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CHAPTER -1
I ntroduction
State of the art of the research topic:

The exploration of natural numbers and integers is the emphasis of the pure
Mathematics discipline known as Number Theory. "The Queen of Mathematics" refers
to Number Theory's position as the discipline's linchpin. The study of numbers [6, 27,
30, 32, 35, 38, 43, 52] provides a framework for identifying patterns and establishing
the veracity of those patterns through the use of Number Theory. Number Theory is a
mixture of both experimental and theoretical aspects. Issues are raised and viable
solutions are proposed in the experimental component of the course. It is the objective
of the theoretical part of the research to provide an argument that satisfies all of the

issues raised [66, 67, 110, 111, 113, 129, 132, 136, 150, 151, 152].

Diophantus of Alexandria, the creator of Arithmetica and one of the most
prominent later Greek Mathematicians, deserves particular mention. Diophantine
eguations, the most important of the many problems in this book, have been considered
the most significant [8, 68]. These are equations in which the answers must be integers
[3, 4, 10, 13, 18, 31, 34, 42, 48, 50, 60, 64, 81, 94, 98, 100]. As an illustration,
Diophantus requested for two numbers, one of which was a square and the other a cube,
such that the total of their squares was also a square itself. In contemporary symbols,

he hunted number, y, andz such tha(x?)? + (y3)? = z2. Generating real numbers

that meet this condition is straightforward (ex = /2,y = 1, andz = /5), but the

constraint that solutions be integers brands the task more complex. Work of Diophantus
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was incredibly influential on subsequent Mathematics [105, 107, 112, 120, 121, 128,

131, 133, 147, 155].

Due to the wide range of Diophantine equations, there exists a plethora of them
[71, 74, 80, 82, 99, 154]. Diophantine equations have no uniform mechanism for
determining whether a solution exists or finding all of them if they do. One of the most
well-known and renowned Diophantine equations is the Fermat equation
x% +y%—z% =0 [126, 142, 143].d =2 yields an infinite number of integer

solutions, bud = 3 yields no positive integer solutions.

The equatiory? = x3 + k for k € Z is alluded to as Mordell's equation due to
Mordell's deep passion in it [56, 137]. Mordell [109] established in 1920 that the
equation y? = x3 + k has an infinite number of integral solutions for a@ng Z.
Michael A. Bennett and Amir Ghadermarzi [11] cast-off the traditional link between
Mordell and cubic Thue equations to solve the Diophantine propfem x3 + k for

all non-zero integerk with |k| < 107.

Since prehistoric days, mastering the equations with variables as exponents has
glinted the inquisitiveness of countless Mathematicians [1,7,17, 19, 20-25, 44, 55, 63,
65, 90, 91, 97]. J. L. Brenner and Lorraine L. Foster [14] explored several Diophantine
exponential equations and derived conclusions. Maohua Le, Reese Scott, and Robert
Styer [93] discussed many unresolved problems and related studies involving positive
integer solutions to the ternary exponential Diophantine equation [106, 127, 130, 134,
135, 138-141, 144, 145, 146].

A Diophantinel-tuple is a set of unique positive integers that has the feature

that the product of any two of its distinct members plus 1 is a square. Fermat discovered
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the world's first Diophantine quadruple in the integéts3, 8,120). Diophantus

discovered the first example of a rational Diophantine quadrtgﬁée%,%,%} [9,

16, 40, 41, 45, 47, 49, 53, 54, 57]. Certain of the most prominent Mathematicians of the
history, such as Diophantus, Fermat, and Euler, as well as some contemporary
Mathematicians, such as Fields Medalist Alan Baker, have made significant

contributions to issues involving Diophantitwuples [58, 59, 61, 62, 102, 115, 118,

119, 123, 149], yet many of these problems remain unsolved.

A Number pattern is a form of arithmetic pattern that is often seen. Number
patterns are a series of numbers that are sorted in a certain way according to a set of
rules. Mathematics is extremely significant when it can assist you in making
predictions, and Number patterns are all about making predictions. In Mathematics,
dealing with Number patterns leads straight to the notion of functions, which is a
structured representation of the interactions between multiple variables. It is also crucial

to be able to recognize patterns in numbers while problem-solving [76, 104].

Until recently, the importance of Fibonacci's work in Mathematics was
generally unnoticed. Modern Mathematicians are familiar with his work mostly because
of the Fibonacci sequence he devised. The first recursive number series is made up of
the numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55, where each number is the sum of its two
previous counterparts. Robert Simson, a Mathematician in 1753 at Glasgow University,

discovered that when numbers became larger, the ratio between them neared the golden

number, which is1.6180 ... or (1 ++/5)/2. As early as the 19th century, Edouard

Lucas coined the term "Fibonacci sequence” and scientists began to discover such
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sequences across the natural world, such as the spirals of sunflower heads, pine cones

and the male bee [33, 39, 46, 69, 70, 78, 79, 88, 96, 103, 122, 148].

As a result of the investigation of Pell's equatioh— dy? = (—1)", whered
is a positive non-square integer, Pell numbers were called after the English
Mathematician John Pell (1621685). On the other hand, Rdlucas numbers are
called after him and Lucas, despite the fact that neither of them was involved with them
in any way. Pell and Pellucas numbers are Mathematical twins, much as Fibonacci
and Lucas numbers are; they are both widespread and have a number of characteristics
in common with one another [15, 26, 28, 29, 37, 51, 72, 73, 75, 85, 89, 95, 101, 114,

116, 117, 125, 153].

Congruence techniques are a valuable tool for calculating the number of
solutions to a Diophantine equation. When applied to the simplest Diophantine
equation,ax + by = ¢, wherea, b, and ¢ are nonzero integers, these approaches
demonstrate that the equation has either no solutions or infinitely many solutions,
depending on whether the greatest common divisor (GC)avfdb dividesc: if it
does not, there are no solutions; if it does, there are infinitely many solutions, which

constitute a one-parameter family of solutions [77, 86].

In the 20" century, there was a surge in the field of Number Theory. In addition
to classical and analytic Number Theory, researchers are currently exploring specific
subdisciplines such as algebraiumber Theory geometric Number Theory, and
combinatorial Number Theory [2, 5]. Concepts got increasingly abstract, while the

methodologies used to implement them because it was more sophisticated.
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Undoubtedly, Fermat's greatest ambitions have been surpassed by the scope of the topic

[108].

In the mid-twentieth century, Number Theory was regarded as the purest area
of study in Mathematics, with no concrete applications in the real world. The emergence
of digital communication and digital computers emphasized that Number Theory may
bring surprising solutions to real-world issues [83, 87]. Factoring big numbers, finding
primes, testing hypotheses, and resolving numerical problems previously believed
impossible have all been made possible by breakthroughs in computer technology

during the last several decades.

Furthermore, practical issues involving splicing of telephone lines have been
resolved by using techniques of basic Number Theory [92]. Many more fascinating
applications may be found in the book Number Theory and the Periodicity of Matter
[12], which has a large number of additional examples. Finally, new and interesting
applications of Number Theory include cryptography [84], coding theory, chemistry
[36, 124] and random number generation among other things. These areas are
developing at a breakneck pace as a result of the widespread use of computers, and their

significance is growing all the time.

Since the theory of numbers has existed since the dawn of Mathematics, it is
both timeless and up-to-the-minute. Because of its apparent (sometimes deceptive)
simplicity and seductive beauty, it retains its interest. Because it has such a long and
glorious history, Number Theory has rightfully been referred to as "The Queen of

Mathematics," in the words of Gauss.
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Objective and scope of research work:

The novel variations of patterns of special numbers, as well as fascinating
relationships among them by using congruences and divisibility, are being investigated.
Aside from that, processes for obtaining infinitely large number of non-zero integer
solutions in Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas numbers to some

guadratic Diophantine equations are discussed.

Also, it is proved that there exists finite number of integer solutions or no
solutions to some Mordell type Diophantine equations and exponential Diophantine
equations that include Prime numbers and natural numbers are being explored as well.
Furthermore, the application of linear Diophantine equations with certain restrictions

for finding molecular formulae of chemical substances are investigated.

Results and discussion:

This doctoral thesis has nine Chapt&bapter | delivers an overview of the
history and literature required to analyze the different types of problems and their
integral solutions in Chapters Il through IX, which include number patterns and their

related properties.

In Chapter II, new sequences and their characteristics are explored in two
sections.
Section 2.1

Manifestation of Two Tremendous Sequences Cheldhiya and Cheldhiya
Companion Sequences
Section 2.2

Invention of Four Novel Sequences and their Properties
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Section 2.1deals with the general solution to the Pell equatfor dy? = +1
for some particular positive valuesdfind are developed as Cheldhiya and Cheldhiya
Companion sequences. Based on these sequences some interesting results are provided.
In Section 2.2 four disparate sequences and their recurrence relations named as
Pan-San, Pan-San Buddy, Pan-San Comrade and Pan-San Mate sequences are
established by utilizing the generalized solutiong) to the universal equation called
as Pell equation for two non-zero square-free integetsk? + 2,d = k? — 2 where
k € N — {1}. Also, the general formulae and few theorems are proved involving such

sequences for distinct valuesdand can analyze the corresponding results.

Chapter Il comprehends certain patterns of Diophantine Triples,

incorporating some of the sequences that were developed in the previous chapter.

Section 3.1
The Patterns of Diophantine Triples Engross Cheldhiya Companion Sequence

with Inspiring Properties.

Section 3.2

Demonstration of Two Disparate Structures of Integer Triples Concerning Pan-
San and Pan-San Comrade Numbers.

In Section 3.1 the following patterns of Diophantine triples
{Xom: Xome2, Xam + 2Xome1 + Xomaal

{(Xam+2, Xom + 2X2me1 + Xome2s 3Xam + (2 + 2Pky1)Xome1 + 2Xam42),

{Xom + 2%2m41 + Xoma2, 3%2m + (2 4 2Piy1)Xams1 + 2X2m42, 6Xom +

(10 + 2Pg 1) Xome1 + Xomaz
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{3x2m + (2 + 2Pk y1)Xome1 + 2X2ma2,  6Xom + (10 + 2Pk 1) Xome1 + 7Xomy2, 13%5, +

(26 + 4P, 1) Xome1 + 21x0m42) -
comprising the Cheldhiya companion sequence with the proDe{Ft-)(kz + 1)) is
studied.
Also, a pattern of Diophantine triples

{Xam-1, X2m+1, Xom-1 + 2Xom + X2m41}

{X2ms1, Xamo1 + 2Xom + Xome1, Xomo1 + 4%om + 4Xome1ds

{Xom—1 + 2%2m + Xoms1, Xome1 + 4Xom + 4Xoma1, 4Xom_1 + 12X + 9Xoms1l
{Xom_1 + 4Xom + 4Xoms1, AXom—1 + 12X0m + IXoms1, IXom—1 + 30X2m + 25X2m41)s- -

involving Cheldhiya companion sequence with the propR(#” + 1) is obtained.

In Section 3.2 two different patterns of triples
{Coetr Crrrpo 2k%Crpch {Crvrpor 2k%Crgey 3Cnaa i + 2G5 (k% — D},
{Zkzcn,kr 3Ch+1k + 2Cx(k* —1),2C_1 5 + 7Cpyrp + 4Cp (k% — 2)},
{3Chi1px + 2Cn 1 (k* = 1),2C_1 + 7Cryp g +4Cy . (k* —2),6C_1 5 +
22C, 411 + 6Cp i (k* — 4)}, etc
and
{Rn—,kr Ropyik Zszn,k}s {Rn+1,k' 2k*Ry 0, 3Ry 41 i + 2Ry i (K% + 1)},
{2k?Rp 1, 3Rps1 i + 2R (k? + 1), 2Ry + TRpy1x + 4R (k2 + 2)},
BRps1k + 2Ry (k* + 1), 2Ry 1 ) + TRyy1 i + 4Ry (k2 + 2),
6R,_1x +22Rp g i + 6Rn,k(k2 +4)}, etc
entailing Pan-San and Pan-San Comrade sequences respectively whereas the

multiplication of two basics raised i is a perfect square whekee NV — {1} are

engendered.
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Chapter IV enlightens the artwork of some integer quadruples and quintuples

with exclusive properties.
Section 4.1
Fabrication of Gorgeous Integer Quadruple.

Section 4.2

Incomparable Integer Quintuple in Arithmetic Progression with Prominent
Condition.

In Section 4.1 Three alternative processes are used to examine the quadruple

(a,b,c,d) in order to confirm that the total of any three of them is a cubical integer.

These approaches are outlined below.

(i) a=8(6m3—-9mn?)3+ 6(18m?n — 3n3)?(6m3 — 9mn?) +5(18m?n — 3n3)3
b = (6m3 —9mn?)3 + 6(6m3 — 9mn?)?(18m?n — 3n3)
+12(6m3 — 9mn?) x (18m?n — 3n%)? —2(18m?n — 3n3)3
c = —8(6m3 — 9mn?)3 — 6(6m3 — 9Imn?)(18m?n — 3n3)? + 5(18m?n — 3n3)3
d = —(6m3 — 9mn?)3 + 6(6m3 — 9mn?)?(18m?n — 3n3)
—12(6m3 — 9mn?) x (18m?n — 3n3)? — 2(18m?n — 3n3)3
(i)

a =802m3 —12m?n — 3mn? + 2n®)3 + 6(2m3 — 12m?n — 3mn? + 2n3) x
8m3 + 6m?n — 12mn? — n3)? + 5(8m3 + 6m?n — 12mn? — n3)3
(
b= (2m3 —12m?n —3mn? + 2n®)3 + 6(2m3 — 12m?n — 3mn? + 2n3)? x
m3 + 6m?n — 12mn? —n3) + m3 — 12m?n — 3mn? + 2n3) x
(8m3 + 6m? 12mn? 3 +12(2m3 — 12m? 3mn? + 2n3)
2
(8m3 + 6m?n — 12mn? —n3) — 2(8m®+ 6m?n — 12mn? —n?)?
c = —-8(2m3 — 12m?n — 3mn? + 2n3)3 — 6(2m3 — 12m?n — 3mn? + 2n3) x

(8m3 + 6m?n — 12mn? — n3)? + 5(8m3 + 6m?n — 12mn? — n3)3
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d = —(2m3 — 12m?n — 3mn? + 2n3)3 + 6(2m3 — 12m?n — 3mn? + 2n3)? x
(8m3 + 6m?n — 12mn? — n3) — 12(2m3 — 12m?n — 3mn? + 2n3) x
(8m3 + 6m?n — 12mn? — n3)? — 2(8m3 + 6m?n — 12mn? —n?)3

(i) a=1728m° + 3888m’n? + 1080m°n3 + 3240m°n* + 1620m*n>

+1188m3n® + 810m2n” + 162mn® + 135n°

b = 216m° + 1296m®n + 2916m’n? + 1512m®n3 + 4050m°n*
+324m*n® + 1971m3n® — 162m?n” + 324mn® — 54n°

c = —1728m° — 3888m’n? + 1080m°®n3 — 3240m°n* + 1620m*n®
—1188m3n® + 810m2n” — 162mn® + 135n°

d = =216m° + 1296m8n — 2916m"n? + 1512m®°n® — 4050m°n*

+324m*n® — 1971m3n® — 162m?*n’ — 324mn® — 54n°

In Section 4.2 an elegant integer quintuigte g, r, s, t) in three different ways
where the components make ensure in arithmetic progression with the conjecture that
the sum of any three consecutive elements designates a perfect square is recognized.
(i) (p.qrst)={48U?+V?)?—-384UV (V2 —U?),48(U% +V?)2 -192U0V(V?% -

U?),48(U? +V?)2,48(U% + V?)?2 + 192UV (V? — U?),48(U%? + V?)? +
384UV (V2 — U?)}

(i) (p,q,7s,t)={300000U?+V?)?+9600(6U*+6V*+7U3V —7UV3 —
36U2%V?),30000(U? + V?2)% + 4800(6U* + 6V* + 7U3V — 7UV3 —
36U2V?2),30000(U% + V?)2,30000(U% + V?)2 — 4800(6U* + 6V* +
7U3V — 7UV3 = 36U%V?2),30000(U% + V?)2 —9600(6U* + 6V* + 7U3V —

7UV3 — 36U2V?2)}

10
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(i)  (p,q,1st) ={12(m? + n?)? — 96mn(n? — m?),12(m? + n?)? —
48mn(n? —m?),12(m? + n?)?,12(m? + n?)? + 48mn(n? — m?),2(m? +

n?)? + 96mn(n? — m?)}

Chapter V establishes the art of sums, congruence relations and divisibility
properties of Pell and Pell Lucas Numbers
Section 5.1

Sums and Congruences of Pell and Pell-Lucas Numbers
Section 5.2

Divisibility Properties of Pell and Pell-Lucas Numbers

In Section 5.1 numerous innovative identities about Pell and Pell-Lucas
numbers empower to deliver certain congruence relations for the above stated numbers

are reflected in the following theorems.

Theorem 5.2

If n € NV andm, k € Z, then

n

QZmn+k = (_1)(m+1)n Z?:o (l) (_1)(m+1)i QmiQmHk

n

and PZmn+k = (_1)(m+1)n Z?:o (l) (_1)(m+1)i Qmi mi+k

Corollary 5.2.1
Q2mn+k = (_1)(m+1)an (mOd Qm) (5-6)
and P2mn+k = (_1)(m+1)npk (mOd Qm) (5-7)

for everyn € V andm,k € Z.

Theorem 5.3

If n € NV andm, k € Z, then

11
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QZmn+k - ( 1)mn {Zln/zj( )81 P 2lQZmHk +

_ n . ;
S () (S8 By Py} and

n ; i
PZmn+k = (_1)mn {ZLLZ{)ZI (Zi) 8L PmZLPZmHk +
n C i
T2 () (D™ P Qo)

Corollary 5.3.1

If n € N andm, k € Z, then

QZmn+k = (_1)ank (mOd Pm) (5'8)
and P2mn+k = (_1)mnpk (mOd Pm) (59)
In Section 5.2 divisibility properties of Pell and Pell-Lucas numbers are

revealed by means of the derived congruence relations in Section 5.1.

Theorem 5.4

The necessary and sufficient conditions@gy|Q,, are
i. m|nand
i % is an odd integer

forallm,n € N andm > 2.

Theorem 5.5

Letm,n € N andm > 2. ThenQ,,|P, if and only ifm|n and% is an even integer.

Theorem 5.6:
For allm,n € N andm = 3, B, |B, if and only ifm|n.
Chapter VI deals with several Quadratic Diophantine equation with solutions

as familiar Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas numbers.

12
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Section 6.1
Assessment of Solutions in Pell and PellLucas Numbers to Disparate
Polynomial Equations of Degree Two
Section 6.2
Conception of Positive Integer Solutions Relating Jacobsthal and Jacebsthal
Lucas Numbers to Restricted Number of Quadratic Equations with Double Variables
In Section 6.1 the solutions in Pell and Pell-Lucas numbers for the following
explicit polynomial equations of degree two in two variables are derived.
(i) x?-—2xy—vy?=+kwhenk=1,8
(i) x2—6xy+y?=4lwhenl =4,32
(i) x2—=2xy—y24+x=0
(iv) x2-=2xy—vy?24+y=0
(v) x*—2xy—y?+8x=0
(vi) x?2—6xy+y?+4x=0and

(vii) x?—6xy+y2+32x=0

In Section 6.2 sequences of non-negative integer solutions encircling
Jacobsthal and Jacobsthal-Lucas numbers for restricted number of quadratic equations
with double variables by utilizing the appropriate erections connecting these two

numbers and the concepts of divisibility are investigated.
(i) X?2—XY-—-2Y? =4C
(i) X2 —=5XY +4Y?=+C
(i) X*2—XY—2Y?2+CX=0

(iv) X2—XY—-2Y2+CY=0

13
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(v) X?—5XY—4Y?+CX=0

(vi) X?—5XY —4Y?+CY =0

(Vi) X2 —XY —2Y2 =49C

(Vi) X2 — XY —2Y2+9CX =0

(ix) X2—XY—2Y249CY =0

(X) X?—5XY +4Y?2=49C

(xi) X2 —5XY +4Y24+9CX =0 and
(xii) X2 —5XY +4Y2+9CY =0

where( is a constant denoting some powers of the number 2.

Chapter VII discovers solutions to certain Mordell Type Diophantine

Equations.

Section 7.1
Methodology of Proving No Solutions to Three Categories of Mordell

Diophantine EquationB? = A3 + K, K = U3 — V3, U — 2V22V?+ U3 U,V € Z.

Section 7.2
Attesting finite number of integer solutions or no integer solutions to four

Mordell Kinds Equation$? = X3 + C,C = 4+9,36,—16.

In Section 7.1 an unsurpassed Diophantine equatBdn= A3 + K for three
distinct values oK is studied and it is exposed that no integer solution arises by using

some classical congruence relations and Legendre symbols.

In Section 7.2 four groups of Mordell equationsY? = X3+ C,

C =49,-16,36 are preferred and exposed that two of the equations

14
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Y2 = Xx3-9,Y2= X3—-16 among them have no integer solutions and the lingering
two equationsy? = X2 +9,Y2 = X3 + 36 have partial integer solutions by mostly

focused on the ideas of properties of congruences.

Chapter VIII deals with Exponential Diophantine Equations in three sections

8.1, 8.2 and 8.3.

Section 8.1
Exploration of solutions for an Exponential Diophantine Equation

p +(p+1) =2

Section 8.2
Tactics of achieving non-negative integer solutions to an Exponential

Equation with Base as Natural Numbeafs+ (n + 1)¥ = z2.

Section 8.3

Investigation of Solutions to an Exponential Diophantine Equation

P +p2” +ps” = M?
Section 8.1lists the infinite numbers of integer solutions of the equation
p*+ (p+1)Y = z% wherep is a prime number by using the basic concept of

Mathematics and the theory of divisibility.

In  Section 8.2 an exclusive exponential Diophantine equation
n* + (n + 1)” = z? wheren € IV, the set of all-natural numbers are examined for all
choices of two exponents andy such that their sum +y = 1,2,3,4 in order to

discover integral solutions by using inspiring fundamental concepts of Mathematics.

15
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In Section 8.3 the Diophantine equatign* + p,” + p;% = M? is established
and results are analyzed for the prime triplets wipaseof the formdn + 1 or4n + 3

and the powers of primes are eitheor 2.

In Chapter 1X, the application of linear Diophantine equation in chemistry is

displayed.

Section 9.1

Usage of Linear Diophantine Equation in the Resolution of Molecular Formulae
for Various Chemical Substances.

Section 9.1examines the application of the linear Diophantine equation with
certain constraints in the determination of the chemical molecular formulas for three

distinct compounds and its effectiveness.
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CHAPTER - 11

Exploration of New Sequences and their Characteristics

This chapter consists of two sections 2.1 and 2.2

In Section 2.1, two peculiar sequences named as Cheldhiya sequence and Cheldhiya
Companion sequence are discovered. General formula for Cheldhiya sequence is
enumerated by using the special property called as normalization of the matrix. Also,

few theorems involving these sequences are elucidated.

In Section 2.2, four novel sequences named as Pan-San, Pan-San Buddy, Pan-San
Comrade and Pan-San Mate sequences are discovered by employing the general
solutions (x, y) to the worldwide equation called as Pell equation for two discrete non-
zero square-free integers d = k? + 2, d = k? — 2 where k € N — {1}. Also, the
recurrence relations, the general formulae for all sequences and some theorems
interrelated to all these sequences are invented by exploiting basic perceptions of

matrices.

17
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2.1 Manifestation of Two Tremendous Sequences Cheldhiya and
Cheldhiya Companion Sequences

The Pell Equation is a quadratic Diophantine equation of the form x? — dy? = 1 where
d is a positive square-free integer. The equation x? — dy? = 1 has infinitely many
solutions whereas the negative Pell equation x? — dy? = —1 does not always have a
solution. In this section, the process of developing new sequences named as Cheldhiya
and Cheldhiya Companion sequences by using sequence of solutions to the equation

x2 — dy? = 41 for certain d and few theorems based on these sequences are explained

as follows.

The y values of the equation x? — dy? = +1 for certain non-zero square-free integer
d can be generally sequenced as 0, 1, 2k, 4k? + 1,8k3 + 4k, etc called as Cheldhiya
sequence. The n'" term of this sequence is generalized by the recurrence relation

Yo = 2kyp_1 + V0 k=123,..,n>1.

with initial values y, = 0,y; = 1.

The x values of the equation x? — dy? = 41 for certain non-zero square-free integer
d can be generally sequenced as 1,k,2k? + 1,4k3 + 3k, etc called as Cheldhiya
Companion Sequence. The n term of this sequence is generalized by the recurrence
relation

Xp = 2kxp—1 +x,-5,k=123,..,n>1

with initial values x, = 1,x; = k.

Here k and d can be related as d = k? + 1 where k indicates the order of the sequence

while n indicates the number of terms in the k™ order sequence.

18
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Define the Cheldhiya sequence matrix as
_(2k 1
y= ( 1 0)
Now,

()= (7 0= (1) =G

Also,

v(o) = o)) =" =02
In general,

y (yi]:) = (y;:LI)
Theorem 2.1

Ify= (Zlk é) is a Cheldhiya sequence matrix, then

. n _ Vn+1 Yn +
(i) v —( v, }’n—1) foralln € Z27.

Giy " (yﬁl) - (yZ’:_‘l) forall m, k € Z*.

Proof:
This theorem can be proved by using the principle of mathematical induction on n.
(i) Since y, =0,y; = 1,y, = 2k, the exclusive Cheldhiya sequence matrix is
interpreted by
=01 %)
Therefore, the theorem is valid forn = 1.

Assume that the result is true for n = k.

That is

19
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7= )

Now,

2kYps1 Yk Y ) Yi+z Y+l
k+1 _ Ky — k+1 k k+1) _
y —yy= (2kyk + Vi1 Ve ) (yk+1 Yk )

Thus, the theorem is valid forn = k + 1.

Yn+1 Yn )

Hence, the conclusion of the theorem is perceived by y" = ( y Vo1
n n—

(ii)  Since,
y(y{:) - (21k (1)) (y{:) = (}/;:1)
the theorem is valid for n = 1.

Assume that the theorem is true for n = t.

That is,

v ()’:1)::) - ()’:l):l:-:;)
Now, consider

y (y{:) =yy (y{:)

=(F D00 )G =05

Hence,

T (i) = Grns)

Theorem 2.2 Generalization of Cheldhiya sequence

Ify= (Zlk (1)) is a Cheldhiya sequence matrix, then the n™ term of the Cheldhiya

Sequence is generalized by

20
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¥n = o= [(k+VIZ+1)" = (k= VkZ+ 1) | where n = 0,123, .

Proof:

Given
_(2k 1
y= ( 1 o)
The two eigenvalues of the above matrix can be derived from the characteristic equation
ly—AIl =0
asAy =k++Vk?+1and 1, =k —Vk?+ 1.

The eigenvectors of y are given by
(y=ADV =0

which implies that

2k—2 1\ (V1 _
(77 Z))=0 e.n
Case 1: If A; = k + Vk? + 1, then one of the eigen vector of y is performed from (2.1)
by
— (M
= ( 1 )
Case 2: If 1, = k — Vk? + 1, then the other eigen vector of v is computed from (2.1)
by
— (12
V2= ( 1 )
If the Diagonal matrix of y is given by

7R w (M0
p=(g a)menon=(g 40)

Let the Normalized eigenvector matrix be

21
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o[ T
\ T Jow /

Now, by applying theorem (2.1) the orthogonal transformation of the symmetric

matrices
yn — NDnNT

can be established by

(o JM\(“ o= sz\
\Fo o) \j o /

Simplifying the right-hand side of the equation and equating the (1,2)™ entry on both

(y;:1 Yn- 1)

sides, the generalized form of Cheldhiya sequence is estimated by

Vn k2+ [(k+\/k2+ ) —(k—Vk*+ )]Wheren—0123

Remark:

The above identity can also be written as y,, = A; A where n=20,123,.
1=12

Theorem 2.3

If {y,,} is the Cheldhiya sequence, then the sum of its first n terms is given by

n-—1
yn+yn -1
Ym =

m=0
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Proof
n—-1 n-1 m m
Yo = </11 — 3
i = R
A=A
m=0 m=0 1 2
__1 n—1 m m
- A=Ay m=0(/11 - 2‘2 )
1 (1—/11" _ 1—12")
T A2, \1-44 1-21,
1 (—(/11”—12")—(,11,12”—11”,12)+(,11—12))
A1=2; (1-1)-23)
— Ynt¥Yn-1—1
2k
Hence,
Zn—l _ Yntyn—1—1
m=0Ym =7 .
Theorem 2.4

If G(x) = Yoo Yux™ is the Generating function, then the corresponding function for

x
1-2kx—x2

Cheldhiya Sequence is G(x) =

Proof:

GG =) ™
n=0

= yox® + y1x + Laip yux"

=x + Xn=2(2kyn—q + yn-2)x"

=x + 2kx G(x) + x%G(x)
Hence,

G(x) = —=

1-2kx— 2
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Theorem 2.5
If y, is the n' term of the Cheldhiya sequence, then y,% — V- Vn+r = (=1 7y,2

Proof:

SR 2 AT TN ) NHT g nT

2 _ 1 2 1 2 1 2

In" = Yn—rYn+r = ( — ) - ( ) ( )
A=Ay

A1=22 A1~
- (i + G () + 0 ()

- @(1__1;:)2 (-2+ G_:)r + G‘i)r)

(=" (/11r—lzr)z
(A1=22)2 | (AT

— (_ 1)n—r ¥, 2
Hence,

yn2 ~ Yn—-rYn+r = (_1)n_r}’r2

Theorem 2.6
If {x,,} and {y,} are Cheldhiya Companion sequence and Cheldhiya sequence
respectively, then

(i) xp=yp-1tky,nz=1
.. 1
(i) xpyn = 202+D) (X2n-1 + kx2n)

(i) limZ=+vk2+1

n—o Yn
(iv) Xn + KYn = Yns1
(v) Ynt1 + Yno1 = 2Xy

. 1
(vi) m(xrwl + Xp-1) = 2y
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Proof:

(i)  Define the Cheldhiya Companion sequence matrix as

x= (21k é)

Then, the characteristic roots of x are determined by A; = k + VkZ +1,

Ay =k—-vVkZ+1.

Note that, 1,4, = —1.

The closed form of the Cheldhiya Companion sequence is given by

Xp, = A"+ A" 2.2)

By applying the initial values x, = 1,x; = k, the linear system of equations is

evaluated by ¢; + ¢, = 1 and ¢c;A; + ¢4, = k.

Aa—k k-2
Thus, ¢; =—2—andc, = L
C T Ay 27 A1y
Then, (2.2) becomes
A=k oV k=L o on
X, = -, Ay + 12_11/12

= o (A" = 2277 = k(" = 2.7)]

1
2,1 —2.2

[(A" 7 = 2" D) + k(4" = 2]

S Xp = Yn-o1 Tk,

(i) XnVn = Fn-1+ kyn)yn

=Yn-1Yn t+ kynz

2

_ Aln—l_lzn—l /11n—lzn K (A1n—12n)
Mi-As | A=Ay A=Ay

25
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= (Af”‘l R )" (5 ) k(AP 2,7 - z(mz)")>
1

= )’ (22x20-1 = 2Zk(=1)" + k(2255 — 2(-1)™))

4(k2+1) o (Qxan—q + Zkxpn)

-~ xnyn - 2(k2+1) (xZn—l + kan)

.es . Xn . Aln+lzn Al—lz
iii lim = = lim .
(i) n-ow¥Yn n-oow 2 A=A

A_Zn
= (—’11_12) lim 1+(;1)n
>

Since 4, < /'11,

Jm () -0

Hence,

lim 2 = VkZ + 1

n—oo Yn

A2, Tk At =2"
2 Al_lz

(iv)  xp+ky, =

(=) (A +2k (A -2
2(A1—23)

(11n+1—ﬂzn+1)
A1-22)

S Xp + KYn = Ynaa

_ 11n+1—lzn+1 lln_l—lzn_l
(V) Yn+1tYn-1= Ai—25 + A2y

n+1 n+1 n— n—1
/11—12 (A" = 2" +2 - )

_ 1 n+1 n+1 /11n/12—12n/11)
B A1=22 (/11 /12 + A1z

Al Az (Aln+1 Azn+1 _Alnﬂ,z +Allzn)

26



Chapter I1 Exploration of New Sequences and their Characteristics

= /11n + Azn
S Yne1 F Yno1 = 2x,

. 1 1 +1 +1 -1 -1
V) g G+ 20) = 5 (W =R T+ )

= s [ (A5 + 2" (40

_ Aln_lzn

T Vel

=2 =2,

Hence,

1

m(xn+1 + Xp-1) = 2y,

Remark:
In the above result, it is observed that

_ A—k VK241 1

M o= a=A  —2vkZ+1 2

. 1 A=A
(i) Xy =5 A"+ 24,7, (ﬁ)

1 (Alzn_lzzn)
2\ 42,

1
XnYn = EYZn

27
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Theorem 2.7

If {x,,} is a Cheldhiya Companion sequence, then for m > 1
(1) Xom—1Xzms1 + (K + 1) = (xzn)?
(ii) XomXzm+z — (K% + 1) = (xzm11)?

Proof:

2m—1+122m—1) (112m+1+122m+1

L (k24 1)

. A
(1 Xom-1Xzm+1 + (kK2 + 1) = ( >

= (W T+ R 20T+ 3+ D)
= (" = (A7 + ) + ") + (kK2 + 1)
= (L + 2+ 2"
=2+ 2,
Hence,
Xom-1Xams1 + (K% + 1) = (x2m)°

(i) XomXam+2 — (k* + 1)

_ (Alzm_'_lzzm) (112m+2+122m+2)

2 2

—(k*+1

= (L (A 20) + M) - (kP + 1)
=S ( - 242"

=2 (2 4 2,7

Hence,

XomXam+2 — (k% + 1) = (Xam41)?
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2.2 Invention of Four Novel Sequences and their Properties

In this section, four novel sequences named as Pan-San, Pan-San Buddy, Pan-San
Comrade and Pan-San Mate sequences are discovered. Also, the recurrence relations,
the general formulae for all sequences and some theorems are invented by exploiting

basic concepts of matrices.

2.2.1 Pan-San and Pan-San Buddy Sequences

The values of C and D in the universal equation D? — dC? = 1 for certain non-zero
square-free integer d = k? + 2,k € V' — {1} where V" is the set of all-natural numbers
propagate two fresh sequences 0,k, 2k(k? + 1),4k(k? + 1) — k,8k(k? + 1)? — 4k(k? +
1),etcand 1,k% + 1,2(k? + 1)?> — 1,4(k? + 1)3 — 3 (k? + 1), etc named as Pan-San
sequence and Pan-San Buddy sequence respectively. The n' term of the first sequence

is interpreted by the recurrence relation
Cok =2k + DChorp — Crzper k,ne N —{1}

where Co, = 0,Cyy = k.

The n'" term of the second sequence is standardized by the recurrence relation
Dypy =2(k* + 1)Dy_yk — Doy k,m €N —{1}

where Dy, = 1,Dy, = k% + 1.

Define the Pan-San sequence matrix as

M = (2(k21+ 1) —01)
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Now,

e ()= TP 6 = ()= ()

Also,

v (Cz,k) _ (2(k2 +1) —1) <2k(k2 + 1)) _ <4k(k2 +1)% - k) _ <C3,k)

Cik 1 0 k 2k(k2+1) ) \Cyx

More generally,

Crk Crrik
SGANE
Cn—l,k Cn,k
Theorem 2.8

2(k? +1)

Isz( )

_01) is a Pan-San sequence matrix, then the n'" term of the Pan-

San sequence is generalized by

Cok = 575 (2 + D) + V25 2) = (k2 + 1) = VA2 + 2) | where n € W.

k2+
the set of all whole numbers.
Proof:

Given

M= (2(k21+ 1) —01)

The characteristic equation 12 — 2(k? + 1)A + 1 = 0 of M reveals two distinct eigen
valueso = (k2 + 1) + kvk?+ 2andt = (k2 + 1) —kVvkZ + 2.
Also, A2 =2(k? + DA —1

A3 =222
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= (4(k? + 1) = DA — 202 + 1) = 7 (Capeh = o)
= kA3 = Cypd — Cy
2t = [8(k? + 1)° — 4(k? + 1D]A — [4(k? + 1) = 1] = (Card — Cax)
= kA* = Cypd — Cay
In general, kA" = Cp A — Cpi—q (2.3)
Since both ¢ and t are the characteristic values, they must satisfy (2.3). Hence
ko™ = (Cppo — Cpoqi) and k"™ = (Cp T — Cpey i)
The above equations provide the following expression

k(o™ —t") = Cy (0 — 1)

k(o™—1™)
= Cn,k = (O'—T)

Consequently, Cyj = 2\/% [((kz +1) + k\my - ((k2 +1)— k\m)n]
where n € W, the set of all whole numbers.
Theorem 2.9
If {Dn,k} and {Cn,k} are Pan-San Buddy sequence and Pan-San sequence respectively,
then

() kDpg=(k*+ 1DCpi — Coo1x

(i) 2DprCri = Conk

(i) Dpy1k — Dnoge = 2k(k? + 2)Cpy

) (Cuk+ Cnsie) +1=Danosi

(V) Cuyre = Cu1k = 2kDp g

(VD) Dussk — Dnosic = 2k(k? +2)Coi
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Proof:

(M)

(i)

By using the characteristic values of the Pan-San sequence as delivered in
theorem 2.7, their product is given by a7 = 1.
The closed form of the Pan-San Buddy sequence is specified by

Dpy=Ac" + Bt" 24
The fundamental values Dgj = 1,D;, = k*+ 1 provides the subsequent
system of linear equations

A+B=1

Ao+ Bt =k* +1.

= (K1)t = o=(k?+1)

o—T

Precisely, A and B

Thus, the specific value of D,,  is pointed out by

Dn,k _ (k2+1)-1 o 4+ o—(k2+1) o

g—T g—T

=L [(K? + D(o" — 1) + otz = "]

(k2+1) 1
k Cn,k - ;Cn—l,k

Consequently, kD, = (k? + 1)Cp . — Cpo1

The alternative forms of the above values of A and B are epitomized by

o-t  2kVkZ+2 2

A= (k2+1)-1 _ kVk2+2 _ 1

B=1-A=-
2

The equivalent values of the general term of the Pan-San Buddy sequence are

noted as

1
Dy =2 (a" +17)
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Hence,

Do = (%5 (55

(o-1)

.k
- 2(0-1)

2 2ny 1
(@ =12 =2 Cpp
Hence,
2Dn,kCn,k = CZn,k

%(Gn+1+1.n+1)_%(O_n—l_‘_.rn—l)
k(oM —-th)
(o-17)

cee Dn+1,k—Dn—1,k —
(iit) - =

. (O’—T) (G‘n+1+‘[n+1—0'n_1 _.L.n—l)
2k (on—1")

_ (0-7) (o™t 47t l—gNr—gT")
T 2k (on—1")

_ (o-17) _
T2k (0-1)
=2k(k? +2)
This implies that D41 — Dy—q i = 2k(k? + 2)Cy i

k(c"—1t") | k(g™ 1-1"71)

(o-1) (o-1)

2 2
() (Coget Comrp) +1=] | +1

{ , [c" — 1"+ o™ — ar”]}z +1

(o-1)

{ , [e"(1+71)—-1t"(1+ 0)]}2 +1

(o-1)

kZ
"~ (o-1)2

[62"(1+ )2+ 121+ 0)2 = 20"t (1 +T)(1+ 0)] + 1

2
— (U’ir)z [02" + 72" 4 g272(g2""2 4 72072) 4

20t(0? 1+ 2 — 4k +2)] + 1

1

= 4(k2+2) [2D2n,k + 2D2n—2,k + 4'D2n—1,k,]
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—_ 1 2

Hence, (Cpx + C _Lk)z +1=Dyp_1k
V) Cuvrk = Cpore = 2(k* + 1)Cr i — Crg e — Gk
=2(k* +1)Cpp — 2Ch_1
Therefore, Cp 11, — Cr—1x = 2kDy i,
(Vi) Dpyrp = Dnogge =5 (@™ + 71 =~ (g™ + 77Y)
= %[a”*l + 1" — g7 — o7"]
= %[o—n(a —-17)—1"(0 —1)]

=-[(e" —t)(0 - 1)]

_ (2kVk? +2)2
- 2k Gt

Subsequently, Dy 11 — D1 = 2k(k? + 2)Cp

2.2.2 Pan-San Comrade and Pan-San Mate Sequences
The values of R and S in the world-wide equation S? — dR? = 1 for an appropriate
non-zero square-free integer d = k2 — 2, k € N — {1}, IV is the set of all natural
numbers create two handsome sequences O0,k,2k(k?—1),4k(k?—1)? -k,
8k(k?—-1)3 —4k(k?—1),etcand 1,k? — 1,2(k?* — 1)?> — 1,4(k? — 1)3 — 3 (k? —
1), etc called as Pan-San Comrade and Pan-San Mate Sequences.
The n™ term of the earlier sequence is construed by the relation

Ryr =2(k* = DRp_1x — Ry, Where Ry, =0, Ry =k, keN —{1}

The n term of the later sequence is inferred by the relation
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Sk = 2(k? = 1)Sp_1x — Sp-24 Where S = 1,51, =k* =1,k € N — {1}
andn € W.

Define the Pan-San Comrade sequence matrix as

M = (Z(kzl— 1) —01)

Now,
m () = GO D= (R = ()

Also,

/N
o
PN
&
N——
Il

_ _ 2 _1)2 —
(2(k21 1) 01) (2(k - P1 1)

B (4(k2 —1)3 —3(k? - 1))
B 2(k2-1)2 -1

()
Rak
R k Rn+1 k
In general, iD?( " ) = ( ’ )
g Rn—l,k Rn,k
As in section 2.1, it is enabled to prove the following theorems.

Theorem 2.10

2(k* —1)

Ifsmz( )

_01) is a Pan-San Comrade sequence matrix, then the n term of

the Pan-San Comrade Sequence is hypothesized by

Ruse = 5= [((2 = D)+ ViZ=2) = (k2 - 1) - V2= 2) |

wheren = 0,1,2,3, ....

35



Chapter I1 Exploration of New Sequences and their Characteristics

Theorem 2.11
If {Ry} and {S,} are Pan-San Comrade and Pan-San Mate sequences respectively,
then
() kSpix=(k* = DRyi — Rn-1x
(i) SuiRuk =5Ronk
(i) Snt1k = Sn-1k = 2k(k? = 2)Rp
(iv) (Rn,k - Rn—l,k)z —1="S5mn-1k
(V) Rpsrke — Rn—1k = 2kSyk

(Vi) Snt1k = Sp-rk = 2k(k? = 2)
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CHAPTER - 1lI

Diophantine Triples involving Special Sequences

This chapter is divided into two sections, 3.1 and 3.2.

In Section 3.1, the patterns of Diophantine triples
{a,,a,,as},{a,, as, a4}, {as, a,, as}, etc reside in Cheldhiya companion sequence with

splendid propertieB (+(k? + 1)), k € IV are investigated.

In Section 3.2, two disparate arrangements of triptes3, v}, {B,v,6},{y, 6, ¢} etc
where in one of each module is a Pan-San number and in the other it is a Pan-San
Comrade number composed with the condition that the multiplication of any two

modules added with?, k € I — {1} is again a square of an integer are explored.
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3.1 ThePatterns of Diophantine Triples Engross Cheldhiya

Companion Sequence with Inspiring Properties

Presume that
Ay = Xy, Ay = Xoam42, M € N where
tn=3((k+VIZ+1)" + (k=ViZ+1)") ke
be any two integers such thata, — (k? + 1) is a perfect square.
Let a; be another positive integer which satisfy the consequent provision

aja; — (k%2 + 1) = ¢? (3.1)
azaz — (k* +1) = §? (3.2)

Resolving (3.1) and (3.2), the valueaafis attained by

ay = &Y (3.3)

ai;—as

By utilizing (3.3) in (3.2), the relation to be perceived is
a,¢? — a;p? = (k* + 1)(a; — az) (3.4)
Create the succeeding linear alterations

p=X+a,T (3.5)
Y=X+a,T (3.6)
Restoring the above values ¢f andy in (3.4), the quadratic equation with two

unknowns is estimated by

X2 = (a;a,)T?* = —(k?+ 1) (3.7)
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Selecting the least solution to (3.7) as
Xo =Xam+1,To =1
and the implementation this solution in (3.5) and (3.6) endow with the relations that

¢ =Xyme1 + a4

Y = Xomer1 + Q3

Exchanging the above said suitable modifications in (3.3), the third element in an

essential pattern which assure the postulation is specified by
Az = Xom + 2Xoma1 + Xoma2
Hence,

{Xom» Xoma2r Xom + 2Xoma1 + Xam42} IS @ Diophantine triple with the property

D(-(k*+1),keN
Let a, be a new-fangled positive integer such that

azas — (k* + 1) = ¢,° (3.8)

azas — (k* + 1) = §,° (3.9)

Subtracting (3.9) from (3.8) and make a simple computation, the significant vaiye of

is determined by

_ ¢ 2-y,?
Ay == — = (3.10)

Now, choosers be a positive integer which satisfies the conditions that

azas — (k% + 1) = ¢,° (3.11)
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agas — (k2 + 1) = ,” (3.12)
By exploiting a plain numerical calculation in (3.11) and (3.12), it is to be noticed that

2 2
ag =227V (3.13)

az—ay

Suppose that

asas — (k2 +1) = ¢3° (3.14)

asag — (k% + 1) = |5° (3.15)
wherea, € Z — {0}

Following the prior process in (3.14) and (3.15), the equivalent value of the égctor

in the sequence is established by

2_ 2
ap =22 —¥e" (3.16)

as—as

Since the objective is to accomplish appropriate integer values for the parameters in the

crucial patterns, make use of the subsequent transformations

®1 = PriaXomer + Xom + @z

U1 = PryaXoms1 + Xom + a3

$2 = Xom + 3Xome1 + 2Xomez + A3
Uz = Xom + 3X2me1 + 2Xomez + A4
b3 = 2Xpm + TXpme1 + 6Xomi2 + Ay

U3 = 22X + 7X2maq + 6Xomaiz + As

where{P,} = {2n — 1},n € IV is the sequence of oadmbers.
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Proceeding the same mechanism as explained above from (3.8) to (3.16), the elements

in the necessary patterns with the suitable property are studied by

Ay = 3%m + (2 + 2Pys1)Xome1 + 2X2my2
as = 6Xopm + (10 + 2Pk y1)Xome1 + 7Xom+2

A = 13x31 + (26 + 4Py 1) Xoms1 + 2100042

Thus,

{Xam» Xom+2, Xom + 2X2me1 + Xomsa})
{Xam+2, Xom + 2Xome1 + Xoma2r 3Xam + (24 2Pes1)Xome1 + 2Xom42),

{X2m + 2X2m+1 + Xome2, 3%om + (2 + 2Pys1)Xom1 + 2Xam42, 6X2p + (10 +

2Py 1) X2m+1 T Xoma2)s
{3x2m + (2 + 2Pgy1)Xam+1 + 2X2ma2, 6Xom + (10 + 2Py 1)Xome1 + 7Xam42, 13X5, +

(26 + 4Piy1)Xome1 + 21Xom42} oo

are patterns of Diophantine triples concerning Cheldhiya companion sequence such that
the product of any two of them decreasedb¥+ 1) is a perfect square whekes a

natural number.

Hence, the patterns of Diophantine trip{es, a,, as},{a,, as, a,},{as, a,, as}, etc in
which the factors are Cheldhiya companion sequence with the pr@g(ef(\kz + 1))

wherek € V' are evaluated.
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Examples for the numerical replacement of the above patterns of Diophantine

triples with the property D (—(kz + 1)) are specified in table 3.1.

Table 3.1
k m | k2+1 {a;,a;, a3} {ay, a3, a4} {a3,a4,as} {as, as, a6}
1 1 2 {3,17,34} {17,34,99} {34,99,249} {99,249, 662}
2 1 5 {9,161,246} {161,246,805} {246,805,1941} {805,1941,5246}
27379, 1039681, 1404494, 4860971,
3 3 10 {1039681,} {1404494,} {4860971,} I 11491249,}
1404494 4860971 11491249 31299946
Remark:

Applying the similar procedure as enlightened above, it is pointed out the consequent
patterns of Diophantine triples in which every element is a Cheldhiya companion
sequence such that the product of any two of them increas@d by 1) is a perfect

square.

{me—lr Xom+1 X2m—1 + 2me + x2m+1} ’
{Xam+1, Xom—1 + 2X2m + Xoms1, Xom—1 + 4Xom + 4X2m 41},
{Xam-1 + 2%2m + Xome1, Xom—1 + 4%2m + 4Xome1, 4Xom—1 + 12X2m + 9%Xomi1},

{Xam-1 + 4% + 4Xome1, 4Xom—1 + 12X + IXome1, IXom—1 + 30x5, +

25Xzm41se--
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A small number of numerical cases for the above sequences of Diophantine

triples with the property D(k? + 1) are stated in table 3.2.

Table 3.2
k m | k*+1 | {ay,a; a3} {az, a3,a,} {as, a4, a5} {ay, as, a6}
1| 1 2 (1,7,14) (714,41} (14,41,103} | {41,103,274}
2 1 5 {2,38,58} {38,58,190} {58,190,458} | {190,458,1238}
|| o e | e | s |

Verification of the numerical examples for all values ofm is displayed by the
ensuing C program.

#include < stdio.h >

#include < conio.h >

#include < math.h >

void main()

{

int m,ca, k,n,p;

char ch;

long long int x(int n,int k),a,b,c,d, e, f, 4;
clrser();

do

{

printf ("\nEnter the value of k and m\n");
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scanf ("%d%d", & k, & m);
printf ("\nEnter your choice 1 or 2 for D(—(k*2 + 1)) or D(k"2 + 1)\n");
scanf ("%d", &ca);

switch (ca)

{
case 1:
a=x(2*m,k);

b=x2+*m+2,k);
A=x(2*m+1,k);

p=2xk+1;

c=a+2+A+b;
d=3*xa+2+2*xp)xA+2xb;
e=6*xa+(10+2*p)*A+7x*b;
f=13xa+ (26+4*xp)*xA+21x*b;
break;

case 2:

a=x(2+*m-—1k);
b=x(2+*m+1k);
A=x(2*m,k);

c=a+2+A+b;
d=a+4*A+4xb;
e=4xa+12*xA+9 xb;

f=9*%a+30*A+ 25=*b;
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break;

}

printf (\n(%lld, %lld, %lld), (%lld, %lld, %lld), (%lld, %lld, %lld),
(%lld, %lld, %lld), ...",a,b,c,b,c,d,c,d,e,d, e, f);

printf ("\nDo you want to continue for dif ferent m and k (y/n)?\n");

ch = getche();

Ywhile (ch =="y'||ch =="Y");

getch();

}

long long int x(int n, int k)

{

long long int x[50], y;

inti;
for(i=2i<=n;i++)

x[i]=2*k*x[i —1] + x[i — 2];

y =x[i—1];
returny;
}
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3.2 Demonstration of Two Disparate Structures of Integer Triples

Concerning Pan-San and Pan-San Comrade Numbers

Hypothesize that

a = Cn—l,knB = Cn+1’k,n € NWhereCn,k = 2(k2 + 1)Cn—1,k — Lbn—2,k k,n EN — {1}

be two conflicting Pan-San numbers such that+ k? is a number with power raised

to two.
Lety be an additional positive integer that accomplishes the ensuing consequences

ay + k? = a? (3.17)

By + k2 = b? (3.18)

The resolution of (3.17) and (3.18) provides the possibility loy

2_p2
y = “a_ ; (3.19)

The collaboration of (3.19) in (3.18) interprets the relationship in termsaoflg as
fa? —ab? = —k?(a — pB) (3.20)
To achieve the necessary condition, let us generate the following linear expansions

a=X—aT (3.21)
b=X-pBT (3.22)
The standard quadratic equationXrand T is projected by restoring the overhead

values ofa andb in (3.20) as below

X% = qfT? = k2 (3.23)
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Making a choice for the necessity of establishing (3.23) in the codes
XO = Cn,krTO = 1

and enforcing these cryptographs in the previous held equations (3.21) and (3.22)
vintages that

a=Chr—a

b= Co — B
The third element of conventional triple which pledge the assertion by swap the above
appropriate outcomes afandb in (3.19) is identified by

Y = ZkZCn’k
Hence, it is clinched that

{Ca-140 Cryvir 2k?Cry} is an integer triple with the propey(k?), k € N — {1}
Let § be the next positive integer together with the statements that

B8 + k? = c? (3.24)

Y6 + k? = d? (3.25)
Deducting (3.25) from (3.24), the substantial valué «f determined by

CZ_dZ

6= (3.26)

The partnership of (3.25) and (3.26) construes the succeeding bond as
yc? — Bd? = —k%(y — §) (3.27)

Contemplate the fresh rectilinear modifications toandd as
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c=X+pT (3.28)

d=X+yT (3.29)

Reestablishing the above valuescondd in (3.27), the orthodox second- degree

equation is appraised by
X2 —y8T? = k? (3.30)

CaptivatingX, = Cy41 % — Chx, To = 1 and imposing them in the expressions (3.28)

and (3.29) produces the selectiong a@ihdd as

€ =Chy1c— Coi +PB

d= Cn+1,k —Chr TV
In sight of (3.26), an essential optiondis calculated by
6 =3Chi1h + ZCn,k(k2 -1

Hence,{CnH,k, 2k?Cpp, 3Cny1x + 2C, 1 (k% — 1)} is a required triple in Pan-San
numbers in which the product of two elements in the set added with a square other than

1 is a number with exponent two.
Now, picke to be some other integer that meets the following requirements

ye +k? = e? (3.31)

e + k2 = f? (3.32)

By implementing a simple analysis in (3.31) and (3.32), it is interesting to emphasize

that
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£ = y%f; (3.33)

Suppose that

8¢ + k2 = g2 (3.34)

e{ + k% = h? (3.35)
where( € Z — {0}

Ensuing the erstwhile course in (3.34) and (3.35), the corresponding value of the factor

¢ in the sequence is predicted by

_ g2_h2
(=L (3.36)

Since the mission is to deliver the exact integer values for the criteria in the vital

patterns, let us use the following conversions

e = Cn—l,k + 2C‘r1+1,k - 3Cn,k -Y
f= Cn—l,k + 2C‘r1+1,k - 3Cn,k -6
g = 2Cn—l,k + 6C‘r1+1,k - 7Cn,k +6

h = 2Cn—1,k + 6C‘n+1,k - 7Cn,k +¢

and subsequently the elements with the requisite forms of triples by the relevant
resource in the same structure as outlined above are analyzed by

=201+ 7Chp1x + 4Cn,k(k2 -2)

{=6Cn 14+ 22Ch414 + 6Cn (k? —4)

Accordingly,
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{Cn—,kr Cn+1,k' Zkzcn,k}’ {Cn+1,k: 2szn,k: 3Cn+1,k + 2Cn,k(k2 - 1)}1
{Zkzcn,kr 3Cn+1,k + 2Cn,k(k2 - 1): 2Cn—l,k + 7Cn+1,k + 4'Cn,k(kz - 2)}1
{36n+1,k + ZCn,k(k2 - 1), 2Cn—1,k + 7Cn+1,k + 4'Cn,k(k2 - 2): 6Cn—1,k +

22C 411 + 6Cp i (k? — 4)}, etc

are shapes of triples concerning Pan-San sequence whereas the multiplication of two
barebones upgraded kY is a perfect square whekeis a natural number other than
1. Hence, the patterns of integer triples S, v}, {B8,v, 8}, {y, 8, €} etc in which the

factors filling the above proclamation are assessed.

Elucidations for the numerical replacements of the above patterns of triples are
demarcated in table 3.3.

Table 3.3

k|n {a,B,v} {B.v.8} {r.0,€} {6,€,¢}

2 | 2 {20,1960,1584} | {1960,1584,7068} | {1584,7068,15344} | {7068,15344,43240}

3| 1] {3,1197,1080} | {1197,1080,4551} | {1080,4551,10065} | {4551,10065,28152}

4| 1| {44620,4352} | {4620,4352,17940} | {4352,17940,39964} | {17940,39964,111456}

Remark:
By smearing the identical technique as above, the following proposals of triples in
which every component belong to Pan-San Comrade sequence such that the product of

any two components enlarged b is a number with exponent two are designated.

{Rn—,kr Rn+1,kr Zszn,k}’ {Rn+1,k' Zszn,kﬂ 3Rn+1,k + 2Rn,k(k2 + 1)},
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{2k?Rp 1, 3Rps1 i + 2Rp i (k? + 1), 2Rp_1 o + 7TRps1p + 4Rp i (k2 + 2)},
{3Rn+1,k + ZRn,k(k2 + 1): 2Rn—l,k + 7Rn+1,k + 4'Rn,k (kz + 2)'
6Rn—l,k + 22Rn+1,k + 6Rn,k(k2 + 4’)}

WherERn’k = 2(k2 - 1)Rn—1,k - RTL—Z,k andR(),k = 0, Rl,k =k ) kelN — {1}

A limited number of numerical cases for the above sequences of triples are offered

in table 3.4.
Table 3.4
k | n {a, B, 7} {B,v,6} {r.6 ¢ {6,083
2 | 2 | {12,408,560} {408,560,1924} {560,1924,4560} {1924,4560,12408}
3 |1 | (3765864} {765,864,3255} {(864,3255,7473} (3255,7473,20592}
4 |1 | {43596,3840} | {3596,3840,14868} | {3840,14868,33820} | {14868,33820,93536}

Substantiation of the numerical examples is unveiled by the subsequent C

program.

#include < stdio.h >
#include < conio.h >
#include < math. h >
void main()

{

int ca,n,k;

char ch;

long long int C(int n,int k),a,b,c,d, e, f,int R(int n, int k);
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clrser();

do

{

printf ("\nEnter the value of k and n\n");

scanf ("%d%d", &k, &n);

printf ("\nEnter your choice 1 or 2 for Pan — San or Pan —
San Comrade Sequence\n");

scanf ("%d", &ca);

switch (ca)

{

case 1:
a=C(n-—1,k);
b=C(n+1k);

c=2x*kxkxC(nk);
d=3*xb+2+xC(nk)*(kxk—1);
e=7+b+2xa+4xCnk)x*(k*kx=2);
f=6xa+22xb+6xC(nk)x(kx*k—4);
break;

case 2:

a=R(n—-—1k);

b=Rn+1k);

c=2x*kxkxR(nk);

d=3*b+2xR(nk)=*(k*k+1);
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e=7*b+2*xa+4*R(nk)x*(kx*k+2);

f=6xa+22xb+6*R(nk)x*(k*kx*+4);

break;

}

printf ("\n(%lld, %lld, %lld), (%lld, %lld, %lld), (%lld, %lld, %lld),
(%lld, %lld, %lld), ...",a,b,c,b,c,d,c,d,e,d,e,f);

printf ("\nDo you want to continue for dif ferent n and k (y/n)?\n");

ch = getche();

Ywhile (ch =="y'||ch =="Y");

getch();

}

long long int C(int n, int k)
{

long long C[50],y;

C[0] =0;

C[1] =k;

inti;

for(i=2i<=mn;i++)

Cli]=2*(k*k+1)*C[i—1] = C[i — 2];

y=C[i—1];
returny;
}

long long R(int n,int k)
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{

long long R[50],y;

R[0] = 0;
R[1] =k;
inti;

for(i=2,i<=n;i++)

Rli]=2*(k*xk—1)*R[i —1] — R[i — 2];

y =R[i—1];
returny;
}
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CHAPTER - IV
Artwork of Integer Quadruple and Quintuple with Unique Properties

This chapter comprises two sections, section 4.1 and 4.2.

In Section 4.1, an elegant non-zero distinct integer quadiupke c,d) in which
addition of any three of them is a cubical integer is determined by exploiting the general

solutions to a meticulous cubic Diophantine equation.

In Section 4.2, an incomparable integer quintuplg, 7, s,t) in such a way that the
components with the renowned property in algebra named as arithmetic progression
with the postulation that the addition of three consecutive terms shows a perfect square

is established.
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4.1 Fabrication of Gorgeous Integer Quadruple

Leta, b, c,d be four non-zero distinct integers such that addition of any three of them

is a perfect cube.

Consider
a+b+c=p3 (4.1)
a+b+d=q3 (4.2)
a+c+d=r3 (4.3)
b+c+d=s3 (4.4)

together with the following condition
3la+b+c+d)=@p+q+7r+s)z3 (4.5)

Solving the system of equations from (4.1) to (4.4), the corresponding values of

a, b, c,d are pointed out by

a= %(p?’ +q3 + 13— 2s3) (4.6)
b= é(p?’ +q3 +s3—2r3) 4.7
c= %(p3 + 73+ 53 —2q3) (4.8)
d= %(q?’ + 73+ 53 —2p3) (4.9)

Adding (4.6), (4.7), (4.8) and (4.9), an interesting combination is enumerated by

3la+b+c+d)=p3+q>+r3+s3 (4.10)

Comparison of (4.5) and (4.10) provides that

p+q+r+s)z23=p3+q3+r3+5s° (4.11)
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Employing the following linear transformations

p=x+2y,q=2x+y,r=2y—x,s=y—2x

wherex andy are non-zero integers, from (4.6) to (4.9) gives

a = 8x3 + 6xy? + 5y3 (4.12)
b = x3+ 6x2%y + 12xy? — 2y3 (4.13)
c = —8x3 — 6xy? + 5y3 (4.14)
d =—x3+ 6x%y — 12xy? — 2y3 (4.15)

Substitution of the same transformations reduce (4.11) to the quadratic equation with

three unknowns as

6x% + 3y? = 23 (4.16)
Applying three different procedures of solving (4.16), the determination of an attractive
integer quadruple satisfying the condition that the sum of any three quantities is a

cubical integer is explained as follows.
Procedure (i):

The choice of = 6m? + 3n? wherem,n € Z — {0} leads (4.16) to

(Vx)* + (V3y)" = ((Vem)® + (v3n)’)

which implies that

3
(Véx + iV3y)(Vex — iv3y) = ((Vém + iv3n)(Vém — iv3n) )
Escalating the right-hand side of the above equation and equating real and imaginary

parts on both the sides, it is to be noted that
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x = 6m3 — 9mn?
y = 18m?n — 3n3

7z = 6m? + 3n?

Substituting the above valuesxfy, z in (4.12), (4.13), (4.14) and (4.15), the values of

a, b, c,d satisfying our assumption are deliberated by

a = 8(6m3 —9Imn?)3 + 6(18m?n — 3n?)?2(6m3 — 9mn?)

+5(18m?n — 3n3)3
b = (6m3 — 9mn?)3 + 6(6m3 — 9Imn?)2(18m?n — 3n?)

+12(6m3 — 9mn?) x (18m?n — 3n3)? —2(18m?n — 3n3)3
c = —8(6m3? — 9mn?)3 — 6(6m3 — 9Imn?)(18m?n — 3n3)?

+5(18m?n — 3n3)3

d = —(6m3 —9mn?)3 + 6(6m3 — 9Imn?)?(18m?n — 3n?)
—12(6m3 — 9mn?) x (18m?n — 3n3)? — 2(18m?n — 3n3)3

Some numerical examples satisfying the hypothesis are specified in table 4.1.

Table 4.1
m|n a b c d a+b+c|a+b+d|a+c+d | b+c+d
1)1 12609 -14067 21141 2187 7 g3 33 213
2|1 2715525 1456542 569565 -2025378 %168 129 108 g
3| 2| 165419721 9726264 104580288 -107228664 3654 408 546 1928
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Procedure (ii):
Treating (4.16) as
6x2 + 3y? =12.28 (4.17)

Assuming that

z=(Vem)’ + (V3n)’

and re-establish 1 by

| = (erv3)(E-iv3)
9

in (4.17), it becomes

(Véx)" + (V3y)” = ((\/3+i\/§)9(\/3—i\/§))2 (o’ + (@n)zf

which is equivalent to

i —ivV3\2 3
(VBx + iv3y)(V6x — iv3y) = (LHBUETNBNY (Gm + ivBn) (Vem — iv3n) )
(4.18)

Equating the positive parts on both sides of (4.18) and comparing the like terms, it is

examined that

x = 2m3 — 12m?n — 3mn? + 2n3

y = 8m3 + 6m?n — 12mn? — n3
In view of (4.12), (4.13), (4.14) and (4.15), the optiona,df c,d are estimated by
a=802m3—12m?n —3mn? + 2n®)3 + 6(2m3 — 12m?n — 3mn? + 2n3) x

(8m3 + 6m?n — 12mn? — n3)? + 5(8m3 + 6m?n — 12mn? — n3)3
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b =(2m3 —12m?n — 3mn? + 2n3)3 + 6(2m3 — 12m?n — 3mn? + 2n3)% x
(8m3 + 6m?n — 12mn? — n3) + 12(2m3 — 12m?n — 3mn? + 2n3) x
(8m3 + 6m?n — 12mn? — n3)2 —2(8m? + 6m*n — 12mn* — n?)3

c =—-8(02m3 —12m?n — 3mn? + 2n3)3 — 6(2m3 — 12m?n — 3mn? + 2n3) x
(8m3 + 6m?n — 12mn? — n3)? + 5(8m3 + 6m?n — 12mn? — n3)3

d = —-(2m3 — 12m?n — 3mn? + 2n3)3 + 6(2m3 — 12m?n — 3mn? + 2n3)? x
(8m3 + 6m?n — 12mn? —n3) — 12(2m3 — 12m?n — 3mn? + 2n3) x
(8m3 + 6m?n — 12mn? — n3)? — 2(8m3 + 6m?n — 12mn? — n3)3

Some numerical examples satisfying the propositions are specified in table 4.2.

Table 4.2
m|n a b c d a+b+c |a+b+d | a+c+d | b+c+d
1|1 -10709 -739 10719 2187 (9) (-21p 13 23
211 19683 -1771470 2480787 17510%8 390 (-9)2 1628 135
3 | 2| -55002032| -4663295p 1059765[2 94647096 3162 (-192f 526 536°

Procedure (iii):
Consider an alternative solution to (4.16) as
_ 13 2
X = JE(k + kl#)

_ 13 2
y—ﬁ(l + lk*)
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z=k%+1?
Case (i):

Since the target is to evaluate integral values for the variables, it is observed that the

subsequent two parametric choicesef V6m andl = v/3n provides the values of

andy in integers.
Then, the integral solutions to (4.16) are calculated by
x = 6m3 + 3mn?
y = 3n3 + 6nm?
z =6m? + 3n?
Substituting the above quantities in (4.12), (4.13), (4.14) and (4.15), the appropriate

values ofa, b, c,d are discovered by

a = 1728m° + 3888m’n? + 1080m°n3 + 3240m°>n* + 1620m*n°

+1188m3n® + 810m?n” + 162mn® + 135n°

b =216m° + 1296m8n + 2916m7’n? + 1512m°n3 + 4050m°n*

+324m*n® + 1971m3n® — 162m?n’ + 324mn® — 54n°

c =—1728m° — 3888m’n? 4+ 1080m°n3 — 3240m°n* + 1620m*n>
—1188m3n°® 4+ 810m?n” — 162mn® + 135n°
d = =216m° + 1296m8n — 2916m7n? + 1512m®n3 — 4050m°>n*

+324m*n® — 1971m3n® — 162m?*n’ — 324mn® — 54n°
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Some numerical examples satisfying our assumption are précised in table 4.3.

Table 4.3
m a b c d at+tb+c| a+b+d | at+tc+d | b+c+d
13851 12393 -6561 -6561 27 27 93 93
1594323 1062882 -13974938 -19683D %108 135 03 (-81)
2 | 94298688 75611448 -71299008 -22712184 3464 528 66° (-264f
Case (ii):

As in case (i), the single parametric choiceg ef v/6t andl = /3t offers the values

of x andy in integers.

Thus,
x =9¢t3
y = 9t3
z = 9t?

Substituting the above magnitudes in (4.12), (4.13), (4.14) and (4.15), it is determined

by
a = 13851 ¢°
b = 12393 t°
¢ =—6561t°
d = —6561 t°
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Some numerical examples satisfying the hypothesis are exemplified in table 4.4.

Table 4.4
k a b c d at+tb+c|a+b+d | a+c+d | b+c+d
1 13851 12393 -6561 -6561 27 27 93 (-9)
2 7091712 6345216 -3359232 -335923p 216 216° 728 (-72)
3 | 272629233 24393141Pp -129140163  -129140163 3724 729 243 (-243%

The C Program for numerical examples satisfying our hypotheses are illustrated

below.

#include < stdio.h >

#include < conio.h >

#include < math.h >

void main()

{

char ch;

intm,n,ca;

signed long int x,y,a, b, c,d, cup, cuq, cur, cus, cupl, cuql, curl, cusl,p,q,r,s;
clrser();

do

{

printf ("\nEnter m and n values\n");
scanf ("%d%d", &m, &n);

printf ("\nEnter your choice case 1 or 2 or 3 or 4\n");
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scanf ("%d", &ca);

switch(ca)

{

case 1:

x=(6*xm*mx*m)—(9*mx*n=xn);

y=(18*m=*m=*n)— (3*xnx*n=xn);

break;

case 2:
x=2xmsxm+*m)—(12+xm+mx*n)—(B3+sm=*nx*xn)+ (2*n*nx*n);
y=@Bxmsxmsm)+(6xmxmx*n)—(12+«xm=x*n=*n) — (n*nx*n);
break;

case 3:

x=(6*xm*mx+m)+ (3 *mx*nx*n);

y=@B*n*nxn)+ (6*n*mx*m);

break;

case 4:

X=9xm*mxm;

y=9*m*m*m;

break;

}

a=@B*x*xx*xx)+ (6xx*xy*y)+ (5*xy*y=*y);
b=@x*x*x)+(6*x*xx*xy)+(12*xx*xy*y)—(2*y*y=*y);

Cc=(—8xxxx*xx)—(6*xx*xy*xy)+ (5xyx*xy=xy);
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d=—(x*x*x)+(6*xx*xx*xy)—(12*xx*xy*xy)— (2*y*y*y);
cup=a+b+c;
cug=a+b+d;
cur=a+c+d;
cus=b+c+d;

if (cup <0)

{

cupl = —1 * cup;

p = pow(cupl1,1.0/3.0);
}

else

{

p = pow(cup,1.0/3.0);
}

If(p ==10)

p=0;

else

p++;

if (cup <0)

p=-p;

if (cug <0)

{

cuql = =1 * cugq;
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q = pow(cuql1,1.0/3.0);
}

else

{

q = pow(cuq, 1.0/3.0);

q++;

if (cug <0)

q9=-q

if (cur < 0)

{

curl = —1 * cur;

p = pow(curl,1.0/3.0);
}

else

{

r = pow(cur, 1.0/3.0);
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else

r+ +;

if (cur <0)
r=-r;

if (cus < 0)

{

cusl = —1 x cus;

s = pow(cus1,1.0/3.0);

}

else

{

s = pow(cus, 1.0/3.0);

S+ +;
if (cus < 0)

S = =S5,

printf ("\nm = %d,n = %d,a = %ld,b = %ld, b = %ld,c = %ld,

d = %ld\n",m,n,a, b, c,d);

printf("\na+b +c = (%ld)*3,a+b+d = (%ld)"3,a+c+d=(%ld)"3,"

"b+c+d=(%ld)"3",p,q,r,5);
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printf ("Do you want to continue (y/n)?");
ch = getche();

Y while (ch =="Y"|| ch =="y");

getch();

}

4.2 Incomparable Integer Quintuplein Arithmetic Progression with

Prominent Condition

Presume that, g, 1, s, t be five non-zero separate integers such that the elements in the

quintuple(p, q,, s, t) materialize in Arithmetic Progression.
To symbolize this proclamation, letandd be two non-zero integers such that
p=a—-2d,q=a—-d,r=a,s=a+d,t=a+2d

Consider that the sum of three consecutive elements in the already assumed quintuple is

a square of an integer.

The above declaration is replicated by the subsequent equations

p+q+7r=3a-3d=¢? (4.19)
q+7+s=23a=n? (4.20)
r+s+t=3a+3d = y? (4.21)

Addition of (4.19) and (4.21) endow with the proportion that

q = &1 (4.22)

d=%2"% (4.23)
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Elucidation of (4.20) and (4.22) yields the following equation

ne = (4.24)
To convert the above said valuenoés in integer, launch the novel conversions

n=3ANp=6uy=>6w (4.25)
These translations imitate (4.23) and (4.24) as follows

d =6(w?—u? (4.26)

22 =2(u? + w?) (4.27)

The elements in the required quintuple are making into integers with the property

looking for is portrayed by the three procedures as below.
Procedure (i):
Decode the parametéras
A=u?+v?
Then, the equation (4.27) can be altered by

(w? +v2)?% = 2(u? + w?)

S W+iv)?w-iw)?=0+DA-Du+io)(u—iw)

Then equating real and imaginary parts after escalating and balancing positive terms on

both sides, the resulting equations are revealed by

U—w =u?—p?

U+ w=2uv
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Resolving the above equations, the most plausible valyeswfiw are demonstrated
by

U =%(u2 —v?% + 2uv)
1) =%(v2 —u? + 2uv)

The parametric values @f u andw in integers are created by selecting the options of

u = 2U and andv = 2V as follows

A=4U%?+V?)
pu=2U?-V?+20V)

w=2V?-U?%+2UV)
The replacement of the above valuetan (4.25), endow with the value gfas

n=12(U? +V?)

According to (4.20) and (4.26), the components in an essential quintuple are offered by

a = 48(U? + V?)?

d =192U0V (V% -U?)

Subsequently, the necessary quintuple in which the elements form an Arithmetic

progression is discovered by

(p,q,7,5,t) = (48(U% + V)2 — 384UV (V2 — U?),
48(U% 4+ V22 — 1920V (V2 — U?),48(U? + V2)?,
48(U% 4+ V22 + 192UV (V2 — U?),

48(U? + V?)% 4+ 384UV (V2 - U?))
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Logical postulation is checked for certain values ot/ andV as in table 4.5.

Table 4.5
u\v (p,q,1,51t p+q+r | q+r+s |r+s+t
2 |1 (3504, 2352, 1200,48, -1104) 84 60 12
51| 7| (-59712, 101568, 262848, 424128, 5854(8) 2552  88% 1128
1] 3 (-4416, 192, 4800, 9408, 14016) 224 12¢ 168&

Procedure (ii):

The sameonversion ofA = u? + v?2 supplies the alternative appearance of (4.27) as

(7+0)(7-1)

(u+iv)?(u—-iv)? = -

(u+iw)(u—iw)
Replicate the same course of action as mentioned in procedure (i), the corresponding
values of u and w satisfying the double equation3uy —w = 5(u? — v?),

U+ 7w = 10uv are appraised by

U= %(7(142 —v?%) + 2uv)
w= %0(172 —u? + 14uv)

The chances of, ¢ andw in integers by picking = 10U andv = 10V are produced
by

A =100(U% +V?)
u=10(7U2 = 7V + 2UV)

w=10(V2—-U?+14UV)
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Renovate the value dfin (4.25), the value aof is calculated by
n =300(U%+V?)
In sight of (4.20) and (4.26), the equivalent choices ahdd are pointed out by

a =30000(U%+V?)?2

d = —4800(6U* + 6V* + 7U3V — 7UV3 — 36U?V?)
Hence, the needed quintuple with desired property is exposed by

(p,q,7,5,t) = (30000(U? + V)2 + 9600(6U* + 6V* + 7U3V — 7UV3 — 36U%V?),
30000(U? +V?)? + 4800(6U* + 6V* + 7U3V — 7UV? — 36U*V?),
30000(U? 4+ V?)?,
30000(U? + V?)? — 4800(6U* + 6V* + 7U%V — 7UV? — 36U%V?),

30000(U? +V?)2 —=9600(6U* + 6V* + 7U3V — 7UV3 — 36U2V2))

Presumption is verified for definite values ofU and V in table 4.6.

Table 4.6
u\v (p,q,r1,5s1t) pt+q+r | q+r+s | r+s+t
0|1 (87600, 58800, 30000, 1200, -27600) 2420 30¢ 60
1| 2| (-56400, 346800, 750000, 1153200, 1556400) 4020 150C¢ 1860
111 (-110400, 4800, 120000, 235200, 350400) 2120 60C 840

Procedure (iii):

Commencement of the fresh renovatidr= 2A in (4.27) declare the same equation as
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2A% = u? + w?
:AZ_M2=(D2_A2
= A+wWA-w=(w+A)(w-A)
u 1\ _ (@ W
= (1+5)(1-5)=G+1)(E-1) (4.28)
Again, make use of the transformaticlﬁqhs o, % = p in (4.28) produces the proportion

as

1+ _ (p-1) _m
= = n#E (4.29)

Hereafter, calculate the values é6fand p from (4.29) by the process of cross
multiplication and then substituting these values in the ultimate transformation, it is

determined by

A=m?+n?=21=2(m?+n? (4.30)
U =m?+ 2mn — n?

w = n?+ 2mn — m?

Interpretation of (4.20) and (4.26) offers the relevant valuesaridd as presented in
the equations scripted below.
a = 12(m? + n?)?
d = 48mn(n? — m?)
Hence, the necessary quintuple in which the elements in Arithmetic progression is
rendered by
(p,q,7,s,t) = {12(m? + n?)? — 96mn(n? — m?),12(m? + n?)? — 48mn(n? — m?),
12(m? + n?)?,12(m? + n?®)? + 48mn(n? — m?),

2(m? + n?)% + 96mn(n? — m?)}

73



Chapter 1V Artwork of Integer Quadruple and
Quintuple with Unique Properties

Supposition is authenticated for specific values ah and n in the following table

4.7.
Table 4.7
m n (p,q,r1,5s1) p+q+r | q+r+s |r+s+t
2 1 (-276, 12, 300, 588, 876) 6° 3¢ 42
5 7 | (-14928, 25392, 65712, 106032, 1463b2) 2276 444 564
1 3 (-1104, 48, 1200, 2352, 3504) 212 60 84

The emerging C software shows verification of the numerical samples:

#include < stdio.h >

#include < conio.h >

#include < math.h >

void main()

{

char ch;

clrser();

do

{

long long int x,u,v,m,n;

long long int U,V,M,N,a,d,p,q,1,s,t,A,B,C,E,F,G;
printf ("\nEnter the case 1 or 2 or 3\n");

scanf ("%lld", &x);
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switch(x)

{

case 1:

printf ("\nEnter integer values for u and v\n");
scanf ("%lld%lld", &u, &v);

U=u=x*u;

V=vxvy

a=48x (U+V)* (U +V);

d=192xuxvx* (V—=U);

p=a—2x*d;
q=a—d;
r=a;
s=a+d;
t=a+2=x*d;
break;

case 2:

printf ("\n Enter integer values for u and v\n");

scanf ("%lld%lld", &u, &v);

U=ux*u;

V=vx*v

a=30000x(U+V)*U+V);

d=—4800* (6*xUxU+6*xV*V+7+xUxuxv—7xuxv*xV—=36xUx*V);

p=a—2x*d;
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s=a+d;
t=a+2=x*d;
break;

case 3:

printf ("\n interger values for m and n\n");

scanf ("%lld%lld", &m, &n);
M =mx*m;

N =nxn;
a=12* (M + N) * (M + N);
d=48+«mxnx*(N—M);

p=a—2x*d;

s=a+d;
t=a+2=x*d;
break;

}
A=p+q+r;
B=q+r+s;
C=r+s+t;

E = sqrt(A);
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F = sqrt(B);

G = sqrt(C);

printf("\np + q +r = %lld = %lld"2\nq +r + s = %lld = %lld"2\n
r+s+t=%ld=%Ild"2"A,E,B,F,C,G);

printf ("\nDo you want to continue for dif ferent cases (y/n)?");

ch = getche();

Ywhile (ch =="y'||ch =="Y");

getch();

}
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CHAPTER -V

A State of the-Art of Sums, Congruence Relations and Divisibility
Properties of Pell and Pell-Lucas Numbers
This chapter encompasses two sections, 5.1 and 5.2.
In Section 5.1, several new-fangled identities regarding Pell and Pell-Lucas numbers

enable to provide certain congruence relations for those numbers are deliberated.

In Section 5.2, divisibility properties of Pell and Pell-Lucas numbers are revealed by

means of the derived congruence relations detailed in section 5.1.
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5.1 Sumsand Congruences of Pell and Pell-Lucas Numbers

In this section, some novel identities concerning Pell and Pell-Lucas numbers allow to

offer certain congruence relations for such numbers are reflected.

Theorem 5.1

If X is a square matrix with? = 2X + I, thenX™ = B, X + P,_,I for every integen.

Proof:

LetZ[a] = {Aa + B; A,B € Z} andZ[X] = {AX + BI; A,B € Z}

Define a functiory: Z[a] — Z[X] by f(Aa + B) = AX + BI.

Thenf is a ring isomorphism. Moreover, it is clear tfiégr) = X andf(Q,,,) = Q..
Therefore, X" = (f(@))" = f(@™) = f(Pya + Pp_y) = BX + Py_yl

Corollary 5.1.1

i 1 4 n —
If M = [1/2 1], thenM™ =

S FE S|

Proof:
Since,M? = 2M + I, it follows from theorem (5.1) that

M™ = P,M + P,_,I

P,+P,, 4Pn
M" = Pp
2

& 4p,
B+ Po_ | [P @&f
2
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Remark:

From the fact thatf:Z[a] —» Z[M], defined byf(Aa + B) = AM + BI is a ring
iIsomorphism, it is observed that

a?™ — Qua™+ (—1)™ =0 (5.1)
and a?™ —2v2P,a™ — (-1)™ =0 (5.2)

Applying the functionf on each side of (5.1) and (5.2), the relations in matrix as

mentioned in the theorem discovered are pointed out by
M?m — Q. M™ + (=1)™] = 0 (5.3)
and M?*™ —KP,M™ —(-=1)™ =0 (5.4)

whereK = f(2v2) = fQa —2) = 2M — 2] = [(1) g :

Theorem 5.2

If n € N andm, k € Z, then

n

QZmn+k = (_1)(m+1)n Z?:o (l) (_1)(m+1)i QmiQmHk

n

and Prmn+k = (_1)(m+1)n Z?:o (l) (_1)(m+1)i Qmi mi+k

Proof:

From (5.3), it is noted that
M?m = Q. M™ — (=1)™] (5.5)
Raisingn" power on both sides of (5.5).

Then, M*™ = (Q,,M™ — (=1)™D™ = (Q,,M™ + (—1)™+1 )"
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n . .
=3, (7) (D™D (QuM™)'
= (=1)m+Dn ., (?) (—1)m+i QmiMmi
Therefore M2mn+k = (—1)(m+Dn ¥, (:l) (—1)(m+i QmiMmi+k

It comprehends from corollary 5.1.1 that

n

QZmn+k = (_1)(m+1)n Z?:o (l) (_1)(m+1)i QmiQmHk

n

and PZmn+k = (_1)(m+1)n Z?:o (l) (_1)(m+1)i Qmi mi+k

Corollary 5.2.1

QZmn+k = (_1)(m+1)an (mOd Qm) (5-6)

and  Pyynix = (=1)™D"P (mod Q,,) (5.7)
for everyn € ¥ andm, k € 2.
Remark:
() SinceK =2M —2I=M+ M1, M"K = KM™,Vm € Z
G Kk*=[3 o=srand] o][% P]=[% 9.

Theorem 5.3
If n € N andm, k € Z, then
n . .
Q2mn+k = (=1)mn {Z%Z{)ZI (Zi) 8! PmZLQZmHk +
_ n . ;
S (T ) (C ™8 B Pyt )

and
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n ; i
PZmn+k = (_1)mn {ZLLZ{)ZI (Zi) 8L PmZLPZmHk +

_ n o ;
S () ()™ P Qi

Proof:

From (5.4), it follows that
M?™ = K P, M™+(—=1)™
Therefore, M?™tk = (Kp, M™+(=1)")"M*
= [z, (7) (=nmnm=t (kR My | M
= (=1)mnyn (Tll) (=1)MiKip, | Mmit
n

= (—)m {2 () K2 P2 Memivk 4

[(n—-1)/2] n _A\mi2i+1 p 2i+1p2mi+m+k
S5 1) CDMEA R J

= (—1)™n" {ZLLZ{)ZI (;ll) 8! PmZiMZmi+k +

[(n-1)/2]( M 1 \miqi 2i+1 pr2mi+m+k
D O I N J

The required results are accomplished by trading the mafi@slM on both sides

and equating the same entries.

Corollary 5.3.1
If n € NV andm, k € Z, then

Q2mn+k = (_1)ank (mOd Pm) (58)

and P2mn+k = (_1)mnpk (mOd Pm) (59)
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5.2 Divishbility Properties of Pell and Pell-Lucas Numbers
To begin, it is established two well-known theorems in a novel manner by exploiting
the congruences postulated in Corollaries 5.2.1 and 5.3.1. Regarding the divisibility of
Pell and Pell-Lucas numbers, readers will investigate the formulae and learn how to use
them efficiently to resolve problems. Thus, this section explains the fundamental

divisibility for Pell and Pell-Lucas numbers.
Remark:

From the identit (—1)" = Q,Pn,_1 — Qn—1B,, it can be seen thgtd(Q,,B,) = 1 or

gcd(Q,, B,) = 2. Furthermore,
Q,%> —8P% = 4(-1)" (5.10)

From equation (5.8), it is seen th@4,., = Q,.(mod12) and thereford2 t Q,, for
every natural number.
Now, some Pell-Lucas numbers identities that will be needed in the sequel are

deliberated below.

Qan = Qn° —2(-D)" (5.11)
Qzn = Qn(an - 3(_1)11) (5.12)
Theorem 5.4

The necessary and sufficient conditions@gy|Q,, are
0] m|n and
(ii) % is an odd integer

forallm,n € ;N andm > 2.
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Proof:
Presume thad,,|Q,,

Supposen t n, then by fundamental property of divisibilitg, can be expressed as

n=mq+r,0<r<m
If g is an even integer, then= 2s for somes € Z.

From (5.6), it tracks that

Qn = Qamssr = (_1)(m+1)SQr (mod Q.,)
SinceQ,,|0Q,, Qm|0Q,. This is a contradiction singg. < Q,, asr < m. Henceg is an

odd integer. Sustaigp = 2s + 1 for somes € Z. So,

Qn = Q2m5+m+r = (_1)(m+1)SQm+r (mOd Qm)
Also, sinceQy,|Qn, Q| Qmosre-
To prove:r =0

Supposer > 0. By the identityQ,,4+r = QmPr_1 + P-Qmmy1, the above implies that

Q!B Q1

Since(Q,,,, Q,n+1) = 1, it follows thatQ,,,|B-. This is a contradiction to the fact that if

r <m, thenP,. < P, < Q,,. As a result, it is determined that= 0.
Thus,n = mgq, with g being an odd integer.

Conversely, suppose that|n and% Is an odd integer,

That is,;n = m(2s + 1), for some integes. Then it is procured that,

Qn = Q2ms+m = (_1)(m+1)SQm (mod Qm)
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This is true only whe@,,|Q,,.
Hence, the theorem.
Theorem 5.5

Letm,n € N andm = 2. ThenQ,,|B, if and only ifm|n and% is an even integer.

Proof:

Suppose thad,,|P, andm } n.

This assumption means that= mq + r,0 < r < m wherem > 2.
If g is an odd integer, it may phrage= 2s + 1 for some integes.

From (5.7), it is distinguished that
B = Pomsimar = (_1)(m+1)st+r (mod Q.,)

Then,Q,,| P+, and hencd,,,|8P,, .

Then, from the identity th&@P,,,, = 0, Qr—1 + Q; Q1 thenQ,,|Q, Q1. SinceQ,,

and Q,,,, are relatively prime, the only possibility &,|Q,. But r < m delivers

Q, < Q- S0,Q,, 1 Q. This conflict befalls as a result of our erroneous assumption
aboutqg being an odd number. Thereforg,is an even integer. Thus, it may have

q = 2s for some integes.
Now, (5.7) condenses @ = Pypmssr = (—1)™VSP. (mod Q,,)

SinceQ,,| P, Q| B-.
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However, this cannot be true since< m and henceé,. < B,, < Q,,. This contributes

thatr = 0. So, it can be concluded that= mq, q is an even integer.

Conversely, suppose thatjn andn = 2ms for somes € Z. Then, it is acquired from
(5.7) that

Pn = Pst = (_1)(m+1)SP0 (mOd Qm)
It follows thatQ,,|P,.

Theorem 5.6

For allm,n € ¥ andm = 3, B,|B, if and only ifm|n.

Proof:

Initially consider thatP,|B, butm { n. Thenn =mq +r with 0 <r <m. Now,

suppose thaf is an even integer, then this may be takeq &s2s for any integes.
Hence, (5.9) provides the succeeding identity
P, = Pymsir = (—1)™ B, (mod Py,)

SinceP,,|P,, by applying the above identity?,,|P.. Since, if 0 <r < m andm > 3,
it leads toP. < P,. Hence,q must be an odd integer. Thgn= 2s + 1, for some

s € Z. Thus, (5.9) becomes
Pn = P2ms+m+r = (_1)mspm+r (mOd Pm)

SinceP,,|P,, it follows thatP,,|Pp,,. By the identity,P,, 1, = Pp1B- + B Pr_q, itis

noted that B,,|P,,+1B-. Due to the fact thatP,,, P,,+1) = 1, it is received tha#,, |B.
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which is a contradiction. This emerges as a consequenge<of,, asr < m and

m = 3. As a resultr = 0 and subsequently = mgq, resulting inm|n.

Conversely, pretend that|n. Then, the conclusion is= mq for some natural number

q. As an outcome,

Py = Png = ?:0 (Cll) Pmi m—1q_iPi

Hence, it is realized tha,, |P,.
Theorem 5.7

Letr > 1, be an odd number ama > 1. Then, there is no Pell-Lucas numiggrsuch

that Qn = Q2 mez

Proof:

Assume thaQ,, = Q,,.0,,x* andr is an odd number. Thep,, |Q,, andQ,,|Q,,. Then,
n = 2rt andn = mk for some odd natural numbe& k by theorem 5.4, this implies

that2|n = n = mk = 2|m. Itis thus obvious thah = 2v, for some odd € V. Since

2|n and% is an odd natural number, it can be writtemas 8q + s with s = 2,6 and

q = 0. Hence,

Qn = Qgq+s = Us(mod 12)

= Qn = Q2,06 (Mod12)

= Q, = 6 (mod 12)

Similarly, it can be seen th&t,, = 6 (mod 12).
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Since,r is an odd natural number, it is attained gt = 6(mod 12). Then it follows

that

Q,, = 05,0,,x% = 6Q,,x*>(mod 12)
Moreover, 6x% = 0,6 (mod 12) and Q,, = 6 (mod 12), Q,, = 0(mod 12) which
contradicts the fact th&t,, = 6 (mod 12). This concludes the proof.
Theorem 5.8
Q,x = 2,10 (mod 12) for everyk > 2 and for every odd natural numher

Proof:

Assume that is an odd natural number, thee +1,+3,+5,+7 (mod 8).
Moreover, it can be proved by induction thzt = 0,+4 (mod 8) for k > 2 and

2kt = 0,44 (mod 8).
Therefore2¥t = 8q or 2kt = 8q + 4 for ¢ > 0. Then it seeks that

Q,k; = Qgq = Qo (mod Py)
Or

Q,k; = Qggta = Q14 (Mod Py)
Thus, Q,«, = 2,10 (mod 12),k = 2.

Now, it is possible to generalize theorem as follows:
Theorem 5.9

Letm > 1,k = 2 andt be an odd natural number. Then there is no Pell-Lucas number

Q, such tha,, = Q,k,Qmx>.
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Proof:

Assume that), = sztmez and t is an odd natural number. Singg,|Q, and
Q| Q.. there exist two odd natural numbersindv such than = 2¥tu andn = mv

by theorem (5.4). Thusg = 2Fr, for somer € IV because = 2¥tu = mv andt, u, v

are odd natural numbers. Then, it is pursued that 4 dividesnbatidn by the fact

thatk > 2. Hencen = 8q + s with s = 0,4,8,12. Thus,
Qn = Qgg+s = Qs (mod 12)
Sinces € {0,4,8,12}, it follows that
Q,, = 2,10 (mod 12)
It may be showed in a similar manner that
Qm = 2,10 (mod 12)
On the other hand},«, = 2,10 (mod 12) by theorem (5.8).
If Q,x, = 2 (mod 12), thenQ,, = Qk, Qmx?* = 2Qyx* (mod 12).

Since 2x% =0,2,6,8 mod(12) and Q,, = 2,10 (mod 12), Q,, = 0,4,8 (mod 12),

which is a contradiction to the fact th@gt = 2,10 (mod 12).
ThereforeQ,x, = 10 (mod 12). Then Q,, = Q,k,Qmx* = 10Q,,x* (mod 12).

Since 10x2 = 0,4,6,10 mod(12) and Q,, = 2,10 (mod 12), Q,, = 0,4,8 (mod 12),

which denies the fact th&, = 2,10 (mod 12). Hence the proof.
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Theorem 5.10

If m andr are odd natural numbers, then there is no Pell-Lucas nupgbench that

Qn = Qm0r.

Proof:
Assume tha@,, = Q,,0,, form > 1 andr > 1 and are odd numbers. Singg |Q,, and

Q,]Q,, there exists two odd natural numberandv such thah = mu andn = rv.
Henceu = 4k + 1 for somek > 1.

Thereforen = mu =m(4k +1) = 4km + m.
Qn = Q4kmim = (_1)inm (mod Qzm)

i.e., Qer = iQm (mOd QZm) (5-13)

Similarly, it is conquered that
QmQr = iQr (mOd QZr) (5-14)

Suppose thad,,| Q. then% = an odd integer which is not possible. Hexlge t Q.

which implies thaggcd(Q,,, Q2 ) = 2. Then (5.13) and (5.14) yields that

Q, = +1 (mod Qsz) andQ,, = +1 (mod %)

= QZm < ZQr i 2 andQZr < ZQm i 2

=>Q2m+QZrS2Qr+ZQmi4

Also, from (5.11) the inequalities derived are
Qm*+£2+Q,°£2<2Q, +2Qn t 4
Qm(Qm - 2) + Qr(Qr - 2) <0,
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which is a contradiction. This completes the proof of the theorem.

Corollary 5.10.1

There is no Pell-Lucas numb@y, such tha®,, = Q,,0,, for anym > 1 andr > 1.

Proof:
If r > 1 and even, then ther proof follows from theorems (5.7) and (5.9).

If m andr are odd natural numbers, then it is proved in theorem (5.10).
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CHAPTER - VI
Quadratic Diophantine Equations with Solutions as Familiar Numbers
This chapter consists of two sections 6.1 and 6.2.
In Section 6.1, the widespread solutions in rapports with Pell and Pell-Lucas numbers
for restricted number of an unambiguous polynomial equations of degree two in two

variables are exposed.

Section 6.2 unveils patterns of positive integer solutions for limited number of explicit
binary quadratic equations encompassing Jacobsthal and Jacobsthal-Lucas numbers by
means of the pertinent features connecting these two numbers and the notions of

divisibility.
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6.1 Assessment of solutionsin Pell and Pell — Lucas numbersto

Disparate Polynomial Equations of degree two

Needed Theorems:

Theorem []

If w=1++2. Then the numbersw® +w™ are the only unities dt(v/2) where

k(V/2) is a quadratic field. See [66]
Theorem [l1]

If positive integersx, y, k and the integem with gcd(x, m) = 1 satisfy the equations
x? —kxy + y* ¥ mx = 0, thenx = u? andy = uv for some positive integens and
v. If positive integersx,y,k and the integem with gcd(y,m) = 1 satisfy the
equationsx? — kxy —y2 ¥ my =0, theny = u? and x = uv for some positive

integersu andv. See [82]
Theorem [lll] Fundamental theorem of arithmetic

For each integern > 1, there exists primesp; <p, <:+-<p, such that

n = p;p, ... by, this factorization is unique.
Theorem [IV]

If positive integers x,y,a,b,c with gcd(x,c) = 1satisfying the equations
x? —axy — by? + cx = 0, thenx = u? andy = uv for some positive integetsand

V.
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If positive integers x,y,p,q,vr with gcd(y,r) = 1satisfying the equations
x? —axy — by? + ¢y = 0, theny = u? andx = uv for some positive integers and

12
Primary Results:

The n!" Pell number labelled byP,is demarcated byP,=0,P, =1 and

P, =2P,_;+P,_,forn>2.If a, be the roots of the equatiart — 2x — 1 = 0,
thena = 14++2,8 = 1 —+v2 whereaf = —1 anda + B = 2. In addition, it is well-
known and simple to demonstrate the identities dftat aP, + P,_, and

p"™ = BP, + P,_, for everyn € Z, the set of all integers. In the other hand, it could be
perceived by induction that

P> =2PP,y—P,_ > =(-1)""1 vnez. (6.1)

The n!"*Pell-Lucas number Q,is characterized asQ,=0Q,=2 and
Q, = 2Q,-1 + Q,_, forn = 2 .The associations between Pell and Pell-Lucas numbers

are agreed as follows

(i) Q. =B, +P,,,foreveryne z

(i) Q% — 20,01 — Qp—1%2 = 8(=1)™ for everyn € Z (6.2)

Theorem 6.1
The necessary and sufficient condition for all non-negative integer solutions to the
second-degree equation in two variable¥? —2XY —Y? = (-1)"*1 s

(X,Y) = (P, P,_,) withn > 1.
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Proof:
If X,Y) = (B, P,-1), then from identity (6.1), it seeks that

X2 =2XY —Y? = (—1)"1,

Conversely suppose thdt — 2XY — Y? = F1 for some positive integess andY .
Then by theorem (IXY + aX)(Y + fX) = +1 = (Y + aX) € k(V2).

Thus,Y + aX = a™ = aP, + P,_, and hencéX,Y) = (B, P,_,),n = 1.

Corollary 6.1.1

The feasible solutions of the quadratic polynomial equatibr- 2XY —Y? =1 are
specified by(X,Y) = (Pyms1, Pom) Withm = 0.

Proof:

If nis odd such thah = 2m + 1 in theorem 6.1, then the apt integer solutions to

X?—2XY —Y? =1is obtained ag{X,Y) = (Pyyp41, Porn), m = 0.

Corollary 6.1.2

Every possible solution in Pell numbers of the quadratic equtien2XY —Y? = —1
are stated by(X,Y) = (P, Pym—1) Withm > 1.

Proof:

If nis even such that = 2m, m > 1 in theorem 6.1, then the appropriate solutions to

the equatiork? — 2XY — Y% = —1 are(X,Y) = (Pym, Pomn—1) -

Theorem 6.2
The probable integer solutions to the second-degree polynomial equation

X? —6XY +Y? = 4 are attained byX,Y) = (P42, P,y) Withn > 0.
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Proof:

Assume thak? — 6XY + Y2 = 4 for some positive integess andY .
Without loss of generality, suppose that> Y.

X-Y

2 _
Then, (T) -2 (%)Y —Y2=1>X%2-6XY +Y2=4. By corollary 6.1.1, it

should havé:—Y = Py,4+1 andY = P,,, and thereforéX —Y,Y) = (2Psp41, Pon)

ConsequentlyX = P,,,, andY = P,,,n = 0.

Theorem 6.3
The positive integer roots of the binary quadratic equalibr 6XY + Y2 = —4 are

conquered byX,Y) = (Pyp41, Pon—1) Withn > 1.

Proof:

The proof is equivalent to Theorem 6.2.
Theorem 6.4

Let V' be the set of all-natural numbers a8hd € V' sustaining the particular
equation of the formX? — 2XY — Y2 + X = 0, thenX = A% andY = AB where

A BEN.

Proof:
If X,Y € N are satisfying the corresponding equation in the statement, then it follows

thatX|Y? and henc&? = XZ for someZ € V.

Suppose that|X andp|Z for some prime numbe.
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Then,p|Y which leads the implicit equation —2Y —-Z+1=0
This ensure that|1 which is absurd.
In what follows thagcd(X,Z) = 1.

Then by theorem [lll]X = A% andZ = B? for some positive integer$ andB where

gcd(A,B) = 1.
HenceY? = XZ = A’B®> = Y = AB.
Theorem 6.5

If two positive integerst,Y be such thak? — 2XY —Y24+Y =0, thenX = AB and

Y = A? for some positive integers andB with gcd(4, B) = 1.

Proof:

The proof is analogous to Theorem 6.4.

Corollary 6.5.1
The conceivable Pell values &fY in the equationX? —2XY —Y2+Y =0 are

achieved by(X,Y) = (P, Pyp_y, Pon_1?) ,n = 1.

Corollary 6.5.2
The plausible solutions in Pell numbers to the equatibr- 2XY — Y2 —Y =0 are

specified by (X,Y) = (Ponyq Pon, P2n®) ,n = 0.

Theorem 6.6
Let X,Yyez*. Then X?-2XY-Y?2+X=0 if and only if

(X,Y) = (P2,,%, Pon Py ) Wheren > 1.
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Proof:

Assume thak? — 2XY —Y? + X = 0 whereX,Y € Z*

Then by theorem [l]X = A2 andY = AB for some4,B € Z+
Subsequentiyi? — 2AB —B%2+1=0

Again, by corollary 6.1.2, it is noticed th@, B) = (P2, Pon—1)

This implies that(X,Y) = (P,,%, Pon Pan_1) Wheren > 1.

Conversely, if(X,Y) = (P,%, Pap Pon_y) Withn > 1, then
X2 —=2XY = Y24+ X = Py, — 2Py, % Popoy = Pop? Pop—1’ + Poy?
= Py,° {PZnZ — 2Py Py — Popi’ + 1}
By corollary 6.1.2, it is pursued that
X?—=2XY —-Y?+X=0.

Theorem 6.7

The sequence of several positive integer solutions for the quadradic equation
X% —6XY + Y% +4X =0 are epitomized by¥X,Y) = (Pn_1°, Pan—1Pans1) Where
n=1.

Proof:

LetX,Y € 2% be such thaX? — 6XY + Y? +4X = 0.

ThenX|Y? and hencé&? = XZ for someZ € Z*.
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If p|X and p|Z for some prime numbep, then p|Y and also the relation

X—6Y+Z+4=0istrue forallX,Y € Z%.
Thus,p divides 4.
It is evident that, the possibility of suphsp = 2.

This condition offers thaX = 2X,,Y = 2Y; for someX,,Y; € Z* and obviously the
projected quadratic equation becorXe$ — 6X,Y; + Y, + 2X; = 0. ThenX, |¥;% and

henceY,? = X,Z, for someZ, € Z*.

Again, if p|X; and p|Z, for some prime numbep, then p|¥; and the relation

X, —6Y,+Z,+2=0istrue for allX,,Y; € Z+.

Clearly, the chance of sughisp = 2. This diagnosis provides th&{ = 2X,,Y = 2Y,
implying thatX = 4X,,Y = 4Y;.

These contributions state th&t* — 6X,Y, + Y2 + X, = 0, which has no positive
integer solution [98]. Hence, our assumption tkigdnd Z have common divisors is
wrong. This proposes thaicd(X,Z) = 1. Thus, by the fact that the product two
coprime numbers should be a perfect square if and only if each of them is a perfect
squareX = R?and  Z = 52 for some positive integefs andS andgcd(R, S) = 1.

These choices of andZ affordsY = RS and afterward the desired equation can be

modified into R? — 6RS + S% + 4 = 0.

By theorem 6.3(R,S) = (Pan41, P2n—1) and henceX,Y) = (P2n+12rP2n+1 Pzn—1),

n=1.
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Theorem 6.8
Every solution in Pell-Lucas numbers for two dissimilar quadratic equations
X2 —2XY —Y? =8andX? — 2XY —Y? = —8 are offered by X,Y) = (Qzn, Qzn—1),

n=>1and(X,Y) = (Qzn+1, Q2n),n = 0 respectively.

Theorem 6.9

LetX,Y € N, the set of natural numbers.

() If X2—6XY +Y2 =32 then(X,Y) = (Quns1, Qon_y) 1 = 1.

(i) If X2 —6XY +Y%= =32, then(X,Y) = (Qzn4+2, Qzn) , = 0.

Theorem 6.10

If X,Y be any two positive integers such ti&t— 2XY — Y2 + 8X = 0, then either

X, Y) = (8P2n2: 8P2nP2n—1)l n=lor(X,Y)= (Q2n+121 Q2n+1Q2n) ,n=0.
Proof:
Consider thak? — 2XY — Y? + 8X = 0 for some positive integess andY .

If 8|X, then8|Y = X =8A and Y = 8B for someA andB belong to the set of all
positive integers Therefore, the original equation in two variabl@sdY is converted

into A? —2AB—B*+ A =0.

By theorem 6.5(4, B) = (P2,%, PonPan_1) = (X,Y) = (8P,,% 8PyuPon_q).
If 8 + X, then by theorem [l]X = A2 and Y = AB.

Then, the original equation becom#s— 2AB — B? + 8 = 0.

By applying theorem 6.8, it is concluded that
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(A4,B) = (Qzn+1, Q2n) = (X,Y) = (Q2n+121 Q2n+1Q2n) withn = 0.

Conversely, if(X,Y) = (8P;,% 8P,;Psn_1), then

X2 —2XY —-Y?+8X = (8132,12)2 — 2(8Py,%) 8Py Pan—1) — (8PyPyy—1)? + 8(8Py,°)
= 64Py*{Pon” — 2Py Py — Pons® + 1} = 0,
by the implementation of corollary 6.1.2.

Similarly, the same equation could be satisfied 1) = (Qzn11% Qans1Q2n)-
Theorem 6.11

Let X ,Y be any two positive integers.
(i) If X2 —2XY —Y? —8X =0, then eithelX,Y) = (8Psn11% 8P2ny1Pon),
n=0o0rX,Y) = (0" QmQm-1) n=1.
(i) If X2 —2XY —Y?+8Y =0, then either(X,Y) = (8P2,Psn—1,8P2n_1°),
n=1or(X,Y) = (Q2,02n+1, Q2n+12) ,n=0.
(i) If X2—2XY—Y%2-8Y =0, then either(X,Y) = ( 8Pyn41Psn, 8P2n"),

nz=0or (X; Y) = (QZnQZn—lﬂ QZn—lz) ,n=1.

Theorem 6.12

LetX,Y € Z%, the set of all positive integer. Then

(i) The positive integer solutions to the equatn— 6XY + Y? + 32X =0

are either  (X,Y) = (8Pan+1° 8Pans1Pon—1), n>1 or

X, V) = (Qzn+2") Q2n42Q2n),n =0
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(i) The complete solutions in Pell numbers and Pell-Lucas numbers of the
equationX? — 6XY + Y2 — 32X = 0 are either

(X,Y) = (8Pyp42°, 8P2nPoysz), n =0 0F

X, V) = (Qan+1® Q2ns1Q2n—1) ,n =1

6.2. Conception of positive integer solutions relating Jacobsthal and
Jacobsthal — Lucas numbersto restricted number of quadratic

equations with double variables

Primary Consequences:

The nt" Jacobsthal number designated Jhyis delineated by,, = J,,_; + 2J,_, for

n > 2wherej, = 0,/; = 1. If «, B are two roots of the equatiard — x — 2 = 0, then

a = —1,B = 2 such thawf = —2 anda + f = 2. Furthermore, it is well- recognized
and modest to reveal the characteristics dftat =/, —pJ,—, and
p*t =], —ajJ,_, for everyn € Z, the set of all integers. Also, it might be declared

by Mathematical induction that

I =Jdne1— 2Jn-1’ = (=2)"1 Vnezg (6.3)

Similarly, then® Jacobsthal-Lucas numbey,, is described ag, = j,_; + 2j,_, for
n = 2 andj, = 2,j; = 1. The interrelation between Jacobsthal and Jacobsthal-Lucas

numbers are approved as follows

() jn =Jn+1 + 2/p-q foreveryn e 2

(i) jn? = jnjno1 = 2jn_1> = —9(=2)""1 for everyn € Z (6.4)
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Theorem 6.13
The constitutive criterion for all non-negative integer solutions to the specific second-
degree equation involving two variables? — XY —2Y? =(C(-D)"*?! is

X,Y,0) = Up, Jes, 2™ 1) wWithn > 1.

Proof:

If (X,Y,C) = nJn-1,2""1), then it follows from identity (6.4) that
X2 —2XY —Y%2=C(-1)" 1,

Conversely suppose th&t — XY — 2Y2 = C(—1)""! for some positive integeds, Y

andC = 21,
Then,

X —aV)(X = BY) = (af)"*
> X —a)X = BY) = (Un = BJn-1)Un — @Jpn_1).

Thus,X —aY =], — aJ,_, and hencéX,Y,C) = (J,, Jo—1, 2" 1), n > 1.
Corollary 6.13.1

The viable solutions to the certain quadratic equatitn— XY —2Y%2 =(C are

enumerated byX,Y, C) = (Jrms1,Jom, 22™) ,m = 0.
Corollary 6.13.2

Every conceivable solution in Jacobsthal numbers of the equétienXY — 2Y? = —C

are quantified byX,Y,C) = (Jzm Jom—1, 2°™ 1) withm > 1.
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Theorem 6.14
The trustworthy integer solutions to the exact equaldn- 5XY + 4Y% = C are

conquered byX,Y,C) = (Jans2,Jon, 22™) withn > 0.

Proof:

For our convenience, let us chodse> 2Y

Then X2 —5XY +4Y2=C=>(X-2Y)2 - (X -2Y)Y —Y2=(

By corollary 6.13.1, it should b — 2Y = J,,,41 ,Y = J,,, andC = 22"

The first two of the above equations yields the valug aéX = J,,,.»

Hence, the solutions to the required equation are mentioned by
(X,Y,0) = (Uzns2:J2n, 2°™),n 2 0.

Corollary 6.14.1
The infinitely many positive integer solutions to the equakdn- 5XY + 4Y? = —C

are attained byX,Y,C) = (Jzns1,Jon-1, 22°1) withn > 1.

Theorem 6.15
Let X,Y be any two natural numbers sustaining the equatfor XY — 2Y? + CX = 0.

ThenX = U? andY = UV whereU,V € N.
Proof:

Modify the original equation a¥(X — Y + C) = 2Y?
It is easy to see thé% and hencé&'? = XZ for some natural numbgr

If p is any prime number such thgtX andp|Z, thenp|Y
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This affords the expressiogh—Y — 2Z + € = 0 which guarantees thatC.

Here, the only possible value pfis p = 2 which implies thak = 2X,,Y = 2Y;

Again, it grasps that,* — X,Y; — 2Y;% + C; X, = 0 where(C, = %

Enduring the same method as enlightened above till the cofstanishes, it is found
thatX,” — XY, — 2V, + X, =0

It follows thatX,,|¥,* and hencé,* = X,,Z,, for some positive integet,
If a prime numbep satisfying the conditiong|X,, andp|Z,,, thenp|Y,

Then, itis detected that, — Y, —2Z,+1=0.

This equation infers that|1 which is not possible.

Thereforeged(X,Z) = 1.

By the needed theorem [lll] stated above, it is notedXhatU? andZ = V? for some
positive integerd/ andV wheregcd(U,V) = 1.

Hence, it is concluded th&t = XZ = U?V? =Y = UV.
Corollary 6.15.1

The probable values df,Y in the equationX? — XY — 2Y? + CX = 0 are given by

X,Y,0) = (jZnZJZn]Zn—ltzzn_l) ,n=1
Corollary 6.15.2

The realistic solutions in Jacobsthal numbers to the equéfienXY — 2Y2 — CX = 0

are computed by(X,Y, C) = (Jons1° J2ns1 Jon 227) ., 1 = 0.
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Theorem 6.16

If X,Y be any two positive integers such thdt— XY — 2Y? + CY = 0, thenX = UV
andY = U? for some positive integet$ andV with gcd(U,V) = 1.

Proof:

The proof is analogous to Theorem 6.15.

Corollary 6.16.1
The convincing integer values &Y in the equatiork? — XY — 2Y2 + CY = 0 are

resolved by(X,Y, ) = (Jon Jon—1,J2n-1>, 22" 1), n > 1.

Corollary 6.16.2
The conventional solutions to the quadratic equalién- XY —2Y% — CY =0 are

particularized by(X,Y,C) = (Jant1 Jon »Jon> 2%"), n = 0.

Theorem 6.17

The patterns of non-negative integer solutions to the equation

X2 —=5XY +4Y2+CX =0 are exemplified by

X,Y,0) = (12n+12; Jen—-1Jan+1s 22n—1) wheren = 1.
Proof:

Let X, Y be two non-negative integers such thiat— 5XY + 4Y2 + CX = 0.
The alteration of the above equatidif? = X(5Y — X — C) ensures thak divides
Y2and hencefortlr? = XZ for some non-negative integér

Suppose that a certain prime numpetivides bothX andZ.
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Thenp|Y and also the relatioi — 6Y + 4Z + C = 0 holds for allX,Y € Z*, the set
of all positive integers.

Thus,p dividesC and the chance of sughisp = 2.

This condition confirms that = 2X,,Y = 2Y; for someX,,Y; € Z* and perceptibly

the equation in which solutions to be evaluated is converted into

X,” = 5X,Y; +4Y,” + C,X, = 0 where(; = <.

By the argument as explained abowg|Y;* and hencé&,* = X, Z, for someZ, € Z+.
Again, ifp|X; andp|Z,, thenp|Y; and the precise relatiofy — 5Y; +4Z, + C; =0is

also true for alk,,Y; € Z.

Carrying on this procedure till the equati®g’ — 5X,,Y,, + 4Y,,> + X,, = 0 is reached.
Further if pl|X, and pl|Z, then pl|Y, and the accurate equation

X, —5Y, +4Z, + 1 = 0is detected for alk,,,Y,, € Z+.

Finally, p divides 1 which is impossible.
As a result, our supposition th&tandZ have common divisors is erroneous. This

shows that thagcd (X, Z) = 1.

Thus, by the necessary and sufficient condition that the product two coprime numbers
should be a perfect square if and only if each of them is a perfect sdiaré®? and

Z = Q% whereP,Q € Z* andgcd(P, Q) = 1.

These adoptions of and Z provides thatr = PQ and subsequently the essential

equation can be developed it — 5PQ + 4R? + C = 0.
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By Corollary 6.14.1, the values ofP,Q and C are searched by

(P,Q,0) = Uzn+1.J2n-1, 27"71).

Therefore(X,Y,C) = (Jani1® JanetJonss, 22%71), n = 1.

Corollary 6.17.1

The non-negative integer solutions for the equalén- 5XY + 4Y? — CX = 0 are

symbolized by(X,Y, C) = (Jan+2°, Jont+2)2n 22™) Wheren > 0.

Theorem 6.18

() The patterns of positive integer solutions to the equation
X? —5XY +4Y2+CY =0 are incarnated by the Jacobsthal numbers
(X,Y,0) = (Jan—tJant1Jan-1°, 22" 1) wheren > 1.

(i)  The infinitely several positive integer solutions to the equation
X% —5XY +4Y% — CY = 0 are signified by(X,Y,C) = (Jant2 Joan Jon"r 227)

wheren > 0.
Theorem 6.19

The feasible solution in Jacobsthal-Lucas numbers for two unlike binary quadratic
equations X2 — XY —2Y2=9C and X2 —-XY —2Y2=-9C are presented by
(X' Y' C) = (jZn: j2n—1122n_1)' nz= 1 and (X: Y; C) = (iZn+11 jan Zzn)ln = 0

respectively.

Theorem 6.20
Let X, Y be two distinct natural numbers.
(1) If X2 —5XY +4Y%2 =9C, then(X,Y,C) = (Jons1rJon-1,22""1) ,n > 1.

(i) 1 X2—=5XY +4Y?2 =-9C, then(X,Y,C) = (Janizsjon, 22™) ,n = 0.
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Theorem 6.21
If X,Y be any two non-negative integers such ffvat- XY — 2Y2 + 9CX = 0, then
either
X,Y,C) = (921°, YonJon-1,2%"),n = 1 0r
(X,Y,0) = (jan+1” Jons1J2n 2°"71), n 2 0.
Proof:
Assume thak? — XY — 2Y2 + 9CX = 0 for some non-negative intege¥sandY .
If 91X, then9|Y = X =9U and Y = 9V for someU,V € Z*
Therefore, the needed equation in two unknowrendY is enhanced in terms of
andV asU? — UV —2V? + CU = 0.
By corollary 6.15.1,
W,V,C) = (an® Jon Jan-1,22""2) = (X,Y,€) = (Y2n®, Yan Jzn-1,22"71).
If 9 t X, then by theorem [IV]X = U? andY = UV.
These choices oV andV simplifies the considered equation irttee following on
U?2—-UV —-2V%+9C =0.
By theorem 6.19, it is resolved that
WUV, 0) = Gzns1, Jon 2™ = (X,Y,0) = (jzns1”, Jonsrfon, 2°") wheren 2 0.
Conversely if (X,Y,C) = (92n% 9an Jan-1,2%"), then by the implementation of

corollary 6.13.2
X?— XY —2Y*+9CX = (9]2n2)2 — (920°) (20 Jan-1) — 2920 J2n—-1)? +9C(921°)

= 81]2712{]2712 _jZnJZn—l - 2]211—12 + C} =0,
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Likewise, the very same equation might well be fulfiled for
(X, Y, C) = (j2n+121j2n+1 jan 2271).

Theorem 6.22

LetX,Y € Z*, the set of all positive integers.

0] If X2 —XY —2Y2—-9CX =0, then the solution is either of the form
X,Y,0) = (Yans1’ VYons1J2n, 22"),n =0 or of the form
X,Y,0) = (an" Jan Jon-1, 2" ) n 2 1.

(i)  If X2 —XY —2Y?+9CY = 0, then the solution in Jacobsthal sequence is
(X,Y,C) = (Y2nJ2n-1,92n-152?""1),n =1 or in Jacobsthal-Lucas
sequence i§X,Y,C) = (jon Jon+1,Jzns15 2%™),n = 0.

(i)  If X2 — XY —2Y?2 —9CY = 0, then the solution of the equation is either in
Jacobsthal numbers(X,Y,C) = (Y2n41 J2n 92n’2%"),n =0 or in

Jacobsthal-Lucas numbet¥,Y, C) = (jan jon-1,joan-1%22""1),n > 1.
Theorem 6.23

Let X, Y be two distinct non-negative integers. Then

(1) The two different sets ofs non-negative integer solutions to the equation
X? —5XY +4Y2+9CX =0 are discovered by Jacobsthal numbers

(X,Y,C) = (Yans1> Yons1 Jon-1, 22"1),n = 1 and by Jacobsthal-Lucas

numbers(X,Y,C) = (ant2% jan+z jon, 22%), n = 0.

(i) All possible solutions in Jacobsthal and Jacobsthal-Lucas numbers to the

equation X2 —5XY +4Y2—-9CX =0 are determined by
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(iii)

(iv)

(X,Y,0) = (92n+2°, Y2n Jan+2,2°"),n 2 0 and

(X' Y, C) = (j2n+12rj2n+1j2n—11 22n—1),n = 1.

If X2 —5XY +4Y? + 9CY = 0, then two sequences of solutions in integers
are presented by(X,Y,(C) = (9]2n_1]2n+1,9]2n_12'22n_1),n >0 and
(X,Y,0) = (Jan JanszsJon " 227 1),n = 1.

If X2 —5XY +4Y2 —9CY = 0, then one of the following two solutions
exists:(X, Y, C) = (9Y2n Jant2 9an’> 22"),n =1 or

X, Y,0) = (jan-1 Jon+1,Jan-1-22""1),n = 0
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CHAPTER - VII

Mordell Type Diophantine Equations
Chapter VII entails of two sections 7.1 and 7.2.
In Section 7.1, three unrivalled forms of Mordell Diophantine equations
B?2= A3+ K,K=U3-V?%,U3— 2V?, 2V?+ U® whereU, V are integers together
with some prime numbey satisfying certain congruence relations are examined and
proved that all such equations have no solution in integer.
In Section 7.2, four types of Mordell equatiori$ = X3 + C, C = +9,—16,36 are
considered and showed that two of the equatihs X3 —9,Y? = X3 — 16 have
no integer solutions and the remaining two equatibhss X3 +9,Y2 = X3 + 36
have restricted number of integer solutions by mainly using the perceptions of

properties of congruences.
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7.1 Methodology of Proving no Solutions to three Categories of
Mordell Type Diophantine Equations
Definition
The Legendre symbols are well-defined by

. N (1if p=1(mod4)
O (5)= {—llif r;? =3 (1rrrll(())d 4)

. -2\ _(1if p=1or3(modS8)
(i) (_) {—1 if p=7or5 (mod8)

In this section, three different Mordell kind Diophantine Equatifds= A3 + K,
K=U3- V2% U3- 2V? 2V*+ U3 U,V € Z are considered and proved that all

these equations have no solutions by the following theorems.

Theorem 7.1
Let U andV be integers such thét= 2 (mod 4), V = 3 (mod4) and for any prime
numberp dividesV implies thatp = 1 (mod 4). Then, the equationB? = A3 + K
whereK = U® — V2 has no integer solutio@, B).
Proof:
Suppose that it happens a solut{dnB) in integers to an explored equation.
SinceK = U3 —V? = —1 (mod 4) , itis noticed thaB? = A3 — 1 (mod 4)
Hence, A # 0 (mod 2) andA # 3 (imod 4) and sad = 1 (mod 4).
Now, the deliberated equation for the preferred choide cdn be adapted into
BZ4+V2=43+U3=(A+U)(A*— AU + U?) (7.1)
AsA =1 (mod4) and U = 2(mod 4), it must be
(A% — AU + U?) = 3(mod 4)
Hence,(A? — AU + U?) is odd and by (7.1) it has a prime fagerp, = 3 (mod 4).
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Thus,B? = —V? (mod p,).
By our assertiorny; t V. Hence,
1\ _ [(-V?) _ B_2 _
(-7)=G=G)=1
which is true only whemp; = 1 (mod 4) denies the fact that, = 3 (mod 4).
Therefore, our assumption is wrong.

This proves that the examined equat®h= A% + K with the considere& has no

solution.

Theorem 7.2
Let U and V be integers sustaining the conditidhs 3 (mod 4), V = 0,2(mod 4).
If a prime numberp dividesV /2 implies thatp = 1 (mod 4), then the equation
B%? = A3 + K whereK = U3 —V? has no solutiorf4, B) in integers.
Proof:
Suppose that4, B) is an integer solution of the inventive equation with ankapt
Since, U3 —V? = 3 (mod 4), it is achieved by? = A® + 3 (mod 4).
HenceA = 1 (mod 4).
Now, the original equation is reformed for the prescribed valuéad
B2+VZ = AB3+U3 = (A+U) (42— AU + U?) (7.2)
Sinced = 1 (mod 4) andU = 3 (mod 4), it is found that
A% — AU + U% = 3 (mod 4)
Hence,A? — AU + U? is odd and by (7.2) it has a prime fagbgr p, = 3 (mod 4).
Thus,B? = —V? (mod p,).
14
2

By our assumptior, { ( ) and hence, { V
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-1\ _ (=V?\ _ (B*\ _
But, () = (55) = () =1
This is correct only fop, = 1(mod 4) contradicts the chance that = 3 (mod 4).

Hence, the Diophantine equatiBi = A3 + K for the selected has no solution.

Theorem 7.3
Let UandV be integers nourishing with the conditiond = 2 (mod 8),
V =1 (mod 2). If p is a prime such that = 1,3 (imod 8) andp dividesV, then the
equationB? = A%+ K whereK = U?® — 2V? has no integral solution.
Proof:
For the choic& = U? — 2V? = 2 (mod 4), it must be
B?>= A3+ 2 (mod 4)
Therefore A # 0 (mod 2), A # 1 (mod 4) and consequentlyf = 3 (mod 4)
Hence, A = 3 or 7 (mod 8)
Moreover,K = —2 (mod 8)
So thatd # 7 (mod 8) = A = 3 (mod 8)
Now, B2 +2V2= A3+ U3 = (A+U) (A2 -—UA+ U?)
As A = 3 (mod 8) andU = 2 (mod 8), it is seen thatd? — UA + U? = 7 (mod 8)
andA + U = 5 (mod 8)
~ B? 4+ 2V? has a prime factqr; such thap; = 5 or 7 (mod 8)

By our hypothesigy; t V andB?* = —2V? (mod p5)

Also, (— p%) = (— Zp—‘j) = (5—:) = 1 contrastingp; = 5 or 7 (mod p)

Hence, it is resolved that there exists no solution for the Diophantine equation

B? = A3 + K whenK = U3 - 2V?2.
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Theorem 7.4
AssumeU,V € Z andU = 6 (mod 8) ,V = 1 (mod4). Let p be a prime number such
that p |V and p = +1 (mod8). Then, the equationB? = A3+ K, where
K = 2V?+ U? does not embrace any integer solution.
Proof:
Since,K = 2V2+ U? = 2 (mod 8), itis detected thak? = A3 + 2 (mod 8)
Then,A £ 0 (mod 2),A # 1 (mod 4) and subsequently = 3 (mod 4)
HenceA = 3 or 7 (mod 8)
If A= 3 (mod 8), thenB? =5 (mod 8) which is not possible.
Thus,A = 7 (mod 8).
Now, B2 —2V2 = (A+ U)(A* - UA + U?)
= A2 - UA+ U? = 3 (mod 8)
Therefored? — UA + U? is odd and is divisible by an odd primg, with
ps = 3 (mod 8)
= B% = 2V? (mod p,).
By our postulationp, t V
ORGECE
disagreeing; = 3 (mod 8)

Hence the proof.

7.2 Attesting Finite Number of | nteger Solutions or No I nteger
Solutions to Four Mordell Kind Equations

The intention of each phase is to treasure comprehensive solutions for Mordell type

Diophantine equations of the fo¥ = X3 + ¢ whereC = +9,—16, 36.
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Applicable Theorem |
In [136], “Let p denote a prime. Thext = —1(mod p) has solutions if and only if

p=2(mod4)orp =1 (mod4)”

Theorem 7.5

If X,Y € Z, then there is no solution ¥# = X3 — 9.

Proof:

Initially let us assume that? = X3 — 9 has an integer solutidiX,Y).

If X =0 (mod 2) andX = 3 (mmod 4), thenY? = —1 (mod 4) andY? = 2 (mod 4)

respectively. But, both of them are impossible.

Hence, it is possible that = 1 (mod 4) because it leads ¥’ = 0 (mod 4).

Now, the implicit equation can be considered as
Y24+1=X3-8=X-2)(X?2+2X +4).

AsX =1 (mod4), X%+ 2X + 4 = 3 (mod 4).

This implies that’? + 1 is divisible by a prime number such thap = 3 (mod 4)

That is,Y? = —1 (mod p) wherep = 3 (mod 4).

This is a contradiction to theorem I.

Hence,Y? = X3 — 9 has no integer solution.

Theorem 7.6

The feasible integral solutions to the particular Mordell equatibr= X3 + 9 are
(X,Y) ={(0,£3), (3, 16), (6, £15), (40, £253), (-2, £1)}.

Proof:

Rewrite the proposed equation¥$=Y2 -9 = (Y + 3)(Y — 3) (7.3)
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If X is even, therY is odd. IfX is odd, therY is even. Ifd is the common divisor of
(Y +3) and (Y — 3), thend also divides their differenc€¥ + 3) — (Y — 3) = 6.
Therefored must be any one of the valugg,3,6.
Case 1:Suppos¢€ is even
Then,(Y + 3) and(Y — 3) are both odd. Sgcd(Y + 3,Y — 3) is either 1 or 3.
If gcd(Y + 3,Y — 3) = 1, then they are relatively prime. Since their product is a cube,
they both are cube.
That is(Y + 3) = a3 and(Y — 3) = b3
>a®-b3=6
However, no two odd cubes produce a difference 6.
Hence,gcd(Y + 3,Y —3) =3
SinceY is evenY =0 (mod 4) orY = 2 (mod 4)
Subcase 1.1Suppos€¢’ = 0 (mod 4)
Then,Y + 3 = 3 (mod 4) andY — 3 = 1 (mod 4).
Dividing (7.3) by 27, it is emblazoned as
3

G) =)
Due to the fact that division of each component by a multipBe-efgcd(Y + 3,Y — 3),
the right-hand side of the preceding equation comprehends relatively prime factors and
therefore each factor is a cube.
That is == = a® and— = b

=3a3-3=9p%+3

=>a®-3b3=2

This is factual only forn = —1,b = —1
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If a=-=1orb=-1,thenY = —6 andX = 3.
Therefore, an integral solution to 7.3 Y) = (3,—6)
Subcase 1.2Suppos€’ = 2 (mod 4)
However,Y + 3 = 1 (mod 4) andY — 3 = 3 (mod 4).
By dividing (7.3) by 27, it is converted into
3

G =)

As the description specified in subcase 1.1, it is possible to designate the components

on the right-hand side of the previous equation as

Y+3 Y-3
T= a3 andT= b3

=9a3-3=3b3+3
=>3a3-p3=2
The only possibility of the above equatioruis= 1, b = 1.
Either of the above choices @fandb deliversY = 6 andX = 3.
Therefore, in this circumstance the comprehensive solutigf ) = (3,6)
As an effect, this case grants two integral solutigh¥) = (3, £6).
Case 2:Presumg’ is odd
Then, both the factors in the right-hand side of (7.3) are evegal@ + 3,Y — 3) is
either 2 or 6.
Also,Y = 1(mod 4) orY = 3 (mod 4)
Subcase 2.1:
If gcd(Y+3,Y—3)=2 and Y=1(mod4), then Y+3=0(mod4) and
Y —3 =2 (mod 4).
Divide both sides of (7.3) by 8, it is received that
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6 =)
Asin case 1, it is taken as

Y+3 Y-3
— =q3 and— = b3
4 2

= 4a3-3=2b3+3

= 2a®—-bp3=3
The preparable chancesmtndb are declared by

a=1b=—-1anda=4,b=5

If a=1o0rb=—1,thenY =1andX = -2.
If a=4orb=>5,thenY =253 andX = 40.
Therefore, the two integral solutions to (7.3) achieved in this instance are
(X,Y) ={(-2,1),(40,253)}.
Subcase 2.2:
If Y =3 (mod4), thenY + 3 =2 (mod 4) andY — 3 = 0 (mod 4) and proceeding
as in case 1, it is concluded ti{&t Y) = {(—2,—1), (40,—253), }.
Similarly, if gcd(Y + 3,Y — 3) = 6, then integer solution€X,Y) = (0, £3) of (7.3)
are accomplished for both selectioncE 1 (mod 4) andY = 3 (mod 4) by means
of the same methodology in case 1.
Case 3:
In all the above two cases, the fact about the unique factorization domain in the ring of
integers is considered. But one of the factors in the right-hand side of (7.3) divided by

d? can be stretched to a fractional number.

That is,% or % may be a fractional number. The product of an integer and a

fractional number is a cube of an integer means that it fulfils the following conditions.
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Y+3 a Y-3 Y+3  a? Y-3
— =—and—=a?’bor — =—and—=ab
daz b d dz2 b d

These choices afford the succeeding equations
a’b?—da—b=0o0rab?—-da?—-b=0

Solving them fomb, it is acquired that

1+V1+4a2d 1+V1+4a2d
b= — orb = —a

In these two equations, the discriminant is a positive integer if and anky if, d = 6.

Implementing this condition, a diverse solution is obtained as follows:

Y+3 _
36

%and—=b
>2_3=6b+3
=>b*+b—6=0
=>b=20r-3

=Y = £15 and henc& = 6.

So, all the solutions assimilated for the preferred equation are

Theorem 7.7
If X,Y € Z, then the equatiori? = X3 — 16 has no solution.
Proof:
Redraft the suggested equation as

X3=Y2+16 = (Y + 4)(Y — 40) (7.4)
SinceY? = X3 (mod 4), eitherX andY are both even or they are both odd.
Case 1:SupposeX andY are both odd

If a is a common divisor dfY + 4i) and(Y — 4i), thena divides their difference
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(Y + 4i) — (Y — 4i) = 8i.
Hence, there exists sorhes Z[i] such thatt = b X 8i.
Since norm is multiplicative i#[i], the norm ofa’ denoted by (a)is provided by
N(a) = N(b x 8i) = N(b)N(8i)
This implies thatV(a) dividesN(8i) = 64 whereN (x + iy) = x? + y? is the norm
of the Gaussian integer+ iy.
As well asN (a) dividesN (Y + 4i) = Y? + 16 = X3 which is odd.
Then,N(a) = 1 and thusz is a unit inZ[i]. It is well known that every unit is a cube
in Z[i].
This means thatY + 4i) and(Y — 4i) are relatively prime.
From (7.4), botH(Y + 4i) and(Y — 4i) are cubes.
Contemplate
Y +4i=(M + Ni)3
=Y =M(M?-3N?) and4 = N(3M? — N?)
From the second of the above equatiavisnust bet+1 or +2 or +4. None of these
values ofN gives an integer value fof.
Hence, the projected equation has no solution whandY are both odd.
Case 2:Suppose& andY are both even.
TranscribeX = 2X" andY = 2Y’
Then, (7.4) can be swotted into the following equation
Y'?=2x"7 -4 (7.5)

= Y'is even
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If X"is odd, therY’? = 2 (mod 4). This is not possible, since even squares are always
congruent to O modulo 4.
Hence X' is even.
Now, designat&’ = 2X"" andY’ = 2Y"',
Engaging these two alternations in (7.5), it can be extolled by
Y2 = 4X""3 — 1 implies thatr"’is odd
If X" is odd or even, then/'’? =3 (mod4) which is impossible because
Y"? =1 (mod 4).

Hence, this case offers no solution to the predictable equation.

Theorem 7.8
The limited number of integral solutions to the definite type of Mordell equation
Y2 = X3 + 36 are(X,Y) = {(0,+6), (4, £10), (12, +42), (-3,+3)}.
Proof:
The considered equation can be rephrased as

X3=Y2-36=(Y+6)(Y —6) (7.6)
Here bothX andY are either even or odd. IfY + 6) and(Y — 6) have a common
divisor d’, then their difference(Y + 6) — (Y —6) = 12 is also divided byd'.
Therefored’ essentially be any one of the valug,3,4,6,12.
Case 1:SupposeX andY are even
Then, (Y +6) and (Y -6) are together even and also
gcd(Y +6,Y —6) =2o0r4or6orl2.
If gcd(Y +6,Y —6) = 2, then by dividing (7.6) by 8, the following conjectures can

be made
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3 3

G) =) (F)=ar*or5) = (57)(F) =¥’

>a>—2b3=60r2a>-b3=6
It is scrutinized that both equations do not have solution in integers.
When gcd(Y + 6,Y — 6) = 4, then dividing (7.6) by 64 and utilizing the prior
technique as revealed earlier, the subsequent equations are grasped

a® —4b3 =3 o0r4a®—-b3=3

2a=-1,b=—-1ora=1b=1

If a =—1andb = —1, then(X,Y) = (4,—-10).
If a =1andb =1, then(X,Y) = (4,10)
Hence, the needed solution(’,Y) = (4, +10)
If gcd(Y +6,Y — 6) = 6, then dividing (7.6) by* and using the identical method as
acknowledged in earlier theorems, it is scrutinized that the ensuing equations

a® —6b3 =2o0r6a—hb3=2
procure no integer values for battandb.
If gcd(Y +6,Y —6) = 12, then dividing (7.6) by123 and by the similar procedures
as given above, the succeeding equations are detected

a® —12b3 =1or12a®> -bp3 =1

>a=1,b=00ora=0,b=-1

If a =1andb =0, then(X,Y) = (0,6).
If a =0andb = -1, then(X,Y) = (0,—6).
Hence, the necessary solutior(%5Y) = (0, +6)

This scenario thus provides the ideal soluti@Xis’) = {(4,+10), (0, +6)}.
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Case 2:Suppos& andY are odd
Then both the factors on the right-hand side of (7.6) are odgat@ + 6,Y — 6) is
either 1 or 3.
If gcd(Y +6,Y —6) =1, then itis evidenced that
Y +6=a®andY —6 = b3
>a’-bh3=12
But the difference is not 12 between any two odd cubes.
Hence, gcd(Y +6,Y —6) = 3. Then for both selection =1 (mod 4) and
Y = 3 (mod 4) and by utilizing the undistinguishable approach, it is noted that
a® —3b3=40r3a®>—-b3=4
>a=1b=-1
>Y=43X=-3
Henceforth, the outcome in this caseXsY) = (-3, £3).
Case 3:
Appeal the concept of case 3 in theorem 7.5, an exclusive solution is perceived when
a=1,d =12 as follows
ﬂ _1 Y-6 b

—and— =

144 b 12
> =2—6=12b+6
>b2+b—-12=0
=>b=—-40r3=>Y =142 and hence = 12.

The solution obtained in this casgl§Y) = (12, +42).
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CHAPTER - VIII

Exponential Diophantine Equations

This chapter is composed of three sections, 8.1 to 8.3.

In Section 8.1, an exclusive exponential Diophantine equatiént (p + 1)¥ = z2

such that the sum of integer powersand y of two consecutive prime numbers
engrosses a square is examined for estimating enormous integer solutions by exploiting
the fundamental notions of Mathematics and the speculation of divisibility for all

possibilities ofx +y =1, 2,3, 4.

In Section 8.2, an inimitable Diophantine equation with variables as exponents
n* + (n+1)Y = z%,n € IV, the collection of all-natural numbers in order to estimate
immense non-negative integer solutions by implementing ultimate moralities of
Mathematics and the formulae for solutions of acquainted Pell equations is investigated

for whole categories of two exponentsindy such thak +y = 1,2, 3, 4.

In Section 8.3, a particular kind of an exponential Diophantine equation
pi* + Y +p3Z =M% where (p,p,p;) iS a prime triplet of the forms
pp+2,p+6)=0MUn+14n+34n+7) or (4n+3,4n+5,4n+9) and
pp+4p+6)=0@An+1,4n+54n+7) or (4n+ 3,4n + 7,4n + 9) for certain

n € IV, the combination aof, y, z takes the values eithéror 2 is investigated with the

help of MATLAB program and basic concepts of Mathematics.
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8.1 Exploration of Solutionsfor an Exponential Diophantine
Equation p* + (p + 1) = 22

In this section, the possible integer solutions to an exponential Diophantine equation

p* + (p + 1)¥ = z? are explored in the following theorem.
Theorem 8.1

If p is any prime andx,y and z are integers persuading the condition that
x+y=1,2,3,4, then all feasible integer solutions to an exponential Diophantine
equationp® + (p + 1)¥ = z?% are given by

(p,x,v,2z) ={(2,0,1,2),(3,1,0,2),(3,2,2,5)} whenp = 2,3 and

(p,x,y,z) = (4n* + 4n —1,0,1,2n + 1) wheren € NV forp > 3

Proof:

The equation for performing solutions in integer is taken as
p*+(+1)Y =2 (8.1)

All doable predilection of the suppositiart- y = 1,2,3,4 is carried out by eight cases

for assessing solutions in integers.

Caselx=0,y=1

The equation (8.1) to explore solutions in integers trims down by

p+2=z? (8.2)

If p =2, thenz =2

Hence, the one and only one integer solution is communicated as

(p,x,y,2z) = (2,0,1,2)
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If p is an odd prime, them+ 2 is an odd number.

This means that? is an odd number and consequentig also an odd number.

If z=1, thenp + 2 = 1 which is impossible.

As aresultz > 3.

Describez =2n+1,nenN (8.3)

The square of the selectionoin (8.3) can be characterized by
Z2=4n*+4n+1,nenN

Insight of (8.2), the promising value of an odd prime complied with the specified

equation is distinguished by
p=4n’+4n—-1,nenN

Hence, the enormous solutions to (8.1)#sx,y,z) = (4n? + 4n—1,0,1,2n + 1)

wheren € N

Case2x=1,y=0

The inventive equation (8.1) is diminished as
p+1=2z? (8.4)
If p = 2, thenz? = 3 which is not possible for the integer valuezof
If p is an odd prime, them+ 1 is an even number which can be articulated by

p+1l=2nnenN
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Match up the above equation with (8.2) is a perfect square onlynf= 2m? where

meN.
Thus,p = 2m)% — 1.
If m=1,thenp =3
Therefore, the solution belongs to the Zeif integers i<p, x,y,z) = (3,1,0,2)
If m# 1, thenp = 2m—-1)2m+ 1)
If p divides(2m — 1), then2m — 1 = ap and as a consequenzer + 1 = ap + 2
Thus,p = ap(ap + 2) and leads to the ensuing equation
1=a(a+2)
But the above equation is not true for any integer value of
If p divides(2m + 1), then2m + 1 = bp and from now2m — 1 = bp — 2

Therefore,p = bp(bp — 2) and consequentlyy = b(b + 2) which is not factual for
any integer options fab.

Hence, in this case there exists a unique solution to (8.1) given by

(p,x,y,z) = (3,1,0,2).
Case3x=1,y=1

The creative equation (8.1) is adjusted by
2p +1 = z2
Sincez? is an odd number for all selectionspofit follows that

z?2 =1 (mod 4)
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= 2p+1=1(mod4)
= 2p =0 (mod 4)

Capture that2p = 4k which means that = 2k for some positive integer

This declaration is possible only wher= 1

Thenp = 2, and 2p + 1 = 5 which is not a perfect square of an integer.
Hence, in this case, there is no integer solution to the presupposed equation.
Casedx=1,y=2

The resourceful equation (8.1) is reconstructed as

p?+3p=2z2-1
=pp+3)=-D(=z+1) (8.5)

If p|(z—1),thenz—1=kp,andz+1=kp+ 2

Executions of these two equations in (8.5) go along with the subsequent quadratic
equation ink
pk?+2k—(p+3)=0

—1+/p(p+3)+1

D

which consent the value df =

It is deeply monitored that no prime numipeprovides an integer value for k.
An alternative vision op|(z + 1) revealsthat + 1 =Ilpandz—1=1Ip -2

By making use of these two equations in (8.5) espouse the second-degree equation in
as

pl2—2l—(p+3)=0
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which yields! = Z212@*3) Vl‘;’(””)

The above value dfis a complex number for any prirpe

Hence, the ultimate result is no integer solutions to the most wanted equation (8.1).
Case5x=2,y=1

The quick-witted equation (8.1) is restructured as

pt+p=2z2—-1
=pp+1)=0z-D(=z+1 (8.6)
It follows from equation (8.6) thgt must divide any one of the valués— 1) or
(z+1).

If p|(z—1), thenz —1 = mp andz + 1 = mp + 2 for some integem.

Then, equation (8.6) makes available with the valye ad

1-2m
m2—1

p= (8.7)
Accordingly, one can easily notice that the right-hand side of (8.7) can never be a prime

number form € Z.

This circumstance offers thatt (z — 1).

If p|(z+ 1), thenz+ 1 =np andz — 1 = np — 2 for some integen.

Then, equation (8.6) endows with the valug afs

p= 1+2n (8.8)

nz-1

None of the value ot € Z in the right-hand side of (8.8) supplies the prime number

establish that
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pt(z+1).

Hence, this case does not grant an integer solution for equation (8.1).

Case6x=1,y=3

For these choices afandy, the well-groomed equation (8.1) be converted into

p+1)3+p=2° (8.9)

If p =2, z% = 29 which make sure thatcannot be an integer.

If p is any odd prime, themtakes any one of the forrd®/ + 1 or4N + 3.

If p = 4N + 1 and the perception that> must be odd reduces (8.9) to
64N3 4+ 96N2 + 52N 4+ 9 = (2T — 1)?

= 16N3 + 24N2 + 13N + 8 =T(T — 1) (8.10)
It is perceived that none of the valueshoénsures that the left-hand side of (8.10) as
the product of two consecutive integers.
Similarly, the chance gb = 4N + 3, and the discernment that? is an odd integer
reduces (8.9) to
64N3 + 192N2 + 196N + 67 = (2T — 1)2
= 2(32N3 + 96N? + 94N + 33) = 4T(T — 1)
The above equality does not hold since the left-hand side is twice an odd number and

the right-hand side is a multiple of 4.
Hence, in this case there does not exist an integer solution.

Case 7x=2,y=2

These preferences sfandy altered the well-designed equation (8.1) into
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pP+(p+1)* =2
=2p(p+1)+1=22 (8.11)

Sincez? is an odd number? = 1 (mod 4)
Then, 2p (p + 1) = 0 (mod 4)

Hence, eithep orp + 1 is a multiple of 2.
If p is a multiple of 2, thep must be 2.

Implementation of this value ¢f in (8.7) furnisheg? = 13 which does not enable as

an integer foe.
If p + 1 is a multiple of 2, thep + 1 = 2A for someA € Z.

The only odd prime satisfying all the above conditions is 3 and the corresponding value

ofz=3
Consequently, the only integer solution to (8.1(pisx, y,z) = (3,2,2,5)
Case8x=3,y=1

The original equation (8.1) can be written as
pP+p+1=2z°

If p = 2, thenz? = 11 which cannot acquiesce an integerfor

Also, z2 = 1 (mod 4) andp(p? + 1) = 0 (mod 4) which implies that eithe#|p or

4l(p* +1)
For the reason thatis an odd prime4 + p and sop? + 1 = 4n

This is not possible singecan take either of the forrdV + 1,N > 1 or4N + 3,
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N = 0.
Hence, the conclusion of this case is there cannot discover an integer solution to (8.1).

8.2 Tactics of achieving Non-Negative | nteger Solutions to an

Exponential Equation with the base as Natural Numbers

Theorem: 8.2

If n € vV, the set of all-natural numbers angy and z are integers such that
x+y=123,4, then all viable non-negative integer solutions to an exponential

Diophantine equation® + (n + 1)¥ = z? are prearranged by

(n,x,y,2z) = {(4m? + 4m — 1,0,1,2m + 1), (4m? — 2,0,1,2m), (4m? — 1,1,0,2m),
(4m(m+1),1,02m+1),2m(m+1),1,1,2m + 1), (1,0,3,3),
(2,3,0,3),(1,1,3,3),(12,1,3,47), Mps1, 2,2, Zm+1), (72,3,1,611)}

where .y = 2 (3Xim + 42w — 1), Zmsr = 2K + 32, m = 0,1,2...with X, =7,

zy = 5.

Proof:

The equation for executing integer solutions is measured as

n“+m+1)Y=ztnenN (8.12)

The succeeding categories are analyzed for receiving non-negative integer solutions for

all effective inclinations of the estimatiorst+ y = 1,2,3,4.

Caselx=0,y=1

The equation (8.12) for looking solutions in integers is curtailed by
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n+2=2z>2 (8.13)
If n is an odd number, thert and hence is also an odd number.
Presume that =2m+1,meN
In the vision of (8.13), the choice nfis then led by
n=4m?+4m-—1
Foremost ifn is an even number, ther also ensures thatis an even number.
Adopt thatz = 2m,m e
Then, (8.13) leads to the already mentioned valueas
n=4m?-2
Hence, the massive solutions to (8.12) is embodied by

(n,x,y,z) =(Am? +4m—-1,0,1,2m+1) and (n,x,y,2z) = (4m?—2,0,1,2m)

wherem € V.

Case2x=1,y=0

The desirable equation (8.12) to discover integer solutions is revised by
n+1=z2 (8.14)

If n is an odd number, then? and alsa are even numbers.

Let us select = 2m,m e
Replacing this choice of in (8.14), the equivalent option for the selected natural

numbern is given by
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n=4m?-1
On the other hand, i is an even number thes as well ag is an odd number.
For easy accessibility, it is denoted by= 2m + 1 wherem € ¥

Exchanging the precise value ofin (8.14), the corresponding possibility nfis
attained by

n=4m(m+1)
Hence, in this case all probable solutions to (8.12) are decided by

(n,x,y,z) = (4m? —1,1,0,2m) and (n,x,y,z) = (4m(m +1),1,0,2m + 1) where

mewN

Case3x=0,y=2

The above chosen valuesxoandy diminished (8.12) to the successive equation
n?+1=2z>

Since any square of an integer added with one can never be a square of anzinteger,

and subsequently cannot be an integer.

Case4x=2,y=0
These selections af andy shortened (8.12) to
n?=z2-1
Since any square of an integer reduced by one is not at all a square of anzrdader,
thenn are not integers.
Hence, for Case 3 and Case 4, it is impossible to treasure an integer value for all

necessary variables.
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Case5x=1,y=1

The structure of an inventive equation (8.12) is symbolized by
2n+1=2z?

Since the left-hand side is an odd number fonadl V', the value o&? implying that

z is also an odd number.
Perceive that = 2m + 1 for allm € IV. Clearly,n = 2m(m + 1).

As a result, the solution is detected(ayx,y,z) = 2m(m + 1),1,1,2m + 1) where

meN.
Case6x=0,y=3
The ingenious equation (8.12) is revamped as
(n+1)3+1=2z2%
>mn+2)n*+n+1) =22 (8.15)
If zis odd, ther{n + 2) = z and(n? + n + 1) = z implying thatn = +1
Our presumption cannot acknowledge= —1.

As an effectn = 1 and thusz = 3

If z is even, thettn + 2)(n®> + n+ 1) = 2z (g)

Obviously,2z =n? +n+1 and% = n + 2 together gives? —3n—7 =0

But, the roots of this quadratic equation do not belorig, tine set of all integers.

Thus,z ¢ Z.
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As a consequence, the end outcom@jg, y, z) = (1,0,3,3).
Case7x=1,y=2
The original equation (8.12) is renovated as

n+ (n+1)?% =22

=n=(z+0n+1)z-n+1)
Then, both(z + (n + 1)) and(z — (n + 1)) are factors oft.

This is feasible for no integer value of

Hence, no integer solution exists for the scheme efl andy = 2.

Case8x=2,y=1

The shrewd equation (8.12) is reorganized as
n?+n+1=2z>

=n+1=(z+n)(z—n)

This equation is not achievable irrespective.of

(8.16)

(8.17)

Eventually, this case does not contribute an integer solution for equation (8.12).

Case9x=3,y=0
The proficient equation (8.12) is reassembled as

nd=2z2-1

n=0Z-1E+1)

If (z—1) and(z + 1) are both odd, then they are coprime.
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Thus,z—1 =173 andz + 1 = s3 wherer,s € NV andgcd(r,s) = 1 which stretches

(8.18) as

But no two natural numbers please this condition.
If (z— 1) and(z + 1) are both even, then (8.18) becomés= 2k(2k + 2),k € N
That is,n3® = 22k(k + 1) (8.19)

If eitherk or k + 1 is an even number, then they are relatively prime. Using the well-
known fact that the factors of a cubic number are always a cubic number, equation
(8.19) is valid only fork = 1. None other values ot confirm the above statement

which suggests that = 2 andz = 3.

Hence, the imminent result (g, x, y, z) = (2,3,0,3).
Case 10x =0,y =4

The well-made equation (8.12) be transmuted into

n+1D*=2z2-1

Sn0+Dn+1)>3=0E-1(=z+1) (8.20)
Suppose that from equation (8.20),+ 1) = (z— 1) and(n+ 1)3 = (z+ 1)
A simple analysis of these assumptions produces the equatib3n? + 2n — 2 = 0

It is examined that none of the integer values @fssures the preceding third-degree

equation.

Hence, for this case, there does not occur an integer solution.

139



Chapter - VIII Exponential Diophantine Equations

Case l1lx=1,y=3
These espousals sfandy convert equation (8.12) into
n+(n+1)3=2z>2 (8.21)

It is analyzed that, the prereferral equation (8.21) is satisfied only for two couples

(n,z) = (1,3) and (n,z) = (12,47).

This can be established by the subsequent MATLAB Program:
clear all;

clc;

n = input('Enter a natural number to check the condition
n+ (n+ 1)"3 = z"2\n");

z2Z=n+n+1)."3;

z = sqrt(z2);

if (mod(z,1) ==0)

fprintf ('"\nn = %d\tz = %d’,n, z)

else

fprintf ('The given natural number n =

%d is not satistying the condition',n)
end

Hence, the anticipated solutions &rex,y,z) = {(1,1,3,3),(12,1,3,47)}
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Case 12x=2,y=2

These appropriate picks efandy reformed the well-framed equation (8.12) into the

standard equation

X2 —2z2=-1 (8.22)
whereX =2n+1 (8.23)
The primary values obeying (8.22) efg= 7,2z, = 5.
The recurrence relations to the equation (8.22) are specified by

Xmar = 3Xm + 42, (8.24)

Zms1 = 2X;m + 32, m=0,12, ... (8.25)
From (8.23) and (8.24), the sequence of necessary valuegis obted by

Ninat = 3 (3K + 42 — 1), m = 0,1,2, . (8.26)
Consequently, the patterns of positive integer solutions to (8.12) are executed by

(n,x,y,2) = Mps1, 2,2, Zmeq) Withng = 3,z =5 andm = 0,1,2, ...
The successive valuesofandz can be evaluated by (8.25) and (8.26).
Case 13x=3,y=1
The equation (8.12) can be scratched as

n+n+1=2z2>2

This is satisfied only for the pain, z) = (72,611).
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This can be done through the following MATLAB Program:

clear all;

clc;

n = input('Enter a natural number to check the condition
n"3 +n+1=2z"2\n');
z2=n."3+(n+1);

z = sqrt(z2);

if (mod(z,1) ==0)

fprintf ("\nn = %d\tz = %d’,n, z)

else

fprintf ('The given natural number n =
%d is not satistying the condition’,n)
end

Therefore, the essential non- negative integer solutiém, s y,z) = (72,3,1,611).
Case14x=4,y=0

The equation (8.12) can be engraved as
n*+1=z2

Snt=(z+1)(z-1)

Proceeding similarly as in case 10, it is not predicted integer solutions to (8.12).

Hence, the theorem.
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8.3 Investigation of Solutionsto an Exponential Diophantine
Equation p;* + p,¥ + p3% = M?
The 3-tuples consisting three distinct prime numbers such that the difference between
the biggest and smallest prime numbers is six, then the 3-tuple is called a prime triplet.
For example, the 3-tupl@,p + 2,p + 6) or(p,p + 4,p + 6) wherep is neither

2 nor 3 are prime triplets.

The approach of existence of integer solutions to an equafios p,” + p;Z = M?

where(p,, p,, p3) is a prime triplet of the forms
(pp+2,p+6)=(MAn+14n+3,4n+7)or(4n+3,4n+5,4n +9)

and (p,p+4p+6)=0Un+1,4n+54n+7)or(4n+3,4n+7,4n+9)

for certainn € V', the collection of, y, z are eithen or 2 is analyzed in the following

theorems.
Theorem 8.3

If x,y,z€{1,2} and (p,p+2,p+6) is a prime triplet of the form
(4n+14n+3,4n+7) for fixed newn, then an equation

p* + (p + 2)Y + (p + 6)% = M? has no solution.

Proof:

The theorem is proved by considering the following eight cases.
Caselx=1y=1,z=1

Then,

p*+(p+2)Y+ (p+6)2 =M?
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S4n+1+4n+3+4n+7 = M?
= 12n+ 11 = M?
It is scrutinized that the expressid®n + 11 is not a perfect square for anye .
The following MATLAB Program demonstrates the statement given above.
clc; clear all;
n = input('Enter a natural number n');
fori=1:n
pl=4*i+1,p2=4*i+3;p3=4*i+7;
if (isprime(pl) == 1 & isprime(p2) == 1 & isprime(p3) == 1)
MS =12 *n+ 11;
M = sqrt(MS);
if rem(M,1) == 0)
forintf (‘p1 = %d,p2 = %d,p3 = %d, M = %d’,pl,p2,p3, M)
end
end
end
Case2x=2,y=1z=1

The equation to analyze solutions in integers can be written as
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(dn+1D?+Un+3)+@n+7) = M?
= 16n% +16n + 11 = M?
> (n+2)?+7=M?
S>M?>—(4n+2)2=7

This is possible only wheM = 4 and4n + 2 = 3. But no suchm € V' satisfies the

equatiordn + 2 = 3.
Case3:x=1y=2,z=1
For these choices of y, z, the original equation is reduced into
(dn+1D)+Un+3)2+@n+7)=M?
= 16n2+32n+17 = M?
= (4n+4)2+1=M?
>M2—(4n+4)2 =1
It is well-known that the difference of two square numbers cannot be 1.
Cased4dx=1y=1,z=2
The selected values of the variables convert the given equation as follows
(4n+1)+(An+3)+ (4n+7)? = M?
= 16n% + 64n + 53 = M?
= (4n+8)? —11 = M?

= (“4n+8)2-M?=11
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This is true only iiM = 5 and4n + 8 = 6. But for anyn € N, 4n + 8 = 6 is not valid.
CaseS5x=2,y=2,z=1
The desired equation becomes
(4n+1)%2+(4n+3)2+(@n+7) = M?
= 32n% 4+ 36n + 17 = M?
Caseb6x=2,y=1,z=2
The considered equation becomes
(4n+1)%2+ (4n+3)+ (4n+7)? = M?
= 32n% + 68n + 53 = M?

Case7:x=1y=2,z=2
Then,p* + (p +2)Y + (p + 6)% = M?
= @An+ 1)+ @n+3)2+ (4n+7)? = M?

= 32n% + 84n + 59 = M?
Case8x=2,y=2,z=2
The given equation can be written as

(dn+1)?+ (4n+3)2+ (4n+ 7)% = M?

= 48n% + 88n + 59 = M?

It is a well-known fact that ib? = 4ac, the quadratic polynomialx? + bx + c is a

perfect square.

146



Chapter - VIII Exponential Diophantine Equations

But, the quadratic equation inmentioned above from case 5 to case 8 does not meet

this criterion.

Consequently, none of the choicesxpy, z considered from case 5 to case 8 provides

solutions to an equation.
As a conclusion, all the cases are not providing possible solutions to the equation.
Theorem 8.4

A solution to the equatiop* + (p + 2)¥ + (p + 6)% = M? wherex,y,z € {1,2} is
inconceivable if (p,p+2,p+6) is a prime triplet of the form

(4n + 3,4n + 5,4n + 9) for suitablen € V.
Proof:
This theorem is showed by the succeeding eight cases as in theorem 8.3.
Caselx=1y=1z=1
Then,p* + (p +2)Y + (p + 6)% = M?
>4n+3+4n+5+4n+9 = M?
= 12n + 17 = M?

This is not true for anyr € V. This statement is confirmed by the succeeding

MATLAB Program.

clc; clear all;
n = input('Enter a natural number n');

fori=1:n
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pl=4x*i+3;p2=4%i+5 p3=4*i+09;

if (isprime(pl) == 1 & isprime(p2) == 1 & isprime(p3) == 1)
MS =12*n+ 11;

M = sqrt(MS);

if (rem(M,1) == 0)

forintf(‘pl = %d,p2 = %d,p3 = %d, M = %d’,pl,p2,p3, M)
end

end

end

Case2x=2,y=12z=1
The required equation to be solved becomes

(4n+3)°2+@An+5 +@n+9) =M?
= 16n2 +32n + 23 = M?
> (n+4)?+7=M?
SM2-—(4n+4)?*=7
This declaration is true only whell = 4 and 4n + 4 = 3. But there is nm € V'
sustaining the conditiofn + 4 = 3.
Case3:x=1y=2,z=1
The developed equation can be modified into
(4n+3)+(4n+52+ (4n+9) = M?
= 16n? + 48n + 37 = M?
> (An+6)%+1=M?

>M?>—-(4n+6)?% =1
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As is case 2 of theorem 2.1, this is impossible.
Casedx=1y=12z=2
The given equation can be rewritten as

(4n+3)+ (4n+5)+ (4n+9)? = M?
= 16n? + 80n + 89 = M?
= (4n + 10)%2 — 11 = M?
= (4n+10)2 — M2 =11
>M=5and4n+10=6

But for anyn € N, 4n + 10 = 6 is not possible.
Case5x=2,y=2,z=1
The stated equation becomes

(4n+3)2+UAn+5)?%+ (@n+9) = M?
= 32n% + 68n + 43 = M?

Case6x=2,y=1,z=2

The considered equation is converted into
(4n+3)2+(4n+5) + (4n +9)% = M?
= 32n% + 100n + 95 = M?

Case7:x=1y=2,z=2

These options of the variables reduce the scrutinized equation into
(4n+3)+ (4n+5)%+ (4n+9)? = M?

= 32n% + 116n + 109 = M?
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Case8x=2,y=2,z=2

The equation in which solutions to be discovered becomes
(4n+3)2+ (An+5)%+ (4n+9)? = M?
= 48n? + 136n + 115 = M?
As in theorem 8.3, in this theorem also case 5 to case 8 does not yield the solution to an

equation. Hence, there exists no solution in the integer to the given equation.

Theorem 8.5
There are infinitely many solutions to the equaidnt (p + 4)¥ + (p + 6)Z = M? if
(p,p + 4,p + 6) is a prime triplet the forndn + 1,4n + 5, 4n + 7) for selectech €

N, x,y,z are either of 1 or 2.
Proof:
The theorem is proved as in previous two theorems.

Caselx=1y=1,z=1
Then,p* + (p + 4)” + (p + 6)% = M?

2>4n+1+4n+5+4n+7 == M?

= 12n + 13 = M?
It is observed from the following MATLAB Program, there are enormous prime triplets
can be extracted. For instance, nf= 3,9,69,153 provides the prime triplets
(13,17,19),(31,41,43),(277,281,283),(613,617,619) as solutions to the

designated equation.

clc; clear all;

n = input('Enter a natural number n');
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fori=1:n

pl=4xi+ 1, p2=4%i+5 p3=4*i+7,

if (isprime(pl) == 1 & isprime(p2) == 1 & isprime(p3) == 1)
MS =12 *n+ 13;

M = sqrt(MS);

if rem(M,1) == 0)

forintf(‘pl = %d,p2 = %d,p3 = %d, M = %d’,pl,p2,p3, M)
end

end

end

Case2x=2,y=12z=1
The assumed equation becomes

(dn+1)?+@n+5 +@n+7) = M?
= 16n% + 16n + 13 = M?
> (4n+2)>+9 =M?
>M?—(4n+2)* =9
This is achievable only whe = 5 and4n + 2 = 4. However, for every. € V', the

equatiodn + 2 = 4 is invalid.
Case3ix=1y=2,z=1
The elected choices afy, z minimizes the given equation as

(4n+1)+(@n+5)?%+ @n+7) =M?

= 6n?% + 48n + 33 = M?
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= (4n+6)? —3 = M?
> (@n+6)>-M?2=3
Therefore4n + 6 = 2 andM = 1 are the only values that enable the above equation

to be accomplished. Butn + 6 = 2 is not conceivable for anye V.

Casedx=1y=1,z=2

For these options of, y, z, the equation to be resolved is

(4n+1)+(@n+5) + (4n+7)? = M?
= 16n2 + 64n + 55 = M?
= (4n+8)?> —9 = M?
>(4n+8)2-M?=9
The only values which attain the above conditiondare- 8 = 5 andM = 4.
But for anyn € V', 4n + 8 = 5 is not possible.
Case5x=2,y=2,z=1
Therefore, the original equation is converted into the quadratic equation as follows
32n?% + 52n + 33 = M?
Case6x=2,y=1,z=2
Then, the equation is altered into the quadratic equatiaraggiven below.
32n?% + 68n + 55 = M?
Case7:x=1y=2,z=2
The similar form of the given equation is
32n% 4+ 100n + 75 = M?
Case8x=2,y=2,z=2

The identical from of the considered equation is
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48n% + 104n + 75 = M?
As the explanation given in theorem 8.3, there is no solution in integers for the cases
listed above from 5 to 8.

Hence, the combinations of all the cases,9f z are not solutions to an equation.

Theorem 8.6

Any n € V such thap = 4n + 3 is a prime number angh,p + 4,p + 6) is a prime
triplet, thenp® + (p + 4)¥ + (p + 6)% = M? has no solution when, y, z are either 1
or 2.

Proof:

The proof is analogous to theorem 8.3
Remarks:

(i) If (p1,p2,p3) = (2,3,5), then the possible solutions of
2%+ 3Y +5%2 = M?are (x,y,z,M) = (1,2,1,4) and (1, 2,2, 6).
(i) If (py,p2,p3) = (3,5,7), then there is no solution to the proposed equation

3¥ + 5Y + 77 = M2,
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CHAPTER - IX

Application of Linear Diophantine Equation in Chemistry

In Section 9.1, it is exhibited with few examples of how to use the linear Diophantine
equation to contract the molecular formulae of organic or inorganic chemical

compounds in order to determine their structure.
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9.1 Usage of Linear Diophantine Equation in the Resolution of

Molecular Formulae for Various Chemical Substances

Needed Theorem [1]
The linear Diophantine equati@x + by = c has a solution if and only i dividesc

whered = gcd(a, b). Furthermore, if(x,, v,) is a solution of this equation, then the

set of solutions of the equation consists of all pairy) wherex = x, + tb/d and

y=y—t%,; teZ.
9.1.1 Determination of Chemical Molecular Formulae

Enabling the possibility that a chemical substance with a molecular w#ight
encompasses elemems, A, andA; with atomic weightsi,, a, anda; respectively
and that the numbepd§ Y andZ represent the number of atoms of eleménigl, and
A visible in each of the elements’ molecules. Then, it is obtained that

a X +a,Y+azZ =W (9.1)
Let a;, a, anda; constitutes the integers closest to the valyes, anda; and letw
signify the integer closest to the valde
Then the similar form of linear Diophantine equation (9.1) to be solved is represented
by

a X +aY +az3Z =w (9.2)
If a limit is imposed on the integekS Y andZ in (9.1), then (9.2) can be solved under
a restriction

|(a; —a))X + (az — ax)Y + (a3 — a3)Z| < |W — w| (9.3)
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If more solutions of (9.2) are retrieved, then the genuine values can be found by
substituting them in (9.1) and assessing which satisfies (9.2) with the least significant

deviation fromW.

The process of finding molecular formulae for three chemical substances using the

linear Diophantine equation is enlightened as follows.

9.1.2 Molecular Formula for Substance 1
Consider substance 1 as the chemical compound comprising Carbon, Hydrogen, and
Oxygen has a molecular weight of 342.2965 g/mol.
Let X,Y and Z stand for the number of atoms of Carbon, Hydrogen and Oxygen
respectively. Consider the first-degree Diophantine equation as

12.0107X + 1.00784Y + 15.999Z = 342.2965 (9.4)
wherel12.0107u, 1.00784u and15.999u are the atomic weights of Carbon, Hydrogen
and Oxygen respectively.
Next, it is clear thatr; = 12, a, = 1, a3 = 16 andw = 342.
Furthermore, the corresponding linear form of (9.4) to discover molecular formula is
converted into

12X +Y +16Z = 34 (9.5)
subject to the constraint

|0.0107X + 0.00784Y — 0.001Z| < 0.2965
which provides thak < 12,Y <23,Z <13

Modify (9.5) as in the following form

12X +Y =342 + 16T whereZ = —-T
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Then, its common solution is given by

X=28+K

Y=6+16T —12K,K,T € Z.
It is assured that the values XfY, Z must be greater than 0. Hence, it is enabled to
discover the ranges farandK.
Now,

X>0=>284+K>0=K > -28

Y>0=>6+16T — 12K >0=8T —6K > -3

Z>0=>-T>0>T<0
In particular, ifT = —1, then8T — 6K > —3 leads taK < 1.
Thus, the range fd should be-28 < K < 1.
Continuing the process fdt = -2, T = -3, ...,T = =21, it is received thak < 1.
But forT = —22, K < —29 contradicting—28 < K < 1.
Thus, the range fdf should be-22 < T < —1.
Therefore, there exist 588 solutions in combinations ahdK .
Eliminate the solutions which violating the conditions that X < 13,0 <Y < 24
and0 < Z < 14 by the succeeding MATLAB Program:
clear all; clc;
fort=-21:-1

fork =-=27:0
x =28+k;
y=6+16*t—12 x k;

zZ=—t;
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if (x<13&& Y <24&&7z<14)
fprintf('x = %d,y = %d,z = %d\n',x,y, z)
end
end
end

The residual solutions which satisfy the necessary conditions are listed in table 9.1.

Table 9.1
X Y Z
10 14 13
11 2 13
11 18 12
12 6 12
12 22 11

Note that the last two solutions represent the compoQpdg; 0,, (Mellitic acid) and
Ci,H,,04; (Sucrose or Table Sugar) with molar mass 342.16 g/mol and 342.2965
g/mol respectively.

Therefore, the exact solutionGs,H,,01;.

9.1.3 Molecular Formula for Substance 2
Let us choose substance 2 as the chemical compound with a molecular weight of

98.079 g/mol and a mixture of Hydrogen, Sulphur, and Oxygen.
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Let X,Y andZ be the number of atoms of Hydrogen, Sulphur, and Oxygen with
respective atomic mads00784u, 32.065u and15.999u respectively.
As in Section 9.1.2, choose the linear Diophantine equation in three variables as
1.00784X + 32.065Y + 15.999Z = 98.079
Clearly,a; = 1,a, = 32,a3 = 16 andw = 98.
Consequently, let us solve the ensuing linear Diophantine equation
X +32Y + 16Z = 98 (9.6)
subject to the restriction
|0.0078X + 0.065Y — 0.001Z| < 0.079
The upper limit for the choices &f Y andZ are noted by
X<3v<1z<4 (9.7)
From (9.6)X = 98 — 32Y —16Z > 0,Y > 0 andZ > 0. (9.8)
All the possibilities of X,Y and Z supporting (9.8) are evaluated by
{(50,1,1),(18,2,1),(34,1,2),(2,2,2),(18,1,3),(2,1,4)}
The only choice ofX, Y, Z) that satisfies (9.7) i62,1,4).
Hence, the component i$,50,, which is Sulphuric Acid with a molar mass 98.079

g/mol.

9.1.4 Molecular Formula for Substance 3

Consider Substance 3 is a combination of Zinc, Sulphur, and Oxygen having a
molecular weight of 161.47 g/mol.

Let X,Y andZ be the number of atoms of Zinc, Sulphur, and Oxygen with respective
atomic mas$5.38u, 32.065u and15.999u respectively.

As in the previous two sections, the equation to be resolved is

159



Chapter — 1 X Application of Linear Diophantine Equation
in Chemistry

65.38 X 4+ 32.065 Y + 15.999 Z = 161.47 (9.9)
With the same notations as in section 9.&.2s= 65, a, = 32,a; = 16 andw = 161.
Then, an equivalent form of (9.9) to be solved is taken as
65X + 32Y + 16Z = 161 (9.10)
together with the condition that
10.38X + 0.065Y — 0.001Z| < 0.47
The options of sucl,Y andZ in (9.10) are viewed by
X<1Y<17Z<444
SinceX,Y andZ are positive, the only possibility &f andY are pointed out by
X=1Y=1
Now, rearrange (9.10) in the form as given below
65X + 16U = 161 (9.11)
whereU = 2Y + Z (9.12)
In (9.11),gcd(65,16) = 1 and 1 divide 161.
Also, the least solution to (9.11) is takenXgs= 161 and U, = —644
Hence by theorem [l], there exists infinitely many integer solutions to (9.11) which are

represented by

X =161+ 16T (9.13)
U=—-—644 — 65T (9.14)
whereT € Z

SinceX = 1, the chance df is evaluated from (9.13) as
T =-10

Note that (9.12) is satisfied by = U andZ, = —U. Also,gcd (2,1) =1
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Again, by Theorem [1] the infinitely many solutions to (9.12) are received by
Y=U+K=—644—65T +K (9.15)
Z7=-U-2K=644—65T —2K,K€Z (9.16)

SinceY = 1, the value of is calculated from (9.15) by
K=-5

Substituting the values @fandK in (9.16), it is determined that
Z=4

The only solution that satisfies (9.10)(3,Y,Z) = (1,1,4).

Hence, the component &1S0,, which is Zinc Sulphate with a molar mass 161.47

g/mol.
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CONCLUSION

In this dissertation, peculiar patterns of numbers baptized as Cheldhiya, Cheldhiya
Companion, Pan-San, Pan-San Comrade, Pan-San Buddy, and Pan-San Mate sequences
are being emphasized by assigning specific values for a square free d iagtre
worldwide recognized Pell equatiy? = dx? + 1 and topographies of all these sequences

are investigated by utilizing the normalizing technique in Matrices.

Variety of triples which comprise all the above consequent sequences sustaining
numerous characteristics are explored. Conclusions have also been made for integer

guadruples and quintuples that have exclusive properties.

The congruence relationship and divisibility properties between Pell and Pell Lucas
numbers has also been illustrated. Certain theorems have been successfully proved by

employing these congruence relations.

In addition to this, procedures for acquiring an infinitely large number of non-zero
integer solutions in terms of Pell numbers, Pell-Lucas numbers, Jacobsthal as well as
Jacobsthal-Lucas numbers for various second-degree Diophantine equations consisting

two variables are assessed.

Some Mordell-type Diophantine equations of the fiy? = x3 + k for selected
values ofk have been displayed and proved that some of them have limited number of

integer solutions, few of them have no solutions.
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Analyses for equations having finite number of integer solutions are also being

done on exponential Diophantine equations that embrace natural numbers and prime

numbers with the assistance of elementary concepts of Mathematics.

Investigations are being carried out on the possibility of applications of linear
Diophantine equations subject to certain restrictions in Chemistry especially for

determining the molecular formulae of chemical compounds.
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MORDELL’S EQUATION WHICH HAS NO SOLUTION FOR CERTAIN SELECTION OF K

P. SANDHYA AND V. PANDICHELVI

ABSTRACT
This article examines an incomparable Diophantine equation B> = A3 + C , C € Z, the set of all integers and
demonstrates for which values of C, no solution in integer has been provided in the suggested equation

Keywords: Diophantine equation, integer solutions, Mordell’s equation, Bacht’s equation.

I. INTRODUCTION

The equation y? = x3 + k, for k € Z, is alluded to as Mordell's equation due to Mordell's deep passion in it.
Mordell [4] established in 1920 that the equation y2 = x3 + k has an infinite number of integral solutions for

any k € Z. Michael A. Bennett and Amir Ghadermarzi [2] cast-off the traditional link between Mordell and
cubic Thue equations to solve the Diophantine problem y? = x3 + k for all non-zero integersk with |k| < 107.

In this artefact,an unrivalled Diophantine equation B> = A3 + C, C € Z, the set of all integers is studied and it
is exposed that, for which values of C in theprofessed equation, no integer solution was supplied by using some
classical congruence relations and Legendre symbols.

I1. MAIN RESULTS
Congruence relations and Legendre symbolsare exploited to demonstrate that B> = A3 + Cdoes not have an
integer solution for certain values ofC.

Theorem: 2.1
Let U & V be integers such that U = 2 (mod 4), V = 3 (mod4)and Letp | V and p = 1 (mod 4), where p is a
prime number. Then the equation B2 = A3 + C, where C = U3 — V2 has no integer solution (4, B).

Proof:
Suppose that there exists a solution (4, B)in integers.

AsC =U®—V? = —1 (mod 4)& we haveB? = A% — 1 (mod 4)
Hence, A # 0 (mod 2)and A # 3 (mod 4) and so A = 1 (mod 4).
Now,B? + V2 = A% + U3 = (A + U)(4% — AU + U?) )
AsA =1 (mod 4) and U = 2(mod 4), it should be
(A2 — AU + U?) = 3(mod 4).
Hence,(X? — XU + U?)is odd and by (1) it has a prime factorp;, p; = 3 (mod 4). Thus,B? = —V? (mod p,).
By our assertion, p; + V. Hence,
N2 2
(=)= G =G)=1.

denying to p; = 3 (mod 4).

This proves that the Diophantine equation Y2 = X3 + K has no solution.

Theorem: 2.2

Let UandV be integers satisfyingU = 3 (mod 4), V = 0,2(mod 4). If a prime number p divides V/2 and
p = 1 (mod 4), then the Diophantine equation B = A3 + C where C = U3 —V? has no solution (4, B) in
integers.

Proof:
Suppose that (4, B)is an integer solution of the equation B2 = A3 + C,C = U3 —V?

Since,U3 — V2 = 3 (mod 4), it is attained byB* = A% + 3 (mod 4).
Hence,A = 1 (mod 4).
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Now, the original equation is converted for the prescribe value of C as
B2+V? = A3+U3 = (A+U) (A2 -AU+U? 2)
Since A =1 (mod4)& U =3 (mod 4),
A% — AU + U? = 3 (mod 4)
Hence,A? — AU + U%is odd and by (2) it has a prime factorp,, p; = 3 (mod 4). Thus,B? = —V? (mod p,).
By our assertion, p; + V/2. Hence,p; + V.
G)=Go)= (=1,
denyingp,; = 3 (mod 4).
Hence, the Diophantine equation B? = A% + C has no solution.

Theorem: 2.3

Let Uand V be integers nourishing with the conditionsU = 2 (mod 8),V = 1 (mod 2). Ifpis a prime such
thatp = 1,3 (mod 8) and p divides V, then the equation B> = A® + C, where C = U® — 2V?has no integral
solution.

Proof:
Since,C = U® — 2V? = 2 (mod 4), it must be

B*= A%+ 2 (mod 4)
Therefore, A # 0 (mod 2), A # 1 (mod 4)and consequentlyA = 3 (mod 4)
Hence,A = 3 or 7 (mod 8)
Moreover,C = —2 (mod 8).
Sothat A # 7 (mod 8) = A = 3 (mod 8)
Now,B2+2V? = A3+ U= (A+U) (A2 - UA+ U?
As A =3 (mod 8) and U = 2 (mod 8), it is seen thatA? — UA + U? = 7 (mod 8) and A + U = 5 (mod 8)
= B? + 2V?has a prime factorp; such thatp; = 5 or 7 (mod 8)

Hence no solution for the Diophantine equation B2 = A3 + C, if C = U3 — 2V2.

Theorem: 2.4
Assume U,V € Z andU = 6 (mod 8) ,V =1 (mod4). Letp be a prime number such that p |V and p =
+ 1 (mod 8). Then the equation B> = A® + C, where C = 2V? + U? does not embrace any integer solution.

contrastingp; = 5 or 7 (mod p)

Proof:
Since, C = 2V2+ U® = 2 (mod 8), then B> = A® + 2 (mod 8)

= A £ 0 (mod 2) ,A # 1 (mod 4)and henced = 3 (mod 4)
Hence A = 3 or 7 (mod 8)
If = 3 (mod 8), then B? = 5 (mod 8)which is not possible.
Thus,A = 7 (mod 8).
Now, B?—-2V?2=(A+U)A%*-UA+U?
= A2 - UA+U? = 3 (mod8.)
ThereforeA*> — UA + U? is odd and is divisible by an odd prime p; with p; = 3 (mod 8)
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= B? = 2V? (mod p,).
By our postulation, p; + V

B-E)-0)-

disagreeingp; = 3 (mod 8)
Hence the proof.

II1I. CONCLUSION
As a result, using certain traditional mathematical tools like as congruence and Legendre symbols, it is sensed
that the hypothesized equation does not have a solution in integers for some specific integer values of C. Thus,
one may ascertain the values of C for which the Mordell's equation has no integer solution by following the
steps described above.
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A STATE OF THE-ART OF SUMS, CONGRUENCE RELATIONS AND DIVISIBILITY
PROPERTIES OF PELL AND PELL-LUCAS NUMBERS

P. SANDHYA AND V. PANDICHELVI

ABSTRACT

In this document, several new-fangled identities regarding Pell and Pell-Lucas numbers enable to provide
certain congruence relations for those numbers are deliberated. Also, divisibility properties of Pell and Pell-
Lucas numbers are revealed by means of these derived congruence relations.

Keywords: Pell numbers, Pell-Lucas numbers, congruence relations

I. INTRODUCTION

Py=0,P, =1l,and P, = 2P,,_; + P,_, for n > 2 establish the Pell sequence {P,}. P, is referenced to the
nt"Pell number. The Pell-Lucas sequence Q,, is defined as Q,, = P,_; + Pp41. Foreachn € Z, Q,, = 2Q,_; +
Qn_, for n = 2and Q,,_1 + Q@41 = 8P,. For more information on the Pell and Pell-Lucas sequences, see [1].
Numerous well-known relationships exist among the Pell and Pell-Lucas numbers. Typically, these relations are
achieved using Binet's formula, which is signified by P, = —L 2\_/5 and Q, = a™ + ", for any n € Z, where a =
1++2and B =1—+/2. Additionally, the most well-known formulas for Pell numbers are a” = aP, +

P,_qjand f"* = BP, + P,_4, forn € Z.

Numerous sums incorporating Pell and Pell-Lucas numbers are provided in this study. Following that, certain
congruences relating Pell and Pell-Lucas numbers are elaborated. These congruences enable one to establish a
number of previously known characteristics. Additionally, with the use these congruences, many additional
theorems are acclaimed.

I1. SUMS AND CONGRUENCESOF PELL AND PELL-LUCAS NUMBERS
Theorem:2.1
If X is a square matrix with X2 = 2X + I, then X™ = P,X + P,_,Ifor every integer n.

Proof:
LetZ[a] = {Aa+ B;A,B € Z}and Z[X] = {AX + BI; A,B € Z}

Define a function f:Z[a] - Z[X]by f(Aa + B) = AX + BI.

Then fis a ring isomorphism. Moreover, it is clear that f(a) = X and f(Q,,) = Qun. 1.
Therefore, X" = (f(a’))n = f(a™) = f(P,a+ Pp_q) = B X + Pp_11

Corollary: 1.1

4P,

% .
2

— 1 4 n _—_
IfM = [1/2 1],thenM =

[ |9

Proof:
Since, M? = 2M + I, it follows from theorem (1) that

M™ = P,M + Pp_y1

B,+P,, 4Pn ] lﬁ 4P,

n _ 2
M‘[ ERR R LY

Remark:
From the fact that f: Z[a] — Z[M], defined by f(Aa + B) = AM + BI is a ring isomorphism, it is observed
that

a?™ = Qua™ + (=1D" =0 (1)
and  a®™ —2V2P,a™ —(-1)™ =0 )
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Applying the function fon each side of (1) and (2), the relations discovered are pointed out by:

M?™ — QpM™ + (=1)™1 = 0 (3)
and M?M —KP,M™ — (—1)™I =0 4)
where K = f(2vZ) = f2a —2) = 2M — 21 = 2 g].

Theorem: 2.2
Ifne N andm, k € Z, then

n

QZmn+k = (_1)(m+1)n Z (7) (_1)(m+1)i QmiQmHk

i=o

n . .
and P2mn+k = (_1)(m+1)n Z?:o (l) (_1)(m+1)l lepmi+k

Proof:
From (3), it is noted that
M = QpuM™ — (=)™ )

Raising nt" power on both sides of (5).
Then, M*™" = (QuM™ — (=D™D" = (QuM™ + (=D)"™*' )"

= (1) D™D Q™)

= (=1)m+Dn z (711) (—1)(m+Di QmiMmi

i=o
Therefore, M2tk = (—q)m+Dnyn (Tll) (—1)m+Dig Lpyymitk

It comprehends from corollary 1.1 that

n

n P~
QZmn+k = (_1)(m+1)n Z (l) (_1)(m+1)1 leQmi+k
i=o0
n . .
and Prmn+k = (_1)(m+1)n Yio (l) (_1)(m+1)l Qm' Pmi+k
Corollary 2.2.1:
Qzmn+k = (=DQ, (mod Q,,) (6)
and Pomn+k = (_1)(m+1)npk (mod Q) (7)
for everyn € N and m, k € Z.

Remark:

iSince K =2M =2 =M+ M~ 1, > MK = KM™,Vvm € Z
.2 _[8 07_ 0 8][a b]_[8c 8d

in.K —[0 3 —81and[1 0][C d _[a b]'

Theorem?2.3:
Ifn € ¥ and m, k € Z, then

[n/2] [(n-1)/2]
n ; i n . i
QZmn+k = (_1)mn z (Zi) 8t PmZLQZmHk + z (Zi + 1) (_1)m181 Pm21+1P2mi+m+k
i=o

i=o

124

Special Issue on Recent Research on Management, Applied Sciences and Technology



Stochastic Modeling & Applications ISSN: 0972-3641
Vol. 26 No. 1 (January - June, Special Issue 2022 Part - 1) UGC CARE APPROVED JOURNAL

and
In/2]| [(n-1)/2]

n ; i n . i
PZmn+k = (_1)mn Z (Zi) 8t PmZLPZmHk + Z (Zi + 1) (_1)m181 Pm21+1Q2mi+m+k
i=o

i=o0

Proof:
From (4), it follows that

M?™ = KP, M™+(—1)™1
Therefore, M2Zmntk — (Kp M™+(—1)™)"M*

> (D) omt (KPmMm)l‘] M

i=o

n

= (=)™ Z (Tll) (_1)miKiPmi Mmitk

i=o

ln/2] l(n-1)/2]
= (=)™ z (;ll) K2 PmZiMZmi+k + Z (Zirj- 1) (—1)mig2i+1 Pm2i+1M2mi+m+k
i=o i=o
In/2] l(n-1)/2]
= (D™ ()8 Bt N (LT ) (<1t iy ek
i=o i=o

We will get the results by trading the matrices K and M on both sides and equating the same entries.

Corollary 2.3.1:
Ifn e N and m, k € Z, then

Q2mn+k = (=1)™"Q,(mod Py,) ®)
and Pymn+k = (=1)™"P(mod Py,) )
III.  DIVISIBILITY PROPERTIES OF PELL AND PELL-LUCAS NUMBERS

To begin, it is established two well-known theorems in a novel manner by exploiting the congruences postulated
in Corollaries 2.2.1 and 2.3.1. Regarding the divisibility of Pell and Pell-Lucas numbers, readers will investigate
the formulae and learn how to use them efficiently to resolve problems. Thus, this article explains the
fundamental divisibility for Pell and Pell-Lucas numbers.

Theorem 3.1:
The necessary and sufficient conditions for Q,,|Q,, are

i. m|n and
ii. % is an odd integer
forallm,n € N and m = 2.

Proof:
Presume that Q,,,|Q,,

Suppose m t n, then by fundamental property of divisibility, n can be expressed asn = mq + 1,0 <r < m.
If g is an even integer, thenq = 2s for some s € Z.
From (6), it follows that

Qn = Q2ms+r = (_1)(m+1)SQr(mOd Qm)

Since Q,,1Q5, @ |Q,. This is a contradiction since Q, < Q,,as r < m. Hence, q is an odd integer. Sustaing =
2s + 1 for some s € Z. So,
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Qn = Qems+m+r = (_1)(m+1)SQm+r(m0d Qm)
Also, since Q| Qn, Q| Qtr-

To prove:r = 0
Supposer > 0. By the identity Q,p+r = QmPr—1 + B-Qm41, the above implies that Q,, |P-Qrpy1.

Since (Qm, Qm+1) = 1, it follows that Q,,|B.. This is a contradiction to the fact that if r < m, then P. < P, <
Qm- As aresult, it is resolved that r = 0.

Thus, that n = mgq, with g being an odd integer.
Conversely, suppose that m|n and % is an odd integer,
That is, n = m(2s + 1), for some integer s. Then it isprocured that,

Qn = Qumssm = (=D)™*V5Q,, (mod Q)
= QmlQn.
Hence, the result.
Theorem 3.2:

Let m,n € N and m > 2. Then Q,,|B, if and only if m|n and % is an even integer.

Proof:
Suppose that Q,, | B, and m + n.This assumption means thatn = mq +r,0 < r < m where m > 2.

If g is an odd integer, it may phraseq = 2s + 1 for some integer s.
From (7), it is pointed out that
Py = Pomstmar = (_1)(m+1)st+r (mod Q,,)

Then,Q,, |Pyyr and henceQ,y, |8Py,4r. Tt is well-known that 8Py, = Q1 Qr—1 + QrQpms1, thenQu, |QrQpmyi.
Since Q,, and Q,,41 are relatively prime, the only possibility is Q,,|Q,. But r < mdeliversQ, < Q. So, Q. t
Q. This conflict befalls as a result of our erroneous assumption about q being an odd number. Therefore, q is
an even integer. Thus, it may have g = 2s for some integer s. Hence,

Form (7), P, = Poms+r = (_1)(m+1)spr(m0d Qm)

Since Q,, |P,, Qm|P-. However, this cannot be true since r < m and hence P, < B,, < Q,,. This contributes that
r = 0. So, it can be concluded thatn = mgq, q is an even integer.

Conversely, suppose that m|n and n = 2ms for some s € Z. Then,it isacquired from (7) that
Py = Py = (=) V3P (mod Q,y,)
It follows that Q,,|P,.

Theorem3.3:
For allm,n € N and m = 3, P, |PB, if and only if m|n.

Proof:
Initially consider that P, |P, but m { n. Then n = mq + r with 0 <r < m. Now, suppose that q is an even
integer, then this may be taken asq = 2s for any integer s.

Hence, (9) provides the succeeding identity

Py = Pymsir = (=1)™P.(mod B,)
Since P, |B,, by applying the above identity, P, |P,. Since, if 0 < r < mand m > 3, it leads to
P. < P,,. Hence, g must be an odd integer. Then g = 2s + 1, for some s € Z. Thus, (9) becomes

Py, = Pymsimar = (=1)™ Py (mod Py,)
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Since Py, |B,, it follows that Py, |Pp,+r. By the identity, P4y = Ppy1 B + Py Pr_q, it is noted that Py, |Pp 1P
Due to the fact that(P,, P41) = 1, it isreceived thatP,|PB., which is a contradiction. This emerges as a
consequence of P, < P, asr < m and m > 3. As a result,r = 0 and subsequentlyn = mgq, resulting inm|n.

Conversely, pretend that m|n. Then, the conclusion isn = mq for some natural number q. As an outcome,

Hence, it is realized that B, |P,.

IV. MAIN THEOREMS
From the identity 2(—1)" = Q,,P—1 — Qn_1P,, it can be seen that gcd(Q,, P,) = lor gcd(Qn, B,) = 2.
Furthermore,

Qn® — 8P, = 4(-1)" (10)
From equation (8), it is seen that Qgq4r = Q(Mmod12) and therefore 12 t Q,, for every natural number n.

Now, we'll go over some Pell-Lucas numbers identities that will be necessary in the sequel:

Q2n = Qn* —2(=D" (11

Q3n = Qn(QnZ - 3(_1)71) (12)
Theoremd4.1:

Let r > 1, be an odd number and m > 1. Then, there is no Pell-Lucas number Q,,such that Q,, = Q5,Q., x>
Proof:

Assume that Q,, = Q4,-Qx? and 7 is an odd number. Then Q,,|Q,, and Q,,|Q,. Then,n = 2rt and n = mk for
some odd natural number t & k by theorem 2.4,= 2|n = n = mk = 2|m. It is thus obvious thatm = 2v, for

some odd v € V. Since 2|n and g is an odd natural number, it can be written asn = 8q + s with s = 2,6 and
q = 0. Hence,

Qn = Qgq+s = Qs(mod 12)
= Qn = Q2,06 (mod12)
= Q, =6 (mod 12)
Similarly, it can be seen that Q,, = 6 (imod 12).
Since, r is an odd natural number, it is obtained that Q,,, = 6(mod 12). Then it follows that
Qn = Q2rQmx? = 6Qpx*(mod 12)
Moreover, 6x% = 0,6 (mod 12)and Q,,, = 6 (mod 12),
@, = 0(mod 12) which contradicts the fact that Q,, = 6 (imod 12). This concludes the proof.

Theorem4.2:
Q,k, = 2,10 (mod 12) for every k = 2 and for every odd natural number .

Proof:
Assume that t is an odd natural number, then t = +1, +3,+5, £7 (mod 8). Moreover, it can be proved by
induction that 2¥ = 0, +4 (mod 8) for k > 2. 2kt = 0, +4 (mod 8).

Therefore, = 2t = 8q or 2¥t = 8q + 4 for q > 0. Then it seeks that
Quk; = Qgq = Qo (Mmod Py)
Or
Qe = Qsq+a = Qiq (Mod Py)
Thus, Q,x, = 2,10 (mod 12),k = 2.

Now, it is possible to generalize theorem as follows:
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Theorem4.3:
Let m> 1,k = 2 and t be an odd natural number. Then there is no Pell-Lucas number @, such that Q,, =

sztmez.

Proof:

Assume that Q,, = sztmez and t is an odd natural number. Since Q,«.|Q, and Q,,|Q, there exist two odd
natural numbers u and v such that n = 2¥tu and n = mv by theorem 3.1. Thus, we have m = 2¥r, for some
r € N, becausen = 2¥tu = mv and t,u, v are odd natural numbers. Then, we have 4 divides both m & n, by
the fact that k > 2. Hence, n = 8q + s with s = 0,4,8,12. Thus,

Qn = Qgq+s = Qs (mod 12)
Since s € {0,4,8,12}, it follows that
Q, = 2,10 (mod 12)
It may be observed in a similar manner that
Qm = 2,10 (mod 12)
On the other hand, Q,x, = 2,10 (mod 12) by theorem (8).
IfQ,x, = 2 (mod 12), then @, = Q ik, Qx* = 2Qx*(mod 12).

Since 2x? = 0,2,6,8 mod(12) and Q,, = 2,10 (mod 12), Q,, = 0,4,8 (mod 12), which is a contradiction to
the fact that Q,, = 2,10 (mod 12).

Therefore,Q,x, = 10 (mod 12). Then
Qn = sztmez =100Q,,x*(mod 12).

Since 10x? = 0,4,6,10 mod(12) and Q,, = 2,10 (mod 12), Q,, = 0,4,8 (mod 12), which denies the fact that
Q,, = 2,10 (mod 12). Hence the proof.

Theorem4.4:
If m and r are odd natural numbers, then there is no Pell-Lucas number Q,, such that Q,, = Q,,, Q-

Proof:
Assume that Q,, = @, @;, form > 1 and r > 1 and are odd numbers. Since Q,,|Q, and Q,|Q,, there exist two
odd natural numbers © and v such that n = mu and n = rv.

Hence, we have u = 4k + 1 for some k > 1. Therefore, we get n = mu = m(4k + 1) = 4km + m.
Qn = Qukmam = (_1)in-m (mod Qzp,)
ie,  QrQm = x0Qp (mod Qzim) (13)

Similarly, it can be obtained that
QmQr = £Q; (mod Q2;) (14)

Suppose that Q,,|Q, then % =an odd integer which is not possible. Hence Q,, t Q,, which implies that
gcd(Qm,, Q2) = 2. Then by equations (13) and (14),

Q, = +1 (mod Qsz) and Q,, = +1 (mod %)
= Qm < 2Q, 2 and Qyy < 2Q,, £2
= Qom + Q2r <20, +20,, £ 4
By equation (11),
Qm?+2+0Q,2+2<2Q, +2Qn +4
Qm(Q@m —2) +0;(Qr —2) <0,
which is a contradiction. This completes the proof of the theorem.

Corollary 4.4.1:
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There is no Pell-Lucas number Q,, such that Q,, = Q,,Q;, foranym > 1l andr > 1.

Proof:
If r > 1 and even, then ther proof follows from theorems (7) and (9).

If m and r are odd natural numbers, then it is proved in theorem (10).

V. CONCLUSION

In this research, various quantities by means of the Pell and Pell-Lucas numbers are presented. Then, some
specific congruences concerning the Pell and Pell-Lucas numbers have been provided. These analogues allowed
to govern a number of previously known features. These congruences have also been utilized to prove many
other theorems.
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Abstract- In this paper, two peculiar sequences named as Cheldhiya sequence and Cheldhiya Companion sequence
are discovered. The general formula for Cheldhiya sequence is enumerated by using the special property called as
normalization of the matrix. Also, few theorems involving these sequences are elucidated.

Index Terms-Cheldhiya sequence; Cheldhiya Companion sequence;eigenvalues;eigenvectors.

1. INTRODUCTION generally sequenced #s1,2k,4k? + 1,8k3 + 4k, ...
called asCheldhiya sequence The nth term of this
The Pell Equation is a quadratic Diophantine equation  sequence is generalized by the recurrence relation
of the form x? —dy? = 1where d is a positive

square-free integer. The equatiart — dy? = 1 has Yo = 2kyn_q + Yn_o, k=123,..,n>1.
infinitely many solutions whereas the negative

Pellequationx? — dy? = —1 does not always have a with initial valuesy, = 0,y, = 1.

solution. In this communication the sequences of the

solution to the equatiarf — dy? = +1, for certain The x values of the equatiarf —dy? =+1 for

d,are developed as Cheldhiya sequence and Cheldhiya certain non-zero square-free integer d can be generally
Companion sequence. Also, a few theorems are Sequenced aSl,k'?kz +1,4k% + 3k, ... called as
proved based on these sequences. Cheldhiya Companion SequenceThe nth term of
this sequence is generalized by the recurrence relation
2. MAIN RESULTS
The y values of the equatiort — dy? =
for certain non-zero square-free integer d can be
X, = 2kx,_1 + X,_o, k=123..,n=>1 Y2\ _ 2k 1\ (2k\ _ [4k%Z+ 1\ _ (V3
w7 G =3 o) () =" D=6
with initial valuesx, = 1,x; = k.
In general,
Herek and dcan be related ds= k? + 1where k

indicates the order of the sequence whiléndicates ( In )= (yn+1)
the number of terms in theéMorder sequence. Yn-1 Vn
Define the Cheldhiya sequence matrix as Theorem:2.1
_(2k 1 Ify = (Zk 1) is a Cheldhiya sequence matrix, then
y= ( ) 1 0
1 0
Now, i v (yn+1 Yo 1) foralln € z*
" Yk Vie+
(Jﬁ) _ (Zk 1) (1) _ (Zk) _ (yz) (ii) y" (y ) (yk nnl) for alln, k € z*.
Yo/ " \1 0/\0/ " \1/ 7 \»n

Also,
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Proof: Hence,
mathematial induction o 7 () = G
(i) Since yo =0y, =1,y, = 2k, the Theorem: 2.2 Generalization of Cheldhiya

excvlusive Cheldhiya sequence matrix is Sequence
interpreted by 2k 1
If y= ( 1 0) is a Cheldhiya sequence matrix, then

y = (ii gz) the " term of the Cheldhiya Sequence is generalized
by

Therefore, the theorem is valid for= 1.

Yo = ek + VEEF )" — (k-
vk +1 }n], wheren = 0,1,2,3, ....

Assume that the result is true for= k.

That is
y y Proof:
k — k+1 k
Y ( Yie yk-l) Given
NOW, 2k 1
y= ( 1 0)
yhHl = yhy = (ZkYkﬂ + Yk )’k+1>
2kyr + Y1 Vi The two eigenvalues of the above matrix can be derived
- (yk+2 yk+1) from the characteristic equation
YVe+1 Yk

ly—2AIl=0
asly =k+Vvk?+landi, =k —Vk?+1.

Thus, the theorem is valid far= k + 1.

Hence, the conclusion of the theorem is

perceived by" = (yn+1 In ) The eigenvectors af are given by
Y Yn-1
(i)  Since, (y—ADV =0
Yie N\ _ (2k 1\( Yk \ _ (Vi+1 L .
y(yk_l) = ( 1 O) (Yk—1) = ( Vie ) which implies that
the theorem is valid fon = 1. 2k =4 1y _
is vali ( ) —A) (Uz) 0 1)

Assume that the theorem is true foe= t.
Casel: If 1, =k++vVk?+1, then one of the eigen

That is, vector ofy is performed from Eq. (1) by
cf Yo\ _ [ Vit V. = A
y (yk—l) - (yk+t—1) ! (1)
_ Case 2:If A, =k —+vk?+ 1, then the other eigen
Now, consider vector ofy is computed from Eq. (1) by
e1 (V) _ e Vi A
y (}’k-1) =yy (}’k—1) V. = (12)
_ (Zk 1) (Yt+1 Yt ) ()’k+1)
1 0/\Ye Ve=1/\ Yk If the Diagonal matrix ofy is given by,
_ (yk+t+1)
Vie+t
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(A 0) n_</11" 0) ks ks
o=(5 p)wern=(y o Zym=2( 2= )
2
m=0 m=0
Let the Normalized eigenvector matrix be et
1
A Ay =T Z " =2"
1 2 m=0
\/1 +1,° \/1 +1,°
N = 1 1 - Aln 1 - Azn
1 1 = -
).1 - Az 1 - Al 1 - Az
1+2,° \/1+A2
\/ ! 2 _ 1 (_(Aln - Azn) - (/11121! - A1n/12) + (4 - Az))
Now, by applying theorem (1) the orthogonal M= 1=2)1 = 25)
transformation of the symmetric matrices
— YntVn-1— 1
y* = ND"NT 2k
can be established by Hence, o1
e Y —Ynt¥n-171
(yn+1 Yn ) 2
Yn  Yn-1
A A2 A Az !
1+2,12 1+/122 n 1+/112 1+2.22
- (/11 0 )
N 1 1 0 A" 1 1

J1+Af J1+Af J1+Af J1+Af

Simplifying the right-hand side of the equation and
equating the€1,2)™ entry on both sides, the generalized

form of Cheldhiya sequence is estimated by
Theorem: 2.4

- N " (L _Jp2 n
In = 2Jk2+1 [(k+ K2+1) —(k k2 +1) ] If G(x) =YpoYnx™ is the Generating function, then
wheren = 0,1,2,3, .... the corresponding function forCheldhiya Sequence
. X
Remark: isG(x) = 1-2kx—x2
Am-2," Proof:
The above identity can also be writteny,as= —/12
—A2 (o]
wheren = 0,1,2,3, .... Glx) = Z Y
Theorem: 2.3
If {y,} is the Cheldhiya sequence, then the sum of its _ 0 z n
first n terms is given by = YoXTH yax 4 Zynx
n=
n—1
yn+yn 1—1
Ym = =x+ Z(Zkyn—l + Yn-2)x™
m=0

n=2

Proof:
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= x + 2kx G(x) + x2G(x) [5] VYni1 + Vno1 = 2%,
1
Hence, (6] m(xrwl + xn—l) =2y
x Proof:
Gt = 1— 2kx — x?
[1] Define the Cheldhiya Companion sequence
matrix as
Theorem: 2.5 = (%k 1
x=(7 o)

If y, is the I term of the Cheldhiya sequence, then

Y2 = Yo Ynar = (=D)PTy,2 Then, the characteristic roots ok are

determined by A; =k +Vk?+ 1,4, =k —

Proof: Vk? +1.
, (3»1” —A/‘)Z Note thatA;1, = —1.
"™ = Yn—rYn+r =\ 5 5
’11“;)‘2 ner ntr ntr The closed form the Cheldhiya Companion
_ (% — A )(% — A ) seguence is given by
=1 =1 o
Xn = Clﬂ'l + Czlz (2)
1 A\
=21 42)" + (114,)" (—1) By applying the initial valuex, = 1,x; =k,
(4 —12) A2 h :
N the linear system of equations are evaluated
+ (All‘lZ)n (A_Z) ) byCl + CZ = 1 andcll’{l + Czﬂ.z = k.
1
e k=X
(-1 ( 2 (a) (az)f> T
(A = 22)? A2 Z Then, Eq. (2) becomes
DT [ -2 R R T T
& -7 | Gy Sl ey S N N
= (D"’ 1 _ _
’ = [ = ") — k(" = 7]
Hence, 2"
1 _ -
Ynz ~Yn-rYn+r = (_1)n—ryr2 = A1 — /12 [(Aln T Azn 1) + k(ﬂln - Azn)]
1
Xy = Yno1 t kYn
Theorem: 2.6
(2] XnYn = Un-1 + kYn)¥n 5
If {x,} and {y,} are CheldhiyaCompanion sequence 1 =3’nn—_11yn +nk3’n N
and Cheldhiya sequence respectively, then _ Ay — Ay A" — Ay
/11 - Az ) A‘l - Az
[1] Xn = Ynog T kypn 21 4" = 2,7\
2] XuVn = = (Xan_y + k) A "
nJn 2(k2+1) 2n—-1 2n Al _Az

[3] limn_)wi—" =vkZ+1
[4] X + kyn = Yn+1
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=; A7 4 2,20 4 (2, 2)" (i_l_i) _ 1 (™ = ,™ = "2, + 4, 2,7)
(/11 - /12)2 ! z 172 2’1 Az 2.1 - 2.2
+ k(A5 + 2,7 - 2(11/12)")) ="+ A"
1 . _
=m(2x2n_1—2k(—1)n “ Yn+1 + Yn-1 = 2%,
1
+ k(2x5, — 2(-1D™M)) [6] k2_1+1(x"+1 + Xp_1)
g P 2k L e gt
= m(ﬂl - ﬂ.z + Al + ﬂ.z )
“Xn¥n = 5772 L as (xZn—l + kan)
2(k2+1)
1 2 +1 5 +1
. Xn MR A, - 2(k2+1) Aln A * )lzn A
[3] lll'Iln_,Oo E = 711_1)130 T . m 1 2
A2\ _ /11n - }-zn
_(/11—/12) - 1+(3) S
- n-oo n
1 - A_i 3 /1171 — }'271
ﬂ. N }.1 - }.2
Since Ay < A4, A_Zl <1. Therefore,
1 Hence,

jim (22)" - 0.

n—-oo 1 1
m(xrwl + xn—l) =2y,
Hence,
X Remark:
lim == k2+1
n-o>oy, In the above result, it is observed that
PR PR [l] C_/lz—k_—\/k2+1_l
+. - 1 — — = =
[4] x, +ky, == . 2 4k ;1_/12 Aa=A1 —2k%Z+1 2
_ - )"+ ") + 2k = 2,") =1 _
21, — 22) =17a=3
(Mt =) Hence,
(/11 - Az) 1
xn = E(lln + Azn)
R kyn = Yn+1
1 2 n_/l n
(5] Yn+1+Yn-1 [2] XnYn = 5(2171 + /-{zn).( ;1_/12 )
_ Aln+1 _ Azn+1 N Aln—l _ Azn—l 1 AlZn B AZZn
Al - AZ Al - Az = E W
_ 1 n+1 n+1 n-1 n-1 1
_Al _/12 (/11 _/12 +Al _Az ) XnYn =Ey2n
— L AL g ntl Alnﬂz B Azn)ﬂ
A =2, \ z I
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Theorem: 2.7

3.

CONCLUSION

If {x,} is a Cheldhiya Companion sequence, then for In this paper, the general solution to the Pell equation
x% — dy? = +1for some particular positive values @f

are developed as Cheldhiya and Cheldhiya Companion
sequences. Based on these sequences some interesting
results are provided. In this manner, one can develop
various sequences for any other values of d and
investigate some other results.

mz=1

[l] Xom-1X2m+1 + (kz + 1) = (me)z
[2] XomXomsz — (K% + 1) = (Xpme1)?

Proof:

B ame st O ) me 4 pmon
AT LT (AT + A

2 2
+k*2+1)

_1 4m /11 )'2 4m) 2
=2 (% B P A EICCRE

1
= Z(/11‘”" — (A2 + D)+ ™) + (k2 + 1)
1 am am
= Z(/ll +2+2,"™)

1
_ Z (/112m + AZZm)Z
Hence,

Xam-1X2m+1 T (kz + 1) = (me)z

[2] XomXom+2 — (K% + 1)

_ (Alzm _;/122m) (112m+2 ;/122777.+2) B (kz N 1)

1
=7 (AT (4 A7) + 2") - (kP + 1)

— %(Al4m+2 —24 A24m+2)

_ %(Alzmﬂ +122m+1)2

Hence,

XomXzm+z — (K2 + 1) = (Xzm41)?
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Abstract- In this paper, four novel sequences named as Pan-San, Pan-San Buddy, Pan-San Comrade
and Pan-San Mate sequences are discovered. Also, the recurrence relations, the general formulae for

all sequences and some theorems are invented by exploiting basic concepts of matrices.

Keywords- Pan-San sequence, Pan-San Buddy sequence, Pan-San Comrade sequence and Pan-Sal

Mate sequence, characteristic equation, eigenvalues.

1. INTRODUCTION

Assume thatl # 1 is any positive square free integer. Then the equafiendy? = 1 is called as

the classical Pell equation. There are numerous integer soldtigng,) for n > 0, for this Pell
equation. Many authors such as Lenstra [4], Matthews [5], Techan [9] and others take some certain
Pell equations and solutions into account. Pandichelvi .V, Sandhya .P [7] discovered two tremendous
sequences Cheldhiya and Cheldhiya companion sequences byitakikt) + 1 in the Pell equation

x? — dy? = +1. The Pan-San, Pan-San Buddy, Pan-San Comrade and Pan-San Mate sequences are
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formed in this communication for the solution to the equatidn— dy? = 1 for some specifial.

A few theorems are also supported using these sequences.

2. PAN-SAN AND PAN-SAN BUDDY SEQUENCES

TheC andD values in the universal equatid@? — dC? = 1 for certain non-zero square-free integer
d=k?®+2,keN-—{1} propagates two novel sequenc&sk,2k(k?+1),4k(k?+ 1) —
k,8k?(k?+1)3 —4k(k?*+1)%,... and 1,k?+1,2(k?+1)?2=1,4(k?+1)3 -3 (k?+1),...

and named as Pan-San sequence and Pan-San Buddy sequence respectively. The nth term of the firs

sequence is interpreted by the recurrence relation

Coe = 2(k* + D)Cpoy o — Cozper k,n €N —{1}

whereCy, = 0,Cy = k.

The nth term of the second sequence is standardized by the recurrence relation
Dy =2k + 1)Dy 1 —Dy_pp, kn€N-—{1}

whereDy = 1,Dy) = k* + 1.

Define the Pan-San sequence matrix as

M= (2(k21+ 1) —01)

Now,

(e =Y D)= ()= ()

Also,
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()= CETD ) = (M Ly )= ()

More generally,
Ck Chtik
()= ()
Cn—l,k Cn,k
Theorem: 2.1

2 —
If M = (Z(k 1+ D 01) is a Pan-San sequence matrix, then theerm of the Pan-San sequence

is generalized by

Crk [((k2 +1)+ k\/ﬁ) ((k2 +1) - k\/W) ] wheren € W, the set of all

2\/k2

whole numbers.
Proof:
Given

2(k? + 1) —1)

= 1 0

The characteristic equatioA? — 2(k? + 1)A + 1 = 0 of M reveals two distinct eigen values=

(k> + 1)+ kvkz+2andt = (k2 +1) — kvVk2 + 2.
Also, 12 =2(k*+ 1A -1
A3 =222

= (4(k? +1)? = DA = 2(k? + 1) = = (Ca4A = C)
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kA3 = C3 A — Cyy
M =[8k*+1)°—4k?>+1D]A—-[4k?*+1)—1] = —(04 kA —Csp)
kA* = Copd — Csy
In general kA™ = C A — Cpmq i (1)
Since bothr andt are the characteristic values, they must satisfy (1), hence
ko™ = (Cn,ka - Cn—l,k) andkt™ = (Cn,kr - Cn—l,k)

> k(o™ —1") = Cyp(oc—1)

ThereforeC,, , = k(fan_:)n)
Cok = = | (62 + 1) + kVRZF2)" = (k2 + 1) — kVEZ + 2) |, wheren € W, the set of all

whole numbers.

Theorem: 2.2
If {D,,.x} and{C,, ,} are Pan-San Buddy sequence and Pan-San sequence respectively, then

I ank— (k2+1)an n 1,k
- 1
Il. Dn,kCn,k = ECZn,k
“l DTl+1,k - Dn—l,k = Zk(kz + Z)Cn,k

. 2
Iv. (Cn,k + Cn—l,k) +1=Dyp-1

\Z Cn+1,k - Cn—l,k = Zan.k
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Vi. Dniik = Dn-1x = 2k (k* + Z)Cn,k
Proof:

i. By using the characteristic values of the Pan-San sequence as explained in theorem 2.1, their

product is given byt = 1.
The closed form the Pan-San Buddy sequence is specified by
D, =Ac" + Bt" (2)

The fundamental valudd, , = 1, D, ;, = k* + 1 provides the subsequence system of linear

equationsA +B =1

Ao + Bt =k?* + 1.

_ (k2+1)-7

_ 2
Precisely,A = ~——— andB = g-(iF+1)

o—T
Consequently, the specific value®f . is pointed out by

2.4)_ _(r2
Dn,k _ (k2+1)-7 o +a (k2+1) o

o—T o—T
= —[(k*+ (" — ) + o7(z" 1 — " 1)]

(k%+1) 1
k Cn,k Tk Cn—l,k

2 kDpy = K>+ 1)Cpy — Coo1 g

ii.  The alternative forms of the above valuegl@&ndB are epitomized by

_ (k2+1)-1 _ KkVKZ+2 1

o-t  2kVKZ+2 2

A
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The equivalent values of the general term of the Pan-San Buddy sequence is noted as
—_ 1 n n
Dn,k = E (0' +T )

Hence,

Pt = (222) (222

(o-1)

k

— 2n _ +2n
- 2(0—-71) (O- T )

1
Dn,kCn,k = E CZn,k

%(O.n+1+Tn+1)_%(o.n—1+,tn—1)
k(og"—1h)
(o-1)

Dn+1,k_Dn—1,k _
Cnk

_ (0’—‘[) (O.n+1+Tn+1_o.n—1_Tn—1)

2k (on—1h)

_ (o—-1) (o141 1—gNr—0g1™)
T2k (gn—17)

_(o-D,

= (o0 —1)

= 2k(k? +2)
Dn+1,k - Dn—l,k = Zk(kz + 2)Cn,k

k(o.n_Tn) k(o.n—l_.[n—l)

(o-1) (o-1)

2 2
V. (Coge+ Coorie) +1=] | +1
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— k n n n n 2
—{(G_T)[a —t"+o"t—o01 ]} +1

k n n z
= {5+ -1+ ) +1

[62"(1+ )2 +1"(1 + 0)? = 20"t (1 +1)(1 + 0)] +

(0 -7)2

= [0%" 4+ 12" 4+ g21% (0?2 + 12"72) 4+ 207(c?" + ") —4(k* 4+ 2)] + 1

(0 -7)2

[(6®" 4+ 12") + 0272 (0?" 2 + T2 2) + 207(c®* P + 72" 1) —4(k* + 2)] + 1

(0 7)2

4(k2+2) ———[2Dsnk + 2Dsnzjc + 4D2n_1

2
4(k2+2) 4(k + 2 )DZn—l k

(Cnic + Cn—1,k)Z +1=Don_1x
V. Cryrpe = Cnoge = 2(k* + 1)Cpp — Cpoy e — Crmi
=2(k?*+1 )Cnk —2Ch_1k
Chi1k — Cn-1k = 2kDp
Vi Dyix = Dpoe =5 (@™ + ) =2 (0" + )

— %[O.n+1 4l _gnp — o]

=;lo"(0 1) ~1"(0 = 1)]

=>[(e" = ™) (o - )]
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(2kVi?72)”
=2 ¢
2k n

D1k — Duo1g = 2k(K* + 2)Cyy

3. PAN-SAN COMRADE AND PAN-SAN MATE SEQUENCES

The values oR andS in the world-wide equatios? — dR? = 1 for a firm non-zero square-free
integerd = k? -2, k € N — {1} creates two handsome sequen®es,2k(k? —1),4k(k? —

1)? —k,8k(k?* — 1) — 4k(k* —=1),.. and 1,k*—-12(k*—-1)2—-1,4(k?*-1)3 -3 (k* -

1), ... And Called As Pan-San Comrade And Pan-San Mate Sequences. The nth term of the earlier

sequence is construed by the relation

Rox =2(k* — 1R,y — Ry, WhereRy, = 0,Ry . =k, k € N—{1} andN is the set of all-

natural numbers.
The nth term of the later sequence is inferred by the recurrence relation

Sk = 2(k* = 1)Su—1x — Sn—zx WhereSy, = 1,5, =k*—1,k € N — {1} andn € W, the set

of whole numbers.

Define the Pan-San Comrade sequence matrix as

M = (2(k21— 1) —01)

Now,
Rl,k) _(2(k*=1) —-1\(k?*-1\_ (2(/&2 -1)% - 1) _ <R2,k>
gm(Ro,k _( 1 0)( 1 )_ k-1 ~ \Ryk

Also,
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(3= (D D))= ()

Rn,k _ Rn+1,k
In generaliDt(R ) = ( R, )

n-1k
As to section, it is possible to prove the following theorem.

Theorem: 3.1

2 _ —
If M = (Z(k 1 D 01) is a Pan-San Comrade sequence matrix, therf'tberm of the Pan-San

Comrade Sequence is hypothesized by

Ruie = o= (k2 = 1) + kVEZ = ) — (2 = 1) - kVEZ = ) |, wheren = 0,1,23,.
Theorem:3.2
If {R,x} and{S,,} are Pan-San Comrade and Pan-San Mate sequences respectively, then

I. kSn,k = (kz - 1)Rn,k - Rn—l,k
- 1
I. Sn,kRn,k = ERZn,k
. Sn+1,k —Oon-1k — Zk(kz - Z)Rn,k
. 2
Iv. (Rn,k - Rn—l,k) —1=S5m1k
Voo Rpyie— Rp_qx = 2kSyi
Vi Spiik = Sn-1k = 2k (k* — 2)Rnk

4. CONCLUSION

In this paper, four disparate sequences and their recurrence relations named as Pan-San, Pan-Sar

Buddy, Pan-San Comrade and Pan-San Mate sequences are established by utilizing the generalized
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solutions (x,y) to the universal equation called as Pell equation for two non-zero square-free integers
d=k?®+2,d=k*—2wherek € N—{1}. Also, the general formulae and few theorems are

proved involving such sequences for distinct values ahid can analyze the corresponding results.
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l. Abstract:

In this manuscript, the patterns of Diophantine &spla,, a,, as},{a,, as, as},{as, as, as}, ... reside in Cheldhiya
companion sequence with splendid propenfﬁéi(k2 + 1)), k € N are investigated.

Keywords: Cheldhiya companion sequence, Diophantine triples, Pellian equation.

Il Introduction:

A Diophantinem-tuple with propertyD(n) is a set ofn positive integer$a,, a,, ..., a,,} such than;a; + nis a
perfect square for all #j in {1,2,...m}. Diophantus has already researched how to locate these and he found the
rational quadruplg1/16,33/16,68/16,105/16} with the propertyD(1) (see[1]). Fermat has discovered the first
integer quadruple {1,3,8,120} with the same property. Euler gave the solution
{a ba+b+2 ,4r(r+a)(r+b)} , where ab+1=r? (see[2]). For all-embracing review of a variety of
articles one may refer [3 - 14]. In this communication, the patterns enclosing three elements each of which is a
Cheldhiya companion sequen@g,, a,, as}, {a,, as, a}, {as, as, as}, ... with impressive propertie® (+(k? + 1)),k €

N are examined.
1. Method of Analysis:

Presume that
A; = Xy, Ay = Xam42, M € N where x,, =%((k +VkZ + 1)n + (k—VkZ + 1)n),k EN
be any two integers such thata, — (k? + 1) is a perfect square.

Let az be another positive integer which satisfy the consequent provision

aa; — (k* + 1) = ¢? (1)
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a,az — (k* +1) =y? (2)

Resolving (1) and (2), the value ®f is attained by

0, =2 @®)
By utilizing (3) in (2), the relation to be perceived is

a,¢* — a,Yp? = (k* + 1)(a; — ay) (4)
Create the succeeding linear alterations

¢=X+a,T (5)

v=X+a,T (6)
Restoring the above values ¢fandy in (4), the quadratic equation with two unknowns is
estimated by

X% — (a,a)T? = —=(k*+ 1) (7)

Selecting the least solution to (7) as
Xo = Xom+1,To =1

and the implementation this solution in (5) and (6) endow with the relations that
$=Xome1 +
Y =Xome1 + Q2

Exchanging the above said suitable modifications in (3), the third element in the essential patterns which assure the

postulation is specified by
Az = Xom + 2Xomi1 + Xoma2
Hence,
{X2m» Xami2, Xam + 2Xamye1 + Xamy2} is @ Diophantine triple with the propedy—(k? + 1)),k € N
Leta, be a new-fangled positive integer such that
aa, — (k* +1) = ¢, (8)
aza, — (k* +1) =, (9)
Subtracting (9) from (8) and make a simple computation, the significant vatugi®fdetermined by

2_, 2
— ¢1 Ipl (10)

A, =
4 az—as
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Now, chooser; be a positive integer which satisfies the conditions that
azas — (k* + 1) = ,° (11)
azas — (k* + 1) = },° (12)
By exploiting a plain numerical calculation in (11) and (12), it is to be noticed that

2_ 2
— ¢2 IIJZ (13)

ag = ———

T az-ag
Suppose that
aya6 — (k* + 1) = ¢5° (14)
asag — (k? + 1) = Y5° (15)
wherea, € Z — {0}
Following the prior process in (14) and (15), the equivalent value of the taciorthe sequence is established by
gy =& (16)

Since the objective is to accomplish the appropriate integer values for the parameters in the crucial patterns, make use

of the subsequent transformations
b1 = PrrrXomer + Xom + a2
Uy = Pri1Xomsr + Xom + a3
$2 = Xom + 3Xome1 + 2Xomyz + a3
Uy = Xom + 3X2me1 + 2Xomez + Qy
b3 = 2X5 + 7Xomiq + 60X + Ay
Yz = 2X2p + 7X2me1 + 6Xomy2 + s

where{B,} = {2n — 1},n € N is the sequence of odd numbers from (8) to (16) and proceeding the same mechanism

as explained above, the elements in the necessary patterns with the suitable property are studied by
Ay = 3%gm + (2 + 2Pgy1)Xome1 + 2X2ma2
as = 6Xp + (10 + 2Py 1)Xome1 + 7Xama2
g = 13x5,, + (26 + 4Py 1) Xoma1 + 210042

Thus,

{Xom, Xam+2) Xam + 2X2ma1 + Xamaz}
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{Xom + 2X0m41 + Xoma2) 3Xom + (2 4+ 2Prs1)Xome1 + 2Xoma2, 6Xom + (10 + 2Py i) Xome1 + Xomaz )

{3x2m + (2 + 2Py s1)Xoms1 + 2X2m 42,

21540} ---

6Xom + (10 + 2Py 1) Xome1 + 7Xoma2, 13Xom + (26 + 4Pyi1)Xomeq +

are patterns of Diophantine triples concerning Cheldhiya companion sequence such that the

product of any two of them decreased(ky + 1) is a perfect square whekeis a natural number.

Hence, the patterns of Diophantine triples, a,, as}, {a,, as, a,}, {as, a4, as}, ... in which the factors are Cheldhiya

companion sequence with the propa‘.)(y—(k2 + 1)) wherek € N are evaluated.

Examples for the numerical replacement of the above patterns of Diophantine triples with the property

D(—(k2 + 1)) are specified in the tabular form as follows.

k|lm| k*+1 {a1,az, a3} {az, a3, a,} {as, a4, as} {as, as,a6}

101 |2 (3,17,34) (17,34,99) (34,99,249) (99,249,662}
2|1 |5 (9,161,246} (161,246,805} (246,805,1941} (805,1941,5246)
3la a0 | s | (™ esoorr | Tasrzas | 7 stz000a )
Remark:

Applying the similar procedure as enlightened above, it is pointed out the consequent patterns of Diophantine

triples in which every element is a Cheldhiya companion sequence such that the product of any two of them increased

by (k% + 1) is a perfect square.

{me—b Xom+1 X2m—1 + 2me + x2m+1} ’ {X2m+1,X2m_1 + 2me + Xom+1, X2m—-1 + 4x2m + 4x2m+1}v

{me—l + 2x2m + Xom+1, X2m-1 + 4x2m + 4x2m+1: 4x2m—1 + 12x2m + 9me+1} ’

{X2m-1 + 4%2m + 4Xomi1, 4Xom—1 + 12X + Iomi1, IXom—1 + 30Xam + 25X5m41) -

A small number of numerical cases for the above sequences of Diophantine triples with the propeByk? + 1)

are stated below

k| m k*+1 {a,, az, a3} {az, a3, a4} {as, a4, as} {as, as, ag}

1112 {1,7,14} {7,14,41} {14,41,103} {41,103,274}

2|11 1|5 {2,38,58} {38,58,190} {58,190,458} {190,458,1238}

312 |10 {117,4443,6002} {4443,6002,20773} {6002,20773,49107} {20773,49107,133758}
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Verification of the numerical examples is displayed by the ensDipgpgram.

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

int m,ca,k,n,p;

char ch;

long long int x(int n,int k),a,b,c,d,e,f,A;
clrscr();

do

{

printf("\nEnter the value ok andm\n");
scanf("%d%d",&k,& m);
printf("\nEnter your choice 1 or 2 fd(—(k"2 + 1)) or D(k"2 + 1)\n");
scanf("%d",&ca);

switch (ca)

{

case 1:

a=x(2*mk);

b=x2*m+2,k);
A=x2+*m+1,k);

p=2xk+1;

c=a+2*xA+b;
d=3*a+2+2*xp)*A+2x*b;
e=6*a+(104+2+*p)*A+7x*b;
f=13xa+ (26+4xp)*A+21x*b;
break;

case 2:

a=x2*m-—1k);
b=x2*m+1,k);

A=x(2*+mk);

c=a+2*xA+b;
d=a+4+xA+4x*b;
e=4xa+12+xA+9x*b;
f=9xa+30+«A+25%b;

break;

}
printf("\n(%lld,%lId,%lId),(%lId,%lld,%lld),(%lld,%lId,%lld),(%lld,%lld,%lld),...",a,b,c,b,c,d,c,d,e,d,e,f);
printf(\nDo you want to continue for differemt andk (y/n)?\n");
ch=getche();

Iwhile (ch=="y'||ch=="Y");

getch();

}

long long int x(int n,int k)
{

long long intx[50], y;
x[0] = 1;

x[1] = k;

inti;

for(i=2;i<=mni++)
x[i]=2*kx*x[i—1] +x[i —2];
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y=x[i—1];
returny;

}

V. Conclusion:

In this article, the patterns of Diophantine triplesmprising the Cheldhiya companion sequence satisfying

certain intriguing characteristics are created. In this manner, different patterns of Diophantine triples, quadruples,

quintuples, etc. can be look into the research with some other characteristics.
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Abstract: In this paper, an elegant non-zero distinct integer quadruple (a, b, ¢, d) in
which addition of any three of them is a cubical integer is determined by exploiting
the general solutions to a meticulous cubic Diophantine equation.
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1.Introduction

Diophantus of Alexandria noted that the numbers i,%,%,% had the property
that the product of either of these two numbers increased by 1 is the square of a
rational number. Sets of integers with a comparable property have been of concern
for many years, and a sequence of non- negative integers, is verbalized to be a
Diophantine m-tuple {ay, ay, ..., a,,} with property D(n) if each a;a; + n(i # j) is
the square of an integer [1-7.10]. A variety of integer solutions to different
Diophantine equations are analysed in [8,9]. In this communication, the
Diophantine quadruple consisting of non-zero distinct integers where the sum of

any three elements is a cubic of an integer is discovered.
2. Method of Analysis

Let a, b, ¢, d be four non-zero distinct integers such that the addition of any three of
them is a perfect cube.

Consider
a+b+c=p? )
a+b+d=¢° )
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atc+d=r? 3)

b+c+d=s?3 4)
together with the following condition

3a+b+c+d)=(pP+q+r+s)zd 5)

Solving the system of equations from (1) to (4), the corresponding values of
a, b, c,d are pointed out by

a=§(p3+q3+r3—253) (6)
b=§(p3+q3+s3—2r3) 7
c=§(p3+r3+s3—2q3) 8)
d=§(q3+r3+s3—2p3) )

Adding (6), (7), (8) and (9), an interesting combination is enumerated by
3a+b+c+d)=p*+q>+r3+s3 (10)
Comparison of (5) & (10) provides that
p+q+r+s)z23=p>+q>+r3+s3 (11)
Employing the following linear transformations

p=x+2y,q=2x+yr=2y—x,s =y—2x, where x and y are non-
zero integers

from (6) to (9) gives
a =8x3+ 6xy% + 5y3 (12)
b =x3+ 6x%y + 12xy? — 2y3 (13)
c = —8x3 — 6xy? + 5y3 (14)
d = —x3 + 6x%y — 12xy? — 2y3 (15)

Substitution of the same transformations reduce (11) to the quadratic equation with
three unknowns as

6x2 4+ 3y? =23 16
y (16)

Applying four different procedures of solving (16), the evaluation of an attractive
integer quadruple satisfying the condition that the sum of any three quantities is a
cubical integer is explained as follows.

Procedure (i):

The choice of z = 6m? + 3n?, where m,n € Z — {0}, leads (16) to
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(V6x)* + (V3y)’ = (Vom)” + (v3n)")

which implies that

(V6x + iv3y) (Vox — iv3y) = ((Vom + iv3n) (Vom — iv3n))’

Escalating the right hand side of the above equation and equating real and
imaginary parts on both the sides, it is to be noted that

x = 6m3 — 9mn?
y = 18m?n — 3n3
z = 6m? + 3n?

Substituting the above values of x,y,z in (12), (13), (14) and (15), the values of
a, b, c,d satistying our assumption are deliberated by

a = 8(6m3 — 9Imn?)3 + 6(18m?n — 3n3)?(6m3 — 9mn?)
+5(18m?n — 3n3)3
b = (6m3® — 9mn?)® + 6(6m3 — 9Imn?)?(18m?n — 3n3)
+12(6m3 — 9mn?) x (18m?n — 3n3)? — 2(18m?n — 3n3)3
¢ = —8(6m3 — 9mn?)3 — 6(6m3 — 9Imn?)(18m?n — 3n3)?
+5(18m?n — 3n3)3
d = —(6m3 —9mn?)3 + 6(6m3 — 9Imn?)?(18m?n — 3n?)
—12(6m3 — 9mn?) x (18m?n — 3n3)? — 2(18m?n — 3n3)3

Some numerical examples satisfying the hypothesis are specified below

m| n a b c d a+b+c |a+b+d|a+c+d | b+c+d
111 12609 -14067 21141 2187 27° 9° 33° 21°

2| 1| 2715525 1456542 569565 -2025378 168° 129° 108° 9°

31 2 | 165419721 | 9726264 | 104580288 | -107228664 654° 408’ 546° 192°

Procedure (ii):

Treating (16) as
6x% + 3y%? =12.23 (17)
Assuming that

z=(Vem)” + (vV3n)’
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and re-establish 1 by
1= (V6+iv3)(V6-iv3)
9

in (17), it becomes

(6)" + (V) = (MEEEE (Gm)” + (30)")

which is equivalent to

(\/gx + i\/§y)(\/gx _ i\/§y) _ ((«/3+i«/§)9(«/3—i\/§))2. ((\/gm N
V3n) (Vem — iv3n))’ (18)

Equating the positive parts on both sides of (18) and comparing the like terms, it is
examined that

x = 2m3 — 12m®n — 3mn? + 2n3
y = 8m3 + 6m?n — 12mn? — n3
In view of (12), (13), (14) and (15), the options of a, b, c,d are estimated by

a=802m3—12m?n - 3mn? + 2n3)3 + 6(2m3 — 12m?n — 3mn? + 2n3) x
(8m3 + 6m?n — 12mn? — n3)% + 5(8m3 + 6m?n — 12mn? — n3)3

b = (2m3 —12m?n — 3mn? + 2n3)3 + 6(2m3 — 12m?n — 3mn? + 2n3)? x
(8m3 + 6m?n — 12mn? — n®) + 12(2m3 — 12m?n — 3mn? + 2n3) x
(8m3 + 6m?n — 12mn? — n3)? — 2(8m3 + 6m?n — 12mn? — n3)3

c =—-8(02m3 —12m?n — 3mn? + 2n3)3 — 6(2m3 — 12m?n — 3mn? + 2n3) x
(8m3 + 6m?n — 12mn? — n3)? + 5(8m3 + 6m?n — 12mn? — n3)3

d =—-02m3 —12m?n —3mn? + 2n%)3 + 6(2m3 — 12m?n — 3mn? + 2n3)? x
(8m3 + 6m?n — 12mn? —n®) — 12(2m3 — 12m?n — 3mn? + 2n3) x
(8m3 + 6m?n — 12mn? — n3)? — 2(8m3 + 6m?n — 12mn? — n3)3

Some numerical examples satisfying the propositions are
specified below

m| n a b c d a+b+c|la+b+d|a+c+d|b+c+d
1|1 -10709 -739 10719 2187 (-9)’ (-21)° 13° 23°
2 |1 19683 -1771470 | 2480787 | 1751058 90° (-9)° 162° 135°
3 | 2 | -55002032 | -46632952 | 105976512 | 94647096 162° (-192)° 526° 536°

Procedure (iii):

Consider an alternative solutions to (16) as

_ 1.3 2
x—\/g(k + kl%)

_ 1 3 2
y—ﬁ(l + 1k?)

Volume 10, Issue 4, 2020

Page No: 118




Journal of Engineering, Computing and Architecture ISSN NO: 1934-7197

z=k?+?

Case (i):

Since the target is to evaluate integral values for the variables, it is observed that the

subsequent two parametric choices of k = v/6m and | = +/3n provides the values
of x and y in integers.

Then, the integral solutions to (16) are calculated by
x = 6m3 + 3mn?
y = 3n3 + 6nm?
z = 6m? + 3n?

Substituting the above quantities in (12), (13), (14) and (15), the appropriate values
ofa,b,c,d are discovered by

a = 1728m° + 3888m"n? + 1080m®n® + 3240m°n* + 1620m*n°®
+1188m3n® + 810m2n’ + 162mn® + 135n°

b = 216m° + 1296m®n + 2916m’n? + 1512m®n® + 4050m°n*
+324m*n® + 1971m3n® — 162m?n” + 324mn® — 54n°

c = —1728m° — 3888m"n? + 1080m°n3 — 3240m°n* + 1620m*n°®
—1188m3n® + 810m?n’ — 162mn?® + 135n°

d = —216m° + 1296m8n — 2916m’n? + 1512m%n3 — 4050m°n*
+324m*n® — 1971m3n® — 162m?n” — 324mn® — 54n°

Some numerical examples satisfying our assumption are precised below

m| n a b c d a+b+c|la+b+d|a+c+d | b+c+d

1] 1 13851 12393 -6561 -6561 2734 2734 9f 9° ]

2 | 1 | 1594323 | 1062882 | -1397493 | -196830 108’ 135° 0’ (-81)°

3 1 2 | 94298688 | 75611448 | -71299008 | -22712184 462° 528° 66° (-264)°
Case (ii):

As in case (i), the single parametric choices of k = /6t and | = /3t offers the
values of x and y in integers.

Thus,
x = 9¢t3

y = 9¢t3
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z = 9t?

Substituting the above magnitudes in (12), (13), (14) and (15), it is determined by
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a = 13851 t°

b =12393¢°

c=—-6561t°

d =—-6561t°

Some numerical examples satisfying the hypothesis are exemplified below

k a b c d a+b+c a+b+d at+c+d b+c+d
1 13851 12393 6561 -6561 27 27 9°
2 | 7091712 6345216 -3359232 -3359232 216° 216° 72
3 | 272629233 | 243931419 | -129140163 | -129140163 729° 729° 243°

The C Program for numerical examples satisfying our hypotheses are illustrated

below.

#include<stdio.h>
#include<conio.h>
#include<math.h>

void main()

f
1

char ch;
intm,n,ca;

signed long int x,y,a,b,c,d,cup,cuq,cur,cus,cupl,cuql,curl,cusl,p,q.r,s;

clrscr();
do

f
1

printf("\nEnter m and n values\n");

scanf("%d%d",&m,&n);
printf("\nEnter your choice case 1 or 2 or 3 or 4\n");
scanf("%d",&ca);

switch(ca)

f
1

case 1:

x=(6*m*m*m)-(9*m*n*n);
y=(18*m*m*n)-(3*n*n*n);

break;
case 2:

x=2*m*m*m)-(12*m*m*n)-(3*m*n*n)+(2*n*n*n);
y=(8*m*m*m)+(6*m*m*n)-(12*m*n*n)-(n*n*n);

break;
case 3:

x=(6*m*m*m)+(3*m*n*n);
y=(3*n*n*n)+(6*n*m*m);

break;
case 4:

Xx=9*m*m*m;
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y=9*m*m*m;

break;

}

a=(8*XFX*X)HO6*x*y*y)+H(S*y*y*y);
b=(X*X*X)H6*x*Xx*y)H(12*x*y*y)-(2*y*y*y);
C=(-8*X*X*X)~(6*x*y*y)+(5*y*y*y);
d=-(x*x*X)H(O6*X*x*y)-(12*x*y*y)-(2*y*y*y);
cup=a+b+c;

cug=at+b+d;

cur=a+c+d;

cus=b+c+d;

if(cup<0)

{

cupl=-1*cup;

p=pow(cupl,1.0/3.0);

}

else

f
1

p=pow(cup,1.0/3.0);
j

If(p==0)

p=0;

else

p+;

if(cup<0)

p=-p;

if(cuq<0)

{

cuql=-1*cuq;
g=pow(cuql,1.0/3.0);
j

else

f
1

gq=pow(cuq,1.0/3.0);
j

If(q==0)

q=0;

else

q++;

if(cuq<0)

q9=-q;

if(cur<0)

{

curl=-1*cur;
p=pow(curl,1.0/3.0);
b

else

f
1

r=pow(cur,1.0/3.0);
j
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If(r==0)

r=0;

else

r++;
if(cur<0)
r=-r;
if(cus<0)

{
cusl=-1*cus;
s=pow(cusl,1.0/3.0);
}

else

{

s=pow(cus, 1.0/3.0);

)

if(s==0)

s=0;

else

s++;

if(cus<0)

S=-5;
printf("\nm=%d,n=%d,a=%ld,b=%I1d,b=%ld,c=%Ild,d=%Id\n",m,n,a,b,c,d);
printf("\na+b+c=(%ld)"3,atb+d=(%ld)"3,a+c+d=(%Id)"3,b+c+d=(%Id)"3",p,q.r,s);
printf("Do you want to continue (y/n)?");

ch=getche();

ywhile (ch=="Y"|| ch==y");

getch();

)

3. Conclusion

In this communication, the quadruple (a, b, c,d) so that the sum of any three of
them is a cubical integer is scrutinized. To conclude, one can search for different
quintuples, sextuples, septuples etc satisfying some other properties.
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1. Introduction

Let n be an integer. A set of positive integers (ay,az,as, .. .a;)
is said to have the property D(n) if aja; +n is a perfect square
forall 1 <i< j <m; such a set is called a Diophantine m—
tuple [1 — 6] - In [7], the authors were evaluated the triplesin
Arithmetic Progression (¢ —d,a,a+d) such that2 a - d =
a’2a+d=p%*2a=y>and2a—d = a?2a+d= B> 2a=
x4 where a and d be two non- zero distinct integer.In [8] ,
triples were procured in Arithmetic Progression such that the
sum of any two is a perfect square. In [9], the authors found
the triples in Arithmetic Progression (a —d, a,a+ d) such that
each of the expression a> —ad,2a +d,2a is a perfect square.
In [10], the authors found the quadruples of the form (x,y,z, w)
where the elements arein Arithmetic Progression satisfying

the conditions x+y = a’z+w = B> and x+y+z+w = y>.

In this manuscript, three unlike integer quintuples with the
elements in Arithmetic Progression rewarding the condition
that that the sum of three consecutive integers indicates a
perfect square is acquired.

2. Course of action for survey

Presume that p, g, r,s,t be five non-zero separate integers such
that the elements in the quintuple ( p,q,r,s,t) materialize in
Arithmetic Progression.

To symbolize this proclamation, let a and d be two non-zero
integers such that p =a—2d,q=a—d,r=a,s=a+d,t =
a+2d.

For the exploration of the perception of the manuscript, imag-
ine the sum of three consecutive elements in the already as-
sumed quintuple is a square of an integer. The above declara-
tion is replicated by the subsequent equations

p+q+r=3a—3d=¢> 2.1
g+r+s=3a :T]2 (2.2)
r+s—+1=3a+3d =y> (2.3)

Addition of (2.1) and (2.3) endow with the proportion that
it
a =
6

Similarly, subtraction of (2.1) from (2.3) bestow as in the
succeeding fraction

2.4)

:Xz_(Pz
6

d (2.5)
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Elucidationof (2.2) and (2.4) yields the following equation

n? = o’ + 2

> (2.6)

To convert the above said value of 1 as in integer, launch the
novel conversions

n=3,0=06u,x =60 2.7)
These translations imitate (2.5) and (2.6) as follows

d =6 (0*—pu?) (2.8)

A? =2 (p* + 0?) 2.9)

The elements in the required quintuple are making into inte-
gers with the property looking for is portrayed by the three
procedures as below.

Procedure 1: Decode the parameter A as

A =u*+V
Then, the equation (2.9) can be altered by

(uervz)2 =2(u*+0?)
= (utiv) (u—iv)? =1+ —i)(u+io)(p —io)

By escalating and balancing positive terms and thenequating
real and imaginary parts on both sides, the resulting equations
are revealed by

w—o=u*—?

U+ o =2uv

Resolving the above equations the most plausible values of
and o are demonstrated by

u= (u2 —? —|—2uv)

—_ N | =

2

(025( —u2—|—2uv)

The parametric values of A, and ® in integers are created
by selecting the options of u = 2U and and v = 2V as follows

A=4U*+V?)
p=2(U*-v>+20V)
w=2(V?-U>+2UV)

The replacement of the above value of A in (2.7), endow with
the value of N as

n=12(U*+V?)

According to (2.2) and (2.8), the components in the essential
quintuple are offered by

a=48 (U +v?)?
d=1920V (V*—U?)

609

Subsequently, the necessary guintuple in which the elements
form an Arithmetic progression is discovered by

2
(p,q,1,8,1) = {48 (U2 +V2) — 384UV (v2 _ U2)
2 2
48 (02 +v2) 1920V (v2 _ Uz) .48 (U2 +v2)
2 2
48 (02 +v2) +1920V (v2 - Uz) 48 (U2 +v2)
384UV (v2 - Uz) }

2.1 Logical postulation is checked for certain val-
ues of U and V as tabulated below

Table 1.
Uu|V (p,q. 1,8, 1) p+q+r | g+r+s | r+s+t
2 | 1| (3504,2352,1200, | 842 60> 122
48,-1104)
5 17| (-59712,101568,
262848,424128, | 552 | 8882 | 11282
585408)
1 | 3| (-4416,192,4800, | 242 1202 | 1682
9408,14016)

Procedure 2:
The same conversion of A = u” + v? supplies the alterna-
tive appearance of (2.9) as

,  (T+0)(7—1)

(u+iv)*(u—iv)? = o5 (L+io)(u—io)

Replicate the same course of action as mentioned in procedure
(2.1), the corresponding values of u and @ satisfying the
double equations 744 — @ =5 (u2 — vz) U+ 7w = 10uy are
appraised by

u :E (7 (u2 —vz) + 2uv)
1
(0] =10 (v2 —u?+ 14uv)
The chances of A, 1 and ® in integers by picking u = 10U
and v = 10Vare produced by
A =100(U*+V?)
p=10(70* =7v*+20V)
0=10(V>-U?*+14UV)
Renovate the value of A in (2.7), the value of 7 is calculated

by
n =300 (U*+V?)

In sight of (2.2) and (2.8), the equivalent choices of a and d
are pointed out by

a =30000 (U? +V?)*

d =—4800 (6U* +6V* +7U°V —7UV’ —36U°V?)
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Hence, the needed quintuple with desired property is exposed
by

(p.g.7,5.1) = {30000 (U + V2)* + 9600(6U* + 6V*

+ UV —TUV3 = 36U%V?),30000 (U2 4 V2)?

+4800 (6U* + 6V* + 70UV —TUV? —36U2V?)

30000 (U +v2)*,30000 (U2 + Vv?)?

—4800 (6U* +6V* +7U3V —TUV? —36U%V?),

30000 (U 4 V2)* —9600(6U* + 6V'*
+7U°V —TUV? - 36U°V?)}
2.2 Presumption is verified for definite values of U

and V in the table given below
Table 2.

u|Vv (P, q, 1,8, 1) p+q+r | q4r+s | r4s+t

01 (87600,58800,
30000,1200,

-27600)

420% | 300% 60?2

(-56400,346800,
750000,1153200,
1556400)

10202 | 15002 | 18602

(-110400,4800,120000, | 120> | 600%> | 8402

235200,350400)

Procedure 3:
Commencement of the fresh renovation A = 2 Ain(9) declare
the same equation as

24 =p? + 0?
=A% p? = @? A2
=A+u)A—p) = (0+A)(0—-A)

HD-0=G)E)
=>(1+=)(l—=)=—+1)(——1
( +A A A + A
(2.10)
Again, make use of the transformations ﬁ =0, % =pin(2.10)
produces the proportion as
(1+6) (p-1) m
(I1+p) (1-06) n’

Hereafter, calculate the values of 6 and p from (2.11) by the
process of cross multiplication and then substituting these
values in the ultimate transformation, it is determined by

n0 2.11)

A=m>+n’ =1 :2(m2+n2)
2

(2.12)
u =m’>+2mn—n
© =n>+2mn—m>
Interpretation (2.2) and (2.7) offers the relevant values of a
and d as presented in the equations scripted below.

a=12 (m2 +n2)2

d =48mn (n2 — m2)

610

Hence, the essential quintuple in which the elements in Arith-
metic progression is rendered by

(p,q,r5,1)

= {12 (m2 +n2)2 —96mn (n2 —mz) ,12 (m2 +n2)2
—48mn (n2 —mz) ,12 (m2 +n2)2 ,12 (m2 —|—n2)2

+ 48mn (n2 - m2) ;12 (m2 + n2)2 + 96mn (nz —mz)}

2.3 Supposition is authenticated for specific values
of U and V in the following table

Table 3.
m | n (P, q. 1,8, 1) p+q+r | g+r+s | r+s+t
2 [ 1] (-276,12,300, 62 307 427
588,876)
5 [ 71 (-14928,25392,
65712,106032, | 276> | 444> | 5642
146352)
1|3 ] (-1104,48,1200, | 127 602 842
2352,3504)

The emerging C software shows verification of the numer-
ical samples:

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main()

{

char ch;

clrscr();

do {

long long int x,u,v,m,n;

long long int U,V,M,N,a,d,p,q,1,s,t,A,B,C,E,F,G;
printf(”\n Enter the case 1 or 2 or 3\n”);
scanf(” %l1ld”,&x);

switch(x)

{

case 1:

printf(’\n Enter integer values for u and v \n”);
scanf(” %l11d%l11d”,&u,&V);

U=u*u;

V=v*vy;

a=48*(U+V)*(U+V);

d=192*u*v*(V-U);

p=a-2*d;

g=a-d;

r=a;

s=a+d;

t=a+2%*d;

break;

case 2:

printf(’\n Enter integer values for u and v \n”);
scanf(” %l11d%l11d”,&u,&V);

U=u*u;

V=vi*y;




Incomparable integer quintuple in arithmetic progression with prominent condition — 611/611

a=30000*(U+V)*(U+V);
d=-4800*(6*U*U+6*V*V+T7*U*u*v-7T*u*v*V-36*U*V);
p=a-2*d;

gq=a-d;

r=a;

s=a+d;

t=a+2%*d;

break;

case 3:

printf(”\n interger values for m and n \n”);
scanf(”%11d%11d”,& m,&n);

M=m*m;

N=n%*n;

a=12*(M+N)*(M+N);

d=48*m*n*(N-M);

p=a-2*d;

g=a-d;

r=a;

s=a+d;

t=a+2%*d;

break;

}

A=p+q+r;

B=q+r+s;

C=r+s+t;

E=sqrt(A);

F=sqrt(B);

G=sqrt(C);

printf("\n p+q+r=%I11d=%11d> \n q+r+s=%11d=%I11d>\ nr+s+t
=%I1d =%11d>”,A E,B,F,C,G);

printf(’”\n Do you want to continue for different cases (y/n)?”);
ch=getche();
}

while (ch=="y’
getch();

}

ch=="Y");

3. Conclusion

In this paper, an elegant integer quintuple (p,q,r,s,t) where
the components make ensure in arithmetic progression with
the conjecture that the sum of any three consecutive elements
designates a perfect square is recognized. In this manner, one
can search an integer quintuple (p, q,r,s,t) with elements in
Geometric progression or Harmonic progression satisfying
some other condition.
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ABSTRACT

In this document, several new-fangled identities regarding Pell and Pell-Lucas numbers enable to provide
certain congruence relations for those numbers are deliberated. Also, divisibility properties of Pell and Pell-
Lucas numbers are revealed by means of these derived congruence relations.
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I. INTRODUCTION

Py=0,P, =1,and B, = 2P,,_, + P,,_, for n > 2 establish the Pell sequenB,}. P, is referenced to the
nt"Pell number. The Pell-Lucas sequeieis defined a®,, = P,_; + Pp.1. For eacm € Z, Q,, = 2Q,—; +

Qn—, forn > 2andQ,—1 + Q41 = 8P,. For more information on the Pell and Pell-Lucas sequences, see [1].
Numerous well-known relationships exist among the Pell and Pell-Lucas numbers. Typically, these relations are

achieved using Binet's formula, which is signifiedR)y= 2\/gnandQn = a" + ", for anyn € Z, wherea =

1++2and g =1 —+/2. Additionally, the most well-known formulas for Pell numbers afe= aP, +
P,_;andp™ = BB, + P,_,, forn € Z.

Numerous sums incorporating Pell and Pell-Lucas numbers are provided in this study. Following that, certain
congruences relating Pell and Pell-Lucas numbers are elaborated. These congruences enable one to establist
number of previously known characteristics. Additionally, with the use these congruences, many additional

theorems are acclaimed.

[I. SUMS AND CONGRUENCESOF PELL AND PELL-LUCAS NUMBERS
Theorem:2.1
If X is a square matrix with? = 2X + I, thenX™ = P,X + P,_,Ifor every integen.

a—

Proof:
LetZ|a] = {Aa + B;A,B € Z} andZ[X]| = {AX + BI;A,B € Z}

Define a functiory: Z[a] - Z[X]by f(Aa + B) = AX + BI.

Thenfis a ring isomorphism. Moreover, it is clear tfiégr) = X andf(Q,,) = Q1.
Therefore, X" = (f(a))" = f(a™) = f(Pya + Pp_y) = PX + Pyl

Corollary: 1.1

Qn

_[1 4 n_ |2
IfM—[l/2 1],thenM =|p
2

Proof:
Since,M? = 2M + I, it follows from theorem (1) that

M" = P,M + Py_y1

P,+P,, 4Pn ] [Qn 4P,

" 7
M‘[ 2 RtRn] |2 @

Remark:
From the fact thaf: Z[a] —» Z[M], defined byf(Aa + B) = AM + BI is a ring isomorphism, it is observed
that

@M = Q™ + (=)™ =0 @
and a?™ —2V2P,a™—(-1)™ =0 (2)

123
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Applying the functionfon each side of (1) and (2), the relations discovered are pointed out by:
M2 — @ M™ + (—1)™I =0 (3)
and M?™ — KP,M™— (-1)™I =0 (4)

0 8

whereK = f(2v2) = fQa —2) = 2M —2I = [1 o)

Theorem: 2.2
If n € N andm, k € Z, then

n

QZmn+k = (_1)(m+1)n z (?) (_1)(m+1)i QmiQmi+k

i=o

n . .
and PZmn+k = (_1)(m+1)n Z?:o (l) (_1)(m+1)l lePmi+k

Proof:
From (3), it is noted that
M2 = QpM™ — (—1)™ (5)

Raisingn" power on both sides of (5).
Then, M™M= (QuM™ — (=D)™)" = (QuM™ + (=)™ 1)"

n

= (1) 0minm @M

= (=1)(m+Dn Z (711) (—1)(m+Di QmiMmi

i=o0
Therefore, Mzmntk — (_1)(m+1)n ., (7:) (—1)(m+Di QmiMmi+k

It comprehends from corollary 1.1 that

n

QZmn+k = (_1)(m+1)n Z (Tll) (_1)(m+1)i QmiQmHk

i=o
and  Prmnik = (=1)(m+1n Yo (Tll) (—1)m+i Qmi mi+k

Corollary 2.2.1:

Qamnsk = (=™, (mod Q) (6)

and  Pymnix = (=1)™D7P, (mod Q) @)
for everyn € v andm, k € Z.

Remark:

SinceK =2M =21 =M+ M, . M"K = KM™,Vvm € Z

=3 Y =orand) Y2 4= %)

c d a
Theorem?2.3:
Ifn € N andm, k € Z, then
[n/2] [(n-1)/2]
QZmn+k = (_1)mn Z (;) 8i PmZiQZmi+k + Z (Zirj— 1) (_1)mi8i Pm2i+1P2mi+m+k
i=o0 i=o
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and
[n/2] [(n-1)/2]
n . : n .. :
PZmn+k = (_1)mn Z (Zi) 8! PmZLPZmHk + Z (Zi 4 1) (_1)m181 Pm21+1Q2mi+m+k
i=o0 i=o
Proof:

From (4), it follows that
M?™ = KP, M™+(=1)™]
Therefore, M?Zmntk — (Kp, M™+(=1)™D" Mk

> (B nmyr (KPmMm)i] M

— (_1)mn Z (711) (_1)miKiPmi Mmitk

[n/2] [(n-1)/2]
_ (_1\ymn n 2i 20 pr2mi+k n _q\ymig2i+1 2i+1 pr2mi+m+k
=D Z(Zi)K P MZTE + Z (20s 1) CD™KZ B2 M
i=o

=0
[n/2] [(n-1)/2]
_ (_1\ymn ny qi 2i pr2mi+k n _1\ymiqi 2i+1y r2mi+m+k
= (-1 Z(Zi)8pm M + Z (2i+1)( ™8 Kb M
i=o0 i=o
We will get the results by trading the matriéésindM on both sides and equating the same entries.

Corollary 2.3.1:
If n € V andm, k € Z, then

Qzmn+k = (=D Qy(mod Py,) (8)
and Pymn+k = (=1)""Py(mod Py,) 9)
. DIVISIBILITY PROPERTIES OF PELL AND PELL-LUCAS NUMBERS

To begin, it is established two well-known theorems in a novel manner by exploiting the congruences postulated
in Corollaries 2.2.1 and 2.3.1. Regarding the divisibility of Pell and Pell-Lucas numbers, readers will investigate

the formulae and learn how to use them efficiently to resolve problems. Thus, this article explains the

fundamental divisibility for Pell and Pell-Lucas numbers.

Theorem 3.1:
The necessary and sufficient conditions@gy|Q,, are

i. m|nand
i. % is an odd integer
for allm,n € N andm > 2.

Proof:
Presume thad,, |0,

Supposen t n, then by fundamental property of divisibility,can be expressedras mq + 1,0 <r <m.
If g is an even integer, then= 2s for somes € Z.
From (6), it follows that

Qn = Qoms+r = (_1)(m+1)sQr(m0d Qm)

SinceQ,,1Q,, Q1Q,. This is a contradiction sinag. < Q,,asr < m. Hence,q is an odd integer. Sustain=
2s + 1 for somes € Z. So,
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Qn = Q2ms+mar = (_1)(m+1)SQm+r(m0d Qm)
Also, sinceQu |Qn, Qm|Qum+r-

To prover =0
Suppose > 0. By the identityQ,,+» = QmPr—1 + P-Qm+1, the above implies tha,, | B- Qi1

Since(Q,n, Qm+1) = 1, it follows thatQ,,|B.. This is a contradiction to the fact thatik m, thenB. < B, <
Q.- As aresult, it is resolved that= 0.

Thus, thath = mgq, with g being an odd integer.
Conversely, suppose that|n and% is an odd integer,

That is,n = m(2s + 1), for some integes. Then it isprocured that,

Qn = Qumsim = (=D)™*V5Q,, (mod Q)
= QmlQn.
Hence, the result.
Theorem 3.2:
Letm,n € N andm > 2. ThenQ,,|B, if and only ifm|n and% is an even integer.

Proof:
Suppose tha@,, |B, andm t n.This assumption means that mq +r,0 < r < m wherem > 2.

If g is an odd integer, it may phrase 2s + 1 for some integes.
From (7), it is pointed out that

By = Pomsymar = (_1)(m+1)st+r(m0d Qm)

ThenQ,,|Ppm4r and henc@,,|8P,,... It is well-known that8P,,., = 0 Qr—1 + QrQm+1, therQ,,10,Qus1-
SinceQ,, andQ,,,+; are relatively prime, the only possibility @, |Q,. Butr < mdeliverR),. < Q,,. S0,0Q,, t

Q.. This conflict befalls as a result of our erroneous assumption gheeing an odd number. Thereforejs
an even integer. Thus, it may haye= 2s for some integes. Hence,

Form (7),B, = Pymsir = (—1)™DSP (mod Q,,)

SinceQ,,|B,, Qm|P.. However, this cannot be true sinc& m and hencé, < B, < Q,,,. This contributes that
r = 0. So, it can be concluded that mgq, q is an even integer.

Conversely, suppose that/n andn = 2ms for somes € Z. Then,it isacquired from (7) that
Py = Pyyps = (1) V5P (mod Q)
It follows thatQ,,|P,.

Theorem3.3:
For allm,n € N andm > 3, B, |P, if and only ifm|n.

Proof:
Initially consider thatp,,|P, butm  n. Thenn = mq + r with 0 <r < m. Now, suppose that is an even
integer, then this may be takemyas 2s for any integes.

Hence, (9) provides the succeeding identity

Py = Pypsir = (=1)™P.(mod By,)
SinceP,,|B,, by applying the above identit§,, | B-. Since, if 0 < r < m andm > 3, it leads to
P, < P,. Henceg must be an odd integer. Then= 2s + 1, for somes € Z. Thus, (9) becomes

Py = Pymssmer = (=1)™ Py (mod Pp,)
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SinceP,,|B,, it follows thatPy,|P,,,. By the identity,P,,,, = Ppy1P- + Py Pr_q, it is noted thatP,,| P41 P
Due to the fact thé&B,, P,,+1) = 1, it isreceived tha,|B., which is a contradiction. This emerges as a
consequence Bf < B, asr < m andm > 3. As a result; = 0 and subsequently= mgq, resulting imm|n.

Conversely, pretend that|n. Then, the conclusionnis= mq for some natural number As an outcome,
q

Py = Ppnq = z (?)Pmi m—1q_ipi

i=0
Hence, it is realized thad, | P,.

IV. MAIN THEOREMS
From the identity2(—1)" = Q,,P,—1 — Q—1P,, it can be seen thagcd(Q,, P,) = 1lor gcd(Q,, P,) = 2.
Furthermore,

Qn® — 8B, = 4(-1)" (10)
From equation (8), it is seen th@d, ., = Qr(mod12) and thereforé?2 t Q,, for every natural number.

Now, we'll go over some Pell-Lucas numbers identities that will be necessary in the sequel:

Q2n = Qn* —2(-D)" (11)
Q3n = Qn(QnZ - 3(_1)71) (12)
Theorem4.1:

Letr > 1, be an odd number ama > 1. Then, there is no Pell-Lucas numiggisuch thaQ,, = Q,,Qpmx?

Proof:
Assume tha®,, = Q,,-Q,,x? andr is an odd number. Thedy,|Q,, andQ,,|Q,. Thenn = 2rt andn = mk for
some odd natural number k by theorem 2.4 2|n = n = mk = 2|m. It is thus obvious that = 2v, for

some oddv € V. Since2|n and% is an odd natural number, it can be written as8q + s with s = 2,6 and
q = 0. Hence,

Qn = Qgq+s = Qs(mod 12)
= Qn = Q2,06 (Mmod12)
= Q, =6 (mod12)
Similarly, it can be seen th@t, = 6 (mod 12).
Since,r is an odd natural number, it is obtained gt = 6(mod 12). Then it follows that
Qn = Q2rQmx* = 6Qmx?*(Mmod 12)
Moreover,6x? = 0,6 (mod 12)andQ,,, = 6 (mod 12),
Q,, = 0(mod 12) which contradicts the fact th@f, = 6 (mod 12). This concludes the proof.

Theorem4.2:
Q,k, = 2,10 (mod 12) for everyk > 2 and for every odd natural number

Proof:
Assume that is an odd natural number, there +1, 43, 15,17 (mod 8). Moreover, it can be proved by
induction tha* = 0, +4 (mod 8) for k > 2. 2%t = 0, +4 (mod 8).

Therefore= 2Kt = 8q or2¥t = 8q + 4 for ¢ > 0. Then it seeks that
Q,k; = Qgq = Qo (Mmod P,)
Or
Quk; = Qgq+a = Q14 (Mod Py)
Thus,Q,«, = 2,10 (mod 12), k > 2.

Now, it is possible to generalize theorem as follows:
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Theorem4.3:
Let m> 1,k = 2 andt be an odd natural number. Then there is no Pell-Lucas nugpbsuch thatQ,, =

sztmez.

Proof:

Assume tha),, = sztmez and t is an odd natural number. Sirgg,|Q, and@,,|Q,, there exist two odd
natural numbers. andv such that = 2¥tu andn = mv by theorem 3.1. Thus, we haxe= 2*r, for some
r € N, because = 2X¥tu = mv andt,u, v are odd natural numbers. Then, we have 4 divides tnofhn, by

the fact thak > 2. Hencen = 8q + s with s = 0,4,8,12. Thus,

Qn = Qgq+s = Qs (mod 12)
Sinces € {0,4,8,12}, it follows that
Q, = 2,10 (mod 12)
It may be observed in a similar manner that
Qm = 2,10 (mod 12)
On the other hand,«, = 2,10 (mod 12) by theorem (8).
IfQ,k, = 2 (mod 12), thenQ,, = Qk, Qmx?* = 2Qx*(mod 12).

Since 2x? = 0,2,6,8 mod(12) andQ,, = 2,10 (mod 12), Q,, = 0,4,8 (mod 12), which is a contradiction to
the fact tha,, = 2,10 (mod 12).

ThereforeQ,«, = 10 (mod 12). Then
Qn = sztmez = 10me2(mod 12).

Since10x? = 0,4,6,10 mod(12) andQ,, = 2,10 (mod 12), Q,, = 0,4,8 (mod 12), which denies the fact that
Qn = 2,10 (mod 12). Hence the proof.

Theorem4.4:
If m andr are odd natural numbers, then there is no Pell-Lucas nuwybsrch tha),, = Q,, Q-

Proof:
Assume tha@,, = 0,,0Q,, form > 1 andr > 1 and are odd numbers. Sin@g,|Q,, andQ,|Q,,, there exist two
odd natural numbeng andv such thah = mu andn = rv.

Hence, we have = 4k + 1 for somek > 1. Therefore, we get = mu = m(4k + 1) = 4km + m.
Qn = Q4kmi—m = (_1)in-m (mOd QZm)

i.e., Qer = iQm (mOd QZm) (13)
Similarly, it can be obtained that

QmQr = iQr (mOd QZr) (14)

Suppose tha®,,|Qx- thenfn—r:an odd integer which is not possible. Hergg + Q,, which implies that
gcd(Qm, Q2r) = 2. Then by equations (13) and (14),

Q, = %1 (mod Qsz) andQ,, = +1 (mod %)
= Qum < 2Q, £ 2 andQ,, < 2Q,, 2
= Qom + Q2r <20, + 20, £ 4
By equation (11),
Qm*£2+0Q,°+2<2Q,+2Qn + 4
QmQm —2) + Q(Qr —2) <0,

which is a contradiction. This completes the proof of the theorem.
Corollary 4.4.1:
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There is no Pell-Lucas numb@y, such tha®,, = Q,,0Q,, for anym > 1 andr > 1.

Proof:
If r > 1 and even, then ther proof follows from theorems (7) and (9).

If m andr are odd natural numbers, then it is proved in theorem (10).

V. CONCLUSION

In this research, various quantities by means of the Pell and Pell-Lucas numbers are presented. Then, som
specific congruences concerning the Pell and Pell-Lucas numbers have been provided. These analogues allowe
to govern a number of previously known features. These congruences have also been utilized to prove many
other theorems.
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INTRODUCTION:

In [3], Keskin, Refik, and Bahar Demirtiirk discovered the solutions of some Diophantine
equations using generalized Fibonacci and Lucas sequences. In [8], A. Marlewski, P. Zarzycki
studied the particular Diophantine equation x? — kxy + y?2 +x = 0. In [11], Pingzhi Yuan,
Yongzhong discussed the Diophantine equation x> — kxy + y? + Ix = 0,1 € {1,2,4}. For
an all-embracing review, one can refer [1-2,4-7,9-10,12].

In this paper, the solutions in Pell and Pell-Lucas numbers for some explicit polynomial equations
of degree two in two variables x? — 2xy — y? = +k when k = 1,8, x? — 6xy + y? = +1 when
1=4,32,x2—2xy—y2+x=0,x2=-2xy—y? +y=0,x>—-2xy—y?+8x =0,

x%? —6xy +y%? +4x = 0 and x? — 6xy + y? + 32x = 0 are investigated.

Needed Theorems:

Theorem: [I]

The numbers +®", @™ where w = 1 + V2 are the only unities of k(\/f), where k(\/f) is a
quadratic field. See [1]
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Theorem: [II]
If positive integers x, y, k and the integer m with gcd(x, m) = 1 satisfy the equations
x% — kxy + y2 F mx = 0 then x = u? and y = uw for some positive integers u and v. If positive
integers x,y,k and the integer m with gcd(y, m) = 1 satisfy the equations x? — kxy — y? ¥
my = 0 then y = u? and x = uv for some positive integers u and v. See [4]
Theorem: [III] Fundamental theorem of arithmetic
For each integer n > 1, there exists primes p; < p, < -+ < p,such that n = p;p, ... p, .this
factorization is unique.
MAIN RESULTS:
The n** Pell number labelled by P, is demarcated by Py = 0,P; = 1 and P, = 2P,_; + P,,_,, for
n > 2.If a, B be the roots of the equation x> — 2x — 1 = 0, then @ = 1 + V2,8 = 1 — /2 where
af = —1 and a + f = 2.In addition, it is well- known and simple to demonstrate the identities
that ™ = aP, + P,_; and " = BP, + P,,_, for every n € Z, the set of all integers. In the other
hand, it could be perceived by induction that P,? — 2P,P,_; + P,_1% = (=1)"*' vn € Z.
(1)

The nt" Pell-Lucas number Q,, is characterized as Qy = Q; = 2 and Q,, = 2Q,_; + Qn—>

for n > 2 .The associations between Pell and Pell-Lucas numbers are agreed as follows
1. Q, =P, + Py, foreveryn € Z.
2. 0,2 —20,0,-1 — Q1> =8(=1)"foreveryn € Z
2)

Theorem: 1
The necessary and sufficient condition for all non-negative integer solutions to the second-degree
equation in two variables X? — 2XY — Y2 = (=1)"*1is (X,Y) = (P,, P,_;) withn > 1.
Proof:
If (X,Y) = (P, P,_1), then from identity (1), it seeks that X? — 2XY — Y2 = (—=1)"*1,
Conversely suppose that X? — 2XY — Y2 = F1 for some positive integers X and Y.
Then by theorem (I), (Y + aX)(Y + fX) = +1 = (Y + aX) € k(V2).
Thus, Y + aX = a™ = aP, + P,_, and hence (X,Y) = (B,, P,—_1),n = 1.

Corollary: 1.1

The feasible solutions of the quadratic polynomial equation X? — 2XY — Y2 = 1 are specified by
X,Y) = (Pyma1, Pom) withm > 0.

Proof:

If nis odd such that n = 2m + 1, then the apt integer solutions to X? —2XY —Y? =1 is
obtained as (X,Y) = (Pops1, Pom). m = 0.

Corollary: 1.2

Every possible solution in Pell numbers of the quadratic equation X? — 2XY — Y? = —1 are stated
by (X,Y) = (Pom, Pop—1) wWithm > 1.
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Proof:

If n is even such that n = 2m, m = 1, then the appropriate solutions to X2 — 2XY — Y2 = —1is
X, Y) = (Pzm, Pam-1) -

Theorem: 2

The probable integer solutions to the second-degree polynomial equation X2 — 6XY + Y2 = 4 are
attained by (X,Y) = (Pyp42, Poy) withn > 0.

Proof:

Assume that X? — 6XY + Y? = 4 for some positive integers X and Y.

Without loss of generality, suppose that X > Y.

Then, (%
% = Pyp4+q and Y = Py, and therefore (X —VY,Y) = (2Pyp41, Pon)

Consequently, X = P,,,,and Y = Py, n = 0.

Theorem: 3

The positive integer roots of the binary quadratic equation X? — 6XY + Y2 = —4 are conquered
by (X,Y) = (Pypy1, Pop—q) withn > 1.

2 -
) -2 (%)Y— Y2 =1= X? — 6XY + Y? = 4. By corollary 1.1, it should have

Proof:

The proof is equivalent to Theorem 2.

Theorem: 4

Let N be the set of all-natural numbers and X, Y € N sustaining the particular equation of the
form X?—=2XY —Y?4+ X =0,then X = A? and Y = AB where ,B € N.

Proof:

IfX,Y € N are satisfying the corresponding equation in the statement, then it follows that X|Y? and
hence Y? = XZ for some Z € N.

Suppose that p|X and p|Z for some prime number p.

Then, p|Y which leads the implicit equationto X —2Y —Z+1=10

This ensure that p|1 which is absurd.

In what follows that gcd(X, Z) = 1.

Then by fundamental theorem of arithmetic, X = A% and Z = B? for some positive integers A and
B where gcd(4,B) = 1.

Then Y2 = XZ = A?B? = Y = AB.

Theorem: 5

If two positive integers X, Y be such that X? —2XY — Y2 +Y =0, then X = AB and Y = A2 for
some positive integers A and B with gcd(4, B) = 1.

Proof:

The proof is analogous to Theorem 4.

Corollary: 5.1

The conceivable Pell values of X, Y in the equation X? — 2XY — Y2 + Y = 0 are achieved by

X, Y) = (PZn Pyn—q 'PZn—lz) .n=1
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Corollary: 5.2
The plausible solutions in Pell numbers to the equation X? — 2XY — Y? — Y = 0 are specified by
(X,Y) = (Pans1 Pon, Pon®) .1 2 0.
Theorem: 6
Let X,Y € Z*.Then X2 —2XY — Y2+ X = 0 if and only if (X,Y) = (P2,°, Pan Pon—1) Where
n=1.
Proof:
Assume that X2 — 2XY —Y? + X = 0 where X,Y € Z*
Then by theorem II, X = A% and Y = AB for some A, B € Z*
Subsequently A2 — 2AB—B?2+1=0
Again, by corollary 1.2 it is noticed that (4, B) = (Pyp, Pop—1) = (X,Y) = (PZnZ,PZn Pyn1)
where n > 1.
Conversely, if (X,Y) = (Pan, Pyn Pyn—q) withn > 1, then
X2 =2XY = Y24+ X = Py* — 2Py, Popoq — Pyp® Popq’ + P2

= Pyn” {Py® = 2Py Py — Pon—q” + 1}
By corollary 1.2 it is pursued that
X2 —=2XY-Y?2+X=0.
Theorem: 7
The sequence of several positive integer solutions for the equation X? — 6XY + Y? + 4X = 0 are
epitomized by (X,Y) = (PZn_lz, Pyp—1Pany1) where n > 1.
Proof:
Let X,Y € Z* be such that X2 — 6XY + Y2 +4X = 0.
Then X|Y? and hence Y? = XZ for some Z € Z*.
If p|X and p|Z for some prime number p, then p|Y and also the relation X — 6Y +Z + 4 = 0 is
true forall X,Y € Z™.
Thus, p divides 4.
It is evident that, the possibility of such pis = 2.
This condition offers that X = 2X,,Y = 2Y; for some X;,Y; € Z* and obviously the projected
quadratic equation becomes X;* — 6X,Y; + Y;% 4+ 2X; = 0. Then X;|¥;? and hence ;% = X,Z,
for some Z; € Z*.
Again, if p| X, and p|Z; for some prime number p, then p|Y; and the relation X; — 6Y; + Z; + 2 =
0 is true for all X,,Y; € Z™.
Clearly, the chance of such p is p = 2. This diagnosis provides that X; = 2X,,Y = 2Y, implying
that X = 4X,,Y = 4Y,. These contributions state that X,* — 6X,Y, + Y, + X, = 0, which has no
positive integer solution [8]. Hence, our assumption that X and Z have common divisors is wrong.
This proposes that gcd (X, Z) = 1. Thus, by the fact that the product two coprime numbers should
be a perfect square if and only if each of them is a perfect square, X = R? and Z = S? for some
positive integers R and S and gcd(R,S) = 1. These choices of X and Z affords Y = RS and
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afterward the desired equation can be modified into R> — 6RS + S2 + 4 = 0.
By theorem 3, (R,S) = (Pyy4+1, P2n—1) and hence (X,Y) = (P2n+12,P2n+1 Pypoq),n>1.
Theorem: 8
Every solution in Pell-Lucas numbers for two dissimilar quadratic equations X? — 2XY —Y? = 8
and X? —2XY —Y? =-8 are offered by (X,Y) = (Qzp Qzn-1) » n=1 and (X,Y) =
(Q2n+1: QZn);
n = 0 respectively.
Theorem: 9
Let X,Y € N, the set of natural numbers.

(1) IfX? —6XY +Y?=32,then (X,Y) = (Qup+1, Q2n-1).n = 1.

(i) IfX?2—6XY +Y?==32,then (X,Y) = (Qzn+2 Qzn).n =0.
Theorem: 10
If X,Y be any two positive integers such that X2 —2XY —Y%+8X =0, then either
X, Y) = (8P2n2: 8P2nP2n—1)s n=1lor(X,Y)= (an+12: Q2n+1Q2n) .n=0.
Proof:
Consider that X2 — 2XY — Y2 4+ 8X = 0 for some positive integers X and Y.
If8|X,then 8]Y = X = 84 and Y = 8B for some A and B belong to the set of all positive integers
Therefore, the original equation in two variables X and Y is converted into A2 — 2AB — B2+ A =
0.
By the theorem 5, (4, B) = (Pyn%, PanPan-1) = (X,Y) = (8Py,%, 8Py Pon_1).
If 8 t X, then by theorem [II], X = A% and Y = AB.
Then, A2 — 2AB — B% + 8 = 0. By applying the theorem 8, it is concluded that
(4,B) = (Qzn+1, Qzn) = X,Y) = (an+12: Q2n+1Q2n) withn = 0.
Conversely, if (X,Y) = (8P2n2, 8P2nP2n_1), then
X% = 2XY — Y2 + 8X = (8P2,2)" = 2(8P3n?)( 8PsnPyn_s) — ( 8PsnPyn_1)? + 8(8P,,2)

= 64P2n2{P2n2 — 2Py, Pypq — Pyp_1” + 1} = 0, by the implementation

of corollary 1.2.
Similarly, the same equation could be satistied for (X,Y) = (Q2n+12, Qon+1 QZn)~
Theorem: 11
Let X, Y be any two positive integers.

0 If X2 — 2XY — Y2 — 8X = 0, then either (X,Y) = (8P,41°, 8Pans1P2n),n =0 or

X,Y) = (Q2n2: QZnQZn—l) ,nz=1l
(i) If X?—2XY —Y?%+8Y =0, then either (X,Y) = (8P2nP2n_1,8P2n_12), n=>1or
(X,Y) = (Q2nQ2n+1, Q2ns1°) -1 2 0.
(i) If X2 —2XY — Y2 —8Y = 0, then either (X,Y) = (8P,y41Psn,8P2n%) . n =0 or

(X: Y) = (QZnQZn—ll QZn—lz) >N = 1.
Theorem: 12
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Let X,Y € Z*, the set of all positive integer. Then
0) The positive integer solutions to the equation X2 — 6XY + Y2 + 32X = 0 are either
X, Y) = (8P2n41% 8Pani1Pan—1).n=1or (X,Y) = (Qan+2”, Qn+2Q20),n =0
(i)  The complete solutions in Pell numbers and Pell-Lucas numbers of the equation
X% — 6XY + Y2 — 32X = 0 are either (X,Y) = (8P2,%, 8P2uPaniz),n =0 or

X, Y) = (Qan+1”) Q2ns1Qan-1).n =1

CONCLUSION:

In this paper, the general solutions in terms of Pell and Pell-Lucas numbers for limited
number of definite quadratic equations in two unknowns are discovered. In this way, one can
gander for different quadratic or any higher degree Diophantine equations and pursuit solutions in
any other renewed sequences of numbers.
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MORDELL’S EQUATION WHICH HAS NO SOLUTION FOR CERTAIN SELECTION OF K

P. SANDHYA AND V. PANDICHELVI

ABSTRACT
This article examines an incomparable Diophantine equaiibe= A3 + C , C € Z, the set of all integers and
demonstrates for which values@fno solution in integer has been provided in the suggested equation

Keywords: Diophantine equation, integer solutions, Mordell’s equation, Bacht’s equation.

I. INTRODUCTION

The equatiory? = x3 + k, for k € Z, is alluded to as Mordell's equation due to Mordell's deep passion in it.
Mordell [4] established in 1920 that the equatign= x3 + k has an infinite number of integral solutions for

any k € Z. Michael A. Bennett and Amir Ghadermarzi [2] cast-off the traditional link between Mordell and
cubic Thue equations to solve the Diophantine probtérs x3 + k for all non-zero integekswith |k| < 107.

In this artefact,an unrivalled Diophantine equatkin= A% + C, C € Z, the set of all integers is studied and it
is exposed that, for which values ©fin theprofessed equation, no integer solution was supplied by using some
classical congruence relations and Legendre symboals.

[I. MAIN RESULTS
Congruence relations and Legendre symbolsare exploited to demonstra@é that® + Cdoes not have an
integer solution for certain valuesCof

Theorem: 2.1
Let U & V be integers such th&t= 2 (mod 4), V = 3 (mod4)and Lep | V andp = 1 (mod 4), wherep is a
prime number.Then the equatiBA = A3 + C, whereC = U3 — V2 has no integer solutiof¥, B).

Proof:
Suppose that there exists a solutidnB)in integers.

AsC = U3 —-V? = —1 (mod 4)& we haved? = A3 — 1 (mod 4)
Hence, A # 0 (mod 2)andA # 3 (mod 4) and sdd = 1 (mod 4).
Now,B2 + V2 = A3 + U3 = (A + U)(A? — AU + U?) (1)
AsA =1 (mod 4) and U = 2(mod 4), it should be
(A% — AU + U?) = 3(mod 4).
Hence(X? — XU + U?)is odd and by (1) it has a prime fagiprp,; = 3 (mod 4). ThusB? = —V?2 (mod p,).
By our assertiorp, + V. Hence,
_N? 2
(=)= G)=G)=1.

denying top; = 3 (mod 4).

This proves that the Diophantine equatith= X3 + K has no solution.

Theorem: 2.2

Let Uand V be integers satisfyidg= 3 (mod 4), V = 0,2(mod 4). If a prime numbep dividesV /2 and
p = 1 (mod 4), then the Diophantine equati@f = A% + C whereC = U3 —V? has no solutior{4,B) in
integers.

Proof:
Suppose thad, B)is an integer solution of the equatiBA = A% + C,C = U3 — V?

SincelJ3 — V2 = 3 (mod 4), it is attained bg? = A% + 3 (mod 4).
Henced = 1 (mod 4).
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Now, the original equation is converted for the prescribe valdeasf
B2+V? = A3+ U3 = (A+U) (4> - AU +U?) (2)
Since A =1 (mod 4)& U = 3 (mod 4),
A% — AU + U? = 3 (mod 4)
Henced? — AU + U%is odd and by (2) it has a prime fagigrp; = 3 (mod 4). ThusB? = —V? (mod p,).
By our assertiory; t V/2. Hencep, t V.
_ _p2 2
G)=Go=G)=1.

denying, = 3 (mod 4).

Hence, the Diophantine equatiBi = A® + C has no solution.

Theorem: 2.3

Let Uand V be integers nourishing with the conditioh= 2 (mod 8),V = 1 (mod 2). Ifpis a prime such
thap = 1,3 (mod 8) andp dividesV, then the equatioR* = A*® + C, whereC = U?> — 2V?has no integral
solution.

Proof:
SinceC = U% —2V? = 2 (mmod 4), it must be

B? = A®+2 (mod4)
ThereforeA # 0 (mod 2), A # 1 (mod 4)and consequenty = 3 (mod 4)
Henced = 3 or 7 (mod 8)
Moreover( = —2 (mod 8).
So thatd # 7 (mod 8) = A = 3 (mod 8)
Now,B? +2V%2 = A3+ U3 = (A+U) (A2 -UA+U?
As A = 3 (mod 8) andU = 2 (mod 8), it is seen that? — UA + U? = 7 (mod 8) andA + U = 5 (mod 8)
~ B? + 2V%has a prime factpy such thai; = 5 or 7 (mod 8)
By our assumptiop, + V andB* = —2V? (mod p,)

5)-(5)-(6)=

Hence no solution for the Diophantine equatBdn= A% + C, if ¢ = U3 —2V2.

Theorem: 2.4
AssumeU,V € Z andJ = 6 (mod 8) ,V = 1 (mod4). Letp be a prime number such that| V andp =
+ 1 (mod 8). Then the equatioB* = A3 + C, whereC = 2V? + U® does not embrace any integer solution.

contrasting; = 5or 7 (mod p)

Proof:
Since,C = 2V?+ U® = 2 (mod 8), thenB? = A% + 2 (mod 8)

= A # 0 (mod 2) ,A # 1 (mod 4)and hencé = 3 (mod 4)
Henced = 3 or 7 (mod 8)
If =3 (mod 8), thenB? = 5 (mod 8)which is not possible.
ThusA = 7 (mod 8).
Now, B?—-2V%?=(A+U)(A*-UA+U?
= A> —UA+U? = 3 (mod8.)
Thereforél? — UA + U? is odd and is divisible by an odd primgwith p; = 3 (mod 8)
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= B? = 2V? (mod p,).
By our postulationp, t V

oo I

Hence the proof.

[ll. CONCLUSION

As a result, using certain traditional mathematical tools like as congruence and Legendre symbols, it is sensec
that the hypothesized equation does not have a solution in integers for some specific integer Zallibasf

one may ascertain the values ®ffor which the Mordell's equation has no integer solution by following the
steps described above.

REFERENCES
[1] Alaca, Saban, and Kenneth S. Williams. Introductory algebraic number theory. Cambridge Univ. Press,
2003.

[2] Bennett, Michael A., and Amir Ghadermarzi. "Mordell’s equation: a classical approach.” LMS Journal of
Computation and Mathematics 18.1 (2015): 633-646.

[3] Gebel, Josef, Attila Pethd, andHorst G. Zimmer. "On Mordell’s Equation." Compositio
Mathematica 110.3 (1998): 335-367.

[4] L. J. Mordell, A Statement by Fermat, Proceedings of the London Math. Soc. 18 (1920), v-vi.

[5] Steiner, Ray P. "On Mordell’s equation y2-k= x3 a problem of Stolarsky." Mathematics of
computation 46.174 (1986): 703-714.

AUTHOR DETAILS:

P. SANDHYA"' AND V. PANDICHELVI 2

!Assistant Professor, Department of Mathematics, SRM Trichy Arts and Science College, Trichy (Affiliated to
Bharathidasan University)

’Assistant Professor, PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Trichy,
(Affiliated to Bharathidasan University)

135
Special Issue on Recent Research on Management, Applied Sciences and Technology



Turkish Journal of Computer and Mathematics Education Vol.12 No.1S (2021), 659-662
Research Article

Exploration of Solutions for an Exponential Diophantine Equation g+ (p +1)= 22
P. Sandhya & V. Pandichelvi?

!Assistant Professor, Department of Mathematics, SRM Trichy Arts and Science College
Affiliated to Bharathidasan University, Trichy,India, Email: sandhyaprasad2684@gmail.com
2Assistant Professor, PG & Research Department of Mathematics, UrumuDhanalakshmi College
Affiliated to Bharathidasan University, Trichy, Email: mvpmahesh2017@gmail.com

Article History :Received:11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: In this text, the exclusive exponential Diophantine equation (p + 1)Y= Zsuch that the sum of integer powerandy of
two consecutive prime numbers engrosses a square is examined or estimating enormous integer solutions by exploiting
fundamental notion of Mathematics and the speculation of divisibility or all possibilities of x +y =1, 2, 3, 4..

Keywords: exponential Diophantine equation; integer solutions

1. INTRODUCTION

The study of an exponential Diophantine equations has stimulated the curiosity of plentiful Mathematicians since ancient times a:
be seen from [2-6, 9].BanyatSroysang [7] showed that8%= 7 has a unique non-negative integer solution (x, y, z) as (0,1,3) in 2013
and he proposed an open problem where x, y and z are non-negative integers and p is a positive odd prime number. In

Suvarnamani. A [8] proved thatp- (p + 1)Y= Zhas a unique solution (p, X, y, z) = (3, 1, 0, 2) and was disproved by Nechemi:
Burshtein [1] by few examples. In this text, the list of infinite numbers of integer solutions of the equatignpg 1)Y= 22 where p is

a prime number by using the basic concept of Mathematics and the theory of divisibility.

2. APPROACHOF RECEIVINGINTEGERSOLUTIONS

The approach of search out an integer solution to the equation under contemplation is proved by the following theorem.
Theorem:

If p is any prime and x, y and z are integers persuading the condition that x + y = 1, 2, 3, 4,then all feasible integer solutions t
exponential Diophantine equation X +qp + 1)Y= Z are given by (p, x, ¥, z) = {(2,0,1,2), (3,1,0,2), (3,2,2,5)}when p = 2,
3and (p, X, y, z) = (4% 4n—1, 0, 1,2n + 1) where @ N for p > 3.

Proof:

The equation for performing solutions in integer is taken as
P+ =27 1)
All doable predilection ofthe suppositior- y = 1,2,3,4 arecarried out by eight cases for assessing solutions in integers.

Case1l:x=0,y=1
Equation (1)toexplore solutionsinintegertrimsdown by

p+2=7% (2)
If p =2, then z = 2. Hence, theoneandonly oneinteger solution iscommunicated as (p, X, y, z) = (2,0,1,2).
If p is an odd prime, then p + 2 is an odd number.
Thismeansthat?s anoddnumber and consequently z is also an odd number.
Ifz = 1, then p + 2 =1which isimpossible.
Asaresult, 2 3.

Describe z=2n + 1, aN 3)

The square of the selection of z in (3) can be characterized Hy# + 4n + 1, ne N. In sight of (2), the promising value of anodd
prime complied with the specified equation is distinguished by p?>=4m—1, neN
Hence, the enormous solutions to (1) is (p, X, Y, z) 24n—1, 0, 1, 2n + 1) where a N

Case2:x=1,y=0
The inventive equation (1) is diminished as
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p+l=17 (4)
If p =2, then Z= 3 which is not possible for integer value of z.
If p is an odd prime, then p + 1 is an even number which can be articulated by
p+1=2n,nN
Match up the above equation with (4), 2n is a perfect square only if fwhene me N.
Thus, p = (2m)— 1.
If m =1, then p = 3. Therefore, the solution belongs to the set Z of integers is (p, X, ¥, z) = (3,1,0,2).
[fm#1,thenp=(2m-1) 2m + 1)
If p divides (2m- 1), then 2m- 1 = ap and as a consequence2m + 1 = ap + 2.
Thus, p = ap(ap + 2) and leads to the ensuing equation l=a(a+2).
But the above equation is not true for any integer value of a.
Ifp divides(2m + 1), then 2m + 1 = bp and from now2ih = bp— 2.
Therefore, p = bp(bp 2) andconsequently 1 = b (b + 2) which is not factual for any integer options for b.
Hence, in this case there exists a unique solution to (1) given by (p, x, y, z) = (3,1,0,2)

Case3:x=1,y=1
The creative equation (1) is adjust by

2p+1=12
Since Zis an odd number for all selectiongoft follows that
=1 (mod 4)

=2p+1=1(mod4)

=2p =0 (mod 4)

Capture that 2p = 4kwhich means that p = 2k for some positive integer k.
This declaration is possible only when k = 1.

Then p = 2, and 2p + 1 =5 which is not a perfect square of an integer.
Hence, in this case there is no integer solution to the presupposed equation.

Cased :x=1,y=2

The resourceful equation (1) is reconstructed as

P2+3p=27-1

=>p(P+3)=(=1)(z+1) ()

Ifp|(z—1), then =1 = kp, and z + 1 = kp + 2.Executions of these two equations in (5) go along with the subsequent quadr
equation in k

pk?+ 2k—(p + 3) = p,

which consent the value of k = (ﬂ/(p(p +3) + 1)) / p. It is deeply monitored that no prime number p provides an integer value for k.
An alternative vision of p|(z + 1) reveals that z + 1 = Ip ardlz= Ip— 2

By make use of these two equations in (5) espouse the second degree equation in | as

plP—2l—(p+3)=0

which yields | = (]t\/(l- p(p +3) 1)) / p.

The above value ofl is a complex number or any prime p.

Hence, the ultimate result is no integer solutions to the most wanted equation (1).

Case5 x=2,y=1

The quick-witted equation (1) is restructuredZasp = Z2— 1

=p(p +1)=(z 1)@z +1) (6)

It follows from equation (6) that p must divide any one of the valuesljzor (z + 1)
If p|(z— 1), then z1 =mp and z + 1 = mp + 2for some integer m.

Then, (6) make available with the value ofp as

p = (1-2m)/ (nt-1) (7)
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Accordingly, one can easily notice that the right-hand side of (7) can never be a prime number Zor m

This circumstance offers that p does not divide 19.

If p|(z + 1), then z + 1 = np and-ZL = np— 2 for some integer n. Then, (6) endow with the value ofpas
p=@1+2n)/(A-1) (8)

None of the value of & Z in the right-hand side of (8) supplies the prime number establish that p does not divide(z + 1)
Hence, this case does not grant an integer solution for (1).

Case6 x=1,y=3
For these choices ofx and vy, the well-groomed equation (1) be converted into
(p+1p+p=7 9)
If p =2, Z= 29 which make sure that z cannot be an integer.If p is any odd prime, then p takes any one of the forms 4N + 1 or 4
3.
If p = 4N + 1 and the perception thatmst be odd reduces (9) to
64N° + 96N + 52N + 9 = (2T 1)?
=16N°+ 24N+ 13N+ 8 =T (T-1) (10)
It is perceived that none of the values ofN ensure that the left hand side of (10) as the product of two consecutive integers.
Similarly, the chance of p = 4N + 3, and the discernmentstn odd integer reduces (9) to
64N° + 192N + 196N + 67 = (2T 1)?
=2(32N° + 96N + 94N + 33)= 4T (T- 1)
The above equality does not hold since the left hand side is a twice an odd number and the right hand side is a multiple of 4.
Hence, in this case there does not exist an integer solution.

Case 7:x=2,y=2

These preferences of x and y altered the well-designed equation (1) into

p?+ (p + 1f = 2

=2p(p+1)+1=% (11)

Since? is an odd number?z 1 (mod 4)

Then, 2p (p + 1¥ 0 (mod 4)

Hence, either p or p + 1 is a multiple of 2.

If p is a multiple of 2, then p must be 2.

Implementation of this value of p in (7) furnishés=z13 which does not enable as an integefor
If p + 1 is a multiple of 2, thenp + 1 = 2A, for some=AZ.

The only odd prime satisfying all the above conditions is 3 and the corresponding value of z = 3
Consequently, the only integer solution to (1) is

(pv X, yv Z) = (3’ 27 2! 5)

Case8:x=3,y=1

The original equation (1) can be written as

pP+p+1=2

If p = 2, then 2= 11 which cannot acquiesce an integer for z.

Also, Z=1 (mod 4) and pfp+ 1)= 0 (mod 4) which implies that either 4|p or 4}{p1)

For the reason that p is an odd prime, 4 does not divide parfdrsb ¢ 4n

This is not possible since p can take either of the form4N +X1Nr 4N + 3, 0.
Hence, the conclusion of this case is there cannot discover an integer solution to (1).

3. CONCLUSION
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In this text, the special exponential Diophantine equation *+ (p + 1Y = Z where p is a prime number and x, y and z are integers is
studied by developing the fundamental concept of Mathematics and the conjecture of divisibility for all possibilities of x + y =1, 2
4. In this manner, one can find an integersolutions by using the property ofcongruence and other thoughts of Number theory.
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Abstract:

In this article, the solutions to the Diophantine equation p;* + p,Y + p3% = M? where (py,p,,p3) is a
prime triplet of the forms (p,p + 2,p + 6) and (p,p + 4,p + 6) for x,y, z are integers takes the values
of1 or 2 is investigated by applying the basic concepts of Mathematics. Also, few choices of x, y, z are not

possible solutions of the equation is confirmed by MATLAB Program.
Keywords -- Diophantine equation, integer solutions
I. INTRODUCTION

Primeval and wide-ranging, the discipline of Diophantine equations lacks a standardised approach for
determining if an equation has any solutions or how many solutions. Numerous variations of the well-
known general equation p* + g¥ = z%emerge. It is possible to locate a substantial quantity of literature on
non-linear equations using specific primes and powers of numerous kinds.With varied degrees of success,
numerous writers [1,2,5,6,7] have revisited the above problem and tried many primes, such as the
Mersenne prime, in an effort to solve it.In [3,4], Nechemia Burshteinprotracted the above equation as
p*+(@+ 1Y+ (p+2)?=M?and p* + (p + 1)Y + (p + 2)% = M3, for all primes p and for specific

powers ofx, y, z and the findings were supported by simple mathematical tools
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If there are three prime numbers in the set and the smallest and biggest vary by six places, then the set is
called a prime triplet. To be precise, the sets must be (p,p + 2,p + 6) or (p,p + 4,p + 6) in form.
This is the closest conceivable collection of three prime numbers, with the exception of (2, 3, 5) and (3, 5,

7).

In this article, the Diophantine equation p;* + p,” + p3Z = M? is established and results are analyzed for

the prime triplets where p is of the form 4n + lor 4n + 3and the powers of primes are either 1 or 2.p

II. METHODOF EXTRACTING INTEGER SOLUTIONS
The approach of existence ofinteger solutions to an equationp,* + p,¥ + p3Z = M?where (p;,p,, p3) is a
prime 3-tuples is analyzed in the following theorems.
Theorem 2.1
If x,y,z € {1,2} and (p,p + 2,p + 6) is a prime triplet of the form (4n + 1,4n + 3,4n + 7), n € V" then
an equation p* + (p + 2)¥ + (p + 6)% = M? has no solution.
Proof:
The theorem is proved by considering the following eight cases.
Casel:x=1,y=1,z=1
Then,p* + (p + 2)” + (p + 6)% = M?
=>4n+1+4n+3+4n+7 = M?
= 12n+ 11 = M?
It is scrutinized that the expression 12n + 11 is not a perfect square for any n € V.
The following MATLAB Programdemonstrates the statement given above.
clc; clear all;
n = input('Enter a natural number n');
fori=1:n
pl=4x*xi+ 1, p2=4*i+3;, p3=4=*i+7,
if (isprime(pl) == 1 & isprime(p2) == 1 & isprime(p3) == 1)

MS =12 xn + 11;

M = sqrt(MS);

if rem(M,1) == 0)

fprintf (‘p1 = %d,p2 = %d,p3 = %d,M = %d’,pl,p2,p3, M)

end
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end
end
Case2:x =2,y=1,z=1
The equation to analyze solutions in integers can be written as
(4n+1)?+@4n+3)+ @n+7) = M?
= 16n% + 16n + 11 = M?
= (4n+2)?+7 = M?
SM?2—-—(U4n+2)?2%=7
This is possible only when M = 4 and 4n + 2 = 3. But no such n € )V satisfying the equation 4n + 2 =
3.
Hence, there exists no integer solution.
Cased:x =1,y=2,z=1
For these choices of x, y, z, the original equation is reduced into
(dn+1)+Un+3)%2+ U@n+7) = M?
= 16n% + 32n + 17 = M?
> (@n+4)?%+1=M?
>M?>—(4n+4)?% =1
It is well-known that, difference of two square number cannot be 1.
Therefore, this case does not yield a solution.
Cased:x=1,y=1,z=2
The selected values of the variables convert the given equation as follows
(4n+1)+(An+3)+ @n+7)? = M?
= 16n? + 64n + 53 = M?
= (4n+8)2—11=M?
= (4n+8)2—-M? =11
This is true only if M = 5 and 4n + 8 = 6.But for any n € N, 4n + 8 = 6 is not valid.
Consequently, there is no solution to an equation.
CaseS:x=2,y=2,z=1
The desired equation becomes

(Un+1D?+@n+3)%2+Un+7) = M?
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= 32n% + 36n + 17 = M?
Case6:x =2, y=1,z=2
The considered equation becomes

(4n+1)?+@4n+3)+ Un+7)?=M?

= 32n% 4+ 68n + 53 = M?
Case7:x=1,y=2,z=2
Then,p* + (p + 2)” + (p + 6)% = M?

=>@n+1)+@n+3)2+ (Un+7)* = M?

= 32n% + 84n + 59 = M?
Case8:x =2, y=2,z=2
Then p* + (p + 2)¥ + (p + 6)% = M?

> UAn+1)2%+ @n+3)2+ (dn+7)? = M?

= 48n? 4+ 88n + 59 = M?
It is a well-known fact that if b? = 4ac, the quadratic polynomial ax? + bx + c is a perfect square.
But, the quadratic equation in nmentioned above from case 5 to case 8does not meet this criterion. As a
conclusion, none of these choices of x,y,z considered from case 5 to case 8 provides solutions to an
equation.
Theorem 2.2
A solution to the equationp* + (p + 2)Y + (p + 6)% = M? is inconceivable if x,y,z € {1,2} and
(p,p + 2,p + 6) is a prime triplet of the form (4n + 3,4n + 5,4n + 9).
Proof:
This theorem is showed by the succeeding eight cases as in theorem 2.1
Casel: x=1,y=1,z=1
Then,p* + (p + 2)¥ + (p + 6)% = M?

2>4n+3+4n+5+4n+9 = M?
= 12n+ 17 = M?
This is not true for any n € V. This statement is confirmed by the succeeding MATLAB Program.
clc; clear all;
n = input('Enter a natural number n');

fori=1:n
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pl=4x*i+3;p2=4%i+5 p3=4*i+09;
if (isprime(pl) == 1 & isprime(p2) == 1 & isprime(p3) == 1)

MS =12+*n+11;

M = sqrt(MS);

ifrem(M,1) == 0)

forintf (‘p1 = %d,p2 = %d,p3 = %d,M = %d’,pl,p2,p3,M)
end
end

end

Case2:x=2,y=1z=1

The required equation to be solved becomes
(4n+3)>+@4n+5)+ @Un+9) = M?

= 16n% + 32n + 23 = M?
= (@4n+4)?+7=M?
SM?2—-U4n+4)?*=7

This declaration is true only when M = 4 and 4n + 4 = 3. But there is no n € V" sustaining the

condition4n + 4 = 3.

Cased:x=1,y=2,z=1

The developed equation can be modified into
(4n+3)+(4n+52?+ (4n+9) = M?

= 16n? + 48n + 37 = M?
= (@An+6)2+1=M?
>M?>—-(4n+6)?2=1

As is case 2 of theorem 2.1, this is impossible.

Cased:x=1,y=1z=2

The given equation can be rewritten as
(4n+3)+ (4n+5)+ (4n+9)? = M?

= 16n? + 80n + 89 = M?
= (4n + 10)2 —11 = M?
= (4n + 10)2 — M? = 11

Page 26

ISSN : 2581-7175 OIJSRED: All Rights are Reserved



International Journal of Scientific Research and Engineering Development-— Volume 5 Issue 2, Mar-Apr 2022

Available at www.ijsred.com

=>M=5and4n+10=6
But for any n € N, 4n + 10 = 6 is not possible.
CaseS:ix=2,y=2,z=1
The stated equation becomes
(4n+3)>+ (4n+5)?+ (4n+9) = M?
= 32n? 4+ 68n + 43 = M*?
Case6:x =2, y=1,z=2
The considered equation is
(4n+3)>+ (@4n+5)+ (4n+9)? = M?
= 32n? + 100n + 95 = M?
Case7: x=1,y=2,z=2
These options of the variables reduce the scrutinized equation into
(4n+3)+ (4n+52+ (4n+9)? = M?
= 32n% + 116n + 109 = M?
Case8:x=2,y=2,z=2
The equation in which solutions to be discovered becomes
(4n+3)2+U@n+572%+ (4n+9)? = M?
= 48n? + 136n + 115 = M?
As in theorem 2.1, in this theorem also case 5 to case 8 does not yield the solution to an equation. Hence,
there exists no solution in integer to the given equation.
Theorem 2.3
There are infinitely many solutions to the equation p* + (p + 4)Y + (p + 6)Z = M?if (p,p + 4,p + 6) is
a prime triplet the form (4n + 1,4n + 5,4n + 7),n € IV and if x, y, z are either of 1 or 2.
Proof:
The theorem is proved as in previous two theorems.
Casel:x=1,y=1,z=1
Then,p* + (p + 4)¥ + (p + 6)% = M?
S>4n+1+4n+5+4n+7 == M?
= 12n+ 13 = M?
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It is observedfrom the following MATLAB Program,there are enormous prime triplets can be extracted as
a solution. For instance, ifn = 3,9, 69, 153provides the prime triplets
(13,17,19),(31,41,43),(277,281,283),(613,617,619) as solutions to the designated equation.
clc; clear all;
n = input('Enter a natural number n');
fori=1:n
pl=4x*i+ 1, p2=4%i+5 p3=4=*i+7;
if (isprime(pl) == 1 & isprime(p2) == 1 & isprime(p3) == 1)
MS =12+*n+13;
M = sqrt(MS);
if rem(M,1) == 0)
fprintf (‘p1 = %d,p2 = %d,p3 = %d,M = %d’,pl,p2,p3, M)
end
end
end
Case2:x =2,y=1,z=1
The given equation becomes
p*+ (p+4) + (p+6)* =M
> @n+1D%+Un+5)+ @n+7) = M?
= 16n? + 16n + 13 = M?
= (4n+2)? +9 = M?
>M?—-—(M4n+2)?=9
This is achievable only when M = 5 and 4n + 2 = 4. However, for every n € IV, the equation4n + 2 =
4 is not feasible.
Cased:x=1,y=2,z=1
The elected choices of x, y, z minimizes the given equation as
(Un+1D)+UAn+52+U@n+7) = M?
= 6n? + 48n + 33 = M?
= (4n +6)? — 3 = M?
= (4n+6)> —M? =3
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= 4n + 6 = 2and M = lare the only values that enable the above equation to be accomplished.
But 4n + 6 = 2 is not conceivable for any n € V.
Cased:x=1,y=1z=2
For these options of x, y, z, the equation to be resolved is
(4n+1)+(An+5)+ @n+7)? = M?
= 16n? + 64n + 55 = M?
= (4n +8)? — 9 = M?
> (4n+8)?-M?2=9
The only values which attain the above condition are 4n + 8 = 5and M = 4.
But for any n € V', 4n + 8 = 5 is invalid.
CaseS:ix=2,y=2,z=1
Therefore, the original equation is converted into the quadratic equation as follows
32n% 4+ 52n + 33 = M?
Case6:x =2, y=1,z=2
Then, the original equation is altered into the quadratic equation in n as given below.
32n% 4+ 68n + 55 = M?
Case7: x=1,y=2,z=2
The similar form of the given equation is
32n% 4+ 100n + 75 = M?
Case8:x=2,y=2,z=72
The identical from of the considered equation is
48n% 4+ 104n + 75 = M?
As the explanation given in theorem 2.1, there is no solution in integers for the cases listed above from 5
to 8.
Theorem 2.4:
For any n € V, if p = 4n + 3 and (p,p + 4,p + 6) is a prime triplet, thenp* + (p + 4)Y + (p + 6)% =
M? has no solution when x, y, Z are either 1 or 2.
Proof:

The proof is analogous to theorem 2.1

Exceptional Prime Triplets
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1. If(py, p2p3) = (2,3,5), then the possible solution of
2% 4+ 3Y + 5% = M?are (x,y,z,M) = (1,2,1,4) and (1, 2,2, 6).
2. If(py, p2,p3) = (3,5,7), then there is no solution to the proposed equation3* + 5 + 7% = M?
III. CONCLUSION
This text investigates the spectacular exponential Diophantine equation
p1¥ + 1Y + p3Z = M? where (pq,p,,p3) is a prime triplet either of the form (p,p + 2,p + 6) or
(p,p + 4,p + 6) and x, y, zare either 1 or 2.0ne may derive integer solutions by considering the sum of

the variables or the product of the variables is either 1 or 2.
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Abstract

In this article, it is exhibited few examples for how to use the linear Diophantine equation to
contract the molecular formulae of organic or inorganic chemical compounds in order to
determine their structure.

Keywords: linear Diophantine equation, integer solutions, molar mass, molecular formula.
l. Introduction

There is a widespread belief that Number theory is the purest field of pure Mathematics, and that
it has few meaningful applicability to real-world issues as a result of this belief. The significance
of Number theory is derived from its prominent position in Mathematics; its ideas and problems
have played a crucial role in the development of many areas of Mathematics throughout history.
A Diophantine equation is a multivariable equation that concedes only integer solutions. One of
its particular instances is the linear Diophantine equation which has the general form

a;x, + ax, + -+ ay,x, = b wherea,,a,, ....,a,,b € Z,n > 2 and whose solutions must be
integers. For instance, [5] proposes techniques based on Euclidean algorithm arguments.
Furthermore, practical issues involving the splicing of telephone lines have been resolved by using
techniques of basic number theory [9]. Many more fascinating applications may be found in the
book Number Theory and the Periodicity of Matter [1], which has a large number of additional
examples. Additionally, the reader is recommended to refer [2-4,7, 10-13] in this respect.

It is common to perceive linear Diophantine equations in many disciplines, but they are particularly
prevalent in chemistry [6,8,14], In this article, it is revealed the application of linear Diophantine
equation in Chemistry specially how to find the molecular formulae of organic or inorganic
chemical compounds in order to determine their structure with few specimens.
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Needed Theorem [1]

The linear Diophantine equatianx + by = ¢ has a solution if and only d dividesc where
d = gcd(a, b). Furthermore, ifx,, y,) is a solution of this equation, then the set of solution of

the equation consists of all paits y) wherex = x, + t b/d andy =y, —t a/d ,tEZ

[1 . Determination of chemical molecular formula

Enabling the possibility that a chemical substance with a molecular wigighhcompasses
elements4,, A, andA; with atomic weightst,, a, anda; respectively and that the numbery’
andZ represent the number of atoms of elemeni#, andA; visible in each of the elements’
molecules. Then, it is obtained that

X +aY +az;Z =W Q)
Let a4, @, anda; constitutes the integers closest to the valyes, anda; and letw signify the
integer closest to the valug.
Then the similar form of linear Diophantine equation (1) to be solved is represented by

a X +a,Y +az3Z=w (2)
If a limit is imposed on the integeksY andZ in (2), then it can be solved under a restriction
l(ay — @)X + (az — az)Y + (a3 — a3)Z| < [W —w] 3)

If more solutions of (2) are retrieved, then the genuine values can be found by substituting them
in (1) and assessing which of satisfies (2) with the least significant deviatiofrom

The process of finding molecular formulae for three chemical substances using the linear
Diophantine equation is enlightened as follows.

2.1. Molecular formula for substance 1
Consider the substance 1 as the chemical compound comprising Carbon, Hydrogen, and Oxygen
having a molecular weight of 342.2965 g/mol.
Let X,Y andZ stand for the number of atoms of Carbon, Hydrogen and Oxygen respectively.
Consider the first-degree Diophantine equation as
12.0107X + 1.00784Y + 15.999Z = 342.2965 4)
where 12.0107u, 1.00784u and 15.999u are the atomic weights of Carbon, Hydrogen and
Oxygen respectively.
Next, it is clear thatt; = 12,a, = 1, a3 = 16 andw = 342.
Furthermore, the corresponding linear form of (4) to discover molecular formula is converted into
12X +Y + 16Z = 342 (5)
subject to the constraint
[0.0107X + 0.00784Y — 0.001Z| < 0.2965
which provides thak < 12,Y < 23,Z <13
Modify (5) as in the following form
12X +Y = 342 4+ 16T whereZ = -T
Then, its common solution is given by
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X=28+K
Y=6+16T —12K,K,T € Z.
It is assured that the valuesXofY, Z must be greater than 0. Hence, it is enabled to discover the
ranges fofl" andK.
Now,
X>0=>284+K>0=>K>-28
Y>0=6+16T —12K > 0= 8T — 6K > -3
Z>0=>-T>0>T<0
In particular, ifT = —1, then8T — 6K > —3 leads taK < 1.
Thus, the range fdf should be-28 < K < 1.
Continuing the process fdf = —2,T = -3,...,T = =21, it is received that < 1. But for
T =-22,K < —29 contradicting-28 < K < 1.
Thus, the range fdf should be-22 < T < —1.
Therefore, there exists 588 solutions in combinatiorfs afdkK .
Eliminate the solutions which violating the conditions thlak X < 13,0 <Y <24 and
0 < Z < 14 by the succeeding MATLAB Program:
clear all; clc;
for t=-21:-1
for k=-27:0
x=28+k;
y=6+16*t-12*k;
z=-;
if (x<13 && y<24 && z<14)
fprintf('’x=%d,y=%d,z=%d\n',Xx,y,z)
end
end
end
The residual solutions which satisfy the necessary conditions are listed in the table below.

X Y VA

10 14 13
11 2 13
11 18 12
12 6 12
12 22 11

Note that the last two solutions represent the compolidk 0., (Mellitic acid) andC,,H,,01
(Sucrose or Table Sugar) with molar mass 342.16 g/mol and 342.2965 g/mol respectively.
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Therefore, the exact solution@s,H,,0;;.

2.2. Molecular formula for substance 2
Let us choose the substance 2 as the chemical compound with the molecular weight of
98.079 g/mol and a mixture of Hydrogen, Sulphur, and Oxygen.
LetX,Y andZ be the number of atoms of Hydrogen, Sulphur, and Oxygen with respective atomic
massl1.00784u, 32.065u and15.999u respectively.
As in Section 2.1, choose the linear Diophantine equation in three variables as
1.00784X + 32.065Y + 15.999Z = 98.079
Clearly,a; = 1,a, = 32,a3 = 16 andw = 98.
Consequently, let us solve the ensuing linear Diophantine equation
X +32Y +16Z =98 (6)
subject to the restriction
[0.0078X + 0.065Y — 0.001Z| < 0.079
The upper limit for the choices &Y andZ are noted by
X<3Y<1Z7Z<4 (7
From (6),X =98 — 32Y —16Z > 0,Y > 0 andZ > 0. (8)
All  the possibility of X,Y and Z supporting (8) are evaluated by
{(50,1,1),(18,2,1),(34,1,2), (2,2,2),(18,1,3), (2,1,4)}
The only choice ofX, Y, Z) that satisfies (7) i§2,1,4).
Hence, the component i550,, That is Sulphuric Acid with molar mass 98.079 g/mol.

2.3. Molecular formula for substance 3
Consider Substance 3 is a combination of Zinc, Sulphur, and Oxygen having a molecular weight
of 161.47 g/mol.
Let X,Y andZ be the number of atoms of Zinc, Sulphur, and Oxygen with respective atomic mass
65.38u, 32.065u and15.999u respectively.
As in the previous two sections, the equation to be resolved is
65.38 X + 32.065Y + 15.999 Z = 161.47 (9)
With the same notations as in section &= 65,a, = 32, a; = 16 andw = 161.
Then, an equivalent form of (9) to be solved is taken as
65X + 32Y +16Z = 161 (20)
together with the condition that
[0.38X + 0.065Y — 0.001Z| < 0.47
The options of sucl,Y andZ in (10) are viewed by
X<1Y<17Z<444
SinceX,Y andZ are positive, the only possibility &af andY are pointed out by
X=1Y=1
Now, rearrange (10) the form as given below
65X + 16U = 161 (12)

Volume 12, Issue 3, 2022 18 https://pramanaresearch.org/



Pramana Research Journal ISSN NO: 2249-2976

whereU =2Y + 7 (12)

In (11),gcd(65,16) = 1 and 1 divide 161.

Also, the least solution to (11) is takenXgs= 161 and U, = —644

Hence by theorem [1], there exists infinitely many integer solutions to (11) which are represented

by
X =161+ 16T (13)
U= —644 — 65T (14)
whereT € Z
SinceX = 1, the chance df is evaluated from (13) as
T =-10

Note that (12) is satisfied % = U andZ, = —U. Also,gcd(2,1) =1
Again, by Theorem [1] the infinitely many solutions to (12) are received by

Y=U+K=-644—-65T +K (15)
Z=-U—-2K=644+65T —2K, K€ Z (16)
SinceY = 1, the value oK is calculated from (15) by
K =-5
Substituting the values @fandK in (16), it is determined that
Z=4

The only solution that satisfies (9)(%,Y,2) = (1,1,4).
Hence, the component#50,, that is Zinc Sulphate with molar mass 161.47 g/mol.

lll. Conclusion
With the help of a few instances, the application of the linear Diophantine equation in finding the
chemical molecular formula for three different substances are evaluated in this editorial. Finally,
new and interesting applications of Number theory include cryptography, coding theory, and
random number generation, among other things. These areas are developing at a breakneck pace
as a result of the widespread use of computers, and their significance is growing all the time.
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