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Abstract

In recent years, fractional calculus has been the focus of various scientific studies.
The main objective of this thesis is to explore different fractional integral transforms
with exponential type kernels and wavelet based numerical schemes for solving frac-
tional differential equations.

In the first Chapter, we discuss the history of fractional calculus, definitions of
fractional derivatives and integrals.

In the second Chapter, we apply Aboodh integral transform to solve some frac-
tional differential equations and determine the relationship between Aboodh trans-
form and the Laplace transform. Also we introduce a fractional integral transform
which is a generalization of many integral transforms having exponential type kernels
and discuss some of its properties. We also discuss the sufficient conditions for the
existence of the newly introduced fractional integral transform with exponential type
kernel. Finally, we conclude that the generalized fractional integral transform with
exponential type kernel is an efficient and useful technique for solving many fractional
differential equations.

In the third Chapter, we introduce a numerical scheme based on Euler wavelets and
obtain numerical solutions of some fractional differential equations using an efficient

Euler wavelet operational matrix. We finally conclude that the Euler wavelet based

vil



numerical scheme is preferable to many other numerical schemes since the obtained
numerical results are more consistent with the exact solutions.

In the fourth Chapter, we introduce a novel numerical scheme based on Bernoulli
wavelets and utilize the operational matrix of Bernoulli wavelets to transform frac-
tional differential equations with variable coefficients into simultaneous algebraic
equations. The main advantage of the Bernoulli wavelet based numerical scheme
is its fast convergency and its high degree of accuracy.

In the fifth Chapter, we derive a new fractional integration operational matrix
of the Chebyshev wavelets and elucidate the solution process, the simplicity and the
efficiency of the Chebyshev wavelet operational matrix by some illustrative examples.
Finally we conclude that the numerical solutions attained by the Chebyshev wavelet
scheme are in a good agreement with the exact solutions.

In the sixth chapter, we employ the numerical technique based on Bernoulli

wavelets for finding the approximate solutions of fractional electrical circuits namely,

LC, RL, RC and RLC.
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Chapter 1

Introduction

1.1 A brief history of Fractional Calculus

Fractional Calculus [46], 56, [47] is a natural extension of classical calculus. It is
a 300-year-old mathematical tool that has been gradually developed to the present
day. It also does not imply a fraction of any calculus-differential, integral or calculus
of variations.

L’Hospital questioned Leibniz in 1695, “What if n be %?” Leibniz unexpectedly
responded, “...You may see from that, sir, that a quantity like d%xy or d“2zy can
be expressed by an infinite series. Despite the fact that infinite series and geometry
are not particularly related, infinite series only permits the use of exponents that are
positive and negative integers and does not yet know how to employ fractional expo-
nents...”. Leibniz had a special insight into the unknowable, as do other outstanding

mathematicians. He stumbled onto fractional derivatives and realized that his work

will soon lead to great things. He had no idea what they would mean. He continued



in the same letter: “As a result, it follows that zv/dz : x will equal d2x. This appears
to be an index from which future useful findings might be formed...”. The insight
of Leibniz did not end there. Three years later, he discussed how to use fractional
derivatives in Wallis’ infinite product for % in a letter to John Wallis. He writes:
“...Differential calculus might have been utilised to accomplish this result,...”. It
should be clear that Leibniz gave fractional derivatives more than a passing thought;
he must have devoted a lot of effort to the subject.

The idea of fractional derivatives was experimented by Euler, an another great
mathematician. 43 years after Leibniz published his controversial ideas on fractional
derivatives, in his dissertation published in 1738, Euler stated: “... when n is a pos-
itive integer, and if p should be a function of z, the ratio d"p to dx" can always be
expressed algebraically, so that if n = 2 and p = 23, then d?z3 to dz? is 6x to 1. The
question now is what kind of ratio can be created if n is a fraction. It is clear why
this situation is challenging, because d" can be determined by further differentiation
if n is a positive integer. But if n is a fraction, then there is no obvious method to do
it. However, one might be able to speed up the process with the use of interpolation,
which I have already explained in my dissertation...”

The formula for the m** derivative of y = 2", where n is a positive integer, was

established by Lacroix and published in his 700-page long book on Calculus in 1819.

D"y = ———a" ™, (1.1.1)



where m(< n) is an integer.
He further established the formula for the fractional derivative by replacing the fac-

torial symbol with the gamma function.

I'g+1) _
Dof = L g« 1.1.2
where a and 3 are fractional numbers. In particular, he calculated
(2
Dbz = (3)95% —2, /% (1.1.3)
F(i) T

However, Joseph Liouville (1809-1882), in 1832, explicitly expanded the derivative
of integral order n

Dneb® = pmeb” (1.1.4)

to the derivative of arbitrary order /3
DPebm = pPebr. (1.1.5)

Liouville arrived at the formula by using the series expansion of a funcion f(x).

DPf(z) = Cpblet, Re by, > 0, (1.1.6)
m=0
where
flz) = Zcmexp(bmx), Re b, > 0. (1.1.7)
n=0

Liouville’s first fractional derivative formula is given in formula (1.1.6). Whether they
are complex, irrational, or derivatives of any order f3, it can be applied as a formula.

3



However, it can only be utilized for functions of the form (1.1.7). In order to extend
his first definition, Liouville developed a second definition of a fractional derivative

based on the gamma function (1.1.6).

N(B)z" = /Ooo i te7dt, B >0, (1.1.8)

ol (o + B)x—a—ﬁ
I'(B) ’

This is called Liouville’s second definition of fractional derivative. He solved problems

Der™F = (=1) 3> 0. (1.1.9)

in potential theory by using both of his definitions. Though his second definition only
applies to rational functions, Liouville’s first definition is limited to a certain class of
functions having the form (1.1.7). It was determined that neither of his definitions
was appropriate for a large class of functions. As stated in (1.1.9), the derivative of
a constant function (8 = 0) is zero because (1.1.2) provides a non zero value for the

fractional derivative of a constant function (8 = 0) in the form

Dal - m 7£ 0 (1110)

The following integral representations of f(x) and its derivatives were discovered

by Fourier in 1822.

flz) = % /_OO f(¢)d¢ /_OO cost(x — ¢)dt (1.1.11)

and

D"f(z) = % /_OO f(Q)d¢ /_00 t"cost{(x — ) + %}dt. (1.1.12)
4



Formally, replacing arbitrary real o with integer n produces

D f(x) = % /OO f(Q)d¢ /OO t*cost{(x — ¢) + %}dt. (1.1.13)

For fractional derivatives, Peacock (1833) supported the Liouville definitions
whereas other mathematicians chose the Lacroix formula (1.1.2). The two definitions
of a fractional derivative did not agree with one another as a result.Despite signifi-
cant subsequent advancements of fractional calculus, this controversy has rarely been
resolved.

Greer (1858-1859) developed formulas in the form of (1.1.4) for the fractional

derivatives of trignometric functions.

D" = i*q%e"™* = {*a®(cosax + isinax)
(1.1.14)
T .. T .
= aa(ws? + ZsmT)(cosax + isinax)
The fractional derivatives of trignometric functions are given by
D%(cosax) = aa(cas?cosax - sin?sinam)
T
= a“cos(ax + 7),
(1.1.15)
. . T T
D%(sinax) = &a(cosaazsznT + S’maxcos?)
. e’
= a“sin(ax + 7)
When a = % and a = 1, Greer’s formulas are as follows:
D2cosz = cos(x + %),
(1.1.16)
1 : 7r
Dzsinx = sin(z + Z)



Similarly, fractional derivatives for hyperbolic functions can be obtained.

For modern mathematicians, Sonin and Letnikov built the basis for the concept
of fractional derivatives. Sonin published a paper titled “On Differentiation with
Arbitrary Index” in 1869, and Letnikov published four papers on the same topic
between 1868 and 1872. Both mathematicians started their work with Cauchy’s

integral formula:

D™ f(z) = m!/ f(n)

pEATEETl
where “c” denotes a closed contour that rotates once anticlockwise. Sonin and Let-
nikov were off to a great start since it was permitted to generalize m! both knew
about the gamma function and how m! = I'(m + 1) when m! takes on arbitrary val-
ues of integers. They were aware that a simple pole would appear in the close circuit’s
contour when m was an integer. They understood that instead of a simple pole, they
would have a branch cut if m was not an integer. Although Sonin and Letnikov were
aware of the problem, they did not suggest a solution. Unfortunately for Sonin and
Letnikov, Laurent found the solution twelve years later, in 1884. Despite being an
untrained scientist (as stated by Miller and Ross) and not a mathematician, Oliver
Heaviside, a genius later in his life, has received the name of “hero”. He published
a number of papers on linear functional operators in 1892, and by using unortho-
dox techniques, he was able to solve a number of engineering problems, including

the equation relating to submarine cables and the transmission of electrical currents



in cables. Heaviside operational calculus is a collection of his brilliant approaches,
results, and applications. However, his work was viewed with distrust and suspicion
during the time he developed it. Because he was unable to provide solid proofs for
his work, he became a laughing stock among mathematicians. In 1919, Bromwich set
out to rigorously confirm all of Heaviside’s work, which he accomplished.

Even though there have been a huge number of new mathematicians throughout
this time, it is surprising that only a small number of research papers have been writ-
ten on the subject of fractional derivatives over the past 82 years. The few “greats”
are Thomas J. Osler, Davis Erdelyi, Hardy, Kobler, Littlewood, Love, Riesz, Samko,
Sneddon, Weyl, and Al-Bassam. One would think that there would be hundreds, if
not thousands, of research articles with all these new mathematicians entering the
field. Even Davis claimed this in 1936: “...By 1900, it is reasonable to consider that
the formal development of operational procedures had come to a halt. The theory of
integral equations was just starting to capture mathematicians’ attention and reveal
the possibilities of operational methods...” In 82 years, it appears like not a lot of
imaginations were being inspired. The year 1974 then arrived, however.

During the final decades of the nineteenth century, Heaviside successfully con-
structed his operational calculus without using exact mathematical explanations. He
first proposed the concept of fractional derivatives in his study of electric transmission

lines in 1892.



The research on fractional derivatives really started off in 1974. The first inter-
national conference on fractional calculus was conducted in 1974. The University of
New Haven functioned as the venue, Askey, Mikolas, and many other mathematicians,
including our own Dr. Thomas J. Osler attended along with some of the mathemati-
cians named above. “Great explosion” was really the title above. Many of those
previously listed were inspired by the 1974 conference. There have been roughly 400
papers on fractional derivatives published in just a little more than five years, which
is more than since mathematics began.

Then came the 1980’s. Ten years later, in 1984, there was a second international con-
ference on fractional calculus. It took place in Glasgow, Scotland, at the University of
Strathclyde. It seems that mathematicians had jumped on the proverbial bandwagon
from all around the world. Mathematicians from Japan, the Soviet Union, England,
India, Canada, Venezuela, Scotland, and a host of smaller nations all have written
on the topic. Some of these mathematicians that wrote on the fractional calculus
include Saigo(1980), Owa(1990) and Nishimoto (1984, 1987, 1989, 1991) who wrote
a four-volume set on applications. The three mathematicians mentioned above are
from Japan. Soviet authors Marichev and Kilbas published an encyclopaedia on the
topic in 1987. It also included applications. In the 1980s, Indian authors Rauna and
Saxena published a number of publications. In their research on fractional deriva-

tives, Srivastava from Canada, Kalla from Venezuela, and McBride from Scotland



all achieved a great deal. In the 1980s and 1990s, even our own Dr. Thomas Osler
co-authored or published 10 publications on the topic.

It might be important to note that Abel’s (1801-1829) solution of an integral
equation arising from the formulation of the tautochronous problem is the first known
application of fractional calculus. This problem includes finding the shape of a fric-
tionless plane curve via the origin in a vertical plane in order to establish the shape
that a particle of mass m can fall along in a time that is independent of the starting
position. The concept that the derivative of a constant is not always equal to zero is
the foundation for the solution to the Abel problem.

The number of mathematicians in the world today would lead one to believe that
there would be countless volumes of published publications on the topic. Unfortu-
nately, the majority of mathematicians are unaware of the possibilities and uses of
fractional calculus. Many would not even know where to start if given a simple prob-
lem. Even worse is the fact many have only heard of fractional derivatives in passing
and some not at all.

Various investigations on fractional calculus were published in engineering literature
in the second half of the 20th century. Recent advancements in fractional calculus
is developed by contemporary applications in differential and integral equations, vis-
coelasticity, physics, fluid mechanics, mathematics, biology, signal processing, and

electrochemistry. There is no doubt that fractional calculus has been developed into



a wonderful new mathematical analysis for dealing with a wide range of problems in

mathematics, science, and engineering.

1.1.1 Fractional derivatives and integrals

The idea of Fractional derivatives is a powerful tool for analysing the memory and
hereditary qualities of many materials and processes in nature. The psychology and
life sciences are new applications fields for fractional calculus, and it is used to define
the time variation of people’s emotions. In addition to the applications listed above,
fractional calculus is used in a variety of domains with mathematics. For example,
fractional operators can be used to investigate certain special functions analytically.

In the literature, there are several different definitions of fractional derivatives
and integrals. They include the Riemann-Liouville, Caputo, Hadamard, Granwald-
Letnikov, Erdelyi-Kober, Marchaud and Riesz-Feller fractional derivatives and inte-
grals. Except in a few circumstances, these concepts are not identical in general. B.
Riemann and J. Liouville are responsible for the most widely definitions of fractional
derivative and integral, which are known as the Riemann-Liouville fractional deriva-
tive and integral. However, in some circumstances, the Riemann-Liouvile deriva-
tive may yield the Caputo fractional derivative, which was developed by Caputo and
adopted by Caputo and Mainardi. Among all these,the following are two most widely

used definitions:
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1. The Riemann-Liouville fractional derivative of y(x) of order § is given by

S 2 L ()
Dﬁy(x) _ ) T(n=8) (%) fo (x_ty)wdt, 0<n—-1<pB<n,
(%)ny($)> 5=n, nGN.

The Riemann-Liouville fractional integral of f(x) of order § is given by

Iﬁf(x) _ ﬁ fofﬂ(x — t)ﬁflf(t)dt, x>0,6>0,

2. The left sided Caputo fractional derivative DPy(t) or 4@ for y € Ly[a,b], is

originally defined as follows.

DPy(t) = "y (1) = ﬁ / (t — 2)™ 1y (2)d,

where m = [a] is the smallest integer greater than or equal to m and 8 € R*.
The Caputo fractional derivative satisfies the following properties for f €

L41]0,1], 8,7 > 0 and m = [f] + 1:
1. DPIPf(t) = f(1).
2. D10 = 10 - Y 1900 (5

2!
i=0

3. If f is continuous then D D7 f(x) = DTV f(t), t > 0.

4. DPC =0, where C is constant.

& DPga — 0, a<vy,ae0,1,2, ..,
a(a+1) ta—ﬁ’

oa—BtD) otherwise.
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6. D° (Z ijj(n)) = Z C;DPf;(t), where Oy, Cy, ...C,, are constants.
§=0 §=0
On the other hand, Weyl(1917) introduced the Weyl fractional integral of order

B by

L f(r) = ﬁ /:o(t —2)P L f()dt, Ref > 0. (1.1.17)

The main difference between this definition and the Riemann-Liouville definition is
the limitation of integration, with the kernel in this definition being (t — )%~

The Weyl fractional derivative of f of order g is thus defined by
1 e e}
WoF(x :E”—/ t— )" P F(H)dt). 1.1.18
(@) = Bl |, =y (0 (1.1.18)
Here $ > 0 and n is the smallest integer greater than .

Grunwald(1867) introduced the concept of fractional derivative as the limit of a

sum given by

n

L 1 P LB+ 1)f(x—rh)
DPf(z) = limno7 TZ:O(—l) SCESN L (1.1.19)

In contrast, Marchuad (1927) developed the fractional derivative of any order 5 in

the form

f(=@) B Cflx) - @)
DP f(z) = T F(l_ﬁ)/o O dt, (1.1.20)

where 0 < 8 < 1.

Many researchers have pointed out in recent decades that fractional derivatives
and integrals are particularly suited to describing the properties of various real ma-
terials, such as polymers [9], memory and hereditary properties [70], optimal control

12



problems [3],signal process [19], fluid mechanics [40], pharmacokinetics [64], diffusion
processes [24].

Fractional calculus has a long and rich history but was unknown to applied scien-
tists until recently. This is due to its inherent difficulty, the evident self-adequacy of
classical calculus, and the lack of a meaningful geometric or physical interpretation
for fractional derivatives. Physical and geometric interpretations for physical opera-
tors have been attempted on several occasions. These interpretations, however, are
limited to a very few particular fractional derivatives and integrals in the context of
genetic effects and self-similarity. As a result, its applications in different fields of

engineering and research have been postponed.

1.2 Fractional differential equations

Fractional differential equations have become more significant in modelling the
unique dynamics of many processes associated to complex systems across a wide
range of scientific and engineering fields. However, even the most valuable literature
on fractional derivatives and integrals lacks good general procedures for solving them.
Orthogonal wavelet bases have recently gained popularity for numerical solutions of
differential equations because of their useful properties, including their ability to iden-
tify singularities, orthogonality, flexibility to represent a function at different levels

of resolution, and compact support.
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On the other hand, the most of fractional differential equations lack analytical
solutions. Because these equations have so many various applications, there has been
a lot of interest in creating numerical methods to solve fractional different equations.
Variational iteration method [73], Adomian decomposition method [44], Homotopy
analysis method [16] [43], Homotopy perturbation method [31], 35] are among them.

In addition to these numerical techniques, several researchers have investigated
a new numerical method based on wavelets for analysing problems of high com-
putational complexity, proving that wavelets are effective tools for exploring novel
approaches in fractional differential equations.

For many researchers in various fields of science and technology, fractional differ-
ential equations have been the focus of interest in recent years. As a result, finding
solutions to fractional differential equations is an essential part of scientific research.

There have been several methods for solving fractional differential equations with
variable coefficients. These types of problems have been studied by many authors
using different methods [10] 25].

To solve fractional differential equations, operational matrices of fractional or-
der integrations for Haar wavelets [71} 53], Chebyshev wavelets [23], [T1], Second kind
Chebyshev wavelets [66], Legendre wavelets [12], Bernoulli wavelets [34] [54], Ultra
spherical wavelets [1, 18], Third kind Chebyshev wavelets [72], CAS wavelets [67] and

Euler wavelets [62], 69] have recently been proposed.
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1.3 Integral transforms

The development of integral transforms of scientific problem-solving can be
traced back to P.S. Laplace’s (1749-1827) work on probability theory in the 1780s
as well as to J.B. Fourier’s (1768-1830) dissertation “La Theorie Analytique de La
Chaleur” published in 1822 [I5]. Researchers have been interested in the creation
and development of new integral transforms with various modifications since that
time. There has been a lot of interest in developing integral transforms for the solu-
tions of fractional differential equations because of the increasing applications. The
most effective mathematical methods for solving differential equations, partial differ-
ential equations, integro-differential equations, partial integro-differential equations,
delay differential equations and population growth problems are integral transforms.
In many sectors of science and engineering, integral transformations are employed.
Integral transforms are commonly employed to solve fractional order differential equa-
tions, and numerous studies have been conducted on the theory and applications of
the Laplace, Fourier and Mellin transforms. The Laplace transform is the most often
used integral transform with an exponential type kernel. In engineering and applied
scientific applications, the Laplace transform has demonstrated its dominance.

Fractional integral transforms have recently been proposed as generalization of
classical integral transforms. They are used to solve fractional differential equations

in science and engineering. The fractional fourier transform, for instance, can be used
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to analyze optical difficulties.

1.4 Wavelets

Wavelets trace back to Alfred Haar’s construction of an orthonormal system of
functions on the unit interval[0,1] in 1910, which resulted in the development of a
collection of rectangular basis functions [58]. In the past, J. Morlet, a French geo-
physical engineer, and Grossmen first explicitly established the idea of wavelets at
the beginning of the 1980s as a family of functions created by translation and di-
lation of a single function known as the Mother wavelet [45] [55]. They used the
name ondolette, which means small wave in French. The mathematical analysis of
wavelets by stromberg, grossmen, Morlet and Meyer has led to the present growth
of wavelet research. Soon, it was translated to English as “wavelet” by changing the
word “ondo” to “wave”. The Fourier series models a signal’s frequency, but it does
not adequately model its localised properties, which led to the discovery of wavelets.
This is so because the sine and cosine functions, which serve as the foundation of the
Fourier series, are constantly repeating periodic waves.

Because of the wavelet theory’s extensive mathematical capability and various sci-
entific and engineering applications, it has attracted a significant lot of interest from
scientists work in a wide range of filed. In many scientific and engineering gatherings

nowadays, “wavelets” has been a hot topic of discussion. Recently, mathematical
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scientists across fields have paid a lot of attention to the topic of wavelet analysis.
Two very simple procedures, binary dilations and integral translations, are used to
describe the wavelet series in terms of a single function, referred to as a “wavelet”.
The integral wavelet transform (IWT) is defined as the convolution with respect to
the dilation of the reflection of some function, called a “basic wavelet”. There are
integral wavelet transforms (IWT) and wavelet series (WS), which are comparable
Fourier analysis. WS and IWT are closely related in wavelet analysis. The coefficients
for the wavelet series representation of a function on the real line are determined by
the IWT of that function when it is evaluated at specific locations in the time-scale
domain. As the polynomial spline funcions are the simplest functions for both com-
putational and implementation purposes, they are most attractive for analyzing and
constructing wavelets.

Wavelets are seen in different ways by different people. Some see them as a new
basis for describing functions, while others see them as a method for time-frequency
analysis. Since the idea of “wavelets” is a versatile tool with extremely rich mathe-
matical content and a lot of application potential, of course all of them are correct.
It is surely too early to make a comprehensive presentation, though, as this topic is
still in its development.

Wavelets can be used in signal analysis for a range of tasks, including wave form

segmentation and demonstration, diagnostics, time frequency analysis, geophysical
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signal processing, statistical analysis, pattern recognition, and fast algorithms with
simple implementation. The wavelet analysis may be a useful technique for solving a
variety of problems in engineering, physics, and image processing. Wavelet technique
is specifically used in scanning and disease diagnostics to help doctors in performing
their duties precisely in this sensitive field of human care. In the field of telecommu-
nications, it can also help in encoding audio and video signals. In addition, there are
additional helpful applications that can effectively help intelligence agencies in identi-
fying even the tiniest details of human bodies for security reasons, in the event of ter-
rorist attacks, the crash of an aeroplane or ship, or for other human verification uses.
For example, the US Federal Bureau of Investigation employs wavelet technique to
identify and verify the fingerprints of millions of people. Mathematical wavelet tech-
nology is predicted to have hundreds of uses in the future, with a primary focus on
healthcare and human welfare to produce the greatest results possible [28] 611, 4T, 29].
Wave propagation, the detection of aircraft and submarines, data compression, image
processing, pattern recognition, computer graphics, improvements in CAT scans, and
other improvements in medical technology are some of the contemporary applications
of the wavelet method. The wavelet method is an innovative approach for solving
difficult problems in engineering, physics, and mathematics. Furthermore, wavelet
techniques have been applied to create precise and fast algorithms for solving frac-

tional order integral and differential equations, particularly those whose solutions are
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extremely localized in terms of scale and position. Even if wavelets are becoming
popular in these areas, researchers are always looking into new possibilities.

We can break down a complex function using wavelet techniques and analyze
each component separately. This property, together with the fast wavelet algorithm,
makes these techniques particularly appealing for analysis and synthesis. To more
accurately represent non-stationary signals, wavelet analysis uses bases that are lo-
calised in time frequency as compared to Fourier-based analyses, which use global
(non-local) sine and cosine functions as bases. As a result, a wavelet representation is
substantially more compact and easier to implement. A function can be represented
as a finite sum of components at several resolutions using the powerful multireso-
lution analysis, enabling each component to be processed adaptively depending on
the application’s objectives. The main advantage of wavelet analysis is its capacity
to compactly express functions at various levels of resolution. The unknown solu-
tion can be represented by wavelets with different resolutions while solving partial
differential equations numerically, yielding a multigrid representation. Using wavelet-
based thresholding techniques, the dense matrix produced by an integral operator
can be sparsified to achieve any level of solution accuracy. Wavelets enable accurate
description of a wide range of operators and functions. A defining feature of wavelets
is their ability to convert the given differential and integral equations into a set of

algebraic equations, either linear or nonlinear, that can be solved numerically. This
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section aims to present an overview of wavelets and to provide a detailed description
of several wavelet techniques.

In order to address various problems with dynamic systems, orthogonal functions
and polynomial series have drawn a lot of attention. The main feature of this method
is that it greatly simplifies problems by converting them into ones that can be solved
by solving a set of algebraic equations. In this thesis, particular attention has been
put on applications of Euler wavelets, Bernoulli wavelets, and Chebyshev wavelets.

A family of two parameter functions called v, ,(¢) is constructed by dilation and

translation of a single function called a wavelet, 1(t), and is defined as follows.

1 rx—>
V'

where a is the dilation parameter and b is the translation parameter. Higher fre-

Yap(T) =

), a,be R a+#0, (1.4.1)

quencies are represented by 1,5, which is a compressed form of the mother wavelet
if |a] < 1. On the other hand, lower frequencies are represented by the wavelet 1,

for |a| > 1. Wavelets are defined as follows more precisely:

Definition 1.4.1. A function ¢ € L?(R) is admissible as a wavelet if and only if

Ay = /_oo de < 00, (1.4.2)

o |l

where ¢)(w) is the Fourier transform of .

In order to satisfy the admissibility requirement, A, must be finite, which means
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that 1[1(0) = 0, or the mean value of 1, should vanish;

/00 YP(s)ds =0 (1.4.3)

For a large number of practical applications, continuous wavelets are not useful.
They do not serve as a basis, in particular. In order to discretize wavelets, the positive
constants ag > 1, by > 0 are fixed, and a = aak, b= nboagk are set where n, k € N.

As a result, the following family of discrete wavelets is defined as
V() = |ao| 29 (afx — nby). (1.4.4)

Usually ag is chosen to be 2 and b = 1. For wavelet theory, Ingrid Daubechies gave
strong foundations. By constructing an orthonormal wavelet system with compact
support in [40], she made a major breakthrough.

In contrast to harmonic waves, wavelets must terminate at zero as xr — +oo.
Small waves () that oscillate at least a few times are what are meant by wavelets.
The wavelets that die out to identical zero after a few oscillations on a finite interval,
i.e., outside the interval, are those that have ¢)(z) = 0. The “support” or “compact
support” of the specified (basic) wavelet 1 (z) is a special interval that is used in
wavelet analysis. The reason we use the term “basic wavelet” is because it will
have two parameters, scale a and translation b, which together form the “family”
of wavelets 1/1(’”7’1’) Basic wavelets are built using the “building blocks” or “scaling

functions” ¢(x) that are associated with them. The scaling relation, often known as
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the “recurrence relation” is the equation that governs the latter. In wavelet analysis,
a single sequence of scaling functions is often employed to produce an approximation
of the input signal. A new series of the associated wavelets is added to the first to
further improve it. The signal is satisfactorily represented as a result. Finding scaling
functions leads to the easy computation of building the corresponding basic wavelets.
The scaling functions, or “building blocks” are of utmost importance while studying
wavelet analysis in this chapter.

Now, we examine at the space L?(R) of measurable functions f, defined on the

real line R, satisfying

NGRS

o0

We actually search for such “waves” that produce L*(R); these waves should
degenerate to zero at +oo, and for all kinds of reasons, the decay should occur very
quickly. That is, we look for small waves, or “wavelets”, to generate L*(R). For this
purpose, we prefer a single function 1 that generates all of L*(R). Since, v is very
fast decay, to cover whole real line, we shift ¢/ along R. For computational efficiency,
we have used integral powers of 2 for frequency partitioning. That is, consider the
small waves

V(2t — k), g,k €Z.

(27t —k) is obtained from a single wavelet function (t) by a binary dilation (dilation

by 2/) and a dyadic translation (of &). Any wavelet function ¢ € L*(R) has two
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arguments as 10;; and it is defined by
Pialt) = 2892t — k), jkez,

where the quantity 2% is for normality.

Definition 1.4.2. When the family 1), ; is an orthonormal basis of L?(R), the wavelet

1 € L*(R) is referred to as an orthogonal wavelet; in other words,
< %’,k, wl,m >= 6j,l5k,m, j, ]C, l,m € 7.

Definition 1.4.3. The term “semi-orthogonal wavelet” refers to a wavelet ) € L*(R)

if the family 1), ; satisfies the requirements given below.

<¢j,k‘a,¢)l,m >= 07] 7él7 j,k,l,mGZ.

1.4.1 Multiresolution Analysis

In 1988 [14], I. Daubechies introduced the first orthonormal bases of compactly
supported wavelets. He used multiresolution analysis to prove that for any non nega-
tive integer n, there exists an orthogonal wavelet with compact supports that contains
all derivatives up to order n.

Mallat [49] and Meyer [50] proposed the concept of multiresolution analysis.
The fundamental concept of MRA is to consider of a function as a set of successive
approximations, each of which is a smoother version of the original. As a formal
way to generate orthogonal wavelet bases using a definite set of rules, multiresolution
analysis is named after the consecutive approximations that correspond to different

23



resolutions. Additionally, it enables the development of “functions” and “scaling fil-
ters” which are then used to create wavelets and fast numerical algorithms. It is a
useful mathematical framework that consists of a sequence of R function spaces to
decompose a signal or image into components of various scales.

A direct sum decomposition of L?(R) is generated by any wavelet, whether it is

orthogonal or semi-orthogonal. Let’s consider the closed subspaces for each j € Z
uj:...@wj_g@wj_l, j GZ

of L?(R). A set of subspaces Uj;cz is sald to be MRA of L*(R) if it possess the
following properties:
1.Uj C Ujy1, VjeZ.

2. U u; is dense in  L*(R).

jEz

3. () uy = {0}.

JEZ

dujp = uj O w.
5.f(t) € uj & f(2t) € ujsq, J € Z.

The nested sequence of subspaces Uj ;e (z) effectively covers L*(R) according to
properties (2) through (5). That is to say, a function belonging to at least one of the
subspaces u; can be used to approximate any square integrable function as closely as

needed. If a function ¢ € L*(R) provides the nested sequence of subspaces u; and
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satisfies the dilation equation, which is
J

then it is referred to as a scaling function, where p; € (L?) and a is any rational

number.

Since u; C u;41, each scale j has a unique orthogonal complementary subspace
w; of u; in ujyy. The equation ¥, = (27t — k), where ¢ € L? is referred to as
the wavelet, results in this subspace, u;, which is referred to as the wavelet subspace.

From the above discussion, these results follow easily

1.u]-1 ﬂuﬂ = Uj2, 71 > 52.
2.wj1 (w2 =0, §1 # j2.
B [ wje =0, 71 < j2.

1.4.2 Advantages of wavelet theory

1.Wavelets’ greatest advantage is their ability to provide simultaneous localization in
the time and frequency domains.

2. Often, it can de-noise or compress a signal without appreciably degrading it.

3. Data features including trends, breakdown points, discontinuities in higher deriva-
tives, and self similarity can be revealed via wavelet theory.

4. A signal can be divided down into its component wavelets using a wavelet trans-

form.
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5. When compared to the Fourier transform, the great achievement of wavelet theory
is the frequent ability to obtain a good approximation of the given function f by
utilising only a few coefficients.

6. The ability to distinguish the fine details in a signal is a major benefit of wavelets.
While extremely big wavelets can be used to identify coarse details in a signal, very
small wavelets can be used to isolate very fine details in a signal.

7. The speedy wavelet transform is the next advantage of wavelets.

1.4.3 Comparison of wavelet transform with Fourier trans-

form

1. Wavelet and Fourier transforms are mainly different in the domains of time and
frequency. Wavelets are well localized in time and frequency, while Fourier applica-
tion in such domains is standardized in localizing them. Both have positive effects on
localized time and frequency, but wavelet exhibits greater representation according
to walnut multi-resolution analysis [28] [61], 41].

2. The Fourier transform is effective in some areas outside of traditional signal pro-
cessing. The mathematical design of wavelets, however, is more broader than the
Fourier transform, and to be more specific, the mathematics of wavelets includes the

Fourier transform [28] [61].
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3. For the analysis of a collection of stationary signals, the Fourier transform is an
effective tool (a signal with no change in the properties). The Fourier transform is
used, for example, to process sine and cosine (sinusoid signals). However, the appli-
cation of Fourier is less effective for the analysis of non-stationary signals (where the
change in properties occurs). The wavelet transform, on the other hand, works with
both stationary and non-stationary signals [28], 61].

4. The Fourier transform uses a single scaled function ¥ (x), however the wavelet
transform has the capacity to move the function and generate the two-parameter

functions 1, 5(x) defined in [61, [41].
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Chapter 2

Numerical solutions of fractional
differential equations using
Aboodh Transform method and a
generalized fractional integral
transform with exponential type
kernel

2.1 Introduction

This chapter gives a brief overview of the Aboodh transform method and
a generalized fractional integral transform with an exponential type kernel for solv-
ing fractional differential equations. Integral transforms are important to solve real
problems. Appropriate choice of integral transforms helps to convert differential equa-
tions in terms of an algebraic equation that can be solved easily. Aboodh transform

which was recently introduced by Khalid Aboodh is a new transform derived from the
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Fourier transform and similar to Laplace transform. Aboodh transform is defined for
a function of exponential order in the time domain ¢ > 0. Typically, Fourier, Laplace,
Elzaki and Sumudu transforms are the essential mathematical tools for solving dif-
ferential equations. The generalized fractional integral transform with exponential
type kernel is a very powerful tool because it allows us to choose whether to use the
generalized fractional integral transform with exponential type kernel or any other
existing or non-existing fractional integral transforms, depending on our needs and
problem situation. The existence of many fractional integral transforms is ensured
by sufficient conditions for the existence of the generalized fractional integral trans-
form with exponential type kernel. The generalized fractional integral transform with
exponential type kernel is an effective and beneficial approach for solving fractional

differential equations.

2.2 Aboodh transform method

Definition 2.2.1.
Let A={f(t):3IM, ki, ks > 0,|f(t)] < Me_”t}, (2.2.1)

where M is finite and k; and ks may be finite or infinite. The Aboodh transform

for a function f(¢) belonging to the class A is defined as

Alf)](v) = K(v) = L f(t)e dt, t>0,k <v<ky (2.2.2)

v.Jo
In this transform, the variable v is used to factor the variable ¢ in the function f’s

argument. This transform is more closely related to the Laplace transform.
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Definition 2.2.2. The inverse Aboodh transform of a function f(¢) denoted by
A[f(t)] = k(v) then
f(t) = A7 Ek(v)). (2.2.3)

Definition 2.2.3. Two parameters Mittag-Leffler function is defined by

0 k

z
Ea,ﬁ = ; m, (27 a, 6 € C, R@(O&) > 0) (224)

Definition 2.2.4. The simplest wright function is defined by

00 Zk

2.2.1 Properties of Aboodh transform

(n) — /¥
L A[f™ (1)) (v) Z =
|
2. Alt"|(v) = v:#'
1
3 A = HO)
(n—1)
LA @)] = k() - 2 (0) - 00 - Z O
5. / ft)dt] = )
6. L[ Fla = B0 = vh(w)g(0).
7. The binomial coefficients are defined by ()\) = )\—!Where A and n are integers.
n AN —n)!
Note that 0! = 1,then
A A NS
(O) =1, ()\) =1 and (1-%2) ’\:; T
A+ =1,
()



Lemma 2.2.1. Aboodh transformation of Riemann-Liouville fractional integral oper-

ator of order a > 0 can be written in the form

A[Jo f(z)] = (2.2.6)

Proof. Aboodh transform of Riemann-Liouville fractional integral operator o > 0 is

1 xX
AlJ f(x :A—/ z—a) 7V f()dt].
[ f ()] [F(a)o( ) (t)dt]
— ek ()g(v)
—F<&)v v)g(v
_k(v)
-
_ [(a)
_ a—1
where g¢(v) =A[z*""] = el
m
Lemma 2.2.2. Aboodh transformation of Caputo fractional derivative of
a>0, m—1l<a<m, meN
can be written in the form
«a 1 m m—2 m—3 £(1) f(m—l)(O)
ADYf(x)] = pr— WK (v) — o™ 2 f(0) =™ f0) — e — T] (2.2.7)
Proof.
. Al Fm) (o
ALD® ()] = AL f0 ()] = AL (228)
By use of Property (4), the desired result follows. O

2.2.2 Solutions of Fractional Differential Equations using Aboodh trans-
form method

In this section, we apply the Aboodh transform of the fractional derivative and

the expansion coefficients of binomial series to derive solutions of some families of
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fractional differential equations. Throughout this section, we let y(t) be such that for
some value of the parameter v, the Aboodh transform A[f(t)](v) converges.

Theorem 2.2.3. Let0 < a < 1 and b € R. The solution to the fractional differential

equation

y*(t) —by(t) =0 (2.2.9)

% ayk
y(t) = co Z F(«L = E,1(bt7). (2.2.10)

Proof. Applying Aboodh transform to (2.2.9),

wek(w) — 29 k) =0

U2—o¢

Co
U2—a

k(v)[v®* —b] — =0

k(v)[v® — b] =cov*?
k(v) =co Z bry—ek=2,
k=0

Applying inverse Aboodh transform,

:COEQJ (bta) .
]

Theorem 2.2.4. Let 1 < a < 2 and a,b € R. The solution to the fractional differ-

ential equation
' (t) + ay' @ (t) + by(t) = 0 (2.2.11)
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with the initial conditions y(0) = ¢y and y'(0) = ¢ is

y(t)

i (—b)kt(2F) i T(r+k+1)(—at®=)"
@ —~ K — T[(2—a)r+2k+1]r!

T

_b)kt(2k+1)
k!

[(r+k+ 1)(—at?9)
I'(2 — a)r + 2k + 27!

r=0

(e}

2

r=0

00
r=0

. (2.2.12)
D(r+k+1)(—at?=)

I'(2 — a)r + 2k + 3]r!
T(r+ k4 1)(—at®=)"
T[(2 — a)r + 2k + 4]

_b) k‘t(2k’—a+3)
k!

Proof. Applying Aboodh transform to equation (2.2.11),

[v*k(v) — y(0) —

k(v)

co + vt 4+ acgv®? + acyv”

y(0)

,U2—o¢

y'(0)

U3—a

y'(0)

]+ a[v®k(v) —

]+ bk(v) =0

acq
,U3fa

k(v)[v® + av® +b) — o — Cvl %

,UQfa

=0

i (2.2.13)

1
Now

v2 +ave + b

1

02+av0‘+b:

[M]#

WK

(V2 + av*)[1 +

1
1+

L]
v2+av®
b

v2 + av®

]—1

X

v2 + av®
oo

v? + av®
1
>

< —b
k=0

v2 + av®
(—b)*

ava)k—‘rl

(=b)*
(UQ)k—i—l[l _|_avo¢—2]k+1
(_b)kvf2k72 Z <

>

(v?

i
o

W

i
o

o0

k+r
r

)(—avo‘2)r

i
o

i
o
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From (2.2.13),

- - k+T T —Q)r —
k<v>=CoZ<—b>kZ( . )(—a> plemerr 2k
k=0 k=0
> . (k+r
_bk N\ [(2—a)r+2k]-1-1+1
fe S >Z( ! )< e

- k —"_ r —Q)r o—
+acoy (=) ( . )(—CL)TUK2 SR

oo

k —"_ r —Q)r o—
+ac ) (=0 ) ( . )(—a)%[@ ek

k=0 k=0

Applying inverse Aboodh transform, we have
r=0

¥e z Sl
Rt

k’ A 1)( )rt(Zfa)rJer

(2 —a)r+ 2k + 1]r!

)k F(k L4 1)<_a)rt(2—a)7"+2k+1
I[(2 — a)r + 2k + 27!

]{?—|—T+1)( )rt(Q o)r+2k—a+2
+“C°Z k:' (2 —a)r + 2k — o + 37!
( b) (k—l—?“—i—l)( )rt(Z a)r+2k—a+3

K T[2—a)r+ 2k — o+ 4r!

Thus we will get the desired solution (2.2.12).

Theorem 2.2.5. Let 1 < a < 2 and a,b € R.

ential equation

Yy (t) + ay'(t) + by(t) = 0
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The solution to the fractional differ-
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with the initial condition y(0) = ¢y and y'(0) = ¢ is

o0 oo T + k + 1 )rt(afl)r+ak
t
y(t) = kz ;0 (o — 1)r + ak|r!
[e's) [e's) F ’I“ + k’ + 1) )rt(a r+ak+1
0120 k:' ; (@ — 1)r + ak + 2]r! (2:2.15)

( F 7, + k+ 1 )rt(a—l)r+ak+a+l
—HICO; ! Z; a—1r+ak+a]r'

Proof. Applying Aboodh transform to equation (2.2.14),

k() ~ 22 O () — 22 k) = 0
k(v)[v° +av+b]—1j§—°a—£—ia—%:o

k(v)[v™ + av + b] = cov® 2 + ;v + acov ™!

a—2 a—3 -1
CcoU + c1v + acyu
Lk _ 2.2.16
() v¥4+av+b ( )
S 1
mece =
v +av+b (U“—I—av)[l—i—ﬁ]
1 b
= 1+ I~
V% 4+ av v 4+ av
— 1 f:( —b )k
VY + av — v + av

(_b)k )
(va + av)k“
(=b)*
(va)k—i—l(l + avl—a)k+1

oo S () ey

r=0

= k’-’-?” r,,—(a—1)r—ak—«a
b>’“Z( . )(—aw vk
r=0

M)

(

iy
o

M)

iy
o

M

il
o

M

il
o
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From (2.2.16),

<k + T) ( a)rv—(a—l)r—ak—Q

> k
+cq Z(_b)k < + T> (_a)rvf(afl)rfakfii
k=0 k=0 "
> (k47
_bk _ \r,,—(a—l)r—ak—a—1
DY >Z( a

Applying inverse Aboodh transform, we have

i k i F r _|_ ]{? + 1 )rt(a—l)r—f—ak
= (
0 ~ kI = (e — 1)r + ak]r!

o

| _
~ k= (= D)r + ak + 2]r!

—b)" — Fr+k+1 rglo—Drtaktl
3D )(~a)

7’—|—]€—|— —a Tt(a—l)r—i—ak-i—oz-l—l
oy Gy H e

(o — 1)r 4+ ak + ar!

Thus we will get the desired solution (2.2.15).

Remark 2.2.1. If a=0 in equation (2.2.14), then the the solution to the equation

y*(t) +by(t) =0,1 < a <2

with the initial conditions y(0) = ¢y and y'(0) = ¢; is
(0t (0t
t) = t
y(t) COZF(ak:—i—l) o ;F(ak‘JrQ)

= C()Eml(—bta) + CltEa’Q(_bta)
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2.3 A generalized fractional integral transform with

exponential type kernel

Many integral transformations with exponential type kernels have been introduced
in the last few years.

Definition 2.3.1. Let f(x) be sectionally continuous on the interval 0 < x < T for
any T > 0 and |f(z)| < me®® when z > N for any b € R and m, N € R*. We define
Sadik transform of f(x) as [60]

Ulf(@)] = F(v*P) Uiﬁ /0 T e o) da (2.3.1)

where v is a complex variable, « > 0 and § € R.

The function f(x) used in (2.3.1) is normally continuous and continuously differ-
entiable; the question is what happens when it is continuous but only has a fractional
derivative of order o, 0 < o < 1. There are two possibilities. f(z) has both a contin-
uous and a fractional derivative in the first instance. f(z) has a derivative of order
« in the second instance, but none in the first. We must discover an alternative in
the second instance. This chapter’s main objective is to present a possible method to
this option.

The following table explores various integral transforms with exponential type
kernel.

The transforms in table 2.1 are all special instances of the Sadik transform.

The Sadik transform can be converted into the Laplace, Sumudu, Elzaki, Tarig,
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‘ S.No ‘ Name of the integral transform ‘ Kernel

1 Laplace transform(1749-1827)[32] k(x,v) =e™"*

2 Sumudu transform(1993) k(xz,v) = %e;z

3 Laplace-Carson transform (1886-1940) k(z,v) = ve "

4 N-transform(2008) [36] ,zz-transform(2016) [48] k(z,s,0) =1ev;s=1
5 Elzaki transform(2011)[21] k(x,v) =ve™

6 | Tarig transform(2013)[22],New integral transform(2013)[33] [13] k(z,v) = %e%

7 Aboodh transform(2016)[2] k(z,v) = 1"

8 Kamal transform(2016),Yang transform(2018) k(r,v) =e™

9 Mahgoub transform((2018)[39],New transform(2018)[30] k(x,v) = ve™®

Table 2.1: Integral transforms with exponential type kernel

Kamal, Laplace-Carson, and Aboodh transforms by changing the values of o and
B. It can also be changed into integral transforms that are not mentioned in the
literature.

The following table demonstrates how the Sadik transform is converted into other

integral transforms by fixing o and S values.

’ S.No \ Values of o and (8 \ Sadik transform converts into
1 f=0and a=1 Laplace transform
2 f=1and a=-1 Sumudu transform
3 b=—-land a=1 Laplace-Carson transform
4 f=1and a=-1 N-transform, zz-transform
5 f=—-1land a=—1 Elzaki transform
6 B8 =1and a = —2 | Tarig transform, New integral transform
7 f=land a=1 Aboodh transform
8 f=0and a =—1 Kamal transform, Yang transform
9 f=—-landa=1 Mahgoub transform, New transform

Table 2.2: Conversion of Sadik transform to various integral transforms

Definition 2.3.2. Let f(z) be a function that vanishes when ¢ is negative. Its

generalized integral transform of fractional order o, 0 < o < 1, with exponential type
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kernel is defined as follows:

500} =Aa) = () [ By p(o) o

— lim (Uiﬁ)a /0 Y B () () () (2.3.2)

where v is a complex variable, v is any non-zero real number, § is any real number

and F,(u) is the Mittag-Leffler function ) (]?—s),

The table below shows how to convert the generalized fractional integral transform
with exponential type kernel into fractional order integral transform by applying

certain # and v values.

Table 2.3: Conversion of the generalized fractional integral transform with exponential

type kernel into existing fractional integral transforms

S.No | Values of 3 and + The gene?alized fractional integra.I transform with
exponential type kernel converts into

f=0and y=1 Fractional Laplace transform
f=1andy=—1 | Fractional Sumudu transform [3§]
f=1and y=—1 | Fractional Natural transform [52]
B =—1and v = —1 | Fractional Elzaki transform

= W DN =

2.3.1 Sufficient conditions for the existence of the generalized fractional

integral transform with exponential type kernel

Theorem 2.3.1. For each positive real constant A, let f(z) be sectionally continuous
in each finite subinterval of the intervals 0 < x < A and x > A. The generalized
fractional integral transform with exponential type kernel of f(x) occurs if f(z) has

fractional exponential order c.
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Proof. For any A > 0,

/ " B2 f(2)(d)”
(2.3.3)

The first integral in (2.3.3) exists because f(x) is sectionally continuous in 0 <z < A

Now,

| Eueepoey

A

< / T Ba( o) £ (@) (da)?

A

< / " B (a0 (@) (da)?

/ " B (o) M By (26) (d)”

/AOO Ey(—zvM)f

Pl [ B - e

Taking t = z(v” — ¢”) and using T',(z) :ﬁ /000 Eo(—t)*t@=D(dt)*, we have
/oo B (—a0)® f(2) (dz)° _ﬁramr(a +1)
A
M
:—(zﬂ — Cw)af(oz +1).

As a result, the second integral in (2.3.3) occurs, and the generalized fractional trans-

form of f(x) defined by (2.3.2) exists as well. O

2.3.2 Duality relation between the fractional Laplace transform and the
generalized fractional integral transform with exponential type

kernel

Theorem 2.3.2. Let F,,(v) be the Laplace transform of fractional order a of a func-

tion f(z) and A,(v?7) be the generalized integral transform of fractional order o with
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exponential type kernel of the same function f(x). Then

A (0P = (Uiﬁ) R,

Proof. Let f(x) € A. By the generalized fractional integral transform with exponen-

tial type kernel, we have

1.0 = (5) [ Eaaryp@r = (%) R

2.3.3 Operational Properties of generalized fractional integral trans-

form with exponential type kernel

(i), Su{t"} = (U%a (m;nm) r, (g n 1) Do+ 1).

Proof.
S.{t") = (Uiﬁ)a /O B () (d)

By taking tv” = z, and using

Lo () :ﬁ /O h B (—t)t@=De(gr)e, (2.3.4)
we have S,{t"} :(v;)a (m)%"““) L. (g + 1> Fla+1).

@0 510 = () oo DEa 1),
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Proof.
1\* [
Sa{t"} = (U—B) /0 E,(—tv7)*t"(dt)®

By taking tv” =z, and using (2.3.4), we have

S {1} = (Ulﬁ)a mra(n + 1)+ 1).

Since T'y(n+1) =I"(a+ 1)I'(n+1),n € N, we have

no 1 “ 1 n
5,00} = () oyt DTG 1)

(131). Sof{f(ax)} = a%Aa(v%’g).
Proof. .
sfe = (55) [ Eacor flan)anr

Su{f(az)} =a <Uiﬁ) " lim /O UM o B () fax)(de)

M7Too

By taking ax = u, we have

Sa{ f(ax)} :a(viﬁ)a lim /OaM [M - E]‘” E, <_ng>“f(u)@

Mtoo a a

(@) () e [ oy

Sl f(00)) =5 Su{F (@)}

(iv). Saf{f(x =)} = Ea(=b"0")Sa{f(u)}.

Proof L
slfe-0)=(5) [ Bl e = o))



By taking x — b = u, we have

Se{f(z—0)} :a<viﬁ)a lim /0 : (M —b—u)* B (—(0")*(b+u)*) f(u)du

M*Too

Solf(x =)} =Ea(=0"0"")Sa{f(u)}.

(U)' Sa{Ea(_caxa>f($>} = Sa{f(w)}(zﬂﬁwrv”)-
Proof.
sa{Ea<—caxa>f<x>}=<viﬁ) [ Bl e )

_ <iﬁ) / " Ba—a(o” + ) (@) (d2)”

Sal Ba(~c"2*) ()} =Sul S (2)} .

(i), Sudf)) = PSF@} - (3) T+ f0)

v
Proof.

S0 = () [ Baln s o)

By integration by parts and using




S (7)) = () Su{f (@)} (Uiﬂ)am - a)f(0). (2.3.5)

(vii). 5. /0 ' F@)da)} = v T+ )Sa{F(2)).

Proof.
From (2.3.5), (07)So{f(2)} =S.{f“(z)} + (viﬁ) I'(1+a)f(0)

Let g(x) = /Or f(z)(dz)®. Then g(0) =0

w)s{ [ e} =it @)
=5.{D [ f(o)laa))}
=5 {T(a + 1) ()}
—T(a+ 1)Su{(2)}
s.{ [ f@)aa)} =T+ 1S

2.3.4 Convolution theorem using generalized fractional integral trans-

form with exponential type kernel

Theorem 2.3.3. If the convolution of order v of the two functions f(x) and g(x) is

given by the expression

T

(a(z) * b(x))o = / a(z — u)b(us) (du)°

then one has the equality Sa{a(x) * b(z)} =(v?)*Sa{a(x)}S.{b(z)}
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Proof.
Sul(axb)a} = (Uiﬁ)a /0 " B (a0 /0 " o — w)b(u) (du)* (dz)°

1 « o] x
= (v_ﬁ) / E (—v"(x — u)a)Ea(—kuo‘)/ a(x — u)b(u)(du)*(dx)®
0 0
We obtain by modifying the variables © —u =t, u = s,

Suf(ax D)o} = (iﬂ) | B [T B as

=(v")*Sa{a(t)}Sa{b(s)}-

2.3.5 Inversion theorem using generalized fractional integral transform

with exponential type kernel

Theorem 2.3.4. For 0 < a < 1, the generalized fractional integral transform with

exponential type kernel

+ioco
f@) =i [ OB A (05 o)

where M, is the period of the complex-valued Mittag-Leffler function defined by the
equality E,(i(M,)*) =1
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Proof. The Laplace transform of fractional order « of f(z),i.e.,

F,(v) :/ E (—vz®) f(z)(dz)*, 0 < a < 1
0
has the inversion formula

1 Fico o X
f(x) :W /ioo E,(v¥z®)F,(v)(dv)®.

We arrive at the necessary inversion formula by using the duality relationship between

the fractional order laplace transform and generalized fractional integral transform

with exponential type kernel.

2.3.6 Solutions of fractional differential equations using generalized frac-

tional integral transform with exponential type kernel

2.3.7 Example 1

Suppose A, (v?7) is the generalized fractional integral transform with exponential

type kernel of a function f(z). Then the solution of fractional differential equation

Y@+ Ny = f(2),y(0)=0,0<a <1

is given by

+i00 Uﬁa
V0 = G [ e e Bt A0 )

where )\ is a constant.
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Now we solve (2.3.6). By taking the generalized fractional integral transform with

exponential type kernel on the both sides of (2.3.6), we get
(07)* A {7}y + Ao {07}, =Au{v?7};

AP, = A VP74 (2.3.8)

1
A+ (v7)e
By substituting (2.3.8) in the inversion formula of the generalized fractional integral

transform with exponential type kernel, we arrive the required solution (2.3.7).

2.3.8 Example 2

The equation governs the current in a circuit with inductance L, resistance R, and

capacitance C' with an applied voltage E(t).
L RI Idt =
+ +5 /

where L, R and C' are constants and () is the current, and

d t
I(t) = d_Cf represents the accumulated charge @ on the condenser at time t is Q(t) = / I(t)dt
0

Let us consider the fractional equation of current in the circuit, that is,

LI(t) + RI + % /t I(t)(dt)™ = E(t), (2.3.9)
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witht =0, I(0) =0, Q0)=0and 0 <a <1

Now we solve (2.3.9). By taking the generalized fractional integral transform with

exponential type kernel on both sides of (2.3.9), we get,

A (0P = Ay(vP ) g (2.3.10)

1
U2’Yarc(oz+1) + RUO‘ + L

where A, (v?7); and A, (v?7)p are the generalized fractional integral transforms of

I(t) and E(t) respectively. Then characteristic equation of (2.3.10) is given by

R r 1
oo 4 e 4 Ila+1) —0
L CL
The roots of the above characteristic equation are v"* = —k 4+ in, where k = %
and n? = F(gzl) — % is the negative real part. This demonstrates the system’s

stability. We may now get at (2.3.10) by inserting it into the inversion formula of the
generalized integral formula with exponential type kernel.
Now by substituting (2.3.10) in the inversion formula of the generalized fractional

integral transform with exponential type kernel, we arrive

(v p(dv)”

+i0co B\« a, yo
1 / (VP)* By (x%07) A

. 2va R, ya Dlatl) *7¢

as a solution of (2.3.9).
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Chapter 3

Numerical solutions of fractional
differential equations by Euler
wavelet method

3.1 Introduction

In this chapter, we discuss the numerical solutions of some fractional differen-
tial equations using Euler wavelet based numerical scheme. Euler wavelets are the
types of wavelets constructed from Euler polynomials as their basis functions. It is
commonly known that when it comes to approximating arbitrary functions, Euler
polynomials provide many advantages over Legendre polynomials. First, there are
less terms in the Euler polynomials than in the Legendre polynomials. Therefore,
utilising Euler polynomials rather than Legendre polynomials saves processing time
when approximating arbitrary functions. Second, employing FEuler polynomials for

function approximation reduces computational errors. Thus, there is a reason for

49



us to believe that Euler wavelets inherit these benefits from Euler polynomials. In
order to solve the fractional differential equations, the major goal of this chapter is to
introduce the Euler wavelet operational matrix. We then utilize this resulting Euler
wavelet operational matrix to reduce the fractional differential equation into a system
of algebraic equations to get the required Euler coefficients, which are computed by
using Matlab. The convergence analysis of the Euler wavelets is also given. It not
only simplifies the problem, but also speeds up the computation. What is more, the
numerical examples demonstrate that Euler wavelet performs better in approximat-
ing an arbitrary function compared to many other numerical methods. Euler wavelet
based numerical scheme (EWM) yields fruitful results in terms of accuracy. The com-
parison shows that, when compared to other methods, the current method has the
best accuracy. This methods can be implemented easily, effectively, and conveniently
to get the numerical solutions to fractional differential equations. For the analysis of

the numerical results, the corresponding graphs and tables are provided.

3.2 Euler wavelet based numerical scheme

Wavelets are a family of functions generated by dilation and translation of a single

function ¢ (x), termed the mother wavelet. We get the following family of continuous
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wavelets if the dilation and translation parameters ¢ and d change continuously.

T —d

bealw) = e Hy ( ) ede (R)c40.

If the translation and dilation parameters are chosen to have discrete values,that is,
c=co P,d=qdycoyP,co>1,dy >0 and p,q € Z, then we have the following family
of discrete wavelets,

Vpg(T) = ‘COI%@D(COP-’E — qdp),

where the functions 1), form a wavelet basis for L?(R). In particular, if ¢; =
2 and dy =1, we can attain an orthonormal basis from t,,(z) for L*(R).

The Euler wavelets are defined on the interval [0,1) as

25 B, (2 e — m + 1), mol < p o<
wmn(aj) =
0, otherwise

form=1,2,..2"'n=0,1,...M —1 and j, M € N,

§
1, n=>0

where E\;(x) =

- E
(2D L2y p G n(z), n>0
\ (2n)! 2n+1( )

the co-efficient
1
—1)n=1(pnH2
\/(%)E%—H(O)

is for normality, the dilation parameter is 2-U~1 and the translation parameter is

(m — 1)2=U=Y. Here, E,(x) denote Euler polynomials of degree n which can be
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defined by the generating functions

2678 o0 s"
g :nZ:OEn@)m’ 5| < .

We can also define the first kind Euler polynomials by the relation,

n

3 C‘) Ej(z) + Eo(z) = 22"

j=0
where (?) is a binomial co-efficient.

The first few Euler polynomials are
1 2 3 2
Ey(x)=1,E(z) =2 — E,Eg(ar) =" —z, EB3(z)=2"— =2+ =, e

These polynomials satisfy the following formula,

1 n(m+1)!

(n+m+1)| n+m+1(0)7 n7m21

/0 En(x)Ey,(x)de = (—1)

and the Euler polynomials form a complete basis for L*(R).

3.3 Function approximation by Euler wavelets

A function f(z) € L*0,1) can be expressed in terms of the Euler wavelets as

F@) =3 Conthmn(z) (3.3.1)

m=0 neZ

where the coefficients C,,,, are given by

Cmn =< f(-r)7¢mn >= /0 f($>¢mn($)d17
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By truncating the infinite series in (3.3.1), f(z) is approximated as

T~ 3 S Conthale) = CT(a)

m=1 n=0

where the coefficient vector C' and the Euler function vector ¢ (z) are 2771M x 1

matrices, given by

C= [Clg, CH, ........ ) Ol(M—l)a 020, ...... CQ(M—l)a ..... s CQj—lo, .......... CQj—l(M_l)]T

w(ZL') == [¢10, @Zjll, ....... wl(]\/[,l), @ZJ207 ......... T/JQ(M,D, ........ 7702]'—10, ..¢2j—1(M,1)]T (332)

We define the Euler wavelet coefficient matrix ¢y, k = 2/7'M at the collocation

points z; = 212;1,@' =1,2..k as

Brock = [z/» @)w(%) ........... ,1/,(%2;1)]

Specifically, the Euler wavelet coefficient matrix for j = 2, M = 3 becomes

14142 14142 14142 0 0 0

09428 0 09428 0 0 0

| 04811 —0.8660 —0.4811 0 0 0
e 0 0 14142 14142 14142
0 0 0  —09428 0  0.9428
0 0 0 —04811 —0.8660 —0.4811

Correspondingly, we have

Fo=[f(@1), f(@2)emenn.. Fze)] = CT s



Since the Euler wavelet coefficient matrix ¢y, is invertible, the Euler wavelet coeffi-

cient vector C” can be attained by

cr = fkgbl:ik

3.4 Error analysis for the Euler wavelet bases

We now establish the error analysis for the Euler wavelets expansion in the following

Theorem.

Theorem 3.4.1. If the function f :[0,1) = R is n+ 1 times continuously differen-

tiable and f € C™10,1), then f(x) = CTy(z) approzimates f(x) with mean error

bounded
~ VoM

- < here M = maz, (n+1)
1f(2) = f(@)]l2 < e ATy e Ml mazepn| [ ()]

Proof. We first divide the interval [0,1) into subintervals I;,, = [Z=F,2:];m =

1,2,..2771 j € N with the restriction that f(z) is a polynomial of degree less than

n+ 1 that approximates f with minimum mean error. Using Lemma 3 [68], we attain
~ 1 ~
@)= F@l = [ (/) = Fla)Pdo
— — F(2)2d
> - i

—~ 2n+3 7 2
< Z V(@) My (5) 73
= (n+ 1)/ (2n +3)
_ 202
= 20D [(n + 1)!]2(2n + 3)

where Mm = ma%efj,m|f(n+1)($)|
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We get the upper bound by taking the square roots. As a result, the error of the

approximation f(z) of f(x) decays like 2=V~ Meanwhile, we notice that the
number of wavelets is k = 2/71M, where M denotes the degree of the Euler poly-
nomials, which is usually small in computation. When M is fixed, the numerical
results improve as j increasing, and we may conclude that the approximate solutions

converge to the exact solution. O

3.5 Operational matrix of the fractional integra-

tion of Euler wavelets

We now explore the basic idea of finding the fractional integration operational matrix
of the Euler wavelets.

A k-set of Block pulse functions(BPFs) over the interval [0,1)is defined as

() = 1, (i—-1)/k<z<ilk

0, otherwise

where i=1,2,3..k, k € N, For x € [0, 1),

Wy =47
bl(m)a vt=17

and

[em@=1" 7

0 oo 1=
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It is known that any square integrable function f(x) defined over [0,1) can be ex-

panded in terms of BPFs as

| itk
wheref = [f1, fo, cceervenn. et fi = —/( f(z)bi(z)dx and By(x) = [b1(x), ba(x), ........ bi(x)]"

i—1)/k

The block pulse functions and Euler wavelets have a relationship,

Y(x) = PrxrBr(2) (3.5.1)

The block pulse operational matrix of the fractional integration F'“, a > 0 is defined

as in [37], that is,

(I*By)(z) =~ F*By(z) (3.5.2)
where
L & & & oo &k
1 & & .0 G
L1 1 |00 1 & &
00 ... 0 1 &
0o 0 ... 0 0 1

withé, = (s + 1)*Tt — 25T 4 (5 — 1)**!
The fractional integration of the vector ¢)(z) defined in (3.3.2) with order av > 0, can

be approximated as

(I*9)(x) = Py (x) (3.5.3)
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where Pg ;. is called Euler wavelet operational matrix of order & > 0. Using (3.5.1)

and (3.5.2), we attain

(1Y) (x) = (I"PrxrBr)(w) = Gpxr (I By)(7) & Qs I Bi(x) (3.5.4)

Thus combining (3.5.3) and (3.5.4), we attain

Pa(z) = (1°9)(x) = dpxx ' By(z) = ¢kxkFa¢/;x1k¢(l‘) and so

-1
Pkaxk ~ ¢k><k:Fa¢k><k

For j =2, M = 3 and a = 0.5, the Euler wavelet operational matrix of the fractional
integration yields,

0.4616  0.3150 —0.1631 0.5012 —0.1509 0.1404
0.0878  0.2243  0.4203 0.0717 —0.0449 0.0626
—0.1305 —-0.1591 0.2354 —0.2110 0.0615 —0.0545

P0.5 —
6x6
0 0 0 0.4616 0.3150 —0.1631
0 0 0 0.0878 0.2243 0.4203
0 0 0 —0.1305 —0.1591 0.2354

Because the operational matrix Pg:% contains a large number of zeros, this phe-

nomenon allows for quick computations.

3.6 Numerical Examples

To show the efficiency of the numerical approach based on Euler wavelets, we

describe some numerical examples.
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3.6.1 Example 3

Consider

ADy(x)+BD%(x)+Cy(x) = g(x), with y(0) = y0,4'(0) = 41,0 < f<a <2,0<z <1

(3.6.1)

where A # 0, B,C € R, g(x) € L?*[0,1) and the solution to be determined in [63] is
y(@).
Eq.(3.6.1) reduces to the Bagley-Torvik equation for a = 2,8 = %, which obtains

when modelling the motion of a rigid plate immersed in a Newtonian fluid.

Table 3.1: Comparisons between numerical solutions attained by Euler wavelet based
numerical scheme(EWM) for M=3 and various numerical methods

X Yezact yewm(j =9) yrpum[0) yapy o] yrprm 6] yv iDL yrwam (g = 10) [63]

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 0.039750 0.039750 0.039473 0.039874 0.039750 0.039874 0.039750

0.2 0.157036 0.157036 0.157703 0.158512 0.157036 0.158512 0.157035

0.3 0.347370 0.347370 0.352402 0.353625 0.347370 0.353625 0.347370

0.4 0.604695 0.604695 0.620435 0.622083 0.604695 0.622083 0.604695

0.5 0.921768 0.921768 0.957963 0.960047 0.921768 0.960047 0.921767

0.6 1.290457 1.290456 1.360551 1.363093 1.290457 1.363093 1.290456

0.7 1.702008 1.702008 1.823267 1.826257 1.702008 1.826257 1.702007

0.8 2.147287 2.147286 2.340749 2.344224 2.147287 2.344224 2.147286

0.9 2.617001 2.617000 2.907324 2.911278 2.617001 2.911278 2.617000
Suppose D%y(x) ~ CTe(z) and g(x) ~ F i (x) (3.6.2)

— a—

Then DPy(z) = I°7P(D%)(z) = CT P Py (x) (3.6.3)
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and

y(z) = CT P 0 (2) + yo + y1 (3.6.4)

Using (3.6.2), (3.6.3) and (3.6.4) in (3.6.1), we have the following system of algebraic

equations
ACTY(x) + BCT P [ (x) + CIO Pl b (x) + yo + m ()] = F o (x)

Table 3.1 compares the numerical solutions of (3.6.1) obtained by the proposed nu-
merical method based on Euler wavelets(EWM) with the numerical solutions obtained
by Finite Difference Method(FDM), Adomian Decomposition Method(ADM), Finite
Difference Transform Method(FDTM), Variational Iteration Method(VIM) and Leg-
endre Wavelet Method(LWM) when o = 2,8 = 1,4 = B = C = 1,g(z) = 8 and
Yo,y1 = 0. Clearly, the numerical scheme based on Euler wavelets is superior to the

numerical schemes stated above, as seen by the comparisons of numerical solutions

in Table 3.1.

3.6.2 Example 4

In Example 3.6.1, suppose A=B=C=1,

—a -5
—2. 0<B<1, yy= = d = 62% [ —— S
a=20<F<1 4p=0 =0 and g(r)=06x (F(4—a) F(4—6)>
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Table 3.2: Comparisons of maximum absolute errors for different values of k and (3
EWM LWM HWM
B k=32 k=128 k=24 k=96 k=32 k=128
025  14205x10°5  51634x 106 | 8546x 104 5343x 105 | 4807 x 104  3.005x 105
050 10680 x 1074 53760 x 1077 | 7.963x 1074 4978 x 1075 | 4.479x 1074  2.800 x 10~
0.75  1.0605x 1074  1.1484x 1075 | 7.405x 1074  4.631x10°5 | 4.166x 1074  2.605 x 10~
100 6.8563x 1075  4.1935x 105 | 6.946x 1074 4341 x 105 | 3.907x 1074 2442 x 1075

5
5

y(z) = x? is the exact solution. The absolute errors obtained by the proposed nu-
merical scheme(EWM), Legendre wavelet method(LWM) and Haar wavelet method(HWM),
are shown in Table 3.2. Table 3.2 shows that as k increases, the absolute errors be-
come smaller and smaller. Table 3.2 further illustrates that the proposed numerical
scheme exceeds Legendre and Haar wavelets in terms of accuracy, when compared to
the results obtained by the Legendre and Haar wavelet schemes, this demonstrates
that the numerical results obtained by the Euler wavelet based numerical scheme are

in good agreement with the exact solution.

3.6.3 Example 5

Consider the fractional differential equation(3.6.5) for an Electrical Circuit with charged

capacitor of capacitance C farads and resistor of resistance R ohms, as shown below
DPQ(x) +5Q(x) =0,  Fe(0,1],7€0,1) (3.6.5)

with initial state Q(0) = @y, where kK = %7

The exact solution of (3.6.5 ) for § =11is Q(z) = Qe "™
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Table 3.3: Comparisons between numerical solutions attained by Euler wavelet based
numerical scheme and Legendre wavelet method

X 5 =0.50 8 =0.75 5 =10.999 Ezxact(f=1)
EWM LWM EWM LWM EWM LWM
0.1 19.3564 19.3481 19.6378 19.6340 19.8017 19.8012 19.8010
0.2 19.0219 19.0500 19.3599 19.3717 19.6042 19.6039 19.6040
0.3 18.8214 18.8163 19.1422 19.1413 19.4091 19.4086 19.4089
0.4 18.6545 18.6471 18.9462 19.9428 19.2165 19.2154 19.2158
0.5 18.4927 18.4976 18.7530 18.7573 19.0238 19.0242 19.0246
0.6 18.3680 18.3669 18.5861 18.5854 18.8359 18.8349 18.8353
0.7 18.2432 18.2450 18.4193 18.4207 18.6480 18.6475 18.6479
0.8 18.1312 18.1319 18.2623 18.2630 18.4625 18.4620 18.4623
0.9 18.0285 18.0275 18.1131 18.1124 18.2793 18.2784 18.2786
Suppose D?Q(z) ~ CT4p(x) (3.6.6)
Then Q(z) = CTPPy(z) + Qo (3.6.7)
Thus, using (3.6.6) and (3.6.7) in (3.6.5), we attain
T T
CT(x) + K[CTPP)(z) + Qo] = 0 (3.6.8)

The coefficients vector C' may be obtained by solving the matrix equation(3.6.8).

Table 3.3 displays the numerical solutions to (3.6.5) obtained using EWM and LWM

for R=10, C =1, @)y = 20 and various (3 values. The numerical method on Euler

wavelets clearly outperforms the Legendre wavelet method, as shown in table 3.3.

3.6.4 Example 6

Consider the multi-term fractional differential equation [17], 42]

D?y(x) + 3Dy(x) + 2D"y(x) + D"y(x) + 5y(z) = f(x),
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where 0 < ¢y < g2 <1, 0 <z <1 and

f(z) =143z +

F(S — (]2)

with the initial states y(0) = 1, ¥'(0) = 0.

x2*‘I2 +

F(S — (]1)

2?70+ 5(1 + 0.52%)

If g1 = 0.0159 and ¢, = 0.1379, then the exact solution of (3.6.9) is given by

y(z) =1+ 0.522

Table 3.4: Absolute errors for M = 3 and different values of j

x =3 =5 =7 =9 =11
0.1 2.77460-04 1.7346¢-05 1.0839¢-06 6.7737¢-08 1.2335¢-09
0.2 2.4925¢-04 1.5530e-05 9.7013¢-07 6.0625¢-08 3.7889¢-09
0.3 2.1031e-04 1.3092e-05 8.1761e-07 5.1091e-08 3.1930e-09
0.4 1.6732e-04 1.0390e-05 6.48726-07 4.0535¢-08 2.5332¢-09
05 1.2436e-04 7.6988¢-06 4.8055e-07 3.0024e-08 1.8763¢-09
0.6 8.4086e-05 5.2128¢-06 3.2527e-07 2.0321e-08 1.2699¢-09
0.7 4.9432¢-05 3.0575¢-06 1.9067¢-07 1.1909¢-08 7.4420e-10
0.8 2.1033e-05 1.2979¢-06 8.0809¢-08 5.0447¢-09 3.1518e-10
0.9 7.3449¢-07 4.8261e-08 3.2143e-09 2.0522¢-10 1.2910e-11

Table 3.5: Comparison of maximum absolute errors for Euler wavelet based numerical

scheme with

7 =3, M = 3 and Adams-type Predictor-Corrector method

Step size Maximum Absolute errors
EWM Adams-type Predictor-Corrector Method
0.1 7.3449e-07 0.051115750000
0.01 7.3449e-07 0.004546523000
0.001 1.1577e-08 0.000409626200

Suppose D?y(z) ~ CT(x) and f(z) ~ FT(x)

Then Dy(z) = CT Pyyitb(x)

D®y(z) = CT Py (x)

D"y(x) = CT P M (x)
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and

y(r) = CT P2 b(z) + 1 (3.6.14)

Using (3.6.10)-(3.6.14) in (3.6.9), we arrive
CTop(x) 4 3CT Pt () + 2CT P2 24p(x) + CT P ()

(3.6.15)
+5[C7 Py (o) + [1, L e 0 (0)] = FT45(a)

Solving the system of algebraic equations (3.6.15), we can attain the coefficients
vector CT" and so we can get the approximate output response y(x). Table 3.4 shows
that the absolute errors attained by the Euler wavelet based numerical scheme with
M=3 and the values of j increasing, become smaller and smaller. From table 3.4,
we also infer that the approximate solutions converge to the exact solution. Table

3.5 shows that the EWM can reach a higher degree of accuracy than Adams-type

Predictor-Corrector Method.

3.6.5 Example 7

Consider the linear fractional differential equation
D%(z) +y(x) =0 with0 <o <2,0<z < 1,and y(0)=1,4(0)=0. (3.6.16)

The second initial condition is only for 1 < a < 2. The exact solution of (3.6.16) is

k

mis the Mittag-Lefler function of order «

y(x) =E,(—x%), where E,(z) = Z
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Talgle 3.6: Absolute errors for different values of k£ and for a = 1.5

X =12 k=24 k=48 k=96 k=192 k=384
0.1 6.8808e-04 6.9051e-05 2.2513e-05 7.0231e-06 1.7455e-06 4.156e-07
0.2 7.9552e-05 3.5316e-05 1.3415e-05 3.3178e-06 7.608e-07 1.911e-07
0.3 9.4834e-05 2.2910e-05 2.9444e-06 7.7780e-07 2.384e-07 5.91e-08
0.4 1.0088e-04 8.0418e-06 2.1604e-06 8.1000e-07 1.974e-07 4.58e-08
0.5 3.6805e-04 6.4931e-05 1.2401e-05 2.5924e-06 5.859e-07 1.4209e-07
0.6 1.6556e-04 5.2566e-05 1.3004e-05 3.0970e-06 7.968e-07 2.225e-07
0.7 2.7243e-04 6.6998e-05 1.5649e-05 4.0075e-06 1.1023e-06 3.5728e-07
0.8 2.8032e-04 7.0973e-05 1.9028e-05 5.0157e-06 1.5096e-06 6.49e-07
0.9 3.4727e-04 8.0723e-05 2.1038e-05 6.1479e-06 2.316e-06 1.3906e-06

Table 3.7: Comparison of maximum absolute errors for « = 1.5, M = 3 and different
values of j

j=1 j=5 j=8

EWM 8.042e-06 2.160e-06 4.58e-08

LWM 1.178e-05 2.948e-06 4.605e-08
Suppose D%y(x) ~ CTa(x) (3.6.17)
Then y(z) =CT P2 () + 1 (3.6.18)

Using (3.6.17) and (3.6.18) in (3.6.16), we arrive

CTy(z) +CT P, (x) +1=0 (3.6.19)

We can obtain the Euler coefficients vector C7 by solving the system (3.6.19)
at the collocation points. The exact solution of (3.6.16) for « = 1 is y(z) = e~ *, while
for o = 2, the exact solution of (3.5.16) is y = cosx. Table 3.6 shows that as the
value of k increases, the absolute errors achieved by the EWM become smaller and
smaller. We can also deduce from Table 3.6 that approximate solutions converge to
exact solutions. The maximum absolute errors achieved by the proposed numerical
scheme and Legendre wavelet method(LWM) for @ = 1.5,M = 3 and various values of
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j are shown in table 3.7. The numerical approach based on Euler wavelets is clearly

superior to the Legendre wavelets method, as shown in table 3.7.
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Chapter 4

Numerical solutions of fractional
differential equations with variable

coefficients by Bernoulli wavelet
method

4.1 Introduction

This chapter addresses the numerical solutions of fractional differential equations
with variable coefficients using Bernoulli wavelet based numerical scheme(BWM). The
numerical scheme based on Bernoulli wavelets is simple and straight forward. The
new technique is based upon Bernoulli polynomials, Bernoulli numbers and Bernoulli
wavelet approximations. The properties of Bernoulli wavelets and Bernoulli poly-
nomials are first presented. We then present the operational matrix of fractional
integration of Bernoulli wavelets. We use this resulting Bernoulli wavelet operational

matrix to reduce the fractional differential equation with variable coefficients into a
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system of algebraic equations to get the required Bernoulli coefficients, which are com-
puted by using Matlab. The numerical solutions of fractional differential equations
by using BWM are compared with exact solutions and the comparison shows that
BWM has the higher degree of accuracy. Convergence analysis of the BWM has been
discussed in this Chapter. Some illustrative examples demonstrate the applicability

and accuracy of Bernoulli wavelet based numerical scheme.

4.2 Bernoulli wavelet based numerical scheme

Wavelets are a family of functions generated by dilation and translation of a single
function ¢ (), termed the mother wavelet. We get the following family of continuous

wavelets if the dilation and translation parameters ¢ and d change continuously.

z—d
c

Yea(x) = \C|7%w ( ) ,e,d € (R),c#0.

If the translation and dilation parameters are chosen to have discrete values,that is,
c=co ?,d=qdycoyP,co >1,dg >0 and p,q € Z, then we have the following family
of discrete wavelets,

Ypa() = |col 29 (co”x — gdo),

where the functions 1), form a wavelet basis for L?*(R). In particular, if ¢g =

2 and dy =1, we can attain an orthonormal basis from t,,(z) for L*(R).

67



The Bernoulli wavelets are defined on [0,1) as

2% B, (20 'z —m + 1), nl<r<®

0, otherwise,

form=1,2,...,227, n=0,1,..., N — 1 and j, N € N, where

1, n =20,

L E.(x), n>0
1 n ) )
N =T

L is used for normality, the dilation parameter is 2-¢~1

(=nyn=l@mn?
( (2n)! )BQn
and the translation parameter is (m — 1)2=U=Y. Here E,(z), n = 0,1,..., N — 1,

the coefficient

denote Bernoulli polynomials of order n which can be defined by the relation
E,(z) = i <"> B, (4.2.2)
=0 \'
where ., (r =0,1,2,...,n) are Bernoulli numbers. Bernoulli numbers can be defined
by the following generating function

r

X > xr
= Zﬁrﬁ. (4.2.3)
r=0 )

The first few Bernoulli numbers are

1

fo=1,B1= 5, fo = 5. fa =~ (1:2.4)
with fo,41 =0,7=1,2,3,...
The first few Bernoulli polynomials are
Eo(z) = 1, Ey(2) = 7 — % Ey(z) = 2% — 34 é Fy(z) = o — ggﬂ + %x L (425)



4.3 Properties of Bernoulli polynomials and Bernoulli

wavelets

The properties of Bernoulli polynomials and Bernoulli wavelets have been discussed

in [65].
Moreover,
B (2B, (2)d pym-1__m > 1 4.3.1
/0 m (1) Ep(z)dz = (—1) mﬁmm, n,mz2z1, (4.3.1)
and
! n!
/O Bu@)ldr < 1671 =0 (4.3.2)

Let ¢($) = ['@Dl(l’),'@bg(x), ---ﬂﬁk(@?» where ¢Z<m) = ¢mn(x)a = N(m_1)+n+17 k=
VIN m=1,2,..,2277 . n=0,1,..., N — 1 and j, N € N. Then Bernoulli wavelets

have the following orthonormality properties.

< U, (x), 0y(2)dz >= /0 br () (2)dz = {1, r=s50  rs (4.3.3)

/ ()T () = E, (4.3.4)

where < .,. > denotes the inner product and F indicates identity matrix.
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4.4 Function approximation by Bernoulli wavelets

A function h(z) € L?[0,1) can be expressed in terms of Bernoulli wavelets as

o)

h(l‘) = Z Z amnwmn(x)a (4.4.1)

m=0nez

where the coefficients a,,, are given by

G =< h(&), rn(z) >= /0 B o (2)

By truncating the infinite series in Equation (4.4.1), h(z) is approximated as

2/-1 N—1
h(x) 2 > > (@), (4.4.2)

For simplicity, Equation (4.4.2) is written as

h(z) = i aiy(z) = ATU(z), (4.4.3)
i=1
where a; = tmn, Vi = Ymn, k=22"'N, A=lay,as, ...,a;]", (4.4.4)
and
U(x) = [y (2), Yo (), ..., Y (2)] . (4.4.5)

The index i is determined by the relation ¢ = N(m — 1) + n + 1.
We define the Bernoulli wavelet coefficient matrix ¢pyx, k& = 271N, at the collocation

points z, = 21 r =12 ..k as

Prxk = [\If (%) U (%) . <2k2; 1)1 : (4.4.6)
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Specifically, the Bernoulli wavelet coefficient matrix for 7 = 2 and N = 3 becomes

14142 1.4142 1.4142 0 0 0
—1.6330 0 1.6330 0 0 0
0.5270 —1.5811 0.5270 0 0 0
P6x6 = . (4.4.7)
0 0 0 14142 1.4142  1.4142
0 0 0 —1.6330 0 1.6330
0 0 0 0.5270 —1.5811 0.5270

Here, we have

hie = [M(x1), h(x2), ... h(zw)] = AT broe.

Since the Bernoulli wavelet coefficient matrix ¢y, is invertible, it is possible to obtain

the Bernoulli wavelet coefficient vector AT by Ekgﬁ,;i k-

4.5 Operational matrix of fractional order integra-

tion of Bernoulli wavelets

In this section, we explore the basic idea of finding the operational matrix of fractional
order integration for the Bernoulli wavelets.

A k-set of Block pulse functions (BPFs) over the interval [0,1) is defined as

b () = 1, (r—1)/k<x<r/k, (45.1)

0, otherwise,
where r =1,2,3,..., k.
It is known that any square integrable function h(x) defined on the interval [0,1) can
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be extended in terms of BPF's, and by using orthogonality of BPF's as
k
h(z) =Y hb(x) = K" By(x), (4.5.2)
r=1

where h = [hy, hy, ..., )", h, for r = 1,2, ...,k are given by

1 r/k

h, = — h(z)b,(z)dz, and By(z) = [by(x), by(x), ..., bp(x)]T.
k:/(r_wk()() (@) = [bi(z), ba(z) ()]

There is a connection between the block pulse functions and Bernoulli wavelets, which
is,

V() = ¢pxrBr(z). (4.5.3)
The block pulse operational matrix H?, 8 > 0 of fractional integration of order 8 > 0

is defined as,

(I°By)(x) =~ HP By(x), (4.5.4)
where

I G G ¢ ... Gr
01 G G ... G2

5 i 1 0 0 1 ¢ ... (s

H _k:BF(ﬁ+2) T : ’

o0 ... 0 1 (G
0O 0 ... 0 O 1

with ¢; = (j + 1)77 — 257t 4 (5 — 1)7+1,

The fractional integration of order f > 0 of the vector ¥(z) defined in Equation

(4.4.5) can be approximated as

(I°W)(z) =~ P W(x), (4.5.5)
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where P,fx . is called Bernoulli wavelet operational matrix of order 5 > 0.

Using Equations (4.5.3) and (4.5.4), we attain
(I°W) () ~ (I°$pxBr) (x) = dusi(I°By) (%) = ¢pxu H® By(z). (4.5.6)
Thus combining Equations (4.5.5) and (4.5.6), we attain
PP U(z) = (I°0)(z) = Gpur H? Bi(x) = dpocr HP ¢ L W (), and so  (4.5.7)

P]ka ~ stkkaﬁqb];ik (458)

For example, the Bernoulli wavelet operational matrix of the fractional order integra-

tion for j =2, N = 3 and 8 = 0.5 yields

0.5282 0.1819 —0.0298 0.4438 —0.0871 0.0256
—0.1452 0.2243 0.1329 0.0799 —0.0449 0.0198
Pgofﬁ _ —0.0598 —0.0964 0.1688 —0.0417 —1.8589¢ — 04 0.0029
0 0 0 0.5282 0.1819 —0.0298
0 0 0 —0.1452 0.2243 0.1329
0 0 0 —0.0598 —0.0964 0.1688
(4.5.9)

Since the operational matrix P2 contains several zeros, the proposed technique

reduces the computation greatly.

4.6 Convergence Analysis

In the following theorem, we establish the convergence of the Bernoulli wavelets ex-
pansion [57].
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Theorem 4.6.1. If h(z) € L?[0,1) is a continuous function and |h(z)] < n, n € R,
then the Bernoulli wavelets expansion of h(x) defined in Equation (4.3.1) converges

uniformly and also
F 160!

amn<-__
|G NoET T

—_— 4.6.1

where
1

n 1 n 2

Proof. Any function h(x) € L?[0,1) can be approximated in terms of Bernoulli

F—

wavelets as

20-1 N—1
2) 23 Gyt (@), (4.6.2)
m=1 n=0
Here
1
Ay, = / () (z)dz
0
m—1 m 1
= Z/ L)Y (x)dx, where Lim = {F’ F) ,m=1,2..,2"" (4.6.3)
1
=27 FZ/ (277 e — m + 1)dx, where F =

_1)n—1(p)2 : (464)
NE=Er

Using 2712 — m + 1 = t, we have

= 55 12/ (t+27]nl_1)En(t)dt, (4.6.5)

and so
t —l— m—1 Fn Fn n!
(4.6.6)
Thus the series Zm 1 Zn _o Gmn 1s absolutely convergent, and so the series
Ziizll le 01 A Vmn () is uniformly convergent. O
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4.7 Algorithm for the Bernoulli wavelet based nu-

merical scheme

Step 1: Assign the values for j and N for step size k = 277! N in Equation (4.4.4).
Step 2: Compute Bernoulli wavelet coefficient matrix ¢« at the collocation points

z, =24 r=1,2, ...,k from Equation (4.4.6).

Step 3: Compute the block pulse operational matrix H” from Equation (4.5.4).
Step 4: Construct Bernoulli wavelet operational matrix P,fx  of order 8 > 0 using
Equation (4.5.8).

Step 5: Dispersing the coefficients of the given fractional differential equations at
the collocation points, construct diagonal matrices.

Step 6: Express all Caputo fractional derivatives in the given fractional differential
equations in terms of Bernoulli wavelets.

Step 7: Solve the system of algebraic equations using MATLAB2015a to compute
the unknown vector.

Step 8: Compute the solution using the unknown vector and the Bernoulli wavelet

operational matrix.
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4.8 Numerical Examples

To show the applicability and the effectiveness of the Bernoulli wavelet based nu-
merical scheme, we consider here some fractional differential equations with variable

coefficients.

4.8.1 Example 8

Consider the following fractional order linear differential equation with variable coef-

ficients
r[D*h(x)] + s(x)[D2h(x)] + t(x) [Dh(x)] +u(z) [D" h(z)] +v(z)h(z) = w(z), (4.8.1)

with0 <z <1,0<y <1,1 < <2/h(0) =2 and A'(0) =0,

where r € R, s(z), t(x), u(z),v(z), h(z),w(z) € L*0,1),

s() 2— u() 2— L,
w(r) =—r— ———x" " —t(x)r — —————" " +v(x)(2 — =x°).
N M Ve D=5
Suppose
D?*h(z) ~ ATW(x) where A = [ay, ay, ..., )", and
(4.8.2)
w(r) ~ WU (x) where W = [wy, wy, ..., wy].

Then D2h(z) = AT P2 U(z), (4.8.3)
DVh(z) = ATP; (), (4.8.4)
Dh(z) = AT Py ¥ (), (4.8.5)
and h(z) = AT P,V (x) + 2. (4.8.6)
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Using Equations (4.8.2) - (4.8.6) in (4.8.1), we attain
[P AT (2) + [AT P10 (2)s(2) + [AT P ¥ (@)t (2) + [AT P 0 (2)u(w)
(4.8.7)
HAT P JU()u(e) + 20(x) = WTH(z).

Dispersing the coefficients s(z),t(z),u(z),v(z) at the collocation points, construct

the following matrices.

s(ty) 0 ... 0 tx) 0 ... 0
|0 s o e 0 t('@) o0
0 0 s(zx) 0 0 ()

u(zy) 0 0 v(z)) 0 0

S| 0 ) 0 N (@) 0
0 ... 0 u(z) 0 0wz

Discreting Equation (4.8.7), we can achieve

r AT s + AT PP 2 ¢ 1S + AT P T + AT P o U
(48.38)
+HATP?pps, + Y.V = W,

where Y = (2,2, ..., 2]1xx. At the collocation points x; = (2i —1)/2k, i = 1,2, ..., k, we
transform Equation (4.8.8) into a system of algebraic equations. Solving this system
of algebraic equations using MATLAB2015a, we can easily obtain A”.

Suppose
r=1,s(z) = 2%, t(z) = 23, u(x) = 2¥* v(z) = 2%, 7 = 0.333,7, = 1.234.

Then the exact solution of Equation (4.8.1) for 71 = 0.333 and v, = 1.234 is
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Table 4.1: Maximum absolute errors for various choices of j and N.
k 48 96 192 384 768

(j=3,N=3) (j=4N=3) (j=5N=3) (j=6N=3) (j=T,N=3)

The proposed
method 1.5100e-05 3.8168e-06 9.6282e-07 2.4249e-07 6.0990e-08

Table 4.2: Adams type Predictor-Corrector method [20].

Step size Maximum absolute errors

0.1 0.023658990000

0.01 0.000986218500

0.001 0.000043988230
h(z)=2— 1z

In Tables 4.1 and 4.2, the maximum absolute error obtained using Adams type
Predictor-Corrector method is 4.40e-05 in 1000*" step, while the maximum absolute
error using the Bernoulli wavelet based numerical scheme is 1.51e-05 in 48 step. We
also see clearly from Table 4.1 that the numerical solutions are in perfect agreement
with the exact solutions for larger values of k. Numerical results of this problem
demonstrate that the Bernoulli wavelet based numerical scheme converges rapidly
and is more efficient than the Adams type predictor-corrector method [20]. Also from
Figure 4.1, we see clearly that the numerical solutions are in perfect agreement with

the exact solutions.

4.8.2 Example 9

Consider the following fractional differential equation
DY3h(z) + zh(z) = w(x), z € [0,4), (4.8.9)
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Figure 4.1: Comparison of Numerical solutions of Example 5.1 for k =8 (j =3, N =
2) and k =16 (j =4, N = 2) with the Exact solutions.

with the initial state h(0) = 0 and w(x) = 2r(3/3)$(2/3) + 2(4/3) | The exact solution of
Equation (4.8.9) is h(x) = z.

Let t = x/4. Then x = 4t, t € [0,1).

Thus
DY3h(4t) + (4)2h(4t) = v(2), (4.8.10)
where
3.21/3
= w(dt) = S t?P 4 (4)*/? 1).
olt) = w(dt) = ot (4, e 0.1)
Approximating
DY3n(4t) as ATW(t) where A = [ay, as, ..., az]”, (4.8.11)
we have
h(4t) = ATPY3Q(1). (4.8.12)
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Table 4.3: Absolute errors for various choices of j and for N = 2.
x k=8 k=16 k=32
(j=3,N=2) (j=4,N=2) (j=5N=2)
BWM HWM BWM HWM BWM HWM
0.25 | 3.4042¢-02 4.6972¢-02 | 1.0979¢-02 2.5554¢-02 | 1.6860e-03 6.3723¢-03
0.75 | 5.2261e-03 1.8818¢-02 | 1.7086e-03 7.7490e-03 | 4.8561e-04 2.6655¢-03
1.25 | 2.9291e-03  1.2333¢-02 | 9.1120e-04 4.9465¢-03 | 2.7618¢-04 1.7841e-03
1.75 | 1.8933¢-03  9.24640-03 | 5.9425¢-04 3.6780-03 | 1.8461e-04 1.3549¢-03
2.25 | 1.3507¢-03  7.4107¢-03 | 4.2765¢-04 3.2651¢-03 | 1.3471e-04 1.3549¢-03
2.75 | 1.0238¢-03  6.18500-03 | 3.2668¢-04 2.6691¢-03 | 1.0387¢-04 1.0953¢-03
3.25 | 8.0889¢-04 5.3060-03 | 2.5985¢-04 2.0961e-03 | 8.3183¢-05 9.1997¢-04
3.75 | 6.5879¢-04 4.6437¢-03 | 2.1286e-04 1.8332¢-03 | 6.8503¢-05 6.9676¢-04

Figure 4.2: Comparison of Numerical solutions of Example 5.2 for k =8 (j =3, N =
2) and k =16 (j = 4, N = 2) with the Exact solutions.

Similarly, v(t) can be approximated by the Bernoulli wavelet functions as

v(t) = VIW(t), where V = [vy,vg, ..., vg]" . (4.8.13)

Using Equations (4.8.11), (4.8.12) and (4.8.13) in Equation (4.8.10), we have

ATW(t) + (40)BATPVAU(t) = VTU(1). (4.8.14)
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Dispersing the coefficient (4t)!/3 of Equation (4.8.14) at the collocation points, con-

struct the following matrix.

(4t,)1/3) 0 . 0
. 0 (4t5)0173) . 0
0 o 0 (4t,)/3)

Discreting Equation (4.8.14), we get
AT G + ATPYV G R = VT p. (4.8.15)

We convert Equation (4.8.15) into a system of algebraic equations at the collo-

2¢—1
20N

cation points t; = i=1,2,...,2271N. Solving this system of algebraic equations
using MATLAB2015a, we can easily obtain the coefficients vector AT. Then we get
the numerical solutions h(4t) of Equation (4.8.10). The numerical solutions h(x) of
Equation (4.8.9) are obtained by h(z) = AT PY34y(x/4).

The numerical results for k =8 (j =3, N =2) and k = 16 (j = 4, N = 2) are
shown in Figure 4.2. The numerical solutions are in good agreement with the exact
solutions, as can be seen from Figure 4.2. Table 4.3 displays the absolute errors for
various k values. We also see from Table 4.3 that as k increases, the errors become

smaller and the Bernoulli wavelet based numerical scheme is more accurate compared

with the Haar wavelets method.
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Chapter 5

Numerical solutions of multi-order
fractional differential equations by
Chebyshev wavelet method

5.1 Introduction

The motivation of the present chapter is to solve multi-order fractional differential
equations using the Chebyshev wavelet based numerical scheme. A fractional deriva-
tive is employed in accordance with the Caputo definition. Chebyshev wavelets are
the types of wavelets constructed from Chebyshev polynomials as their basis func-
tions. They have very excellent interpolating properties and give better accuracy for
numerical approximations. Chebyshev wavelet-based techniques have drawn a lot of
interest over the past ten years. The existence of four different types of Chebyshev
polynomials is well known. The first and second types of Chebyshev polynomials
are specific examples of symmetric Jacobi polynomials, whereas the third and fourth

types are particular examples of non-symmetric Jacobi polynomials. The first and
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second types of Chebyshev polynomials and their numerous applications have re-
ceived a lot of attentions. However, there aren’t many publications that focus on the
wavelets that can be used in fractional partial differential equations when they are
shaped by these two kinds of Chebyshev polynomials. Our curiosity in such wavelets
is motivated by this.

The use of Chebyshev wavelets approximations based on collocation spectral method
has a number of benefits. First, it is currently common for them to be characterized
by the use of exponentially decaying errors, contrary to the majority of numerical
methods. Second, while wavelet approximations successfully handle the problem’s
singularities, other numerical approaches perform poorly when used close to singu-
larities. In the end, Chebyshev wavelet-based numerical schemes do not experience
the instability problems pertaining with other numerical approaches because of their
result oriented. In this chapter, one of our goals is to extend the applications of the
third kind Chebyshev wavelets. Several wavelet functions with unknown coefficients
are used to estimate the solution. The numerical simulations are performed by using
Chebyshev wavelet method. The comparison shows that Chebyshev wavelet based

numerical scheme has good accuracy.
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5.2 Chebyshev wavelet based numerical scheme

Wavelets are a family of functions generated by dilation and translation of a single
function ¢ (x), termed the mother wavelet. We get the following family of continuous

wavelets if the dilation and translation parameters ¢ and d change continuously.

z—d

Ved(r) = |C|_%¢ ( ) ,e,d € (R),c#0.

If the translation and dilation parameters are chosen to have discrete values,that is,
c=cy P,d=qdycoP,co >1,dy >0 and p,q € Z, then we have the following family
of discrete wavelets,

Ppg(T) = |COI%¢<COPQ3 — qdy),

where the functions 1, form a wavelet basis for L?*(R). In particular, if ¢ =
2 and dy =1, we can attain an orthonormal basis from t,,(z) for L*(R).

A family of Chebyshev wavelets over the interval [0,1) is defined by

25U, (20t — 2m+1), 2=l <t<.m
Yo (t) = ( ) ? 2

0, otherwise,

‘ —~ 1
where m=1,2,..,227, n=0,1,...M—1, j M €N, Uy,(t) = TUn(t) and U, (t)’s
T
denote the Chebyshev polynomials of third kind of degree n, which are mutually

orthogonal with respect to the weight function w(t) = \/SL? on the interval [-1,1]

=

and satisfy the following recursive formula Uy(t) = 1,U;(t) = 2t — 1,Up1(t) =
HU(1) — Uy 1 (1)
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5.3 Function approximation by Chebyshev wavelets

The Chebyshev wavelets can be used to expand any function f(t) € L?[0,1) as

FO =D duntma(t), (5.3.1)

m=0 n=0

where dp, =< f(t), Yimn(t) >= /1 F (&) Vmn(t)wm (t)dt, and < .,. > denotes the
0

inner product on L2 [0,1).

n

By truncating the infinite series in (5.3.1), f(¢) is approximated as

20—1 M—1

FO =YD tmntbnn(t) = ATU(E), (5.3.2)

m=1 n=0

where A and U(t) are 2771 M x 1 matrices, given by
A= [Cho, A115 -5 QUM —1)5 A205 -y A2(M—1)5 -++5 A25 =10 -+, a2f—1(M71)]T and (5-3-3)

U(t) = [Y10, V11, s V1(ar=1)5 Y205 -y Vo(Mi-1) -~-,¢2171(M—1)]T- (5.3.4)

We define the Chebyshev wavelet matrix ¢« at the collocation points

21— 1 , 1 3 2n — 1
ti=——i=1,2,..,27'M axn= V[ —=|,¥(=]),.., U - ,
) 2JM 72 » < ) as ¢ X [ <2n> I <2n> ) ) ( 2’]7, >:|

where n = 2971 M. Specifically, for j = 2 and M = 3, the Chebyshev wavelet matrix

becomes
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1.1284
—2.6329
2.3821
0
0
0

¢6><6 -

1.1284
—1.1284
—1.1284

0
0
0

1.1284
0.3761
—0.6269
0
0
0

0
0
0
1.1284
—2.6329
2.3821

0
0
0
1.1284
—1.1284
—1.1284

0
0
0
1.1284
0.3761
—0.6269

5.4 The Chebyshev wavelet Operational matrix of
fractional integration
In this section, we explore the basic idea of finding the fractional integration

operational matrix of the Chebyshev wavelets.

An 7 set of Block pulse functions(BPFs) is defined as

1, i—1)/A<t<i/n,
bi(t) = ( )/ / where i = 1,2,3, ..., 7.
0, otherwise,
0, 1% 7, 1 0, 1+ 7,
For t € [0,1), b;(t)b;(t) = 7 and / bi(7)b;(T)dT = #J
bl(t)7 Z:ja 0 %7 Z:j

In terms of 1 set of BPFs, any function f(¢) € L?[0,1) can be expanded as follows:

F) =0 fibi(t) = fTBa(t),

iR
where f = [f1, fo s fal T\ fi = i/( F(Obi(t)dt and Ba(t) = [by(t), ba(t), .. ba(t)]".

nJa-1)/n

The Chebyshev wavelet matrix can be expressed as

U(t) = daxaBalt). (5.4.1)
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The block pulse operational matrix F? of fractional integration I? is defined as

(I”Ba)(t) = F’Ba(t),

I G G ¢ ... G
1 G G ... G2
1 1 00 1 ¢ ... Ges
here Ff = —— —
00 ... 0 1 G
00 ... 0 0 1

with & = (5 + 1)7T — 2577 + (j — 1)PH

(5.4.2)

The fractional integration of order 5 > 0 of the vector W(t) defined in (5.3.4) can be

expressed as

(IPU)(t) ~ P20 (1),

(5.4.3)

where ngﬁ is called the Chebyshev wavelet operational matrix of order # > 0. Using

(5.4.1) and (5.4.2), we obtain,

(I°)(t) ~ (I°¢nxnBs)(t) = daxa(I7Ba)(t) = éa «nF” Ba(t)

Moreover, from (5.4.3) and (5.4.4), we have
PP _W(t) =~ (I°0)(t) = ¢nxnFPBa(t).

nxn

Thus by considering (5.4.1) and (5.4.5), we attain
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In particular, the Chebyshev wavelet operational matrix of the fractional integration
for j =2,M = 3 and g = 0.5 yields

0.6691  0.1325 —0.0250 0.3827 —0.0539 0.0215
—0.5266 0.2205  0.1537 —0.3226 0.0282 —0.0023
0.0221 —-0.2396 0.0318 0.0194 0.0104 —0.0091

P0.5 —
6x6
0 0 0 0.6691 0.1325 —0.0250
0 0 0 —0.5266  0.2205 0.1537
0 0 0 0.0221 —0.2396 0.0318

As Pﬁﬁxﬁ contains many zeros, the proposed technique will have faster simulations.
ngﬁ is done once and is utilized to solve fractional order differential equations just

as integer order differential equations.

5.5 Numerical Examples

In this section, some numerical examples are given to illustrate the efficiency
and the reliability of the Chebyshev wavelet based numerical technique and all the

numerical calculations are performed by MATLAB.

5.5.1 Example 10

Consider the multi-order fractional differential equation [27]

Du(t) = yoD"u(t) + y1 D7 u(t) + 42 D u(t) + ys D™ ult) + f(t),  t€[0,1),

(5.5.1)
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where yo, y1,y2,y3 € R, f(t) is a known function, m — 1 <y < m,

Yo, V1, V2, V3 < v with the initial states
u(0)=c; €R,j=0,1,...,m— 1.
Approximating Du(t) as ATWU(t), we have
Du(t) = AT PY70W(t),

DM u(t) = ATPY(),

Du(t) = AT PR (1),

DBu(t) = ATPY™3¥(t) and

m—1

u(t) = ATPYU(t) + u(j)(O)tj

i=0 J

m e 7T,

Similarly, the function f(¢) may be expanded by the Chebyshev wavelets as

f(t) = Fro(),

where F7 is a known constant vector.

Using Equations 5.5.3-5.5.7 and 5.5.9) in Equation 5.5.1, we attain

ATW(t) = yp AT PYOW(t) + 4y ATPYU(E) + g AT P20 (1)

+ys ATPYIW(t) + FTU(1),

Since V() = ¢nxnBr(t), we have

AT pra Ba(t) = yo AT P70 Ba(t) + y1 AT P77 ¢35 Ba(t)

+ya AT P2 5.5 Bi(t) + ys AT PY T 6n Ba(t) + FT dna Ba(t).
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Table 5.1: Absolute errors of example 10 for various values of 1

t n=24 n=48 n=96 n=192
(j=4,M =3) (j=5M=3) (j=6,M=3) (j=7,M=3)
0.1 5.6757e-04 1.4109¢-04 3.5200e-05 8.7901¢-06
0.2 5.2023e-04 1.2917¢-04 3.2520e-05 8.0929¢-06
03 4.7091e-04 1.0846¢-04 2.4930e-05 6.1988¢-06
04 1.6459¢-05 4.3184¢-05 9.2216¢-06 1.5083¢-06
0.5 5.5512¢-03 5.7762e-04 8.1605¢-05 1.4377¢-05
0.6 1.2675¢-03 5.6763e-04 1.4110e-04 3.1709¢-05
0.7 5.6379¢-03 1.4022¢-03 2.9665¢-04 7.5132e-05
0.8 8.3151e-03 2.2370e-03 6.5392e-04 1.6275¢-04
0.9 2.2315¢-02 4.3762¢-03 1.1157e-03 2.9777e-04

The Equation 5.5.10 can be transformed into a system of algebraic equations at

21—1
20 M

the collocation points t; = i=1,2,...,297 M. Solving this system, we can obtain
the Chebyshev wavelet co-efficient vector A”. Then using Equation 5.5.8, we get the
approximate output response u(t).

In particular, if we choose v = 2,¢9 = ¢1 =0, yo = yo = —1,y1 = 2,y3 = 0,
Yo=0,71=1,7%=3and f(t)=¢t"+ %}}t“’ — 1415 4 42° — 12 — %t“’ + 4t — 2,
then the exact solution of Equation 5.5.1 is u(t) = t" — t*. The absolute errors in

Table 5.1 confirm the convergency and the reliability of the Chebyshev wavelet based

numerical technique.
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5.5.2 Example 11

In the above example, suppose v =2,¢co =c¢; =0, yp = y2 = —1,
hn :0793:27 020772: % < (071)773: g < (172)7

773,

12 6
and  f(t) =13 + 6t — 3 4
L(3) T'(3)

The exact solution in this case is u(t) = t3. Table 5.2 shows that the absolute

Table 5.2: Absolute errors of example 11 for various values of 1

t n=24 7= 48 n=96 n =192
(j=4,M =3) (j=5M=23) (j=6,M=3) (j=7,M=23)
0.1 1.3231c-03 1.0852¢-03 1.0218¢-03 1.0057¢-03
0.2 9.0992¢-03 8.2858¢-03 8.0759¢-03 8.0200¢-03
0.3 2.9622¢-02 2.7704¢-02 2.7186¢-02 2.7049¢-02
0.4 6.9620e-02 6.5489¢-02 6.4395¢-02 6.4103¢-02
0.5 1.3600e-01 1.2792e-01 1.2577e-01 1.2520e-01
0.6 2.3717e-01 2.2155¢-01 2.1746¢-01 2.1638¢-01
0.7 3.8203¢-01 3.5317e-01 3.4568¢-01 3.4370e-01
0.8 5.8250e-01 5.3030e-01 5.1681e-01 5.1326¢-01
0.9 8.5504¢-01 7.6151e-01 7.3754e-01 7.3123¢-01

08

0.6

04t

0.2

Figure 5.1: Comparison of the numerical and exact solutions for example 11

errors attained by the Chebyshev wavelet based numerical technique with M = 3 and
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the values of j increasing become smaller and smaller. Figure 5.1 also depicts the

convergency and the reliability of the Chebyshev wavelet based numerical technique.

5.5.3 Example 12
Consider the non-homogeneous multi-order fractional differential equation [63]
aDu(t) + bDPu(t) + cu(t) = g(t), t € [0,1), (5.5.11)

where a # 0, b,c € R, g(t) is a known function, m — 1 < a <m,m € Z*, f < «

with the initial states u)(0) =u; €R, j =0,1,....,m — 1.

—a -8
Now, suppose a = 2, 3 =05, a =0b=c =1, g(t) = 63 <F(t4—o¢) — F(t4_ﬁ)> and

up = u; = 0. Using the Chebyshev wavelet based numerical technique, we arrive

AT () + AT P2 W (t) + ATPE U (t) = GTU(t).

nxn

Since V(t) = ¢nxnBr(t), we have

AT ban Ba(t) + AT PY2-basa Ba(t) + AT P2 ndaxaBa(t) = G ¢axaBalt). (5.5.12)

nxn

Table 5.3: Maximum absolute errors of example 12 for various values of n
Legendre Haar Chebyshev
3 n=24 7=96 n=32 n—128 n=32 n—128
025  8546x 104  5343x 105 | 4807 x 104  3.005x 105 | 14205x10°5 51634 x 106
050  7.963x 1074 4978 x 1075 | 4479 x 1074  2.800 x 1075 | 1.0680 x 1074 5.3760 x 107
075  7405x 1074  4.631x 1075 | 4166x 1074  2.605x 1075 | 1.0605x 10"4  1.1484 x 1075

The equation Equation 5.5.12 can be transformed into a system of algebraic equa-
tions at the collocation points. Solving this system, we can attain the co-efficient
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vector AT. Maximum absolute errors attained by Legendre wavelets, Haar wavelets
and the Chebyshev wavelets are compared in Table 5.3. Also Table 5.3 shows that
the Chebyshev wavelet based numerical technique gives better results compared to

Haar and Legendre wavelets.
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Chapter 6

Applications of Bernoulli wavelets

6.1 Introduction

In this chapter, numerical solutions of fractional electrical circuits, namely
LC(Inductor-Capacitor) circuit, RL(Resistor-Inductor) circuit, RC(Resistor-Capacitor)
circuit and RLC(Resistor-Inductor-Capacitor) circuit are obtained using a numerical
method based on Bernoulli wavelets.

Fractional models for electrical circuits have already been proposed in [4]. In this
regard, Gomez et al. [26] have obtained solutions of RL and RC circuits involving
caputo derivatives using numerical Laplace transform. Besides, they have also stud-
ied RLC circuit in time domain and found solution with respect to the Mittag-LefHer
function. Shah et al. [59] considered the Laplace transform of fractional derivatives in
the caputo sense to get the solutions of RL electrical circuit described by a fractional
differential equation of the order 0 < 8 < 1.

Atangana et al. [8] investigated the RLC circuit model utilising the fractional
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derivative without singular kernel. To study fractional electrical circuits, Legendre
wavelet has been applied by Arora and Chauhan [7]. Sahar Altaf and Sumaira Yousuf
Khan [5])recently made the discovery of the numerical solutions of fractional circuits
defined by fractional derivatives.

The numerical solutions to the corresponding problems that were obtained using
the Bernoulli wavelet method are then compared with the classical solutions. The
comparison demonstrates that Bernoulli wavelet based numerical scheme has good

accuracy.

6.2 Applications

This section deals with the applicability and the simplicity of the numerical
method based on Bernoulli wavelets for solving fractional differential equations of the

electrical circuits LC, RL, RC and RLC.

6.2.1 Example 13

Consider the fractional differential equation of an LC Circuit with charged capacitor

and inductor,

1
DPR(t) + po®R(t) = 0, B € [1,2], where py* = c (6.2.1)
with R(0) = Ry and R'(0) = 0.
The classical solution for 8 = 2 is R(t)rc = Rocos(pot). (6.2.2)
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Table 6.1: Numerical results of LC' circuit( L = 1,C =1, Ry = 0.01 and for g = 2)

t u=20Q=2 u=23,Q =2 u=4,Q=2 CS
1/16 1.0050 x 1073 9.9740 x 1073 9.9740 x 1073 9.9805 x 1073
3/16 9.7439 x 1073 9.8186 x 1073 9.8184 x 1073 9.8247 x 1073
5/16 9.4378 x 1073 9.5101 x 1073 9.5096 x 1073 9.5157 x 1073
7/16 9.1317 x 1073 9.0535 x 1073 9.0525 x 1073 9.0581 x 1073
9/16 8.5201 x 1073 8.4557 x 1073 8.4542 x 1073 8.4592 x 1073
11/16 7.6764 x 1073 7.7262 x 1073 7.7240 x 1073 7.7283 x 1073
13/16 6.8327 x 1073 6.8762 x 1073 6.8733 x 1073 6.8769 x 1073
15/16 5.9890 x 1073 5.9191 x 1073 5.9154 x 1073 5.9181 x 1073
Approximating D? R(t) as CT4)(t), we have (6.2.3)
R(t) = CTPPy(t) + tR'(0) + R(0) (6.2.4)
Using the initial conditions, R(t) = CT PPy (t) + Ry (6.2.5)
Thus CT4(t) + po*[CT PPy (t) + Ro) = 0 (6.2.6)

Current R(t)

Timet

L L
0.7 0.8 0.9

Figure 6.1: Current versus Time graph ( L =1,C =1, Ry = 0.01 and 8 = 2)
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Solving the Equation 6.2.6 at the collocation points, we get the Bernoulli coef-
ficient vector CT. The numerical solutions of the LC circuit for 3 = 2 and various
values of ¢’ are given in Table 6.1. Also, from Fig 6.1, it is graphically shown that the

Bernoulli wavelet based numerical approach reaches a higher precision of accuracy.

6.2.2 Example 14

Consider the fractional differential equation of an RL Circuit with only charged ca-

pacitor and resistor

DQ(t) + rQ(t) = p, B € (0,1], (6.2.7)
with the initial state Q(0) = Qg, where k = %, p= %
The classical solution for g =1 is
VL VL
Qt) = [Qo - f} e "t 4 - (6.2.8)

Table 6.2: Numerical results of RL circuit( R = 10,L = 1,Qy = 0.01,V = 10 and for

B=1)

t u=20 =2 u=30Q=2 u=4,Q =2 CS
1/16 4.3778 x 107* 3.9077 x 1071 4.2531 x 1071 4.7009 x 10~*
3/16 6.8222 x 107* 8.5941 x 1071 8.423 x 107! 8.4818 x 107*
5/16 9.2667 x 10~ 9.6756 x 107* 9.5674 x 10~ 9.5650 x 10~*
7/16 11.7111 9.9251 x 107* 9.8813 x 107+ 9.8754 x 1071
9/16 9.9306 x 10~* 9.9827 x 1071 9.9674 x 107+ 9.9643 x 1071
11/16 9.9607 x 10~* 9.9960 x 107! 9.9911 x 10~* 9.9898 x 10~*
13/16 9.9909 x 10~* 9.9991 x 1071 9.9975 x 107! 9.9971 x 10~*
15/16 10.0212 9.9998 x 1071 9.9993 x 1071 9.9992 x 1071

Approximating D?Q(t) as CT¢)(t), we have
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Q(t) = CTPy(t) + Q(0) (6.2.10)

Using the initial conditions, we attain

Q(t) = CTPY(t) + Qo (6.2.11)

nt Q(t)

Curret

/ =5,Q=:
/ —%— Exact
/

L L L L L L L
0.1 02 0.3 0.4 0.5 06 07 0.8 0.9
Time t

Figure 6.2: Current versus Time graph ( R = 10,L = 1,Qy = 0.01,V = 10 and
f=1)

Thus CTy(t) + k[CTPPy(t) + Qo] = p (6.2.12)

By solving the above matrix equation at the collocation points, we obtain Bernoulli
coefficient vector C*. The Table 6.2 shows the numerical solutions of the RL circuit
for § = 1 and various values of ¢’. As it is clearly seen in Fig. 6.2, the fractional RL

circuit exhibits similar graphical behaviour to the classical solution for § = 1.
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6.2.3 Example 15

Consider the fractional differential equation of an RC circuit with resistance and

charged capacitance
DQ(t) +uQ°(t) =0, B e[0,1]

with the condition Q(0) = Qo, where p = 5.

The classical solution for 3 = 1is Q(t) = Qoe ™

(6.2.13)

(6.2.14)

Table 6.3: Numerical results of RC circuit ( R =10,C =1,Q = 20 and for 5 =1)

t u=3,Q =2 u=4,Q =2 u=>50Q =2 CS
1/16 19.8758 19.8756 19.8753 19.8754
3/16 19.6289 19.6287 19.6284 19.6285
5/16 19.3850 19.3849 19.3846 19.3847
7/16 19.1443 19.1440 19.1438 19.1439
9/16 18.9064 18.9062 18.9060 18.9061
11/16 18.6715 18.6714 18.6711 18.6712
13/16 18.4396 18.4394 18.4392 18.4394
15/16 18.2105 18.2104 18.2102 18.2102

Approximating D’Q(t) as CTv(t), we have

Q(t) = CTPy(t) + Q(0)
Using the initial condition, we attain
Q(t) = CTP)(t) + Qo
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20

u=3,0=2
—%—u=4,0=2
—b—u=5,0=2
Exact

L L L L
0.2 0.4 0.6 0.8
Time t

Figure 6.3: Voltage versus Time graph ( R=10,C =1,Qp=20and 3 =1)

Thus CT(t) + u[CTPPy(t) + Qo) = 0 (6.2.18)

Solving this system at the collocation points, we obtain Bernoulli coefficient vector
CT. In Table 6.3, the numerical solutions for the RC circuit with 3 = 1 and various
values of ¢’ are provided. In Fig. 6.3, graphical analysis for various values of ¢’ is also
displayed. As seen in Fig. 6.3, the graphical behaviour of the fractional RC circuit

resembles that of the classical solution for § = 1.

6.2.4 Example 16

Consider the fractional differential equation of an RLC circuit with resistance, induc-

tance and charged capacitance

D*Q(t) + pQ"(t) + nQ(t) = 0, g ell/2,1] (6.2.19)
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with the conditions Q(0) = Q and Q'(0) = 0, where n = = and p = 4.

The classical solution for § =1 is

Qt) =+ on [ — ko€t + ky ] (6.2.20)
1 — h2
_ /2 _ 4 o2 _4
where k; = P 2/) n,k’QZ P 2p i

Table 6.4: Numerical results of RLC circuit (R=10, L=10, C=10, @)y = 0.01 and for

B=1)
t u=20Q =2 u=3,Q =2 u=4Q =2 CS
0.1 0.01096 0.01093 0.01095 0.0099991
0.2 0.01174 0.01181 0.0118 0.0099981
0.3 0.01253 0.01259 0.01259 0.0099959
0.4 0.01331 0.01328 0.01329 0.0099930
0.5 0.01409 0.01396 0.01393 0.0009989
0.6 0.01451 0.01449 0.01450 0.0099953
0.7 0.01498 0.01502 0.01501 0.010006
0.8 0.01545 0.01548 0.01547 0.010005
0.9 0.01592 0.01589 0.01590 0.010009
Approximating D*Q(t) as CT1)(t), we have (6.2.21)
DPQ(t) = CT PPy (t) + Q(0) (6.2.22)
ctp¥ v
t) = )+ Q(0)——— + 6.2.23
T T pp T p23 t’
Thus CT(8) +[C7PP(E) + Qo) +2lCT P00 + QUO) 5 + Qol =0 (6:221)

Solving the Equation 6.2.24 at the collocation points, we obtain Bernoulli coefficient
vector CT. In Table 6.4, the numerical solutions for the RLC circuit for 3 = 1 and
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Figure 6.4: Current
f=1)

—*—u=2,0=2
u=3,0=2| |

—b—u=4,0=2

Exact

Time t

versus Time graph ( R = 10, L = 10,C = 10,y = 0.01 and

various values of ¢’ are provided. Fig. 6.4 also displays the graphical analysis for

various values of ¢’. As can be observed in Fig. 6.4, the fractional RLC circuit’s

graphical behaviour for § =1 is very similar to the classical solution.

102



Conclusion

In this thesis, we have discussed both analytical and numerical solutions
of fractional differential equations by using fractional integral transforms with expo-
nential type kernels and wavelet based numerical schemes. First, with the help of a
generalized fractional integral transform with exponential type kernel and Aboodh
transform, we obtained analytical solutions of fractional differential equations. We
also discussed the properties of these transform techniques and proved the simplicity
and the effectiveness of these transform techniques for fractional differential equa-
tions. Many researchers are interested in the formation of new integral transforms
because of their applications in science and engineering fields.

As certain wavelet-based algorithms appear to be somewhat complex and need
a lot of processing time, this encourages us to think of efficient, straightforward, and
fast wavelet-based numerical techniques for the fractional differential equations.

The main advantage of wavelet based numerical schemes is its simplicity, small
computation costs and less computational errors due to the sparsity of the transform

matrices and the small number of significant wavelet coefficients. Additionally, the
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inaccuracy could be greatly decreased while the level of resolution might be increased
with more collocation points.

Euler wavelet-based numerical scheme is quite simple, effective and expedient for
obtaining numerical solutions of fractional differential equations in compared with
analytical approaches via Finite Difference Method, Admian Decomposition Method,
Finite Differential Transform Method, Variational Iteration Method and numerical
approaches via Legendre Wavelet Method, Haar Wavelet Method. Next, we have
obtained the numerical solutions of fractional differential equations with variable co-
efficients by an efficient numerical scheme based on Bernoulli wavelets and proved
the fast convergency of this method compared with Adams type Predictor-corrector
method and Haar wavelet method. After that, we have attained numerical solutions of
multi-order fractional differential equations by Chebyshev wavelet method. Finally,
the application of Bernoulli wavelets based numerical scheme in solving fractional
electrical circuits was discussed.

As the numerical results have been represented by graphs and tables which depict
the efficiency and convergency of numerical solutions, it is evident from our find-
ings that the generalized fractional integral transform with exponential type kernel
and wavelet based numerical schemes are simple and efficient for solving fractional
differential equations. Many real-world fractional models in the fields of economics,

computer science, psychology, medicine, etc. can be investigated with the help of
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integral transforms and wavelet based numerical schemes. Moreover, the numerical
schemes based on Euler wavelets, Bernoulli wavelets and Chebyshev wavelets could
be effectively applied for higher order fractional integro differential equations arising

in science and engineering fields.
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Abstract

In this article, a numerical scheme based on Euler wavelets for solving fractional differen-
tial equations is proposed. An Euler wavelet operational matrix of fractional integration is
derived and employed to reduce fractional differential equations into simultaneous algebraic
equations. Some examples are given to illustrate the applicability and the high accuracy of
the proposed numerical scheme.
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1 Introduction

The fractional calculus is an ancient mathematical tool that is 300 years old and it has been
developed progressively up to now. Fractional calculus is the generalization of ordinary
calculus to an arbitrary order. In the past few decades, many fractional models have attracted
great attention in variety of disciplines, such as chaotic systems (Ma and Li 2020; Hajipour
et al. 2018), bioengineering (Magin 2012), dynamics of interfaces between nano-particles
and substrates (Chow 2015), optimal control problems (Jajarmi et al. 2018), and non-linear
dynamical systems (Baleanu et al. 2018).
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However, most of the fractional differential equations do not have analytical solutions.
Owing to the wide range of applications of fractional differential equations, remarkable
interest has been initiated for developing numerical techniques to find solutions of fractional
differential equations. These numerical techniques include Separation of variables (Shen
et al. 2019), Variational iteration method (Ziane and Cherif 2018), Adomian decomposition
method (Li and Pang 2020), Finite difference method (Karamali et al. 2019), Homotopy
analysis method (Demir et al. 2019; Kundu 2019), Homotopy perturbation method (Javeed
et al. 2019; Khader 2012), etc.

Besides these numerical techniques, many researchers have applied comparatively a new
numerical technique based on wavelets for analyzing problems of high computational com-
plexity and have proved that wavelets are powerful tools to explore new directions in solving
fractional differential equations.

In recent years, wavelets have been widely used for data segmentation, data compression,
and time—frequency analysis. Wavelets permit the accurate representation of a variety of
functions and establish a connection with fast numerical algorithms(Beylkin et al. 1991).

Recently, the operational matrices of fractional-order integrations for Haar wavelets (Xie
et al. 2019; Oruc et al. 2019), Chebyshev wavelets (Farooq et al. 2019; Celik 2018), Second
kind Chebyshev wavelets (Wang and Fan 2012), Legendre wavelets (ur Rehman and Khan
2011; Chang and Isah 2016), Bernoulli wavelets (Keshavarz et al. 2019; Rahimkhani et al.
2017), Ultra spherical wavelets (Abd-Elhameed and Youssri 2015; Doha et al. 2016), Third
kind Chebyshev wavelets (Zhou and Xiaoyong 2016), CAS wavelets (Wang and Yin 2017),
and Euler wavelets (Wang and Zhu 2017; Dincel 2019; Wang et al. 2019) have been proposed
to solve fractional differential equations.

The main characteristic of wavelet-based techniques is that after the discretization process,
the co-efficient matrix of the algebraic equations is obtained which is a sparse matrix. The
resulting matrix decreases the computational load and expedites the simulation.

The proposed numerical technique is based on Euler wavelet approximations. We first
construct the Euler wavelets, and then, by expanding these wavelets into block pulse functions,
we find the operational matrix of fractional-order integration of Euler wavelets. The resulting
matrix is used to reduce the solution of the fractional differential equations to the solution of
algebraic equations.

We organize the rest of the paper as follows. In Sect. 2, we introduce some basic defi-
nitions and discuss some properties of fractional calculus. Section 3 is devoted to the basic
formulation of Euler wavelets and operational matrix of the fractional-order integration for
Euler wavelets. In Sect. 4, we report our numerical findings and demonstrate the accuracy of
the proposed numerical scheme by considering some numerical examples. The conclusion
is given in Sect. 5.

2 Preliminary concepts

In this section, we present some basic definitions and mathematical preliminary facts of
fractional calculus.

Definition 2.1 The Riemann-Liouville fractional integral of order y > 0 of f(x) € L%(R)
is defined as:
1 x £
17 ) = | T Do Gt v >0
S, y =0.
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If f(x),gx) € L%(R)and y >0, A, u € (R), then we have the following properties:

DI A f(x) +pgx) =rI7 f(x) + pl” g(x)
Gy at = @Dy

= ° ou>—1
Fu+1+y)

The Riemann—Liouville fractional derivative of order y > 0 of f(x) € LY(R)is normally
defined as:

d m
(D" fH(x) = (d—) (I" 7 f) @), m—l<y<m,
X
where m is a positive integer and x > 0.

Definition 2.2 The Caputo fractional derivative of order y > 0 of f(x) € L2(R) is defined
as:

Y :é ) _ pyn—y—1 ¢(m) _ <
") = o [ — 0" @t 1<y <m.

where m is a positive integer and x > 0.
If f(x) € L>(R) and y > 0, then it has the following two basic properties:

(DI fH(x) = f(x)

m—1

‘ j
(DUITDY ) = f0) = Y fPON m—1<y<m,
j=0 I
where m is a positive integer, x > Oand £ (01) :=lim,_, o+ D/ f(x),j =0,1,...,m—1.

3 Euler wavelets

In this section, we discuss Euler polynomials and some of their properties to construct Euler
wavelets.

3.1 Wavelets and Euler wavelets

Wavelets consist of a family of functions generated from dilations and translations of a single
function 1 (x), called the mother wavelet. If the dilation parameter ¢ and the translation
parameter d change continuously, we attain the following family of continuous wavelets:
_1 (x—d
Vea(x) = |c|"2¢ e ,¢,d € (R),c #0.

If the translation and dilation parameters are chosen to have discrete values, that is, ¢ =
co™?,d = qdocoP,co > 1,dy > 0 and p,q € Z*, then we have the following family of
discrete wavelets:

Vg (X) = leol 2 ¥ (co”x — qdo),

where the functions v, form a wavelet basis for L2(R). In particular, if co = 2 and dy = 1,
we can attain an orthonormal basis from v, (x) for L%(R).
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The Euler wavelets are defined on the interval [0,1) as:

27 2/—1
otherwise

Vnn (x) = [2j;lfn(2-’1x—m+l), ml < x <
mn -

form=1,2,...277 " n=0,1,...M —1,and j, M € N:
1, n=0

where Ev”(x) =

112 E,(x), n=>0,
—1yn—
\/(%)Ew«»

the co-efficient
1

n—1 2
\/(2( 1()2,1)!(”') )E2n+1(0)

is for normality, the dilation parameter is 2~U~1 and the translation parameter is (m —
1)2=U=D Here, E,(x) denote Euler polynomials of degree n which can be defined by the
generating functions:

2exS > §n
s = B <
n=0 ’

We can also define the first kind Euler polynomials by the relation:

n

> (;)Ej(x) + By(x) = 24",

Jj=0

where (/) is a binomial co-efficient.
The first few Euler polynomials are:

1 2 1
Eo(x)=1,E1(x) = x—i Ey(x) = x2—x, Ei(x) = x3 —gx +Z

These polynomials satisfy the following formula:

! 1
[ BB = <1 a0, = 1

and the Euler polynomials form a complete basis for L2 (R).
3.2 Function approximation

A function f(x) € L2[0, 1) can be expressed in terms of the Euler wavelets as:

fG) =D Conmn(x), M

m=0neZ

where the co-efficients C,,,, are given by:

1
Com =< F(x), Yo >= /0 F )Y (0)dlx.
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By truncating the infinite series in (1), f(x) is approximated as:

o 2/ M—1
FO =YD Contmn(x) = CT(x),
m=1 n=0

where the co-efficient vector C and the Euler function vector ¥ (x) are 2/~ M x 1 matrices,
given by:
C =1[Ci0,Ci1, .-, Cram=1), C20, ... Comt=1y, - . ., Cpj-1, - -~Czj—1(M_1)]T

and
Y(x) = [V, Y11, - - Vim—1), Y205 - - Y2M=1), - - - Yoi=1gs - - - 1//2./‘—1(M71)]T- (2)

We define the Euler wavelet co-efficient matrix ¢y xx, k = 2/=1M at the collocation points

xi:%,i:l,l..kas:

= (3) #(3) o 5]

Specifically, the Euler wavelet co-efficient matrix for j = 2 and M = 3 becomes:

1.4142  1.4142 1.4142 0 0 0

—0.9428 0 0.9428 0 0 0

| -0.4811 —0.8660 —0.4811 0 0 0
Pox6 = 0 0 0 1.4142 1.4142 1.4142
0 0 0 —09428 0 0.9428
0 0 0  —0.4811 —0.8660 —0.4811

Correspondingly, we have:

fe = 1F 0, Fo) ... Fa] = Cl s

Since the Euler wavelet co-efficient matrix ¢y« is invertible, the Euler wavelet co-efficient
vector CT can be attained by:

cl= ﬁask_xlk'
3.3 Error Analysis

Theorem 3.1 If the function f : [0, 1) — Risn+1 times continuously differentiable, that is,
and f € c™10, 1), then fx) = CTtp(x) approximates f(x) with mean error bounded:

~ V2M
1@ = F®le = S s o

where M = maxx€[0,1)|f(”+])(x)|.

Proof We first divide the interval [0,1) into subintervals [, = [glj—j}, 2,'."—_1),m =
1,2,...2/7!, j e N with the restriction that f(x) is a polynomial of degree less than n + 1

that approximates f with minimum mean error. Using Lemma 3 (Wang and Zhu 2017), we
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attain:

~ 1 ~
1) = T2 = /0 LF () — FoPdx

=Y fl L) = FPdx

J.m

2n+3 2

VM (57) "2
=2
— | (n+ D'YQ2n+3)
B 2M?
= 20-D@ ) [(n + 11220 + 3)

where M,, = maxyer;, LD ().

By taking the square roots, we arrive at the upper bound. The error of the approximation
f(x) of f(x), therefore, decays like 2~ +DG =D Meanwhile, we notice that the number of
wavelets is k = 2/71 M, where M is the degree of the Euler polynomials and usually takes
small values in computation. When M is fixed, with the values of j increasing, the numerical
results become more accurate and we infer that the approximate solutions converge to the
exact solution. O

3.4 Operational matrix of the fractional integration

We now explore the basic idea of finding the fractional integration operational matrix of the
Euler wavelets.
A k-set of block pulse functions (BPFs) over the interval [0, 1) is defined as:

(s {1, (i—1)/k<x<ilk

0, otherwise,
where i=1,2,3..k, k € N, For x € [0, 1):
0, i j
by ()b (x) = o
bi(x), i=]
and

1 . .
/0 bi(x)b; (x) = {0’ PEJ

1
e =

It is known that any square integrable function f(x) defined over [0,1) can be expanded in
terms of BPFs as:

k
) =Y fibi(x) = fTBr(x)

i=1

1 i/k
whetef = Ui forv Al fi = [ FO0Bx and Bux) = 1 (). o). . GO,
(i-1/k
There is a relation between the block pulse functions and Euler wavelets:
V(x) = Prxi Bi(x). 3)
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The block pulse operational matrix of the fractional integration F*, > 0 is defined as in
(Kilicman 2007), that is:

(I*By)(x) ~ F¥By(x), )
where

1& & & ... &

01 & & ...6

po 1 1 00 1 & ...&=3

Tk T (@ +2) R

00...0 1 f&

00...0 0 1

withg, = (s + D@ — 259F1 4 (s — 1)*F1,

The fractional integration of order @ > 0 of the vector ¥ (x) defined in (2) can be approximated
as:

() (x) =~ Py ¥ (x), (&)

where P, is called Euler wavelet operational matrix of order > 0. Using (3) and (4), we
attain:

TP (x) ~ (I Pk Bi) (%) = ok (19 Bi) (x) X ek F* Bi (x). (6)
Thus, combining (5) and (6), we attain:

PE4Y () & (1Y) () & ok F Br(x) = Gk F i, ¥ (x) and so

PE ™ $xk F by

For example, the Euler wavelet operational matrix of the fractional integration for j =
2, M =3 and ¢ = 0.5 yields:

0.4616 0.3150 —0.1631 0.5012 —0.1509 0.1404
0.0878 0.2243 0.4203 0.0717 —0.0449 0.0626
—0.1305 —0.1591 0.2354 —0.2110 0.0615 —0.0545

05 _

Foxe = 0 0 0 0.4616 0.3150 —0.1631
0 0 0 0.0878 0.2243 0.4203
0 0 0 —0.1305 —0.1591 0.2354

Since the operational matrix P&% contains many zeros, the calculations are fast using this
phenomena.

4 Numerical examples

To demonstrate the efficiency of the proposed numerical scheme based on Euler wavelets,
we discuss some numerical examples.

Example 4.1 Consider:
AD®y(x) + BDPy(x) + Cy(x) = g(x), with
y(O0) =30,y (0)=y,0<B<a<2,0<x <1, )
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Table 1 Comparisons between numerical solutions attained by proposed numerical scheme (EWM) for M =
3 and various numerical methods

x Yexact YEWM YEDM YADM YFDTM YWIM ywm( = 10)
G =9 (Arikoglu (Momani (Arikoglu (Momani (ur Rehman and
and Ozkal and Odibat and Ozkal and Odibat Khan 2011)
2007) 2007) 2007) 2007)

0.0  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.039750 0.039750 0.039473 0.039874 0.039750 0.039874 0.039750
0.2 0.157036 0.157036 0.157703 0.158512 0.157036 0.158512 0.157035
0.3 0.347370 0.347370 0.352402 0.353625 0.347370 0.353625 0.347370
0.4 0.604695 0.604695 0.620435 0.622083 0.604695 0.622083 0.604695
0.5 0.921768 0.921768 0.957963 0.960047 0.921768 0.960047 0.921767
0.6 1.290457 1.290456 1.360551 1.363093 1.290457 1.363093 1.290456
0.7 1.702008 1.702008 1.823267 1.826257 1.702008 1.826257 1.702007
0.8  2.147287 2.147286 2.340749 2.344224 2.147287 2.344224 2.147286
0.9 2617001 2.617000 2.907324 2911278 2.617001 2911278 2.617000

where A # 0, B,C € R, g(x) € L?[0, 1), and y(x) is the solution to be determined(ur
Rehman and Khan 2011).

Fora =2,8 = %, Eq. (7) reduces to the Bagley—Torvik equation which arises in mod-
elling the motion of a rigid plate immersed in a Newtonian fluid.

Suppose D%y (x) =~ CTy(x) and g(x) ~ FTy(x), where FT =g, g2, .... gx] (8)
Then DPy(x) = 197P(D*y)(x) = CT PPy (x) )

and
y(x) = CTPE W (x) + yo + yix. (10)

Using (8), (9), and (10) in (7), we have the following system of algebraic equations:
ACTy (x) + BCTPE Ly () + CICTPE () + 3o + yi(0)] = FTyr(x).

fa=2,8= %, A=B=C=1,g(x)=28and yg, y; = 0, the numerical solutions of (7)
obtained by the proposed numerical scheme based on Euler wavelets (EWM) are compared
with the numerical solutions obtained by finite difference method (FDM), adomian decom-
position method (ADM), finite difference transform method (FDTM), variational iteration
method (VIM), and Legendre Wavelet Method (LWM) in Table 1. Clearly, comparisons of
numerical solutions in Table 1 show that the numerical scheme based on Euler wavelets is

superior to those mentioned above numerical schemes.

Example 4.2 Tn Example 4.1, suppose A =B =C =1:

x ¢ x P
=2,0<B8<1,y9=0,y; =0and = 6x> - )
o =B =1Ly y1 = 0and g(x) = 6x (F(4—a) 1"(4—ﬁ)>

The exact solution is given as y(x) = x>. Table 2 shows the absolute errors attained by the
proposed numerical scheme (EWM), Legendre wavelet method (LWM), and Haar wavelet
method (HWM). From Table 2, we find that the absolute errors become smaller and smaller
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Table 3 Comparisons between numerical solutions attained by proposed numerical scheme and Legendre
wavelet method

x £ =0.50 B =0.75 B =0.999 Exact( = 1)
EWM WM EWM LWM EWM WM

0.1 19.3564 19.3481 19.6378 19.6340 19.8017 19.8012 19.8010
0.2 19.0219 19.0500 19.3599 19.3717 19.6042 19.6039 19.6040
0.3 18.8214 18.8163 19.1422 19.1413 19.4091 19.4086 19.4089
0.4 18.6545 18.6471 18.9462 19.9428 19.2165 19.2154 19.2158
0.5 18.4927 18.4976 18.7530 18.7573 19.0238 19.0242 19.0246
0.6 18.3680 18.3669 18.5861 18.5854 18.8359 18.8349 18.8353
0.7 18.2432 18.2450 18.4193 18.4207 18.6480 18.6475 18.6479
0.8 18.1312 18.1319 18.2623 18.2630 18.4625 18.4620 18.4623
0.9 18.0285 18.0275 18.1131 18.1124 18.2793 18.2784 18.2786

with k increasing. Also, Table 2 shows that the proposed numerical scheme can reach a higher
degree of accuracy than Legendre and Haar wavelets. This confirms that numerical results
attained by the proposed numerical scheme are in good agreement with the exact solution
compared to the results obtained by the Legendre and Haar wavelet methods.

Example 4.3 Consider the fractional differential equation (11) given below of an Electrical
Circuit with charged capacitor having capacitance C farads and resistor having resistance R
ohms (Arora and Chauhan 2017; Altaf and Khan 2019):

DPO(x)+k0Q(x) =0, Be(0,1],x €[0,1) (11)
with initial state Q(0) = Qq, where k = Ric:

The exact solution of (11) for B = 1is Q(x) = Qe “*.

Suppose D Q(x) ~ C Ty (x) (12)
Then Q(x) = CT PPy (x) + Qo (13)

Thus, using (12) and (13) in (11), we attain:
CTy (x) + k[CT PPy (x) + Qo] = 0. (14)

By solving the matrix equation (14), we can obtain the co-efficients vector C. In Table 3,
we show the numerical solutions of (11) attained by the proposed numerical scheme (EWM)
and Legendre wavelet method (LWM) for R = 10, C = 1, Q¢ = 20 and for some different
values of 8. Clearly, Table 3 shows the proposed numerical scheme based on Euler wavelets
is superior to Legendre wavelet method.

Example 4.4 Consider the multi-term fractional differential equation (Diethelm et al. 2002;
Kumar and Agarwal 2006):

D?y(x) +3Dy(x) +2D%y(x) + DU y(x) + 5y(x) = f(x), 15)

where 0 < g1 <¢2» < 1,0 <x < 1 and:

2 1
F) =143x4+ —— x> P 4 — x>0 4 5(1 +0.5x%)

rG—q) '3 —q1)
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Table 4 Absolute errors for M = 3 and different values of j

x ji=3 j=5 ji=7 j=9 j=11

0.1 2.7746e—04 1.7346e—05 1.0839e—06 6.7737¢—08 4.2335¢—09
0.2 2.4925e—04 1.5530e—05 9.7013e—07 6.0625¢—08 3.7889e—09
0.3 2.1031e—04 1.3092e—05 8.1761e—07 5.1091e—08 3.1930e—09
0.4 1.6732e—04 1.0390e—05 6.4872e—07 4.0535¢—08 2.5332e—09
0.5 1.2436e—04 7.6988e—06 4.8055¢—07 3.0024e—08 1.8763e—09
0.6 8.4086e—05 5.2128e—06 3.2527e—07 2.0321e—08 1.2699¢—09
0.7 4.9432¢—05 3.0575¢—06 1.9067e—07 1.1909e—08 7.4420e—10
0.8 2.1033e—05 1.2979e—06 8.0809e—08 5.0447e—09 3.1518e—10
0.9 7.3449e—07 4.8261e—08 3.2143e—09 2.0522e—10 1.2910e—11

with the initial states y(0) = 1 and y’(0) = 0.
If g1 = 0.0159 and g2 = 0.1379, then the exact solution of (15) is given by y(x) =
1+0.5x%

Suppose D%y (x) ~ CTy (x) and f(x) >~ F Ty (x) (16)
Then Dy(x) = CT Pixi ¥/ (x) (17)
D2y(x) = CTP Py (x) (18)
DUy (x) = CT Py (x) (19)
and
y(x) = CTPE ¥ (x) + 1. (20)

Using (16)-(20) in (15), we arrive:

CTY (x) + 3CT Procrp () +2CT P20 (x) + CTPE 1 (x)
+5[CT PR () + (1, 1, . o v (01 = FTyr(x). 1)

Solving the system of algebraic equations (21), we can attain the co-efficient vector CT,
and so, we can get the approximate output response y(x). Table 4 shows that the absolute
errors attained by the proposed numerical scheme with M = 3 and the values of j increasing
become smaller and smaller. From Table 4, we also infer that the approximate solutions
converge to the exact solution. Table 5 shows that the proposed numerical scheme(EWM)
can reach a higher degree of accuracy than Adams-type predictor—corrector method.

Example 4.5 Consider the linear fractional differential equation (El-Sayed et al. 2004;
Keshavarz et al. 2014):

DY (x) +y(x) =0with0 <a <2,0<x <1,
and
y(0)=1,y'(0) =0. (22)
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Table 5 Comparison of maximum absolute errors for proposed numerical scheme with j = 3, M = 3 and
Adams-type predictor—corrector method

Step size Maximum absolute errors
EWM Adams-type predictor—corrector method
0.1 7.3449e—07 0.051115750000
0.01 7.3449e—07 0.004546523000
0.001 1.1577e—08 0.000409626200

Table 6 Absolute errors for different values of £ and for @ = 1.5

X k=12 k=24 k=48 k=96 k=192 k =384

0.1 6.8808e—04 6.9051e—05 2.2513e—05 7.0231e—06 1.7455e—06 4.156e—07
0.2 7.9552e—05 3.5316e—05 1.3415e—05 3.3178e—06 7.608e—07 1.911e—07
0.3 9.4834e—05 2.2910e—05 2.9444e—06 7.7780e—07 2.384e—07 5.91e—08
0.4 1.0088e—04 8.0418e—06 2.1604e—06 8.1000e—07 1.974e—07 4.58e—08
0.5 3.6805e—04 6.4931e—05 1.2401e—05 2.5924e—06 5.859e—-07 1.4209e—-07
0.6 1.6556e—04 5.2566e—05 1.3004e—05 3.0970e—06 7.968e—07 2.225e—07
0.7 2.7243e—04 6.6998e—05 1.5649e—05 4.0075e—06 1.1023e—06 3.5728e—07
0.8 2.8032e—04 7.0973e—05 1.9028e—05 5.0157e—06 1.5096e—06 6.49e—07
0.9 3.4727e—04 8.0723e—05 2.1038e—05 6.1479e—06 2.316e—06 1.3906e—06

Table 7 Comparison of

i =4 i =35 j =8
maximum absolute errors for / / /
@ = 1.5,M = 3, and different EWM 8.042¢—06 2.160e—06 4.58¢—08
values of j
LWM 1.178e—05 2.948e—06 4.605e—08

The second initial condition is only for 1 < o < 2. The exact solution of (22) is:

0 k

y(x) = Eq(—x%), where Ey(z) = ; mis the Mittag—Leffler function of order «
Suppose D*y(x) =~ CTx//(x); (23)
Then y(x) = CTP,kaW(x) + 1. (24)
Using (23) and (24) in (22), we arrive:
CTy(x) +CTPE Y (x)+1=0. (25)

Solving the system (25) at the collocation points, we can obtain the Euler co-efficient
vector CT For @ = 1, the exact solution of (22) is y(x) = ¢~*, and for & = 2, the exact
solution of (22) is y = cosx. Table 6 shows that the absolute errors attained by the proposed
numerical scheme with the values of k increasing become smaller and smaller. From Table 6,
we also infer that the approximate solutions converge to the exact solution. In Table 7, we
show the maximum absolute errors attained by the proposed numerical scheme(EWM) and
Legendre wavelet method (LWM) for « = 1.5, M = 3, and different values of j. Clearly
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from Table 7, we infer that the numerical scheme based on Euler wavelets is superior to
Legendre wavelets method.

5 Conclusion

In this article, an expeditious Euler wavelet operational matrix was derived to attain numerical
solutions of fractional differential equations. Numerical examples elucidated the solution
process and the efficiency of the proposed numerical scheme. Also, numerical results attained
by the proposed numerical scheme were in a better agreement with the exact solutions, and so,
the proposed numerical scheme based on Euler wavelet is superior to many other numerical
schemes.

Acknowledgements The authors are grateful to the anonymous reviewers for several comments and sugges-
tions which contributed to the improvement of this paper.
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Abstract

This article presents a novel numerical scheme based on the operational matrix of
Bernoulli wavelets to transform fractional differential equations with variable coefficients into
simultaneous algebraic equations. The uniform convergence analysis for Bernoulli wavelets
expansion is investigated. The computational algorithm of the proposed method is also
presented for the numerical solutions of fractional differential equations with variable
coefficients. Applicability and efficiency of the proposed numerical scheme are illustrated by
some numerical examples.

1. Introduction

Fractional Calculus is a valuable tool and an old mathematical topic from
17th century. For many researchers in various fields of science and
technology, fractional differential equations have been the focus of interest in
recent years. As a result, finding solutions to fractional differential equations
1s an essential part of scientific research.

Furthermore, analytic solutions to the majority of fractional differential
equations are not available. Due to this fact, many numerical schemes have
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been suggested to find approximate solutions of fractional differential
equations, namely, Variational Iteration Method, Finite volume method,
Finite element method, Adomian Decomposition Method, and Wavelet
methods [1, 4, 8-12].

There have been several methods for solving fractional differential
equations with variable coefficients. These types of problems have been
studied by many authors using different methods [2, 5, 7].

In this work, we present a numerical method based on Bernoulli wavelets
for solving fractional differential equations with variable coefficients. Our
aim 1s to derive Bernoulli wavelets’ operational matrices to convert the
fractional differential equations with variable coefficients into a system of
algebraic equations. It not only simplifies the problem, but also speeds up the
computation. Numerical solutions of the proposed method are compared with
the solutions of some existing numerical techniques and analytical solutions
to manifest the applicability, the computational efficiency and the high

precision of the proposed method.

The article is summarized as follows. In Section 2, some basic definitions
and mathematical preliminaries of fractional calculus are given. Section 3 is
devoted to the basic formulation of Bernoulli wavelets, function
approximation, and the operational matrix of fractional order integration for
Bernoulli wavelets. Computational algorithm of the scheme is given in
Section 4. In Section 5, some numerical examples and absolute errors are

presented. Finally, we conclude our work in Section 6.
2. Preliminaries

In this section, we briefly recall some essential definitions and
preliminary mathematical facts of fractional calculus which are used further
in this paper.

Definition 2.1. Fractional integral of order y > 0 of A(x) e [}(R") in

terms of Riemann-Liouville, is defined by

1 (*__h(&)
(I'h)(x) = 1T(1) do (x — )11 % =0 @
h(x)’ Y = 0.
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Fractional derivative of order y >0 of h(x)e I}(R') in terms of

Riemann-Liouville, is normally defined by

(I'h) (x) = [d%)s(zs-vh) (@) s-1<y<s ®

where s is a positive integer and x > O.

Definition 2.2. The Caputo fractional derivative of order y >0 of

h(x) e L}(RY) is given by

1 x —y—
(DR = o | -0, s-1<v s @
where s is a positive integer and x > O.

If h(x) e Ll(R+) and y > 0 then it has the following two basic properties.

(D'Ih)(x) = h(x), (4)
and
s—1 1
(I"D'R) (x) = A(x) - Zh(l)(0+)};—!, s—1<y<s, 5)
=0

where s is a positive integer, x >0 and h(l)(0+):= lim, o+ D'A(x),

[1=0,1,2,...,s-1.
3. Bernoulli Wavelets
We here discuss Bernoulli polynomials and some of their properties in
order to construct Bernoulli wavelets.

3.1. Properties of Bernoulli polynomials and Bernoulli wavelets

Wavelets represent a family of functions constructed from dilations and

translations of a single function W(x) called the mother wavelet. When the

dilation parameter ¢ and the translation parameter d change continuously,
the following family of continuous wavelets is obtained.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



2406 R. ARULDOSS and R. ANUSUYA DEVI

1
Peq(x) = |c|_§¢(¥), c,deR, c#0. (6)

If the discrete values are selected for the translation and dilation
parameters, that is, ¢ = ¢,?, d = qdgcg?, ¢9 > 1, dy >0, p, ¢ € Z*, then we

have the following family of discrete wavelets,

b
¥pqx) = o [29(cx - gdp), @)

where the functions ¥ ,, form a wavelet basis for LZ(R). Specifically, when

co =2 and dy =1, the functions 9,,(x) form an orthonormal basis for
IA(R).

The Bernoulli wavelets are defined on [0, 1) as

j-1
Y pglx) = 22 E, (27x-m+1), yERE x < pE (8)
0 otherwise,

form=12, ..., 2j_1, n=0,1,..., N-1and j, N € N, where

1, n=0,
~ 1
B o(x) = E,(x), n>0,
S SV
(2n) 2n
the coefficient 1 is used for normality, the dilation

(1) (nt)?
( RO Ban
parameter is 27U and the translation parameter is (m —1)2_(j U Here

E, (x),n=0,1,..., N -1, denote Bernoulli polynomials of order n which can

be defined by the relation

En(x) = Z(’:] Brxn_r’ )

r=0

where B,, (r =0, 1, 2, ..., n) are Bernoulli numbers. Bernoulli numbers can

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



A NOVEL NUMERICAL SCHEME BASED ON BERNOULLI ... 2407

be defined by the following generating function

x X
=) B (10)
e* -1 rzz(; "l

The first few Bernoulli numbers are

Bo =1 Bi =5 B> = g Ba = ~35 o (an
with B,,1 =0, r=1,2,3, ...
The first few Bernoulli polynomials are
Ey(x)=1, E;(x)= x—— Ey(x) = x> —x+ ,Eq(x)=x —%x2+;x .. (12

The properties of Bernoulli polynomials and Bernoulli wavelets have been
discussed by Sahu and Saha Ray [10] and Jiao et al. [13].

Moreover,
[ Bnm e = 0 gz, a9
and
I|E x)|dx<16( )n+1,n20. (14)

T .
Let y(x) = [y1(x), Y2(x), ..., yp(x)]", where ;(x) =1y, (%), i = N(m-1)
+n+L,k=2""TN,m=12,..,227  n=0,1,..., N—1 and j, N eN. Then

Bernoulli wavelets have the following orthonormality properties.
1
(V@) py(w)dx) = [ v (o) = 1,7 = 5,07 % s, (15
and
! T
j w(x)¥? (x)dx = E, (16)
0
where (.,.) denotes the inner product and E indicates identity matrix.
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3.2. Function approximation

A function h(x) e I?[0,1) can be expressed in terms of Bernoulli

wavelets as
h(x) = z zamnwmn(x)v (17)
m=0neZ

where the coefficients a,,, are given by

1
i = (), Yy () = jo B ()

By truncating the infinite series in Equation (17), h(x) is approximated as

2/ 1N

R(E) = DY Q¥ (%) (18)

m=1 n=0

For simplicity, Equation (18) is written as

k
h(x)= Y aw;(x) = AT (x), (19)
i-1
where a; = Gy, Wi = Yo, k= 27N, A = [aq, a9, ..., a,]7, (20)
and
P(x) = [¥1 (@), Yo (), oo @] 1)

The index i is determined by the relation i = N(m -1)+n + 1.

We define the Bernoulli wavelet coefficient matrix o¢pyp, £ = 2/7IN, at

the collocation points x, = %, r=12, ...,k as

w [ B

Specifically, the Bernoulli wavelet coefficient matrix for j =2 and

N = 3 becomes

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022
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1.4142 1.4142 1.4142 0 0 0
-1.6330 0 1.6330 0 0 0
0.5270 -1.5811 0.5270 0 0 0
¢6><6 = . (23
0 0 0 1.4142 1.4142 1.4142
0 0 0 -1.6330 0 1.6330
0 0 0 0.5270 -15811 0.5270

Here, we have

Ek = [E(xl)’ E(XQ)’ s E(xk)] = AT¢k><k'

Since the Bernoulli wavelet coefficient matrix ¢z, is invertible, it is

possible to obtain the Bernoulli wavelet coefficient vector AT by Ekd),;i .

3.3. Operational matrix of fractional order integration

In this section, we explore the basic idea of finding the operational matrix

of fractional order integration for the Bernoulli wavelets.

A k-set of Block pulse functions (BPFs) over the interval [0, 1) is defined
as

1, (r-1)/k<x<r/k,

. (24)
0, otherwise,

bre) = |

where r =1, 2, 3, ...k

It is known that any square integrable function A(x) defined on the

interval [0, 1) can be extended in terms of BPFs, and by using orthogonality
of BPFs as

k
h(x)= D b, (¥) = AT By (x), (25)
=1

where h = [hy, hy, ..., b ]', b, for r =1, 2, ..., k are given by

1 r/k

=7 x)b.(x)dx, an x) = x x), ... x)[F.
=T )y (@), and By(x) = [b1(x), by(x), .., by ()]

r

There is a connection between the block pulse functions and Bernoulli

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022
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wavelets, which 1is,

W(x) = Opxro By (x). (26)

The block pulse operational matrix H B , B = 0 of fractional integration of

order B > 0 is defined by Kilicman [6] as,

(IPBy)(x) ~ HPBy(x), (27)
where
1 & & G ... Cpg
0 1 &G & ... Cpo
B _ L; 0 0 1 & ... Cp_s3
CRBT@+2): r e e N
00 .. 0 1 &
0 0 0 0 1

with ¢; = (j + 1P — 2P 4 (j 1P

The fractional integration of order B > 0 of the vector W(x) defined in

Equation (21) can be approximated as
(IPW)(x) = P}, ¥(x), (28)
where pgx 5 1s called Bernoulli wavelet operational matrix of order f > 0.
Using Equations (26) and (27), we attain
(IP9) (x) ~ (IP4puse Br) () = pure(IPBy) (%) ~ g HP B (). (29)
Thus combining Equations (28) and (29), we attain
PP ¥(x) = (IP9) (%) ~ 0k HPBr(x) = dpur HP 40, ¥(x), and so (30)
Pl g = Ok H b (31)

For example, the Bernoulli wavelet operational matrix of the fractional order
integration for j =2, N =3 and B = 0.5 yields

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022
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0.5282 0.1819  -0.0298  0.4438 -0.0871 0.0256
-0.1452  0.2243 0.1329 0.0799 —0.0449 0.0198
P(?X'E)e _ -0.0598 -0.0964 0.1688  -0.0417 -1.8589e—-04  0.0029 ‘
0 0 0 0.5282 0.1819 —0.0298
0 0 0 —0.1452 0.2243 0.1329
0 0 0 —-0.0598 —0.0964 0.1688
(32)

Since the operational matrix Pbpx'% contains several zeros, the proposed
technique reduces the computation greatly.

3.4. Convergence analysis

In the following theorem, we establish the convergence of the Bernoulli
wavelets expansion [10].

Theorem 3.1. If A(x) € I2[0, 1) is a continuous function and | h(x)| < 7,
n € R, then the Bernoulli wavelets expansion of h(x) defined in Equation

(17) converges uniformly and also

!
|amn|<ﬂiﬁ (33)

EZnnH’
2 @)

where

1
1YL ()2 ’
J oy,

Proof. Any function h(x) e LZ[O, 1) can be approximated in terms of

F:

Bernoulli wavelets as

9/ 1N

R(x)= D) Gyt (%), (34)

m=1 n=0

Here

i = [ AW ()
0

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022
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= ZL Py, (x)dx, where I ,, = {m.—l i} m=12 .., 27,
j,m

g/l 7 g/l
(35)
J-1 .
=22 FZI h(x) E, (2 x — m +1)dx, where F = !
Ii m _1)n—1( ')2
j ( ( n)” g
(2n) 2n
(36)
Using 21y —m1= t, we have
t+m-1
mn = ] 1 ZI ( 2] -1 jEn(x)dt7 (37)
and so
t+m-1 Fy (!
[ | = Z J At e <[] 5.
m > 9 2
Fy n!
= 6(2n)n+1. (38)
9 2

. 2/ N-1 .
Thus the series szl ano Qnn 1s absolutely convergent, and so the

Jj—1 -
series anzl ano Apn¥mn (%) is uniformly convergent. O
4. Algorithm for the Proposed Numerical Scheme
Step 1. Assign the values for j and N for step size k = 21N in Equation
(20).
Step 2. Compute Bernoulli wavelet coefficient matrix ¢,;, at the
2r -1

collocation points x, = —on r=1,2, ..., k from Equation (22).

Step 3. Compute the block pulse operational matrix H P from Equation
@7).
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Step 4. Construct Bernoulli wavelet operational matrix P}E’X ; of order
B > 0 using Equation (31).

Step 5. Dispersing the coefficients of the given fractional differential
equations at the collocation points, construct diagonal matrices.

Step 6. Express all Caputo fractional derivatives in the given fractional

differential equations in terms of Bernoulli wavelets.

Step 7. Solve the system of algebraic equations using MATLAB2015a to

compute the unknown vector.
Step 8. Compute the solution using the unknown vector and the
Bernoulli wavelet operational matrix.

5. Numerical Experiments

To show the applicability and the effectiveness of the proposed numerical
scheme, we consider here some fractional differential equations with variable

coefficients.

Example 5.1. Consider the following fractional order linear differential

equation with variable coefficients
r[D?h(x)] + s(x)[D"2h(x)] + t(x) [ DR(x)] + u(x)[ D" A(x)] + v(x)h(x) = w(x), (39)
with 0<x<1,0<yl<11<yy <2 A0)=2 and #(0) = 0,

where r € R, s(x), #(x), u(x), v(x), h(x), w(x) € L2[0, 1),

w(x) = —r - % K22 () - F(g(—f)yz)xz-vz Fulx)(2 - 5 x)
Suppose
D?h(x)= ATW(x) where A =[a, as, ..., a;]", and
w(x) =W (x) where w = [wy, wy, ..., wy]. (40)
Then D"2h(x) = ATP}12¥(x), (41)

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



2414 R. ARULDOSS and R. ANUSUYA DEVI

D" A(x) = ATPY (x), (42)
Dh(x) = AT P ¥(x) (43)
and h(x) = ATP2 ,%(x) + 2. (44)

Using Equations (40)-(44) in (39), we attain

[rAT 1(x) + [AT P22 10 (x)s(x) + [AT Bg ] (x)e(x) + [AT P71 W (o )ulx)

+[AT P2, 19(x)u(x) + 2v(x) = WP (x). (45)

Dispersing the coefficients s(x), #(x), w(x), v(x) at the collocation points,

construct the following matrices.

s(xy) 0 .. 0 ) O .. O

so| O ) 0 a0 ) o)
6 0 s(o.ck) 6 ..: 0. t(oék)
wx,) O 0 u(x) 0 0

vo| 0 um) 0 |y | 0 ulx) 0
0 0 ulxy) 0 . 0 uxp)

Table 1. Maximum absolute errors for various choices of j and V.

k 48 96 192 384 768
(=8 N=3 (j=4N=3 (j=5N=3) (j=6,N=3 (j=7,N=3
The 1.5100e-05 3.8168e-06 9.6282e-07 2.4249e-07 6.0990e-08
Proposed
method

Table 2. Adams type Predictor-Corrector method [3].

Step size Maximum absolute errors
0.1 0,023658990000
0.01 0.000986218500
0.001 0.000043988230
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Discreting Equation (45), we can achieve

rATop g + ATP? 29, .S+ AT Py, T + ATP2 ¢, U

+[AT P20, + Y1V = W g, (46)

where Y =[2, 2, ..., 2];,,. At the collocation points x; = (20 —1)/2k, i =1,
2, ..., B, we transform Equation (46) into a system of algebraic equations.
Solving this system of algebraic equations using MATLAB2015a, we can

easily obtain AT,

Suppose
r=1, s(x) = €72, t(x) = 273, u(x) = 7%, v(x) = 277, v, = 0.333, v, = 1.234.

Then the exact solution of Equation (39) for y; = 0.333 and vy =1.234 is

hx)=2- %xz .

In Tables 1 and 2, the maximum absolute error obtained using Adams
type Predictor-Corrector method is 4.40e-05 in 1000th step, while the
maximum absolute error using the proposed method is 1.51e-05 in 48th step.
We also see clearly from Table 1 that the numerical solutions are in perfect
agreement with the exact solutions for larger values of k. Numerical results
of this problem demonstrate that the proposed method converges rapidly and
is more efficient than the Adams type predictor-corrector method [3]. Also
from Figure 1, we see clearly that the numerical solutions are in perfect

agreement with the exact solutions.

Example 5.2. Consider the following fractional differential equation
DY3h(x) + x"3h(x) = w(x), x € [0, 4), (47)

3

(2/3) x(2/3) + x(4/3). The exact

with the initial state A(0) =0 and w(x) =

solution of Equation (47) is A(x) = x.
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Figure 1. Comparison of Numerical solutions of Example 5.1 for
k=8(j=3 N=2)and k =16(j = 4, N = 2) with the exact solutions.

Let t = x/4. Then x = 4¢, ¢t € [0, 1). Thus

DY3n(4¢) + (40)° h(4¢) = v(2), (48)
where
1/3
ot) = w(4t) = %t% 403, ¢ e [0,1).
Approximating
Dl/Sh(4t) as AT‘P(t) where A = [q, ag, ..., ak]T, (49)
we have
h(4t) = ATPPw(r). (50)

Similarly, v(t) can be approximated by the Bernoulli wavelet functions as
T T
u(t) = V' W(¢t), where V = [vy, vy, ..., U] . (51)
Using Equations (49), (50) and (51) in Equation (48), we have

ATw(@) + (4) 2 ATPPw(t) = vTw(e). (52)
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Table 3. Absolute errors for various choices of j and for N = 2.

x k=8 k=16 k=232
(j=3N=2 (=4 N=2) (=5N=2)
The HWM The HWM The HWM
proposed proposed proposed
method method method

0.25 | 3.4042e-02  4.6972e-02 | 1.0979e-02 2.5554e-02 | 1.6860e-03 6.3723e-03

0.75 | 5.2261e-03  1.8818e-02 | 1.7086e-03 7.7490e-03 | 4.8561e-04 2.6655e-03

1.25 | 2.9291e-03 1.2333e-02 | 9.1120e-04 4.9465e-03 | 2.7618e-04 1.7841e-03

1.75 | 1.8933e-03 9.2464e-03 | 5.9425e-04 3.6780e-03 1.8461e-04 1.3549e-03

2.25 | 1.3507e-03  7.4107e-03 | 4.2765e-04 3.2651e-03 | 1.3471e-04 1.3549e-03

2.75 | 1.0238e-03  6.1850e-03 | 3.2668e-04 2.6691e-03 | 1.0387e-04 1.0953e-03

3.25 | 8.0889e-04 5.3060e-03 | 2.5985e-04 2.0961e-03 | 8.3183e-05 9.1997e-04

3.75 | 6.5879e-04 4.6437e-03 | 2.1286e-04 1.8332e-03 | 6.8503e-05 6.9676e-04

Figure 2. Comparison of Numerical solutions of Example 5.2 for
k=8(j=3 N=2)and k=16(j = 4, N = 2) with the exact solutions.

Dispersing the coefficient (4t)1/ 3 of Equation (52) at the collocation

points, construct the following matrix.

(4t,)/3) 0 0
» 0 (4t5) ) . 0
0 0 (4¢3

Discreting Equation (52), we get
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Equation (53) into a system of algebraic equations. Solving this system of

At the collocation points ¢; = ,1=1,2, ..., 2j_1N, we transform

algebraic equations using MATLAB2015a, we can easily obtain the
coefficients vector AT. Then we get the numerical solutions h(4t) of

Equation (48). The numerical solutions A(x) of Equation (47) are obtained by
h(x) = ATPY3y(x/ 4).

The numerical results for k = 8(j =3, N=2) and k=16(j =4, N = 2)
are shown in Figure 2. From Figure 2, we find easily that the numerical
solutions are in good agreement with the exact solutions. The absolute errors
for different values of k& are shown in Table 3. We also see from Table 3 that
as k increases, the errors become smaller and the proposed method is more
accurate compared with the Haar wavelets method.

6. Conclusion

In this paper, an efficient numerical scheme based on Bernoulli wavelets
for solving a class of fractional differential equations with variable
coefficients was proposed. By the advantages of sparse and orthogonal
nature, the proposed technique reduces the computation greatly to give
numerical solutions with good coincidence. Tables 2 and 3 depict the
advantages of the proposed method over other methods, namely Adams type
Predictor-Corrector method and Haar wavelet method, in terms of less
computational effort and time, accuracy and simplicity. Absolute errors and
graphical representations in the two numerical examples demonstrate the
high degree accuracy of the proposed numerical scheme.
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