{w} is a γMχ- set of G−x. Thus,

|V (G)| = |S| = γMχ(G).

Conversely, γMχ(G) = |V (G)| = p. It implies that the graph G

have a unique MDC set of G.

5.5 Changing and Unchanging of MDC

Number by Edge Deletion

In this section, Changing Edge Removal and Unchanging Edge Re-

moval with respect to the MDC number of γMχ graphs are investi-

gated.

Definition 5.5.1: The edge set E(G) is partitioned into three sets,

each depending on the effect of the removal of an edge on γM(G) and

χ(G).

E0
Mχ(G) = {e ∈ E(G)/γMχ(G− e) = γMχ(G)}

E−Mχ(G) = {e ∈ E(G)/γMχ(G− e) < γMχ(G)}

E+
Mχ(G) = {e ∈ E(G)/γMχ(G− e) > γMχ(G)}.

Example 5.5.2: Consider the graph G with p = 15 vertices.

In this graph G, the γMχ- set of G is S1 = {v1, v3, v4, v12} and

γMχ(G) = |S1| = 4. The dominating set is S2 = {v1, v7, v10, v12} and
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Figure 5.3: G

γ(G) = |S2| = 4. The γch- set and γM - sets are S3 = {v1, v3, v4, v7, v10,

v12} and S4 = {v1, v12} respectively. Therefore γch(G) = |S3| = 6

and γM(G) = |S4| = 2. Thus for the graph {G− e1}, the γMχ- set is

{v1, v5, v10} and γMχ(G− e1) = 3. Therefore γMχ(G− e1) < γMχ(G)

and e1 ∈ E−Mχ(G). Again for the graph {G − e2}, γMχ(G − e2) = 4.

Hence γMχ(G− e2) = γMχ(G) and e2 ∈ E0
Mχ(G).

Example 5.5.3: Consider the following graph G with p = 13 ver-

tices.

Figure 5.4: G
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For the graph G, the γMχ- set is S1 = {v5, v9} and γMχ(G) =

|S1| = 2. Then for the graph {G−e}, the MDC set is S2 = {v4, v5, v9}

and γMχ(G− e) = |S2| = 3. Therefore γMχ(G− e) > γMχ(G). Hence

e ∈ E+
Mχ(G).

Observations 5.5.4:

(i) Let G = K1,P−1 be a Star graph. Then e ∈ E0
Mχ(G), for all

e ∈ E(G).

(ii) For G = Dr,s a Double star, e ∈ E0
Mχ(G), for all e ∈ E(G).

(iii) If G = Wp = CP−1∨K1 is a Wheel graph then e ∈ E0
Mχ(G), for

all e ∈ E(G), p is odd and e ∈ E−Mχ(G), for all e ∈ E(CP−1), p

is even.

(iv) Let G = Fp be a Fan graph. Then e ∈ E0
Mχ(G), for all e ∈

E(G).

(v) For G = Kp a complete graph, e ∈ E−Mχ(G), for all e ∈ E(G).

(vi) Let G = Kp − {e} be a graph. Then e ∈ E0
Mχ(G), for all

e ∈ E(G).

(vii) If G is a caterpillar graph then e ∈ E0
Mχ(G), for all e ∈ E(G).
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(viii) Let G be a Petersen graph. Then e ∈ E0
Mχ(G), for all e ∈ E(G).

(ix) Let G = Km,n be a complete bipartite graph. Then e ∈

E0
Mχ(G), for all e ∈ E(G).

Proposition 5.5.5: Let G be any Cycle Cp with p vertices. Then

(i) e ∈ E−Mχ(G), if p is odd

(ii) e ∈ E0
Mχ(G), if p is even.

Proof: Let G = Cp be a Cycle. Then by proposition (2.3.3),

γMχ(G) =


p, if p is odd

dp6e, if p ≡ 2(mod 6)

dp6e+ 1, if p ≡ 0, 4(mod 6).

(5.2)

Case (i): When p is odd. Then the graph G becomes an edge color

critical. i.e. χ(G − e) < χ(G). If the removal of any edge e = vivj,

the graph (G− e) becomes Pp, a Path. By corollary (2.3.4),

γMχ(G) =


dp6e, if p ≡ 1, 2(mod 6)

dp6e+ 1, if p ≡ 0, 3, 4, 5(mod 6)

(5.3)

Therefore, γMχ(G−e) = γMχ(Pp) < p = γMχ(G). Hence γMχ(G−

e) < γMχ(G) and e ∈ E−Mχ(G). Thus (i) holds.



Ch. 5: Changing and Unchanging Properties... 146

Case (ii): When p is even. Let e = vivj be an edge in G and the

removal of the edge e from G, (G − e) becomes Pp, a Path and p is

even. By the result (5.3), γMχ(G − e) = γMχ(Pp), p is even. Hence

from (5.2) and (5.3), γMχ(G− e) = γMχ(G) and e ∈ E0
Mχ(G), if p is

even.

5.6 Results on E0
Mχ(G), E−Mχ(G)

and E+
Mχ(G)

In this section, the edge set E(G) is classified into three sets namely

E0
Mχ(G), E−Mχ(G) and E+

Mχ(G).

Proposition 5.6.1: Let G = Pp be a path. Then e ∈ E0
Mχ(G), for

any edge e ∈ E(G).

Proof: Let G = Pp be a path of p vertices with d(vi) = 2, for all

i = 2, 3, · · · , (p− 1). By the corollary (2.3.4),

γMχ(G) =


dp6e, if p ≡ 1, 2(mod 6)

dp6e+ 1, if p ≡ 0, 3, 4, 5(mod 6).

(5.4)

Let S be a γMχ- set of G with this cardinality of (5.4). Then the
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removal of any edge e = vivj from G, it creates two paths P1 and P2

in (G− e) and χ(G− e) = 2 = χ(G). Then there exists another γMχ-

set S1 for (G − e) with the same cardinality of γMχ of G in any of

these Paths P1 or P2. Therefore γMχ(G− e) = |S1| = |S| = γMχ(G)

and e ∈ E0
Mχ(G), for any edge e ∈ E(G).

Theorem 5.6.2: Let T be any tree with p ≥ 3 vertices and S be a

γMχ- set of T . If e /∈ (〈N [S]〉) then e ∈ E0
Mχ(T ).

Proof: Let T be any tree with p ≥ 3. Then χ(T ) = 2. Let S

be a γMχ- set of T . Then |N [S]| ≥ dp2e and χ(〈S〉) = χ(T ). Let

e /∈ (〈N [S]〉). Then the removal of such edge e, would not affect

its MDC – number and S is also a MDC – set of (T − e). Thus

γMχ(T − e) = γMχ(T ) and e ∈ E0
Mχ(T ).

Theorem 5.6.3: Let e ∈ E(G) be any edge of a graph G. If χ(G−

e) = χ(G) then e ∈ E0
Mχ(G).

Proof: Let χ(G − e) = χ(G), for any e ∈ E(G). Suppose e 6=

E0
Mχ(G). Then either e ∈ E−Mχ(G) or e ∈ E+

Mχ(G). If e ∈ E−Mχ(G)

then γMχ(G − e) < γMχ(G). It implies that χ(G − e) < χ(G),

which is a contradiction to the assumption. If e ∈ E+
Mχ(G) then

γMχ(G− e) > γMχ(G). It implies that χ(G− e) > χ(G), which is a

contradiction to the assumption and e ∈ E0
Mχ(G).
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Theorem 5.6.4: If an edge e ∈ E(G) is not in every γMχ- set of G

then e ∈ E0
Mχ(G).

Proof: Let e = uv be any edge inG and S be a γMχ- set ofG. Let e /∈

S, for every γMχ- set S of G. Suppose e /∈ E0
Mχ(G). Then either e ∈

E−Mχ(G) or e ∈ E+
Mχ(G). If e ∈ E−Mχ(G) then γMχ(G− e) < γMχ(G).

It implies that e is in every γMχ- set of G. It is a contradiction to the

assumption. If e ∈ E+
Mχ(G) then γMχ(G − e) > γMχ(G). It implies

that γM(G − e) > γM(G). Hence e is in every γMχ- set of G, which

is a contradiction to the assumption. Thus, e ∈ E0
Mχ(G).

Theorem 5.6.5: Let G be any graph. If χ(G − e) < χ(G) then

e ∈ E−Mχ(G), for any edge e ∈ E(G).

Proof: Let χ(G − e) < χ(G).To prove that e ∈ E−Mχ(G). Suppose

that γMχ(G − e) ≮ γMχ(G). Then γMχ(G − e) ≥ γMχ(G). Let

S and S ′ be the γMχ- sets of G and (G − e). If γMχ(G − e) =

γMχ(G) then |S| = |S ′|. It implies that χ(〈S ′〉) = χ(〈S〉) = χ(G),

which is a contradiction to the assumption. Also if γMχ(G − e) >

γMχ(G), then |S ′| > |S| and χ(〈S ′〉) > χ(〈S〉) = χ(G). It follows

that χ(G − e) > χ(G) which is a contradiction to the assumption.

Hence e ∈ E−Mχ(G).
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Theorem 5.6.6: If the graph G is vertex color critical then e ∈

E−Mχ(G), for any edge e ∈ E(G).

Proof: Let the graph G be vertex color critical. Then χ(G − e) <

χ(G) and γMχ(G) = p. Let e ∈ E(G). Then γMχ(G− e) ≤ γMχ(G),

for any edge e = uv. Since χ(G− e) < χ(G), γMχ(G− e) < γMχ(G).

Hence e ∈ E−Mχ(G), for any edge e ∈ E(G).

For example, let G = C9 be a vertex color critical graph. For any

edge e ∈ E(G), (G − e) = P9. By proposition (2.3.3), γMχ(C9) = 9

and by the corollary (2.3.4), γMχ(P9) = 2. Therefore γMχ(G − e) <

γMχ(G), for any edge e and e ∈ E−Mχ(G).

Theorem 5.6.7: If e = uv be an edge of a graph G and both u and

v are in every γMχ- set of G then e ∈ E−Mχ(G).

Proof: Let G be any graph with p vertices and S be the γMχ- set

of G. Then |N [S]| ≥ dp2e and χ(〈S〉) = χ(G). Let e = uv be an

edge in G. Since u and v are in every γMχ- set of G, the edge e must

be in every cp- set of G. Hence the removal of an edge e from G, it

affects the chromatic number of G. Then χ(G − e) < χ(G). Hence

by theorem (5.6.6), e ∈ E−Mχ(G).
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The next theorem gives the necessary and sufficient condition for

an edge ‘e’ belongs to the set E−Mχ(G).
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5.7 Results on CERMχ(G)

and UERMχ(G)

In this section, some conditions for changing Edge trmoval graphs

and vertex Edge removal graph with respect to the MDC number of

γMχ of a graph are discussed and the characterization on CERMχ is

also determined.

Theorem 5.7.1: If the graph G has a unique γMχ- set then G is a

CERMχ- graph.

Proof: Let the graph G has a unique γMχ- set S. Suppose the graph

G is UERMχ. Then γMχ(G − e) = γMχ(G), for all e ∈ E(G). Now

let S1 and S2 be any two subsets of G such that S1 ∩ S2 = φ with

|N [S1|] ≥ dp2e and |N [S2|] ≥ dp2e. Consider an edge e = uv with

u ∈ V (S1) and v ∈ V (S2). Since γMχ(G− e) = γMχ(G), the removal

of any edge e would not affect the chromatic number of G. Therefore

χ(〈S1〉) = χ(〈S2〉) = χ(G). Thus, the two sets S1 and S2 are γMχ-
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sets of G. It is a contradiction to the assumption that G has a unique

γMχ- set.Hence G ∈ CERMχ.

Theorem 5.7.2: If a graph G has a unique cpn-set with χ(G) ≥ 3

then G is a connected CERMχ– graph.

Proof: Let G has a unique cpn-set with χ(G) ≥ 3. Suppose G ∈

UERMχ. Then S is a γMχ- set of G and γMχ(G − e) = γMχ(G),

for every e ∈ E(G). Therefore, the graph (G − e) has two or more

γMχ- sets. Let S1 and S2 be the γMχ- sets of the graph (G− e) with

χ(〈S1〉) = χ(G) and χ(〈S2〉) = χ(G). Hence the graph G has atleast

two cpn-sets, which is a contradiction to the assumption. Thus,

G ∈ CERMχ.

Theorem 5.7.3: If every γMχ- set S of a graph G induces a color

critical graph then the graph G is CERMχ.

Proof: Let S be a γMχ- set of G and it induces a color critical graph.

Then there exists an edge e = uv such that χ(G− e) < χ(G), for all

edges e ∈ E〈S〉. Then γMχ(G− e) < γMχ(G), for all e ∈ E(G).

Theorem 5.7.4: If the graph G is a connected CERMχ- graph then

dMχ(G) = 1.
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Proof: Let G ∈ CERMχ. This result is proved by the induction on

diam(G). When diam(G) = 1. Then G becomes Kp and γMχ(G) =

cpn(G) = p. Hence dMχ(G) = 1. When diam(G) = 2. Then = K1,n.

Since G has no independent edges, γMχ(G − e) = γMχ(G), for all

e ∈ E(G) and e ∈ E0
Mχ(G). Then the graph ∈ UERMχ, which is

a contradiction to the assumption. When diam(G) ≥ 3. Then the

graph G has atleast two cpn-sets. It implies that G has two or more

γMχ- sets and γMχ(G − e) = γMχ(G), for any e ∈ E(G). Therefore

G ∈ UERMχ, which is a contradiction to the assumption. Hence the

graph G has a unique cpn- set. Thus dMχ(G) = 1.

The following theorem establishes the characterization of CERMχ

for a connected graph G.

Theorem 5.7.5: Let G be any graph and S be a γMχ- set of G.

Then G ∈ CERMχ if and only if

(i) Each edge e = uv joins either S and V − S or lies in S itself

(ii) The graph G is vertex color critical

(iii) The graph G contains a Clique H with V (H) ≥ 3.

Proof: Let G be a CERMχ- graph and S be its γMχ- set. Then

γMχ(G− e) 6= γMχ(G). It implies that either γMχ(G− e) < γMχ(G)
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or γMχ(G − e) > γMχ(G), for any edge e ∈ E(G). If γMχ(G − e) <

γMχ(G) then e ∈ E−Mχ(G). Hence χ(G − e) < χ(G). It implies that

e ∈ E(〈S〉) and the end vertices of e = uv both are in S. Otherwise

e ∈ (〈N [S]〉) and e = uv joins S and V − S. Hence (i) holds. Also

suppose χ(G−e) < χ(G) then the graphG becomes edge color critical

and e ∈ E−Mχ(G). If e ∈ E−Mχ(G), by theorem (5.6.8), conditions (ii)

and (iii) are true.

Conversely, conditions (i), (ii) and (iii) holds. Then by theorem

(5.7.3) and (5.6.8), the graph G ∈ CERMχ.

Theorem 5.7.6: All trees are UERMχ- graph.

Proof: Let T be a tree with e pendants and p vertices. The result is

proved by induction on pendants e of T . Since each tree has pendants

e ≥ 2, tree is a path if e = 2. If T = Pp, by corollary (2.3.4),

γMχ(T ) =


dp6e, if p ≡ 1, 2(mod 6)

dp6e+ 1, if p ≡ 0, 3, 4, 5(mod6).

(5.5)

Therefore any edge in T, (T − e) is also a path with 2 components.

By the result (5.5), γMχ(T − e) = γMχ(T ), for any e ∈ E(T ). Hence
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T ∈ UERMχ if e = 2. If e = 3 then T = K1,3 or D1,2 or caterpillar

structure. For T = K1,3 and D1,2, γMχ(T ) = 2 and γMχ(T − e) = 2.

By result (2.3.1)(v), γMχ(T ) = dp8e + 1 = 2 = γMχ(T − e). Hence

T ∈ UERMχ, if e = 3. This result is true if e = 2, 3, · · · , (p − 2).

When e = p− 1 then the tree T = K1,p−1. By proposition (2.3.2)(ii),

γMχ(T ) = 2. In (T − e), χ(T − e) = 2 = χ(T ) and γMχ(T − e) = 2 =

γMχ(T ). Hence T ∈ UERMχ. In all cases, all trees are belonging to

the class UERMχ.

Theorem 5.7.7: If a graph G contains an induced subgraph as an

even cycle then G ∈ UERMχ.

Proof: Let G be a graph which contains an induced subgraph as an

even cycle. Then χ(G) = 2. Let S = {u1, u2, u5, · · · , ut} be the γMχ-

set of G such that |N [S]| ≥ dp2e with |S| = t. Now delete an edge

e = u1u2 ∈ E(G) and form the γMχ−set S ′ = {u3, u4, u7, · · · , ut} for

(G − e) such that |N [S ′]| ≥ dp2e with |S ′| = t. Since u3 and u4 are

adjacent, χ(G − 2) = 2 = χ(G). Hence γMχ(G − e) = |S ′| = |S| =

γMχ(G) and e ∈ E0
Mχ(G), for all e ∈ E(G). Thus, G ∈ UERMχ.

Suppose the graph G itself is an even cycle. Then by proposition

(5.5.5), e ∈ E0
Mχ(G), for all edge e ∈ E(G). Hence G ∈ UERMχ.
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Theorem 5.7.8: If the graph G is a complete bipartite then G ∈

UERMχ.

Proof: For the complete bipartite graph, χ(G) = 2. By proposition

(2.3.5), γMχ(G) = 2. Now the deletion of any edge e = uiuj, where

ui ∈ V1(G) and vj ∈ V2(G), γMχ(G− e) = 2. Therefore γMχ(G− e) =

γMχ(G) and G ∈ UERMχ.

5.8 Results on E0
Mχ, E

−
Mχ and E+

Mχ for

Disconnected graphs

In this section, the effects of an edge removal from G and its three

classifications namely E0
Mχ, E

−
Mχ and E+

Mχ are studied with respect to

the chromatic preserving property for disconnected graphs.

Observations 5.8.1:

(i) Let G = K2 ∪ Kp−2 be a graph. Then e ∈ E0
Mχ(G), for e ∈

E(K2) and γMχ(G− e) = dp2e = γMχ(G).

(ii) Let G = K3 ∪ Kp−3 be a graph. Then e ∈ E−Mχ(G), for all

e ∈ E(K3). Also γMχ(G) = dp2e and γMχ(G− e) = dp2e − 1.

(iii) Let G = C8 ∪Kp−8. Since C8 is an even cycle, e ∈ E0
Mχ(G), for

all e ∈ E(C8).
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(iv) Let G = C9∪Kp−9. Since C9 is vertex color critical component

of G, e ∈ E−Mχ(G), for all e ∈ E(C9).

(v) Let G = P4 ∪ Kp−4 be a graph. Then e ∈ E+
Mχ(G), for all

e ∈ E(P4).

(vi) Let G = C7 ∪ C9 be a graph. Then e ∈ E+
Mχ(G), for all e ∈

E(C7) and e ∈ E0
Mχ(G), for all e ∈ E(C9).

Theorem 5.8.2: Let G be a disconnected graph with atleast two

color critical components g1 and g2 and cpn(g1) ≤ cpn(g2). If χ(g1) >

χ(g2) then (i) e ∈ E−Mχ(G), for all e ∈ E(g1) (ii) e ∈ E0
Mχ(G), for all

e ∈ E(g2).

Proof: Let g1 and g2 be the color critical components of a discon-

nected graph G. Then χ(g1 − e) < χ(g1) and χ(g2 − e) < χ(g2).

Let χ(g1) > χ(g2). Then χ(g1) = χ(G). Hence any γMχ- set of G

must contain the full vertex set of g1. Let S = {v1, v2, · · · , vr} be a

subset of V (G), where {v1, v2, · · · , vr} ⊆ V (g1). Since S contains the

full vertex set of g1. It implies that χ(〈S〉) = χ(g1) = χ(G). Since

cpn(g1) ≤ cpn(g2), |N [S]| < dp2e. Hence S wouldn’t be a MDC set of

G and S will be a MDC set by adding some vertices ui from other

components such that |N [S]| ≥ dp2e. Suppose that, the deletion of
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any edge e in g1 then χ(g1− e) < χ(g1) ≥ χ(g2). If χ(g1− e) = χ(G)

then the set S ′ = {v1, v2, · · · , vr−1} is the MDC set of G − e. Since

|S ′| < |S|, γMχ(G − e) = |S ′| < |S| = γMχ(G). It implies that

e ∈ E−Mχ(G), for all e ∈ E(g1). Hence (i) holds.

Suppose that the deletion of any edge e in g2 then it does not

affect the cp-set of G. Hence the MDC set of G will be the MDC

set of G − e. Therefore, γMχ(G − e) = |S ′| = |S| = γMχ(G) and

e ∈ E0
Mχ(G), for all e ∈ E(g2). Hence (ii) holds.

Theorem 5.8.3: Let G be a disconnected graph with color critical

components g1 and g2, such that cpn(g1) < cpn(g2). If χ(g1) = χ(g2)

then (i) e ∈ E+
Mχ(G), for all e ∈ E(g1) (ii) e ∈ E0

Mχ(G), for all

e ∈ E(g2).

Proof: LetG be a disconnected graph with the components g1, g2, g3,

· · · , gk such that g1 and g2 are color critical. Then χ(g1− e) < χ(g1)

and χ(g2 − e) < χ(g2). If χ(g1) = χ(g2) then either χ(g1) = χ(G) or

χ(g2) = χ(G). Since cpn(g1) < cpn(g2), the γMχ- set of G contain

the full vertex set of g1. Let S = {v1, v2, · · · , vr, ui} be a γMχ- set of

G, where {v1, v2, · · · , vr} ⊆ V (g1) and ui’s are the vertices of other

component with t = |ui|. Then γMχ(G) = |S| = r + t. Now the
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deletion of any edge e ∈ E(g1), χ(g1 − e) < χ(G). Hence χ(g2) =

χ(G). In {G − e}, S ′ = {u1, u2, · · · , us, vi} be the γMχ- set, where

{v1, v2, · · · , vs} ⊆ V (g2) and ui’s are the vertices of other components

with t = |ui|. Then γMχ(G − e) = |S ′| = s + t. Since cpn(g1) <

cpn(g2), |r| < |s|. Hence γMχ(G − e) = |S ′| > |S| = γMχ(G) and

e ∈ E+
Mχ(G), if e ∈ E(g1). Thus, condition (i) holds.

Suppose that the deletion of any edge e ∈ E(g2), χ(g2 − e) <

χ(G). Hence χ(g1) = χ(G).InG− e, S ′ = {v1, v2, · · · , vr, ui} be a

γMχ- set, where {v1, v2, · · · , vr} ⊆ V (g1) and ui’s are the vertices of

other component with t = |ui|. Then γMχ(G − e) = |S ′| = r + t.

Hence γMχ(G) = γMχ(G − e) and e ∈ E0
Mχ(G), if e ∈ E(g2). Thus,

condition (ii) holds.

Corollary 5.8.4: If cpn(g1) < cpn(g2) and χ(g1) < χ(g2) then (i)

e ∈ E0
Mχ(G), for all e ∈ E(g1) (ii) e ∈ E−Mχ(G), for all e ∈ E(g2).

5.9 Changing and Unchanging of MDC

Number by Edge Addition

In this section, the effects of changing and unchanging of MDC num-

ber by edge addition are introduced and defined the three classifica-

tions for this parameter.
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Definition 5.9.1: Let G be a simple graph without parallel edges.

Let γMχ(G) be the Majority Dom-Chromatic Number (MDC num-

ber) of G. A graph G is said to be a CEAMχ- graph if γMχ(G+ e) 6=

γMχ(G), for each e ∈ E(Gc) and a graph G is said to be UEAMχ-

graph if γMχ(G + e) = γMχ(G), for each e ∈ E(Gc) where Gc is the

complement of G.

Definition 5.9.2: The following are the notations of changing and

unchanging of γMχ(G) when an edge is added to the given graph G

(from the complement Gc of G).

(i) ξ◦Mχ(G) = {e ∈ E(Gc)/γMχ(G+ e) = γMχ(G)}

(ii) ξ+
Mχ(G) = {e ∈ E(Gc)/γMχ(G+ e) > γMχ(G)}

(iii) ξ−Mχ(G) = {e ∈ E(Gc)/γMχ(G+ e) < γMχ(G)}.

Example 5.9.3: Consider the following graph G with p = 21.

Figure 5.5: G :
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In this graph, S1 = {v2, v5, v12, v19} is the minimal MDC-set of G.

Hence γMχ(G) = 4. The set S2 = {v2, v9, v17} is the minimal γM - set

ofG and γM(G) = 3. Also the sets S3 = {v2, v5, v7, v9, v12, v15, v19, v21}

and S4 = {v2, v6, v9, v12, v15, v19} are the γch- set and γ- set of G re-

spectively. Therefore γch = 8 and γ(G) = 6. In the above graph

G, add an edge e = (v10, v13) and G′ = {G + e}. Here, S =

{v2, v9, v10, v11, v12, v13} is the γMχ– set of G′. Hence γMχ(G′) = 6.

Therefore γMχ(G′) > γMχ(G) and e ∈ ξ+
Mχ(G).

5.10 Results on ξ◦Mχ(G), ξ+
Mχ(G)

and ξ−Mχ(G)

In this section, the effects of an edge addition e ∈ E(Gc) are classified

into three cases with respect to MDC number of the graphs, where Gc

is the complement of G. Also some results are established on these

classifications ξ◦Mχ(G), ξ+
Mχ(G) and ξ−Mχ(G).

Proposition 5.10.1: Let G be an even Cycle with p vertices and

p ≡ 0(mod 6). If d(vi, vj) = n and e = vivj ∈ E(Gc) then (i) e ∈

ξ−Mχ(G), n is even (ii) e ∈ ξ+
Mχ(G), n is odd (iii) G ∈ CEAMχ, p > 6.

Proof: Let p ≡ 0(mod 6) and p = 6k. By the proposition (2.3.3),
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γMχ(G) = dp6e + 1 = k + 1. If k = 1, γMχ(G) = 2. Adding an edge

e = v1v4 and it creates two even cycles. It implies that γMχ(C6 +e) =

2. Thus γMχ(C6 + e) = γMχ(G). It is a contradiction to γMχ(G). Let

k ≥ 2. By adding an edge e = vivj ∈ E(Gc) such that d(vi, vj) = n,

we obtain G′ = G+ e.

Case (i): If d(vi, vj) = n, n is odd then G′ constitutes two even cycle

C1 and C2 with the common edge e = vivj and |N [vi]| = |N [vj]| =

3 = ∆(G). Hence any γMχ - set of G′ must contain the end vertices

of an edge e. Then γMχ(G′) = dp6e + 1 − 1 = d6k
6 e = k. Therefore,

γMχ(G′) < γMχ(G) and e ∈ ξ−Mχ(G).

Case (ii): Let d(vi, vj) = n and n is even. Then G′ creates two odd

cycles with C1 and C2 with |V (C1)| = |V (C2)| < p and χ(G′) = 3.

Each cycles are vertex color critical, any γMχ- set of {G + e} must

contain any one cycle with the edge e. Let S ′ = {v1, v2, v3, · · · , vt} be

the γMχ-set of G′ such that |N [S ′]]| ≥ dp2e and χ(〈S ′〉) = 3 = χ(G′).

Hence, γMχ(G′) = |V (C1)| + dp6e + 1 − 2 ≥ 3 + d6k
6 e + 1 − 2 ≥

k + 2. But γMχ(G) = k + 1. Therefore, γMχ(G′) > γMχ(G) and

e ∈ ξ+
Mχ(G), p > 6. In both cases, for all e = vivj ∈ E(Gc) of Cp,

p ≡ 0(mod6), we obtain e ∈ ξ−Mχ(G) and e ∈ ξ+
Mχ(G). Hence the

even cycle Cp, p ≡ 0 (mod 6) is a CEAMχ- graph.
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Proposition 5.10.2: Let G = Cp be an even cycle. If p ≡ 2(mod 6)

and d(vi, vj) = n and e = vivj ∈ E(Gc) then (i) e ∈ ξ◦Mχ(G), n is odd

(ii) e ∈ ξ+
Mχ(G), n is even.

Proof: Let p ≡ 2(mod 6) and p = 6k+2. Then γMχ(G) = dp6e = k+

1, k ≥ 1. By adding an edge e = vivj ∈ E(Gc) such that d(vi, vj) = n

in G, we obtain G′ = {G+ e}.

Case (i): Let n be odd. Then the graph G′ constitutes two even

cycles C1 and C2 with the common edge e = vivj and χ(G′) = 2. If

the vertices of e = vivj has the maximum degree of G, any γMχ- set

of G′ will contain the end vertices vi and vj. Therefore γMχ(G′) =

3 + dp6e − 3 = 3 + d6k+2
6 e − 3 = k + 1. Hence γMχ(G′) = γMχ(G) and

e ∈ ξ◦Mχ(G).

Case(ii): Let n be even. Then G′ creates two odd cycles C1 and C2

with |V (C1)| = |V (C2)| < p and χ(G′) = 3. Then |V (C1)|+|V (C2)| =

dp2e+
(
dp2e+ 2

)
. Since the odd cycles are vertex color critical, γMχ(G′)

must be the minimum value of V (C1) or V (C2). Hence γMχ(G′) =

dp2e = 6k+2
2 = 3k + 1 > γMχ(G).Thus, e ∈ ξ+

Mχ(G).

Proposition 5.10.3: Let G be an even cycle with p vertices. If

p ≡ 4(mod 6) and d(vi, vj) = n and e = vivj ∈ E(GC). Then (i)
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e ∈ ξ◦Mχ(G), if e = v1v3 (ii) e ∈ ξ−
M̄χ

(G), if n is odd (iii) e ∈ ξMχ+(G),

if n is even.

Proof: Let p ≡ 4(mod 6) and p = 6k + 4, k = dp−4
6 e. Then by

proposition (2.3.3), γMχ(G) = dp6e + 1 = k + 2, k ≥ 1. By adding

an edge e = vivj ∈ E(GC) such that d(vi, vj) = n we obtain G′ =

{G+ e}.

Case (i): If d(vi, vj) = 2 then e = v1v3 such that G′ contains a

triangle and a (p− 1)- cycle. It implies that χ(G′) = 3 and any γMχ-

set of G′ contains the triangle. Let S1 = {v1, v2, v3, v5, v8, · · · , vt}

with (v1, v2, v3) = a triangle and other vertices are of d(vivj) ≥ 2 be

the γMχ- set of G′ such that |N [S1]| ≥ dp2e and χ(〈S1〉) = 3 = χ(G′).

Therefore γMχ(G′) = dp6e+1 = d6k+4
6 e+1 = k+2. Hence, γMχ(G′) =

k + 2 = γMχ(G) and e ∈ ξ◦Mχ(G), if e = v1v3.

Case (ii): If d(vi, vj) = n and n is odd then G′ constitutes two even

cycles C1 and C2 with |V (C1)| + |V (C2)| = p + 2. Then χ(G′) = 2.

Both the cycles contain the edge e = (vivj) and any γMχ- set of G′

contains the end vertices of e. Let S2 = {vi, vj, v1, v4, · · · , vt} be the

γMχ- set of G′ with d(vr, vs) ≥ 3 for r, s 6= i, j such that |N [S2]| ≥ dp2e.

Then χ(〈S2〉) = 2 = χ(G′). Hence γMχ(G′) = dp6e+ 1− 2 = d6k+4
6 e−
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1 = k + 1 − 1 = k. Therefore, γMχ(G′) = k < γMχ(G) = k + 2 and

e ∈ ξ−Mχ(G).

Case (iii): Suppose d(vi, vj) = n, n ≥ 2, is even then {G} consists

of two odd Cycles C1 and C2 with |V (C1)| = |V (C2)| < p. Then

χ(G′) = 3. Both the Cycles are vertex color critical. Thus any γMχ-

set S3 of G′ contains at least one cycle. Hence, dp2e − 3 ≤ γMχ(G′) ≤

p − 1. It implies that d6k+4
6 e − 3 ≤ γMχ(G′) ≤ 6k + 3. Therefore

γMχ(G′) > γMχ(G) and e ∈ ξMχ+(G).

Proposition 5.10.4: Let G be an odd cycle with p vertices and

p ≡ 1, 3, 5(mod6). Then e ∈ ξ−Mχ(G) and G is CEAMχ- graph.

Proof: Let G = Cp and p ≡ 1, 3, 5(mod 6). Since p is odd and vertex

color critical, γMχ(G) = p. If adding any edge e ∈ E(Gc) between

any two vertices in G then G′ = G+ e contains either two odd cycles

or one odd and one even cycle.

Case (i): Let G′ contains only two odd cycles C1 and C2 with

|V (C1)| = |V (C2)| < p. Let S1 and S2 be the γMχ- sets of C1 and

C2. Since the two cycles are vertex color critical, γMχ(C1) = |S1| < p

and γMχ(C2) = |S2| < p. Therefore γMχ(G′) < p = γMχ(G). Hence,

e ∈ ξ−Mχ(G).
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Case (ii): If G′ contains one odd cycle C1 and one even cycle C2

with |V (C1)| = |V (C2)| < p. Since C1 is vertex color critical graph,

γMχ(C1) < p. Since C2 is even cycle, χ(C2) = 2. Then by proposition

(2.3.3), γMχ(C2) = dp6e + 1 < p. Therefore γMχ(G′) < p = γMχ(G)

and e ∈ ξ−Mχ(Gc). In both cases, e ∈ ξ−Mχ(G) or e ∈ ξ+
Mχ(G), for all

e ∈ E(Gc). Hence G ∈ CEAMχ.

Proposition 5.10.5: For the wheel graph G = Wp, γMχ(G+e) = 4 if

and only if e = vivj ∈ E(Gc) such that d(vi, vj) = 2 and e ∈ ξ+
Mχ(G).

Proof: Let G = Wp be a wheel graph. By the proposition (2.3.6),

γMχ(G) =


3, if p is odd

p, if p is even.

(5.6)

The graph G contains (p−1) triangle. Since γMχ(G+e) = 4, there is

a clique K4 in (G+ e) where e ∈ E(Gc) and e = vivj. The clique K4

in (G+e) will be obtained only by adding any edge e = vivj between

any two of adjacent triangles. By the condition (5.6), γMχ(G+ e) >

γMχ(G), for any e = vivj with d(vivj) = 2 and e ∈ ξ+
Mχ(G). Hence,

for K4 in (G + e) such that d(vi, vj) = 2. Conversely, if an edge
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e = vivj ∈ E(Gc) such that d(vi, vj) = 2 is added to G, then there

exist a clique K4 in (G+ e). Therefore γMχ(G+ e) = 4.

Proposition 5.10.6: Let G = Pp be a Path with p vertices. If

e = vivj ∈ E(Gc) with d(vi, vj) = n is odd then (i) e ∈ ξ0
Mχ(G), if

p ≡ 1, 2(mod 6) (ii) e ∈ ξ−Mχ(G), if p ≡ 0, 3, 4, 5(mod 6).

Proof: Let G = Pp a Path. If adding any edge e = vivj ∈ E(Gc)

with d(vi, vj) = n, n being odd between any two internal vertices vi

and vj in a Path, the degree of the end vertices of e is increased by

one and the resultant graph is G′ = G+ e. Since n is odd, G′ creates

even cycle Cm as an induced subgraph and χ(G′) = 2.

Case(i): when p ≡ 1, 2(mod 6). Let S = {vi, vj, v3, v6, · · · , vt} ⊆

V (G′) with |t| = dp6e such that d(vi) = d(vi) = 3, d(vi, vj) = 1 and

d(vr, vs) ≥ 3, for r, s 6= i, j and χ(〈S ′〉) = 2 = χ(G′). Let p = 6k + 1.

Then |N [S]| = 3t = 3dp6e = 3d6k+1
6 e = 3

(
p−1

6

)
+ 3 = dp2e + 1. Let

p = 6k + 2. Then |N [S]| = 3t = 3dp6e = 3d6k+2
6 e = 3

(
p−2

6

)
+ 3 =

dp2e + 1. It implies that S would be a γMχ- set of G′. Therefore

γMχ(G′) = dp6e. By corollary (2.3.4), γMχ(G′) = γMχ(G) and hence

e ∈ ξ0
Mχ(G).

Case(ii): when p ≡ 0, 3, 4, 5(mod 6). Let S = {vi, vj, v3, v6, · · · , vt} ⊆
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V (G′) with |t| = |S| = dp6e+ 1 such that d(vi) = d(vi) = 3, |N(S)| =

3(t − 2) + 4 = 3t − 6 + 4 = 3t − 2, d(vi, vj) = 1 and χ(〈S ′〉) =

2 = χ(G′). For p = 6k, |N [S]| = 3t = 3
(
dp6e+ 1

)
= 3

(
d6k

6 e+ 1
)

=

3
(
p
6

)
+ 3 ≥ dp2e + 3. If p = 6k + 3 then |N [S]| = 3t = 3

(
dp6e+ 1

)
=

3
(
d6k+3

6 e+ 1
)

= 3
(
p−3

6

)
+ 6 ≥ dp2e + 3. If 6k + 4 then |N [S]| =

3t = 3
(
dp6e+ 1

)
= 3

(
d6k+4

6 e+ 1
)

= 3
(
p−4

6

)
+ 6 ≥ dp2e + 3. For

6k + 5, |N [S]| = 3t = 3
(
dp6e+ 1

)
= 3

(
d6k+5

6 e+ 1e
)

= 3
(
p−5

6

)
+ 6 ≥

dp2e + 3. It implies that S would be a γMχ- set of G′ but not min-

imal. If |S| − 1 = dp6e then |N [S]| = dp2e. Hence the set S will be

a γMχ- set of G′. Therefore γMχ(G′) = dp6e. By corollary (2.3.4),

γMχ(G′) < γMχ(G) and hence, e ∈ ξ−Mχ(G).
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Theorem 5.10.8: If a graph G consists of exactly two pendants with

p vertices then (i) γMχ(G+e) > γMχ(G), if p is odd (ii) γMχ(G+e) =

γMχ(G), if p is even.

Proof: Let G be any graph which consists of two pendants. For any

tree G,χ(G) = 2. Suppose joining the two pendants by an edge e, it

creates a cycle.

Case (i): Let p be odd. Then (G+ e) becomes an odd cycle. Hence

γMχ(G+e) = p. Since γMχ(G) = dp6e or dp6e+1, γMχ(G+e) > γMχ(G),

if p is odd.

Case (ii): Let p be even. Then (G+ e) becomes an even cycle. By

proposition (2.3.3), γMχ(G+ e) = γMχ(G), if p is even.

Theorem 5.10.9: Let T be a tree with diam(T ) = 3. Then

(i) γMχ(T + e) = γMχ(T ), if e = vivj such that d(vi, vj) = 3

(ii) γMχ(T + e) > γMχ(T ), if e = vivj such that d(vi, vj) = 2.
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Proof: Let T be a tree and χ(T ) = 2. Since diam(T ) = 3, it has

two central u and v vertices with (p − 2) vertices and e = uv is a

dominating edge of T . Let S be the γMχ- set of T which consists of

u and v. Then γMχ(T ) = |S| = 2.

Case (i): Let e = vivj ∈ E(T c). Adding the edge e in T with

d(vi, vj) = 2, {T+e} constitutes a triangle. It implies that χ{T+e} =

3. Hence any γMχ- set of {T + e} must contain the triangle and

γMχ(T + e) = 3. Thus γMχ(T + e) > γMχ(T ) and e ∈ ξ+
Mχ(T ).

Case (ii): If d(vi, vj) = 3 then {T + e} constitutes a 4 - Cycle

and χ(T + e) = 2. It does not affect the value of χ(T ). Hence

γMχ(T + e) = 2 = γMχ(T ) and e ∈ ξ◦Mχ(T ).

Theorem 5.10.10: Let T be a tree with atleast one vertex v such

that d(v) ≥ dp2e − 1 and d(vi) ≤ 2. If e = vivj is any edge of TX

such that d(vi, vj) = n then (i) e ∈ ξ0
Mχ(T ), if d(vi, vj) = n is odd (ii)

e ∈ ξ+
Mχ(T ), if d(vi, vj) = n is even.

Proof: Let T be a tree and χ(T ) = 2. Since T has a vertex v such

that d(v) ≥ dp2e − 1, any γMχ set of T contains the vertex v. Since

χ〈(T )〉 = 2, S = {v, u} is the subset of T with d(v, u) = 1. Then

|N [S]| ≥ dp2e+ 1 and χ(〈S〉) = 2 = χ(T ). Therefore S is the γMχ set
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of T and γMχ(T ) = 2. Suppose adding an edge e = vivj ∈ TC to a

tree T such that d(vi, vj) = n, then two cases arise.

Case (i): Let d(vi, vj) = n be odd. Then (T + e) contains an even

cycle and χ(T + e) = 2 = χ(T ). Then γMχ of (T + e) is same as the

γMχ set S of T . It implies that γMχ(T + e) = 2 = γMχ(T ) and hence

e ∈ ξ0
Mχ(T ), if n is odd.

Case (ii): Let d(vi, vj) = n be even. Then (T + e) constitutes an

odd cycle and χ(T + e) = 3. Hence any γMχ set S ′ of (T + e) must

contain the odd cycle. Therefore γMχ(T + e) = |S ′| ≥ 3. Since

γMχ(T ) = 2, γMχ(T + e) > γMχ(T ). It implies that e ∈ ξ+
Mχ(T ), if n

is even.

Theorem 5.10.11: If there exists a cliqueKr in (G+e) then γMχ(G+

e) 6= γMχ(G) for some edge e ∈ ξ+
Mχ(G).

Proof: Let G be a graph with χ(G) = t. Then any γMχ set of G

must contains the cpn-set ofG with cpn(G) = k. Suppose there is any

clique Kr in (G+ e) when adding any edge e in G,χ(G+ e) = s > t.

Then cpn(G + e) = m > k. Hence any γMχ set of (G + e) must

contains the cpn-set of (G + e). Therefore, γMχ(G + e) > γMχ(G)

and e ∈ ξ+
Mχ(G).
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5.11 CEAMχ and UEAMχ Graphs

In this section, CEAMχ and UEAMχ- graphs are investigated for the

graphs.

Theorem 5.11.1: Let G be a connected graph of diameter 2. Then

G ∈ CEAMχ.

Proof: Since diam(G) = 2, the graph G contains a cycle or pen-

dants. The graph structure becomes like G = K1,p−1 a star and C4,

an even cycle. By proposition (2.3.2)(ii) and (2.3.3), γMχ(G) = 2.

By adding an edge e to G, it creates at least a triangle. Then

γMχ(G+e) = 3 > γMχ(G), for all e ∈ E(Gc). Hence G ∈ CEAMχ.

Theorem 5.11.2: Let G be a cycle on p vertices. Then G ∈ CEAMχ

if and only if one of the following holds. (i) G is an odd cycle, p ≥ 5

(ii) G = C4 and G = Cp, p ≡ 0 (mod 6), p ≥ 7.

Proof: Let G = Cp be a cycle with p vertices and G ∈ CEAMχ.

Then to prove the conditions (i) and (ii) are true. Let G′ = G + e.

Since the graphG is CEAMχ, either γMχ(G′) < γMχ(G) or γMχ(G′) >

γMχ(G). Suppose γMχ(G′) < γMχ(G), for any e ∈ E(Gc). Then there
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exists either two odd cycles or one odd and one even cycles in G′.

These two odd cycles are color critical. Now, let γMχ(G′) > γMχ(G).

Then G′ must contain either odd cycles or one odd and one even

cycles. Therefore, we get p ≡ 0(mod 6), and G = C4.

Conversely, if G is an odd cycle and G = C4, G = Cp, p ≡

0(mod 6), by proposition (5.10.1), we obtain G ∈ CEAMχ.

Theorem 5.11.3: Let G1 and G2 be any two connected graphs. If

either the graph G1 or G2 is not complete then (G1∪G2) ∈ CEAMχ.

Proof: Suppose G1 and G2 both are complete graphs with p1 and

p2 vertices. Then both are vertex color critical graphs. Let G =

G1 ∪ G2. Let p1 = p2 and p = p1 + p2 then χ(G1) = χ(G2) and

γMχ(G) = χ(G1). If an edge e = uv ∈ E(Gc) is added to G where

u ∈ V (G1) and v ∈ V (G2) then γMχ(G+e) = γMχ(G). It implies that

G ∈ UEAMχ. It is a contradiction to the assumption. If p1 < p2 then

χ(G1) < χ(G2) and γMχ(G) = χ(G2). If e = uv ∈ E(Gc) is added

to G where u ∈ V (G1) and v ∈ V (G2) then γMχ(G + e) = γMχ(G).

It implies that G ∈ UEAMχ, which is a contradiction. Hence, G ∈

CEAMχ.
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Proposition 5.11.4: Let G = Wp be a wheel graph on p ≥ 5 ver-

tices. Then Wp ∈ UEAMχ, for an edge e = vivj ∈ E(GC) such that

d(vi, vj) > 2.

Proof: Let G = Wp = Cp−1V K1, p ≥ 5 with (v1, v2, · · · , vp−1) ∈

V (Cp−1) and vp is a central vertex.

Case (i): When p is odd. Then χ(Wp) = 3. By the proposition

(2.3.6), γMχ(G) = 3. If adding any edge e = vivj ∈ E(Gc) such

that d(vi, vj) > 2, it creates another triangle and it does not affect

the chromatic number of G. Hence χ(G + e) = χ(G) = 3. Thus

γMχ(G+ e) = γMχ(G) for any e ∈ E(GC) and Wp ∈ UERMχ(G).

Case (ii): When p is even. Then by the proposition (2.3.6), γMχ(G) =

p. Let e = vivj ∈ E(Gc) such that d(vi, vj) > 2, it creates another

triangle and it does not affect the chromatic number of G. Hence

χ(G+ e) = χ(G) = 4 and (G+ e) is vertex color critical graph. Thus

γMχ(G+ e) = p. Hence γMχ(G+ e) = γMχ(G). Thus Wp ∈ UEAMχ

when d(vi, vj) > 2 and p is even.

Proposition 5.11.5: Let G = Wp be a wheel graph with p ≥ 5.

Then Wp ∈ CEAMχ, for an edge e = vivj such that d(vi, vj) = 2.
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Proof: For G = Wp, a wheel, by the proposition (2.3.6),

γMχ(G) =


3, if p is odd

p, if p is even.

Case (i): When p is odd. Let e = vivj such that d(vi, vj) = 2. If add

an edge e ∈ E(GC) in G then {G+e} contains a clique K4. It implies

that χ{G+e} = 4 and hence any γMχ- set of {G+e}must contain K4.

Therefore γMχ(G+e) = 4. Since γMχ(G) = 3, γMχ(G+e) > γMχ(G).

It implies that e ∈ ξ+
Mχ(G) and G ∈ CEAMχ if p is odd.

Case (ii): When p is even. By adding an edge e = vivj ∈ E(GC)

such that d(vi, vj) = 2 in G, {G+ e} contains a clique K4. Hence any

γMχ- set of {G+e} contains K4 and it satisfies χ(G+e) = χ(G) = 4.

Therefore γMχ{G+e} = 4. Since γMχ(G) = p, γMχ{G+e} < γMχ(G).

Hence, e ∈ ξ−Mχ(G) and G ∈ CEAMχ, if p is even.

The following theorem gives the characterization of CEAMχ of

graph G. When adding an edge ‘e’ from the complement of a graph

G.

Theorem 5.11.6: Let G be any connected graph and e ∈ E(Gc).

Then G ∈ CEAMχ if and only if (i) {G+ e} contains a clique (ii) G

is a vertex color critical graph.
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Proof: Let G ∈ CEAMχ. Then the graph G satisfies the condition

either γMχ(G+ e) < γMχ(G) or γMχ(G+ e) > γMχ(G).

Case (i): If γMχ(G+ e) < γMχ(G) then χ(G+ e) < χ(G). It implies

that the graph G is vertex color critical graph. Hence the condition

(ii) holds.

Case(ii): If γMχ(G+ e) > γMχ(G) then χ(G+ e) > χ(G). It implies

that the graph (G + e) contains a vertex color critical subgraph as

aclique. Hence the condition (i) holds.

Conversely, if the conditions (ii) then by theorem (5.10.11), G ∈

CEAMχ. Let the graph G be vertex color critical. Then cpn(G) = p

and γMχ(G) = p. If adding any edge in G,χ(G + e) < χ(G) and

cpn(G+ e) < p. Hence γMχ(G+ e) < p and G ∈ CEAMχ.
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a Graph

Abstract

This chapter introduces a new notion connected majority dom-chromatic

set of a graph G. For a graph G, the connected majority dom-

chromatic number γCMχ(G) is determined for some standard graphs.

The exact values of γCMχ(G) is investigated for product graphs.

Bounds and characterization theorem on γCMχ(G) for connected and

disconnected graphs are also studied.
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6.1 Introduction

In 1979, the concept “Connected Domination Number in Graphs”

was introduced by Sampathkumar and Walikar [53] and they pro-

duced many results in their article. In 2012, the parameter “con-

nected dom-chromatic number” was studied by Janakiraman and

Poobalaranjani [31]. They established more results on γch(G) with

other parameters for connected and disconnected graphs. In 2017,

Joseline Manora and Muthukani Vairavel [34] introduced “Connected

majority dominating set of a graph” and its number γCM(G). They

elucidated the parameter γCM(G) in various levels by establishing

many results and inequalities. They produced the exact values of

γCM for some standard graphs and particularly product graphs. Also

they developed some inequalities for γCM(G) with other parameters.

These two parameters γch(G) and γCM(G) gave the motivation

to define a new graph theoretical parameter “Connected Majority

Dom-Chromatic set of a graph” and its number γCMχ(G) on graphs.

Organization of this chapter is as follows. In section 6.1, the in-

troduction of this chapter is given and in section 6.2, the concept

of connected majority dom-chromatic set of a graph G and its num-
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ber γCMχ(G) are defined with examples. The particular values of

γCMχ(G) for various structures such as some standard graphs, grid,

cylinder, Torus, corona graphs are determined in section 6.3. In

section 6.4, characterization theorems and bounds on γCMχ(G) are

discussed.

6.2 Connected Majority Dom-Chromatic

Set of a Graph

In this section, the concept of Connected Majority Dom-Chromatic

set of a graph and its number are defined with an example.

Definition 6.2.1: A Majority Dom-Chromatic (MDC) set S is said

to be a connected Majority Dom-Chromatic (connected MDC) set if

the induced subgraph 〈S〉 is connected in G. The connected MDC

set is minimal if no proper subset of S is a connected MDC set.

Definition 6.2.2: The minimum cardinality of a minimal connected

MDC set is called the connected MDC number and is denoted by

γCMχ(G). The maximum cardinality of a minimal connected MDC

set is called the upper connected MDC number of G and it is denoted

by ΓCMχ(G).
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Example 6.2.3: Consider the graph G with p = 21 vertices.

Figure 6.1: G

For the above graph, S1 = {v2, v3, v5, v6, v8, v10}, S2 = {v8, v10, v16}

are the minimal connected MDC sets of G. Hence γCMχ(G) = 3

and ΓCMχ(G) = 6. For the graph G, γMχ(G) = 3, γch(G) = 7 and

γM(G) = 2.

Proposition 6.2.4: For any connected graphG, (i) γMχ(G) ≤ γCMχ(G)

(ii) γCMχ(G) ≤ γch(G) ≤ γcch(G) and (iii) γc(G) ≤ γCMχ(G).

Proof: (i) Since any connected MDC set is a MDC set ofG, γMχ(G) ≤

γCMχ(G).

(ii) Since any connected dom-chromatic set of G is dom-chromatic

set, γcch(G) ≥ γch(G). Also since every dom-chromatic set contains

a connected MDC set of G, γCMχ(G) ≤ γch(G). Hence γCMχ(G) ≤

γch(G) ≤ γcch(G).
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(iii) Since any γc- set dominates the full vertex set of G and any γCMχ-

set dominates half of the vertices and it preserving the chromatic set,

γc(G) ≤ γCMχ(G).

Observations 6.2.5: (i) If the graph G is vertex color critical

graph then γCMχ(G) = γMχ(G) = p.

(ii) If G is a triangle free graph with χ(G) ≥ 5, γCMχ(G) ≥ 5.

(iii) For any bipartite graph with dominating edge, γCMχ(G) = 2.

(iv) If a connected graph G has at least one full degree vertex then

γC(G) < γCMχ(G). For example, G = K1,p−1, γC(G) = 1 and

γCMχ(G) = 2.

(v) For any vertex color critical graph G, γC(G) < γCMχ(G).

(vii) If a connected graph G with at least one majority dominating

vertex v then γCMχ(G) = γC(G).

For example, G = Dr,s, r ≤ s, γC(G) = 2 and γCMχ(G) = 2.

Results 6.2.6: (i) For G = Dr,s, K1,p−1, p ≥ 2, γCMχ(G) = 2.

(ii) Let G = Km,n. Then γCMχ(G) = 2.

(iii) Let G = Kp be a complete graph. Then γCMχ(G) = p.

(iv) For any caterpillar graph G, γCMχ(G) = dp4e − 1.
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Proposition 6.2.7: For any cycle G = Cp, p ≥ 8,

γCMχ(G) =


p, if p is odd

dp2e − 2, if p is even.

Proof: Let V (G) = {v1, v2, · · · , vp} be the vertex set of G. For a

cycle G = Cp, χ(G) = 2, if p is even and χ(G) = 3, if p is odd.

Case (i): Let p be odd. Then the graph G = Cp becomes an odd

cycle. Since the graph G is vertex color critical, by the propsition

(2.3.5), γMχ(G) = p. It implies that γMχ(G) = |S| = |{v1, v2, · · · , vp}|

where S is a MDC set of G and the induced subgraph 〈S〉 is con-

nected. Therefore S is a connected MDC set ofG. Thus γCMχ(G) = p.

Case (ii): Let p be an even. Let S = {v1, v2, · · · , vt} be any set

with |S| = t = dp2e − 2 and d(vi, vi+1) = 1, i = 1, 2, · · · , (t − 1).

Then |N [S]| = dp2e − 2 + 2 = dp2e. Since χ(G) = 2, χ(〈S〉) = χ(G).

Therefore S is a γMχ- set of G. Since d(vi, vi+1) = 1, the vertices of

S are in consecutive. Thus, the induced subgraph 〈S〉 is connected.

Hence S is a γCMχ- set of G and γCMχ(G) ≤ dp2e − 2.

Let S ′ = S − {v} with S ′ = dp2e − 3. Then |N [S ′]| = dp2e − 3 +

2 = dp2e − 1 < dp2e. Hence the set S ′ will not be a γM -set of G.

Therefore γCMχ(G) > |S| = dp2e − 3 and γCMχ(G) ≥ dp2e − 2. Hence,

γCMχ(G) = dp2e − 2.
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Proposition 6.2.8: Let G be a path Pp, p ≥ 7. Then γCMχ(G) =

dp2e − 2.

Proof: From the similar arguments as in case (ii) of proposition

(6.2.7), γCMχ(G) = dp2e − 2.

6.3 γCMχ for Product and Corona Graphs

The particular value of γCMχ for Corona graph and product graph

such as Grid, Torus and Cylinder are discussed in this section.

Proposition 6.3.1: Let the product graph G = P2×Pj, j ≥ 5, be a

Grid. Then γCMχ(G) = dp4e − 1.

Proof: Let G = P2 × Pj, j ≥ 5. Let {v1, v2, . . . , vj, u1, u2, . . . , uj} be

the vertex set of V (G) in the first and second row respectively and

χ(G) = 2. Consider the set S = {v2, v3, . . . , vt} with |S| = dp4e − 1

such that d(vi, vj) = 1, i 6= j. Then |N [S]| = 2t + 2 = 2
(
dp4e − 1

)
+

2 = 2dp4e = dp2e ≥ d
p
2e. It implies that the set S is the majority

dominating set of G. Since d(vi, vj) = 1, χ(〈S〉) = 2 = χ(G) and the

induced subgraph 〈S〉 is connected. Hence S is connected MDC set

of G and γCMχ(G) ≤ |S| = dp4e − 1.
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Suppose the set |S ′| = |S|− 1 = dp4e− 2. Then |N [S ′]| = 2t+ 2 =

2(dp4e− 2) + 2 = 2dp4e− 2 < dp2e. It implies that the set S ′ would not

be a connected majority dom-chromatic set for G. Hence γCMχ(G) >

|S ′| = dp4e − 2 or γCMχ(G) ≥ dp4e − 1. Thus, γCMχ(G) = dp4e − 1.

Remark 6.3.2: For the graph G = P2 × Pj, j < 5, γCMχ(G) = 2.

Proposition 6.3.3: For a grid graph G = P3 × Pj, j ≥ 4,

γCMχ(G) =


bp6c, if j is odd

p
6 , if j is even.

Proof: Let G = P3×Pj, j ≥ 4 and V (G) = {v11, v12, . . . , v1j, v21, v22,

. . . , v2j, v31, v32, . . . , v3j} be the vertex set of first, second and third

row respectively and |V (G)| = p = 3j, j ≥ 4. Then χ(G) = 2.

Case (i): Let j be odd. Consider the set S ⊆ V (G), S = {v22, v23, . . . ,

v2t} with |S| = bp6c. Now, |N [S]| = 3t+ 2 = 3bp6c+ 2 = p
2 + 2 > dp2e.

It implies that p
2 = 3j

2 and S is a majority dominating set of G. Since

every vertex in S is of distance one, χ(〈S〉) = 2 = χ(G) and the

induced subgraph 〈S〉 of G is connected. Therefore, the set S is a

γCMχ- set of G. Hence γCMχ(G) ≤ |S| = bp6c.

Let, S ′ = S−{v2j} with |S ′| = bp6c−1. Then |N [S ′]| = 3(t+2) =

3
(
bp6c
)

+ 2 = 3bp6c − 1 = p
2 − 1 < dp2e. Hence S ′ would not be a
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majority dominating set of G. Therefore γCMχ(G) > |S ′| = bp6c − 1.

Then γCMχ(G) ≥ bp6c. Hence, γCMχ(G) = bp6c, if j is odd.

Case (ii): Let j be even. Let S = {v21, v22, . . . , v2t} ⊆ V (G) with

|S| = t = p
6 . Now, |N [S]| = 3t + 2 = 3

(
p
6

)
+ 2 > dp2e. It implies

that S is a majority dominating set of G and the induced subgraph

〈S〉 of G is connected. Therefore, the set S is a γCMχ- set of G and

γCMχ(G) ≤ |S| = p
6 . Applying the same arguments as in case (i), we

get, γCMχ(G) ≥ p
6 . Thus γCMχ(G) = p

6 , if j is even.

Corollary 6.3.4: For a grid graph G = P4 × Pj, j ≥ 3,

γCMχ(G) =


dp6e, if p ≡ 0 (mod 6)

dp6e − 1, if p ≡ 2, 4 (mod 6).

Proof: By similar arguments as in proposition (6.3.3), we obtain the

result.

Proposition 6.3.5: Let the product graph G = C3 × Pj, j ≥ 3 be a

cylinder. Then γCMχ(G) = dp6e+ 1.

Proof: Consider the graph G = C3 × Pj, j ≥ 3. Let V (G) =

{v11, v12, . . . , v1j, v21, v22, . . . , v2j, v31, v32, . . . , v3j} be the vertex set of

G and |V (G)| = p = 3j. Since the graph G contains a triangle,
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χ(G) = 3. Consider the subset S = {v12, v22, v32, v13, . . . , v1j} ⊆

V (G) with |S| = dp6e + 1 such that the vertices {v12, v22, v32} forms

a triangle and d(v1i, v1j) = 1, i 6= j. Then |N [S]| = 3(t − 2) + 4 =

3
(
dp6e − 1

)
+ 4 = dp2e + 1 ≥ dp2e. It implies that the set S is the

majority dominating set of G. Since the set S contains a trian-

gle, χ(〈S〉) = 3 = χ(G) and since d(v1i, v1j) = 1, the induced sub-

graph 〈S〉 is connected. Hence S is the connected MDC set of G and

γCMχ(G) ≤ dp6e+ 1.

Suppose the set |S ′| = |S|−1 = dp6e. Then |N [S ′]| = 3
(
dp6e − 2

)
+

4 = dp2e − 2 < dp2e. Hence the set S ′ will not be a connected MDC

set for G. Therefore, γCMχ(G) > dp6e or γCMχ(G) ≥ dp6e + 1. Thus,

γCMχ(G) = dp6e+ 1.

Proposition 6.3.6: Let G = C4 × Pj, j ≥ 4 be a cylinder. Then

γCMχ(G) =


p
6 , if j ≡ 0 (mod 3)

dp6e − 1, if j ≡ 1, 2 (mod 3).

Proof: Let G = C4×Pj, j ≥ 4. Let V (G) = {v11, v12, . . . , v1j, v21, v22,

. . . , v2j, v31, v32, . . . , v3j, v41, v42, . . . , v4j} be the vertex set of first, sec-

ond, third and fourth rows of G respectively and χ(G) = 2.
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Case (i): Let j ≡ 0(mod 3). Then p = 0(mod 6) and p = 6r.

Let S = {v11, v12, . . . , v1(p6)
} ⊆ V (G) with |S| = p

6 . Now, |N [S]| =

3|S| + 1 = 3
(
p
6

)
+ 1 = p

2 + 1 ≥ dp2e. Therefore S is a majority

dominating set of G. Since every vertex of S is of distance one,

χ(〈S〉) = 2 = χ(G) and the induced subgraph 〈S〉 of G is connected.

Therefore, the set S is a γCMχ- set of G. Hence, γCMχ(G) ≤ |S| = p
6 .

Suppose, let S ′ = S − {v1j} with |S ′| = p
6 − 1. Then |N [S ′]| =

3|S ′| − 3 = 3(p6 − 1) − 3 < dp2e. It implies that S ′ could not be

majority dominating set of G and γCMχ(G) > |S ′| = p
6−1. Therefore

γCMχ(G) ≥ p
6 . Thus, γCMχ(G) = p

6 , if j ≡ 0(mod 3).

Case (ii): Let j ≡ 1, 2(mod 3). Then p = 2(mod 6) such that p

is divided by 4. Let S = {v11, v12, . . . , v1t} ⊆ V (G) with |S| = t =

dp6e−1. Now, |N [S]| = 3|S|+1 = 3{dp6e−1}+1. Let p = 6r+2. Then

|N [S]| = 3
[

6r+2
6 − 1

]
+ 1 = 6r+2

2 − 2 = 3r − 1 = 3
(
p−2

6

)
− 1 ≥ dp2e.

Let p = 4(mod 6) such that p is divided by 4. Let S = {v12, v13,

. . . , v1t} ⊆ V (G) with |S| = t = dp6e − 1. Now, |N [S]| = 3|S| + 1 =

3{dp6e − 1} + 2. Let p = 6r + 4. Then |N [S]| = 3
[

6r+4
6 − 1

]
+ 2 =

6r+4
2 −1 = 3r+1 = 3

(
p−4

6

)
−1 > dp2e. It implies that S be a majority

dominating set of G. Since all vertices of S are of distance one, the

vertex set of S is connected. Hence S is connected MDC set of G.
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Therefore γCMχ(G) ≤ dp6e − 1.

Now, suppose S ′ = S−{v1j} with |S ′| = dp6e− 2. Then |N [S ′]| =

3|S ′| − 3 = 3(dp6e − 1) − 3 < dp2e. It implies that S ′ could not be

a majority dominating set of G and γCMχ(G) > |S ′| = dp6e − 2.

Therefore γCMχ(G) ≥ dp6e − 1. Hence, γCMχ(G) = dp6e − 1 if j =

1, 2(mod 6).

Corollary 6.3.7: For the graph G = C5 × Pj, j ≥ 6 be a cylinder,

γCMχ(G) =


dp6e, if p ≡ 1, 2(mod 6)

dp6e+ 1, if p ≡ 0.3, 4, 5(mod 6).

The following results are concerned with the corona graph struc-

ture for various two graphs.

Proposition 6.3.8: Let G = Ct ◦Kj, t = 6 and j ≥ 2 be a corona

graph with a cycle Ct and a complete graph Kj. Then γCMχ(G) =

dp6e+ 2.

Proof: Let V (G) = {v1, v11, v12, . . . , v1j, v2, v21, v22, . . . , v2j, . . . , v6,

v61, . . . , v6j} with |V (G)| = p = 6j+6, where vi ∈ Ct and vij ∈ Kj, i =

1, . . . , 6, j ≥ 2. Let S = {v1, v11, v12, . . . , v1(p6−1), v2, . . . , v t
2
} ⊆ V (G)

with |S| = p
6 − 1 + 3 = dp6e+ 2. Now, |N [S]| ≥

6∑
i=1

d(vij) +

t
2∑
i=1

d(vi) ≥
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3dp6e + 2 ≥ dp2e + 2 ≥ dp2e = 3(j + 1). It implies that S is a

majority dominating set of G. Since G contains a complete graph

Kj, j = p
6 − 1, χ(〈S〉) = p

6 − 1 = χ(G). Since all the vertices of S

are connected, the S is a γCMχ- set of G. Hence γCMχ(G) ≤ dp6e+ 2.

Now, suppose S ′ = S − {vi} with |S ′| = dp6e+ 2− 1. Then |N [S ′]| =

3d(vi) + 2 − d(vi) = p
3 + 2 < dp2e. It implies that S ′ could not be

a majority dominating set of G. Hence γCMχ(G) < |S ′| = dp6e + 1.

Therefore γCMχ(G) ≥ dp6e+ 2. Thus, we get γCMχ(G) = dp6e+ 2.

Proposition 6.3.9: Let G be any vertex color critical graph of t

vertices and H be any graph with order s ≤ t Let G′ = G◦H be any

corona graph. Then γCMχ(G′) = γCMχ(G) = t.

Corollary 6.3.10: For a Corona graph G = Kt ◦Km,n,m ≤ n,

γCMχ(G) = t, where Kt and Km,n are complete and complete bipar-

tite graph respectively.

Theorem 6.3.11: Let G = Km ◦Kn be a Corona graph with Com-

plete graphs of order m and n. Then γCMχ(G) = m, if m > n and

γCMχ(G) = d pme+ 2, if m ≤ n.

Proof: Consider the graph G = Km ◦ Kn with p = m(n + 1). Let
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{v11, v12, . . . , v1n}, {v21, v22, . . . , v2n}, . . . , {vm1, vm2, . . . , vmn} be the vertex

set of G.

Case (i): When m > n. Then χ(Km) > χ(Kn) and χ(Km) =

cpn(Km) = χ(G). Hence any γMχ- set must contain the full vertex

set of Km. Let S = {v11, v21, . . . , vm1} ⊆ V (Km) with |S| = m. Then

χ(〈S〉) = χ(G). Since the graph G contains Km as a central graph,

it dominates all vertices in m copies of Kn. Then |N [S]| > dp2e and

since the set S contains the vertices of Km, the induced subgraph 〈S〉

is connected and S is connected MDC set of G. Therefore γCMχ(G) =

m, if m > n.

Case (ii): When m ≤ n. Then χ(Km) < χ(Kn) and χ(Kn) =

cpn(Kn) = χ(G). Hence any γMχ- set must contain the full vertex set

of any one copy of Kn. Let S = {v11, v12, . . . , v1n, v21, . . . , vt1}, where

{v11, v12, . . . , v1n} ⊆ V (Kn) and other vertices are from Km such that

d(vi1, vj1) = 1, i 6= j with |S| = d pme+ 2. Then χ(〈S〉) = χ(G). Now,

|N [S]| = n+
(
d pme+ 2− n

)
n = n+ (n+ 3− n)n = 4n ≥ dp2e. Since

d(vi1, vj1) = 1, i 6= j, the induced subgraph 〈S〉 is connected and S is

connected MDC set of G. Therefore γCMχ(G) ≤ d pme+ 2.
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Suppose the set |S ′| = |S| − 1 = d pme + 1. Then |N [S ′]| = n +

(d pme + 1 − n)n = n + (n + 1 + 1 − n)n = 3n < dp2e. It implies

that the set S ′ wouldn’t be a connected MDC set of G. Therefore

γCMχ(G) > d pme+1 or γCMχ(G) ≥ d pme+2. Thus, γCMχ(G) ≤ d pme+2,

if m ≤ n.

Theorem 6.3.12: Let G = Cm◦Cn with m ≥ 3, n ≥ 4, be a Corona

graph with two cycles pf order m and n. Then γCMχ(G) = dm2 e+ 2.

Proof: Let G = Cm◦Cn be a graph with p = m(n + 1). Let

{v11, v12, . . . , v1n}, {v21, v22, . . . , v2n}, . . . , {vm1, vm2, . . . , vmn} be the

vertex set of G. Since G contains a triangle, χ(G) = 3. Let S =

{v11, v12, v13, v21, . . . , vt1} ⊆ V (G), where 〈v11, v12, v13〉 a triangle and

d(v1i, vj1) = 1, i 6= j with |S| = t = dm2 e + 2. Then χ(〈S〉) = χ(G).

Now, |N [S]| =
(
dm2 e+ 2

)
(n+1)−2(n+1)+2 = dp2(n+1)e+2 ≥ dp2e.

S is connected MDC set of G. Therefore γCMχ(G) ≤ dm2 e+ 2.

Suppose the set |S ′| = |S| − 1 = dm2 e + 2. Then |N [S ′]| =(
dm2 e+ 1

)
(n + 1) − 2(n + 1) + 2 = dp2(n + 1)e − (n + 1) + 2 < dp2e.

It implies that the set S ′ wouldn’t be a connected MDC set of G.

Therefore γCMχ(G) > dm2 e + 1 or γCMχ(G) ≥ dm2 e + 2. Thus,

γCMχ(G) = dm2 e+ 2.
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Corollary 6.3.13: Let G = Cm ◦ Cn with m ≥ 3, n = 3 be a graph

with Cycles of order m and n. Then

(i) γCMχ(G) = dm2 e+ 2, if m is odd,

(ii) γCMχ(G) = dm2 e+ 3, if m is even.

Theorem 6.3.14: Let G be a connected graph with χ(G) = γMχ(G).

Then γCMχ(G) = γMχ(G).

Proof: Let χ(G) = γMχ(G) and S be a γMχ- set of G. Suppose

χ(G) = χ(〈S〉) = k then 〈S〉 = Kk. It implies that γMχ(G) = |S| =

k. The induced subgraph 〈S〉 is connected and γCMχ(G) = k. Hence

γCMχ(G) = γMχ(G).

Proposition 6.3.15: Let G be a connected graph which contains all

its vertices of degree d(vi) < dp2e − 1. Then γCMχ(G) < γC(G).

6.4 Characterization Theorems on

γCMχ(G)

In this section, the necessary and sufficient conditions for the con-

nected MDC number γCMχ(G) and bounds on γCMχ(G) are investi-

gated for the graphs.
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Theorem 6.4.1: Let G be a connected graph p ≥ 2. Then G is

vertex color critical if and only if γCMχ(G) = p.

Proof: Let G be a vertex color critical graph. Then by the observa-

tion [2.2.4](ii), γMχ(G) = |S| = p, where S is a γMχ- set of G. Since

γMχ(G) = p, all vertices are in consecutive and 〈S〉 is connected. It

implies that S is a connected MDC set of G and γCMχ(G) = p. The

converse is obvious.

Theorem 6.4.2: Let G be a tree with p vertices. Then γCMχ(G) =

γC(G) if and only if diam(G) = 3, where γC(G) is the connected

domination number of a graph G.

Proof: Let γCMχ(G) = γC(G). Let S and S ′ be the γCMχ-set and

γC-set of G.

Case (i): Suppose diam(G) = 1 then the graph structures become

G = K2. Then by result (6.2.6)(iii), γCMχ(G) = 2. The γC-set of G

is S ′ = {v}. It implies that γC(G) = |S ′| = 1 < γCMχ(G), which is a

contradiction to the assumption.

Case (ii): Suppose diam(G) = 2 then the graphs are like G = P3

and G = K1,p−1. For G = P3, the γCMχ-set is S = {v1, v2} and
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γCMχ(G) = 2. The γC-set is S ′ = {v2} and γC(G) = 1 < γCMχ(G).

It is a contradiction to the assumption. From cases (i) and (ii) we

obtain then diam ≥ 3.

Case (iii): Suppose diam(G) ≥ 4. Then the graph structures being

G = Pp, p ≥ 5. By the result (6.2.8), (1.3.43)(iv), γCMχ(G) = dp2e −

2 < γC(G) = p− 2. Hence the condition γCMχ(G) < γC(G) gives the

contradicton to our assumption. Hence the graph G with diam = 3

is true if γCMχ(G) = γCG.

Conversely, if diam(G) = 3 then the graph G has a dominating

edge e = uv and both u and v have some pendants. Let S = {u, v} ⊆

V (G) with d(u, v) = 1. Then χ(〈S〉) = 2 = χ(G) and 〈S〉 is con-

nected. Clearly |N [S]| = p > dp2e, then S is both γC- set and γCMχ-

set of G. Hence, γCMχ(G) = 2 = γC(G).

Theorem 6.4.3: For even cycle G = Cp, γCMχ(G) = γMχ(G) if and

only if G = Cp, p ≤ 10.

Proof: Let γCMχ(G) = γMχ(G). For even cycle, χ(G) = 2. By the

proposition (6.2.7), γCMχ(G) = dp2e − 2, if p is even. The γCMχ-

of even cycles with p ≥ 4 are 2, 2, 2, 3, 4, 5, . . ., By the proposition

(2.3.3), γMχ(G) = 2, if 4 ≤ p ≤ 8 and γCM(G) = 3, if p = 9, 10.
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Also it gives γCMχ(G) = γMχ(G) if p ≤ 10. Suppose p ≥ 11. Let

G be an even cycle and γCMχ = γMχ. Then χ(G) = 2. By the

proposition(6.2.8) and (2.3.4) γCMχ(G) = dp2e − 2 and γMχ(G) =

dp6e. It implies that γMχ < γCMχ(G), which is a contridiction to the

assumption. Hence G = Cp, p ≤ 10.

Conversely for G = Cp, γCMχ(G) = 2, 2, 2, 3, . . . , 3 ≤ p ≤ 10 and

γMχ(G) = 2, 2, . . . , 3 ≤ p ≤ 10. Hence γCMχ(G) = γMχ(G).

Remark 6.4.4: For any path, γCMχ(G) = γcch(G) if and only if

G = Pp, p = 3, 4 where γCch(G) is connected dom-chromatic number

of G.

Theorem 6.4.5: Let T be a tree with p vertices. Then γCMχ(T ) =

γMχ(T ) if and only if one of the following conditions holds.

(i) T has a vertex of degree d(u) ≥ dp2e − 1,

(ii) Each non-pendant vertex is adjacent to a pendant vertex and

(iii) diam(T ) ≤ 9.

Proof: Let γCMχ(T ) = γMχ(T ). Then S is a γMχ and γCMχ- set of

T with same cardinality. If diam(T ) = 1 then T becomes K2 and

S = {u, v} is the γMχ and γCMχ- set of T where d(u) ≥ dp2e − 1. If
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diam(T ) = 2 then the graph structures like P3, K1,p−1. Let S = {u, v}

be set with d(u, v) = 1 where u is non-pendent and v is pendent of

G. Then d(u) = p − 1 ≥ dp2e − 1. Therefore the tree T satisfies

the conditions (i) and (ii). Suppose diam(T ) = 3. Then T has a

dominating edge e = uv and χ(T ) = 2. Let S = {u, v} be the γMχ

and γCMχ- set of T with d(u) ≥ dp2e − 1 and d(v) = 1. Hence both

vertices u and v are adjacent and the non pendent vertex u is alwaus

adjacent to a pendent v and vice versa. Hence condition (i) and (ii)

holds.

Next consider a tree T with diam ≥ 4. Then T path Pp with

4 ≤ diam(T ) ≤ 7. By the corollary (2.3.4), γMχ(T ) = 2 and by

proposition (6.2.8), γCMχ(T ) = 2. Hence this result is true only if

p = 5, 6, 7, 8 and diam(T ) = 4, 5, 6, 7. Thus 4 ≤ diam(T ) ≤ 7 ≤ 9

and the condition (iii) holds. Let S = {vi, vj, vk} be the γMχ- set of T

such that d(vi, vj) = 1. Then |N [S]| ≥ dp2e and χ(〈S〉) = 2 = χ(T ).

It implies that γMχ(T ) = |S| = 3. Since d(vi, vj) = 1 = d(vj, vk),

the induced subgraph 〈S〉 is connected and S is γCMχ- set of T and

γCMχ(T ) = |S| = 3. Then the tree T has diam(T ) = 8 or 9. Hence

the condition (iii) holds. Now, suppose diam(T ) ≥ 10. Then by

corollary (2.3.4), γMχ(T ) = dp6e or dp6e+1 and by proposition (6.2.8),
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γCMχ(T ) = dp2e − 2. It implies that γCMχ(T ) > γMχ(T ), which is

a contradiction to the assumption. Hence T has diam ≤ 9 and the

condtion (iii) holds. The converse is obvious.

Theorem 6.4.6: For any tree T, γCMχ(T ) = 2 if and only if T has

for at least two vertices vi with d(vi) ≥ dp2e − 2.

Proof: Let γCMχ(T ) = 2. Let S be a γCMχ- set of T and γCMχ(T ) =

|S| = 2. Then S = {vi, vj} with d(vi, vj) = 1. To prove that T has at

least two vertices vi with d(vi) ≥ dp2e − 2. Suppose T has vertices vi

with d(vi) ≤ dp2e−3. Then |N [S]| = d(vi)+d(vj) ≤ dp2e−3+dp2e−3 ≤

p − 6 < dp2e. It implies that S is not be a majority dominating set

of T with |S| = 2. It is a contradiction to the assumption that

S is a γCMχ- set of T . Hence T has at least two vertices vi with

d(vi) ≥ dp2e − 2.

Conversely, suppose T has at least two vertices vi and vj with

d(vi) ≥ dp2e − 2, for i and j. To prove γCMχ(T ) = 2. Let S =

{vi, vj} ⊆ V (T ) with d(vi, vj) = 1. If d(vi) = dp2e − 2 = d(vj) then

|N [S]| = |N [vi]| + |N [vj]| = dp2e − 2 + dp2e − 2 = p − 4 = dp2e. It

implies that S is a majority dominating set of T . If d(vi) = dp2e − 2

and d(vj) ≥ 2 then |N [S]| = dp2e. Hence S is a majority dominating
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set of T . Since χ(T ) = 2, χ(〈S〉) = 2 and 〈S〉 is connected. Hence

S is a connected MDC set of T and γCMχ(T ) ≤ |S| = 2. Suppose

S ′ = {vi} and |S ′| < |S|. Then |N [S ′]| < dp2e and S ′ is not a majority

dominating set of T . Since χ(T ) = 2, χ(〈S〉) = 1 6= χ(T ). Therefore

S is not a connected MDC set of T . Hence γCMχ(T ) > |S ′| and

γCMχ(T ) ≥ |S| = 2. Thus, γCMχ(T ) = 2.

Theorem 6.4.7: If G is a vertex color critical graph with p vertices

and q edges then dp−∆(G)
2 e+ 1 ≤ γCMχ(G) ≤ 2q − p.

Proof: The theorem is proved by induction on ∆(G). Since the

graph G is vertex color critical, γCMχ(G) = p. When ∆(G) = 1, then

the graph G = K2 and γCMχ(G) = 2 = d2−∆(G)
2 e+ 1 = dp−∆(G)

2 e+ 1.

When ∆(G) = 2, then the graphs are cycles Cp. Since odd cycle

Cp is a vertex color critical, γCMχ(G) = p, p ≥ 3. Since |V (G)| =

p = |E(G)| = q, γCMχ(G) = 2q − p. Therefore the upper bound

exists for odd cycle. Since ∆(G) = 2, G = K3 is a complete graph

and γCMχ(G) = 3 = 2q − p. When ∆(G) ≥ 3 and G is a vertex

color critical graph then G = Kp, p ≥ 4 is a complete graphs. Since

|E(G)| = q = p(p−1)
2 , γCMχ(G) = p < 2q − p = 2

(
p(p−1)

2

)
− p =

(p2 − 2p). Hence γCMχ(G) < 2q − p, if ∆(G) ≥ 3. The lower bound
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is sharp for G = K2 and the upper bound is sharp for G = Cp, odd

cycle.

6.5 γCMχ for Disconnected Graphs

In this section, results on γCMχ(G) are investigated for disconnected

graphs.

Theorem 6.5.1: Let G be a disconnected graph with G1, G2, . . . , Gm

components which are all vertex color critical. If any one component

Gi such that cpn(Gi) ≥ dp2e then γCMχ(G) = |V (Gi)|, for any 1 ≤

i ≤ m.

Proof: Let G1, G2, . . . , Gm be the m components which are vertex

color critical. Then χ(〈Gi − v〉) < χ(Gi), for all i = 1, 2, . . . ,m. Let

r1, r2, . . . , rm be the chromatic preserving numbers of G1, G2, . . . , Gm.

Then cpn(G) = max{r1, r2, . . . , rm}. Suppose cpn(G) = ri for any

i = 1, 2, . . . ,m such that |ri| ≥ dp2e. Hence any γCMχ- set S must

contain the full vertex set of Gi such that cpn(Gi) = ri, for any i.

Case (i): Consider |V (Gi)| < dp2e. Then the set S wouldn’t be a

majority dominating set of G. It implies that S would be a majority
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dominating set by adding some vertices from different components.

But the induced subgraph 〈S〉 is not connected. Hence γCMχ does

not exist for |V (Gi)| < dp2e.

Case (ii): Let |V (Gi)| ≥ dp2e. Since the set S contains the full

vertex set of Gi, the induced subgraph 〈S〉 is connected. Also, if

|V (Gi)| ≥ dp2e and cpn(Gi) = cpn(G), χ(〈S〉) = χ(G). Therefore

γCMχ(G) = |V (Gi)|, for any i ≤ i ≤ m.

Theorem 6.5.2: Let G be a disconnected graph with m components.

If all components Gi such that |V (Gi)| < dp2e, i = 1, 2, . . . ,m then

γCMχ(G) does not exist.

Proof: Let S = {v1, v2, . . . , vr} ⊆ V (Gi) for i = 1, 2, . . . , r and

r ≤ m. Since each component Gi has the vertex set |V (Gi)| <

dp2e, i = 1, 2, . . . ,m, the set S contains vertex set of any one com-

ponent Gi and some vertices from other components to satisfies the

condition |N [S]| ≥ dp2e. Hence the induced subgraph 〈S〉 would not

be connected. Therefore γCMχ(G) does not exist for the disconnected

graph such that |V (Gi)| < dp2e, for all i.
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Theorem 6.5.3: Let G be a disconnected graph with m components

which are not vertex color critical. If any one component Gi such that

|V (Gi)| ≥ dp2e then 2 ≤ γCMχ(G) ≤ dp2e − 2.

Proof: Let G1, G2, . . . , Gm be the components of a disconnected

graph G. Let χ(G) ≥ 2 and S be the subset of any one compo-

nent Gi of G such that χ(〈S〉) = χ(G) and |V (Gi)| ≥ dp2e. Since the

components of G are not vertex color critical, G′is are not either Kp

or Cp, p is odd. If diam(Gi) = 1 then the component Gi is a path

P2 and γCMχ(G) = 2. If diam(Gi) = 2 then Gi = P3 or K1,2 and

γCMχ(G) = 2. If diam(Gi) = 3 then Gi = Dr,s, a double star and

Gi = P4 and by the corollary (2.3.4) and (2.3.1)(iv), γCMχ(G) = 2.

Suppose diam(Gi) ≥ 4 and G′i are all paths. Then G = G1∪G2∪

. . . ∪ Gm where |V (G1)| ≥ dp2e and |V (Gi)| < dp2e for i ≥ 2. Since

the component G1 has dp2e vertices and d(ui) ≤ 2 for ui ∈ V (G1),

the set S ⊆ V (G1) such that S = {u2, u3, . . . , udp2e−1} is a majority

dom-chromatic set with |S| = dp2e − 2 and |N [S]| ≥ dp2e. Since

d(ui, uj) = 1 andG1 is a path, the induced subgraphs 〈S〉 is connected

and χ(〈S〉) = χ(G). Hence S is a connected MDC set of G and

γCMχ(G) ≤ dp2e − 2. Therefore the upper bound exists.
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Suppose any one component G1 of G which is not tree. Since

|V (G1)| ≥ dp2e, the set S would be a connected majority dom-

chromatic set of G such that |S| > 2 and γCMχ(G) > 2. Hence the

bounds of γCMχ(G) lies between 2 and dp2e−2. Thus 2 ≤ γCMχ(G) ≤

dp2 − 2e.



Conclusion

The research work primarily concentrates on majority dom-chromatic

set of a graph G. The researcher has related the newly defined param-

eters with other graph theoretical parameters and extensive works

were made on this new parameters for a graph G. The exact values

of major dom-chromatic number γMχ were determined. Algorithms

and Applications to majority dom-chromatic sets were also discussed.

Majority dom-chromatic partition number dMχ(G), connected ma-

jority dom-chromatic number γCMχ(G), Edge critical, Vertex critical

and Edge addition regarding MDC number were studied and many

theorems were produced. Further, the researcher has also opened the

gateway for doing more work with majority dom-chromatic sets by

imposing more conditions on them.
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RESULTS ON MAJORITY DOM-CHROMATIC SETS OF A GRAPH

J. JOSELINE MANORA1, R. MEKALA2, §

Abstract. A majority dominating set S ⊆ V (G) is said to be majority dominating
chromatic set if S satisfies the condition χ(〈S〉) = χ(G). The majority dom-chromatic
number γMχ(G) is the minimum cardinality of majority dominating chromatic set. In
this article we investigated some inequalities on Majority dominating chromatic sets of a
connected and disconnected graph G. Also characterization theorems and some results
on majority dom-chromatic number γMχ(G) for a vertex color critical graph and biparte
graph are determined. we established the relationship between three parameters namely
χ(G), γM (G) and γMχ(G) for some graphs.

Keywords: Majority dominating set, Majority dominating chromatic set, Majority dom-
chromatic number.
AMS Subject Classification: 05C15

1. Introduction

All the graphs G = (V,E) considered here are simple, finite and undirected. The
concept of domination is early discussed by Ore and Berge in 1962. Then Haynes et.al [2]
defined the domination number γ(G) as the minimum cardinality of a minimal dominating
set D ⊆ V (G) such that each vertex of (V − D) is adjacent to some vertex in D. The
majority dominating number γM (G) was introduced by Joseline Manora and Swaminathan
[6] is the smallest cardinality of a minimal majority dominating set S ⊆ V (G) of vertices

and S satisfies |N [S]| ≥
∣∣∣⌈ (V (G))

2

⌉∣∣∣.
Janakiraman and Poobalaranjani [3] defined the dom-chromatic set as a dominating

set S ⊆ V (G) such that the induced subgraph 〈S〉 satisfies the property χ(〈S〉) = χ(G).
The minimum cardinality of a dom-chromatic S is called dom-chromatic number and it is
denoted by γch(G) or γχ(G).
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Definition 1.1. [4] A majority dom-chromatic number γMχ(G) is defined as the smallest
cardinality of the majority dom-chromatic set (MDC set) S of V (G) if S is a majority
dominating set and it satisfies the property χ(〈S〉) = χ(G).

Results 1.2.
(i) [4] Let G = mK2,m ≥ 1 with p = 2m. Then γMχ(G) = dp4e+ 1, p ≥ 2.

(ii) [4] For any graph G,max{χ(G), γM (G)} ≤ γMχ(G) ≤ p
.

(iii) [4] Let G be any graph of order p. Then γMχ(G) = p if and only if G is vertex χ
- critical.

(iv) [6] For a cycle Cp, γM (Cp) = dp6e.

(v) [6] For a path Pp, γM (Pp) = dp6e.

Definition 1.3. [5] If a vertex with degree d(u) ≥ dp2e − 1 then u is called a majority
dominating vertex. A full degree vertex is a majority dominating vertex but a majority
dominating vertex is not a full degree vertex.

2. Some Inequalities On Majority Dom-Chromatic Sets.

In this section, Inequality between the sum of the degrees of all vertices of a MDC set
S of G and the complement of S i.e., (V − S) in a graph G is discussed. We determine
some inequalities such as

|V − S| ≤
∑
vi∈S

deg (vi) and |V − S| ≥
∑
vi∈S

deg (vi) with respect to the MDC set S of a

connected graph G.

Theorem 2.1. If S is a MDC set with two majority dominating vertices of a connected
graph G then |V − S| ≤

∑
vi∈S

deg(vi).

Proof: Let vi ∈ V (G) be a majority dominating vertex such that d(vi) ≥ dp2e − 1 and
S = {v1, v2} be a MDC set with only two majority dominating vertices of G.

Case 1. The graph G is a tree.

Since d(vi) ≥ dp2e − 1, i = 1, 2, for all vi ∈ S. It implies that χ(G) = 2, γM (G) = 1

then
∑
vi∈S

deg(vi) = d(v1) + d(v2) ≥
⌈p

2

⌉
− 1 +

⌈p
2

⌉
− 1

∑
vi∈S

deg(vi) = p− 2 or p if p is even or odd

Therefore |V − S| = p− 2 ≤
∑
vi∈S

deg(vi).

Case 2. The graph G is not a tree and G contains two majority dominating vertices.
Then G is not complete but G consists of triangles. It implies that χ(G) = 3, γM (G) = 1.
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Then S = {v1, v2, v3} be a majority dominating chromatic set of G where v3 is joined with
a majority dominating vertex v1 or v2 of G.

Therefore
∑
vi∈S

deg(vi) = d(v1) + d(v2) + d(v3) ≥
⌈p

2

⌉
− 1 +

⌈p
2

⌉
− 1 + 2

≥ p or p+ 2

Hence |V − S| = p− 3 <
∑

(vi∈S)

deg(vi).

In the above cases, we obtain |V − S| ≤
∑

(vi∈S)
deg(vi). �

Example 2.2. Consider the following Hajos graph with p = 10.

For the graph H,χ(H) = 3, γM (H) = 1

Then S = {v2, v3, v5} is the MDC set of H.∑
vi∈S

deg(vi) = d(v2) + d(v3) + d(v5) = 14 and |V − S| = 7 <
∑
vi∈S

deg(vi).

�

Proposition 2.3. Let G be a non-trivial connected graph with atleast one full degree
vertex. If S is a majority dom-chromatic set of G then

|V − S| <
∑
ui∈S

deg(ui).

Proof: The graph G contains atleast one full degree vertex u1 ∈ V (G) then d(u1) = p−1.

Case 1. The graph G is complete.
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Then the graph G contains all vertices are full degree vertices. Since χ(G) = p,
S = {u1, u2, · · · , up} is a MDC set of G.

Therefore |V − S| = 0 and
∑
ui∈S

deg(ui) = p(p− 1)⇒ |V − S| <
∑
ui∈S

deg(ui).

Case 2. The graph G is not complete.

SubCase 1. If G has only one full degree vertex u and it is not tree then G contains a
triangle. Since χ(G) = 3, S = {u, u1, u2} is a MDC set of G. It implies that |V −S| = p−3.∑

ui∈S
deg(ui) = (p− 1) + 3 + 3 = p+ 5. Hence, |V − S| <

∑
ui∈S

deg(ui).

SubCase 2. If G has only one full degree vertex and the graph G is a tree.

Consider S = {u1, u2} be the MDC set of G which contains a full degree vertex u1. Then
γMχ(G) = 2 . Hence |V − S| ≤ p− 2.

Also
∑
ui∈S

deg(ui) = d(u1) + d(u2) ≥ p− 1 + 1 = p. Hence, |V − S| <
∑
ui∈S

deg(ui).

SubCase 3. Suppose the graph G has two full degree vertices u1 and u2, then G contains
a triangle. Hence, χ(G) = 3. Let S = {u1, u2, u3} be a majority dominating chromatic set
of G. Then |V − S| = p− 3.

Now,
∑
ui∈S

deg(ui) = (p− 1) + (p− 1) + 2 = 2p.⇒ |V − S| <
∑
ui∈S

deg(ui).

In all cases, the vertices of S majority dominates the graph G and also addition with its
coloring number. Thus |V − S| <

∑
ui∈S

deg(ui). �

Corollary 2.4. If the graph G is a vertex color critical and S is a MDC set of G then
|V − S| = 0.

Proof. Let G be a vertex color critical graph with p vertices. Then S = {v1, v2, · · · , vp}
is a MDC set for G. It implies that γMχ(G) = |S| = p. Hence |V − S| = 0. �

Proposition 2.5. If a connected graph G contains all vertices are majority dominating
vertices then |V − S| ≤

∑
ui∈S

deg(ui), where S is the MDC set of G.

Proof: Let G be a connected graph which contains only majority dominating vertices.
Then γM (G) = 1 and χ(G) ≥ 2. Consider the set S = {u1, u2, · · · , ut} be a MDC
set of G. Then |V − S| ≤ p − 2. Since G contains only majority dominating vertices,
d(ui) ≥ dp2e − 1,for each ui ∈ S.

Case 1. The graph G has no triangles. Let S = {u1, u2} be a majority dominating
chromatic set of G.

Then
∑
ui∈S

deg(ui) = d(u1) + d(u2) ≥
⌈p

2

⌉
− 1 +

⌈p
2

⌉
− 1

∑
ui∈S

deg(ui) ≥ p or p− 2 and |V − S| = p− 2. Hence |V − S| ≤
∑
ui∈S

deg(ui).
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Case 2. The graph G has triangles.

Then γM (G) = 1 and χ(G) ≥ 3. It implies that S = {u1, u2, u3} is a MDC set of G.
Hence |V − S| = p− 3.

Then
∑
ui∈S

deg(ui) = 3
(⌈p

2

⌉
− 1
)
≥ 3p

2
or

(
3p

2
− 3

)
.Hence |V − S| ≤

∑
ui∈S

deg(ui).

�

Proposition 2.6. If a connected graph G has no majority dominating vertices then
|V − S| ≥

∑
ui∈S

deg(ui), where S is the MDC set of G.

Proof: Let S be the MDC set of a connected graph G of p vertices and q edges. Since the
graph G has no majority dominating vertices, it has no full degree vertex and it contains
all vertices with degree of d(ui) <

⌈p
2

⌉
− 1. Assume that S = {u1, u2, · · · } be the MDC

set of G. Then |V − S| ≤ p− 2, p > 6.

Also,
∑
ui∈S

deg(ui) = d(u1) + d(u2) + · · · ≤
⌈p

2

⌉
− 2 +

⌈p
2

⌉
− 2 + · · · ≤ 2

⌈p
2

⌉
− 4

∑
ui∈S

deg(ui) ≤ (p− 2) or (p− 4), if p is odd or even.

Hence we obtain, |V − S| ≥
∑
ui∈S

deg(ui).

�

Proposition 2.7. If a MDC set S contains a majority dominating vertex v and other
vertices ui such that d(ui) ≤ dp2e − 3 then

|V − S| >
∑
ui∈S

deg(ui).

Proof: Let u be the majority dominating vertex such that d(u) =
⌈p
2

⌉
− 1 and other

vertices ui with degree d(ui) ≤
⌈p
2

⌉
− 3 in G. Then γM (G) = |{u}| = 1 and χ(G) = 2.

Therefore S = {u, u1} is a MDC set of G and |V − S| ≤ p− 2.

Then
∑
ui∈S

deg(ui) = d(u) + d(u1) ≤
⌈p

2

⌉
− 1 +

⌈p
2

⌉
− 3

≤


p
2 − 1 + p

2 − 3 = p− 4, if p is even

p
2 + p

2 + 1− 4 = p− 3, if p is odd

Therefore
∑
ui∈S

deg(ui) ≤ (p− 4) or (p− 3). Hence |V − S| >
∑
ui∈S

deg(ui).

�

Theorem 2.8. Let G be a connected graph with exactly one vertex v
such that dp2e − 1 ≤ d(v) ≤ dp2e+ 2 and d(ui) ≤ 3, for all ui ∈ V (G). Then

|V − S| >
∑
vi∈S

deg(vi), where S is MDC set such that v ∈ S.

Proof: Let v ∈ V (G) with the condition
⌈p
2

⌉
−1 ≤ d(v) ≤

⌈p
2

⌉
+2. (1)
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Case 1. The graph G is a tree. Let S = {v, u1} be a MDC set in which u1 is a pendant
or d(u1) = 3. Then by (1), d(v) =

⌈p
2

⌉
− 1 and |V − S| = p− 2.

Then
∑
vi∈S

deg(vi) = d(v) + d(u1) =
⌈p

2

⌉
− 1 + 1 =

⌈p
2

⌉
or
⌈p

2

⌉
+ 1

It implies that |V − S| = p− 2 >
∑
vi∈S

deg(vi).

Suppose d(v) =
⌈p
2

⌉
+ 2.

Then,
∑
vi∈S

deg(vi) = d(v) + d(u1) =
⌈p

2

⌉
+ 2 + 1 =

⌈p
2

⌉
+ 3 or

⌈p
2

⌉
+ 4.

Therefore by (1),
∑
vi∈S

deg(vi) takes the value from
⌈p

2

⌉
to
⌈p

2

⌉
+ 4.

Hence |V − S| >
∑
vi∈S

deg(vi).

Case 2. The graph G is not a tree.

Let S be a MDC set of G and S = {v, v1} where v is a majority dominating vertex and
v1 is not a pendant of G. Then |V − S| ≤ p− 2.

Then
∑
vi∈S

deg(vi) = d(v) + d(v1) ≥
⌈p

2

⌉
− 1 + 3

Therefore
∑
vi∈S

deg(vi) =
⌈p

2

⌉
+ 2, if d(v) ≥

⌈p
2

⌉
− 1 and

∑
vi∈S

deg(vi) =
⌈p

2

⌉
+ 5, if d(v) ≤

⌈p
2

⌉
+ 2

Hence, |V − S| = p− 2 >
∑
vi∈S

deg(vi).

�

3. Results on γMχ(G)

Proposition 3.1. Let G be any bipartite graph with a majority dominating vertex. Then
γMχ(G) = 2 and γM (G) < γMχ(G).

Proof: Let G = Km,n,m ≤ n, be a complete bipartite graph.

Case 1. Since G has a majority dominating vertex, γM (G) = 1 and χ(G) = 2. Then
S = {u1, v1} is a MDC set of G, where u1 ∈ V1(G) and v1 ∈ V2(G).

⇒ γMχ(G) = 2 and γM (G) < γMχ(G).

Case 2. If G is not a complete bipartite graph then G may contains pendants. Since
G has a majority dominating vertex u1 ∈ V (G), S = {u1, u2} is a MDC set of G where
u1 ∈ V1(G) and v1 ∈ V2(G).

⇒ γMχ(G) = 2 and γM (G) = 1. Hence γM (G) < γMχ(G). �

The following theorem gives the characterization of γMχ(G) = p − q, where G is any
graph with p vertices and q edges.
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Theorem 3.2. Let G be any graph with p vertices and q edges. Then γMχ(G) = p− q if
and only if G = Kp, p = 1.

Proof: Let γMχ(G) = p−q. Since γMχ(G) ≥ 1, (p−q) ≥ 1. (1)

Case 1. The graph G is connected.

Then q ≥ p− 1⇒ (p− q) ≤ 1. Hence by (1) we obtain p− q = 1 = γMχ(G). (2)
It implies that G is a tree. If G is a tree then χ(G) = 2 and for any connected graph,

1 ≤ γM (G) ≤
⌈p
6

⌉
.

By (2), since p− q = 1 = γMχ(G), the two numbers γ(G) and γM (G) must be one. In a
tree, suppose χ(G) = 2 and γM (G) = 1, then the graph becomes G = K2. By the result (ii)
of (1.2), γMχ(G) ≥ max{χ(G), γM (G)}. We have γMχ(G) = 2. But it is contradiction to
the result (2). Hence G 6= K2 and G = K2.

Case 2. Suppose G is disconnected. If G is disconnected with isolates and without isolates.
Then by the result (i) of (1.2), dp4e + 1 ≤ γMχ(G) ≤ dp2e. The lower bound is attained
for G = mK2. If m = 1, γMχ(K2) = 2 6= p − q = 1. Also the upper bound is attained for

G = kp, when p = 2 then γMχ(K2) = 1 6= p− q = 2. Hence G 6= K2 or K2. It follows that
the graph must be G = K1. The converse is obvious.

�
Next result is the characterization of |V − S| = 0, where S is a MDC set of vertex color
critical graph G.

Proposition 3.3. A MDC set S belongs to a vertex color critical graph if and only if
|V − S| = 0.

Proof: Suppose |V − S| = 0.⇒ |V (G)| = |S| = p. Then the set S = {u1, u2 · · · , up} is a
MDC set for G. Suppose we remove one vertex from S then S may not be a MDC set of
G. Hence G is vertex color critical graph.

Conversely by the definition (iv) in (1.1), if G is vertex color critical graph with p
vertices then γMχ(G) = p. Hence |V − S| = 0. �

Proposition 3.4. Let G be any graph with p vertices. Then γMχ(G) ≤ γχ(G), where
γχ(G) is the dom-chromatic number of G.

Proof: Let γMχ(G) be the majority dom-chromatic number of graph G. Since every dom-
chromatic set of a graph G is a majority dom-chromatic set of a graph G, γMχ(G) ≤ γχ(G).

Case 1. When G is vertex color critical graph.
By the known results (3.2.6) of [3] and (ii) of (1.2), γχ(G) = p = γMχ(G).

Case 2. The graph G is a tree.
If diam (G) ≤ 3, then γχ(G) = γMχ(G) = 2.
Suppose diam(G) ≥ 4, then the graph structures like Pp, p ≥ 5, Caterpillar, etc. By the

known results, γχ(G) ≤ p+3
3 and γMχ(G) ≤ dp6e+ 1.

Hence γMχ(G) < γχ(G).

Case 3. When the graph G is not a tree and not a vertex color critical graph.
Then the graph structures like Cp (cycle, p is even), Fp (Fan), Wp (wheel), etc. By the

known results, γMχ(G) ≤ dp6e+ 1 and γχ(G) ≤ p+4
3 .

Hence γMχ(G) ≤ γχ(G). �
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Corollary 3.5.
(i) If the graph G is a sub division of a star, then γMχ < dγχ2 e.
(ii) If G is a path or cycle then,

a) γMχ ≤ dγχ(G)
2 e; p ≡ 0, 1, 2, 5( mod 6),

b) γMχ ≤ dγχ(G)
2 e+ 1; p ≡ 3, 4( mod 6).

Example 3.6.
(i) Let Pp be a path with p ≡ 0(mod6). Consider G = P18 then γMχ(G) = 4 and

γχ(G) = 7. Now,
⌈
γχ(G)

2

⌉
=
⌈
7
2

⌉
= 4. Hence γMχ(G) =

⌈
γχ(G)

2

⌉
.

(ii) Let G = S(K1,t). Then S1 = {u, u1, u2, · · · , ut} is a dom-chromatic set which
contains a central vertex u of G. ⇒ γχ(G) = |S1| = t + 1 and S2 = {u, u1} is a

MDC set of G.⇒ γMχ(G) = 2. Hence γMχ(G) <
⌈
γχ(G)

2

⌉
.

Construction 3.7. For every integer k ≥ 0, there exist a graph G such that⌈
γχ(G)

2

⌉
− γMχ(G) = k.

Proof. Let G be the subdivision of a star K1,2k+2 by dividing each edge exactly once.
Then |V (G)| = 2(2k + 2) + 1, γχ(G) = 2k + 2 + 1 and γMχ(G) = 2.

Then
⌈
γχ(G)

2

⌉
− γMχ(G) = k + 2− 2 = k. �

Observation 3.8. Let G be any connected graph with p vertices. Let χ(G), γM (G)
and γMχ(G) be the chromatic number, majority domination number and majority dom-
chromatic number respectively. Then χ(G) and γM (G) are not comparable.
i.e., γM (G) < χ(G) < γMχ(G) and χ(G) < γM (G) < γMχ(G).

For Example:-

(i) Let G = Cp, p ≤ 11 and p is odd. Since Cp is vertex χ-critical, by the result (iv)
of (1.2), γM (G) =

⌈p
6

⌉
, χ(G) = 3 and γMχ(G) = 5.

Hence, γM (G) < χ(G) < γMχ(G).
(ii) Let G = Cp, p is odd and p ≥ 19. By the result (iv) of (1.2),

γM (G) =
⌈p
6

⌉
, χ(G) = 3 and γMχ(G) = p. Hence, χ(G) < γM (G) < γMχ(G).

(iii) If p = 13, 15, 17 for G = Cp then χ(G) = γM (G) < γMχ(G).

4. Results of γMχ(G) for a Disconnected Graph

Theorem 4.1. Let G be a disconnected graph then γMχ(G) =
⌈p
2

⌉
if and only if G = Kp

or G = gt ∪Kp−t, p ≥ 2, where gt is a vertex color critical component with |t| ≤
⌈p
2

⌉
.

Proof: Let G be a disconnected graph with p vertices.

Assume that, γMχ(G) =
⌈p
2

⌉
. (1)

Case 1. Suppose G 6= Kp, p ≥ 2 then G has atleast one edge between a pair of vertices.

It implies that G is a disconnected graph without isolates or G = K2 ∪Kp−2. By known
result (i) of (1.2),γMχ(G) =

⌈p
4

⌉
+ 1 or γMχ(G) =

⌈p
4

⌉
− 1. But it is a contradiction to

(1). Therefore G = Kp, p ≥ 2.

Case 2. Suppose G = gt ∪ Kp−t, where gt is not a vertex color critical component with
|t| ≤ dp2e. Then the graph G contains a path, an even cycle or any other component gt
with |t| ≤ dp2e. Since χ(gt) ≥ 2 and γM (gt) ≥ dp6e,
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SubCase 1. Suppose |t| = dp2e. Then S =
{
u1, u2, . . . , ud p

6
e

}
, is a MDC set of G, where

ui ∈ V (gt). It implies that γMχ(G) = dp6e, it condradicts the condition (1).

SubCase 2. Suppose |t| < dp2e. Then S =
{
u1, u2,

(⌈p
2

⌉
− t
)
K1

}
is a MDC set of G

where ui ∈ V (gt).

Therefore γMχ(G) = |S| = dp2e − |t|+ 2 = dp2e − d
p
2e+ 1 + 3 (if |t| = dp2e − 1).

⇒ γMχ(G) = 4 < dp2e. It is a contradiction to (1). Hence gt is a vertex color critical
component in G with |t| ≤ dp2e.

Case 3. Suppose gt with |t| > dp2e. Since gt is a vertex color critical component of G,
gt is a complete graph or an odd cycle. If gt is an odd cycle with |t| = dp2e + 1 then
γMχ(G) = dp2e+ 1. It contradicts our assumption.

If gt is a complete graph with |t| = dp2e+ 1 then γMχ(G) = dp2e+ 1, it is a contradiction
to (1). Hence, gt is a vertex color critical component of G with |t| ≤ dp2e. Therefore G

must be Kp or (gt ∪ Kp−t) with |t| ≤ dp2e. In all the three cases if γMχ(G) = dp2e, then

G = Kp or (gt ∪Kp−t).

Conversely, let G = Kp or (gt∪Kp−t). Suppose G = Kp then γM (G) = dp2e and χ(G) =

1⇒ γMχ(G) = dp2e.Suppose G = (gt ∪Kp−t). Since gt is a vertex critical component with

|t| = dp2e, χ(gt) = dp2e and γM (gt) ≥ 1. It implies that γMχ(G) = dp2e.Suppose gt is a

vertex critical component with |t| < dp2e. Then S = {u1, u2, ..., ut, v1, v2, ..., vd p
2
e−t} is a

MDC set of G where ui ∈ V (gt) and vi ∈ V (Kp−t). Now, |S| = t+ dp2e − t = dp2e. Hence
γMχ(G) = |S| = dp2e.

�

Observation 4.2. (i) For a disconnected graph G,χ(G) < γM (G) < γMχ(G).

Example: Consider the disconnected graph with isolates with p = 16.

Let G = P11 ∪ K5. Let |V (G)| = |{v1, v2, · · · , v11, u1, · · · , u5}| = 16. Then
γM (G) = |{v2, v5, v7}| = 3 and γMχ(G) = |{v2, v5, v7, v8}| = 4. Since P11 is a tree,
χ(G) = 2. Therefore χ(G) < γM (G) < γMχ(G).

(ii) For a disconnected graph G with isolates, γM (G) < χ(G) < γMχ(G).

Example: Let G = C3∪K5 and V (G) = {v1, v2, v3, u1, · · · , u5}. Since C3 is an odd cycle,
χ(G) = 3 and γM (G) = |{v1, u1}| = 2. Then S = {v1, v2, v3, u1} be the MDC set of G

where vi ∈ V (C3) and ui ∈ V (K5). ⇒ γMχ(G) = |S| = 4. Therefore
γM (G) < χ(G) < γMχ(G).

(iii) Let G be a disconnected graph without isolates. Then χ(G) < γM (G) < γMχ(G).

Example: Consider the graph G = P7 ∪ C6 ∪K1,3. For a tree with p = 17 and an even
cycle, χ(G) = 2.

V (G) = {u1, · · · , u7, v1, · · · , v6, w, w1, w2, w3}. Then γM (G) = |{w, u2, u4}| = 3 and
γMχ(G) = |{w, u2, u4, u5}| = 4. Hence χ(G) < γM (G) < γMχ(G).
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(iv) For a disconnected graph G with vertex color critical component,
χ(G) < γM (G) < γMχ(G).

Example: Let G = C13 ∪K6 be a graph with p = 19.

And V (G) = {u1, · · · , u13, v1, · · · , v6}. Since C13 is an odd cycle, χ(G) = 3. The set
{u2, u5, u8} be the γM -set of G and γM (G) = 3. By the result (iii) of (1.2), C13 is a vertex
color critical component , γMχ(G) = 13. Therefore χ(G) ≤ γM (G) < γMχ(G).

Proposition 4.3. G be a disconnected graph with any vertex color critical

component then |V − S| <
∑
ui∈S

deg(ui).

Proof: Let G = Gt ∪Gr be a disconnected graph with p vertices . Since G has a vertex
color critical component , χ(G) ≥ 3. Consider S = {Gt, u1, · · · } be the MDC set of
G, where Gt is the vertex color critical component, such that |t| ≥ 3 and u1 ∈ Gr. If
|N [Gt]| = dp2e then |S| ≥ 3. If |N [Gt]| < dp2e then |S| ≥ 4. It implies that |S| = 3 or 4
and |V − S| ≤ p− 3 or p− 4. Let V (Gt) = {u1, u2, · · · , ut}, then∑

ui∈S
deg(ui) = d(u1) + d(u2) · · · ≥ 3(t− 2) + 1 ≥ 3t− 5, if |t| ≥ 3.

Then, certainly we get |V − S| <
∑
ui∈S

deg(ui)

�

Proposition 4.4. For a disconnected graph G without any vertex critical component,
|V − S| >

∑
ui∈S

deg(ui).

Proof: Let G be a disconnected graph with not vertex color critical component. Let S
be a MDC set of G.

Case 1. The graph G is totally disconnected.

Then S = {u1, u2, · · · , ud p
2
e} be the MDC set of G and deg(ui) = 0, for each ui ∈ S. It

implies that
∑
ui∈S

deg(ui) = 0. Hence, |V − S| >
∑
ui∈S

deg(ui).

Case 2. The graph G is disconnected with isolates.

Then G contains some connected component ‘g’ along with isolates.

SubCase 1. If the component ‘g’ such that |N [g]| ≥ dp2e then S is a MDC set of G with
1 ≤ |S| = dp6e. Suppose |S| = 1⇒ S = {u} such that |N [S]| = dp2e − 1.

Then |V − S| = p− 1 >
∑
ui∈S

deg(ui) = dp2e − 1. Suppose |S| = dp6e.

Then d(ui) ≤ 2, for all ui ∈ V (g). Now,
∑
ui∈S

deg(ui) = 2dp6e = p
3 or p

3 + 2 and

|V − S| = p− dp6e = 5p
6 − 1.

Therefore, |V − S| >
∑
ui∈S

deg(ui).
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SubCase 2. If the component ‘g’ such that |N [S]| < dp2e then S is a MDC set with
isolates.

⇒
∑
ui∈S

deg(ui) ≤ p
3 . Since S contains more isolates, the value

∑
ui∈S

deg(ui) will be

reduced. Then |V − S| >
∑
ui∈S

deg(ui).

Case 3. G is a disconnected graph without isolates.

Then G contains only connected components . Suppose G = mK2. Then by the result
(i) of (1.2), γMχ(G) = |S| = dp4e+ 1. It implies that∑

ui∈S
deg(ui) =

⌈p
4

⌉
+ 1. But |V − S| =

∣∣∣p− (⌈p
4

⌉
+ 1
)∣∣∣ =

3p

4
− 1

If the size of the component g increases such as G = mC4,mK1,t, · · · then |S| will be
decreased. i.e.,

|S| <
⌈p

4

⌉
+ 1 and

∑
ui∈S

deg(ui) >
⌈p

4

⌉
+ 1. But in all structures,

We obtain, |V − S| >
∑
ui∈S

deg(ui).

�

Proposition 4.5. Let G be a disconnected graph without any vertex color critical compo-
nent then |V − S| = bp2c if and only if G = Kp.

Proof: Let G has no vertex color critical subgraph. Let G = Kp, p is odd. Then
S = {u1, u2, · · · , ud p

2
e} is a MDC set of G and γMχ(G) = |S| = dp2e. Hence |V −S| = bp2c,

if p is odd. When p is even, S = {u1, u2, · · · , u p
2
} is the MDC set and γMχ(G) = |S| = p

2

and |V − S| = p
2 . Hence |V − S| = bp2c.

Conversely , suppose G 6= Kp. Then either G is disconnected graph without isolates or
G contains atleast one component which is not a vertex color critical with some isolates.
Let |V − S| =

⌊p
2

⌋
. (1)

Case 1. If G has components which is not vertex color critical with no isolates then the
structure like G = mK2. By the result (i) of (1.2), we have γMχ(G) = |S| = dp4e + 1. If
|S| = dp4e+ 1⇒ |V − S| = |p− dp4e+ 1| > bp2e. It is a contradiction to (1).

Case 2. Suppose G = C6 ∪ KP−6, where C6 is not a vertex color critical. Then
S = {u2, u5, (dp2e − 6)K1}, where u2, u5 ∈ V (C6).

⇒ |S| = dp2e − 6 + 2 =
⌈p
2

⌉
− 4.

Therefore |V − S| = |p− dp2e+ 4| = bp2c+ 4 > bp2c. It is a contradiction to (1).

Hence G = Kp if and only if |V − S| = bp2c.

�
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5. Conclusion

In this article, we have discussed the inequality between the sum of the degrees of
the vertices of majority dominating chromatic set S and its complement (V − S) of a
graph. The comparison between the domination parameters γM (G), χ(G) and γMχ(G)
are discussed. Also some results of γMχ(G) of a disconnected graph with isolates and
without isolates are studied.
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Abstract 

In this article, how the removal of a single vertex from a graph G can change the majority 

dom-chromatic number is determined for any graph. A graph is majority dom-chromatic critical 

if the removal of any vertex decreases or increases its majority dom-chromatic number. There 

are two types namely CVR and UVR with respect to majority dom-chromatic sets of a graph. 

Also the vertex classification    GVGV MM



,0  and  GV
M



 are studied and its characterisation 

theorems are determined.  

1. Introduction 

Let G be a finite and simple graph with p vertices and q edges. A subset D 

of vertices in a graph  EVG ,  is called a dominating set [1] of G if every 

vertex in  DV   is adjacent to some vertex in D. A dominating set D is 

called a minimal dominating set if no proper subset of D is a dominating set. 

The domination number  G  of a graph G is the minimum cardinality of a 
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minimal dominating set in G. A set  GVS   of vertices in a graph 

 EVG ,  is called a majority dominating set [4] of G if at least half of the 

vertices of  GV  are either in S or adjacent to the elements of S. A majority 

dominating set S is minimal if no proper subset of S is a majority dominating 

set of a graph G. The minimum cardinality of a minimal majority dominating 

set is called majority domination number of G, is denoted by  .GM  It is the 

minimum majority dominating set of G.  

A dominating set  GVS   such that the induced sub graph S  

satisfies the property    GS   is called as dom-chromatic set [2] of a 

graph G. The minimum cardinality of a dominating chromatic set is called 

dom-chromatic number and it is denoted by  Gch  or  .G  A dom-

chromatic set S of G such that  GS ch  is the minimum dom-chromatic 

set of a graph G.  

[6] For any graph CVRG,  and UVR  with respect to domination numbers 

are defined by,    ,: GvGCVR   for all  GVv   and  vGUVR :  

 ,G  for all  .GVv    

[5] For any graph MCVRG,  and MUVR  with respect to majority 

domination numbers are defined by,    ,: GvGCVR MMM   for all 

 GVv   and    ,: GvGUVR MMM   for all  .GVv   

[2] A graph G said to be a CVR -graph if    ,GuG chch   for all 

 GVu   and a graph G said to be a UVR -graph if    ,GuG chch   for 

all  .GVu   

A set  GVS   is said to be a chromatic preserving set or a cp -set if 

   GS   and the minimum cardinality of a cp -set in G is called the 

chromatic preserving number or cp -number of G and is denoted by  .Gcpn   

[1] The private neighbour set of u with respect to S denoted by  Supn ,  

is defined by       uSvNvSupn  :,   
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2. MCVR  and MUVR  Graphs 

Definition 2.1 [3]. A subset S of  GV  is said to be Majority Dominating 

Chromatic set (MDC set) if S is a majority dominating set and S satisfies 

   .GS   The minimum cardinality of a majority dominating chromatic 

set of G is called a majority dominating chromatic number and is denoted by 

 .GM   

Definition 2.2. For any graph G, the vertex set can be partitioned with 

respect to MDC sets into three sets    GVGV MM

 ,0  and  GVM


  and is 

defined by,  

        ,0 GvGGVvGV MMM    

        GvGGVvGV MMM 

   and  

        .GvGGVvGV MMM 

   

Definition 2.3. A graph G is said to be a MCVR -graph if 

   ,GvG MM     for every  .GVv   A graph G is said to be a MUVR - 

graph if    ,GvGM    for every  .GVv   

Example 2.4. Consider the graph G with .16p   

 

G. Figure - (i) 

In the graph  158765 ,,,,, vvvvvSG   is the M -set of G. Then 

  .5  GM  For the graph        .4,,,, 843255   vvvvvGvG M  

Therefore    .5 GvG MM    Hence  .5 GVv M

  For the graph 
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      .5,,,,, 15876528   vvvvvvGvG M  Therefore  8vGM     

 .GM  It implies that  .0
8 GVv M  

Example 2.5. Consider the graph 17,  pFG p  a Fan.  

 

G. Figure- (ii) 

In this graph     .3,,, 321   vvvGG M  For    22 , vGvG M    

  .3,, 431  vvv  Therefore    GvG MM   2  and  .0
2 GVv M  For 

the graph       .4,,,, 1074311   vvvvvGvG M  Hence 

   GvG MM   2  and  .1 GVv M

   

Theorem 2.6. If a graph G is a vertex color critical then . MCVRG   

Proof. Since the graph G is vertex color critical,   .pGM    If the 

removal of any vertex v from      ., GvGGV   It implies that 

   ,GvG MM    for every vertex  .GVv   Hence . MCVRG   

Corollary 2.7. Let .2,  pKG p  Then . MCVRG   

Proof. By the result (3.1) [3],   .pGM    For the graph 

  .11   pvGM  Hence    .1 GvG MM    Therefore  .1 GVv M

  

For every vertex      GvGGVv MM   ,  and . MCVRG  

3. Results on  GVM

  

Proposition 3.1. Let .1,1  pKG  Then  GVv M

1  and  GVv Mi

0
  

where 1v  is a central vertex and iv ’s are pendants.  
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Proof. Let    ,,,, 21 pvvvGV   where 1v  is the central vertex and 

others are pendants. The set  21, vvS   is the MDC set of G and 

  .2  GM  For a graph     .
2

1
, 11 




 
 

p
vGvG M  Therefore 

   .1 GvG MM    Hence  .1 GVv M

  Suppose any pendant 

   .2,,,2, GvGpiv MiMi     Therefore  ,0 GVv Mi   where 

iv ’s  are pendants.  

Proposition 3.2. If G has exactly one full degree vertex and other vertices 

are of degree  
2

1


p
vd i  then   .1

 GVM   

Proof. Let G be a graph which contains a full degree vertex v such that 

  .1 pvd  Let S be a MDC set of G. Since   vpvd ,1  must be in 

majority dominating set S and minimal cp -set of G. Then  






2

p
SN  and 

   .GS   Let S  be the M -set of  vGG   and  vG   contains 

isolates, then    .GSG MM    It implies that  .0 GVv M  If  vG   

contains the vertices iv  with  





 


2

1p
vd i  then .2S  Therefore 

.1 SS  It implies that    GvG MM    and  .GVv M

  Thus, 

all other vertices are  .0 GVM  Hence   .1
 GVM   

Proposition 3.3. Let T be a tree with p vertices. If a vertex  TVv   

satisfies one of the following conditions.  

(i) v is in a dominating edge  uve   with   1
2








p

vd  and 

  .1
2








p

ud   

(ii) v is a vertex with degree   1 pvd  and others pendants.  

(iii) v is in every M -set of T.  Then  .TVM

   
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Proof. Let T be a tree with p vertices.  

Case (i) Let  uve   is a dominating edge with   1
2








p

vd  and 

  .1
2








p

ud  Since    vuSG ,,2   be a M -set of T. Let 

 ivuuS ,, 11   be a set of  ,vT   where u and 1u  are adjacent and iv ’s are 

isolates such that  






21
p

SN  with .1 SS   Then    1ST   

 .vT   Thus 1S  is a MDC set of  vT   and   .1SvTM    Since 

   .,1 TSvTSS MM    Hence  .TVv M

    

Case (ii) Let   1 pvd  and   ,1ivd  for all  .TVvi   Then 

    ,2, 1   vvTM  for some 1v  such that   .11 vd  Since v is adjacent to 

all vertices iv  of  vTT ,  is disconnected with only isolates. Now, there 

exists a MDC set S in  vT   with only isolates and .
2

1





 


p
S  It 

implies that     TvTS MM    and  .TVv M

  

Case (iii) If the vertex v is in every minimum MDC set of T, then v is in a 

dominating edge uve   or v is a full degree vertex of T. It implies that 

    1
2

,1
2














p

ud
p

vd  and other vertices iv ’s are of degree with 

  .1
2








p

vd i  By Case (i), the vertex  .TVv M

   

Proposition 3.4. For any graph G,    .GGV MM 

    

Proof. Let S be a M - set of G. Let  .GVv M

  By proposition (3.3), v is 

in every M -set S of G. Then Sv   and   .SGVM 
  Hence 

   .GSGV MM 

    

Theorem 3.5. If  GVv M

  and v is in every minimal cp -set of G then 

  ,2, Svpn  for all M -set of G.  
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Proof. Let S be a M -set of G. Let v be a vertex in every minimal cp -set 

of G. Let v be a vertex in every minimal cp -set of G. Then 

     .GvGvS   Let   ., SvPn  Then  vS   is a M - set of 

 .vG   It is a contradiction to  .GVv M

  Suppose    ., vSvPn   Then 

v is an isolated vertex in S and hence  .0 GVv M  It is a contradiction to 

 .GVv M

  If    uSvPn ,  then    uvS   is a M -set of  .vG   

Thus    .GSvG MM    It is a contradiction to  .GVv M

  

Hence,   .2, SvPn  

Proposition 3.6. For any graph G with an isolate, there exists a M -set 

of G not containing that isolate.   

Proof. Let v be an isolate of G. If S is a M -set of G containing v then 

 






2

p
SN   and    .GS     

Case (i) If  






2

p
SN  then   







2

p
vSN  and  vS    .G  

It implies that  vS   is a M -set. Hence   SvS   is a M -set of G 

without an isolate v.  

Case (ii) If  






2

p
SN  then    1

2








p

vSN  and  .SNv   

Now, if      ,
21 





p

vvSN   for any  GVv 1  then    .1vvSS   

Also,    SS   and  .GSS M  Hence S  is a M -set of G 

without an isolate v.  

4. Results on  GVM
0
  and  GVM


  

Proposition 4.1. If G is a graph with    GVGM    then . MCVR   

Proof. Let G be a graph with p vertices and     .pGVGM    Then 
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G is a vertex color critical graph. Therefore, for any vertex  ,GVv   the 

graph  vGG   has the value   .pGM    It implies that 

   ,GG MM    for every  .GVv   Hence . MCVRG  

Proposition 4.2. If G is a vertex color critical graph then    GVGV M

  

but the converse is not true.  

Proof. By Proposition (4.1),   pGM    and for all     vGv M,  

     .GVGVG MM  
  For the converse, Let .9,  pPG p  Then 

  .3  GM  For any vertex   89, PvPv   and   .28   PM  Hence 

   GVGV M

  and  MCVRG  but 9PG   is not a vertex color critical 

graph.  

Proposition 4.3. Any Path  6mod3, pPp  is a MCVR  graph.  

Proof. Let .1,36,  kkpPG p  Then by the result (3.3) [3], 

  .2  kGM  For each vertex     ,1,   kvGGVv M  where 

.26  kp  Hence  Mp CVRP  where  .6mod3p  

Proposition 4.4. If G is a MCVR  graph then   .
 GVM    

Proof. Since G is a MCVR  graph, .



 MM VVV   

Suppose   .
 GVM  (1)   

Then  GVV M

  and    ,GvG MM    for all  .GVv   Let S be a 

M -set with 1 pS  of G. Then . SV  Let SVu   and 

    .SGVu   It implies that     .uGuGVS   Since G is a MCVR  

graph,    GS   and    .uGS   It implies that S is a M - set 

of  uG   and    .GSuG MM    Therefore  ,GVu M

  it is a 

contradiction to (1). Hence   ,
 GVM  for any MCVR  graph G.  
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Proposition 4.5. A Wheel graph 5,  pWG p  is a MCVR  graph 

when p is even.  

Proof. Let ., 11 KCWG pp    By the result (3.5) [3],   ,pGM    

when p is even. Let    pp vvvvGV ,,,, 121    where iCv pi ,1  

1,,2,1  p  and .1kvp   Suppose  .kvGG    

Case (i) Let  kv  be the central vertex of G. Then   .1 pk CGvG  

Since p is even, 1pC  is an odd cycle. By the result (3.2) [3],   ,1  pGM  

Therefore    .GG MM    

Case (ii) Suppose  tv  be any vertex in .1pC  Then the graph G becomes 

a Fan    .12 KPvGG pt    By the result (3.6) [3],   .3  GM  

Hence    .GG MM    

In these two cases, the removal of any vertex  iv  in G,  

   .GvG MiM    Hence . MCVRG  

Proposition 4.6. Let pWG p,  is odd. Then  

(i)  GVv Mi
0
  if .1 pi Cv  

(ii)  GVv Mi

  if v is a central vertex of G and .17p   

Proof. For pKCWG pp ,, 11    is odd,    .,,,, 121 pp vvvvGV    

By the result (3.5) [3],   .3  GM  (1) The removal of any vertex v from 

 ,GV  there exists two cases.  

Case (i) Suppose any vertex .1 pi Cv  Then  ivGG   and 

,121 KpFG pp    where  1p  is even. By the result (3.6) [3], 

  .3  GM  By the result (1),    GG MM    and  ,0 GVv Mi   for any 

vertex .1 pi Cv  

Case (ii) Suppose pv  is a central vertex and .17p  The M -set of G is 
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 .,, 21 pvvvS   Then   .3  SGM  If the removal of a central vertex 

 pp vGGv ,  and G  becomes 1pC  even cycle. By the proposition (3.2) 

[3],   

   

 



























 

.6mod4,0if,1
6

6modif,
6

oddisif,

p
p

p
p

pp

GM  (2)  

For ,16p  by the result (2),   .3  SGM  If ,17p  by the result 

(2),   .4  SGM  Therefore, by the result (1),    GG MM    and 

 .GVv Mp

  Hence  ,GVv Mp


  if .17p  

Theorem 4.7. Let G be a MCVR  graph with p vertices. Then 

   .GpGV MM 

    

Proof. Let S be a M -set of G. If G is a MCVR -graph then 

   .GuG MM    Suppose   .pGS M    Then   pGVM 
  

 GM  holds. Suppose   .pGS M    Then . SV  Now choose 

any vertex .SVv   Since      ., GVvGuG MMM

   Therefore 

 .GVSV M

  It implies that   .GVSV M


  Hence  GVM


   

 .Gp M   

Theorem 4.8. Let  GM  be the M -number of a graph G. If 

   GVGM    then    .GVGV M

  

Proof. Let S be a M -set of G and     .pGVGM    Then G is a 

vertex color critical graph. For any      GvGGVv  ,  and it implies 

that    .GuG MM    Hence  .GVv M

  For every ,Sv   

   GuG MM    is true. Hence     .GVGVM 
  
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Theorem 4.9. Let G be a connected MCVR  graph with   .3 G  Then G 

has a unique M -set of G if and only if     .GVGM    

Proof. Let the graph G have a unique M -set S. Then we claim that  

  . SGV  (3) 

Suppose . SV  Since G is a MCVR  graph,    ,GuG MM    

for every .SVv   Then for each    SvSSVv  ,  and the 

induced sub graph S  is a vertex color critical. Hence for any SSVu ,  

is a MDC set of  ,uG   which is a contradiction to the assumption (1). 

Therefore there exist SVv   such that    .SvS   Then 

  ,, SuPn  for any ,Su   

Case (i) Let   .1, SuPn  If    uSuPn ,  then u is an isolate in .S  

Since G is connected,   uN  and   .SVuN   Also some vertex 

SVw   is adjacent to any vertex in S. Let  .uNw   Then    wuS    

is a M -set of G, which is a contradiction to the assumption (1). So 

   ., vSuPn   Then    vuS   is M -set of G, which is a contradiction to 

(1). Hence . SV  Thus    .GGV M   

Case (ii) Suppose   .2, SvPn  Let  ., SvPnv   Then there exists a 

vw   such that  ., SvPnw   It implies that    wuS   is a M -set of 

G, which is a contradiction to (1). Let  .,, SvPnwx   Then    wuS   is 

a M -set of .xG   Thus,    .GSGV M   

Conversely,     .pGVGM    It implies that the graph G have a 

unique MDC set of G.  

Theorem 4.10. If v is an isolated of G then  .0 GVv M  

Proof. Let v be an isolated vertex of G. Then v is not in minimal cp -set of 

G. Let S be a M -set of G and not containing the vertex v. Then 
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 






2

p
SN  and    .GS   Then   .SGM    For the graph 

     GvGvG  ,  and S is again the M -set of  .vG   Therefore 

   GuG MM    and  .0 GVv M  

Theorem 4.11. If a vertex  GVv   is not in any minimal cp -set of G 

then  .0 GVv M  

Proof. Let S be a M -set of G. Let v be a vertex which is not in any 

minimal cp -set of G. Then    .GvS   Hence   ., SvPn  Let 

  .1, SvPn  If    vSvPn ,  then v is an isolated vertex in S. By the 

Proposition (4.10),  .0 GVv M  

Theorem 4.12. Let v be a vertex of G with  .GVv M

  Then there exists 

a vertex  GVu   such that    .GuG MM     

Proof. Let S be as MDC set of G. Then   .
2 





p

SN  

Case (i) Suppose    .GSN   Then there exists a vertex  SNu   

and implies that  ., SNuSu   Then uVS   and  






2

p
SN  

and   .
2 





p

SN uG  It implies that   .
2

1





 


p
SN uG  Therefore S is a 

MDC set of  .vG   Then    .GSuG MM    If  uGM    

 GM  then  ,GVu M

  which is a contradiction to  .GVv M


   

Hence    .GuG MM    

Case (ii) Suppose    .GVSN   Let Su   and  .SNu   Then 

  .
2

1
1






 


p
pSN uG  Therefore S is a MDC set of  .vG   Then 

   .GSuG MM    If    GuG MM    then  GVu M

  and 
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   ,GVGV M

  which is a contradiction to  .GVv M


  Hence 

   .GuG MM     

Case (iii) Suppose    .GVSN   Then there exists a vertex Su   and 

  .
2 





p

SN  For        GSvSuS  ,  and S is not a M -set 

of G. Therefore choose    wuSS 1  where SVw   such that 

 






21
p

SN  and w is adjacent to any vertex of S with .1 SS   Hence 

1S  is a M -set of  vG   and    .1 GSSuG MM    

5. Conclusion 

In this article, it has been discussed that the removal of any vertex of a 

graph G how affects the majority dom-chromatic number of G. Also the vertex 

critical classifications    GVGV MM

 ,0  and  GVM


  are discussed. The 

characterisation theorems are also determined for    GVGV MM

 ,0  and 

 .GVM

   
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This paper introduces the concept majority dom-chromatic partition number of a graph G and denoted by dMx(G).
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1. Introduction
By a graph G = (V,E), we mean a finite and undirected graph
with neither loops nor multiple edges. This article introduces
a new parameter namely majority dom-chromatic partition
number of G. A subset D of V (G) is said to be a dominating
set [1] and [4] of G if every vertex in (V −D) is adjacent
to at least one vertex in D. The minimum cardinality of the
minimal dominating set of G is called the domination number
of G, denoted by γ(G). A domatic partition of a graph G is a
partition of V (G) into dominating sets of G. The maximum
number of sets of a domatic partition of G is called the domatic
number of G, denoted by d(G).

The majority dominating number γM(G)[8] of a graph G
is the smallest cardinality of a minimal majority dominat-
ing set (MD-set) S⊆V (G) of vertices and the set S satisfies
|N[S]| ≥ ||V (G)

2 ||. A majority domatic partition [6] of a graph

G is a partition of the vertex set V (G) into majority domi-
nating sets of G. The maximum number of sets of majority
domatic partition of G is called the majority domatic num-
ber of G, denoted by dM(G). A dominating set S ⊆V (G) is
called the dom-chromatic set [2] and [3] such that the induced
subgraph set < S > satisfies the property χ(< S >) = χ(G).
The minimum cardinality of a dom-chromatic set S is called
dom-chromatic number and is denoted by γch(G) or γx(G).
A dom-chromatic- partition [4] of a graph G is a partition
of V (G) into dom-chromatic sets. The maximum cardinality
of a partition of V (G) into dom-chromatic sets is the dom-
chromatic -partition number and denoted by dch(G).

A subset S of V (G) is majority dominating chromatic set
(MDC− set)[5] if (i) S is a majority dominating set and (ii)
χ(< S >) = χ(G). The minimum cardinality of a minimal
majority dominating chromatic set is called a majority dom-
chromatic number denoted by γMX (G).

1.1 Results of γMχ(G) [5]
(i) For a graph G = K1,p−1,γMχ(G) = 2.

(ii) For G =Wp a wheel,

γMχ(G) =

{
p , if p is odd
3, if p is even.

(iii) Let G=Kp be a totally disconnected graph of p vertices.
Then γMX

(
Kp
)
=
[ p

2

]
.

(iv) Let G =Cp be a cycle of p vertice, p≥ 3. Then

γMX (G) =


[ p

6

]
, if p≡ 2(mod 6)

p
6 +1, if p≡ 0,4(mod 6)
p, if p is odd.
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(v) Let G = Pp be a path. Then

γMX (G) =

{ [ p
6

⌉
, if p≡ 1,2(mod 6)[ p

6

]
+1, if p≡ 0,3,4,5(mod 6)

(vi) For a complete bipartite graph G=Km,n,m≤ n,γMχ(G)=
2

(vii) If a graph G is vertex color critical then γMχ(G) = p.

2. Majority Dom-chromatic Partition
Number in a Graph

Definition 2.1. A majority dom-chromatic partition (MDC -
Partition) of a graph G is a partition of V (G) into majority
dom-chromatic sets of G. The maximum cardinality of a
partition of V (G) into majority dom-chromatic sets is the
majority dom-chromatic partition number and denoted by
dMχ(G).

Example 2.2. Let G = K6 +C6 +C6 +K6 be a graph. Let
V
(
K6
)
= {u1,u2, . . . ,u6}with d (ui)= 6, V (C6)= {v1,v2, . . . ,

v6} with d (vi) = 13,V (C6) = {w1,w2, . . . ,w6} with d (wi) =
13 and V

(
K6
)
= {x1,x2, . . . ,x6}with d (xi)= 6. For the graph

χ(G) = 3,γch(G) = 3 = γMχ(G). The dominating chromatic
sets are S1 = {v1,v2,w1} ,S2 = {w2,w3,v3} ,S3 = {v4,v5,w4}
and S4 = {w5,w6,v6} and the remaining vertex set

R = {u1,u2, . . . ,u6,x1,x2, . . . ,x6}

will be the dominating set but the set R does not satisfies χ(<
R >) = χ(G). Hence there is no other disjoint dominating
chromatic set exists. It implies that dch(G) = 4.

3. Main Results
3.1 Results on dMχ(G).

(i) Let the graph G = K1,p−1. Then dMχ(G) = 1.

(ii) If the graph G = Fp is a Fan , p≥ 3 then dMχ(G) = 1.

(iii) For a complete graph G = Kp, dMχ(G) = 1.

(iv) Let G =Wp be a wheel , p≥ 5. Then dMχ(G) = 1.

(v) For the graph G=Kp, dMX (G)=

{
1, if p is odd
2, if p is even.

(vi) If the graph G = Drs a double star then dMX (G) = 2, if
r ≤ s

(vii) Let G = Km,n,m ≤ n be a complete bipartite graph.

Then dMχ(G) =

{ p
2 , if m = n
m , if m < n viii) For a graph

G = Pp, a path with p≥ 3 vertices,

dMχ(G) =



1, if p = 3
2, if p = 4,5
3, if 6≤ p≤ 11,15
4, if p = 12,13,14,33,34

and 16≤ p≤ 29
5, if p = 30,31,32 and p≥ 35

Proposition 3.1. Let G =Cp be a cycle with p≥ 3. Then

dMX (G) =


1, if p is odd
2, if p = 4
3, if p≡ 6,10
4, if p = 8,12,14,16,18,22,24,28,34
5, if p = 20,26,30,32 and p≥ 36

Proof. Let V (G) =
{

v1,v2, . . . ,vp
}

be the vertex set of G. For
the graph G,

χ(G) =

{
1, if p is odd
2, if p is even

and by the result (1.1)(iv),

γMχ(G) =


[ p

6

]
, if p≡ 2(mod 6)[ p

6

]
+1, if p≡ 0,4(mod 6)

p, if p is odd.
(3.1)

Case (i): Suppose p is odd. Then the all odd cycles Cp, p≥ 3
are vertex color critical graphs. By the result (1.1) (vii),
γMχ(G) = p. Hence dMγ(G) = 1.
Case (ii): Let p = 4. Then S1 = {v1,v2} and S2 = {v3,v4}
be the only majority dominating chromatic partition set of G.
Hence dMγ(G) = 2.
Case (iii): Let p = 6,10. For p = 6,

S = {(v1,v2) ,(v3,v4) ,(v5,v6)} .

For p = 10, S = {(v1,v2,v7) ,(v3,v4,v8) ,(v5,v6,v9)} . There-
fore S is the only majority dominating chromatic partition set
of G for p = 6,10. Hence dMX (G) = 3.
Case (v): Let p = 20,26,30,32 and p≥ 36.
Subcase (i): Suppose p = 20,26,30,32. By the result (3.1),
When p = 20,26,32, (i.e) p = 6k + 2,

⌊
p

γMχ (G)

⌋
= 5 if k =

3,4,5. When p = 30, (i.e.) p = 6k,
⌊

p
γMχ (G)

⌋
= 5 if k = 5. Let

S1 =
{

v1,v2, . . . ,v5
(
γMχ(G)−2

)
+1′v5(γMX (G)−1)+1

}
S2 =

{
v3,v4, . . . ,v5(γMX (G)−2)+22v5(γMX (G)−1)+2

}
S3 =

{
v5,v6, . . . ,v5 (γMX (G)−2)+ γ

′v5(γM χ(G)−1)+3

}
S4 =

{
v7,v8, . . . ,v5(γM χ(G)−2)+4vv5(γMX (G)−1)+4

}
S5 =

{
v9,v10, . . . ,v5(γMX (G)−2)+5′v5(γMX (G)−1)+5

}
Now the sets Stt = 1,2,3,4,5 are majority dominating chro-
matic sets of G such that d (vi,v j) = 1, where the first two
vertices vi and v j are adjacent for all Stt = 1,2,3,4,5 and
d (v j,vk)≥ 4,v j 6= vk,v j,vk ∈ St , t = 1,2,3,4,5. Therefore in
all five sets the last vertex is v5 (γMX (G)−1)+i, i= 1,2,3,4,5.
Then

{
S1,S2,S3,S4∪

(
V (G)−U5

t=1St
)}

is a majority domi-
nating chromatic partition of V (G) and therefore dMχ(G)≥ 5.

Since dMX (G)≤| p
γMX (G)

⌋
,dMχ(G)≤ 5 Hence dMX (G) = 5.

Subcase (ii): Let p≥ 36. Let p= 0,2,4(mod 6) By the result
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(1),γMχ(G)=
⌈ p

6

]
and

[ p
6

]
+1. When p≥ 36, p= 6k,

⌊
p

γMχ (G)

⌋
= 5 if k ≥ 6. When p≥ 38, p = 6k+2, | p

γM(G)

⌋
= 5 if k ≥

6. When p ≥ 36, p = 6k + 4,
⌊

p
γMX (G)

⌋
= 5 if k ≥ 6. Then

S1,S2,S3,S4 and S5 are taken as in the subcase (i) and ap-
plying the same arguments, we get dMχ(G) = 5. Therefore
dMχ(G) = 5 if p = 20,26,30,32 and p≥ 36.

Definition 3.2. Let G be any graph with p vertices and the
maximum degree ∆(G). If dMχ

(G) = 2∆(G) + 1 then the
graph G is called majority dogmatically chromatic full.

Example 3.3. Let G =C20. By proposition (3.2), dMX (G) = 5
and ∆(G) = 2. Hence dMχ(G) = 2∆(G)+1 = 5

4. Bounds on dMχ(G)

Theorem 4.1. Let G be any graph. Then dMχ(G)≤
∣∣∣ p

γM(G)

∣∣∣.
Proof. Let {V1,V2, . . . ,Vk} be the majority dominating chro-
matic partitions of G. Then, p = |V1|+ |V2|+ · · ·+ |Vk|=
∑

k
i=1 |Vi| . Let dMX (G) = k. Therefore |Vi| ≥ γMX (G), for each

i. p = |V1|+ |V2|+ · · ·+ |Vk| ≥ kγMx and p ≥ kγMχ(G) ≥
dMχ(G)γMχ(G) Hence dMX (G)≤

∣∣∣ p
γMX (G)

∣∣∣.
Corollary 4.2. For any graph G,dMχ(G)γMX (G)≤ p.

5. Charecterization Theorems on dMχ(G)

Theorem 5.1. Let G be a cycle on p vertices. Then dMχ(G) =
p

γMX (G) if and only if

(i) p is odd

(ii) p = 4,6,8,12,16,20,30,40

Proof. Let G =Cp be a cycle. By the result (1.1) (iv),

γMχ(G) =

 d
p
6 e, if p≡ 2(mod 6)
d p

6 e+1, if p≡ 0,4(mod 6)
p, if p is odd.

(5.1)

Assume that dMχ
(G) = p

γM χ(G) .

(i.e.)dMX (G)γMχ
(G) = p (5.2)

. Case (i): Suppose dMX (G) = 1. Since by (5.2), γMχ
(G) = p.

Then the majority dominating chromatic set contains the
whole vertex set V (G). It implies that the graph G is vertex
color critical. By proposition (3.2), in the graph Cp,dMX (G)=
1 if p is odd. Hence condition (i) holds.
Case (ii): Let dMχ

(G) = 2. Then by proposition (3.2), if
dMχ

(G) = 2 then p = 4 and γMχ(G) = 2. Substitute in (5.2),
dMX (G)γMχ

(G) = 2(2) = 4 = p. It implies p = 4. Hence (2)
is true for p = 4.
Case (iii): If dMχ

(G) = 3 then by proposition (3.2), p =

6,10.By(5.1),γMχ(G) =
[ p

6

⌉
+1 if p= 6,10. Then γMχ(G) =

2 and 3. From the assumption (5.2),dM(G)γM(G) = 3(2) =
6= p and dMX (G)γMX (G)= 3(3)= 9< p. Hence if dMX (G)=

p
γMX (G) then p = 6 only.
Case (iv): Let dMχ(G) = 4. Then by proposition (3.2), p =
8,12,14,16,18,22,24,28, 34. When p = 6k + 2, by (5.1)
γM(G) = 2 and 3 if k = 1 and 2 . When p = 6k γMX (G) =
3,4,5 if k = 2,3,4. When p = 6k + 4, by (1),γMχ(G) =
4,5,6,7 if k = 2,3,4,5 Then dMX (G)γMχ(G) = p if p= 8,12,
16. For all other vertices ,dMχ(G)γMχ(G)< p. Hence if

dMX (G) =
p

γM(G)

then p = 8,12,16.

Theorem 5.2. Let G be a Path on p vertices. Then dMX (G) =
p

γM(G) if and only if p = 4,6,9,12,16,30,35,40,45.

Proof. Applying the same argument as in the theorem 5.2.,
we obtain the result.
Subcase (i): Suppose there exists a vertex color critical sub-
graph in G. Then G contains a complete graph or odd cycles
or an induced subgraph in G. Therefore by result (3.1)(iii)
and the proposition (3.2), dMX (G) = 1. Hence if the graph G
contains a full degree vertex then dMχ(G) = 1.
Subcase (ii): Suppose |S1|= 2. If G is a tree χ(G)= 2. There-
fore S1 = {u1,u2} , where u1 is of degree d (u1)≤ p−1 and
u2 is of degree d (u2) ≥ 1 such that |N [S1]| = p. Hence the
graph G contains a full degree vertex. If d (u1) = p−1 and
d (u2) = 1 then |N [S1]| = p >

[ p
2

]
. Therefore G contains a

full degree vertex u1. If d (u1) < p− 1 and d (u2) ≥ 1 then
there are two disjoint majority dominating chromatic sets
and dMχ(G) = 2, which is a contradiction to (5.1). Hence G
contains a full degree vertex with d (u1) = p−1. Therefore
condition (i) holds.
Subcase (iii): If |S1|= 3, the graph G is a tree or it contains
a triangle. If G is a tree, S1 = {u1,u2,u3} is the majority
dominating chromatic set of G. Suppose d (u1)< p−1 and
d (ui)≥ 1, i = 2,3. Then there exists atleast two disjoint ma-
jority dominating chromatic set in G. Hence dMX (G) ≥ 2,
which is a contradiction to (5.1). Suppose G contains a tri-
angle, χ(G) = 3 and γMX (G) ≥ 3. since d (u1) ≤ p− 1 and
d (ui) ≥ 2, i = 2,3, S1 is a majority dominating chromatic
set of G. By the above arguments, dMχ(G) ≥ 2, which is a
contradiction to (5.1). Hence the set S1,d (u1) = p− 1 and
d (ui) ≥ 2. Therefore G contains a full degree vertex. Thus
condition (i) holds.

6. Conclusion
In this article, a new parameter majority dominating chromatic
partition for a graph G is introduced. Majority dom-chromatic
sets in the partition of the vertex set V (G) is studied. Majority
dom-chromatic partition number dMχ(G) is determined for
some families of graphs. Also the relationships of dMχ(G)
among the other domatic partition such as dch(G),dM(G) and
d(G) established.
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