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Abstract

In recent years, fractional calculus has been the focus of various scientific studies.

The main objective of this thesis is to explore different fractional integral transforms

with exponential type kernels and wavelet based numerical schemes for solving frac-

tional differential equations.

In the first Chapter, we discuss the history of fractional calculus, definitions of

fractional derivatives and integrals.

In the second Chapter, we apply Aboodh integral transform to solve some frac-

tional differential equations and determine the relationship between Aboodh trans-

form and the Laplace transform. Also we introduce a fractional integral transform

which is a generalization of many integral transforms having exponential type kernels

and discuss some of its properties. We also discuss the sufficient conditions for the

existence of the newly introduced fractional integral transform with exponential type

kernel. Finally, we conclude that the generalized fractional integral transform with

exponential type kernel is an efficient and useful technique for solving many fractional

differential equations.

In the third Chapter, we introduce a numerical scheme based on Euler wavelets and

obtain numerical solutions of some fractional differential equations using an efficient

Euler wavelet operational matrix. We finally conclude that the Euler wavelet based

vii



numerical scheme is preferable to many other numerical schemes since the obtained

numerical results are more consistent with the exact solutions.

In the fourth Chapter, we introduce a novel numerical scheme based on Bernoulli

wavelets and utilize the operational matrix of Bernoulli wavelets to transform frac-

tional differential equations with variable coefficients into simultaneous algebraic

equations. The main advantage of the Bernoulli wavelet based numerical scheme

is its fast convergency and its high degree of accuracy.

In the fifth Chapter, we derive a new fractional integration operational matrix

of the Chebyshev wavelets and elucidate the solution process, the simplicity and the

efficiency of the Chebyshev wavelet operational matrix by some illustrative examples.

Finally we conclude that the numerical solutions attained by the Chebyshev wavelet

scheme are in a good agreement with the exact solutions.

In the sixth chapter, we employ the numerical technique based on Bernoulli

wavelets for finding the approximate solutions of fractional electrical circuits namely,

LC, RL, RC and RLC.
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Chapter 1

Introduction

1.1 A brief history of Fractional Calculus

Fractional Calculus [46, 56, 47] is a natural extension of classical calculus. It is

a 300-year-old mathematical tool that has been gradually developed to the present

day. It also does not imply a fraction of any calculus-differential, integral or calculus

of variations.

L’Hospital questioned Leibniz in 1695, “What if n be 1
2
?” Leibniz unexpectedly

responded, “...You may see from that, sir, that a quantity like d
1
2xy or d1:2xy can

be expressed by an infinite series. Despite the fact that infinite series and geometry

are not particularly related, infinite series only permits the use of exponents that are

positive and negative integers and does not yet know how to employ fractional expo-

nents...”. Leibniz had a special insight into the unknowable, as do other outstanding

mathematicians. He stumbled onto fractional derivatives and realized that his work

will soon lead to great things. He had no idea what they would mean. He continued

1



in the same letter: “As a result, it follows that x
√
dx : x will equal d

1
2x. This appears

to be an index from which future useful findings might be formed...”. The insight

of Leibniz did not end there. Three years later, he discussed how to use fractional

derivatives in Wallis’ infinite product for 1
2π

in a letter to John Wallis. He writes:

“...Differential calculus might have been utilised to accomplish this result,...”. It

should be clear that Leibniz gave fractional derivatives more than a passing thought;

he must have devoted a lot of effort to the subject.

The idea of fractional derivatives was experimented by Euler, an another great

mathematician. 43 years after Leibniz published his controversial ideas on fractional

derivatives, in his dissertation published in 1738, Euler stated: “... when n is a pos-

itive integer, and if p should be a function of x, the ratio dnp to dxn can always be

expressed algebraically, so that if n = 2 and p = x3, then d2x3 to dx2 is 6x to 1. The

question now is what kind of ratio can be created if n is a fraction. It is clear why

this situation is challenging, because dn can be determined by further differentiation

if n is a positive integer. But if n is a fraction, then there is no obvious method to do

it. However, one might be able to speed up the process with the use of interpolation,

which I have already explained in my dissertation...”

The formula for the mth derivative of y = xn, where n is a positive integer, was

established by Lacroix and published in his 700-page long book on Calculus in 1819.

Dmy =
n!

(n−m)!
xn−m, (1.1.1)

2



where m(≤ n) is an integer.

He further established the formula for the fractional derivative by replacing the fac-

torial symbol with the gamma function.

Dαxβ =
Γ(β + 1)

Γ(β − α + 1)
xβ−α, (1.1.2)

where α and β are fractional numbers. In particular, he calculated

D
1
2x =

Γ(2)

Γ(3
2
)
x

1
2 = 2

√
x

π
. (1.1.3)

However, Joseph Liouville (1809–1882), in 1832, explicitly expanded the derivative

of integral order n

Dnebx = bmebx (1.1.4)

to the derivative of arbitrary order β

Dβebx = bβebx. (1.1.5)

Liouville arrived at the formula by using the series expansion of a funcion f(x).

Dβf(x) =
∞∑
m=0

Cmb
β
me

bmx, Re bm > 0, (1.1.6)

where

f(x) =
∞∑
n=0

cmexp(bmx), Re bm > 0. (1.1.7)

Liouville’s first fractional derivative formula is given in formula (1.1.6). Whether they

are complex, irrational, or derivatives of any order β, it can be applied as a formula.

3



However, it can only be utilized for functions of the form (1.1.7). In order to extend

his first definition, Liouville developed a second definition of a fractional derivative

based on the gamma function (1.1.6).

Γ(β)x−β =

∫ ∞
0

tβ−1e−xtdt, β > 0, (1.1.8)

Dαx−β = (−1)α
Γ(α + β)

Γ(β)
x−α−β, β > 0. (1.1.9)

This is called Liouville’s second definition of fractional derivative. He solved problems

in potential theory by using both of his definitions. Though his second definition only

applies to rational functions, Liouville’s first definition is limited to a certain class of

functions having the form (1.1.7). It was determined that neither of his definitions

was appropriate for a large class of functions. As stated in (1.1.9), the derivative of

a constant function (β = 0) is zero because (1.1.2) provides a non zero value for the

fractional derivative of a constant function (β = 0) in the form

Dα1 =
xα

Γ(1− α)
6= 0. (1.1.10)

The following integral representations of f(x) and its derivatives were discovered

by Fourier in 1822.

f(x) =
1

2π

∫ ∞
−∞

f(ζ)dζ

∫ ∞
−∞

cost(x− ζ)dt (1.1.11)

and

Dnf(x) =
1

2π

∫ ∞
−∞

f(ζ)dζ

∫ ∞
−∞

tncost{(x− ζ) +
nπ

2
}dt. (1.1.12)

4



Formally, replacing arbitrary real α with integer n produces

Dαf(x) =
1

2π

∫ ∞
−∞

f(ζ)dζ

∫ ∞
−∞

tαcost{(x− ζ) +
απ

2
}dt. (1.1.13)

For fractional derivatives, Peacock (1833) supported the Liouville definitions

whereas other mathematicians chose the Lacroix formula (1.1.2). The two definitions

of a fractional derivative did not agree with one another as a result.Despite signifi-

cant subsequent advancements of fractional calculus, this controversy has rarely been

resolved.

Greer (1858–1859) developed formulas in the form of (1.1.4) for the fractional

derivatives of trignometric functions.

Dαeiax = iαaαeiax = iαaα(cosax+ isinax)

= aα(cos
πα

2
+ isin

πα

2
)(cosax+ isinax)

(1.1.14)

The fractional derivatives of trignometric functions are given by

Dα(cosax) = aα(cos
πα

2
cosax− sinπα

2
sinax)

= aαcos(ax+
πα

2
),

Dα(sinax) = aα(cosaxsin
πα

2
+ sinaxcos

πα

2
)

= aαsin(ax+
πα

2
)

(1.1.15)

When α = 1
2

and a = 1, Greer’s formulas are as follows:

D
1
2 cosx = cos(x+

π

4
),

D
1
2 sinx = sin(x+

π

4
)

(1.1.16)

5



Similarly, fractional derivatives for hyperbolic functions can be obtained.

For modern mathematicians, Sonin and Letnikov built the basis for the concept

of fractional derivatives. Sonin published a paper titled “On Differentiation with

Arbitrary Index” in 1869, and Letnikov published four papers on the same topic

between 1868 and 1872. Both mathematicians started their work with Cauchy’s

integral formula:

Dmf(z) =
m!

2πi

∫
c

f(η)

(η − z)m+1
dη,

where “c” denotes a closed contour that rotates once anticlockwise. Sonin and Let-

nikov were off to a great start since it was permitted to generalize m! both knew

about the gamma function and how m! = Γ(m + 1) when m! takes on arbitrary val-

ues of integers. They were aware that a simple pole would appear in the close circuit’s

contour when m was an integer. They understood that instead of a simple pole, they

would have a branch cut if m was not an integer. Although Sonin and Letnikov were

aware of the problem, they did not suggest a solution. Unfortunately for Sonin and

Letnikov, Laurent found the solution twelve years later, in 1884. Despite being an

untrained scientist (as stated by Miller and Ross) and not a mathematician, Oliver

Heaviside, a genius later in his life, has received the name of “hero”. He published

a number of papers on linear functional operators in 1892, and by using unortho-

dox techniques, he was able to solve a number of engineering problems, including

the equation relating to submarine cables and the transmission of electrical currents
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in cables. Heaviside operational calculus is a collection of his brilliant approaches,

results, and applications. However, his work was viewed with distrust and suspicion

during the time he developed it. Because he was unable to provide solid proofs for

his work, he became a laughing stock among mathematicians. In 1919, Bromwich set

out to rigorously confirm all of Heaviside’s work, which he accomplished.

Even though there have been a huge number of new mathematicians throughout

this time, it is surprising that only a small number of research papers have been writ-

ten on the subject of fractional derivatives over the past 82 years. The few “greats”

are Thomas J. Osler, Davis Erdelyi, Hardy, Kobler, Littlewood, Love, Riesz, Samko,

Sneddon, Weyl, and Al-Bassam. One would think that there would be hundreds, if

not thousands, of research articles with all these new mathematicians entering the

field. Even Davis claimed this in 1936: “...By 1900, it is reasonable to consider that

the formal development of operational procedures had come to a halt. The theory of

integral equations was just starting to capture mathematicians’ attention and reveal

the possibilities of operational methods...” In 82 years, it appears like not a lot of

imaginations were being inspired. The year 1974 then arrived, however.

During the final decades of the nineteenth century, Heaviside successfully con-

structed his operational calculus without using exact mathematical explanations. He

first proposed the concept of fractional derivatives in his study of electric transmission

lines in 1892.
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The research on fractional derivatives really started off in 1974. The first inter-

national conference on fractional calculus was conducted in 1974. The University of

New Haven functioned as the venue, Askey, Mikolas, and many other mathematicians,

including our own Dr. Thomas J. Osler attended along with some of the mathemati-

cians named above. “Great explosion” was really the title above. Many of those

previously listed were inspired by the 1974 conference. There have been roughly 400

papers on fractional derivatives published in just a little more than five years, which

is more than since mathematics began.

Then came the 1980’s. Ten years later, in 1984, there was a second international con-

ference on fractional calculus. It took place in Glasgow, Scotland, at the University of

Strathclyde. It seems that mathematicians had jumped on the proverbial bandwagon

from all around the world. Mathematicians from Japan, the Soviet Union, England,

India, Canada, Venezuela, Scotland, and a host of smaller nations all have written

on the topic. Some of these mathematicians that wrote on the fractional calculus

include Saigo(1980), Owa(1990) and Nishimoto (1984, 1987, 1989, 1991) who wrote

a four-volume set on applications. The three mathematicians mentioned above are

from Japan. Soviet authors Marichev and Kilbas published an encyclopaedia on the

topic in 1987. It also included applications. In the 1980s, Indian authors Rauna and

Saxena published a number of publications. In their research on fractional deriva-

tives, Srivastava from Canada, Kalla from Venezuela, and McBride from Scotland
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all achieved a great deal. In the 1980s and 1990s, even our own Dr. Thomas Osler

co-authored or published 10 publications on the topic.

It might be important to note that Abel’s (1801–1829) solution of an integral

equation arising from the formulation of the tautochronous problem is the first known

application of fractional calculus. This problem includes finding the shape of a fric-

tionless plane curve via the origin in a vertical plane in order to establish the shape

that a particle of mass m can fall along in a time that is independent of the starting

position. The concept that the derivative of a constant is not always equal to zero is

the foundation for the solution to the Abel problem.

The number of mathematicians in the world today would lead one to believe that

there would be countless volumes of published publications on the topic. Unfortu-

nately, the majority of mathematicians are unaware of the possibilities and uses of

fractional calculus. Many would not even know where to start if given a simple prob-

lem. Even worse is the fact many have only heard of fractional derivatives in passing

and some not at all.

Various investigations on fractional calculus were published in engineering literature

in the second half of the 20th century. Recent advancements in fractional calculus

is developed by contemporary applications in differential and integral equations, vis-

coelasticity, physics, fluid mechanics, mathematics, biology, signal processing, and

electrochemistry. There is no doubt that fractional calculus has been developed into
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a wonderful new mathematical analysis for dealing with a wide range of problems in

mathematics, science, and engineering.

1.1.1 Fractional derivatives and integrals

The idea of Fractional derivatives is a powerful tool for analysing the memory and

hereditary qualities of many materials and processes in nature. The psychology and

life sciences are new applications fields for fractional calculus, and it is used to define

the time variation of people’s emotions. In addition to the applications listed above,

fractional calculus is used in a variety of domains with mathematics. For example,

fractional operators can be used to investigate certain special functions analytically.

In the literature, there are several different definitions of fractional derivatives

and integrals. They include the Riemann-Liouville, Caputo, Hadamard, Granwald-

Letnikov, Erdelyi-Kober, Marchaud and Riesz-Feller fractional derivatives and inte-

grals. Except in a few circumstances, these concepts are not identical in general. B.

Riemann and J. Liouville are responsible for the most widely definitions of fractional

derivative and integral, which are known as the Riemann-Liouville fractional deriva-

tive and integral. However, in some circumstances, the Riemann-Liouvile deriva-

tive may yield the Caputo fractional derivative, which was developed by Caputo and

adopted by Caputo and Mainardi. Among all these,the following are two most widely

used definitions:
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1. The Riemann-Liouville fractional derivative of y(x) of order β is given by

Dβy(x) =


1

Γ(n−β)

(
d
dx

)n ∫ x
0

y(t)
(x−t)β−n+1dt, 0 ≤ n− 1 < β < n,(

d
dx

)n
y(x), β = n, n ∈ N.

The Riemann-Liouville fractional integral of f(x) of order β is given by

Iβf(x) =


1

Γ(β)

∫ x
0

(x− t)β−1f(t)dt, x > 0, β > 0,

f(x), β = 0.

2. The left sided Caputo fractional derivative Dβy(t) or y(β) for y ∈ L1[a, b], is

originally defined as follows.

Dβy(t) = Im−βy(m)(t) =
1

Γ(m− β)

∫ t

a

(t− x)m−β−1y(m)(x)dx,

where m = [a] is the smallest integer greater than or equal to m and β ∈ R+.

The Caputo fractional derivative satisfies the following properties for f ∈

L1[0, 1], β, γ ≥ 0 and m = [β] + 1:

1. DβIβf(t) = f(t).

2. IβDβf(t) = f(t)−
m−1∑
i=0

f (i)(0+)

(
ti

i!

)
.

3. If f is continuous then DβDγf(x) = Dβ+γf(t), t > 0.

4. DβC = 0, where C is constant.

5. Dβxα =

0, α < γ, α ∈ 0, 1, 2, ...,

α(α+1)
α(α−β+1)

tα−β, otherwise.
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6. Dβ

(
n∑
j=0

Cjfj(n)

)
=

n∑
j=0

CjD
βfj(t), where C1, C2, ...Cn are constants.

On the other hand, Weyl(1917) introduced the Weyl fractional integral of order

β by

xw
−β
∞ f(x) =

1

Γ(β)

∫ ∞
x

(t− x)β−1f(t)dt, Reβ > 0. (1.1.17)

The main difference between this definition and the Riemann-Liouville definition is

the limitation of integration, with the kernel in this definition being (t− x)β−1.

The Weyl fractional derivative of f of order β is thus defined by

W βf(x) = En[
1

Γ(n− β)

∫ ∞
x

(t− x)n−β−1f(t)dt]. (1.1.18)

Here β > 0 and n is the smallest integer greater than β.

Grunwald(1867) introduced the concept of fractional derivative as the limit of a

sum given by

Dβf(x) = limh→0
1

hβ

n∑
r=0

(−1)r
Γ(β + 1)f(x− rh)

Γ(r + 1)Γ(β − r + 1)
. (1.1.19)

In contrast, Marchuad (1927) developed the fractional derivative of any order β in

the form

Dβf(x) =
f(x)

Γ(1− β)xβ
+

β

Γ(1− β)

∫ x

0

f(x)− f(t)

(x− t)β+1
dt, (1.1.20)

where 0 < β < 1.

Many researchers have pointed out in recent decades that fractional derivatives

and integrals are particularly suited to describing the properties of various real ma-

terials, such as polymers [9], memory and hereditary properties [70], optimal control
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problems [3],signal process [19], fluid mechanics [40], pharmacokinetics [64], diffusion

processes [24].

Fractional calculus has a long and rich history but was unknown to applied scien-

tists until recently. This is due to its inherent difficulty, the evident self-adequacy of

classical calculus, and the lack of a meaningful geometric or physical interpretation

for fractional derivatives. Physical and geometric interpretations for physical opera-

tors have been attempted on several occasions. These interpretations, however, are

limited to a very few particular fractional derivatives and integrals in the context of

genetic effects and self-similarity. As a result, its applications in different fields of

engineering and research have been postponed.

1.2 Fractional differential equations

Fractional differential equations have become more significant in modelling the

unique dynamics of many processes associated to complex systems across a wide

range of scientific and engineering fields. However, even the most valuable literature

on fractional derivatives and integrals lacks good general procedures for solving them.

Orthogonal wavelet bases have recently gained popularity for numerical solutions of

differential equations because of their useful properties, including their ability to iden-

tify singularities, orthogonality, flexibility to represent a function at different levels

of resolution, and compact support.
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On the other hand, the most of fractional differential equations lack analytical

solutions. Because these equations have so many various applications, there has been

a lot of interest in creating numerical methods to solve fractional different equations.

Variational iteration method [73], Adomian decomposition method [44], Homotopy

analysis method [16, 43], Homotopy perturbation method [31, 35] are among them.

In addition to these numerical techniques, several researchers have investigated

a new numerical method based on wavelets for analysing problems of high com-

putational complexity, proving that wavelets are effective tools for exploring novel

approaches in fractional differential equations.

For many researchers in various fields of science and technology, fractional differ-

ential equations have been the focus of interest in recent years. As a result, finding

solutions to fractional differential equations is an essential part of scientific research.

There have been several methods for solving fractional differential equations with

variable coefficients. These types of problems have been studied by many authors

using different methods [10, 25].

To solve fractional differential equations, operational matrices of fractional or-

der integrations for Haar wavelets [71, 53], Chebyshev wavelets [23, 11], Second kind

Chebyshev wavelets [66], Legendre wavelets [12], Bernoulli wavelets [34, 54], Ultra

spherical wavelets [1, 18], Third kind Chebyshev wavelets [72], CAS wavelets [67] and

Euler wavelets [62, 69] have recently been proposed.
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1.3 Integral transforms

The development of integral transforms of scientific problem-solving can be

traced back to P.S. Laplace’s (1749-1827) work on probability theory in the 1780s

as well as to J.B. Fourier’s (1768-1830) dissertation “La Theorie Analytique de La

Chaleur” published in 1822 [15]. Researchers have been interested in the creation

and development of new integral transforms with various modifications since that

time. There has been a lot of interest in developing integral transforms for the solu-

tions of fractional differential equations because of the increasing applications. The

most effective mathematical methods for solving differential equations, partial differ-

ential equations, integro-differential equations, partial integro-differential equations,

delay differential equations and population growth problems are integral transforms.

In many sectors of science and engineering, integral transformations are employed.

Integral transforms are commonly employed to solve fractional order differential equa-

tions, and numerous studies have been conducted on the theory and applications of

the Laplace, Fourier and Mellin transforms. The Laplace transform is the most often

used integral transform with an exponential type kernel. In engineering and applied

scientific applications, the Laplace transform has demonstrated its dominance.

Fractional integral transforms have recently been proposed as generalization of

classical integral transforms. They are used to solve fractional differential equations

in science and engineering. The fractional fourier transform, for instance, can be used
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to analyze optical difficulties.

1.4 Wavelets

Wavelets trace back to Alfred Haar’s construction of an orthonormal system of

functions on the unit interval[0,1] in 1910, which resulted in the development of a

collection of rectangular basis functions [58]. In the past, J. Morlet, a French geo-

physical engineer, and Grossmen first explicitly established the idea of wavelets at

the beginning of the 1980s as a family of functions created by translation and di-

lation of a single function known as the Mother wavelet [45, 55]. They used the

name ondolette, which means small wave in French. The mathematical analysis of

wavelets by stromberg, grossmen, Morlet and Meyer has led to the present growth

of wavelet research. Soon, it was translated to English as “wavelet” by changing the

word “ondo” to “wave”. The Fourier series models a signal’s frequency, but it does

not adequately model its localised properties, which led to the discovery of wavelets.

This is so because the sine and cosine functions, which serve as the foundation of the

Fourier series, are constantly repeating periodic waves.

Because of the wavelet theory’s extensive mathematical capability and various sci-

entific and engineering applications, it has attracted a significant lot of interest from

scientists work in a wide range of filed. In many scientific and engineering gatherings

nowadays, “wavelets” has been a hot topic of discussion. Recently, mathematical
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scientists across fields have paid a lot of attention to the topic of wavelet analysis.

Two very simple procedures, binary dilations and integral translations, are used to

describe the wavelet series in terms of a single function, referred to as a “wavelet”.

The integral wavelet transform (IWT) is defined as the convolution with respect to

the dilation of the reflection of some function, called a “basic wavelet”. There are

integral wavelet transforms (IWT) and wavelet series (WS), which are comparable

Fourier analysis. WS and IWT are closely related in wavelet analysis. The coefficients

for the wavelet series representation of a function on the real line are determined by

the IWT of that function when it is evaluated at specific locations in the time-scale

domain. As the polynomial spline funcions are the simplest functions for both com-

putational and implementation purposes, they are most attractive for analyzing and

constructing wavelets.

Wavelets are seen in different ways by different people. Some see them as a new

basis for describing functions, while others see them as a method for time-frequency

analysis. Since the idea of “wavelets” is a versatile tool with extremely rich mathe-

matical content and a lot of application potential, of course all of them are correct.

It is surely too early to make a comprehensive presentation, though, as this topic is

still in its development.

Wavelets can be used in signal analysis for a range of tasks, including wave form

segmentation and demonstration, diagnostics, time frequency analysis, geophysical
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signal processing, statistical analysis, pattern recognition, and fast algorithms with

simple implementation. The wavelet analysis may be a useful technique for solving a

variety of problems in engineering, physics, and image processing. Wavelet technique

is specifically used in scanning and disease diagnostics to help doctors in performing

their duties precisely in this sensitive field of human care. In the field of telecommu-

nications, it can also help in encoding audio and video signals. In addition, there are

additional helpful applications that can effectively help intelligence agencies in identi-

fying even the tiniest details of human bodies for security reasons, in the event of ter-

rorist attacks, the crash of an aeroplane or ship, or for other human verification uses.

For example, the US Federal Bureau of Investigation employs wavelet technique to

identify and verify the fingerprints of millions of people. Mathematical wavelet tech-

nology is predicted to have hundreds of uses in the future, with a primary focus on

healthcare and human welfare to produce the greatest results possible [28, 61, 41, 29].

Wave propagation, the detection of aircraft and submarines, data compression, image

processing, pattern recognition, computer graphics, improvements in CAT scans, and

other improvements in medical technology are some of the contemporary applications

of the wavelet method. The wavelet method is an innovative approach for solving

difficult problems in engineering, physics, and mathematics. Furthermore, wavelet

techniques have been applied to create precise and fast algorithms for solving frac-

tional order integral and differential equations, particularly those whose solutions are
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extremely localized in terms of scale and position. Even if wavelets are becoming

popular in these areas, researchers are always looking into new possibilities.

We can break down a complex function using wavelet techniques and analyze

each component separately. This property, together with the fast wavelet algorithm,

makes these techniques particularly appealing for analysis and synthesis. To more

accurately represent non-stationary signals, wavelet analysis uses bases that are lo-

calised in time frequency as compared to Fourier-based analyses, which use global

(non-local) sine and cosine functions as bases. As a result, a wavelet representation is

substantially more compact and easier to implement. A function can be represented

as a finite sum of components at several resolutions using the powerful multireso-

lution analysis, enabling each component to be processed adaptively depending on

the application’s objectives. The main advantage of wavelet analysis is its capacity

to compactly express functions at various levels of resolution. The unknown solu-

tion can be represented by wavelets with different resolutions while solving partial

differential equations numerically, yielding a multigrid representation. Using wavelet-

based thresholding techniques, the dense matrix produced by an integral operator

can be sparsified to achieve any level of solution accuracy. Wavelets enable accurate

description of a wide range of operators and functions. A defining feature of wavelets

is their ability to convert the given differential and integral equations into a set of

algebraic equations, either linear or nonlinear, that can be solved numerically. This
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section aims to present an overview of wavelets and to provide a detailed description

of several wavelet techniques.

In order to address various problems with dynamic systems, orthogonal functions

and polynomial series have drawn a lot of attention. The main feature of this method

is that it greatly simplifies problems by converting them into ones that can be solved

by solving a set of algebraic equations. In this thesis, particular attention has been

put on applications of Euler wavelets, Bernoulli wavelets, and Chebyshev wavelets.

A family of two parameter functions called ψa,b(t) is constructed by dilation and

translation of a single function called a wavelet, ψ(t), and is defined as follows.

ψa,b(x) =
1√
|a|
ψ(
x− b
a

), a, b ∈ R, a 6= 0, (1.4.1)

where a is the dilation parameter and b is the translation parameter. Higher fre-

quencies are represented by ψa,b, which is a compressed form of the mother wavelet

if |a| < 1. On the other hand, lower frequencies are represented by the wavelet ψa,b

for |a| > 1. Wavelets are defined as follows more precisely:

Definition 1.4.1. A function ψ ∈ L2(R) is admissible as a wavelet if and only if

Aψ =

∫ ∞
−∞

|ψ̂(ω)|2

|ω|
dω <∞, (1.4.2)

where ψ̂(ω) is the Fourier transform of ψ.

In order to satisfy the admissibility requirement, Aψ must be finite, which means
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that ψ̂(0) = 0, or the mean value of ψ, should vanish;

∫ ∞
−∞

ψ(s)ds = 0 (1.4.3)

For a large number of practical applications, continuous wavelets are not useful.

They do not serve as a basis, in particular. In order to discretize wavelets, the positive

constants a0 > 1, b0 > 0 are fixed, and a = a−k0 , b = nb0a
−k
0 are set where n, k ∈ N.

As a result, the following family of discrete wavelets is defined as

ψk,n(x) = |a0|
1
2ψ(ak0x− nb0). (1.4.4)

Usually a0 is chosen to be 2 and b = 1. For wavelet theory, Ingrid Daubechies gave

strong foundations. By constructing an orthonormal wavelet system with compact

support in [40], she made a major breakthrough.

In contrast to harmonic waves, wavelets must terminate at zero as x → ±∞.

Small waves ψ(x) that oscillate at least a few times are what are meant by wavelets.

The wavelets that die out to identical zero after a few oscillations on a finite interval,

i.e., outside the interval, are those that have ψ(x) = 0. The “support” or “compact

support” of the specified (basic) wavelet ψ(x) is a special interval that is used in

wavelet analysis. The reason we use the term “basic wavelet” is because it will

have two parameters, scale a and translation b, which together form the “family”

of wavelets ψ(x−b
a

). Basic wavelets are built using the “building blocks” or “scaling

functions” φ(x) that are associated with them. The scaling relation, often known as
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the “recurrence relation” is the equation that governs the latter. In wavelet analysis,

a single sequence of scaling functions is often employed to produce an approximation

of the input signal. A new series of the associated wavelets is added to the first to

further improve it. The signal is satisfactorily represented as a result. Finding scaling

functions leads to the easy computation of building the corresponding basic wavelets.

The scaling functions, or “building blocks” are of utmost importance while studying

wavelet analysis in this chapter.

Now, we examine at the space L2(R) of measurable functions f , defined on the

real line R, satisfying ∫ ∞
−∞
|f(t)|2dt ≤ ∞.

We actually search for such “waves” that produce L2(R); these waves should

degenerate to zero at ±∞, and for all kinds of reasons, the decay should occur very

quickly. That is, we look for small waves, or “wavelets”, to generate L2(R). For this

purpose, we prefer a single function ψ that generates all of L2(R). Since, ψ is very

fast decay, to cover whole real line, we shift ψ along R. For computational efficiency,

we have used integral powers of 2 for frequency partitioning. That is, consider the

small waves

ψ(2jt− k), j, k ∈ Z.

ψ(2jt−k) is obtained from a single wavelet function ψ(t) by a binary dilation (dilation

by 2j) and a dyadic translation (of k
2j

). Any wavelet function ψ ∈ L2(R) has two
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arguments as ψj,k and it is defined by

ψj,k(t) = 2
j
2ψ(2jt− k), j, k ∈ Z,

where the quantity 2
j
2 is for normality.

Definition 1.4.2. When the family ψj,k is an orthonormal basis of L2(R), the wavelet

ψ ∈ L2(R) is referred to as an orthogonal wavelet; in other words,

< ψj,k, ψl,m >= δj,lδk,m, j, k, l,m ∈ Z.

Definition 1.4.3. The term “semi-orthogonal wavelet” refers to a wavelet ψ ∈ L2(R)

if the family ψj,k satisfies the requirements given below.

< ψj,k, ψl,m >= 0, j 6= l, j, k, l,m ∈ Z.

1.4.1 Multiresolution Analysis

In 1988 [14], I. Daubechies introduced the first orthonormal bases of compactly

supported wavelets. He used multiresolution analysis to prove that for any non nega-

tive integer n, there exists an orthogonal wavelet with compact supports that contains

all derivatives up to order n.

Mallat [49] and Meyer [50] proposed the concept of multiresolution analysis.

The fundamental concept of MRA is to consider of a function as a set of successive

approximations, each of which is a smoother version of the original. As a formal

way to generate orthogonal wavelet bases using a definite set of rules, multiresolution

analysis is named after the consecutive approximations that correspond to different
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resolutions. Additionally, it enables the development of “functions” and “scaling fil-

ters” which are then used to create wavelets and fast numerical algorithms. It is a

useful mathematical framework that consists of a sequence of R function spaces to

decompose a signal or image into components of various scales.

A direct sum decomposition of L2(R) is generated by any wavelet, whether it is

orthogonal or semi-orthogonal. Let’s consider the closed subspaces for each j ∈ Z

uj = ...⊕ wj−2 ⊕ wj−1, j ∈ Z

of L2(R). A set of subspaces ujj∈Z is said to be MRA of L2(R) if it possess the

following properties:

1.uj ⊂ uj+1, ∀j ∈ Z.

2.
⋃
j∈Z

uj is dense in L2(R).

3.
⋂
j∈Z

uj = {0}.

4.uj+1 = uj ⊕ wj.

5.f(t) ∈ uj ⇔ f(2t) ∈ uj+1, j ∈ Z.

The nested sequence of subspaces ujj∈(Z) effectively covers L2(R) according to

properties (2) through (5). That is to say, a function belonging to at least one of the

subspaces uj can be used to approximate any square integrable function as closely as

needed. If a function φ ∈ L2(R) provides the nested sequence of subspaces uj and
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satisfies the dilation equation, which is

φ(x) =
∑
j

pjφ(ax− j),

then it is referred to as a scaling function, where pj ∈ (L2) and a is any rational

number.

Since uj ⊂ uj+1, each scale j has a unique orthogonal complementary subspace

wj of uj in uj+1. The equation ψj,k = ψ(2jt − k), where ψ ∈ L2 is referred to as

the wavelet, results in this subspace, uj, which is referred to as the wavelet subspace.

From the above discussion, these results follow easily

1.uj1
⋂

uj2 = uj2, j1 > j2.

2.wj1
⋂

wj2 = 0, j1 6= j2.

3.uj1
⋂

wj2 = 0, j1 ≤ j2.

1.4.2 Advantages of wavelet theory

1.Wavelets’ greatest advantage is their ability to provide simultaneous localization in

the time and frequency domains.

2. Often, it can de-noise or compress a signal without appreciably degrading it.

3. Data features including trends, breakdown points, discontinuities in higher deriva-

tives, and self similarity can be revealed via wavelet theory.

4. A signal can be divided down into its component wavelets using a wavelet trans-

form.
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5. When compared to the Fourier transform, the great achievement of wavelet theory

is the frequent ability to obtain a good approximation of the given function f by

utilising only a few coefficients.

6. The ability to distinguish the fine details in a signal is a major benefit of wavelets.

While extremely big wavelets can be used to identify coarse details in a signal, very

small wavelets can be used to isolate very fine details in a signal.

7. The speedy wavelet transform is the next advantage of wavelets.

1.4.3 Comparison of wavelet transform with Fourier trans-

form

1. Wavelet and Fourier transforms are mainly different in the domains of time and

frequency. Wavelets are well localized in time and frequency, while Fourier applica-

tion in such domains is standardized in localizing them. Both have positive effects on

localized time and frequency, but wavelet exhibits greater representation according

to walnut multi-resolution analysis [28, 61, 41].

2. The Fourier transform is effective in some areas outside of traditional signal pro-

cessing. The mathematical design of wavelets, however, is more broader than the

Fourier transform, and to be more specific, the mathematics of wavelets includes the

Fourier transform [28, 61].
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3. For the analysis of a collection of stationary signals, the Fourier transform is an

effective tool (a signal with no change in the properties). The Fourier transform is

used, for example, to process sine and cosine (sinusoid signals). However, the appli-

cation of Fourier is less effective for the analysis of non-stationary signals (where the

change in properties occurs). The wavelet transform, on the other hand, works with

both stationary and non-stationary signals [28, 61].

4. The Fourier transform uses a single scaled function ψ(x), however the wavelet

transform has the capacity to move the function and generate the two-parameter

functions ψa,b(x) defined in [61, 41].
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Chapter 2

Numerical solutions of fractional
differential equations using
Aboodh Transform method and a
generalized fractional integral
transform with exponential type
kernel

2.1 Introduction

This chapter gives a brief overview of the Aboodh transform method and

a generalized fractional integral transform with an exponential type kernel for solv-

ing fractional differential equations. Integral transforms are important to solve real

problems. Appropriate choice of integral transforms helps to convert differential equa-

tions in terms of an algebraic equation that can be solved easily. Aboodh transform

which was recently introduced by Khalid Aboodh is a new transform derived from the
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Fourier transform and similar to Laplace transform. Aboodh transform is defined for

a function of exponential order in the time domain t ≥ 0. Typically, Fourier, Laplace,

Elzaki and Sumudu transforms are the essential mathematical tools for solving dif-

ferential equations. The generalized fractional integral transform with exponential

type kernel is a very powerful tool because it allows us to choose whether to use the

generalized fractional integral transform with exponential type kernel or any other

existing or non-existing fractional integral transforms, depending on our needs and

problem situation. The existence of many fractional integral transforms is ensured

by sufficient conditions for the existence of the generalized fractional integral trans-

form with exponential type kernel. The generalized fractional integral transform with

exponential type kernel is an effective and beneficial approach for solving fractional

differential equations.

2.2 Aboodh transform method

Definition 2.2.1.

Let A = {f(t) : ∃M,k1, k2 > 0, |f(t)| < Me−vt}, (2.2.1)

where M is finite and k1 and k2 may be finite or infinite. The Aboodh transform

for a function f(t) belonging to the class A is defined as

A[f(t)](v) = K(v) =
1

v

∫ ∞
0

f(t)e−vtdt, t ≥ 0, k1 ≤ v ≤ k2 (2.2.2)

In this transform, the variable v is used to factor the variable t in the function f ’s

argument. This transform is more closely related to the Laplace transform.
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Definition 2.2.2. The inverse Aboodh transform of a function f(t) denoted by

A[f(t)] = k(v) then

f(t) = A−1[k(v)]. (2.2.3)

Definition 2.2.3. Two parameters Mittag-Leffler function is defined by

Eα,β =
∞∑
k=0

zk

Γ(αk + β)
, (z, α, β ∈ C, Re(α) > 0). (2.2.4)

Definition 2.2.4. The simplest wright function is defined by

φ(α, β; z) =
∞∑
k=0

1

Γ(αk + β)

zk

k!
, (z, α, β ∈ C). (2.2.5)

2.2.1 Properties of Aboodh transform

1. A[f (n)(t)](v) = vnk(v)−
n−1∑
k=0

f (k)(0)

v2−n+k
.

2. A[tn](v) =
n!

vn+2
.

3. A[xβ] =
Γ(β + 1)

vβ+2
.

4. A[f (n)(x)] = vnk(v)− vn−2f(0)− vn−3f (1)(0)− ...− f (n−1)(0)

v
.

5. A[

∫ t

0

f(t)dt] =
k(v)

v
.

6. A[

∫ x

0

f(x− t)g(t)dt] = vk(v)g(v).

7. The binomial coefficients are defined by

(
λ

n

)
=

λ!

λ!(λ− n)!
where λ and n are integers.

Note that 0! = 1, then(
λ

0

)
= 1,

(
λ

λ

)
= 1 and (1− z)−λ =

∞∑
r=0

(λr)

r!
zr

=
∞∑
r=0

(
λ+ r − 1

r

)
zr.
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Lemma 2.2.1. Aboodh transformation of Riemann-Liouville fractional integral oper-

ator of order α > 0 can be written in the form

A[Jαf(x)] =
k(v)

vα
(2.2.6)

Proof. Aboodh transform of Riemann-Liouville fractional integral operator α > 0 is

A[Jαf(x)] =A[
1

Γ(α)

∫ x

0

(x− a)(α−1)f(t)dt].

=
1

Γ(α)
vk(v)g(v)

=
k(v)

vα

where g(v) =A[xα−1] =
Γ(α)

vα+1
.

Lemma 2.2.2. Aboodh transformation of Caputo fractional derivative of

α > 0, m− 1 < α ≤ m, m ∈ N

can be written in the form

A[Dαf(x)] =
1

vm−α
[vmK(v)− vm−2f(0)− vm−3f (1)(0)− ..........− f (m−1)(0)

v
]. (2.2.7)

Proof.

A[Dαf(x)] = A[Jm−αf (m)(x)] =
A[f (m)(x)]

vm−α
(2.2.8)

By use of Property (4), the desired result follows.

2.2.2 Solutions of Fractional Differential Equations using Aboodh trans-

form method

In this section, we apply the Aboodh transform of the fractional derivative and

the expansion coefficients of binomial series to derive solutions of some families of
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fractional differential equations. Throughout this section, we let y(t) be such that for

some value of the parameter v, the Aboodh transform A[f(t)](v) converges.

Theorem 2.2.3. Let 0 < α ≤ 1 and b ∈ R. The solution to the fractional differential

equation

yα(t)− by(t) = 0 (2.2.9)

with the initial condition y(0) = c0 is

y(t) = c0

∞∑
k=0

(btα)k

Γ(αk + 1)
= Eα,1(btα). (2.2.10)

Proof. Applying Aboodh transform to (2.2.9),

[vαk(v)− y(0)

v2−α ]− bk(v) =0

k(v)[vα − b]− c0

v2−α =0

k(v)[vα − b] =c0v
α−2

k(v) =c0

∞∑
k=0

bkv−αk−2.

Applying inverse Aboodh transform,

=c0

∞∑
k=0

bktαk

Γ(αk + 1)

y(t) =c0

∞∑
k=0

(btα)k

Γ(αk + 1)

=c0Eα,1(btα).

Theorem 2.2.4. Let 1 < α < 2 and a, b ∈ R. The solution to the fractional differ-

ential equation

y′′(t) + ay(α)(t) + by(t) = 0 (2.2.11)
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with the initial conditions y(0) = c0 and y′(0) = c1 is

y(t) = c0

∞∑
k=0

(−b)kt(2k)

k!

∞∑
r=0

Γ(r + k + 1)(−at(2−α))
r

Γ[(2− α)r + 2k + 1]r!

+c1

∞∑
k=0

(−b)kt(2k+1)

k!

∞∑
r=0

Γ(r + k + 1)(−at(2−α))
r

Γ[(2− α)r + 2k + 2]r!

+ac0

∞∑
k=0

(−b)kt(2k−α+2)

k!

∞∑
r=0

Γ(r + k + 1)(−at(2−α))
r

Γ[(2− α)r + 2k + 3]r!

+ac1

∞∑
k=0

(−b)kt(2k−α+3)

k!

∞∑
r=0

Γ(r + k + 1)(−at(2−α))
r

Γ[(2− α)r + 2k + 4]r!

(2.2.12)

Proof. Applying Aboodh transform to equation (2.2.11),

[v2k(v)− y(0)− y′(0)

v
] + a[vαk(v)− y(0)

v2−α −
y′(0)

v3−α ] + bk(v) = 0

k(v)[v2 + avα + b]− c0 −
c1

v
− ac0

v2−α −
ac1

v3−α = 0

k(v) =
c0 + c1v

−1 + ac0v
α−2 + ac1v

α−3

v2 + avα + b
(2.2.13)

Now
1

v2 + avα + b
=

1

(v2 + avα)[1 + b
v2+avα

]

=
1

v2 + avα
[1 +

b

v2 + avα
]−1

=
1

v2 + avα

∞∑
k=0

(
−b

v2 + avα

)k
=
∞∑
k=0

(−b)k

(v2 + avα)k+1

=
∞∑
k=0

(−b)k

(v2)k+1[1 + avα−2]k+1

=
∞∑
k=0

(−b)kv−2k−2

∞∑
r=0

(
k + r

r

)
(−avα−2)r

=
∞∑
k=0

(−b)k
∞∑
r=0

(
k + r

r

)
(−a)rv(α−2)r−2k−2
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From (2.2.13),

k(v) = c0

∞∑
k=0

(−b)k
∞∑
k=0

(
k + r

r

)
(−a)rv[(2−α)r+2k]−2

+c1

∞∑
k=0

(−b)k
∞∑
k=0

(
k + r

r

)
(−a)rv[(2−α)r+2k]−1−1+1

+ac0

∞∑
k=0

(−b)k
∞∑
k=0

(
k + r

r

)
(−a)rv[(2−α)r+2k]+α−4

+ac1

∞∑
k=0

(−b)k
∞∑
k=0

(
k + r

r

)
(−a)rv[(2−α)r+2k]+α−5

Applying inverse Aboodh transform, we have

y(t) = c0

∞∑
r=0

(−b)k

k!

Γ(k + r + 1)(−a)rt(2−α)r+2k

Γ[(2− α)r + 2k + 1]r!

+c1

∞∑
r=0

(−b)k

k!

Γ(k + r + 1)(−a)rt(2−α)r+2k+1

Γ[(2− α)r + 2k + 2]r!

+ac0

∞∑
r=0

(−b)k

k!

Γ(k + r + 1)(−a)rt(2−α)r+2k−α+2

Γ[(2− α)r + 2k − α + 3]r!

+ac1

∞∑
r=0

(−b)k

k!

Γ(k + r + 1)(−a)rt(2−α)r+2k−α+3

Γ[(2− α)r + 2k − α + 4]r!

Thus we will get the desired solution (2.2.12).

Theorem 2.2.5. Let 1 < α < 2 and a, b ∈ R. The solution to the fractional differ-

ential equation

y(α)(t) + ay′(t) + by(t) = 0 (2.2.14)
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with the initial condition y(0) = c0 and y′(0) = c1 is

y(t) = c0

∞∑
k=0

(−b)k

k!

∞∑
r=0

Γ(r + k + 1)(−a)rt(α−1)r+αk

Γ[(α− 1)r + αk]r!

+c1

∞∑
k=0

(−b)k

k!

∞∑
r=0

Γ(r + k + 1)(−a)rt(α−1)r+αk+1

Γ[(α− 1)r + αk + 2]r!

+ac0

∞∑
k=0

(−b)k

k!

∞∑
r=0

Γ(r + k + 1)(−a)rt(α−1)r+αk+α+1

Γ[(α− 1)r + αk + α]r!

(2.2.15)

Proof. Applying Aboodh transform to equation (2.2.14),

[vαk(v)− y(0)

v2−α −
y′(0)

v3−α ] + a[vk(v)− y(0)

v
] + bk(v) = 0

k(v)[vα + av + b]− c0

v2−α −
c1

v3−α −
ac0

v
= 0

k(v)[vα + av + b] = c0v
α−2 + c1v

α−3 + ac0v
−1

k(v) =
c0v

α−2 + c1v
α−3 + ac0v

−1

vα + av + b
(2.2.16)

Since
1

vα + av + b
=

1

(vα + av)[1 + b
vα+av

]

=
1

vα + av
[1 +

b

vα + av
]−1

=
1

vα + av

∞∑
k=0

(
−b

vα + av
)k

=
∞∑
k=0

(
(−b)k

(vα + av)k+1
)

=
∞∑
k=0

(−b)k

(vα)k+1(1 + av1−α)k+1

=
∞∑
k=0

(−b)kv−αk−α
∞∑
r=0

(
k + r

r

)
(−av1−α)r

=
∞∑
k=0

(−b)k
∞∑
r=0

(
k + r

r

)
(−a)rv−(α−1)r−αk−α
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From (2.2.16),

k(v) = c0

∞∑
k=0

(−b)k
∞∑
k=0

(
k + r

r

)
(−a)rv−(α−1)r−αk−2

+c1

∞∑
k=0

(−b)k
∞∑
k=0

(
k + r

r

)
(−a)rv−(α−1)r−αk−3

+ac0

∞∑
k=0

(−b)k
∞∑
k=0

(
k + r

r

)
(−a)rv−(α−1)r−αk−α−1

Applying inverse Aboodh transform, we have

k(v)) = c0

∞∑
k=0

(−b)k

k!

∞∑
r=0

Γ(r + k + 1)(−a)rt(α−1)r+αk

Γ[(α− 1)r + αk]r!

+c1

∞∑
k=0

(−b)k

k!

∞∑
r=0

Γ(r + k + 1)(−a)rt(α−1)r+αk+1

Γ[(α− 1)r + αk + 2]r!

+ac0

∞∑
k=0

(−b)k

k!

∞∑
r=0

Γ(r + k + 1)(−a)rt(α−1)r+αk+α+1

Γ[(α− 1)r + αk + α]r!

Thus we will get the desired solution (2.2.15).

Remark 2.2.1. If a=0 in equation (2.2.14), then the the solution to the equation

yα(t) + by(t) = 0, 1 < α ≤ 2 (2.2.17)

with the initial conditions y(0) = c0 and y′(0) = c1 is

y(t) = c0

∞∑
k=0

(−btα)k

Γ(αk + 1)
+ c1t

∞∑
k=0

(−btα)k

Γ(αk + 2)

= c0Eα,1(−btα) + c1tEα,2(−btα)

(2.2.18)
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2.3 A generalized fractional integral transform with

exponential type kernel

Many integral transformations with exponential type kernels have been introduced

in the last few years.

Definition 2.3.1. Let f(x) be sectionally continuous on the interval 0 ≤ x ≤ T for

any T > 0 and |f(x)| ≤ mebx when x ≥ N for any b ∈ R and m,N ∈ R+. We define

Sadik transform of f(x) as [60]

U [f(x)] = F (vα,β) =
1

vβ

∫ ∞
0

e−xv
α

f(x)dx (2.3.1)

where v is a complex variable, α > 0 and β ∈ R.

The function f(x) used in (2.3.1) is normally continuous and continuously differ-

entiable; the question is what happens when it is continuous but only has a fractional

derivative of order α, 0 < α < 1. There are two possibilities. f(x) has both a contin-

uous and a fractional derivative in the first instance. f(x) has a derivative of order

α in the second instance, but none in the first. We must discover an alternative in

the second instance. This chapter’s main objective is to present a possible method to

this option.

The following table explores various integral transforms with exponential type

kernel.

The transforms in table 2.1 are all special instances of the Sadik transform.

The Sadik transform can be converted into the Laplace, Sumudu, Elzaki, Tarig,
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S.No Name of the integral transform Kernel

1 Laplace transform(1749-1827)[32] k(x, v) = e−vx

2 Sumudu transform(1993) k(x, v) = 1
v
e

−x
v

3 Laplace-Carson transform (1886-1940) k(x, v) = ve−vx

4 N-transform(2008)[36],zz-transform(2016)[48] k(x, s, v) = 1
v
e

−x
v ; s = 1

5 Elzaki transform(2011)[21] k(x, v) = ve
−x
v

6 Tarig transform(2013)[22],New integral transform(2013)[33, 13] k(x, v) = 1
v
e

−x
v2

7 Aboodh transform(2016)[2] k(x, v) = 1
v
e−vx

8 Kamal transform(2016),Yang transform(2018) k(x, v) = e
−x
v

9 Mahgoub transform((2018)[39],New transform(2018)[30] k(x, v) = ve−vx

Table 2.1: Integral transforms with exponential type kernel

Kamal, Laplace-Carson, and Aboodh transforms by changing the values of α and

β. It can also be changed into integral transforms that are not mentioned in the

literature.

The following table demonstrates how the Sadik transform is converted into other

integral transforms by fixing α and β values.

S.No Values of α and β Sadik transform converts into

1 β = 0 and α = 1 Laplace transform
2 β = 1 and α = −1 Sumudu transform
3 β = −1 and α = 1 Laplace-Carson transform
4 β = 1 and α = −1 N-transform, zz-transform
5 β = −1 and α = −1 Elzaki transform
6 β = 1 and α = −2 Tarig transform, New integral transform
7 β = 1 and α = 1 Aboodh transform
8 β = 0 and α = −1 Kamal transform, Yang transform
9 β = −1 and α = 1 Mahgoub transform, New transform

Table 2.2: Conversion of Sadik transform to various integral transforms

Definition 2.3.2. Let f(x) be a function that vanishes when t is negative. Its

generalized integral transform of fractional order α, 0 < α < 1, with exponential type
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kernel is defined as follows:

Sα{f(x)} =Aα(vβ,γ) =

(
1

vβ

)α ∫ ∞
0

Eα(−xvγ)αf(x)(dx)α

= lim
M↑∞

(
1

vβ

)α ∫ M

0

Eα(−xvγ)αf(x)(dx)α (2.3.2)

where v is a complex variable, γ is any non-zero real number, β is any real number

and Eα(u) is the Mittag-Leffler function
∑

uk

(kα)!

The table below shows how to convert the generalized fractional integral transform

with exponential type kernel into fractional order integral transform by applying

certain β and γ values.

Table 2.3: Conversion of the generalized fractional integral transform with exponential
type kernel into existing fractional integral transforms

S.No Values of β and γ
The generalized fractional integral transform with
exponential type kernel converts into

1 β = 0 and γ = 1 Fractional Laplace transform

2 β = 1 and γ = −1 Fractional Sumudu transform [38]

3 β = 1 and γ = −1 Fractional Natural transform [52]

4 β = −1 and γ = −1 Fractional Elzaki transform

2.3.1 Sufficient conditions for the existence of the generalized fractional

integral transform with exponential type kernel

Theorem 2.3.1. For each positive real constant A, let f(x) be sectionally continuous

in each finite subinterval of the intervals 0 ≤ x ≤ A and x > A. The generalized

fractional integral transform with exponential type kernel of f(x) occurs if f(x) has

fractional exponential order α.
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Proof. For any A > 0,

Sα{f(x)} =

(
1

vβ

)α ∫ A

0

Eα(−xvγ)αf(x)(dx)α +

(
1

vβ

)α ∫ ∞
A

Eα(−xvγ)αf(x)(dx)α

(2.3.3)

The first integral in (2.3.3) exists because f(x) is sectionally continuous in 0 ≤ x ≤ A

Now,

∣∣∣∣∫ ∞
A

Eα(−xvγ)αf(x)(dx)α
∣∣∣∣ ≤∫ ∞

A

|Eα(−xvγ)αf(x)|(dx)α

≤
∫ ∞

0

Eα(−xvγ)α|f(x)|(dx)α

≤
∫ ∞

0

Eα(−xvγ)αMEα(xcγ)α(dx)α∣∣∣∣∫ ∞
A

Eα(−xvγ)αf(x)(dx)α
∣∣∣∣ ≤∫ ∞

0

MEα(−x(vγ − cγ))α(dx)α

Taking t = x(vγ − cγ) and using Γα(x) =
1

Γ(α + 1)

∫ ∞
0

Eα(−t)αt(x−1)α(dt)α, we have∣∣∣∣∫ ∞
A

Eα(−xvγ)αf(x)(dx)α
∣∣∣∣ ≤ M

(vγ − cγ)α
Γα(1)Γ(α + 1)

=
M

(vγ − cγ)α
Γ(α + 1).

As a result, the second integral in (2.3.3) occurs, and the generalized fractional trans-

form of f(x) defined by (2.3.2) exists as well.

2.3.2 Duality relation between the fractional Laplace transform and the

generalized fractional integral transform with exponential type

kernel

Theorem 2.3.2. Let Fα(v) be the Laplace transform of fractional order α of a func-

tion f(x) and Aα(vβ,γ) be the generalized integral transform of fractional order α with
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exponential type kernel of the same function f(x). Then

Aα(vβ,γ) =

(
1

vβ

)α
Fα(vγ).

Proof. Let f(x) ∈ A. By the generalized fractional integral transform with exponen-

tial type kernel, we have

Aα(vβ,γ) =

(
1

vβ

)α ∫ ∞
0

Eα(−xvγ)αf(x)(dx)α =

(
1

vβ

)α
Fα(vγ).

2.3.3 Operational Properties of generalized fractional integral trans-

form with exponential type kernel

(i). Sα{tn} =
1

(vβ)α
1

(vγ)(n+α)
Γα

(n
α

+ 1
)

Γ(α + 1).

Proof.

Sα{tn} =

(
1

vβ

)α ∫ ∞
0

Eα(−tvγ)αtn(dt)α

By taking tvγ = x, and using

Γα(x) =
1

Γ(α + 1)

∫ ∞
0

Eα(−t)αt(x−1)α(dt)α, (2.3.4)

we have Sα{tn} =
1

(vβ)α
1

(vγ)(n+α)
Γα

(n
α

+ 1
)

Γ(α + 1).

(ii). Sα{tnα} =

(
1

vβ

)α
1

(vγ)(n+1)α
Γ(n+1)(α + 1)Γ(n+ 1).
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Proof.

Sα{tnα} =

(
1

vβ

)α ∫ ∞
0

Eα(−tvγ)αtnα(dt)α

By taking tvγ = x, and using (2.3.4), we have

Sα{tnα} =

(
1

vβ

)α
1

(vγ)(n+1)α
Γα(n+ 1)Γ(α + 1).

Since Γα(n+ 1) =Γn(α + 1)Γ(n+ 1), n ∈ N, we have

Sα{tnα} =

(
1

vβ

)α
1

(vγ)(n+1)α
Γ(n+1)(α + 1)Γ(n+ 1).

(iii). Sα{f(ax)} =
1

a2α
Aα(vγ,β).

Proof.

Sα{f(ax)} =

(
1

vβ

)α ∫ ∞
0

Eα(−xvγ)αf(ax)(dx)α

Sα{f(ax)} =α

(
1

vβ

)α
lim
M↑∞

∫ M

0

[M − x]α−1Eα(−xvγ)αf(ax)(dx)

By taking ax = u, we have

Sα{f(ax)} =α

(
1

vβ

)α
lim
M↑∞

∫ aM

0

[
M − u

a

]α−1

Eα

(
−u
a
vγ
)α
f(u)

du

a

=

(
1

a2α

)(
1

vβ

)α
lim
M↑∞

∫ aM

0

Eα(−uvγ)αf(u)(du)α

Sα{f(ax)} =
1

a2α
Sα{f(x)}.

(iv). Sα{f(x− b)} = Eα(−bαvγα)Sα{f(u)}.

Proof.

Sα{f(x− b)} =

(
1

vβ

)α ∫ ∞
0

Eα(−xvγ)αf(x− b)(dx)α

=α

(
1

vβ

)α
lim
M↑∞

∫ M

0

Eα(−xvγ)α(M − x)α−1f(x− b)dx
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By taking x− b = u, we have

Sα{f(x− b)} =α

(
1

vβ

)α
lim
M↑∞

∫ M−b

0

(M − b− u)α−1Eα(−(vγ)α(b+ u)α)f(u)du

Sα{f(x− b)} =Eα(−bαvγα)Sα{f(u)}.

(v). Sα{Eα(−cαxα)f(x)} = Sα{f(x)}(vγ→c+vγ).

Proof.

Sα{Eα(−cαxα)f(x)} =

(
1

vβ

)α ∫ ∞
0

Eα(−xvγ)αEα(−cαxα)f(x)(dx)α

=

(
1

vβ

)α ∫ ∞
0

Eα(−x(vγ + c))αf(x)(dx)α

Sα{Eα(−cαxα)f(x)} =Sα{f(x)}(vγ→c+vγ).

(vi). Sα{f (α)(x)} = (vγ)αSα{f(x)} −
(

1

vβ

)α
Γ(1 + α)f(0).

Proof.

Sα{f (α)(x)} =

(
1

vβ

)α ∫ ∞
0

Eα(−xvγ)αf (α)(x)(dx)α

By integration by parts and using

Dα
x{Eα(λxα)} = λEα(λxα), we have

Sα{f (α)(x)} =

(
1

vβ

)α {
Γ(1 + α)[f(x)Eα(−xvγ)α]∞0 + vγα

∫ ∞
0

Eα(−xvγ)αf(x)(dx)α
}

=−
(

1

vβ

)α
Γ(1 + α)f(0) +

vγα

(vβ)α

∫ ∞
0

Eα(−xvγ)αf(x)(dx)α
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Sα{f (α)(x)} = (vγ)αSα{f(x)} −
(

1

vβ

)α
Γ(1 + α)f(0). (2.3.5)

(vii). Sα

{∫ x

0

f(x)(dx)α
}

= v−γαΓ(α + 1)Sα{f(x)}.

Proof.

From (2.3.5), (vγα)Sα{f(x)} =Sα{f (α)(x)}+

(
1

vβ

)α
Γ(1 + α)f(0)

Let g(x) =

∫ x

0

f(x)(dx)α. Then g(0) = 0

(vγα)Sα

{∫ x

0

f(x)(dx)α
}

=Sα{g(α)(x)}

=Sα

{
Dα
x

∫ x

0

f(x)(dx)α
}

=Sα{Γ(α + 1)f(x)}

=Γ(α + 1)Sα{f(x)}

Sα

{∫ x

0

f(x)(dx)α
}

=v−γαΓ(α + 1)Sα{f(x)}.

2.3.4 Convolution theorem using generalized fractional integral trans-

form with exponential type kernel

Theorem 2.3.3. If the convolution of order α of the two functions f(x) and g(x) is

given by the expression

(a(x) ∗ b(x))α =

∫ x

0

a(x− u)b(u)(du)α

then one has the equality Sα{a(x) ∗ b(x)} =(vβ)αSα{a(x)}Sα{b(x)}
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Proof.

Sα{(a ∗ b)α} =

(
1

vβ

)α ∫ ∞
0

Eα(−xαvγα)

∫ x

0

a(x− u)b(u)(du)α(dx)α

=

(
1

vβ

)α ∫ ∞
0

Eα(−vγα(x− u)α)Eα(−vγαuα)

∫ x

0

a(x− u)b(u)(du)α(dx)α

We obtain by modifying the variables x− u = t, u = s,

Sα{(a ∗ b)α} =

(
1

vβ

)α ∫ ∞
0

Eα(−vγαtα)a(t)(dt)α
∫ ∞

0

Eα(−vγαsα)b(s)(ds)α

=(vβ)αSα{a(t)}Sα{b(s)}.

2.3.5 Inversion theorem using generalized fractional integral transform

with exponential type kernel

Theorem 2.3.4. For 0 < α < 1, the generalized fractional integral transform with

exponential type kernel

Aα(vβ,γ) =

(
1

vβ

)α ∫ ∞
0

Eα(−xvγ)αf(x)(dx)α

has the inversion formula,

f(x) =
1

(Mα)α

∫ +i∞

−i∞
(vβ)αEα(vγαxα)Aα(vβ,γ)(dv)α,

where Mα is the period of the complex-valued Mittag-Leffler function defined by the

equality Eα(i(Mα)α) = 1
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Proof. The Laplace transform of fractional order α of f(x),i.e.,

Fα(v) =

∫ ∞
0

Eα(−vαxα)f(x)(dx)α, 0 < α < 1

has the inversion formula

f(x) =
1

(Mα)α

∫ +i∞

−i∞
Eα(vαxα)Fα(v)(dv)α.

We arrive at the necessary inversion formula by using the duality relationship between

the fractional order laplace transform and generalized fractional integral transform

with exponential type kernel.

2.3.6 Solutions of fractional differential equations using generalized frac-

tional integral transform with exponential type kernel

2.3.7 Example 1

Suppose Aα(vβ,γ) is the generalized fractional integral transform with exponential

type kernel of a function f(x). Then the solution of fractional differential equation

y(α) + λy = f(x), y(0) = 0, 0 < α < 1 (2.3.6)

is given by

y(x) =
1

(Mα)α

∫ +i∞

−i∞

(vβ)α

λ+ (vγ)α
Eα(vγαxα)Aα(vβ,γ)f (dv)α (2.3.7)

where λ is a constant.
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Now we solve (2.3.6). By taking the generalized fractional integral transform with

exponential type kernel on the both sides of (2.3.6), we get

(vγ)αAα{vβ,γ}y + λAα{vβ,γ}y =Aα{vβ,γ}f

Aα{vβ,γ}y =
1

λ+ (vγ)α
Aα{vβ,γ}f (2.3.8)

By substituting (2.3.8) in the inversion formula of the generalized fractional integral

transform with exponential type kernel, we arrive the required solution (2.3.7).

2.3.8 Example 2

The equation governs the current in a circuit with inductance L, resistance R, and

capacitance C with an applied voltage E(t).

L
dI

dt
+RI +

1

C

∫ t

0

Idt = E(t),

where L,R and C are constants and I(t) is the current, and

I(t) =
dQ

dt
represents the accumulated charge Q on the condenser at time t is Q(t) =

∫ t

0

I(t)dt

Let us consider the fractional equation of current in the circuit, that is,

LI(α)(t) +RI +
1

C

∫ t

0

I(t)(dt)α = E(t), (2.3.9)
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with t = 0, I(0) = 0, Q(0) = 0 and 0 < α < 1

Now we solve (2.3.9). By taking the generalized fractional integral transform with

exponential type kernel on both sides of (2.3.9), we get,

Aα(vβ,γ)I =
1

v2γαΓ(α+1)
c

+Rvα + L
Aα(vβ,γ)E (2.3.10)

where Aα(vβ,γ)I and Aα(vβ,γ)E are the generalized fractional integral transforms of

I(t) and E(t) respectively. Then characteristic equation of (2.3.10) is given by

v2γα +
R

L
vγα +

Γ(α + 1)

CL
= 0

The roots of the above characteristic equation are vγα = −k ± in, where k = R
2L

and n2 = Γ(α+1)
CL

− R2

4L2 is the negative real part. This demonstrates the system’s

stability. We may now get at (2.3.10) by inserting it into the inversion formula of the

generalized integral formula with exponential type kernel.

Now by substituting (2.3.10) in the inversion formula of the generalized fractional

integral transform with exponential type kernel, we arrive

I(t) =
1

L(Mα)α

∫ +i∞

−i∞

(vβ)αEα(xαvγα)

v2γα + R
L
vγα + Γ(α+1)

CL

Aα(vβ,γ)E(dv)α

as a solution of (2.3.9).
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Chapter 3

Numerical solutions of fractional
differential equations by Euler
wavelet method

3.1 Introduction

In this chapter, we discuss the numerical solutions of some fractional differen-

tial equations using Euler wavelet based numerical scheme. Euler wavelets are the

types of wavelets constructed from Euler polynomials as their basis functions. It is

commonly known that when it comes to approximating arbitrary functions, Euler

polynomials provide many advantages over Legendre polynomials. First, there are

less terms in the Euler polynomials than in the Legendre polynomials. Therefore,

utilising Euler polynomials rather than Legendre polynomials saves processing time

when approximating arbitrary functions. Second, employing Euler polynomials for

function approximation reduces computational errors. Thus, there is a reason for
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us to believe that Euler wavelets inherit these benefits from Euler polynomials. In

order to solve the fractional differential equations, the major goal of this chapter is to

introduce the Euler wavelet operational matrix. We then utilize this resulting Euler

wavelet operational matrix to reduce the fractional differential equation into a system

of algebraic equations to get the required Euler coefficients, which are computed by

using Matlab. The convergence analysis of the Euler wavelets is also given. It not

only simplifies the problem, but also speeds up the computation. What is more, the

numerical examples demonstrate that Euler wavelet performs better in approximat-

ing an arbitrary function compared to many other numerical methods. Euler wavelet

based numerical scheme (EWM) yields fruitful results in terms of accuracy. The com-

parison shows that, when compared to other methods, the current method has the

best accuracy. This methods can be implemented easily, effectively, and conveniently

to get the numerical solutions to fractional differential equations. For the analysis of

the numerical results, the corresponding graphs and tables are provided.

3.2 Euler wavelet based numerical scheme

Wavelets are a family of functions generated by dilation and translation of a single

function ψ(x), termed the mother wavelet. We get the following family of continuous
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wavelets if the dilation and translation parameters c and d change continuously.

ψcd(x) = |c|−
1
2ψ

(
x− d
c

)
, c, d ∈ (R), c 6= 0.

If the translation and dilation parameters are chosen to have discrete values,that is,

c = c0
−p, d = qd0c0

−p,c0 > 1, d0 > 0 and p, q ∈ Z, then we have the following family

of discrete wavelets,

ψpq(x) = |c0|
p
2ψ(c0

px− qd0),

where the functions ψpq form a wavelet basis for L2(R). In particular, if c0 =

2 and d0 = 1, we can attain an orthonormal basis from ψpq(x) for L2(R).

The Euler wavelets are defined on the interval [0,1) as

ψmn(x) =

2
j−1
2 Ẽn(2j−1x−m+ 1), m−1

2j−1 ≤ x < m
2j−1

0, otherwise

for m = 1, 2, ...2j−1,n = 0, 1, ...M − 1 and j,M ∈ N,

where Ẽn(x) =


1, n = 0

1√
(
2(−1)n−1(n!)2

(2n)!
)E2n+1(0)

En(x), n > 0

the co-efficient

1√
(2(−1)n−1(n!)2

(2n)!
)E2n+1(0)

is for normality, the dilation parameter is 2−(j−1) and the translation parameter is

(m − 1)2−(j−1). Here, En(x) denote Euler polynomials of degree n which can be
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defined by the generating functions

2exs

es + 1
=
∞∑
n=0

En(x)
sn

n!
, |s| < π.

We can also define the first kind Euler polynomials by the relation,

n∑
j=0

(
n

j

)
Ej(x) + En(x) = 2xn

where
(
n
j

)
is a binomial co-efficient.

The first few Euler polynomials are

E0(x) = 1, E1(x) = x− 1

2
, E2(x) = x2 − x,E3(x) = x3 − 2

3
x2 +

1

4
, .............

These polynomials satisfy the following formula,

∫ 1

0

En(x)Em(x)dx = (−1)m−1 n!(m+ 1)!

(n+m+ 1)!
En+m+1(0), n,m ≥ 1

and the Euler polynomials form a complete basis for L2(R).

3.3 Function approximation by Euler wavelets

A function f(x) ∈ L2[0, 1) can be expressed in terms of the Euler wavelets as

f(x) =
∞∑
m=0

∑
nεZ

Cmnψmn(x) (3.3.1)

where the coefficients Cmn are given by

Cmn =< f(x), ψmn >=

∫ 1

0

f(x)ψmn(x)dx
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By truncating the infinite series in (3.3.1), f(x) is approximated as

f̃(x) ≈
2j−1∑
m=1

M−1∑
n=0

Cmnψmn(x) = CTψ(x)

where the coefficient vector C and the Euler function vector ψ(x) are 2j−1M × 1

matrices, given by

C = [C10, C11, ........, C1(M−1), C20, ......C2(M−1), ....., C2j−10, ..........C2j−1(M−1)]
T

and

ψ(x) = [ψ10, ψ11, .......ψ1(M−1), ψ20, .........ψ2(M−1), ........ψ2j−10, ..ψ2j−1(M−1)]
T (3.3.2)

We define the Euler wavelet coefficient matrix φk×k, k = 2j−1M at the collocation

points xi = 2i−1
2k
, i = 1, 2...k as

φk×k =

[
ψ

(
1

2k

)
, ψ

(
3

2k

)
, ..........., ψ

(
2k − 1

2k

)]
Specifically, the Euler wavelet coefficient matrix for j = 2,M = 3 becomes

φ6×6 =



1.4142 1.4142 1.4142 0 0 0

−0.9428 0 0.9428 0 0 0

−0.4811 −0.8660 −0.4811 0 0 0

0 0 0 1.4142 1.4142 1.4142

0 0 0 −0.9428 0 0.9428

0 0 0 −0.4811 −0.8660 −0.4811


Correspondingly, we have

f̃k = [f̃(x1), f̃(x2)...........f̃(xk)] = CTφk×k
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Since the Euler wavelet coefficient matrix φk×k is invertible, the Euler wavelet coeffi-

cient vector CT can be attained by

CT = f̃kφ
−1
k×k

3.4 Error analysis for the Euler wavelet bases

We now establish the error analysis for the Euler wavelets expansion in the following

Theorem.

Theorem 3.4.1. If the function f : [0, 1)→ R is n + 1 times continuously differen-

tiable and f ∈ Cn+1[0, 1), then f̃(x) = CTψ(x) approximates f(x) with mean error

bounded

‖f(x)− f̃(x)‖2 ≤
√

2M̃

2(j−1)(n+1)(n+ 1)!
√

(2n+ 3)
,where M̃ = maxx∈[0,1)|f (n+1)(x)|

Proof. We first divide the interval [0,1) into subintervals Ij,m = [m−1
2j−1 ,

m
2j−1 ],m =

1, 2, ...2j−1, j ∈ N with the restriction that f̃(x) is a polynomial of degree less than

n+1 that approximates f with minimum mean error. Using Lemma 3 [68], we attain

‖f(x)− f̃(x)‖2
2 =

∫ 1

0

[f(x)− f̃(x)]2dx

=
∑
m

∫
Ij,m

[f(x)− f̃(x)]2dx

≤
∑
m

[√
(2)M̃m( 1

2j−1 )
2n+3

2

(n+ 1)!
√

(2n+ 3)

]2

≤ 2M̃2

2(j−1)(2n+2)[(n+ 1)!]2(2n+ 3)

where M̃m = maxx∈Ij,m |f (n+1)(x)|
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We get the upper bound by taking the square roots. As a result, the error of the

approximation f̃(x) of f(x) decays like 2−(n+1)(j−1). Meanwhile, we notice that the

number of wavelets is k = 2j−1M , where M denotes the degree of the Euler poly-

nomials, which is usually small in computation. When M is fixed, the numerical

results improve as j increasing, and we may conclude that the approximate solutions

converge to the exact solution.

3.5 Operational matrix of the fractional integra-

tion of Euler wavelets

We now explore the basic idea of finding the fractional integration operational matrix

of the Euler wavelets.

A k-set of Block pulse functions(BPFs) over the interval [0,1)is defined as

bi(x) =

1, (i− 1)/k ≤ x < i/k

0, otherwise

where i=1,2,3...k, k ∈ N, For x ∈ [0, 1),

bi(x)bj(x) =

0, i 6= j

bi(x), i = j

and

∫ 1

0

bi(x)bj(x) =

0, i 6= j

1
k
, i = j
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It is known that any square integrable function f(x) defined over [0,1) can be ex-

panded in terms of BPFs as

f(x) '
k∑
i=1

fibi(x) = fTBk(x)

wheref = [f1, f2, ...........fk]
T , fi =

1

k

∫ i/k

(i−1)/k

f(x)bi(x)dx and Bk(x) = [b1(x), b2(x), ........bk(x)]T

The block pulse functions and Euler wavelets have a relationship,

ψ(x) = φk×kBk(x) (3.5.1)

The block pulse operational matrix of the fractional integration Fα, α ≥ 0 is defined

as in [37], that is,

(IαBk)(x) ≈ FαBk(x) (3.5.2)

where

Fα =
1

kα
1

Γ(α + 2)



1 ξ1 ξ2 ξ3 . . . ξk−1

0 1 ξ1 ξ2 . . . ξk−2

0 0 1 ξ1 . . . ξk−3

...
...

. . . . . .
...

...

0 0 . . . 0 1 ξ1

0 0 . . . 0 0 1


withξs = (s+ 1)α+1 − 2sα+1 + (s− 1)α+1

The fractional integration of the vector ψ(x) defined in (3.3.2) with order α ≥ 0, can

be approximated as

(Iαψ)(x) ≈ Pα
k×kψ(x) (3.5.3)
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where Pα
k×k is called Euler wavelet operational matrix of order α ≥ 0. Using (3.5.1)

and (3.5.2), we attain

(Iαψ)(x) ≈ (Iαφk×kBk)(x) = φk×k(I
αBk)(x) ≈ φk×kF

αBk(x) (3.5.4)

Thus combining (3.5.3) and (3.5.4), we attain

Pα
k×kψ(x) ≈ (Iαψ)(x) ≈ φk×kF

αBk(x) = φk×kF
αφ−1

k×kψ(x) and so

Pα
k×k ≈ φk×kF

αφ−1
k×k

For j = 2, M = 3 and α = 0.5, the Euler wavelet operational matrix of the fractional

integration yields,

P 0.5
6×6 =



0.4616 0.3150 −0.1631 0.5012 −0.1509 0.1404

0.0878 0.2243 0.4203 0.0717 −0.0449 0.0626

−0.1305 −0.1591 0.2354 −0.2110 0.0615 −0.0545

0 0 0 0.4616 0.3150 −0.1631

0 0 0 0.0878 0.2243 0.4203

0 0 0 −0.1305 −0.1591 0.2354


Because the operational matrix P 0.5

6×6 contains a large number of zeros, this phe-

nomenon allows for quick computations.

3.6 Numerical Examples

To show the efficiency of the numerical approach based on Euler wavelets, we

describe some numerical examples.
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3.6.1 Example 3

Consider

ADαy(x)+BDβy(x)+Cy(x) = g(x),with y(0) = y0, y
′(0) = y1, 0 < β < α ≤ 2, 0 ≤ x < 1

(3.6.1)

where A 6= 0, B,C ∈ R, g(x) ∈ L2[0, 1) and the solution to be determined in [63] is

y(x).

Eq.(3.6.1) reduces to the Bagley-Torvik equation for α = 2, β = 3
2
, which obtains

when modelling the motion of a rigid plate immersed in a Newtonian fluid.

Table 3.1: Comparisons between numerical solutions attained by Euler wavelet based
numerical scheme(EWM) for M=3 and various numerical methods

x yexact yEWM(j = 9) yFDM [6] yADM [51] yFDTM [6] yV IM [51] yLWM(j = 10) [63]
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.039750 0.039750 0.039473 0.039874 0.039750 0.039874 0.039750
0.2 0.157036 0.157036 0.157703 0.158512 0.157036 0.158512 0.157035
0.3 0.347370 0.347370 0.352402 0.353625 0.347370 0.353625 0.347370
0.4 0.604695 0.604695 0.620435 0.622083 0.604695 0.622083 0.604695
0.5 0.921768 0.921768 0.957963 0.960047 0.921768 0.960047 0.921767
0.6 1.290457 1.290456 1.360551 1.363093 1.290457 1.363093 1.290456
0.7 1.702008 1.702008 1.823267 1.826257 1.702008 1.826257 1.702007
0.8 2.147287 2.147286 2.340749 2.344224 2.147287 2.344224 2.147286
0.9 2.617001 2.617000 2.907324 2.911278 2.617001 2.911278 2.617000

Suppose Dαy(x) ' CTψ(x) and g(x) ' F Tψ(x) (3.6.2)

Then Dβy(x) = Iα−β(Dαy)(x) = CTPα−β
k×k ψ(x) (3.6.3)
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and

y(x) = CTPα
k×kψ(x) + y0 + y1x (3.6.4)

Using (3.6.2), (3.6.3) and (3.6.4) in (3.6.1), we have the following system of algebraic

equations

ACTψ(x) +BCTPα−β
k×k ψ(x) + C[CTPα

k×kψ(x) + y0 + y1(x)] = F Tψ(x)

Table 3.1 compares the numerical solutions of (3.6.1) obtained by the proposed nu-

merical method based on Euler wavelets(EWM) with the numerical solutions obtained

by Finite Difference Method(FDM), Adomian Decomposition Method(ADM), Finite

Difference Transform Method(FDTM), Variational Iteration Method(VIM) and Leg-

endre Wavelet Method(LWM) when α = 2, β = 1
2
,A = B = C = 1,g(x) = 8 and

y0, y1 = 0. Clearly, the numerical scheme based on Euler wavelets is superior to the

numerical schemes stated above, as seen by the comparisons of numerical solutions

in Table 3.1.

3.6.2 Example 4

In Example 3.6.1, suppose A=B=C=1,

α = 2, 0 ≤ β ≤ 1, y0 = 0, y1 = 0 and g(x) = 6x3

(
x−α

Γ(4− α)
− x−β

Γ(4− β)

)
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Table 3.2: Comparisons of maximum absolute errors for different values of k and β
EWM LWM HWM

β k = 32 k = 128 k = 24 k = 96 k = 32 k = 128
0.25 1.4205× 10−5 5.1634× 10−6 8.546× 10−4 5.343× 10−5 4.807× 10−4 3.005× 10−5
0.50 1.0680× 10−4 5.3760× 10−7 7.963× 10−4 4.978× 10−5 4.479× 10−4 2.800× 10−5
0.75 1.0605× 10−4 1.1484× 10−5 7.405× 10−4 4.631× 10−5 4.166× 10−4 2.605× 10−5
1.00 6.8563× 10−5 4.1935× 10−5 6.946× 10−4 4.341× 10−5 3.907× 10−4 2.442× 10−5

y(x) = x3 is the exact solution. The absolute errors obtained by the proposed nu-

merical scheme(EWM), Legendre wavelet method(LWM) and Haar wavelet method(HWM),

are shown in Table 3.2. Table 3.2 shows that as k increases, the absolute errors be-

come smaller and smaller. Table 3.2 further illustrates that the proposed numerical

scheme exceeds Legendre and Haar wavelets in terms of accuracy, when compared to

the results obtained by the Legendre and Haar wavelet schemes, this demonstrates

that the numerical results obtained by the Euler wavelet based numerical scheme are

in good agreement with the exact solution.

3.6.3 Example 5

Consider the fractional differential equation(3.6.5) for an Electrical Circuit with charged

capacitor of capacitance C farads and resistor of resistance R ohms, as shown below

DβQ(x) + κQ(x) = 0, β ∈ (0, 1], x ∈ [0, 1) (3.6.5)

with initial state Q(0) = Q0, where κ = 1
RC

,

The exact solution of (3.6.5 ) for β = 1 is Q(x) = Q0e
−κx
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Table 3.3: Comparisons between numerical solutions attained by Euler wavelet based
numerical scheme and Legendre wavelet method

x β = 0.50 β = 0.75 β = 0.999 Exact(β = 1)
EWM LWM EWM LWM EWM LWM

0.1 19.3564 19.3481 19.6378 19.6340 19.8017 19.8012 19.8010
0.2 19.0219 19.0500 19.3599 19.3717 19.6042 19.6039 19.6040
0.3 18.8214 18.8163 19.1422 19.1413 19.4091 19.4086 19.4089
0.4 18.6545 18.6471 18.9462 19.9428 19.2165 19.2154 19.2158
0.5 18.4927 18.4976 18.7530 18.7573 19.0238 19.0242 19.0246
0.6 18.3680 18.3669 18.5861 18.5854 18.8359 18.8349 18.8353
0.7 18.2432 18.2450 18.4193 18.4207 18.6480 18.6475 18.6479
0.8 18.1312 18.1319 18.2623 18.2630 18.4625 18.4620 18.4623
0.9 18.0285 18.0275 18.1131 18.1124 18.2793 18.2784 18.2786

Suppose DβQ(x) ' CTψ(x) (3.6.6)

Then Q(x) = CTP βψ(x) +Q0 (3.6.7)

Thus, using (3.6.6) and (3.6.7) in (3.6.5), we attain

CTψ(x) + κ[CTP βψ(x) +Q0] = 0 (3.6.8)

The coefficients vector C may be obtained by solving the matrix equation(3.6.8).

Table 3.3 displays the numerical solutions to (3.6.5) obtained using EWM and LWM

for R = 10, C = 1, Q0 = 20 and various β values. The numerical method on Euler

wavelets clearly outperforms the Legendre wavelet method, as shown in table 3.3.

3.6.4 Example 6

Consider the multi-term fractional differential equation [17, 42]

D2y(x) + 3Dy(x) + 2Dq2y(x) +Dq1y(x) + 5y(x) = f(x), (3.6.9)
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where 0 < q1 < q2 < 1, 0 ≤ x < 1 and

f(x) = 1 + 3x+
2

Γ(3− q2)
x2−q2 +

1

Γ(3− q1)
x2−q1 + 5(1 + 0.5x2)

with the initial states y(0) = 1, y′(0) = 0.

If q1 = 0.0159 and q2 = 0.1379, then the exact solution of (3.6.9) is given by

y(x) = 1 + 0.5x2.

Table 3.4: Absolute errors for M = 3 and different values of j
x j=3 j=5 j=7 j=9 j=11

0.1 2.7746e-04 1.7346e-05 1.0839e-06 6.7737e-08 4.2335e-09
0.2 2.4925e-04 1.5530e-05 9.7013e-07 6.0625e-08 3.7889e-09
0.3 2.1031e-04 1.3092e-05 8.1761e-07 5.1091e-08 3.1930e-09
0.4 1.6732e-04 1.0390e-05 6.4872e-07 4.0535e-08 2.5332e-09
0.5 1.2436e-04 7.6988e-06 4.8055e-07 3.0024e-08 1.8763e-09
0.6 8.4086e-05 5.2128e-06 3.2527e-07 2.0321e-08 1.2699e-09
0.7 4.9432e-05 3.0575e-06 1.9067e-07 1.1909e-08 7.4420e-10
0.8 2.1033e-05 1.2979e-06 8.0809e-08 5.0447e-09 3.1518e-10
0.9 7.3449e-07 4.8261e-08 3.2143e-09 2.0522e-10 1.2910e-11

Table 3.5: Comparison of maximum absolute errors for Euler wavelet based numerical
scheme with j = 3,M = 3 and Adams-type Predictor-Corrector method

Step size Maximum Absolute errors
EWM Adams-type Predictor-Corrector Method

0.1 7.3449e-07 0.051115750000
0.01 7.3449e-07 0.004546523000
0.001 1.1577e-08 0.000409626200

Suppose D2y(x) ' CTψ(x) and f(x) ' F Tψ(x) (3.6.10)

Then Dy(x) = CTPk×kψ(x) (3.6.11)

Dq2y(x) = CTP 2−q2
k×k ψ(x) (3.6.12)

Dq1y(x) = CTP 2−q1
k×k ψ(x) (3.6.13)
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and

y(x) = CTP 2
k×kψ(x) + 1 (3.6.14)

Using (3.6.10)-(3.6.14) in (3.6.9), we arrive

CTψ(x) + 3CTPk×kψ(x) + 2CTP 2−q2
k×k ψ(x) + CTP 2−q1

k×k ψ(x)

+ 5[CTP 2
k×kψ(x) + [1, 1, .......1]φ−1

k×kψ(x)] = F Tψ(x)

(3.6.15)

Solving the system of algebraic equations (3.6.15), we can attain the coefficients

vector CT and so we can get the approximate output response y(x). Table 3.4 shows

that the absolute errors attained by the Euler wavelet based numerical scheme with

M=3 and the values of j increasing, become smaller and smaller. From table 3.4,

we also infer that the approximate solutions converge to the exact solution. Table

3.5 shows that the EWM can reach a higher degree of accuracy than Adams-type

Predictor-Corrector Method.

3.6.5 Example 7

Consider the linear fractional differential equation

Dαy(x) + y(x) = 0 with 0 < α ≤ 2, 0 ≤ x < 1, and y(0) = 1, y′(0) = 0. (3.6.16)

The second initial condition is only for 1 < α ≤ 2. The exact solution of (3.6.16) is

y(x) =Eα(−xα),where Eα(z) =
∞∑
0

zk

Γ(αk + 1)
is the Mittag-Leffler function of order α
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Table 3.6: Absolute errors for different values of k and for α = 1.5
x k = 12 k = 24 k = 48 k = 96 k = 192 k = 384

0.1 6.8808e-04 6.9051e-05 2.2513e-05 7.0231e-06 1.7455e-06 4.156e-07
0.2 7.9552e-05 3.5316e-05 1.3415e-05 3.3178e-06 7.608e-07 1.911e-07
0.3 9.4834e-05 2.2910e-05 2.9444e-06 7.7780e-07 2.384e-07 5.91e-08
0.4 1.0088e-04 8.0418e-06 2.1604e-06 8.1000e-07 1.974e-07 4.58e-08
0.5 3.6805e-04 6.4931e-05 1.2401e-05 2.5924e-06 5.859e-07 1.4209e-07
0.6 1.6556e-04 5.2566e-05 1.3004e-05 3.0970e-06 7.968e-07 2.225e-07
0.7 2.7243e-04 6.6998e-05 1.5649e-05 4.0075e-06 1.1023e-06 3.5728e-07
0.8 2.8032e-04 7.0973e-05 1.9028e-05 5.0157e-06 1.5096e-06 6.49e-07
0.9 3.4727e-04 8.0723e-05 2.1038e-05 6.1479e-06 2.316e-06 1.3906e-06

Table 3.7: Comparison of maximum absolute errors for α = 1.5, M = 3 and different
values of j

j = 4 j = 5 j = 8
EWM 8.042e-06 2.160e-06 4.58e-08
LWM 1.178e-05 2.948e-06 4.605e-08

Suppose Dαy(x) ' CTψ(x) (3.6.17)

Then y(x) =CTPα
k×kψ(x) + 1 (3.6.18)

Using (3.6.17) and (3.6.18) in (3.6.16), we arrive

CTψ(x) + CTPα
k×kψ(x) + 1 = 0 (3.6.19)

We can obtain the Euler coefficients vector CT by solving the system (3.6.19)

at the collocation points. The exact solution of (3.6.16) for α = 1 is y(x) = e−x, while

for α = 2, the exact solution of (3.5.16) is y = cosx. Table 3.6 shows that as the

value of k increases, the absolute errors achieved by the EWM become smaller and

smaller. We can also deduce from Table 3.6 that approximate solutions converge to

exact solutions. The maximum absolute errors achieved by the proposed numerical

scheme and Legendre wavelet method(LWM) for α = 1.5,M = 3 and various values of
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j are shown in table 3.7. The numerical approach based on Euler wavelets is clearly

superior to the Legendre wavelets method, as shown in table 3.7.
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Chapter 4

Numerical solutions of fractional
differential equations with variable
coefficients by Bernoulli wavelet
method

4.1 Introduction

This chapter addresses the numerical solutions of fractional differential equations

with variable coefficients using Bernoulli wavelet based numerical scheme(BWM). The

numerical scheme based on Bernoulli wavelets is simple and straight forward. The

new technique is based upon Bernoulli polynomials, Bernoulli numbers and Bernoulli

wavelet approximations. The properties of Bernoulli wavelets and Bernoulli poly-

nomials are first presented. We then present the operational matrix of fractional

integration of Bernoulli wavelets. We use this resulting Bernoulli wavelet operational

matrix to reduce the fractional differential equation with variable coefficients into a
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system of algebraic equations to get the required Bernoulli coefficients, which are com-

puted by using Matlab. The numerical solutions of fractional differential equations

by using BWM are compared with exact solutions and the comparison shows that

BWM has the higher degree of accuracy. Convergence analysis of the BWM has been

discussed in this Chapter. Some illustrative examples demonstrate the applicability

and accuracy of Bernoulli wavelet based numerical scheme.

4.2 Bernoulli wavelet based numerical scheme

Wavelets are a family of functions generated by dilation and translation of a single

function ψ(x), termed the mother wavelet. We get the following family of continuous

wavelets if the dilation and translation parameters c and d change continuously.

ψcd(x) = |c|−
1
2ψ

(
x− d
c

)
, c, d ∈ (R), c 6= 0.

If the translation and dilation parameters are chosen to have discrete values,that is,

c = c0
−p, d = qd0c0

−p,c0 > 1, d0 > 0 and p, q ∈ Z, then we have the following family

of discrete wavelets,

ψpq(x) = |c0|
p
2ψ(c0

px− qd0),

where the functions ψpq form a wavelet basis for L2(R). In particular, if c0 =

2 and d0 = 1, we can attain an orthonormal basis from ψpq(x) for L2(R).
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The Bernoulli wavelets are defined on [0,1) as

ψmn(x) =

2
j−1
2 Ẽn(2j−1x−m+ 1), m−1

2j−1 ≤ x < m
2j−1 ,

0, otherwise,
(4.2.1)

for m = 1, 2, ..., 2j−1, n = 0, 1, ..., N − 1 and j,N ∈ N, where

Ẽn(x) =


1, n = 0,

1√
(
(−1)n−1(n!)2

(2n)!
)β2n

En(x), n > 0,

the coefficient 1√
(
(−1)n−1(n!)2

(2n)!
)β2n

is used for normality, the dilation parameter is 2−(j−1)

and the translation parameter is (m − 1)2−(j−1). Here En(x), n = 0, 1, ..., N − 1,

denote Bernoulli polynomials of order n which can be defined by the relation

En(x) =
n∑
r=0

(
n

r

)
βrx

n−r, (4.2.2)

where βr, (r = 0, 1, 2, ..., n) are Bernoulli numbers. Bernoulli numbers can be defined

by the following generating function

x

ex − 1
=
∞∑
r=0

βr
xr

r!
. (4.2.3)

The first few Bernoulli numbers are

β0 = 1, β1 = −1

2
, β2 =

1

6
, β4 = − 1

30
, ..., (4.2.4)

with β2r+1 = 0, r = 1, 2, 3, ...

The first few Bernoulli polynomials are

E0(x) = 1, E1(x) = x− 1

2
, E2(x) = x2 − x+

1

6
, E3(x) = x3 − 3

2
x2 +

1

2
x, ... (4.2.5)
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4.3 Properties of Bernoulli polynomials and Bernoulli

wavelets

The properties of Bernoulli polynomials and Bernoulli wavelets have been discussed

in [65].

Moreover,

∫ 1

0

Em(x)En(x)dx = (−1)m−1 n!m!

(n+m)!
βm+n, n,m ≥ 1, (4.3.1)

and ∫ 1

0

|En(x)|dx ≤ 16
n!

(2π)n+1
, n ≥ 0. (4.3.2)

Let ψ(x) = [ψ1(x), ψ2(x), ..., ψk(x)]T , where ψi(x) = ψmn(x), i = N(m−1)+n+1, k =

2j−1N , m = 1, 2, ..., 2j−1, n = 0, 1, ..., N − 1 and j,N ∈ N. Then Bernoulli wavelets

have the following orthonormality properties.

< ψr(x), ψs(x)dx >=

∫ 1

0

ψr(x)ψs(x)dx =
{

1, r = s, 0, r 6= s, (4.3.3)

and ∫ 1

0

Ψ(x)ΨT (x)dx = E, (4.3.4)

where < ., . > denotes the inner product and E indicates identity matrix.
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4.4 Function approximation by Bernoulli wavelets

A function h(x) ∈ L2[0, 1) can be expressed in terms of Bernoulli wavelets as

h(x) =
∞∑
m=0

∑
n∈Z

amnψmn(x), (4.4.1)

where the coefficients amn are given by

amn =< h(x), ψmn(x) >=

∫ 1

0

h(x)ψmn(x)dx.

By truncating the infinite series in Equation (4.4.1), h(x) is approximated as

h̃(x) ≈
2j−1∑
m=1

N−1∑
n=0

amnψmn(x). (4.4.2)

For simplicity, Equation (4.4.2) is written as

h̃(x) =
k∑
i=1

aiψi(x) = ATΨ(x), (4.4.3)

where ai = amn, ψi = ψmn, k = 2j−1N, A = [a1, a2, ..., ak]
T , (4.4.4)

and

Ψ(x) = [ψ1(x), ψ2(x), ..., ψk(x)]T . (4.4.5)

The index i is determined by the relation i = N(m− 1) + n+ 1.

We define the Bernoulli wavelet coefficient matrix φk×k, k = 2j−1N , at the collocation

points xr = 2r−1
2k
, r = 1, 2, ..., k as

φk×k =

[
Ψ

(
1

2k

)
,Ψ

(
3

2k

)
, ...,Ψ

(
2k − 1

2k

)]
. (4.4.6)
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Specifically, the Bernoulli wavelet coefficient matrix for j = 2 and N = 3 becomes

φ6×6 =



1.4142 1.4142 1.4142 0 0 0

−1.6330 0 1.6330 0 0 0

0.5270 −1.5811 0.5270 0 0 0

0 0 0 1.4142 1.4142 1.4142

0 0 0 −1.6330 0 1.6330

0 0 0 0.5270 −1.5811 0.5270


. (4.4.7)

Here, we have

h̃k = [h̃(x1), h̃(x2), ..., h̃(xk)] = ATφk×k.

Since the Bernoulli wavelet coefficient matrix φk×k is invertible, it is possible to obtain

the Bernoulli wavelet coefficient vector AT by h̃kφ
−1
k×k.

4.5 Operational matrix of fractional order integra-

tion of Bernoulli wavelets

In this section, we explore the basic idea of finding the operational matrix of fractional

order integration for the Bernoulli wavelets.

A k-set of Block pulse functions (BPFs) over the interval [0,1) is defined as

br(x) =

1, (r − 1)/k ≤ x < r/k,

0, otherwise,
(4.5.1)

where r = 1, 2, 3, ..., k.

It is known that any square integrable function h(x) defined on the interval [0,1) can
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be extended in terms of BPFs, and by using orthogonality of BPFs as

h(x) '
k∑
r=1

hrbr(x) = hTBk(x), (4.5.2)

where h = [h1, h2, ..., hk]
T , hr for r = 1, 2, ..., k are given by

hr =
1

k

∫ r/k

(r−1)/k

h(x)br(x)dx, and Bk(x) = [b1(x), b2(x), ..., bk(x)]T .

There is a connection between the block pulse functions and Bernoulli wavelets, which

is,

Ψ(x) = φk×kBk(x). (4.5.3)

The block pulse operational matrix Hβ, β ≥ 0 of fractional integration of order β ≥ 0

is defined as,

(IβBk)(x) ≈ HβBk(x), (4.5.4)

where

Hβ =
1

kβ
1

Γ(β + 2)



1 ζ1 ζ2 ζ3 . . . ζk−1

0 1 ζ1 ζ2 . . . ζk−2

0 0 1 ζ1 . . . ζk−3

...
...

. . . . . .
...

...

0 0 . . . 0 1 ζ1

0 0 . . . 0 0 1


,

with ζj = (j + 1)β+1 − 2jβ+1 + (j − 1)β+1.

The fractional integration of order β ≥ 0 of the vector Ψ(x) defined in Equation

(4.4.5) can be approximated as

(IβΨ)(x) ≈ P β
k×kΨ(x), (4.5.5)
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where P β
k×k is called Bernoulli wavelet operational matrix of order β ≥ 0.

Using Equations (4.5.3) and (4.5.4), we attain

(IβΨ)(x) ≈ (Iβφk×kBk)(x) = φk×k(I
βBk)(x) ≈ φk×kH

βBk(x). (4.5.6)

Thus combining Equations (4.5.5) and (4.5.6), we attain

P β
k×kΨ(x) ≈ (IβΨ)(x) ≈ φk×kH

βBk(x) = φk×kH
βφ−1

k×kΨ(x), and so (4.5.7)

P β
k×k ≈ φk×kH

βφ−1
k×k. (4.5.8)

For example, the Bernoulli wavelet operational matrix of the fractional order integra-

tion for j = 2, N = 3 and β = 0.5 yields

P 0.5
6×6 =



0.5282 0.1819 −0.0298 0.4438 −0.0871 0.0256

−0.1452 0.2243 0.1329 0.0799 −0.0449 0.0198

−0.0598 −0.0964 0.1688 −0.0417 −1.8589e− 04 0.0029

0 0 0 0.5282 0.1819 −0.0298

0 0 0 −0.1452 0.2243 0.1329

0 0 0 −0.0598 −0.0964 0.1688


.

(4.5.9)

Since the operational matrix P 0.5
6×6 contains several zeros, the proposed technique

reduces the computation greatly.

4.6 Convergence Analysis

In the following theorem, we establish the convergence of the Bernoulli wavelets ex-

pansion [57].
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Theorem 4.6.1. If h(x) ∈ L2[0, 1) is a continuous function and |h(x)| ≤ η, η ∈ R,

then the Bernoulli wavelets expansion of h(x) defined in Equation (4.3.1) converges

uniformly and also

|am,n| < η
F

2
j−1
2

16n!

(2π)n+1
, (4.6.1)

where

F =
1√

( (−1)n−1(n!)2

(2n)!
)β2n

.

Proof. Any function h(x) ∈ L2[0, 1) can be approximated in terms of Bernoulli

wavelets as

h(x) '
2j−1∑
m=1

N−1∑
n=0

amnψmn(x), (4.6.2)

Here

amn =

∫ 1

0

h(x)ψmn(x)dx

=
∑
m

∫
Ij,m

h(x)ψmn(x)dx, where Ij,m =

[
m− 1

2j−1
,
m

2j−1

)
,m = 1, 2, ..., 2j−1, (4.6.3)

= 2
j−1
2 F

∑
m

∫
Ij,m

h(x)En(2j−1x−m+ 1)dx, where F =
1√

( (−1)n−1(n!)2

(2n)!
)β2n

. (4.6.4)

Using 2j−1x−m+ 1 = t, we have

amn =
F

2j−1

∑
m

∫
Ij,m

h

(
t+m− 1

2j−1

)
En(t)dt, (4.6.5)

and so

|amn| =

∣∣∣∣∣ F2
j−1
2

∑
m

∫
Ij,m

h

(
t+m− 1

2j−1

)
En(t)dt

∣∣∣∣∣ ≤ Fη

2
j−1
2

∫ 1

0

|En(t)|dt < Fη

2
j−1
2

16
n!

(2π)n+1
.

(4.6.6)

Thus the series
∑2j−1

m=1

∑N−1
n=0 amn is absolutely convergent, and so the series∑2j−1

m=1

∑N−1
n=0 amnψmn(x) is uniformly convergent.
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4.7 Algorithm for the Bernoulli wavelet based nu-

merical scheme

Step 1: Assign the values for j and N for step size k = 2j−1N in Equation (4.4.4).

Step 2: Compute Bernoulli wavelet coefficient matrix φk×k at the collocation points

xr = 2r−1
2k
, r = 1, 2, ..., k from Equation (4.4.6).

Step 3: Compute the block pulse operational matrix Hβ from Equation (4.5.4).

Step 4: Construct Bernoulli wavelet operational matrix P β
k×k of order β ≥ 0 using

Equation (4.5.8).

Step 5: Dispersing the coefficients of the given fractional differential equations at

the collocation points, construct diagonal matrices.

Step 6: Express all Caputo fractional derivatives in the given fractional differential

equations in terms of Bernoulli wavelets.

Step 7: Solve the system of algebraic equations using MATLAB2015a to compute

the unknown vector.

Step 8: Compute the solution using the unknown vector and the Bernoulli wavelet

operational matrix.
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4.8 Numerical Examples

To show the applicability and the effectiveness of the Bernoulli wavelet based nu-

merical scheme, we consider here some fractional differential equations with variable

coefficients.

4.8.1 Example 8

Consider the following fractional order linear differential equation with variable coef-

ficients

r[D2h(x)] + s(x)[Dγ2h(x)] + t(x)[Dh(x)] +u(x)[Dγ1h(x)] + v(x)h(x) = w(x), (4.8.1)

with 0 ≤ x < 1, 0 < γ1 ≤ 1, 1 < γ2 ≤ 2, h(0) = 2 and h′(0) = 0,

where r ∈ R, s(x), t(x), u(x), v(x), h(x), w(x) ∈ L2[0, 1),

w(x) = −r − s(x)

Γ(3− γ2)
x2−γ2 − t(x)x− u(x)

Γ(3− γ2)
x2−γ2 + v(x)(2− 1

2
x2).

Suppose

D2h(x) ' ATΨ(x) where A = [a1, a2, ..., ak]
T , and

w(x) ' W TΨ(x) where W = [w1, w2, ..., wk].

(4.8.2)

Then Dγ2h(x) = ATP 2−γ2
k×k Ψ(x), (4.8.3)

Dγ1h(x) = ATP 2−γ1
k×k Ψ(x), (4.8.4)

Dh(x) = ATPk×kΨ(x), (4.8.5)

and h(x) = ATP 2
k×kΨ(x) + 2. (4.8.6)
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Using Equations (4.8.2) - (4.8.6) in (4.8.1), we attain

[rAT ]Ψ(x) + [ATP 2−γ2
k×k ]Ψ(x)s(x) + [ATPk×k]Ψ(x)t(x) + [ATP 2−γ1

k×k ]Ψ(x)u(x)

+[ATP 2
k×k]Ψ(x)v(x) + 2v(x) = W TΨ(x).

(4.8.7)

Dispersing the coefficients s(x), t(x), u(x), v(x) at the collocation points, construct

the following matrices.

S =


s(x1) 0 . . . 0

0 s(x2) . . . 0
...

. . . . . .
...

0 . . . 0 s(xk)

 , T =


t(x1) 0 . . . 0

0 t(x2) . . . 0
...

. . . . . .
...

0 . . . 0 t(xk)

 ,

U =


u(x1) 0 . . . 0

0 u(x2) . . . 0
...

. . . . . .
...

0 . . . 0 u(xk)

 , V =


v(x1) 0 . . . 0

0 v(x2) . . . 0
...

. . . . . .
...

0 . . . 0 v(xk)

 .

Discreting Equation (4.8.7), we can achieve

rATφk×k + ATP 2−γ2φk×k.S + ATPφk×k.T + ATP 2−γ1φk×k.U

+[ATP 2φk×k + Y ].V = W Tφk×k,

(4.8.8)

where Y = [2, 2, ..., 2]1×k. At the collocation points xi = (2i−1)/2k, i = 1, 2, ..., k, we

transform Equation (4.8.8) into a system of algebraic equations. Solving this system

of algebraic equations using MATLAB2015a, we can easily obtain AT .

Suppose

r = 1, s(x) = x1/2, t(x) = x1/3, u(x) = x1/4, v(x) = x1/5, γ1 = 0.333, γ2 = 1.234.

Then the exact solution of Equation (4.8.1) for γ1 = 0.333 and γ2 = 1.234 is
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Table 4.1: Maximum absolute errors for various choices of j and N .
k 48 96 192 384 768

(j = 3, N = 3) (j = 4, N = 3) (j = 5, N = 3) (j = 6, N = 3) (j = 7, N = 3)
The proposed

method 1.5100e-05 3.8168e-06 9.6282e-07 2.4249e-07 6.0990e-08

Table 4.2: Adams type Predictor-Corrector method [20].
Step size Maximum absolute errors

0.1 0.023658990000
0.01 0.000986218500
0.001 0.000043988230

h(x) = 2− 1
2
x2.

In Tables 4.1 and 4.2, the maximum absolute error obtained using Adams type

Predictor-Corrector method is 4.40e-05 in 1000th step, while the maximum absolute

error using the Bernoulli wavelet based numerical scheme is 1.51e-05 in 48th step. We

also see clearly from Table 4.1 that the numerical solutions are in perfect agreement

with the exact solutions for larger values of k. Numerical results of this problem

demonstrate that the Bernoulli wavelet based numerical scheme converges rapidly

and is more efficient than the Adams type predictor-corrector method [20]. Also from

Figure 4.1, we see clearly that the numerical solutions are in perfect agreement with

the exact solutions.

4.8.2 Example 9

Consider the following fractional differential equation

D1/3h(x) + x1/3h(x) = w(x), x ∈ [0, 4), (4.8.9)
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Figure 4.1: Comparison of Numerical solutions of Example 5.1 for k = 8 (j = 3, N =
2) and k = 16 (j = 4, N = 2) with the Exact solutions.

with the initial state h(0) = 0 and w(x) = 3
2Γ(2/3)

x(2/3) + x(4/3). The exact solution of

Equation (4.8.9) is h(x) = x.

Let t = x/4. Then x = 4t, t ∈ [0, 1).

Thus

D1/3h(4t) + (4t)1/3h(4t) = v(t), (4.8.10)

where

v(t) = w(4t) =
3.21/3

Γ(2/3)
t2/3 + (4t)4/3, t ∈ [0, 1).

Approximating

D1/3h(4t) as ATΨ(t) where A = [a1, a2, ..., ak]
T , (4.8.11)

we have

h(4t) = ATP 1/3Ψ(t). (4.8.12)
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Table 4.3: Absolute errors for various choices of j and for N = 2.
x k = 8 k = 16 k=32

(j = 3, N = 2) (j = 4, N = 2) (j = 5, N = 2)

BWM HWM BWM HWM BWM HWM
0.25 3.4042e-02 4.6972e-02 1.0979e-02 2.5554e-02 1.6860e-03 6.3723e-03
0.75 5.2261e-03 1.8818e-02 1.7086e-03 7.7490e-03 4.8561e-04 2.6655e-03
1.25 2.9291e-03 1.2333e-02 9.1120e-04 4.9465e-03 2.7618e-04 1.7841e-03
1.75 1.8933e-03 9.2464e-03 5.9425e-04 3.6780e-03 1.8461e-04 1.3549e-03
2.25 1.3507e-03 7.4107e-03 4.2765e-04 3.2651e-03 1.3471e-04 1.3549e-03
2.75 1.0238e-03 6.1850e-03 3.2668e-04 2.6691e-03 1.0387e-04 1.0953e-03
3.25 8.0889e-04 5.3060e-03 2.5985e-04 2.0961e-03 8.3183e-05 9.1997e-04
3.75 6.5879e-04 4.6437e-03 2.1286e-04 1.8332e-03 6.8503e-05 6.9676e-04

Figure 4.2: Comparison of Numerical solutions of Example 5.2 for k = 8 (j = 3, N =
2) and k = 16 (j = 4, N = 2) with the Exact solutions.

Similarly, v(t) can be approximated by the Bernoulli wavelet functions as

v(t) = V TΨ(t), where V = [v1, v2, ..., vk]
T . (4.8.13)

Using Equations (4.8.11), (4.8.12) and (4.8.13) in Equation (4.8.10), we have

ATΨ(t) + (4t)1/3ATP 1/3Ψ(t) = V TΨ(t). (4.8.14)
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Dispersing the coefficient (4t)1/3 of Equation (4.8.14) at the collocation points, con-

struct the following matrix.

R =


(4t1)(1/3) 0 . . . 0

0 (4t2)(1/3) . . . 0
...

. . . . . .
...

0 . . . 0 (4tk)
(1/3))

 .

Discreting Equation (4.8.14), we get

ATφk×k + ATP 1/3φk×k.R = V Tφk×k. (4.8.15)

We convert Equation (4.8.15) into a system of algebraic equations at the collo-

cation points ti = 2i−1
2jN

, i = 1, 2, ..., 2j−1N . Solving this system of algebraic equations

using MATLAB2015a, we can easily obtain the coefficients vector AT . Then we get

the numerical solutions h(4t) of Equation (4.8.10). The numerical solutions h(x) of

Equation (4.8.9) are obtained by h(x) = ATP 1/3ψ(x/4).

The numerical results for k = 8 (j = 3, N = 2) and k = 16 (j = 4, N = 2) are

shown in Figure 4.2. The numerical solutions are in good agreement with the exact

solutions, as can be seen from Figure 4.2. Table 4.3 displays the absolute errors for

various k values. We also see from Table 4.3 that as k increases, the errors become

smaller and the Bernoulli wavelet based numerical scheme is more accurate compared

with the Haar wavelets method.
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Chapter 5

Numerical solutions of multi-order
fractional differential equations by
Chebyshev wavelet method

5.1 Introduction

The motivation of the present chapter is to solve multi-order fractional differential

equations using the Chebyshev wavelet based numerical scheme. A fractional deriva-

tive is employed in accordance with the Caputo definition. Chebyshev wavelets are

the types of wavelets constructed from Chebyshev polynomials as their basis func-

tions. They have very excellent interpolating properties and give better accuracy for

numerical approximations. Chebyshev wavelet-based techniques have drawn a lot of

interest over the past ten years. The existence of four different types of Chebyshev

polynomials is well known. The first and second types of Chebyshev polynomials

are specific examples of symmetric Jacobi polynomials, whereas the third and fourth

types are particular examples of non-symmetric Jacobi polynomials. The first and
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second types of Chebyshev polynomials and their numerous applications have re-

ceived a lot of attentions. However, there aren’t many publications that focus on the

wavelets that can be used in fractional partial differential equations when they are

shaped by these two kinds of Chebyshev polynomials. Our curiosity in such wavelets

is motivated by this.

The use of Chebyshev wavelets approximations based on collocation spectral method

has a number of benefits. First, it is currently common for them to be characterized

by the use of exponentially decaying errors, contrary to the majority of numerical

methods. Second, while wavelet approximations successfully handle the problem’s

singularities, other numerical approaches perform poorly when used close to singu-

larities. In the end, Chebyshev wavelet-based numerical schemes do not experience

the instability problems pertaining with other numerical approaches because of their

result oriented. In this chapter, one of our goals is to extend the applications of the

third kind Chebyshev wavelets. Several wavelet functions with unknown coefficients

are used to estimate the solution. The numerical simulations are performed by using

Chebyshev wavelet method. The comparison shows that Chebyshev wavelet based

numerical scheme has good accuracy.
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5.2 Chebyshev wavelet based numerical scheme

Wavelets are a family of functions generated by dilation and translation of a single

function ψ(x), termed the mother wavelet. We get the following family of continuous

wavelets if the dilation and translation parameters c and d change continuously.

ψcd(x) = |c|−
1
2ψ

(
x− d
c

)
, c, d ∈ (R), c 6= 0.

If the translation and dilation parameters are chosen to have discrete values,that is,

c = c0
−p, d = qd0c0

−p,c0 > 1, d0 > 0 and p, q ∈ Z, then we have the following family

of discrete wavelets,

ψpq(x) = |c0|
p
2ψ(c0

px− qd0),

where the functions ψpq form a wavelet basis for L2(R). In particular, if c0 =

2 and d0 = 1, we can attain an orthonormal basis from ψpq(x) for L2(R).

A family of Chebyshev wavelets over the interval [0,1) is defined by

ψmn(t) =

2
j
2 Ũn(2jt− 2m+ 1), m−1

2j−1 ≤ t < m
2j−1 ,

0, otherwise,

where m = 1, 2, ..., 2j−1, n = 0, 1, ...,M−1, j,M ∈ N, Ũn(t) =
1√
π
Un(t) and Un(t)’s

denote the Chebyshev polynomials of third kind of degree n, which are mutually

orthogonal with respect to the weight function ω(t) =

√
(1+t)√
(1−t)

on the interval [-1,1]

and satisfy the following recursive formula U0(t) = 1, U1(t) = 2t − 1, Un+1(t) =

2tUn(t)− Un−1(t).
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5.3 Function approximation by Chebyshev wavelets

The Chebyshev wavelets can be used to expand any function f(t) ∈ L2[0, 1) as

f(t) =
∞∑
m=0

∞∑
n=0

dmnψmn(t), (5.3.1)

where dmn =< f(t), ψmn(t) >=

∫ 1

0

f(t)ψmn(t)ωm(t)dt, and < ., . > denotes the

inner product on L2
ωm [0, 1).

By truncating the infinite series in (5.3.1), f(t) is approximated as

f(t) ≈
2j−1∑
m=1

M−1∑
n=0

amnψmn(t) = ATΨ(t), (5.3.2)

where A and Ψ(t) are 2j−1M × 1 matrices, given by

A = [a10, a11, ..., a1(M−1), a20, ..., a2(M−1), ..., a2j−10, ..., a2j−1(M−1)]
T and (5.3.3)

Ψ(t) = [ψ10, ψ11, ..., ψ1(M−1), ψ20, ..., ψ2(M−1), ..., ψ2j−1(M−1)]
T . (5.3.4)

We define the Chebyshev wavelet matrix φn̂×n̂ at the collocation points

ti =
2i− 1

2jM
, i = 1, 2, ..., 2j−1M as φn̂×n̂ =

[
Ψ

(
1

2n̂

)
,Ψ

(
3

2n̂

)
, ...,Ψ

(
2n̂− 1

2n̂

)]
,

where n̂ = 2j−1M . Specifically, for j = 2 and M = 3, the Chebyshev wavelet matrix

becomes
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φ6×6 =



1.1284 1.1284 1.1284 0 0 0

−2.6329 −1.1284 0.3761 0 0 0

2.3821 −1.1284 −0.6269 0 0 0

0 0 0 1.1284 1.1284 1.1284

0 0 0 −2.6329 −1.1284 0.3761

0 0 0 2.3821 −1.1284 −0.6269


.

5.4 The Chebyshev wavelet Operational matrix of

fractional integration

In this section, we explore the basic idea of finding the fractional integration

operational matrix of the Chebyshev wavelets.

An n̂ set of Block pulse functions(BPFs) is defined as

bi(t) =

1, (i− 1)/n̂ ≤ t < i/n̂,

0, otherwise,
where i = 1, 2, 3, ..., n̂.

For t ∈ [0, 1), bi(t)bj(t) =

0, i 6= j,

bi(t), i = j,
and

∫ 1

0

bi(τ)bj(τ)dτ =

0, i 6= j,

1
n̂
, i = j.

In terms of n̂ set of BPFs, any function f(t) ∈ L2[0, 1) can be expanded as follows:

f(t) =
∑n̂

i=1 fibi(t) = fTBn̂(t),

where f = [f1, f2, ..., fn̂]T , fi =
1

n̂

∫ i/n̂

(i−1)/n̂

f(t)bi(t)dt and Bn̂(t) = [b1(t), b2(t), ..., bn̂(t)]T .

The Chebyshev wavelet matrix can be expressed as

Ψ(t) = φn̂×n̂Bn̂(t). (5.4.1)
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The block pulse operational matrix F β of fractional integration Iβ is defined as

(IβBn̂)(t) ≈ F βBn̂(t), (5.4.2)

where F β =
1

n̂β
1

Γ(β + 2)



1 ζ1 ζ2 ζ3 . . . ζn̂−1

0 1 ζ1 ζ2 . . . ζn̂−2

0 0 1 ζ1 . . . ζn̂−3

...
...

. . . . . .
...

...

0 0 . . . 0 1 ζ1

0 0 . . . 0 0 1


,

with ξj = (j + 1)β+1 − 2jβ+1 + (j − 1)β+1.

The fractional integration of order β ≥ 0 of the vector Ψ(t) defined in (5.3.4) can be

expressed as

(IβΨ)(t) ≈ P β
n̂×n̂Ψ(t), (5.4.3)

where P β
n̂×n̂ is called the Chebyshev wavelet operational matrix of order β ≥ 0. Using

(5.4.1) and (5.4.2), we obtain,

(IβΨ)(t) ≈ (Iβφn̂×n̂Bn̂)(t) = φn̂×n̂(IβBn̂)(t) ≈ φn̂.×n̂F
βBn̂(t) (5.4.4)

Moreover, from (5.4.3) and (5.4.4), we have

P β
n̂×n̂Ψ(t) ≈ (IβΨ)(t) ≈ φn̂×n̂F

βBn̂(t). (5.4.5)

Thus by considering (5.4.1) and (5.4.5), we attain

P β
n̂×n̂ ≈ φn̂×n̂F

βφ−1
n̂×n̂. (5.4.6)
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In particular, the Chebyshev wavelet operational matrix of the fractional integration

for j = 2,M = 3 and β = 0.5 yields

P 0.5
6×6 =



0.6691 0.1325 −0.0250 0.3827 −0.0539 0.0215

−0.5266 0.2205 0.1537 −0.3226 0.0282 −0.0023

0.0221 −0.2396 0.0318 0.0194 0.0104 −0.0091

0 0 0 0.6691 0.1325 −0.0250

0 0 0 −0.5266 0.2205 0.1537

0 0 0 0.0221 −0.2396 0.0318


.

As P β
n̂×n̂ contains many zeros, the proposed technique will have faster simulations.

P β
n̂×n̂ is done once and is utilized to solve fractional order differential equations just

as integer order differential equations.

5.5 Numerical Examples

In this section, some numerical examples are given to illustrate the efficiency

and the reliability of the Chebyshev wavelet based numerical technique and all the

numerical calculations are performed by MATLAB.

5.5.1 Example 10

Consider the multi-order fractional differential equation [27]

Dγu(t) = y0D
γ0u(t) + y1D

γ1u(t) + y2D
γ2u(t) + y3D

γ3u(t) + f(t), t ∈ [0, 1),

(5.5.1)
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where y0, y1, y2, y3 ∈ R, f(t) is a known function, m− 1 < γ ≤ m, m ∈ Z+,

γ0, γ1, γ2, γ3 ≤ γ with the initial states

u(j)(0) = cj ∈ R , j = 0, 1, ...,m− 1. (5.5.2)

Approximating Dγu(t) as ATΨ(t), we have (5.5.3)

Dγ0u(t) = ATP γ−γ0Ψ(t), (5.5.4)

Dγ1u(t) = ATP γ−γ1Ψ(t), (5.5.5)

Dγ2u(t) = ATP γ−γ2Ψ(t), (5.5.6)

Dγ3u(t) = ATP γ−γ3Ψ(t) and (5.5.7)

u(t) = ATP γΨ(t) +
m−1∑
j=0

u(j)(0)
tj

j!
. (5.5.8)

Similarly, the function f(t) may be expanded by the Chebyshev wavelets as

f(t) = F TΨ(t), (5.5.9)

where F T is a known constant vector.

Using Equations 5.5.3-5.5.7 and 5.5.9) in Equation 5.5.1, we attain

ATΨ(t) = y0A
TP γ−γ0Ψ(t) + y1A

TP γ−γ1Ψ(t) + y2A
TP γ−γ2Ψ(t)

+y3A
TP γ−γ3Ψ(t) + F TΨ(t),

Since Ψ(t) = φn̂×n̂Bn̂(t), we have

ATφn̂×n̂Bn̂(t) = y0A
TP γ−γ0φn̂×n̂Bn̂(t) + y1A

TP γ−γ1φn̂×n̂Bn̂(t)

+y2A
TP γ−γ2φn̂×n̂Bn̂(t) + y3A

TP γ−γ3φn̂×n̂Bn̂(t) + F Tφn̂×n̂Bn̂(t).

(5.5.10)
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Table 5.1: Absolute errors of example 10 for various values of n̂
t n̂ = 24 n̂ = 48 n̂ = 96 n̂ = 192

(j = 4,M = 3) (j = 5,M = 3) (j = 6,M = 3) (j = 7,M = 3)
0.1 5.6757e-04 1.4109e-04 3.5200e-05 8.7901e-06
0.2 5.2023e-04 1.2917e-04 3.2520e-05 8.0929e-06
0.3 4.7091e-04 1.0846e-04 2.4930e-05 6.1988e-06
0.4 1.6459e-05 4.3184e-05 9.2216e-06 1.5083e-06
0.5 5.5512e-03 5.7762e-04 8.1605e-05 1.4377e-05
0.6 1.2675e-03 5.6763e-04 1.4110e-04 3.1709e-05
0.7 5.6379e-03 1.4022e-03 2.9665e-04 7.5132e-05
0.8 8.3151e-03 2.2370e-03 6.5392e-04 1.6275e-04
0.9 2.2315e-02 4.3762e-03 1.1157e-03 2.9777e-04

The Equation 5.5.10 can be transformed into a system of algebraic equations at

the collocation points ti = 2i−1
2jM

, i = 1, 2, ..., 2j−1M . Solving this system, we can obtain

the Chebyshev wavelet co-efficient vector AT . Then using Equation 5.5.8, we get the

approximate output response u(t).

In particular, if we choose γ = 2, c0 = c1 = 0, y0 = y2 = −1, y1 = 2, y3 = 0,

γ0 = 0, γ1 = 1, γ2 = 1
2

and f(t) = t7 + 2048
429
√
π
t6.5 − 14t6 + 42t5 − t2 − 8

3
√
π
t1.5 + 4t− 2,

then the exact solution of Equation 5.5.1 is u(t) = t7 − t2. The absolute errors in

Table 5.1 confirm the convergency and the reliability of the Chebyshev wavelet based

numerical technique.
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5.5.2 Example 11

In the above example, suppose γ = 2, c0 = c1 = 0, y0 = y2 = −1,

y1 = 0, y3 = 2, γ0 = 0, γ2 = 2
3
∈ (0, 1), γ3 = 5

3
∈ (1, 2),

and f(t) = t3 + 6t− 12

Γ(7
3
)
t4/3 +

6

Γ(10
3

)
t7/3.

The exact solution in this case is u(t) = t3. Table 5.2 shows that the absolute

Table 5.2: Absolute errors of example 11 for various values of n̂
t n̂ = 24 n̂ = 48 n̂ = 96 n̂ = 192

(j = 4,M = 3) (j = 5,M = 3) (j = 6,M = 3) (j = 7,M = 3)
0.1 1.3231e-03 1.0852e-03 1.0218e-03 1.0057e-03
0.2 9.0992e-03 8.2858e-03 8.0759e-03 8.0200e-03
0.3 2.9622e-02 2.7704e-02 2.7186e-02 2.7049e-02
0.4 6.9620e-02 6.5489e-02 6.4395e-02 6.4103e-02
0.5 1.3600e-01 1.2792e-01 1.2577e-01 1.2520e-01
0.6 2.3717e-01 2.2155e-01 2.1746e-01 2.1638e-01
0.7 3.8203e-01 3.5317e-01 3.4568e-01 3.4370e-01
0.8 5.8250e-01 5.3030e-01 5.1681e-01 5.1326e-01
0.9 8.5504e-01 7.6151e-01 7.3754e-01 7.3123e-01

Figure 5.1: Comparison of the numerical and exact solutions for example 11

errors attained by the Chebyshev wavelet based numerical technique with M = 3 and
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the values of j increasing become smaller and smaller. Figure 5.1 also depicts the

convergency and the reliability of the Chebyshev wavelet based numerical technique.

5.5.3 Example 12

Consider the non-homogeneous multi-order fractional differential equation [63]

aDαu(t) + bDβu(t) + cu(t) = g(t), t ∈ [0, 1), (5.5.11)

where a 6= 0, b, c ∈ R, g(t) is a known function, m − 1 < α ≤ m, m ∈ Z+, β ≤ α

with the initial states u(j)(0) = uj ∈ R, j = 0, 1, ...,m− 1.

Now, suppose α = 2, β = 0.5, a = b = c = 1, g(t) = 6t3
(

t−α

Γ(4−α)
− t−β

Γ(4−β)

)
and

u0 = u1 = 0. Using the Chebyshev wavelet based numerical technique, we arrive

ATΨ(t) + ATP 0.5
n̂×n̂Ψ(t) + ATP 2

n̂×n̂Ψ(t) = GTΨ(t).

Since Ψ(t) = φn̂×n̂Bn̂(t), we have

ATφn̂×n̂Bn̂(t) + ATP 0.5
n̂×n̂φn̂×n̂Bn̂(t) + ATP 2

n̂×n̂φn̂×n̂Bn̂(t) = GTφn̂×n̂Bn̂(t). (5.5.12)

Table 5.3: Maximum absolute errors of example 12 for various values of n̂
Legendre Haar Chebyshev

β n̂=24 n̂=96 n̂=32 n̂=128 n̂=32 n̂=128
0.25 8.546× 10−4 5.343× 10−5 4.807× 10−4 3.005× 10−5 1.4205× 10−5 5.1634× 10−6
0.50 7.963× 10−4 4.978× 10−5 4.479× 10−4 2.800× 10−5 1.0680× 10−4 5.3760× 10−7
0.75 7.405× 10−4 4.631× 10−5 4.166× 10−4 2.605× 10−5 1.0605× 10−4 1.1484× 10−5

The equation Equation 5.5.12 can be transformed into a system of algebraic equa-

tions at the collocation points. Solving this system, we can attain the co-efficient
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vector AT . Maximum absolute errors attained by Legendre wavelets, Haar wavelets

and the Chebyshev wavelets are compared in Table 5.3. Also Table 5.3 shows that

the Chebyshev wavelet based numerical technique gives better results compared to

Haar and Legendre wavelets.
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Chapter 6

Applications of Bernoulli wavelets

6.1 Introduction

In this chapter, numerical solutions of fractional electrical circuits, namely

LC(Inductor-Capacitor) circuit, RL(Resistor-Inductor) circuit, RC(Resistor-Capacitor)

circuit and RLC(Resistor-Inductor-Capacitor) circuit are obtained using a numerical

method based on Bernoulli wavelets.

Fractional models for electrical circuits have already been proposed in [4]. In this

regard, Gomez et al. [26] have obtained solutions of RL and RC circuits involving

caputo derivatives using numerical Laplace transform. Besides, they have also stud-

ied RLC circuit in time domain and found solution with respect to the Mittag-Leffler

function. Shah et al. [59] considered the Laplace transform of fractional derivatives in

the caputo sense to get the solutions of RL electrical circuit described by a fractional

differential equation of the order 0 < β ≤ 1.

Atangana et al. [8] investigated the RLC circuit model utilising the fractional
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derivative without singular kernel. To study fractional electrical circuits, Legendre

wavelet has been applied by Arora and Chauhan [7]. Sahar Altaf and Sumaira Yousuf

Khan [5])recently made the discovery of the numerical solutions of fractional circuits

defined by fractional derivatives.

The numerical solutions to the corresponding problems that were obtained using

the Bernoulli wavelet method are then compared with the classical solutions. The

comparison demonstrates that Bernoulli wavelet based numerical scheme has good

accuracy.

6.2 Applications

This section deals with the applicability and the simplicity of the numerical

method based on Bernoulli wavelets for solving fractional differential equations of the

electrical circuits LC, RL, RC and RLC.

6.2.1 Example 13

Consider the fractional differential equation of an LC Circuit with charged capacitor

and inductor,

DβR(t) + ρ0
2R(t) = 0, β ∈ [1, 2], where ρ0

2 =
1

LC
(6.2.1)

with R(0) = R0 and R′(0) = 0.

The classical solution for β = 2 is R(t)LC = R0cos(ρ0t). (6.2.2)
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Table 6.1: Numerical results of LC circuit( L = 1, C = 1, R0 = 0.01 and for β = 2)
t u = 2, Q = 2 u = 3, Q = 2 u = 4, Q = 2 CS

1/16 1.0050× 10−3 9.9740× 10−3 9.9740× 10−3 9.9805× 10−3
3/16 9.7439× 10−3 9.8186× 10−3 9.8184× 10−3 9.8247× 10−3
5/16 9.4378× 10−3 9.5101× 10−3 9.5096× 10−3 9.5157× 10−3
7/16 9.1317× 10−3 9.0535× 10−3 9.0525× 10−3 9.0581× 10−3
9/16 8.5201× 10−3 8.4557× 10−3 8.4542× 10−3 8.4592× 10−3
11/16 7.6764× 10−3 7.7262× 10−3 7.7240× 10−3 7.7283× 10−3
13/16 6.8327× 10−3 6.8762× 10−3 6.8733× 10−3 6.8769× 10−3
15/16 5.9890× 10−3 5.9191× 10−3 5.9154× 10−3 5.9181× 10−3

Approximating DβR(t) as CTψ(t), we have (6.2.3)

R(t) = CTP βψ(t) + tR′(0) +R(0) (6.2.4)

Using the initial conditions, R(t) = CTP βψ(t) +R0 (6.2.5)

Thus CTψ(t) + ρ0
2[CTP βψ(t) +R0] = 0 (6.2.6)

Figure 6.1: Current versus Time graph ( L = 1, C = 1, R0 = 0.01 and β = 2)
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Solving the Equation 6.2.6 at the collocation points, we get the Bernoulli coef-

ficient vector CT . The numerical solutions of the LC circuit for β = 2 and various

values of q′ are given in Table 6.1. Also, from Fig 6.1, it is graphically shown that the

Bernoulli wavelet based numerical approach reaches a higher precision of accuracy.

6.2.2 Example 14

Consider the fractional differential equation of an RL Circuit with only charged ca-

pacitor and resistor

DβQ(t) + κQ(t) = ρ, β ∈ (0, 1], (6.2.7)

with the initial state Q(0) = Q0, where κ = R
L

, ρ = V
L

The classical solution for β = 1 is

Q(t) =

[
Q0 −

V L

R

]
e−κt +

V L

R
(6.2.8)

Table 6.2: Numerical results of RL circuit( R = 10, L = 1, Q0 = 0.01, V = 10 and for
β = 1 )

t u = 2, Q = 2 u = 3, Q = 2 u = 4, Q = 2 CS

1/16 4.3778× 10−1 3.9077× 10−1 4.2531× 10−1 4.7009× 10−1

3/16 6.8222× 10−1 8.5941× 10−1 8.423× 10−1 8.4818× 10−1

5/16 9.2667× 10−1 9.6756× 10−1 9.5674× 10−1 9.5650× 10−1

7/16 11.7111 9.9251× 10−1 9.8813× 10−1 9.8754× 10−1

9/16 9.9306× 10−1 9.9827× 10−1 9.9674× 10−1 9.9643× 10−1

11/16 9.9607× 10−1 9.9960× 10−1 9.9911× 10−1 9.9898× 10−1

13/16 9.9909× 10−1 9.9991× 10−1 9.9975× 10−1 9.9971× 10−1

15/16 10.0212 9.9998× 10−1 9.9993× 10−1 9.9992× 10−1

Approximating DβQ(t) as CTψ(t), we have (6.2.9)
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Q(t) = CTP βψ(t) +Q(0) (6.2.10)

Using the initial conditions, we attain

Q(t) = CTP βψ(t) +Q0 (6.2.11)

Figure 6.2: Current versus Time graph ( R = 10, L = 1, Q0 = 0.01, V = 10 and
β = 1)

Thus CTψ(t) + κ[CTP βψ(t) +Q0] = ρ (6.2.12)

By solving the above matrix equation at the collocation points, we obtain Bernoulli

coefficient vector CT . The Table 6.2 shows the numerical solutions of the RL circuit

for β = 1 and various values of q′. As it is clearly seen in Fig. 6.2, the fractional RL

circuit exhibits similar graphical behaviour to the classical solution for β = 1.
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6.2.3 Example 15

Consider the fractional differential equation of an RC circuit with resistance and

charged capacitance

DβQ(t) + µQβ(t) = 0, β ∈ [0, 1] (6.2.13)

with the condition Q(0) = Q0, where µ = 1
RC

.

The classical solution for β = 1 is Q(t) = Q0e
−µt (6.2.14)

Table 6.3: Numerical results of RC circuit ( R = 10, C = 1, Q0 = 20 and for β = 1 )
t u = 3, Q = 2 u = 4, Q = 2 u = 5, Q = 2 CS

1/16 19.8758 19.8756 19.8753 19.8754
3/16 19.6289 19.6287 19.6284 19.6285
5/16 19.3850 19.3849 19.3846 19.3847
7/16 19.1443 19.1440 19.1438 19.1439
9/16 18.9064 18.9062 18.9060 18.9061
11/16 18.6715 18.6714 18.6711 18.6712
13/16 18.4396 18.4394 18.4392 18.4394
15/16 18.2105 18.2104 18.2102 18.2102

Approximating DβQ(t) as CTψ(t), we have (6.2.15)

Q(t) = CTP βψ(t) +Q(0) (6.2.16)

Using the initial condition, we attain

Q(t) = CTP βψ(t) +Q0 (6.2.17)
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Figure 6.3: Voltage versus Time graph ( R = 10, C = 1, Q0 = 20 and β = 1 )

Thus CTψ(t) + µ[CTP βψ(t) +Q0] = 0 (6.2.18)

Solving this system at the collocation points, we obtain Bernoulli coefficient vector

CT . In Table 6.3, the numerical solutions for the RC circuit with β = 1 and various

values of q′ are provided. In Fig. 6.3, graphical analysis for various values of q′ is also

displayed. As seen in Fig. 6.3, the graphical behaviour of the fractional RC circuit

resembles that of the classical solution for β = 1.

6.2.4 Example 16

Consider the fractional differential equation of an RLC circuit with resistance, induc-

tance and charged capacitance

D2βQ(t) + ρQβ(t) + ηQ(t) = 0, β ∈ [1/2, 1] (6.2.19)
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with the conditions Q(0) = Q0 and Q′(0) = 0, where η = 1
LC

and ρ = R
L

.

The classical solution for β = 1 is

Q(t) =
Q0

k1 − k2

[
−k2e

k1t + k1e
k2t
]
, (6.2.20)

where k1 =
−ρ+

√
ρ2 − 4η

2
, k2 =

−ρ−
√
ρ2 − 4η

2
.

Table 6.4: Numerical results of RLC circuit (R=10, L=10, C=10, Q0 = 0.01 and for
β = 1)

t u = 2, Q = 2 u = 3, Q = 2 u = 4, Q = 2 CS

0.1 0.01096 0.01093 0.01095 0.0099991
0.2 0.01174 0.01181 0.0118 0.0099981
0.3 0.01253 0.01259 0.01259 0.0099959
0.4 0.01331 0.01328 0.01329 0.0099930
0.5 0.01409 0.01396 0.01393 0.0009989
0.6 0.01451 0.01449 0.01450 0.0099953
0.7 0.01498 0.01502 0.01501 0.010006
0.8 0.01545 0.01548 0.01547 0.010005
0.9 0.01592 0.01589 0.01590 0.010009

Approximating D2βQ(t) as CTψ(t), we have (6.2.21)

DβQ(t) = CTP βψ(t) +Q(0) (6.2.22)

Q(t) = CTP 2βψ(t) +Q(0)
tβ

Γ(β + 1)
+Q0 (6.2.23)

Thus CTψ(t) + ρ[CTP βψ(t) +Q0] + η[CTP 2βψ(t) +Q(0)
tβ

Γ(β + 1)
+Q0] = 0 (6.2.24)

Solving the Equation 6.2.24 at the collocation points, we obtain Bernoulli coefficient

vector CT . In Table 6.4, the numerical solutions for the RLC circuit for β = 1 and
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Figure 6.4: Current versus Time graph ( R = 10, L = 10, C = 10, Q0 = 0.01 and
β = 1 )

various values of q′ are provided. Fig. 6.4 also displays the graphical analysis for

various values of q′. As can be observed in Fig. 6.4, the fractional RLC circuit’s

graphical behaviour for β = 1 is very similar to the classical solution.
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Conclusion

In this thesis, we have discussed both analytical and numerical solutions

of fractional differential equations by using fractional integral transforms with expo-

nential type kernels and wavelet based numerical schemes. First, with the help of a

generalized fractional integral transform with exponential type kernel and Aboodh

transform, we obtained analytical solutions of fractional differential equations. We

also discussed the properties of these transform techniques and proved the simplicity

and the effectiveness of these transform techniques for fractional differential equa-

tions. Many researchers are interested in the formation of new integral transforms

because of their applications in science and engineering fields.

As certain wavelet-based algorithms appear to be somewhat complex and need

a lot of processing time, this encourages us to think of efficient, straightforward, and

fast wavelet-based numerical techniques for the fractional differential equations.

The main advantage of wavelet based numerical schemes is its simplicity, small

computation costs and less computational errors due to the sparsity of the transform

matrices and the small number of significant wavelet coefficients. Additionally, the
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inaccuracy could be greatly decreased while the level of resolution might be increased

with more collocation points.

Euler wavelet-based numerical scheme is quite simple, effective and expedient for

obtaining numerical solutions of fractional differential equations in compared with

analytical approaches via Finite Difference Method, Admian Decomposition Method,

Finite Differential Transform Method, Variational Iteration Method and numerical

approaches via Legendre Wavelet Method, Haar Wavelet Method. Next, we have

obtained the numerical solutions of fractional differential equations with variable co-

efficients by an efficient numerical scheme based on Bernoulli wavelets and proved

the fast convergency of this method compared with Adams type Predictor-corrector

method and Haar wavelet method. After that, we have attained numerical solutions of

multi-order fractional differential equations by Chebyshev wavelet method. Finally,

the application of Bernoulli wavelets based numerical scheme in solving fractional

electrical circuits was discussed.

As the numerical results have been represented by graphs and tables which depict

the efficiency and convergency of numerical solutions, it is evident from our find-

ings that the generalized fractional integral transform with exponential type kernel

and wavelet based numerical schemes are simple and efficient for solving fractional

differential equations. Many real-world fractional models in the fields of economics,

computer science, psychology, medicine, etc. can be investigated with the help of
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integral transforms and wavelet based numerical schemes. Moreover, the numerical

schemes based on Euler wavelets, Bernoulli wavelets and Chebyshev wavelets could

be effectively applied for higher order fractional integro differential equations arising

in science and engineering fields.
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[26] J. Gómez, C. Astorga, R. Escobar, M. Medina, R. Guzmán, A. Gonzáleg, and
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Abstract
In this article, a numerical scheme based on Euler wavelets for solving fractional differen-
tial equations is proposed. An Euler wavelet operational matrix of fractional integration is
derived and employed to reduce fractional differential equations into simultaneous algebraic
equations. Some examples are given to illustrate the applicability and the high accuracy of
the proposed numerical scheme.
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1 Introduction

The fractional calculus is an ancient mathematical tool that is 300 years old and it has been
developed progressively up to now. Fractional calculus is the generalization of ordinary
calculus to an arbitrary order. In the past few decades, many fractional models have attracted
great attention in variety of disciplines, such as chaotic systems (Ma and Li 2020; Hajipour
et al. 2018), bioengineering (Magin 2012), dynamics of interfaces between nano-particles
and substrates (Chow 2015), optimal control problems (Jajarmi et al. 2018), and non-linear
dynamical systems (Baleanu et al. 2018).
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However, most of the fractional differential equations do not have analytical solutions.
Owing to the wide range of applications of fractional differential equations, remarkable
interest has been initiated for developing numerical techniques to find solutions of fractional
differential equations. These numerical techniques include Separation of variables (Shen
et al. 2019), Variational iteration method (Ziane and Cherif 2018), Adomian decomposition
method (Li and Pang 2020), Finite difference method (Karamali et al. 2019), Homotopy
analysis method (Demir et al. 2019; Kundu 2019), Homotopy perturbation method (Javeed
et al. 2019; Khader 2012), etc.

Besides these numerical techniques, many researchers have applied comparatively a new
numerical technique based on wavelets for analyzing problems of high computational com-
plexity and have proved that wavelets are powerful tools to explore new directions in solving
fractional differential equations.

In recent years, wavelets have been widely used for data segmentation, data compression,
and time–frequency analysis. Wavelets permit the accurate representation of a variety of
functions and establish a connection with fast numerical algorithms(Beylkin et al. 1991).

Recently, the operational matrices of fractional-order integrations for Haar wavelets (Xie
et al. 2019; Oruc et al. 2019), Chebyshev wavelets (Farooq et al. 2019; Celik 2018), Second
kind Chebyshev wavelets (Wang and Fan 2012), Legendre wavelets (ur Rehman and Khan
2011; Chang and Isah 2016), Bernoulli wavelets (Keshavarz et al. 2019; Rahimkhani et al.
2017), Ultra spherical wavelets (Abd-Elhameed and Youssri 2015; Doha et al. 2016), Third
kind Chebyshev wavelets (Zhou and Xiaoyong 2016), CAS wavelets (Wang and Yin 2017),
and Euler wavelets (Wang and Zhu 2017; Dincel 2019;Wang et al. 2019) have been proposed
to solve fractional differential equations.

Themain characteristic ofwavelet-based techniques is that after the discretization process,
the co-efficient matrix of the algebraic equations is obtained which is a sparse matrix. The
resulting matrix decreases the computational load and expedites the simulation.

The proposed numerical technique is based on Euler wavelet approximations. We first
construct theEulerwavelets, and then, by expanding thesewavelets into blockpulse functions,
we find the operational matrix of fractional-order integration of Euler wavelets. The resulting
matrix is used to reduce the solution of the fractional differential equations to the solution of
algebraic equations.

We organize the rest of the paper as follows. In Sect. 2, we introduce some basic defi-
nitions and discuss some properties of fractional calculus. Section 3 is devoted to the basic
formulation of Euler wavelets and operational matrix of the fractional-order integration for
Euler wavelets. In Sect. 4, we report our numerical findings and demonstrate the accuracy of
the proposed numerical scheme by considering some numerical examples. The conclusion
is given in Sect. 5.

2 Preliminary concepts

In this section, we present some basic definitions and mathematical preliminary facts of
fractional calculus.

Definition 2.1 The Riemann–Liouville fractional integral of order γ ≥ 0 of f (x) ∈ L2(R)

is defined as:

(I γ f )(x) =
{

1
Γ (γ )

∫ x
0

f (ζ )

(x−ζ )(1−γ ) dζ, γ > 0

f (x), γ = 0.
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If f (x), g(x) ∈ L2(R) and γ ≥ 0, λ, μ ∈ (R), then we have the following properties:

(i)I γ (λ f (x) + μg(x)) = λI γ f (x) + μI γ g(x)

(i i)I γ xu = Γ (u + 1)

Γ (u + 1 + γ )
xu+γ , u > −1

The Riemann–Liouville fractional derivative of order γ ≥ 0 of f (x) ∈ L2(R) is normally
defined as:

(Dγ f )(x) =
(

d

dx

)m (
Im−γ f

)
(x), m − 1 < γ ≤ m,

where m is a positive integer and x > 0.

Definition 2.2 The Caputo fractional derivative of order γ ≥ 0 of f (x) ∈ L2(R) is defined
as:

(Dγ f )(x) = 1

Γ (m − γ )

∫ x

0
(x − ζ )m−γ−1 f (m)(ζ )dζ, m − 1 < γ ≤ m,

where m is a positive integer and x > 0.
If f (x) ∈ L2(R) and γ ≥ 0, then it has the following two basic properties:

(i)(Dγ I γ f )(x) = f (x)

(i i)(I γ Dγ f )(x) = f (x) −
m−1∑
j=0

f ( j)(0+)
x j

j ! , m − 1 < γ ≤ m,

wherem is a positive integer, x > 0 and f ( j)(0+) := limx→0+ D j f (x), j = 0, 1, . . . ,m−1.

3 Euler wavelets

In this section, we discuss Euler polynomials and some of their properties to construct Euler
wavelets.

3.1 Wavelets and Euler wavelets

Wavelets consist of a family of functions generated from dilations and translations of a single
function ψ(x), called the mother wavelet. If the dilation parameter c and the translation
parameter d change continuously, we attain the following family of continuous wavelets:

ψcd(x) = |c|− 1
2 ψ

(
x − d

c

)
, c, d ∈ (R), c �= 0.

If the translation and dilation parameters are chosen to have discrete values, that is, c =
c0−p, d = qd0c0−p ,c0 > 1, d0 > 0 and p, q ∈ Z

+, then we have the following family of
discrete wavelets:

ψpq(x) = |c0| p
2 ψ(c0

px − qd0),

where the functionsψpq form awavelet basis for L2(R). In particular, if c0 = 2 and d0 = 1,
we can attain an orthonormal basis from ψpq(x) for L2(R).
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The Euler wavelets are defined on the interval [0,1) as:

ψmn(x) =
{
2

j−1
2 Ẽn(2 j−1x − m + 1), m−1

2 j−1 ≤ x < m
2 j−1

0, otherwise

for m = 1, 2, . . . 2 j−1, n = 0, 1, . . . M − 1, and j, M ∈ N:

where Ẽn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, n = 0

1√
(
2(−1)n−1(n!)2

(2n)! )E2n+1(0)

En(x), n > 0,

the co-efficient

1√
(
2(−1)n−1(n!)2

(2n)! )E2n+1(0)

is for normality, the dilation parameter is 2−( j−1) and the translation parameter is (m −
1)2−( j−1). Here, En(x) denote Euler polynomials of degree n which can be defined by the
generating functions:

2exs

es + 1
=

∞∑
n=0

En(x)
sn

n! , |s| < π.

We can also define the first kind Euler polynomials by the relation:

n∑
j=0

(
n

j

)
E j (x) + En(x) = 2xn,

where
(n
j

)
is a binomial co-efficient.

The first few Euler polynomials are:

E0(x) = 1, E1(x) = x − 1

2
, E2(x) = x2 − x, E3(x) = x3 − 2

3
x2 + 1

4
, . . .

These polynomials satisfy the following formula:∫ 1

0
En(x)Em(x)dx = (−1)m−1 n!(m + 1)!

(n + m + 1)! En+m+1(0), n,m ≥ 1,

and the Euler polynomials form a complete basis for L2(R).

3.2 Function approximation

A function f (x) ∈ L2[0, 1) can be expressed in terms of the Euler wavelets as:

f (x) =
∞∑

m=0

∑
nεZ

Cmnψmn(x), (1)

where the co-efficients Cmn are given by:

Cmn =< f (x), ψmn >=
∫ 1

0
f (x)ψmn(x)dx .
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By truncating the infinite series in (1), f (x) is approximated as:

f̃ (x) ≈
2 j−1∑
m=1

M−1∑
n=0

Cmnψmn(x) = CTψ(x),

where the co-efficient vector C and the Euler function vector ψ(x) are 2 j−1M × 1 matrices,
given by:

C = [C10,C11, . . . ,C1(M−1),C20, . . .C2(M−1), . . . ,C2 j−10, . . .C2 j−1(M−1)]T

and

ψ(x) = [ψ10, ψ11, . . . ψ1(M−1), ψ20, . . . ψ2(M−1), . . . ψ2 j−10, . . . ψ2 j−1(M−1)]T. (2)

We define the Euler wavelet co-efficient matrix φk×k , k = 2 j−1M at the collocation points
xi = 2i−1

2k , i = 1, 2 . . . k as:

φk×k =
[
ψ

(
1

2k

)
, ψ

(
3

2k

)
, . . . , ψ

(
2k − 1

2k

)]
.

Specifically, the Euler wavelet co-efficient matrix for j = 2 and M = 3 becomes:

φ6×6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.4142 1.4142 1.4142 0 0 0
−0.9428 0 0.9428 0 0 0
−0.4811 −0.8660 −0.4811 0 0 0

0 0 0 1.4142 1.4142 1.4142
0 0 0 −0.9428 0 0.9428
0 0 0 −0.4811 −0.8660 −0.4811

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Correspondingly, we have:

f̃k = [ f̃ (x1), f̃ (x2) . . . f̃ (xk)] = CTφk×k .

Since the Euler wavelet co-efficient matrix φk×k is invertible, the Euler wavelet co-efficient
vector CT can be attained by:

CT = f̃kφ
−1
k×k .

3.3 Error Analysis

Theorem 3.1 If the function f : [0, 1) → R is n+1 times continuously differentiable, that is,
and f ∈ Cn+1[0, 1), then f̃ (x) = CTψ(x) approximates f (x) with mean error bounded:

‖ f (x) − f̃ (x)‖2 ≤
√
2M̃

2( j−1)(n+1)(n + 1)!√(2n + 3)
, where M̃ = maxx∈[0,1)| f (n+1)(x)|.

Proof We first divide the interval [0,1) into subintervals I j,m = [m−1
2 j−1 , m

2 j−1 ),m =
1, 2, . . . 2 j−1, j ∈ N with the restriction that f̃ (x) is a polynomial of degree less than n + 1
that approximates f with minimum mean error. Using Lemma 3 (Wang and Zhu 2017), we
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attain:

‖ f (x) − f̃ (x)‖22 =
∫ 1

0
[ f (x) − f̃ (x)]2dx

=
∑
m

∫
I j,m

[ f (x) − f̃ (x)]2dx

≤
∑
m

⎡
⎣√

(2)M̃m( 1
2 j−1 )

2n+3
2

(n + 1)!√(2n + 3)

⎤
⎦
2

≤ 2M̃2

2( j−1)(2n+2)[(n + 1)!]2(2n + 3)

where M̃m = maxx∈I j,m | f (n+1)(x)|.
By taking the square roots, we arrive at the upper bound. The error of the approximation
f̃ (x) of f (x), therefore, decays like 2−(n+1)( j−1). Meanwhile, we notice that the number of
wavelets is k = 2 j−1M , where M is the degree of the Euler polynomials and usually takes
small values in computation. When M is fixed, with the values of j increasing, the numerical
results become more accurate and we infer that the approximate solutions converge to the
exact solution. ��

3.4 Operational matrix of the fractional integration

We now explore the basic idea of finding the fractional integration operational matrix of the
Euler wavelets.

A k-set of block pulse functions (BPFs) over the interval [0, 1) is defined as:

bi (x) =
{
1, (i − 1)/k ≤ x < i/k

0, otherwise,

where i=1,2,3...k, k ∈ N, For x ∈ [0, 1):

bi (x)b j (x) =
{
0, i �= j

bi (x), i = j

and ∫ 1

0
bi (x)b j (x) =

{
0, i �= j
1
k , i = j .

It is known that any square integrable function f (x) defined over [0,1) can be expanded in
terms of BPFs as:

f (x) 

k∑

i=1

fi bi (x) = f TBk(x)

where f = [ f1, f2, . . . fk]T, fi = 1

k

∫ i/k

(i−1)/k
f (x)bi (x)dx and Bk(x) = [b1(x), b2(x), . . . bk(x)]T.

There is a relation between the block pulse functions and Euler wavelets:

ψ(x) = φk×k Bk(x). (3)
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The block pulse operational matrix of the fractional integration Fα ,α ≥ 0 is defined as in
(Kilicman 2007), that is:

(I αBk)(x) ≈ FαBk(x), (4)

where

Fα = 1

kα

1

Γ (α + 2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ξ1 ξ2 ξ3 . . . ξk−1

0 1 ξ1 ξ2 . . . ξk−2

0 0 1 ξ1 . . . ξk−3
...

...
. . .

. . .
...

...

0 0 . . . 0 1 ξ1
0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

withξs = (s + 1)α+1 − 2sα+1 + (s − 1)α+1.

The fractional integrationof orderα ≥ 0of the vectorψ(x)defined in (2) canbe approximated
as:

(Iαψ)(x) ≈ Pα
k×kψ(x), (5)

where Pα
k×k is called Euler wavelet operational matrix of order α ≥ 0. Using (3) and (4), we

attain:

(Iαψ)(x) ≈ (Iαφk×k Bk)(x) = φk×k(I
αBk)(x) ≈ φk×k F

αBk(x). (6)

Thus, combining (5) and (6), we attain:

Pα
k×kψ(x) ≈ (Iαψ)(x) ≈ φk×k F

αBk(x) = φk×k F
αφ−1

k×kψ(x) and so

Pα
k×k ≈ φk×k F

αφ−1
k×k .

For example, the Euler wavelet operational matrix of the fractional integration for j =
2, M = 3 and α = 0.5 yields:

P0.5
6×6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.4616 0.3150 −0.1631 0.5012 −0.1509 0.1404
0.0878 0.2243 0.4203 0.0717 −0.0449 0.0626

−0.1305 −0.1591 0.2354 −0.2110 0.0615 −0.0545
0 0 0 0.4616 0.3150 −0.1631
0 0 0 0.0878 0.2243 0.4203
0 0 0 −0.1305 −0.1591 0.2354

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since the operational matrix P0.5
6×6 contains many zeros, the calculations are fast using this

phenomena.

4 Numerical examples

To demonstrate the efficiency of the proposed numerical scheme based on Euler wavelets,
we discuss some numerical examples.

Example 4.1 Consider:

ADα y(x) + BDβ y(x) + Cy(x) = g(x),with

y(0) = y0, y
′(0) = y1, 0 < β < α ≤ 2, 0 ≤ x < 1, (7)
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Table 1 Comparisons between numerical solutions attained by proposed numerical scheme (EWM) for M =
3 and various numerical methods

x yexact yEWM
( j = 9)

yFDM
(Arikoglu
and Ozkal
2007)

yADM
(Momani
and Odibat
2007)

yFDTM
(Arikoglu
and Ozkal
2007)

yVIM
(Momani
and Odibat
2007)

yLWM( j = 10)
(ur Rehman and
Khan 2011)

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 0.039750 0.039750 0.039473 0.039874 0.039750 0.039874 0.039750

0.2 0.157036 0.157036 0.157703 0.158512 0.157036 0.158512 0.157035

0.3 0.347370 0.347370 0.352402 0.353625 0.347370 0.353625 0.347370

0.4 0.604695 0.604695 0.620435 0.622083 0.604695 0.622083 0.604695

0.5 0.921768 0.921768 0.957963 0.960047 0.921768 0.960047 0.921767

0.6 1.290457 1.290456 1.360551 1.363093 1.290457 1.363093 1.290456

0.7 1.702008 1.702008 1.823267 1.826257 1.702008 1.826257 1.702007

0.8 2.147287 2.147286 2.340749 2.344224 2.147287 2.344224 2.147286

0.9 2.617001 2.617000 2.907324 2.911278 2.617001 2.911278 2.617000

where A �= 0, B,C ∈ R, g(x) ∈ L2[0, 1), and y(x) is the solution to be determined(ur
Rehman and Khan 2011).

For α = 2, β = 3
2 , Eq. (7) reduces to the Bagley–Torvik equation which arises in mod-

elling the motion of a rigid plate immersed in a Newtonian fluid.

Suppose Dα y(x) 
 CTψ(x) and g(x) 
 FTψ(x), where FT = [g1, g2, ..., gk] (8)

Then Dβ y(x) = Iα−β(Dα y)(x) = CTPα−β
k×k ψ(x) (9)

and

y(x) = CTPα
k×kψ(x) + y0 + y1x . (10)

Using (8), (9), and (10) in (7), we have the following system of algebraic equations:

ACTψ(x) + BCTPα−β
k×k ψ(x) + C[CTPα

k×kψ(x) + y0 + y1(x)] = FTψ(x).

If α = 2, β = 1
2 , A = B = C = 1, g(x) = 8 and y0, y1 = 0, the numerical solutions of (7)

obtained by the proposed numerical scheme based on Euler wavelets (EWM) are compared
with the numerical solutions obtained by finite difference method (FDM), adomian decom-
position method (ADM), finite difference transform method (FDTM), variational iteration
method (VIM), and Legendre Wavelet Method (LWM) in Table 1. Clearly, comparisons of
numerical solutions in Table 1 show that the numerical scheme based on Euler wavelets is
superior to those mentioned above numerical schemes.

Example 4.2 In Example 4.1, suppose A = B = C =1:

α = 2, 0 ≤ β ≤ 1, y0 = 0, y1 = 0 and g(x) = 6x3
(

x−α

Γ (4 − α)
− x−β

Γ (4 − β)

)
.

The exact solution is given as y(x) = x3. Table 2 shows the absolute errors attained by the
proposed numerical scheme (EWM), Legendre wavelet method (LWM), and Haar wavelet
method (HWM). From Table 2, we find that the absolute errors become smaller and smaller
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Table 3 Comparisons between numerical solutions attained by proposed numerical scheme and Legendre
wavelet method

x β = 0.50 β = 0.75 β = 0.999 Exact(β = 1)
EWM LWM EWM LWM EWM LWM

0.1 19.3564 19.3481 19.6378 19.6340 19.8017 19.8012 19.8010

0.2 19.0219 19.0500 19.3599 19.3717 19.6042 19.6039 19.6040

0.3 18.8214 18.8163 19.1422 19.1413 19.4091 19.4086 19.4089

0.4 18.6545 18.6471 18.9462 19.9428 19.2165 19.2154 19.2158

0.5 18.4927 18.4976 18.7530 18.7573 19.0238 19.0242 19.0246

0.6 18.3680 18.3669 18.5861 18.5854 18.8359 18.8349 18.8353

0.7 18.2432 18.2450 18.4193 18.4207 18.6480 18.6475 18.6479

0.8 18.1312 18.1319 18.2623 18.2630 18.4625 18.4620 18.4623

0.9 18.0285 18.0275 18.1131 18.1124 18.2793 18.2784 18.2786

with k increasing. Also, Table 2 shows that the proposed numerical scheme can reach a higher
degree of accuracy than Legendre and Haar wavelets. This confirms that numerical results
attained by the proposed numerical scheme are in good agreement with the exact solution
compared to the results obtained by the Legendre and Haar wavelet methods.

Example 4.3 Consider the fractional differential equation (11) given below of an Electrical
Circuit with charged capacitor having capacitance C farads and resistor having resistance R
ohms (Arora and Chauhan 2017; Altaf and Khan 2019):

DβQ(x) + κQ(x) = 0, β ∈ (0, 1], x ∈ [0, 1) (11)

with initial state Q(0) = Q0, where κ = 1
RC :

The exact solution of (11) for β = 1 is Q(x) = Q0e
−κx .

Suppose DβQ(x) 
 CTψ(x) (12)

Then Q(x) = CTPβψ(x) + Q0 (13)

Thus, using (12) and (13) in (11), we attain:

CTψ(x) + κ[CTPβψ(x) + Q0] = 0. (14)

By solving the matrix equation (14), we can obtain the co-efficients vector C . In Table 3,
we show the numerical solutions of (11) attained by the proposed numerical scheme (EWM)
and Legendre wavelet method (LWM) for R = 10,C = 1, Q0 = 20 and for some different
values of β. Clearly, Table 3 shows the proposed numerical scheme based on Euler wavelets
is superior to Legendre wavelet method.

Example 4.4 Consider the multi-term fractional differential equation (Diethelm et al. 2002;
Kumar and Agarwal 2006):

D2y(x) + 3Dy(x) + 2Dq2 y(x) + Dq1 y(x) + 5y(x) = f (x), (15)

where 0 < q1 < q2 < 1, 0 ≤ x < 1 and:

f (x) = 1 + 3x + 2

Γ (3 − q2)
x2−q2 + 1

Γ (3 − q1)
x2−q1 + 5(1 + 0.5x2)
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Table 4 Absolute errors forM = 3 and different values of j

x j = 3 j = 5 j = 7 j = 9 j = 11

0.1 2.7746e−04 1.7346e−05 1.0839e−06 6.7737e−08 4.2335e−09

0.2 2.4925e−04 1.5530e−05 9.7013e−07 6.0625e−08 3.7889e−09

0.3 2.1031e−04 1.3092e−05 8.1761e−07 5.1091e−08 3.1930e−09

0.4 1.6732e−04 1.0390e−05 6.4872e−07 4.0535e−08 2.5332e−09

0.5 1.2436e−04 7.6988e−06 4.8055e−07 3.0024e−08 1.8763e−09

0.6 8.4086e−05 5.2128e−06 3.2527e−07 2.0321e−08 1.2699e−09

0.7 4.9432e−05 3.0575e−06 1.9067e−07 1.1909e−08 7.4420e−10

0.8 2.1033e−05 1.2979e−06 8.0809e−08 5.0447e−09 3.1518e−10

0.9 7.3449e−07 4.8261e−08 3.2143e−09 2.0522e−10 1.2910e−11

with the initial states y(0) = 1 and y′(0) = 0.
If q1 = 0.0159 and q2 = 0.1379, then the exact solution of (15) is given by y(x) =

1 + 0.5x2.

Suppose D2y(x) 
 CTψ(x) and f (x) 
 FTψ(x) (16)

Then Dy(x) = CTPk×kψ(x) (17)

Dq2 y(x) = CTP2−q2
k×k ψ(x) (18)

Dq1 y(x) = CTP2−q1
k×k ψ(x) (19)

and

y(x) = CTP2
k×kψ(x) + 1. (20)

Using (16)-(20) in (15), we arrive:

CTψ(x) + 3CTPk×kψ(x) + 2CTP2−q2
k×k ψ(x) + CTP2−q1

k×k ψ(x)

+5[CTP2
k×kψ(x) + [1, 1, . . . 1]φ−1

k×kψ(x)] = FTψ(x). (21)

Solving the system of algebraic equations (21), we can attain the co-efficient vector CT,
and so, we can get the approximate output response y(x). Table 4 shows that the absolute
errors attained by the proposed numerical scheme withM = 3 and the values of j increasing
become smaller and smaller. From Table 4, we also infer that the approximate solutions
converge to the exact solution. Table 5 shows that the proposed numerical scheme(EWM)
can reach a higher degree of accuracy than Adams-type predictor–corrector method.

Example 4.5 Consider the linear fractional differential equation (El-Sayed et al. 2004;
Keshavarz et al. 2014):

Dα y(x) + y(x) = 0 with 0 < α ≤ 2, 0 ≤ x < 1,

and

y(0) = 1, y′(0) = 0. (22)

123



    2 Page 12 of 14 R. Aruldoss et al.

Table 5 Comparison of maximum absolute errors for proposed numerical scheme with j = 3, M = 3 and
Adams-type predictor–corrector method

Step size Maximum absolute errors
EWM Adams-type predictor–corrector method

0.1 7.3449e−07 0.051115750000

0.01 7.3449e−07 0.004546523000

0.001 1.1577e−08 0.000409626200

Table 6 Absolute errors for different values of k and for α = 1.5

x k = 12 k = 24 k = 48 k = 96 k = 192 k = 384

0.1 6.8808e−04 6.9051e−05 2.2513e−05 7.0231e−06 1.7455e−06 4.156e−07

0.2 7.9552e−05 3.5316e−05 1.3415e−05 3.3178e−06 7.608e−07 1.911e−07

0.3 9.4834e−05 2.2910e−05 2.9444e−06 7.7780e−07 2.384e−07 5.91e−08

0.4 1.0088e−04 8.0418e−06 2.1604e−06 8.1000e−07 1.974e−07 4.58e−08

0.5 3.6805e−04 6.4931e−05 1.2401e−05 2.5924e−06 5.859e−07 1.4209e−07

0.6 1.6556e−04 5.2566e−05 1.3004e−05 3.0970e−06 7.968e−07 2.225e−07

0.7 2.7243e−04 6.6998e−05 1.5649e−05 4.0075e−06 1.1023e−06 3.5728e−07

0.8 2.8032e−04 7.0973e−05 1.9028e−05 5.0157e−06 1.5096e−06 6.49e−07

0.9 3.4727e−04 8.0723e−05 2.1038e−05 6.1479e−06 2.316e−06 1.3906e−06

Table 7 Comparison of
maximum absolute errors for
α = 1.5,M = 3, and different
values of j

j = 4 j = 5 j = 8

EWM 8.042e−06 2.160e−06 4.58e−08

LWM 1.178e−05 2.948e−06 4.605e−08

The second initial condition is only for 1 < α ≤ 2. The exact solution of (22) is:

y(x) = Eα(−xα),where Eα(z) =
∞∑
0

zk

Γ (αk + 1)
is the Mittag–Leffler function of order α

Suppose Dα y(x) 
 CTψ(x); (23)

Then y(x) = CTPα
k×kψ(x) + 1. (24)

Using (23) and (24) in (22), we arrive:

CTψ(x) + CTPα
k×kψ(x) + 1 = 0. (25)

Solving the system (25) at the collocation points, we can obtain the Euler co-efficient
vector CT .For α = 1, the exact solution of (22) is y(x) = e−x , and for α = 2, the exact
solution of (22) is y = cosx . Table 6 shows that the absolute errors attained by the proposed
numerical scheme with the values of k increasing become smaller and smaller. From Table 6,
we also infer that the approximate solutions converge to the exact solution. In Table 7, we
show the maximum absolute errors attained by the proposed numerical scheme(EWM) and
Legendre wavelet method (LWM) for α = 1.5, M = 3, and different values of j . Clearly

123



An expeditious wavelet-based numerical scheme... Page 13 of 14     2 

from Table 7, we infer that the numerical scheme based on Euler wavelets is superior to
Legendre wavelets method.

5 Conclusion

In this article, an expeditious Eulerwavelet operationalmatrixwas derived to attain numerical
solutions of fractional differential equations. Numerical examples elucidated the solution
process and the efficiency of the proposed numerical scheme. Also, numerical results attained
by the proposed numerical schemewere in a better agreementwith the exact solutions, and so,
the proposed numerical scheme based on Euler wavelet is superior to many other numerical
schemes.

Acknowledgements The authors are grateful to the anonymous reviewers for several comments and sugges-
tions which contributed to the improvement of this paper.
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Abstract 

This article presents a novel numerical scheme based on the operational matrix of 

Bernoulli wavelets to transform fractional differential equations with variable coefficients into 

simultaneous algebraic equations. The uniform convergence analysis for Bernoulli wavelets 

expansion is investigated. The computational algorithm of the proposed method is also 

presented for the numerical solutions of fractional differential equations with variable 

coefficients. Applicability and efficiency of the proposed numerical scheme are illustrated by 

some numerical examples. 

1. Introduction 

Fractional Calculus is a valuable tool and an old mathematical topic from 

17th century. For many researchers in various fields of science and 

technology, fractional differential equations have been the focus of interest in 

recent years. As a result, finding solutions to fractional differential equations 

is an essential part of scientific research. 

Furthermore, analytic solutions to the majority of fractional differential 

equations are not available. Due to this fact, many numerical schemes have 
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been suggested to find approximate solutions of fractional differential 

equations, namely, Variational Iteration Method, Finite volume method, 

Finite element method, Adomian Decomposition Method, and Wavelet 

methods [1, 4, 8-12]. 

There have been several methods for solving fractional differential 

equations with variable coefficients. These types of problems have been 

studied by many authors using different methods [2, 5, 7]. 

In this work, we present a numerical method based on Bernoulli wavelets 

for solving fractional differential equations with variable coefficients. Our 

aim is to derive Bernoulli wavelets’ operational matrices to convert the 

fractional differential equations with variable coefficients into a system of 

algebraic equations. It not only simplifies the problem, but also speeds up the 

computation. Numerical solutions of the proposed method are compared with 

the solutions of some existing numerical techniques and analytical solutions 

to manifest the applicability, the computational efficiency and the high 

precision of the proposed method. 

The article is summarized as follows. In Section 2, some basic definitions 

and mathematical preliminaries of fractional calculus are given. Section 3 is 

devoted to the basic formulation of Bernoulli wavelets, function 

approximation, and the operational matrix of fractional order integration for 

Bernoulli wavelets. Computational algorithm of the scheme is given in 

Section 4. In Section 5, some numerical examples and absolute errors are 

presented. Finally, we conclude our work in Section 6. 

2. Preliminaries 

In this section, we briefly recall some essential definitions and 

preliminary mathematical facts of fractional calculus which are used further 

in this paper. 

Definition 2.1. Fractional integral of order 0  of     1Lxh  in 

terms of Riemann-Liouville, is defined by 

     
 

  

 














  

.0,

,0,
1

0 1

xh

d
x

h

xhI

x

 (1) 
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Fractional derivative of order 0  of     1Lxh  in terms of 

Riemann-Liouville, is normally defined by 

        ,1, ssxhI
dx

d
xhI s

s








   (2) 

where s is a positive integer and .0x  

Definition 2.2. The Caputo fractional derivative of order 0  of 

    1Lxh  is given by 

   
 

     ,1,
1

0

1
ssdhx

s
xhD

x
ss




 
  (3) 

where s is a positive integer and .0x  

If     1Lxh  and 0  then it has the following two basic properties. 

     ,xhxhID   (4) 

and 

         ,1,
!

0

1

0

ss
l

h
hxhxhDI

s

l

l
l  





  (5) 

where s is a positive integer, 0x  and     ,lim:0 0 xhDh l
x

l  
  

.1,,2,1,0  sl   

3. Bernoulli Wavelets 

We here discuss Bernoulli polynomials and some of their properties in 

order to construct Bernoulli wavelets. 

3.1. Properties of Bernoulli polynomials and Bernoulli wavelets 

Wavelets represent a family of functions constructed from dilations and 

translations of a single function  x  called the mother wavelet. When the 

dilation parameter c and the translation parameter d change continuously, 

the following family of continuous wavelets is obtained. 
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  .0,,,2

1








 



cdc

c

dx
cxcd   (6) 

If the discrete values are selected for the translation and dilation 

parameters, that is, ,,,0,1,, 00000


 qpdccqddcc
pp

 then we 

have the following family of discrete wavelets, 

   ,0020 qdxccx p
p

pq    (7) 

where the functions pq  form a wavelet basis for  .2 L  Specifically, when 

20 c  and ,10 d  the functions  xpq  form an orthonormal basis for 

 .2 L  

The Bernoulli wavelets are defined on [0, 1) as 

   









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 




otherwise,,0
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22
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pq
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x
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mxEx  (8) 

for 1,,1,0,2,,2,1 1   Nnm j   and ,, Nj  where 

 


   

 

 
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
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the coefficient 


   

  n

n

n

n
2

21

!2

!1

1





 is used for normality, the dilation 

parameter is  12  j  and the translation parameter is    .21 1 jm  Here 

  ,1,,1,0,  NnxEn   denote Bernoulli polynomials of order n which can 

be defined by the relation 

  ,

0

rn
r

n

r

n x
r

n
xE 











   (9) 

where  nrr ,,2,1,0,   are Bernoulli numbers. Bernoulli numbers can 
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be defined by the following generating function 

.
!1

0









r

r

rx r

x

e

x
 (10) 

The first few Bernoulli numbers are 

,,
30

1
,

6

1
,

2

1
,1 4210   (11) 

with ,3,2,1,01   rr  

The first few Bernoulli polynomials are 

        ,
2

1

2

3
,

6

1
,

2

1
,1 23

3
2

210 xxxxExxxExxExE   (12) 

The properties of Bernoulli polynomials and Bernoulli wavelets have been 

discussed by Sahu and Saha Ray [10] and Jiao et al. [13]. 

Moreover, 

     
  


 


1

0

1
,1,,

!

!!
1 mn

mn

mn
dxxExE nm

m
nm  (13) 

and  

 
  





1

0 1
.0,

2

!
16 n

n
dxxE

nn  (14) 

Let          ,,,, 2
T

k xxxx 


  where      1,  mNixx mni    

1,,1,0,2,,2,1,2,1 11   NnmNkn jj   and ., Nj  Then 

Bernoulli wavelets have the following orthonormality properties. 

         ,,0,,1,
1

0
srsrdxxxdxxx srsr      (15) 

and  

    ,Edxxx T 




  (16) 

where   denotes the inner product and E indicates identity matrix. 
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3.2. Function approximation 

A function    1,02Lxh   can be expressed in terms of Bernoulli 

wavelets as  

   ,

0




 



m Zn

mnmn xaxh   (17) 

where the coefficients mna  are given by 

        .,

1

0

dxxxhxxha mnmnmn    

By truncating the infinite series in Equation (17),  xh  is approximated as 

   

12 1

1 0

.

j N

mn mn

m n

h x a x

 

 

   (18) 

For simplicity, Equation (18) is written as 

     
1

,

k
T

i i

i

h x a x A x



     (19) 

where   ,,,,,2,, 21
1 T

k
j

mnimni aaaANkaa  
   (20) 

and 

         .,,, 2
T

k xxxx 


   (21) 

The index i is determined by the relation   .11  nmNi  

We define the Bernoulli wavelet coefficient matrix ,2, 1Nk j
kk


   at 

the collocation points kr
k

r
xr ,,2,1,

2

12



  as 

.
2

12
,,

2

3
,

2

1













 















  k

k

kkkk   (22) 

Specifically, the Bernoulli wavelet coefficient matrix for 2j  and 

3N  becomes 
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.

5270.0158115270.0000

6330.106330.1000

4142.14142.14142.1000

0005270.05811.15270.0

0006330.106330.1

0004142.14142.14142.1

66



































    (23) 

Here, we have 

       .
~

,,
~

,
~~

21 kk
T

kk Axhxhxhh    

Since the Bernoulli wavelet coefficient matrix kk  is invertible, it is 

possible to obtain the Bernoulli wavelet coefficient vector TA  by .
~ 1




kkkh   

3.3. Operational matrix of fractional order integration 

In this section, we explore the basic idea of finding the operational matrix 

of fractional order integration for the Bernoulli wavelets. 

A k-set of Block pulse functions (BPFs) over the interval [0, 1) is defined 

as 

 
 



 


otherwise,,0

,1,1 krxkr
xbr  (24) 

where .,3,2,1 kr   

It is known that any square integrable function  xh   defined on the 

interval [0, 1) can be extended in terms of BPFs, and by using orthogonality 

of BPFs as 

     
1

,

k
T

r r k

r

h x h b x h B x



  (25) 

where   r
T

k hhhhh ,,,, 21    for kr ,,2,1   are given by 

   
 

,
1

1 


kr

kr
rr dxxbxh

k
h  and          .,,, 21

T
kk xbxbxbxB   

There is a connection between the block pulse functions and Bernoulli 
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wavelets, which is, 

   .xBx kkk  (26) 

The block pulse operational matrix 0, H  of fractional integration of 

order 0  is defined by Kilicman [6] as, 

     ,xBHxBI kk
   (27) 

where 

 
,

10000

1000

100

10

1

2

11

1

31

221

1321




























































k

k

k

k
H  

with     .121
111 

 jjjj  

The fractional integration of order 0  of the vector   x  defined in 

Equation (21) can be approximated as 

    ,xpxI
kk





  (28) 

where 

kk

p  is called Bernoulli wavelet operational matrix of order .0  

Using Equations (26) and (27), we attain 

             .xBHxBIxBIxI kkkkkkkkk






    (29) 

Thus combining Equations (28) and (29), we attain 

         ,1 xHxBHxIxP
kkkkkkkkk












  and so  (30) 

.1









kkkkkk

HP  (31) 

For example, the Bernoulli wavelet operational matrix of the fractional order 

integration for 3,2  Nj  and 5.0  yields 
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1688.00964.00598.0000

1329.02243.01452.0000

0298.01819.05282.0000

0029.0048589.10417.01688.00964.00598.0

0198.00449.00799.01329.02243.01452.0

0256.00871.04438.00298.01819.05282.0

5.0
66









































e
P  

(32) 

Since the operational matrix 5.0
66P  contains several zeros, the proposed 

technique reduces the computation greatly. 

3.4. Convergence analysis 

In the following theorem, we establish the convergence of the Bernoulli 

wavelets expansion [10]. 

Theorem 3.1. If    1,02Lxh   is a continuous function and   xh  

,  then the Bernoulli wavelets expansion of  xh  defined in Equation 

(17) converges uniformly and also 

 
,

2

!16

2

1

2

1 



njmn
nF

a    (33) 

where 


   

 


.

!2

!1

1

2

21

n

n

n

n

F







 

Proof. Any function    1,02Lxh   can be approximated in terms of 

Bernoulli wavelets as 

   

12 1

1 0

,

j N

mn mn

m n

h x a x

 

 

   (34) 

Here 

   
1

0
dxxxha mnmn   
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   

m
I

mn
mj

dxxxh
,

,  where ,2,,2,1,
2

,
2

1 1

11,











 
 j

jjmj m
mm

I   

(35) 

     


m
I

j
n

j

mj

dxmxExhF
,

,122 12

1

 where 


   

 

.

!2

!1

1

2

21

n

n

n

n

F







 

(36) 

Using ,12 1 tmxj 
 we have 

  ,
2

1

2 ,
11

dtxE
mt

h
F

a n

m
I jjmn

mj
 







 



 (37) 

and so 

    








 


1

0
2

11

2

1

2
2

1

2
,

dttE
F

dttE
mt

h
F

a nj
m

n
I jjmn

mj


 

 
.

2

!
16

2

1

2

1 



nj

nF
 (38) 

Thus the series  








12

1

1

0

j

m

N

n mna  is absolutely convergent, and so the 

series   








12

1

1

0

j

m

N

n mnmn xa   is uniformly convergent.  

4. Algorithm for the Proposed Numerical Scheme 

Step 1. Assign the values for j and N for step size Nk j 12   in Equation 

(20). 

Step 2. Compute Bernoulli wavelet coefficient matrix kk  at the 

collocation points kr
k

r
xr ,,2,1,

2

12



  from Equation (22). 

Step 3. Compute the block pulse operational matrix H  from Equation 

(27). 
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Step 4. Construct Bernoulli wavelet operational matrix 

kk

P  of order 

0  using Equation (31). 

Step 5. Dispersing the coefficients of the given fractional differential 

equations at the collocation points, construct diagonal matrices. 

Step 6. Express all Caputo fractional derivatives in the given fractional 

differential equations in terms of Bernoulli wavelets. 

Step 7. Solve the system of algebraic equations using MATLAB2015a to 

compute the unknown vector. 

Step 8. Compute the solution using the unknown vector and the 

Bernoulli wavelet operational matrix. 

5. Numerical Experiments 

To show the applicability and the effectiveness of the proposed numerical 

scheme, we consider here some fractional differential equations with variable 

coefficients. 

Example 5.1. Consider the following fractional order linear differential 

equation with variable coefficients 

                    ,122 xwxhxvxhDxuxDhxtxhDxsxhDr 


 (39) 

with   20,21,110,10 2  hx  and   ,00 h  

where              ,1,0,,,,,, 2Lxwxhxvxuxtxsr    

 
 

 
 

 
 

   .
2

1
2

323
22

2

2 22 xxux
xu

xxtx
xs

rxw 








 

Suppose 

   2 TD h x A x  where   ,,,, 21
T

kaaaA   and  

   Tw x W x  where  .,,, 21 kwwww   (40) 

Then    ,22 2
xPAxhD

kk
T 





 (41) 
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   ,11 2
xPAxhD

kk
T 





 (42) 

   ,xPAxDh kk
T    (43) 

and     .22   xPAxh kk
T  (44) 

Using Equations (40)-(44) in (39), we attain 

                     xuxPAxtxPAxsxPAxrA
kk

T
kk

T
kk

TT 






12 22

 

         .22 xWxvxvxPA T
kk

T    (45) 

Dispersing the coefficients        xvxuxtxs ,,,  at the collocation points, 

construct the following matrices. 

 

 

 

 

 

 

,

00

00

00

,

00

00

00

2

1

1

1









































kk xt

xt

xt

T

xs

xs

xs

S

















 

 

 

 

 

 

 

.

00

00

00

,

00

00

00

2

1

1

1









































kk xv

xv

xv

V

xu

xu

xu

U

















 

Table 1. Maximum absolute errors for various choices of j and N. 

k 48 

 3,3  Nj  

96 

 3,4  Nj  

192 

 3,5  Nj

 

384 

 3,6  Nj

 

768 

 3,7  Nj

 

The 

Proposed 

method 

1.5100e-05 3.8168e-06 9.6282e-07 2.4249e-07 6.0990e-08 

Table 2. Adams type Predictor-Corrector method [3]. 

Step size Maximum absolute errors 

0.1 0,023658990000 

0.01 0.000986218500 

0.001 0.000043988230 
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 Discreting Equation (45), we can achieve 

UPATPASPArA kk
T

kk
T

kk
T

kk
T ... 12 22







   

  ,.2
kk

T
kk

T WVYPA    (46) 

where   .2,,2,2 1 kY    At the collocation points   ,1,212  ikixi  

,,,2 k  we transform Equation (46) into a system of algebraic equations. 

Solving this system of algebraic equations using MATLAB2015a, we can 

easily obtain .TA  

Suppose 

        .234.1,333.0,,,,,1 21
51413121  xxvxxuxxtxxsr  

Then the exact solution of Equation (39) for 333.01   and 234.12   is 

  .
2

1
2 2xxh   

In Tables 1 and 2, the maximum absolute error obtained using Adams 

type Predictor-Corrector method is 4.40e-05 in 1000th step, while the 

maximum absolute error using the proposed method is 1.51e-05 in 48th step. 

We also see clearly from Table 1 that the numerical solutions are in perfect 

agreement with the exact solutions for larger values of k. Numerical results 

of this problem demonstrate that the proposed method converges rapidly and 

is more efficient than the Adams type predictor-corrector method [3]. Also 

from Figure 1, we see clearly that the numerical solutions are in perfect 

agreement with the exact solutions. 

Example 5.2. Consider the following fractional differential equation  

       ,4,0,3131  xxwxhxxhD   (47) 

with the initial state   00 h  and  
 

   .
322

3 3432 xxxw 


  The exact 

solution of Equation (47) is   .xxh   
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Figure 1. Comparison of Numerical solutions of Example 5.1 for 

 2,38  Njk  and  2,416  Njk  with the exact solutions. 

Let .4xt   Then  .1,0,4  ttx  Thus 

       ,444
3131 tvthtthD    (48) 

where 

   
 

   .1,0,4
32

2.3
4

3432
31




 ttttwtv  

Approximating 

 thD 431  as  tAT  where   ,,,, 21
T

kaaaA    (49) 

we have 

   .4 31 tPAth T    (50) 

Similarly,  tv  can be approximated by the Bernoulli wavelet functions as 

   ,tVtv T  where   .,,, 21
T

kvvvV    (51) 

Using Equations (49), (50) and (51) in Equation (48), we have 

       .4 3131
tVtPAttA TTT    (52) 

 

 

 



A NOVEL NUMERICAL SCHEME BASED ON BERNOULLI … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022 

2417 

Table 3. Absolute errors for various choices of j and for .2N   

x 8k  

 2,3  Nj  

16k  

 2,4  Nj  

32k  

 2,5  Nj  

 The 

proposed 

method 

HWM The 

proposed 

method 

HWM The 

proposed 

method 

HWM 

0.25 3.4042e-02 4.6972e-02 1.0979e-02 2.5554e-02 1.6860e-03 6.3723e-03 

0.75 5.2261e-03 1.8818e-02 1.7086e-03 7.7490e-03 4.8561e-04 2.6655e-03 

1.25 2.9291e-03 1.2333e-02 9.1120e-04 4.9465e-03 2.7618e-04 1.7841e-03 

1.75 1.8933e-03 9.2464e-03 5.9425e-04 3.6780e-03 1.8461e-04 1.3549e-03 

2.25 1.3507e-03 7.4107e-03 4.2765e-04 3.2651e-03 1.3471e-04 1.3549e-03 

2.75 1.0238e-03 6.1850e-03 3.2668e-04 2.6691e-03 1.0387e-04 1.0953e-03 

3.25 8.0889e-04 5.3060e-03 2.5985e-04 2.0961e-03 8.3183e-05 9.1997e-04 

3.75 6.5879e-04 4.6437e-03 2.1286e-04 1.8332e-03 6.8503e-05 6.9676e-04 

 

Figure 2. Comparison of Numerical solutions of Example 5.2 for 

 2,38  Njk  and  2,416  Njk  with the exact solutions. 

Dispersing the coefficient   31
4t  of Equation (52) at the collocation 

points, construct the following matrix. 

  

  

  

.

400

040

004

31

31
2

31
1























kt

t

t

R









 

Discreting Equation (52), we get 
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..31
kk

T
kk

T
kk

T VRPAA     (53) 

At the collocation points ,2,,2,1,
2

12 1Ni
N

i
t j

ji



   we transform 

Equation (53) into a system of algebraic equations. Solving this system of 

algebraic equations using MATLAB2015a, we can easily obtain the 

coefficients vector .TA  Then we get the numerical solutions  th 4  of 

Equation (48). The numerical solutions  xh  of Equation (47) are obtained by 

   .431 xPAxh T
  

The numerical results for  2,38  Njk  and  2,416  Njk  

are shown in Figure 2. From Figure 2, we find easily that the numerical 

solutions are in good agreement with the exact solutions. The absolute errors 

for different values of k are shown in Table 3. We also see from Table 3 that 

as k increases, the errors become smaller and the proposed method is more 

accurate compared with the Haar wavelets method. 

6. Conclusion 

In this paper, an efficient numerical scheme based on Bernoulli wavelets 

for solving a class of fractional differential equations with variable 

coefficients was proposed. By the advantages of sparse and orthogonal 

nature, the proposed technique reduces the computation greatly to give 

numerical solutions with good coincidence. Tables 2 and 3 depict the 

advantages of the proposed method over other methods, namely Adams type 

Predictor-Corrector method and Haar wavelet method, in terms of less 

computational effort and time, accuracy and simplicity. Absolute errors and 

graphical representations in the two numerical examples demonstrate the 

high degree accuracy of the proposed numerical scheme. 
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