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ABSTRACT 

In thesis theoretical analysis of nonlinear differential equations in applied 

chemical sciences are solved analytically and numerically. The application of HPM and 

VIM which is used to solve a broad range of nonlinear equations, especially in 

engineering as well as physical problems. Both methods are extremely useful and 

reliable, as shown by the examples in this chapter. 

The mathematical models for mass transfer accompanied by a reversible 

homogeneous chemical reaction are focused. This model is based on a system of 

nonlinear equations containing a nonlinear term related to reversible homogeneous 

reactions. The concentration of species is obtained by solving the nonlinear equations 

using the homotopy perturbation method. Our approximate analytical results are also 

compared with the simulation result. A satisfactory agreement is observed between our 

analyst Also, a mathematical model describing the reduction of Hydrogen peroxide 

(H2O2) to water in a metal dispersed conducting polymer film is discussed. The model 

is based on a system of reaction-diffusion equations containing a nonlinear term related 

to Michaelis-Menten kinetics of the enzymatic reaction. The approximate analytical 

expressions corresponding to the substrate and product concentration for steady and 

non-steady-state conditions have been obtained using a new approach to the homotopy 

perturbation method (HPM). 

A theoretical model of the sensitivity and resistance of amperometry biosensors 

with substrate inhibition kinetics are described. This model is based on the system of 

non-stationary diffusion equations containing a nonlinear term related to non-

Michaelis-Menten kinetics of the enzymatic reaction. The influence of various 

parameters such as the thickness of enzyme layer, bulk substrate concentration, 

Michaelis-Menten and saturation constant on sensitivity and resistance of biosensor are 

discussed. 

Theoretical analysis of nonlinear differential equations in applied chemical 

sciences is solved analytically in this thesis employing HPM, VIM, and the Taylors 

series method. Numerical methods (Matlab/Scilab) are also used to solve nonlinear 

problems in applied Chemical Sciences. 
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𝑛                          Stoichiometric charge transfer coefficient  (eq mol−1) 

𝐼 Current                      (A cm−2) 

𝑢,𝑣 Dimensionless concentration of substrate, product (None) 
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Greek symbols 

𝜒                Dimensionless distance  (None) 

𝜏                 Dimensionless time (None) 

𝜉                    Ratio of diffusion coefficient (None) 

𝜙                 Thiele modulus (None) 

𝛼,𝛽,𝛾          Saturation parameters   (None) 

𝜓                Dimensionless current (None)          

𝜓𝑠𝑠             Dimensionless steady- state Current (None) 

Grouping parameter 

𝐴 =
𝜙

1+𝛼
      Dimensionless parameter (None) 

Subscripts 

𝑆                     Substrate 

𝐵                     Hydrogen peroxide 

∞                     Bulk 

𝑠𝑠                    Steady state 
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Symbol Meaning Unit 
Experimental 

values 

𝑠 Concentration of substrate 𝜇𝑀 ----- 

𝑝 Concentration of product 𝜇𝑀 ----- 

𝑠∗ Concentration of substrate at 𝑥 = 𝑑 𝜇𝑀 10-100 

𝑘𝑚 Michaelis-menten constant 𝜇𝑀 100 

𝑘𝑠 Inhibition constant 𝜇𝑀 10 

𝑉𝑚𝑎𝑥 Maximal enzymatic rate 𝜇𝑀 𝑠⁄  1-1000 

𝑑 Thickness of the enzyme layer 𝜇𝑚 10-100 

F Faraday constant C/mol 96485 

𝐷𝑠 Diffusion coefficient of the substrate 𝜇𝑚2 𝑠⁄  300 

𝐷𝑝 Diffusion coefficient of the product 𝜇𝑚2 𝑠⁄  300 

𝐼 Current density of the biosensor  𝜇𝐴 𝑐𝑚2⁄  ----- 

𝑥 Distance 𝑐𝑚 ----- 

𝑆 Dimensionless concentration of 

substrate 

None ----- 

𝑃 Dimensionless concentration of product None ----- 

𝜒 Dimensionless distance None ----- 

𝜙𝑠
2
 Substrate reaction diffusion parameter None 0.5-300 

𝜙𝑝
2
 Product reaction diffusion parameter None 0.5-300 

𝛼 Saturation parameter None 0.1-1 

𝛽 Saturation parameter None 0.1-10 

𝐵𝑆 Biosensor sensitivity None ----- 

𝐵𝑅 Biosensor resistance. None ----- 

𝜓 Dimensionless current None ----- 

𝑛𝑒 Number of electrons involved in charge 

transfer at the electrode surface  

None ----- 
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CHAPTER-1 

Introduction 

 

1.1 Mathematical modeling 

Models are descriptions of our assumptions about how the universe operates. We 

transfer those views into mathematical language in mathematical modeling. This has 

many advantages [1]. 

• Mathematics is a very precise language. It helps us to formulate ideas and identify 

underlying assumptions. 

• Mathematics is a concise language, with well-defined rules for manipulations. 

• All the results that mathematicians have proved over hundreds of years area tour 

disposal. 

• Computers can be used to perform numerical calculations. 

• Developing scientific understanding through quantitative expression of current 

knowledge of a system. 

• Testing the effect of changes in a system. 

1.2 Models based on nonlinear differential equations 

Differential equations play an important role in modeling virtually every 

physical, technical, or biological process.Many fundamental laws of physics and 

chemistry can beformulated as differential equations. A set of differential equations 

may be called as a model for a system. In all mathematical sciences the differential 

equations are used to model the behaviour of complex systems. The mathematical 

theory of differential equations is first developed, together with the sciences [1], where 

the equations had originated and where the results found application. 

For nonlinear differential equation models in biology, chemical sciences, and 

otherareas, a key preliminary step in the analysis of a model is to introduce 

dimensionless variablesin order to extract dimensionless parameters that characterize 
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the behavior of the system. The central importance of identifying dimension less 

parameters in a model was emphasized by Lee Segel. When some of these 

dimensionless parameters take on extreme values, the original model can often be 

reduced to a simpler model that is easier to analyze. In the1960's and early 1970's there 

was an intense focus on developing asymptotic methods to simplify the differential 

equation models in the limit of extreme values of dimensionless parameters. 

We give a very brief historical survey of the applications of asymptotic and 

analytical methodologies for the analysis of spatio-temporal patterns in reaction-

diffusion (RD) and related systems. Although far from complete, the bibliography is 

hopefully representative of some of the advances in this area over the past forty years. 

A two-component RD system with general reaction kinetics S (substrate) and 

P(product) has the form 

𝑆𝑡 = 𝐷𝑆𝛻2𝑆 + 𝑓(𝑆, 𝑃, 𝑟, 𝑡) (1.1) 

𝑃𝑡 = 𝐷𝑃𝛻2𝑃 + 𝑔(𝑆, 𝑃, 𝑟, 𝑡) (1.2) 

where 𝜵𝟐 is the Laplacian operator, DS and Dp are the diffusion coefficients of the 

substrateSandproduct P.r is the dimensionless radial co-ordinate of the particle. The 

first term on the right-hand side of the above equation accounts for active species 

(substrate product) diffusion whereas second term the 𝒇(𝑺, 𝑷, 𝒓, 𝒕) and 

𝒈(𝑺, 𝑷, 𝒓, 𝒕) homogeneous reaction term. In the subsequent chapters of this thesis, the 

system represented by the above nonlinear equation is considered and solved using 

various asymptotic methods. 

1.3 Asymptotic approximation 

The idea behind asymptotic is simple: break the solution into more manageable 

pieces, each piece helping to produce a better and better approximation. So the first 

piece describesthe system in some idealized state. To this, we may add a second piece 

representing a small perturbation to the initial state. Each subsequent piece, usually 

allow for better accuracy, with each piece representing smaller and smaller 

perturbations. 
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𝒚 = 𝒚𝟎(First, idealized approximation) 

+𝜺𝒚𝟏(Add small perturbation) 

+𝜺𝟐𝒚𝟐(Even smaller perturbation) 

+…. 

Here yi’s are ith  approximation of the solution y and represents a small perturbation. 

These series are called asymptotic approximations because they are expected exact in 

the asymptotic limit as tends to zero. One or two terms in the iterations provide a 

satisfactory approximation to reality. 

Many of the functions that arise from everyday problems cannot easily be 

evaluatedexactly, particularly those defined in terms of integrals or nonlinear 

differential equations. In these situations we usually have two options. We can use 

computers to seek complicated numerical solutions or we can look to construct an 

analytical approximation to the solutionusing asymptotic [2] expansions. Asymptotic 

methods have particular importance in manyareasof applied mathematics. 

With the rapid development of nonlinear science, the reappears an ever-increasing 

interest of scientists and engineers in the analytical asymptotic techniques for nonlinear 

problems. Though it is very easy for us now to find the solutions of linear systems by 

means of computer, it is, however, still very difficult to solve nonlinear problems either 

numericallyor theoretically. 

1.4 Some analytical asymptotic methods 

Recently, considerable attention has been paid to the analytical solutions for 

non-linearequations without possible small parameters. Traditional perturbation 

methods have many shortcomings, and 

 they are not valid for strongly nonlinear equations. To overcome the short 

comings, many new techniques have appeared in open literature. The re-exist some 

alternative analytical asymptotic approaches [3], such as the weighted linearization 

method, Adomian decomposition method, variational iteration method, tanh-method 

and so on. Just recently, some new perturbation methods such as artificial parameter 

method, Homotopy perturbation method, parameterized perturbation method and 
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Homotopy analysis method which do not depend on the small parameter assumption 

are proposed. In this thesis, variation alliteration method [4], Homotopy perturbation 

method [5], Homotopy analysis method [6] and Adomian decomposition method [7] 

are used to solve the system of non-linearequations. 

1.5 Various nonlinear equations in chemical sciences 

1.5.1 Homotopy perturbation method and variational iteration method for solving 

the nonlinear equations with variable coefficients in applied sciences 

1.5.1.1 The Duffing equation 

The Duffing equation (or Duffing oscillator) is a nonlinear differential equation 

of second-order that is used to develop driven and damped oscillators.   This equation 

was solved using the Taylor matrix method by Sezer et al. [8]. Najafi et al. [9] applied 

the Adomian decomposition method (ADM) to solve the typical oscillation. Geng [10] 

solved these equations by an improved variational iteration method involving both 

integral and non-integral terms. The Duffing equation can also describe the motion of 

a cubic oscillator, which is defined as oscillations of a point mass on a nonlinear spring. 

In this thesis, Adomian composition method (ADM) is applied to typical 

oscillation equations (Duffing and Van der Pol equations). 

𝑑2𝑦(𝑥)

𝑑𝑥2 + 𝑦(𝑥) + 𝜀(𝑦(𝑥))3 = 0 (1.3)  

Here, y is the deviation of the point mass from the equilibrium and x is dimensionless 

time.The initial conditions are as follows: 

𝑥 = 0, 𝑦(0) = 𝑎, 𝑎𝑛𝑑
𝑑𝑦

𝑑𝑥
|

𝑥=0
= 0 (1.4) 

1.5.1.2 The Riccati equation 

The Riccati equation is a well-known nonlinear differential equation of order 

one, that is commonly used in theoretical physics and applied mathematics, such as 

conformal mapping theory and algebraic geometry. Riccati differential equation is 

useful in certain financial models [11].  Piriadarshani et al. [12] applied differential 

transform method to solve various kinds of Riccati differential equation. Wannes et al. 
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[13] introduced the generalized Riccati Wick differential equation. Duan et al. [14] 

proposed the Riccati equation's properties with constant coefficients. 

The general form of Riccati differential equation is defined by: 

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑎(𝑡)𝑦(𝑡) + 𝑏(𝑡)(𝑦(𝑡))2 + 𝑐(𝑡) (1.5) 

wherea(t), b(t) and c(t) are continuous functions oft. The initial condition is  

𝑡 = 0, 𝑢(0) = 𝛽 (1.6) 

1.5.1.3 FitzHugh –Nagumo equation 

The FitzHugh –Nagumo equation occurs in solid-state physics, astrophysics, 

fluid mechanics, bursting oscillations, chemical chemistry, chemical kinematics, 

geochemistry, exciting electronic circuit theory, chaos, bifurcation, plasma physics, 

biology and population genetics. Via the variational principle, Khan [15] proposed a 

novel solitary two-type solution for this equation. Schiesser [16] used an algorithm for 

the numerical solution of the FitzHugh –Nagumo equation. Wallisch [17] generated 

travelling waves solution to the FitzHugh -Nagumo equation for one and two 

dimensions. Consider the FitzHugh –Nagumo equation  

𝑑𝑢

𝑑𝑡
= 𝑘𝑢(𝑡)(1 − 𝑢(𝑡))(2 − 𝑢(𝑡)) (1.7) 

with initial condition,  

𝑡 = 0, 𝑢(0) =
1

2
 (1.8) 

1.5.1.4 The Thomas-Fermi equation 

The effective nuclear charge of heavy atoms is modeled using this problem [18]. 

The effective potentials and charge densities of atoms with several electrons can also 

be calculated using this model. To solve this problem, Pikulin [19] developed high 

efficiency computational algorithms. Thomas–Fermi equation, Zahoor et al. [20] 

developed a new bio-inspired computing method. For neutral atoms in a semi-infinite 

space, Jovanovic et al. [21] proposed an effective spectral methods solver. Xu et al. [22] 

used homotopy analysis method (HAM) to solve this equation. He [23] used the 
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variational approach to solve the equation. The Thomas–Fermi equation can be written 

as follows: 

𝑑2𝑢

𝑑𝑡2 =
(𝑢(𝑡))3 2⁄

√𝑡
 (1.9) 

with initial and boundary conditions  

𝑡 = 0, 𝑢(0) = 𝐿 and 𝑡 → ∞, 𝑢(𝑡) = 0            (1.10) 

Transform the Eq. (1.9) by 𝑢(𝑡) = 1 + 𝑦(𝑡),we get 

𝑑2𝑦(𝑡)

𝑑𝑡2 =
(1+𝑦(𝑡))3 2⁄

√𝑡
  (1.11) 

𝑡 = 0, 𝑦(0) = 𝐿 − 1and let 
𝑑𝑦

𝑑𝑡
|

𝑡=0
= 𝑀 , 𝑡 → ∞, 𝑦(𝑡) = 0         (1.12) 

 In this thesis, the above nonlinear differential equations with variable 

coefficients are adopted to solve using a homotopy perturbation method and a 

variational iteration method. The results obtained by these methods are very useful and 

convenient, as shown by comparing their results. 

1.5.2 Analytical solution of non linear problems in homogeneous reactions occur 

in the mass-transfer boundary layer: Homotopy perturbation method 

Consider the reversible homogeneous reaction 

𝐴 + 𝐵 ⇔ 𝐶
𝑘𝑓

𝑘𝑟

 

(1.13) 

A is formed at a known rate NAo at an electrode surface, and B is present in the bulk 

solution. The concentrations of A and C in the bulk solution are negligible, and the 

fluxes of B and C at the electrode surface are also zero. The homogeneous reaction 

forms the species C and diffuses into the bulk. We assume the steady-state and ignore 

migration and convection in the diffusion layer [24]. In this case, the system of 

nonlinear one-dimensional reaction-diffusion equations becomes as follows 24]: 

𝐷
𝑑2𝐴(𝑥)

𝑑𝑥2
= −𝑘𝑟𝐶(𝑥) + 𝑘𝑓𝐴(𝑥)𝐵(𝑥) (1.14) 

𝐷
𝑑2𝐵(𝑥)

𝑑𝑥2 = −𝑘𝑟𝐶(𝑥) + 𝑘𝑓𝐴(𝑥)𝐵(𝑥) (1.15) 
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𝐷
𝑑2𝐶(𝑥)

𝑑𝑥2 = 𝑘𝑟𝐶(𝑥) − 𝑘𝑓𝐴(𝑥)𝐵(𝑥) (1.16) 

The k coefficients denote the forward and reverse reaction rate constants, and 

A, B, and C represent the species concentrations. Both diffusion coefficients are 

assumed to be equal to a constant D for the sake of consistency.The boundary 

conditions are 

𝐷
𝑑𝐴

𝑑𝑥
= −𝑁𝐴𝑜;

𝑑𝐵

𝑑𝑥
=

𝑑𝐶

𝑑𝑥
= 0at𝑥 = 0 (1.17) 

𝐴 = 0; 𝐵 = 𝐵𝑏; 𝐶 = 0at𝑥 = 𝛿  (1.18) 

In this thesis, an analytical expression has effectively derived the concentration 

in the rotating disc electrode controlled by migration and convection in the diffusion 

the steady-state nonlinear reaction-diffusion equations are solved analytically by a new 

approach of the homotopy perturbation method. There is a very good agreement 

between the analytical and the numerical solutions for all values of rate constant. 

1.5.3 Analytical expressions for the concentration and current in the reduction of 

hydrogen peroxide at a metal-dispersed conducting polymer film 

Reaction’s scheme occurring within the polymer film and in the bulk solution 

can be written as follows [25]: 

𝑆 + 𝐸1 ↔
𝑘−1

𝑘1

𝐸1𝑆 →
𝑘𝑐𝑎𝑡

𝑃 + 𝐸2, 𝐸2 + 𝐴 →
𝑘𝑒

𝐸1 + 𝐵, 𝐵 + 2𝑒− →
𝑘

𝐶           (1.19) 

Eqn. (1.19) represents the oxidation of substrate (Glucose) 𝑆 to product 𝑃(Hydrogen 

peroxide). Here 𝐸1 and 𝐸2 are the oxidized and reduced forms of the enzyme (oxidase) 

respectively. The reduction-oxidation process of the enzyme during the reduction of 

oxygen (𝐴) to hydrogen peroxide (𝐵) is shown in Eqn. (1.19). And the hydrogen 

peroxide which in turn reacts with microparticle in the presence of a pseudo first order 

rate constant 𝑘 to produce water (𝐶). Using Michaelis-Menten rate expression, the mass 

balance one dimensional equations for substrate and product within the polymer film 

can be written as follows [25]: 

𝜕𝑠(𝑥,𝑡)

𝜕𝑡
= 𝐷𝑆

𝜕2𝑠(𝑥,𝑡)

𝜕𝑥2
−

𝑘𝑐𝑎𝑡𝑒𝑇𝑠(𝑥,𝑡)

𝐾𝑀+𝑠(𝑥,𝑡)
 (1.20) 
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𝜕𝑏(𝑥,𝑡)

𝜕𝑡
= 𝐷𝐵

𝜕2𝑏(𝑥,𝑡)

𝜕𝑥2 − 𝑘𝑏(𝑥, 𝑡) +
𝑘𝑐𝑎𝑡𝑒𝑇𝑠(𝑥,𝑡)

𝐾𝑀+𝑠(𝑥,𝑡)
 (1.21) 

where 𝑠(𝑥, 𝑡) and 𝑏(𝑥, 𝑡) are the concentrations of substrate and product respectively. 

𝐷𝑆 and 𝐷𝐵 are the diffusion coefficients, 𝑘𝑐𝑎𝑡 is the catalytic reaction rate constant and 

𝐾𝑀 = (𝑘𝑐𝑎𝑡 + 𝑘−1)/𝑘1is the Michaelis-Menten rate constant. The initial and boundary 

conditions for the above equations are given by 

𝑡 = 0,0 < 𝑥 < 𝐿: 𝑠 = 𝑘𝑠𝑠∞, 𝑏 = 0 (1.22) 

𝑡 > 0, 𝑥 = 0:
𝜕𝑠

𝜕𝑥
= 0,

𝜕𝑏

𝜕𝑥
= 0 (1.23) 

𝑡 > 0, 𝑥 = 𝐿: 𝑠 = 𝜅𝑠𝑠∞, 𝑏 = 𝜅𝑏𝑏∞ (1.24) 

Here 𝑠∞ and 𝑏∞ is the concentration of substrate and product in the bulk solution. 𝑘𝑠 

and 𝑘𝑏 is the reaction rate constant for substrate and product respectively. 𝐿 is the 

thickness of the polymer film. The current 𝐼of the product 𝑏 at the electrode surface is 

given by

 

𝐼 = −𝑛𝐹𝐴𝑗𝑏 = −𝑛𝐹𝐴𝐷𝐵(𝑑𝑏/𝑑𝑥)𝑥=𝐿 (1.25) 

where 𝑗𝑏 is the flux of the hydrogen peroxide at the electrode surface. A simple 

mathematical analysis of reaction and diffusion of glucose and hydrogen peroxide 

within the conducting film containing metal microparticles have been presented. Using 

a new approach to the Homotopy perturbation method, an approximate analytical 

expression for the concentration of substrate and product are obtained. Approximate 

analytical expressions for the steady and non-steady state current response produced 

during the reduction of H2O2 to water at the electrode surface are derived.  

1.5.4 Sensitivity and resistance of amperometric biosensors in substrate inhibition 

processes 

In the enzyme reaction, 

𝐸 + 𝑆 ↔ 𝐸𝑆 → 𝐸 + 𝑃 (1.26) 

the substrate (S) binds to the enzyme (E) in order to form an enzyme-substrate complex 

ES. The substrate is converted to product (P) while it is part of this complex. The rate 

of the product's appearance depends on its substrate concentration. For example, the 
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simplest scheme of non-Michaelis-Menten kinetics may have been obtained by adding 

to the Michaelis-Menten scheme (Equation (26)), a stage of enzyme-substrate complex 

(ES) interaction with another substrate molecule (S) (Equation (1.26)) after the non-

active complex (ESS) is generated as follows [26]: 

𝐸𝑆 + 𝑆 ↔ 𝐸𝑆𝑆 (1.27) 

The steady-state nonlinear differential equations for the substrate inhibition are[10]: 

𝐷𝑠

d2𝑠(𝑥)

𝑑𝑥2
−

𝑉𝑚𝑎𝑥𝑠(𝑥)

𝑘𝑚 + 𝑠(𝑥) +
(𝑠(𝑥))

𝑘𝑠

2 = 0 
(1.28) 

𝐷𝑝

d2𝑝(𝑥)

𝑑𝑥2
+

𝑉𝑚𝑎𝑥𝑠(𝑥)

𝑘𝑚 + 𝑠(𝑥) +
(𝑠(𝑥))

𝑘𝑠

2 = 0 
(1.29) 

where 𝐷𝑠 , 𝐷𝑝 are the diffusion coefficients of the substrate and product in the enzyme 

layer. 𝑠(𝑥) and 𝑝(𝑥) are the concentration of substrate and product in the enzyme layer. 

𝑉𝑚𝑎𝑥 is the maximal enzymatic rate, 𝑘𝑚 denotes the Michaelis-Menten constant, 𝑘𝑠 

inhibition constant and 𝑑 is the thickness of the enzyme layer. The corresponding 

boundary conditions are [26] 

d𝑠(𝑥)

d𝑥
= 0, 𝑝(𝑥) = 0  𝑤ℎ𝑒𝑛 𝑥 = 0, 𝑠(𝑥) = 𝑠∗, 𝑝(𝑥) = 0 𝑤ℎ𝑒𝑛𝑥 = 𝑑 (1.30) 

where 𝑠∗ is the concentration of substrate at 𝑥 = 𝑑 and 𝑑 is thickness of the enzyme 

layer. The modeling of the amperometric biosensor with the substrate inhibition reveals 

the complex kinetics of the biosensor response. At low substrate concentration, the 

kinetics looks like a simple substrate diffusion. When inhibition constant is large  

(𝑘𝑠 → ∞),the reaction kinetics is Michaelis-Menden model. The steady-state current 𝐼 

of the biosensor is expressed as follows: 

𝐼 = 𝑛𝑒𝐹𝐷𝑝

𝑑𝑝(𝑥)

𝑑𝑥
|

𝑥=0
 (1.31) 
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The mathematical model of the amperometric biosensor can be successfully used 

to investigate the biosensor's sensitivity and resistance. Simple and closed-form the 

approximate analytical expression for the sensitivity and resistance are obtained for 

substrate inhibition kinetics 

1.6 Objective and scope of the present investigation 

The objectives of the present investigation are as follows: 

• To derive an approximate analytical solution of nonlinear equations with 

variable coefficients in applied sciences using Homotopy perturbation method 

and variational iteration method. 

• To derive the analytical solution of nonlinear problems in homogeneous 

reactions occur in the mass-transfer boundary layer using homotopy 

perturbation method. 

• To find the analytical expressions for the concentration and current in the 

reduction of hydrogen peroxide at a metal-dispersed conducting polymer film 

using Taylors series and   new homotopy perturbation. 

• To present the sensitivity and resistance of amperometric biosensors in substrate 

inhibition processes using Taylors series and new homotopy pertuberation 

method. 

1.7 Organization of the thesis 

This thesis presents the development to mathematical models using various 

asymptotic methods. Variational iteration method, homotopy perturbation method, and 

the Adomian decomposition method are used to predict the theoreticalresults on solving 

the system of steady and non-steady-state nonlinear differential equations. Numerical 

simulations (Scilab program) is also obtained and compared to show the efficiency of 

the above methods applied. 

Chapter one gives a short introduction to mathematical models, their 

applications in differential equations and some asymptotic methods. 

Chapter two presents application of HPM and VIM which is used to solve a 

broad range of nonlinear equations, especially in engineering as well as physical 

https://www.scielo.br/j/qn/a/JdzTWz57RHxSrRSWznXbMZK/abstract/?lang=en
https://www.scielo.br/j/qn/a/JdzTWz57RHxSrRSWznXbMZK/abstract/?lang=en
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problems. Both methods are extremely useful and reliable, as shown by the examples 

in this chapter. 

Chapter three focuses mathematical models for mass transfer accompanied 

by a reversible homogeneous chemical reaction. This model is based on a system of 

nonlinear equations containing a nonlinear term related to reversible homogeneous 

reactions. The concentration of species is obtained by solving the nonlinear equations 

using the homotopy perturbation method. Our approximate analytical results are also 

compared with the simulation result. A satisfactory agreement is observed between our 

analytical and simulation results.  

Chapter four describes s mathematical model describing the reduction of 

Hydrogen peroxide (H2O2) to water in a metal dispersed conducting polymer film. The 

model is based on a system of reaction-diffusion equations containing a nonlinear term 

related to Michaelis-Menten kinetics of the enzymatic reaction. The approximate 

analytical expressions corresponding to the concentration of substrate and product for 

steady and non-steady state conditions have been obtained using a new approach to 

homotopy perturbation method (HPM).The influence of initial substrate concentration, 

the thickness of the film as well as the diffusion layer and kinetic parameters on the 

current response were investigated. A graphical procedure for estimating the kinetic 

parameters from the expression of the current response is also proposed.  

Chapter five discusses a theoretical model of a sensitivity and resistance of 

amperometry biosensors with substrate inhibition kinetics. This model is based on the 

system of non-stationary diffusion equations containing a nonlinear term related to non-

Michaelis-Menten kinetics of the enzymatic reaction. This chapter presents the 

approximate analytical expression of sensitivity and resistance of biosensor for small 

values of reaction diffusion parameters. The effect various parameters such as thickness 

of enzyme layer, bulk substrate concentration, Michaelis-Menten and saturation 

constant on sensitivity and resistance of biosensor are discussed. 

Chapter six is the overall conclusion and future enhancements of the thesis. 
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CHAPTER-2 

Homotopy Perturbation Method and Variational Iteration Method 

for Solving the Nonlinear Equations with Variable Coefficients in 

Applied Sciences 

 

2.1   Introduction 

The ordinary differential equations (ODEs) with variable coefficients can be 

used in a wide range of applications. Euler equations, Bessel equations, Legendre 

equations, and Laguerre equations are examples of these equations. Many nonlinear 

equations with variable coefficients, like Duffing equation [1-3], Riccati equation  

[4-7], FitzHugh –Nagumo equation [8-10], and Thomas-Fermi equation [11-16], are 

very helpful and applicable in physical, chemical and engineering sciences. Since 

solving such equations necessitates several nonphysical hypotheses, specific 

approximate methods to solve nonlinear differential equations have recently been 

established. In engineering, applied mathematics, physical, chemical, and biological 

sciences, linear and nonlinear ODEs with variable coefficients play an important role. 

The aim of the research was to come up with reliable methods for solving a broad range 

of integral equations, linear and nonlinear differential equations, and without making 

any tangible assumptions or discretizing the variables. The emergence of modern, 

efficient techniques to manage linear and nonlinear equations has exceeded most 

traditional methods. Newly developed techniques include the homotopy perturbation 

method, Adomian decomposition method and variational iteration method. 

Already Wazwaz [17] solved the scientific models like the Riccati equation, the 

hybrid selection model, the Kidder equation, the Thomas-Fermi equation using the 

variational iteration method (VIM). Ganji et al. [18] used homotopy perturbation 

methods and variational iteration to solve different nonlinear equations. In this chapter, 

the homotopy perturbation method (HPM) [19-27] and the variational iteration method 

(VIM) [28-31] are applied to solve certain nonlinear equations. These nonlinear 

problems are the application of several physical and engineering sciences [32-36]. Also, 

all the analytical results converge to exact solutions. 
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2.2   Homotopy perturbation method (HPM) 

One of the asymptotic approaches to solving linear and nonlinear 

ordinary/partial differential equations is the homotopy perturbation method (HPM). 

This method was proposed by He in 1999 [37] which is also applied to solve a system 

of equations which is linear and nonlinear. Computational parameters were used to 

create this technique [38-40]. Almost all traditional perturbation methods make use of 

the small parameter assumption. Most nonlinear problems, on the other hand, do not 

have small parameters and determining small parameters appears to have been a one-

of-a-kind art that requires advanced techniques.  

Such parameters are so sensitive that even minor variations in them can greatly 

impact the result. The proper selection of such small parameters yields optimal results. 

A poor choice of small parameters, on the other hand, may have serious consequences. 

To eradicate the small parameter assumption, Liu [38] suggested an artificial parameter 

method and Liao [41,42] contributed to the homotopy analysis method. He [43] 

proposed the new perturbation technique to solve the nonlinear problem. Rajendran et 

al. [19-27] solved many nonlinear differential equations using the homotopy 

perturbation method. 

2.3  Variational iteration method (VIM) 

The variational iteration method (VIM) is one of the asymptotic methods used 

to solve nonlinear ordinary and partial differential equations. He [44,45] formulated 

this approach and successfully applied it to solve ODEs and PDEs. Many researchers 

used this method to solve fractional, homogeneous, nonhomogeneous, linear and 

nonlinear differential equations. VIM can work in both bounded and unbounded 

domains. If an exact solution to the differential equations exists, this approach can be 

used to find successive convergent approximations. Wazwaz [46] solved the Volterra 

integral and integro-differential equations, both linear and nonlinear using this method. 

2.4 Scientific applications 

The Duffing equation [1-3], Riccati equation [4-7], FitzHugh –Nagumo 

equation [8-10], and Thomas-Fermi equation [11-16] are the four extremely well 

nonlinear equations covered in this section. 
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2.4.1. The Duffing equation 

The Duffing equation (or Duffing oscillator) is a nonlinear differential equation 

of second order that is used to develop driven and damped oscillators. This equation 

can also be used to represent a dynamic system that exhibits chaotic behavior.The 

frequency response of the jump resonance phenomenon which is a form of frequency 

hysteresis, is also seen in the Duffing system. This equation was solved using the Taylor 

matrix method by Sezer et al. [1]. Najafi et al. [2] applied the Adomian decomposition 

method (ADM) to solve the typical oscillation. Geng [3] solved these equations 

involving both integral and non-integral terms by an improved variational iteration 

method. The following equation can be used to describe the motion of a cubic oscillator, 

which is described as oscillations of a point mass on a nonlinear spring. 

In this chapter, Adomian Decomposition Method (ADM) is applied to typical 

oscillation equations (Duffing and Van der Pol equations). 

𝑑2𝑦(𝑥)

𝑑𝑥2 + 𝑦(𝑥) + 𝜀(𝑦(𝑥))3 = 0 (2.1) 

Here, y is the deviation of the point mass from the equilibrium and x is 

dimensionless time. The initial conditionsare as follows: 

At 𝑥 = 0, 𝑦(0) = 𝑎 and 
𝑑𝑦

𝑑𝑥
|

𝑥=0
= 0 (2.2) 

2.4.1.1. The analytical solution of Duffing equation model using HPM 

(1 − 𝑝) (
𝑑2𝑦(𝑥)

𝑑𝑥2
) + 𝑝 (

𝑑2𝑦(𝑥)

𝑑𝑥2
+ 𝑦(𝑥) + 𝜀(𝑦(𝑥))3) = 0 (2.3) 

The approximate solution of (2.1) is 

y(x) = y0 + y1p + y2p
2 + …. (2.4) 

The following equations with corresponding boundary conditions was obtained 

by substituting Eq. (2.4) in Eq. (2.3) and equating the like coefficients of powers of p. 

𝑑2𝑦0

𝑑𝑥2 = 0, 𝑦0(0) = 𝑎, 𝑦′0(0) = 0 (2.5) 

𝑑2𝑦1

𝑑𝑥2 + 𝑦0(𝑥) + 𝜀(𝑦0(𝑥))3 = 0, 𝑦1(0) = 0, 𝑦′1(0) = 0 (2.6) 
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𝑑2𝑦2

𝑑𝑥2 + 𝑦1(𝑥) + 3𝜀(𝑦0(𝑥))2𝑦1(𝑥) = 0, 𝑦2(0) = 0, 𝑦′2(0) = 0 (2.7) 

𝑑2𝑦3

𝑑𝑥2
+ 𝑦2(𝑥) + 3𝜀(𝑦0(𝑥)(𝑦1(𝑥))2 + (𝑦0(𝑥))2𝑦2(𝑥)) = 0, 𝑦3(0) = 0, 𝑦′3(0) = 0

 (2.8) 

On solving the Eqs. (2.5- 2.8), the following results are obtained. 

𝑦0(𝑥) = 𝑎 (2.9) 

𝑦1(𝑥) = −𝑎(1 + 𝜀𝑎2)
𝑥2

2
 (2.10) 

𝑦2(𝑥) = 𝑎(1 + 4𝜀𝑎2 + 3𝜀2𝑎4)
𝑥4

24
 (2.11) 

𝑦3(𝑥) = −𝑎(1 + 25𝜀𝑎2 + 51𝜀2𝑎4 + 27𝜀3𝑎6)
𝑥6

720
 (2.12) 

Therefore, the approximate analytical solution of Eq. (2.1) is 

 𝑦(𝑥) = 𝑎 (1 − (1 + 𝜀𝑎2)
𝑥2

2
+ (1 + 4𝜀𝑎2 + 3𝜀2𝑎4)

𝑥4

24
− (1 + 25𝜀𝑎2 + 51𝜀2𝑎4 +

                27𝜀3𝑎6)
𝑥6

720
+. . . . . . . . ) (2.13) 

If 𝜀 → 0, then the above approximate solution converges to 𝑎 𝑐𝑜𝑠( 𝑥). 

2.4.1.2. The analytical solution of Duffing equation using Variational iteration 

method 

The variational iteration formula for Eq. (2.4.1.1) is given as  

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝛼)(𝑦𝑛′′(𝛼) + 𝑦𝑛(𝛼) + 𝜀(𝑦𝑛(𝛼))3)𝑑𝛼, 𝑛 ≥ 0
𝑥

0
 (2.14) 

Since Eq. (2.1) is a differential equation of order one, so the Lagrange multiplier,  

𝜆 = 𝛼 − 𝑥. Hence Eq. (2.14) becomes as follows: 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ (𝛼 − 𝑥)(𝑦𝑛′′(𝛼) + 𝑦𝑛(𝛼) + 𝜀(𝑦𝑛(𝛼))3)𝑑𝛼
𝑥

0
 (2.15) 

Let 𝑦0(𝑥) = 𝑎. The successive approximations become as follows: 

𝑦1(𝑥) = 𝑦0(𝑥) + ∫ (𝛼 − 𝑥)(𝑦0′′(𝛼) + 𝑦0(𝛼) + 𝜀(𝑦0(𝛼))3)𝑑𝛼
𝑥

0

 

                  = 𝑎 (1 − (1 + 𝜀𝑎2)
𝑥2

2
) (2.16) 
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𝑦2(𝑥) = 𝑦1(𝑥) + ∫ (𝛼 − 𝑥)(𝑦1′′(𝛼) + 𝑦1(𝛼) + 𝜀(𝑦1(𝛼))3)𝑑𝛼
𝑥

0

 

                 = 𝑎 − 𝑎(1 + 𝜀𝑎2)
𝑥2

2
+ 𝑎(1 + 4𝜀𝑎2 + 3𝜀2𝑎4)

𝑥4

24
+. .. (2.17) 

Therefore, 

 𝑦𝑛(𝑥) ≈ 𝑎 (1 − (1 + 𝜀𝑎2)
𝑥2

2
+ (1 + 4𝜀𝑎2 + 3𝜀2𝑎4)

𝑥4

24
− (1 + 25𝜀𝑎2 + 51𝜀2𝑎4 +

                  27𝜀3𝑎6)
𝑥6

720
+. . . . . . . . ) (2.18) 

Eq. (2.13) and Eq. (2.18) are same. 

2.4.2. The Riccati equation 

The Riccati equation is a well-known nonlinear differential equation of order 

one, that is commonly used in theoretical physics and applied mathematics, such as 

conformal mapping theory and algebraic geometry. Riccati differential equation is 

useful in certain financial models [4].  Piriadarshani et al. [5] applied differential 

transform method to solve various kinds of Riccati differential equation. Wannes et al. 

[6] introduced the generalized Riccati Wick differential equation. Duan et al. [7] 

proposed the Riccati equation's properties with constant coefficients. 

The general form of Riccati differential equation is defined by: 

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑎(𝑡)𝑦(𝑡) + 𝑏(𝑡)(𝑦(𝑡))2 + 𝑐(𝑡) (2.19) 

where a(t), b(t) and c(t) are continuous functions of t.  

The initial condition is 

𝑡 = 0, 𝑢(0) = 𝛽 (2.20) 

2.4.2.1. The analytical solution of Riccati equation model using HPM 

The homotopy for the Riccati Eq. (2.19) is as follows: 

 (1 − 𝑝) (
𝑑𝑦(𝑡)

𝑑𝑡
− 𝑐(𝑡)) + 𝑝 (

𝑑𝑦(𝑡)

𝑑𝑡
− (𝑎(𝑡)𝑦(𝑡) + 𝑏(𝑡)(𝑦(𝑡))2 + 𝑐(𝑡))) = 0 (2.21) 

The approximate solution of Eq.(2.19) is 

y(t) = y0 + y1p + y2p2 + . . .  (2.22) 
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The following equations with corresponding boundary conditions was obtained by 

substituting Eq. (2.21) in Eq. (2.22) and equating the like coefficients of powers of p. 

𝑑𝑦0

𝑑𝑡
− 𝑐(𝑡) = 0, 𝑦0(0) = 𝛽 (2.23) 

𝑑𝑦1

𝑑𝑡
− 𝑏(𝑡)(𝑦0(𝑡))2 − 𝑎(𝑡)𝑦0(𝑡) = 0, 𝑦1(0) = 0   (2.24) 

𝑑𝑦2

𝑑𝑡
− 2𝑏(𝑡)𝑦0(𝑡)𝑦1(𝑡) − 𝑎(𝑡)𝑦1(𝑡) − 𝑐(𝑡) = 0, 𝑦2(0) = 0 (2.25) 

Case (i): Now take the coefficients as a(t) = 1, b(t) = -1, c(t) = 2 (2.26) 

Riccati equation becomes  

𝑑𝑦

𝑑𝑡
= −(𝑦(𝑡))2 + 𝑦(𝑡) + 2 (2.27) 

The boundary condition is 

At 𝑡 = 0, 𝑦(0) = 1 (2.28) 

Now we construct the homotopy for the Eq. (2.27) as follows: 

(1 − 𝑝) (
𝑑𝑦(𝑡)

𝑑𝑡
− 2) + 𝑝 (

𝑑𝑦(𝑡)

𝑑𝑡
+ (𝑦(𝑡))2 − 𝑦(𝑡) − 2) = 0 (2.29) 

The approximate solution of Eq.(2.27) is 

y(x) = y0 + y1p + y2 p
2 + . . .  (2.30) 

The following equations with corresponding boundary conditions was obtained 

by substituting Eq. (2.30) in Eq. (2.29) and equating the like coefficients of powers of 

p. 

𝑑𝑦0

𝑑𝑡
− 2 = 0, 𝑦0(0) = 1 (2.31) 

𝑑𝑦1

𝑑𝑡
+ (𝑦0(𝑡))2 − 𝑦0(𝑡) = 0, 𝑦1(0) = 0 (2.32) 

𝑑𝑦2

𝑑𝑡
+ 2𝑦0(𝑡)𝑦1(𝑡) − 𝑦1(𝑡) = 0, 𝑦2(0) = 0 (2.33) 

𝑑𝑦3

𝑑𝑡
− 𝑦2(𝑡) + (𝑦1(𝑡))2 + 2𝑦0(𝑡)𝑦2(𝑡) = 0, 𝑦3(0) = 0 (2.34) 
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𝑑𝑦4

𝑑𝑡
− 𝑦3(𝑡) + 2𝑦0(𝑡)𝑦3(𝑡) = 0, 𝑦4(0) = 0 (2.35) 

On solving the Eqs. (2.31–2.35), we get  

𝑦0(𝑡) = 1 + 2𝑡 (2.36) 

𝑦1(𝑡) = −𝑡2 −
4

3
𝑡3 (2.37) 

𝑦2(𝑡) =
1

3
𝑡3 +

4

3
𝑡4 +

16

15
𝑡5 (2.38) 

𝑦3(𝑡) = −
1

12
𝑡4 −

11

15
𝑡5 −

68

45
𝑡6 −

272

315
𝑡7 (2.39) 

𝑦4(𝑡) =
1

60
𝑡5 +

8

45
𝑡6 +

40

63
𝑡7 +

272

315
𝑡8 +

1088

2835
𝑡9 (2.40) 

Therefore, the approximate analytical solution of Eq. (2.27) is  

𝑦(𝑡) = 1 + 2𝑡 − 𝑡2 − 𝑡3 +
5

4
𝑡4 +

7

20
𝑡5+. . .. (2.41) 

2.4.2.2. The analytical solution of Riccati equation model using Variational 

iteration method 

The variational iteration formula for Eq. (2.27) is given as  

𝑦𝑛+1(𝑡) = 𝑦𝑛(𝑡) + ∫ 𝜆(𝛼)(𝑦𝑛′(𝛼) + (𝑦𝑛(𝛼))2 − 𝑦𝑛(𝛼) − 2)𝑑𝛼, 𝑛 ≥ 0
𝑡

0
  (2.42) 

Since Eq. (2.27) is a differential equation of order one, so the Lagrange multiplier, 

 𝜆 = −1. Hence Eq. (2.42) becomes as follows: 

𝑦𝑛+1(𝑡) = 𝑦𝑛(𝑡) − ∫ (𝑦𝑛′(𝛼) + (𝑦𝑛(𝛼))2 − 𝑦𝑛(𝛼) − 2)𝑑𝛼, 𝑛 ≥ 0
𝑡

0
 (2.43) 

Let 𝑦0(𝑡) = 1. The successive approximations are as follows: 

𝑦1(𝑡) = 𝑦0(𝑡) − ∫ (𝑦0′(𝛼) + (𝑦0(𝛼))2 − 𝑦0(𝛼) − 2)𝑑𝛼
𝑡

0
= 1 + 2𝑡          (2.44) 

𝑦2(𝑡) = 𝑦1(𝑡) − ∫ (𝑦1
′ (𝛼) + (𝑦1(𝛼))

2
− 𝑦1(𝛼) − 2) 𝑑𝛼

𝑡

0

= 1 + 2𝑡 − 𝑡2 −
4

3
𝑡3 

           = 1 + 2𝑡 − 𝑡2 −
4

3
𝑡3  (2.45) 
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𝑦3(𝑡) = 𝑦2(𝑡) − ∫ (𝑦2′(𝛼) + (𝑦2(𝛼))2 − 𝑦2(𝛼) − 2)𝑑𝛼
𝑡

0

 

           = 1 + 2𝑡 − 𝑡2 − 𝑡3 +
4

3
𝑡4 +

13

15
𝑡5 −

4

9
𝑡6 −

16

63
𝑡7 (2.46) 

𝑦4(𝑡) = 𝑦3(𝑡) − ∫ (𝑦3′(𝛼) + (𝑦3(𝛼))2 − 𝑦3(𝛼) − 2)𝑑𝛼
𝑡

0
 

= 1 + 2𝑡 − 𝑡2 − 𝑡3 +
5

4
𝑡4 +

1

3
𝑡5 −

41

30
𝑡6 −

61

315
𝑡7 +

1013

1260
𝑡8 +

26

2835
𝑡9

−
584

1575
𝑡10 

−
349

51975
𝑡11 +

38

315
𝑡12 +

688

36855
𝑡13 −

64

3969
𝑡14 −

256

59535
𝑡15(2.4.2.28) 

Therefore,  

𝑦𝑛(𝑡) ≈ 1 + 2𝑡 − 𝑡2 − 𝑡3 +
5

4
𝑡4 +

7

20
𝑡5+. . .. (2.48) 

Case (ii) Now assume that 𝑎(𝑡) = −2𝑡, 𝑏(𝑡) = 1, 𝑐(𝑡) = 𝑡2 + 1 and 𝛽 =
1

2
 

Then, the equation of Riccati becomes 

𝑑𝑦

𝑑𝑡
= (𝑦(𝑡))2 − 2𝑡𝑦(𝑡) + 𝑡2 + 1 (2.49) 

with initial condition,  

At 𝑡 = 0, 𝑦(0) =
1

2
 (2.50) 

Now we construct the homotopy for the Eq. (2.49) as follows: 

(1 − 𝑝) (
𝑑𝑦(𝑡)

𝑑𝑡
− 𝑐(𝑡)) + 𝑝 (

𝑑𝑦(𝑡)

𝑑𝑡
− (𝑎(𝑡)𝑦(𝑡) + 𝑏(𝑡)(𝑦(𝑡))2 + 𝑐(𝑡))) = 0 (2.51) 

The approximate solution of Eq. (2.49) is 

y(x) = y0 + y1p + y2p
2 + …  (2.52) 

The following equations with corresponding boundary conditions was obtained by 

substituting Eq. (2.52) in Eq. (2.51) and equating the like coefficients of powers of p. 

𝑑𝑦0

𝑑𝑡
− 𝑡2 − 1 = 0, 𝑦0(0) =

1

2
 (2.53) 

𝑑𝑦1

𝑑𝑡
− (𝑦0(𝑡))2 + 2𝑡𝑦0(𝑡) = 0, 𝑦1(0) = 0 (2.54) 

(2.47) 
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𝑑𝑦2

𝑑𝑡
− 2𝑦0(𝑡)𝑦1(𝑡) + 2𝑡𝑦1(𝑡) = 0, 𝑦2(0) = 0 (2.55) 

𝑑𝑦3

𝑑𝑡
− (𝑦1(𝑡))2 − 2𝑦0(𝑡)𝑦2(𝑡) + 2𝑡𝑦2(𝑡) = 0, 𝑦3(0) = 0 (2.56) 

On solving the Eqs. (2.53 – 2.56), we get  

𝑦0(𝑡) =
1

2
+ 𝑡 +

𝑡3

3
 (2.57) 

𝑦1(𝑡) =
1

4
𝑡 −

1

3
𝑡3 +

1

12
𝑡4 +

1

63
𝑡7 (2.58) 

𝑦2(𝑡) =
1

8
𝑡2 −

1

12
𝑡4 +

1

20
𝑡5 −

2

63
𝑡7 +

1

112
𝑡8 +

2

2079
𝑡11 (2.59) 

𝑦3(𝑡) =
1

16
𝑡3 −

1

20
𝑡5 +

7

240
𝑡6 +

1

63
𝑡7 −

1

56
𝑡8 +

2

315
𝑡9 −

2

693
𝑡11 +

53

66528
𝑡12 +

               
13

218295
𝑡15    (2.60) 

Therefore, the approximate analytical solution of Eq. (2.49) is  

𝑦(𝑡) =
1

2
+

5

4
𝑡 +

1

8
𝑡2 +

1

16
𝑡3 +

1

32
𝑡4 +

1

64
𝑡5+. . . . . . .. (2.61) 

which is converges to the exact solution  

,
2

1
)(

t
tty

−
+= |𝑡| < 2 (2.62) 

and this is the same solution acquired with VIM by Wazwaz [17]. 

2.4.3. FitzHugh –Nagumo equation 

The FitzHugh –Nagumo equation occurs in solid-state physics, astrophysics, 

fluid mechanics, bursting oscillations, chemical chemistry, chemical kinematics, 

geochemistry, exciting electronic circuit theory, chaos, bifurcation, plasma physics, 

biology and population genetics. Via the variational principle, Khan [8] proposed a 

novel solitary two-type solution for this equation. Schiesser [9] used an algorithm for 

the numerical solution of the FitzHugh–Nagumo equation. Wallisch [10] generated 

travelling waves solution to the FitzHugh-Nagumo equation for one and two 

dimensions. 
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Consider the FitzHugh –Nagumo equation 

𝑑𝑢

𝑑𝑡
= 𝑘𝑢(𝑡)(1 − 𝑢(𝑡))(2 − 𝑢(𝑡)) (2.63) 

with initial condition,  

At 𝑡 = 0, 𝑢(0) =
1

2
 (2.64) 

2.4.3.1. The analytical expression of the FitzHugh –Nagumo equation using HPM 

By the basic concept of HPM,  

(1 − 𝑝) (
𝑑𝑢

𝑑𝑡
) + 𝑝 (

𝑑𝑢

𝑑𝑡
− 2𝑘𝑢(𝑡) + 3𝑘𝑢(𝑡)2 − 𝑘𝑢(𝑡)3) = 0 (2.65) 

The approximate solution of 𝑢(𝑡)is 𝑢0 + 𝑢1𝑝 + 𝑢2𝑝2+. . .. (2.66) 

The following equations with corresponding boundary conditions was obtained by 

substituting Eq. (2.66) in Eq. (2.65) and equating the like coefficients of powers of p. 

𝑑𝑢0

𝑑𝑡
= 0, 𝑢0(0) =

1

2
 (2.67) 

𝑑𝑢1

𝑑𝑡
− 2𝑘𝑢0(𝑡) + 3𝑘(𝑢0(𝑡))2 − 𝑘(𝑢0(𝑡))3 = 0, 𝑢1(0) = 0 (2.68) 

𝑑𝑢2

𝑑𝑡
− 2𝑘𝑢1(𝑡) + 6𝑘𝑢0(𝑡)𝑢1(𝑡) − 3𝑘(𝑢0(𝑡))2𝑢1(𝑡) = 0, 𝑢2(0) = 0 (2.69) 

𝑑𝑢3

𝑑𝑡
− 2𝑘𝑢2(𝑡) + 3𝑘((𝑢1(𝑡))2 + 2𝑢0(𝑡)𝑢2(𝑡)) − 𝑘 (3𝑢0(𝑡)(𝑢1(𝑡))

2
+

           3(𝑢0(𝑡))2𝑢2(𝑡)) = 0, 𝑢3(0) = 0   (2.70) 

Solving Eqs.(2.67 – 2.70), we get 

𝑢0(𝑡) =
1

2
  (2.71) 

𝑢1(𝑡) =
3

8
𝑘𝑡 (2.72) 

𝑢2(𝑡) = −
3

64
(𝑘𝑡)2 (2.73) 

𝑢3(𝑡) = −
17

256
(𝑘𝑡)3 (2.74) 

Therefore, the approximate solution of Eq. (2.63) is  
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𝑢(𝑡) =
1

2
+

3

8
𝑘𝑡 −

3

64
(𝑘𝑡)2 −

17

256
(𝑘𝑡)3+. . . . .. (2.75) 

This expansion of u(t) leads to the exact solution  

𝑢(𝑡) = 1 − (1 + 3 𝑒𝑥𝑝(3𝑘𝑡))−1/2            (2.76) 

which the same solution of obtained by Wazwaz [17] using VIM. 

 

Figure 2.1: Comparison The exact solution of FitzHugh –Nagumo equation u(t)  

(Eq. (2.4.3.14)), versus with numeric solution. 

The exact solution of FitzHugh –Nagumo equation u(t) (Eq. (2.4.3.14)), is 

compared with numerical solution in Fig. 1 and satisfactory agreement is noted. 

2.4.4. The Thomas-Fermi equation 

The effective nuclear charge of heavy atoms is modeled using this problem [11]. 

The effective potentials and charge densities of atoms with several electrons can also 

be calculated using this model. To solve this problem, Pikulin [12] developed high 

efficiency computational algorithms. To evaluate the nonlinear singular Thomas–Fermi 

equation, Zahoor et al. [13] developed a new bio-inspired computing method. For 

neutral atoms in a semi-infinite space, Jovanovic et al. [14] proposed an effective 

spectral methods solver. Xu et al. [15] used homotopy analysis method (HAM) to solve 

this equation. He [16] used the variational approach to solve the equation. The Thomas–

Fermi equation can be written as follows: 

𝑑2𝑢

𝑑𝑡2
=

(𝑢(𝑡))3 2⁄

√𝑡
 (2.77) 
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with initial and boundary conditions  

At 𝑡 = 0, 𝑢(0) = 𝐿 and  (2.78) 

At 𝑡 → ∞, 𝑢(𝑡) = 0 (2.79) 

Transform the Eq. (2.77) by 𝑢(𝑡) = 1 + 𝑦(𝑡),we get 

𝑑2𝑦(𝑡)

𝑑𝑡2
=

(1+𝑦(𝑡))3 2⁄

√𝑡
 (2.80) 

At 𝑡 = 0, 𝑦(0) = 𝐿 − 1and let 
𝑑𝑦

𝑑𝑡
|

𝑡=0
= 𝑀 (2.81) 

At 𝑡 → ∞, 𝑦(𝑡) = 0 (2.82) 

Since, (1 + 𝑦(𝑡))3 2⁄ ≈ 1 +
3

2
𝑦(𝑡) +

3

8
(𝑦(𝑡))2 −

1

16
(𝑦(𝑡))3 (2.83) 

Therefore, Eq. (2.80) becomes  

𝑑2𝑦(𝑡)

𝑑𝑡2 =
1+

3

2
𝑦(𝑡)+

3

8
(𝑦(𝑡))2−

1

16
(𝑦(𝑡))3

√𝑡
 (2.84) 

2.4.4.1. The analytical solution of the Thomas-Fermi equation using HPM 

By the basic concept of HPM,  

(1 − 𝑝) (
𝑑2𝑦(𝑡)

𝑑𝑡2 ) + 𝑝 (
𝑑2𝑦(𝑡)

𝑑𝑡2 −
1

√𝑡
(1 +

3

2
𝑦(𝑡) +

3

8
(𝑦(𝑡))2 −

1

16
(𝑦(𝑡))3)) = 0 (2.85) 

The approximate solution of the Eq. (2.85) is 

𝑦(𝑡) =  y0 + y1p + y2p2 + . . .  (2.86) 

The following equations with corresponding boundary conditions was obtained 

by substituting Eq. (2.86) in Eq. (2.85) and equating the like coefficients of powers  

of p. 

𝑑2𝑦0(𝑡)

𝑑𝑡2
= 0, 𝑦0(0) = 𝐿 − 1, 𝑦0′(0) = 𝑀 (2.87) 

𝑑2𝑦1(𝑡)

𝑑𝑡2 −
1

√𝑡
(1 +

3

2
𝑦0(𝑡) +

3

8
(𝑦0(𝑡))2 −

1

16
(𝑦0(𝑡))3) = 0, 𝑦1(0) = 0, 𝑦1′(0) = 0         (2.88) 
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𝑑2𝑦2(𝑡)

𝑑𝑡2 −
1

√𝑡
(

3

2
𝑦1(𝑡) +

3

4
𝑦0(𝑡)𝑦1(𝑡) −

3

16
(𝑦0(𝑡))2𝑦1(𝑡)) = 0, 𝑦2(0) = 0, 𝑦2′(0) = 0

 (2.89)

𝑑2𝑦3(𝑡)

𝑑𝑡2 −
1

√𝑡
(

3

2
𝑦2(𝑡) +

3

8
((𝑦1(𝑡))2 + 2𝑦0(𝑡)𝑦2(𝑡)) −

3

16
((𝑦0(𝑡))

2
𝑦2(𝑡) +

                (𝑦1(𝑡))2𝑦0(𝑡))) = 0, 

y3(0) = 0, y3(0) (2.90) 

Solving Eqs. (2.87 – 2.90), we get 

y0 (t) = L – 1 +Mt (2.91) 

𝑦1(𝑡) = (9𝐿(𝐿 + 1) − 1 − 𝐿3)
1

12
𝑡3 2⁄ + (3 + 6𝐿 − 𝐿2)

𝑀

20
𝑡5 2⁄  

+(9 − 3𝐿)
𝑀2

140
𝑡7 2⁄ −

𝑀3

252
𝑡9 2⁄               (2.92) 

𝑦2(𝑡) = (
(7𝐿 − 5𝐿4 − 1)

128
+

41𝐿2

192
+

𝐿5

384
+

7𝐿3

64
) 𝑡3

+ (−
13𝐿3

320
+

9𝐿2

128
+

13𝐿4

3840
+

97𝐿

960
−

1

1280
) 𝑀𝑡4 

+ (
(43𝐿3 − 387𝐿2 + 247)

22400
+

9𝐿

896
) 𝑀2𝑡5 + (

61𝐿2

100800
−

61𝐿

16800
+

47

33600
) 𝑀3𝑡6 

     + (
37𝐿

282240
−

37

94080
) 𝑀4𝑡7 + (

1

75264
) 𝑀5𝑡8  (2.93) 

Therefore, the approximate solution of Eq. (2.94) is  

𝑦(𝑡) = 𝐿 − 1 + 𝑀𝑡 + (
(7𝐿 − 5𝐿4 − 1)

128
+

41𝐿2

192
+

𝐿5

384
+

7𝐿3

64
) 𝑡3

+ (−
13𝐿3

320
+

9𝐿2

128
+

13𝐿4

3840
+

97𝐿

960
−

1

1280
) 𝑀𝑡4 

+ (
(43𝐿3 − 387𝐿2 + 247)

22400
+

9𝐿

896
) 𝑀2𝑡5 + (

61𝐿2

100800
−

61𝐿

16800
+

47

33600
) 𝑀3𝑡6

+ (
37𝐿

282240
−

37

94080
) 𝑀4𝑡7 
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+ (
1

75264
) 𝑀5𝑡8 + (9𝐿(𝐿 + 1) − 1 − 𝐿3)

1

12
𝑡3 2⁄ + (3 + 6𝐿 − 𝐿2)

𝑀

20
𝑡5 2⁄ + (9

− 3𝐿)
𝑀2

140
𝑡7 2⁄  

+ (−
𝑀3

252
−

1

32256
−

11𝐿7

96768
−

305𝐿

96768
+

575𝐿4

96768
+

1741𝐿3

32256
−

7𝐿5

512
−

103𝐿2

3584
+

11𝐿6

4608
) 𝑡9 2⁄ +. . .. 

 (2.94) 

Let 𝑡 = 𝑥2. Then 

𝑢(𝑥) = 1 + 𝑦(𝑥) 

= 𝐿 + 𝑀𝑥2 + (9𝐿(𝐿 + 1) − 1 − 𝐿3)
1

12
𝑥3 + (3 + 6𝐿 − 𝐿2)

𝑀

20
𝑥5

+ (
(7𝐿 − 5𝐿4 − 1)

128
+

41𝐿2

192
+

𝐿5

384
+

7𝐿3

64
) 𝑥6 

+(9 − 3𝐿)
𝑀2

140
𝑥7 + (−

13𝐿3

320
+

9𝐿2

128
+

13𝐿4

3840
+

97𝐿

960
−

1

1280
) 𝑀𝑥8 +

(
−

𝑀3

252
−

1

32256
−

11𝐿7

96768
−

305𝐿

96768
+

575𝐿4

96768

+
1741𝐿3

32256
−

7𝐿5

512
−

103𝐿2

3584
+

11𝐿6

4608

) 𝑥9+. . .. (2.95) 

For L=1 we get the same solution obtained by Wazwaz [17] using VIM. Padé 

approximant method is used to find the unknown M.Consider the [2/2] approximant as 

follows: 

𝑢(𝑥) =
𝑎0+𝑎1𝑥+𝑎2𝑥2

1+𝑏1𝑥+𝑏2𝑥2  (2.96) 

Let 𝑢(𝑥) = 𝑢0 + 𝑢1𝑥 + 𝑢2𝑥2 + 𝑢3𝑥3 + 𝑢4𝑥4 + 𝑢5𝑥5 + 𝑢6𝑥6 + 𝑢7𝑥7 + 𝑢8𝑥8+. ..

 (2.97) 

From Eq. (2.96) and Eq.(2.97) we get, 

(𝑢0 + 𝑢1𝑥 + 𝑢2𝑥2 + 𝑢3𝑥3 + 𝑢4𝑥4 + 𝑢5𝑥5 + 𝑢6𝑥6 + 𝑢7𝑥7 + 𝑢8𝑥8+. . . )(1 + 𝑏1𝑥 +

𝑏2𝑥2) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 (2.98) 

Equating the coefficients of 𝑥0, 𝑥, 𝑥2, we get 

𝑢0 = 𝑎0   
(2.99) 

𝑢1 + 𝑢0𝑏1 = 𝑎1 (2.100) 
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𝑢2 + 𝑢1𝑏1 + 𝑢0𝑏2 = 𝑎2 
(2.101) 

𝑢3 + 𝑢2𝑏1 + 𝑢1𝑏2 = 0
 

(2.102) 

𝑢4 + 𝑢3𝑏1 + 𝑢2𝑏2 = 0 (2.103) 

Solving Eq. (2.102) and Eq. (2.103), we get 

𝑏1 =
𝑢2𝑢3−𝑢4𝑢1

𝑢1𝑢3−𝑢2
2 , 𝑏2 =

𝑢2𝑢4−𝑢3
2

𝑢1𝑢3−𝑢2
2 (2.104) 

From Eq. (2.95),  

𝑢0 = 𝐿, 𝑢1 = 0, 𝑢2 = 𝑀, 𝑢3 = (9𝐿(𝐿 + 1) − 1 − 𝐿3)
1

12
, 𝑢4 = 0, 𝑢5

= (3 + 6𝐿 − 𝐿2)
𝑀

20
, 

𝑢6 =
(7𝐿 − 5𝐿4 − 1)

128
+

41𝐿2

192
+

𝐿5

384
+

7𝐿3

64
, 𝑢7 = (9 − 3𝐿)

𝑀2

140
, 𝑢8

= (−
13𝐿3

320
+

9𝐿2

128
+

13𝐿4

3840
+

97𝐿

960
−

1

1280
) 𝑀, … 

Therefore, 𝑏1 =
𝐿3−9𝐿(𝐿+1)+1

12𝑀
, 𝑏2 =

(𝐿3−9𝐿(𝐿+1)+1)
2

144𝑀2 , 𝑎1 =
𝐿4−9𝐿2(𝐿+1)+𝐿

12𝑀
,            

                   𝑎2 =
𝐿7−2𝐿2(9𝐿4−82𝐿2+9)+63𝐿3(1+𝐿2)

144𝑀2 + 𝑀 (2.105) 

Using the boundary condition lim
𝑛→∞

𝑢(𝑡) = 0 in Eq.(2.96), we get the unknown M. 

Table 2.1. The values of  u(0) = M for various Padé approximant 

S.No Padé approximant 
𝑢′(0) = 𝑀 

L=1 L=2 L=3 

1. [2/2] -1.2114 -3.0411 -5.1087 

2. [4/4] -1.5505 -3.9193 -6.6607 

3. [7/7] -1.5874 -3.9948 -6.7751 

4. [8/8] -1.5874 -3.9948 -6.7773 

5. [10/10] -1.5874 -3.9948 -6.7773 
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Table 2.1 represents the initial slopes u(0) = M for various Padé approximant and for 

different values of L. 

 

Figure 2.2 Comparison of Padé approximant [11/11] solution of Thomas-Fermi 

equation with numerical solution for different initial condition. 

The approximate analytical solution of Thomas-Fermi equation u(x) is 

compared with numerical solution for various values of L in Fig. 2.2 and satisfactory 

agreement is noted. 

2.5. Conclusions 

In this chapter, the authors demonstrate that HPM and VIM are the two methods 

that can solve a broad range of nonlinear equations, especially in engineering as well 

as physical problems. Both methods are extremely useful and reliable, as shown by the 

examples in this article. Small parameters are not needed in VIM or HPM, and 

traditional perturbation methods' drawbacks and non-physical assumptions are 

eliminated. Additionally, when computing Adomian polynomials, VIM and HPM will 

solve the problems that arise. Both approaches are effective techniques for solving 

nonlinear equations in a number of fields and do not need linearization. 
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CHAPTER-3 

Analytical Solution of Non Linear Problems in Homogeneous 

Reactions Occur in the Mass-Transfer Boundary Layer: Homotopy 

Perturbation Method 

 

3.1. Introduction 

Many electrode processes with homogeneous reactions that occur continuously 

in the mass-transfer boundary layer. These reactions involve splitting or forming in the 

process of deposition or degradation of metal-linking complexes, the interaction and 

dissociation of ions and redox soluble mediators. Quantitative studies of electrode-

kinetics experiments as well as simulation of electrochemical reactor processes require 

the description of species concentrations at the electrode surface. Homogeneous 

reactions can strongly affect the concentration of species. 

The computation of concentration profiles near electrodes in the solution is 

based on the species conservation equation. 

𝜕𝑐𝑖

𝜕𝑡
= −𝛻 • 𝑁𝑖 + 𝑅𝑖

    
(3.1) 

where ci is the molar concentration of species i, and Ri is the net rate of 

production of i locally by homogeneous reactions. The molar flux Ni and the rate of 

production of 𝑀𝑖
𝑧𝑖 usually represented by 

𝑁𝑖 = −𝐷𝑖𝛻𝑐𝑖 − 𝑧𝑖𝑐𝑖𝐷𝑖
𝐹

𝑅𝑇
𝛻𝜑 + 𝑐𝑖𝑣 and 𝑅𝑖 = 𝑣𝑖 [𝑘𝑟 ∏ 𝑐

𝑗

𝑣𝑗 − 𝑘𝑓 ∏ 𝑐𝑖
𝑣𝑖

𝑖𝑗 ] (3.2) 

This describes species transport through diffusion and convection and ion 

migration in an electric field [1]. When charged species are involved, equations 1-2 

must be written for each species in solution and combined with the electroneutrality 

state  ∑ 𝑧𝑖𝑖 𝑐𝑖=0, and 𝜑 must be determined. Implementation of appropriate boundary 

conditions on the electrode surface and in the bulk solution is needed for their solution. 

This kind of nonlinear problems occurs in many relevant situations, such as cyclic 

voltammetry, chronopotentiometry, rotating disk and ring-disk electrodes,  and various 
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boundary-layer flows with multiple geometries, system chemistries, flow and boundary 

conditions [2]-[6]. 

Recently Chapman et al [7] discuss the mass transfer at the electrodes for the 

homogeneous  and fast reversible reaction. More recently the empirical expression of 

species concentration using the Taylor series method and hyperbolic function method 

was obtained by Mary et al. [8]. In this chapter, we present a simple and effective 

homotopy perturbation approach for solving the nonlinear differential equation in the 

sense of mass transfer at the electrodes with reversible homogeneous reactions.An 

approximate analytical expression for the concentration of species in the homogeneous 

electrochemical reaction is obtained for various parameter values. 

3.2. Mathematical formulation of the problem 

Consider the reversible homogeneous reaction 

𝐴 + 𝐵 ⇔ 𝐶
𝑘𝑓

𝑘𝑟

 

(3.3) 

A is formed at a known rate NAo at an electrode surface, and B is present in the 

bulk solution. 

The concentrations of A and C in the bulk solution are negligible, and the fluxes 

of B and C at the electrode surface are also zero. The homogeneous reaction forms the 

species C and diffuses into the bulk.For measuring concentration profiles, Eqs. (3.1) 

and (3.2) may be combined for each component. We assume the steady-state and ignore 

migration and convection in the diffusion layer [7]. In this case, the system of nonlinear 

one-dimensional reaction-diffusion equations becomes as follows [7]: 

𝐷
𝑑2𝐴(𝑥)

𝑑𝑥2 = −𝑘𝑟𝐶(𝑥) + 𝑘𝑓𝐴(𝑥)𝐵(𝑥) (3.4) 

𝐷
𝑑2𝐵(𝑥)

𝑑𝑥2
= −𝑘𝑟𝐶(𝑥) + 𝑘𝑓𝐴(𝑥)𝐵(𝑥) (3.5) 

𝐷
𝑑2𝐶(𝑥)

𝑑𝑥2 = 𝑘𝑟𝐶(𝑥) − 𝑘𝑓𝐴(𝑥)𝐵(𝑥) (3.6) 

The k coefficients denote the forward and reverse reaction rate constants, and 

A, B, and C represent the species concentrations. Both diffusion coefficients are 
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assumed to be equal to a constant D for the sake of consistency.The boundary 

conditions are 

𝐷
𝑑𝐴

𝑑𝑥
= −𝑁𝐴𝑜;

𝑑𝐵

𝑑𝑥
=

𝑑𝐶

𝑑𝑥
= 0 at 𝑥 = 0  (3.7) 

𝐴 = 0; 𝐵 = 𝐵𝑏; 𝐶 = 0 at 𝑥 = 𝛿  (3.8) 

By introducing the following dimensionless variables 

𝑎 = [
𝐴

𝐵𝑏
] , 𝑏 = [

𝐵

𝐵𝑏
] , 𝑆 = [

𝐶

𝐵𝑏
] , 𝑧 = [

𝑥

𝛿
] , 

𝜀 = [
𝐷

𝛿2𝑘𝑓𝐵𝑏
]

1

2
, 𝐾∗ = [

𝑘𝑓𝐵𝑏

𝑘𝑟
] , 𝜇 = [

𝑁𝐴𝑜𝛿

𝐷𝐵𝑏
] (3.9)

 

Eqns. (3.4)-(3.6) becomes in dimensionless form as follows: 

𝜀2 𝑑2𝑎(𝑧)

𝑑𝑧2 = 𝑎(𝑧)𝑏(𝑧) −
𝑆(𝑧)

𝐾∗  (3.10) 

𝜀2 𝑑2𝑏(𝑧)

𝑑𝑧2 = 𝑎(𝑧)𝑏(𝑧) −
𝑆(𝑧)

𝐾∗  (3.11) 

𝜀2 𝑑2𝑆(𝑧)

𝑑𝑧2 =
𝑆(𝑧)

𝐾∗ − 𝑎(𝑧)𝑏(𝑧) (3.12)
 

The correspondingdimensionless boundary conditions are, 

𝑎′(𝑧 = 0) = 𝜇, 𝑏′(𝑧 = 0) = 0, 𝑆′(𝑧 = 0) = 0 (3.13) 

𝑎(𝑧 = 1) = 0, 𝑏(𝑧 = 1) = 1, 𝑆(𝑧 = 1) = 0 (3.14) 

where is the relative rates of diffusion and reaction. K* is the homogeneous 

equilibrium constant. 𝜇 is the rate of injection of A relative to the limiting flux of B 

toward the electrode. 

3.3 Analytical expression of the concentration using homotopyperturbation 

method 

The nonlinear equations (3.10 - 3.12), in recent years, numerous methods have 

been developed to derive analytical or semi-analytical solutions regardless of how 

strong the nonlinearity maybe. Homotopy analysis method [9,10], variational iteration 

method [11,12], Adomian decomposition method [13] and Green’s function iterative 
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method [14,15] are used to solve the nonlinear equations. Due to its 

simpleimplementation and high accuracy, the homotopy perturbation method (HPM) 

[16-20], Residual method [21], Padé approximants method [22], Akbari 

Ganji's method (AGM) [23] and Taylor series method [24], the new approach  of 

homotopy perturbation method (NHPM) [25,26] has received great deal of attention. 

By solving equations (3.10)-(3.12) using the homotopy perturbation approach 

(details in Appendix A), the following approximate analytical representation of ionic 

concentration is obtained . 

𝑎(𝑧) = 𝜇(𝑧 − 1) +
𝜇

120𝐾∗𝜀4
[(𝑧 − 1)(𝑧2 − 2𝑧 − 4)2 + 20𝐾∗𝜀2(𝑧3 − 3𝑧2 + 2)] (3.15) 

𝑏(𝑧) = 1 +
𝜇

120𝐾∗𝜀4
[(𝑧 − 1)(𝑧2 − 2𝑧 − 4)2 + 20𝐾∗𝜀2(𝑧3 − 3𝑧2 + 2)] (3.16) 

𝑆(𝑧) = 1 − 𝑏(𝑧) (3.17) 

3.4. Previous analytical results 

Chapman [7] derived approximate distributions of concentration. Consider the 

case of small , that is, the case where the homogeneous rate constant  kf  is large enough 

to make  small. If the first term is neglected, the following solutions are obtained 

from a quadratic algebraic equation for S. 

𝑆(𝑧) =
1

2
[(𝜇(1 − 𝑧) + 1 +

1

𝐾∗) − ((𝜇(1 − 𝑧) + 1 +
1

𝐾∗)
2

− 4𝜇(1 − 𝑧))

1 2⁄

]    (3.18) 

𝑎(𝑧) = 𝜇(1 − 𝑧) − 𝑆(𝑧) (3.19) 

𝑏(𝑧) = 1 − 𝑆(𝑧) (3.20) 

Recently, Mary et al. [8] used Taylor's series method (TSM) to obtain the 

analytical representation of species concentration as follows: 

𝑎(𝑧) = 𝑏(𝑧) + 𝜇𝑧 − 𝜇 − 1 (3.21) 

𝑏(𝑧) = 𝑚 +
𝛼𝑧2

2𝜀2
+

(𝑚𝜇)𝑧3

𝜀23!
+

𝛼𝛽𝑧4

𝜀44!
+

1

𝜀4
[𝛽𝜇𝑚 + 3𝛼𝜇]

𝑧5

5!
+

1

𝜀6
[𝛼𝛽2 + 6𝛼2 +

               4𝜀2𝑚𝜇2]
𝑧6

6!
 (3.22) 
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𝑆(𝑧) = 1 − 𝑏(𝑧) (3.23) 

where 𝛼 = 𝑚(𝑚 − 𝜇 − 1) +
𝑚−1

𝐾∗ 𝛽 = 2𝑚 − 𝜇 − 1 +
1

𝐾∗ (3.24) 

The value of m is obtained by solving the following equation. 

𝑚 +
𝛼

2𝜀2 +
𝑚𝜇

𝜀23!
+

𝛼𝛽

𝜀44!
+

1

𝜀4
[𝜇𝛽𝑚 + 3𝜇𝛼]

1

5!
+

1

𝜀6
[𝛼𝛽2 + 6𝛼2 + 4𝜀2𝑚𝜇2]

1

6!
− 1 = 0 (3.25) 

But in this method, it is very difficult to find the constant m. Our analytical 

results (Eqs. 3.15 - 3.17) are easily computable when compared with Taylor's series 

solution (Eqs.3.21-3.23). 

3.5 Numerical simulation and discussion 

The differential Eqs. (3.10 - 3.12) with the corresponding boundary conditions 

has also been solved numerically using SCILAB/MATLAB program (Appendix-B). 

The numerical solution is compared with our analytical results (HPM method) and 

previously available results (Taylor’s series method) in Tables 3.1–3.3. There is no 

much difference in average error percentage between HPM and TSM. But we can easily 

calculate the concentration for all values of the parameter in HPM. 

Also, a comparison between the analytical and numerical results are shown in 

Figures 3.1.The maximum error between analytical (HPM) and the numerical result is 

1.35%. It is evident from Tables 3.1-3.12 and Fig. 3.1 that our results are very close to 

the exact simulation results. 

The concentration of species depends upon the parameter relative rates of 

diffusion and reaction (𝜀), rate of injection of A relative to the limiting flux of B toward 

the electrode (𝜇) and homogeneous equilibrium constant (𝐾∗). Figure 1, shows the 

concentration of species 𝑎(𝑧), 𝑏(𝑧) and 𝑆(𝑧)for various values of relative rates of 

diffusion and reaction and the homogeneous equilibrium constant.  

From this fig.3.1, it is observed that an increase in equilibrium constant leads to 

increase in 𝑎(𝑧) and 𝑏(𝑧) and decreases in 𝑆(𝑧). From this fig.3.2, it is noted that an 

increase  in rate of injection leads to decrease in 𝑎(𝑧), 𝑏(𝑧) and 𝑆(𝑧). 
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Figure 3.1. Comparison of concentrations 𝑎(𝑧), 𝑏(𝑧) and 𝑆(𝑧) (Eqns. (3.15)-(3.17)) 

with simulation results for various values of parameters , K* and . 
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Figure 3.2. Comparison of concentrations 𝑎(𝑧), 𝑏(𝑧) and 𝑆(𝑧) (Eqns. (3.15)-(3.17)) 

with simulation results for various values of parameters , K*and  

3.6 Conclusions 

An analytical expression has effectively derived the concentration in the 

rotating disc electrode controlled by migration and convection in the diffusion layer. In 

this study, the model is applied to a one-dimensional case of a rotating disc electrode. 

The steady-state nonlinear reaction-diffusion equations are solved analytically by a new 

approach of the homotopy perturbation method. There is a very good agreement 

between the analytical and the numerical solutions for all values of rate constant. 
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Table 3.1. Comparison of numerical solution of concentration of species 𝑎(𝑧) with the analytical solutions by Homotopy perturbation method and 

Taylor series method for  K* = 1,  = -3 and for different values . 

𝑧 

𝜀 = 0.7
 

𝜀 = 0.8
 

𝜀 = 0.9
 

Num 
Our HPM 

Eq.(3.15) 

Error % 

of HPM 

TSM 

Eq.(3.21) 

Error 

% of 

TSM 

Num 
Our HPM 

Eq.(3.15) 

Error 

% of 

HPM 

TSM 

Eq.(3.

21) 

Error 

% of 

TSM 

Num 
Our HPM 

Eq.(3.15) 

Error 

% of 

HPM 

TSM 

Eq.(3.21) 

Error 

% of 

TSM 

0 2.500 2.494 0.24 2.483 0.70 2.538 2.527 0.44 2.483 0.56 2.573 2.568 0.21 2.563 0.40 

0.2 1.922 1.920 0.11 1.907 0.79 1.957 1.949 0.42 1.907 0.48 1.991 1.997 0.31 1.985 0.28 

0.4 1.390 1.380 0.70 1.371 1.38 1.420 1.415 0.37 1.371 0.69 1.449 1.436 0.90 1.445 0.26 

0.6 0.894 0.889 0.53 0.867 3.08 0.917 0.909 0.82 0.867 1.41 0.938 0.929 0.95 0.935 0.39 

0.8 0.427 0.424 0.88 0.399 6.53 0.440 0.436 0.84 0.399 2.39 0.451 0.444 1.51 0.451 0.04 

1 0.000 0.000 0.00 0.000 0.00 0.000 0.000 0.00 0.000 0.00 0.000 0.000 0.00 0.000 0.00 

Average % error 0.41  2.08   0.48  0.92   0.65  0.23 
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Table 3.2. Comparison of numerical solution of concentration of species 𝑏(𝑧) with the analytical solutions by Homotopy perturbation method and 

Taylor series method for K* = 1,  = -3 and for different values . 

𝑧 

𝜀 = 1
 

𝜀 = 1.5
 

𝜀 = 2
 

Num 

Our 

HPM 

Eq.(3.16) 

Error 

% of 

HPM 

TSM 

Eq.(3.22) 

Error 

% of 

TSM 

Num 
Our HPM 

Eq.(3.16) 

Error % 

of HPM 

TSMEq.(3

.22) 

Error 

% of 

TSM 

Num 

Our 

HPM 

Eq.(3.16) 

Error 

% of 

HPM 

TSM 

Eq.(3.22) 

Error 

% of 

TSM 

0 0.607 0.603 0.68 0.599 1.30 0.740 0.737 0.34 0.737 0.35 0.821 0.816 0.62 0.822 0.10 

0.2 0.629 0.624 0.80 0.614 1.41 0.754 0.747 0.91 0.752 0.32 0.832 0.827 0.64 0.832 0.10 

0.4 0.690 0.687 0.42 0.658 1.98 0.794 0.789 0.68 0.791 0.42 0.859 0.855 0.54 0.858 0.16 

0.6 0.776 0.778 0.15 0.735 2.04 0.853 0.849 0.47 0.848 0.53 0.900 0.896 0.41 0.898 0.22 

0.8 0.883 0.885 0.25 0.847 1.65 0.925 0.921 0.39 0.919 0.58 0.949 0.946 0.33 0.947 0.28 

1 1.000 1.000 0.00 1.000 0.00 1.000 1.000 0.00 1.000 0.00 1.000 1.000 0.00 1.000 0.00 

Average % error 0.38  1.40   0.46  0.37   0.43  0.14 
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Table 3.3. Comparison of numerical solution of concentration of species 𝑆(𝑧) with the analytical solutions by Homotopy perturbation method and   

Taylor series method for   = 2,  = -1 and for different values 𝐾∗. 

 

𝑧 

𝐾∗ = 0.1
 

𝐾∗ = 0.2
 

𝐾∗ = 0.5
 

Num 

Our 

HPM 

Eq.(3.1

7) 

Error % 

of HPM 

TSM 

Eq.(3.23) 

Error 

% of 

TSM 

Num 

Our 

HPM 

Eq. 

(3.17) 

Error 

% of 

HPM 

TSM 

Eq.(3.23) 

Error 

% of 

TSM 

Num 

Our 

HPM 

Eq.(3.17) 

Error 

% of 

HPM 

TSM 

Eq. 

(3.23) 

Error % 

of TSM 

0 0.039 0.038 0.78 0.039 0.52 0.050 0.050 0.20 0.050 0.26 0.061 0.061 0.49 0.061 0.26 

0.2 0.036 0.036 0.84 0.036 0.55 0.047 0.047 0.04 0.047 0.43 0.057 0.058 0.35 0.058 0.35 

0.4 0.030 0.030 0.34 0.030 2.02 0.039 0.039 0.93 0.039 0.77 0.048 0.048 0.42 0.048 0.63 

0.6 0.021 0.021 0.42 0.022 2.37 0.028 0.027 0.91 0.028 1.81 0.034 0.034 0.58 0.035 1.47 

0.8 0.011 0.011 0.46 0.011 3.67 0.014 0.014 0.14 0.015 5.00 0.017 0.017 0.58 0.018 4.65 

1 0.000 0.000 0.00 0.000 0.00 0.000 0.000 0.00 0.000 0.00 0.000 0.000 0.00 0.000 0.00 

Average % error 0.47  1.52   0.37  1.38   0.40  1.23 
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Table 3.4.  Comparison of our analytical expression of concentration of species a with 

the numerical result for various values of the parameter 𝜇 and some fixed 

values parameter  = 2,  = -1 using Eqn. (3.15). 

𝑧 

𝐾∗ = 1
 

𝐾∗ = 10
 

𝐾∗ = 1000
 

Numerical 

Result 

Our 

Eq.(3.15) 

% of 

deviation 

Numerica

l 

Result 

Our 

Eq.(3.15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.15

) 

% of 

deviation 

0 0.934 0.925 0.98 0.929 0.918 1.26 0.929 0.917 1.28 

0.2 0.736 0.729 0.92 0.731 0.722 1.24 0.731 0.721 1.28 

0.4 0.544 0.541 0.64 0.540 0.535 1.03 0.540 0.534 1.06 

0.6 0.357 0.358 0.09 0.354 0.353 0.29 0.354 0.353 0.35 

0.8 0.173 0.178 2.66 0.172 0.176 2.21 0.172 0.175 2.18 

1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 

 Average percentage error: 0.88 Average percentage error:  1.00 Average percentage error:   1.02 
 

 

Table 3.5. Comparison of our analytical expression of concentration of species b with 

the numerical result for various values of the parameter 𝜇 and some fixed 

values parameter  = 2,  = -1 using Eqn. (3.16). 

𝑧 

𝐾∗ = 1
 

𝐾∗ = 10
 

𝐾∗ = 1000
 

Numerical 

Result 

Our 

Eq.(3.16) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.16) 

% of 

deviation 

Numerical 

Result 

Our 

eq.(3.16) 

% of 

deviation 

0 0.934 0.925 0.99 0.929 0.918 1.26 0.929 0.917 1.28 

0.2 0.938 0.929 0.93 0.933 0.922 1.19 0.933 0.921 1.22 

0.4 0.948 0.941 0.79 0.944 0.935 1.01 0.944 0.934 1.03 

0.6 0.963 0.958 0.59 0.960 0.953 0.75 0.960 0.953 0.76 

0.8 0.981 0.978 0.35 0.980 0.976 0.43 0.980 0.975 0.45 

1 1.000 1.000 0.00 1.000 1.000 0.00 1.000 1.000 0.00 

 Average percentage error:     0.61 Average percentage error:     0.77 Average percentage error:   0.79 
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Table 3.6. Comparison of our analytical expression of concentration of species S with the 

numerical result for various values of the parameter 𝜇 and some fixed values 

parameter  = 4,  = -1 using Eqn. (3.17). 

𝑧 

𝐾∗ = 1
 

𝐾∗ = 10
 

𝐾∗ = 1000
 

Numerical 

Result 

Our 

Eq.(3.17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.17) 

% of 

deviation 

0 0.020 0.019 0.89 0.020 0.020 0.73 0.020 0.020 0.23 

0.2 0.018 0.018 0.79 0.019 0.019 0.64 0.019 0.019 0.65 

0.4 0.015 0.015 0.51 0.015 0.016 3.19 0.016 0.016 0.29 

0.6 0.011 0.011 0.25 0.011 0.011 0.45 0.011 0.011 0.44 

0.8 0.006 0.006 2.91 0.006 0.006 3.09 0.006 0.006 3.11 

1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 

 Average percentage error : 0.89 Average percentage error :  1.35 Average percentage error :0.79 

 

Table 3.7. Comparison of our analytical expression of concentration of species a with the 

numerical result for various values of the parameter  and some fixed values parameter 

 = 2, K* = 1 using Eqn. (3.15). 

𝑧 

𝜇 = −1 𝜇 = −1.5 𝜇 = −2 

Numerical 

Result 

Our 

Eq.(3.15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.15) 

% of 

deviation 

0 0.934 0.925 0.98 1.388 1.404 1.18 1.875 1.850 1.33 

0.2 0.736 0.729 0.92 1.094 1.106 1.10 1.478 1.459 1.32 

0.4 0.544 0.541 0.64 0.811 0.818 0.88 1.094 1.082 1.15 

0.6 0.357 0.358 0.10 0.536 0.537 0.15 0.718 0.715 0.38 

0.8 0.173 0.178 2.65 0.267 0.261 2.40 0.348 0.356 2.18 

1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 

 Average percentage error :     0.88 Average  percentage error :   0.95 Average percentage error :   1.06 
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Table 3.8. Comparison of our analytical expression of concentration of species a with the 

numerical result for various values of the parameter 𝜀 and some fixed values parameter 

 = -1, K* = 4, using Eqn. (3.15). 

𝑧 

𝜀 = 2 𝜀 = 5 𝜀 = 8 

Numerical 

Result 

Our 

Eq.(3.15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.15) 

% of 

deviation 

0 0.930 0.919 1.22 0.987 0.987 0.04 0.995 0.995 0.01 

0.2 0.732 0.723 1.20 0.786 0.788 0.21 0.793 0.795 0.25 

0.4 0.541 0.536 0.96 0.586 0.590 0.63 0.592 0.596 0.67 

0.6 0.355 0.354 0.26 0.387 0.393 1.49 0.391 0.397 1.52 

0.8 0.172 0.176 2.31 0.188 0.196 4.18 0.191 0.199 4.18 

1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 

 Average percentage error: 0.99 Average  percentage error: 1.09 Average percentage error : 1.11 

 

Table 3.9. Comparison of our analytical expression of concentration of species b with the 

numerical result for various values of the parameter 𝜇 and some fixed values parameter 

 = 2, K* = 10 using Eqn. (3.16). 

𝑧 

𝜇 = −1 𝜇 = −1.5 𝜇 = −2 

Numerical 

Result 

Our 

Eq.(3.16) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.16) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.16) 

% of 

deviation 

0 0.9272 0.9173 1.07 0.8967 0.8873 1.05 0.8661 0.8497 1.92 

0.2 0.9329 0.9219 1.17 0.9021 0.8936 0.94 0.8737 0.8582 1.81 

0.4 0.9435 0.9345 0.95 0.9186 0.9108 0.85 0.8943 0.8810 1.51 

0.6 0.9594 0.9530 0.66 0.9420 0.9360 0.64 0.9212 0.9147 0.71 

0.8 0.9798 0.9755 0.44 0.9705 0.9667 0.40 0.9617 0.9555 0.65 

1 1.0000 1.0000 0.00 1.000 1.000 0.00 1.0000 1.0000 0.00 

 Average percentage error : 0.72 Average percentage error : 0.65 Average percentage error : 1.10 
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Table 3.10. Comparison of our analytical expression of concentration of species b with the 

numerical result for various values of the parameter 𝜀 and some fixed values parameter 

 = - 2, K* = 50 using Eqn. (3.16). 

𝑧 

𝜀 = 1 𝜀 = 4 𝜀 = 7 

Numerical 

Result 

Our 

Eq.(3.16) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.16) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.16) 

% of 

deviation 

0 0.8652 0.8437 2.55 0.9607 0.9456 1.60 0.9867 0.9815 0.53 

0.2 0.8729 0.8530 2.33 0.9630 0.9487 1.51 0.9874 0.9825 0.50 

0.4 0.8936 0.8783 1.75 0.9690 0.9569 1.26 0.9895 0.9853 0.42 

0.6 0.9242 0.9155 0.95 0.9780 0.9691 0.92 0.9925 0.9895 0.30 

0.8 0.9614 0.9608 0.07 0.9888 0.9839 0.50 0.9960 0.9945 0.15 

1 1.0000 1.0000 0.00 1.0000 1.0000 0.00 1.0000 1.0000 0.00 

 Average percentage error : 1.27 Average  percentage error : 0.96 Average percentage error :  0.32 

 

Table 3. 11. Comparison of our analytical expression of concentration of species S with the 

numerical result for various values of the parameter 𝜀 and some fixed values parameter 

 = 4, K* = 100 using Eqn. (3.17). 

𝑧 

𝜇 = −1 𝜇 = −1.5 𝜇 = −2 

Numerical 

Result 

Our 

Eq.(3.17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.17) 

% of 

deviation 

0 0.0200 0.0198 0.71 0.0297 0.0294 0.93 0.0393 0.0388 1.14 

0.2 0.0189 0.0187 1.21 0.0280 0.0278 0.83 0.0370 0.0367 1.06 

0.4 0.0157 0.0157 0.31 0.0234 0.0233 0.54 0.0310 0.0307 0.76 

0.6 0.0115 0.0112 1.81 0.0167 0.0167 0.23 0.0220 0.0220 0.03 

0.8 0.0057 0.0059 3.00 0.0085 0.0087 2.80 0.0112 0.0115 2.54 

1 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 

 Average percentage error :  1.17 Average percentage error :  0.89 Average percentage error :  0.92 
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Table 3.12. Comparison of our analytical expression of concentration of species S with 

the numerical result for various values of the parameter 𝜀 and some fixed 

values parameter  = -2, K* = 500 using Eqn. (3.17). 

𝑧 

𝜀 = 5 𝜀 = 7 𝜀 = 10 

Numerical 

Result 

Our 

Eq.(3.17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(3.17) 

% of 

deviation 

0 0.0257 0.0255 0.63 0.0133 0.0133 0.27 0.0066 0.0066 0.09 

0.2 0.0242 0.0241 0.51 0.0126 0.0126 0.17 0.0062 0.0062 0.59 

0.4 0.0202 0.0202 0.17 0.0105 0.0105 0.24 0.0051 0.0052 1.61 

0.6 0.0144 0.0145 0.63 0.0075 0.0076 1.03 0.0037 0.0037 1.87 

0.8 0.0073 0.0075 3.18 0.0038 0.0039 3.60 0.0019 0.0020 2.75 

1 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 

 Average prcentageeror:   0.85 Average  percentage error :  0.88 Average percentage error :   1.15 
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APPENDIX 3.A:  

Analytical expression of the concentration using homotopy perturbation method 

We construct the homotopy for the equations (3.10)-(3.12) as follows 

(1 − 𝑝) [
𝑑2𝑎

𝑑𝑧2] + 𝑝 [
𝑑2𝑎

𝑑𝑧2 −
𝑎𝑏

𝜀2 +
𝑆

𝐾∗𝜀2] = 0 (3.A1)

 

(1 − 𝑝) [
𝑑2𝑏

𝑑𝑧2] + 𝑝 [
𝑑2𝑏

𝑑𝑧2 −
𝑎𝑏

𝜀2 +
𝑆

𝐾∗𝜀2] = 0 (3.A2) 

(1 − 𝑝) [
𝑑2𝑆

𝑑𝑧2 +
𝑎𝑏

𝜀2 ] + 𝑝 [
𝑑2𝑆

𝑑𝑧2 +
𝑎𝑏

𝜀2 −
𝑆

𝐾∗𝜀2] = 0 (3.A3) 

where𝑝 ∈ [0,1]is an embedding parameter. Using Maclaurin series 

𝑎(𝑧) = 𝑎(0) + 𝑧𝑎′(0) + 𝑧2 𝑎"(0)

2!
+. .., (3.A4) 

Now, assume that the solutions of Eqs. (3.A1) - (3.A3) is 

𝑎 = 𝑎0 + 𝑝 ⥂ 𝑎1 + 𝑝2𝑎2 + ⋯
, 

𝑏 = 𝑏0 + 𝑝 ⥂ 𝑏1 + 𝑝2𝑏2 + ⋯  and 

 𝑆 = 𝑆0 + 𝑝 ⥂ 𝑆1 + 𝑝2𝑆2 + ⋯ 

(3.A5) 

Substituting Eq. (3.A5) into Eqs. (3.A1)-(3.A3) and equating the like coefficients of ‘p’ 

on both sides lead to the following linear differential equations: 

𝑝0:
𝑑2𝑎0

𝑑𝑧2
= 0 (3.A6) 

𝑝0:
𝑑2𝑏0

𝑑𝑧2 = 0 (3.A7) 

𝑝0:
𝑑2𝑆0

𝑑𝑧2 +
𝑎0𝑏0

𝜀2 = 0 (3.A8) 

Solving Eqs. (3.A6)-(3.A8) Subject to boundary conditions: 

𝑎0
′ (𝑧 = 0) = 𝜇, 𝑏0

′ (𝑧 = 0) = 0, 𝑆0
′ (𝑧 = 0) = 0 (3.A9) 

𝑎0(𝑧 = 1) = 0, 𝑏0(𝑧 = 1) = 1, 𝑆0(𝑧 = 1) = 0 (3.A10) 

𝑝1:
𝑑2𝑎1

𝑑𝑧2
−

𝑎0𝑏0

𝜀2
+

𝑆0

𝐾∗𝜀2
= 0.

   

(3.A11) 
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𝑝1:
𝑑2𝑏1

𝑑𝑧2 −
𝑎0𝑏0

𝜀2 +
𝑆0

𝐾∗𝜀2 = 0.

      

      (3.A12) 

Solving Eqs. (3.A9) and (3.A10), subject to boundary conditions: 

𝑎1
′ (𝑧 = 0) = 𝜇, 𝑏1

′ (𝑧 = 0) = 0 (3.A13) 

𝑎1(𝑧 = 1) = 0, 𝑏1(𝑧 = 1) = 1 (3.A14) 

The solution of the Eqns. (3.A6) to (3.A8) are given by 

𝑎0(𝑧) = 𝜇(𝑧 − 1)   (3.A15) 

𝑏0(𝑧) = 1 (3.A16) 

𝑆0(𝑧) =
𝜇(2+𝑧3−3𝑧2)

6𝜀2  (3.A17) 

and the solution of the Eqns. (3.A11) to (3.A12) are given by 

𝑎1(𝑧) =
𝜇

120𝐾∗𝜀4 ((𝑧 − 1)(𝑧2 − 2𝑧 − 4)2 + 20𝐾∗𝜀2(𝑧3 − 3𝑧2 + 2))  (3.A18) 

𝑏1(𝑧) =
𝜇

120𝐾∗𝜀4 ((𝑧 − 1)(𝑧2 − 2𝑧 − 4)2 + 20𝐾∗𝜀2(𝑧3 − 3𝑧2 + 2))       (3.A19)

  

With the use of these two iterations only, we obtain an approximate solution for the 

ionic concentration given by: 

𝑎(𝑧) = 𝑎0(𝑧) + 𝑎1(𝑧)
,
𝑏(𝑧) = 𝑏0(𝑧)+⥂ 𝑏1(𝑧)  (3.A20)
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APPENDIX 3.B:  

Matlab program for the numerical solution of nonlinear differential equations 

(3.10)-(3.12) 

function sol=ex6 

ex6init=bvpinit(linspace(0,1),[0 1 1 0 0 0]); 

sol = bvp4c(@ex6ode,@ex6bc,ex6init) 

end 

functiondydx=ex6ode(x,y) 

dydx=[y(2) 

 (1/(2)^2)*(y(1)*y(3)-((y(5))/(3))) 

y(4) 

 (1/(2)^2)*(y(1)*y(3)-((y(5))/(3))) 

y(6) 

 (1/(2)^2)*(((y(5))/(3)))-y(1)*y(3)]; 

end 

Function res=ex6bc(ya,yb) 

res=[ya(1)-0 

yb(2)-1 

ya(3)-1 

yb(4)-0 

ya(5)-0 

yb(6)-0]; 

end 



 

 

 

 

 

CHAPTER 4 

ANALYTICAL EXPRESSIONS FOR THE 
CONCENTRATION AND CURRENT IN THE 
REDUCTION OF HYDROGEN PEROXIDE 
AT A METAL-DISPERSED CONDUCTING 

POLYMER FILM 

 

 

 

 

 

 

 

 



46 

 

CHAPTER-4 

Analytical Expressions for the Concentration and Current in the 

Reduction of Hydrogen Peroxide at a Metal-Dispersed Conducting 

Polymer Film 

4.1  Introduction 

Enzyme-based fuel cells can produce higher energy than conventional batteries 

utilizing significantly all the naturally good materials. Enzymatic biofuel cells rely on 

the oxidation of substrates such as hydrogen or glucose and reduction of oxygen to 

harvest energy from complex media. In particular, glucose biofuel cells (BFCs) 

represent a promising alternative to supply energy from living organisms to implanted 

electronic devices. Oxidase enzymes are widely used in energy devices (biosensor, 

enzymatic biofuel cell, bioreactor, etc.).  In glucose oxidation-reduction process, 

oxygen is diminished to water (H2O) or hydrogen peroxide (H2O2). Glucose oxidase is 

found in nectar and goes about as a common additive.  Enzymatic glucose biosensors 

[1] utilize an electrode rather than oxygen to take up the electrons required to oxidize 

glucose and produce current in the extent to glucose fixation. Glucose oxidase is 

broadly used for the determination of free glucose in body liquids (diagnostics), in 

crude botanic material, and the nourishment business. Toghill and Compton [2] 

discussed non-enzymatic glucose sensors. It likewise has numerous applications in 

biotechnologies, commonly protein tests for natural chemistry incorporating biosensors 

in nanotechnologies [3]. Besides, glucose oxidase has damage the cancer tissue and 

cells as a result of hydrogen peroxide formation. 

In recent times, many kinds of literature focused on glucose/hydrogen peroxide 

biofuel cell. Pizzariello et al. [4] developed a glucose/hydrogen peroxide biofuel cell 

using a composite bulk modified bioelectrode based on a solid binding matrix. 

Choudhury et al. [5] discussed the effect of hydrogen peroxide as an oxidant in an 

alkaline direct borohydride fuel cell. Bessette et al. [6] reported the performance of the 

microfiber carbon electrode in magnesium–hydrogen peroxide semi-fuel cell under 

optimum conditions and at a reduced concentration of H2O2. Prof et al. [7] developed a 

three-phase H2/O2 fuel cell for the production of a concentrated aqueous solution of 

H2O2 in an electrochemical reduction of O2. 
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Yang et al. [8] investigated the influence of H2O2 concentration in the 

performance of magnesium-hydrogen peroxide fuel cell with palladium-silver 

deposited cathode and silver-nickel deposited electrode. Han et al. [9] developed a 

hydrogen peroxide fuel cell with TiO2 nanotube photoanode to increase the 

performance of the cell by make use of light and biomass. Also, Kjeang et al. [10] 

demonstrated a microfluidic fuel cell incorporating hydrogen peroxide as oxidant. 

Adams et al. [11] reported an electrochemical reduction of hydrogen peroxide using 

highly active palladium platinum catalysts. Bankar et al. [12] reviewed the production,  

characterization, and applications of glucose oxidase. Do et al. [13] developed a 

mathematical model which describes the bioelectrochemical reduction of hydrogen 

peroxide with direct electron transfer mechanism. Benfeitas et al. [14] investigated 

hydrogen peroxide metabolism in human erythrocytes. The first example of glucose or 

hydrogen peroxide-based biofuel cell functioning under physiological conditions was 

reported in Agnes et al. [15]. An et al. [16] developed and tested the performance of an 

alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant. Also studied a one-

dimensional mathematical model of the mixed potential in hydrogen peroxide  

fuel cell [17]. 

Somasundaram et al. [18] developed a kinetic model for the reduction of 

hydrogen peroxide to water in a metal-dispersed conducting polymer film. This model 

is based on a system of the nonlinear reaction-diffusion equation. Somasundaram et al. 

[18] obtained the steady-state concentration and current for limiting cases (low and high 

substrate concentration) only. In solving reaction-diffusion problems, there are mainly 

three types of methods: experimental, analytical, and numerical. Experiments are 

expensive, time-consuming, and usually, do not allow much flexibility in parameter 

variation. Numerical methods are popular for its computing capabilities, although it 

provides only a long list of numbers, not an equation. Analytical methods are the most 

difficult ones, providing solutions with parameters. In this chapter, we will consider the 

last two techniques to solve the coupled nonlinear reaction-diffusion equation 

describing the reduction of hydrogen peroxide to water. The purpose of this chapter is 

to derive the analytical expressions for the concentration of glucose (substrate), 

hydrogen peroxide (product) and current for non-steady state condition. 
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4.2 Mathematical formulation  

Fig.4.1 represents the schematic diagram for the reduction of hydrogen peroxide 

to water. The reactions scheme occurring within the polymer film and in the bulk 

solution can be written as follows [18]: 

 

Figure 4.1. Schematic diagram for the reduction of hydrogen peroxide to water. 

 𝑆 + 𝐸1 ↔
𝑘−1

𝑘1

𝐸1𝑆 →
𝑘𝑐𝑎𝑡

𝑃 + 𝐸2 (4.1) 

𝐸2 + 𝐴 →
𝑘𝑒

𝐸1 + 𝐵 (4.2) 

𝐵 + 2𝑒− →
𝑘

𝐶  (4.3) 

Eqn. (4.1) represents the oxidation of substrate (Glucose) 𝑆 to product P 

(Hydrogen peroxide). Here 𝐸1 and 𝐸2 are the oxidized and reduced forms of the enzyme 

(oxidase) respectively. The reduction-oxidation process of the enzyme during the 

reduction of oxygen (A) to hydrogen peroxide (B) is shown in Eqn. (4.2). And the 

hydrogen peroxide which in turn reacts with microparticle in the presence of a pseudo 

first order rate constant 𝑘 to produce water (C). Using Michaelis-Menten rate 

expression, the mass balance one dimensional equations for substrate and product 

within the polymer film can be written as follows [18]: 

𝜕𝑠(𝑥,𝑡)

𝜕𝑡
= 𝐷𝑆

𝜕2𝑠(𝑥,𝑡)

𝜕𝑥2 −
𝑘𝑐𝑎𝑡𝑒𝑇𝑠(𝑥,𝑡)

𝐾𝑀+𝑠(𝑥,𝑡)
  (4.4) 
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𝜕𝑏(𝑥,𝑡)

𝜕𝑡
= 𝐷𝐵

𝜕2𝑏(𝑥,𝑡)

𝜕𝑥2 − 𝑘𝑏(𝑥, 𝑡) +
𝑘𝑐𝑎𝑡𝑒𝑇𝑠(𝑥,𝑡)

𝐾𝑀+𝑠(𝑥,𝑡)
  (4.5) 

where 𝑠(𝑥, 𝑡) and  𝑏(𝑥, 𝑡) are the concentrations of substrate and product respectively. 

DS and DB are the diffusion coefficients, kcat is the catalytic reaction rate constant and 

𝐾𝑀 = (𝑘𝑐𝑎𝑡 + 𝑘−1)/𝑘1is the Michaelis-Menten rate constant. The initial and boundary 

conditions for the above equations are given by 

𝑡 = 0,0 < 𝑥 < 𝐿: 𝑠 = 𝑘𝑠𝑠∞, 𝑏 = 0 (4.6) 

𝑡 > 0, 𝑥 = 0:
𝜕𝑠

𝜕𝑥
= 0,

𝜕𝑏

𝜕𝑥
= 0 (4.7) 

𝑡 > 0, 𝑥 = 𝐿: 𝑠 = 𝜅𝑠𝑠∞, 𝑏 = 𝜅𝑏𝑏∞  (4.8) 

Here 𝑠∞ and 𝑏∞ is the concentration of substrate and product in the bulk solution. 𝑘𝑠 

and 𝑘𝑏 is the reaction rate constant for substrate and product respectively. 𝐿 is the 

thickness of the polymer film. The current 𝐼 of the product 𝑏 at the electrode surface is 

given by

 

𝐼 = −𝑛𝐹𝐴𝑗𝑏 = −𝑛𝐹𝐴𝐷𝐵 (
𝑑𝑏

𝑑𝑥
)

𝑥=𝐿
   (4.9) 

where 𝑗𝑏 is the flux of the hydrogen peroxide at the electrode surface. Eqns. (4.4) and 

(4.5) can be written in dimensionless form using the following dimensionless 

parameters. 

𝑢 =
𝑠

𝜅𝑠𝑠∞
, 𝑣 =

𝑏

𝜅𝑏𝑏∞

, 𝜒 =
𝑥

𝐿
, 𝜏 =

𝐷𝑆𝑡

𝐿2
, 𝜉 =

𝐷𝐵

𝐷𝑆
, 

𝛼 =
𝜅𝑠𝑠∞

𝐾𝑀
, 𝛽 =

𝜅𝑏𝑏∞

𝐾𝑀
, 𝛾 =

𝑘𝐿2

𝐷𝑆
, 𝜙 =

𝑘𝑐𝑎𝑡𝑒𝑇𝐿2

𝐷𝑆𝐾𝑀
  (14.10) 

Using Eqn. (4.10), equations (4.4) and (4.5) reduce to the following non-dimensional 

form: 

𝜕𝑢(𝜒,𝜏)

𝜕𝜏
=

𝜕2𝑢(𝜒,𝜏)

𝜕𝜒2 −
𝜙𝑢(𝜒,𝜏)

1+𝛼𝑢(𝜒,𝜏)
 (4.11)

 

𝜕𝑣(𝜒,𝜏)

𝜕𝜏
= 𝜉

𝜕2𝑣(𝜒,𝜏)

𝜕𝜒2 − 𝛾𝑣(𝜒, 𝜏) +
𝛼𝜙𝑢(𝜒,𝜏)

𝛽(1+𝛼𝑢(𝜒,𝜏))
 (4.12) 

where 𝑢(𝜒, 𝜏) and 𝑣(𝜒, 𝜏) represents the dimensionless concentration of substrate and 

product respectively;   is a normalized distance;  is a dimensionless time; 𝜉 is the 
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ratio of the diffusion coefficient. ,  and   are the saturation parameters.  is the 

Thiele modulus depends upon the enzyme concentration, diffusion coefficient of 

substrate Ds and the Michaelis-Menten constant Km ; The corresponding dimensionless 

initial and boundary conditions for equations (4.11) and (4.12) are as follows: 

𝜏 = 0,0 < 𝜒 < 1: 𝑢 = 1, 𝑣 = 0 (4.13) 

𝜏 > 0, 𝜒 = 0:
𝜕𝑢

𝜕𝜒
= 0,

𝜕𝑣

𝜕𝜒
= 0 (4.14) 

𝜏 > 0, 𝜒 = 1: 𝑢 = 1, 𝑣 = 1  (4.15) 

The dimensionless current for hydrogen peroxide is 

𝜓 = −
𝐼𝐿

𝑛𝐹𝐴𝑘𝑏𝑏∞𝐷𝐵
= − (

𝜕𝑣

𝜕𝜒
)

𝜒=1
  (4.16) 

4.3 Analytical expression for the concentration of substrate and product for 

general case under non-steady condition 

Nonlinear phenomena play a vital role in various zones of the sciences and 

engineering. Because of the expanding enthusiasm towards finding exact solutions for 

those problems, a  variety of analytical methods are proposed. Recently Adomian 

decomposition method [19], homotopy analysis method [20], variational iteration 

method [21], homotopy perturbation method [22,23], are used to solve the nonlinear 

problems.  Among such methods, a new approach of homotopy perturbation method is 

applied to solve the nonlinear differential equations Eqns. (4.11) and (4.12). The focal 

point of this method is that it resulted in a simple approximate solution in the zeroth 

iteration itself [24]. This technique is appropriate for problems where transient effects, 

reaction-diffusion phenomena, and nonlinearity play an important role. The analytical 

expressions of concentrations of substrate and product can be obtained method as 

follows(Appendix-A): 

𝑢(𝜒, 𝜏) =
𝑐𝑜𝑠ℎ( √𝐴𝜒)

𝑐𝑜𝑠ℎ( √𝐴)
+

16𝐴

𝜋
∑

(−1)𝑛 𝑐𝑜𝑠[ (2𝑛 + 1)𝜋𝜒/2]𝑒−[(2𝑛+1)2𝜋2+4𝐴]
𝜏

4

(2𝑛 + 1)[(2𝑛 + 1)2𝜋2 + 4𝐴]

∞

𝑛=0

 

(4.17) 
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𝑣(𝜒, 𝜏) =
𝑐𝑜𝑠ℎ( √𝛾/𝜉𝜒)

𝑐𝑜𝑠ℎ( √𝛾/𝜉)
+

𝛼𝐴

𝛽(𝜉𝐴 − 𝛾)
(

𝑐𝑜𝑠ℎ( √𝛾/𝜉𝜒)

𝑐𝑜𝑠ℎ( √𝛾/𝜉)
−

𝑐𝑜𝑠ℎ( √𝐴𝜒)

𝑐𝑜𝑠ℎ( √𝐴)
)

−  ∑ 𝜇𝐴𝑛(𝜏)(−1)𝑛 𝑐𝑜𝑠[ (2𝑛 + 1)𝜋𝜒/2]

∞

𝑛=0

 

(4.18) 

Using Eqns. (4.16) and (4.18), the dimensionless current is given by 

𝜓(𝜏) = −√𝛾/𝜉 𝑡𝑎𝑛ℎ( √𝛾/𝜉) −
𝛼𝐴[√𝛾/𝜉 𝑡𝑎𝑛ℎ(√𝛾/𝜉)−√𝐴 𝑡𝑎𝑛ℎ(√𝐴)]

𝛽(𝜉𝐴−𝛾)
+

𝜋

2
∑ 𝜇𝐴𝑛(𝜏)(2𝑛 + 1)∞

𝑛=0    

   (4.19) 

where 𝐴 = 𝜙/(1 + 𝛼)   (4.20) 

𝜇𝐴𝑛(𝜏) =
4𝜋𝜉(2𝑛 + 1)𝑒−[(2𝑛+1)2𝜋2𝜉+4𝛾]

𝜏

4

[(2𝑛 + 1)2𝜋2𝜉 + 4𝛾]

−
64𝛼𝐴2𝑒−[(2𝑛+1)2𝜋2+4𝐴]

𝜏

4

𝜋𝜉𝛽(2𝑛 + 1)[(2𝑛 + 1)2𝜋2 + 4𝐴][(2𝑛 + 1)2𝜋2(𝜉 − 1) − 4(𝐴 − 𝛾)]
 

+
64𝜋𝛼𝐴2(2𝑛 + 1)𝑒−[(2𝑛+1)2𝜋2𝜉+4𝛾]

𝜏

4

𝛽[(2𝑛 + 1)2𝜋2𝜉 + 4𝛾][(2𝑛 + 1)2𝜋2𝜉 − 4(𝐴 − 𝛾)][(2𝑛 + 1)2𝜋2(𝜉 − 1) − 4(𝐴 − 𝛾)] 

(4.21) 

when 𝜏 → ∞, the equation (4.19) becomes 

𝜓𝑠𝑠 = −√𝛾/𝜉 𝑡𝑎𝑛ℎ( √𝛾/𝜉) −
𝛼𝐴[√𝛾/𝜉 𝑡𝑎𝑛ℎ(√𝛾/𝜉)−√𝐴 𝑡𝑎𝑛ℎ(√𝐴)]

𝛽(𝜉𝐴−𝛾)
  (4.22) 

The above equation (Eqn. (4.22)) represents the new analytical expression of steady 

state current. 

4.3.1 Limiting case 

The consequencesfor the limiting situations of zero order kinetics (𝑆 >> 𝐾𝑀) 

and first order kinetics (𝑆 << 𝐾𝑀) arising from Eqns. (4.4) and (4.5) or (4.11) and 

(4.12) are reported below. 

4.3.1.1 Case 1: Saturated (zero-order) catalytic kinetics (High substrate) 

In this case, the situation where the substrate concentration 𝑆 is greater than the 

Michaelis-Menten constant 𝐾𝑀 is considered. When 𝑆 >> 𝐾𝑀 or 𝛼𝑢 >> 1, the 

nonlinear Eqns. (4.11) and (4.12) reduces to the following dimensionless linear form: 

𝜕𝑢(𝜒,𝜏)

𝜕𝜏
=

𝜕2𝑢(𝜒,𝜏)

𝜕𝜒2
−

𝜙

𝛼
 (4.23) 
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𝜕𝑣(𝜒,𝜏)

𝜕𝜏
= 𝜉

𝜕2𝑣(𝜒,𝜏)

𝜕𝜒2 − 𝛾𝑣(𝜒, 𝜏) +
𝜙

𝛽
 (4.24) 

Solving the above Eqns. (4.23) and (4.24), the concentration of substrate and product 

can be obtained as follows: 

𝑢(𝜒, 𝜏) = 1 +
𝜙

2𝛼
(𝜒2 − 1)

+
16𝜙

𝜋3𝛼
∑

(−1)𝑛 𝑐𝑜𝑠[ (2𝑛 − 1)𝜋𝜒/2]𝑒−[(2𝑛−1)2𝜋2]
𝜏

4

(2𝑛 − 1)3

∞

𝑛=0

 

(4.25) 

𝑣(𝜒, 𝜏) =    
𝑐𝑜𝑠ℎ( √𝛾/𝜉𝜒)

𝑐𝑜𝑠ℎ( √𝛾/𝜉)
+

𝜙

𝛽𝛾
(1 −

𝑐𝑜𝑠ℎ( √𝛾/𝜉𝜒)

𝑐𝑜𝑠ℎ( √𝛾/𝜉)
)

−
4

𝜋
∑ {

[𝜋2(2𝑛 + 1)2𝜉 − 4]𝑒−[(2𝑛+1)2𝜋2𝜉+4𝛾]
𝜏

4

(2𝑛 + 1)[(2𝑛 + 1)2𝜋2𝜉 + 4𝛾]
}

∞

𝑛=0

(−1)𝑛 𝑐𝑜𝑠[ (2𝑛

+ 1)𝜋𝜒/2] 

(4.26) 

The expression for the current in this case is given as 

 

 (4.27) 

From the above equation, the steady state (𝜏 → ∞) current can be obtained as follows: 

𝜓𝑠𝑠 = − (1 +
𝜙

𝛽𝛾
) √𝛾/𝜉 𝑡𝑎𝑛ℎ( √𝛾/𝜉)   (4.28) 

4.3.1.2. Case 2: Unsaturated (first-order) catalytic kinetics (Low substrate) 

The situation where the substrate concentration 𝑆 is less than the rate constant  

KMis considered. In this case S <<KM or 𝛼𝑢 << 1, the Eqns. (4.11) and (4.12) reduces 

to the following form: 

𝜕𝑢(𝜒,𝜏)

𝜕𝜏
=

𝜕2𝑢(𝜒,𝜏)

𝜕𝜒2 − 𝜙𝑢(𝜒, 𝜏)   (4.29) 

𝜕𝑣(𝜒,𝜏)

𝜕𝜏
= 𝜉

𝜕2𝑣(𝜒,𝜏)

𝜕𝜒2
− 𝛾𝑣(𝜒, 𝜏) +

𝜙𝛼𝑢(𝜒,𝜏)

𝛽
   (4.30) 

The solutions for Eqns. (4.29) and (4.30) are obtained as below: 
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𝑢(𝜒, 𝜏) =
𝑐𝑜𝑠ℎ( √𝜙𝜒)

𝑐𝑜𝑠ℎ( √𝜙)

+
16𝜙

𝜋
∑

(−1)𝑛 𝑐𝑜𝑠[ (2𝑛 + 1)𝜋𝜒/2]𝑒−[(2𝑛+1)2𝜋2+4𝜙]
𝜏

4

(2𝑛 + 1)[(2𝑛 + 1)2𝜋2 + 4𝜙]

∞

𝑛=0
 

(4.31) 

𝑣(𝜒, 𝜏) =
𝑐𝑜𝑠ℎ( √𝛾/𝜉𝜒)

𝑐𝑜𝑠ℎ( √𝛾/𝜉)
+

𝛼𝜙

𝛽(𝜉𝜙 − 𝛾)
(

𝑐𝑜𝑠ℎ( √𝛾/𝜉𝜒)

𝑐𝑜𝑠ℎ( √𝛾/𝜉)
−

𝑐𝑜𝑠ℎ( √𝜙𝜒)

𝑐𝑜𝑠ℎ( √𝜙)
)

− ∑ 𝜇𝜙𝑛(𝜏)(−1)𝑛 𝑐𝑜𝑠[ (2𝑛 + 1)𝜋𝜒/2]

∞

𝑛=0

 

(4.32) 

The current expression for this case is given as 

𝜓(𝜏) = −√𝛾/𝜉 𝑡𝑎𝑛ℎ( √𝛾/𝜉) −
𝛼𝜙[√𝛾/𝜉 𝑡𝑎𝑛ℎ( √𝛾/𝜉) − √𝜙 𝑡𝑎𝑛ℎ( √𝜙)]

𝛽(𝜉𝜙 − 𝛾)

+
𝜋

2
∑ 𝜇𝜙𝑛(𝜏)(2𝑛 + 1)

∞

𝑛=0

 

(4.33) 

where 

𝜇𝜙𝑛(𝜏) =
4𝜋𝜉(2𝑛 + 1)𝑒−[(2𝑛+1)2𝜋2𝜉+4𝛾]

𝜏

4

[(2𝑛 + 1)2𝜋2𝜉 + 4𝛾]

−
64𝛼𝜙2𝑒−[(2𝑛+1)2𝜋2+4𝜙]

𝜏

4

𝜋𝜉𝛽(2𝑛 + 1)[(2𝑛 + 1)2𝜋2 + 4𝜙][(2𝑛 + 1)2𝜋2(𝜉 − 1) − 4(𝜙 − 𝛾)]
 

+
64𝜋𝛼𝜙2(2𝑛 + 1)𝑒−[(2𝑛+1)2𝜋2𝜉+4𝛾]

𝜏

4

𝛽[(2𝑛 + 1)2𝜋2𝜉 + 4𝛾][(2𝑛 + 1)2𝜋2𝜉 − 4(𝜙 − 𝛾)][(2𝑛 + 1)2𝜋2(𝜉 − 1) − 4(𝜙 − 𝛾)]
 

(4.34) 

When 𝜏 → ∞, the equation (4.33) becomes 

𝜓𝑠𝑠 = −√𝛾/𝜉 𝑡𝑎𝑛ℎ( √𝛾/𝜉) −
𝛼𝜙[√𝛾/𝜉 𝑡𝑎𝑛ℎ(√𝛾/𝜉)−√𝜙 𝑡𝑎𝑛ℎ(√𝜙)]

𝛽(𝜉𝜙−𝛾)
     (4.35) 

The analytical expression of concentration of substrate, product and current for 

steady and non-steady state condition when 𝜉 = 1 for all the limiting cases are given in 

Table 4.1 and Table 4.2.  
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Table 4.1. Summary of analytical expression of concentration of substrate, product and 

current for non-steady state condition when 𝜉 = 1 

Conditions This work 

Previous 

work 

[18] 

Non steady 

state 

(HPM) 

𝑢(𝜒, 𝜏) =
𝑐𝑜𝑠ℎ( √𝐴𝜒)

𝑐𝑜𝑠ℎ( √𝐴)

+
16𝐴

𝜋
∑

(−1)𝑛 𝑐𝑜𝑠[ (2𝑛 + 1)𝜋𝜒/2]𝑒−[(2𝑛+1)2𝜋2+4𝐴]
𝜏

4

(2𝑛 + 1)[(2𝑛 + 1)2𝜋2 + 4𝐴]

∞

𝑛=0  

𝑣(𝜒, 𝜏) =
𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)
+

𝛼𝐴

𝛽(𝐴 − 𝛾)
(

𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)
−

𝑐𝑜𝑠ℎ( √𝐴𝜒)

𝑐𝑜𝑠ℎ( √𝐴)
)

− ∑ 𝜇𝐴𝑛(𝜏)(−1)𝑛 𝑐𝑜𝑠[ (2𝑛 + 1)𝜋𝜒/2]

∞

𝑛=0

 

𝜓(𝜏) = −√𝛾 𝑡𝑎𝑛ℎ( √𝛾) −
𝛼𝐴[√𝛾 𝑡𝑎𝑛ℎ( √𝛾) − √𝐴 𝑡𝑎𝑛ℎ( √𝐴)]

𝛽(𝐴 − 𝛾)

+
𝜋

2
∑ 𝜇𝐴𝑛(𝜏)(2𝑛 + 1)

∞

𝑛=0

 

----------- 

 

----------- 

 

----------- 

 

High 

substrate 

 

𝑢(𝜒, 𝜏) =
𝑐𝑜𝑠ℎ( √𝜙𝜒)

𝑐𝑜𝑠ℎ( √𝜙)

+
16𝜙

𝜋
∑

(−1)𝑛 𝑐𝑜𝑠[ (2𝑛 + 1)𝜋𝜒/2]𝑒−[(2𝑛+1)2𝜋2+4𝜙]
𝜏

4

(2𝑛 + 1)[(2𝑛 + 1)2𝜋2 + 4𝜙]

∞

𝑛=0  

𝑣(𝜒, 𝜏)

=
𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)
+

𝜙

𝛽𝛾
(1 −

𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)
)

−
4

𝜋
∑

(−1)𝑛[𝜋2(2𝑛 + 1)2 − 4] 𝑐𝑜𝑠[ (2𝑛 + 1)𝜋𝜒/2]

(2𝑛 + 1)[(2𝑛 + 1)2𝜋2 + 4𝛾]
𝑒−[(2𝑛+1)2𝜋2+4𝛾]

𝜏

4

∞

𝑛=0

 

𝜓(𝜏) = − (1 +
𝛼

𝛽𝛾
) √𝛾 𝑡𝑎𝑛ℎ( √𝛾)

+ 2 ∑
[𝜋2(2𝑛 + 1)2 − 4]𝑒−[(2𝑛+1)2𝜋2+4𝛾]

𝜏

4

[(2𝑛 + 1)2𝜋2 + 4𝛾]

∞

𝑛=0

 

----------- 

 

----------- 

 

----------- 
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Low 

substrate 

𝑢(𝜒, 𝜏) =
𝑐𝑜𝑠ℎ( √𝜙𝜒)

𝑐𝑜𝑠ℎ( √𝜙)

+
16𝜙

𝜋
∑

(−1)𝑛 𝑐𝑜𝑠[ (2𝑛 + 1)𝜋𝜒/2]𝑒−[(2𝑛+1)2𝜋2+4𝜙]
𝜏

4

(2𝑛 + 1)[(2𝑛 + 1)2𝜋2 + 4𝜙]

∞

𝑛=0  

𝑣(𝜒, 𝜏) =
𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)
+

𝛼𝜙

𝛽(𝜙 − 𝛾)
(

𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)
−

𝑐𝑜𝑠ℎ( √𝜙𝜒)

𝑐𝑜𝑠ℎ( √𝜙)
)

− ∑ 𝜇𝜙𝑛(𝜏)(−1)𝑛 𝑐𝑜𝑠[ (2𝑛 + 1)𝜋𝜒/2]

∞

𝑛=0

 

𝜓(𝜏) = −√𝛾 𝑡𝑎𝑛ℎ( √𝛾) −
𝛼𝜙[√𝛾 𝑡𝑎𝑛ℎ( √𝛾) − √𝜙 𝑡𝑎𝑛ℎ( √𝜙)]

𝛽(𝜙 − 𝛾)

+
𝜋

2
∑ 𝜇𝜙𝑛(𝜏)(2𝑛 + 1)

∞

𝑛=0

 

 

----------- 

----------- 

----------- 

 

Table 4.2.Summary of analytical expression of concentration of substrate, product and 

current for steady state condition when𝜉 = 1. 

Conditions This work Previous work [18] 

Steady 

state 

(HPM) 

𝑢(𝜒) =
𝑐𝑜𝑠ℎ( √𝐴𝜒)

𝑐𝑜𝑠ℎ( √𝐴)  

𝑣(𝜒) =
𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)

+
𝛼𝐴

𝛽(𝐴 − 𝛾)
(

𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)

−
𝑐𝑜𝑠ℎ( √𝐴𝜒)

𝑐𝑜𝑠ℎ( √𝐴)
) 

𝜓𝑠𝑠

= −√𝛾 𝑡𝑎𝑛ℎ( √𝛾)

−
𝛼𝐴[√𝛾 𝑡𝑎𝑛ℎ( √𝛾) − √𝐴 𝑡𝑎𝑛ℎ( √𝐴)]

𝛽(𝐴 − 𝛾)
 

 

----------- 

----------- 

----------- 
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 High 

substrate 

 

𝑢(𝜒) = 1 +
𝜙

2𝛼
(𝜒2 − 1) 

𝑣(𝜒) =
𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)

+
𝜙

𝛽𝛾
(1

−
𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)
) 

𝜓𝑠𝑠 = − (1 +
𝛼

𝛽𝛾
) √𝛾 𝑡𝑎𝑛ℎ( √𝛾) 

 

----------- 

----------- 

----------- 

 

 

Low 

substrate 

𝑢(𝜒) =
𝑐𝑜𝑠ℎ( √𝜙𝜒)

𝑐𝑜𝑠ℎ( √𝜙)  

𝑣(𝜒)

=
𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)

+
𝛼𝜙

𝛽(𝜙 − 𝛾)
(

𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)

−
𝑐𝑜𝑠ℎ( √𝜙𝜒)

𝑐𝑜𝑠ℎ( √𝜙)
) 

𝜓𝑠𝑠

= −√𝛾 𝑡𝑎𝑛ℎ( √𝛾)

−
𝛼𝜙[√𝛾 𝑡𝑎𝑛ℎ( √𝛾) − √𝜙 𝑡𝑎𝑛ℎ( √𝜙)]

𝛽(𝜙 − 𝛾)
 

𝑢(𝜒) =
𝑐𝑜𝑠ℎ( √𝜙𝜒)

𝑐𝑜𝑠ℎ( √𝜙)
𝑣(𝜒)

=
𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)

+
𝛼𝜙

𝛽(𝜙 − 𝛾)
(

𝑐𝑜𝑠ℎ( √𝛾𝜒)

𝑐𝑜𝑠ℎ( √𝛾)

−
𝑐𝑜𝑠ℎ( √𝜙𝜒)

𝑐𝑜𝑠ℎ( √𝜙)
) 

𝜓𝑠𝑠

= −√𝛾 𝑡𝑎𝑛ℎ( √𝛾)

−
𝛼𝜙[√𝛾 𝑡𝑎𝑛ℎ( √𝛾) − √𝜙 𝑡𝑎𝑛ℎ( √𝜙)]

𝛽(𝜙 − 𝛾)
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4.4. Numerical simulation 

To examine the accuracy of the solution obtained using the HPM method with 

a finite number of terms, the system of differential equations were solved numerically. 

Analytical solution of the equations (4.11) and (4.12) is a challenging problem which 

can be accomplished numerically with the help of Matlab software. The function pdex4 

(Euler’s method) in Matlab software [25], which is a function of solving the boundary 

value problems is used to solve Eqns. (4.11) and (4.12) numerically. Our results are 

compared with numerical results graphically in Fig. 4.2 and 4.3. The comparison 

confirmed that our obtained analytical results fitted very well with the numerical results. 

The maximum average relative error between the analytical and numerical result for 

substrate and product is 1.40% and 0.80% respectively (Refer Table 4.3 and 4.4). 
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Table 4.3. Comparison of our analytical result of dimensionless substrate 𝑢(𝜒, 𝜏) with the numerical simulation for various value of  and  using 

Eqn. (4.17) when 𝜙 = 1 and 𝛼 = 0.5 

𝝌 𝜏 = 0.1 𝜏 = 0.5 𝜏 = 1 𝜏 = 100 

Analytical 

Eqn. (4.17) 
Numerical 

% of 

deviation 

Analytical 

Eqn. (4.17) 
Numerical 

% of 

deviation 

Analytical 

Eqn. (4.17) 
Numerical 

% of 

deviation 

Analytical 

Eqn. (4.17) 
Numerical 

% of 

deviation 

0 0.9365 0.9358 0.07 0.7961 0.7885 0.96 0.7513 0.7373 1.89 0.7394 0.7221 2.39 

0.2 0.9372 0.9366 0.06 0.8032 0.7959 0.91 0.7606 0.7472 1.79 0.7493 0.7327 2.26 

0.4 0.9401 0.9397 0.04 0.8251 0.8187 0.78 0.7888 0.7773 1.47 0.7792 0.7650 1.85 

0.6 0.9478 0.9475 0.03 0.8633 0.8585 0.55 0.8369 0.8284 1.02 0.8300 0.8194 1.29 

0.8 0.9653 0.9652 0.01 0.9204 0.9178 0.28 0.9066 0.902 0.50 0.9029 0.8973 0.62 

1 1.0001 1 0.01 1 1 0 1 1 0 1 1 0 

 
Average % of deviation 0.04 Average % of deviation 0.58 Average % of deviation 1.11 Average % of deviation 1.40 
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Table 4.4. Comparison of our analytical result of dimensionless product 𝑣(𝜒, 𝜏) with the numerical simulation for various values of 𝝉 and 𝝌 using 

Eqn. (4.18) when 𝜙 = 0.1, 𝛼 = 0.5, 𝛽 = 0.05, 𝛾 = 0.01 and 𝜉 = 1 

𝝌 𝜏 = 0.7 𝜏 = 1 𝜏 = 2 𝜏 = 10 

 

 
Analytical 

Eqn. (4.18) 
Numerical 

% of 

deviation 

Analytical 

Eqn. (4.18) 
Numerical 

% of 

deviation 

Analytical 

Eqn. 

(4.18) 

Numerical 
% of 

deviation 

Analytical 

Eqn. 

(4.18) 

Numerical 
% of 

deviation 

0 1.0237 1.037 1.28 1.1783 1.185 0.56 1.3063 1.309 0.20 1.3179 1.321 0.23 

0.2 1.0251 1.038 1.24 1.1725 1.179 0.55 1.2943 1.297 0.20 1.3053 1.308 0.20 

0.4 1.0289 1.04 1.06 1.1543 1.160 0.49 1.2579 1.260 0.16 1.2673 1.270 0.21 

0.6 1.0307 1.039 0.79 1.1218 1.126 0.37 1.1971 1.199 0.15 1.2039 1.206 0.17 

0.8 1.0237 1.028 0.41 1.0717 1.074 0.21 1.1113 1.112 0.06 1.1149 1.116 0.09 

1 0.9997 1 0.03 0.9998 1 0.02 0.9999 1 0.01 1 1 0 

 Average % of deviation 0.80 Average % of deviation 0.36 Average % of deviation 0.13 Average % of deviation 0.15 
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4.5 Results and Discussion 

Eqns. (4.17) to (4.19) represents the new analytical expressions for the 

dimensionless concentration of substrate, product and current respectively. Fig. 4.2 

represent the dimensionless concentration of substrate 𝑢(𝜒, 𝜏)versus dimensionless 

distance from the electrode 𝜒 for different values of Thiele modulus 𝜙, saturation 

parameter 𝛼 and time 𝜏. Thiele modulus is the ratio of the reaction rate to the rate of 

diffusion. From Fig. 4.2(a), it is inferred that the concentration of substrate decreases 

when Thiele modulus  increases. When Thiele modulus 𝜙 < 0.1, the diffusion 

resistance is insufficient to limit the rate of reaction and the concentration remains the 

same within the film. The concentration of substrate reaches zero inside the enzyme 

layer when the diffusion modulus i.e. Thiele module 𝜙 ≥ 100 which is observed at 

high film thickness 𝐿 or enzymatic rate 𝑘𝑐𝑎𝑡𝑒𝑇 or for low reaction rate constant 𝐾𝑀 or 

diffusion 𝐷𝑠. This is because when  is large, a significant diffusion modulus prevents 

a constant concentration of substrate within the film and thus lowers the concentration. 

The influence of the saturation parameter  can be analyzed from Fig. 4.2(b). It shows 

that, the concentration of substrate increases when the saturation parameter  increases. 

This is because as the initial substrate concentration 𝑠∞ increases obviously the 

concentration of substrate S increases. From Fig.4. 2(c), it is evident that the substrate 

concentration increases when time  decreases. For 𝜏 ≤ 0.01, the concentration remains 

the same. 
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Figure 4.2. Plot of dimensionless concentration of substrate 𝑢(𝜒, 𝜏) versus 

dimensionless thickness  calculated using Eqn. (4.17) for different 

values of (a) Thiele modulus , (b) saturation parameter  and (c) time 

. The key to the graph: (scatted line) represents the Eq. (4.17) and 

(dotted line) represents the numerical simulation. 

 

The change in product concentration with respect to dimensionless distance 

from the electrode for various values of parameter is shown in Fig. 4.3(a) – (f) 

respectively. Fig. 4.3(a) illustrates that for high catalytic activity, the concentration of 

substrate increases. By increasing the initial concentration of substrate  or high 

catalytic activity, the product concentration increases, shown in Fig. 4.3(a) and 4.3(b).  

From Fig. 4. 3(c) and 4.3(d), it is observed that, the concentration of product increases 

when the saturation parameters  and  decreases. Compared to other parameters, time 

𝜏  has less influence over product concentration. Higher product concentration is 

obtained for steady- state time. 
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Figure 4.3. Plot of dimensionless concentration of product 𝑣(𝜒, 𝜏) versus 

dimensionless thickness   calculated using Eqn. (4.18) for different 

values of (a) Thiele modulus 𝜙, saturation parameters (b) 𝛼 (c) (d) 𝛾, 

(e) diffusion parameter 𝜉 and (f) time . The key to the graph: (scatted 

line) represents the Eq. (4.18) and (dotted line) represents the numerical 

simulation. 

4.6 Differential sensitive analysis of kinetic parameters 

 Eqn. (4.19) represents the new approximate analytical expression for the non-

steady state current   in terms of the parameters, , ,   and 𝜉. By differentiating 

the current partially with respect to these parameters, the impact of the parameters over 

current can be determined [26]. The percentage of change in current with respect to , 

, ,  and  are 46 %, 35 %, 14%, 3% and 2 % respectively. From this, it is evident 

that parameter  and has more impact on current. These parameters are highly sensitive 

parameters. This implies that when the thickness of the film 𝐿 or the concentration of 

product in the bulk  𝑏∞ increases, the current increases. The parameter  is called as 

moderately sensitive parameter as it has 14% of influence over current. The remaining 

two parameters 𝜉 (ratio of diffusion coefficient) and 𝛼 (saturation parameter) are less 
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sensitive. The spread sheet analysis of these results is described in Figure. 4.4. These 

results are also confirmed in the Figures. 4.5, 4.6(a) – 6(e).   

 From Fig. 4.5, it is observed that the current initially increases with thickness 

and then decreases. After 𝐿 ≥ 2mm, the current reaches the steady state value. An 

interesting as well as effective information can be predicted from Fig. 4.6(a) – 4.6(e) 

regarding the influence of the kinetic parameters over current 𝜓(𝜏) along time . The 

current considerably depends on the fact either the enzymatic rate within the film or the 

electron transport outside the film. From Fig.4. 6(a), it is confirmed that the current 

increases when the Thiele module increases. With increased initial concentration of 

substrate in bulk solution 𝑆∞, the corresponding current increases. This result is 

confirmed in Fig. 4.6(b). The influence of the saturation parameters   and  on the 

current was shown in Fig. 4.6(c) and 4.6(d).  Both parameters are inversely proportional 

to the current. Compared to ,  shows much deviation over current. From Fig. 4.6(e), 

it was found that the sharp decrease in the current with increasing ratio of diffusion 

coefficient 𝜉. And when 𝜉 is small, the current decreases slowly. From this figure, it is 

observed that for high current, the diffusion coefficient of product should be less than 

the diffusion coefficient of substrate i. e.  𝐷𝑆 < 𝐷𝑃.    

 

Figure 4.4. Sensitive analysis of parameters: Percentage change in current. 
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Figure 4.5. Plot of steady state current versus thickness of the film 𝐿. 

 

Figure 4.6. Plot of dimensionless current 𝜓(𝜏) versus dimensionless time  

calculated using Eqn. (4.19) for different values of (a) Thiele modulus 

, saturation parameters (b)  (c)  (d)  and (e) diffusion parameter 𝜉. 
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4.7 Estimation of kinetic parameters 𝑘,  𝑘𝑐𝑎𝑡𝑒𝑇 and 𝐾𝑀 

Numerous enzyme kinetics papers are dedicated for estimating the kinetics 

parameters and distinguishing between reaction mechanisms [27-29]. Pseudo first order 

constant 𝑘, helps us to quantify the rate of the chemical reaction. The Michaelis-Menten 

rate constant 𝐾𝑀, determines the relationship between the steady-state concentrations 

rather the equilibrium concentrations. The maximum velocity of the enzyme depends 

upon the catalytic rate constant 𝑘𝑐𝑎𝑡 and the total enzyme concentration 𝑒𝑇. The 

parameter 𝑘𝑐𝑎𝑡 is a very useful parameter which employs for the breakdown of the 

enzyme substrate complex ES to product P when the enzyme is fully saturated with 

substrate. These kinetic parameters can be obtained from our analytical expression of 

current (Eqn. (4.28)). For small value of 𝛾/𝜉, 𝑡𝑎𝑛ℎ( √𝛾/𝜉) ≈ √𝛾/𝜉. Now Eqn. (4.28) 

reduces to following form:  

𝜓𝑠𝑠 = − (1 +
𝜙

𝛽𝛾
)

𝛾

𝜉
 (4.36) 

Using Eqn. (4.10), the above equation can be rearranged as  

𝐼

𝑛𝐹𝛢𝜅𝑏𝑏∞𝐿
= 𝑘𝑐𝑎𝑡𝑒𝑇 (

1

𝜅𝑏𝑏∞
) + 𝑘 (4.37) 

As in Fig.4. 7(a),  plot of 𝐼/𝑛𝐹𝛢𝜅𝑏𝑏∞𝐿 versus 1/𝜅𝑏𝑏∞ gives the slope =𝑘, 

intercept =𝑘𝑐𝑎𝑡𝑒𝑇. When the diffusion coefficient of substrate and product are equal 

i.e.𝜉 = 1, and 𝛾 is small, the current (Eqn.4. 22) becomes 

𝜓𝑠𝑠 = −𝛾 −
𝛼

𝛽
(

𝜙

1+𝛼
) (4.38) 

By substituting the value of 𝜓𝑠𝑠, , ,  and  from the Eqn. (4.10) and 𝑘, 𝑘𝑐𝑎𝑡𝑒𝑇 

from Eqn. (4.37), the parameter 𝐾𝑀 can be obtained. Hence we can obtain pseudo first 

order rate constant 𝑘, enzymatic rate 𝑘𝑐𝑎𝑡𝑒𝑇 and Michaelis-Menten rate constant 𝐾𝑀 

from Eqns. (4.22) and (4.28). 
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Figure 4.7. Estimation of kinetic parameter: pseudo first order rate constant 𝑘 and 

enzymatic rate 𝑘𝑐𝑎𝑡𝑒𝑇 using Eqn. (4.37). 

4.8 Conclusions 

A simple mathematical analysis of reaction and diffusion of glucose and 

hydrogen peroxide within the conducting film containing metal microparticles have 

been presented. Using a new approach to the Homotopy perturbation method, an 

approximate analytical expression for the concentration of substrate and product are 

obtained. Approximate analytical expressions for the steady and non-steady state 

current response produced during the reduction of H2O2 to water at the electrode surface 

are derived. The differential sensitive analysis for the steady-state current response for 

the controllable parameters: the thickness of the film, bulk substrate, and product 

concentration and enzymatic rate are analyzed. Also, the estimation of kinetic 

parameters is reported graphically. 
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Appendix 4.A : Approximate analytical solution of the nonlinear Eqn. 4.9 using 

anew approach to the Homotopy perturbation method. 

In this Appendix, we have indicated how to determine the solution of Eqn. (4.9) 

using the boundary condition Eqns. (4.10) and (4.12). To solve Eqn. (4.9), the 

homotopy can be constructed 

as follows: 

(1 − 𝑝) [
𝜕2𝑢(𝜒,𝜏)

𝜕𝜒2 −
𝜙𝑢(𝜒,𝜏)

1+𝛼𝑢(𝜒=1,𝜏)
−

𝜕𝑢(𝜒,𝜏)

𝜕𝜏
] + 𝑝 [

𝜕2𝑢(𝜒,𝜏)

𝜕𝜒2 −
𝜙𝑢(𝜒,𝜏)

1+𝛼𝑢(𝜒,𝜏)
−

𝜕𝑢(𝜒,𝜏)

𝜕𝜏
] = 0 

                 (4.A1) 

or 

(1 − 𝑝) [
𝜕2𝑢(𝜒,𝜏)

𝜕𝜒2 −
𝜙𝑢(𝜒,𝜏)

1+𝛼
−

𝜕𝑢(𝜒,𝜏)

𝜕𝜏
] + 𝑝 [

𝜕2𝑢(𝜒,𝜏)

𝜕𝜒2 −
𝜙𝑢(𝜒,𝜏)

1+𝛼𝑢(𝜒,𝜏)
−

𝜕𝑢(𝜒,𝜏)

𝜕𝜏
] = 0 

   (4.A2) 

The approximate solution of Eqn. (4.11) is 

𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2+. .. (4.A3) 

Substituting equation (4.A3) into equation (4.A2) and arranging the coefficients of 

powers𝑝, 

we get 

p0 :
𝑑2𝑢0(𝜒,𝜏)

𝑑𝜒2 −
𝜑𝑢0(𝜒,𝜏)

1+𝑎
−

𝜕𝑢0(𝜒,𝜏)

𝜕𝜏
= 0  (4.A4) 

The initial and boundary conditions for the above Eqn. (4.A4) becomes 

At ,0= 𝑢0 = 1 (4.A6) 

,0=
𝜕𝑢0

𝜕𝜒
= 0  (4.A7) 

𝜒 = 1, 𝑢0 = 1  (4.A8) 

The partial differential equation (4.A4) and the corresponding boundary 

conditions Eqn. (4.A6) – (4.A8) in the Laplace plane becomes as follows   
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𝑑2𝑢̄0(𝜒)

𝑑𝜒2 −
𝜑𝑢̄0(𝜒)

1+𝑎
− 𝑠𝑢̄0(𝜒) + 1 = 0 (4.A9) 

The corresponding boundary conditions are 

,0=
𝜕𝑢̄0

𝜕𝜒
= 0  (4.A10) 

𝜒 = 1, 𝑢̄0 = 1/𝑠  (4.A11) 

where 𝑠is the Laplace variable and an over bar indicates a Laplace-transformed 

quantity. 

Solving the Eq. (4.A9), and using the boundary conditions and (4.A10) and 

(4.A11) we can find the following results 

𝑢̄0(𝜒) = [
1

𝑠
−

1

𝐴+𝑠
]

𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑐𝑜𝑠ℎ(√𝐴+𝑠)
+

1

𝐴+𝑠
 (4.A12)

 

Now, we indicate how Eqn. (4.A12) can be inverted using the complex inversion 

formula. If𝑦(𝑠) represents the Laplace transform of a function𝑦(𝜏), then according to 

the complex inversion formula we can state that

 

𝑦(𝜏) =
1

2𝜋 ∫ 𝑒𝑥𝑝[𝑠𝜏]𝑦(𝑠)𝑑𝑠
𝑐+𝑖∞

𝑐−𝑖∞

=
1

2𝜋𝑖
∮ 𝑒𝑥𝑝[ 𝑠𝜏]𝑦(𝑠)𝑑𝑠

𝑐
 (4.A13) 

where the integration in Eqn. (4.A13) is to be performed along a line 𝑠 = 𝑐 in the 

complexplane where 𝑠 = 𝑥 + 𝑖𝑦.The real number 𝑐 is chosen such that 𝑠 = 𝑐 lies to the 

right of all the singularities, but is otherwise assumed to be arbitrary. In practice, the 

integral is evaluated by considering the contour integral presented on the right-hand 

side of Eqn. (4.A13), which is then evaluated using the so-called Bromwich contour. 

The contour integral is then evaluated using the residue theorem which states for any 

analytic function 𝐹(𝑧). 

∮ 𝐹(𝑧)𝑑𝑧 = 2𝜋𝑖 ∑ 𝑅𝑒 𝑠 [𝐹(𝑧)]𝑧=𝑧0𝑛𝑐
      (4.A14) 

where the residues are computed at the poles of the function 𝐹(𝑧). Hence from Eqn. 

(4.A14),  

we note that  

𝑦(𝜏) = ∑ 𝑅𝑒 𝑠 [𝑒𝑥𝑝[ 𝑠𝜏]𝑦(𝑠)]𝑠=𝑠0𝑛       (4.A15)  
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From the theory of complex variables we can show that the residue of a function 𝐹(𝑧) 

at a simple pole at 𝑧 = 𝑎 is given by  

𝑅𝑒 𝑠 [𝐹(𝑧)]𝑧=𝑎 = 𝑙𝑖𝑚
𝑧→𝑎

{(𝑧 − 𝑎)𝐹(𝑧)}      (4.A16) 

Hence, in order to invert Eqn. (4.A12), we need to evaluate  

𝑅𝑒 𝑠 [
𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑠 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
] − 𝑅𝑒 𝑠 [

𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

(𝐴+𝑠) 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]     (4.A17) 

The poles are obtained from 𝑠 𝑐𝑜𝑠ℎ( √𝐴 + 𝑠) = 0 and (𝐴 + 𝑠) 𝑐𝑜𝑠ℎ( √𝐴 + 𝑠) = 0. 

Hence there is a simple pole at 𝑠 = 0, 𝑠 = −𝐴and there are infinitely many poles given 

by the solution of the equation 𝑐𝑜𝑠ℎ( √𝐴 + 𝑠) = 0 and so 𝑠𝑛 =
−𝜋2(2𝑛+1)2

4
− 𝐴  where 

n = 0, 1, 2, .Hence we note that   

𝑅𝑒 𝑠 [
𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑠 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
] = 𝑅𝑒 𝑠 [

𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑠 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]

𝑠=0
+ 𝑅𝑒 𝑠 [

𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑠 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]

𝑠=𝑠𝑛

 

− 𝑅𝑒 𝑠 [
𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

(𝐴+𝑠) 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]

𝑠=−𝐴
− 𝑅𝑒 𝑠 [

𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

(𝐴+𝑠) 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]

𝑠=𝑠𝑛

    
          

(4.A18) 

 

The residue at 𝑠 = 0in Eq. (4.A18) is given by 

𝑅𝑒 𝑠 [
𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑠 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]

𝑠=0
= 𝑙𝑖𝑚

𝑠→0
[

(𝑠−0)𝑒𝑠𝑡 𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑠 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
] = 

𝑐𝑜𝑠ℎ(√𝐴𝜒)

𝑐𝑜𝑠ℎ(√𝐴)
    

          (4.A19) 

The residue at 𝑠 = 𝑠𝑛in Eq. (4.A18) becomes 

𝑅𝑒 𝑠 [
𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑠 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]

𝑠=𝑠𝑛

= 𝑙𝑖𝑚
𝑠→𝑠𝑛

[
𝑒𝑠𝑡 𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑠 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]= 𝑙𝑖𝑚

𝑠→𝑠𝑛

[
𝑒𝑠𝑡 𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑠
𝑑

𝑑𝑠
𝑐𝑜𝑠ℎ(√𝐴+𝑠)

]

 
= −4𝜋 ∑

(−1)𝑛(2𝑛+1) 𝑐𝑜𝑠[(2𝑛+1)𝜋𝜒/2]𝑒
−[(2𝑛+1)2𝜋2+4𝐴]

𝜏
4

(2𝑛+1)2𝜋2+4𝐴
∞
𝑛=0    (4.A20) 

The residue at 𝑠 = −𝐴in Eq. (4.A18) is given by 

𝑅𝑒 𝑠 [
𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

𝑠 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]

𝑠=−𝐴
= 𝑙𝑖𝑚

𝑠→−𝐴
[

(𝑠+𝐴)𝑒−𝐴𝑡 𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

(𝑠+𝐴) 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
] = 𝑒−𝐴𝑡   (4.A21) 

The fourth residue at 𝑠 = 𝑠𝑛in Eq. (4.A18) becomes 
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𝑅𝑒 𝑠 [
𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

(𝐴+𝑠) 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]

𝑠=𝑠𝑛

= 𝑙𝑖𝑚
𝑠→𝑠𝑛

[
𝑒𝑠𝑡 𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

(𝐴+𝑠) 𝑐𝑜𝑠ℎ(√𝐴+𝑠)
]= 𝑙𝑖𝑚

𝑠→𝑠𝑛

[
𝑒𝑠𝑡 𝑐𝑜𝑠ℎ(√𝐴+𝑠𝜒)

(𝐴+𝑠)
𝑑

𝑑𝑠
𝑐𝑜𝑠ℎ(√𝐴+𝑠)

]

 
= −

4

𝜋
∑

(−1)𝑛 𝑐𝑜𝑠[(2𝑛+1)𝜋𝜒/2]𝑒
−[(2𝑛+1)2𝜋2+4𝜙]

𝜏
4

(2𝑛+1)
∞
𝑛=0     (4.A22) 

From Eqns. (4.A12) - (4.A22) we get Eqn. (4.17) in the text. Similarly, we can 

solve Eqn.(4.12) by using complex inversion formula. 
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CHAPTER 5 

Sensitivity and Resistance of Amperometric Biosensors in Substrate 

Inhibition Processes 

5.1 Introduction 

Biosensors are approximate analytical devices that tightly combine 

biorecognition elements and physical transducer for the detection of the target 

compounds. An amperometric biosensor is a tool used in a solution to measure the 

concentration of a specific particular chemical or biochemical substances [1–4]. In 

biosensor, many enzymes are inhibited by their substrates. In the literature, the 

theoretical model has been widely applied as an essential tool to study and optimize the 

approximate analytical characteristics of biosensors. Practical biosensors contain a 

multilayer enzyme membrane; Exploratory monolayer membrane-containing 

biosensors are widely used to study the biochemical behavior of biosensors. The 

inhibition ofsubstrates is often considered abiochemical oddity and experimental 

annoyance. This model is based on the system of non-stationary diffusion equations 

containing a nonlinear term related to non-Michaelis-Menten kinetics of the enzyme 

reaction [3]. 

The biosensor model with a substrate and product inhibition was constructed to 

reduce the number of biosensor properties. Manimozhi et al. [5] found the solution of 

steady-state substrate concentration in the case of substrate inhibition using the 

Homotopy perturbation method (HPM) and variational iteration method (VIM). 

Already the approximate analytical expression for steady-state concentrations of 

substrate and product with substrate inhibition using the Adomian decomposition 

method was discussed by Anitha et al. [6].  

A carbon nanotube based biosensor was mathematically modelled by Lyons 

[7,8]. The one-dimensional steady-state boundary value problem describing the 

transport and the kinetics of the substrate and the mediator in the two compartment 

domain was solved approximate analytically. Baronas et al. [9]proposed the 

mathematical model for the mediated biosensor with the CNT electrode deposited on 

the perforated membrane.In this chapter, for small values of reaction/diffusion 
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parameters, we have derived an approximate analytical expression of sensitivity and 

resistance of biosensor. 

5.2 Mathematical formulation of the problems  

In the enzyme reaction, 

𝐸 + 𝑆 ↔  𝐸𝑆 →  𝐸 + 𝑃 (5.1) 

the substrate (S) binds to the enzyme (E) in order to form an enzyme-substrate complex 

ES. The substrate is converted to product (P) while it is part of this complex. The rate 

of the product's appearance depends on its substrate concentration.  

For example, the simplest scheme of non-Michaelis-Menten kinetics may have 

been obtained by adding to the Michaelis-Menten scheme (Equation (5.1)), a stage of 

enzyme-substrate complex (ES) interaction with another substrate molecule (S) 

(Equation (5.2)) after the non-active complex (ESS) is generated as follows[10]: 

𝐸𝑆 + 𝑆 ↔  𝐸𝑆𝑆  (5.2) 

The steady-state nonlinear differential equations for the substrate inhibition are[10]: 

𝐷𝑠
d2𝑠(𝑥)

𝑑𝑥2 −
𝑉𝑚𝑎𝑥 𝑠(𝑥)

𝑘𝑚+𝑠(𝑥)+
(𝑠(𝑥))

𝑘𝑠

2 = 0     (5.3) 

𝐷𝑝
d2𝑝(𝑥)

𝑑𝑥2 +
𝑉𝑚𝑎𝑥𝑠(𝑥)

𝑘𝑚+𝑠(𝑥)+
(𝑠(𝑥))

𝑘𝑠

2 = 0     (5.4) 

where 𝐷𝑠 , 𝐷𝑝 are the diffusion coefficients of the substrate and product in the enzyme 

layer. 𝑠(𝑥) and  𝑝(𝑥) are the concentration of substrate and product in the enzyme layer. 

𝑉𝑚𝑎𝑥 is the maximal enzymatic rate, 𝑘𝑚 denotes the Michaelis-Menten constant, 𝑘𝑠 

inhibition constant and 𝑑 is the thickness of the enzyme layer.The corresponding 

boundary conditions are [10] 

d𝑠(𝑥)

d𝑥
= 0, 𝑝(𝑥) = 0 𝑤ℎ𝑒𝑛 𝑥 = 0   (5.5) 

where 𝑠∗ is the concentration of substrate at 𝑥 = 𝑑 and 𝑑 is thickness of the enzyme 

layer. The modeling of the amperometric biosensor with the substrate inhibition reveals 

the complex kinetics of the biosensor response. At low substrate concentration, the 
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kinetics looks like a simple substrate diffusion. When inhibition constant is large  

(𝑘𝑠 → ∞), the reaction kinetics is Michaelis-Menden model. 

The steady-state current 𝐼 of the biosensor is expressed as follows: 

𝐼 = 𝑛𝑒𝐹𝐷𝑝
𝑑𝑝(𝑥)

𝑑𝑥
|

𝑥=0
      (5.7) 

we introduce the set of dimensionless variables as follows: 

𝑆(𝜒) =
𝑠(𝑥)

𝑠∗
, 𝑃(𝜒) =

𝑝(𝑥)

𝑠∗
, 𝜒 =

𝑥

𝑑
, 𝜙𝑠

2 =
𝑉𝑚𝑎𝑥𝑑2

𝐷𝑠𝑘𝑚
, 𝜙𝑝

2 =
𝑉𝑚𝑎𝑥𝑑2

𝐷𝑝𝑘𝑚
, 𝛼 =

𝑠∗

𝑘𝑚
, 𝛽 =

(𝑠∗)2

𝑘𝑚𝑘𝑠
 

      (5.8) 

where 𝑆(𝜒) and 𝑃(𝜒) indicate the dimensionless concentration of substrate and product 

respectively. 𝜙𝑠
2
and 𝜙𝑝

2
denote the corresponding reaction diffusion parameters. 𝜒 

represents the dimensionless distance. 𝛼 and β represents the saturation parameters. The 

governing nonlinear reaction/diffusion equations (5.3) and (5.4) are expressed in the 

following non-dimensionless form. 

d2𝑆(𝜒)

d𝜒2 −
𝜙𝑠

2𝑆(𝜒)

1+𝛼𝑆(𝜒)+𝛽(𝑆(𝜒))2 = 0 (5.9) 

d2𝑃(𝜒)

d𝜒2 +
𝜙𝑝

2𝑆(𝜒)

1+𝛼𝑆(𝜒)+𝛽(𝑆(𝜒))2 = 0 (5.10) 

The boundary conditions are given by:  

d𝑆

d𝜒
= 0, 𝑃 = 0 𝑤ℎ𝑒𝑛 𝜒 = 0 (5.11) 

𝑆 = 1, 𝑃 = 0 𝑤ℎ𝑒𝑛 𝜒 = 1 (5.12) 

The dimensionless current is reduced to 

𝜓 =
𝐼

𝑛𝑒𝐹𝐷𝑃
[

𝑑

𝑠∗
] =

d𝑃

d𝜒
|

𝜒=0
 (5.13) 
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5.3 Approximate analytical expression of concentration of substrate and product 

5.3.1 Approximate solution using Taylor series method 

Equations (5.9)-(5.10) are representing the system of nonlinear equations. It is 

very difficult to find the exact solution of these nonlinear equations. Solving systems 

of nonlinear equations is perhaps one of the most difficult problems, especially in a 

diverse range of science and engineering applications. Recently so many approximate 

analytical methods [11] are used to solve the nonlinear equations   such as homotopy 

perturbation method [12–16],residual method [17], Taylor series method [18–21], 

AGM method [22–24], new approximate analytical method [25–27]. The concentration 

of substrate and product are obtained by solving the  nonlinear equations (9)-(10)  using 

Taylor series method [28–30] (see Appendix A) as follows: 

𝑆(𝜒) ≈ 1 + 𝑆′(1)(𝑥 − 1) +
1

2

𝜙𝑠
2(𝑥−1)2

1+𝛼+𝛽 
 +

𝜙𝑠
2𝑆′(1)(𝑥−1)3

1+𝛼+𝛽 
(1 −

𝛼+2𝛽

1+𝛼+𝛽 
) (5.14) 

𝑃(𝜒) ≈ 𝑃′(1)(𝑥 − 1) −
1

2

𝜙𝑃
2(𝑥−1)2

1+𝛼+𝛽 
 −

𝜙𝑃
2𝑆′(1)(𝑥−1)3

1+𝛼+𝛽 
(1 −

𝛼+2𝛽

1+𝛼+𝛽 
) (5.15) 

Where 

𝑆′(1) =
2 𝜙𝑠

2(1+𝛼+𝛽)

2(1+2𝛼+2𝛽 )+2(𝛼+𝛽)2+𝜙𝑠
2(1−𝛽)

;  𝑃′(1) =
𝜙𝑝

2(3+3𝛼+3𝛽−𝑙+𝛽𝑙)

6(1+𝛼+𝛽 )2  (5.16) 

5.3.2 Approximate solution using new homotopy perturbation method 

With the rapid development of nonlinear science, there appears an ever-

increasing interest of scientists and engineers in the approximate analytical asymptotic 

techniques for nonlinear problems [31]. It is very difficult to solve nonlinear problems 

either numerically or theoretically. Perturbation methods provide the most versatile 

tools available in nonlinear analysis of engineering problems, and they are constantly 

being developed and applied to ever more complex problems. Homotopy perturbation 

method was first proposed by the He[32]. Recently, a new approach to HPM is 

presented to solve the nonlinear problem and this gives a simple approximate solution 

in the zeroth iteration [33]. By using this new homotopy perturbation[34–36] 

(Appendix B), the concentrations of substrate and products can be obtained as follows: 
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𝑆(𝜒) ≈
𝑐𝑜𝑠ℎ(𝑚𝜒)

𝑐𝑜𝑠ℎ(𝑚)
 (5.17) 

𝑃(𝜒) ≈
𝜙𝑝

2

𝜙𝑠
2 (𝜒 +

1−𝜒−𝑐𝑜𝑠ℎ(𝑚𝜒)

𝑐𝑜𝑠ℎ(𝑚)
) (5.18) 

where 𝑚 =
𝜙𝑠

√1+𝛼+𝛽
= √

𝑉𝑚𝑎𝑥𝑑2

𝐷𝑠(𝑘𝑚+𝑠∗+
(𝑠∗)2

𝑘𝑠
)
 (5.19) 

The dimensionless current is  

𝜓 =
𝐼

𝑛𝑒𝐹𝐷𝑃
[

𝑑

𝑠∗] =
𝑑𝑃(𝜒)

𝑑𝜒
|

𝜒=0
=

𝜙𝑝
2

𝜙𝑠
2 (1 −

1

𝑐𝑜𝑠ℎ(𝑚)
) =

𝐷𝑠

𝐷𝑝
(1 −

1

𝑐𝑜𝑠ℎ(𝑚)
) (5.20) 

The value of steady-state current (𝐼)is 

𝐼

𝑛𝑒𝐹
=

𝐷𝑠𝑠∗

𝑑
(1 − sech (√

𝑉𝑚𝑎𝑥𝑑2

𝐷𝑠(𝑘𝑚+𝑠∗+
(𝑠∗)2

𝑘𝑠
)
)) (5.21) 

The result obtained using newhomotopy perturbation method is equivalent  to 

approximate analytical expression derived by hyperbolic function method [38]. 

5.3.3 Sensitivity of biosensor 

The sensitivity is one of the most important characteristic of biosensors. The 

sensitivity 𝐵𝑆 of a biosensor can be expressed as a gradient of the maximal biosensor 

current density with respect to the substrate concentration 𝑠∗[10]. The dimensionless 

sensitivity for the substrate concentration 𝑠∗ is given by 

𝐵𝑆(𝑠∗) =
𝑠∗

𝐼(𝑠∗)

d𝐼(𝑠∗)

d𝑠∗
= 1 + (

1

2
+

𝑠∗

𝑘𝑠
)

𝑠∗

(𝑘𝑚+𝑠∗+
(𝑠∗)2

𝑘𝑠
)

𝑚 𝑡𝑎𝑛ℎ(𝑚)

1−𝑐𝑜𝑠ℎ(𝑚)
  (5.22) 

where 𝐵𝑆 stands for the dimensionless sensitivity of the amperometric biosensor and 

𝐼(𝑠∗) is the density of the steady-state biosensor current calculated at the substrate 

concentration 𝑠∗. From the eqn.(5.22), it is conformed that the sensitivity 𝐵𝑆 varies 

between -1 and 1.  
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5.3.4 Resitanceof biosensor 

The resistance of the membrane-based biosensors to changes of the membrane 

thickness is introduced. The normalized dimensionless resistance 𝐵𝑅 of the biosensor 

is expressed as the gradient of the steady-state biosensor current with respect to the 

enzyme layer thickness 𝑑[10], 

𝐵𝑅(𝑑) =
𝑑

𝐼(𝑑)

d𝐼(𝑑)

d𝑑
=

𝑚 𝑡𝑎𝑛ℎ(m)

𝑐𝑜𝑠ℎ(m)−1
− 1 (5.23) 

 where BR stands for the dimensionless sensitivity of the amperometric biosensor and 

𝐼(𝑑) is the steady-state biosensor current calculated at the thickness of the enzyme 

layer 𝑑. The resistance 𝐵𝑅 varies between -1 and 1. The inverse of resistance is referred 

to as conductance, and such detection is referred to as conductometric electrochemical 

biosensor or simply conductometric biosensor [10]. The relationship between 

sensitivity and resistance are obtained from the equations (5.22 & 5.23) as follows: 

𝐵𝑆(𝑠∗) = 1 + (
1

2
+

𝑠∗

𝑘𝑠
)

𝑠∗

(𝑘𝑚+𝑠∗+
(𝑠∗)2

𝑘𝑠
)

(𝐵𝑅(𝑑) + 1) (5.24) 

5.3.5 Thickness of the membrane 

Using (5.18) we find approximate analytically the membrane thickness 𝑑, at 

which the steady-state current 𝐼 gains the maximum at given parameters 

𝑉𝑚𝑎𝑥 , 𝐷𝑠, 𝑘𝑚, 𝑘𝑠 𝑎𝑛𝑑 𝑠∗. We can rewrite the equation (5.18) as follows: 

𝐼(𝑑)

𝑛𝑒𝐹
=  

𝐷𝑠𝑠∗

𝑑
(1 − sech(𝑚)) (5.25) 

We calculate a derivative of 𝐼(𝑑) with the respect to the thickness 𝑑. 

𝜕𝐼(𝑑)

𝜕𝑑
=  𝑛𝑒𝐹𝐷𝑠𝑠∗ 1

𝑑2
[(1 + 𝑚 tanh(𝑚))sech (𝑚) − 1] (5.26) 

And we're looking for 𝑑, where the derivative gets zero. 

(1 + 𝑚 tanh(𝑚))sech (𝑚) − 1 = − cosh2(𝑚) + cosh(𝑚) + 𝑚 𝑠𝑖𝑛ℎ(𝑚) = 0 (5.27) 

Equation (5.24) was solved numerically. A single solution 𝑚 = 𝑚𝑚𝑎𝑥 =  1.5055 was 

obtained. Consequentially, 𝐼 gains the maximum at the membrane thickness 𝑑, where 
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𝑑𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
√

𝐷𝑠(𝑘𝑚+𝑠∗+
(𝑠∗)2

𝑘𝑠
)

𝑉𝑚𝑎𝑥
= 285.65𝜇𝑚 (5.28) 

at the values 𝑘𝑠 = 10 𝜇𝑀, 𝑘𝑚 = 100 𝜇𝑀,𝐷𝑠 = 𝐷𝑝 = 300 𝜇𝑚2/𝑠, 𝑠∗ = 10 𝜇𝑀 and 

𝑉𝑚𝑎𝑥 = 1 𝜇𝑀/𝑠 (values used in Fig. 5.4a). 

5.4. Result and Discussion 

Equations (5.14)-(5.19) are the simple and closed-form of approximate 

analytical expressions of sensitivity and resistance of amperometry biosensor with 

substrate inhabitation kinetics for the for different values of parameters such as 

substrate reaction-diffusion parameter (𝜙𝑠
2), product reaction-diffusion parameter 

(𝜙𝑝
2), thickness ofmembrane, diffusion coefficients and saturation parameters (𝛼 and 

𝛽), respectively. 

The error percentage between numerical and the approximate solution obtained 

by the Taylor series method and hyperbolic function method is less than 3.72% for 

small values of reaction-diffusion parameters (Tables 5.1 and 5.2). Here the analytical 

results are obtained using three terms for the Taylor series and zeroth-order iteration 

for NHPM. The approximation accuracy should be increased by increasing high order 

terms in the Taylor series and iteration in NHPM.   

5.4.1 Sensitivity 

The sensitivity is also one of the most important characteristics of the 

biosensors[10]. The biosensor sensitivity can be expressed as the gradient of the steady-

state current with respect to the substrate concentration. Since the biosensor current as 

well as the substrate concentration varies even in orders of magnitude, especially when 

comparing different sensors, another useful parameter to consider is a dimensionless 

sensitivity.  

 The biosensor sensitivity for different values of the parameter are displays in 

the Figs. 5.1(a-b) and 5. 2(a-c). It is notice that a decrease in all parameter leads to 

decrease in sensitivity. When 𝑠∗ ≈ 103𝜇𝑀 the sensitivity reaches the minimum value 

-1.Due to the substrateinhibition, the sensitivity differsnotably only at intermediate 

concentrations of the substratei.e 1 𝜇𝑀 < 𝑠∗ < 100 𝜇𝑀. 
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Figure 5.1. The biosensor sensitivity using eqn. (5.22) for fixed values of  

𝐷𝑠 = 𝐷𝑝 = 300 𝜇𝑚2/𝑠,  𝑉𝑚𝑎𝑥 = 1 𝜇𝑀/𝑠, 𝑑 = 100 𝜇𝑚. (a). 𝑘𝑠 = 10 𝜇𝑀 

and various values of 𝑘𝑚𝜇𝑀. (b).𝑘𝑚 = 100𝜇𝑀 and various values of 

𝑘𝑠𝜇𝑀. 

 

Figure 5.2. The biosensor sensitivity using eqn. (5.22) for fixed values of  

𝑘𝑠 = 10𝜇𝑀, 𝑘𝑚 = 100 𝜇𝑀. (a). 𝐷𝑠 = 𝐷𝑝 = 300 𝜇𝑚2/𝑠, 𝑑 = 100𝜇𝑚 

and various values of 𝑉𝑚𝑎𝑥𝜇𝑀/𝑠. (b).𝑉𝑚𝑎𝑥 = 1 𝜇𝑀/𝑠, 𝑑 = 100 𝜇𝑚 and 

various values of 𝐷𝑠 = 𝐷𝑝𝜇𝑚2/𝑠. (c).𝐷𝑠 = 𝐷𝑝 = 300 𝜇𝑚2/𝑠, 𝑉𝑚𝑎𝑥 =

1 𝜇𝑀/𝑠 and various values of 𝑑 𝜇𝑚. 
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5.4.2 Resistance 

Figures 5.3-5.4 illustrate the biosensor resistance 𝐵𝑅 versus the membrane 

thickness d for different values of theparameter. One can seefrom the figures that the 

shape of all the curves of the normalized resistance is very similar. The results show 

that theeffect of increasing values of the membrane thickness 𝑑, results in a deceasing 

resistivity. It means that the maximal as well as minimal biosensor resistance 𝐵𝑅 is 

directly proportional to 𝜙𝑠
2(= 𝑉𝑚𝑎𝑥𝑑2/𝐷𝑠𝑘𝑚). 

Since 𝐼 is a non-monotonous function of 𝑑, the 𝐵𝑅 varies between -1 and 1. The 

cases when 𝐵𝑅 is close to -1 or 1 correspond to the biosensors the response of which is 

very sensitive to changes in the thickness d of the enzyme membrane. The noticeable 

change in the behavior of the biosensor resistance at the moderate substrate 

concentrations due to the transition from the kinetic-limited to the diffusion-controlled 

mode of the biosensor action. 

As one can see in Figures 4.3 and 4.4 an increase in the electrochemical reaction 

rate constant 𝑘𝑚, substrate concentration 𝑠∗ or decrease in 𝑘𝑠 and 𝑉𝑚𝑎𝑥  proportionally 

shifts the curve representing the resistance 𝐵𝑅 to the right. Thus, an increase in the 

diffusion coefficientproportionally prolongs the linear part of the biosensor resistance 

calibration curve. 

 

Figure 5.3.  The biosensor resistance using eqn. (5.23) for fixed values of 𝐷𝑠 = 𝐷𝑝 =

300 𝜇𝑚2/𝑠, 𝑉𝑚𝑎𝑥 = 1 𝜇𝑀/𝑠.(a).𝑘𝑠 = 10 𝜇𝑀, 𝑠∗ = 10 𝜇𝑀 and various 

values of 𝑘𝑚 𝜇𝑀. (b).𝑘𝑚 = 100 𝜇𝑀, 𝑠∗ = 30 𝜇𝑀 and various values 

of𝑘𝑠 𝜇𝑀.  
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Figure 5.4. The biosensor resistance using eqn. (5.23) for fixed values of  

𝑘𝑠 = 10 𝜇𝑀, 𝑘𝑚 = 100 𝜇𝑀. (a). 𝐷𝑠 = 𝐷𝑝 = 300 𝜇𝑚2/𝑠, 𝑠∗ = 10 𝜇𝑀 

and various values of𝑉𝑚𝑎𝑥𝜇𝑀/𝑠.(b).𝑉𝑚𝑎𝑥 = 1 𝜇𝑀/𝑠, 𝑠∗ = 10 𝜇𝑀 and 

various values of 𝐷𝑠 = 𝐷𝑝 𝜇𝑚2/𝑠. (c). 𝐷𝑠 = 𝐷𝑝 = 300 𝜇𝑚2/𝑠, 𝑉𝑚𝑎𝑥 =

1 𝜇𝑀/𝑠 and various values of 𝑠∗𝜇𝑀.  

5.5 Conclusions 

The mathematical model of the amperometric biosensor can be successfully 

used to investigate the biosensor's sensitivity and resistance. Simple and closed-form 

the approximate analytical expression for the sensitivity and resistance are obtained for 

substrate inhibition kinetics. The current function𝐼 gain the maximum at the membrane 

thickness 𝑑𝑚𝑎𝑥 = 1.5055√𝐷𝑠 (𝑘𝑚 + 𝑠∗ +
(𝑠∗)2

𝑘𝑠
) /𝑉𝑚𝑎𝑥. The effect of thickness of the 

membrane, concentration of substrate at𝑥 = 𝑑, diffusion coefficient, Michaelis-Menten 

constant, inhibition constant on sensitivity and resistance are discussed. The biosensor 
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sensitivity and the linear range of the calibration curve can be increased when substrate 

concentration 𝑠∗ < 1 𝜇𝑀 𝑜𝑟 𝑠∗ > 103 𝜇𝑀 and all values of other parameters.  

Enzyme concentration can significantly reduce biosensor resistance. By 

decreasing the concentration of the substrate, biosensor resistance may also be greatly 

reduced (Fig-4). When the biosensor operates in the diffusion-limiting mode instead of 

in the enzyme reaction-controlled mode, the linear portion of the calibration curve is 

longer. 

Table 5.1: Comparison of numerical solution of concentration of substrate with the 

analytical solutions obtained by hyperbolic function method and Taylor 

series method for 𝛼 = 0.1, 𝛽 = 0.1 and for different values of 𝜙𝑠
2
. 

χ 

𝜙𝑠
2 = 0.5, 𝑚 = 0.65 𝜙𝑠

2 = 1, 𝑚 = 0.9 

NUM 

NHPM 

Eq. 

(5.17) 

TSM 

Eq. 

(5.14) 

Error 

% for  

NHP

M 

Error    

% for 

TSM 

NUM 

NHPM 

Eq. 

(5.17) 

TSM 

Eq. 

(5.14) 

Error 

% for 

NHP

M 

Error   

%  for 

TSM 

0 0.8170 0.8226 0.8292 0.68 1.49 0.6768 0.6914 0.7156 2.15 5.73 

0.25 0.8281 0.8333 0.8390 0.6 1.31 0.6959 0.7094 0.7303 1.94 4.94 

0.5 0.8618 0.8658 0.8696 0.46 0.90 0.7540 0.7646 0.7784 1.41 3.24 

0.75 0.9187 0.9209 0.9226 0.23 0.42 0.8539 0.8598 0.8663 0.69 1.44 

1 1.0000 1.0000 1.0000 0.00 0.00 1.0000 1.0000 1.0000 0.00 0.00 

 Average Error % 0.40 0.82 Average Error % 1.24 3.07 
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Table 5.2: Comparison of numerical solution of concentration of  product with the analytical 

solution obtained by hyperbolic function method and Taylor series method for  

𝛼 = 0.1, 𝛽 = 0.1, 𝜙𝑠
2 = 1 and for different values of 𝜙𝑝

2
. 

χ 

𝜙𝑝
2 = 0.5, 𝑚 = 0.9 𝜙𝑝

2 = 1, 𝑚 = 0.9 

NUM 

NHPM 

Eq. 

(5.18) 

TSM 

Eq. 

(5.15) 

Error 

% for  

NHPM 

Error    

% for 

TSM 

NUM 

NHPM 

Eq. 

(5.18) 

TSM 

Eq. 

(5.15) 

Error % 

for 

NHPM 

Error   %  

for TSM 

0 0.0000 0.0000 0.0000 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.00 

0.25 0.0309 0.0295 0.0282 4.41 8.69 0.0617 0.0591 0.0564 4.25 8.55 

0.5 0.0422 0.0405 0.0397 3.97 5.96 0.0844 0.0810 0.0794 3.97 5.96 

0.75 0.0327 0.0315 0.0313 3.65 4.24 0.0653 0.0630 0.0626 3.50 4.0 

1 0.0000 0.0000 0.0000 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.000 

 Average Error % 2.40 3.78 Average Error % 2.34 3.72 

 

Here Num denotes numerical solution, NHPM-new homotopy perturbation 

method, TSM-Taylor series method. 
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APPENDIX 5.A: 

Analytical solution of nonlinear equation (Eq.5.11 and Eq.5.12) using Taylor series 

method 

Consider the nonlinear equations 

𝑑2𝑆

𝑑𝜒2 −
𝜙𝑠

2𝑆

1+𝛼𝑆+𝛽𝑆2 = 0 (5.A1) 

𝑑2𝑃

𝑑𝜒2
+

𝜙𝑝
2𝑆

1+𝛼𝑆+𝛽𝑆2
= 0 (5.A2) 

The boundary conditions are given by:  

𝑑𝑆

𝑑𝜒
= 0, 𝑃 = 0 𝑤ℎ𝑒𝑛 𝜒 = 0 (5.A3) 

𝑆 = 1, 𝑃 = 0 𝑤ℎ𝑒𝑛  𝜒 = 1 (5.A4) 

Consider the Taylor's series at χ = 1 for dimensionless concentration of 𝑆(𝜒) and 𝑃(𝜒). 

𝑆(𝜒) ≈ ∑ (
𝑑𝑞𝑆

𝑑𝜒𝑞|
𝜒=1

)
(𝜒−1)𝑞

𝑞!

3
𝑞=0  (5.A5) 

𝑃(𝜒) ≈ ∑ (
𝑑𝑞𝑃

𝑑𝜒𝑞|
𝜒=1

)
(𝜒−1)𝑞

𝑞!

3
𝑞=0  (5.A6) 

Let 
𝑑𝑞𝑢

𝑑𝜒𝑞
|

𝜉=1
= 𝐴𝑞 , 

𝑑𝑞𝑣

𝑑𝜒𝑞
|

𝜉=1
= 𝐵𝑞 and from the boundary conditions (Eq. (5.A3-5.A4)), 

we get 𝐴0 = 1 𝑎𝑛𝑑 𝐵0 = 0  . Let us consider, 𝐴1 = 𝑆′(1), 𝐵1 = 𝑃′(1) . Then  

𝑆(𝜒) ≈ ∑ 𝐴𝑞
(𝜒−1)𝑞

𝑞!

3
𝑞=0  (5.A7) 

𝑃(𝜒) ≈ ∑ 𝐵𝑞
(𝜒−1)𝑞

𝑞!

3
𝑞=0  (5.A8) 

Substituting χ = 1 in Eq. (5.A1) and Eq. (5.A2)  , we get the following  

𝐴2 =
𝜙𝑠

2

1+𝛼+𝛽 
 (5.A9) 

𝐵2 = −
𝜙𝑃

2

1+𝛼+𝛽 
   (5.A10) 
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𝐴3 =
𝜙𝑠

2𝑙

1+𝛼+𝛽 
(1 −

𝛼+2𝛽

1+𝛼+𝛽 
) (5.A11) 

𝐵3 = −
𝜙𝑃

2𝑙

1+𝛼+𝛽 
(1 −

𝛼+2𝛽

1+𝛼+𝛽 
) (5.A12) 

Consider the approximation stops at third step, then we have 

𝑆(𝜒) ≈ 𝐴0 + 𝐴1(𝑥 − 1) +
𝐴2

2
(𝑥 − 1)2 +

𝐴3

6
(𝑥 − 1)3  

= 1 + 𝑆′(1)(𝑥 − 1) +
1

2

𝜙𝑠
2(𝑥−1)2

1+𝛼+𝛽 
 +

𝜙𝑠
2𝑆′(1)(𝑥−1)3

1+𝛼+𝛽 
(1 −

𝛼+2𝛽

1+𝛼+𝛽 
) (5.A13) 

𝑃(𝜒) ≈ 𝐵0 + 𝐵1(𝑥 − 1) +
𝐵2

2
(𝑥 − 1)2 +

𝐵3

6
(𝑥 − 1)3  

= 𝑃′(1)(𝑥 − 1) −
1

2

𝜙𝑃
2(𝑥−1)2

1+𝛼+𝛽 
 −

𝜙𝑃
2𝑆′(1)(𝑥−1)3

1+𝛼+𝛽 
(1 −

𝛼+2𝛽

1+𝛼+𝛽 
) (5.A14) 

Now using the boundary conditions
𝑑𝑆

𝑑𝜒
= 0, 𝑃 = 0 𝑤ℎ𝑒𝑛 𝜒 = 0, we can get  

𝑆′(1) =
2 𝜙𝑠

2(1+𝛼+𝛽)

2(1+2𝛼+2𝛽 )+2(𝛼+𝛽)2+𝜙𝑠
2(1−𝛽)

; 𝑃′(1) =
𝜙𝑝

2(3+3𝛼+3𝛽−𝑙+𝛽𝑙)

6(1+𝛼+𝛽 )2  (5.A15) 
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Appendix 5.B:  

Analytical solution of nonlinear equation (Eq.5.11 and Eq.5.12) using new 

homotopy perturbation method 

In this Appendix, we indicate how Eq. (5.5) in this paper is derived.  

𝑑2𝑆

𝑑𝜒2 −
𝜙𝑠

2𝑆

1+𝛼𝑆+𝛽𝑆2 = 0 (5.B1) 

𝑑2𝑃

𝑑𝜒2
+

𝜙𝑝
2𝑆

1+𝛼𝑆+𝛽𝑆2
= 0 (5.B2) 

The boundary conditions are given by:  

𝑑𝑆

𝑑𝜒
= 0, 𝑃 = 0 𝑤ℎ𝑒𝑛 𝜒 = 0 (5.B3) 

𝑆 = 1, 𝑃 = 0 𝑤ℎ𝑒𝑛  𝜒 = 1 (5.B4) 

we first construct a Homotopy as follows[34–37]:  

(1 − 𝑝) [
𝑑2𝑆

𝑑𝜒2 −
𝜙𝑠

2𝑆

1+𝛼𝑆( 𝜒=1)+𝛽𝑆( 𝜒=1)2] + 𝑝 [(1 + 𝛼𝑆 + 𝛽𝑆2)
𝑑2𝑆

𝑑𝜒2 − 𝜙𝑠
2𝑆] = 0 (5.B5) 

(1 − 𝑝) [
𝑑2𝑃

𝑑𝜒2 +
𝜙𝑝

2𝑆

1+𝛼𝑆( 𝜒=1)+𝛽𝑆( 𝜒=1)2] + 𝑝 [(1 + 𝛼𝑆 + 𝛽𝑆2)
𝑑2𝑃

𝑑𝜒2 + 𝜙𝑝
2𝑆] = 0 (5.B6) 

on simplification we get  

(1 − 𝑝) [
𝑑2𝑆

𝑑𝜒2 +
𝜙𝑠

2𝑆

1+𝛼+𝛽
] + 𝑝 [(1 + 𝛼𝑆 + 𝛽𝑆2)

𝑑2𝑆

𝑑𝜒2 − 𝜙𝑠
2𝑆] = 0 (5.B7) 

(1 − 𝑝) [
𝑑2𝑃

𝑑𝜒2
+

𝜙𝑝
2𝑆

1+𝛼+𝛽
] + 𝑝 [(1 + 𝛼𝑆 + 𝛽𝑆2)

𝑑2𝑃

𝑑𝜒2
+ 𝜙𝑝

2𝑆] = 0 (5.B8) 

The approximate solution of Eqs. (5.B1) and (5.B2) are 

𝑆 =  𝑆0 + 𝑝 𝑆1 + 𝑝2𝑆2+. . .. (5.B9) 

𝑃 =  𝑃0 + 𝑝 𝑃1 + 𝑝2𝑃2+. . .. (5.B10) 

Substituting Eq. (5.B9)in Eq. (5.B7) and Eq. (5.B10) in Eq.(5.B8)in, then comparing 

the coefficients of like powers of p yields:    
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𝑝0:
𝑑2𝑆0

𝑑𝜒2 −
𝜙𝑠

2𝑆0

1+𝛼+𝛽
= 0 (5.B11) 

𝑝0:
𝑑2𝑃0

𝑑𝜒2
+

𝜙𝑝
2𝑆0

1+𝛼+𝛽
= 0 (5.B12) 

The boundary conditions are 

𝜒 = 0;
𝑑𝑆𝑖

𝑑𝜒
= 0; 𝑃𝑖 = 0; 𝑖 = 0,1,2,3 …    (5.B13) 

𝜒 = 1; 𝑆0 = 1; 𝑃0 = 0; 𝑆𝑖 = 0; 𝑃𝑖 = 0; 𝑖 = 1,2,3 …    (5.B14) 

Solving the Eqs. (5.B11-5. B12), and using the above boundary conditions and we can 

find the following results.  

𝑆0 =
𝑐𝑜𝑠ℎ(

𝜙𝑠

√1+𝛼+𝛽
𝜒)

𝑐𝑜𝑠ℎ(
𝜙𝑠

√1+𝛼+𝛽
)

    (5.B15) 

𝑃0 =
𝜙𝑝

2

𝜙𝑠
2 (𝜒 +

1−𝜒−𝑐𝑜𝑠ℎ(
𝜙𝑠

√1+𝛼+𝛽
𝜒)

𝑐𝑜𝑠ℎ(
𝜙𝑠

√1+𝛼+𝛽
)

)    (5.B16) 

According to the HPM, we can conclude that  

𝑆(𝜒) ≈  lim
𝑝→1

 𝑆 =  𝑆0 + 𝑆1 + 𝑆2 + ⋯ (5.B17) 

𝑃(𝜒) ≈  lim
𝑝→1

 𝑃 =  𝑃0 + 𝑃1 + 𝑃2 + ⋯ (5.B18) 

Considering the first iteration we have the solution of concentration of species 

𝑆(𝜒) ≈  𝑆0 =
𝑐𝑜𝑠ℎ(𝑚𝜒)

𝑐𝑜𝑠ℎ(𝑚)
 (5.B19) 

𝑃(𝜒) ≈  𝑃0 =
𝜙𝑝

2

𝜙𝑠
2 (𝜒 +

1−𝜒−𝑐𝑜𝑠ℎ(𝑚𝜒)

𝑐𝑜𝑠ℎ(𝑚)
) (5.B20) 

Where 𝑚 =
𝜙𝑠

√1+𝛼+𝛽
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CHAPTER - 6 

Conclusion and Future Enhancements 

 

6.1 Conclusions 

The solution approach accomplished in this thesis is based on the objective that 

at the maximum possible level. The analytical solutions should be achieved for the 

model nonlinear equations in applied chemical sciences since analytical solutions are 

the best for analysing experimental data if available or can be obtained. 

• The analytical expressions for the nonlinear differential equations with variable 

coefficients are adopted using a homotopy perturbation method and a 

variational iteration method. 

• The system of nonlinear equations containing a nonlinear term related to 

reversible homogeneous reactions is solved. The concentration of species can 

be calculated by solving nonlinear equations with the homotopy perturbation 

method. Our rough analytical results are also compared to the simulation 

results.The agreement between our analytical and simulation results is 

satisfactory. The effects of the parameters on concentration are discussed and 

illustrated graphically. 

• The reduction of hydrogen peroxide (H2O2) to water in a metal dispersed 

conducting polymer film is described mathematically. The model is based on a 

system of reaction-diffusion equations that includes a nonlinear term related to 

the enzymatic reaction's Michaelis–Menten kinetics. Approximate analytical 

expressions for substrate and product concentrations for steady and non-steady-

state conditions were obtained. 

• A theoretical model of the sensitivity and resistance of amperometry biosensors 

with substrate inhibition kinetics is discussed. This model is based on a system 

of non-stationary diffusion equations with a nonlinear term related to non-

Michaelis-Menten kinetics of the enzymatic reaction. The influence of various 

parameters such as thickness of enzyme layer, bulk substrate concentration, 
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Michaelis-Menten and saturation constant on sensitivity and resistance of 

biosensor are discussed. 

6.2 Scope of the Future Work 

The thesis entitled “Theoretical analysis of nonlinear differential equations in 

applied chemical sciences “provides a significant contribution to the enhancement of 

procedures for solving nonlinear problems in chemical sciences with innovative 

solution techniques. The present investigation offers scope for future research on the 

following lines. 

• Analytical solutions of nonlinear differential equations in chemical kinetics 

have been extended to nonlinear partial differential equations in physical, 

biological and medical sciences. 

• Nonlinear problems in homogeneous reactions occur in the mass-transfer 

boundary layer can be extended to transient conditions in chemical and 

biotransformation processes by considering the convection and diffusion terms. 

• The theoretical model based on a system of reaction-diffusion equations 

containing a nonlinear term related to Michaelis–Menten kinetics of the 

enzymatic reaction is extended to non-Michaelis–Menten kinetics. 

• A theoretical model of the sensitivity and resistance of amperometry biosensors 

withnon-Michaelis–Menten kinetics is extended to all reaction mechanism. 
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Mathematical models for mass transfer accompanied by a reversible homogeneous chemical reaction 

are discussed. This model is based on a system of nonlinear equations containing a nonlinear term 

related to reversible homogeneous reactions. When reactions arise in the mass-transfer boundary layer, 

the measurement of mass transfer to and from electrodes frequently needs the species concentrations. 

We can obtain the concentration of species by solving the nonlinear equations using the homotopy 

perturbation method. Our approximate analytical results are also compared with the simulation result. 

A satisfactory agreement is observed between our analytical and simulation results. The approximate 

analytical expression obtained here can be used to estimate the system's dynamical behaviour. The 

influence of the parameters on concentration is discussed and presented graphically. 

 

 

Keywords: Mathematical modeling, Nonlinear equations, Homotopy perturbation method, Reversible 

homogeneous reactions. 

 

 

1. INTRODUCTION 

Many electrode processes with homogeneous reactions that occur continuously in the mass-

transfer boundary layer. These reactions involve splitting or forming in the process of deposition or 

degradation of metal-linking complexes, the interaction and dissociation of ions and redox soluble 

mediators.Quantitative studies of electrode-kinetics experiments as well as simulation of 

electrochemical reactor processes require the description of species concentrations at the electrode 

surface. Homogeneous reactions can strongly affect the concentration of species. 
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The computation of concentration profiles near electrodes in the solution is based on the 

species conservation equation. 
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(1) 

where ci is the molar concentration of species i, and Riis the net rate of production of i locally 

by homogeneous reactions. The molar flux Ni and the rate of production of iz

iM  usually represented by 
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This describes species transport through diffusion and convection and ion migration in an 

electric field [1].When charged species are involved, equations 1-2 must be written for each species in 

solution and combined with the electroneutrality state  i

i

icz =0, and   must be 

determined.Implementation of appropriate boundary conditions on the electrode surface and in the 

bulk solution is needed for their solution.This kind of nonlinear problems occurs in many relevant 

situations, such as cyclic voltammetry, chronopotentiometry, rotating disk and ring-disk electrodes,  

and various boundary-layer flows with multiple geometries, system chemistries, flow and boundary 

conditions [2]-[6]. 

Recently Chapman et al [7] discuss the mass transfer at the electrodes for the homogeneous  

and fast reversible reaction. More recently the empirical expression of species concentration using the 

Taylor series method and hyperbolic function method was obtained by Mary et al. [8]. In this 

communication, we present a simple and effective homotopy perturbation approach for solving the 

nonlinear differential equation in the sense of mass transfer at the electrodes with reversible 

homogeneous reactions.An approximate analytical expression for the concentration of species in the 

homogeneous electrochemical reaction is obtained for various parameter values. 

 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

Consider the reversible homogeneous reaction 

CBA
f

r

k

k


         

(3) 

A is formed at a known rate NAo at an electrode surface, and B is present in the bulk solution. 

The concentrations of A and C in the bulk solution are negligible, and the fluxes of B and C at the 

electrode surface are also zero. The homogeneous reaction forms the species C and diffuses into the 

bulk. For measuring concentration profiles, Eqs. (1) and (2) may be combined for each component. We 

assume the steady-state and ignore migration and convection in the diffusion layer [7]. In this case, the 

system of nonlinear one-dimensional reaction-diffusion equations becomes as follows [7]: 
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The k coefficients denote the forward and reverse reaction rate constants, and A, B, and C 

represent the species concentrations. Both diffusion coefficients are assumed to be equal to a constant 

D for the sake of consistency.The boundary conditions are 

0; 
dx
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By introducing the following dimensionless variables 
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Eqns. (4)-(6) becomes in dimensionless form as follows: 
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The correspondingdimensionless boundary conditions are, 

      00',00',0'  zSzbza       (13) 

      01,11,01  zSzbza      (14) 

where  is the relative rates of diffusion and reaction.K*  is the homogeneous equilibrium 

constant.  is the rate of injection of A relative to the limiting flux of B toward the electrode 

 

 

 

3. ANALYTICAL EXPRESSION OF THE CONCENTRATION USING HOMOTOPY  

PERTURBATION METHOD 

The nonlinear equations (10)-(12), in recent years, numerous methods have been developed to 

derive analytical or semi-analytical solutions regardless of how strong the nonlinearity maybe. 

Homotopy analysis method [9,10], variational iteration method[11,12], Adomian decomposition 

method[13] and Green’s function iterative method[14,15] are used to solve the nonlinear equations. 

Due to its simpleimplementation and high accuracy, the homotopy perturbation method(HPM)[16-20], 

Residual method[21], Padé approximants method[22], Akbari‐lGanji's method (AGM)[23] and Taylor 

series method[24], the new approach  of homotopy perturbation method(NHPM)[25,26] has received 

great deal of attention. 



Int. J. Electrochem. Sci., 16 (2021) Article ID: 210644 

 

4 

By solving equations (10)-(12) using the homotopy perturbation approach (details in Appendix 

A), the following approximate analytical representation of ionic concentration is obtained . 
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4. PREVIOUS ANALYTICAL RESULTS 

Chapman [7] derived approximate distributions of concentration. Consider the case of small  , 

that is, the case where the homogeneous rate constant fk  is largeenough to make  small. If the first 

term  is neglected, the following solutions are obtained from a quadratic algebraic equation for S. 
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     zSzza  1         (19) 

   zSzb 1          (20) 

Recently, Mary et al. [8] used Taylor's series method (TSM) to obtain the analytical 

representation of species concentration as follows: 
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The value of m is obtained by solving the following equation. 

 

    01
!6

1
46

1

!5

1
3

1

!4!32

2222

64422
 















mm

m
m (25) 

 

But in this method, it is very difficult to find the constant m. Our analytical results ( Eqs. (15)-

(17)) are easily computable when compared with Taylor's series solution ( Eqns. (21)-(23)). 
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5. NUMERICAL SIMULATION AND DISCUSSION 

Table 1. Comparison of numerical solution of concentration of species  za  with the analytical 

solutions by Homotopy perturbation method and Taylor series method for 3,1*  K  and for 

different values  . 

 

 

z  

7.0
 

8.0
 

9.0
 

Num 
Our 

HPM 

Eq.(15) 

Error 
% of 

HPM 

TSM 

Eq.(21) 

Error 
% of 

TSM 

Num 
Our 

HPM 

Eq.(15) 

Error 
% of 

HPM 

TSM 

Eq.(21) 

Error 
% of 

TSM 

Num 
Our 

HPM 

Eq.(15) 

Error 
% of 

HPM 

TSM 

Eq.(21) 

Error 
% of 

TSM 

0 2.500 2.494 0.24 2.483 0.70 2.538 2.527 0.44 2.483 0.56 2.573 2.568 0.21 2.563 0.40 

0.2 1.922 1.920 0.11 1.907 0.79 1.957 1.949 0.42 1.907 0.48 1.991 1.997 0.31 1.985 0.28 

0.4 1.390 1.380 0.70 1.371 1.38 1.420 1.415 0.37 1.371 0.69 1.449 1.436 0.90 1.445 0.26 

0.6 0.894 0.889 0.53 0.867 3.08 0.917 0.909 0.82 0.867 1.41 0.938 0.929 0.95 0.935 0.39 

0.8 0.427 0.424 0.88 0.399 6.53 0.440 0.436 0.84 0.399 2.39 0.451 0.444 1.51 0.451 0.04 

1 0.000 0.000 0.00 0.000 0.00 0.000 0.000 0.00 0.000 0.00 0.000 0.000 0.00 0.000 0.00 

Average % error 0.41  2.08 
 

 0.48  0.92 
 

 0.65  0.23 

 

Table 2. Comparison of numerical solution of concentration of species  zb  with the analytical 

solutions by Homotopy perturbation method and Taylor series method for 3,1*  K  and for 

different values  . 

 

z  

1
 

5.1
 

2
 

Num 
Our 

HPM 

Eq.(16) 

Error 
% of 

HPM 

TSM 

Eq.(22) 

Error 
% of 

TSM 

Num 
Our 

HPM 

Eq.(16) 

Error 
% of 

HPM 

TSM 

Eq.(22) 

Error 
% of 

TSM 

Num 
Our 

HPM 

Eq.(16) 

Error 
% of 

HPM 

TSM 

Eq.(22) 

Error 
% of 

TSM 

0 0.607 0.603 0.68 0.599 1.30 0.740 0.737 0.34 0.737 0.35 0.821 0.816 0.62 0.822 0.10 

0.2 0.629 0.624 0.80 0.614 1.41 0.754 0.747 0.91 0.752 0.32 0.832 0.827 0.64 0.832 0.10 

0.4 0.690 0.687 0.42 0.658 1.98 0.794 0.789 0.68 0.791 0.42 0.859 0.855 0.54 0.858 0.16 

0.6 0.776 0.778 0.15 0.735 2.04 0.853 0.849 0.47 0.848 0.53 0.900 0.896 0.41 0.898 0.22 

0.8 0.883 0.885 0.25 0.847 1.65 0.925 0.921 0.39 0.919 0.58 0.949 0.946 0.33 0.947 0.28 

1 1.000 1.000 0.00 1.000 0.00 1.000 1.000 0.00 1.000 0.00 1.000 1.000 0.00 1.000 0.00 

Average % error 0.38  1.40 
 

 0.46  0.37 
 

 0.43  0.14 

 

Table 3. Comparison of numerical solution of concentration of species  zS  with the analytical 

solutions by Homotopy perturbation method and Taylor series method for 1,2    and for 

different values 
*K . 

 

z  

1.0* K
 

2.0* K
 

5.0* K
 

Num 

Our 

HPM 

Eq.(17) 

Error 

% of 

HPM 

TSM 
Eq.(23) 

Error 

% of 

TSM 

Num 

Our 

HPM 

Eq.(17) 

Error 

% of 

HPM 

TSM 
Eq.(23) 

Error 

% of 

TSM 

Num 

Our 

HPM 

Eq.(17) 

Error 

% of 

HPM 

TSM 
Eq.(23) 

Error 

% of 

TSM 

0 0.039 0.038 0.78 0.039 0.52 0.050 0.050 0.20 0.050 0.26 0.061 0.061 0.49 0.061 0.26 

0.2 0.036 0.036 0.84 0.036 0.55 0.047 0.047 0.04 0.047 0.43 0.057 0.058 0.35 0.058 0.35 

0.4 0.030 0.030 0.34 0.030 2.02 0.039 0.039 0.93 0.039 0.77 0.048 0.048 0.42 0.048 0.63 

0.6 0.021 0.021 0.42 0.022 2.37 0.028 0.027 0.91 0.028 1.81 0.034 0.034 0.58 0.035 1.47 

0.8 0.011 0.011 0.46 0.011 3.67 0.014 0.014 0.14 0.015 5.00 0.017 0.017 0.58 0.018 4.65 

1 0.000 0.000 0.00 0.000 0.00 0.000 0.000 0.00 0.000 0.00 0.000 0.000 0.00 0.000 0.00 

Average % error 0.47  1.52 
 

 0.37  1.38 
 

 0.40  1.23 
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The differential Eqns. (10)-(12) with the corresponding boundary conditions has also been 

solved numerically using SCILAB/MATLAB program (Appendix-B). The numerical solution is 

compared with our analytical results ( HPM method) and previously available results( Taylors series 

method) in Tables 1–3. There is no much difference in average error percentage between HPM and 

TSM. But we can easily calculate the concentration for all values of the parameter in HPM. 

Also, a comparison between the analytical and numerical results are shown in Figures 1.The 

maximum error between analytical (  HPM) and the numerical result is 1.35%. It is evident from 

Tables 1-12 and Fig. 1 that our results are very close to the exact simulation results. 

 

 

Table 4. Comparison of our analytical expression of concentration of species a with the numerical 

result for various values of the parameter  and some fixed values parameter 1,2  

using Eqn. (15). 

 

z  

1* K
 

10* K
 

1000* K
 

Numerical 

Result 

Our 

Eq.(15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(15) 

% of 

deviatio

n 

0 0.934 0.925 0.98 0.929 0.918 1.26 0.929 0.917 1.28 

0.2 0.736 0.729 0.92 0.731 0.722 1.24 0.731 0.721 1.28 

0.4 0.544 0.541 0.64 0.540 0.535 1.03 0.540 0.534 1.06 

0.6 0.357 0.358 0.09 0.354 0.353 0.29 0.354 0.353 0.35 

0.8 0.173 0.178 2.66 0.172 0.176 2.21 0.172 0.175 2.18 

1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 

 Average percentage error: 0.88 Average percentage error:  1.00 Average percentage error:    1.02 

 

 

 

Table 5. Comparison of our analytical expression of concentration of species b with the numerical 

result for various values of the parameter  and some fixed values parameter 1,2  

using Eqn. (16). 

 

z  
1* K

 
10* K

 
1000* K

 
Numerical 

Result 

Our 

Eq.(16) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(16) 

% of 

deviation 

Numerical 

Result 

Our 

eq.(16) 

% of 

deviation 

0 0.934 0.925 0.99 0.929 0.918 1.26 0.929 0.917 1.28 

0.2 0.938 0.929 0.93 0.933 0.922 1.19 0.933 0.921 1.22 

0.4 0.948 0.941 0.79 0.944 0.935 1.01 0.944 0.934 1.03 

0.6 0.963 0.958 0.59 0.960 0.953 0.75 0.960 0.953 0.76 

0.8 0.981 0.978 0.35 0.980 0.976 0.43 0.980 0.975 0.45 

1 1.000 1.000 0.00 1.000 1.000 0.00 1.000 1.000 0.00 

 Average percentage error:     0.61 Average percentage error:     0.77 Average percentage error:   0.79 
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Table 6. Comparison of our analytical expression of concentration of species S with the numerical 

result for various values of the parameter  and some fixed values parameter 1,4  

using Eqn. (17). 

 

z  
1* K

 
10* K

 
1000* K

 
Numerical 

Result 

Our 

Eq.(17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(17) 

% of 

deviation 

0 0.020 0.019 0.89 0.020 0.020 0.73 0.020 0.020 0.23 

0.2 0.018 0.018 0.79 0.019 0.019 0.64 0.019 0.019 0.65 

0.4 0.015 0.015 0.51 0.015 0.016 3.19 0.016 0.016 0.29 

0.6 0.011 0.011 0.25 0.011 0.011 0.45 0.011 0.011 0.44 

0.8 0.006 0.006 2.91 0.006 0.006 3.09 0.006 0.006 3.11 

1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 

 Average percentage error : 0.89 Average percentage error :  1.35 Average percentage error :  0.79 

 

 

Table 7. Comparison of our analytical expression of concentration of species a with the numerical 

result for various values of the parameter  and some fixed values parameter 1,2 *  K

using Eqn. (15). 

 

z  

1  5.1  2  

Numerical 

Result 

Our 

Eq.(15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(15) 

% of 

deviation 

0 0.934 0.925 0.98 1.388 1.404 1.18 1.875 1.850 1.33 

0.2 0.736 0.729 0.92 1.094 1.106 1.10 1.478 1.459 1.32 

0.4 0.544 0.541 0.64 0.811 0.818 0.88 1.094 1.082 1.15 

0.6 0.357 0.358 0.10 0.536 0.537 0.15 0.718 0.715 0.38 

0.8 0.173 0.178 2.65 0.267 0.261 2.40 0.348 0.356 2.18 

1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 

 Average percentage error :     0.88 Average  percentage error :   0.95 Average percentage error :   1.06 

 

Table 8. Comparison of our analytical expression of concentration of species a with the numerical 

result for various values of the parameter and some fixed values parameter 4,1 *  K

using Eqn. (15). 

 

z  

2  5  8  

Numerical 

Result 

Our 

Eq.(15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(15) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(15) 

% of 

deviation 

0 0.930 0.919 1.22 0.987 0.987 0.04 0.995 0.995 0.01 

0.2 0.732 0.723 1.20 0.786 0.788 0.21 0.793 0.795 0.25 

0.4 0.541 0.536 0.96 0.586 0.590 0.63 0.592 0.596 0.67 

0.6 0.355 0.354 0.26 0.387 0.393 1.49 0.391 0.397 1.52 

0.8 0.172 0.176 2.31 0.188 0.196 4.18 0.191 0.199 4.18 

1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 

 Average percentage error: 0.99 Average  percentage error: 1.09 Average percentage error : 1.11 
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Table 9. Comparison of our analytical expression of concentration of species b with the numerical 

result for various values of the parameter  and some fixed values parameter 10,2 *  K

using Eqn. (16). 

 

z  

1  5.1  2  

Numerical 

Result 

Our 

Eq.(16) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(16) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(16) 

% of 

deviation 

0 0.9272 0.9173 1.07 0.8967 0.8873 1.05 0.8661 0.8497 1.92 

0.2 0.9329 0.9219 1.17 0.9021 0.8936 0.94 0.8737 0.8582 1.81 

0.4 0.9435 0.9345 0.95 0.9186 0.9108 0.85 0.8943 0.8810 1.51 

0.6 0.9594 0.9530 0.66 0.9420 0.9360 0.64 0.9212 0.9147 0.71 

0.8 0.9798 0.9755 0.44 0.9705 0.9667 0.40 0.9617 0.9555 0.65 

1 1.0000 1.0000 0.00 1.000 1.000 0.00 1.0000 1.0000 0.00 

 Average percentage error : 0.72 Average percentage error : 0.65 Average percentage error : 1.10 

 

 

Table 10. Comparison of our analytical expression of concentration of species b with the numerical 

result for various values of the parameter and some fixed values parameter 50,2 *  K

using Eqn. (16). 

 

z  

1  4  7  

Numerical 

Result 

Our 

Eq.(16) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(16) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(16) 

% of 

deviation 

0 0.8652 0.8437 2.55 0.9607 0.9456 1.60 0.9867 0.9815 0.53 

0.2 0.8729 0.8530 2.33 0.9630 0.9487 1.51 0.9874 0.9825 0.50 

0.4 0.8936 0.8783 1.75 0.9690 0.9569 1.26 0.9895 0.9853 0.42 

0.6 0.9242 0.9155 0.95 0.9780 0.9691 0.92 0.9925 0.9895 0.30 

0.8 0.9614 0.9608 0.07 0.9888 0.9839 0.50 0.9960 0.9945 0.15 

1 1.0000 1.0000 0.00 1.0000 1.0000 0.00 1.0000 1.0000 0.00 

 Average percentage error : 1.27 Average  percentage error : 0.96 Average percentage error :  0.32 

 

Table 11. Comparison of our analytical expression of concentration of species S with the numerical 

result for various values of the parameter and some fixed values parameter 100,4 *  K

using Eqn. (17). 

 

z  

1  5.1  2  

Numerical 

Result 

Our 

Eq.(17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(17) 

% of 

deviation 

0 0.0200 0.0198 0.71 0.0297 0.0294 0.93 0.0393 0.0388 1.14 

0.2 0.0189 0.0187 1.21 0.0280 0.0278 0.83 0.0370 0.0367 1.06 

0.4 0.0157 0.0157 0.31 0.0234 0.0233 0.54 0.0310 0.0307 0.76 

0.6 0.0115 0.0112 1.81 0.0167 0.0167 0.23 0.0220 0.0220 0.03 

0.8 0.0057 0.0059 3.00 0.0085 0.0087 2.80 0.0112 0.0115 2.54 

1 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 

 Average percentage error :  1.17 Average percentage error :  0.89 Average percentage error :  0.92 
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Table 12. Comparison of our analytical expression of concentration of species S with the numerical 

result for various values of the parameter and some fixed values parameter

500,2 *  K using Eqn. (17). 

 

z  

5  7  10  

Numerical 

Result 

Our 

Eq.(17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(17) 

% of 

deviation 

Numerical 

Result 

Our 

Eq.(17) 

% of 

deviation 

0 0.0257 0.0255 0.63 0.0133 0.0133 0.27 0.0066 0.0066 0.09 

0.2 0.0242 0.0241 0.51 0.0126 0.0126 0.17 0.0062 0.0062 0.59 

0.4 0.0202 0.0202 0.17 0.0105 0.0105 0.24 0.0051 0.0052 1.61 

0.6 0.0144 0.0145 0.63 0.0075 0.0076 1.03 0.0037 0.0037 1.87 

0.8 0.0073 0.0075 3.18 0.0038 0.0039 3.60 0.0019 0.0020 2.75 

1 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 

 Average percentage error:   0.85 Average  percentage error :  0.88 Average percentage error :   1.15 

 

 

The concentration of species depends upon the parameter relative rates of diffusion and 

reaction   , rate of injection of A relative to the limiting flux of B toward the electrode    and 

homogeneous equilibrium constant  *K . Figure 1, shows the concentration of species )(),( zbza and 

)(zS for various values of relative ratesof diffusion and reaction and the homogeneous equilibrium 

constant.  

From this fig.1, it is observed that an increase in equilibrium constant leads to increase in )(za

and )(zb and decreases in )(zS . From this fig.2, it is noted that an increase  in rate of injection leads to 

decrease in )(),( zbza and )(zS . 
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Figure 1. Comparison of concentrations )(),( zbza and )(zS  (Eqns. (15)-(17)) with simulation results 

for various values of parameters *,K and  . 

 

 

 
 

Figure 2. Comparison of concentrations )(),( zbza and )(zS  (Eqns. (15)-(17)) with simulation results 

for various values of parameters *,K and  . 
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6. CONCLUSION 

An analytical expression has effectively derived the concentration in the rotating disc electrode 

controlled by migration and convection in the diffusion layer for all values of the reaction rate 

constants. In this analysis, the model is apported to a rotating disk electrode in a one-dimensional 

situation. The nonlinear reaction-diffusion equations at steady-state are solved analytically by a new 

approach to HPM. There is a very good agreement between the analytical and the numerical solutions 

for all values of rate constant. 
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APPENDIX A: Analytical expression of the concentration using homotopy perturbation method 

We construct the homotopy for the equations (10)-(12) as follows 

0)1(
2*22

2

2

2




















 K

Sab

dz

ad
p

dz

ad
p

       

(A1)

 

0)1(
2*22

2

2

2




















 K

Sab

dz

bd
p

dz

bd
p

       

(A2) 

0)1(
2*22

2

22

2




















 K

Sab

dz

Sd
p

ab

dz

Sd
p

      

(A3) 

where ]1,0[p is an embedding parameter. Using Maclaurin series 

  ...
!2

)0("
)0(')0( 2 

a
zzaaza ,        (A4) 

Now, assume that the solutions of Eqs. (A1) - (A3) is 

 2

2

10 apapaa
,

 2

2

10 bpbpbb and  2

2

10 SpSpSS   (A5) 

Substituting Eq. (A5) into Eqs. (A1)-(A3) and equating the like coefficients of ‘p’ on both sides lead to 

the following linear differential equations: 

0:
2

0

2
0 

dz

ad
p            (A6) 

0:
2

0

2

0 
dz

bd
p            (A7) 

0:
2

00

2

0

2

0 


ba

dz

Sd
p           (A8) 

Solving Eqs. (A6)-(A8) Subject to boundary conditions: 

      00,00,0 '
0

'
0

'
0  zSzbza         (A9) 
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      01,11,01 000  zSzbza        (A10) 

0:
2*

0

2

00

2

1

2
1 

 K

Sba

dz

ad
p .

 

       (A11) 

0:
2*

0

2

00

2

1

2
1 

 K

Sba

dz

bd
p .

      

   (A12) 

Solving Eqs. (A9) and (A10), subject to boundary conditions: 

    00,0 '

1

'

1  zbza           (A13) 

    11,01 11  zbza          (A14) 

The solution of the Eqns. (A6) to (A8) are given by 

 1)(0  zza            (A15) 

1)(0 zb            (A16) 

 
2

23

0
6

32
)(



 zz
zS


          (A17) 

and the solution of the Eqns. (A11) to (A12) are given by 

     2320421
120

)( 232*22

4*1  zzKzzz
K

za 



    (A18) 

     2320421
120

)( 232*22

4*1  zzKzzz
K

zb 



    (A19)  

With the use of these two iterations only, we obtain an approximate solution for the ionic concentration 

given by: 

     zazaza 10 
 ,

)()()( 10 zbzbzb       
  

(A20)
 

 

 

APPENDIX B: Matlab program for the numerical solution of nonlinear differential equations 

(10)-(12) 

function sol=ex6 

ex6init=bvpinit(linspace(0,1),[0 1 1 0 0 0]); 

sol = bvp4c(@ex6ode,@ex6bc,ex6init) 

end 

functiondydx=ex6ode(x,y) 

dydx=[y(2) 

 (1/(2)^2)*(y(1)*y(3)-((y(5))/(3))) 

y(4) 

 (1/(2)^2)*(y(1)*y(3)-((y(5))/(3))) 

y(6) 

 (1/(2)^2)*(((y(5))/(3)))-y(1)*y(3)]; 
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end 

Function res=ex6bc(ya,yb) 

res=[ya(1)-0 

yb(2)-1 

ya(3)-1 

yb(4)-0 

ya(5)-0 

yb(6)-0]; 

end 

 

NOMENCLATUREAND UNITS 

 
Symbols Name Unit 

bB  
Bulk concentration of species B 

mol/cm3 

A Concentration of species A mol/cm3 

B Concentration of species B mol/cm3 

C Concentration of species C mol/cm3 

D  Diffusion coefficient  cm2/s 

x  Distance from the electrode surface (Eqn.(2)) cm 

  Diffusion layer thickness cm 

rk , fk  
Reaction-rate constants 

cm/s 

AoN  
Known rate constant 

cm/s 

bbb B

C
S

B

B
b

B

A
a  ,,  

Dimensionless concentration of the species A, B and C 
None 

z Dimensionless distance from the electrode surface None 

  Dimensionless relative rates of diffusion and reaction None 

*K  
Dimensionless homogeneous equilibrium constant None 

  
Dimensionless rate of injection of A relative to the limiting 

flux of B toward the electrode 
None 
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A mathematical model describing the reduction of Hydrogen peroxide (H2O2) to water in a metal dispersed conducting polymer 
film is discussed. The model is based on a system of reaction-diffusion equations containing a non-linear term related to Michaelis–
Menten kinetics of the enzymatic reaction. The approximate analytical expressions corresponding to the concentration of substrate 
and product for steady and non-steady state conditions have been obtained using a new approach to homotopy perturbation method 
(HPM). Approximate analytical expressions of the electrochemical oxidation current are also presented for steady and non-steady 
state conditions. The numerical simulation (Matlab program) response for concentration profiles was carried out and compared with 
the analytical results of this work and are found to be in good agreement. The influence of initial substrate concentration, the thickness 
of the film as well as the diffusion layer and kinetic parameters on the current response were investigated. A graphical procedure for 
estimating the kinetic parameters from the expression of the current response is also proposed. 

Keywords: enzymatic biofuel cell; glucose oxidase; mathematical modeling; reaction-diffusion equation; homotopy perturbation 
method. 

INTRODUCTION

Enzyme-based fuel cells can produce higher energy than 
conventional batteries utilizing significantly all the naturally good 
materials. Enzymatic biofuel cells rely on the oxidation of substrates 
such as hydrogen or glucose and reduction of oxygen to harvest 
energy from complex media. In particular, glucose biofuel cells 
(BFCs) represent a promising alternative to supply energy from 
living organisms to implanted electronic devices. Oxidase enzymes 
are widely used in energy devices (biosensor, enzymatic biofuel 
cell, bioreactor, etc.). In glucose oxidation-reduction process, 
oxygen is diminished to water (H2O) or hydrogen peroxide (H2O2). 
Glucose oxidase is found in nectar and goes about as a common 
additive. Enzymatic glucose biosensors utilize an electrode rather 
than oxygen to take up the electrons required to oxidize glucose and 
produce current in the extent to glucose fixation.1 Glucose oxidase 
is broadly used for the determination of free glucose in body liquids 
(diagnostics), in crude botanic material, and the nourishment business. 
Toghill and Compton discussed non-enzymatic glucose sensors.2 It 
likewise has numerous applications in biotechnologies, commonly 
protein tests for natural chemistry incorporating biosensors in 
nanotechnologies.3 Besides, glucose oxidase has damage the cancer 
tissue and cells as a result of hydrogen peroxide formation.

In recent times, many kinds of literature focused on glucose/
hydrogen peroxide biofuel cell. Pizzariello et al. developed a glucose/
hydrogen peroxide biofuel cell using a composite bulk modified 
bioelectrode based on a solid binding matrix.4 Choudhury  et  al. 
discussed the effect of hydrogen peroxide as an oxidant in an alkaline 
direct borohydride fuel cell.5 Bessette et al. reported the performance 
of the microfiber carbon electrode in magnesium–hydrogen 

peroxide semi-fuel cell under optimum conditions and at a reduced 
concentration of H2O2.6 Yamanaka  et  al. developed a three-phase 
H2O2 fuel cell for the production of a concentrated aqueous solution 
of H2O2 in an electrochemical reduction of O2.7

Yang et al. investigated the influence of H2O2 concentration in the 
performance of magnesium-hydrogen peroxide fuel cell with palladium-
silver deposited cathode and silver-nickel deposited electrode.8 
Han et al. developed a hydrogen peroxide fuel cell with TiO2 nanotube 
photoanode to increase the performance of the cell by make use of 
light and biomass.9 Also, Kjeang et al. demonstrated a microfluidic 
fuel cell incorporating hydrogen peroxide as oxidant.10 Adams et al. 
reported an electrochemical reduction of hydrogen peroxide using 
highly active palladium platinum catalysts.11 Do  et al. developed a 
mathematical model which describes the bioelectrochemical reduction 
of hydrogen peroxide with direct electron transfer mechanism.12 
Benfeitas et al. investigated hydrogen peroxide metabolism in human 
erythrocytes.13 The first example of glucose or hydrogen peroxide-based 
biofuel cell functioning under physiological conditions was reported 
in Agnès et al.14 An et al. developed and tested the performance of an 
alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant.15 
Also studied by An and coauthors, a one-dimensional mathematical 
model of the mixed potential in hydrogen peroxide fuel cell.16

Somasundaram et al. developed a kinetic model for the reduction 
of hydrogen peroxide to water in a metal-dispersed conducting 
polymer film.17 This model is based on a system of the non-linear 
reaction-diffusion equation. Somasundaram  et  al. obtained the 
steady-state concentration and current for limiting cases (low and 
high substrate concentration) only.17 In solving reaction-diffusion 
problems, there are mainly three types of methods: experimental, 
analytical, and numerical. Experiments are expensive, time-
consuming, and usually, do not allow much flexibility in parameter 
variation. Numerical methods are popular for its computing 
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capabilities, although it provides only a long list of numbers, not an 
equation. Analytical methods are the most difficult ones, providing 
solutions with parameters. In this paper, we will consider the last two 
techniques to solve the coupled non-linear reaction-diffusion equation 
describing the reduction of hydrogen peroxide to water. The purpose 
of this communication is to derive the analytical expressions for the 
concentration of glucose (substrate), hydrogen peroxide (product) 
and current for non-steady state condition.

MATHEMATICAL FORMULATION 

Figure 1 represents the schematic diagram for the reduction of 
hydrogen peroxide to water. 

The reactions scheme occurring within the polymer film and in 
the bulk solution can be written as follows: 18

	 	 (1)

	 	 (2)

	 	 (3)

Eqn. (1) represents the oxidation of substrate (Glucose) S to 
product P (Hydrogen peroxide). Here E1 and E2 are the oxidized and 
reduced forms of the enzyme (oxidase) respectively. The reduction-
oxidation process of the enzyme during the reduction of oxygen (A) 
to hydrogen peroxide (B) is shown in Eqn. (2). And the hydrogen 
peroxide which in turn reacts with microparticle in the presence 
of a pseudo first order rate constant k to produce water (C). Using 
Michaelis-Menten rate expression, the mass balance one dimensional 
equations for substrate and product within the polymer film can be 
written as follows: 18

	 	 (4)

	 	 (5)

where s(x,t) and b(x,t) are the concentrations of substrate and 
product respectively. DS and DB are the diffusion coefficients, kcat 
is the catalytic reaction rate constant and KM = (kcat + k–1)/k1 is the 

Michaelis-Menten rate constant. The initial and boundary conditions 
for the above equations are given by

	 	 (6)

	 	 (7)

	 	 (8)

Here s∞ and b∞ is the concentration of substrate and product in 
the bulk solution. ks and kb is the reaction rate constant for substrate 
and product respectively. L is the thickness of the polymer film. The 
current I of the product b at the electrode surface is given by

	 	 (9)

where jb is the flux of the hydrogen peroxide at the electrode surface. 
Eqns. (4) and (5) can be written in dimensionless form using the 
following dimensionless parameters:

	 (10)

Using Eqn. (10), equations (4) and (5) reduce to the following 
non-dimensional form:

	 	 (11)

	 	 (12)

where u(c,t) and n(c,t) represents the dimensionless concentration 
of substrate and product respectively; c is a normalized distance; t is 
a dimensionless time; x is the ratio of the diffusion coefficient. a, b, 
and g are the saturation parameters. j is the Thiele modulus depends 
upon the enzyme concentration, diffusion coefficient of substrate 
DS and the Michaelis-Menten constant KM. The corresponding 
dimensionless initial and boundary conditions for equations (11) 
and (12) are as follows:

	 	 (13)

	 	 (14)

	 	 (15)

The dimensionless current for hydrogen peroxide is

	 	 (16)

ANALYTICAL EXPRESSIONS FOR THE 
CONCENTRATION OF SUBSTRATE AND PRODUCT FOR 
GENERAL CASE UNDER NON STEADY CONDITION

Non-linear phenomena play a vital role in various zones of the 
sciences and engineering. Because of the expanding enthusiasm 
towards finding exact solutions for those problems, a variety of 
analytical methods are proposed. Recently Adomian decomposition 

Figure 1. Schematic diagram for the reduction of hydrogen peroxide to water.
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method,19 homotopy analysis method,20 variational iteration 
method,21,22 homotopy perturbation method,23-26 are used to solve 
the non-linear problems. Among such methods, a new approach of 
homotopy perturbation method is applied to solve the non-linear 
differential equations Eqns. (11) and (12). The focal point of this 
method is that it resulted in a simple approximate solution in the zeroth 
iteration itself.27 This technique is appropriate for problems where 
transient effects, reaction-diffusion phenomena, and nonlinearity 
play important roles. The analytical expressions of concentrations 
of substrate and product can be obtained as follows (Appendix-A):

	 (17)

	 (18)

Using Eqns. (16) and (18), the dimensionless current is given by

	 (19)

where 

	 A = j /(1 + a)	 (20)

	 (21)

When t  ∞, equation (19) becomes

	 (22)

The above equation (Eqn. (22)) represents the new analytical 
expression of steady state current.

Limiting case

The consequences for the limiting situations of zero order kinetics 
(S >> KM) and first order kinetics (S << KM) arising from Eqns. (4) 
and (5) or (11) and (12) are reported below.

Case 1: Saturated (zero order) catalytic kinetics (High substrate)

In this case, the situation where the substrate concentration S is 
greater than the Michaelis-Menten constant KM is considered. When 
S >> KM or au >> 1, the non-linear Eqns. (11) and (12) reduces to 
the following dimensionless linear form:

	 	 (23)

	 	 (24)

Solving the above Eqns. (23) and (24), the concentrations of 
substrate and product can be obtained as follows:

	 (25)

	 (26)

The expression for the current, in this case, is given by

	 (27)

From the above equation, the steady state (t  ∞) current can 
be obtained as follows:

	 (28)

Case 2: Unsaturated (first order) catalytic kinetics (Low 
substrate)

The situation where the substrate concentration S is less than the 
rate constant KM is considered. In this case S << KM or au << 1, the 
Eqns. (11) and (12) reduces to the following forms:

	 	 (29)

	 	 (30)

The solutions for Eqns. (29) and (30) are given by

	 (31)

	 (32)

The current expression for this case is given by

	 (33)

where

	 (34)

When t  ∞, equation (33) becomes

	 (35)

The analytical expressions of concentration of substrate, product 
and current for steady and non-steady state condition when x = 1 for 
all the limiting cases are given in Table 1 and Table 2

NUMERICAL SIMULATION

To examine the accuracy of the solution obtained using 
the HPM method with a finite number of terms, the system of 
differential equations was solved numerically. Analytical solutions 
of equations  (11) and (12) are challenging problems and can be 
obtained numerically with the help of Matlab software. The function 
pdex4 (Euler’s method) in Matlab software,28 which is a function 
for solving boundary value problems is used to solve Eqns. (11) and 
(12) numerically. Our results are compared with numerical results 
graphically in Figs. 2 and 3. The comparison confirmed that our 
obtained analytical results fitted very well with the numerical results. 
The maximum average relative error between the analytical and 
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numerical results for substrate and product are 1.40% and 0.80%, 
respectively (Refer to Tables 3 and 4).

RESULTS AND DISCUSSION 

Eqns. (17) to (19) represents the new analytical expressions for 
the dimensionless concentration of substrate, product and current 
respectively. Fig. 2 represents the dimensionless concentration of 

substrate u(c,t) versus dimensionless distance from the electrode 
c for different values of Thiele modulus j, saturation parameter 
a and time t. Thiele modulus is the ratio of the reaction rate to the 
rate of diffusion. From Fig. 2(a), it is inferred that the concentration 
of substrate decreases when Thiele modulus j increases. When 
Thiele modulus j < 0.1, the diffusion resistance is insufficient to 
limit the rate of reaction and the concentration remains the same 
within the film. The concentration of substrate reaches zero inside 

Table 1. Summary of analytical expressions of concentrations of substrate, product and current for non-steady state condition when x = 1

Conditions This work Previous work 18

Non steady state 
(HPM)

 
-----------

 
-----------

 
-----------

High substrate

 
-----------

 
-----------

 
-----------

Low substrate

 
-----------

 
-----------

 
-----------

Table 2. Summary of analytical expressions of concentration of substrate, product and current for steady state condition when x = 1

Conditions This work Previous work18

Steady state 
(HPM)

 
-----------

 
-----------

 
-----------

High substrate

 
-----------

 
-----------

 
-----------

Low substrate
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the enzyme layer when the diffusion modulus i.e. Thiele module 
j ≥ 100 which is observed at high film thickness L or enzymatic 
rate kcateT or for low reaction rate constant KM or diffusion Ds. This 
is because when j is large, a significant diffusion modulus prevents 
a constant concentration of substrate within the film and thus lowers 
the concentration. The influence of the saturation parameter a can be 
analyzed from Fig. 2(b), where it is shown that the concentration of 
substrate increases when the saturation parameter a increases. This 
is because as the initial substrate concentration s∞ increases obviously 
the concentration of substrate s increases. From Fig. 2(c), it is evident 
that the substrate concentration increases when time t decreases. For 
t ≤ 0.01, the concentration remains the same.

The change in product concentration with respect to dimensionless 
distance from the electrode for various values of parameters is shown in 
Figs. 3(a) – (f) respectively. Fig. 3(a) illustrates that for high catalytic 
activity, the concentration of substrate increases. By increasing the 
initial concentration of substrate a or high catalytic activity, the product 
concentration increases as shown in Figs. 3(a) and 3(b). From Figs. 3(c) 
and 3(d), it is observed that, the concentration of product increases 
when the saturation parameters b and g decreases. Compared to other 
parameters, time t has less influence over product concentration. Higher 
product concentration is obtained for steady- state time.

Differential sensitive analysis of kinetic parameters

Eqn. (19) represents the new approximate analytical expression 
for the non-steady state current y in terms of the parameters a, b, 
g, j and x. By differentiating the current partially with respect to 
these parameters, the impact of the parameters over current can be 
determined.29 The percentages of change in current with respect to 
g, b, j, x and a are 46%, 35%, 14%, 3% and 2%, respectively. From 

this, it is evident that parameters g and b have more impact on current. 
These parameters are highly sensitive parameters. This implies that 
when the thickness of the film L or the concentration of product in the 
bulk b∞ increases, the current increases. The parameter j is called as 
moderately sensitive parameter as it has 14% of influence over current. 
The remaining two parameters x (ratio of diffusion coefficient) and a 
(saturation parameter) are less sensitive. The spread sheet analysis of 
these results is described in Figure. 4. These results are also confirmed 
in Figures 5, 6(a) – 6(e). 

From Fig. 5, it is observed that the current initially increases with 
thickness and then decreases. After L ≥ 2 mm, the current reaches 
the steady state value. An interesting as well as important fact can be 
concluded from Figs. 6(a) – 6(e) regarding the influence of the kinetic 
parameters over current y(t) along time t. The current considerably 
depends on either the enzymatic rate within the film or the electron 
transport outside the film. From Fig. 6(a), it is confirmed that the 
current increases when the Thiele module j increases. With increased 
initial concentration of substrate in bulk solution S∞, the corresponding 
current increases. This result is confirmed by Fig. 6(b). The influence 
of the saturation parameters b and g on the current was shown in 
Figs. 6(c) and 6(d). Both parameters are inversely proportional to the 
current. Compared to g, b shows much deviation over current. From 
Fig. 6(e), it was found that the sharp decrease in the current with the 
increase of the ratio of diffusion coefficient x. And when x is small, 
the current decreases slowly. From this figure, it is observed that for 
high current, the diffusion coefficient of product should be less than 
the diffusion coefficient of substrate i. e. DS < DP. 

Estimation of kinetic parameters k, kcateT and KM

Numerous enzyme kinetics papers are dedicated for estimating 

Table 3. Comparison of our analytical results of dimensionless substrate u(c,t) with numerical simulations for various values of t and c using Eqn. (17) when 
j = 1 and a = 0.5

c
t = 0.1 t = 0.5 t = 1 t = 100

Analytical 
Eqn. (17)

Numerical
% of 

deviation
Analytical 
Eqn. (17)

Numerical
% of 

deviation
Analytical 
Eqn. (17)

Numerical
% of 

deviation
Analytical 
Eqn. (17)

Numerical
% of 

deviation

0 0.9365 0.9358 0.07 0.7961 0.7885 0.96 0.7513 0.7373 1.89 0.7394 0.7221 2.39

0.2 0.9372 0.9366 0.06 0.8032 0.7959 0.91 0.7606 0.7472 1.79 0.7493 0.7327 2.26

0.4 0.9401 0.9397 0.04 0.8251 0.8187 0.78 0.7888 0.7773 1.47 0.7792 0.7650 1.85

0.6 0.9478 0.9475 0.03 0.8633 0.8585 0.55 0.8369 0.8284 1.02 0.8300 0.8194 1.29

0.8 0.9653 0.9652 0.01 0.9204 0.9178 0.28 0.9066 0.902 0.50 0.9029 0.8973 0.62

1 1.0001 1 0.01 1 1 0 1 1 0 1 1 0

Average % of deviation 0.04 Average % of deviation 0.58 Average % of deviation 1.11 Average % of deviation 1.40

Table 4. Comparison of our analytical results of dimensionless product n(c,t) with numerical simulations for various values of t and c using Eqn. (18) when 
j = 0.1, a = 0.5, b = 0.05, g = 0.01 and x = 1

c
t = 0.7 t = 1 t = 2 t = 10

Analytical 
Eqn. (18)

Numerical
% of 

deviation
Analytical 
Eqn. (18)

Numerical
% of 

deviation
Analytical 
Eqn. (18)

Numerical
% of 

deviation
Analytical 
Eqn. (18)

Numerical
% of 

deviation

0 1.0237 1.037 1.28 1.1783 1.185 0.56 1.3063 1.309 0.20 1.3179 1.321 0.23

0.2 1.0251 1.038 1.24 1.1725 1.179 0.55 1.2943 1.297 0.20 1.3053 1.308 0.20

0.4 1.0289 1.04 1.06 1.1543 1.160 0.49 1.2579 1.260 0.16 1.2673 1.270 0.21

0.6 1.0307 1.039 0.79 1.1218 1.126 0.37 1.1971 1.199 0.15 1.2039 1.206 0.17

0.8 1.0237 1.028 0.41 1.0717 1.074 0.21 1.1113 1.112 0.06 1.1149 1.116 0.09

1 0.9997 1 0.03 0.9998 1 0.02 0.9999 1 0.01 1 1 0

Average % of deviation 0.80 Average % of deviation 0.36 Average % of deviation 0.13 Average % of deviation 0.15
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Figure 2. Plot of dimensionless concentration of substrate u(c,t) versus dimensionless thickness c calculated using Eqn. (17) for different values of (a) Thiele 
modulus j, (b) saturation parameter a and (c) time t. The key to the graph: (scattered line) represents the Eq. (17) and (dotted line) represents the numerical 
simulation.

Figure 3. Plot of dimensionless concentration of product n(c,t) versus dimensionless thickness c calculated using Eqn. (18) for different values of (a) Thiele 
modulus j, saturation parameters (b) a, (c) b, (d) g, (e) diffusion parameter x and (f) time t. The key to the graph: (scattered line) represents the Eq. (18) and 
(dotted line) represents the numerical simulation.
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the kinetics parameters and distinguishing between reaction 
mechanisms. 29-31 Pseudo first order constant k, helps us to quantify 
the rate of the chemical reaction. The Michaelis-Menten rate 
constant KM, determines the relationship between the steady-state 
concentrations rather the equilibrium concentrations. The maximum 
velocity of the enzyme depends upon the catalytic rate constant 
kcat and the total enzyme concentration eT. The parameter kcat is a 
very useful parameter that is employed for the breakdown of the 
enzyme substrate complex ES to product P when the enzyme is fully 
saturated with substrate. These kinetic parameters can be obtained 
from our analytical expression of current (Eqn. (28)). For small 
value of g /x,  and hence Eqn. (28) reduces to 
the following form: 

	 	 (36)

Figure 4. Sensitive analysis of parameters: Percentage change in current.

Figure 5. Plot of steady state current versus thickness of the film L.

Using Eqn. (10), the above equation can be rearranged as 

	 	 (37)

As in Fig. 7(a), plot of I/nFAkbb∞L versus 1/kbb∞ gives the 
slope = k, intercept = kcateT. When the diffusion coefficient of substrate 
and product are equal i.e. x = 1, and g is small, the current (Eqn. 22) 
becomes

	 	 (38)

Figure 6. Plot of dimensionless current ψ(t) versus dimensionless time t calculated using Eqn. (19) for different values of (a) Thiele modulus j, saturation 
parameters (b) a, (c) b, (d) g, and (e) diffusion parameter x.
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By substituting the value of yss, g, a, b and j from the Eqn. (10) 
and k, kcateT from Eqn. (37), the parameter KM can be obtained. Hence, 
we can obtain pseudo first order rate constant k, enzymatic rate kcateT 
and Michaelis-Menten rate constant KM from Eqns. (22) and (28).

CONCLUSIONS

A simple mathematical analysis of reaction and diffusion of 
glucose and hydrogen peroxide within the conducting film containing 
metal microparticles have been presented. Using a new approach 
to the Homotopy perturbation method, an approximate analytical 
expressions for the concentrations of substrate and product are 
obtained. Approximate analytical expressions for the steady and non-
steady state current response produced during the reduction of H2O2 
to water at the electrode surface are derived. The differential sensitive 
analysis for the steady-state current response for the controllable 
parameters: the thickness of the film, bulk substrate, and product 
concentration and enzymatic rate are analyzed. Also, the estimation 
of kinetic parameters is reported graphically.

SUPPLEMENTARY MATERIAL

The supplementary data associated with this article are available 
on http://quimicanova.sbq.org.br in the form of a PDF file, with free 
access.
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A B S T R A C T

A theoretical model of a sensitivity and resistance of amperometry biosensors with substrate inhibition kinetics
is discussed. This model is based on the system of non-stationary diffusion equations containing a non-linear
term related to non-Michaelis-Menten kinetics of the enzymatic reaction. This paper presents the approximate
analytical expression of sensitivity and resistance of biosensor for small values of reaction diffusion parameters.
The effect various parameters such as thickness of enzyme layer, bulk substrate concentration, Michaelis-
Menten and saturation constant on sensitivity and resistance of biosensor are discussed.

1. Introduction

Biosensors are approximate analytical devices that tightly combine
biorecognition elements and physical transducer for the detection of
the target compounds. An amperometric biosensor is a tool used in a
solution to measure the concentration of a specific particular chemical
or biochemical substances [1–4]. In biosensor, many enzymes are
inhibited by their substrates. In the literature, the theoretical model
has been widely applied as an essential tool to study and optimize
the approximate analytical characteristics of biosensors. Practical
biosensors contain a multilayer enzyme membrane; Exploratory mono-
layer membrane-containing biosensors are widely used to study the
biochemical behavior of biosensors. The inhibition of substrates is
often considered a biochemical oddity and experimental annoyance.
This model is based on the system of non-stationary diffusion equa-
tions containing a nonlinear term related to non-Michaelis-Menten
kinetics of the enzyme reaction [3].

The biosensor model with a substrate and product inhibition was
constructed to reduce the number of biosensor properties. Manimozhi
et al. [5] found the solution of steady-state substrate concentration in
the case of substrate inhibition using the Homotopy perturbation
method (HPM) and variational iteration method (VIM). Already the
approximate analytical expression for steady-state concentrations of
substrate and product with substrate inhibition using the Adomian
decomposition method was discussed by Anitha et al. [6].

A carbon nanotube based biosensor was mathematically modelled
by Lyons [7,8]. The one-dimensional steady-state boundary value
problem describing the transport and the kinetics of the substrate
and the mediator in the two compartment domain was solved approx-
imate analytically. Baronas et al. [9] proposed the mathematical
model for the mediated biosensor with the CNT electrode deposited
on the perforated membrane. In this paper, for small values of reac-
tion/diffusion parameters, we have derived an approximate analytical
expression of sensitivity and resistance of biosensor.

2. Mathematical formulation of the problems

In the enzyme reaction,

E þ S $ ES ! E þ P ð1Þ
the substrate (S) binds to the enzyme (E) in order to form an enzyme-
substrate complex ES. The substrate is converted to product (P) while it
is part of this complex. The rate of the product's appearance depends on
its substrate concentration.

For example, the simplest scheme of non-Michaelis-Menten kinetics
may have been obtained by adding to the Michaelis-Menten scheme
(Eq. (1)), a stage of enzyme-substrate complex (ES) interaction with
another substrate molecule (S) (Eq. (2)) after the non-active complex
(ESS) is generated as follows [10]:
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ESþ S $ ESS ð2Þ
The steady-state non-linear differential equations for the substrate

inhibition are [10]:

Ds
d2s xð Þ
dx2 � Vmaxs xð Þ

km þ s xð Þ þ s xð Þð Þ
ks

2 ¼ 0 ð3Þ

Dp
d2p xð Þ
dx2 þ Vmaxs xð Þ

km þ s xð Þ þ s xð Þð Þ
ks

2 ¼ 0 ð4Þ

whereDs;Dp are the diffusion coefficients of the substrate and product
in the enzyme layer. s xð Þ andpðxÞ are the concentration of substrate
and product in the enzyme layer. Vmax is the maximal enzymatic rate,
km denotes the Michaelis-Menten constant,ks inhibition constant and
d is the thickness of the enzyme layer. The corresponding boundary
conditions are [10]
ds xð Þ
dx

¼ 0; p xð Þ ¼ 0whenx ¼ 0 ð5Þ

s xð Þ ¼ s�; p xð Þ ¼ 0whenx ¼ d ð6Þ
where s� is the concentration of substrate at x ¼ d and d is thickness of
the enzyme layer. The modeling of the amperometric biosensor with
the substrate inhibition reveals the complex kinetics of the biosensor
response. At low substrate concentration, the kinetics looks like a sim-
ple substrate diffusion. When inhibition constant is large ðks ! 1Þ,the
reaction kinetics is Michaelis-Menden model.

The steady-state current I of the biosensor is expressed as follows:

I ¼ neFDp
dpðxÞ
dx

����
x¼0

ð7Þ

We introduce the set of dimensionless variables as follows:

S χð Þ ¼ s xð Þ
s�

;P χð Þ ¼ p xð Þ
s�

; χ ¼ x
d
;ϕs

2 ¼ Vmaxd
2

Dskm
;ϕp

2 ¼ Vmaxd
2

Dpkm
;

α ¼ s�

km
; β ¼ s�ð Þ2

kmks
ð8Þ

where SðχÞ and PðχÞ indicate the dimensionless concentration of sub-
strate and product respectively. ϕs

2 and ϕp
2 denote the corresponding

reaction diffusion parameters. χ represents the dimensionless distance.
α and β represents the saturation parameters. The governing non-linear
reaction/diffusion Eqs. (3) and (4) are expressed in the following non-
dimensionless form.

d2SðχÞ
dχ2

� ϕs
2SðχÞ

1þ αSðχÞ þ β SðχÞð Þ2 ¼ 0 ð9Þ

d2PðχÞ
dχ2

þ ϕp
2SðχÞ

1þ αSðχÞ þ β SðχÞð Þ2 ¼ 0 ð10Þ

The boundary conditions are given by:

dS
dχ

¼ 0; P ¼ 0whenχ ¼ 0 ð11Þ

S ¼ 1;P ¼ 0whenχ ¼ 1 ð12Þ
The dimensionless current is reduced to

ψ¼ I
neFDP

d
s�

� �
¼ dP

dχ

����
χ¼0

ð13Þ

3. Approximate analytical expression of concentration of
substrate and product

3.1. Approximate solution using Taylor series method

Eqs. (9) and (10) are representing the system of nonlinear equa-
tions. It is very difficult to find the exact solution of these nonlinear

equations. Solving systems of nonlinear equations is perhaps one of
the most difficult problems, especially in a diverse range of science
and engineering applications. Recently so many approximate analyti-
cal methods [11] are used to solve the non-linear equations such as
homotopy perturbation method [12–16], residual method [17], Taylor
series method [18–21], AGM method [22–24],new approximate ana-
lytical method [25–27]. The concentration of substrate and product
are obtained by solving the nonlinear Eqs. (9) and (10) using Taylor
series method [28–30] (see Appendix A) as follows:

S χð Þ≈1þ S0ð1Þ x � 1ð Þ þ 1
2
ϕs

2 x � 1ð Þ2
1þ αþ β

þ ϕs
2S0ð1Þ x � 1ð Þ3
1þ αþ β

1� αþ 2β
1þ αþ β

� �
ð14Þ

P χð Þ≈P0ð1Þ x � 1ð Þ � 1
2
ϕP

2 x � 1ð Þ2
1þ αþ β

� ϕP
2S0ð1Þ x � 1ð Þ3
1þ αþ β

1� αþ 2β
1þ αþ β

� �
ð15Þ

where

S0ð1Þ ¼ 2ϕs
2 1þ αþ βð Þ

2 1þ 2αþ 2βð Þ þ 2 αþ βð Þ2 þ ϕs
2 1� βð Þ ;P

0ð1Þ

¼ ϕp
2 3þ 3αþ 3β � lþ βlð Þ

6 1þ αþ βð Þ2 ð16Þ

3.2. Approximate solution using new homotopy perturbation method

With the rapid development of nonlinear science, there appears an
ever-increasing interest of scientists and engineers in the approximate
analytical asymptotic techniques for nonlinear problems [31]. It is
very difficult to solve nonlinear problems either numerically or theo-
retically. Perturbation methods provide the most versatile tools avail-
able in nonlinear analysis of engineering problems, and they are
constantly being developed and applied to ever more complex prob-
lems. Homotopy perturbation method was first proposed by the He
[32]. Recently, a new approach to HPM is presented to solve the non-
linear problem and this gives a simple approximate solution in the zer-
oth iteration [33]. By using this new homotopy perturbation
[12,34,35] (Appendix B), the concentrations of substrate and products
can be obtained as follows:

S χð Þ≈ cosh mχð Þ
cosh mð Þ ð17Þ

P χð Þ≈ϕp
2

ϕs
2 χ þ 1� χ � cosh mχð Þ

cosh mð Þ
� �

ð18Þ

where m ¼ ϕsffiffiffiffiffiffiffiffiffiffi
1þαþβ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vmaxd2

Ds kmþs�þ s�ð Þ2
ks

� 	r
(19)

The dimensionless current is

ψ ¼ I
neFDP

d
s�

� �
¼ dP χð Þ

dχ

����
χ¼0

¼ ϕp
2

ϕs
2 1� 1

cosh mð Þ
� �

¼ Ds

Dp
1� 1

cosh mð Þ
� �

ð20Þ

The value of steady-state current (I) is

I
neF

¼ Dss�

d
1� sech

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmaxd

2

Ds km þ s� þ s�ð Þ2
ks


 �
vuut

0
B@

1
CA

0
B@

1
CA ð21Þ

The result obtained using new homotopy perturbation method is
equivalent to approximate analytical expression derived by hyperbolic
function method [36].
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3.3. Sensitivity of biosensor

The sensitivity is one of the most important characteristic of
biosensors. The sensitivity BS of a biosensor can be expressed as a gra-
dient of the maximal biosensor current density with respect to the sub-
strate concentration s� [10]. The dimensionless sensitivity for the
substrate concentration s� is given by

BS s�ð Þ ¼ s�

I s�ð Þ
dI s�ð Þ
ds�

¼ 1þ 1
2
þ s�

ks

� �
s�

km þ s� þ s�ð Þ2
ks


 � mtanh mð Þ
1� cosh mð Þ ð22Þ

where BS stands for the dimensionless sensitivity of the amperometric
biosensor and I s�ð Þ is the density of the steady-state biosensor current
calculated at the substrate concentration s�. From the Eq. (22), it is con-
formed that the sensitivity BS varies between −1 and 1.

3.4. Resitance of biosensor

The resistance of the membrane-based biosensors to changes of the
membrane thickness is introduced. The normalized dimensionless
resistance BR of the biosensor is expressed as the gradient of the
steady-state biosensor current with respect to the enzyme layer thick-
ness d [10],

BR dð Þ ¼ d
I dð Þ

dI dð Þ
dd

¼ mtanh mð Þ
cosh mð Þ � 1

� 1 ð23Þ

where BR stands for the dimensionless sensitivity of the amperometric
biosensor and IðdÞ is the steady- state biosensor current calculated at
the thickness of the enzyme layer d. The resistance BR varies between
−1 and 1. The inverse of resistance is referred to as conductance,
and such detection is referred to as conductometric electrochemical
biosensor or simply conductometric biosensor [10]. The relationship
between sensitivity and resistance are obtained from the Eqs. (22)
and (23) as follows:

BS s�ð Þ ¼ 1þ 1
2
þ s�

ks

� �
s�

km þ s� þ s�ð Þ2
ks


 � BR dð Þ þ 1ð Þ ð24Þ

3.5. Thickness of the membrane

Using (18) we find approximate analytically the membrane thick-
ness d, at which the steady-state current I gains the maximum at given
parameters Vmax;Ds; km; ksands�:We can rewrite the Eq. (18) as follows:

IðdÞ
neF

¼ Dss�

d
1� sech mð Þð Þ ð25Þ

We calculate a derivative of IðdÞ with the respect to the thickness d.

@IðdÞ
@d

¼ neFDss�
1
d2

1þm tanh mð ÞÞsechðmð Þ � 1½ � ð26Þ

And we're looking for d, where the derivative gets zero.

1þm tanh mð ÞÞsechðmð Þ � 1 ¼ �cosh2 mð Þ þ cosh mð Þ þmsinh mð Þ
¼ 0 ð27Þ

Eq. (24) was solved numerically. A single solution
m ¼ mmax ¼ 1:5055 was obtained. Consequentially, I gains the maxi-
mum at the membrane thickness d, where

dmax ¼ mmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ds km þ s� þ s�ð Þ2

ks


 �
Vmax

vuut ¼ 285:65μm ð28Þ

at the values ks ¼ 10μM; km ¼ 100μM,Ds ¼ Dp ¼ 300μm2=s; s� ¼ 10μM
and Vmax ¼ 1μM=s (values used in Fig. 4a).

4. Result and discussion

Eqs. (14)–(19) are the simple and closed-form of approximate ana-
lytical expressions of sensitivity and resistance of amperometry biosen-
sor with substrate inhabitation kinetics for the for different values of
parameters such as substrate reaction–diffusion parameter ðϕs

2Þ, pro-
duct reaction–diffusion parameter ðϕp

2Þ, thickness of membrane, diffu-
sion coefficients and saturation parameters (α and β), respectively.

The error percentage between numerical and the approximate solu-
tion obtained by the Taylor series method and hyperbolic function
method is less than 3.72% for small values of reaction–diffusion
parameters (Tables 1 and 2). Here the analytical results are obtained

Table 1
Comparison of numerical solution of concentration of substrate with the analytical solutions obtained by hyperbolic function method and Taylor series method for
α ¼ 0:1; β ¼ 0:1 and for different values of ϕs

2.

χ ϕs
2 ¼ 0:5;m ¼ 0:65 ϕs

2 ¼ 1;m ¼ 0:9

NUM NHPM Eq. (17) TSM Eq. (14) Error % for NHPM Error % for TSM NUM NHPM Eq. (17) TSM Eq. (14) Error % for NHPM Error % for TSM

0 0.8170 0.8226 0.8292 0.68 1.49 0.6768 0.6914 0.7156 2.15 5.73
0.25 0.8281 0.8333 0.8390 0.6 1.31 0.6959 0.7094 0.7303 1.94 4.94
0.5 0.8618 0.8658 0.8696 0.46 0.90 0.7540 0.7646 0.7784 1.41 3.24
0.75 0.9187 0.9209 0.9226 0.23 0.42 0.8539 0.8598 0.8663 0.69 1.44
1 1.0000 1.0000 1.0000 0.00 0.00 1.0000 1.0000 1.0000 0.00 0.00

Average Error % 0.40 0.82 Average Error % 1.24 3.07

Table 2
Comparison of numerical solution of concentration of product with the analytical solution obtained by hyperbolic function method and Taylor series method for
α ¼ 0:1; β ¼ 0:1;ϕs

2 ¼ 1 and for different values of ϕp
2.

χ ϕp
2 ¼ 0:5;m ¼ 0:9 ϕp

2 ¼ 1;m ¼ 0:9

NUM NHPM Eq. (18) TSM Eq. (15) Error % for NHPM Error % for TSM NUM NHPM Eq. (18) TSM Eq. (15) Error % for NHPM Error % for TSM

0 0.0000 0.0000 0.0000 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.00
0.25 0.0309 0.0295 0.0282 4.41 8.69 0.0617 0.0591 0.0564 4.25 8.55
0.5 0.0422 0.0405 0.0397 3.97 5.96 0.0844 0.0810 0.0794 3.97 5.96
0.75 0.0327 0.0315 0.0313 3.65 4.24 0.0653 0.0630 0.0626 3.50 4.0
1 0.0000 0.0000 0.0000 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.000

Average Error % 2.40 3.78 Average Error % 2.34 3.72

Here Num denotes numerical solution, NHPM- new homotopy perturbation method, TSM- Taylor series method.
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using three terms for the Taylor series and zeroth-order iteration for
NHPM. The approximation accuracy should be increased by increasing
high order terms in the Taylor series and iteration in NHPM.

4.1. Sensitivity

The sensitivity is also one of the most important characteristics of
the biosensors [10]. The biosensor sensitivity can be expressed as

the gradient of the steady-state current with respect to the substrate
concentration. Since the biosensor current as well as the substrate con-
centration varies even in orders of magnitude, especially when com-
paring different sensors, another useful parameter to consider is a
dimensionless sensitivity.

The biosensor sensitivity for different values of the parameter are
displays in the Figs. 1(a, b) and 2(a–c). It is notice that a decrease in
all parameter leads to decrease in sensitivity. When s�≈103μM the sen-

Fig. 1. The biosensor sensitivity using eqn. (22) for fixed values of Ds ¼ Dp ¼ 300μm2=s;Vmax ¼ 1μM=s; d ¼ 100μm:(a). ks ¼ 10μMand various values of kmμM. (b).
km ¼ 100μM and various values of ksμM.

Fig. 2. The biosensor sensitivity using eqn. (22) for fixed values of ks ¼ 10μM; km ¼ 100μM. (a). Ds ¼ Dp ¼ 300μm2=s; d ¼ 100μm and various values of VmaxμM=s.
(b). Vmax ¼ 1μM=s; d ¼ 100μm and various values of Ds ¼ Dpμm2=s. (c). Ds ¼ Dp ¼ 300μm2=s;Vmax ¼ 1μM=sand various values of dμm.
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sitivity reaches the minimum value −1. Due to the substrate inhibi-
tion, the sensitivity differs notably only at intermediate concentrations
of the substrate i.e 1μM < s� < 100μM.

4.2. Resistance

Figs. 3 and 4 illustrate the biosensor resistance BR versus the mem-
brane thickness d for different values of the parameter. One can see

from the figures that the shape of all the curves of the normalized resis-
tance is very similar. The results show that the effect of increasing val-
ues of the membrane thickness d, results in a deceasing resistivity. It
means that the maximal as well as minimal biosensor resistance BR

is directly proportional to ϕs
2ð¼ Vmaxd

2=DskmÞ.
Since I is a non-monotonous function of d, the BR varies between

−1 and 1. The cases when BR is close to −1 or 1 correspond to the
biosensors the response of which is very sensitive to changes in the

Fig. 3. The biosensor resistance using eqn. (23) for fixed values of Ds ¼ Dp ¼ 300μm2=s;Vmax ¼ 1μM=s:(a).ks ¼ 10μM; s� ¼ 10μM and various values of kmμM. (b).
km ¼ 100μM; s� ¼ 30μM and various values of ksμM.

Fig. 4. The biosensor resistance using eqn. (23) for fixed values of ks ¼ 10μM; km ¼ 100μM. (a). Ds ¼ Dp ¼ 300μm2=s; s� ¼ 10μM and various values of VmaxμM=s.
(b).Vmax ¼ 1μM=s; s� ¼ 10μM and various values of Ds ¼ Dpμm2=s. (c). Ds ¼ Dp ¼ 300μm2=s;Vmax ¼ 1μM=s and various values of s�μM.
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thickness d of the enzyme membrane. The noticeable change in the
behavior of the biosensor resistance at the moderate substrate concen-
trations due to the transition from the kinetic-limited to the diffusion-
controlled mode of the biosensor action.

As one can see in Figs. 3 and 4 an increase in the electrochemical
reaction rate constant km, substrate concentration s� or decrease in ks
and Vmax proportionally shifts the curve representing the resistance
BR to the right. Thus, an increase in the diffusion coefficient propor-
tionally prolongs the linear part of the biosensor resistance calibration
curve.

5. Conclusion

The mathematical model of the amperometric biosensor can be suc-
cessfully used to investigate the biosensor's sensitivity and resistance.
Simple and closed-form the approximate analytical expression for the
sensitivity and resistance are obtained for substrate inhibition kinetics.
The current function I gain the maximum at the membrane thickness

dmax ¼ 1:5055
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ds km þ s� þ s�ð Þ2

ks


 �
=Vmax

r
. The effect of thickness of the

membrane, concentration of substrate at x ¼ d; diffusion coefficient,
Michaelis-Menten constant, inhibition constant on sensitivity and
resistance are discussed. The biosensor sensitivity and the linear range
of the calibration curve can be increased when substrate concentration
s� < 1μMors� > 103μM and all values of other parameters.

Enzyme concentration can significantly reduce biosensor resis-
tance. By decreasing the concentration of the substrate, biosensor
resistance may also be greatly reduced (Fig-4). When the biosensor
operates in the diffusion-limiting mode instead of in the enzyme reac-
tion-controlled mode, the linear portion of the calibration curve is
longer.
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Appendix A

Analytical solution of nonlinear Eq. (Eqs. (11) and (12)) using Taylor
series method

Consider the nonlinear equations

d2S
dχ2

� ϕs
2S

1þ αSþ βS2
¼ 0 ðA1Þ

d2P
dχ2

þ ϕp
2S

1þ αSþ βS2
¼ 0 ðA2Þ

The boundary conditions are given by:

dS
dχ

¼ 0;P ¼ 0whenχ ¼ 0 ðA3Þ

S ¼ 1; P ¼ 0whenχ ¼ 1 ðA4Þ
Consider the Taylor's series at χ = 1 for dimensionless concentra-

tion of S χð Þ and P χð Þ.

S χð Þ≈∑3
q¼0

dqS
dχq

����
χ¼1

 !
ðχ � 1Þq

q!
ðA5Þ

P χð Þ≈∑3
q¼0

dqP
dχq

����
χ¼1

 !
ðχ � 1Þq

q!
ðA6Þ

let dqu
dχq

���
ξ¼1

¼ Aq , dqv
dχq

���
ξ¼1

¼ Bq and from the boundary conditions (Eq.

(A.3-A.4)), we get A0 ¼ 1andB0 ¼ 0. Let us consider,
A1 ¼ S

0
1ð Þ;B1 ¼ P

0
1ð Þ . Then

S χð Þ≈∑3
q¼0Aq

ðχ � 1Þq
q!

ðA7Þ

P χð Þ≈∑3
q¼0Bq

ðχ � 1Þq
q!

ðA8Þ

Substituting χ = 1 in Eq. (A1) and Eq. (A2), we get the following

A2 ¼ ϕs
2

1þ αþ β
ðA9Þ

B2 ¼ � ϕP
2

1þ αþ β
ðA10Þ

A3 ¼ ϕs
2l

1þ αþ β
1� αþ 2β

1þ αþ β

� �
ðA11Þ

B3 ¼ � ϕP
2l

1þ αþ β
1� αþ 2β

1þ αþ β

� �
ðA12Þ

Consider the approximation stops at third step, then we have

S χð Þ≈ A0 þ A1 x � 1ð Þ þ A2
2 x � 1ð Þ2 þ A3

6 x � 1ð Þ3

¼ 1þ S0 1ð Þ x � 1ð Þ þ 1
2

ϕ2
s x�1ð Þ2
1þαþβ þ ϕ2

s S
0 1ð Þ x�1ð Þ3
1þαþβ 1�

αþ om
2β

1þαþβ

0
BB@

1
CCA

ðA13Þ

P χð Þ≈ B0 þ B1 x � 1ð Þ þ B2
2 x � 1ð Þ2 þ B3

6 x � 1ð Þ3

¼ P0 1ð Þ x � 1ð Þ � 1
2

ϕ2
P x�1ð Þ2
1þαþβ � ϕ2

PS
0 1ð Þ x�1ð Þ3
1þαþβ 1� αþ2β

1þαþβ


 � ðA14Þ

Now using the boundary conditions dS
dχ ¼ 0;P ¼ 0whenχ ¼ 0;we can

get

S
0
1ð Þ ¼ 2ϕs

2 1þ αþ βð Þ
2 1þ 2αþ 2βð Þ þ 2 αþ βð Þ2 þ ϕs

2ð1� βÞ ;P
0
1ð Þ

¼ ϕp
2 3þ 3αþ 3β � lþ βlð Þ

6 1þ αþ βð Þ2 ðA15Þ

Appendix B

Analytical solution of nonlinear equation (Eq.11 and Eq.12) using new
homotopy perturbation method

In this Appendix, we indicate how Eq. (5) in this paper is derived.
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d2S
dχ2

� ϕs
2S

1þ αSþ βS2
¼ 0 ðB1Þ

d2P
dχ2

þ ϕp
2S

1þ αSþ βS2
¼ 0 ðB2Þ

The boundary conditions are given by:

dS
dχ

¼ 0;P ¼ 0whenχ ¼ 0 ðB3Þ

S ¼ 1;P ¼ 0whenχ ¼ 1 ðB4Þ
we first construct a Homotopy as follows [34–36]:

1� pð Þ d2S
dχ2

� ϕs
2S

1þ αSðχ ¼ 1Þ þ βSðχ ¼ 1Þ2
" #

þ p 1þ αSþ βS2
� 	 d2S

dχ2
� ϕs

2S
� �

¼ 0 ðB5Þ

1� pð Þ d2P
dχ2

þ ϕp
2S

1þ αSðχ ¼ 1Þ þ βSðχ ¼ 1Þ2
" #

þ p 1þ αSþ βS2
� 	 d2P

dχ2
þ ϕp

2S
� �

¼ 0 ðB6Þ
on simplification we get

1� pð Þ d2S
dχ2

þ ϕs
2S

1þ αþ β

� �
þ p 1þ αSþ βS2

� 	 d2S
dχ2

� ϕs
2S

� �
¼ 0 ðB7Þ

1� pð Þ d2P
dχ2

þ ϕp
2S

1þ αþ β

" #
þ p 1þ αSþ βS2

� 	 d2P
dχ2

þ ϕp
2S

� �
¼ 0 ðB8Þ

The approximate solution of Eqs. (B1) and (B2) are

S ¼ S0 þ pS1 þ p2S2 þ :::: ðB9Þ

P ¼ P0 þ pP1 þ p2P2 þ :::: ðB10Þ
substituting Eq. (B9) in Eq. (B7) and Eq. (B10) in Eq. (B8) in, then

comparing the coefficients of like powers of p yields:

p0 :
d2S0
dχ2

� ϕs
2S0

1þ αþ β
¼ 0 ðB11Þ

p0 :
d2P0

dχ2
þ ϕp

2S0
1þ αþ β

¼ 0 ðB12Þ

The boundary conditions are

χ ¼ 0;
dSi
dχ

¼ 0;Pi ¼ 0; i ¼ 0;1;2; 3 � � � ðB13Þ

χ ¼ 1; S0 ¼ 1; P0 ¼ 0; Si ¼ 0;Pi ¼ 0; i ¼ 1; 2;3 � � � ðB14Þ
Solving the Eqs. ((B11) and (B12)), and using the above boundary

conditions and we can find the following results.

S0 ¼
cosh ϕsffiffiffiffiffiffiffiffiffiffi

1þαþβ
p χ

� �

cosh ϕsffiffiffiffiffiffiffiffiffiffi
1þαþβ

p
� � ðB15Þ

P0 ¼
ϕp

2

ϕs
2 χ þ

1� χ � cosh ϕsffiffiffiffiffiffiffiffiffiffi
1þαþβ

p χ

� �

cosh ϕsffiffiffiffiffiffiffiffiffiffi
1þαþβ

p
� �

0
BB@

1
CCA ðB16Þ

According to the HPM, we can conclude that

SðχÞ≈ lim
p!1

S ¼ S0 þ S1 þ S2 þ � � � ðB17Þ

PðχÞ≈ lim
p!1

P ¼ P0 þ P1 þ P2 þ � � � ðB18Þ

Considering the first iteration we have the solution of concentra-
tion of species

S χð Þ≈S0 ¼ cosh mχð Þ
cosh mð Þ ðB19Þ

P χð Þ≈P0 ¼ ϕp
2

ϕs
2 χ þ 1� χ � cosh mχð Þ

cosh mð Þ
� �

ðB20Þ

where m ¼ ϕsffiffiffiffiffiffiffiffiffiffi
1þαþβ

p

Appendix C Nomenclature

Symbol Meaning

s Concentration of substrate
p Concentration of product
s� Concentration of substrate at x ¼ d
km Michaelis-menten constant
ks Inhibition constant
Vmax Maximal enzymatic rate
d Thickness of the enzyme layer
F Faraday constant
Ds Diffusion coefficient of the substrate
Dp Diffusion coefficient of the product
I Current density of the biosensor
x Distance
S Dimensionless concentration of substrate
P Dimensionless concentration of product
χ Dimensionless distance
ϕs

2 Substrate reaction diffusion parameter

ϕp
2 Product reaction diffusion parameter

α Saturation parameter
β Saturation parameter
BS Biosensor sensitivity
BR Biosensor resistance.
ψ Dimensionless current
ne Number of electrons involved in charge transfer at the

electrode surface
Unit Experimental values []
μM –

μM –

μM 10–100
μM 100
μM 10
μM=s 1–1000
μm 10–100
C/mol 96,485
μm2=s 300
μm2=s 300
μA=cm2

–

cm –

None –

None –

None –

None 0.5–300
None 0.5–300

(continued on next page)
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Appendix C Nomenclature (continued)

Symbol Meaning

None 0.1–1
None 0.1–10
None –

None –

None –

None –
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