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ABSTRACT

In thesis theoretical analysis of nonlinear differential equations in applied
chemical sciences are solved analytically and numerically. The application of HPM and
VIM which is used to solve a broad range of nonlinear equations, especially in
engineering as well as physical problems. Both methods are extremely useful and
reliable, as shown by the examples in this chapter.

The mathematical models for mass transfer accompanied by a reversible
homogeneous chemical reaction are focused. This model is based on a system of
nonlinear equations containing a nonlinear term related to reversible homogeneous
reactions. The concentration of species is obtained by solving the nonlinear equations
using the homotopy perturbation method. Our approximate analytical results are also
compared with the simulation result. A satisfactory agreement is observed between our
analyst Also, a mathematical model describing the reduction of Hydrogen peroxide
(H202) to water in a metal dispersed conducting polymer film is discussed. The model
is based on a system of reaction-diffusion equations containing a nonlinear term related
to Michaelis-Menten kinetics of the enzymatic reaction. The approximate analytical
expressions corresponding to the substrate and product concentration for steady and
non-steady-state conditions have been obtained using a new approach to the homotopy
perturbation method (HPM).

A theoretical model of the sensitivity and resistance of amperometry biosensors
with substrate inhibition kinetics are described. This model is based on the system of
non-stationary diffusion equations containing a nonlinear term related to non-
Michaelis-Menten kinetics of the enzymatic reaction. The influence of various
parameters such as the thickness of enzyme layer, bulk substrate concentration,
Michaelis-Menten and saturation constant on sensitivity and resistance of biosensor are

discussed.

Theoretical analysis of nonlinear differential equations in applied chemical
sciences is solved analytically in this thesis employing HPM, VIM, and the Taylors
series method. Numerical methods (Matlab/Scilab) are also used to solve nonlinear

problems in applied Chemical Sciences.
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CHAPTER-1

Introduction

1.1 Mathematical modeling

Models are descriptions of our assumptions about how the universe operates. We
transfer those views into mathematical language in mathematical modeling. This has

many advantages [1].

e Mathematics is a very precise language. It helps us to formulate ideas and identify

underlying assumptions.
e Mathematics is a concise language, with well-defined rules for manipulations.

e All the results that mathematicians have proved over hundreds of years area tour

disposal.
e Computers can be used to perform numerical calculations.

e Developing scientific understanding through quantitative expression of current

knowledge of a system.
e Testing the effect of changes in a system.
1.2 Models based on nonlinear differential equations

Differential equations play an important role in modeling virtually every
physical, technical, or biological process.Many fundamental laws of physics and
chemistry can beformulated as differential equations. A set of differential equations
may be called as a model for a system. In all mathematical sciences the differential
equations are used to model the behaviour of complex systems. The mathematical
theory of differential equations is first developed, together with the sciences [1], where
the equations had originated and where the results found application.

For nonlinear differential equation models in biology, chemical sciences, and
otherareas, a key preliminary step in the analysis of a model is to introduce

dimensionless variablesin order to extract dimensionless parameters that characterize



the behavior of the system. The central importance of identifying dimension less
parameters in a model was emphasized by Lee Segel. When some of these
dimensionless parameters take on extreme values, the original model can often be
reduced to a simpler model that is easier to analyze. In the1960's and early 1970's there
was an intense focus on developing asymptotic methods to simplify the differential

equation models in the limit of extreme values of dimensionless parameters.

We give a very brief historical survey of the applications of asymptotic and
analytical methodologies for the analysis of spatio-temporal patterns in reaction-
diffusion (RD) and related systems. Although far from complete, the bibliography is
hopefully representative of some of the advances in this area over the past forty years.
A two-component RD system with general reaction kinetics S (substrate) and

P(product) has the form
Se = DsV2S + f(S,P,1,t) (1.12)
P, = DpV?P + g(S,P,7,t) 1.2)

where P2 is the Laplacian operator, Ds and D, are the diffusion coefficients of the
substrateSandproduct P.r is the dimensionless radial co-ordinate of the particle. The
first term on the right-hand side of the above equation accounts for active species
(substrate product) diffusion whereas second term the f(S,P,r,t) and
g(S, P, r,t) homogeneous reaction term. In the subsequent chapters of this thesis, the
system represented by the above nonlinear equation is considered and solved using

various asymptotic methods.
1.3 Asymptotic approximation

The idea behind asymptotic is simple: break the solution into more manageable
pieces, each piece helping to produce a better and better approximation. So the first
piece describesthe system in some idealized state. To this, we may add a second piece
representing a small perturbation to the initial state. Each subsequent piece, usually
allow for better accuracy, with each piece representing smaller and smaller

perturbations.



y = yo(First, idealized approximation)
+gy4(Add small perturbation)

+&2y,(Even smaller perturbation)

+....

Here yi’s are i approximation of the solution y and represents a small perturbation.
These series are called asymptotic approximations because they are expected exact in
the asymptotic limit as tends to zero. One or two terms in the iterations provide a

satisfactory approximation to reality.

Many of the functions that arise from everyday problems cannot easily be
evaluatedexactly, particularly those defined in terms of integrals or nonlinear
differential equations. In these situations we usually have two options. We can use
computers to seek complicated numerical solutions or we can look to construct an
analytical approximation to the solutionusing asymptotic [2] expansions. Asymptotic
methods have particular importance in manyareasof applied mathematics.

With the rapid development of nonlinear science, the reappears an ever-increasing
interest of scientists and engineers in the analytical asymptotic techniques for nonlinear
problems. Though it is very easy for us now to find the solutions of linear systems by
means of computer, it is, however, still very difficult to solve nonlinear problems either

numericallyor theoretically.
1.4 Some analytical asymptotic methods

Recently, considerable attention has been paid to the analytical solutions for
non-linearequations without possible small parameters. Traditional perturbation

methods have many shortcomings, and

they are not valid for strongly nonlinear equations. To overcome the short
comings, many new techniques have appeared in open literature. The re-exist some
alternative analytical asymptotic approaches [3], such as the weighted linearization
method, Adomian decomposition method, variational iteration method, tanh-method
and so on. Just recently, some new perturbation methods such as artificial parameter

method, Homotopy perturbation method, parameterized perturbation method and



Homotopy analysis method which do not depend on the small parameter assumption
are proposed. In this thesis, variation alliteration method [4], Homotopy perturbation
method [5], Homotopy analysis method [6] and Adomian decomposition method [7]
are used to solve the system of non-linearequations.

1.5 Various nonlinear equations in chemical sciences

1.5.1 Homotopy perturbation method and variational iteration method for solving

the nonlinear equations with variable coefficients in applied sciences
1.5.1.1 The Duffing equation

The Duffing equation (or Duffing oscillator) is a nonlinear differential equation
of second-order that is used to develop driven and damped oscillators. This equation
was solved using the Taylor matrix method by Sezer et al. [8]. Najafi et al. [9] applied
the Adomian decomposition method (ADM) to solve the typical oscillation. Geng [10]
solved these equations by an improved variational iteration method involving both
integral and non-integral terms. The Duffing equation can also describe the motion of

a cubic oscillator, which is defined as oscillations of a point mass on a nonlinear spring.

In this thesis, Adomian composition method (ADM) is applied to typical

oscillation equations (Duffing and Van der Pol equations).

d2

22+ y(x) + () = 0 (3)
Here, y is the deviation of the point mass from the equilibrium and x is dimensionless
time.The initial conditions are as follows:

x=0,y(0) =aq, andZ—z =0 (1.4)

x=0
1.5.1.2 The Riccati equation

The Riccati equation is a well-known nonlinear differential equation of order
one, that is commonly used in theoretical physics and applied mathematics, such as
conformal mapping theory and algebraic geometry. Riccati differential equation is
useful in certain financial models [11]. Piriadarshani et al. [12] applied differential

transform method to solve various kinds of Riccati differential equation. Wannes et al.



[13] introduced the generalized Riccati Wick differential equation. Duan et al. [14]

proposed the Riccati equation's properties with constant coefficients.

The general form of Riccati differential equation is defined by:

28 = a(®)y(t) + bO) V() +c(t) (15)

wherea(t), b(t) and c(t) are continuous functions oft. The initial condition is
t=0,u(0)=p (1.6)
1.5.1.3 FitzZHugh —-Nagumo equation

The FitzHugh —Nagumo equation occurs in solid-state physics, astrophysics,
fluid mechanics, bursting oscillations, chemical chemistry, chemical kinematics,
geochemistry, exciting electronic circuit theory, chaos, bifurcation, plasma physics,
biology and population genetics. Via the variational principle, Khan [15] proposed a
novel solitary two-type solution for this equation. Schiesser [16] used an algorithm for
the numerical solution of the FitzHugh —Nagumo equation. Wallisch [17] generated
travelling waves solution to the FitzHugh -Nagumo equation for one and two

dimensions. Consider the FitzHugh —Nagumo equation

du

- = ku@® —u(@®)(2 - u®) 1.7
with initial condition,

t=0,u(0) = (1.8)
1.5.1.4 The Thomas-Fermi equation

The effective nuclear charge of heavy atoms is modeled using this problem [18].
The effective potentials and charge densities of atoms with several electrons can also
be calculated using this model. To solve this problem, Pikulin [19] developed high
efficiency computational algorithms. Thomas—Fermi equation, Zahoor et al. [20]
developed a new bio-inspired computing method. For neutral atoms in a semi-infinite
space, Jovanovic et al. [21] proposed an effective spectral methods solver. Xu et al. [22]

used homotopy analysis method (HAM) to solve this equation. He [23] used the



variational approach to solve the equation. The Thomas—Fermi equation can be written

as follows:

d?u _ (u(t)*/?

az = e (9
with initial and boundary conditions

t=0u(0)=Land t-oou(t)=0 (1.10)
Transform the Eq. (1.9) by u(t) = 1 + y(t),we get

dzlytgt) _ (Hy\(,?)m (1.11)
t=0y(0)=L—1andletZ| =M  t-owy)=0 (1.12)

t=0

In this thesis, the above nonlinear differential equations with variable
coefficients are adopted to solve using a homotopy perturbation method and a
variational iteration method. The results obtained by these methods are very useful and

convenient, as shown by comparing their results.

1.5.2 Analytical solution of non linear problems in homogeneous reactions occur

in the mass-transfer boundary layer: Homotopy perturbation method

Consider the reversible homogeneous reaction
kr
A+Be, C (1.13)

A is formed at a known rate Nao at an electrode surface, and B is present in the bulk
solution. The concentrations of A and C in the bulk solution are negligible, and the
fluxes of B and C at the electrode surface are also zero. The homogeneous reaction
forms the species C and diffuses into the bulk. We assume the steady-state and ignore
migration and convection in the diffusion layer [24]. In this case, the system of

nonlinear one-dimensional reaction-diffusion equations becomes as follows 24]:

DEAD — ke C(x) + kr AR)B() (1.14)
dZ
D8 =~ C(x) + kA(X)B(x) (1.15)



DEED — o C(x) — kyA(x)B(x) (1.16)

dx?

The k coefficients denote the forward and reverse reaction rate constants, and
A, B, and C represent the species concentrations. Both diffusion coefficients are
assumed to be equal to a constant D for the sake of consistency.The boundary

conditions are

dA aB ac
A=0;B=B,;C=0atx=4§ (1.18)

In this thesis, an analytical expression has effectively derived the concentration
in the rotating disc electrode controlled by migration and convection in the diffusion
the steady-state nonlinear reaction-diffusion equations are solved analytically by a new
approach of the homotopy perturbation method. There is a very good agreement
between the analytical and the numerical solutions for all values of rate constant.

1.5.3 Analytical expressions for the concentration and current in the reduction of
hydrogen peroxide at a metal-dispersed conducting polymer film

Reaction’s scheme occurring within the polymer film and in the bulk solution

can be written as follows [25]:
kq kcat ke k
S+E1,:—>E15—>P+E2,E2+A—>E1+B, B+2e” > C (1.19)
-1

Egn. (1.19) represents the oxidation of substrate (Glucose) S to product P(Hydrogen
peroxide). Here E; and E, are the oxidized and reduced forms of the enzyme (oxidase)
respectively. The reduction-oxidation process of the enzyme during the reduction of
oxygen (A) to hydrogen peroxide (B) is shown in Egn. (1.19). And the hydrogen
peroxide which in turn reacts with microparticle in the presence of a pseudo first order
rate constant k to produce water (C). Using Michaelis-Menten rate expression, the mass
balance one dimensional equations for substrate and product within the polymer film
can be written as follows [25]:

s(xt) 3%s(xt)  keaters(xt)
at S oaxz Kp+s(x,t)

(1.20)



db(xt)
at Dg

8%b(x,t) . kcaters(x,t)
200 — kb, £) + ) (1.22)

where s(x,t) and b(x, t) are the concentrations of substrate and product respectively.
Ds and Dy are the diffusion coefficients, k.,; is the catalytic reaction rate constant and
Ky = (keqr + k—1)/k4is the Michaelis-Menten rate constant. The initial and boundary

conditions for the above equations are given by

t=00<x<Lis=kss,b=0 (1.22)
ds ab

t>0,x—0.£—0,a—0 (123)

t>0,x=L:S =KsS., b =Kpb, (1.24)

Here s,, and b, is the concentration of substrate and product in the bulk solution. kg
and k,, is the reaction rate constant for substrate and product respectively. L is the
thickness of the polymer film. The current /of the product b at the electrode surface is

given by
I = —nFAj, = —nFADg(db/dx),—,, (1.25)

where j, is the flux of the hydrogen peroxide at the electrode surface. A simple
mathematical analysis of reaction and diffusion of glucose and hydrogen peroxide
within the conducting film containing metal microparticles have been presented. Using
a new approach to the Homotopy perturbation method, an approximate analytical
expression for the concentration of substrate and product are obtained. Approximate
analytical expressions for the steady and non-steady state current response produced

during the reduction of H.O> to water at the electrode surface are derived.

1.5.4 Sensitivity and resistance of amperometric biosensors in substrate inhibition

processes
In the enzyme reaction,
E+SoES->E+P (1.26)

the substrate (S) binds to the enzyme (E) in order to form an enzyme-substrate complex
ES. The substrate is converted to product (P) while it is part of this complex. The rate

of the product's appearance depends on its substrate concentration. For example, the



simplest scheme of non-Michaelis-Menten kinetics may have been obtained by adding
to the Michaelis-Menten scheme (Equation (26)), a stage of enzyme-substrate complex
(ES) interaction with another substrate molecule (S) (Equation (1.26)) after the non-
active complex (ESS) is generated as follows [26]:

ES+S & ESS (1.27)

The steady-state nonlinear differential equations for the substrate inhibition are[10]:

d?s(x) VinaxS(x) 0
s 2 2 1.28
dx km n S(X) n (sl((x)) ( )
d*p(x) N Vinaxs(x) —0
14 2 2~ 1.29
dx Ky, + s(x) + (sl(cx)) ( )

where Dy, D,, are the diffusion coefficients of the substrate and product in the enzyme
layer. s(x) and p(x) are the concentration of substrate and product in the enzyme layer.
Vinax 1S the maximal enzymatic rate, k,, denotes the Michaelis-Menten constant, kg
inhibition constant and d is the thickness of the enzyme layer. The corresponding
boundary conditions are [26]

ds(x)
dx

=0,p(x) =0 whenx =0, s(x) =s*,p(x) = 0 whenx =d (1.30)

where s* is the concentration of substrate at x = d and d is thickness of the enzyme
layer. The modeling of the amperometric biosensor with the substrate inhibition reveals
the complex kinetics of the biosensor response. At low substrate concentration, the
kinetics looks like a simple substrate diffusion. When inhibition constant is large
(ks — 0),the reaction kinetics is Michaelis-Menden model. The steady-state current I

of the biosensor is expressed as follows:

dp(x)
P dx x=0

I =n,FD (1.31)



The mathematical model of the amperometric biosensor can be successfully used
to investigate the biosensor's sensitivity and resistance. Simple and closed-form the
approximate analytical expression for the sensitivity and resistance are obtained for
substrate inhibition kinetics

1.6 Objective and scope of the present investigation
The objectives of the present investigation are as follows:

e To derive an approximate analytical solution of nonlinear equations with
variable coefficients in applied sciences using Homotopy perturbation method
and variational iteration method.

o To derive the analytical solution of nonlinear problems in homogeneous
reactions occur in the mass-transfer boundary layer using homotopy
perturbation method.

e To find the analytical expressions for the concentration and current in the
reduction of hydrogen peroxide at a metal-dispersed conducting polymer film
using Taylors series and new homotopy perturbation.

e To present the sensitivity and resistance of amperometric biosensors in substrate
inhibition processes using Taylors series and new homotopy pertuberation

method.
1.7  Organization of the thesis

This thesis presents the development to mathematical models using various
asymptotic methods. Variational iteration method, homotopy perturbation method, and
the Adomian decomposition method are used to predict the theoreticalresults on solving
the system of steady and non-steady-state nonlinear differential equations. Numerical
simulations (Scilab program) is also obtained and compared to show the efficiency of

the above methods applied.

Chapter one gives a short introduction to mathematical models, their

applications in differential equations and some asymptotic methods.

Chapter two presents application of HPM and VIM which is used to solve a

broad range of nonlinear equations, especially in engineering as well as physical
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problems. Both methods are extremely useful and reliable, as shown by the examples

in this chapter.

Chapter three focuses mathematical models for mass transfer accompanied
by a reversible homogeneous chemical reaction. This model is based on a system of
nonlinear equations containing a nonlinear term related to reversible homogeneous
reactions. The concentration of species is obtained by solving the nonlinear equations
using the homotopy perturbation method. Our approximate analytical results are also
compared with the simulation result. A satisfactory agreement is observed between our

analytical and simulation results.

Chapter four describes s mathematical model describing the reduction of
Hydrogen peroxide (H20>) to water in a metal dispersed conducting polymer film. The
model is based on a system of reaction-diffusion equations containing a nonlinear term
related to Michaelis-Menten kinetics of the enzymatic reaction. The approximate
analytical expressions corresponding to the concentration of substrate and product for
steady and non-steady state conditions have been obtained using a new approach to
homotopy perturbation method (HPM).The influence of initial substrate concentration,
the thickness of the film as well as the diffusion layer and kinetic parameters on the
current response were investigated. A graphical procedure for estimating the Kinetic
parameters from the expression of the current response is also proposed.

Chapter five discusses a theoretical model of a sensitivity and resistance of
amperometry biosensors with substrate inhibition Kinetics. This model is based on the
system of non-stationary diffusion equations containing a nonlinear term related to non-
Michaelis-Menten kinetics of the enzymatic reaction. This chapter presents the
approximate analytical expression of sensitivity and resistance of biosensor for small
values of reaction diffusion parameters. The effect various parameters such as thickness
of enzyme layer, bulk substrate concentration, Michaelis-Menten and saturation

constant on sensitivity and resistance of biosensor are discussed.

Chapter six is the overall conclusion and future enhancements of the thesis.
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CHAPTER 2

HOMOTOPY PERTURBATION METHOD
AND VARIATIONAL ITERATION METHOD
FOR SOLVING THE NONLINEAR
EQUATIONS WITH VARIABLE
COEFFICIENTS IN APPLIED SCIENCES



CHAPTER-2

Homotopy Perturbation Method and Variational Iteration Method
for Solving the Nonlinear Equations with Variable Coefficients in

Applied Sciences

2.1 Introduction

The ordinary differential equations (ODEs) with variable coefficients can be
used in a wide range of applications. Euler equations, Bessel equations, Legendre
equations, and Laguerre equations are examples of these equations. Many nonlinear
equations with variable coefficients, like Duffing equation [1-3], Riccati equation
[4-7], FitzZHugh —Nagumo equation [8-10], and Thomas-Fermi equation [11-16], are
very helpful and applicable in physical, chemical and engineering sciences. Since
solving such equations necessitates several nonphysical hypotheses, specific
approximate methods to solve nonlinear differential equations have recently been
established. In engineering, applied mathematics, physical, chemical, and biological
sciences, linear and nonlinear ODEs with variable coefficients play an important role.
The aim of the research was to come up with reliable methods for solving a broad range
of integral equations, linear and nonlinear differential equations, and without making
any tangible assumptions or discretizing the variables. The emergence of modern,
efficient techniques to manage linear and nonlinear equations has exceeded most
traditional methods. Newly developed techniques include the homotopy perturbation

method, Adomian decomposition method and variational iteration method.

Already Wazwaz [17] solved the scientific models like the Riccati equation, the
hybrid selection model, the Kidder equation, the Thomas-Fermi equation using the
variational iteration method (VIM). Ganji et al. [18] used homotopy perturbation
methods and variational iteration to solve different nonlinear equations. In this chapter,
the homotopy perturbation method (HPM) [19-27] and the variational iteration method
(VIM) [28-31] are applied to solve certain nonlinear equations. These nonlinear
problems are the application of several physical and engineering sciences [32-36]. Also,

all the analytical results converge to exact solutions.

12



2.2 Homotopy perturbation method (HPM)

One of the asymptotic approaches to solving linear and nonlinear
ordinary/partial differential equations is the homotopy perturbation method (HPM).
This method was proposed by He in 1999 [37] which is also applied to solve a system
of equations which is linear and nonlinear. Computational parameters were used to
create this technique [38-40]. Almost all traditional perturbation methods make use of
the small parameter assumption. Most nonlinear problems, on the other hand, do not
have small parameters and determining small parameters appears to have been a one-

of-a-kind art that requires advanced techniques.

Such parameters are so sensitive that even minor variations in them can greatly
impact the result. The proper selection of such small parameters yields optimal results.
A poor choice of small parameters, on the other hand, may have serious consequences.
To eradicate the small parameter assumption, Liu [38] suggested an artificial parameter
method and Liao [41,42] contributed to the homotopy analysis method. He [43]
proposed the new perturbation technique to solve the nonlinear problem. Rajendran et
al. [19-27] solved many nonlinear differential equations using the homotopy

perturbation method.
2.3 Variational iteration method (VIM)

The variational iteration method (VIM) is one of the asymptotic methods used
to solve nonlinear ordinary and partial differential equations. He [44,45] formulated
this approach and successfully applied it to solve ODEs and PDEs. Many researchers
used this method to solve fractional, homogeneous, nonhomogeneous, linear and
nonlinear differential equations. VIM can work in both bounded and unbounded
domains. If an exact solution to the differential equations exists, this approach can be
used to find successive convergent approximations. Wazwaz [46] solved the Volterra
integral and integro-differential equations, both linear and nonlinear using this method.

2.4 Scientific applications

The Duffing equation [1-3], Riccati equation [4-7], FitzZHugh —Nagumo
equation [8-10], and Thomas-Fermi equation [11-16] are the four extremely well

nonlinear equations covered in this section.
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2.4.1. The Duffing equation

The Duffing equation (or Duffing oscillator) is a nonlinear differential equation
of second order that is used to develop driven and damped oscillators. This equation
can also be used to represent a dynamic system that exhibits chaotic behavior.The
frequency response of the jump resonance phenomenon which is a form of frequency
hysteresis, is also seen in the Duffing system. This equation was solved using the Taylor
matrix method by Sezer et al. [1]. Najafi et al. [2] applied the Adomian decomposition
method (ADM) to solve the typical oscillation. Geng [3] solved these equations
involving both integral and non-integral terms by an improved variational iteration
method. The following equation can be used to describe the motion of a cubic oscillator,

which is described as oscillations of a point mass on a nonlinear spring.

In this chapter, Adomian Decomposition Method (ADM) is applied to typical

oscillation equations (Duffing and Van der Pol equations).

XD 4 y(@) +e((x))* = 0 (2.1)

Here, y is the deviation of the point mass from the equilibrium and x is

dimensionless time. The initial conditionsare as follows:

Atx =0,y(0) = aand =0 (2.2)

dy|
dxlx=0

2.4.1.1. The analytical solution of Duffing equation model using HPM
d? d?
1 -p) (Z2) +p (22 +y@) +e(r(1))*) = 0 (23)
The approximate solution of (2.1) is

y(X) =Yo+yip +yp®+ ... (2.4)

The following equations with corresponding boundary conditions was obtained
by substituting Eq. (2.4) in Eq. (2.3) and equating the like coefficients of powers of p.

230 = 0,5(0) = 4,7(0) = 0 (2.5)
(f;?;l + yo(x) + e(yo(x))* = 0,y1(0) = 0,y'1(0) = 0 (2.6)

14



LYz 4y (x) + 36y (1)) 2y1.(x) = 0,,(0) = 0,5,(0) = 0 (2.7)

dx?

s +¥2(x) + 3e(Yo () (1 (2))* + (o (x))?y2(x)) = 0,y3(0) = 0,y'3(0) =0

dx?

(2.8)
On solving the Eqgs. (2.5- 2.8), the following results are obtained.
Yo(x) =a (2.9)
y1(x) = —a(l+ eaz)xz—z (2.10)
y2(x) = a(1 + 4ea? + 3c%a*) % (2.11)
y3(x) = —a(1 + 25sa? + 51£2a* + 27<93616)7XTGO (2.12)

Therefore, the approximate analytical solution of Eq. (2.1) is

2 4
y(x) =a (1 -1+ saz)x? + (1 + 4ea? + 352614‘)’;—4 — (1 + 25¢a? + 51&?a* +

2763a8) X 4. ) (2.13)

720

If € = 0, then the above approximate solution converges to a cos( x).

2.4.1.2. The analytical solution of Duffing equation using Variational iteration
method

The variational iteration formula for Eq. (2.4.1.1) is given as
Yrr1 () = () + f§ 2@ 0 "(@) + ya(@) + eGn(@))*)da,n 2 0 (2.14)

Since Eg. (2.1) is a differential equation of order one, so the Lagrange multiplier,

A = a — x. Hence Eq. (2.14) becomes as follows:
Va1 (0) = yr () + [5(@ = 0) 0 "(@) + ya(@) + O (@))*)dar (2.15)
Let y,(x) = a. The successive approximations become as follows:

Y100 = yo () + fo (@ = ) Yo" (@) + yo(@) + £(o(@)))da

=a(1-(1+ea)%) (2.16)
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7200 = 7100 + [ (@ =000 (@ +31(@ + e (@)
0
=a—a(l+ eaz)xz—2 + a(l + 4ea® + 3£2a4)§+. . (2.17)
Therefore,

2 4
Ya(x) = a (1 -1+ eaz)% + (1 + 4ea? + E’>£2a4)926—4 — (1 + 25¢a? + 51&?%a* +

2763a8) X 4. ) (2.18)
720

Eqg. (2.13) and Eq. (2.18) are same.
2.4.2. The Riccati equation

The Riccati equation is a well-known nonlinear differential equation of order
one, that is commonly used in theoretical physics and applied mathematics, such as
conformal mapping theory and algebraic geometry. Riccati differential equation is
useful in certain financial models [4]. Piriadarshani et al. [5] applied differential
transform method to solve various kinds of Riccati differential equation. Wannes et al.
[6] introduced the generalized Riccati Wick differential equation. Duan et al. [7]

proposed the Riccati equation's properties with constant coefficients.

The general form of Riccati differential equation is defined by:

20 = a(t)y(t) + b)) +c(t) (219)
where a(t), b(t) and c(t) are continuous functions of t.

The initial condition is

t=0,u(0)=p (2.20)

2.4.2.1. The analytical solution of Riccati equation model using HPM

The homotopy for the Riccati Eq. (2.19) is as follows:

1 -p) (B2 =) +p (%2 - (@®y® + bOG®)? +c(©)) =0 (221)

dt

The approximate solution of Eq.(2.19) is

y(t) =yo +yip +yz2p%+... (2.22)
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The following equations with corresponding boundary conditions was obtained by

substituting Eq. (2.21) in Eq. (2.22) and equating the like coefficients of powers of p.

Do _o(t) = 0,y5(0) = B (2.23)
D b (yo(D))? — alt)yo(t) = 0,9:(0) = 0 (2.2
22 _2b(0)yo(H)y1(8) — a()y1(t) — c(t) = 0,,(0) = 0 (2.25)
Case (i): Now take the coefficients as a(t) = 1, b(t) = -1, c(t) = 2 (2.26)

Riccati equation becomes

T =)+ () +2 (2.27)
The boundary condition is

Att=0,y(0) =1 (2.28)

Now we construct the homotopy for the Eq. (2.27) as follows:

A-p)(Z2-2)+p(Z2+ )2 -y -2) =0 (229)
The approximate solution of Eq.(2.27) is

y(X) =Yo+yip+y2p*+... (2.30)

The following equations with corresponding boundary conditions was obtained
by substituting Eq. (2.30) in Eq. (2.29) and equating the like coefficients of powers of

p.

%— 2=0,,00) =1 (2.31)
S+ Go()? = yo(0) = 0,71(0) = 0 (232)
2+ 2y0(0)y1(8) = y1(8) = 0,7,(0) = 0 (233)
22— 2(0) + G1(D)? + 276 (D)y2(8) = 0,y5(0) = 0 (234)
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2 y3(6) + 2y5(D)y3(D) = 0,,(0) = 0 (235)

On solving the Egs. (2.31-2.35), we get

Yo(t) =1+2t (2.36)
yi(t) = —t2 = 2¢3 (2.37)
Y2(t) = 23+ 2tt + 25 (2.38)
ya(t) = ——tt = =S - 2o 227 (2.39)
Ya(t) = 15+ 26 2047 4 228 4 1080 (2.40)

Therefore, the approximate analytical solution of Eq. (2.27) is

y(£) =1+2t =2 — 3+ 2t4 + Zt5+... (2.41)

2.4.2.2. The analytical solution of Riccati equation model using Variational

iteration method
The variational iteration formula for Eq. (2.27) is given as
t I
Yns1(t) = ¥a(6) + [ A(@) (@) + (7 (@))? — yn(@) — 2)da,n = 0 (2.42)

Since Eq. (2.27) is a differential equation of order one, so the Lagrange multiplier,

A = —1. Hence Eq. (2.42) becomes as follows:

t !/
Yn+1(t) = yu(8) — fo n'(@) + n(@))? = yu(@) — 2)da,n = 0 (2.43)
Let yo(t) = 1. The successive approximations are as follows:

¥1() = %0 — [ (00'(@) + (o(@))? — yo(@) — 2)dar = 1 + 2¢ (2.44)

t

y2(t) = y:(0) —jo (i@ + (2@ ~y(@) ~2) da =142t~ 2 — 213

=1+2t—t2 -2t (2.45)
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Y5(8) = ya(t) fo 2@ + 02(0))? = y2(a) — 2)dax

13 4 16
=S -6 -2

=142t —t2 342y
3 15 9 63

t’ (2.46)

Y4(®) = ¥3() = [ (73'(@) + (73(@))? = 3 (@) — 2)da

=1+4+2t—t>—1t3 +Zt4 +%t5 —%tﬁ — 361151:7 + 1(2)2(3)158 + 2225 t?
= %t“’ (2.47)
- 5?335 e 33185 e+ 322?5 e - 3229 e - 59525 t1°(2.4.2.28)
Therefore,
Ya(t) m 142t — 2 —£3 + 2t + T 54 (2.48)

Case (ii) Now assume that a(t) = —2t,b(t) = 1,c(t) =t*+1and B =%

Then, the equation of Riccati becomes
2= (y()? - 2ty(®) + 2 + 1 (2.49)

with initial condition,

Att =0,y(0) =1 (2.50)

2

Now we construct the homotopy for the Eq. (2.49) as follows:

1 -p) (BE =) +p (B2 = (@Oy(®) + OGO +c(1))) =0 (251)
The approximate solution of Eq. (2.49) is

Y(X) = Yo +yip +y2p® + ... (2.52)

The following equations with corresponding boundary conditions was obtained by
substituting Eq. (2.52) in Eq. (2.51) and equating the like coefficients of powers of p.

d 1

=2 —t2=1=10,y,(0) = (2.53)
dy,

d_yt — o (£))? + 2tyo(t) = 0,y,(0) =0 (2.54)
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% = 2yo(0)y1(t) + 2ty,(t) = 0,¥2(0) = 0 (2.55)

25— (52(8))% = 2Y0(6)y2(t) + 2ty (t) = 0,3(0) = 0 (2.56)

On solving the Egs. (2.53 — 2.56), we get

3

Vo) =z +t+= (2.57)
— 1y 133 Lty 17

@) =st—st +—tt+—t (2.58)
102 1.4 1.5 2.7, 1.8 2 11

y2() = g Tt Tl —@t tgt et (2.59)
1.3 1,5, 7 6,17 1.8, 2 9 2 .11 53 112

y3(t)—16t 200 Tol Tat 756t Tast et tesmt T

1415 (2.60)

218295

Therefore, the approximate analytical solution of Eq. (2.49) is

=l lpa L3 L Lys
y(O) =+ttt ottt (2.61)

which is converges to the exact solution
1
y() =t+o— lt] <2 (2.62)

and this is the same solution acquired with VIM by Wazwaz [17].
2.4.3. FitzHugh —Nagumo equation

The FitzHugh —Nagumo equation occurs in solid-state physics, astrophysics,
fluid mechanics, bursting oscillations, chemical chemistry, chemical kinematics,
geochemistry, exciting electronic circuit theory, chaos, bifurcation, plasma physics,
biology and population genetics. Via the variational principle, Khan [8] proposed a
novel solitary two-type solution for this equation. Schiesser [9] used an algorithm for
the numerical solution of the FitzHugh—Nagumo equation. Wallisch [10] generated
travelling waves solution to the FitzHugh-Nagumo equation for one and two

dimensions.
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Consider the FitzHugh —Nagumo equation

du

= = ku(®)(1 - u(®) (2 - u(b) (2.63)
with initial condition,

Att =0,u(0) =~ (2.64)
2.4.3.1. The analytical expression of the FitzHugh —Nagumo equation using HPM
By the basic concept of HPM,

@ -p) () +p (5 - 2ku(®) + 3ku(t)? — ku(t)*) = 0 (2.65)
The approximate solution of u(t)is uy + u;p + u,p?+... (2.66)

The following equations with corresponding boundary conditions was obtained by

substituting Eq. (2.66) in Eq. (2.65) and equating the like coefficients of powers of p.

G =0up(0) =3 (2.67)
S8 2kug (£) + 3k (ug(1)? — k(uo(£))* = 0,43 (0) = 0 (2.68)
B2 — 2k, (£) + Gkug () (£) — 3k (1o (£))?uy () = 0,115(0) = 0 (2.69)
dus

2k, (£) + 3k (1 ()% + 2o (Ou(6)) — k (3ue(6) (ur (6)” +

iy _
3(to()12(8)) = 0,u3(0) = 0 (2.70)

Solving Egs.(2.67 — 2.70), we get

Uy (t) = % (2.71)
uy (t) = 2kt 2.72)
up(t) = — = (kt)? (2.73)
us(t) = — o (kt)? (2.74)

Therefore, the approximate solution of Eq. (2.63) is
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u(t) =%+§kt — = (kt)? — = (kt)*+..... (2.75)

256

This expansion of u(t) leads to the exact solution
u(t) =1— (1 + 3exp(3kt))~1/? (2.76)
which the same solution of obtained by Wazwaz [17] using VIM.

1

09t

08t

iit)

07t

06

0_5 1 1 1
0

Figure 2.1: Comparison The exact solution of FitzHugh —Nagumo equation u(t)

(Eq. (2.4.3.14)), versus with numeric solution.

The exact solution of FitzHugh —Nagumo equation u(t) (Eg. (2.4.3.14)), is

compared with numerical solution in Fig. 1 and satisfactory agreement is noted.
2.4.4. The Thomas-Fermi equation

The effective nuclear charge of heavy atoms is modeled using this problem [11].
The effective potentials and charge densities of atoms with several electrons can also
be calculated using this model. To solve this problem, Pikulin [12] developed high
efficiency computational algorithms. To evaluate the nonlinear singular Thomas—Fermi
equation, Zahoor et al. [13] developed a new bio-inspired computing method. For
neutral atoms in a semi-infinite space, Jovanovic et al. [14] proposed an effective
spectral methods solver. Xu et al. [15] used homotopy analysis method (HAM) to solve
this equation. He [16] used the variational approach to solve the equation. The Thomas—

Fermi equation can be written as follows:

d2 ( t)3/2
d_; - u(jz (2.77)
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with initial and boundary conditions
Att =0,u(0) =L and (2.78)
Att - o,u(t) =0 (2.79)

Transform the Eq. (2.77) by u(t) = 1 + y(t),we get

d';ytgt) _ (1+y\(/?)3/ ? (2.80)
ANtzaﬂmzL—lmMﬂ%hﬁzM (2.81)
Att - o0, y(t) =0 (2.82)
Since, (1 +y(0)¥2 = 1+2y(6) + > ()% - - 0(D)? (2.83)

Therefore, Eq. (2.80) becomes

aZy(®) _ YOO - 60
dt? vVt

(2.84)

2.4.4.1. The analytical solution of the Thomas-Fermi equation using HPM

By the basic concept of HPM,

1-p)(Z2) +p (d%” - =(1+3y@ +2w)? - §6<y(t>>3)> =0 (2:89)
The approximate solution of the Eq. (2.85) is

y(t) = yo+yip +yz2p2+... (2.86)

The following equations with corresponding boundary conditions was obtained
by substituting Eqg. (2.86) in Eq. (2.85) and equating the like coefficients of powers
of p.

D= 0,y0(0) = L= Ly, () =M (287)

dt?

HO _ 2 (142500 + 2 00(®)* = 2 00(0)*) = 0,32 (0) = 0,,/0) =0 (288)
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220 _ 2 0 + 2500310 — £ Gro(0)?31(D) = 0,,(0) = 0,3,

L0 1 (23,0 + 2010 + 2y0(0y2(0) ~ 2 ((6(0) y2(0) +

G2 ()270(0)) = 0,

y3(0) =0, y3'(0)
Solving Egs. (2.87 — 2.90), we get

Yo (t) =L—1+M

1 M
yi(®)=OL(L+1)—1- L3)ﬁt3/2 + (3 +6L— LZ)%tS/Z

2 3
+(9 = 3L) T t7/2 — 2/

o (7L—5L4—1)+41L2+ L5 +7L3 s
y2(t) = 128 192 ' 384 ' 64

1313 4 912 N 13L* N 97L M
320 128 3840 960 1280

(4313 —387L% + 247) 9L 6112 61L 47
+ M?%t5 + - +
22400 896 100800 16800 33600

+( L T )M4t7 + (o) M5
282240 94080 75264

Therefore, the approximate solution of Eq. (2.94) is

(7L—5L*—1) 4112 > 7%\ ,
y()=L—1+ Mt + + — |t

128 192 * 384 * 64
1313 4 912 N 13L* 4 97L Mt
320 128 3840 960 1280

'0) =0
(2.89)

(2.90)

(2.91)

(2.92)

>M31:6

(2.93)

3 2 2
<(43L — 38712 +247) 9L )MZtS s < 61L 61L 47 >M3t6

22400 * 896 100800 16800 * 33600

( 37L 37
282240 94080

)M4t7
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1 M
M58 + OL(L+1)—1—-13)—t32+ (3+6L—L2)—t2 + (9
+(75264> + OLEL+1) )12 S )20 *(
A42
—3L)—t7/2
) 140
(_M_3_ 1 117 305L | 575L* | 17411 7L  103L? LLG) £9/2 4
252 32256 96768 96768 96768 32256 512 3584 = 4608
(2.94)
Let t = x2. Then
u(x) =1+y(x)
1 M
=L+Mx?>+OL(L+1)—-1 —L3)§x3 + (3 +6L —Lz)ﬁxs
+ (7L—5L4—1)+41L2+ L° +7L3 p
128 192 " 384 " 64 )"
2 3 2 4
+(9 -3 1ox + (o o S T ) Mx®
140 320 128 3840 960 1280
_M_3_ 1 11L7 _ 305L 575L%
252 32256 96768 96768 96768 | 9, (2.95)

174113 705 103L% = 11L°

32256 512 3584 4608

For L=1 we get the same solution obtained by Wazwaz [17] using VIM. Padé
approximant method is used to find the unknown M.Consider the [2/2] approximant as

follows:

u(x) = Gotayx+azx? (2.96)

1+b1x+b2x2

Let  u(x) = ug + uyx + upx? + uzx® + ugx* + usx® + ugx® + uyx” + ugx®+...

(2.97)
From Eq. (2.96) and Eq.(2.97) we get,

(ug + usx + upx? + uzx® + ugx® + usx® + ugx® + u;x” + ugx®+...)(1 + byx +

b,x?) = ap + a;x + a,x? (2.98)
Equating the coefficients of x°, x, x2, we get
uO = aO (299)

ul + uobl == al (2100)
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uZ + u1b1 + uObz = az (2101)
Us + u2b1 + u1b2 = 0 (2102)
U,4 + U,3b1 + quz = 0 (2103)

Solving Eqg. (2.102) and Eq. (2.103), we get

_ .2
bl — UU3—UxUq , bz — UUgs—U3 (2104)

UjUz—Uy? U Uz —u,?

From Eq. (2.95),

1
Uug=Lu; =0,u; =M,u; = (9L(L+1) — 1—L3)E,u4 =0, us

=(3+6L LZ)M
N 20’

(7L —-5L*—-1) 411> L[> 713 M?
= 128 ‘10z T3materw T O3 gt
1313 912 13L* 97L 1
N <_ 320 ' 128 ' 3840 ' 960 1280) M.

Ug

L3-9L(L+1)+1
12M

2
_ (L3-9L(L+1)+1) @ = L*—9L2(L+1)+L

b, =
V2 ' 12M

Therefore, by = i

)

_ L7-2L2(9L*—82L%+9)+63L3(1+L?) n
- 144M?2

a, M (2.105)

Using the boundary condition lim u(t) = 0 in Eq.(2.96), we get the unknown M.
n—-oo

Table 2.1. The values of u’(0) = M for various Padé approximant

. u'(0)=M
S.No Padé approximant
L=1 L=2 L=3
1. [2/2] -1.2114 -3.0411 -5.1087
2. [4/4] -1.5505 -3.9193 -6.6607
3. [7/7] -1.5874 -3.9948 -6.7751
4. [8/8] -1.5874 -3.9948 -6.7773
5. [10/10] -1.5874 -3.9948 -6.7773
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Table 2.1 represents the initial slopes u’(0) = M for various Padé approximant and for

different values of L.

3.5

3 I

Numerical

2510 Analytical 4

2

u(x)

1.5}

1

0.5¢

Figure 2.2 Comparison of Padé approximant [11/11] solution of Thomas-Fermi

equation with numerical solution for different initial condition.

The approximate analytical solution of Thomas-Fermi equation u(x) is
compared with numerical solution for various values of L in Fig. 2.2 and satisfactory

agreement is noted.
2.5. Conclusions

In this chapter, the authors demonstrate that HPM and VIM are the two methods
that can solve a broad range of nonlinear equations, especially in engineering as well
as physical problems. Both methods are extremely useful and reliable, as shown by the
examples in this article. Small parameters are not needed in VIM or HPM, and
traditional perturbation methods' drawbacks and non-physical assumptions are
eliminated. Additionally, when computing Adomian polynomials, VIM and HPM will
solve the problems that arise. Both approaches are effective techniques for solving

nonlinear equations in a number of fields and do not need linearization.
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TRANSFER BOUNDARY
LAYER: HOMOTOPY PERTURBATION
METHOD



CHAPTER-3

Analytical Solution of Non Linear Problems in Homogeneous
Reactions Occur in the Mass-Transfer Boundary Layer: Homotopy
Perturbation Method

3.1. Introduction

Many electrode processes with homogeneous reactions that occur continuously
in the mass-transfer boundary layer. These reactions involve splitting or forming in the
process of deposition or degradation of metal-linking complexes, the interaction and
dissociation of ions and redox soluble mediators. Quantitative studies of electrode-
kinetics experiments as well as simulation of electrochemical reactor processes require
the description of species concentrations at the electrode surface. Homogeneous

reactions can strongly affect the concentration of species.

The computation of concentration profiles near electrodes in the solution is

based on the species conservation equation.

aCi
where cj is the molar concentration of species i, and R; is the net rate of
production of i locally by homogeneous reactions. The molar flux Njand the rate of

production of Ml.zi usually represented by
F vj vy
N; = —DiVCl' — zic;D; =T V(p + c;v and R; = v; [kr l_[] Cj — kf Hi C; ] (32)

This describes species transport through diffusion and convection and ion
migration in an electric field [1]. When charged species are involved, equations 1-2
must be written for each species in solution and combined with the electroneutrality
state )'; z; ¢;=0, and ¢ must be determined. Implementation of appropriate boundary
conditions on the electrode surface and in the bulk solution is needed for their solution.
This kind of nonlinear problems occurs in many relevant situations, such as cyclic

voltammetry, chronopotentiometry, rotating disk and ring-disk electrodes, and various
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boundary-layer flows with multiple geometries, system chemistries, flow and boundary
conditions [2]-[6].

Recently Chapman et al [7] discuss the mass transfer at the electrodes for the
homogeneous and fast reversible reaction. More recently the empirical expression of
species concentration using the Taylor series method and hyperbolic function method
was obtained by Mary et al. [8]. In this chapter, we present a simple and effective
homotopy perturbation approach for solving the nonlinear differential equation in the
sense of mass transfer at the electrodes with reversible homogeneous reactions.An
approximate analytical expression for the concentration of species in the homogeneous

electrochemical reaction is obtained for various parameter values.
3.2. Mathematical formulation of the problem

Consider the reversible homogeneous reaction
k
A+Be/C (3.3)

A is formed at a known rate Nao at an electrode surface, and B is present in the

bulk solution.

The concentrations of A and C in the bulk solution are negligible, and the fluxes
of B and C at the electrode surface are also zero. The homogeneous reaction forms the
species C and diffuses into the bulk.For measuring concentration profiles, Egs. (3.1)
and (3.2) may be combined for each component. We assume the steady-state and ignore
migration and convection in the diffusion layer [7]. In this case, the system of nonlinear

one-dimensional reaction-diffusion equations becomes as follows [7]:

DEAD - k() + ke AR)B() (3.4)
DEED = 1, C(x) + kpAG)B(0) (3.5)
DL = € () — kyAG)B () (3.6)

The k coefficients denote the forward and reverse reaction rate constants, and

A, B, and C represent the species concentrations. Both diffusion coefficients are
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assumed to be equal to a constant D for the sake of consistency.The boundary

conditions are

dA dB ac
DE=— AO;E=E=031X=0 (3.7)
A=0;B=B,C=0atx =38 (3.8)

By introducing the following dimensionless variables

A B C X
a=|5)0=l5]5=15]-=[
e =[] = [ = [522) (39)

Eqns. (3.4)-(3.6) becomes in dimensionless form as follows:

82 dza(z) _ S(Z)

= a(z)b(z) — —~ (3.10)
5 d2b(z) _ 5@
29 = a()b(z) -2 (311
2 d%5(z) _ S(2) _
— T a(z)b(z) (3.12)

The correspondingdimensionless boundary conditions are,
a(z=0)=ub'(z=0)=0,S(z=0)=0 (3.13)
a(z=1)=0,b(z=1)=1,5z=1)=0 (3.14)

where ¢is the relative rates of diffusion and reaction. K* is the homogeneous
equilibrium constant. u is the rate of injection of A relative to the limiting flux of B
toward the electrode.

3.3 Analytical expression of the concentration using homotopyperturbation
method

The nonlinear equations (3.10 - 3.12), in recent years, numerous methods have
been developed to derive analytical or semi-analytical solutions regardless of how
strong the nonlinearity maybe. Homotopy analysis method [9,10], variational iteration

method [11,12], Adomian decomposition method [13] and Green’s function iterative
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method [14,15] are wused to solve the nonlinear equations. Due to its
simpleimplementation and high accuracy, the homotopy perturbation method (HPM)
[16-20], Residual method [21], Padé approximants method [22], Akbari
Ganji's method (AGM) [23] and Taylor series method [24], the new approach of
homotopy perturbation method (NHPM) [25,26] has received great deal of attention.

By solving equations (3.10)-(3.12) using the homotopy perturbation approach
(details in Appendix A), the following approximate analytical representation of ionic

concentration is obtained .

a(z) =u(z—1) + —E—[(z — 1)(2% — 2z — 4)% + 20K *€2(z3 — 322 + 2)] (3.15)

120K*e*
b(z) =1+ 120;84 [(z—1)(2% — 2z — 4)? 4+ 20K*£%(2% — 32% + 2)] (3.16)
S(z) =1—b(2) (3.17)

3.4. Previous analytical results

Chapman [7] derived approximate distributions of concentration. Consider the
case of small g, that is, the case where the homogeneous rate constant ks is large enough
to make ¢ small. If the first terme is neglected, the following solutions are obtained

from a quadratic algebraic equation for S.
2 1/2
S(2) =% (,u(l—z)+1+%)—((,u(l—z)+1+%) —4/1(1—2)) ] (3.18)

a(z) =u(l—2z)—S(2) (3.19)
b(z) =1-5(z) (3.20)

Recently, Mary et al. [8] used Taylor's series method (TSM) to obtain the

analytical representation of species concentration as follows:
a(z)=b(z)+tuz—pu-1 (3.21)

(mwz3®  apz* n 1

£23! 44! &t

2 5
b(z) =m+55 + [Bum + 3au] = + — [af? + 6a? +

6

4e2mu?] 6— (3.22)
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S(z)=1—-b(2) (3.23)

m 1

f=2m—-—pu—1+— (3.24)

-1
K* K*

wherea =m(m—u—1) +

The value of m is obtained by solving the following equation.

a mu aB 1 1 1 1 _
m+——+ oo+t S upm 4 3ual o + < [ap? + 6’ + 4e?mp] - —1=0 (3.25)

282 g231  g44)

But in this method, it is very difficult to find the constant m. Our analytical
results (Egs. 3.15 - 3.17) are easily computable when compared with Taylor's series
solution (Egs.3.21-3.23).

3.5 Numerical simulation and discussion

The differential Egs. (3.10 - 3.12) with the corresponding boundary conditions
has also been solved numerically using SCILAB/MATLAB program (Appendix-B).
The numerical solution is compared with our analytical results (HPM method) and
previously available results (Taylor’s series method) in Tables 3.1-3.3. There is no
much difference in average error percentage between HPM and TSM. But we can easily

calculate the concentration for all values of the parameter in HPM.

Also, a comparison between the analytical and numerical results are shown in
Figures 3.1.The maximum error between analytical (HPM) and the numerical result is
1.35%. It is evident from Tables 3.1-3.12 and Fig. 3.1 that our results are very close to

the exact simulation results.

The concentration of species depends upon the parameter relative rates of
diffusion and reaction (&), rate of injection of A relative to the limiting flux of B toward
the electrode (1) and homogeneous equilibrium constant (K*). Figure 1, shows the
concentration of species a(z),b(z) and S(z)for various values of relative rates of

diffusion and reaction and the homogeneous equilibrium constant.

From this fig.3.1, it is observed that an increase in equilibrium constant leads to
increase in a(z) and b(z) and decreases in S(z). From this fig.3.2, it is noted that an

increase in rate of injection leads to decrease in a(z), b(z) and S(2).
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Figure 3.1. Comparison of concentrations a(z), b(z) and S(z) (Eqgns. (3.15)-(3.17))
with simulation results for various values of parameters €, K“and p.
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Figure 3.2. Comparison of concentrations a(z), b(z) and S(z) (Eqgns. (3.15)-(3.17))

with simulation results for various values of parameters ¢, K'and p
3.6 Conclusions

An analytical expression has effectively derived the concentration in the
rotating disc electrode controlled by migration and convection in the diffusion layer. In
this study, the model is applied to a one-dimensional case of a rotating disc electrode.
The steady-state nonlinear reaction-diffusion equations are solved analytically by a new
approach of the homotopy perturbation method. There is a very good agreement

between the analytical and the numerical solutions for all values of rate constant.
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Table 3.1. Comparison of numerical solution of concentration of species a(z) with the analytical solutions by Homotopy perturbation method and

Taylor series method for K* =1, u = -3 and for different values «.

e=0.7 e=10.8 =09
Error Error TSM | Error Error Error
z Our HPM | Error % TSM Our HPM Our HPM TSM
Num % of | Num %of | Eq.(3. | %of | Num % of % of
Eq.(3.15) | of HPM | EQ.(3.21) Eq.(3.15) Eq.(3.15) Eq.(3.21)
TSM HPM 21) TSM HPM TSM
0 2.500 2.494 0.24 2.483 0.70 | 2.538 2.527 0.44 2.483 | 056 | 2.573 2.568 0.21 2.563 0.40
0.2 | 1.922 1.920 0.11 1.907 0.79 | 1.957 1.949 0.42 1.907 | 0.48 | 1.991 1.997 0.31 1.985 0.28
0.4 | 1.390 1.380 0.70 1.371 1.38 | 1.420 1.415 0.37 1.371 | 0.69 | 1.449 1.436 0.90 1.445 0.26
0.6 | 0.894 0.889 0.53 0.867 3.08 | 0.917 0.909 0.82 0.867 | 1.41 | 0.938 0.929 0.95 0.935 0.39
0.8 | 0.427 0.424 0.88 0.399 6.53 | 0.440 0.436 0.84 0.399 | 2.39 | 0.451 0.444 151 0.451 0.04
1 0.000 0.000 0.00 0.000 0.00 | 0.000 0.000 0.00 0.000 | 0.00 | 0.000 0.000 0.00 0.000 0.00
Average % error 0.41 2.08 0.48 0.92 0.65 0.23
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Table 3.2. Comparison of numerical solution of concentration of species b(z) with the analytical solutions by Homotopy perturbation method and

Taylor series method for K* = 1, u = -3 and for different values ¢.

e=1 =15 e=2

Our Error Error Error Our Error Error

z TSM Our HPM | Error % | TSMEQ.(3 TSM
Num HPM % of % of | Num % of Num HPM % of % of

Eq.(3.22) Eq.(3.16) | of HPM 22) Eq.(3.22)

Eq.(3.16) | HPM TSM TSM Eq.(3.16) | HPM TSM
0 0.607 0.603 0.68 0.599 1.30 | 0.740 0.737 0.34 0.737 0.35 0.821 0.816 0.62 0.822 0.10
0.2 | 0.629 0.624 0.80 0.614 141 | 0.754 0.747 0.91 0.752 0.32 0.832 0.827 0.64 0.832 0.10
0.4 | 0.690 0.687 0.42 0.658 1.98 | 0.794 0.789 0.68 0.791 0.42 0.859 0.855 0.54 0.858 0.16
0.6 | 0.776 0.778 0.15 0.735 2.04 | 0.853 0.849 0.47 0.848 0.53 0.900 0.896 0.41 0.898 0.22
0.8 | 0.883 0.885 0.25 0.847 1.65 | 0.925 0.921 0.39 0.919 0.58 0.949 0.946 0.33 0.947 0.28
1 1.000 1.000 0.00 1.000 0.00 | 1.000 1.000 0.00 1.000 0.00 1.000 1.000 0.00 1.000 0.00
Average % error 0.38 1.40 0.46 0.37 0.43 0.14
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Table 3.3. Comparison of numerical solution of concentration of species S(z) with the analytical solutions by Homotopy perturbation method and

Taylor series method for € =2, u = -1 and for different values K*.

K*=0.1 K*=0.2 K*=10.5
Our Our
Error Error Error Our Error TSM
z HPM Error % TSM HPM TSM Error %
Num % of | Num % of % of | Num HPM % of Eq.
Eq.(3.1 | of HPM | EQ.(3.23) Eq. Eq.(3.23) of TSM
7 TSM (3.17) HPM TSM Eq.(3.17) | HPM (3.23)

0 | 0.039 | 0.038 0.78 0.039 0.52 | 0.050 | 0.050 0.20 0.050 0.26 | 0.061 0.061 0.49 0.061 0.26
0.2 | 0.036 | 0.036 0.84 0.036 0.55 | 0.047 | 0.047 0.04 0.047 0.43 | 0.057 0.058 0.35 0.058 0.35
0.4 | 0.030 | 0.030 0.34 0.030 2.02 | 0.039 | 0.039 0.93 0.039 0.77 | 0.048 0.048 0.42 0.048 0.63
0.6 | 0.021 | 0.021 0.42 0.022 2.37 | 0.028 | 0.027 0.91 0.028 1.81 | 0.034 0.034 0.58 0.035 1.47
0.8 | 0.011 | 0.011 0.46 0.011 3.67 | 0.014 | 0.014 0.14 0.015 5.00 | 0.017 0.017 0.58 0.018 4.65
1 | 0.000 | 0.000 0.00 0.000 0.00 | 0.000 | 0.000 0.00 0.000 0.00 | 0.000 0.000 0.00 0.000 0.00

Average % error 0.47 1.52 0.37 1.38 0.40 1.23
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Table 3.4. Comparison of our analytical expression of concentration of species a with

the numerical result for various values of the parameter u and some fixed

values parameter € = 2, u = -1 using Eqn. (3.15).

K'=1 K*=10 K* =1000
Numerica Our
’ Numerical Our % of | Our % of Numerical | Eq.(3.15 % of
Result Eq.(3.15) | deviation Result Eq.(3.15) | deviation Result ) deviation
0 0.934 0.925 0.98 0.929 0.918 1.26 0.929 0.917 1.28
0.2 0.736 0.729 0.92 0.731 0.722 1.24 0.731 0.721 1.28
04 0.544 0.541 0.64 0.540 0.535 1.03 0.540 0.534 1.06
0.6 0.357 0.358 0.09 0.354 0.353 0.29 0.354 0.353 0.35
0.8 0.173 0.178 2.66 0.172 0.176 221 0.172 0.175 2.18
1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00
Average percentage error: 0.88 Average percentage error: 1.00 Average percentage error: 1.02
Table 3.5. Comparison of our analytical expression of concentration of species b with
the numerical result for various values of the parameter u and some fixed
values parameter € = 2, u = -1 using Eqn. (3.16).
K*=1 K*=10 K* =1000
z | Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(3.16) | deviation Result Eq.(3.16) | deviation Result €Q.(3.16) | deviation
0 0.934 0.925 0.99 0.929 0.918 1.26 0.929 0.917 1.28
0.2 0.938 0.929 0.93 0.933 0.922 1.19 0.933 0.921 1.22
0.4 0.948 0.941 0.79 0.944 0.935 1.01 0.944 0.934 1.03
0.6 0.963 0.958 0.59 0.960 0.953 0.75 0.960 0.953 0.76
0.8 0.981 0.978 0.35 0.980 0.976 0.43 0.980 0.975 0.45
1 1.000 1.000 0.00 1.000 1.000 0.00 1.000 1.000 0.00
Average percentage error:  0.61 Average percentage error:  0.77 Average percentage error: 0.79
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Table 3.6. Comparison of our analytical expression of concentration of species S with the

numerical result for various values of the parameter pand some fixed values

parameter € =4, u = -1 using Eqn. (3.17).

K =1 K*=10 K* =1000
z | Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(3.17) | deviation Result Eq.(3.17) | deviation Result Eq.(3.17) | deviation

0 0.020 0.019 0.89 0.020 0.020 0.73 0.020 0.020 0.23

0.2 0.018 0.018 0.79 0.019 0.019 0.64 0.019 0.019 0.65
0.4 0.015 0.015 0.51 0.015 0.016 3.19 0.016 0.016 0.29
0.6 0.011 0.011 0.25 0.011 0.011 0.45 0.011 0.011 0.44
0.8 0.006 0.006 291 0.006 0.006 3.09 0.006 0.006 311
1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00

Average percentage error : 0.89 Average percentage error : 1.35 Average percentage error :0.79

Table 3.7. Comparison of our analytical expression of concentration of species a with the

numerical result for various values of the parameter p and some fixed values parameter

e =2, K* =1 using Eqn. (3.15).

u=-1 u=-15 u=-2
z Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(3.15) | deviation Result Eq.(3.15) | deviation Result Eqg.(3.15) | deviation

0 0.934 0.925 0.98 1.388 1.404 1.18 1.875 1.850 1.33

0.2 0.736 0.729 0.92 1.094 1.106 1.10 1.478 1.459 1.32
0.4 0.544 0.541 0.64 0.811 0.818 0.88 1.094 1.082 1.15
0.6 0.357 0.358 0.10 0.536 0.537 0.15 0.718 0.715 0.38
0.8 0.173 0.178 2.65 0.267 0.261 2.40 0.348 0.356 2.18
1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00

Average percentage error :  0.88 | Average percentage error : 0.95 Average percentage error :  1.06
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Table 3.8. Comparison of our analytical expression of concentration of species a with the

numerical result for various values of the parameter € and some fixed values parameter

u=-1, K* =4, using Eqgn. (3.15).

e=2 e=5 e=38
z | Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(3.15) | deviation Result Eq.(3.15) | deviation Result Eq.(3.15) | deviation
0 0.930 0.919 1.22 0.987 0.987 0.04 0.995 0.995 0.01
0.2 0.732 0.723 1.20 0.786 0.788 0.21 0.793 0.795 0.25
0.4 0.541 0.536 0.96 0.586 0.590 0.63 0.592 0.596 0.67
0.6 0.355 0.354 0.26 0.387 0.393 1.49 0.391 0.397 1.52
0.8 0.172 0.176 2.31 0.188 0.196 4.18 0.191 0.199 4.18
1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00

Average percentage error: 0.99

Average percentage error: 1.09

Average percentage error : 1.11

Table 3.9. Comparison of our analytical expression of concentration of species b with the

numerical result for various values of the parameter u and some fixed values parameter

e = 2, K* =10 using Eqgn. (3.16).

u=-1 u=-15 u=-2
z | Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(3.16) | deviation Result Eqg.(3.16) | deviation Result Eq.(3.16) | deviation
0 0.9272 0.9173 1.07 0.8967 0.8873 1.05 0.8661 0.8497 1.92
0.2 0.9329 0.9219 1.17 0.9021 0.8936 0.94 0.8737 0.8582 1.81
04 0.9435 0.9345 0.95 0.9186 0.9108 0.85 0.8943 0.8810 1.51
0.6 0.9594 0.9530 0.66 0.9420 0.9360 0.64 0.9212 0.9147 0.71
0.8 0.9798 0.9755 0.44 0.9705 0.9667 0.40 0.9617 0.9555 0.65
1 1.0000 1.0000 0.00 1.000 1.000 0.00 1.0000 1.0000 0.00

Average percentage error : 0.72

Average percentage error : 0.65

Average percentage error : 1.10

40




Table 3.10. Comparison of our analytical expression of concentration of species b with the

numerical result for various values of the parameter € and some fixed values parameter

u=-2, K* =50 using Eqn. (3.16).

e=1 e=4 e=7
z | Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(3.16) | deviation Result Eq.(3.16) | deviation Result Eq.(3.16) | deviation
0 0.8652 0.8437 2.55 0.9607 0.9456 1.60 0.9867 0.9815 0.53
0.2 | 0.8729 0.8530 2.33 0.9630 0.9487 151 0.9874 0.9825 0.50
0.4 | 0.8936 0.8783 1.75 0.9690 0.9569 1.26 0.9895 0.9853 0.42
0.6 | 0.9242 0.9155 0.95 0.9780 0.9691 0.92 0.9925 0.9895 0.30
0.8 | 0.9614 0.9608 0.07 0.9888 0.9839 0.50 0.9960 0.9945 0.15
1 1.0000 1.0000 0.00 1.0000 1.0000 0.00 1.0000 1.0000 0.00

Average percentage error : 1.27

Average percentage error : 0.96

Average percentage error : 0.32

Table 3. 11. Comparison of our analytical expression of concentration of species S with the

numerical result for various values of the parameter € and some fixed values parameter

e =4, K* =100 using Eqgn. (3.17).

u=-1 u=-15 u=-2
z | Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(3.17) | deviation Result Eq.(3.17) | deviation Result Eq.(3.17) | deviation
0 0.0200 0.0198 0.71 0.0297 0.0294 0.93 0.0393 0.0388 1.14
0.2 0.0189 0.0187 1.21 0.0280 0.0278 0.83 0.0370 0.0367 1.06
04 0.0157 0.0157 0.31 0.0234 0.0233 0.54 0.0310 0.0307 0.76
0.6 0.0115 0.0112 1.81 0.0167 0.0167 0.23 0.0220 0.0220 0.03
0.8 0.0057 0.0059 3.00 0.0085 0.0087 2.80 0.0112 0.0115 2.54
1 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00

Average percentage error : 1.17

Average percentage error : 0.89

Average percentage error : 0.92
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Table 3.12. Comparison of our analytical expression of concentration of species S with

the numerical result for various values of the parameter £ and some fixed

values parameter u = -2, K* =500 using Eqn. (3.17).

=5 e=7 e=10
z | Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(3.17) | deviation Result Eq.(3.17) | deviation Result Eq.(3.17) | deviation
0 0.0257 0.0255 0.63 0.0133 0.0133 0.27 0.0066 0.0066 0.09
0.2 | 0.0242 0.0241 0.51 0.0126 0.0126 0.17 0.0062 0.0062 0.59
0.4 | 0.0202 0.0202 0.17 0.0105 0.0105 0.24 0.0051 0.0052 1.61
06| 0.0144 0.0145 0.63 0.0075 0.0076 1.03 0.0037 0.0037 1.87
0.8 | 0.0073 0.0075 3.18 0.0038 0.0039 3.60 0.0019 0.0020 2.75
1 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00

Average prcentageeror: 0.85

Average percentage error . 0.88

Average percentage error . 1.15
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APPENDIX 3.A:

Analytical expression of the concentration using homotopy perturbation method

We construct the homotopy for the equations (3.10)-(3.12) as follows

'dza]

a-p) [ +p[as-2+ L] =0

dz? g2 K*e?

[ d*b ab S
a-» |G el -Gt =0

a-n|Z+El+r[ErE-wal=0

wherep € [0,1]is an embedding parameter. Using Maclaurin series
— ' a"(0)

a(z) = a(0) + za'(0) + z*2 ——+..

Now, assume that the solutions of Egs. (3.A1) - (3.A3) is

a=ay+pea +pa; +--

b:b0+p?b1+p2b2+'“ and

S=So+p(-_)51+p252+

(3.A1)

(3.A2)

(3.A3)

(3.A4)

(3.A5)

Substituting Eq. (3.A5) into Egs. (3.A1)-(3.A3) and equating the like coefficients of p’

on both sides lead to the following linear differential equations:

0. d2a0

p.d22=0

0.d%bo
p dz?

d?s, aopb
pO: 0 0“0 — 0
dz? g2

Solving Egs. (3.A6)-(3.A8) Subject to boundary conditions:
ay(z=10)=p,by(z=0)=0,5,(z=0)=0
ay(z=1)=0,by(z=1)=1,5,(z=1) =0

1. d2a1 aobo So

T dz? g2 K*&2
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(3.A6)

(3.A7)

(3.A8)

(3.A9)

(3.A10)

(3.A11)



pl: @°by _ aoby , S0 _ (3.A12)

" dz? g2 K*e2
Solving Egs. (3.A9) and (3.A10), subject to boundary conditions:
a;(z=0)=u,b;(z=0)=0 (3.A13)
a,(z=1)=0,b;(z=1)=1 (3.A14)

The solution of the Eqgns. (3.A6) to (3.A8) are given by

ay(z) =u(z—-1) (3.Al5)

by(2) =1 (3.A16)
_ p(2+23-322)

So(2) ==z (3.A17)

and the solution of the Eqgns. (3.A11) to (3.A12) are given by

a,(z) = 120’1‘( — ((z— 1D(z% — 2z — 4)? + 20K* (2% — 32% + 2)) (3.A18)

by (2) = 120‘1‘( — ((z = 1(z% - 22 - 4)* + 20K"*(z° — 32% + 2)) (3.A19)

With the use of these two iterations only, we obtain an approximate solution for the

ionic concentration given by:

a(z) = ag(2) + a1(2) b(z) = by(2)+2 b1(2) (3.A20)
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APPENDIX 3.B:

Matlab program for the numerical solution of nonlinear differential equations
(3.10)-(3.12)

function sol=ex6
exGinit=bvpinit(linspace(0,1),[0 1 1 0 0 0]);
sol = bvp4c(@ex6ode, @ex6hc,ex6init)

end

functiondydx=ex6ode(x.y)

dydx=[y(2)

(112 2)*(y(1)*y(3)-((y(5))/(3)))

y(4)

(112 2)*(y(1)*y(3)-((y(5))/(3)))

y(6)

(L2 2)*(((y(5))/(3)))-y(L)*y@3)I;

end

Function res=ex6bc(ya,yb)

res=[ya(1)-0

yb(2)-1

ya(3)-1

yb(4)-0

ya(5)-0

yb(6)-0];

end
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CHAPTER 4

ANALYTICAL EXPRESSIONS FOR THE
CONCENTRATION AND CURRENT IN THE
REDUCTION OF HYDROGEN PEROXIDE
AT A METAL-DISPERSED CONDUCTING
POLYMER FILM



CHAPTER-4

Analytical Expressions for the Concentration and Current in the
Reduction of Hydrogen Peroxide at a Metal-Dispersed Conducting

Polymer Film
4.1 Introduction

Enzyme-based fuel cells can produce higher energy than conventional batteries
utilizing significantly all the naturally good materials. Enzymatic biofuel cells rely on
the oxidation of substrates such as hydrogen or glucose and reduction of oxygen to
harvest energy from complex media. In particular, glucose biofuel cells (BFCs)
represent a promising alternative to supply energy from living organisms to implanted
electronic devices. Oxidase enzymes are widely used in energy devices (biosensor,
enzymatic biofuel cell, bioreactor, etc.). In glucose oxidation-reduction process,
oxygen is diminished to water (H20) or hydrogen peroxide (H20z). Glucose oxidase is
found in nectar and goes about as a common additive. Enzymatic glucose biosensors
[1] utilize an electrode rather than oxygen to take up the electrons required to oxidize
glucose and produce current in the extent to glucose fixation. Glucose oxidase is
broadly used for the determination of free glucose in body liquids (diagnostics), in
crude botanic material, and the nourishment business. Toghill and Compton [2]
discussed non-enzymatic glucose sensors. It likewise has numerous applications in
biotechnologies, commonly protein tests for natural chemistry incorporating biosensors
in nanotechnologies [3]. Besides, glucose oxidase has damage the cancer tissue and
cells as a result of hydrogen peroxide formation.

In recent times, many kinds of literature focused on glucose/hydrogen peroxide
biofuel cell. Pizzariello et al. [4] developed a glucose/hydrogen peroxide biofuel cell
using a composite bulk modified bioelectrode based on a solid binding matrix.
Choudhury et al. [5] discussed the effect of hydrogen peroxide as an oxidant in an
alkaline direct borohydride fuel cell. Bessette et al. [6] reported the performance of the
microfiber carbon electrode in magnesium-hydrogen peroxide semi-fuel cell under
optimum conditions and at a reduced concentration of H20,. Prof et al. [7] developed a
three-phase H2/O- fuel cell for the production of a concentrated aqueous solution of

H,0O: in an electrochemical reduction of O.
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Yang et al. [8] investigated the influence of H2O. concentration in the
performance of magnesium-hydrogen peroxide fuel cell with palladium-silver
deposited cathode and silver-nickel deposited electrode. Han et al. [9] developed a
hydrogen peroxide fuel cell with TiO2 nanotube photoanode to increase the
performance of the cell by make use of light and biomass. Also, Kjeang et al. [10]
demonstrated a microfluidic fuel cell incorporating hydrogen peroxide as oxidant.
Adams et al. [11] reported an electrochemical reduction of hydrogen peroxide using
highly active palladium platinum catalysts. Bankar et al. [12] reviewed the production,
characterization, and applications of glucose oxidase. Do et al. [13] developed a
mathematical model which describes the bioelectrochemical reduction of hydrogen
peroxide with direct electron transfer mechanism. Benfeitas et al. [14] investigated
hydrogen peroxide metabolism in human erythrocytes. The first example of glucose or
hydrogen peroxide-based biofuel cell functioning under physiological conditions was
reported in Agnes et al. [15]. An et al. [16] developed and tested the performance of an
alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant. Also studied a one-
dimensional mathematical model of the mixed potential in hydrogen peroxide
fuel cell [17].

Somasundaram et al. [18] developed a kinetic model for the reduction of
hydrogen peroxide to water in a metal-dispersed conducting polymer film. This model
is based on a system of the nonlinear reaction-diffusion equation. Somasundaram et al.
[18] obtained the steady-state concentration and current for limiting cases (low and high
substrate concentration) only. In solving reaction-diffusion problems, there are mainly
three types of methods: experimental, analytical, and numerical. Experiments are
expensive, time-consuming, and usually, do not allow much flexibility in parameter
variation. Numerical methods are popular for its computing capabilities, although it
provides only a long list of numbers, not an equation. Analytical methods are the most
difficult ones, providing solutions with parameters. In this chapter, we will consider the
last two techniques to solve the coupled nonlinear reaction-diffusion equation
describing the reduction of hydrogen peroxide to water. The purpose of this chapter is
to derive the analytical expressions for the concentration of glucose (substrate),

hydrogen peroxide (product) and current for non-steady state condition.
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4.2 Mathematical formulation

Fig.4.1 represents the schematic diagram for the reduction of hydrogen peroxide
to water. The reactions scheme occurring within the polymer film and in the bulk
solution can be written as follows [18]:

[Glucose]

s
Glucanolactone  [Glucose] A [Glucose] , o=—
(v K

e B
; Sl O
(1.9

ke

D,
H;0, o | H0, o _[\HZOZ] )
s =4

Kp

Figure 4.1. Schematic diagram for the reduction of hydrogen peroxide to water.

keq kcat
S+E1]:—> E.S - P+E, 4.2)
-1
ke
E,+A->E, +B 4.2)
k
B+2e  ->C (4.3)

Eqgn. (4.1) represents the oxidation of substrate (Glucose) S to product P
(Hydrogen peroxide). Here E; and E, are the oxidized and reduced forms of the enzyme
(oxidase) respectively. The reduction-oxidation process of the enzyme during the
reduction of oxygen (A) to hydrogen peroxide (B) is shown in Eqgn. (4.2). And the
hydrogen peroxide which in turn reacts with microparticle in the presence of a pseudo
first order rate constant k to produce water (C). Using Michaelis-Menten rate
expression, the mass balance one dimensional equations for substrate and product
within the polymer film can be written as follows [18]:

s(x,t) 9%s(x,t)  kcarers(xt)
at S oaxz Kp+s(x,t)

(4.4)
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db(xt)
at Dg

8%b(x,t) . kcaters(x,t)
9x2 kb(X, t) + Kp+s(x,t) (4.5)

where s(x,t) and b(x,t) are the concentrations of substrate and product respectively.
Ds and Ds are the diffusion coefficients, Kcat is the catalytic reaction rate constant and
Ky = (keqr + k_1)/kq1s the Michaelis-Menten rate constant. The initial and boundary

conditions for the above equations are given by

t=00<x<Lis=kss,b=0 (4.6)
ds ab

t>0,x—0.a—0,a—0 (47)

t>0,x=L:S =KsS., b =Kpb, (4.8)

Here s, and b, is the concentration of substrate and product in the bulk solution. k
and kj, is the reaction rate constant for substrate and product respectively. L is the
thickness of the polymer film. The current I of the product b at the electrode surface is
given by

I = —nFAjb = —nFADB (%) (4.9)

x=L

where j, is the flux of the hydrogen peroxide at the electrode surface. Eqns. (4.4) and

(4.5) can be written in dimensionless form using the following dimensionless

parameters.
s b X Dgt : Dg
u= ,U: ,X:—’T:—’ = —,
KsSo Kpbe, L L? Dg
o b kL? k L2
o = 5sS B = Kp =M = cat€r (14.10)
Km Kum Dg DsKm

Using Eqgn. (4.10), equations (4.4) and (4.5) reduce to the following non-dimensional

form:
du(xn) _ %u(xr) pu(xr)

at  0x? 1+au(y,7) (4.11)
() _ 9%v(xT) agpu(x,t)

at § 2 yv(x o) + B(1+au(y,1)) (4.12)

where u(y, t) and v(y, t) represents the dimensionless concentration of substrate and

product respectively; y is a normalized distance; t is a dimensionless time; ¢ is the
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ratio of the diffusion coefficient. a, p and y are the saturation parameters. ¢ is the
Thiele modulus depends upon the enzyme concentration, diffusion coefficient of
substrate Dsand the Michaelis-Menten constant Kn, ; The corresponding dimensionless

initial and boundary conditions for equations (4.11) and (4.12) are as follows:

tT=00<y<liu=1v=0 (4.13)
0 g _

T>O'X_O'6)(_0'6)(_O (4.14)

t>0y=lLu=1Lv=1 (4.15)

The dimensionless current for hydrogen peroxide is

IL

ov
Y=  nFAkyb,Dp (H)le (4.16)

4.3 Analytical expression for the concentration of substrate and product for
general case under non-steady condition

Nonlinear phenomena play a vital role in various zones of the sciences and
engineering. Because of the expanding enthusiasm towards finding exact solutions for
those problems, a variety of analytical methods are proposed. Recently Adomian
decomposition method [19], homotopy analysis method [20], variational iteration
method [21], homotopy perturbation method [22,23], are used to solve the nonlinear
problems. Among such methods, a new approach of homotopy perturbation method is
applied to solve the nonlinear differential equations Eqgns. (4.11) and (4.12). The focal
point of this method is that it resulted in a simple approximate solution in the zeroth
iteration itself [24]. This technique is appropriate for problems where transient effects,
reaction-diffusion phenomena, and nonlinearity play an important role. The analytical
expressions of concentrations of substrate and product can be obtained method as

follows(Appendix-A):

cosh(\VAy) 16Az( D™ cos[ (2n + V)my/2]e” ~l@ntn)Pnraal;  (4.17)

wQoT) = cosh(VA) (2n + D[(2n + 1)2n2 + 44]
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D) = cosh(\Jy/Ex) aA <cosh(\/y_/f)() B cosh(ﬂx)) (4.18)

cosh(\[y/&) +/3(EA—V) cosh(\[y/&)  cosh(VA)

= ) @ (D" cos] (2n + Dmx/2)
n=0

Using Eqns. (4.16) and (4.18), the dimensionless current is given by

Y(@) = ¥ /€ tanh( [y ) — L YD NA G | Ty () (20 + 1)

B(§A-v)
(4.19)
where A = ¢/(1+ a) (4.20)
4mE(2n + 1)e 1@m+D T2 Eray]g (4.21)
Han(T) = [(2n + 1)%2m%¢ + 4y]
64aAze—[(2n+1)2n2+4A]£
a méB2n+ )[(2n + 1)2w? + 4A][(2n + 1)?m2(E — 1) —4(A — V)]
64maA?(2n + 1)e |CrrD TRV
" Bl(2n + 1)?m%¢ + 4y][(2n + 1)*1%§ — 4(A — y)][2n + 1)?m?(§ — 1) — 4(A —y)]
when 7 — oo, the equation (4.19) becomes
ey = —JVTE tanh( JyJE) adlyy/§ tanh([y/E)—VAtanh(VA)] (4.22)
SS "

B(&A-Y)

The above equation (Eqn. (4.22)) represents the new analytical expression of steady

state current.
4.3.1 Limiting case

The consequencesfor the limiting situations of zero order kinetics (S >> Kj,)
and first order kinetics (S << K) arising from Eqns. (4.4) and (4.5) or (4.11) and
(4.12) are reported below.

4.3.1.1 Case 1: Saturated (zero-order) catalytic kinetics (High substrate)

In this case, the situation where the substrate concentration S is greater than the
Michaelis-Menten constant K,, is considered. When S >> K,, orau >> 1, the

nonlinear Eqgns. (4.11) and (4.12) reduces to the following dimensionless linear form:

du(xr) _ %u(xr) ¢

ot dx? a (4.23)
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() _ %) ¢
=R ) e

Solving the above Eqns. (4.23) and (4.24), the concentration of substrate and product

can be obtained as follows:

u(y,7) =1+ i()(2 -1) (4.25)
.\ 16¢ s (—=1)" cos[ (2n — Dmy/2]e (@™
T3 (2n —1)3
n=0
) = cosh(\[y/§x) 0, <1 _ cosh(\/y/fx)) (4.26)
' cosh(4Jv/§) [”V cosh(\/y/§)
[2(2n + 1)2& — 4]e”! [@n+1)®m®E+ayl .
__Z{ G+ D[@n+ it v ay] | D cosl@n
+ Dy /2]
The expression for the current in this case is given as
(2N 41225 —4] —[(2n+1)272'2§+47]£
n+ —4]e
w(r) = (l—i——}/)//f tanh(y/y /&) +2 Z
Br =0 (2n+D[(2n+1)% 72 +4y]
(4.27)
From the above equation, the steady state (7 — oo) current can be obtained as follows:
Yoo = = (14 2) Y/ tanh(\fy /%) (4.28)

4.3.1.2. Case 2: Unsaturated (first-order) catalytic kinetics (Low substrate)

The situation where the substrate concentration S is less than the rate constant
Kwmis considered. In this case S <<Km or au << 1, the Eqns. (4.11) and (4.12) reduces

to the following form:

2
au(g)iﬁ) 0 u(X 7) ¢u(x T) (429)
WD) _ , 0%v(D) pau(xr)
ac =S e v+ (4.30)

The solutions for Eqns. (4.29) and (4.30) are obtained as below:
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cosh(\/a)() (4.31)

ue) = cosh(\/—)
L 16¢ N (“D)"cos[(@n + Dymy/2]e” “[@n+1)?n®+agly
Z Cn+ 1D[(2n+ 1)°w? + 4¢]
(0 T) = cosh(\/W)() ap <cosh(\/y_/f)() B cosh(ﬂ;@) (4.32)
) cosh(\/W) /3(&7) =) cosh(\/y_/f) cosh(\/a)

- Z Hon(D(=1)" cos[ (2n + Dy /2]

The current expression for this case is given as

h h (4.33)
D) = —[7TE tani(77E) — SEWYE anh (VY /6) = J$ tanh(V )]

B B&d—v)
T
Ez Hgn (D1 + 1)
where
ton(T) = AmE(2n + 1)e l@+D T ey (4.34)
en () =

[2n + 1)%2m2¢ + 4y]
64a¢)ze—[(2n+1)2n2+4¢]£
mER2n + D[n + 1P + 4¢][(2n + D?r%(E — 1) — 4(¢ — ¥)]
64mad?(2n + 1)e [En+D w2 érayly
ﬁ[(Zn + 122§ + 4y][(2n + 1)*1m2%¢ — 4(¢ — I[2n + 1?2 (§ — 1) — 4(¢ — )]

When T — oo, the equation (4.33) becomes

Yoo = —¥ /€ tanh(|fy]§) — L VDD tani((P) (4.35)

The analytical expression of concentration of substrate, product and current for
steady and non-steady state condition when ¢ = 1 for all the limiting cases are given in
Table 4.1 and Table 4.2.
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Table 4.1. Summary of analytical expression of concentration of substrate, product and

current for non-steady state condition when & = 1

Previous
Conditions This work work
[18]
cosh(\/—)() """"""
wT) = cosh(\/_)

(2n+1)2n2+4A]

16A Z (=D"cos[ 2n + Vmy/2]e”
2n+ D[(2n + 1)2n?

+ 44]

Non steady | v(x, 1) =

cosh(~\Y) +,8(A—y) cosh(\y) cosh(

cosh(\[yx) aA <cosh( VYx) cosh(NAy)

)

state .
(HPM) =) tan(@ (1" cos[ (2n + Drx/2]
n=0
Y(r) = -y tanh(\Jy) — adlvy tanh(\/?)_— VA tanh(A)]
BA—-v)
+2 ) Ham@ @+ 1)
n=0
_ cosh(ﬂ)() ___________
uben) = cosh(\/—)
16¢ (=D"cos[ 2n+ Vmry/2]e (2n+1)2”2+4’¢]‘ --------
Z (Zn + D[(2n + 1?2 + 4¢]
voT) T
High cosh(\/_)() ¢ (1 cosh(\/_)()>
cosh(\/_) cosh(+[y)
substrate

40 (—D[r?(2n + 1)% — 4] cos[ (2n + 1)my /2]
;Z Zn + D[(2n + 1?12 + 47] ¢

a
Y1) = — (1 + 3_)/) Jy tanh(\fy)

—[(2n+ 1)2n2+4y]

4le —[(2n+1)27t2+4-y]£

[m2(2n + 1)% —
+22 e
[(2n + 1)?m? + 4y]
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Low

substrate

cosh( \/5 X)

v = cosh(\/_)
16¢ ( 1)71 cosS (Zn + 1)7-[)(/2] (2n+1)2n-2+4_¢]_
Z (2n+ D[(2n + 1)?n? + 44]
(7 = cosh(\yx) N ap (cosh(\/?)() B cosh(ﬂ@)
, cosh(\y) ~ B( =)\ cosh(\Y)  cosh(\[$)

=) tign(@(=1)" cos 2n + Dy /2]

ad[Vy tanh(\fy) — /¢ tanh(\[$)]
Blp—v)

Y(@) = —\fy tanh(\fy) —

l\>|=|

2 ton ()20 + 1)

Table 4.2.Summary of analytical expression of concentration of substrate, product and

current for steady state condition whené = 1.

Conditions This work Previous work [18]

Steady
state
(HPM)

cosh( VAy)
cosh( \/_)

cosh(\yx)
cosh(~\y) T

N al (cosh(\/?)()
B(A—=y)\ cosh(\y)

cosh(\/_)()>
cosh(VA)

v(y) =

lpSS
==Y tanh(ﬁ)

_ aAlYy tanh(Vy) — VA tanh(+/A)]
B(A-v)
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_ ¢
u) =1+ =1

v = ST
X) = cosh(\y) | e
High N 9 <1 ___________
substrate Py
_cosh( VYX)
cosh(A\[y)
b == (14 5) Vrtani( )
_ cosh(\/ox) u(x) = cosh(/$x) v(0)
Cosh(\/a) cosh(,/9)
_cosh(\yx)
v(x) ~ cosh(~\fy)
_ cosh(\/Yx) ap cosh(\fYx)
cosh(\Y) B ( cosh(V¥)
N ap (cosh(\/?)() cosh(:\[¢x)
B(@ =)\ cosh(V7) cosh(JP)
Low _ cosh(ﬁ){))
substrate cosh([¢) Vs
= —Jy tanh( \fy)
Pss _aglVy tanh(y) = Jé tanh([¢)]
= — [y tanh(,[y) B¢ —v)
_ agp[Vy tanh(Vy) — /b tanh(,/$)]
B(d—v)
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4.4. Numerical simulation

To examine the accuracy of the solution obtained using the HPM method with
a finite number of terms, the system of differential equations were solved numerically.
Analytical solution of the equations (4.11) and (4.12) is a challenging problem which
can be accomplished numerically with the help of Matlab software. The function pdex4
(Euler’s method) in Matlab software [25], which is a function of solving the boundary
value problems is used to solve Eqns. (4.11) and (4.12) numerically. Our results are
compared with numerical results graphically in Fig. 4.2 and 4.3. The comparison
confirmed that our obtained analytical results fitted very well with the numerical results.
The maximum average relative error between the analytical and numerical result for
substrate and product is 1.40% and 0.80% respectively (Refer Table 4.3 and 4.4).
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Table 4.3. Comparison of our analytical result of dimensionless substrate u(y, ) with the numerical simulation for various value of T and y using
Egn. (4.17)when ¢ =1and @ = 0.5

X =01 =05 =1 T =100
I’:(‘qnnalﬁli{;l) Numerical de(\)f;ac:ifon g:alziliil) Numerical de[\)j(;ac;ifon gnnélﬁi.ia;) Numerical de(\)fi)a(:on Qqnnélz;i.iil) Numerical de(\)f;a(gon
0 0.9365 0.9358 0.07 0.7961 0.7885 0.96 0.7513 0.7373 1.89 0.7394 0.7221 2.39
0.2 0.9372 0.9366 0.06 0.8032 0.7959 0.91 0.7606 0.7472 1.79 0.7493 0.7327 2.26
04 0.9401 0.9397 0.04 0.8251 0.8187 0.78 0.7888 0.7773 1.47 0.7792 0.7650 1.85
0.6 0.9478 0.9475 0.03 0.8633 0.8585 0.55 0.8369 0.8284 1.02 0.8300 0.8194 1.29
0.8 0.9653 0.9652 0.01 0.9204 0.9178 0.28 0.9066 0.902 0.50 0.9029 0.8973 0.62
1 1.0001 1 0.01 1 1 0 1 1 0 1 1 0
Average % of deviation 0.04 Average % of deviation 0.58 Average % of deviation 1.11 Average % of deviation 1.40
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Table 4.4. Comparison of our analytical result of dimensionless product v(y, ) with the numerical simulation for various values of = and y using
Eqgn. (4.18) when ¢ = 0.1, a = 0.5, £ = 0.05,y =0.01and é =1

X T=0.7 =1 T=2 =10
) ) Analytical Analytical
Analytical . % of Analytical ) % of ) % of ) % of
Numerical o Numerical o Eqn. Numerical o Eqgn. Numerical L
Egn. (4.18) deviation Egn. (4.18) deviation deviation deviation
(4.18) (4.18)

0 1.0237 1.037 1.28 1.1783 1.185 0.56 1.3063 1.309 0.20 1.3179 1.321 0.23
0.2 1.0251 1.038 1.24 1.1725 1.179 0.55 1.2943 1.297 0.20 1.3053 1.308 0.20
0.4 1.0289 1.04 1.06 1.1543 1.160 0.49 1.2579 1.260 0.16 1.2673 1.270 0.21
0.6 1.0307 1.039 0.79 1.1218 1.126 0.37 1.1971 1.199 0.15 1.2039 1.206 0.17
0.8 1.0237 1.028 0.41 1.0717 1.074 0.21 1.1113 1.112 0.06 1.1149 1.116 0.09

1 0.9997 1 0.03 0.9998 1 0.02 0.9999 1 0.01 1 1 0

Average % of deviation 0.80 Average % of deviation 0.36 Average % of deviation 0.13 Average % of deviation 0.15
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4.5 Results and Discussion

Eqgns. (4.17) to (4.19) represents the new analytical expressions for the
dimensionless concentration of substrate, product and current respectively. Fig. 4.2
represent the dimensionless concentration of substrate u(y, t)versus dimensionless
distance from the electrode y for different values of Thiele modulus ¢, saturation
parameter « and time 7. Thiele modulus is the ratio of the reaction rate to the rate of
diffusion. From Fig. 4.2(a), it is inferred that the concentration of substrate decreases
when Thiele modulus ¢ increases. When Thiele modulus ¢ < 0.1, the diffusion
resistance is insufficient to limit the rate of reaction and the concentration remains the
same within the film. The concentration of substrate reaches zero inside the enzyme
layer when the diffusion modulus i.e. Thiele module ¢ = 100 which is observed at
high film thickness L or enzymatic rate k_,.e or for low reaction rate constant K,, or
diffusion Dg. This is because wheng is large, a significant diffusion modulus prevents
a constant concentration of substrate within the film and thus lowers the concentration.
The influence of the saturation parameter o can be analyzed from Fig. 4.2(b). It shows
that, the concentration of substrate increases when the saturation parameter o increases.
This is because as the initial substrate concentration s, increases obviously the
concentration of substrate S increases. From Fig.4. 2(c), it is evident that the substrate
concentration increases when timet decreases. For T < 0.01, the concentration remains

the same.
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Figure 4.2. Plot of dimensionless concentration of substrate u(y,t) versus
dimensionless thickness y calculated using Eqn. (4.17) for different
values of (a) Thiele modulus ¢, (b) saturation parameter o and (c) time
t. The key to the graph: (scatted line) represents the Eq. (4.17) and

(dotted line) represents the numerical simulation.

The change in product concentration with respect to dimensionless distance
from the electrode for various values of parameter is shown in Fig. 4.3(a) — (f)
respectively. Fig. 4.3(a) illustrates that for high catalytic activity, the concentration of
substrate increases. By increasing the initial concentration of substrate o or high
catalytic activity, the product concentration increases, shown in Fig. 4.3(a) and 4.3(b).
From Fig. 4. 3(c) and 4.3(d), it is observed that, the concentration of product increases
when the saturation parameters 3 and y decreases. Compared to other parameters, time
T has less influence over product concentration. Higher product concentration is

obtained for steady- state time.
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Figure 4.3. Plot of dimensionless concentration of product v(y,t) versus
dimensionless thickness y calculated using Eqn. (4.18) for different
values of (a) Thiele modulus ¢, saturation parameters (b) a (c) p(d) y,
(e) diffusion parameter ¢ and (f) time 1. The key to the graph: (scatted
line) represents the Eq. (4.18) and (dotted line) represents the numerical

simulation.
4.6 Differential sensitive analysis of kinetic parameters

Eqgn. (4.19) represents the new approximate analytical expression for the non-
steady state current y in terms of the parameterse, £, 7, v and &. By differentiating
the current partially with respect to these parameters, the impact of the parameters over
current can be determined [26]. The percentage of change in current with respect to v,
B, v, & and o are 46 %, 35 %, 14%, 3% and 2 % respectively. From this, it is evident
that parameter y and Bhas more impact on current. These parameters are highly sensitive
parameters. This implies that when the thickness of the film L or the concentration of
product in the bulk b, increases, the current increases. The parameter y is called as
moderately sensitive parameter as it has 14% of influence over current. The remaining

two parameters ¢ (ratio of diffusion coefficient) and « (saturation parameter) are less
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sensitive. The spread sheet analysis of these results is described in Figure. 4.4. These

results are also confirmed in the Figures. 4.5, 4.6(a) — 6(e).

From Fig. 4.5, it is observed that the current initially increases with thickness
and then decreases. After L > 2mm, the current reaches the steady state value. An
interesting as well as effective information can be predicted from Fig. 4.6(a) — 4.6(e)
regarding the influence of the kinetic parameters over current 1 (7) along time t. The
current considerably depends on the fact either the enzymatic rate within the film or the
electron transport outside the film. From Fig.4. 6(a), it is confirmed that the current
increases when the Thiele module yincreases. With increased initial concentration of
substrate in bulk solution S, the corresponding current increases. This result is
confirmed in Fig. 4.6(b). The influence of the saturation parameters 3 and y on the
current was shown in Fig. 4.6(c) and 4.6(d). Both parameters are inversely proportional
to the current. Compared to vy, B shows much deviation over current. From Fig. 4.6(e),
it was found that the sharp decrease in the current with increasing ratio of diffusion
coefficient &. And when £ is small, the current decreases slowly. From this figure, it is
observed that for high current, the diffusion coefficient of product should be less than

the diffusion coefficient of substrate i. e. Dg < Dp.
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Figure 4.4. Sensitive analysis of parameters: Percentage change in current.
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4.7 Estimation of kinetic parameters k, k.,:er and Ky,

Numerous enzyme kinetics papers are dedicated for estimating the kinetics
parameters and distinguishing between reaction mechanisms [27-29]. Pseudo first order
constant k, helps us to quantify the rate of the chemical reaction. The Michaelis-Menten
rate constant K,,, determines the relationship between the steady-state concentrations
rather the equilibrium concentrations. The maximum velocity of the enzyme depends
upon the catalytic rate constant k.., and the total enzyme concentration e;. The
parameter k... is a very useful parameter which employs for the breakdown of the
enzyme substrate complex ES to product P when the enzyme is fully saturated with

substrate. These kinetic parameters can be obtained from our analytical expression of

current (Eqn. (4.28)). For small value of y /¢, tanh(\/y/¢) = /y/é. Now Eqn. (4.28)
reduces to following form:

o =— (14 %)? (4.36)

Using Eqn. (4.10), the above equation can be rearranged as

I 1
nFAKpDIL kcacer (Kb_boo) tk (4.37)
As in Fig.4. 7(a), plot of I/nFAk,bL versus 1/x,b,, gives the slope =k,
intercept =k_.,.er. When the diffusion coefficient of substrate and product are equal
i.e.£ =1, and y is small, the current (Eqn.4. 22) becomes

e = v -5 (%) (4.38)

By substituting the value of 1, v, o, B and y from the Eqn. (4.10) and k, k.,:er
from Eqgn. (4.37), the parameter K,, can be obtained. Hence we can obtain pseudo first
order rate constant k, enzymatic rate k.,.er and Michaelis-Menten rate constant K,
from Eqgns. (4.22) and (4.28).
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Figure 4.7. Estimation of kinetic parameter: pseudo first order rate constant k and

enzymatic rate k... e using Eqn. (4.37).
4.8 Conclusions

A simple mathematical analysis of reaction and diffusion of glucose and
hydrogen peroxide within the conducting film containing metal microparticles have
been presented. Using a new approach to the Homotopy perturbation method, an
approximate analytical expression for the concentration of substrate and product are
obtained. Approximate analytical expressions for the steady and non-steady state
current response produced during the reduction of H20- to water at the electrode surface
are derived. The differential sensitive analysis for the steady-state current response for
the controllable parameters: the thickness of the film, bulk substrate, and product
concentration and enzymatic rate are analyzed. Also, the estimation of kinetic

parameters is reported graphically.
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Appendix 4.A : Approximate analytical solution of the nonlinear Eqn. 4.9 using

anew approach to the Homotopy perturbation method.

In this Appendix, we have indicated how to determine the solution of Eqgn. (4.9)
using the boundary condition Eqgns. (4.10) and (4.12). To solve Eqgn. (4.9), the
homotopy can be constructed

as follows:

2 2
(1-p) [6 u(xt)  puxr) au()(.r)] +p [a u(rt) _ _uGen _ du@n] _ 0

a2 1+au(y=1,1) at d x> 1+au(y,t) at
(4.A1)
or
(1= ) [0 - 520 - 20y p [ e 2] <
(4.A2)
The approximate solution of Eqn. (4.11) is
U= uy + puy + pu,+. .. (4.A3)

Substituting equation (4.A3) into equation (4.A2) and arranging the coefficients of

powersp,
we get
0.d%uo(D)  puo(xT)  duo(xT) _
p°: i o —=0 (4.A4)

The initial and boundary conditions for the above Eqn. (4.A4) becomes

Atz=01up =1 (4.A6)
auo _

x=0,2 0 (4.A7)

r=1u =1 (4.8)

The partial differential equation (4.A4) and the corresponding boundary
conditions Eqn. (4.A6) — (4.A8) in the Laplace plane becomes as follows
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d*ug()  eie(X) _
d;Z - 1-(:-a —stg(x)+1=0 (4.A9)

The corresponding boundary conditions are

oy
x=0,57=0 (4.A10)

x=1Luy=1/s (4.A11)

where sis the Laplace variable and an over bar indicates a Laplace-transformed

quantity.

Solving the Eqg. (4.A9), and using the boundary conditions and (4.A10) and
(4.A11) we can find the following results

- _fr_ 1 cosh(VA+sy) 1
uO(X) - [s A+s] cosh(VA+s) +A+s (4'A12)

Now, we indicate how Eqgn. (4.A12) can be inverted using the complex inversion
formula. Ify(s) represents the Laplace transform of a functiony(t), then according to

the complex inversion formula we can state that

y(@) = - =—

2m fccjiff exp[st]y(s)ds  2mi

¢ exp[st]y(s)ds (4.A13)

where the integration in Eqn. (4.A13) is to be performed along a line s = ¢ in the
complexplane where s = x + iy.The real number c is chosen such that s = c lies to the
right of all the singularities, but is otherwise assumed to be arbitrary. In practice, the
integral is evaluated by considering the contour integral presented on the right-hand
side of Eqgn. (4.A13), which is then evaluated using the so-called Bromwich contour.
The contour integral is then evaluated using the residue theorem which states for any

analytic function F(z).
$ F(2)dz = 2mi Y., Re s [F(2)] =4, (4.A14)

where the residues are computed at the poles of the function F(z). Hence from Eqn.
(4.A14),

we note that
y(7) = Xn Re s [exp[sT]Y(s)]s=s, (4.A15)
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From the theory of complex variables we can show that the residue of a function F(z)

at a simple pole at z = a is given by

Re s[F(2)]z=q = im{(z — a)F (2)} (4.A16)

Hence, in order to invert Eqn. (4.A12), we need to evaluate

cosh(VA+s)| cosh(VA+sy)
[S cosh(VA+s )] [(A+s) cosh(M)] (4.A17)

The poles are obtained from scosh(vA+s) =0 and (A + s)cosh(VA+s) =0.

Hence there is a simple pole at s = 0, s = —Aand there are infinitely many poles given

-m?(2n+1)2

by the solution of the equation cosh(vVA +s) = 0andso s, = " — A where
n=0, 1, 2, .Hence we note that
[cosh(\/A+sx) _ [cosh(\/A+sx) +R [cosh(\/A+sx)
o s cosh(VA+s) - s cosh(VA+s) s=0 €s s cosh(VA+s) s=s
_ cosh(VA+sy) _ cosh(VA+sy)
Res [(A+s) cosh(\/A+s)]s__ Res [(A+s) cosh(\/A+.<;)]S_S
(4.A18)
The residue at s = 0in Eq. (4.A18) is given by
R [COSh(\/A+S)() _ (s—0)eSt cosh(VA+sx)] _ cosh(-'Ay)
€ scosh(vA+s) s=0_ Sl_%l scosh(vVA+s) - cosh(~/A)
(4.A19)
The residue at s = s,in Eq. (4.A18) becomes
cosh(\/A+sy) . eSt cosh(VA+s)]_ . eSt cosh(v/A+sy)
Res [s cosh(VA+s) s=sp SILTST:; [ s cosh(VA+s) slirsr:l l s% cosh(vJA+s) I
_ w (D"(2n+1)cos[(2n+1)my/2]e ~len+n)’n +4A]
= =47 Y=o (2n+1)2m2+4A (4.A20)
The residue at s = —Ain Eq. (4.A18) is given by
cosh(\A+sy) _ (s+A)e A cosh(VA+sY)| _  _at
ke [s cosh(VA+s)l;__, sl_> A (s+A) cosh(vVA+s) - € (4.A21)

The fourth residue at s = s,in Eq. (4.A18) becomes
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R [ cosh(vVA+sy) ] —li [eSt cosh(\/A+sy) —li eSt cosh(VA+sy)
s (A+s)cosh(VA+s)l_¢ (A+5s) cosh(VA+s) _sisn (A+s)%cosh(\/m)

N
=s, S7Sn

T
4 v (—1)™ cos[(2n+1)my/2]e | BT +adlg

7 &n=0 (2n+1)

(4.A22)

From Eqns. (4.A12) - (4.A22) we get Egn. (4.17) in the text. Similarly, we can

solve Eqn.(4.12) by using complex inversion formula.
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CHAPTER 5

SENSITIVITY AND RESISTANCE OF
AMPEROMETRIC BIOSENSORS IN
SUBSTRATE INHIBITION PROCESSES



CHAPTER 5

Sensitivity and Resistance of Amperometric Biosensors in Substrate

Inhibition Processes

5.1 Introduction

Biosensors are approximate analytical devices that tightly combine
biorecognition elements and physical transducer for the detection of the target
compounds. An amperometric biosensor is a tool used in a solution to measure the
concentration of a specific particular chemical or biochemical substances [1-4]. In
biosensor, many enzymes are inhibited by their substrates. In the literature, the
theoretical model has been widely applied as an essential tool to study and optimize the
approximate analytical characteristics of biosensors. Practical biosensors contain a
multilayer enzyme membrane; Exploratory monolayer membrane-containing
biosensors are widely used to study the biochemical behavior of biosensors. The
inhibition ofsubstrates is often considered abiochemical oddity and experimental
annoyance. This model is based on the system of non-stationary diffusion equations
containing a nonlinear term related to non-Michaelis-Menten kinetics of the enzyme

reaction [3].

The biosensor model with a substrate and product inhibition was constructed to
reduce the number of biosensor properties. Manimozhi et al. [5] found the solution of
steady-state substrate concentration in the case of substrate inhibition using the
Homotopy perturbation method (HPM) and variational iteration method (VIM).
Already the approximate analytical expression for steady-state concentrations of
substrate and product with substrate inhibition using the Adomian decomposition

method was discussed by Anitha et al. [6].

A carbon nanotube based biosensor was mathematically modelled by Lyons
[7,8]. The one-dimensional steady-state boundary value problem describing the
transport and the kinetics of the substrate and the mediator in the two compartment
domain was solved approximate analytically. Baronas et al. [9]proposed the
mathematical model for the mediated biosensor with the CNT electrode deposited on

the perforated membrane.In this chapter, for small values of reaction/diffusion
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parameters, we have derived an approximate analytical expression of sensitivity and

resistance of biosensor.
5.2 Mathematical formulation of the problems
In the enzyme reaction,
E+S o ES—> E+P (5.1)

the substrate (S) binds to the enzyme (E) in order to form an enzyme-substrate complex
ES. The substrate is converted to product (P) while it is part of this complex. The rate

of the product's appearance depends on its substrate concentration.

For example, the simplest scheme of non-Michaelis-Menten Kkinetics may have
been obtained by adding to the Michaelis-Menten scheme (Equation (5.1)), a stage of
enzyme-substrate complex (ES) interaction with another substrate molecule (S)
(Equation (5.2)) after the non-active complex (ESS) is generated as follows[10]:

ES+S o ESS (5.2)

The steady-state nonlinear differential equations for the substrate inhibition are[10]:

d?s(x) Vimax $(x)
D - =0 5.3
S dx? km+s(x)+%2 ( )
dzp(x) Vimaxs(x)
+ =0 5.4
P gy km+s(x)+(s(x))2 (54)

ks

where Dy, D, are the diffusion coefficients of the substrate and product in the enzyme
layer. s(x) and p(x) are the concentration of substrate and product in the enzyme layer.
Vmax 1S the maximal enzymatic rate, k,, denotes the Michaelis-Menten constant, kg
inhibition constant and d is the thickness of the enzyme layer.The corresponding
boundary conditions are [10]

ds(x)
dx

=0,p(x) =0whenx =0 (5.5)

where s* is the concentration of substrate at x = d and d is thickness of the enzyme
layer. The modeling of the amperometric biosensor with the substrate inhibition reveals

the complex kinetics of the biosensor response. At low substrate concentration, the
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kinetics looks like a simple substrate diffusion. When inhibition constant is large

(kg = ), the reaction kinetics is Michaelis-Menden model.

The steady-state current I of the biosensor is expressed as follows:

I =nFp,EX . (5.7)

we introduce the set of dimensionless variables as follows:

_ s(x) _ p(x) X 2 Vinaxd® 2 _ Vinaxd® _ s” _ (s*)?
S0 = P = = b = O = ke T P T ek
(5.8)

where S(x) and P () indicate the dimensionless concentration of substrate and product
respectively. ¢ and qbpzdenote the corresponding reaction diffusion parameters. y

represents the dimensionless distance. a and B represents the saturation parameters. The
governing nonlinear reaction/diffusion equations (5.3) and (5.4) are expressed in the

following non-dimensionless form.

d®s(x) bs*5(0) _
dx?  1+aS(0+BGS? (5:9)
d?P(x) $p°S)
dx?  1+aS(O+BESU? (5.10)
The boundary conditions are given by:
j—i=O,P=Owhen)(=0 (5.11)
S=1,P=0wheny=1 (5.12)
The dimensionless current is reduced to
I d dp
V= neFDp [s_] T dy 4=0 (5.13)
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5.3 Approximate analytical expression of concentration of substrate and product
5.3.1 Approximate solution using Taylor series method

Equations (5.9)-(5.10) are representing the system of nonlinear equations. It is
very difficult to find the exact solution of these nonlinear equations. Solving systems
of nonlinear equations is perhaps one of the most difficult problems, especially in a
diverse range of science and engineering applications. Recently so many approximate
analytical methods [11] are used to solve the nonlinear equations such as homotopy
perturbation method [12-16],residual method [17], Taylor series method [18-21],
AGM method [22—-24], new approximate analytical method [25-27]. The concentration
of substrate and product are obtained by solving the nonlinear equations (9)-(10) using
Taylor series method [28-30] (see Appendix A) as follows:

~ ' oy 188G eSS WG (L at2p
SO & 1+ S W~ D+ 5 + B0 (1-22 B) (5.14)
~ P 19p°(-1)? _ pp’S1(D(x-1)? at2p
POO ~ P'(D(x = 1) = s — 2 (1—1+a+ﬁ) (5.15)
Where

re1Y — 2 ps°(L+a+p) C ran _ $p (3+3a+3B—1+p1)
S (1) T 2(1+42a+2B)+2(a+B)2+ P2 (1-B)’ P (1) - 6(1+a+pB)? (5-16)

5.3.2 Approximate solution using new homotopy perturbation method

With the rapid development of nonlinear science, there appears an ever-
increasing interest of scientists and engineers in the approximate analytical asymptotic
techniques for nonlinear problems [31]. It is very difficult to solve nonlinear problems
either numerically or theoretically. Perturbation methods provide the most versatile
tools available in nonlinear analysis of engineering problems, and they are constantly
being developed and applied to ever more complex problems. Homotopy perturbation
method was first proposed by the He[32]. Recently, a new approach to HPM is
presented to solve the nonlinear problem and this gives a simple approximate solution
in the zeroth iteration [33]. By using this new homotopy perturbation[34-36]

(Appendix B), the concentrations of substrate and products can be obtained as follows:
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S(x) ~ LD (5.17)

cosh(m)

- ¢_pz 1—y—cosh(my)
P(X) - P52 (X + cosh(m) ) (5'18)
¢S Vmaxdz
where m = = - 5.19
A/ 1+a+,8 Ds<km+5*+%) ( )
The dimensionless current is
_ 1 Al _eW| _¢p(q__ 1 \_Ds(y__ 1
l/) - neFDp [s*] - dy x=0 - qbsz (1 cosh(m)) - Dp (1 cosh(m)) (5'20)
The value of steady-state current (I)is
I Dgs™ Vimaxd?
= 1 —sech| |[——2%*—— 5.21
neF d Ds(km+5*+(sk22) ( )

The result obtained using newhomotopy perturbation method is equivalent to

approximate analytical expression derived by hyperbolic function method [38].
5.3.3 Sensitivity of biosensor

The sensitivity is one of the most important characteristic of biosensors. The
sensitivity Bs of a biosensor can be expressed as a gradient of the maximal biosensor
current density with respect to the substrate concentration s*[10]. The dimensionless

sensitivity for the substrate concentration s* is given by

& ST odI(s™) 1 i s* m tanh(m)
BS(S )= I(s*) ds* 1+ (2 ol ks) (km+5*+(5,:—)2) 1—cosh(m) (5'22)
S
where Bs stands for the dimensionless sensitivity of the amperometric biosensor and
I(s™) is the density of the steady-state biosensor current calculated at the substrate
concentration s*. From the eqn.(5.22), it is conformed that the sensitivity Bs varies
between -1 and 1.
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5.3.4 Resitanceof biosensor

The resistance of the membrane-based biosensors to changes of the membrane
thickness is introduced. The normalized dimensionless resistance By of the biosensor
is expressed as the gradient of the steady-state biosensor current with respect to the
enzyme layer thickness d[10],

Ldl(d) __ mtanh(m) .

BR (d) = I1(d) dd - cosh(m)-1

(5.23)

where By stands for the dimensionless sensitivity of the amperometric biosensor and
1(d) is the steady-state biosensor current calculated at the thickness of the enzyme
layer d. The resistance By, varies between -1 and 1. The inverse of resistance is referred
to as conductance, and such detection is referred to as conductometric electrochemical
biosensor or simply conductometric biosensor [10]. The relationship between
sensitivity and resistance are obtained from the equations (5.22 & 5.23) as follows:

Bs(s)=1+(3+=

2 ks) m (Br(d) +1) (5.24)

5.3.5 Thickness of the membrane

Using (5.18) we find approximate analytically the membrane thickness d, at
which the steady-state current [ gains the maximum at given parameters

Vinax » Ds, km, ks and s™. We can rewrite the equation (5.18) as follows:

I(d) _ Dgs”
NeF T d

(1 — sech(m)) (5.25)

We calculate a derivative of 1(d) with the respect to the thickness d.

% = n,FDgs” d—lz [(1 + mtanh(m))sech (m) — 1] (5.26)
And we're looking for d, where the derivative gets zero.

(1 + mtanh(m))sech (m) — 1 = — cosh?(m) + cosh(m) + m sinh(m) = 0 (5.27)

Equation (5.24) was solved numerically. A single solution m = m,,;,, = 1.5055 was

obtained. Consequentially, I gains the maximum at the membrane thickness d, where
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*)2
Ds(km+s*+—(s )

Aimax = Mimax — i) = 285.65um (5.28)

at the values ks = 10 uM, k,,, = 100 uM,Ds = D,, = 300 um?/s,s* = 10 uM and
Vinax = 1 uM /s (values used in Fig. 5.4a).

5.4. Result and Discussion

Equations (5.14)-(5.19) are the simple and closed-form of approximate
analytical expressions of sensitivity and resistance of amperometry biosensor with
substrate inhabitation kinetics for the for different values of parameters such as
substrate reaction-diffusion parameter (¢,°), product reaction-diffusion parameter
(¢>p2), thickness ofmembrane, diffusion coefficients and saturation parameters (a and

B), respectively.

The error percentage between numerical and the approximate solution obtained
by the Taylor series method and hyperbolic function method is less than 3.72% for
small values of reaction-diffusion parameters (Tables 5.1 and 5.2). Here the analytical
results are obtained using three terms for the Taylor series and zeroth-order iteration
for NHPM. The approximation accuracy should be increased by increasing high order
terms in the Taylor series and iteration in NHPM.

5.4.1 Sensitivity

The sensitivity is also one of the most important characteristics of the
biosensors[10]. The biosensor sensitivity can be expressed as the gradient of the steady-
state current with respect to the substrate concentration. Since the biosensor current as
well as the substrate concentration varies even in orders of magnitude, especially when
comparing different sensors, another useful parameter to consider is a dimensionless

sensitivity.

The biosensor sensitivity for different values of the parameter are displays in
the Figs. 5.1(a-b) and 5. 2(a-c). It is notice that a decrease in all parameter leads to
decrease in sensitivity. When s* ~ 103uM the sensitivity reaches the minimum value
-1.Due to the substrateinhibition, the sensitivity differsnotably only at intermediate

concentrations of the substratei.e 1 uM < s* < 100 uM.
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Figure 5.1. The biosensor sensitivity using eqn. (5.22) for fixed values of
Ds = D, = 300 um?/s, Viay = 1 uM/s,d = 100 um. (a). ks = 10 uM

and various values of k,,uM. (b).k,, = 100uM and various values of

kouM.
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Figure 5.2. The biosensor sensitivity using eqn. (5.22) for fixed values of
ks = 10uM, k,, = 100 uM. (a). D = D, = 300 um?/s,d = 100um
and various values of Vg, uM/s. (0).Vigr = 1 uM/s,d = 100 um and
various values of Dg = D,um?/s. (c).Ds = D, = 300 um?/s, Vypgy =

1 uM /s and various values of d um.
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5.4.2 Resistance

Figures 5.3-5.4 illustrate the biosensor resistance By versus the membrane
thickness d for different values of theparameter. One can seefrom the figures that the
shape of all the curves of the normalized resistance is very similar. The results show
that theeffect of increasing values of the membrane thickness d, results in a deceasing

resistivity. It means that the maximal as well as minimal biosensor resistance By is

directly proportional to ¢*(= Vg5 d?/Dskp).

Since I is a non-monotonous function of d, the By varies between -1 and 1. The
cases when By, is close to -1 or 1 correspond to the biosensors the response of which is
very sensitive to changes in the thickness d of the enzyme membrane. The noticeable
change in the behavior of the biosensor resistance at the moderate substrate
concentrations due to the transition from the kinetic-limited to the diffusion-controlled
mode of the biosensor action.

As one can see in Figures 4.3 and 4.4 an increase in the electrochemical reaction
rate constant k,,,, substrate concentration s* or decrease in kg and V;,,,, proportionally
shifts the curve representing the resistance By to the right. Thus, an increase in the
diffusion coefficientproportionally prolongs the linear part of the biosensor resistance

calibration curve.

@ o

0.5¢ 0.5¢ A
k,y, Increasing ks Decreasing

” ”
@ ° m °
_0.5}| —k,,, =10 M 0.5
"oy kg=5 uM
—ky=10'pM
Jen =10"uM k=201
af i ] [——ksT10 M
10° 10" 10" 10° 10° 10 10' 10" 10’ 10*
d (um) d (pm)

Figure 5.3. The biosensor resistance using eqn. (5.23) for fixed values of Dy = D,, =
300 um?/s,Vipgy = 1 uM/s.(@).kg = 10 uM,s* = 10 uM and various
values of k,, uM. (b).k,, = 100 uM,s* = 30 uM and various values
ofkg uM.
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Figure 5.4. The biosensor resistance using eqgn. (5.23) for fixed values of
ks =10 uM, kp, = 100 uM. (a). Dg = D, = 300 um?/s,s* = 10 uM
and various values ofV,, . uM/s.(0).Vpax = 1 uM/s,s* = 10 uM and
various values of Dy = D, um?/s. (). Ds = D, = 300 um?/s, Vypay =

1 uM /s and various values of s*uM.
5.5 Conclusions

The mathematical model of the amperometric biosensor can be successfully
used to investigate the biosensor's sensitivity and resistance. Simple and closed-form
the approximate analytical expression for the sensitivity and resistance are obtained for

substrate inhibition kinetics. The current function/ gain the maximum at the membrane

thickness d,, 4 = 1.5055\/DS (km +s* + (SI:)Z) /Vinax- The effect of thickness of the

membrane, concentration of substrate atx = d, diffusion coefficient, Michaelis-Menten

constant, inhibition constant on sensitivity and resistance are discussed. The biosensor
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sensitivity and the linear range of the calibration curve can be increased when substrate

concentration s* < 1 uM or s* > 103 uM and all values of other parameters.

Enzyme concentration can significantly reduce biosensor resistance. By

decreasing the concentration of the substrate, biosensor resistance may also be greatly

reduced (Fig-4). When the biosensor operates in the diffusion-limiting mode instead of

in the enzyme reaction-controlled mode, the linear portion of the calibration curve is

longer.

Table 5.1: Comparison of numerical solution of concentration of substrate with the
analytical solutions obtained by hyperbolic function method and Taylor
series method for @ = 0.1, 8 = 0.1 and for different values of ¢°.

¢s2 =05,m = 0.65 $>=1,m=09

Error Error
NHPM TSM Error NHPM TSM Error

X % for % for
NUM Eq. Eq. % for NUM Eq. Eq. % for

NHP NHP
(5.17) (5.14) TSM (5.17) (5.14) TSM

M M

0 | 08170 | 0.8226 | 0.8292 | 0.68 1.49 | 0.6768 | 0.6914 | 0.7156 | 2.15 5.73
0.25 | 0.8281 | 0.8333 | 0.8390 | 0.6 1.31 | 0.6959 | 0.7094 | 0.7303 | 1.94 4.94
0.5 | 0.8618 | 0.8658 | 0.8696 | 0.46 0.90 | 0.7540 | 0.7646 | 0.7784 | 1.41 3.24
0.75 | 0.9187 | 0.9209 | 0.9226 | 0.23 0.42 | 0.8539 | 0.8598 | 0.8663 | 0.69 1.44
1 | 1.0000 | 1.0000 | 1.0000 | 0.00 0.00 | 1.0000 | 1.0000 | 1.0000 | 0.00 0.00
Average Error % 0.40 0.82 Average Error % 1.24 3.07
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Table 5.2:

Comparison of numerical solution of concentration of product with the analytical

solution obtained by hyperbolic function method and Taylor series method for

a=0.1, B =0.1,¢s° = 1 and for different values of ¢,°.

$,> =0.5,m =09 $,° =1,m=09
NHPM TSM Error Error NHPM TSM Error %
X Error %
NUM Eq. Eq. % for % for NUM Eq. Eq. for
for TSM
(5.18) (5.15) | NHPM TSM (5.18) (5.15) NHPM
0 0.0000 | 0.0000 | 0.0000 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.00
0.25 | 0.0309 | 0.0295 | 0.0282 441 8.69 0.0617 0.0591 0.0564 4.25 8.55
0.5 | 0.0422 | 0.0405 | 0.0397 3.97 5.96 0.0844 0.0810 0.0794 3.97 5.96
0.75 | 0.0327 | 0.0315 | 0.0313 3.65 4.24 0.0653 0.0630 0.0626 3.50 4.0
1 0.0000 | 0.0000 | 0.0000 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.000
Average Error % 2.40 3.78 Average Error % 2.34 3.72

Here Num denotes numerical solution, NHPM-new homotopy perturbation

method, TSM-Taylor series method.
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APPENDIX 5.A:

Analytical solution of nonlinear equation (Eq.5.11 and EQ.5.12) using Taylor series

method

Consider the nonlinear equations

dzs bs°S

dy?  1+as+BS? 0 (AL
2 2

ar L S (5.A2)

dy? 1+aS+pSs?

The boundary conditions are given by:

%ZO,PZOWhen)(ZO (5.A3)
S=1,P=0when y=1 (5.A4)

Consider the Taylor's series at x = 1 for dimensionless concentration of S(y) and P ().

~y3_ (LS =11
S(X) ~ £4q=0 <d)(q|x=1> q! (5A5)
P(x) ~ Y3_, [ 22 =11 5.6)
=0\ gpa ) d |
LEtdq_u = s = B, and from the bound diti Eq. (5.A3-5 A4
dxile_y ~ 4 =1 = Dg e boundary conditions (Eq. (5.A3-5.A4)),

we get A, = 1 and By = 0 . Let us consider, A, = S'(1),B; = P'(1) . Then

—-1)4
SO0 ~ Ti=oAg K (5.A7)

—1)4
P(x) ~ Y3_ By &2 (5.A8)

q!

Substituting y = 1 in Eq. (5.A1) and Eq. (5.A2) , we get the following

¢s”
A, = Tratp (5.A9)
B, = _ %" (5.A10)
2 1+a+f8 '
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Ay = 2L (1 _ at2p ) (5.A11)

T 1+a+p 1+a+p
_ PPl (4 _ at2B
B; = 1+a+pB (1 1+a+ﬁ) (5.A12)

Consider the approximation stops at third step, then we have

SO ~ Ao+ Ay(x — 1) + 2 (x — )2 + 2 (x - 1)?

20,432 21 _1)3
=145 W1+ 20 2O (22 (5 A1)

2 1+4+a+p 1+a+p 1+a+p

P(O) ~ Bo+By(x — 1) + 2 (x — 1) + 2 (x — 1)°

20,432 21 _1)3
— P/(l)(x_ 1) _ld’P (x—-1) _¢P S'(D(x-1) (1 _ OH'ZB) (5A14)

2 14+a+p 1+a+p 1+a+p
Now using the boundary conditionsj—f{ = 0,P = 0 when y = 0, we can get

¢p>(3+3a+36-1+p1)

2
S'(D) = Zos Brar]) ;P11 = 6(1+a+p)?

2(1+2a+28)+2(@+B)2+ps>(1-H)’

(5.A15)
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Appendix 5.B:

Analytical solution of nonlinear equation (Eq.5.11 and EQ.5.12) using new

homotopy perturbation method

In this Appendix, we indicate how Eq. (5.5) in this paper is derived.

dzs ds°S
dy?> 1+aS+BS? 0 ®B1)

$P L dp'S
dx? + 1+aS+ps2 0 (5.82)

The boundary conditions are given by:

%ZO,PZOWhen)(ZO (5.B3)
S=1,P=0when y=1 (5.B4)

we first construct a Homotopy as follows[34-37]:

azs ¢s°S 2y 4%S 2¢] =
1 -P |52 - oo somy FP |+ as + 85D 5 - 0S| =0 (5BY)

1-p) |22+ Py S +p[(+as+psH TS +,7S| =0 (586)
p dyx?  1+aS(x=1)+BS( x=1)? p p - '

on simplification we get

-n[e mw] +p[A+as+p5H TS - 42| =0 (5.B7)

~p) [ 1+a+[>’] +p[(1+as+ BSH % 2+ $p°S| =0 (5.88)

The approximate solution of Egs. (5.B1) and (5.B2) are
S=Sy+pS;+piS,+... (5.B9)
P= Py+pP, +p?Py+.... (5.B10)

Substituting Eqg. (5.B9)in Eq. (5.B7) and Eg. (5.B10) in Eq.(5.B8)in, then comparing

the coefficients of like powers of p yields:
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0.d%S0 _ $s°So _

P T Trars = (5.B11)
0.d%Py | p°So _
Pt Trarp = (5.B12)
The boundary conditions are
as; .
X=0=0P=0i=0123.. (5.B13)
x=18=1P=0,5=0;P,=0;i =123 ... (5.B14)

Solving the Egs. (5.B11-5. B12), and using the above boundary conditions and we can

find the following results.

S = L \ﬂf‘i*ﬁ’){) (5.B15)
o~ cosh(\/liz%ﬁ) .
) 2 1—X—cosh(\/%x)
Py = ¢—’S’2(;{ + Cosh(%g (5.B16)

According to the HPM, we can conclude that

SQO) = limS = Sy + Sy + S, + - (5.B17)
p—)

PO ~ limP = Po+ P+ Py + - (5.B18)
p—)

Considering the first iteration we have the solution of concentration of species

- __cosh(my)
~ p %0 (. , 1-x-cosh(my)
POO = Py =75 (x+ ppy ) (5.B20)
Where m = -2
1+a+pf
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CHAPTER -6

Conclusion and Future Enhancements

6.1 Conclusions

The solution approach accomplished in this thesis is based on the objective that

at the maximum possible level. The analytical solutions should be achieved for the

model nonlinear equations in applied chemical sciences since analytical solutions are

the best for analysing experimental data if available or can be obtained.

The analytical expressions for the nonlinear differential equations with variable
coefficients are adopted using a homotopy perturbation method and a

variational iteration method.

The system of nonlinear equations containing a nonlinear term related to
reversible homogeneous reactions is solved. The concentration of species can
be calculated by solving nonlinear equations with the homotopy perturbation
method. Our rough analytical results are also compared to the simulation
results. The agreement between our analytical and simulation results is
satisfactory. The effects of the parameters on concentration are discussed and

illustrated graphically.

The reduction of hydrogen peroxide (H20.) to water in a metal dispersed
conducting polymer film is described mathematically. The model is based on a
system of reaction-diffusion equations that includes a nonlinear term related to
the enzymatic reaction's Michaelis—Menten kinetics. Approximate analytical
expressions for substrate and product concentrations for steady and non-steady-

state conditions were obtained.

A theoretical model of the sensitivity and resistance of amperometry biosensors
with substrate inhibition kinetics is discussed. This model is based on a system
of non-stationary diffusion equations with a nonlinear term related to non-
Michaelis-Menten kinetics of the enzymatic reaction. The influence of various

parameters such as thickness of enzyme layer, bulk substrate concentration,
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Michaelis-Menten and saturation constant on sensitivity and resistance of

biosensor are discussed.
6.2 Scope of the Future Work

The thesis entitled “Theoretical analysis of nonlinear differential equations in
applied chemical sciences “provides a significant contribution to the enhancement of
procedures for solving nonlinear problems in chemical sciences with innovative
solution techniques. The present investigation offers scope for future research on the

following lines.

e Analytical solutions of nonlinear differential equations in chemical Kinetics
have been extended to nonlinear partial differential equations in physical,

biological and medical sciences.

e Nonlinear problems in homogeneous reactions occur in the mass-transfer
boundary layer can be extended to transient conditions in chemical and

biotransformation processes by considering the convection and diffusion terms.

e The theoretical model based on a system of reaction-diffusion equations
containing a nonlinear term related to Michaelis—Menten kinetics of the

enzymatic reaction is extended to non-Michaelis—Menten kinetics.

e Atheoretical model of the sensitivity and resistance of amperometry biosensors

withnon-Michaelis—Menten kinetics is extended to all reaction mechanism.

88



REFERENCES



REFERENCES

CHAPTER I

[1] P. Doucet, P.B. Sloep, Mathematical modeling in the life sciences,
EllisHorwood,1992.

[2] J. Awrejcewicz, I.V. Andrianov, L.I. Manevitch, Asymptotic approaches in the
nonlinear dynamics: New Trends and Applications. Springer,Berlin,1998.

[3] J.H. He, Int. J. Modern phy. B 20 (2006) 1141.

[4] J.H. He, Int. J. Nonl.Mech. 34 (1999) 699.

[5]  J.H.He, Phy. Lett. A35 (2006) 87.

[6] G. Domairry, H. Bararnia, Adv. Studies Theor. Phys. 2 (2008) 507.

[7] G.Adomian, J. Math. Anal. & Appl.135 (1988) 501.

[8] B. Bilbdl, M. Sezer, J. Appl. Math. 2013, 1-6 (2013).

[9] M. Najafi, M. Moghimi, H.R. Massah, H. Khoramishad, M. Daemi,
Transactions on mathematics. 3, 1429-1436 (2006).

[10] F. Geng, Comput.Math. with Appl. 61, 1935-1938 (2011).

[11] P.P.Boyle, W. Tian, Fred Guan, J. Symb. Comput. 33, (2002) 343-355.

[12] D. Piriadarshani, P.L. Suresh, Glob. J. Pure Appl. Math. 12, 418-422 (2016).

[13] M. Missaoui, H. Rguigui, S. Wannes, Sdo Paulo J. Math. Sci. 14, 580-595
(2020).

[14] X. Luo, H. Duan, L. He, Energy. 205, 118085 (2020).

[15] Y. Khan, Int. J. Numer. Method H. 31, 1104-1109 (2021).

89



[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

William E. Schiesser, “Hodgkin—Huxley and FitzHugh -Nagumo Models”, in
Differential Equation Analysis in Biomedical Science and Engineering: Partial
Differential Equation Applications with R, First Edition, John Wiley & Sons,
New York, United States, (2014). pp. 127-161

Pascal Wallisch, “FitzHugh -Nagumo Model: Traveling Waves”, in An
Introduction to Scientific Computing in MATLAB, MATLAB for Neuroscientists
(Second Edition), Academic Press, (2014). pp. 425-438.

R. G. Parr and W. Yang, “Density-Functional Theory of Atoms and Molecules”,
Oxford University Press, Oxford, UK, (1989).

S. V. Pikulin, Comput. Math. and Math. Phys. 59, 1292-131 (2019).

Muhammad Asif Zahoor Raja, Aneela Zameer, Aziz Ullah Khan and Abdul
Majid Wazwaz, SpringerPlus 5:1400 (2016).

Raka Jovanovic, Sabre Kais, Fahhad H. Alharbi, J. Appl. Math. 2014, (2014).
Hina Khan, Hang Xu, Phys Lett A, 365, (2007) 111-115.
Ji-Huan He, Appl. Math. Comput. 143, (2003) 533-535.

T. W. Chapman, A. P. Barrios, and Y.Meas, J. Electrochem. Soc.,154 (2007)
411.

Ongun MY, Math Comput Model: An International Journal, 53 (2011) 597.

R. Baronas, F. Ivanauskas, J. Kulys, Mathematical Modeling of Biosensors An
Introduction for Chemists and Mathematicians, Springer, 2010.

90



CHAPTER II

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

B. Biilbil, M.Sezer, J. Appl. Math.2013, 1-6 (2013).

M. Najafi, M. Moghimi, H.R. Massah, H. Khoramishad, M. Daemi,
Transactions on Mathematics. 3, 1429-1436 (2006).

F. Geng, Comput.Math. with Appl.61, 1935-1938(2011).

P. P. Boyle, W. Tian, Fred Guan, J. Symb. Comput. 33, (2002) 343-355.

D. Piriadarshani, P.L.Suresh, Glob. J. Pure Appl. Math. 12, 418-422 (2016).
M.Missaoui, H.Rguigui, S.Wannes, So Paulo J. Math. Sci.14, 580-595 (2020).
X. Luo, H. Duan, L. He, Energy.205, 118085 (2020).

Y. Khan, Int. J. Numer. Method H.31,1104-1109 (2021).

William E. Schiesser, “Hodgkin—Huxley and FitzHugh —Nagumo Models”, in
Differential Equation Analysis in Biomedical Science and Engineering: Partial
Differential Equation Applications with R, First Edition, John Wiley & Sons,
New York, United States, (2014). pp. 127-161

Pascal Wallisch, “FitzZHugh -Nagumo Model: Traveling Waves”, in An
Introduction to Scientific Computing in MATLAB, MATLAB for Neuroscientists
(Second Edition), Academic Press, (2014).pp. 425-438.

R. G. Parrand W. Yang, “Density-Functional Theory of Atoms and Molecules”,
Oxford University Press, Oxford, UK, (1989).

S. V. Pikulin, Comput. Math. and Math. Phys.59,1292-131(2019).

Muhammad Asif Zahoor Raja, AneelaZameer, Aziz Ullah Khan and Abdul
Majid Wazwaz, SpringerPlus 5:1400(2016).

Raka Jovanovic, Sabre Kais, Fahhad H. Alharbi, J. Appl. Math.2014, (2014).
Hina Khan, Hang Xu, Phys Lett A, 365, (2007) 111-115.

Ji-Huan He, Appl. Math. Comput.143, (2003) 533-535.

91



[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

Abdul-Majid Wazwaz, Cent. Eur. J. Eng.,4, (2014) 64-71.

D.D. Ganji, Hafez Tari, M. BakhshiJooybari, Comput. Math. with Appl.54,
(2007) 1018-1027.

MSM Selvi, L Rajendran, M Abukhaled, J. Phys. Commun.4, (2020) 105017.
R Usha Rani, L Rajendran, AIP Conference Proceedings, 2277,(2020) 130006.

S Saravanakumar, A Eswari, L Rajendran, Marwan Abukhaled, Appl. Math,
14,(2020) 967-976.

R Swaminathan, K Venugopal, P Jeyabarathi, L Rajendran, Solid State
Techno.63, (2020) 2464-2473.

S ThamizhSuganya, P Balaganesan, L Rajendran, Marwan Abukhaled, EJPAM,
13, (2020) 631-644.

P Jeyabarathi, M Kannan, L Rajendran, IJEAT,6, (2020) 3332-3338.
K. Saranya, V. Mohan, L. Rajendran, AJAC, 11, (2020) 15.

M Chitra Devi, P Pirabaharan, L Rajendran, Marwan Abukhaled, Reac. Kinet.
Mech. Cat.130, (2020) 35-53.

R. Swaminathan, K. Venugopal, M.Rasi, M. Abukhaled, L. Rajendran, Quim
Nova.43, (2020) 58-65.

R Angel Joy, L. Rajendran, Int. Rev. Chem. Eng.4, (2012) 516-523.

A. Eswari, L. Rajendran, Application of variational iteration method and
electron transfer mediator/catalyst composites in modified electrodes, Nat.
Sci.,2,(2010) 612.

S Loghambal, L Rajendran, Int. J. Electrochem. Sci.5, (2010) 327-343.
G Rahamathunissa, L Rajendran, J. Math. Chem.44, (2008) 849-861.
A. M. Wazwaz, Appl. Math. Comput.212, (2009) 120-134.

A.M. Wazwaz, Appl. Math. Comput.105, (1999) 11-19.

92



[34]
[35]

[36]

[37]

[38]

[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]

A.M. Wazwaz, Appl. Math. Comput.118, (2001) 123-132.
J.H. He, Appl. math. Comput.114, (2000) 115-123.

Andrei D. Polyanin Valentin F. Zaitsev, “Handbook of Exact Solutions for
Ordinary Differential Equations”,(second edition), Chapman & Hall(2003).

J.H. He, Comput. Methods Appl. Mech. Eng.178, (1999) 257-262.

G.L. Liu, Proceedings of the 7th Conference of modern Mathematics and
Mechanics, Shanghai (1997) 47-53.

J.H. He,Appl. Math. Comput.135, (2003) 73-79.

J.H. He,Appl. Math. Comput.151, (2004) 287-292.

S.J. Liao, Int. J. Non Linear Mech.30, (1995) 371-380.

S.J. Liao, Eng. Anal. Bound Elem.20, (1997) 91-99.

J.H. He, Appl. Math. Comput.135,(2003) 73-79.

J.H. He,Appl. Mech. Eng.167,(1998) 57-68.

J.H. He, X.H. Wu, Comput. Math. with Appl.54, (2007) 881-894.

A.M. Wazwaz, Int. J. Comput. Math.87, (2010) 1131-1141.

93



CHAPTER Il

[1]

[2]

[3]

[4]
[5]
[6]
[7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

J. Newman and K. E. Thomas-Alyea, Electrochemical System, 3rd ed., Chap.
11and Appendix C, Prentice-Hall, Englewood Cliffs, NJ (2004).

V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood
Cliffs,NJ(1962).

A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley & Sons,
New York (1980).

A. K. Hauser and John Newman, J. Electrochem. Soc., 136 (1989) 2820.
C. Hofseth and T. W. Chapman, J. Electrochem. Soc., 138 (1991) 2321.
C. M. Villaand T. W. Chapman, Ind. Eng. Chem. Res., 34 (1995) 3445.

T. W. Chapman, A. P. Barrios, and Y.Meas, J. Electrochem. Soc.,154 (2007)
411.

LC Mary, R.Usha Rani, A. Meena, L. Rajendran, Int. J. Electrochem. Sci., 16
(2021) 151037.

K. Saravanakumar, L. Rajendran, Appl.Math. Model., 39,(2015) 117.

S. Liao, Appl. Math. Comput , 147 (2004) 490.

M. Abukhaled, J. Math., (2013) 1.

R. Saravanakumar, P. Pirabaharan, R. Swaminathan, Int. J. Res. 7 (2018) 342.
A. M. A. Wazwaz, Appl. Math. Comput. 102 (1999) 77.

M. Abukhaled,J. Comput. Nonlinear Dyn., 12 (2017) 051021.

M. Abukhaled, J. Electroanal. Chem., 792 (2017) 66.

J. H. He, Appl. Mech. Eng., 178 (1999) 257.

J.H. He, Ind. J. Phy., 88 (2014) 193.

R.Saravanakumar, P.Pirabaharan, Marwan Abukhaled,and L. Rajendran, J.
Phys. Chem. B, 124 (2020) 443.

94



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. Swaminathan, K. Venugopal, M. Rasi, M. Abukhaled, L.Rajendran, Quim
Nova, 43 (2020) 58.

R. Swaminathan, K.L Narayanan, V. Mohan, K. Saranya, L. Rajendran, Int. J.
Electrochem. Sci., 14 (2019) 37777.

K. Saranya, V. Mohan, L, Rajendran, J. Math. Chem., 58 (2020) 1230.

M. Chitra Devi, P. Pirabaharan, M. Abukhaled, L. Rajendran, Electrochim.
Acta, 345 (2020) 136175.

B. Manimegalai, M.E.G. Lyons, L. Rajendran, J. Electroanal. Chem., 880
(2020) 114921.

R. Usha Rani, L. Rajendran, Chem. Phys. Lett., 754 (2020) 137573.

R. Swaminathan, K. Venugopal, L. Rajendran, M. Rasi, M. Abukhaled, Quim.
Nova, 43,1(2020)1-8.

K.P.V. Preethi, M.C. Devi, R. Swaminathan, R. Poovazhaki, Int. J. Math. And
Appl., 6 (2018) 359.

95



CHAPTER IV

[1]

[2]
[3]

[4]
[5].

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

S. Palanisamy, S. Cheemalapati, S. M. Chen, Int. J. Electrochem. Sci. 2012, 7,
8394.

K.E. Toghill, R. G. Compton, Int. J. Electrochem. Sci. 2010, 5, 1246.

S.B. Bankar, M.V. Bule, R.S. Singhal, L. Ananthanarayan, Biotechnol. Adv.
2009, 27, 489.

A. Pizzariello, M. Stred'ansky, S. Miertus, Bioelectrochemistry. 2002, 56, 99.

N. A. Choudhury, R. K. Raman, S. Sampath, A. K. Shukla, J. Power Sources.
2005, 143, 1.

R.R Bessette, M.G. Medeiros, CJ Patrissi, C. M. Deschenes, C. N. LaFratta, J.
Power Sources. 2001, 96, 240.

Ichiro Yamanaka .; Takeshi Onizawa .; Sakae Takenaka .; Kiyoshi Otsuka .;
Angew. Chem. Int. Ed. 2003, 42, 3653.

W. Yang, S.Yang, W.Sun, G. Sun, Q. Xin, Electrochim. Acta. 2006, 52, 9.
L. Han, S. Guo, P. Wang,S. Dong, Adv. Energy Mater. 2014, 1400424.

E. Kjeang, A. G. Brolo, D. A. Harrington, N. Djilali, D. Sinton, Journal of
Electrochemical Society, 2007, 154, B1220.

B. D. Adams, C. K. Ostrom, A. Chen, Journal of Electrochemical Society,
2011, 1588, B434.

T.Q.N Do, M. Varni¢i¢, R. Hanke-Rauschenbach, T. Vidakovi¢-Koch, K.
Sundmacher,Electrochim. Acta. 2014, 137,616.

R. Benfeitas, G. Selvaggio, F. Antunes, P.M.B.M. Coelho, & A. Salvador, Free
Radical Biology and Medicine, 2014, 74, 35.

C. Agneés, B.Reuillard, A. Le Goff, M. Holzinger, S. Cosnier, Electrochem.
Commun. 2013, 34, 105.

L. An, T.S. Zhao, L. Zeng, X.H. Yan, Int. J. Hydrog. Energy. 2014, 39, 2320.

96


http://www.sciencedirect.com/science/article/pii/S1567539402000269
http://www.sciencedirect.com/science/article/pii/S1567539402000269
http://www.sciencedirect.com/science/article/pii/S1567539402000269
http://www.sciencedirect.com/science/article/pii/S037877530401136X
http://www.sciencedirect.com/science/article/pii/S037877530401136X
http://www.sciencedirect.com/science/article/pii/S037877530401136X
http://www.sciencedirect.com/science/article/pii/S037877530100492X
http://www.sciencedirect.com/science/article/pii/S037877530100492X
http://www.sciencedirect.com/science/article/pii/S037877530100492X
http://www.sciencedirect.com/science/article/pii/S037877530100492X
http://www.sciencedirect.com/science/article/pii/S037877530100492X

[16]

[17]

[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]
[26]
[27]

[28]

[29]

L. An, T.S. Zhao, Z. H. Chai, L. Zeng, P. Tan, Int. J. Hydrog. Energy. 2014, 39,
7407.

M.Somasundrum, A.Tongta, M. Tanticharoen, K. Kirtikara, J. Electroanal.
Chem. 1997, 440, 259.

M.Y.Ongun, math comput model: An International Journal, 2011, 53, 597.
M. Rasi, K. Indira, L.Rajendran, J. Chem. Kinet. 2013, 45, 322.

A. M. Wazwaz, Cent. Eur. J. Eng. 2014, 4, 64.

A. Meena, & L. Rajendran, Chem. Eng. Technol. 2010, 33, 1999.

Y. Wu, J. H. He, results phys. 2018, 10, 270.

L. Rajendran, S. Anitha, Electrochim. Acta. 2013, 102, 474.

R. Swaminathan, K. LakshmiNarayanan, V. Mohan, K. Saranya, L. Rajendran,
Int. J. Electrochem. Sci., 14 (2019) 3777 — 3791,

R. D. Skeel, M. Berzins, SIAM J. Sci. Comput, 1990, 11, 1.
M. Rasi, L. Rajendran, A. Subbiah, sensor actuat b-chem. 2015, 208, 128.
D.N. Rao, Resonance, 1998, 3, 38.

M. H. Sorouraddin, K. Amini, A. Naseri, J.Vallipour, J. Hanaee, M.R. Rashidi,
J. Biosci.2010,35, 395.

S. Schnell, P.K. Maini, Comments on Theoretical Biology, 2003, 8, 169.

97



CHAPTER V

[1]
[2]

[3]
[4]
[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Baronas, F. Ivanauskas, J. Kulys, Sensors. 3 (2003) 248-262.

R. Baronas, F. Ivanauskas, J. Kulys, M. Sapagovas, J. Math. Chem. 34 (2003)
227-242.

J. Kulys, R. Baronas, Sensors. 6 (2006) 1513-1522.
J. Kulys, Nonlinear Anal. Model. Control. 11 (2006) 285-292.

P. Manimozhi, A. Subbiah, L. Rajendran, Sensors Actuators, B Chem. 147
(2010) 290 -297.

A. Anitha, S. Loghambal, L. Rajendran, Am. J. Anal. Chem. 03 (2012) 495-
502.

M.E.G. Lyons, Int. J. Electrochem. Sci. 4 (2009) 77-103.

R. Baronas, J. Kulys, K. Petrauskas, J. Razumiene, J. Math. Chem. 49 (2011)
995-1010.

R. Baronas, F. Ivanauskas, J. Kulys, Springer, 2010. https://doi.org/978-90-
481-3242-3.

L. Rajendran, R. Swaminathan, M. Chitra Devi, A Closer Look of Nonlinear
Reaction-Diffusion Equations, Nova Science Publishers, Incorporated, New
York, NY, 2020.

J.H. He, Y.O. EI-Dib, J. Math. Chem. 58 (2020) 2245-2253.
A. Meena, L. Rajendran, J. Electroanal. Chem. 644 (2010) 50-59.

P. Jeyabarathi, M. Kannan, L. Rajendran, Int. J. Eng. Adv. Technol. 9 (2020)
1845-1853.

R. Swaminathan, K. Lakshmi Narayanan, V. Mohan, K. Saranya, L. Rajendran,
Int. J. Electrochem. Sci. 14 (2019) 3777-3791.

K. Saranya, V. Mohan, L. Rajendran, J. Math. Chem. 58 (2020) 1230-1246.
J.H. He, F.Y. Ji, J. Math. Chem. 57 (2019) 1932-1934.

98



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

S. Vinolyn Sylvia, R. Joy Salomi, L. Rajendran, M. Abukhaled, Solid State
Technol. 63 (2020) 10090-10106.

A.-M. Wazwaz, Appl. Math. Comput. 97 (1998) 37-44.

J. Visuvasam, A. Meena, L. Rajendran, J. Electroanal. Chem. 869 (2020)
114106.

M.E.G. Lyons, J. Solid State Electrochem. 24 (2020) 2751-2761.

B. Manimegalai, M.E.G. Lyons, L. Rajendran, J. Electroanal. Chem. 880
(2021) 114921.

K.M. Dharmalingam, M. Veeramuni, J. Electroanal. Chem. 844 (2019) 1-5.

M.C. Devi, P. Pirabaharan, M. Abukhaled, L. Rajendran, Electrochim. Acta.
345 (2020) 136175.

M.C. Devi, P. Pirabaharan, L. Rajendran, M. Abukhaled, React. Kinet. Mech.
Catal. 130 (2020) 35-53.

J.Visuvasam, A. Meena, R. Swaminathan, L. Rajendran, in: Adv. Chem. Eng.,
2020: 1-12.

J.H. He, Ain Shams Eng. J. 11 (2020) 1411-1414.

C.-H. He, Y. Shen, F.-Y. Ji, J.-H. He, Fractals. 28 (2020) 2050011.
J.-H. He, J. Electroanal. Chem. 854 (2019) 113565.

J.-H. He, Int. J. Mod. Phys. B. 20 (2006) 1141-1199.

J.H. He, Comput. Methods Appl. Mech. Eng. 178 (1999) 257-262.

L. Rajendran, S. Anitha, [Electrochim. Acta (2013)], Electrochim. Acta. 102
(2013) 474-476.

J.H. He, Y.O. EI-Dib, J. Math. Chem. 58 (2020) 22452253,

C. He, C. Liu, J. He, A.H. Shirazi, H. Mohammad-sedighi, Facta Universitatis:
Mechanical Engineering (2021).

99



[34] J.H. He, Y.O. EI-Dib, Numer. Methods Partial Differ. Equ. 37 (2021) 1800—
1808.

[35] J.H. He, Y.O. EI-Dib, Results Phys. 19 (2020).

[36] K. Nirmala, B. Manimegalai, L. Rajendran, Int. J. Electrochem. Sci. 15 (2020)
5682-5697.

100



LIST OF PUBLICATIONS



LIST OF PUBLICATIONS IN PEER REVIEWED REPUTED
INTERNATIONAL JOURNALS

BASED ON THE THESIS

R. Swaminathan, B Manimegalai, K Venugopal, L Rajendran, Homotopy
Perturbation Method and Variational Iteration Method for Solving the
Nonlinear Equations with Variable Coefficients in Applied Sciences, AIP

Conferences Proceedings. 2021 (In press).

R. Swaminathan, R. Saravanakumar, Kothandapani Venugopal,
L. Rajendran, Analytical Solution of Non Linear Problems in Homogeneous
Reactions Occur in the Mass-Transfer Boundary Layer: Homotopy
Perturbation Method, Int. J. Electrochem. Sci., 16 (2021) Article ID: 210644
(SCI Journal, IF=1.573)

R. Swaminathan, K. Venugopal, L. Rajendran M. Rasi, Marwan
Abukhaled,Analytical Expressions For The Concentration and Current In The
Reduction of Hydrogen Peroxide at a Metal-Dispersed Conducting Polymer
Film, Quim. Nova 43 (1), (2020)58-65 (SCI Journal, IF=0.668)

R. Swaminathan, M. Chitra Devi, L. Rajendran, K. Venugopal, Sensitivity and
Resistance of Amperometric Biosensors in Substrate Inhibition Processes, J.
Electroanal. Chem., 895(2022) Article ID: 115527 (SCI Journal, IF=4.464)

101


https://www.scielo.br/j/qn/a/JdzTWz57RHxSrRSWznXbMZK/abstract/?lang=en
https://www.scielo.br/j/qn/a/JdzTWz57RHxSrRSWznXbMZK/abstract/?lang=en
https://www.scielo.br/j/qn/a/JdzTWz57RHxSrRSWznXbMZK/abstract/?lang=en

Reprint of Publications



Int. J. Electrochem. Sci., 16 (2021) Article 1D: 210644, doi: 10.20964/2021.06.51

International Journal of

ELECTROCHEMICAL

SCIENCE
www.electrochemsci.org

Analytical Solution of Non Linear Problems in Homogeneous
Reactions Occur in the Mass-Transfer Boundary
Layer: Homotopy Perturbation Method

Rajagopal Swaminathan!, R. Saravanakumar®, Kothandapani Venugopal’, L. Rajendran®”

! Department of Mathematics, VidhyaaGiri College of Arts and Science, Sivaganga - 630108, India
2PG, Research & Department of Mathematics, Govt Arts College (Affiliated to Bharathidasan
University), Kulithalai - 639120, India

3 Department of Mathematics, Anna University, University college of Engineering, Dindigul, India
4 Department of Mathematics, AMET (Deemed to be university), Kanathur, Chennai, India
“E-mail: raj_sms@rediffmail.com

Received: 3 February 2021/ Accepted: 27 March 2021 / Published: 30 April 2021

Mathematical models for mass transfer accompanied by a reversible homogeneous chemical reaction
are discussed. This model is based on a system of nonlinear equations containing a nonlinear term
related to reversible homogeneous reactions. When reactions arise in the mass-transfer boundary layer,
the measurement of mass transfer to and from electrodes frequently needs the species concentrations.
We can obtain the concentration of species by solving the nonlinear equations using the homotopy
perturbation method. Our approximate analytical results are also compared with the simulation result.
A satisfactory agreement is observed between our analytical and simulation results. The approximate
analytical expression obtained here can be used to estimate the system's dynamical behaviour. The
influence of the parameters on concentration is discussed and presented graphically.

Keywords: Mathematical modeling, Nonlinear equations, Homotopy perturbation method, Reversible
homogeneous reactions.

1. INTRODUCTION

Many electrode processes with homogeneous reactions that occur continuously in the mass-
transfer boundary layer. These reactions involve splitting or forming in the process of deposition or
degradation of metal-linking complexes, the interaction and dissociation of ions and redox soluble
mediators.Quantitative studies of electrode-kinetics experiments as well as simulation of
electrochemical reactor processes require the description of species concentrations at the electrode
surface. Homogeneous reactions can strongly affect the concentration of species.
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The computation of concentration profiles near electrodes in the solution is based on the

species conservation equation.

Lo yen,+R (1)
ot

where c;j is the molar concentration of species i, and Riis the net rate of production of i locally
by homogeneous reactions. The molar flux Niand the rate of production of M/ usually represented by

N; =-D; V¢, - z,¢D, %V¢+Civand R, :V{krl—lcjYj _kaCiVi:| )
j i

This describes species transport through diffusion and convection and ion migration in an
electric field [1].When charged species are involved, equations 1-2 must be written for each species in
solution and combined with the electroneutrality state Zzici =0, and ¢must be

i

determined.Implementation of appropriate boundary conditions on the electrode surface and in the
bulk solution is needed for their solution.This kind of nonlinear problems occurs in many relevant
situations, such as cyclic voltammetry, chronopotentiometry, rotating disk and ring-disk electrodes,
and various boundary-layer flows with multiple geometries, system chemistries, flow and boundary
conditions [2]-[6].

Recently Chapman et al [7] discuss the mass transfer at the electrodes for the homogeneous
and fast reversible reaction. More recently the empirical expression of species concentration using the
Taylor series method and hyperbolic function method was obtained by Mary et al. [8]. In this
communication, we present a simple and effective homotopy perturbation approach for solving the
nonlinear differential equation in the sense of mass transfer at the electrodes with reversible
homogeneous reactions.An approximate analytical expression for the concentration of species in the
homogeneous electrochemical reaction is obtained for various parameter values.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

Consider the reversible homogeneous reaction
Ky

A+B<k:>C (3)

A is formed at a known rate Nao at an electrode surface, and B is present in the bulk solution.
The concentrations of A and C in the bulk solution are negligible, and the fluxes of B and C at the
electrode surface are also zero. The homogeneous reaction forms the species C and diffuses into the
bulk. For measuring concentration profiles, Egs. (1) and (2) may be combined for each component. We
assume the steady-state and ignore migration and convection in the diffusion layer [7]. In this case, the
system of nonlinear one-dimensional reaction-diffusion equations becomes as follows [7]:

d2A(x)

D= =—k,C(x) + k; A(X)B(x) 4)
dx
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pd ZdBX§X> — Kk C(x) +k, A()B(X)
D% —K.C()—k, AQ)B(X)

(5)
(6)

The k coefficients denote the forward and reverse reaction rate constants, and A, B, and C
represent the species concentrations. Both diffusion coefficients are assumed to be equal to a constant

D for the sake of consistency.The boundary conditions are
LAV B U
dx dx dx
A=0;, B=B,; C=0atx=0

By introducing the following dimensionless variables

T

-

> . | kB N
g:ZL ,K = fb 1#:L5
| 57K (B, | k DB,

r

Eqgns. (4)-(6) becomes in dimensionless form as follows:

&° d*a(z) _ a(z)b(z)—@

dz? -
,d%(z) S(z)
3 T_a(z)b(z)— K
,d°S(z) _S(z)
& dzz = ? - a(Z)b(Z)

The correspondingdimensionless boundary conditions are,
a'(z=0)=p, b'(z=0)=0, S'(z=0)=0
a(z=1)=0, b(z=1)=1, S(z=1)=0

where ¢ is the relative rates of diffusion and reaction.K*

(7)
(8)

©)

(10)
(11)

(12)

(13)
(14)

is the homogeneous equilibrium

constant. z is the rate of injection of A relative to the limiting flux of B toward the electrode

3. ANALYTICAL EXPRESSION OF THE CONCENTRATION USING HOMOTOPY

PERTURBATION METHOD

The nonlinear equations (10)-(12), in recent years, numerous methods have been developed to
derive analytical or semi-analytical solutions regardless of how strong the nonlinearity maybe.
Homotopy analysis method [9,10], variational iteration method[11,12], Adomian decomposition
method[13] and Green’s function iterative method[14,15] are used to solve the nonlinear equations.
Due to its simpleimplementation and high accuracy, the homotopy perturbation method(HPM)[16-20],
Residual method[21], Padé approximants method[22], Akbari-1Ganji's method (AGM)[23] and Taylor
series method[24], the new approach of homotopy perturbation method(NHPM)[25,26] has received

great deal of attention.
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By solving equations (10)-(12) using the homotopy perturbation approach (details in Appendix

A), the following approximate analytical representation of ionic concentration is obtained .

a(z) = pu(z-1)+ 120&*54 [(z —1)(22 27— 4)2 + ZOK*gZ(z3 —-37° + 2)] (15)

b(2) =1+120ﬁ = [(z ~1)2? —22-4f +20K"£%(2° -32% + 2)] (16)
S(z) =1-b(z) (17)

4. PREVIOUS ANALYTICAL RESULTS

Chapman [7] derived approximate distributions of concentration. Consider the case of small ¢,
that is, the case where the homogeneous rate constant k, is largeenough to make &small. If the first
term ¢ is neglected, the following solutions are obtained from a quadratic algebraic equation for S.

S(Z):%[(y(l 2)+1+ Kl*j—[[y(l— 2)+1+ Kljz —4u(1- z)]]ﬂ] (18)

a(z)= ult-2)-5(z) (19)
b(z)=1-5(z) (20)
Recently, Mary et al. [8] used Taylor's series method (TSM) to obtain the analytical

representation of species concentration as follows:

a(z)=b(z)+puz-u-1 (21)
_a? (mp)® aprt 1 2 17 ., s o 512
b(2) =+ +?[ﬁum+3ay]§+§[aﬂ +6 0’ +4e’mu ]E(ZZ)
S =1-b(2) (23)

m-1 (24)

1
where o =m(m— u—1)+ o B p=le

The value of m is obtained by solving the following equation.

d m,u+aﬂ +%[uﬂm+3ya]$+%[aﬁ2+6a2+482m,u2]é—1:0(25)

m+ +
2% £231 Al

But in this method, it is very difficult to find the constant m. Our analytical results ( Egs. (15)-
(17)) are easily computable when compared with Taylor's series solution ( Eqns. (21)-(23)).
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5. NUMERICAL SIMULATION AND DISCUSSION

Table 1. Comparison of numerical solution of concentration of species a(z) with the analytical

solutions by Homotopy perturbation method and Taylor series method for K™ =1, zz=—3 and for

different values ¢ .

=07 c=0.8 =09
Our Error Error Our Error Error Our Error Error
21 num | Hem | wof ETS(';'D %of | Num | HPM | %of ETS(';_"l) %of | Num | HPM | %of ETS(';"I) % of
Eq.(15) | HPM | =@ TSM Eq.(15) | HPM | —% TSM Eq.(15) | HPM g TSM
0 2500 | 2494 | 0.24 | 2483 | 0.70 | 2538 | 2527 | 044 | 2483 | 056 | 2573 | 2568 | 0.21 2.563 | 0.40
0.2 | 1922 | 1.920 | 0.11 | 1.907 | 0.79 | 1.957 | 1.949 | 0.42 | 1.907 | 0.48 | 1.991 | 1.997 | 0.31 1985 | 0.28
04 | 1390 | 1.380 | 0.70 | 1.371 | 1.38 | 1.420 | 1.415 | 0.37 | 1.371 | 0.69 | 1449 | 1436 | 0.90 1.445 | 0.26
0.6 | 0.894 | 0.889 | 0.53 | 0.867 | 3.08 | 0.917 | 0.909 | 0.82 | 0.867 | 1.41 | 0.938 | 0.929 | 0.95 0.935 | 0.39
0.8 | 0427 | 0.424 | 0.88 | 0.399 | 6.53 | 0.440 | 0.436 | 0.84 | 0.399 | 2.39 | 0451 | 0444 | 151 0.451 | 0.04
1 0.000 | 0.000 | 0.00 | 0.000 | 0.00 | 0.000 | 0.000 | 0.00 | 0.000 | 0.00 | 0.000 | 0.000 | 0.00 0.000 | 0.00
Average % error 0.41 2.08 0.48 0.92 0.65 0.23
Table 2. Comparison of numerical solution of concentration of species b(z) with the analytical
solutions by Homotopy perturbation method and Taylor series method for K™ =1, 4 =-3 and for
different values ¢ .
=1 c=15 =2
Our Error Error Our Error Error Our Error Error
z Num HPM % of ETS(';/IZ) % of Num HPM % of ETS(';AZ) % of Num HPM % of ETS(';AZ) % of
Eq.(16) | HPM | =" TSM Eq.(16) | HPM | =" TSM Eq.(16) | HPM 4 TSM
0 0.607 | 0.603 | 0.68 | 0.599 | 1.30 | 0.740 | 0.737 | 0.34 | 0.737 | 0.35 | 0.821 | 0.816 | 0.62 0.822 | 0.10
0.2 | 0.629 | 0.624 | 0.80 | 0.614 | 1.41 | 0.754 | 0.747 | 091 | 0.752 | 0.32 | 0.832 | 0.827 | 0.64 0.832 | 0.10
0.4 | 0.690 | 0.687 | 0.42 | 0.658 | 1.98 | 0.794 | 0.789 | 0.68 | 0.791 | 0.42 | 0.859 | 0.855 | 0.54 0.858 | 0.16
06 | 0.776 | 0.778 | 0.15 | 0.735 | 2.04 | 0.853 | 0.849 | 0.47 | 0.848 | 0.53 | 0.900 | 0.896 | 0.41 0.898 | 0.22
0.8 | 0.883 | 0.885 | 0.25 | 0.847 | 1.65 | 0.925 | 0.921 | 0.39 | 0.919 | 0.58 | 0.949 | 0.946 | 0.33 0.947 | 0.28
1 1.000 | 1.000 | 0.00 | 1.000 | 0.00 | 1.000 | 1.000 | 0.00 | 1.000 | 0.00 | 1.000 | 1.000 | 0.00 1.000 | 0.00
Average % error 0.38 1.40 0.46 0.37 0.43 0.14
Table 3. Comparison of numerical solution of concentration of species S(z) with the analytical
solutions by Homotopy perturbation method and Taylor series method for & =2, £ =—-1 and for
different values K.
K'=0.1 K" =0.2 K" =05
Z Our Error Error Our Error Error Our Error Error
Num HPM % of ETS(';/‘,L) % of Num HPM % of ETS(';/;) % of Num HPM % of ETS:;/;) % of
Eq.(17) | HPM | % TSM Eq.(17) | HPM | 9 TSM Eq.(17) | HPM g TSM
0 0.039 | 0.038 | 0.78 | 0.039 | 0.52 | 0.050 | 0.050 | 0.20 | 0.050 | 0.26 | 0.061 | 0.061 | 0.49 0.061 | 0.26
0.2 | 0.036 | 0.036 | 0.84 | 0.036 | 0.55 | 0.047 | 0.047 | 0.04 | 0.047 | 0.43 | 0.057 | 0.058 | 0.35 0.058 | 0.35
0.4 | 0.030 | 0.030 | 0.34 | 0.030 | 2.02 | 0.039 | 0.039 | 093 | 0.039 | 0.77 | 0.048 | 0.048 | 0.42 0.048 | 0.63
0.6 | 0.021 | 0.021 | 0.42 | 0.022 | 2.37 | 0.028 | 0.027 | 091 | 0.028 | 1.81 | 0.034 | 0.034 | 0.58 0.035 | 1.47
0.8 | 0.011 | 0.011 | 0.46 | 0.011 | 3.67 | 0.014 | 0.014 | 0.14 | 0.015 | 5.00 | 0.017 | 0.017 | 0.58 0.018 | 4.65
1 0.000 | 0.000 | 0.00 | 0.000 | 0.00 | 0.000 | 0.000 | 0.00 | 0.000 | 0.00 | 0.000 | 0.000 | 0.00 0.000 | 0.00
Average % error 0.47 1.52 0.37 1.38 0.40 1.23
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The differential Eqns. (10)-(12) with the corresponding boundary conditions has also been
solved numerically using SCILAB/MATLAB program (Appendix-B). The numerical solution is
compared with our analytical results ( HPM method) and previously available results( Taylors series
method) in Tables 1-3. There is no much difference in average error percentage between HPM and
TSM. But we can easily calculate the concentration for all values of the parameter in HPM.
Also, a comparison between the analytical and numerical results are shown in Figures 1.The
maximum error between analytical ( HPM) and the numerical result is 1.35%. It is evident from
Tables 1-12 and Fig. 1 that our results are very close to the exact simulation results.

Table 4. Comparison of our analytical expression of concentration of species a with the numerical
result for various values of the parameter ;2 and some fixed values parametere =2, u=-1
using Eqn. (15).

K" =1 K =10 K" =1000

7 % of

Numerical Our % of Numerical Our % of Numerical Our deviatio
Result Eq.(15) deviation Result Eq.(15) | deviation Result Eq.(15) n

0 0.934 0.925 0.98 0.929 0.918 1.26 0.929 0.917 1.28

0.2 0.736 0.729 0.92 0.731 0.722 1.24 0.731 0.721 1.28

0.4 0.544 0.541 0.64 0.540 0.535 1.03 0.540 0.534 1.06

0.6 0.357 0.358 0.09 0.354 0.353 0.29 0.354 0.353 0.35

0.8 0.173 0.178 2.66 0.172 0.176 2.21 0.172 0.175 2.18

1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00
Average percentage error: 0.88 Average percentage error: 1.00 Average percentage error:  1.02

Table 5. Comparison of our analytical expression of concentration of species b with the numerical
result for various values of the parameter ;. and some fixed values parametere =2, 1 =-1
using Eqgn. (16).

K'=1 K™ =10 K" =1000
z Numerical Our % of Numerical Our % of Numerical Our % of
Result Eqg.(16) | deviation Result Eq.(16) | deviation Result eq.(16) | deviation

0 0.934 0.925 0.99 0.929 0.918 1.26 0.929 0.917 1.28

0.2 0.938 0.929 0.93 0.933 0.922 1.19 0.933 0.921 1.22
0.4 0.948 0.941 0.79 0.944 0.935 1.01 0.944 0.934 1.03
0.6 0.963 0.958 0.59 0.960 0.953 0.75 0.960 0.953 0.76
0.8 0.981 0.978 0.35 0.980 0.976 0.43 0.980 0.975 0.45
1 1.000 1.000 0.00 1.000 1.000 0.00 1.000 1.000 0.00

Average percentage error:  0.61 Average percentage error:  0.77 Average percentage error: 0.79
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Table 6. Comparison of our analytical expression of concentration of species S with the numerical
result for various values of the parameter ;»and some fixed values parametere =4, u=-1
using Eqn. (17).

K'=1 K™ =10 K™ =1000
Z | Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(17) | deviation Result Eq.(17) | deviation Result Eq.(17) | deviation

0 0.020 0.019 0.89 0.020 0.020 0.73 0.020 0.020 0.23
0.2 0.018 0.018 0.79 0.019 0.019 0.64 0.019 0.019 0.65
0.4 0.015 0.015 0.51 0.015 0.016 3.19 0.016 0.016 0.29
0.6 0.011 0.011 0.25 0.011 0.011 0.45 0.011 0.011 0.44
0.8 0.006 0.006 291 0.006 0.006 3.09 0.006 0.006 3.11
1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00
Average percentage error : 0.89 Average percentage error . 1.35 Average percentage error . 0.79

Table 7. Comparison of our analytical expression of concentration of species a with the numerical
result for various values of the parameter , and some fixed values parameters =2, K" =1

using Eqgn. (15).

u=-1 u=-15 H=—2
z Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(15) | deviation Result Eq.(15) | deviation Result Eq.(15) | deviation

0 0.934 0.925 0.98 1.388 1.404 1.18 1.875 1.850 1.33
0.2 0.736 0.729 0.92 1.094 1.106 1.10 1.478 1.459 1.32
0.4 0.544 0.541 0.64 0.811 0.818 0.88 1.094 1.082 1.15
0.6 0.357 0.358 0.10 0.536 0.537 0.15 0.718 0.715 0.38
0.8 0.173 0.178 2.65 0.267 0.261 2.40 0.348 0.356 2.18
1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00
Average percentage error :  0.88 Average percentage error . 0.95 Average percentage error : 1.06

Table 8. Comparison of our analytical expression of concentration of species a with the numerical

result for various values of the parameter ¢ and some fixed values parameter iz = -1, K™ =4

using Eqn. (15).
e=2 =5 £=8
z Numerical Our % of Numerical Our % of Numerical Our % of
Result Eqg.(15) | deviation Result Eq.(15) | deviation Result Eqg.(15) | deviation

0 0.930 0.919 1.22 0.987 0.987 0.04 0.995 0.995 0.01
0.2 0.732 0.723 1.20 0.786 0.788 0.21 0.793 0.795 0.25
0.4 0.541 0.536 0.96 0.586 0.590 0.63 0.592 0.596 0.67
0.6 0.355 0.354 0.26 0.387 0.393 1.49 0.391 0.397 1.52
0.8 0.172 0.176 2.31 0.188 0.196 4.18 0.191 0.199 4.18
1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00

Average percentage error: 0.99 Average percentage error: 1.09 Average percentage error : 1.11
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Table 9. Comparison of our analytical expression of concentration of species b with the numerical
result for various values of the parameter , and some fixed values parameter s =2, K =10
using Eqn. (16).

u=-1 u=-15 U=—2
z Numerical Our % of Numerical Our % of Numerical Our % of
Result EQ.(16) | deviation Result Eq.(16) | deviation Result Eq.(16) | deviation
0 0.9272 0.9173 1.07 0.8967 0.8873 1.05 0.8661 0.8497 1.92
0.2 0.9329 0.9219 1.17 0.9021 0.8936 0.94 0.8737 0.8582 1.81
0.4 0.9435 0.9345 0.95 0.9186 0.9108 0.85 0.8943 0.8810 1.51
0.6 0.9594 0.9530 0.66 0.9420 0.9360 0.64 0.9212 0.9147 0.71
0.8 0.9798 0.9755 0.44 0.9705 0.9667 0.40 0.9617 0.9555 0.65
1 1.0000 1.0000 0.00 1.000 1.000 0.00 1.0000 1.0000 0.00
Average percentage error : 0.72 Average percentage error : 0.65 Average percentage error : 1.10
Table 10. Comparison of our analytical expression of concentration of species b with the numerical
result for various values of the parameter & and some fixed values parameter ;z = —2, K™ =50
using Eqn. (16).
=1 =4 e=1
z Numerical Our % of Numerical Our % of Numerical Our % of
Result Eqg.(16) | deviation Result Eq.(16) | deviation Result Eq.(16) | deviation
0 0.8652 0.8437 2.55 0.9607 0.9456 1.60 0.9867 0.9815 0.53
0.2 0.8729 0.8530 2.33 0.9630 0.9487 1.51 0.9874 0.9825 0.50
0.4 0.8936 0.8783 1.75 0.9690 0.9569 1.26 0.9895 0.9853 0.42
0.6 0.9242 0.9155 0.95 0.9780 0.9691 0.92 0.9925 0.9895 0.30
0.8 0.9614 0.9608 0.07 0.9888 0.9839 0.50 0.9960 0.9945 0.15
1 1.0000 1.0000 0.00 1.0000 1.0000 0.00 1.0000 1.0000 0.00
Average percentage error : 1.27 Average percentage error : 0.96 Average percentage error : 0.32
Table 11. Comparison of our analytical expression of concentration of species S with the numerical
result for various values of the parameter & and some fixed values parameter & = 4, K™ =100
using Eqn. (17).
u=-1 u=-15 H=-2
Z | Numerical Our % of Numerical Our % of Numerical Our % of
Result Eqg.(17) | deviation Result Eq.(17) | deviation Result Eqg.(17) | deviation
0 0.0200 0.0198 0.71 0.0297 0.0294 0.93 0.0393 0.0388 1.14
0.2 0.0189 0.0187 1.21 0.0280 0.0278 0.83 0.0370 0.0367 1.06
0.4 0.0157 0.0157 0.31 0.0234 0.0233 0.54 0.0310 0.0307 0.76
0.6 0.0115 0.0112 1.81 0.0167 0.0167 0.23 0.0220 0.0220 0.03
0.8 0.0057 0.0059 3.00 0.0085 0.0087 2.80 0.0112 0.0115 2.54
1 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00
Average percentage error : 1.17 Average percentage error : 0.89 Average percentage error : 0.92
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Table 12. Comparison of our analytical expression of concentration of species S with the numerical

result for wvarious values of the parametercand some fixed values parameter

4 =—2,K” =500using Eqgn. (17).

£=5 e=1 =10
Z | Numerical Our % of Numerical Our % of Numerical Our % of
Result Eq.(17) | deviation Result Eq.(17) deviation Result Eq.(17) | deviation

0 0.0257 0.0255 0.63 0.0133 0.0133 0.27 0.0066 0.0066 0.09
0.2 | 0.0242 0.0241 0.51 0.0126 0.0126 0.17 0.0062 0.0062 0.59
0.4 | 0.0202 0.0202 0.17 0.0105 0.0105 0.24 0.0051 0.0052 1.61
0.6 | 0.0144 0.0145 0.63 0.0075 0.0076 1.03 0.0037 0.0037 1.87
0.8 | 0.0073 0.0075 3.18 0.0038 0.0039 3.60 0.0019 0.0020 2.75
1 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00
Average percentage error: 0.85 | Average percentage error . 0.88 Average percentage error : 1.15

The concentration of species depends upon the parameter relative rates of diffusion and
reaction(g), rate of injection of A relative to the limiting flux of B toward the electrode (u) and

homogeneous equilibrium constant(K*). Figure 1, shows the concentration of species a(z),b(z) and

constant.
From this fig.1, it is observed that an increase in equilibrium constant leads to increase in a(z)

and b(z) and decreases in S(z). From this fig.2, it is noted that an increase in rate of injection leads to
decrease in a(z),b(z) and S(z).
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Figure 1. Comparison of concentrationsa(z),b(z) and S(z) (Egns. (15)-(17)) with simulation results

for various values of parameters ¢, K "and z .
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6. CONCLUSION

An analytical expression has effectively derived the concentration in the rotating disc electrode
controlled by migration and convection in the diffusion layer for all values of the reaction rate
constants. In this analysis, the model is apported to a rotating disk electrode in a one-dimensional
situation. The nonlinear reaction-diffusion equations at steady-state are solved analytically by a new
approach to HPM. There is a very good agreement between the analytical and the numerical solutions
for all values of rate constant.
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APPENDIX A: Analytical expression of the concentration using homotopy perturbation method
We construct the homotopy for the equations (10)-(12) as follows

[d?a d’a ab S
1- I R Al
( p)_dz2 }+ p{dz2 g? i K*gz} (AD
d°b d°b ab S
1- —+——1=0 A2
=P dz]'-p[dz 52+K*52} (A2)
[d?S  ab d?S ab S
4-p) g *?}* p{dzz +?‘K*—gz}:° A3
where p €[0,1]is an embedding parameter. Using Maclaurin series
a(z) = a(0) + za'(0) + z* a2(0) " (A4)
Now, assume that the solutions of Egs. (Al) - (A3) is
a=a,+pa +p’a,+... b=by +pb +p°b, +...andS =S, + pS, + p°S, +... (A5)

Substituting Eq. (A5) into Egs. (A1)-(A3) and equating the like coefficients of »’ on both sides lead to
the following linear differential equations:

d’a

p° i =0 (AB)
d?b

p°: d220 =0 (A7)
d?s, a,b

p°: dzzo n 220 -0 (A8)

Solving Egs. (A6)-(A8) Subject to boundary conditions:

ag(z2=0)= 1, by(z2=0)=0, S5 (z=0)=0 (A9)
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a9(z2=1)=0, by(z=1)=1, Sp(z=1)=0
So

L. d’a, &b,
dz? &% K'g?
1:d2b1_a0b0 S ~0.
dz? &> K'g?

=0.

Solving Egs. (A9) and (A10), subject to boundary conditions:

a,(z=0)=4, b(z2=0)=0
a(z=1)=0, b(z=1)=1
The solution of the Eqgns. (A6) to (A8) are given by
2,(2) = u(z 1)
b,(z) =1
(2 +2° —322)
6s’

and the solution of the Eqgns. (A11) to (A12) are given by

So(2) =~

a,(2) =L((z —1)(22 -2z —4)2 +20K*52(z3 -3z2% + 2))

120K "&*

b,(z) = —~ ((z ~1)z2 - 22-4) + 20K "£2(2° - 32° +2))

120K " g*

(A10)

(Al1)

(A12)

(A13)
(Al4)

(A15)
(A16)

(Al17)

(A18)

(A19)

12

With the use of these two iterations only, we obtain an approximate solution for the ionic concentration

given by:
alz)=a,(2)+a(2) D) =Dy(2)4,()

(A20)

APPENDIX B: Matlab program for the numerical solution of nonlinear differential equations

(10)-(12)

function sol=ex6
ex6init=bvpinit(linspace(0,1),[0 1 1 0 0 0]);
sol = bvp4c(@ex60de, @ex6bc,ex6init)
end

functiondydx=ex60de(x,y)

dydx=[y(2)
(1/2)"2)*(y(1)*y(3)-((y(5))/(3)))

y(4)

(1/(2)"2)*(y(1)*y(3)-((y(5))/(3)))

y(6)
(1/2)"2)*(((y(5))/(3)))-y(1)*y(3)I;
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end

Function res=ex6bc(ya,yb)

res=[ya(1)-0
yb(2)-1
ya(3)-1
yb(4)-0
ya(5)-0
yb(6)-0];
end

NOMENCLATUREAND UNITS

13

Symbols Name Unit
Bulk concentration of species B 3
Bb mol/cm
A Concentration of species A mol/cm?
B Concentration of species B mol/cm?
C Concentration of species C mol/cm?
D Diffusion coefficient cm?/s
X Distance from the electrode surface (Eqn.(2)) cm
) Diffusion layer thickness cm
kr ’ kf Reaction-rate constants cmls
Known rate constant
N, cm/s
A B C Dimensionless concentration of the species A, B and C
a=— b=—,S=— None
B, B, B,
7 Dimensionless distance from the electrode surface None
& Dimensionless relative rates of diffusion and reaction None
K* Dimensionless homogeneous equilibrium constant None
Dimensionless rate of injection of A relative to the limiting
H None
flux of B toward the electrode
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A mathematical model describing the reduction of Hydrogen peroxide (H,O,) to water in a metal dispersed conducting polymer
film is discussed. The model is based on a system of reaction-diffusion equations containing a non-linear term related to Michaelis—
Menten kinetics of the enzymatic reaction. The approximate analytical expressions corresponding to the concentration of substrate
and product for steady and non-steady state conditions have been obtained using a new approach to homotopy perturbation method

(HPM). Approximate analytical expressions of the electrochemical oxidation current are also presented for steady and non-steady

state conditions. The numerical simulation (Matlab program) response for concentration profiles was carried out and compared with
the analytical results of this work and are found to be in good agreement. The influence of initial substrate concentration, the thickness
of the film as well as the diffusion layer and kinetic parameters on the current response were investigated. A graphical procedure for
estimating the kinetic parameters from the expression of the current response is also proposed.

Keywords: enzymatic biofuel cell; glucose oxidase; mathematical modeling; reaction-diffusion equation; homotopy perturbation

method.

INTRODUCTION

Enzyme-based fuel cells can produce higher energy than
conventional batteries utilizing significantly all the naturally good
materials. Enzymatic biofuel cells rely on the oxidation of substrates
such as hydrogen or glucose and reduction of oxygen to harvest
energy from complex media. In particular, glucose biofuel cells
(BFCs) represent a promising alternative to supply energy from
living organisms to implanted electronic devices. Oxidase enzymes
are widely used in energy devices (biosensor, enzymatic biofuel
cell, bioreactor, etc.). In glucose oxidation-reduction process,
oxygen is diminished to water (H,O) or hydrogen peroxide (H,0,).
Glucose oxidase is found in nectar and goes about as a common
additive. Enzymatic glucose biosensors utilize an electrode rather
than oxygen to take up the electrons required to oxidize glucose and
produce current in the extent to glucose fixation.! Glucose oxidase
is broadly used for the determination of free glucose in body liquids
(diagnostics), in crude botanic material, and the nourishment business.
Toghill and Compton discussed non-enzymatic glucose sensors.” It
likewise has numerous applications in biotechnologies, commonly
protein tests for natural chemistry incorporating biosensors in
nanotechnologies.? Besides, glucose oxidase has damage the cancer
tissue and cells as a result of hydrogen peroxide formation.

In recent times, many kinds of literature focused on glucose/
hydrogen peroxide biofuel cell. Pizzariello et al. developed a glucose/
hydrogen peroxide biofuel cell using a composite bulk modified
bioelectrode based on a solid binding matrix.* Choudhury et al.
discussed the effect of hydrogen peroxide as an oxidant in an alkaline
direct borohydride fuel cell.’ Bessette et al. reported the performance
of the microfiber carbon electrode in magnesium—hydrogen

*e-mail: raj_sms@rediffmail.com

peroxide semi-fuel cell under optimum conditions and at a reduced
concentration of H,0,.° Yamanaka er al. developed a three-phase
H,O0, fuel cell for the production of a concentrated aqueous solution
of H,0, in an electrochemical reduction of O,.”

Yang et al. investigated the influence of H,O, concentration in the
performance of magnesium-hydrogen peroxide fuel cell with palladium-
silver deposited cathode and silver-nickel deposited electrode.®
Han et al. developed a hydrogen peroxide fuel cell with TiO, nanotube
photoanode to increase the performance of the cell by make use of
light and biomass.” Also, Kjeang et al. demonstrated a microfluidic
fuel cell incorporating hydrogen peroxide as oxidant.'” Adams er al.
reported an electrochemical reduction of hydrogen peroxide using
highly active palladium platinum catalysts."" Do er al. developed a
mathematical model which describes the bioelectrochemical reduction
of hydrogen peroxide with direct electron transfer mechanism.!?
Benfeitas er al. investigated hydrogen peroxide metabolism in human
erythrocytes." The first example of glucose or hydrogen peroxide-based
biofuel cell functioning under physiological conditions was reported
in Agnes et al.'"* An et al. developed and tested the performance of an
alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant.'
Also studied by An and coauthors, a one-dimensional mathematical
model of the mixed potential in hydrogen peroxide fuel cell.'®

Somasundaram et al. developed a kinetic model for the reduction
of hydrogen peroxide to water in a metal-dispersed conducting
polymer film.!” This model is based on a system of the non-linear
reaction-diffusion equation. Somasundaram et al. obtained the
steady-state concentration and current for limiting cases (low and
high substrate concentration) only.'” In solving reaction-diffusion
problems, there are mainly three types of methods: experimental,
analytical, and numerical. Experiments are expensive, time-
consuming, and usually, do not allow much flexibility in parameter
variation. Numerical methods are popular for its computing
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capabilities, although it provides only a long list of numbers, not an
equation. Analytical methods are the most difficult ones, providing
solutions with parameters. In this paper, we will consider the last two
techniques to solve the coupled non-linear reaction-diffusion equation
describing the reduction of hydrogen peroxide to water. The purpose
of this communication is to derive the analytical expressions for the
concentration of glucose (substrate), hydrogen peroxide (product)
and current for non-steady state condition.

MATHEMATICAL FORMULATION

Figure 1 represents the schematic diagram for the reduction of
hydrogen peroxide to water.

Dy [Glucose] ,,
Glucanolactone  [Glucose] AN/ [Glucose] ,, 5—
Ky Ky

4)

D
H0: ¢ | H0, 1041,
2?-\ . o

— 7
=L gl x=0
L

X

Figure 1. Schematic diagram for the reduction of hydrogen peroxide to water.

The reactions scheme occurring within the polymer film and in
the bulk solution can be written as follows: '8

kl kca
S+ E <ES-SP+E, )
ky
ke
E,+A—>E +B ?2)
_k
B+2e —>C (3)

Eqn. (1) represents the oxidation of substrate (Glucose) S to
product P (Hydrogen peroxide). Here E, and E, are the oxidized and
reduced forms of the enzyme (oxidase) respectively. The reduction-
oxidation process of the enzyme during the reduction of oxygen (A)
to hydrogen peroxide (B) is shown in Eqn. (2). And the hydrogen
peroxide which in turn reacts with microparticle in the presence
of a pseudo first order rate constant k to produce water (C). Using
Michaelis-Menten rate expression, the mass balance one dimensional
equations for substrate and product within the polymer film can be
written as follows: '3

2
Os(x,t) - Dy 07s(x,1)  kegers(x,1) @
ot o2 Ky +5(x,1)
2
Ob(x,1) _ Dy 07b(x,t) _kb(x.0) + kogers(x,t) )
ot 2 Ky +5(x,1)

where s(x,f) and b(x,t) are the concentrations of substrate and
product respectively. Dg and D, are the diffusion coefficients, &,
is the catalytic reaction rate constant and K,, = (k,,, + k_)/k, is the

cat
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Michaelis-Menten rate constant. The initial and boundary conditions
for the above equations are given by

t=0,0<x<L: s=kys,, b=0 (6)

t>0,x=0: @:0, @:0 (7
Ox Ox

t>0,x=L: s=x,5,, b=Kpb, 8)

Here s., and b, is the concentration of substrate and product in
the bulk solution. k; and k, is the reaction rate constant for substrate
and product respectively. L is the thickness of the polymer film. The
current / of the product b at the electrode surface is given by

I =—-nFAj, =—-nFADg(db/dx), | ©)
where j, is the flux of the hydrogen peroxide at the electrode surface.

Eqns. (4) and (5) can be written in dimensionless form using the
following dimensionless parameters:

Dt D
u= al , V= b ,XZE,TZ%,&_}:J,
K Sep Kpby L L Dy (10)
_KeSewo B _ Kbboo _ g _ kcateTL2
Ky~ Ky’ ! Dy’ DgK

Using Eqn. (10), equations (4) and (5) reduce to the following
non-dimensional form:

ou(yr) _0%u(x)  @ulyt)

ot axz T+au(y,t) (1D
(1), 0v(T) a@u(y.r)
R AL TFrTons S

where u(),7) and v(),7) represents the dimensionless concentration
of substrate and product respectively; ¥ is a normalized distance; Tis
a dimensionless time; & is the ratio of the diffusion coefficient. o, S,
and 7y are the saturation parameters. ¢ is the Thiele modulus depends
upon the enzyme concentration, diffusion coefficient of substrate
Dy and the Michaelis-Menten constant K,,. The corresponding
dimensionless initial and boundary conditions for equations (11)
and (12) are as follows:

1=0,0<y<l: u=1, v=0 (13)

>0,y =0: a—”zo,gzo (14)
ox ox

>0, x=1:u=1, v=1 (15)

The dimensionless current for hydrogen peroxide is

1L __ (&
Y kb0, o) (16)

ANALYTICAL EXPRESSIONS FOR THE
CONCENTRATION OF SUBSTRATE AND PRODUCT FOR
GENERAL CASE UNDER NON STEADY CONDITION

Non-linear phenomena play a vital role in various zones of the
sciences and engineering. Because of the expanding enthusiasm
towards finding exact solutions for those problems, a variety of
analytical methods are proposed. Recently Adomian decomposition
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method,"” homotopy analysis method,* variational iteration
method,?"*> homotopy perturbation method,”?* are used to solve
the non-linear problems. Among such methods, a new approach of
homotopy perturbation method is applied to solve the non-linear
differential equations Eqns. (11) and (12). The focal point of this
method is that it resulted in a simple approximate solution in the zeroth
iteration itself.”” This technique is appropriate for problems where
transient effects, reaction-diffusion phenomena, and nonlinearity
play important roles. The analytical expressions of concentrations
of substrate and product can be obtained as follows (Appendix-A):
22 u

_cosh/A7) 164 2 (=1)" cos[(2n+ Dy jage MY
"~ cosh(WA) T a0 @n+D[2n+ 1212 +44]

u(y,7) a7

ey~ SOTED) | (cosh(\/y7Ex) cosh(\'Az)
L ) BEA-7)| cosh(7/€)  cosh(NA)

}f S D" eost(n e /21 (18)

Using Eqgns. (16) and (18), the dimensionless current is given by

W (©) = —TTE tanh(/77E) - aA[y/y/E tanh(y/ /&) — V4 tanh(~/4)]

5=
SE AT +5 L@+ (19)

where

A=¢/(l+® (20)

@) n 4]

< 5 — (@) A
4nE(2n+1)e 4 64a A% 4

Magn(®) =

[@n+1)>m % +4y] TER 2n+1)[@n+1)°n? +4A4][Qn+1)* 12 (E ~1)—4(A—y)] @1
. o 2 nrte T
Bl@n+1)1° +4y][@n+1) 7 ~4(A-)][@n+1)’n & ~) -4 A-y)]
When 7 — oo, equation (19) becomes
ad[/y/€ tanh(\[y/€ ) — /4 tanh(v 4)]
Vg =—/v/€ tanh(y/y/&) - (22)

PEA-y)

The above equation (Eqn. (22)) represents the new analytical
expression of steady state current.

Limiting case

The consequences for the limiting situations of zero order kinetics
(S >> K, and first order kinetics (S << K,) arising from Eqns. (4)
and (5) or (11) and (12) are reported below.

Case 1: Saturated (zero order) catalytic kinetics (High substrate)

In this case, the situation where the substrate concentration S is
greater than the Michaelis-Menten constant K, is considered. When
S >> K,, or o >> 1, the non-linear Eqns. (11) and (12) reduces to
the following dimensionless linear form:

ou(y,t) _*u(xr) @ (23)
ot 6)(2 a
2
ov(y,1) ¢ 0 V(XZ,‘F) () + 2 (24)
ot oy, p

Solving the above Eqns. (23) and (24), the concentrations of
substrate and product can be obtained as follows:

W ) e 7[(2n71)2n2]%
16¢p & (=1)" cos -1
u() =142 (2~ 4150 5 D cosl@n—rx 2e (25)
3 3
20 T 0L n=0 2n-1)
_cosh(f17En) | o (,_cohfy7En)| 4 & [lnz(Z"H)Zi*411’7[[1”%“2&“?]%1 o }
O adie) +W[l cmhuﬁ)]’?zol @+ D@+ )7 % + 7] ril) lensv 2 (26)
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The expression for the current, in this case, is given by

“[@n+1) 1 % +4y ]tZ

2.2
=142 | 7€ tanh(yfy 78 ) +2 3 (@D m S Al
v @) [ +By J\/ﬁtan W11e)+ ,Eo @n+D[@n+1)>1%E +4y] ¢

From the above equation, the steady state (T — o) current can
be obtained as follows:

W= (1+[;"}/y/g tanh(yy /&) (28)
Y

Case 2: Unsaturated (first order) catalytic kinetics (Low
substrate)

The situation where the substrate concentration S is less than the
rate constant K, is considered. In this case § << K, or au << 1, the
Eqns. (11) and (12) reduces to the following forms:

ou(y,t) 62u(x,r)
ot axz

—Qu(y.t) (29)

Qo u(y,7)

ov(y,.7) _t v (x.,1)

30
= o (30)

-y V(X,T)+

The solutions for Eqns. (29) and (30) are given by

—[@n+1)n 4o S
cosh(\/rp %) . 160 2 (=1)" cos[(2n +my /2]e

uHm) = cosh(Jo) ™ um0 @n+D[2n+1)*n? +49]

3D

_ cosh/y/& ) og (cosh(‘ y/Ex)  cosh(y/gx)

W(3,7) coshf778)  BEO—) cosh(/778)  cosht/o)

]— 3 g, @)D" cos[@n+Drz /2] (32)
n=0

The current expression for this case is given by

W (6) =778 tanh(f77E) - 22 V/E b1 /E) Vo tanh/o)] 25 @i (33)
n=0

BEo-7)
where
en) n 4y ]S S e rrdelS
" (T):4n£(2n+])e 4 6dop e 4
o [@n+)?m 75 +4y]  mEBQn+DI@n+1)’r” +4pl[2n+1)°n” €~ -4 -7)]
) —[n+)?n % +ay 1T (34)
64n o @”(2n+1)e 4

B @ 0P + 4l DR g lIEn PR E ) 4@ —1)]

When 7 — oo, equation (33) becomes

oo = TE anhf178) - S0 LB BT *’))‘ﬁmh(m (35)
¢ =Y

The analytical expressions of concentration of substrate, product
and current for steady and non-steady state condition when & = 1 for
all the limiting cases are given in Table 1 and Table 2

NUMERICAL SIMULATION

To examine the accuracy of the solution obtained using
the HPM method with a finite number of terms, the system of
differential equations was solved numerically. Analytical solutions
of equations (11) and (12) are challenging problems and can be
obtained numerically with the help of Matlab software. The function
pdex4 (Euler’s method) in Matlab software,? which is a function
for solving boundary value problems is used to solve Eqns. (11) and
(12) numerically. Our results are compared with numerical results
graphically in Figs. 2 and 3. The comparison confirmed that our
obtained analytical results fitted very well with the numerical results.
The maximum average relative error between the analytical and
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Table 1. Summary of analytical expressions of concentrations of substrate, product and current for non-steady state condition when & = 1

Conditions This work Previous work '
—[(2n+1)?n 2+ <
w() = cosh(~/4 Ay) 164 2 (-1 cos[(2n + Dy /2e oy
T cosh(WA)  m oaso @n+D[@n+1)*n? +44]
Non steady state cosh( f X) oA cosh( \/’ %) cosh( JAy) w
1) = n 1 2n+Dry /2] e
(HPND T ) B comr) o) | D el b 2]

v (@) ==y tanh(y/y) -

od[\[y tanh(y/y) — VA tanh(~/4 A,

BCA-7)

ZuAn(T)(2"+1)

cosh(/p%) 160 2 (=1)" cos[(2n+ Dy /2e

—[2n+1)’n 2+4¢]TZ

u(y,1)=———7—

cosh(f) T om0 @n+D[2n+1)*n? +4¢]
. COSh(\f%) cosh/y) ) 4 2 (-)"[x2@n+1)? -4] Jeos[(2n+ )y /2] , R
)= - WSy A TR T R S T e
High substrate Vo) = cosh(y/y) Bv[ cosh(ﬁ)j T a0 @n+D[2n+1)*n? +4y]
220+ 1) - 4le —[(2n+l)2n2+4y]%
I h py 2 7 e e
V)= (+ J\Ftan W+ Z [(2n+1)2n 2 +4y]

o )_cosh(f 1) 169 2 (1) cosl@n+ Dy /2 R

’ cosh(f) T =0 Qn+D[2n+1)212 +49]
Low substrate _COSh(‘FX) ap COSh(ﬁX)_COSh(@X) -5 1" 2n+hmy /2] e

v(7,7) cosh(d7)  B(o—1)| cosh(y)  cosh(ye) ’Eo!»lq;n(t)( )" cos[(2n+my, /2]

(@) =y tanhy) 221 ytanh/y) —Jgtanh(/g)] Zuw L

Ble—7)

Table 2. Summary of analytical expressions of concentration of substrate, product and current for steady state condition when & = 1

Conditions This work Previous work'®
cosh(f Ay)
“0 = cosh(x/i A
Steady state vOx) = cosh(/y x) ad cosh(y/7%) B coshA)|
(HPM) cosh(y/y) B(A—y)| cosh(y/y)  cosh(-/4)

ad[/y tanh(/y) — /4 tanh(/4)]

=y tanh(fy) -

B(A-7)
u(x)*l+f(x o
cosh(y/yx) cosh(/yx)

v(x) =

ety

1-
“cosh(yy) BY[ cosh(y/y)
. [ e ;‘—]ﬁ tanh(y7)

i

High substrate

_ cosh(\/a %)
cosh(\/a )

Low substrate

cosh(f X) op cosh(ﬁx)_cosh(\/?px)
cosh(/y) TBo-1) cosh(y/y)  cosh(/p)

oy 2@y tanh/y) — ptanh/ o))
Vi anhfy) Ble-v)

|

_ cosh(y/p %)
ux) = cosh(\/a)
_coshyx) g (cosh(yx) _cosh(ox)
cosh([ ) ﬁ(‘P -v) cosh(ﬁ) cosh(\/?p)
ap[y/ytanh(y/y) ~/etanh(/¢)]

Ygs == ytanh(\/T/)

Ble-v)

numerical results for substrate and product are 1.40% and 0.80%,
respectively (Refer to Tables 3 and 4).

RESULTS AND DISCUSSION

Eqns. (17) to (19) represents the new analytical expressions for
the dimensionless concentration of substrate, product and current
respectively. Fig. 2 represents the dimensionless concentration of

substrate u(),7) versus dimensionless distance from the electrode
% for different values of Thiele modulus ¢, saturation parameter
o and time 7. Thiele modulus is the ratio of the reaction rate to the
rate of diffusion. From Fig. 2(a), it is inferred that the concentration
of substrate decreases when Thiele modulus ¢ increases. When
Thiele modulus ¢ < 0.1, the diffusion resistance is insufficient to
limit the rate of reaction and the concentration remains the same
within the film. The concentration of substrate reaches zero inside
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Table 3. Comparison of our analytical results of dimensionless substrate u(y,7) with numerical simulations for various values of 7 and y using Eqn. (17) when

¢=1and 0=0.5

7=0.1 =05 T=1 7=100

* l;rtll?lly(t ic7;;1 Numerical dej‘i]a(;ifon 1]\52?11),([ 11‘37‘;1 Numerical de‘j(i)a(zifon %Z?yg i1(:72;l Numerical dej(i)a(:ifon /Egzr?y(t i1072;1 Numerical de?iJa(;ifon
0 0.9365 0.9358 0.07 0.7961 0.7885 0.96 0.7513 0.7373 1.89 0.7394 0.7221 2.39
02 0.9372 0.9366 0.06 0.8032 0.7959 0.91 0.7606 0.7472 1.79 0.7493 0.7327 2.26
04 0.9401 0.9397 0.04 0.8251 0.8187 0.78 0.7888 0.7773 1.47 0.7792 0.7650 1.85
0.6 0.9478 0.9475 0.03 0.8633 0.8585 0.55 0.8369 0.8284 1.02 0.8300 0.8194 1.29
0.8  0.9653 0.9652 0.01 0.9204 0.9178 0.28 0.9066 0.902 0.50 0.9029 0.8973 0.62

1 1.0001 1 0.01 1 1 0 1 1 0 1 1 0

Average % of deviation  0.04 Average % of deviation ~ 0.58

Average % of deviation ~ 1.11 Average % of deviation ~ 1.40

Table 4. Comparison of our analytical results of dimensionless product v(),7) with numerical simulations for various values of 7 and y using Eqn. (18) when

9=0.1,00=05, =005, y=0.01 and E=

1=0.7 T=1 =2 =10
* I;z;ly(t il(;l Numerical dejﬁa?ifon %Zily(t ilcg;l Numerical deZ;;a(:ifon [?Er:];:}yg iCSZ;I Numerical dejfi)a(t)ifon %Zﬂy(t iICSa;I Numerical de:]f;a(;ifon
0 1.0237 1.037 1.28 1.1783 1.185 0.56 1.3063 1.309 0.20 1.3179 1.321 0.23
02 1.0251 1.038 1.24 1.1725 1.179 0.55 1.2943 1.297 0.20 1.3053 1.308 0.20
04  1.0289 1.04 1.06 1.1543 1.160 0.49 1.2579 1.260 0.16 1.2673 1.270 0.21
0.6 1.0307 1.039 0.79 1.1218 1.126 0.37 1.1971 1.199 0.15 1.2039 1.206 0.17
0.8  1.0237 1.028 0.41 1.0717 1.074 0.21 1.1113 1.112 0.06 1.1149 1.116 0.09
1 0.9997 1 0.03 0.9998 1 0.02 0.9999 1 0.01 1 1 0

Average % of deviation  0.80 Average % of deviation ~ 0.36

Average % of deviation (.13 Average % of deviation  0.15

the enzyme layer when the diffusion modulus i.e. Thiele module
¢ = 100 which is observed at high film thickness L or enzymatic
rate ke, or for low reaction rate constant K, or diffusion D,. This
is because when ¢ is large, a significant diffusion modulus prevents
a constant concentration of substrate within the film and thus lowers
the concentration. The influence of the saturation parameter o. can be
analyzed from Fig. 2(b), where it is shown that the concentration of
substrate increases when the saturation parameter ¢ increases. This
is because as the initial substrate concentration s, increases obviously
the concentration of substrate s increases. From Fig. 2(c), it is evident
that the substrate concentration increases when time 7 decreases. For
7<0.01, the concentration remains the same.

The change in product concentration with respect to dimensionless
distance from the electrode for various values of parameters is shown in
Figs. 3(a) — (f) respectively. Fig. 3(a) illustrates that for high catalytic
activity, the concentration of substrate increases. By increasing the
initial concentration of substrate o or high catalytic activity, the product
concentration increases as shown in Figs. 3(a) and 3(b). From Figs. 3(c)
and 3(d), it is observed that, the concentration of product increases
when the saturation parameters f3 and ydecreases. Compared to other
parameters, time 7has less influence over product concentration. Higher
product concentration is obtained for steady- state time.

Differential sensitive analysis of kinetic parameters

Eqn. (19) represents the new approximate analytical expression
for the non-steady state current y in terms of the parameters o, 3,
%, ¢ and &. By differentiating the current partially with respect to
these parameters, the impact of the parameters over current can be
determined.”” The percentages of change in current with respect to
Y% B, ¢, & and o are 46%, 35%, 14%, 3% and 2%, respectively. From

this, it is evident that parameters yand 3 have more impact on current.
These parameters are highly sensitive parameters. This implies that
when the thickness of the film L or the concentration of product in the
bulk b_ increases, the current increases. The parameter ¢ is called as
moderately sensitive parameter as it has 14% of influence over current.
The remaining two parameters & (ratio of diffusion coefficient) and o
(saturation parameter) are less sensitive. The spread sheet analysis of
these results is described in Figure. 4. These results are also confirmed
in Figures 5, 6(a) — 6(e).

From Fig. 5, it is observed that the current initially increases with
thickness and then decreases. After L > 2 mm, the current reaches
the steady state value. An interesting as well as important fact can be
concluded from Figs. 6(a) — 6(e) regarding the influence of the kinetic
parameters over current y(7) along time 7. The current considerably
depends on either the enzymatic rate within the film or the electron
transport outside the film. From Fig. 6(a), it is confirmed that the
current increases when the Thiele module ¢ increases. With increased
initial concentration of substrate in bulk solution S_,, the corresponding
current increases. This result is confirmed by Fig. 6(b). The influence
of the saturation parameters 3 and y on the current was shown in
Figs. 6(c) and 6(d). Both parameters are inversely proportional to the
current. Compared to ¥, B shows much deviation over current. From
Fig. 6(e), it was found that the sharp decrease in the current with the
increase of the ratio of diffusion coefficient & And when & is small,
the current decreases slowly. From this figure, it is observed that for
high current, the diffusion coefficient of product should be less than
the diffusion coefficient of substrate i. e. Dg < D,.

Estimation of kinetic parameters k, k e, and K,

Numerous enzyme kinetics papers are dedicated for estimating
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the kinetics parameters and distinguishing between reaction
mechanisms. 3! Pseudo first order constant &, helps us to quantify
the rate of the chemical reaction. The Michaelis-Menten rate
constant K,,, determines the relationship between the steady-state
concentrations rather the equilibrium concentrations. The maximum
velocity of the enzyme depends upon the catalytic rate constant
k.., and the total enzyme concentration e;. The parameter k,, is a
very useful parameter that is employed for the breakdown of the
enzyme substrate complex ES to product P when the enzyme is fully
saturated with substrate. These kinetic parameters can be obtained
from our analytical expression of current (Eqn. (28)). For small
value of y/&, tanh(\/y/&) =~ m and hence Eqn. (28) reduces to

the following form:

Quim. Nova

I/nFAk b _D,

0 0.2 04 0.6 0.8 1
Thickness of the film, L (mm)

Figure 5. Plot of steady state current versus thickness of the film L.

Using Eqn. (10), the above equation can be rearranged as

I 1
k| —— |+k 37
nFAK L mteT(Kbbw] &7

As in Fig. 7(a), plot of I/nFAx,b_L versus 1/k,b.. gives the
slope =k, intercept = k.. When the diffusion coefficient of substrate

and product are equal i.e. § = 1, and yis small, the current (Eqn. 22)
becomes
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Figure 6. Plot of dimensionless current W(t) versus dimensionless time T calculated using Eqn. (19) for different values of (a) Thiele modulus ¢, saturation

parameters (b) o, (c) B, (d) v, and (e) diffusion parameter &.
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By substituting the value of v, ¥, o, f and ¢ from the Eqn. (10)
and k, ke, from Eqn. (37), the parameter K, can be obtained. Hence,

we can obtain pseudo first order rate constant k, enzymatic rate ke,
and Michaelis-Menten rate constant K, from Eqns. (22) and (28).

h
:: Slope = k
b
Ry
=
~ Intercept= ke,
0 1/x,b,

Figure 7. Estimation of kinetic parameter: pseudo first order rate constant k

and enzymatic rate k,er using Eqn. (37).

CONCLUSIONS

A simple mathematical analysis of reaction and diffusion of
glucose and hydrogen peroxide within the conducting film containing
metal microparticles have been presented. Using a new approach
to the Homotopy perturbation method, an approximate analytical
expressions for the concentrations of substrate and product are
obtained. Approximate analytical expressions for the steady and non-
steady state current response produced during the reduction of H,O,
to water at the electrode surface are derived. The differential sensitive
analysis for the steady-state current response for the controllable
parameters: the thickness of the film, bulk substrate, and product
concentration and enzymatic rate are analyzed. Also, the estimation
of kinetic parameters is reported graphically.

SUPPLEMENTARY MATERIAL

The supplementary data associated with this article are available
on http://quimicanova.sbq.org.br in the form of a PDF file, with free
access.
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A theoretical model of a sensitivity and resistance of amperometry biosensors with substrate inhibition kinetics
is discussed. This model is based on the system of non-stationary diffusion equations containing a non-linear
term related to non-Michaelis-Menten kinetics of the enzymatic reaction. This paper presents the approximate
analytical expression of sensitivity and resistance of biosensor for small values of reaction diffusion parameters.
The effect various parameters such as thickness of enzyme layer, bulk substrate concentration, Michaelis-
Menten and saturation constant on sensitivity and resistance of biosensor are discussed.

1. Introduction

Biosensors are approximate analytical devices that tightly combine
biorecognition elements and physical transducer for the detection of
the target compounds. An amperometric biosensor is a tool used in a
solution to measure the concentration of a specific particular chemical
or biochemical substances [1-4]. In biosensor, many enzymes are
inhibited by their substrates. In the literature, the theoretical model
has been widely applied as an essential tool to study and optimize
the approximate analytical characteristics of biosensors. Practical
biosensors contain a multilayer enzyme membrane; Exploratory mono-
layer membrane-containing biosensors are widely used to study the
biochemical behavior of biosensors. The inhibition of substrates is
often considered a biochemical oddity and experimental annoyance.
This model is based on the system of non-stationary diffusion equa-
tions containing a nonlinear term related to non-Michaelis-Menten
kinetics of the enzyme reaction [3].

The biosensor model with a substrate and product inhibition was
constructed to reduce the number of biosensor properties. Manimozhi
et al. [5] found the solution of steady-state substrate concentration in
the case of substrate inhibition using the Homotopy perturbation
method (HPM) and variational iteration method (VIM). Already the
approximate analytical expression for steady-state concentrations of
substrate and product with substrate inhibition using the Adomian
decomposition method was discussed by Anitha et al. [6].

* Corresponding author.
E-mail address: raj_sms@rediffmail.com (L. Rajendran).
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A carbon nanotube based biosensor was mathematically modelled
by Lyons [7,8]. The one-dimensional steady-state boundary value
problem describing the transport and the kinetics of the substrate
and the mediator in the two compartment domain was solved approx-
imate analytically. Baronas et al. [9] proposed the mathematical
model for the mediated biosensor with the CNT electrode deposited
on the perforated membrane. In this paper, for small values of reac-
tion/diffusion parameters, we have derived an approximate analytical
expression of sensitivity and resistance of biosensor.

2. Mathematical formulation of the problems

In the enzyme reaction,
E+S—ES—E+P (1)

the substrate (S) binds to the enzyme (E) in order to form an enzyme-
substrate complex ES. The substrate is converted to product (P) while it
is part of this complex. The rate of the product's appearance depends on
its substrate concentration.

For example, the simplest scheme of non-Michaelis-Menten kinetics
may have been obtained by adding to the Michaelis-Menten scheme
(Eq. (1)), a stage of enzyme-substrate complex (ES) interaction with
another substrate molecule (S) (Eq. (2)) after the non-active complex
(ESS) is generated as follows [10]:
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ES+S « ESS (2)

The steady-state non-linear differential equations for the substrate
inhibition are [10]:

2
p,¢ dsx(ic) L Vs 3)
km +s(x) + (55(—"))
&’p(x) Vinax$(X)
P dx2 + (4)

5=
km-i-s(x)-i-%

whereD;, D, are the diffusion coefficients of the substrate and product
in the enzyme layer. s(x) andp(x) are the concentration of substrate
and product in the enzyme layer. V,,,, is the maximal enzymatic rate,
k., denotes the Michaelis-Menten constant,k, inhibition constant and
d is the thickness of the enzyme layer. The corresponding boundary
conditions are [10]

ds(x) _ _
a4 = 0:p(x) = Owhenx = 0 (5)
s(x) =s*,p(x) = Owhenx = d (6)

where s* is the concentration of substrate at x = d and d is thickness of
the enzyme layer. The modeling of the amperometric biosensor with
the substrate inhibition reveals the complex kinetics of the biosensor
response. At low substrate concentration, the kinetics looks like a sim-
ple substrate diffusion. When inhibition constant is large (k, — oc),the
reaction kinetics is Michaelis-Menden model.

The steady-state current I of the biosensor is expressed as follows:

dp(x)

I =nFD,———~ 7
i (7
We introduce the set of dimensionless variables as follows:

_ S(x) _ p(x) _ X 2 _ ‘/ma.’(d2 2 Vmaxdz

S(X) - s* 7P<Z) - s* s){*d,'d)s - Dskm 7¢p - Dpkm I’

s 5*2
VS )

Lt (8)
where S(y) and P(y) indicate the dimensionless concentration of sub-

strate and product respectively. ¢,> and (ﬁpz denote the corresponding
reaction diffusion parameters. y represents the dimensionless distance.
a and f represents the saturation parameters. The governing non-linear
reaction/diffusion Egs. (3) and (4) are expressed in the following non-
dimensionless form.

S e o
dr* 1+ aS(y) +A(S(r))*
d2P(;() (/)fS(;()

& 1+aS() S0 0 (10)

The boundary conditions are given by:

E:O,P:OWhen)(:O (11)
S=1,P=0wheny =1 (12)

The dimensionless current is reduced to

(13)

y=

1 [d] _dp
nFDp |s*|  dy

x=0

3. Approximate analytical expression of concentration of
substrate and product

3.1. Approximate solution using Taylor series method

Egs. (9) and (10) are representing the system of nonlinear equa-
tions. It is very difficult to find the exact solution of these nonlinear
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equations. Solving systems of nonlinear equations is perhaps one of
the most difficult problems, especially in a diverse range of science
and engineering applications. Recently so many approximate analyti-
cal methods [11] are used to solve the non-linear equations such as
homotopy perturbation method [12-16], residual method [17], Taylor
series method [18-21], AGM method [22-24],new approximate ana-
lytical method [25-27]. The concentration of substrate and product
are obtained by solving the nonlinear Eqgs. (9) and (10) using Taylor
series method [28-30] (see Appendix A) as follows:

~ / 1 ¢x2(x71)2
¢S (1)(x - 1)° a+2p
M (1_1+a+ﬁ) (14)
N 1gp*(x—1)°
PP D=1 =5 e s
$p*S'(1)(x - 1)° a+2p
T 14a+p (171+a+ﬂ> (15)

S'(l) _ 24552(1 +a+ﬁ) P/(l)
2(1 + 2a+28) +2(a+p)* + 21 - p)’
_ $,(3+3a+38—1+pl)

6(1+a+p)>°

(16)

3.2. Approximate solution using new homotopy perturbation method

With the rapid development of nonlinear science, there appears an
ever-increasing interest of scientists and engineers in the approximate
analytical asymptotic techniques for nonlinear problems [31]. It is
very difficult to solve nonlinear problems either numerically or theo-
retically. Perturbation methods provide the most versatile tools avail-
able in nonlinear analysis of engineering problems, and they are
constantly being developed and applied to ever more complex prob-
lems. Homotopy perturbation method was first proposed by the He
[32]. Recently, a new approach to HPM is presented to solve the non-
linear problem and this gives a simple approximate solution in the zer-
oth iteration [33]. By using this new homotopy perturbation
[12,34,35] (Appendix B), the concentrations of substrate and products
can be obtained as follows:

__cosh(my)
St~ cosh(m) (17)
¢ 2 1 — y — cosh(my)
Py (g ) (18)
where m = Visosd” (19)

[
\1+atp Dy (km +5* +%)

The dimensionless current is

I m _dP)| by 1 1
l//7neFDp s dy 1:0,¢Tz< 7cosh(m)>

-5 (1 o ) (20)
) (m)

The value of steady-state current (I) is

V/Ylﬂxdz
D, (km +5 4 (Sk—)z>

s

I Ds*
= 1 —sech
n.F d

—

21)

The result obtained using new homotopy perturbation method is
equivalent to approximate analytical expression derived by hyperbolic
function method [36].
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3.3. Sensitivity of biosensor

The sensitivity is one of the most important characteristic of
biosensors. The sensitivity Bs of a biosensor can be expressed as a gra-
dient of the maximal biosensor current density with respect to the sub-
strate concentration s* [10]. The dimensionless sensitivity for the
substrate concentration s* is given by

. st dI(s* 1 s s* mtanh(m
Bs(s) = . =1+ (5 +F> 21— cosi(l(n)i)
S <km + s+ T)

(22)

where Bs stands for the dimensionless sensitivity of the amperometric
biosensor and I(s*) is the density of the steady-state biosensor current
calculated at the substrate concentration s*. From the Eq. (22), it is con-
formed that the sensitivity Bs varies between —1 and 1.

3.4. Resitance of biosensor

The resistance of the membrane-based biosensors to changes of the
membrane thickness is introduced. The normalized dimensionless
resistance By of the biosensor is expressed as the gradient of the
steady-state biosensor current with respect to the enzyme layer thick-
ness d [10],

_d dI(d)  mtanh(m)
BR(d)_mﬁ_m—l (23)

where By stands for the dimensionless sensitivity of the amperometric
biosensor and I(d) is the steady- state biosensor current calculated at
the thickness of the enzyme layer d. The resistance By varies between
—1 and 1. The inverse of resistance is referred to as conductance,
and such detection is referred to as conductometric electrochemical
biosensor or simply conductometric biosensor [10]. The relationship
between sensitivity and resistance are obtained from the Egs. (22)
and (23) as follows:

Bs(s*):1+(l+s d

5 k_s> m(&e(fﬁ +1) (24)

Table 1
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3.5. Thickness of the membrane

Using (18) we find approximate analytically the membrane thick-
ness d, at which the steady-state current I gains the maximum at given
parameters V., Ds, ki, ksands*. We can rewrite the Eq. (18) as follows:
14 _Ds

nF T(l — sech(m)) (25)

We calculate a derivative of I(d) with the respect to the thickness d.

aI(d)
ad

= n,FDs* % [(1 + mtanh (m))sech(m) — 1] (26)

And we're looking for d, where the derivative gets zero.
(1 + mtanh (m))sech(m) — 1 = —cosh?(m) + cosh (m) + msinh(m)
=0 (27)

Eq. (24) was solved numerically. A single solution
m = m,,, = 1.5055 was obtained. Consequentially, I gains the maxi-
mum at the membrane thickness d, where

) = 285.65um (28)

at the values k; = 10uM, k;, = 100uM,D; = D, = 300um?/s,s* = 10uM
and V,,, = 1uM/s (values used in Fig. 4a).

4. Result and discussion

Egs. (14)—(19) are the simple and closed-form of approximate ana-
lytical expressions of sensitivity and resistance of amperometry biosen-
sor with substrate inhabitation kinetics for the for different values of
parameters such as substrate reaction—diffusion parameter (¢,%), pro-
duct reaction—diffusion parameter (¢p2), thickness of membrane, diffu-
sion coefficients and saturation parameters (« and f), respectively.

The error percentage between numerical and the approximate solu-
tion obtained by the Taylor series method and hyperbolic function
method is less than 3.72% for small values of reaction-diffusion
parameters (Tables 1 and 2). Here the analytical results are obtained

Comparison of numerical solution of concentration of substrate with the analytical solutions obtained by hyperbolic function method and Taylor series method for

a=0.1,p=0.1 and for different values of ¢..

x ¢2=0.5,m=0.65 $2=1,m=0.9
NUM NHPM Eq. (17) TSM Eq. (14) Error % for NHPM  Error % for TSM NUM NHPM Eq. (17) TSM Eq. (14) Error % for NHPM  Error % for TSM
0 0.8170 0.8226 0.8292 0.68 1.49 0.6768 0.6914 0.7156 2.15 5.73
0.25 0.8281 0.8333 0.8390 0.6 1.31 0.6959 0.7094 0.7303 1.94 4.94
0.5 0.8618 0.8658 0.8696 0.46 0.90 0.7540 0.7646 0.7784 1.41 3.24
0.75 0.9187 0.9209 0.9226 0.23 0.42 0.8539 0.8598 0.8663 0.69 1.44
1 1.0000 1.0000 1.0000 0.00 0.00 1.0000 1.0000 1.0000 0.00 0.00
Average Error % 0.40 0.82 Average Error % 1.24 3.07
Table 2

Comparison of numerical solution of concentration of product with the analytical solution obtained by hyperbolic function method and Taylor series method for

a=0.1,4=0.1,4> =1 and for different values of ¢,

x #? =05,m=0.9 #p?=1,m=09
NUM NHPM Eq. (18) TSM Eq. (15) Error % for NHPM  Error % for TSM NUM NHPM Eq. (18) TSM Eq. (15) Error % for NHPM  Error % for TSM
0 0.0000 0.0000 0.0000 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.00
0.25 0.0309 0.0295 0.0282 4.41 8.69 0.0617 0.0591 0.0564 4.25 8.55
0.5 0.0422  0.0405 0.0397 3.97 5.96 0.0844 0.0810 0.0794 3.97 5.96
0.75 0.0327 0.0315 0.0313 3.65 4.24 0.0653 0.0630 0.0626 3.50 4.0
1 0.0000 0.0000 0.0000 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.000
Average Error % 2.40 3.78 Average Error % 2.34 3.72

Here Num denotes numerical solution, NHPM- new homotopy perturbation method, TSM- Taylor series method.
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Fig. 1. The biosensor sensitivity using eqn. (22) for fixed values of D; = D, = 300um? /s, V .. = 1uM/s,d = 100um.(a). k; = 10uMand various values of k,,uM. (b).

ki = 100puM and various values of k,uM.
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Fig. 2. The biosensor sensitivity using eqn. (22) for fixed values of k; = 10uM, k,, = 100uM. (a). D; = D, = 300um? /s, d = 100um and various values of V,,,,uM/s.
(b). Vyar = 1uM/s,d = 100um and various values of D; = D,um?/s. (c). Dy = D, = 300um?/s, V... = 1uM/sand various values of dum.

using three terms for the Taylor series and zeroth-order iteration for
NHPM. The approximation accuracy should be increased by increasing
high order terms in the Taylor series and iteration in NHPM.

4.1. Sensitivity

The sensitivity is also one of the most important characteristics of
the biosensors [10]. The biosensor sensitivity can be expressed as

the gradient of the steady-state current with respect to the substrate
concentration. Since the biosensor current as well as the substrate con-
centration varies even in orders of magnitude, especially when com-
paring different sensors, another useful parameter to consider is a
dimensionless sensitivity.

The biosensor sensitivity for different values of the parameter are
displays in the Figs. 1(a, b) and 2(a—c). It is notice that a decrease in
all parameter leads to decrease in sensitivity. When s*~10%uM the sen-
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Fig. 3. The biosensor resistance using eqn. (23) for fixed values of D; = D, = 300um?/s, V.o = 1uM/s.(a).k; = 10uM, s*

ki = 100uM, s* = 30uM and various values of k,uM.
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Fig. 4. The biosensor resistance using eqn. (23) for fixed values of k; = 10uM, k,, =

100uM. (a). D; = D, = 300um?/s,s* = 10uM and various values of V,,..uM/s.

(b).Vyaxr = 1uM/s,s* = 10uM and various values of D; = Dyum?/s. (c). D; = D, = 300um? /s, Vo, = 1uM/s and various values of s*uM.

sitivity reaches the minimum value —1. Due to the substrate inhibi-
tion, the sensitivity differs notably only at intermediate concentrations
of the substrate i.e 1uM < s* < 100uM.

4.2. Resistance

Figs. 3 and 4 illustrate the biosensor resistance By versus the mem-
brane thickness d for different values of the parameter. One can see

from the figures that the shape of all the curves of the normalized resis-
tance is very similar. The results show that the effect of increasing val-
ues of the membrane thickness d, results in a deceasing resistivity. It
means that the maximal as well as minimal biosensor resistance By
is directly proportional to qbsz(: Vo d? /Dskm).

Since I is a non-monotonous function of d, the Bg varies between
—1 and 1. The cases when By is close to —1 or 1 correspond to the
biosensors the response of which is very sensitive to changes in the
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thickness d of the enzyme membrane. The noticeable change in the
behavior of the biosensor resistance at the moderate substrate concen-
trations due to the transition from the kinetic-limited to the diffusion-
controlled mode of the biosensor action.

As one can see in Figs. 3 and 4 an increase in the electrochemical
reaction rate constant k,,, substrate concentration s* or decrease in k;
and V,,, proportionally shifts the curve representing the resistance
By to the right. Thus, an increase in the diffusion coefficient propor-
tionally prolongs the linear part of the biosensor resistance calibration
curve.

5. Conclusion

The mathematical model of the amperometric biosensor can be suc-
cessfully used to investigate the biosensor's sensitivity and resistance.
Simple and closed-form the approximate analytical expression for the
sensitivity and resistance are obtained for substrate inhibition kinetics.
The current function I gain the maximum at the membrane thickness

Ay = 1.5055\/ D; (km + s + (Sk—)z) /Vmar- The effect of thickness of the

membrane, concentration of substrate at x = d, diffusion coefficient,
Michaelis-Menten constant, inhibition constant on sensitivity and
resistance are discussed. The biosensor sensitivity and the linear range
of the calibration curve can be increased when substrate concentration
s* < 1uMors* > 10°uM and all values of other parameters.

Enzyme concentration can significantly reduce biosensor resis-
tance. By decreasing the concentration of the substrate, biosensor
resistance may also be greatly reduced (Fig-4). When the biosensor
operates in the diffusion-limiting mode instead of in the enzyme reac-
tion-controlled mode, the linear portion of the calibration curve is
longer.
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Appendix A

Analytical solution of nonlinear Eq. (Egs. (11) and (12)) using Taylor
series method

Consider the nonlinear equations

d’s 28
o %> _p Al
dy? 1+ aS+pSs? (A1)

d’p #,°S

T ———) A2
dy>  1+aS+pS? (42)
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The boundary conditions are given by:

§ =0,P = Owheny =0 (A3)
dy
S=1,P = Owheny =1 (A4)

Consider the Taylor's series at y = 1 for dimensionless concentra-
tion of S(y) and P(y).

e .
q _ q
PONEL, (g ) Sl (6)
4y

let &u

= B, and from the boundary conditions (Eq.

&)y = g,
(A.3-A.4)), we get Ayp=1andB,=0. Let wus consider,
A; =S(1),B; =P (1) . Then
—1)?
St~ ot L (A7)
—1)?
PoINE B L (A8)
q!
Substituting ¥ = 1 in Eq. (A1) and Eq. (A2), we get the following
¢
A, = A9
2T 1ta+p (A9)
b
B.= 1+a+p (A10)
b’ ( a+2p )
As = 1-— All
*T1ta+p 1+a+p (AlD)
(/Jpzl < a+2p )
B; = — 1-— Al2
3 1+a+p 1+a+p (A12)

Consider the approximation stops at third step, then we have

S()x Ao+Ar (x—1)+% (x—1°+%4 (x-1)°

a-+om
_ / #e-1)? | @RS 1> 2p
= 1+S (1)(x - 1) +% 1:;+/} + 1+a+)/(3 1- T+atp
(A13)
P(y)~ By+By (x—1)+%2 (x-1>+% (x-1)°
_ Hx-1* 31 (x-1)° at2p (A14)
= P)lx- 1) _% 1P+a+ﬁ - T+a+p (1 - 1+:+/1)

Now using the boundary conditions ;‘f = 0,P = Owheny = O,we can

get
2
S = 2, rarh) 240
(I+2a+28)+2(a+p)" +¢°(1-p)
:¢p2(3+30+3ﬂ71+ﬁl) (AlS)
6(1+a+p)?
Appendix B

Analytical solution of nonlinear equation (Eq.11 and Eq.12) using new
homotopy perturbation method

In this Appendix, we indicate how Eq. (5) in this paper is derived.
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2 2
s Lz = (B1)
dy> 1+aS+pS
d’p #,°S
i H B2
d)(z—"_l—s—()15+/)’s2 (B2)
The boundary conditions are given by:
d—s =0,P =O0wheny =0 (B3)
dy
S=1,P=0wheny =1 (B4)
we first construct a Homotopy as follows [34-36]:
s .28
a-p[23 ¢ :
2 1+aS(y=1)+pS(zy=1)
+p {(1 +aS+ /}SQ) a's (/JSZS}
=0 (B5)
dzp $,%S
(1-p) ? 2
R +aS(x=1)+pS(x=1)
d’p
+p{(1 +a5+ﬂ52) +¢pzs}
-0 (B6)
on simplification we get
(1- ){dz + 4’8 } + {( + S+ﬂSz) dz ¢Zs] 0 (B7)
_ D0 a —
Plaz 15asp P :
d2 ¢p25 2 d 2

The approximate solution of Egs. (B1) and (B2) are
S =Sy +pS1 +p*Ss + ... (B9)

P =P, +pP; +p?Py + ... (B10)

substituting Eq. (B9) in Eq. (B7) and Eq. (B10) in Eq. (B8) in, then
comparing the coefficients of like powers of p yields:

o . dSo  $7S

: - Bl
P dr? l+a+p (B11)

o @Po 4,

: = B12
Pgs T atp (B12)
The boundary conditions are
ds;
;(:O,d =0;P;=0;i=0,1,2,3-- (B13)
x=18=1P,=0;S;,=0;P,=0;i=1,2,3--- (B14)

Solving the Egs. ((B11) and (B12)), and using the above boundary
conditions and we can find the following results.

s cosh (\/ﬁ)()
0 =

(B15)
cosh b
\/1+a+p
b2 1—}(—C()sh<\/l¢+‘_+ﬁ;(>
Py = # ¥+ (B16)
s

R, &s
cosh < m)

According to the HPM, we can conclude that
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S()~ limS =Sy + 51 + 8z + - (B17)
p—
p—

Considering the first iteration we have the solution of concentra-
tion of species

cosh(my)
S(y)~So = “cosh(m) (B19)
N ¢p2 1 — y — cosh(my)
S G .
where m = —-%
1+a+p
Appendix C Nomenclature
Symbol Meaning
s Concentration of substrate
P Concentration of product
s* Concentration of substrate at x = d
km Michaelis-menten constant
ks Inhibition constant
Vnax Maximal enzymatic rate
d Thickness of the enzyme layer
F Faraday constant
D, Diffusion coefficient of the substrate
D, Diffusion coefficient of the product
I Current density of the biosensor
x Distance
S Dimensionless concentration of substrate
p Dimensionless concentration of product
x Dimensionless distance
@2 Substrate reaction diffusion parameter
¢p2 Product reaction diffusion parameter
a Saturation parameter
Y/ Saturation parameter
Bs Biosensor sensitivity
Bgr Biosensor resistance.
4 Dimensionless current
ne Number of electrons involved in charge transfer at the
electrode surface
Unit Experimental values []
uM -
uM -
uM 10-100
uM 100
uM 10
uM/s  1-1000
um 10-100
C/mol 96,485
um? /s 300
um?/s 300
uAjem? -
cm -
None -
None -
None -
None 0.5-300
None 0.5-300

(continued on next page)
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Appendix C Nomenclature (continued)

Symbol Meaning

None 0.1-1
None 0.1-10
None -
None -
None -
None -
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