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PREFACE

This thesis consisting of five chapters is primarily confined to a study

on circulant polynomial matrices.

Review of literature, notations, preliminaries and summary of results

obtained in the thesis are given in chapter one.

In chapter two, the concept of k-circulant and (r,s) -pair circulant
polynomial matrices is introduced. Some important properties of k-circulant
and (r,s) -pair circulant matrices are extended to k-circulant and (r,s)-pair

circulant polynomial matrices.

Chapter three is devoted to develop, different kinds of circulant
polynomial matrices. Such as hermitian, normal and conjugate normal
circulant polynomial matrices. Some characterization of hermitian, normal and

conjugate normal circulant polynomial matrices are obtained.

Block circulant and circulant block polynomial matrices are introduced
in chapter four. Some important results of block circulant and circulant block

polynomial matrices are also given.

In chapter five we have presented, an application of a circulant

polynomial matrix, to find the solution for travelling salesman problem.
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Chapter 1




Introduction

In this chapter, review of literature, notations, basic definitions,
primary results used elsewhere in the thesis and summary of results obtained

are given.

1.1 Review of Literature
The introduction and development of the notion of a matrix and the
subject of linear algebra followed the development of determinants, which

arose from the study of co —efficient of systems of linear equations.

Although the origin of the theory of matrices can be traced back to
the 18" century and although it was not until the 20" century that it had
become sufficiently absorbed into mathematical mainstream to warrant
extensive treatment in text books and monographs, it was truly a creation of

the 19" century.

The French mathematician Cayley discovered matrices in the year of
1860. Matrices have been found to be great utility in many branches of

applied Mathematics, physics and Engineering.

Matrices at the end of the 19" century were heavily connected with
physics issues and for mathematicians, more attention was given to vectors

as the proved to be basic mathematical elements. For a time, however,



interest in a lot of Linear Algebra showed until the end of world War-II
brought on the development of computers. Now instead of having to break
down an enormous nx N matrix, computers could quickly and accurately
solve these systems of linear algebra. With the advancement of technology
using the methods of Cayley, Gauss, Leibnitz, Euler, and others,
determinants and linear algebra moved forward more quickly and more

effective.

In matrix theory, we come across many special types of matrices. Let

AeC, . be a complex matrix. It is symmetric if A= A" and is skew

symmetric if A=—A" where A" is the transpose of A.

Loo-Kong Hna established the simplectic classification of hermitian
matrices, which has applications to the geometry of symmetric matrices. A
complex matrix of order n is said to be hermitian if the conjugate transpose

of A equalsto A.

In 1918, the concept of a normal matrix with entries from the complex
field was introduced by Toeplitz [51] who gave necessarily and sufficient
conditions for a complex matrix to be normal. A complex square matrix

A is normal if AA" = A"A, where A" is the conjugate transpose of A. That
IS, a matrix is normal if it commutes with its conjugate transpose. A matrix

A with real entries satisfies A*=A", and is therefore normal if



AT A= AA". This concept of normal was introduced as a generalization of

hermitian matrices and the singular values of normal matrices were studied

in [5,24,31,48]. The importance of normal matrices explains the

appearance of the survey [47]. As put forth by Robert grone.et.al. hoped

that it will be useful to a wide audience and presented that, a long list of
conditions on an n x n complex matrix A, equivalent to it’s being normal.
In most cases, a description of why the condition is equivalent to normality
is given in[47]. Elsner and Ikramov [15] have a list of 70 conditions on an
nxn complex matrix A equivalent to its being normal, published in 1987

by Robert Grone.et.al. in [47] and it has been proved to be very useful.

In multidimensional system theory, problem related to multivariable
control system invertibility require the use of generalized inverse of matrices
whose elements are polynomials in several variable with coefficients over a
real field (or) a rational field (or) on integral domain of integers polynomials
and polynomial matrices arise naturally as modeling tools in several arrears

of applied mathematics, science and engineering specially in systems theory

[7,21,26 -30,35,53,55].

In this thesis the concept of circulant polynomial matrices is
introduced as a generalization of circulant matrices. A nxn circulant

polynomial matrix is formed by cycling its entries until (n-1) new rows are



formed [13,22,25,32]. Circulant polynomial matrices share a relationship

with a special permutation polynomial matrix ﬂ(/l)(with polynomial of

degree zero). Knowing the relationship that these polynomial matrices hold
is enough to write A(4)as a linear combination of the powers of z(1).
That IS, a circulant polynomial matrix

A(A)=circ(a,(1),a,(1),8,(4),...a,(4)) can be expressed as

A(A)=a ()1, (2)+a,(A) 7, (2)+a,(A) 7 (A)+...+a,(A) 70 (A). It is
easy to observe that raising the powers of n(i) to 0 to n provides the
matrices necessary to produce A(ﬂ) as a linear combination of the powers

of ﬂ(ﬂ,). Each aj(/l) component can be multiplied by its corresponding

ﬁ(i) polynomial matrix always one less degree than its subscript. We

proved the basic properties of circulant polynomial matrix. Also, we

obtained that circulant polynomial matrices commutes under multiplication.

We found the concept of k-circulant polynomial matrix. We have
given the important characterization of k- circulant polynomial matrix such

as  A(1) is a k-circulant polynomial matrix if and only if
7(A)A(A)=A(A)7*(A). We have introduced a new type of polynomial

matrix called (r, s)-pair circulant polynomial matrix, which is a

generalization of the k- circulant polynomial matrix. Some properties such



as sum, difference, product, inverse and adjoint of (r, s)- pair circulant
polynomial matrices are investigated. Moreover, we give some necessary

and sufficient conditions for a matrix to be an (r, s)-pair circulant polynomial
matrix. That is, a polynomial matrix A(41)eC™"(4) is an (r,s) pair
circulant polynomial matrix if and only if A(1)®(4)=%(4)A(4). Also,
we discuss about the Hermitian, normal and conjugate normal circulant

polynomial matrices. We have derived the properties of hermitian, normal

and conjugate normal circulant polynomial matrices.

A representation of block circulant polynomial matrices can be

[LEN

m—

developed as b circ (A(2),A (1), A (1)) =D | 7k (2)® A1 (2)] -

=0

~

Also, some characterizations for block circulant, circulant block and block
circulant matrices: where the blocks are circulant polynomial matrices are

discussed.

Finally, an application of circulant polynomial matrices in travelling

salesman problems is given.



1.2 Notations and Preliminaries
In this section, the notations, definitions and theorems used in the

thesis are given.

Cn The space of nxncomplex matrices of order n
Con(4) The space of nxn complex polynomial matrices of
order n
C, The space of complex n-tuples
1,(4) identify polynomial matrix of order n
O(4) Zero Polynomial Matrix
A" (1) The transpose of A(4)
m The Conjugate of A(A)
A(2) The Conjugate transpose of A(A)
adj A(4) Adjoint of A(4)
det A(1) Determinant of A(1)
A (1) Inverse of A(A)
AT (2) Generalized inverse “of A(2)
A(1)®B(4) Kronecker product of A(4) and B(4)
tr A(4) Trace of A(4)



circ(a,(4),a,(4),...a,(1)): Circulant polynomial matrix

7(2)

Permutation matrix (with polynomial of degree zero)

Cirs(@(4),a,(4),8,4(4)): (1, s) -pair circulant polynomial matrix

Basic (r,s)—pair circulant polynomial matrix.
Fourier Polynomial matrix

The Conjugate transpose of F(4)

diag (0,0,0,1,0,1, ..., 0), 1 is in the k™ position
diag (1,W(ﬂ,),wz(ﬂ),...,w“‘l(/l))

Block circulant polynomial matrix

Circulant block polynomial matrix

Block circulant matrix with circulant polynomial

matrices as its blocks.

Vertex set of G

Edge set of G
Minimum degree of G
Maximum degree of G

Number of vertices

Number of edges



Definition 1.2.1

A polynomial matrix A(i) of order n is called circulant polynomial

matrix if it is of the form

a(4) 2(4) a(4) - a(4)
A(i) an(:/l) al(/l) az(:/l) an—l:(ﬂ“)

Which is denoted by A(1)=circ(a,(1),a,(4),...a,(4))-

Example 1.2.2
A 3x 3 circulant polynomial matrix of degree 2 is as follows

1424+ A% 2464+31% 3+41+42°
A(A)=|3+42+42%* 1+22+A° 2+61+34°
2+64+31° 3+41+44% 1424+ A°

=A+AL+AN

1 2 3 2 6 4 1 3 4
Where A)={3 1 2|,A=|4 2 6|,A={4 1 3

2 31 6 4 2 3 41

Definition 1.2.3

The identity circulant polynomial matrix of order n, denoted by

[In (/1)] is the identity circulant polynomial matrix which is of degree zero.



Definition 1.2 4
A circulant polynomial matrix whose elements are all equal to 0, is

the null (or) zero circulant polynomial matrix which is denoted by O(1).

Definition 1.2.5

j

Let A(ﬂ,):[aij (/1)} and B(ﬂ):[b..(/l)} be two nxn circulant
polynomial matrices. Then the sum A(4)+B(4) is defined to be the

circulant polynomial matrixC () =| C; (1) | with C;(2)=a;(2)+b;(2).
1.2.6 Properties of Circulant Polynomial Matrix Addition

(i)  Circulant polynomial matrix addition is commutative.
If A(1) and B(4) are nxn circulant polynomial matrices then

A(A)+B(A)=B(A)+A(A).

(ii)  Circulant polynomial matrix addition is associative.
If A(4), B(4) and C(1) are nxn circulant polynomial matrices

then [ A(1)+B(1)]+C(1)=A(1)+[B(1)+C(2)].

(iii) Existence of additive identity.



If O(A) is the nxn zero circulant polynomial matrix each of whose
elements is zero then A(1)+O(1)=0(A)+ A(4)=A(A) forevery nxn

circulant polynomial matrix A(4).

(iv)  Existence of additive inverse.

Let A(/i) be nxn circulant polynomial matrix. Then the negative of
the circulant polynomial matrix A(A) is denoted by —A(1). Then —A(4)
is the additive inverse of the circulant polynomial matrix A(A4).

That is, —A(4)+ A(4) = A(4)— A(4)=0(A).
(v) k[ A(2)+B(1)]=kA(2)+kB(1) for all scalars k and all nxn
circulant polynomial matrices A(4)and B(A).
(vi) (k +k,) A(1) =k A(1)+k,A(A), forall scalars k, and k,.

Proposition 1.2.7

Let A(Z) and B(4) be nxn circulant polynomial matrices. Then

for any scalars @ and B, aA(1)+pBB(A) is a circulant polynomial

matrix.

10



Proof

Let A(A)=circ(a,(1),a,(A1),....,a,(2)) and
B(/l)zcirc(bl(l), b,(A),..., bn(ﬂ,)) be two circulant polynomial matrices

and « and g be any scalars.

Now
aA(2)+ BB(A)=acirc(a,(4),a(4),...a,(4))+ Bcirc(b (1),b(2),....b,(1))

=circ(aa,(4),08,(1),a85(1)....aa,(1))+
circ( b, (1), B0, (1), Bbs(4),... b, (1))

=circ(aa,(1)+ p,(1),aa,(1)+ Bb,(1),....aa,(1)+ b, (1))
Thus, aA(4)+ Bb(A) is a circulant polynomial matrix.

Definition 1.2.8

Two circulant polynomial matrices A(4) and B(A)are said to be

equal if

(i)  They have the same size.

(ii)  Corresponding entries are equal polynomials.

Theorem 1.2.9

The nxn polynomial matrix A(/I) Is a circulant polynomial matrix

if and only if A(2)=7,(2)A(4)7z,(4).

11



Theorem 1.2.10

The circulant polynomial matrix

A(A)=circ(a,(1),a,(1).a5(4)....a,(2)) can be expressed as

Proof
Given that A(1)=circ(a,(1),a,(4),a5(2)....a,(4)) is a circulant

polynomial matrix.

a(2) a,(1) a(4) a,(4)
a,(4) a(l) a(4) (2)
Thatis, A(1)=|a,,(1) a,(4) a(4) ,(4)
3,(4) a(4) a(2) a(4)
Now

A(2)=a, ()1, (2) + 2, (4)(es(4), €1(4), & (A)omr €2(4)) +
a,(1)(e1(4), &, (1) € (4), - 8,,(4))+
+a,(4)(&,(2), &(4),e4(2), e, (1) 4(2)

Here 7,(1)=(e,(4), &(4), &(2),. €,1(2))

12



0100 -0

=(e,4(2), €, (2), & (A), €1, (4))

Since the post multiplication of any nxn polynomial matrix by

T, (/1) shifts the columns of that matrix one place to the right.

Therefore, we find that

Example 1.2.11

1+31+54%  71+24° 2+42°
Let A(A)=| 2+44° 1+32+54% 7i+24°
TA+24° 2+42%  1+31+54°

=A+AL+ AN
1 0 2 3 70 5 2 4
Where A)={2 1 0|,A=/0 3 7|,A =4 5 2
0 21 7 0 3 2 4 5

13



Now 8, (4)1(2) +a,(2) (1) + 2, (1) 72(2)

010
::@+3z+5zﬂ 010 +(ra+zzﬁ 00 1 +(2+4Aﬂ 1 00
10 0

1+31+5.2 0 0 0 72 +212 0
= 0 1+31+542 0 + 0 0 TA+24°

0 0 14314512 | 74+242 0 0

0 0 24447
+| 24427 0 0

0 2+4,° 0

1+341+54%2 TA+222 2+4,°
=| 2442% 1+3A+54% TA+24°7 =A(/1).
TA+27° 2+44%  1+31+54°

Proposition 1.2.12

Let A(4) and B(A4) be nxn circulant polynomial matrices. Then

the product A(4)B(A) is also a circulant polynomial matrix.

Proof
Let A(A)=circ(a,(21),a,(1),a;(1),...,a,(1)) and
B(4)=circ (b,(2),b,(1), by(4),....b,(1)) be two circulant polynomial

matrices.

14



By theorem (1.2.9), we must have both
A(A) =z, (A)A(A) 70 (2) and B(2) =7, (24)B(A) 7, (4).
Now A(2)B(2) = (7 (4) A(2) 7 (4))(7 (2)B(2) 7 (2))
=70 (2) A(2)( 7 (A) 7 (1)) B(2) 70 (2)
= 70 (2)A(2) 1n(2)B(2) 7 (2)

=7 (2) A(2)B(2) 71 (4)

Hence, A(4) B(4) is a circulant polynomial matrix.

Result 1.2.13
If A(1), B(4) and C(4) are circulant polynomial matrices then the

following properties hold.
(i) [A(2)B(2) Jc(2) = A(2) B(2)C(4)]
(i) A(2)[B(2)+C(A)]=A(1)B(2)+A(2)C(4).

Proposition 1.2.14

Let A(ﬂ,) be nxncirculant polynomial matrix. Then for any positive

integer r, A"(A) is circulant polynomial matrix.

Proof

Since A(/l) Is a circulant polynomial matrix.
By theorem (1.2.9), we have A(1)=7py(2)A(4)zn(4). But

7,,(4) is an orthogonal polynomial matrix, so

15



(%) AT ()7 (2)

Hence, Ar(/i) Is a circulant polynomial matrix.

Theorem 1.2.15

Suppose that A(A) and B(A) are nxn circulant polynomial

matrices. Then their product commutes. That is, A(4)B(4)=B(1)A(1).
Proof

Given that A(4) and B(A) are nxn circulant polynomial matrices.

We have to prove that A(1)B(1)=B(1)A(4).

If  A(A)=circ(a,(1), a,(1), a;(4),.... a,(1)) and
B(4)=circ (b,(4), b,(2),b5(4),.... b, (1)) are two circulant polynomial

matrices, then  from  theorem (1.2.10), we find that

A(2)=a, ()7 (), B(A)= jz"_;bj (4)71(2) where z0(2) =1, (2).

16



= 2. 2.2 (4)b; (2)m, " (2)

Thus, circulant polynomial matrices commute under multiplication.

Theorem 1.2.16

If A(4) and B(4) are circulant polynomial matrices of order n, then
A(A) and B(4) will commute if and only if A(A)-klI(4) and

B(4)—kI(A) commute for every scalar k.

Proof

Given that A(1) and B(A) are two circulant polynomial matrices of

order n.

Assume that the circulant polynomial matrices A(4) and B(A4)
commute. Thatis, A(2)B(1)=B(1)A(4).
We have to prove that A(1)—kl(4) and B(A)—kI(4) commute for

every scalar k.

17



Now [ A(2)-Ki(4)][B(2)-K (4)]
= A(2)B(2)~KI (2)B(2)—KI (2)A(2) +K*[1(2)]
= A(2)B(2)~k[ A(1)B(1)]+K*[1(1)]
= A(2)B(1)—k[ A(2)B(2)]|+k*I(2) (1.1)
Also, [ B(4)—kI(2)][ A(2)-kI(2)]
=B(2)A(2) kI (2)B(2)—KI (1) A(2) +K*[1(2)]
=B(2)A(4)—k[B(2)+A(4) | +K?*1(4)
= A(2)B(1)—k[ A(2)+B(2)]+k*1(2) (1.2)
From (1.1) and (1.2), we get
[A(2)-KI (4)][B(2)-KI (4)]=[B(2) -kl (2) ] [A(2) K1 (2)]
Thatis, A(A)—kI(4) and B(2)—KI(A) commute.
Conversely, assume that A1)kl (1) and B(4)—kl () commute.

We have to prove that A(4) and B(4) commute.
[A(2) =K (2)][B(2) -k (2)]=[B(2) -kl (1) ][ A(2)KI ()]
A(2)B(2)-K[ A(2)+B(2)]+k’1(2)=A(2)B(2)—k| A(2)+B(2)]+Kk’I(2)
A(2)B(4)=B(1)A(4)

Thus, A(4) and B(4) commute.

18



Theorem 1.2.17

If A(2) is a nxn circulant polynomial matrix, then A'(1) is a

circulant polynomial matrix.

Proof
Let A(A)=circ(a, (1), a,(%), a5(%),.... a,()) be a circulant

polynomial matrix.

N—"

a(2) a() a(l) - a4
) < ay4(4)

A2)=|a(4) a(2) a(d) - a,(4)

=circ (a,(1), a,(4), a,3(4),- 3,(2))

Thus, A" () is a circulant polynomial matrix.

Result 1.2.18

If A"(1) and B'(4) are the transpose of A(1) and B(A)

respectively then
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T

([ A ()] =A(2)

(ii)[A(2)+B(2)] =AT(2)+B"(2) for all nxn circulant
polynomial matrices A(A) and B(A).

(iit) [A(4)B(4)] =BT (2)A"(2)

(iv)[kA(2)] =kAT (2).

Definition 1.2.19

The trace of a circulant polynomial matrix A(4)

[a“( )] is the

sum of its diagonal elements.

Thatis, trA(4)=tr[ 2, (4)]= Y a, (4)

Result 1.2.20

The trace of a circulant polynomial matrix has the following
properties

(i) tr A(2)+B(2)]=tr[ A(2) |+tr[ B(2)] for all nxn circulant
polynomial matrices A(A) and B(4).

(ii) tr[ kA(4) |=ktr[ A(4)] for all nxn circulant polynomial

matrices A(A) and all scalars k.
(iii) tr| AT(2) |=tr[ A(4)]
(iv) tr[ A(2)B(2)]=tr[ B(A)A(2) ]
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Definition 1.2.21

The circulant polynomial matrix obtained from any given circulant

polynomial matrix A(A) on replacing its elements by the corresponding

conjugate complex number is called the conjugate of A(/i) and is denoted

by A(2).

If A(/I) is a circulant polynomial matrix over the field of real

numbers then obliviously A(1) coincides with A(A).

Result 1.2.22

If A(1) and B(4) are the conjugate of A(A) and B(A)

respectively then

(ii)[A(ﬂ)+B(i)]:[A(;L)]{B(;L)] for all nxn circulant
polynomial matrices.

(iii)[A(A)B(/l)]:[A(i)]+[B(/l)]

(iv) [k A( )] = k[A(A)], k being any complex number.
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Definition 1.2.23

The transpose of the conjugate of a circulant polynomial matrix

A(2) is called conjugate transpose of A(A) and is denoted by A™(1).

Thatis, (A7(4))=[ A(Z)] =A"(2).

Result 1.2.24
If A"(2) and B"(A) are the conjugate transpose of A(4) and B(4)

respectively then

(ii)[A(ﬂ)+B(i)T:A*(A)+B*(/1) for all nxn circulant

polynomial matrices A(A) and B(A).

*

(i) [A(4)B(2)] =B" ()" (2)

(iv) [kA(/l)]* =KA" (1), k being any complex number.

*

wm[aw] =[x W]

Proposition 1.2.25

Let A(A) be nxn circulant polynomial matrix. Then A™(2) is
circulant polynomial matrix if A(/l) IS non-singular circulant polynomial

matrix.
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Proof

If A(i) IS a non-singular circulant polynomial matrix, then by

theorem (1.2.9), we have A™1(2) =(7Tm(/1)A(ﬁ)”;n(ﬁ))_l

() (ARt (2)

= (2 A ()7 (2)
Therefore, A‘l(ﬂ) is a circulant polynomial matrix.

Result 1.2.26
The inverses of circulant polynomial matrices has the following

properties
-1
(i) [A‘l(/i)} = A(4) for all invertible nxn circulant polynomial
matrices A(A).

(i) [A(2)B(2)] " =87 (2

circulant polynomial matrices A(/l

(iif) | AT (2)]

JA™ 1() for all invertible nxn
)
.

=[A‘1(/1)] .

and B(1).

-1

Definition 1.2.27

Let A(l):[aij(/l)] be a circulant polynomial matrix. Then the
adjoint of A(2) is the transpose of the cofactor polynomial matrix Cj; (1)

of A(A). Itis denoted by adj[ A(2)].

23



1.2.28 Properties of the Adjoint of Circulant Polynomial Matrix

(i) If A(1) isacirculant polynomial matrix of order n, then
A(A)adj| A1) |=det| A(2) |Inn(2)
—adi[ A(2)]A(2)
(i) If A(A) is acirculant polynomial matrix of order n, then

T

adj| AT (2) |={adi[A(2)]}
(iii) If A(Z) and B(4) are two circulant polynomial matrices of the
same order, then adj| A(1)B(1)]=adj[ A(1)]adj| B(4)].
(iv) adj {adj [A(/i)]} = ‘A(ﬂ,)‘n_z A(1), where A(1) is non- singular
circulant polynomial matrix.

(v) Adjoint of diagonal polynomial matrix is also diagonal.
(vi) aci[ A(%)B(1)C ()] = aci[ AG-) Jaci[B() Jaci[C(1)]
(vii) adji[ A(A)B(1)] ={adjA(1)}' {adiB(1)} .
Definition 1.2.29
Let A(L)=|a;(1)]€C,, (%) and B(A)=|b;(%)]eC (1) be
two circulant polynomial matrices. Then the kronecker product (or tensor,

or direct product) is that mpxnq circulant polynomial matrix defined by
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A(2)®B(1)=

1.2.30 Properties of the kronecker product of the circulant

polynomial matrices:

(i) (oA(.)) ©B(2) = A(1) @ (0B (1)

)
viii) (A(2)®B (1)) = A"(2)®B" (1)
) r(A(1) @ B(1))=r (A1) r(B(1)
(x) If A(A) and B(x) are circulant polynomial matrices of order
mand n, then tr( A(A)®B(&))=tr(A(%))tr(B(1)) .
(xi) If A(M ) and B(X) are non-singular circulant polynomial

matrices, so is A(A)®B(1) and (A(2)®B(1)) =A*(L)®B*(1).

(xii) det( A(L)®B(1))=(det A(1))" (detB(1))’
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(xiii) Let A(A)be circulant polynomial matrix of order nand 1(2.)
be the identity polynomial matrix of order n, then
| (1) ® A(L)=diag (A(R), A(L),.... A(R)).
(xiv) There exists a permutation matrix 7(.) depending only on m,
n such that B(1)® A(L)=="(1)( A(L)® B(L))m(2).
Definition 1.2.31
Eigen value of a circulant polynomial matrix A(k) Is defined to be

the zeros of the polynomial det| A(L)—pl |=0. This polynomial is known

as characteristic polynomial.

Definition 1.2.32

A non-zero vector x=0eC, is said to be a eigen vector of a complex
polynomial matrix A(x) an associated with a eigen value p if it satisfies

A(A)x =px.

Theorem 1.2.33

Theorem 1.2.34

If A(x) Is a circulant polynomial matrix, it is diagonalized by F(X).

More precisely, A(A)=F"(L)A(A)F(R).
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1.3 Summary of Results
In this section, a short account of the results obtained in this thesis are

given.

k-Circulant and (r, s) — pair Circulant Polynomial Matrices

The concept of k-circulant and (r, s) — pair circulant polynomial
matrices are introduced and some basic characterizations are derived. Many
of the basic results on k-circulant and (r, s) — pair circulant matrices were

extended to k-circulant and (r, s) — pair circulant polynomial matrices.

Hermitian, Normal and Conjugate Normal Circulant Polynomial

Matrices

We introduced hermitian, normal and conjugate normal circulant
polynomial matrices. Also, some of their basic characterizations and

important results are discussed.

Block Circulant Polynomial Matrices

The concept of block circulant and circulant block polynomial
matrices are developed. We give some important results concerning the
diagonal polynomial matrices for block circulant, circulant block and block

circulant matrices: where the blocks are circulant polynomial matrix of level
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3 and type (m, n, p) is diagonalizable polynomial matrix by using the unitary

polynomial matrix F, (L) ®F, (L) ®F (1).

As an applications of the circulant polynomial matrices are used to

solve the travelling salesman problem.
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Chapter 11




k — CIRCULANT AND (r, s) - PAIR
CIRCULANT POLYNOMIAL MATRICES

In this chapter we introduce the concept of k-circulant polynomial
matrices® and (r, s) - pair circulant polynomial matrices. Some of the
properties of k-circulant and (r, s)-pair circulant matrices are extended to k
- circulant polynomial matrices and (r, s) - pair circulant polynomial
matrices. Also, we have given characterization of k - circulant and

(r, s) - pair circulant polynomial matrices.
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2.1 A Study on k-circulant Polynomial Matrices
In this section some of the properties of k-circulant matrices found in

[1,17,18,50] are extended to k-circulant polynomial matrices.

Definition 2.1.1

A k-circulant polynomial matrix of order n is a matrix of the form

A(4)=k-circ(a (1), a,(2),... a,(1))

(1) (4 a,(4)

a4 (4)  aa(4) 2,4 (1)

Thatis, A(A)=|a _n.i(4) a_n..(4) a, o (1)
au(l)  aa(?) . a2 |

Remark 2.1.2

If 0<k <n,eachrowof A(4) isthe previous row moved to the right

k - places or moved to the left n-k places wrap around.

If k>n, then a shift of k - places is the same as a shift of k mod n
places. If k is negative, shifting to the right k- places will be equivalent to
shifting to the left (-k)- places.

Thus, for any integers Kk, k with k = k(mod n) a k circulant and a

k-circulant are synonymous.
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Example 2.1.3

A 3-circulant polynomial matrix of order 5 is

A+ 2 ~A0-21%+1 20°+3
21%+3 ~A°+1 347+ A
A(i): 32+ 1 A+ 2 ~AP =227 +1
~A0-22%+1 21%+3 ~A°+1
i -7 +1 35+ 1 AR )
Remark 2.1.4

AP =22%+1

312+ 1
~A0-22%+1
~A%+1
AR}
24°+3

A 1-circulant polynomial matrix is an ordinary circulant polynomial

matrix.

A 0-circulant polynomial matrix is one in which all rows are identical.

A (-1)- circulant polynomial matrix or an (n-1)- circulant polynomial

matrix has each successive row moved one place to the left.

Theorem 2.1.5

A(4) is a k-circulant polynomial matrix if and only if

m(A)A(A)=A(A)7*(A) where z(1) is a permutation matrix (with

polynomial of degree zero).

Proof

Let us assume that A(/I) is a k-circulant polynomial matrix of order n.

That is, A(4)= k-circ(a,(1), 3,(1),... a,(2))
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| a.(4)

Takea:@ : nj.Then P.(2)=7(2)=(0,10...,0)
010 .. 0]

oo 1 .0

100 .. 0

is a permutation matrix. If A(4)

(aij (i)) then

0 a,(4) a,(4) . a,(2) |
L0 aa(4) a,,(4) - a,(2)
7(A)A() a, na(4) a 2I(Tz(ﬂu) v A (4)
e Mal) an® - a)
a4, (4) w2(4) 4 (2)]
2, 51 (4) ZKTZ(Z) % (2) (8, (1)).
a,(4) a,(4) a,(4)
o 1 2 3 .ony)
Take o :[1+k 24k 34k .. k]’ then

P.(2)=(R)"(2)=7"(2).
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Hence, 7(1)A(4)7 (1)

(B (4)
(a.,(4))

A(2)

Hence, 7(1)A(4)=A(4)7"(4).
Conversely, assume that 7(1)A(4)=A(1)7" ().

We have to prove that A(A1) is a k-circulant polynomial matrix.

Now 7(A)A(4)
A(2)

A(2)7z"(2)
7 (A)A(4)7" (2)

Therefore, A(A) is a k-circulant polynomial matrix.

Example 2.1.6
Let A(Z) be a 2-circulant polynomial matrix of order 3.

1+4 242> A°
Thatis, A(A)=|2+4* 2° 1+24
A3 1+ 2422

=A+A(1)+ AL+ AL
1 20 1 00 0 20
Where A,={2 0 1,A=|0 0 1|,A={2 0 O|and
01 2 010 0 0 2
0 01
A,=[0 1 0| and 7(4) be a permutation matrix.
1 00

That is, 7[(/1) =

= O O
o o -
o +— O



0 1 0][1+4 2+4% A°
Now z(2)A(2)=[0 0 1|[2+4%> 2* 1+2
10 0] 2 142 2+2%

2442 A% 1+ ]
= A 144 2+ 22 (2.1)
1+4 2+ A°

(144 2447 A8
Now A(A)z*(2)=]2+4* A° 1+2
A3 1+ 2 2+12_

o - O
— O O
o O -

(2442 1% 144 ]
= A 1+1 2+2° (2.2)
1+4 2+4%2 23 |

From (2.1) and (2.2) we get 7(2)A(4)= A(2)z?(2).

Corollary 2.1.7

Let A(Z) and B(A) be k-circulant polynomial matrices. Then

A(A) B*(A) is a 1-circulant polynomial matrix.

Proof

Given that A(4) andB(A) are k-circulant polynomial matrices.
By theorem (2.1.5), A(4)=7"(4)A(4)7"(4)and
B(1)=x"(1)B(1)7" ().

Now A(2)B"(4)=[ " (4) A(4)a* (4)|[ " (4)B(2)7* (2) |
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Hence, A(4)B"(A) is a 1-circulant polynomial matrix.

Example 2.1.8

34 1-2* 2+3A%
Let A(1)=| 1-2> 1+32% =31 |=A+AL+AR°
A+32% =34 1-2°

010 -3 0 1 0 -1 +3
where A={1 0 O|,A=|0 1 -3|,A={-1 3 O |and
0 01 1 3 0 3 0 -1
~1- 1% -111 131+ 4%
B(1)=| -1  -132+4* -1-2°
131+ 4% -1-24° -114
=B, +BA+B,A°
-1 0 O 0 -11 -13 -1 0 1
where B,={ 0 0 -1|,B=/-11 -13 0 |,B,={0 1 -1
0 -1 0 -13 0 -11 1 -1 0

be a 2-circulant polynomial matrix of order

-32 1-4%2  A+432%| -1-22 -112 ~131+ A2
A(2)B"(2)=| 1-2* 1+32* -3 -1 -132+4%  -1-2°
A+31% 31 1-12 || -132+4% —-1-7? -112
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e A o
(1 +3,12)

31)(-132+4%)+

(1-2%)(-1-27)+(2+324%)  (1-27)(-112)+(4+34) (=) 13/1”’2)
= (2+32%)(-1-2%)+
(-114)+(-34)(-134+4°) (-132+4%)+(-34)(-1-27) s

1)(-114)
(A+32%)(-1-2%)+(-32)  (2+32%)(-114)+(-32) Ei;;zz)l(—ﬁ;”2)+
(Asfam Y2320 ) (AsmeR)am)am) T

(31+32° —114+114° —134?  334%2-131+12+132°— 1" 3942

VSN W L L L
_394% + A3 432" A-31%-1%-32"

-112% -334°
| 1+ 2=+ 20 ~1A+112° 1327+ 2° 131+ A% +132° - 1*
—-114° -332° +394% -32° -394 +31% +31+34°

~A-3A%-2°-31"+3327
-A-32%-2*-32"+331* -114*-331°+394°-32° ~132%-392° + 2* +31*
-131+ A% +132° - 1*

i 1+ A2 -2+ 2" +32+32° -1 +112°

341 -242° 132 -81 42" +122°+312% -142 A*-364°+284° -1
=| A'-364°+281%-1 341 -242°-132%* 81 42" +122°+311% -142
—42* +122° +312% 142 A% -364°+284° -1 34 -242°-132% -84
Hence, A(2)B"(2) is a 1-circulant polynomial matrix.

Remark 2.1.9

If A(1) is a k-circulant polynomial matrix, then A(1) A"(4) isa 1-

circulant polynomial matrix.
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Theorem 2.1.10

If A(4) is a k-circulant polynomial matrix and B(4)is a h-circulant

polynomial matrix then A(A) B(4)is a kh-circulant polynomial matrix.

Proof

If A(2) is a k-circulant polynomial matrix and B(2)is an h-circulant
polynomial matrix then, by theorem (2.1.5),
m(2)A(2)=A(2)7* () and 7(2)B(A)=B(1)z"(4)
Now 7(2)[ A(4)B(4)]=[7(2)A(2)]B(4)
=[ A(2)7"(2)|B(2)
= A(2) 7 (2)[ 7(2)B(4)]
=A(2)7* (1) B(4)z"(2) ]
=A(4) 7 (2) 7(2)B(2) =" (2)
=A(2)72(2)[ B(2)7"(2)]7"(4)
=[ A(2)72(2) B(2)2*(2)

Keep this up for h times, leading to
7(A)[A2)B(1)]=[ A(2)="" () [ B(2)7" (2)]
=A(1)B(2)7"(2)

By theorem (2.1.5), A(4) B(4)is a kh-circulant polynomial matrix.
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Example 2.1.11

8+ 0  4+642 0 2
0 A -8+ 4 0  4+64°
Let A()=| 0  4+64> 0 A -8+4 |bea2-
A -8+ 1 0 4+6)1° 0
4+ 61> 0 A -8+ A 0
circulant polynomial matrix of order 5 and
0 0 1-42 A+ A% 0
R 0 0 0 1— A2
B(A)=| 0 1-2% -1+ 4% 0 0 be a 2-
0 0 0 1-1%2  —A+2°
i 1-4%2 A+ A% 0 0 0
circulant polynomial matrix of order 5.
A=A B+ A+ A +4 64 —74°+124* -31-8 25 -92° +82 0

62+ A+ 2+ 4 6A° —72° +122° ~31-8 2 —94% +82 0 A=
A(2)B(A)=|62"-72"+124" -3 -8 A° 94 +84 0 A=A B+ 244
2°—9A% +82 0 A=A 62+ A+ A+ 4 6A° —72° +122° -31-8
0 A=A 64+ AT+ A% +4 64 —74° +124* -31-8 A1—94% +84

Hence, A(4)B(4) is a 4-circulant polynomial matrix of order 5.

Theorem 2.1.12

Let A(/I) be a non-singular k-circulant polynomial matrix. Then
A*(2) is a k™ circulant polynomial matrix. (A™(4) is a polynomial

matrix obtained the inverses of coefficient matrices)

Proof

Since A(4) is non-singular and hence k™ (4)exists.
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=7Z'_2k+1(ﬂ)A_1(l)7Z'2(ﬂ,)
Do these s times and we obtain 7(2)A™(1)=7z"**(1)A™(1)7*(2)
Put s=k*, weget 7(2)A*(2)=2""*1(2)A(2)7" (1)
=AY ()7 (1)

Therefore, A™(2) isa k™ circulant polynomial matrix.

Example 2.1.13

Le A(A) be a 2-circulant polynomial matrix of order 3.

3+ 4 2—-4  -1+42
That is, A(ﬂ): 2—-4 -1+44 3+4 |=FA+AA
-1+44 3+ 4 2—4

3 2 -1 1 -1 4
Wherepb{z -1 3},A&{1 4 1}

-1 3 2 4 1 -1
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> AN (A)=| =—-=—=2

-5 17, 11 5 7 3
—+—A —+—=4
52 70 52 70 52 70

Theorem 2.1.14
A(4) is a k-circulant polynomial matrix if and only if (A*)*(/I) isa
k - circulant polynomial matrix.

Proof

Let A(4) be ak-circulant polynomial matrix. Then by  theorem
(2.1.5),
A(A)=7(2)A(2)7"(2)

Since 7(4), #*(4), #(4) are unitary polynomial matrix.

Hence, A'(2)=["(2)A(2)7"(2)]
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=7 (A)(AT) (A) (=) (2)
=7 (A)(A) (2)7(2)
Therefore, (AT )(/1) is a k-circulant polynomial matrix.

Conversely, Iet(AT ) be a k-circulant polynomial matrix.

Thatis, (A") (2)=7""(4)(AT) (2)7*(4)

Hence, A(A) is a k-circulant polynomial matrix.

Corollary 2.1.15
If A(A)is a k-circulant polynomial matrix, then A(4)A"(4)is a

1-circulant polynomial matrix.
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Proof

Given that A(4) is a k-circulant polynomial matrix.
By theorem (2.1.5), A(1)=7"*(2)A(1)7" (1)
Now A(2)A"(2)=[ 77 (A)A(2)7* ()| =" (A) A(2) 7" (/1)]T
=7 (2)A(2) 74 (2)(74) () AT (2)(=7) (2)
=7 (A)A(A)A"(A)7(4).
Hence, A(4) A'(4) is a 1-circulant polynomial matrix.
Remark 2.1.16

If A(1) is a k-circulant polynomial matrix, then A(A)A"(1)is a

1-circulant polynomial matrix.

Theorem 2.1.17

If A(4) is a k-circulant polynomial ~ matrix, then

Proof

If A(A) is a k-circulant polynomial matrix, then by remark (2.1.16),
we have A(1)A"(4) is a 1-circulant polynomial matrix.

Thatis, A(2)A"(2)=7"(2)A(1)A"(A)x(A)



2.2  (r,s)- Pair Circulant Polynomial Matrices

In this section we introduce the concept of (r,s)- pair circulant
polynomial matrix. Also, we give several properties, discriminance for (r,s)

- pair circulant polynomial matrices found in [17,33,56].

Definition 2.2.1

A polynomial matrix A() of order n is called (r,s)- pair circulant

polynomial matrix if it is of the form

3 (4) a,(4) 3,(4) a,,(4) a,,(4)

ra,, (1) a,(1)-sa,,(4) a (1) a,5(4) a, ,(1)

ra, ,(4) ra,;(4)-sa, (1) a,(4)-sa,,(4) a, ,(4) a, 5(4)
A(A)=|ra, 4(4) ra,,(1)-sa,5(4) ra,(4)-sa,,(4) - a,5(4) a,,(4)

ra, (1) ra,(1)—sa, (1) ra, (1)—sa;(4) a,(4)—sa,,(4) a, (1)

ra, (1)  ra,(4)—sa (1) ra,(1)—sa, (1) ra, ;(1)-sa,, (1) ay(1)-sa, ()




Remark 2.2.2

(i) If s=0, then A(A) is ar-circulant polynomial matrix.
(ii) The polynomial matrix 63(1):C(rls)(0,1,0,...,0) is called basic
(r,s)— pair circulant polynomial matrix.

Example 2.2.3

A 4x4 (3,2)-pair circulant polynomial matrix is given below.

A+ A 1-1 —3+A-24% 2424+31°

| 6+64+94° -4-31-51° 1-4 —3+1-24°
(%)= —9+31-64% 12+44+131* -4-31-51° 1-4

3-341 ~11+54-64% 12+41+131* —-4-31-547

= A+ AL+ AL where Ay =C;, (01,-3,2), A =Cp, (1-11,2),

and A, =C,,(1,0,-2,3).

That is,
0 1 -3 2 1 -1 1 2 1 0 -2 3
6 -4 1 -3 6 -3 -1 1 9 5 0 -2
A = A= VA, =
9 12 4 1 3 4 -3 -1 -6 13 -5 0
3 -11 12 -4 -3 5 4 -3 0 -6 13 -5

Proposition 2.2.4

Suppose that A(A4) and B(4) are (r,s)-pair circulant polynomial
matrices. Then A(1)+B(4), A(1)—B(A4) and aA(A) are also (r,s)—

pair circulant polynomial matrices.
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Proposition 2.2.5
A polynomial matrix A(A) is an (r,s)—pair circulant polynomial

n-1

matrix if and only if A(2)=f,, (D(4))=2 a(2)®'(1) for some
polynomial f,, (x(4))=> a(A)x'(1).

Theorem 2.2.6
A polynomial matrix A(4)eC,,(4) is an (r,s)-pair circulant

polynomial matrix if and only if A(1) s(1) = a(r) A(4)

Proof

Assume that A(A1) isan (r,s) -pair circulant polynomial matrix.
We have to prove that A(1) B(r)=3(1) A(2).

Let A(;t):C(r,s)(ao(/l),ai(/l) ..... a,,(4)) bean (r,s)-pair circulant

n-1

polynomial matrix. Then A(1)=> a;(1)%'(4).

Conversely, assume that A(2) a(2) = @(2) A(4). We have to prove
that A(A) isan (r,s)- pair circulant polynomial matrix.

Suppose that A(1) a(2) = @(2) A(2). Then
[A)a(1)] =[3(1)A@)]
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3" (A)AT(A)=AT (1) (1)
(87) (A)AT(2) = AT (2)(87) (4),i=L2..
Let e(A) be the i" column of 1,(1) .
=3 (1)e,(1)=¢e,,(4) for i=12,..,n-1.
Thus, we have (&' )i(i)ei(ﬂ):em(l) for i=1,2,..,n-1.

Now A" (A)=A"(2)1,(2)

Where o (1) is the first row of A(%).

Let o' (A)=(a,(1), a,(1),.. a4 (1))

Thus, (3) = -2, (). (1)

n-1

AT (1) = (Zai (k)em(k),gai (1) (1)es (1), 38 (1) (8 )”‘1(x)em(x)j

46



Hence, A(%) isan (r,s)- pair circulant polynomial matrix.

Corollary 2.2.7

If A(L) is an non-singular polynomial matrix, then A(%) is an
(r,s)- pair circulant polynomial matrix if and only if A‘l(k) IS an

(r,s)- pair circulant polynomial matrix.

Proof

Given that A(k) Is a non-singular polynomial matrix.
A(%) isan (r,s) -pair circulant polynomial matrix
< AM)B(R)=B(L)A(L)
< AT R)B(L)=3(A)A (1)
< A™(A) isan (r,s)- pair circulant polynomial matrix.
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Theorem 2.2.8

If A(X) and B(X) are (r,s)- pair circulant polynomial matrices,
then A(L)B(%) and B(A)A(L) are also (r,s)- pair circulant polynomial
matrices and A(A)B(A)=B(1)A(R).

Proof
Given that A(A) and B(2.) are (r,s)- pair circulant polynomial

matrices.

From theorem (2.2.6), we have
A(M)B(1)=9(2)A(L) and B(1)B(1)=5(%)B(%).
Now [ A(2)B(1)]8(1) = AGL)[B(1) ()]
- A)[8(0)B(2)]
~[AR)3(2)]B(2)
~[a(1)A)]B(2)
~a()[A()B()]
Therefore, A(%)B(%) is an (r,s) - pair circulant polynomial

matrices.

Also, [B(1) A(L)]3(2) = B()[AR)3()]

=B()[3(1)A(L)]
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~[B()®(2)]A(1)
~[#(2)B(2)]A(1)
—a(1)[B(1) A

Hence, B(A)A(L) is an (r,s)- pair circulant polynomial matrix.

From proposition (2.2.5), we assume that A(A)=f(®(%)) and

Theorem 2.2.9

Let A(2) be anon-singular polynomial matrix and r = 0. Then A(%)
is an (r,s)-pair circulant polynomial matrix if and only if A*(k) IS an

(r,s)-pair circulant polynomial matrix.

Proof

Let A(k) be a non-singular polynomial matrix and r = 0. Assume
that A(1) isan (r,s)—pair circulant polynomial matrix.

We have to prove that A"(1) is an (r,s)pair circulant polynomial
matrix.

LetA(%) be an (r,s)-pair circulant polynomial matrix. Then

A()B(1)=5(2)A(%)
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[AG)3()] =[3()AM)]
@ (1) A" (1) = A" ()5 (%)

Since B(1)B" (1) =|B(A)|1, ()

¥ ()= (-1) ra (2
sub (2.4) in (2.3), we get

()™ ra (L) A (A) = A" (A)(-)" ra ™t (A)

Hence, A*(x) IS an (r,s)-pair circulant polynomial matrix.

(23)

(2.4)

Conversely, assume that A"(A) is an (r,s)-pair circulant polynomial

matrix.

We have to prove that A(X) is an (r,s)-pair circulant polynomial

matrix.

Suppose that A*(1) is an (r,s)-pair circulant polynomial matrix.

e (KGR ]
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According to @"(1)=(~1)""r® (%) and we get
(A7) (1) =| (L) | A(R) we get,
(D)™ ra (AR AR) = AR AR (D) e ()
B (M) A(L) = A(2)3 (1)
A(M)B(1)=B(1)A(L)

Hence, A(%) isan (r,s)-pair circulant polynomial matrix.
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Chapter III




HERMITIAN, NORMAL AND
CONJUGATE NORMAL CIRCULANT
POLYNOMIAL MATRICES

In this chapter we discussed the concept of Hermitian, Normal, and
Conjugate normal circulant polynomial matrices. Some characterization of
Hermitian, Normal and Conjugate normal circulant polynomial matrices

are derived.
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3.1 Hermitian Circulant Polynomial Matrix

In this section some of the properties of hermitian matrices are
extended to hermitian circulant polynomial matrices. Also, we have
generalized some important results of hermitian matrices found in

[11,12,19,25,46] to hermitian circulant polynomial matrices.

Definition 3.1.1

A circulants polynomial matrix A(A)is called hermitian circulant

*

polynomial matrix if A(4)=A"(1) .

Example 3.1.2

3+4 1+2i—-4i1 1-2i+4id
Let A(A)=|1-2i+4i4  3+1  1+2i—4id (3.2)
1+2i-4i4 1-2i+4id 3+4

=A+A(4)
3 1+2i 1-2i 1 -4 4
Where Ay=|1-2i 3 1+2i|, A=l 4 1 -4
1+21 1-2i 3 —4i 4 1

3+ 4 1+21-4i4 1-2i+4iA
Now A*(/i) =1-2i+4iA 3+ A4 1+2i-4iA (3.2)
1+2i—-4i4 1-2i+4iA 3+ 1

From (3.1) and (3.2), we get A(1)=A"(1)

Hence, A(l) Is a hermitian circulant polynomial matrix.
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Definition 3.1.3

A circulant polynomial matrix A(A) is called skew hermitian
circulant polynomial matrix if A"(1)=-A(1).

Example 3.1.4

Let

0 (-3+i)+(1-2i)4 (3+i)+(-1-2i)4
A(A)=|(B3+i)+(-1-2i)4 0 (-3+i)+(1-2i)4
(-3+i)+(1-2i)4 (3+i)+(-1-2i)4 0

(33)
=A+A(4)
0 -3+i 3+i 0 1-21 -1-2i
where A, =| 3+I 0 3+i|, A=|-1-2i 0 1-2i
-3+1  3+i 0 1-21 -1-2i 0

Now

A(A)=|(-3-i)+(1+2i)2 0 (3—i)+(-1+2i)4

(3-i)+(-1+2i)2 (-3-i)+(1+2i)2 0

[ 0 (3—i)+(-1+2i)2 (3i)+(1+2i)1}

(3+i)+(-1-2i)4 0 (-3+i)+(1-2i)4
(-3+i)+(1-2i)4 (3+i)+(-1-2i)4 0

0 (-3+i)+(1-2i)4 (3+i)+(-1-2i)4
( } (3.4)

From (3.3) and (3.4), we get A"(1)=-A(4)

Hence, A(/l) IS a skew hermitian circulant polynomial matrix.

54



Theorem 3.1.5

If A(4) and B(4) are hermitian circulant polynomial matrices then

A(A)+B(A) isalso hermitian circulant polynomial matrix.

Proof

Given that A(4)and B(4) are hermitian circulant polynomial
matrices. Thatis, A" (1)=A(4) and B"(1)=B(4).
We have to prove that A(A)+B(1) is a hermitian circulant

polynomial matrix.

By using theorem (1.2.9), we have A(1)=r,(4)A(4)7,"(4).

(A(2)+B(A) = (7 (D) A(2)7," () 7,(4)B(2),"(2)

— A(4)+B(2)

Thus, A(A)+B(4) is hermitian circulant polynomial matrix.
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Example 3.1.6

1+42 —T7i+iA T7i—iA
Let A(1)=| 7i-iA 1+44 -Ti+il| and
—Ti+iA Ti—IiA 1+44

3424 i—-iA  —i+id
B(A)=|-i+id 3+24 i—il | betwo circulant polynomial
I—iA —i+il 3+24

matrices.

6i  4+61 -6 (3.6)

From (3.5) and (3.6), we get (A(2)+ B(i))* =A(2)+B(2).
Hence, A(1)+B(4) is a hermitian circulant polynomial matrix.

Theorem 3.1.7

If A(/i) IS Hermitian circulant polynomial matrix, for any scalar

a, A(4)-al(A) is a hermitian circulant polynomial matrix.
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Proof

Given that A(/i) IS a hermitian circulant polynomial matrix.

Thatis, A" (1)=A(4)
We have to prove that A(A)—al(A) is hermitian circulant

polynomial matrix.

By using theorem (1.2.9), we have A(1)=r,(4)A(4)7,"(4).
(A(2)—al (1)) =(A(2)+iA (1) -al (1))

=[ 7 () A (2) 7} (4) + 7, (A)iA (2) 71 (2) e, (A)1 (2)m;(2) ]

7 ([ Ac(2) =l (A)]m,} (1) +im, (1) A (2)7,1(2) ]
7 (A)(A(2) -t (1), ()] =i 7 (DA (D), (2)]
=(7"(2) (A(2)=ad (1) 7] (4)=i(7"(2)) A (2)m] (2)
=7, (2)( A (2) -l (2)) 7.} (2) —iz, (A) A ()7, (2)
()AL ()8 () (2) -, (A1 (2)7(2)
=7,(2) (A (2)+iA (2)) ' (A) —am, (2) 1 (A) 7, (A)
=7, (A)A(4) 7, (4) - ez, (2) 1 ()7, (4)
=A(1)-al(4)

Thus, A(A)—al(2) is hermitian circulant polynomial matrix.
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Example 3.1.8

2+314 1-T7iA —1+TiA
Let A(/I): —i+7A 2431 i-7iA | =A+AA
I—7I4 —+74 2434

2 i - 3 -7i Ti
where A=/ -i 2 i |A=|71 3 -7ijanda=3
i -2 -7 73

Now A(1)=1,(2) A(A) 73 (1)

0 1 0)(-1+32 i-7i4 —i+7i2)(0 0 1
A(2)-31(A)=|0 0 1| -i+7i2 -1432 i-7i2 |[1 0 O
1 0 O i-7i2 —i+7i2 -1+32)l0 1 0

-1+34 1-7I4 —i+T7iA
A(/”t)—3l (/1): —1+7iA4 -14+34 1-T7iA (3.7)
I—-714 —1+7i4 -1+34

“1431  i-TiA -i+7id
(A(2)=-31(2)) =| -i+7iA -1+32 i-7ia (3.8)
i—7i4 —i+7i2 -1+32

*

From (3.7) and (3.8), we get (A(1)-31(1)) =A(1)-31(4)
Hence, A(4)-3I(A) is a hermitian circulant polynomial matrix.

Theorem 3.1.9

Any integral power of a hermitian circulant polynomial matrix is also

a hermitian circulant polynomial matrix.
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Proof

Let A(A)be a hermitian circulant polynomial matrix.

Thatis, A" (1) = A(4) (3.9)

Hence, AZ(/I) Is a hermitian circulant polynomial matrix.

Assume that A“(4) is a hermitian circulant polynomial matrix.

Thatis, (A (1)) = A(4) (3.10)
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To prove that A“*( 1) is a hermitian circulant polynomial matrix

= A“(2)A(1) (by (3.9) and (3.10))
— Ak+l(i)
Thus, any integral power of a hermitian circulant polynomial matrix

Is a hermitian circulant polynomial matrix.

Example 3.1.10

5 —i+3i2 i-3iA
Let A(2)=| i-3i2 5  -i+3i1| =A+A(1)
-i+3i4 i-3i2 5

5 - i 0 3i -3i
where A,=| i 5 —-i|,A=/-3i 0 3i
-i 1 5 i 3 0

Now A(2)=1y(A)A(A)7;2(A)

010 5 -i+3iA 1-3i4 (0 0 1
=0 0 1y i-3i1 5 -i+3iA2]|1 0 O
1 0 O\-i1+3i4 -3k 5 010

5 -1+3i4  1-3i1

= 1-3i4 5 —i+3i4

-i+3i4 i-%i2 5
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27-122+1827 (~1-10i)+(6+30i)4-92> (~1+10i)+(6—30i)4-94?
A?(2)=| (~1+10i)+(6-30i) 1 -94? 27-122+182° (~1-10i)+(6+30i) 1 -942
(~1-10i)+(6+30i)1-922 (~1+10i)+(6-30i)2 -9’ 27122 +184

Theorem 3.1.11

For any circulant polynomial matrix A(1), A(1)+A'(4) is

hermitian circulant polynomial matrix.

Proof

Let A(A) be any circulant polynomial matrix.

We have to prove that A(4)+A (1) is hermitian circulant

polynomial matrix.

7H(2)) A (A)my(2)+(mH(2)) (A" (2)) 7(4)

(DA ()7, () + 7, (1) A(A) 7, (4)

I
— —

=A(2)+ ()
A(2)+A

Thus, A(4)+ A"(4)is a hermitian circulant polynomial matrix.
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Example 3.1.12

1+2A4 i1 20+ 1
Let A(ﬂ,): 21+ 4 1+24 il :AO+A1(/1)
il 20+ 1 1+24

1 0 2 2 i1
where A)=12i 1 0| A=|1 2 i
0 2i 1 i1 2

Now A(2) =, (1) A(2)z;*(4)
0 1 0)\1+24 i1 2i+A)0 0
=10 0 1|2i+4 1+24 i1 1 0
1 00 i1 2144 1+22 )10 1

o O B

1+24 il 20+ 1
=|2i+4A 1+24 i1
i 20+ 4 1+24

2+42 “2i+(1+i)A4  2i+(1-i)4
A(A)+ A (2)=| 2i+(1-i)2 2+44 —2i+(1+i)A
“2i(1+i)A  2i+(1-i)A  2+424
Which is a hermitian circulant polynomial matrix.
Theorem 3.1.13
For any circulant polynomial matrix A(A), A(A)—A"(1) is skew

hermitian circulant polynomial matrix.
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Proof

Let A(A) be any circulant polynomial matrix.

We have to prove that A(4)—A"(4) is skew hermitian circulant
polynomial matrix.

By using theorem(1.2.9), we have A(4)=r,(21)A(4)7"(1)

Now (A(2)~A"(2)) = ;z (2)A(2) 7} (2) (7, (2) A(Z)zrnl(/’t))*}*

-[A(2)-A (%))

Thus, A(4)— A"(4)is skew hermitian circulant polynomial matrix.

Theorem 3.1.14

If A(1) is hermitian circulant polynomial matrix, then iA(4) isskew

hermitian circulant polynomial matrix.
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Proof

Given that A(4) is hermitian circulant polynomial matrix.
Thatis, A'(1)=A(4).
We have to prove that iA(A) is skew hermitian circulant polynomial
matrix.

By using theorem(1.2.9), we have A(1)=7,(1)A(4)7z, (1)

n

*

Now (IA(4)) =iz, (4)A(2) 7, (4)]

——iA(2)

Thus, i A(1)is skew hermitian circulant polynomial matrix.

Example 3.1.15

3+4 1+2i—4i4 1-2i+4iA
Let A(1)=|1-2i+4i1 3+ 4 1+2i—4i2 | =A + AL
1+2i—-4iA 1-2i+4id 3+ 4

3 1+21 1-2i 1 -4 4
where Ay=1-2i 3 1+2i|, A=| 4 1 -4
1+21 1-21 3 -4 4 1

Now A(4) =7, (1) A(A)75%(A)
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010 3+1 1+2i—-4i4 1-2i+4i4)(0 0 1
=0 0 1(1-2i+4i1 3+ 4 1+2i-4i2||1 0 O
1 0 0)\1+2i—-4i4 1-2i+4id 3+ 4 010

3+ 4 1+2i—4i4 1-2i+4iA
=1-2i+4iA 3+ 1+2i—4iA
1+2i—4iA 1-2i+4iA 3+ 1

3i+il 24+1+44 2+i1-44
iA(1)=| 2+i-42 3i+il —2+i+42
—2+i1+44 2+1-44 3i+iA

3i+iA —2+1+44 2+1-42
(IA(2)) =—| 2+i-42  3i+id -2+i+42
24+1+44 2+i-44 3i+il

(ALY =(1A)

Hence, iA(4) is skew hermitian circulant polynomial matrix.

Theorem 3.1.16

If A(4) is skew hermitian circulant polynomial matrix, then iA(1)

Is hermitian circulant polynomial matrix.

Proof
Given that A(4) is skew hermitian circulant polynomial matrix.
Thatis, A (1)=—A(4).
We have to prove that i A() is hermitian circulant polynomial

matrix.
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By using theorem (1.2.9), we have A(A)=7,(1)A(4)x,"(4).

n

*

Now (iA(2)) =(iz,(2)A(4)7,"(4))

n

Thus, i A(A) is hermitian circulant polynomial matrix.

Theorem 3.1.17

Any circulant polynomial matrix A(A) can be uniquely written in the
form, A(1)=B(4)+C(A4),where B(4) is hermitian circulant polynomial

matrix and C(/I) Is skew hermitian circulant polynomial matrix.

Proof

Let A(A) be any circulant polynomial matrix which can be

*

A(A)+A (1) A(A)-A(2) |

represented as, A(A1)= 5 + 5

Where %(A(/l)+ A*(/l)) is hermitian circulant polynomial matrix

and %(A(ﬂ) — A"(4))is skew hermitian circulant polynomial matrix.
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Now, to prove the uniqueness.
Let A(L)=B(L)+C(A), where B(1) is a hermitian circulant
polynomial matrix and C(k) Is a skew hermitian circulant polynomial

matrix.

To prove that B(A) = %[A(k) +A"(%)] and C(1)= %[A(k) ~A(1)]

A(L)=B(1)+C(}) (3.12)

A(%) = (2)B(%)m" (%) + m, (A)C (%) m* ()

A =[m,(1)B(M) (1) + 7, (1)C (1), (1)

A ()= :(nn(X)B(k)ﬂl(k))T +(nn(%)C(%)ﬁﬁl(k))T}

Il
—_——
—_—
=
i
—~~
>)
—
N~
_|
0 9)
_{
—~~
>
—"
P |
> -
—~~
>
—
~—
+
—_——
—_
P |
i
—~~
>
—"
N~

A" (X)=B(r)-C(1) (3.12)
From (3.11) and (3.12), we get

1 1

B(A)= E[A(x) +A"(%)] and C(x)= E[A(x) -A' (%) ].
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Hence, any square polynomial matrix A(X) can be uniquely

expressed as the sum of a hermitian circulant polynomial matrix and skew
hermitian circulant polynomial matrix.
Theorem 3.1.18

If A(A) and B(A) are skew hermitian circulant polynomial

matrices, then A(L)+B(1) is also skew hermitian circulant polynomial

matrix.

Proof

Given A(A) and B(X) are skew hermitian circulant polynomial
matrices.

That is, A"(A)=—A(%) and B"(1)=-B(X). We have to prove that
A(L)+B(A) is a skew hermitian circulant polynomial matrix.

By using theorem (1.2.9), we have A(X)=m,(1)A(X)x, (1).

n

Now (A(%)+B(%)) =[x, (1) A(R)m (1) + 7, (1) B(2)m, (1) |

n

*

=(m, (A) A(R)mH (L)) +(m, (1) B(A)mH (1))

= m, (M)A (M) +
—[AR)+B()]
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Thus, A(X)+B(A) is skew hermitian circulant polynomial matrix.
Theorem 3.1.19

If A(X) and B(L) are hermitian circulant polynomial matrices

then A(X)B(%)+B(L)A(A) is a hermitian circulant polynomial matrix.

Proof

Given that A(A) and B(X) are hermitian circulant polynomial
matrices. Thatis, A"(1)=A(X) and B"(A)=B(1).

To prove that A(X)B(L)+B(X)A(A) is a hermitian circulant
polynomial matrix.

By using theorem (1.2.9), we have A(A)=m,(A)A(A)m,"(A).



. (1)

(nkA Ttl(

=B(A)A(R)+A(1)B(%)

=A(2)B(1)+B(1)A(%)
)

Thus, A(L)B(A)+B(A)A(X) is a hermitian circulant polynomial

matrix.

Theorem 3.1.20

If A(A)and B() are hermitian circulant polynomial matrices then

A(L)B(L)—B(L)A(1L) is a skew hermitian circulant polynomial matrix.
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Proof

Given that A(A) and B(X) are hermitian circulant polynomial
matrices. Thatis, A"(A)=A(A) and B"(A)=B(2).
To prove that A(A)B(L)—B(X)A(RA) is a skew hermitian circulant

polynomial matrices.
By using theorem (1.2.9), we have A(A)=m, (1) A(X)m, (2).

)B(
— [ A)B()-B(.)A()]
Thus, A(A)B( (A)

polynomial matrix.
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Theorem 3.1.21

Let A(%)be any circulant polynomial matrix. Then
(i)A(%)+ A"(1) is a hermitian circulant polynomial matrix.
(ii)A(L)—A"(L) is a skew hermitian circulant polynomial

matrix.

Proof
(i) Let C(x) = A(x)+ A*(x).

By using theorem (1.2.9), we have A(A)=m,(A)A(A)m, (A).

C" (1) =(m (M) AR, (1) + 7 () A" () ()

= A"(L)+A(L)
=A(L)+A (1)
Thatis, [ A(A)+ A" (%)] = A(R)+A"(%).
Thus, A(A)+ A"() is a hermitian circulant polynomial matrix.

(ii) Let C(1)= A(A)— A" (%)



=—(A(x)-A" (1))
Thatis, (A(L)-A"(1)) =—(A(r)- A" (1))

Thus, A(L)—A"(X) is a skew hermitian circulant polynomial matrix.

Theorem 3.1.22
Conjugate of a hermitian circulant polynomial matrix is a hermitian

circulant polynomial matrix.
Proof
Let A(%) be a hermitian circulant polynomial matrix.
Thatis, A"(A)=A(%).

By using theorem (1.2.9), we have A(%)=m,(A)A(A)m,"(A).
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((2) A ()2
=7, (1) A7 (1)
- A1)

Thus, A(L) is ahermitian circulant polynomial matrix.

Theorem 3.1.23
Conjugate of a skew hermitian circulant polynomial matrix is skew

hermitian circulant polynomial matrix.
Proof
Let A(X) be a skew hermitian circulant polynomial matrix.
Thatis, A (A)=-A(%).

By using theorem (1.2.9), we have A(%)=m,(A)A(A)m,"(A).

n
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Thus, A() is a skew hermitian circulant polynomial matrix.

3.2 Normal Circulant Polynomial matrices

In this section some of the properties of normal matrices are extended
to normal circulant polynomial matrices. Some important results of normal
matrices found in [15,38,40,41,47] are generalized to normal circulants

polynomial matrices.

Definition 3.2.1

A circulant polynomial matrix A(4) is called normal circulant

*

polynomial matrix if A(1) A"(1) = A"(1)A(4).
Example 3.2.2

1+A+1 1+2i4
Let A(1)=

= A where the coefficient
1+2i4 1+/1+i] Aot A

: 1+i 1 1 2i
matrlxofA(/I)areAO:(1 1+ij’A'l:(2i J
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. (3+2z+5/12 2464 J

AR 5l 6r aranssi) “A (HAM)

Hence, A(1) is a normal circulant polynomial matrix.

Theorem 3.2.3

If A(4) is a normal circulant polynomial matrix and & is a complex

number, then

(i) A(1)+al,(2) isanormal circulant polynomial matrix.

(ii) A(A)—al,(A) is anormal circulant polynomial matrix.

Proof

Given that A(1) is a normal circulant polynomial matrix. We have

By using (3), we have A(4)=r,(1)A(1)7,"(4).

n

Proof of (i)

*

Now [A(4)+al,(2)][A(A)+al,(1)]

=[7,(2) A(2) 7t (A) + am, (AN, (2) 7t (A) ]

| 7, (A)A(A) 7, (A) +ax, (A)1,(2)x
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[ (D) A7 (R) -, ()1,(2)7:2(2)]
(7 (DA (A)) +(am,()1,(1)7 (2)) |

[ 7, () AR) 7 () + am, (A, (A) 7, (2)]

+ 7, (A)A(A)],

=A(A)AA)+al,(A)A(A)+al,(A)A(2)+aal (1)
=A(A)A(A)+al, (A)A (A)+al, (A)A(A)+aal (1)
=A (D[ AA)+al, () ]+al () A(A)+al, (4)]

=| A" (A)+al,(2) |[[A(2)+al,(4)]
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~[(A)) +(al, (1) |[AG2)+ 1, (2)er]
=[A(2)+al, ()] [A(A)+al,(2)]

Thus, A(4)+al, () isanormal circulant polynomial matrix.

Proof of (ii)

Now [A(2)-al,(2)][A(2)-al,(2)]

= 7, () A1)z, (2) —ax,(A)1,(2)7,} (1) ]
[ 7, () A(A) 2t (A) -, (A)1, (A) 7 (4) ]

(R (DA (2)-am, (D)1, (A)5,4(2)]
(= (DA (2)) ~(am ()1, (2)74(2)

[ 5 (A A5 () -am, ()1, ()7 (2)]

(7 (2) A (A7) (74 2) L(A)m(2)a)

:[”n (ﬂ)A(i)”nﬂ(ﬂ)_aﬂn (;t) In(l)”r:l(ﬂ’)]
()& ()2 (4) - 7 (A, ()27 (2)a
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|
Q
S|
S
P
=
S|
S
_I_
S)
)
S
>
S
S|
S

=A(A)A (A1) -aA (A)-aA(d)+aal (1)

— K (2)A(2) - @A’ (1) - aA(2) +aal ,(2)

= K (A)A(2) - @A’ ()~ aA(2)+aal,(2)

=K (D) A(4)=al, (2) ] -al, (D[ A(2) e, (4)]
=[A(2)=al, (4)[[A(2) e, (2)]

~[(A) = (L (2)a) [[A1)-al,(4)]
=[A(2)-1,(A)a] [A(2) -, (2)]

“[A(2)-al,(A)][A(R)-al,(1)]

Hence, A(1)—al, () isanormal circulant polynomial matrix.

Theorem 3.2.4

Let A(Z) and B(A) be normal circulant polynomial matrices and
that A(1)B(1)=B"(2)A(4) and A'(1)B(41)=B(A)A"(1) . Then

A(A)+B(A) is a normal circulant polynomial matrix.
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Proof

Let A(4) and B(2) be normal circulant polynomial matrices and
that A(2)B"(1)=B"(2)A(1) and A"(2)B(1)=B(1)A'(4).
By using (3), we have A(4)=1,(4)A(2)7:(4).
[A(4)+B(2)J[A(2)+B(2)]

=[7,(2) A(A) 71 (2) + 7, (2)B(2) 7,2(A)]
[7,(A)A(2) 72 (A) + 7, (2)B(A)7,M(2) |
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Il
>
—_
N
~
>
N
+
o
N
>
N
+
>
—_
N
9]
—_
N
+
0]
—_
N
~
o
—_
N
N—

Hence, A()+B(4) is a normal circulant polynomial matrix.

Theorem 3.2.5

Let A(4) and B(A) be normal circulant polynomial matrices and
that A(1)B"(1)=B"(A)A(4) and A'(1)B(A)=B(A1)A (1) . Then

A(1)B(4)is a normal circulant polynomial matrix.

Proof

Let A(4) and B(4) be normal circulant polynomial matrices and

that A(2)B"(1)=B"(2)A(1) and A"(2)B(1)=B(1)A (4).
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By using (3), we have A(1)=r,(1)A(1)7,* ().
[A()B(D][A®B@)]

(= (A7 (1)) (7, (2)B(2) 7 (2))]
[( () AR (2)) (4B (2) 7 (4)) ]

=[7,(2)A(A)B(A)7,"(4) ]
(DB ()] +(m () A1)

Hence, A(4)B(4) is a normal circulant polynomial matrix.
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Theorem 3.2.6

If A(4)andB(4) are normal circulant polynomial matrices, then so

is A(1)®B(4).

Proof

Given that A(4)and B(A) are normal circulant polynomial matrices.

We have to prove that A(1)®B(A) is a circulant polynomial matrix
(A(2)®B(2))(A(2)®B(2)) =[ (7, (1)A(2)7," (1)) ® (m, (2)B(4) ;' (4))]
[(m (DA (2))®(x,(2)B(2)7," (4)) ]

= (7 (D) AR)7HA)) (7, (M)A (2) 7,1 (2)) | @
[(7.(2)B(A) 7 (4))(7, (1) B (1), 1(4)) ]
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Hence, A(4)®B( 1) is a normal circulant polynomial matrix.

Theorem 3.2.7
Transpose of a normal circulant polynomial matrix is a normal

circulant polynomial matrix.

Proof

Let A(4) be anormal circulant polynomial matrix.
Thatis, A(1) A" (1) = A (1) A(4).

By using theorem (1.2.9), we have A(4)=7,(1)A(4)7z, (1).

Now AT (2)(A') (1)=(m () A= (2)) [ (m () A= (1)) |
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Thus, transpose of a normal circulant polynomial matrix is a normal

circulant polynomial matrix.

Example 3.2.8

0 -2+i 3id

Let A(1)=| 324 0 —2+i|=A+AZ
2+i 32 0
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0 -2+i O 0 0 3i
where Ay=| 0 0 -2+i|,A=|38 0 O
-2+i 0 0 0 3 O

Now A(4)=1,(2)A(2)754(2)

010 0 -2+i 3i4 )(0 0 1
=0 0 1| 34 0 -2+i||1 0 O
1 0 1){\-2+1i 3i4 0 010

5+94% (3+6i)4 (3-6i)4
AT(2)(AT(2)) =|(3-6i)4 5+94* (3+6i)4 (3.15)
(3+6i)4 (3-6i)4 5+94°

5+491° (3+6i)4 (3-6i)4
(AT(2)) AT(2)=| (3-6i)2 5+94> (3+6i)2 (3.16)
(3+6i)4 (3-6i)4 5+94°

From (3.15) and (3.16) , we get

*

AT(R)(AT(2)) =(A"(2) AT(2)

Hence, A" (4) is a normal circulant polynomial matrix.

Theorem 3.2.9
Conjugate of a normal circulant polynomial matrix is a normal

circulants polynomial matrix.
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Proof

Let A(4) beanormal circulant polynomial matrix.
Thatis, A(1)A"(1)=A(1)A(4)

By using theorem (1.2.9), we have A(4)=7,(1)A(4)7z,"(1).
Now (A(0)(A(2) =(z, () A1)z, (2)) (=, () A=, (2))
i g .
(@) (2) >)*
) 7 ( ) (m(2))




Thus, conjugate of a normal circulant polynomial matrix is a normal

circulants polynomial matrix.

Example 3.2.10

Let A(l)—(H(;Li)ﬂ i+(23i+i)ﬂ] A+ A

3| 0 2+i
Wherep":(i SiJ’A&:[i oj

Now A(2) =, () A(2) ()

:[(1) cl)](i+(23i+i)ﬁ i+(23i+i)ﬂ}@ 3

_[ 3i i+(2+i)/1J

i+(2+i)4 3i
e (104244522 6+64
(A(l))(A(l)) :( +6+6J; 10+2+1+522J (317)
— 10+24+51%  6+62
(A) (A(l)):( 6+61 10+2/1+5,12J (318)

From (3.17) and (3.18) , we get

(A))(A(Z)) =(A(%)) (A(2)).

Hence, Conjugate of a normal circulant polynomial matrix is normal

circulant polynomial matrix.
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Theorem 3.2.11
Conjugate transpose of a normal circulant polynomial matrix is a

normal circulant polynomial matrix.

Proof
Let A(4) be anormal circulant polynomial matrix.
Thatis, A(1) A" (1) = A (1) A(1)

By using theorem (1.2.9), we have A(1)=7,(1)A(4)7z,"(1).

Now A(2)A"(2)=(m,(2)A(2) 7 H(2)) (7, (2) A(2) =2 (2))

~(m (DA (D) (=HD) A ()7 (2)
- m (DAR)7 (A)7, (2) K (2)7(2)
= m ()AL (2)A ()7 (2)
- (A A (2)7,1(2)
Taking Conjugate transpose on both side

(A(A)A (1)) =(m(2) AR A ()7, (2))



Thus, conjugate transpose of a normal circulant polynomial matrix is

a normal circulant polynomial matrix.
Example 3.2.12

5+24 -k
Let A(/I):( i 5+2/J =A+AL

) (5 0y (2 -
where A)—(O 5),&—[4 2)

Now A(4)=1,(2)A(4)7;4(A)
3 ol st o

(5+24 -id
| -2 5422

25+ 204 + 542 0
= , (3.19)
0 25+204+54
(A'(2)) A'(2)=A(2)A"(4)
25+ 204 + 542 0
= , (3.20)
0 25+204+54

From (3.19) and (3.20), we get

Hence, A"(A) is a normal circulant polynomial matrix.
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Theorem 3.2.13

If A(4) is invertible normal circulant polynomial matrix, then

A™(4) is a normal circulant polynomial matrix.

Proof

Given that A(/i) is invertible normal circulant polynomial matrix.
For a normal circulant polynomial matrix A(1),
A(A)A (1)=A(2)A(12)
By using theorem (1.2.9), we have A(A)=r,(A)A(4)7,(4).

* _1 *

(A*(D)(A*(2) =(m (DA L) | (7 (A)AR) 7 (2)) ]
- (= () A ()7 () |((7H2)
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Thus, A™(4) isa normal circulant polynomial matrix.

Example 3.2.14

Let A(/I)z[ij jj =A+ A1)

0 -1 I 0
Where Ab:(—l OJ’A&:(O ij

Now A(4) =17, (2)A(4)752(A)

P A N B

|

A 1(1)(A‘1(/1)) _ 1+Oﬂ,2 1+O}L2
() =[O

Form (3.21) and (3.22), we get

AN (A)(AH(2)) =(AM () A*(2)

Hence, A™ () is a normal circulant polynomial matrix.
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Theorem 3.2.15

IfA(l) is a normal circulant polynomial matrix and « is a real

number, then @A(4)is a normal circulant polynomial matrix.

Proof

Given that A(4)is a normal circulant polynomial matrix.
We have to prove that aA(A) is a normal circulant polynomial matrix.

For a normal circulant polynomial matrix

=1, (2)(@A(2)) ()7, (2)
- (aA(2)) (aA(2))

Thus, aA(4) is anormal circulant polynomial matrix.
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Theorem 3.2.16

If A(4) is a normal circulant polynomial matrix, then iA(1) is a

normal circulant polynomial matrix.
Proof
Given that A(4)is a normal circulant polynomial matrix.
We have to prove that iA( 1) is a normal circulant polynomial matrix.
For a normal circulant polynomial matrix A(i),
A(A)A (2)=A(2)A(1)

By using theorem (1.2.9), we have A(1)=7,(4)A(1)7, (4).

(iA(/I))(iA(/I))* - (i;zn (/I)A(/l);z,;l(z))(i;zn (/I)A(l)yz,;l(/l))*



(HA°(2))(iA(2))
(A (2))(A(2)
=(A(2)i) (iA(2))
=(iA(2)) (iA(2))

Hence, iA(4) is a normal circulant polynomial matrix.

Theorem 3.2.17

Every hermitian circulant polynomial is normal circulant polynomial

matrix.

Proof

For a hermitian circulant polynomial matrix A(4), A" (1)=A(4)

By using theorem (1.2.9), we have A(1)=r,(1)A(1)7, ().

A A (2)=(7,(2) A(2) 7, (2)) (7, (2) A(A) ;M (2))
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A2 A (2)=(A(2)) (3.23)
Similarly, we can prove that A"(1)A(2) :(A(/l))2 (3.24)
From (3.23) and (3.24) , we get A(A)A"(4)=A"(1)A(4).

Thus, A(4) isanormal circulant polynomial matrix.

Example 3.2.18

1 2i+ia -2i-ia
Let A(1)=

2i-ia 1 2i+id | =A+A(A)
2i+ir —2i-ia 1

1 2 -2 0 1 i
Where Ay=|-2i 1 2i |, A= 0 i
2t =21 1 i -1 0

Now A(4) =7, (2)A(A)75%(A)

010 1 2i+iA  -2i—-iA)(0 0 1
=0 0 1|-2i—-i4d 1 2i+i4 ||1 0 O
1 0 O\ 2i+i4 -2i—-iA 1 010

9+84+24° (-4+4i)+(-4+2)1-21" (-4—-4i)+(-4-2i)2-2°
A(A)A (A)=| (-4-4i)+(-4-2i)1- 27 9+81+21° (—4+4i)+(-4+2i)1- 22
(-4+4i)+(-4+2)1-2* (-4-4i)+(-4-2i)2-2* 9+81+2A°
(3.25)
9+81+24° (-4+4i)+(-4+2)1-2* (-4-4i)+(-4-2i)2-2°
A*(/I)A(ﬂ,){(44i)+(42i)ﬂ,ﬂ,2 9+81+2A4° (4+4i)+(4+2i)122J
(-4+4i)+(-4+2)1-2* (-4—-4i)+(-4-2i)A-2° 9+81+2A°

(3.26)
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From (3.25) and (3.26), we get A(A)A"(1)=A"(1)A(1).
Hence, A(4) is a normal circulant polynomial matrix.
Theorem 3.2.19

Every skew-hermitian circulant polynomial matrix is a normal

circulant polynomial matrix.

Proof

For a skew-hermitian circulant polynomial matrix A(1),
A (A)=-A(4)

By using theorem(1.2.9), we have A(4)=r,(A)A(4)7,*(4).

AR K (2)=(m, () A2 (2)) (7, () A(A) 7, ()

=—(A(2)) (3.27)
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Similarly, we can prove that A"(1)A(2)=—(A(1))’ (3.28)

From (3.27) and (3.28),we get A(A1)A"(1)=A"(1)A(4) .

Thus, every skew-hermitian circulant polynomial matrix is a normal

circulant polynomial matrix.

Example 3.2.20

0 1+i+i14  —1+i+i4
Let A(A)=|-1+i+id 0 1+i+id | =A +AL
1+i+i4  —1+i+id 0
0 1+i —1+i 0O 1 i
where A,=|-1+i O 1+i |, A=|1 0 i
1+1 —1+1i 0 I 1 0

010 0 1+i+i4 -1+i1+i4)0 0 1
=0 0 1| -1+i+iA 0 1+i+i4 ||1 0 O
1 0 O\ 1+i+i4  =1+i1+i4 0 010
0 1+i+i4  =1+i1+i4
=|=1+1+iA 0 1+i+iAd

1+i+i4  -1+1+i4 0
A+40+ 202 2i+(2+42i)A+ 2% -2i+(2-2i)A+A°
A)A (2)=| —2i+(2-20)A+ 4% 4+44+20°  2i+(2+21)A+ A2
2i+(2+20))A+ A% -2i+(2-2i)A+A° 4+ 40 +27°

(3.29)
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A+ 44 +20° 2i+(2+20))A+ A% -2i+(2-2i)A+4°
A(A)A(A)=|-2i+(2-2i)1+A° A+ 40+ 2% 2i+(2+2i)A+4°
2i+(2+20))A+A% -2i+(2-2i)A+4° 4444 +20°

(3.30)
From (3.29) and (3.30), we get A(1)A"(1)=A"(1)A(4).

Hence, A(A) is a normal circulant polynomial matrix.

Theorem 3.2.21
Every real symmetric circulant polynomial matrix is a normal

circulant polynomial matrix.

Proof
For a real symmetric circulant polynomial matrix A(A),we have
A(2)=A"(1)=A(1) (3.31)
By using theorem (1.2.9), we have A(4)=1, (1) A(2)z;*(4).
(7 (2) A(2) 7 ()
=7 (D) AA) 7, (A)m, (A) A (2)7,(2)

(
~ (7 (DA (A)((71(A) ) AT (2) 73 (2)
)

n

(
Consider A(2)A" (1) =(,(1)A(4)7,}(2)

A)A(A),(A)AT ()7, (A

n

A)A(A)AT ()7, (A)

n

(
(

=7 (2)A(A)A(2)7,(2) (by(331))
(
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A(A (2)=(A(A)) (332)
Similarly, we can prove that A" (1) A(4)=(A(1))’ (3.33)
Form (3.32) and (3.33), we get A(1)A"(1)=A"(1)A(4).
Thus, every real symmetric circulant polynomial matrix is a
normal circulant polynomial matrix.

Example 3.2.22

4+24 1+34
1+34 4+2A

Let A(4) :(

j be a real symmetric circulant

polynomial matrix.

4 1 2 3
=A,+AA where Aoz[l 4],,0&:(3 2}

Now A(A)=1,(A)A(4) 7, ()
B 0 1\Y4+24 1+34Y)0 1 B 44+24 1+34
1 o)\1+34 442201 0) \1+431 4+22

2 2
A(/l)A*(l): 17—|r22/1—|—13ﬂu2 8—|r28/1+12],2 (3.34)
8+284+124° 17+224+134

2 2
A*(Z)A(l): 17+22ﬂ,+13ﬂ2 8+28ﬂ+1212 (3.35)
8+284+124° 17+224+132

*

From (3.34) and (3.35), we get A(1)A (1)=A"(1)A(4).

Hence, A(4) is a normal circulant polynomial matrix.
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Theorem 3.2.23

Every real skew symmetric circulant polynomial matrix is a normal
circulant polynomial matrix.
Proof

For a real skew-symmetric circulant polynomial matrix A(1),
we have A" (1)=A"(1)=-A(1). (3.36)
Consider A(1)A" (1) :(;zn(/l)A(/z)yz,;l(z))(;zn(z)A(/l)yzr;l(,i))T

T

— (ﬂ'n (ﬂ) A(i)ﬁgl(l))((ﬁgl(l)) AT (’1)”: (i))

Thus, A(2)A"(2)=—(A(2)) (3.37)
Similarly, we can prove that A"(1)A(4) :—(A(/I))Z. (3.38)

From (3.37) and (3.38), we get A(1)A (1)=A"(1)A(4).
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Thus, every real skew symmetric circulant polynomial matrix is a

normal circulant polynomial matrix.

Example 3.2.24

0 3+24
Let A(4)=

be a real skew symmetric circulant
3+24 0

polynomial matrix.
= A, + AL where A, = 03 A= 0 2
- 3 0) " (20

Now A(2) = 7,(1) A(A) 7, (2)

(0 1) 0 3+22)0 1) ([ 0 3+24
1 o)l3+24 0O 1 0) \3+24 0

. 9+124+44° 0
A(L)A (1) = 3.39
(A)A(2) 0 9+124+44° ( )

* 9+124+44° 0
A (L)A(L)= 3.40
(A)A() 0 9+124+44° ( )

*

From (3.39) and (3.40) , we get A(1)A (1)=A"(1)A(4).

Hence, A(4) is a normal circulant polynomial matrix.

3.3 Conjugate Normal Circulant Polynomial Matrices

In this section some important results and characterization of
conjugate normal matrix is found in [15,16,19,45] generalized to conjugate

normal circulant polynomial matrix.
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Definition 3.3.1

A circulant polynomial matrix A(1)eC,,(4) is said to be

*

conjugate normal circulant polynomial matrix if A(2)A"(1)=A"(1)A(4)

That is, A(1)A"(1)=AT(2)A(2) (or) A" (2)A(2)=A(R)AT(2).

Example 3.3.2

(1+i)-3i4 i+(6-i)

Let A(i)_(i+(6—i)/1 (1+i)—3i/1] be a circulant polynomial

matrix.

_ 2 2

A(/l)A*(/I):[:g 82b+46/12 2+4/1+612j (3.41)
2+41+61% 3-81+464

——————— (3-81+461% 2+41+6°

KA :
+42+61% 3-81+464
_ 2 2

A (1) A(2) = 3 8/”t+46/12 2+4ﬂb+6/12 (3.42)
2+41+61% 3-81+464

*

From (3.41) and (3.42), we get A"(1)A(1)=A"(1)A(4) .

Hence, A(i) Is a conjugate normal circulant polynomial matrix.

Remark 3.3.3

For any polynomial matrix A(1)eC,,(4) we can write

A(2)=S(A)+K(A), Such that S(1) is symmetric and K (1) is skew-
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symmetric. This decomposition for polynomial matrix is A(/i) uniquely

determined by S(4) :%[A(ﬂ)+ A*(/l)] and K(ﬂ):%[A(i)— A*(/l)].

We introduce the polynomial matrices A (1)=A(2)A(4) and

Theorem 3.3.4

If A(/I) Is a conjugate normal circulant polynomial matrix then

A (A) and A;(4) are normal circulant polynomial matrix.

Proof

Given that A(/I) Is a conjugate normal circulant polynomial matrix.

Thatis, A(1)A"(1)=A"(1)A(42).

Thatis, A(2)A (1)=AT(2)A(4) (or) A(2)A(2)=A(1)A"(1).

Using theorem (1.2.9), we have A(4)=r,(4)A(1)7, (1)




(3.43)




= 7,(2)A(A) 7, (A) 7, (i)mﬁﬁl(i)}*
7, () A(2) 7 (2) 7, (2) A2, (2)]

A (1) A(2)= (M)A (2)) (344
From (3.43) and (3.44), we get Az (A1) Az (A)=Ag(2)Ax(2).

Hence, A (1) is normal circulant polynomial matrix.

Therefore, A (4)=A;(A) is normal circulant polynomial matrix

as well.
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Remark 3.3.5

To state the next theorem, we associate with each polynomial matrix

A(1)eC,., (1) the polynomial matrix A(2) —[igi ggg

Theorem 3.3.6
A polynomial matrix A(1)eC,,(A) is conjugate normal circulant
polynomial matrix if and only if A(l) Is normal circulant polynomial

matrix.

Proof

Let A(4) =[O(l) AW]

A(2) 0(2))

By using theorem (1.2.9), we have A(4)=r,(4)A(1)7,'(1).
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(A(2)) A(2)=AT(2)A(2)@ A (2)A(2) (3.46)
From (3.45) and (3.46) , we get (A(2))(A(4)) =(A(4)) (A(2)).
Hence, A(/I) is normal circulant polynomial matrix.
Theorem 3.3.7

If A(1)eC,.,(4) isconjugate normal circulant polynomial matrix,

then im(A(4))=im(A"(2)) and ker(A(2))=ker(A"(1)).

Proof

For any circulant polynomial matrix A(/l), we have
im(A(4)A"(4))=im(A"(2)) and ker(A(4)A"(1))=ker(A"(2)). So
imA(2)=im(A(4)A"(4)).

By using theorem(1.2.9), we have A(1)=7,(4)A(1)7,'(1).
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Hence, im(A(2)) =im( A" (4)).
Now ker(A"(£)) =ker A(£) ' (2)
ket (1, (2) A(2) 77 (1)) (7, (2) A(2) 772 (1)) |
ke (7, (4) A(2) 7, (1)) (2 (2)) A ()7 (2)
= ker[ 7,(2) A(A) 7, (), (D) A (A) 7,1 (4)]

=ker| ,(A)A(A)1,(A)A"(A)7,*(4)]

= ker| 7, (2)( A" (2)A(2))7,"(4) |

ker(A*(ﬂ)) = ker(A(ﬂ))
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ker((A*(/I))*) = (ker(rﬂ,))*j
ker(A(1))=ker(A" (1))

Hence, ker(A(4))= ker(AT (/1)) .

Theorem 3.3.8

Let A(A4)eC,.,(4) be a circulant polynomial matrix. Then the

following statements are equivalent.

(i) A(A4) is a conjugate normal circulant polynomial matrix.

(ii) TA) is a conjugate normal circulant polynomial matrix.

(iii) A"(4) is a conjugate normal circulant polynomial matrix.

(iv) A"(4) is a conjugate normal circulant polynomial matrix.

(v) A*(2) is a conjugate normal circulant polynomial matrix, if
A™(1) exists.

(vi) Al (/I) is a conjugate normal circulant polynomial matrix.

(vii) 2A(A) is a conjugate normal circulant polynomial matrix,

where A is a real number.

Proof

Let A(1) be a circulant polynomial matrix. By using theorem

(1.2.9), we have A(1)=7,(1)A(A)7, (4).
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Proof of (i)< (ii)

A(ﬂ) Is a conjugate normal circulant polynomial matrix

& A(A)A(2)=A (2)A(A)

& (7 (AR 5 (D)7 (D) AR R () =(m7 (AR () (7. (2) A(2)7 (2)

& (m (AR (1) (7 (D) A (D2 (2) = () () A (D7 (2) (5, (4) A2) 7, (1)
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Proof of (i)< (iii)

A(ﬂ) Is a conjugate normal circulant polynomial matrix

& A(A)A(2)=A (2)A(A)

& (7 (AR 5 (D)7 (D) AR R () =(m7 (AR () (7. (2) A(2)7 (2)

& (7 (D) AR (1)) (71 () A*u)n:u):((ﬂnlu))* A () (2) (7, u)A(z)ns(z))j

e 7, (D) A(A) 77" (1) 7 () A (1) (1) = (o (D) A (1) (2) () A1) (7))

&2, ()AL (A (2)71(2)=(7, () A (1)1, (2) A(R) 7, (2))

& 7, (DA (A)m;" (1) =(7 (2) A (1) A1) 7 (2)

e 7y (DA (1) (2) =7, () A (1) A(2)) (7 (2)

&1 (A)AR)A (27, (2) =7, (2) AT (4)(A(4))7," (2)

& (7, () AR A (1)71(2)) =(m, (1) AT (1)), (4))

< A" () isa conjugate normal circulant polynomial matrix.
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Proof of (i) < (vi)

A(ﬂ) Is a conjugate normal circulant polynomial matrix

&1, (AAR)A (2)21(2)= (7, (2)(A (1)) (AR)(7' (2))

e () A A (1), () = 7, (1) AT (2)(A(D)) ;" (2)

& (7, (AR A (1)71(2)) = (2, (2) AT (2)(A(D)) 7, (2))

& (1) (K (1) A (D)7 () =(7*(2) (AR) (A (2)) 7 (2)

& 7, (A)AA)A (A) 71 (2) =7, (2)(A'(2))(A(2)) 7 (2)
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e () A A (1), (2) = 7, (1) AT (2)(A(D) 73" (2)

T

& (m (AR K (2)7,1(2)) =(7, (1) A" (2)(A(2))7," (2))
= (m'(2) (K () A (A (2)=(7"(2) (AR) (A (2) =(2)
& m (D) (A (2) A (2)7(2) =, (1) A" (2)) (A (1)) 7' (2)
= (A1) (A (2) =) (A ()(A (2)

< A'*'(/l) Is a conjugate normal circulant polynomial matrix.

Proof of (i) < (vii)

A(Z) is a conjugate normal circulant polynomial matrix

& A(A)A(2)=A (2)A(A)

= (71'n (ﬂ,) A(ﬂ)ﬂgl(ﬂ))(”n (l) A(/ﬂt)”n_l(/l))*
:(ﬁn@Au)ﬂg(ﬂ))’*(nﬂu)A(ﬂ)frﬁ(ﬂ))
& (7 (D) AR 7 (A) (7 (2) (A

>
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& 7, (D) AR)A (D)7, (2) = (7, () A (1) A(2)7, (1))

()& @AD" (1)

e () A A (1), (2) = 2, (1) AT (2)(A(D) 73" (2)

o (1) A1) A (2)7(2)

& (m,(2)AR)A (W)} (2)) = (7, (1) AT (A)(A(R)) 7, (2))
& 7, (1) (@A(A)) (@A (4))m,M(2) = 7, (A) (@A (4))(@A(2))7, " (4)
& 7, (2)(@A(2))(@A(R) )7} (2) =7, (2) (@A) (@A (2)) 73 (2)

& (aA(2))(aA(2)) =(«A(2)) (2A(2))

= aA(/I) IS a conjugate normal circulant polynomial matrix.

Proof of (i) < (v)

A(Z) is a conjugate normal circulant polynomial matrix
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>
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~
N —
—_
N
—~
Y
R
~—

& (A1) A (1) =(A7(2))(A(2)

< A™(4) is a conjugate normal circulant polynomial matrix if

A™(2) exists.

Proof of (i) < (iv)
A(ﬂ) Is a conjugate normal circulant polynomial matrix.

& A(A)A(2)=A (2)A(A)
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& (7, () A7 (A) (70 () A ()7, H(2)
=((m (DA (W) (A, () A(2) 7, (1))
S (2 (A AL, (A) A (), () = (7 (A) A ()1, (2) A(A) 7, (1))

@ﬂn(ﬂ)A(ﬂ)A*(?t)”n‘l(ﬂ)=((7fn(ﬂ)A*(/l)A(i)ﬂn‘l(ﬂ)))
& 1, (2) AL A (2) 7 (2) = (7, (2))(A (2))(A(D)) (7 (2)

@nn<A>A<A>A*u>z;1<z>=w>ATu)(A(w)ﬂm

< A(A)A ()= AT (2)(A(2))
o A*(/’L) Is a conjugate normal circulant polynomial matrix.

Theorem 3.3.9

Let A(1)eC,,,(A) be acirculant polynomial matrix.
(i) If A(/I) Is a conjugate normal circulant polynomial matrix,
then iA(4) is a conjugate normal circulant polynomial matrix.
(ii) If A(4) is a conjugate normal circulant polynomial

matrix, then —iA(1) is a conjugate normal circulant polynomial matrix.
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Proof

Given that A(l) Is a conjugate normal circulant polynomial matrix.

Thatis, A(1)A"(1)=A"(1)A(2).

By using theorem (1.2.9) , we have A(1)=7,(1)A(4)7,"(4).

Now A(A)A(1)=A"(1)A(1)
(7 (2) A7, (A) (70 (2) A(2) 7 ()
= (7, (A) AR 7 (2)) (7, (2) A(2) ) (2)

(7 (D) AR (2))(71(2)) A (2)7(2)
(7 () A (D) (2)(m, () A7, (1))

7 (A)A(A) 7, (2)7, (A) A (2) 7,7 (2)
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7 ()(A()(~(A(D)) )72t (1) = 7, (A)(A(2) (~(A(2]) )= (2)

7 ()(A())(IA(R)) 777 (2) =, (2)(1A(2)) ((IAC)))7(2)

*

(IA(2)((1A(2))) =(ia(2) (iA(2))
Hence, iA(/l) Is a conjugate normal circulant polynomial matrix.

Similarly, we can prove that —iA(/l) Is a conjugate normal circulant

polynomial matrix.

Theorem 3.3.10

If A(1)eC,,(4) is a conjugate normal circulant polynomial

matrix, then A(A)(A(/l)) and (W)A(l) are normal circulant

polynomial matrices.

Proof

Given that A(i) Is a conjugate normal circulant polynomial matrix.

Thatis, A(4)A"(1)=A"(2)A(A)
Thatis, A(4)A"(4)=AT(1)(A(2))

Now

(A)(AD))(AD(AD)) =[ (7 (1) A7 @) (7 () ABZ ()]
(7 (D ARz ()= (D AR (1) ]
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(A()(A))(A)(A(2)) =(A(4)(A())) (3.47)
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(A(2)A()) A(2)A(Z)=(A(2) A (2)) (3.48)

From (3.47) and (3.48), we get

(A()AD)(AR)AR) =(A2)A)) (A(2)A())

Hence, A(4) (ﬂ,)) is a normal circulant polynomial matrix.

—

Similarly, we can prove that (A(/l))A(ﬂ,) is a normal circulant

polynomial matrix.
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Chapter IV




BLOCK CIRCULNT POLYNOMIAL
MATRICES

This chapter is devoted to the concept of block circulant and circulant
block polynomial matrices. Some characterization of block circulant and
circulant block polynomial matrices and all block circulant matrix with
circulant polynomial matrices as its blocks are diagonalizable polynomial

matrices by using the unitary polynomial matrix.
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4.1  Block Circulant Polynomial Matrices
In this section we define block circulant polynomial matrices and we
extend some of the properties of block circulant matrices found in

[3,9,42,52] to block circulant polynomial matrices.

Definition 4.1.1
A block circulant polynomial matrix is a polynomial matrix in

the following form

A(4) A1) - A(4)
b irc (A(2), Ay(2)oun A (1)) =| 1H) A Al

A(2) A(2) - A2)
We denote the set of all block circulant polynomial matrices of ordermxn
as 7y, (4).

Example 4.1.2

11— A3 2442 -1
. | A+32% 1+41 4+464° -8+4| .
The polynomial matrix ) ) 5 is a
2+ A 114 1-A A

1 4+64° —8+1 A+31° 1+4 |

block circulant polynomial matrix.

Theorem 4.1.3
A(A)e 7, (4) if and only if A(4) commutes with the unitary

polynomial matrix z,,(4)®1,(4):

A (2 (1)@ 1,(2))=(7, (1) @1, (1)) A(2)
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Proof

Assume that A(4) is a block circulant polynomial matrix.

That is, b circ (A (1),A,(4),... A, (1)) =

We have to prove that A(1)(,,(2)®1,(2))=(7,(2)®1,(2))A(2).

Now the polynomial matrix 7z, (1)®1,(1)e 7, ,(4) is given by

0,(4) 0O,(4) 0O,(%) ,(2)
1,(4) O,(4) O,(4) .. O,(4)
A(2)  A(2) A(A) - AL(R)

A (7 (1)1, (2) = Avs(4) AL(2) /i(;i) An (1) (41)
A(2) A1) A(2) A, ()
A(2A)  A(A) A(2) o AL(2)

(2, (1) @1, (4)) A(2) = Avi(4) AW(2) /ﬂgﬁ) Avo(2) (42)
A(2) A1) A(2) A, (2)

From (4.1) and (4.2), we get

AR (70 (A)©1,(2)) =7 (1) ©1, (1)) A(2),
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Conversely, assume that
A(A) (7, (2)®1,(2))=(7, (2)®1,(2)) A(A). We have to prove that

A(/l) is a block circulant polynomial matrix.

(A(2) O 0
weam)=| AW -0
0 0 . A()
0 A1) o0 0
(eam- 00 A -0
A() 0 0 0
0 0 A1) 0 0
2meam-l® ©  ° A() - 0|
0 A(A) 0 0 0

(In (D)@ A () +(7 (A1) ® A (2)) +...+ (70 (1) @ A, (2))
=bcirc (A(2),A (1), AL (1))

Hence, A(4) is a block circulant polynomial matrix.

Theorem 4.1.4

127



Proof

Given that A(2)=bcirc(A (1), A(2)....,

circulant polynomial matrix.

Thatis, A(1)=

Now 1,(2)® A (1) =

7 (1)@ A(1)=

AG) A1) - A2
AG) AM) - AL)
A AG) — A)
A7) 0 0

0 A(2) - 0

0 0 - A(Y)
0 A4 0

o 0 A
A(A) 0 0

0 0 A2 0

0 0 0 A()
0 A(Z) 0 0

e 0

-0

-0

Since the pre direct product of any nxn polynomial matrix by

T, (/’t)shifts the columns of that matrix one place to the right. Therefore, we

find that

an @A, ()=

m

0 0 O
A(2) 0 0
0 0 0
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Hence, beirc(A (), A, (), A (1)) =D | 7k (2)® Aca(2) |-

Remark 4.1.5
Block circulant polynomial matrix of the same type do not necessarily
commute.

Example 4.1.6

Theorem 4.1.7
Let A(4)=bcirc(A (1), A(A),... A (1)),

B(2)=bcirc(B,(1),B,(4),...B, (1)) e 7, (2).

Then, if the A;(2)'s commutes with theB, (1)'s, A(4)and B(4)commute.

Proof

By theorem (4.1.4), we have



_ E: (7(2)® Bk+1(/1))} Et (7 (2)® ALL(2))
=B(4)A(4)

Theorem 4.1.8
A(A)e s, (A)ifand only if itis of the form A(2) =[F, (1) ®F, (1) ]
diag[ M, (1),M,(2),...M,(2)][Fy (2)®F,(2)]

where the M (/"t) ’s are arbitrary polynomial square matrices of order n.

Proof
Assume that A(4) is a block circulant polynomial matrix.

From theorem (4.1.4), we have
A(A)=bcirc(A (1), A (2),.. A (A)) =X (70 (4)® Ac i (4))

for some A (4).

Now
ﬁ;u)@m(z)h(z)Qku)Fm(z)}®[F:<z><Fnu>Am<z)F:u))a(z)]

Let B (2)=F, (1) Acs(2)F; (2)
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M,(4) By (4)
Where [ 2:(/1)}(m;|:;(2)® Mﬂ)j[ 1(:’1) } (4.3)
M, (2) Bo1(2)
Thus,

A(2)=(F,(2)®F,(1)) diag(M,(4),M,(2),...M,(1))(F,(2)®F, (1))

Bo(ﬂ«) Ml(ﬂ,)
From (4.3), [ Bl(:)“) }m;(pm(/l)(@ |n(l)){'\/‘z:(/1)}
)

B, (4

Since A,.(4)=F.(1)B(1)F,(4)
M, (4) arbitrary < B, (4) are arbitrary.

< A (A) are arbitrary.
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Hence, A(1)e 77, (4).

4.2  Circulant Block Polynomial Matrices
In this section we have given a characterization of circulant block
polynomial matrices analogous to that of the results found in [4,10,49].
Definition: 4.2.1
Let A(A) be of type (m,n):
Ai(2) Az(2) - Ag(2)
A(2) = :
Am(ﬂ“) Any (i) A (ﬂ“)
mxm blocks, each block of order n is circulant block polynomial matrices

if each block A, (ﬂ) is a circulant polynomial matrix. Which is denoted by
Gy n (A).
Theorem 4.2.2

A(A)erz,,(A) if and only if A(L) commutes with
I,(A)®m, (). Thatis, A(X)(1,(2)®x,(1))=(1,(2)®m,(1))A(R).
Proof

Assume that A(x) Is a circulant block polynomial matrices.
We have to prove that A(L)(1, (%) ®m, (1))=(1,(*)®x,(1))A(R).

We have 1,(1)®n,(L)e <4,,(4), and is given by

132



By block multiplication, A(A)(1,, (%) ®m,(1))=(A, ()m, (1))

jK=1,2,.,m
similarly, (I, (%)@, (2)AQR)=(m, (2) A (V). L, -
Since A(x) is a circulant block polynomial matrices.
Therefore, A, (A)m, (1) =m, (X)A; (1), J.k=12,...m.
Conversely, assume that A(L)(r,, (2)® 1, (1)) =(m, (X)®1, (1)) A(%).
We have to prove that A(k) Is a circulant block polynomial matrices.
By (2.1.9), equality holds if and only if each block Ajk(k) IS a

circulant polynomial matrices.

Therefore, A(k) is a circulant block polynomial matrices.

Theorem 4.2.3
A(hM)esz, () if and only if it is of the form

-1

A(L)= (Aﬁl(?\)(@n';(k)) where A, (1) are arbitrary polynomial

3

=
1l
o

square matrices of order n.

Proof

By (1.2.10), A(A)=(A; (1))er4,, (1) if and only if
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A (M) =ay (M) 1, (M) +ay, (M) T, () + .+ ay, (A) T (3)
Now set (@ (%)) =A (1), (240 (1)) = A (). Then

AR @1, (1) =(ay (1)), jk=12,...m

A (1) ®mt(h) =(ay,(M)mt (1)), J.k=12,...m

(AR ®1,(1)+ -+ (A (1) @77 (1)) = (30 ()1 (1))
+.t (@ (M)t (1)) Jk=12,..,m

m-1
Therefore, > (A (1) ®ms (1)) =A(1).
k=0
Theorem 4.2.4
If A(L)ec2,,(R), then

A(K) :(Fm (7“) ® Fn (K))*(Qij (K))(Fm (7‘) ® I:n (7‘))
where the ©; (1), j.k=12,..m are arbitrary diagonal polynomial

matrices of order n.

Proof

Let A(A)e<4,,(%). Then by (1.2.34) for certain diagonal
polynomial matrices A, (%) of ordern, A, (A)=F (1)A; (1)F, (%)

A(K) :(Fn* (}”)Ajk (7‘) F, (7“))
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AO“) - ( Im (}“)® I:n (X))*Ajk (}‘)( Im (7“) ® I:n (}“))
Hence, any A(A)es#,,(A) is unitarily similar to a polynomial

matrix with diagonal blocks.

Now

since (1,(2)®F, (%)) =((F; (r)@1,(1))(F,(2)®F, (;\)))
| (F(M)OF, () (F0)@1,0) |2 ()[(Fa(R)@1,(1))(Fa (1) @ (1))
o (F(n)® Fn*(x))((F;* (1) ® I:(k)))A LW(Fa () @1 (1))(Fa (M) ® F, (1))

& (F()®F, (1)) F(1)©1,(1)A, (1) (Fa(1) ©1,(1)) (Fa (1) O F, (1)
Since F,(A)®1,(1) and A, (1) consist of diagonal blocks

polynomial matrices and diagonal block polynomial matrices are closed

with respect to matrix addition and multiplication.

135



Therefore,  (F,(A)®1,(1))A; (A)(F,(A)®1,(1)) =(0; (1))

where O, (1) are diagonal block polynomial matrix.

*

Thus, A(A)=(F,(A)®F,(%)) ©; ()(F, () ®F,(%)).

j

4.3 Block Circulant Matrices: Where the Blocks are Circulant
Polynomial Matrices

In this section, we have given a characterization of block circulant
matrix with circulant polynomial matrices as its blocks analogous to that of

the results found in [9,10,44,49,52].
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Definition 4.3.1

Let A(4) be of type (m, n). A(4) is said to be a block circulant

matrix with circulant polynomial matrices as its blocks if it is circulant block

wise and each block is a circulant polynomial matrix and is denoted by

75 (A).
Example 4.3.2
342 )
-1 3+4
1+74 _
A(ﬂ) _ 10+ 4
-10+4 1+74
12-4 -1+4
-1+ A 12-1

isin <z, (4).

Remark 4.3.3

12— 14
-1+ 4
3+ 4
-1
1+7A4
-10+ A

-1+ A
12- 1

3+ 4
-10+ 4
1+74

1+74
-10+ 4
12— 1
-1+
3+ A4
-1

10+ 1|
1+74
-1+
12-1
A
3+ 4

A polynomial matrix in ~z7, . (4) is not necessarily a circulant

polynomial matrix.

Lemma 4.3.4

F.,(4)and F, (1) satisfies the following equalities.

() [Fo(1)@F, (A)][7n (1)®1,(1) ] =[0n (1) @1, ()] Fa (1) OF, (4)]

(i) [z, (2)®1,(1)][F.(2)®F, ()] =[F.(2)®F,(2)] [, (2)®1,(2)].
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Proof
() Fa(2)®F,(2) | 7 (2)®1,(2)]

=[Fo (D)@ F ()] (Fa (A) Q0 (2)Fa (1)) ®(Fy ()1, (A)F,(2)) ]
=[F.(4 )®F(i)][ L(A)®F (1) [Q,(2)®1,(2)][F.(2)®F,(2)]
=[F (1) @R (D)][Fa(1)®F ()] [Qn (1) @1, (1)][Fa (1)@ F,(4)]
=[Q,(2)®1,(2) [F.(1)®F, ﬂ)]
(n)[ﬂm L(A)][F.()®F,(2)]
= (Fa(2)Qn(2)F,(2)) ®(Fn*(ﬂ) L(A)F (1) [[Fa (B @ F ()]
=(Fa(A)®F (1)) (2 (A) ®1,(2))(Fp (1) ® F, (4))(Fy () ® F, (1))
=(F,(1)®F, (1)) (2, (2)®1,(2))
Lemma 4.3.5

If A(2)=(F,(1)®F, (1)) A(2)(F,(1)®F,(4)) where A(4) is
diagonal polynomial matrix, then A(A)es 7, ,(A)or equivalently, that

A(2) commutes with both 7z,,(1)®1,(4) and 1,(1)®7,(4).

Proof

Now A(2)[ 7, (2)®1,(4)]
=[F,(1)®F, (ﬂ)TA(ﬂ)[Fm (A)®F, (1) ][ 70 (2)®1,(2)]

=[F,(1)®F, (A)J*A(ﬂ,)[gm (1)®1,(2)|[F,(2)®F,(4)]
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~[Fu (D) @R, ()] [Qu(A)® 1,(A) AR (1) ©F, (2)]
[ (1)@ 1,(A)][Fa () @ F(A)] A(A)[FW(A)®F, (2)]
=[7a(2)®1,(1)]A(2).

Also, A(2)[1,(2)®7,(2)]
=[Fa()®F, ()] A () ©F, ()] 10 (2) @7, (4)]
=[Fu (D) OF, ()] A 10(2) @2, (1) ][ Fa (A) ©F, (2)]
=[F () ®F,(1)] [1(1) ®2, (1) JA(A)[F, (1) ©F, (4)]
~[1,(2) @ 7,(A)][Fa (2) @R (A)] AL FW(A)®F, (2)]
=[1. () ®x,(2)]A2)

Theorem 4.3.6

All polynomial matrices in K%"*///m‘n(ﬂ,) are simultaneously

diagonalizable polynomial matrices by the unitary polynomial matrix

F.(4)®F,(4), and they commute. If the eigen values of the circulant

block polynomial matrices are given A,,;(4),k=0.1,...m—-1, then the

diagonal polynomial matrix of the eigen values of the v~ (/1) polynomial

m-1
matrix is givenby > QF (1) ® A,,,(4). Conversely, any matrix of the form

k=0
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*

A(2)=(F,(2)®F, (1)) A(A)(F,(1)®F,(4))where A(4) is diagonal

polynomial matrix is in ~z7,,,(4).

Proof

Assume that A(4) is a block circulant polynomial matrix. From

(4.1.14), A(A) can be written as A(i):fﬁ,ﬁ(ﬂ)@,&m(ﬁ) where the

k=0

blocks are A(4), A(4),...A,(4). The A,,(4) are circulant polynomial
matrices if and only if A,,(2)=F, (1)A,.(4)F,(1),where F (1) is the
Fourier polynomial matrix of order n and Ak+1(/’t) Is a diagonal polynomial

matrix of order n.

From (1.2.33), we have 7, (4)=F, (1)Q%(2)F(1) where Q, (1)

is the  Q(1)  polynomial matrix ~ of  order m,
O(2) = diag(Lo(2), @ (2),.@™(2)) where w(4)= on
Hence, A(2)= 3 (F2(4)25(2)F, (1) @(F ()4, ()R, (1)
-5 (R (DR ()24 () ® Au(2))(Fy (D@ F, (1)
-3 (R (D@ R, (1) (24() @ (1) (R (D@ F, (1)
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Conversely, assume that
A(2)=(Fo(1)®F, (1)) A(2)(Fo(2)®F, (2))
where A(A) is diagonal polynomial matrix.
We have to prove that A(A)e 77, ,(A) . It is enough to prove
that A(4) commutes with both 7, (4)®1,(4) and 1,,(1)®7,(4).
From lemma (4.3.5), we have
A(2) (0 (1) ®1,(4)) = (7 (2) @1, (2)) A(2) and
A (1 (1)@ (1)) =(1n (2) @7, (1) A(2)
Hence, A(4) is a block circulant matrix with circulant polynomial

matrices as its blocks.
Lemma 4.3.7

Let j, k be nonnegative integers. Let A, (4),B,,(4) be of order m and
n. Then [A,(2)®1,(1)] [1,(2)®B,(2)]' = A}(2)®B(4).
Proof
(A(A)®1,(2))(A (1) ®1,(2)) = A (2) A, (1) @1, (A)1, ()
= A (1)®1(2)
(A(2)®1,(2)) = A (2)®1,(2)

By induction, (A, (2)®1,(2)) = AS(2)®1,(2)
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Similarly, (1,(2)®B,(2)) =1,(2)®BJ(1)

Now

(A (1)@ 1,(A)] [1.(1) @B, (2)] =[ AL (1) @1,(2) |[1.(2)®B}(4)]
[ AW () 1(2)®1,(2)Bl(4)]

- (1)@ B! ().

Theorem 4.3.8

Let A(A)e sz, ,(A). Then A(A) is a polynomial (of two

variables) in 7, (A)®1,(1) and 7, (1)®x,(4).

Proof

Since A(4) is a block circulant polynomial matrix.

Therefore, by (1.10), we have A(4)= mZ[zzHﬁ (4)® A1 (4)]. Where the

k=0

blocks AM(/I) are themselves circulant polynomial matrices. Then

Ak+l(ﬂ') = :Z;:ak+1,j+i (’1)”: (ﬂ')

Now A(i):mzl{n;(zm[n;am,,-ﬂ(ﬂ)ﬂrf(ﬂ)ﬂ

k=0 i
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= ak+1,j+1(;t)[7[m(}“)® In(l)}k[lm(l)égﬂ”(ﬂ)]j

[by lemma (4.3.7)]

This is a polynomial in 7, (4)®1,(4) and 1,(1)®7,(4).

Remark 4.3.9

(i) A circulant polynomial matrix of level 1 is an ordinary circulant
polynomial matrix.

(ii) A circulant polynomial matrix of level 2 is in <2z | (/1)

(iii) A circulant polynomial matrix of level 3 is a block circulant
polynomial whose block polynomials are level 2 circulant polynomial

matrices.

Theorem 4.3.10
A circulant polynomial matrix of level 3 and type (m, n, p) is

diagonalizable polynomial matrix by the unitary polynomial matrix

F.(2)®F, (1)®F, (4).

Proof

Let A(/I) be a level 3 circulant polynomial matrix of type (m, n, p).
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From(4.1.14), we have A(2)= 3 74(2)® A (4) (44)

k=0

Where each Am(i) is a level 2 circulant polynomial matrix of type

(n, p).
Thus, A<+1(/1):Z7[rf (4)® Ay ja(2) (4-5)

Where each A, ;,;(4) is a circulant polynomial matrix of level 1 and

of order p.

p—-1
ThUS, from (1210)’ A<+1,j+l(ﬂ“):Zak+1,j+1,r+l(ﬂ’)ﬂ-; (ﬂ') : (46)
r=0

Combining (4.4),(4.5) and (4.6) we have

A(Z)z{%ﬁﬁ(i)@{iﬂj(i)@{f:akﬂjﬂ’”l(/l)ﬂ;(/l)}ﬂ (4.7)

:{”“zin;(z)c{”zl"zfakﬂ,,-ﬂ,rﬂ(ﬂ)n: (ﬂu)@n;(z)ﬂ

k=0 j=0r=0
m-1,n-1,p-1

= Z ak+1,,-+1,r+1(/1)(7fr'§ (A1)®7x(1)® T, (’1))

k,j,r=0
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Therefore,

-1

31 jara (A)| P (A)Qh (2)F, (1) ®F; (1) Q4 (A)F, (2)®F; (A)Qk (4)F, (4)]

m-1

A(Z)= JZ

k,

o

0

m-1,n-1,
J.r=

k,j

p-1

Casana (DR (DB, ()OF; (1)(@4 (1)@ ()80

0

Thus, a circulant polynomial matrix of level 3 and type (m, n, p) is
diagonalizable polynomial matrix.

Lemma 4.3.11

AL @B, (2)=[ A,(1)®1,(1)][1,(2) @B, (4)]

Proof
[A(A)®1,(2)][1,(2)®B,(1)] =(A,(2)1,(2)®1,(1)B, (1))
= Ay(2)®B,(2).
Lemma 4.3.12
A,(1)®B,(1)®C, (1)

=(A(2)®1,(2))(1,(2)®B,(2)®1,(4))(1 (1) ®Cp (1))
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Proof

A(2)®B,(2)®C,(4)=[A,(2)®B,(4)]®C,(1)
[(A(1)®B,(2)®1, ()] 1 (1) ®C, (2)]
=(A,(2)®[B, (1)@ 1,(2)])(1m(2)®C, (1))
=(A(2)® 1y (1)) 1n(2)(B, (1)@ 1, (2)) (1 (2) ©C, (2))

[ bylemma(4.3.11) |

Lemma 4.3.13

For nonnegative integers k, j, r

AS(2) @B (2)®CE () =(Ay(2)®1,,(2)) [1,(2)®B,(2)®1.(2)]
[1m(A)®C,(1)]
Proof

By the lemma (4.3.12)

A (2)®B]) (1)®C) (1) =(A: (1)®1, (i))(lm (A)®B!(1)®1, (/1))(|mn (1)®C;(2))
We have [ A (2)®1,,(2)]=[A.(1)®1,,(2)]

[1,(1)®B!(2)®1,(2)]=[1,(2)®B,(1)®1,(2)]

[Imn(ﬂ‘)@)cg(i)]:[lmn (A)®Cp(ﬂ’):|

Hence, A\ (1)®B!(1)®Cp(4)=| A (1)®]1,, (A)Jk

[1,(2)©B,(1)®1,(2)] [1m(2)®C,(2)]
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Theorem 4.3.14

Let A(A)be of type(m,n, p) and be a circulant polynomial matrix

of level 3. Then

m-1,n-1,p-1

s e ()70 (1)@, ()] 1, (2)®7,(1)@1,(2)] [1hn (2) @7, (2)]

k,j,r=0

Proof
Since A(4) is of type (m,n, p) and is a circulants polynomial matrix

of level 3. Therefore, from (4.7) it can be written as

Am:mzl{ﬂéu) DISIEIE D S (*)m

$[ei0e[$ S tomonia)]

k=0 j=0 r=0
m-1,n-1,p-1

= D () ()@ (2)®71 (1)

k,j,r=0

Hence, by lemma(4.3.13) and (4.7), the above can be written as

m-1,n-1,p-1

A=Y aepan (w01, (1) (1n(2) @ 7, (1)1, (2))

(Im(2)®7, (1))
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Chapter V




APPLICATIONS OF CIRCULANT
POLYNOMIAL MATRICES IN FINDING
SOLUTIONS TO TRAVELLING
SALESMAN PROBLEM

In this chapter we use circulant polynomial matrices to find the

solution for travelling salesman problem.

5.1 Basics of graph theory

Many real world situations can conveniently be described by means
of a diagram consisting of a set of vertices together with edges joining
certain pairs of those vertices. The vertices could represent communication
centres, with edges representing communication links. A mathematical
abstraction of situations of this type gives rise to the concept of a graph [6].
Graphs can be used to model situations that occur within certain kind of

problems. These problems then can be studied with the aid of graphs [20].

Graph theory is a delightful playground for the exploration of proof
techniques in discrete mathematics, and its results have applications in many
areas of the computing, social and natural sciences [14]. The world of
theoretical physics discovered graph theory for its own purposes. In the study
of statistical mechanics, the points stand for molecules and two adjacent
points indicate nearest neighbour interaction such as magnetic attraction on

repulsion. The study of Markov chains in probability theory involves directed
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graphs in which events are represented by vertices and a directed edge form
one vertex to other indicates a positive probability of direct succession of
these two events. The representation of directed graphs also arises in
numerical analysis involving matrix inversion and the calculation of eigen
values. The rapidly growing fields of linear programming and operations
research also have made use of a graph theoretic approach by the study of
flows in networks. The psychologists use graphs in which people are

represented by vertices and interpersonal relations by edges.

A graph G is an ordered triple G=(V(G),E(G),z//G) such that

V(G), the set of all vertices of G, E(G) the set of all edges of G andy/ the

incidence function of G which maps each edge of G to an unordered pairs of

vertices of G. If e is an edge and u and v are vertices such that y (e)=uv,

then e is said to join U and V; the vertices U and V are called the ends of e.

An edge with identical ends is called a loop and an edge with distinct
ends a link.

Two or more edges having the same end vertices are said to be parallel
edges.

The end vertices of an edge are said to be incident with the edge and

conversely the edge is incident on the vertices.
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The end vertices of an edge are said to be adjacent vertices. If two or
more edges are incident on the same vertex then they are said to be adjacent

edges.
A graph without loops and parallel edges is called a simple graph.

A graph is said to be null graph it is edge set is empty. That is, a graph

which is a null graph contains only a vertex and no edges.

A graph is finite if both its vertex set edge set are finite otherwise, it is

called infinite.

A simple graph in which each pair of distinct vertices is joined by an

edge is called a complete graph.
The degree dg(v) of a vertex V in G is the number of edges of G

incident with V, each loop counting as two edges. We denote by 5(G) and

A(G) the minimum and maximum degrees respectively, of vertices of G.

A graph is said to be regular if all its vertices are of the same degree.

A walk in G is a finite non-null sequence W =veV,e,v,...eV,, whose
terms are alternatively vertices and edges, such that, for 1<i<Kk, the ends of
e are v, , and v,. The vertices v, and v, are called the initial and terminus

of W, respectively, and v,, v,,..., v, its internal vertices.
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If the initial and terminal vertices of a walk W coincide then the walk
Is called a closed walk. If the initial and terminal vertices of a walk distinct

then it is called an open walk. If the edges e, e,,..., e, of a walk W are
distinct, then W is called a trail. If the vertices v,,v,, v,,..., v, of awalk W are

distinct, then W is called a path.
A closed walk in which each is of degree two is called a cycle or circuit.

A graph G is said to be connected if there is atleast one path joining
every pair of vertices. If a graph is not connected then it is called
disconnected.

A graph H is a subgraph of G if V(H) <V (G), E(H)<E(G), and
w,, Is the restriction of y to E(H). A spanning subgraph of G is a

subgraph H with V (H) =V (G).

Let G be a graph with vertices v;, v,,..., v, edges e, &,,..., €,.Then the

vx & matrix M(G):[m ] is called the incidence matrix of G. Where

ij

|1, if thevertexv; is incident with the edgee;
"o, otherwise
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Consider the graph G,

€
e ) e,
Vv, Vs
€,
e € € € &
w1 1 0 0 1]
The incident matrix M (G)is v,/1 1 1 0 0]
v,jO0 0O 1 1 0
v, [0 0 0 1 1]

Let G be a simple graph with vertices v,, v,,...,v,. Then the vxv
matrix A(G)= [aij] is called the adjacency matrix of G where

a0 = 1, if u;is adjacenttov,
"o, otherwise

Consider the graph G,

€
Vi v,
€y e,
vy Va
€
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v, V, V, v,

v[0 1 0 1 |
The adjacency matrix A(G)is v,|1 0 1 O
vwio 1l 0 1

v,(1 0 1 0 |

A circulant graph G =G(n,s) is a graph on the set of n vertices
V(G)={v,...v,} with an edge incident with v; and v, whenever |i - j|es;
The set S is said to be the symbol of G. In particular,k == s is the degree of

a circulant graph G(n;s).

5.2 Decomposition of graphs into circuits

Circulant graphs form a class of highly symmetric mathematical
(graphical) structures. Catalan introduced circulant matrices in 1846
[8,36-39] and properties of circulant graphs have been investigated by many
authors [2,23,34,43,54]. If a graph G is circulant, then its adjacency matrix
A(G) is circulant. Circulant graphs are often used as models of
communication networks, being a popular class of fault-tolerant network
topologies, which include rings and complete graphs. In particular, the
interest in circulant graphs mainly arises in the design and implementation
of distributed computed networks, communication networks, parallel

processing architecture, and in VVLSI-design.
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A path that contains every vertex of G is called a Hamilton path of G.
A Hamilton cycle of G is a cycle that contains every vertex of G. A graph is

Hamiltonian if it contains a Hamilton cycle.

Hamiltonian circuits are helpful in solving travelling salesman
problem. From circulant polynomial matrix we can find different
Hamiltonian circuits of a complete graph. From these different Hamiltonian
circuits, we can find the weight of each circuits. The minimum weight circuit

will give the optimal solution to the travelling salesman problem.

A circulant graph is a graph which has a circulant adjacency matrix.

For a given positive integer k, let n;,n,,...,n, be a sequence of integers where

(p+1)
2

O<n <Ny <..<n < . Then the circulant graph Cp(ny,n,,...,ny) is the

graph on P vertices v,v,,..,v, with vertex v; adjacent to each vertex

ViJ_rn-

.The values n; are called jump sizes.
j(mod p)

The graph of Figure 5.1 is a circulant graph having jump-1 and figure

5.2 is also a circulant graph having jump-2 for the complete graph Ks,.

The circulant matrix of the circulant graph of figure 5.1 and figure 5.2

are shown in figure 5.3 and 5.4 respectively.
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v, v,

v, v,
Figure-5.1 Cs(1) Figure-5.1 Cs(2)

V, V, V, V, V, V, V, V, V, V,
vv[0O 1 0 0 1] vy[0O O 1 1 O]
v,/]1 0 1 0 O v,]0 0 0 1 1
v;/]0O 1 0 1 O v;|1 0 O O 1
v,/O O 1 0 1 v,j1 1 0 O O
vs|]1 0 O 1 O vs|0O 1 1 0 0O

Figure -5.3 Circulant matrix of C5(1)  Figure -5.4 Circulant matrix of Cs(2)

Example

Consider a complete graph of seven vertices, which is shown below.

155



V, Vs

Figure 5.5

From this complete graph we can get a circulant polynomial matrix.

A A2 21

N PO P

N P O PN

R A A

Now we decompose the complete graph (figure 5.5) by using the
above circulant polynomial matrix with respect to the degree of the

parameter A.
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Case (i)
We collect the coefficient of 1° and consider the remaining terms

(entries) as zero. We get the circulant matrix which is named as A,. That is,

V,V,V, V,V, V, V,

Vo1 000 0 1
V,/1 010000
V,/0 1 01000

A=V,[0 01 0100
V,/0 0 01010
V,/]/0O0 O 00101
V,[1 000010

The corresponding Hamiltonian circuit is

20 34
V, v,
23 33
v, v,
27 31
v, 30w,

Figure 5.6 C, (1)

The weight of C, (1) is 198.
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Case (i)
We collect the coefficient of 2 and consider the remaining

terms(entries) as zero. We get the circulant matrix which is named as A.

Vl VZ V3 V4 V5 V6 V7
VOO 1 00 1 0

V,[0 0 0000 1

Thatis, V|1 000100
A=V,/]0 1 0 01 10
V,[0 01 00 01

Vi[1 001000

V,/0 1 0010 0]

The corresponding Hamiltonian circuit is

Figure 5.7 C,(2)

Theweight of C,(2) is 73.
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Case (iii)
We collect the coefficient of 12 and consider the remaining

terms(entries) as zero. We get the circulant matrix which is named as A,.

Vl V2 V3 V4 V5 V6 V7

Vo 0 0 1 1 0 0]

V,J]0 000110

Thatis, [0 0000 11
A=V,/1 0 0000 1
V,/1 100000

V,/]001 101 00

V,/0 01100 0

The corresponding Hamiltonian circuit is

v, v;

40
v, . Y,

v, Vv,

Figure 5.8 C,(3)
The weight of C,(3) is 294.
From all the three cases we can conclude that C,(2) has the
minimum weight. Therefore, C,(2) is the optimum solution for the

travelling salesman problem.
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Conclusion




CONCLUSION

In this dissertation we have introduced the notion of circulant
polynomial matrices. Some properties of k-circulant and (r,s)-pair circulant
polynomial matrices are analyzed. We have defined hermitian, normal and
conjugate normal circulant polynomial matrices. Also, some important

results and characterizations are discussed.

We have introduced the concept of block circulant polynomial
matrices. Circulant block polynomial matrices and block circulant matrices:
where the blocks are circulant polynomial matrices are obtained. Also, some
results relating to block circulant and circulant block polynomial matrices
are found. Finally, we have studied an application of circulant polynomial
matrix in travelling salesman problems. Further this can be extended to

orthogonal, unitary and any other type of matrices.
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ON BLOCK CIRCULANT POLYNOMIAL MATRICES

R. MUTHAMILSELVAM AND G. RAMESH

ABSTRACT. The characterization of block circulant polynomial matrices are
derived as a generalization of the block circulant matrices.

1. Introduction

Let (a1(a), az(a),...an(c)) be an ordered n-tuple of polynomial complex
numbers and let them generate the circulant polynomial matrix [2] [3] [5] [7] of

order n:
a1(a) az(a) ... an(@)
Ala) = an(a) ai(a) ... a2(e) (1.1)
az(a) az(a) ... a(@)
We shall often denote this circulant polynomial matrix as
A(a) = Circ(ar(a), az(a), ..., an(a)) (1.2)

It is well known that all circulant polynomial matrices of order n are simul-
taneously diagonalizable by the polynomial matrix F(«) associated with the finite
Fourier transform.

Specifically, let

w(a) = eap(T (@), i = VT (13)
and set
1 1 1 1
B 1 w(a) w?(a) wHa)
Fra)=n(Z)] 1 w?(a) wt(a) w1 () (1.4)
. 1 w("._-ll) () w("._-Q.) () .. .. .. w(a)

The Fourier polynomial matrix F(«) depends only on n. This matrix is also
symmetric polynomial and unitary polynomial F(«)F*(a) = F*(a)F(a) = I(a)
and we have

A(a) = F*(a) A (a)F (@) (1.5)
2000 Mathematics Subject Classification. 15A09, 15A15,15A57.
Key words and phrases. Circulant polynomial matrices, Block Circulant polynomial
matrices.
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where A(a) = diag(ar, g, ... ay,)
The symbol * designates the conjugate transpose.
From the spectral mapping theorem, we may represent A(«) in the form

A(a) = ay(a) + az(a)m(a) + az(@)m?(a) + - + ap ()7 Ha) (1.6)
where () is the permutation matrix circ(0, 1,0,0,...).
Also, let A(«) be an n X n polynomial matrix. Then A(«) is a circulant
polynomial matrix if and only if

Alo)m(a) = m(a)A() (1.7)
The matrix 7(a) = cire(0,1,0,...,0)
This paper is devoted to the study of block circulant polynomial matrices.

2. Block Circulant Polynomial Matrices

In this section we define block circulant polynomial matrices and we extend
some of the properties of block circulant matrices found in [1], [4], [6], [8], [9] to
block circulant polynomial matrices.

Definition 2.1. A block circulant polynomial matrix is a polynomial matrix in
the following form

211(04) iz(a) “ee AAm(O‘)
b circ(4i(a), Aa(a), ..., Ap()) = m(a) 1(04) m.—.l.(a)
AQ(OL) Ag(Oé) cee Al (a)

We denote the set of all block circulant polynomial matrices of order m x n
as BC,, » ().

Example 2.2. The polynomial matrix

1—a? o? 24a? —lla
a+3a® l14+a 4+46a° —8+a
24 a? —1lo 1—a? a?

44602 —-8+a a+3a2 l1+4+a

is a block circulant polynomial matrix.

Theorem 2.3. A(a) € BC,, »(a) iff A(a) commutes with the unitary polynomial
matriz

T (@) @ In(a) + A(e)(mm () @ In(a)) = (mm(a) @ I () Aa)

Proof. Assume that A(a) is a block circulant polynomial matrix. That is a
Ai(ar)  Ax(a) Am(a)
b cire(A1(a), As(a), ... An(a)) = | Am(@) Arl@) o Amoi(e)
AQ(OK) Ag(a) Al(Oé)
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We have to prove that A(a)(mm () @ I (a)) = (T (@) ® In(a))A(a).
Now the polynomial matrix m,(a) ® I, (@) € BC,, »(«) is given by

On(a) In(a) Op(a) ... Op(a)
On(a) On(a) In(a) ... Op(a)
Tm(a) @ I(a) =] .. .

On(a) Op(a) Opla I, («)

In(a) Op(a) On(a) On(a)

An(a)  Aj(a) As(a) Ap—1(a)
A@)(mn(0)  Iy(a)) = | Ar(@) Anle) Aila) o Anala) |y )

Ai(a)  Asx(a)  Asz(a) Ap(a)

An(a)  Aj(a) As(a) Ap—1(a)
(Mm(@) ® Lo(a))Ala) = | Am=1(@) Anle) Arla) o Ana(0) | o )

Ai(a) As(a)  As(a) ... A (@)

From (8) and (9), we get A(a)(mm (@) ® In(a)) = (mm(a) @ I,(a))A(a).
Conversely, assume that A(a) (7, (@) @ I () = (T (@) @ In(a))Aa).
We have to prove that A(«) is a block circulant polynomial matrix.

A () 0 0

e
0 0 ... A(a)
0 Az (a) 0 0
Tm(a) ® As(a) = 0 0 Ay(a) 0
AQ(Q) 0 0 0

T () ® As(a) = (O 0 0 Az(a) 0

0 As(a) 0 0 ... 0

etc
(I (@) @A1 () +(mm (@)@ Az () ++ -+ (7 (@)@ Am (a)) = b cire(41(a), A2(a), . . ., Ap(a) ]
Hence, A(«) is a block circulant polynomial matrix.
m—1
Theorem 2.4. b circ(Ai(a), Az(«), ..., An(a) = X [7k (o) @ Arii(a)).
k=0

Proof. Given that A(a) = b circ(41(a), A2(a), ..., A, () is a block circulant
polynomial matrix.
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That is,
Al(a) AQ(Q) An(a
Afa) = | @)l ()
Az(a)  As(a) Ai(a)
Now
Al(oz) 0 0
Inf@ea@=| 4 ’
0 0 Ai(a)
0 AQ(O() 0 0
(0) ® Ay(a) 0. 0 Alz.(.a) 0
Ag(Oé) O 0 O
0 0  Az(a) O 0
M@ e =] 0 0 A
0 Asz(a) 0 0 ... 0

Since the pre direct of any n x m polynomial matrix by 7,,(«) shifts the
columns of the matrix one place to the right. Therefore, we find that

0 0 O 0 An ()
a0 @A) = [0 0 0O
0O 0 0 An@) 0
b circ(A;(a), Ax(a), ..., Ax(a) = T:g:[wfn(a) ® Agi1(a)]. O

Remark 2.5. Block circulant polynomial matrix of the same type do not necessarily
commute.

Example 2.6.
(o6 %) (6t B) = ("6l aste)
(O 2D (60 9) = (o pita)
Theorem 2.7. Let A(a) =b

B(a) = b cire(B(«

), Ba(@), ..., By (a ))eIB%(Can(
Then, if the A;(
2.

’

@)'s commutes with the By (a)'s, A(a) and B(«) commute.
Proof. By theorem (2.4), we have

Al0) = S [1(0) © Aja (@), Bla) = S [7(a) ® Bega ()]

j=0 k=0
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A@B(@) = (£ W@ 8 4@ £ 7 © Bunla)]
=SS w0 (0) @ Agga(@) By (o)
j=0 k=0
=Y T 7 (a) ® Brsi (@) Az ()]
k=0 j=0
—[E (@) 0 Bua(@IS () © A (@)]
= B(a)A(a) O

Theorem 2.8. A(a) € BC,,xn() if and only if it is of the form
Ala) = [Fin(a) ® Fy(a)"]diag[Mi(a), Ma(a), ..., My ()] [Frn(e) @ Fo(a)]
where the My(a) are arbitrary polynomial square matrices of order n.

Proof. Assume that A(«) is a block circulant polynomial matrix.

From theorem (2.4), we have
m—1
A(a) = Db circ(41(a), Az(a), . .., An(a)) = X [7F (a)® Ak 11(a)] for some A (o).

Now 7, ()@ Ap+1(a) = [}, ()2 (@) Fon ()| @[ F (@) (F (@) Apa (@) B () Fr (o)
Let By () = (Fy(a JArt1(0) i (a)

7 (0) ® Ay (@) = [F ()2 (0) Frn ()] @ [F () K (@) Fo(a))]

= (Fi(0) ® Fy ()0 )®BK(04 )(Fm (@) © Fo ()

) m
(@) 8 A (@) = S (F(@) © Fa(@)*(@4(0) @ Bic(@)(Fn (@) © Fi (@)

k=0 k=0

Afa) = (Fn(a) @ Fu(a))® mZ (Q2*(a) ® Bx(@))(Fin(a) ® Fo(a))

GG Fo(0))* diag(My(a), Ma(0), ... Mo (@) (Fn(a) ® Fy(a))

whnere
Ml(Oé) BO(CV)
M) | — (b (0) @ o)) | P (23)
Mm(a) B(mfl)(a)

Thus, A(a) = (Fn(a) ® Fy ()" diag(My (), Ma(a), .., M (@) (Fin(c) © Fy (@)

From (10),
Bo(a) M ()
Bl(oz) _ (m%lF:l(a) ® I () MQ(Q)
b Mi(a)

Since Ay1)(a) = F (o) B(a) Fr ()
My («) arbitrary < By(«) are arbitrary.
< Ap(«) are arbitrary.
Hence, A(a) € BC(y, n) (). O
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3. Conclusion

some of the characterization of block circulant polynomial matrices are

discussed here. Further we can study the circulant block polynomial matrices.

NOo oUW
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A STUDY ON (p,()-CIRCULANT POLYNOMIAL MATRICES

R. MUTHAMILSELVAM AND G. RAMESH

ABSTRACT. (p,()- Circulant polynomial matrices are defined. Its additive
properties are investigated and characterizations are also given.

1. Introduction

Let (a1(a),az(a),...an(a)) be an ordered n-tuple of polynomials with coeffi-
cients in the field of complex numbers and let them generate the circulant poly-
nomial matrix [1][3] [4] of order n:

a1(a)  ag(a) an(a)
Aoy = | ()l el (1
az(a) az(a) ... ai(a)

We shall often denote this circulant polynomial matrix as
A(a) = Circ(ar (@), az(q), ..., an(a)) (1.2)

In this paper, we define the (p, {)-circulant polynomial matrix and also, we
examine some fundamental properties.

We found a characterization of (p, ¢)-circulant polynomial matrix. Let I, («)
be the unit n x n polynomial matrix.

Let A(a) € Cpxn(a), then AT (), A*(a) and |A(a)| be its transpose, adjoint
and the determinant respectively.

2. (p,¢)-Circulant Polynomial Matrices

Here we define (p, ¢)-circulant polynomial matrix. Also, we generalize
some properties of (p, ¢)-circulant matrices found in [2], [5], [6], [7].

Definition 2.1. If a polynomial matrix is of the form,

Ala) =

2000 Mathematics Subject Classification. 15A09, 15A15,15A57.
Key words and phrases. Circulant polynomial matrices, (p, ¢)-Circulant polynomial matrices.
* This research is supported by G. Ramesh.
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ao(c) ay (@) as (@) ap—2(a)
Pan—1(c) ap(a) — Can—1(a) a1 (@) an—3(a)
pan—2()  pap—1(a) — Can—2(a)  ao(@) —Can—1(a) .. an—a(c)
P 5(0) pon_3(0) — Can_5(0) an-1(0) —Can2(@) —  an_sla)

pas(0)  paz(a) —Cas(0)  pas(a) ~Caz(@) .. ao(a) —Cani(a)

pay(a) paz(a) — Car(a) paz(a) — Caz(a) ... ap—1(a) = Can—2(e)

)
it is known as a (p, {)-circulant polynomial matrix. which is denoted by
A(a) = Cp0)(ao(a), ar(a), ..., an—1()).

Remark 2.2. (i) If ( = 0, then A(a) is a p-circulant polynomial matrix.
(ii)The polynomial matrix b(a) = C, ¢)(0,1,0,...0) is referred to as funda-
mental (p, () circulant matrix.

Example 2.3. A 4X4 (3,2)-circulant polynomial matrix is given below.

a+a? 11—« -3+ a—2a? 2+ 2a + 3a?

Ala) = 6+ 6+ 9a?  —4 — 3a — 5a? l-«o —3+a—2a2
T | -943a—-6a% 12+4+4a+1302 —4—3a —5a? e

3 —3a 11 — 5o — 602 12 +4a —13a® —4 — 3a + 5a?

= AO + Aloé + AQCVQ where A() = C(372)(0, ]., —3, 2), A1 = 0(372)(1, —]., 1, 2)
and A2 = C(372)(1,07 —2, 3)

that is
0 1 -3 2 1 -1 1 2 1 0 -2
6 -4 1 -3 6 -3 -1 1 9 -5 0
Ao = -9 12 -4 1 A= 3 4 -3 -1 Az = -6 13 -5
3 —11 12 -4 -3 5 4 -3 0 -6 13

Proposition 2.4. If A(a),B(a) are (p,()-circulant polynomial matrices, then
A(a) + B(a), A(a) — B(a), aA(a) where « is a scalar, are also (p,()-circulant
polynomial matrices.

Proposition 2.5. A polynomial matriz A(a) is a (p,¢)-circulant polynomial ma-
n—1

triz if and only if A(a) = fa(a)(b()) = <Z ai(a)bi(a)>.

=0
Theorem 2.6. A matriz with polynomial coefficients A(a) € C"*™(a) is a (p, )-
circulant polynomial matriz if and only if A(a)b(a) = b(a)A(a).

Proof. Assume A(a) is a (p, ¢)-circulant polynomial matrix.

We must demonstrate our worth A(a)b(a) = b(a) A(«)

Let A(a)b(a) = C(,¢)(ao(a),ai(a),...an_1()) be a (p,()-circulant polynomial
n—1

matrix. Then A(a) = (;0 ai(a)bi(a))

= (a)b(a) = b(a)A(a).
Conversely, assume that A(a)b(a) = b(a)A(«). Let us prove A(a) is a (p, )-
circulant polynomial matrix.
If A(a)b(e) = b(a)A(a), then
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bT () AT () = (a)bT( )
(b1) (@) AT (@) = AT(a)(b7)*(a), i = L.2,...
If e;() is the i*" column of I,,(a), then
bT(a)ei(a) =ei11(a) fori=1,2,..n—1.
Thus, we have (b7)(a)e;(a) = e;j11() for i = 1,2,..n — 1.
Now AT (a) = AT(a)I, ()

= AT(a)[e1(a), e2ar, .. ., en(a)]

= AT(a)le1(a), b (a)erar, ..., (b7)" " (a)er(a)]

= [AT(a)er(a), AT ()b (a)eq, . . ., AT () (1) Ha)er ()]
= [AT(a)er(a), bt (a) AT (a)eiq, . . ., (BT L(a) AT (a)eq ()]
= [B(a), (1) (@)B(N), .., (B7)™ (@) BV

where A\T'(a) is the first row of A(a).
Let AT(a) = (ag(@),a1(a, ..., an_1()))

Thus A(a) — (f a; a)eHl(a))

+

A7(0) = (S a@)ecn @), E s @ern (@), S a0 (@ein(e)
=5 s (e (@ @ (@), 61 (@) )
=5 a0 () (@)es (@), () (@)er @), (67 s )
=T wlt ) @)es @) eaa). o)
=% w07 (@)
= Ala) = "__: as(a)b(a)
Hence A(a) is a (p, ¢)-circulant polynomial matrix. O

Corollary 2.7. |A(«)| # 0 is a (p,()-circulant polynomial matriz if and only if
A= a) is a (p,¢)-circulant polynomial matriz.

Proof. Given that |A(«)| # 0 is a (p, ¢)-circulant polynomial matrix.

< A(a)b(a) = bla) A()

< A Y a)b(a) = bla)A™(a)

<= A7!(a) is a (p, {)-circulant polynomial matrix. O

Theorem 2.8. If A(a), B(«) are (p, ¢)-circulant polynomial matrices, then A(a)B(«)
and B(a)A(«) are (p, ¢)-circulant polynomial matrices and A(a) B(a) = B(a)A(«).

Proof. Given that A(a), B(«) are (p, ¢)-circulant polynomial matrices.

From theorem (2.6), we have A(a)b(a) = b(a)A(«w) and B(a)b(a) = b(o) B(«).

Now [A(a)B(a)]b(a) = A(a)[B(a)b(a)]
= A(a)[b(e) B(a)]
= [A(@)b(a)]B(a)
= b(a)[A(a)B(a)]

Thus A(a)B(«) is a (p, ¢)-circulant polynomial matrix.
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Hence B(a)A(«) is a (p, ¢)-circulant polynomial matrix.
We can deduce from proposition that (2.5), we assume that A(a) = f(b(«)) and
B(a) = g(b(a)).

= A(a)B(a) = B(a)A(a) O

3. Conclusion

some of the characterization of (p,()-circulant polynomial matrices are
discussed here. In the same way, the other properties can be extended.
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l. Introduction
Let (ai(ﬂ),a2 (A),..8, (/1)) be an ordered n-tuple of polynomial with complex coefficients ,
and let them generate the circulant polynomial matrix of order n [5] :

a(2) (1) . a(2)
a,(2) a(2) - a(2) )
M
2(7) a(2) . a(2)
We shall often denote this circulant polynomial matrix as

A(2)= circ(ai(ﬂ),a2 (1),...a, (/1)) (1.2) It is
well known that all circulant polynomial matrices of order n are simultaneously diagonalizable by
the polynomial matrix F(4) associated with the finite Fourier transforms.

A(2) =

Specifically, let a)(/”t):exp(ZTﬂi(/I)j,i =41 (1.3)
1 1 1 1
e @) et
and set F'(1)=n2 |1 &*(1) o'(4) o’ (2) (1.4)
M
1 o"(2) o"%(1) .. w(2)

o

The Fourier polynomial matrix F (1) depends only on n. This matrix is also symmetric
polynomial and unitary polynomial (F(A)F"(4)=F"(4)F(2)=1(1)) and we have
A(A)=F (A)A(2)F(A) (1.5) Where
A(A)=diag (A4, Ays.s Ay) (1.6)

The symbol * designates the conjugate transpose.

From the spectral mapping theorem, we may represent A(i) in the form
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A(A)=a,(1)+a, (1) z(1)+a,(A)7? (A)+...+a,(A) 7" (A) (1.7) Where

7 (1) is the permutation matrix circ(0,1,0,0....)

Also, let A(4) be an nxn polynomial matrix. Then A(4)is a circulant polynomial matrix
ifand only if A(A)z(4)=7x(4)A(1) (1.8)

The matrix 7 (4)=circ(0,1,0,...,0)

From the diagonalization of the circulant polynomial matrix ﬁ(/l) we have

7(1)=F (A)Q(A)F(4) (1.9)
Let (A(4),A,(4),... A (1)) be a collection of square polynomial matrices, each of

order n. By a block circulant polynomial matrix [2,3,7,8] of type (m,n) (and of order mn) is

meant an mnxmn polynomial matrix of the form

A(2) A(2) . A(4)
A1) A(4) - AL(4)
M

A1) A1) - A(2)

We denote the set of all block circulant polynomial matrices of order mn as %, , (4).

beirc(A (1), A (A), A, (4)) =

A representation of block circulant polynomial matrices can be developed as

beirc(A (4), A (4),... A](i))=k2=(;(7z:1 (1) ® A (1)) (1.10)
Also, let A(1) be of type (m,n):

Ad(2) A (2) K AL(4)
= M

LA A KAL)

(mxm block matrix eachblock is of oreder n) is a circulant block polynomial matrix [7,5] if each

A(4)

block A, (1) is a circulant polynomial matrix.

We denote the set of all circulant block polynomial matrices of ordernas <7, (/1)

This paper is devoted to the study of block circulant matrix with circulant polynomial

matrices as its blocks.
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Il Block Circulant Matrices: Where the Blocks are Circulant Polynomial

Matrices
In this section, we have given a characterization of block circulant matrix with circulant

polynomial matrices as its blocks analogous to that of the results found in [1,4,6,9,10].
Definition: 2.1

Let A(Z) be of type (m,n). A(4) is said to be a block circulant matrix with circulant
polynomial matrices as its blocks if it is circulant block wise and each block is a circulant
polynomial matrix and is denoted by <77, | (i)

Example: 2.2
| 3+4 A 12-4  -1+A4 1474  -10+1]
-1 3+4 -1+4 12-4 -10+4 1+7A4
A(/I): 1+74 -10+ 4 3+A -1 12-2 -1+
-10+4 1+74 -1 3+4 -1+4 12— 2
12-2  -1+1 1+72 =10+ 4 3+4 -1
L -1+4 12—-2 -10+4 1+74 -1 3+ 4]

isin cvu7, (1),
Remark: 2.3
A polynomial matrix in«»s, . (1) is not necessarily a circulant polynomial matrix.

Lemma: 2.4

F.(4)and F, (1) satisfies the following equalities.
i) [F (D) ®F, ()][ 7 (1)@1,(2)]=[ 2. (1) ®1,(2)][F, (1) ®F, (2)]
(i) [z, (2)®1,()][F.(2)®F,(1)] =[F,(1)®F,(2)] [@,(2)®1,(2)]
Proof:
() Fa (A)®F, (1) ][ 7 (2)®1,(2)]
=[F (DR (D)][(Fr (D20 (DR, (1)@ (F (D)1, (1)F, (2)) ]
-[R. (DR @W][R @R (). ()l ()][F(1)@F (4)]
=[F.(D®F, ()][F.()®F, ()] [2.(1)@1,(A)][F. (1) ®F,(2)]
=[2, (1)1, (4)][F. (1) ®F,(4)]
(i) 7, (2)®1, (2)][F (2)®F, (4)]
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=[ (R (D)2 (A) R (1)) ®(F ()1, (A F (2) [[Fr (1) ®F; (1)]
=(Rr (DR (1))(Qn (1) @1, (1))(Fy (1) ®F, (4))(Fa (1) ©F, (4))
~(R(D)OFR () (2. ()@1,(2)

Lemma: 2.5

It A(2)=(F,(1)®F,(2)) A(2)(F,(2)®F, (1)) where A(4) is diagonal polynomial
matrix, then A(A)es s, (4)or equivalently, that A(4) commutes with both 7, (1)®1,(4)
and 1,(4)®7,(4).

Proof:

Now A(2)[ 7, (2)@1,(2)]
=[F.(A)®F,(A)] AR () @F, ()] 7, (1) @1, (2)]
~[F.(D)®F, (1] AR, ()@1,(1)][F. (1) ®F,(2)]
=[F(A)®F, ()] [2,(2)®1,(1)]A(A)[F. (1) ®F, (2)]
=[7,(2)®1,(1)][F. (1) ®F, (1)] A2)[F. (1) ®F, (2)]
~[7a(2)®1,(1)]A(2).

Also, A(}L)[Im(i)@ﬂn (/1)]
-[F.()®F (A)] A [F.(A)®F (D)1, (1) @7, (2)]
=[F.()®F (1] A(A)[1,()®Q, (A)][F, (1) OF, (1)]
~[F. ()R (A)] [1.(1)®2,()]A()[F, () ®F, (2)]
=[1,(2)®7,(1)][F, (1) ®F, ()] A(2)[F.(1)®F, (2)]
~[1.(2)®7,(2)]A(2).

Theorem: 2.6
All polynomial matrices in <24, , (1) are simultaneously diagonalizable polynomial

matrices by the unitary polynomial matrix F, (/1)® F, (/1) and they commute. If the eigen values of
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the circulant block polynomial matrices are given Ak+l(/1),k:0,l,...,m—l, then the diagonal

polynomial matrix of the eigen values of the <7z~ (/1) polynomial matrix is given by

-1

Qk (1)®A . (4) : Conversely, any matrix of the form

3

T
<)

*

A(2)=(F,(2)®F, (1)) A(2)(F,(1)®F,(4))where A(4) is diagonal polynomial matrix is in

52 (A).

Proof:

Assume that A(1) is a block circulant polynomial matrix.

m-1

From (1.10), A(4) can be written as A(4)=> z%(1)®A. (1) where the blocks are

k=0

A(2), A(A),..A,(A). The A, (4) are circulant polynomial matrices if and only if
A (2)=F (A1) A1 (A)F, (1), where F, (1) is the Fourier polynomial matrix of order n and

Ay.1(2) is a diagonal polynomial matrix of order n.

From(L.9), we have 7, (1)=F, (1) (1)F (1) whereQ, (1) is the Q(1)

27zi(

polynomial matrix of order m, (1) =diag(L (1), " (1),....@™* (1)) where o(1)= em

2)

*

Conversely, assume that A(4)=(F, (1)®F, (1)) A(4)(F,(4)®F, (1)) where A(4)is
diagonal polynomial matrix.

We have to prove that A(1)e 7, () . It is enough to prove that A(1) commutes with
both 7, (A)®1,(4) and 1,(1)®7,(4).
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From lemma(2.5), we have  A(2)(z,(4)®1,(1))=(7,(2)®1,(4))A(4)and

A(A)(1,(2)®7,(2))=(1,(2)®x, (1)) A1)

Hence, A(4) is a block circulant matrix with circulant polynomial matrices as its
blocks.

Lemma: 2.7

Let j, k be nonnegative integers. Let A, (/1) B, (/1) be of order m and n. Then

(A (2)®1,(A)] [1,(2)®B,(2)] = A (2)®B! (2).

Proof:

(A (D@1, (2))(A(2)®1,(2)

A (1) A (1) @1, (2)1,(2)
= A (1)®17(4)
(A (1)®1,(2) = A (1) @1, (2)

By induction, (A, (2)®1, (1)) = A (2)®1,(2)
Similarly, (1,(2)®B, (1)) =1,(2)®B}(2)

Now [ A, (2)®1,(2)[[1.(2)®B,(2)] =[ A (2)@1,(2)][1.(2) @B (2)]

=[A (A1 (2)®1,(2)B)(4)]

Ay (2)®B](4).

Theorem: 2.8

Let A(A)errs,,(A). Then A(A) is a polynomial (of two variables) in 7, (1)®1,(2)
and 7, (4)®x,(4).

Proof:

Since A(4) is a block circulant polynomial matrix.

3
N

Therefore, by (1.10), we have A(1)=>"[7z%(1)® A, (1)]

0

=
Il

Where the blocks Am(ﬂ) are themselves circulant polynomial matrices. Then
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n-.

Zak+1,+. )7 ()
Now A(ﬂ)=m1{ﬂ (Zakw )H

=Y > [ (A)®a,,a(2) 7 (4)]

m-1,n-1

IO EACLEZAC]

2 8y (D[ 7 (D)@1, ()] 1 (D)® 7, (2)]
[by lemma (2.7)]
This is a polynomial in 7, (1)®1,(4) and 1, (1)®7, (4).

Remark: 2.9

(1) A circulant polynomial matrix of level 1 is an ordinary circulant polynomial
matrix.

(ii) A circulant polynomial matrix of level 2 isin <777, (4).

(iii) A circulant polynomial matrix of level 3 is a block circulant polynomial whose
block Polynomials are level 2 circulant polynomial matrices.

Theorem: 2.10

A circulant polynomial matrix of level 3 and type (m,n,p) is diagonalizable polynomial

matrix by the unitary polynomial matrix F,, (1) ® F, (1) ®F, ().

Proof :
Let A(2) be a level 3 circulant polynomial matrix of type (m, n, p).

From(1.10), we have A(A Z;z )® AL (1) (2.1)
Where each A, ., (4) is a level 2 circulant polynomial matrix of type (n,p).
Thus, A, ( Zz (A)® AL a(A) (2.2)

Where each Ak+1,j+1( ) isa C|rculant polynomial matrix of level 1 and of order p.

Thus, from (1.7)
p-1
A<+l,j+1(2’) = Za‘k+l,j+1,r+l(ﬂ’)7z-;; (/1) (23)
r=0
Combining (2.1),(2.2) and (2.3) we have

{zw@[z 18] S aa ()7 “)m (24
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Since,
7 (4) = R (1) Q0 () Ry (4), 73 (2) = BT (A) Q0 (A)F, () and 7, (1) = F; ()23 (1) F, (4)

There fore,
m-1,n-1, p—1

A= Y B[R (AL (AR ()R ()9 (1)F, ()@ F; (1)2 (1)F, (1)

k,j,r=0

m-1,n-1,p-1

=Y A (AR (SR (2)OF (4)(24 (1) 80 (1)99; (4)
g (Fr(2)®F; (1)@F, (2)

S s ()R (2)OF, () ®F, (2)) (24 (2) @0k (2)005 (2))
o (Fu(1)®F,(2)@F, (2))
(F()BF ()BF, (1) 3 B (1)(04 (1)@ (2) @04 (2))
o (Fa(2)®F,(2)@F,(2))

Thus, a circulant polynomial matrix of level 3 and type (m, n,p) is diagonalizable polynomial
matrix.

Lemma: 2.11

A (1)®B,(2)=[A,(1)®1,(2)][1, (1) @B, (4)]

Proof:

[A ()1, ()1, (4 (A)] =(A(2)1,(2)®1,(4)B, (1))
= A, (4)®B, (1)

Lemma: 2.12
A,(1)®B, (1)®C, (1)
f =(A(2)®1,,(2))(1,(2)®B,(1)®1,(2))(1 (2)®C; (1))
Proof:
A,(2)®B,(1)®C,(4)=[A,(1)®B, (1) ]@C (/1)
=[(Aﬂu)®8 (D) ][t (2)®C, (2)]
=(A(2)8[ 2) ) (1 €
=(An(ﬂ)®'np (ﬂ))[lm(ﬂ)(Bn (1)@1,(2))|(1m(2)®C,(2))
[bylemma(2.11)]
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Lemma: 2.13

For nonnegative integers k, J, r |
A (1)®B](2)8C} (1) =(A, (2)®1,, (2)) [1, (1) ©B, (2)®1, (2)]
[1m(2)®C, (4)]

Proof:
By the lemma (2.12)

As(A)®B!(1)®C; (4)=(A (A)®1,, (,1))(|m(4)® B/ (1)® |P(/1))(|mn(1)®c;(/1))

We have | As(2)®1,,(2)]=[ A, (2)®1, (ﬂ)]k

Hence, A\ (1)®B}(1)®C/(4)= I:An (A)®l,, (ﬂ)]k

[1,(2)®B8, (ﬂ)@lp(i)]j [l (1)®C, ()]

Theorem: 2.14
Let A(2)be of type(m,n, p) and be a circulant polynomial matrix of level 3. Then

m-1,n-1,p-1

A= X (D[ (D)1, ()] [1n(1) @7, (2)81,(2)] [1nn(2)®7, (4)]

k,j,r=0
Proof:

Since A(4) is of type (m,n, p) and is a circulants polynomial matrix of level 3. Therefore,

from (2.4) it can be written as

3
LN

p-1

{”‘ s e (A) 71 (1) @, (ﬂ)ﬂ

j r=0

Il
o

m-1 n 1 p-1
7Z' 7[ |:Z ak+1,j+1,r+1 (ﬂ“)ﬂ-lr) (ﬂ“):|:|
k=0 J:O r=0
p -1

-1
{ﬁ
Ao jiare (/I)ﬁ:1 (ﬂ)@ﬁrf (/I) ®7r{) (/1)

kJrO

Hence, by (2.14) & lemma(2.13), the above can be written as

HO

3 ~

m-1,n-1,p-1

A(2)= 8 yen (1) (70 (1) @1, (2)) (1,(1) @7, (1) @1, (1)) (1, (1) @17, (1))

k,j,r-0

r
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Conclusion:

Some of the characterizations of block circulant matrix with circulant polynomial matrices as
its blocks are discussed here.
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I. Introduction
A circulant matrix is one in which a basic row of numbers is repeated again and again [2,5,6]
but with a shift in position circulant matrices have many connections to problems in physics, to
image processing, to probability and statistics, to numerical analysis, to number theory, to geometry.
The built —in periodicity means that circulants tie in with Fourier analysis and group theory.
In this paper we have derived characterizations for k-circulant polynomial matrices and
proved some results.

I1. k-Circulant Polynomial Matrices:
In this section some of the properties of k-circulant matrices found in [1,3,4,7] are extended
to k-circulant polynomial matrices.
Definition: 2.1
A k-circulant polynomial matrix of order n is a matrix of the form

= k-circ A)sny (1))

(a(
a(4) az(i) o (4) ]
qia(4) B2 () o 2 (4)
Thatis, A(A)=|a, ya(2) B nea(2) = 8 (2)
M

8. au(d) - a(d)

Remark: 2.2
IfO<k <n, Each row of A(/i) is the previous row moved to the right k places or moved to
the left n-k places wraparound.

If k >n, then a shift of k places is the same as a shift of k mod n places. If k is negative,
shifting to the right k places will be equivalent to shifting to the left (-k) places.

Thus, for any integers k, k™ with k' =k (mod n) a k circulant and a k-circulant are

synonymous.
Example: 2.3
A-3-circulant polynomial of order 5 is
A A -22%41 0 22743 ~2%+1 3%+ ]
207 +3 R | 3%+ 1 A+a “A2 =227 +1
A(A)=| 34%+2 A+ =AR-22%+1 0 22743 —A%+1
“A2-227+1 207 +3 -2 +1 315+ A A+ A
A%+l 3%+ 1 A+a ~A2 =227 +1 22 +3 |
Remark: 2.4

A 1-circulant polynomial matrix is an ordinary circulant polynomial matrix.
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A O-circulant polynomial matrix is one in which all rows are identical.
A (-1)- circulant polynomial matrix or an (n-1)- circulant polynomial matrix has each

successive row moved one place to the left.

Theorem: 2.5
A(4) is a k-circulant polynomial matrix if and only if 7(1)A(1)=A(A)z" (1) where

7 (A)is a permutation matrix (with polynomial of degree zero).

Proof:
Let us assume that A(4) is a k-circulant polynomial matrix of order n.

Thatis, A(2)=k-circ(a,(1),a,(2),...a,(4))
Ca(d)  a(4)

8 a(4) A (d) - ank(ﬂ)
= an—2k+l( ) n—2k+2 (ﬂ) Ay ok (/1)

A (2) nld) - A0
We have to prove that 7z (1) A(4)=A(1)7"(4).

Takea:[; g :J.Then P (4)=7(2)=(010..,0)

010 ..0
001 .0
100 ..0

IS a permutation matrix.
If A(2)=(a;(2)), then

a(4)  a(4) a,(2) |
010 0 nk+1(/1) a, k+2(/1) an_k(/i)
z(A)A(4)=]0 0 1 0|, pa(4) @ sa(4) a, (1)
M
100 .. 0| a,(4) awu() - a(l) ]
aa(4) an(d) - a(4)
_ s (4) an2k;\2/|(ﬂ) v Ay (4) =(ai+1’j(/1)).
() al) . &)
Taie G_lz(lik 2J2rk 3fk :J;then P ()= (D)= (2)
Hence, 7 (1) A(2) 7™ (1) = (a1, 1.4 (1))
=(ai,i(ﬂ))
~A(2)

Hence, 7(A)A(A)=A(1)7"(1).
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Conversely, assume that

1 20
Where A)=|2 0 1A
01 2

0
and 7 (A4 )be a permutation matrix. That is, 7(4)=| 0
1

7(2)A(A) =
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A(A)7 (2).

We have to prove that A(1) is a k-circulant polynomial matrix.

=A(2)7"(2)
A(A)=r(1)A(1)x"

Therefore, A(4) is a k-circulant polynomial matrix.

Example: 2.6
Let A(A4) be a 2-circulant polynomial matrix of order 3.

Now 7z(2)A(2)

1+4 2+ 42

Thatis, A(1)=|2+24
13

/13

1+4

2/3
1+
2+ A2

=A+A(A)+ AL+ AL

0 1
Now 7(2)A(4)=|0 0
10

100 0
=|0 0 1[,A,=[2 0 Ofand A =|0
010 1

0
1

0

2+ A2
= A8
1+ 4

Now A(1)r?
13

=1 A8

Corollary: 2.7
Let A(4) and B(A)be k-circulant polynomial matrices .Then A(4)B"(4) isa

1-circulant polynomial matrix A(4).

Proof:

By theorem (2.5), A(A)=7"(1)A(4 )
7" (A)A

(144
2+ A2

(2442

142 242
From (1) and (2) we get 7(1)A(4)=

0 20

0 0 2

o O -
o - O

241 20
2 1+2
A3 1+4 2+ 42
2 142

1+4 2+ 42

2+2% A3
2422 2% ]
A3 1+ 4
1+4 2+ 42
2 1+ ]
1+4 2+ 42
/13

A(2)72(2).

1+
2+ 07

o - O

~ O O
o O B

o O
o O

Given that A(4) and B(4) are k-circulant polynomial matrices.

Now A(A)B*(1)=

( Jand B(1)=7
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~[= (AR (]| (=) (1B (A)(=) (2)]
=" (A)A(A)7" (2)(7') (2)B (2)7(2)
=" (A)A(2)B* ()7 (4)

Hence, A(4)B"(4)is a 1-circulant polynomial matrix.

Example: 2.8
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31 1-12  A+31?
Let A(A)=| 1-4* 2A+31° =31 |=A+Ai+AL
A+34%2 31 1-7?
010 3 0 1 0 1 -3
where Ay={1 0 0|, A=|{0 1 -3|,A,=|-1 3 0 |and
001 1 -3 0 3 0 -1
[ 12 114 -131+ 42
B(4)=| -1  -134+4* -1-2° |=B,+BA+BA?
-134+4% -1-A° 111
-1 0 0 0 -11 -13 -1 0 1
Where B,=| 0 0 -1|, B=|-11 -13 0 [,B,=|0 1 -1
0 -1 0 13 0 -11 1 -1 0
be a 2-circulant polynomial matrix of order 3.
31 1-2  A+327|[ —1-42 114 -134+ 42
A(2)B"(A)=| 1-2* A+32* -34 114 -131+4%  —1-42
A+34%2 =34 1-2% ||-131+4%> —1-A2 -111
I 31)(~134 + A2
(-34)(-1-4%)+(-1-27) (-32)(-114)+(1-2%) (1 /1)( .~ ;2 )+
(—114)+(2+34%)(-182+4%) (-184+4%)+(A+34%)(-1-2%) E +3/32() )
—131+ %)+
(1-2%)(-1-27)+(2+32%)  (1-2%)(-112)+(2+34%) (ﬂ 3/1)2( 112)
| (1) +(-32)(-182427)  (-132+4%)+(-32)(-1-4?) E+)( )() s
A+322)(-131+ 42
(2+32%)(-1-4%)+(-32)  (2+32*)(-114)+(-34) E;)( )1( 12)+ )
- -1-217)+
—112)+(1-22) (132 + A2 —132+ A%)+(1-2%)(-1- A2
(- amis) (A (ama) T T
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31+32° -11A+112° -132% 334°-131+A*+132°-2* 392°-32° -1+ -2+ 2"
-392° + 2% +32° ~A-32*-2*+32° ~111%-332°
R AV AR ~11A+112° 1322+ 2* 1321+ A% +132°-2°
| —1142-332° +3942 -34° —394°+31* +31+34° ~A-32%-2*-31"+331°
~A-31*-2*-31" ~114%-334° +394° -34° 1317 -392° + 2° +32*
—132+ A% +132° -1 1+ A% =A%+ 2" +321+32° -1 +110° |

A1 -364%+282° -1
42" +122° +314% 142
31*-242°-131%* -84

—42% +122° +314% 144
314 -242°-131%* -84
A1 -361°+284% -1

| 31%-242°-13)% -84
A*-364°+284° -1
—42* +122° +312% 142

Hence, A(4)B’(A)is a 1-circulant polynomial matrix.

Remark: 2.9
If A(1) is a k-circulant polynomial matrix, then A(4) A* () is a 1-circulant polynomial

matrix.
Theorem: 2.10
If A(2) is a k-circulant polynomial matrix and B(4)is a h-circulant polynomial matrix then

A(2) B(4)is a kh-circulant polynomial matrix.
Proof:
If A(1) is a k-circulant polynomial matrix and B(4)is an h-circulant polynomial matrix

then, by theorem (2.5),
7(A)A(A) = A(A

N—"

Now (2)[ A(2)B(2)] =[#(2) A()]B(4)
=[A(2)7"(4)]B(4)
=A(2) 77 (2)[ 7(4)B(4)]
=A(2) 7 (2)[B(2)7"(4)]
=A(1) 7 (1) 7(4)B(2)]7" (4)
=A(2)7 (2)[B(4)z" () ]="(2)
=[A(2)7**(2)]B(2)7™ ()
Keep this up for h times, leading to z(2)[ A(4)B(2)]=[ A(2)z""(4)][B(2)7*"(2)]
=A(4)B(4) 7" (4)
By theorem (2.5), A(4) B(4)is a kh-circulant polynomial matrix.
Example: 2.11 i i
-8+ 41 0 4+64° 0 A
0 A -8+ 41 0 4+64°
Let A(A)=| 0  4+62° 0 A -8+A
A —8+4 0 44617 0
_4+6/”L2 0 A -8+ 41 0 |

be a 2-circulant polynomial matrix of order 5 and
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0 0 1-1*  -A+A° 0
—A+ A 0 0 0 1- 27
B(/l) = 0 1-27 A+ A7 0 0
0 0 0 1-1*  —A+A°
i 1-1%  —A+A° 0 0 0 |
be a 2-circulant polynomial matrix of order 5
A=2° -6+ A%+ A% +4 64 —7A°+124° -31-8 A°-94% +84 0
61+ A7+ 27 +4  BA—TA+124°-34-8 21-92°+82 0 A=A
A(2)B(A)=|624*-72°+124* -31-8 2°—92° +84 0 A-X 62+ 27+ 2% +4
A1 —94% +84 0 A= 61+ A0+ 27 +4  BA—TA +124°-34-8
0 A=A A+ AT+ A7+ 4 64" —74°+124* -31-8 A*—94% +84

Hence, A(4)B(4)is a 4-circulant polynomial matrix of order 5.
Theorem: 2.12

Let A(4) be a non-singular k-circulant polynomial matrix. Then A™(1) isa k™
circulant polynomial matrix. (A‘l(/l) is a polynomial matrix obtained the inverses of coefficient
matrices)

Proof:
Since A(4) is non-singular and hence k™ (4)exists.

Now from theorem (2.5), 7(1)A(4)=A(A)7"(2) sothat A*(2)7z (A)=7"(2)A*(2)
(M)A () (A)a(A)=7(A)x ™ (A) A ()7 (A)
r(A)AH(A) =" () A (A)x (4
72_—k+1 (ﬂ/) A
=7 (A AT () (2
_ ﬂ_—k+l(l)[7z,—k (ﬂ,) A—l(
72'_2k+1(i)A 1(& 72_2(/1)
Do these s times and we obtain 7(1)A™(1)=z"**(1)A™*(1)7°(4)
Put s=k*, weget z(2)A*(2)=2""*(2)A (1) (A)
=AY ()7 (2)
Therefore, A™(1)isa k™ circulant polynomial matrix.

Example: 2.13
Le A(4) be a2-circulant polynomial matrix of order 3.

3+4 2—-1  -1+44
That is, A(/I): 2-4 -1+41 3+1 |=A+AZ
-1+44 3+ A4 2—-1

3 2 -1 1 -1 -4
Where A=| 2 -1 3 JA=|-1 4 1
-1 3 2 4 1 -1
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-1 -7 5 -5 3 -17
:>A0‘1=_—21 -7 5 -11 ,A1‘1=;—é 3 -17 -5
5 -11 -7 -17 -5 3

115, 7 3, 5. 17

+— —+
52 70 52 70 52 70
= A7 (1)= T 3, D20, 1.5
52 70 52 70 52 70

-5 17 11 5/173

52 70 52 70 52 70

Theorem: 2.14
A(A4) is ak-circulant polynomial matrix if and only if (A*)*(ﬂ) isa k™' circulant

polynomial matrix.
Proof:
Let A(4) be ak-circulant polynomial matrix. Then by theorem (2.5),

A() =7 (1) A(2)*(2)

Since 7(1),7*(A), 7" (/1) are unitary polynomial matrix.
Hence A'(4)=[7"( i E)T

R e

- uww (2)

[ (A (D]

- (z)(N) (z)(ﬂ ) ()

- (A (1) ()

Therefore, ( T)*(ﬂb) is a k-circulant polynomial matrix.

(W) (2

Conversely, Iet(AT) be a k-circulant polynomial matrix.
That is, ( T) (AT) (2)7*(2)

((a) )r [ (&Y ()2 ()]

(

(A) (A)=7"(2)(A
A(2)=7H(2)A
Hence, A(4)is a k-circulant polynomial matrix.

Corollary: 2.15
If A(Z)is a k-circulant polynomial matrix, then A(4)A"(2)is a 1-circulant polynomial

matrix.

Page 134



Kala Sarovar ISSN: 0975-4520
(UGC Care Group-1 Journal) Vol-24 No.01(11) January - March 2021
Proof:

Given that A( 1) is a k-circulant polynomial matrix. By theorem (2.5),

A(2)=7"(2 )A(ﬂ)ﬂk(ﬂ)

Now A(Z)A"(2)=[" () () ][#" (2)A() 7 (2)]

s (}L)A(l)ﬂk (z)(ﬂk)*(z (A=) (2)
=7 (A)A(A) AT () z(2).
Hence, A(4) A"(A) is a 1-circulant polynomial matrix.

Remark: 2.16
If A(Z) is a k-circulant polynomial matrix, then A(4) A"(4)is a 1-circulant polynomial

matrix.
Theorem: 2.17

If A(4)is a k-circulant polynomial matrix, then A"(1)=A" (i)[A(ﬂ,)A* (ﬂ)]
Proof:
If A(4)is aKk-circulant polynomial matrix, then by remark (2.5), we have A(1) A"(4) isa

1-circulant polynomial matrix.
Thatis, A(A)A"(1)=7"(2)A(A) A" (A)z(2
t .

+

N—"

Conclusion
We have extended some properties of k-circulant matrices to k-circulant polynomial

matrices. All other properties can also be extended in a similar way.
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Abstract: We Have Introduced Normal Circulant Polynomial Matrices As A Generalization Of Normal
Polynomial Matrices. Sums, Products And Direct Product Of Normal Circulant Polynomial Matrices Are
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1. Introduction
Let (2,(4),a,(4),...a,(4))Be An Ordered N-Tuple Of Polynomials With Coefficients In The
Field Of Complex Numbers, And Let Them Generate The Circulant Polynomial Matrix [1,3,4,8] Of Order N:
a(4) a,(4) .. a,(4)
a (4 A) .. a4
3,(4) a(1) - a(4)
We Shall Often Denote This Circulant Polynomial Matrix As
A(2)=circ(a,(1),a,(4),...a,(1)) (2)
Let A(4) Be An nxn Polynomial Matrix And 7 (1)=circ(0,1,0,...,0). A(1) Is A Circulant
Polynomial Matrix If And Only If
A(2)7(4)=x(2)A(4) (3)
In This Paper, We Defined A New Type Of Polynomial Matrix Called Normal Circulant
Polynomial Matrix, Which Is A Generalization Of The Normalpolynomial Matrix. For This Class Of
Matrices, We Investigate Thesums, Products And Direct Products.
Before Proceeding, We Introduce Some Notation Needed Throughout This Paper. Let C_ (l)

Denote The Set Of All nxn Polynomial Matrices Over The Complex Field C And In(l) Denote The
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dentity Polynomial Matrix Of Order N. For A Matrix A(1)eC,, (1), We Denote The Transpose, The
Adjoint And The Determinant Of A(4)By A" (1), A"(4) And ‘A(ﬂ)‘ Respectively.
2 Normal Circulant Polynomial Matrices

In This Section Some Of The Properties Of Normal Polynomial Matrices Are Extended To Normal
Circulant Polynomial Matrices. Some Results Of Normal Matrices Found In [2,5,6,7] Are Generalized To

Normal Circulant Polynomial Matrices.

Definition 2.1

A Circulant Polynomial Matrix A(/i) Is Called Normal Circulant Polynomial Matrix If

*

A(A)A (2)=A(1)A(4).
Example 2.2

1+A+1 1+2i4
Let A(4)= _ _|=A+AA Where The Coefficient Matrix Of A( 1) Are
1+2I4 1+ A+i

(1401 (1 2i
A= 1 1+i A= 2i 1
3424 +54° 2464 J

A(A)A (1) =
()A(2) ( 2+64 3+21+542

Hence, A(/i) Is A Normal Circulant Polynomial Matrix.

=A(1)A(4)

Theorem 2.3
If A(l) Is A Normal Circulant Polynomial Matrix And & Is A Complex Number, Then

(i) A(2)+al, () 1s A Normal Circulant Polynomial Matrix.

(i) A(2)—al, () Is A Normal Circulant Polynomial Matrix.

Proof
Given That A(/"t) Is A Normal Circulant Polynomial Matrix. We Have
A(2)A (2)=A(2)A(2)
By Using (3), We Have A(4)=r,(4)A(1)7,*(1).
Proof Of (i)

Now [A(2)+al, (2)][A(2)+al,(2)]

*

821
Website: www.efflatounia.com


http://www.efflatounia.com/

Efflatounia
ISSN: 1110-8703
Pages: 820 — 828
Volume: 5 Issue 2

=[m (DA (A)+am, ()1, ()7, (2)]

(
(7, (A)A(A) 7,  (A) +am, ()1, (A) 7 ()]
(

2

(7} (4)) +

w1, (DA, (D)7 (A)a+ar,
=A(A)A (2)+al, (A)A(2)+ A1, (Aa+al, (A)a
=A (A)A(A)+al, (A)A (1) +al, () A(1)+aal, (1)
=A (A)AA)+al, (A)A (2)+al, (A)A(L)+aal, (2)
=K ([ A2)+al, (1)]+al, (D[ A(2)+al, (2)]
=[N (A)+al,(4)] [A(/i)+aln(/1)]
=|(A) +(a, (1)) | [A(2)+1, (2)e]

=[A(2)+al,( ][A +al, ( ]
(

Thus, A(4)+al, () Is ANormal Circulant Polynomial Matrix.
Proof Of (ii)
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1(4) 7, (1)

(7 (A7 () ~(am, ()1, ()5 (1) |

[(ﬁnl(@))’* A ()7 (2)- (72 (2))
7T (}“) A*(;L)ﬂ'r;l (ﬂ')_”n (ﬂ') I, (}“)”r;l (ﬂ’)a

(7, () AR) 7, (A)—am, ()1, (A) 7, (2) ]

[ (A) A7 (1) am, ()1, () 7(2)
~[m (AR 7 (2)-am, ()1, ()7, (2)]
=[m (2 A() 7 (A)-am, () 1 (2) 7" ()]

=7, (1) A(A) 7.} (A)—am, (A)1, (2) 7, (4) ]

—_~
< ~<
~ N—"
T e G
-
—~ < S ~< —
R ~ | c ~
J.nﬂn ~— ~—
ﬂ )144 c
\l/\l/nA,n( =<
_a\l/(ﬁﬂ\ﬁﬂ_n,/.l\\_ﬂ.)ﬁn)))a
~ I c
S g . A3z L
nTl\l/T/yAA* 3 c = = N <
~ ,nﬁﬁ)(AnTIII( ~—
)ﬂ(l n))_a_a_aA_l =
~—~ —/ - XN ® 3 3 3 - '~ =T
T2 o3 A2 A xS
- ~ = ~ _=
¥ 7. =3 T 838 R8I = =52
K - R — a
T8y e=L=5 53" I 7T
< = —~ < = I8 1318 7 1 <
oS00 =2 e
e i G TG IR
N §ES AT oo 0 = 2
~ = =
LR TR T S
T < | | _ _ < =
S T I3 T
Sz I = F'v
—_ _ —~ N e = = =
RS < AAaAnAnA((
5 3 S oS- =
K K < <€ < << [,
Il

Now [A(2)-al,(2)][A(2)-al,(2)]
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=[A()-1,(1)a] [A(2)-al,(4)]
=[A(2)-al, ()] [A(4)-al, ()]
Hence, A(1)—al, (4) Is A Normal Circulant Polynomial Matrix.

Theorem 2.4
Let A(A) And B(4) Be Normal Circulant Polynomial Matrices And That

A(2)B"(1)=B"(2)A(1) And A (1)B(A)=B(A)A(A) . Then A(A)+B(1) Is A Normal

Circulant Polynomial Matrix.
Proof

Let A(4) And B(4) Be Normal Circulant Polynomial Matrices And That
A(2)B"(A)=B"(A)A(A) And A" (1)B(2)=B(1)A"(4).
By Using (3), We Have A(4)=r,(1)A(1)7, (4).

[A(2)+B(4)][A(2)+B(2)]

=[ 7, () A(2) 7.} (A)+ 7, (A1) B(2) 7,
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=1, (2)| 7, (2) A(2) A" (2) 7,1 (2) |7, (2)
v, (D) 7 (2)B(A)A (1), (4)]
+;rn(/1)[ﬂn(/1)A(,1)B (1)@1(/1)];;;1(,1)
+7,(2) 7,(2)B(2)B"(2) 7, (4) |} (2)
=7, () A(A) A (A) 7, (1) +7,(4)B(2) A" ()7, (4)
+7,(A)A(4)B (1) 7, (4)+7,(4)B(2)B"(4) 7" (4)
=A(4)A(1)+B(2)A"(1)+A(4)B"(4)+B(4)B"(4)
- K (2)A(2 ) < A (4)+A(2)B" (2)+ B (2)B(2)
=A (/1)[ (4)]+B"(2)[ A(2)+B(2)]
=[A"(2)+ ][A +B(/1)]
=[A(2)+B(4 ][A (4)]
Hence, A(4)+B(4) Is A Normal Circulant Polynomial Matrix.

Theorem 2.5
Let A(A) And B(4) Be Normal Circulant Polynomial Matrices And That

A(2)B"(1)=B"(A)A(A) And A" (1)B(A)=B(A)A(4). Then A(2)B(1)Is A Normal Circulant

Polynomial Matrix.
Proof

Let A(A) And B(4) Be Normal Circulant Polynomial Matrices And That
A(2)B"(1)=B"(1)A(1) And A"(2)B(1)=B(1)A (4).
By Usmg( ), We Have A(1)=r,(1)A(4)7z,"(1).

[A(1)B(2)][A(4)B(A)]

[ ()AR)B(2)7;
(7 (DB = (D) +(m (DA 72 (1)
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Theorem 2.6
If A(A)AndB(A) Are Normal Circulant Polynomial Matrices, Then So Is A(4)®B(4).

Proof
Given That A(4)And B(4) Are Normal Circulant Polynomial Matrices.

We Have To Prove That A() B(A) Is A Circulant Polynomial Matrix

(A(2)®B(2))(A(2)®B(2)) =[(7(2 z))@( ﬂm)]
(m (D AR) 7 (1)@ )]

=[(= (A)A(ﬂ.)ﬂ l(/1))® )7, (2))]
[(ﬂ (/t)A(/l)yrnl(/l))*@( 7 (z))*}
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=(A(A)A"(2))®(B(4)B(2))
=(A (/1 (2) )@( "(2)B /1))
=(A ( () A( (
=( () (A(4) )
Hence, A(4)®B(4) Is A Normal Circulant Polynomial Matrix.
Conclusion

Some Of The Properties Of Normal Circulant Polynomial Matrices Are Discussed Here. All Other
Properties Can Also Be Extended In A Similar Way.

References
[1] Davis, P.J. Circulant Matrices, New Yark, 1979.

[2] Elsner, L. And Ikramov, Kh.D., “Normal Matrices : An Update”; Linear Algebra And Its
Applications, Vol. 285 (1998), 291-303.

[3] Gray, R.M. Toeplitz And Circulant Matrices: A Review. Information Systems Laboratory,
Stanford University, Standard, California, March 2000.
[4] Horn, R.A., And C.R.Johnson. Matrix Analysis, Cambridge University Press, New York, 2013.

[5] Ramesh.G., Maduranthaki.P., “On Some Properties Of Unitary And Normal Bimatrices”,

827
Website: www.efflatounia.com


http://www.efflatounia.com/

Efflatounia
ISSN: 1110-8703
Pages: 820 — 828

Volume: 5 Issue 2
International Journal Of Recent Scientific Research, VVol.5, Issue 10, October 2014 ,

1936-1940.
[6] Ramesh.G., Maduranthaki.P., “Spectral Theory For Unitary And Normal Bimatrices”,
International Journal Of Mathematics And Statistics Invention, Vol.2, Issue 10, November

2014, 44-51.

[7] Robert Grone., Johnson., E.M.Sa., Wolkowicz.H., “Normal Matrices” Linear Algebra And Its
Applications, Volume 87: (1987), 213-225.
[8] Zhang.X And Xu. F, Advanced Algebra, 2nd Ed., Tsinghua University Press, Beijing, 2008.

Website: www.efflatounia.com

828


http://www.efflatounia.com/

	Final Front Pages
	FF
	Inter

	PAPER 1
	PAPAER 2
	PAPER 3
	PAPER 4
	PAPER 5
	URK.pdf
	Ouriginal Report - R. MUTHAMILSELVAM- Intro & Review.pdf (D126911459)
	Ouriginal Report - R. MUTHAMILSELVAM- Chapter II - Conclusion.pdf (D126911458)


