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CHAPTER  I 
Introduction 

State of the art of the research topic: 

The exploration of natural numbers and integers is the emphasis of the pure 

Mathematics discipline known as Number Theory. "The Queen of Mathematics" refers 

to Number Theory's position as the discipline's linchpin. The study of numbers [6, 27, 

30, 32, 35, 38, 43, 52] provides a framework for identifying patterns and establishing 

the veracity of those patterns through the use of Number Theory. Number Theory is a 

mixture of both experimental and theoretical aspects. Issues are raised and viable 

solutions are proposed in the experimental component of the course. It is the objective 

of the theoretical part of the research to provide an argument that satisfies all of the 

issues raised [66, 67, 110, 111, 113, 129, 132, 136, 150, 151, 152]. 

Diophantus of Alexandria, the creator of Arithmetica and one of the most 

prominent later Greek Mathematicians, deserves particular mention. Diophantine 

equations, the most important of the many problems in this book, have been considered 

the most significant [8, 68]. These are equations in which the answers must be integers 

[3, 4, 10, 13, 18, 31, 34, 42, 48, 50, 60, 64, 81, 94, 98, 100]. As an illustration, 

Diophantus requested for two numbers, one of which was a square and the other a cube, 

such that the total of their squares was also a square itself. In contemporary symbols, 

he hunted numbers  and  such that . Generating real numbers 

that meet this condition is straightforward (e.g.,  and ), but the 

constraint that solutions be integers brands the task more complex. Work of Diophantus 
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was incredibly influential on subsequent Mathematics [105, 107, 112, 120, 121, 128, 

131, 133, 147, 155]. 

Due to the wide range of Diophantine equations, there exists a plethora of them 

[71, 74, 80, 82, 99, 154]. Diophantine equations have no uniform mechanism for 

determining whether a solution exists or finding all of them if they do. One of the most 

well-known and renowned Diophantine equations is the Fermat equation 

 [126, 142, 143].  yields an infinite number of integer 

solutions, but  yields no positive integer solutions. 

The equation  for  is alluded to as Mordell's equation due to 

Mordell's deep passion in it [56, 137]. Mordell [109] established in 1920 that the 

equation  has an infinite number of integral solutions for any . 

Michael A. Bennett and Amir Ghadermarzi [11] cast-off the traditional link between 

Mordell and cubic Thue equations to solve the Diophantine problem  for 

all non-zero integers  with . 

Since prehistoric days, mastering the equations with variables as exponents has 

glinted the inquisitiveness of countless Mathematicians [1,7,17, 19, 20-25, 44, 55, 63, 

65, 90, 91, 97]. J. L. Brenner and Lorraine L. Foster [14] explored several Diophantine 

exponential equations and derived conclusions. Maohua Le, Reese Scott, and Robert 

Styer [93] discussed many unresolved problems and related studies involving positive 

integer solutions to the ternary exponential Diophantine equation [106, 127, 130, 134, 

135, 138-141, 144, 145, 146]. 

A Diophantine -tuple is a set of  unique positive integers that has the feature 

that the product of any two of its distinct members plus 1 is a square. Fermat discovered 
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the world's first Diophantine quadruple in the integers . Diophantus 

discovered the first example of a rational Diophantine quadruple:  [9, 

16, 40, 41, 45, 47, 49, 53, 54, 57]. Certain of the most prominent Mathematicians of the 

history, such as Diophantus, Fermat, and Euler, as well as some contemporary 

Mathematicians, such as Fields Medalist Alan Baker, have made significant 

contributions to issues involving Diophantine -tuples [58, 59, 61, 62, 102, 115, 118, 

119, 123, 149], yet many of these problems remain unsolved. 

A Number pattern is a form of arithmetic pattern that is often seen. Number 

patterns are a series of numbers that are sorted in a certain way according to a set of 

rules. Mathematics is extremely significant when it can assist you in making 

predictions, and Number patterns are all about making predictions. In Mathematics, 

dealing with Number patterns leads straight to the notion of functions, which is a 

structured representation of the interactions between multiple variables. It is also crucial 

to be able to recognize patterns in numbers while problem-solving [76, 104]. 

Until recently, the importance of Fibonacci's work in Mathematics was 

generally unnoticed. Modern Mathematicians are familiar with his work mostly because 

of the Fibonacci sequence he devised. The first recursive number series is made up of 

the numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55, where each number is the sum of its two 

previous counterparts. Robert Simson, a Mathematician in 1753 at Glasgow University, 

discovered that when numbers became larger, the ratio between them neared the golden 

number, which is  or . As early as the 19th century, Edouard 

Lucas coined the term "Fibonacci sequence" and scientists began to discover such 
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sequences across the natural world, such as the spirals of sunflower heads, pine cones 

and the male bee [33, 39, 46, 69, 70, 78, 79, 88, 96, 103, 122, 148]. 

As a result of the investigation of Pell's equation , where  

is a positive non-square integer, Pell numbers were called after the English 

Mathematician John Pell (16111685). On the other hand, PellLucas numbers are 

called after him and Lucas, despite the fact that neither of them was involved with them 

in any way. Pell and PellLucas numbers are Mathematical twins, much as Fibonacci 

and Lucas numbers are; they are both widespread and have a number of characteristics 

in common with one another [15, 26, 28, 29, 37, 51, 72, 73, 75, 85, 89, 95, 101, 114, 

116, 117, 125, 153]. 

Congruence techniques are a valuable tool for calculating the number of 

solutions to a Diophantine equation. When applied to the simplest Diophantine 

equation, , where  and  are nonzero integers, these approaches 

demonstrate that the equation has either no solutions or infinitely many solutions, 

depending on whether the greatest common divisor (GCD) of  and  divides : if it 

does not, there are no solutions; if it does, there are infinitely many solutions, which 

constitute a one-parameter family of solutions [77, 86]. 

In the 20th century, there was a surge in the field of Number Theory. In addition 

to classical and analytic Number Theory, researchers are currently exploring specific 

subdisciplines such as algebraic Number Theory, geometric Number Theory, and 

combinatorial Number Theory [2, 5]. Concepts got increasingly abstract, while the 

methodologies used to implement them because it was more sophisticated. 
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Undoubtedly, Fermat's greatest ambitions have been surpassed by the scope of the topic 

[108]. 

In the mid-twentieth century, Number Theory was regarded as the purest area 

of study in Mathematics, with no concrete applications in the real world. The emergence 

of digital communication and digital computers emphasized that Number Theory may 

bring surprising solutions to real-world issues [83, 87]. Factoring big numbers, finding 

primes, testing hypotheses, and resolving numerical problems previously believed 

impossible have all been made possible by breakthroughs in computer technology 

during the last several decades. 

Furthermore, practical issues involving splicing of telephone lines have been 

resolved by using techniques of basic Number Theory [92]. Many more fascinating 

applications may be found in the book Number Theory and the Periodicity of Matter 

[12], which has a large number of additional examples. Finally, new and interesting 

applications of Number Theory include cryptography [84], coding theory, chemistry 

[36, 124] and random number generation among other things. These areas are 

developing at a breakneck pace as a result of the widespread use of computers, and their 

significance is growing all the time. 

Since the theory of numbers has existed since the dawn of Mathematics, it is 

both timeless and up-to-the-minute. Because of its apparent (sometimes deceptive) 

simplicity and seductive beauty, it retains its interest. Because it has such a long and 

glorious history, Number Theory has rightfully been referred to as "The Queen of 

Mathematics," in the words of Gauss. 
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Objective and scope of research work: 

The novel variations of patterns of special numbers, as well as fascinating 

relationships among them by using congruences and divisibility, are being investigated. 

Aside from that, processes for obtaining infinitely large number of non-zero integer 

solutions in Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas numbers to some 

quadratic Diophantine equations are discussed. 

Also, it is proved that there exists finite number of integer solutions or no 

solutions to some Mordell type Diophantine equations and exponential Diophantine 

equations that include Prime numbers and natural numbers are being explored as well. 

Furthermore, the application of linear Diophantine equations with certain restrictions 

for finding molecular formulae of chemical substances are investigated. 

Results and discussion: 

This doctoral thesis has nine Chapters. Chapter I  delivers an overview of the 

history and literature required to analyze the different types of problems and their 

integral solutions in Chapters II through IX, which include number patterns and their 

related properties. 

In Chapter II , new sequences and their characteristics are explored in two 

sections. 

Section 2.1 

Manifestation of Two Tremendous Sequences Cheldhiya and Cheldhiya 

Companion Sequences 

Section 2.2 

Invention of Four Novel Sequences and their Properties 



 

 

Chapter  I  Introduction 

7 

 

Section 2.1 deals with the general solution to the Pell equation  

for some particular positive values of  and are developed as Cheldhiya and Cheldhiya 

Companion sequences. Based on these sequences some interesting results are provided. 

In Section 2.2, four disparate sequences and their recurrence relations named as 

Pan-San, Pan-San Buddy, Pan-San Comrade and Pan-San Mate sequences are 

established by utilizing the generalized solutions  to the universal equation called 

as Pell equation for two non-zero square-free integers where 

. Also, the general formulae and few theorems are proved involving such 

sequences for distinct values of  and can analyze the corresponding results. 

Chapter III  comprehends certain patterns of Diophantine Triples, 

incorporating some of the sequences that were developed in the previous chapter. 

Section 3.1 

The Patterns of Diophantine Triples Engross Cheldhiya Companion Sequence 

with Inspiring Properties. 

Section 3.2 

 Demonstration of Two Disparate Structures of Integer Triples Concerning Pan-

San and Pan-San Comrade Numbers. 

 In Section 3.1, the following patterns of Diophantine triples 

, 

, 

, 
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comprising the Cheldhiya companion sequence with the property  is 

studied. 

Also, a pattern of Diophantine triples 

 , 

, 

, 

 

involving Cheldhiya companion sequence with the property  is obtained. 

 In Section 3.2, two different patterns of triples 

, , 

, 

, etc 

and 

, , 

, 

 

 etc 

entailing Pan-San and Pan-San Comrade sequences respectively whereas the 

multiplication of two basics raised by  is a perfect square where  are 

engendered. 
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 Chapter IV  enlightens the artwork of some integer quadruples and quintuples 

with exclusive properties. 

Section 4.1 

Fabrication of Gorgeous Integer Quadruple. 

Section 4.2 

Incomparable Integer Quintuple in Arithmetic Progression with Prominent 

Condition. 

In Section 4.1, Three alternative processes are used to examine the quadruple 

 in order to confirm that the total of any three of them is a cubical integer. 

These approaches are outlined below. 

(i)   

 

  

 

 

  

(ii)   
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(iii)   

 

 

 

 

  

 

 

In Section 4.2, an elegant integer quintuple  in three different ways 

where the components make ensure in arithmetic progression with the conjecture that 

the sum of any three consecutive elements designates a perfect square is recognized. 

(i) 

 

(ii)  
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(iii)  

 

 Chapter V establishes the art of sums, congruence relations and divisibility 

properties of Pell and Pell Lucas Numbers 

Section 5.1 

Sums and Congruences of Pell and Pell-Lucas Numbers 

Section 5.2 

Divisibility Properties of Pell and Pell-Lucas Numbers 

In Section 5.1, numerous innovative identities about Pell and Pell-Lucas 

numbers empower to deliver certain congruence relations for the above stated numbers 

are reflected in the following theorems. 

Theorem 5.2 

If  and , then 

  

and   

Corollary 5.2.1 

    (5.6) 

and      (5.7) 

for every  and . 

Theorem 5.3 

If  and , then 
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 and 

 

Corollary 5.3.1 

If  and , then 

     (5.8) 

and      (5.9) 

In Section 5.2, divisibility properties of Pell and Pell-Lucas numbers are 

revealed by means of the derived congruence relations in Section 5.1. 

Theorem 5.4 

The necessary and sufficient conditions for  are 

i.  and 

ii.   is an odd integer 

for all  and . 

Theorem 5.5 

Let  and . Then  if and only if  and  is an even integer. 

Theorem 5.6: 

For all  and ,  if and only if . 

 Chapter VI  deals with several Quadratic Diophantine equation with solutions 

as familiar Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas numbers. 
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Section 6.1 

Assessment of Solutions in Pell and Pell  Lucas Numbers to Disparate 

Polynomial Equations of Degree Two 

Section 6.2 

Conception of Positive Integer Solutions Relating Jacobsthal and Jacobsthal  

Lucas Numbers to Restricted Number of Quadratic Equations with Double Variables 

In Section 6.1, the solutions in Pell and Pell-Lucas numbers for the following 

explicit polynomial equations of degree two in two variables are derived. 

(i)  when  

(ii)   when  

(iii)   

(iv)  

(v)  

(vi)  and 

(vii)   

In Section 6.2, sequences of non-negative integer solutions encircling 

Jacobsthal and Jacobsthal-Lucas numbers for restricted number of quadratic equations 

with double variables by utilizing the appropriate erections connecting these two 

numbers and the concepts of divisibility are investigated. 

(i)  

(ii)   

(iii)   

(iv)  
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(v)  

(vi)  

(vii)   

(viii)   

(ix)  

(x)  

(xi)  and 

(xii)   

where  is a constant denoting some powers of the number 2. 

 Chapter VII  discovers solutions to certain Mordell Type Diophantine 

Equations. 

Section 7.1 

Methodology of Proving No Solutions to Three Categories of Mordell 

Diophantine Equations ,   , . 

Section 7.2 

Attesting finite number of integer solutions or no integer solutions to four 

Mordell Kinds Equations . 

In Section 7.1, an unsurpassed Diophantine equation for three 

distinct values of  is studied and it is exposed that no integer solution arises by using 

some classical congruence relations and Legendre symbols. 

In Section 7.2, four groups of Mordell equations , 

 are preferred and exposed that two of the equations   
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 among them have no integer solutions and the lingering 

two equations  have partial integer solutions by mostly 

focused on the ideas of properties of congruences. 

 Chapter VIII  deals with Exponential Diophantine Equations in three sections 

8.1, 8.2 and 8.3. 

Section 8.1 

Exploration of solutions for an Exponential Diophantine Equation 

 

Section 8.2 

 Tactics of achieving non-negative integer solutions to an Exponential 

Equation with Base as Natural Numbers . 

Section 8.3 

Investigation of Solutions to an Exponential Diophantine Equation 

 

 Section 8.1 lists the infinite numbers of integer solutions of the equation 

 where  is a prime number by using the basic concept of 

Mathematics and the theory of divisibility. 

 In Section 8.2, an exclusive exponential Diophantine equation 

where , the set of all-natural numbers are examined for all 

choices of two exponents  and  such that their sum  in order to 

discover integral solutions by using inspiring fundamental concepts of Mathematics. 
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 In Section 8.3, the Diophantine equation  is established 

and results are analyzed for the prime triplets where  is of the form  or  

and the powers of primes are either  or . 

 In Chapter IX , the application of linear Diophantine equation in chemistry is 

displayed. 

Section 9.1 

 Usage of Linear Diophantine Equation in the Resolution of Molecular Formulae 

for Various Chemical Substances. 

Section 9.1 examines the application of the linear Diophantine equation with 

certain constraints in the determination of the chemical molecular formulas for three 

distinct compounds and its effectiveness. 



Chapter – II 
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CHAPTER - III 

Diophantine Triples involving Special Sequences 

This chapter is divided into two sections, 3.1 and 3.2. 

In Section 3.1, the patterns of Diophantine triples 

etc reside in Cheldhiya companion sequence with 

splendid properties   are investigated. 

In Section 3.2, two disparate arrangements of triples  etc 

where in one of each module is a Pan-San number and in the other it is a Pan-San 

Comrade number composed with the condition that the multiplication of any two 

modules added with ,  is again a square of an integer are explored. 

 

 

 

 

 

 

 

 

 



 

Chapter  III  Diophantine Triples involving Special Sequences 

38 

 

3.1 The Patterns of Diophantine Triples Engross Cheldhiya 

Companion Sequence with Inspiring Properties 

Presume that 

 where 

  

be any two integers such that  is a perfect square. 

Let  be another positive integer which satisfy the consequent provision 

      (3.1) 

      (3.2) 

Resolving (3.1) and (3.2), the value of  is attained by 

        (3.3) 

 By utilizing (3.3) in (3.2), the relation to be perceived is 

    (3.4) 

Create the succeeding linear alterations 

       (3.5) 

       (3.6) 

Restoring the above values of  and  in (3.4), the quadratic equation with two 

unknowns is estimated by 

     (3.7) 
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Selecting the least solution to (3.7) as 

 

and the implementation this solution in (3.5) and (3.6) endow with the relations that 

 

 

Exchanging the above said suitable modifications in (3.3), the third element in an 

essential pattern which assure the postulation is specified by 

 

 Hence, 

 is a Diophantine triple with the property 

 

Let  be a new-fangled positive integer such that 

      (3.8) 

      (3.9) 

Subtracting (3.9) from (3.8) and make a simple computation, the significant value of  

is determined by 

       (3.10) 

Now, choose  be a positive integer which satisfies the conditions that 

      (3.11) 
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      (3.12) 

By exploiting a plain numerical calculation in (3.11) and (3.12), it is to be noticed that 

       (3.13) 

Suppose that 

      (3.14) 

      (3.15) 

where  

Following the prior process in (3.14) and (3.15), the equivalent value of the factor  

in the sequence is established by 

       (3.16) 

Since the objective is to accomplish appropriate integer values for the parameters in the 

crucial patterns, make use of the subsequent transformations 

 

 

 

 

 

 

where  is the sequence of odd numbers. 
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Proceeding the same mechanism as explained above from (3.8) to (3.16), the elements 

in the necessary patterns with the suitable property are studied by 

 

 

 

Thus, 

, 

, 

, 

 

are patterns of Diophantine triples concerning Cheldhiya companion sequence such that 

the product of any two of them decreased by  is a perfect square where  is a 

natural number. 

Hence, the patterns of Diophantine triples  etc in 

which the factors are Cheldhiya companion sequence with the property  

where  are evaluated. 
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Examples for the numerical replacement of the above patterns of Diophantine 

triples with the property  are specified in table 3.1. 

Table 3.1 

       

1 1 2     

2 1 5     

3 3 10     

Remark: 

Applying the similar procedure as enlightened above, it is pointed out the consequent 

patterns of Diophantine triples in which every element is a Cheldhiya companion 

sequence such that the product of any two of them increased by  is a perfect 

square.  

 , 

, 

, 
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A small number of numerical cases for the above sequences of Diophantine 

triples with the property  are stated in table 3.2. 

Table 3.2 

       

1 1 2     

2 1 5     

3 2 10     

Verification of the numerical examples for all values of  is displayed by the 

ensuing C program. 
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3.2 Demonstration of Two Disparate Structures of Integer Triples 

Concerning Pan-San and Pan-San Comrade Numbers 

Hypothesize that 

where  

be two conflicting Pan-San numbers such that  is a number with power raised 

to two. 

Let  be an additional positive integer that accomplishes the ensuing consequences 

       (3.17) 

       (3.18) 

The resolution of (3.17) and (3.18) provides the possibility of  by 

        (3.19) 

The collaboration of (3.19) in (3.18) interprets the relationship in terms of  and  as 

     (3.20) 

To achieve the necessary condition, let us generate the following linear expansions 

       (3.21) 

       (3.22) 

The standard quadratic equation in and  is projected by restoring the overhead 

values of  and  in (3.20) as below 

        (3.23) 
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Making a choice for the necessity of establishing (3.23) in the codes 

 

and enforcing these cryptographs in the previous held equations (3.21) and (3.22) 

vintages that 

 

  

The third element of conventional triple which pledge the assertion by swap the above 

appropriate outcomes of  and  in (3.19) is identified by 

 

 Hence, it is clinched that 

 is an integer triple with the property  

Let  be the next positive integer together with the statements that 

       (3.24) 

       (3.25) 

Deducting (3.25) from (3.24), the substantial value of  is determined by 

        (3.26) 

The partnership of (3.25) and (3.26) construes the succeeding bond as 

      (3.27) 

Contemplate the fresh rectilinear modifications for  and  as 
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       (3.28) 

       (3.29) 

Reestablishing the above values of  and  in (3.27), the orthodox second- degree 

equation is appraised by 

       (3.30) 

Captivating and imposing them in the expressions (3.28) 

and (3.29) produces the selections of  and  as 

 

 

In sight of (3.26), an essential option of  is calculated by 

  

Hence,  is a required triple in Pan-San 

numbers in which the product of two elements in the set added with a square other than 

1 is a number with exponent two. 

Now, pick  to be some other integer that meets the following requirements 

       (3.31) 

       (3.32) 

By implementing a simple analysis in (3.31) and (3.32), it is interesting to emphasize 

that 
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        (3.33) 

Suppose that 

       (3.34) 

       (3.35) 

where  

Ensuing the erstwhile course in (3.34) and (3.35), the corresponding value of the factor 

 in the sequence is predicted by 

        (3.36) 

Since the mission is to deliver the exact integer values for the criteria in the vital 

patterns, let us use the following conversions 

 

 

 

 

and subsequently the elements with the requisite forms of triples by the relevant 

resource in the same structure as outlined above are analyzed by 

.  

 

Accordingly, 
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, , 

, 

, etc 

are shapes of triples concerning Pan-San sequence whereas the multiplication of two 

barebones upgraded by  is a perfect square where  is a natural number other than 

1. Hence, the patterns of integer triples etc in which the 

factors filling the above proclamation are assessed. 

Elucidations for the numerical replacements of the above patterns of triples are 

demarcated in table 3.3. 

Table 3.3 

      

2 2     

3 1     

4 1     

Remark:  

By smearing the identical technique as above, the following proposals of triples in 

which every component belong to Pan-San Comrade sequence such that the product of 

any two components enlarged by  is a number with exponent two are designated. 

, , 
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, 

 

 

where and  ,  

A limited number of numerical cases for the above sequences of triples are offered 

in table 3.4. 

Table 3.4 

      

2 2     

3 1     

4 1     

Substantiation of the numerical examples is unveiled by the subsequent C 

program. 
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CHAPTER  IV  
Artwork of Integer Quadruple and Quintuple with Unique Properties 

This chapter comprises two sections, section 4.1 and 4.2. 

In Section 4.1, an elegant non-zero distinct integer quadruple  in which 

addition of any three of them is a cubical integer is determined by exploiting the general 

solutions to a meticulous cubic Diophantine equation. 

In Section 4.2, an incomparable integer quintuple  in such a way that the 

components with the renowned property in algebra named as arithmetic progression 

with the postulation that the addition of three consecutive terms shows a perfect square 

is established. 
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4.1 Fabrication of Gorgeous Integer Quadruple 

Let  be four non-zero distinct integers such that addition of any three of them 

is a perfect cube. 

Consider 

       (4.1) 

       (4.2) 

       (4.3) 

       (4.4) 

together with the following condition 

    (4.5) 

Solving the system of equations from (4.1) to (4.4), the corresponding values of 

 are pointed out by 

     (4.6) 

     (4.7) 

     (4.8) 

     (4.9) 

Adding (4.6), (4.7), (4.8) and (4.9), an interesting combination is enumerated by 

    (4.10) 

Comparison of (4.5) and (4.10) provides that 

    (4.11) 
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Employing the following linear transformations 

 

where  and  are non-zero integers, from (4.6) to (4.9) gives 

      (4.12) 

     (4.13) 

      (4.14) 

    (4.15) 

Substitution of the same transformations reduce (4.11) to the quadratic equation with 

three unknowns as 

       (4.16) 

Applying three different procedures of solving (4.16), the determination of an attractive 

integer quadruple satisfying the condition that the sum of any three quantities is a 

cubical integer is explained as follows. 

Procedure (i): 

The choice of  where  leads (4.16) to 

 

which implies that 

 

Escalating the right-hand side of the above equation and equating real and imaginary 

parts on both the sides, it is to be noted that 
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Substituting the above values of  in (4.12), (4.13), (4.14) and (4.15), the values of 

 satisfying our assumption are deliberated by 

 

  

 

  

 

 

 

  

Some numerical examples satisfying the hypothesis are specified in table 4.1. 

Table 4.1 

          

1 1 12609 -14067 21141 2187 273 93 333 213 

2 1 2715525 1456542 569565 -2025378 1683 1293 1083 93 

3 2 165419721 9726264 104580288 -107228664 6543 4083 5463 1923 
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Procedure (ii): 

Treating (4.16) as 

      (4.17) 

Assuming that 

 

and re-establish 1 by 

 

in (4.17), it becomes 

 

which is equivalent to 

 

(4.18) 

Equating the positive parts on both sides of (4.18) and comparing the like terms, it is 

examined that 

 

 

In view of (4.12), (4.13), (4.14) and (4.15), the options of  are estimated by 
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Some numerical examples satisfying the propositions are specified in table 4.2. 

Table 4.2 

          

1 1 -10709 -739 10719 2187 (-9)3 (-21)3 133 233 

2 1 19683 -1771470 2480787 1751058 903 (-9)3 1623 1353 

3 2 -55002032 -46632952 105976512 94647096 1623 (-192)3 5263 5363 

Procedure (iii): 

Consider an alternative solution to (4.16) as 
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Case (i): 

Since the target is to evaluate integral values for the variables, it is observed that the 

subsequent two parametric choices of  and  provides the values of  

and y in integers. 

Then, the integral solutions to (4.16) are calculated by 

 

 

 

Substituting the above quantities in (4.12), (4.13), (4.14) and (4.15), the appropriate 

values of  are discovered by 
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Some numerical examples satisfying our assumption are précised in table 4.3. 

Table 4.3 

          

1 1 13851 12393 -6561 -6561 273 273 93 93 

2 1 1594323 1062882 -1397493 -196830 1083 1353 03 (-81)3 

3 2 94298688 75611448 -71299008 -22712184 4623 5283 663 (-264)3 

Case (ii): 

As in case (i), the single parametric choices of  and  offers the values 

of  and y in integers. 

Thus, 

 

 

 

Substituting the above magnitudes in (4.12), (4.13), (4.14) and (4.15), it is determined 

by 
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Some numerical examples satisfying the hypothesis are exemplified in table 4.4. 

Table 4.4 

k         

1 13851 12393 -6561 -6561 273 273 93 (-9)3 

2 7091712 6345216 -3359232 -3359232 2163 2163 723 (-72)3 

3 272629233 243931419 -129140163 -129140163 7293 7293 2433 (-243)3 

The C Program for numerical examples satisfying our hypotheses are illustrated 

below. 
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4.2 Incomparable Integer Quintuple in Arithmetic Progression with 

Prominent Condition 

Presume that  be five non-zero separate integers such that the elements in the 

quintuple  materialize in Arithmetic Progression. 

To symbolize this proclamation, let and  be two non-zero integers such that 

, , , ,  

Consider that the sum of three consecutive elements in the already assumed quintuple is 

a square of an integer. 

 The above declaration is replicated by the subsequent equations 

      (4.19) 

       (4.20) 

      (4.21) 

Addition of (4.19) and (4.21) endow with the proportion that 

         (4.22) 

Similarly, subtraction of (4.19) from (4.21) bestow as in the succeeding fraction 

         (4.23) 
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Elucidation of (4.20) and (4.22) yields the following equation 

        (4.24) 

To convert the above said value of  as in integer, launch the novel conversions 

       (4.25) 

These translations imitate (4.23) and (4.24) as follows     

        (4.26) 

        (4.27) 

The elements in the required quintuple are making into integers with the property 

looking for is portrayed by the three procedures as below. 

Procedure (i): 

Decode the parameter  as 

  

Then, the equation (4.27) can be altered by 

  

 

Then equating real and imaginary parts after escalating and balancing positive terms on 

both sides, the resulting equations are revealed by 
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Resolving the above equations, the most plausible values of  and  are demonstrated 

by 

  

  

The parametric values of,  and  in integers are created by selecting the options of 

 and and  as follows 

  

  

  

The replacement of the above value of  in (4.25), endow with the value of  as 

  

According to (4.20) and (4.26), the components in an essential quintuple are offered by 

  

  

Subsequently, the necessary quintuple in which the elements form an Arithmetic 

progression is discovered by 

 

  

  

  



 
Chapter IV    Artwork of Integer Quadruple and 

Quintuple with Unique Properties 

71 

 

Logical postulation is checked for certain values of  and  as in table 4.5. 

Table 4.5 

      

2 1 (3504, 2352, 1200,48, -1104) 842 602 122 

5 7 (-59712, 101568, 262848, 424128, 585408) 5522 8882 11282 

1 3 (-4416, 192, 4800, 9408, 14016) 242 1202 1682 

Procedure (ii): 

The same conversion of  supplies the alternative appearance of (4.27) as 

  

Replicate the same course of action as mentioned in procedure (i), the corresponding 

values of  and  satisfying the double equations , 

 are appraised by 

  

  

The chances of,  and  in integers by picking and  are produced 

by 
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Renovate the value of  in (4.25), the value of  is calculated by 

  

In sight of (4.20) and (4.26), the equivalent choices of  and  are pointed out by 

  

  

Hence, the needed quintuple with desired property is exposed by 

 

 

 

 

 

Presumption is verified for definite values of  and  in table 4.6. 

Table 4.6 

      

0 1 (87600, 58800, 30000, 1200, -27600) 4202 3002 602 

1 2 (-56400, 346800, 750000, 1153200, 1556400) 10202 15002 18602 

1 1 (-110400, 4800, 120000, 235200, 350400) 1202 6002 8402 

Procedure (iii): 

Commencement of the fresh renovation  in (4.27) declare the same equation as 



 
Chapter IV    Artwork of Integer Quadruple and 

Quintuple with Unique Properties 

73 

 

   

   

      

     (4.28) 

Again, make use of the transformations ,  in (4.28) produces the proportion 

as 

  ,       (4.29) 

Hereafter, calculate the values of  and  from (4.29) by the process of cross 

multiplication and then substituting these values in the ultimate transformation, it is 

determined by 

     (4.30) 

  

  

Interpretation of (4.20) and (4.26) offers the relevant values of  and  as presented in 

the equations scripted below. 

  

  

Hence, the necessary quintuple in which the elements in Arithmetic progression is 

rendered by 
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Supposition is authenticated for specific values of  and  in the following table 

4.7. 

Table 4.7 

      

2 1 (-276, 12, 300, 588, 876) 62 302 422 

5 7 (-14928, 25392, 65712, 106032, 146352) 2762 4442 5642 

1 3 (-1104, 48, 1200, 2352, 3504) 122 602 842 

The emerging C software shows verification of the numerical samples: 
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CHAPTER  V 

A State of the-Art of Sums, Congruence Relations and Divisibility 

Properties of Pell and Pell-Lucas Numbers 

This chapter encompasses two sections, 5.1 and 5.2. 

In Section 5.1, several new-fangled identities regarding Pell and Pell-Lucas numbers 

enable to provide certain congruence relations for those numbers are deliberated. 

In Section 5.2, divisibility properties of Pell and Pell-Lucas numbers are revealed by 

means of the derived congruence relations detailed in section 5.1. 
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5.1 Sums and Congruences of Pell and Pell-Lucas Numbers 

In this section, some novel identities concerning Pell and Pell-Lucas numbers allow to 

offer certain congruence relations for such numbers are reflected. 

Theorem 5.1 

If  is a square matrix with , then  for every integer . 

Proof: 

Let  and  

Define a function  by . 

Then  is a ring isomorphism. Moreover, it is clear that  and . 

Therefore,  

Corollary 5.1.1 

If , then . 

Proof: 

Since, , it follows from theorem (5.1) that 

  

. 
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Remark: 

From the fact that , defined by  is a ring 

isomorphism, it is observed that 

     (5.1) 

and      (5.2) 

Applying the function  on each side of (5.1) and (5.2), the relations in matrix as 

mentioned in the theorem discovered are pointed out by 

      (5.3) 

and      (5.4) 

where . 

Theorem 5.2 

If  and , then 

  

and   

Proof: 

From (5.3), it is noted that 

     (5.5) 

Raising  power on both sides of (5.5). 

Then,  
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Therefore,  

It comprehends from corollary 5.1.1 that 

 

and   

Corollary 5.2.1 

    (5.6) 

and      (5.7) 

for every  and . 

Remark: 

(i) Since  

(ii)   and . 

Theorem 5.3 

If  and , then 

 

   

and  
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Proof: 

From (5.4), it follows that 

  

Therefore,  

  

  

  

  

  

  

The required results are accomplished by trading the matrices  and  on both sides 

and equating the same entries. 

Corollary 5.3.1 

If  and , then 

     (5.8) 

and      (5.9) 
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5.2 Divisibility Properties of Pell and Pell-Lucas Numbers 

To begin, it is established two well-known theorems in a novel manner by exploiting 

the congruences postulated in Corollaries 5.2.1 and 5.3.1. Regarding the divisibility of 

Pell and Pell-Lucas numbers, readers will investigate the formulae and learn how to use 

them efficiently to resolve problems. Thus, this section explains the fundamental 

divisibility for Pell and Pell-Lucas numbers. 

Remark: 

From the identity , it can be seen that  or 

. Furthermore, 

      (5.10) 

From equation (5.8), it is seen that  and therefore , for 

every natural number . 

Now, some Pell-Lucas numbers identities that will be needed in the sequel are 

deliberated below. 

       (5.11) 

      (5.12) 

Theorem 5.4 

The necessary and sufficient conditions for  are 

(i)  and 

(ii)   is an odd integer 

for all  and . 
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Proof: 

Presume that  

Suppose , then by fundamental property of divisibility,  can be expressed as 

 

If  is an even integer, then  for some . 

From (5.6), it tracks that 

  

Since , . This is a contradiction since as . Hence,  is an 

odd integer. Sustain  for some . So, 

  

Also, since . 

To prove:  

Suppose . By the identity , the above implies that 

. 

Since , it follows that . This is a contradiction to the fact that if 

, then . As a result, it is determined that . 

Thus, , with  being an odd integer. 

Conversely, suppose that  and  is an odd integer, 

That is, , for some integer . Then it is procured that, 
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This is true only when . 

Hence, the theorem. 

Theorem 5.5 

Let  and . Then  if and only if  and  is an even integer. 

Proof: 

Suppose that  and . 

This assumption means that  where . 

If  is an odd integer, it may phrase  for some integer . 

From (5.7), it is distinguished that 

 

Then,  and hence . 

Then, from the identity that  then . Since  

and  are relatively prime, the only possibility is . But  delivers 

. So, . This conflict befalls as a result of our erroneous assumption 

about  being an odd number. Therefore,  is an even integer. Thus, it may have 

 for some integer . 

Now, (5.7) condenses to  

Since , . 



 
 
Chapter - V A State of the-Art of Sums, Congruence Relations and 

Divisibility Properties of Pell and Pell-Lucas Numbers 
 

86 

 

However, this cannot be true since  and hence . This contributes 

that . So, it can be concluded that ,  is an even integer. 

Conversely, suppose that  and  for some . Then, it is acquired from 

(5.7) that 

 

It follows that . 

Theorem 5.6 

For all  and ,  if and only if . 

Proof: 

Initially consider that  but . Then  with . Now, 

suppose that  is an even integer, then this may be taken as  for any integer . 

Hence, (5.9) provides the succeeding identity 

  

Since , by applying the above identity, . Since, if  and , 

it leads to . Hence,  must be an odd integer. Then , for some 

. Thus, (5.9) becomes 

  

Since , it follows that . By the identity, , it is 

noted that . Due to the fact that , it is received that  
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which is a contradiction. This emerges as a consequence of  as  and 

. As a result,  and subsequently , resulting in . 

Conversely, pretend that . Then, the conclusion is  for some natural number 

. As an outcome, 

  

Hence, it is realized that . 

Theorem 5.7 

Let , be an odd number and . Then, there is no Pell-Lucas number such 

that  

Proof: 

Assume that  and  is an odd number. Then  and . Then, 

 and  for some odd natural number  by theorem 5.4, this implies 

that  . It is thus obvious that , for some odd . Since 

 and  is an odd natural number, it can be written as  with  and 

. Hence, 

 

 

  

Similarly, it can be seen that . 
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Since,  is an odd natural number, it is attained that . Then it follows 

that 

 

Moreover, and ,  which 

contradicts the fact that . This concludes the proof. 

Theorem 5.8 

 for every  and for every odd natural number . 

Proof: 

Assume that  is an odd natural number, then . 

Moreover, it can be proved by induction that  for  and 

. 

Therefore,  or  for . Then it seeks that 

  

Or 

  

Thus, . 

Now, it is possible to generalize theorem as follows: 

Theorem 5.9 

Let  and  be an odd natural number. Then there is no Pell-Lucas number 

 such that . 
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Proof: 

Assume that  and t is an odd natural number. Since  and 

, there exist two odd natural numbers  and  such that  and  

by theorem (5.4). Thus, , for some  because  and  

are odd natural numbers. Then, it is pursued that 4 divides both and  by the fact 

that . Hence,  with . Thus, 

  

Since , it follows that 

  

It may be showed in a similar manner that 

  

On the other hand,  by theorem (5.8). 

If , then . 

Since  and , , 

which is a contradiction to the fact that . 

Therefore, . Then . 

Since  and , , 

which denies the fact that . Hence the proof. 
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Theorem 5.10 

If  and  are odd natural numbers, then there is no Pell-Lucas number  such that 

. 

Proof: 

Assume that , for  and  and are odd numbers. Since  and 

, there exists two odd natural numbers  and  such that  and . 

Hence,  for some . 

Therefore, . 

  

i.e.,      (5.13) 

Similarly, it is conquered that 

       (5.14) 

Suppose that  then an odd integer which is not possible. Hence  

which implies that . Then (5.13) and (5.14) yields that 

  and  

 and  

 

Also, from (5.11) the inequalities derived are 

  

 , 
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which is a contradiction. This completes the proof of the theorem. 

Corollary 5.10.1 

There is no Pell-Lucas number  such that , for any  and . 

Proof: 

If  and even, then ther proof follows from theorems (5.7) and (5.9). 

If  and  are odd natural numbers, then it is proved in theorem (5.10). 
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CHAPTER  VI  
Quadratic Diophantine Equations with Solutions as Familiar Numbers 

This chapter consists of two sections 6.1 and 6.2. 

In Section 6.1, the widespread solutions in rapports with Pell and Pell-Lucas numbers 

for restricted number of an unambiguous polynomial equations of degree two in two 

variables are exposed. 

Section 6.2 unveils patterns of positive integer solutions for limited number of explicit 

binary quadratic equations encompassing Jacobsthal and Jacobsthal-Lucas numbers by 

means of the pertinent features connecting these two numbers and the notions of 

divisibility. 

 

 

 

 

 

 

 

 

 



 

Chapter  VI  Quadratic Diophantine Equations with Solutions 
as Familiar Numbers 

93 

 

6.1 Assessment of solutions in Pell and Pell  Lucas numbers to 

Disparate Polynomial Equations of degree two 

Needed Theorems: 

Theorem [I] 

If . Then the numbers  are the only unities of  where 

 is a quadratic field. See [66] 

Theorem [II] 

If positive integers  and the integer  with satisfy the equations 

, then  and  for some positive integers  and 

. If positive integers  and the integer  with satisfy the 

equations , then  and  for some positive 

integers  and  See [82] 

Theorem [III]  Fundamental theorem of arithmetic 

For each integer , there exists primes  such that 

, this factorization is unique. 

Theorem [IV] 

If positive integers  with satisfying the equations 

 , then  and  for some positive integers  and 

.  
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If positive integers  with satisfying the equations 

, then  and  for some positive integers  and 

. 

Primary Results: 

The Pell number labelled by is demarcated by  and  

for . If  be the roots of the equation , 

then where  and In addition, it is well- 

known and simple to demonstrate the identities that  and 

 for every , the set of all integers. In the other hand, it could be 

perceived by induction that 

.   (6.1) 

The Pell-Lucas number is characterized as  and   

 for  .The associations between Pell and Pell-Lucas numbers 

are agreed as follows 

(i)  for every  

(ii)   for every   (6.2) 

Theorem 6.1 

The necessary and sufficient condition for all non-negative integer solutions to the 

second-degree equation in two variables  is 

 with . 
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Proof: 

If , then from identity (6.1), it seeks that 

. 

Conversely suppose that  for some positive integers  and . 

Then by theorem (I), . 

Thus,  and hence . 

Corollary 6.1.1 

The feasible solutions of the quadratic polynomial equation  are 

specified by  with . 

Proof: 

If is odd such that  in theorem 6.1, then the apt integer solutions to 

 is obtained as  ,  

Corollary 6.1.2 

Every possible solution in Pell numbers of the quadratic equation  

are stated by  with . 

Proof: 

If is even such that ,  in theorem 6.1, then the appropriate solutions to 

the equation  are  . 

Theorem 6.2 

The probable integer solutions to the second-degree polynomial equation 

 are attained by  with . 
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Proof: 

Assume that  for some positive integers  and . 

Without loss of generality, suppose that . 

Then, . By corollary 6.1.1, it 

should have  and  and therefore  

Consequently, and ,  

Theorem 6.3 

The positive integer roots of the binary quadratic equation  are 

conquered by  with . 

Proof: 

The proof is equivalent to Theorem 6.2. 

Theorem 6.4 

Let  be the set of all-natural numbers and  sustaining the particular 

equation of the form , then  and  where 

 

Proof: 

If  are satisfying the corresponding equation in the statement, then it follows 

that and hence  for some . 

Suppose that  and  for some prime number . 
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Then,  which leads the implicit equation to  

This ensure that  which is absurd. 

In what follows that . 

Then by theorem [III],  and  for some positive integers  and  where 

. 

Hence, . 

Theorem 6.5 

If two positive integers  be such that , then  and 

 for some positive integers  and  with . 

Proof: 

The proof is analogous to Theorem 6.4. 

Corollary 6.5.1 

The conceivable Pell values of  in the equation  are 

achieved by  , . 

Corollary 6.5.2 

The plausible solutions in Pell numbers to the equation  are 

specified by  , . 

Theorem 6.6 

Let . Then  if and only if 

 where . 
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Proof: 

Assume that where  

Then by theorem [II],  and  for some  

Subsequently  

Again, by corollary 6.1.2, it is noticed that  

This implies that  where . 

Conversely, if  with , then 

 

     

By corollary 6.1.2, it is pursued that 

. 

Theorem 6.7 

The sequence of several positive integer solutions for the quadradic equation 

 are epitomized by  where 

 

Proof: 

Let  be such that . 

Then and hence  for some . 
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If  and  for some prime number , then  and also the relation 

is true for all . 

Thus,  divides 4. 

It is evident that, the possibility of such  is  . 

This condition offers that  for some and obviously the 

projected quadratic equation becomes . Then and 

hence  for some . 

Again, if  and  for some prime number , then  and the relation 

is true for all . 

Clearly, the chance of such  is . This diagnosis provides that  

implying that . 

These contributions state that , which has no positive 

integer solution [98]. Hence, our assumption that  and have common divisors is 

wrong. This proposes that . Thus, by the fact that the product two 

coprime numbers should be a perfect square if and only if each of them is a perfect 

square,  and  for some positive integers  and  and . 

These choices of  and  affords  and afterward the desired equation can be 

modified into . 

By theorem 6.3,  and hence , 

. 
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Theorem 6.8 

Every solution in Pell-Lucas numbers for two dissimilar quadratic equations 

 and  are offered by  

 and  respectively. 

Theorem 6.9 

Let , the set of natural numbers. 

(i) If , then  , . 

(ii)  If , then  ,  

Theorem 6.10 

If  be any two positive integers such that , then either 

,  or  , . 

Proof: 

Consider that  for some positive integers  and . 

If , then  and  for some  and  belong to the set of all 

positive integers Therefore, the original equation in two variables  and  is converted 

into . 

By theorem 6.5, . 

If , then by theorem [II],  and . 

Then, the original equation becomes . 

By applying theorem 6.8, it is concluded that 
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 with . 

Conversely, if , then 

 

  , 

by the implementation of corollary 6.1.2. 

Similarly, the same equation could be satisfied for . 

Theorem 6.11 

Let  be any two positive integers. 

(i)  If , then either 

 or  , . 

(ii)  If , then either , 

 or  , . 

(iii)  If , then either , 

 or  , . 

Theorem 6.12 

Let , the set of all positive integer. Then 

(i) The positive integer solutions to the equation  

are either ,  or  
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(ii)  The complete solutions in Pell numbers and Pell-Lucas numbers of the 

equation  are either 

,  or 

 ,  

6.2. Conception of positive integer solutions relating Jacobsthal and 

Jacobsthal  Lucas numbers to restricted number of quadratic 

equations with double variables 

Primary Consequences: 

The Jacobsthal number designated by is delineated by  for 

 where . If  are two roots of the equation , then 

such that  and . Furthermore, it is well- recognized 

and modest to reveal the characteristics that  and 

 for every , the set of all integers. Also, it might be declared 

by Mathematical induction that 

   (6.3) 

Similarly, the -Lucas number is described as  for 

and . The interrelation between Jacobsthal and Jacobsthal-Lucas 

numbers are approved as follows 

(i)  for every  

(ii)   for every   (6.4) 
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Theorem 6.13 

The constitutive criterion for all non-negative integer solutions to the specific second-

degree equation involving two variables  is 

 with . 

Proof: 

If , then it follows from identity (6.4) that 

 . 

Conversely suppose that  for some positive integers  ,  

and . 

Then, 

  

. 

Thus,  and hence . 

Corollary 6.13.1 

The viable solutions to the certain quadratic equation  are 

enumerated by  , . 

Corollary 6.13.2 

Every conceivable solution in Jacobsthal numbers of the equation  

are quantified by  with . 
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Theorem 6.14 

The trustworthy integer solutions to the exact equation  are 

conquered by  with . 

Proof: 

For our convenience, let us choose  

Then,   

By corollary 6.13.1, it should be  ,  and  

The first two of the above equations yields the value of  as  

Hence, the solutions to the required equation are mentioned by 

  

Corollary 6.14.1 

The infinitely many positive integer solutions to the equation  

are attained by  with . 

Theorem 6.15 

Let  be any two natural numbers sustaining the equation . 

Then  and  where  

Proof: 

Modify the original equation as  

It is easy to see that  and hence  for some natural number  

If  is any prime number such that  and Z, then  
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This affords the expression which guarantees that . 

Here, the only possible value of  is  which implies that  

Again, it grasps that  where . 

Enduring the same method as enlightened above till the constant  vanishes, it is found 

that  

It follows that and hence  for some positive integer  

If a prime number  satisfying the conditions  and , then  

Then, it is detected that  . 

This equation infers that  which is not possible. 

Therefore, . 

By the needed theorem [III] stated above, it is noted that  and  for some 

positive integers  and  where . 

Hence, it is concluded that . 

Corollary 6.15.1 

The probable values of  in the equation  are given by 

 , . 

Corollary 6.15.2 

The realistic solutions in Jacobsthal numbers to the equation  

are computed by  , . 
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Theorem 6.16 

If  be any two positive integers such that , then  

and  for some positive integers  and  with . 

Proof: 

The proof is analogous to Theorem 6.15. 

Corollary 6.16.1 

The convincing integer values of  in the equation  are 

resolved by , . 

Corollary 6.16.2 

The conventional solutions to the quadratic equation  are 

particularized by , . 

Theorem 6.17 

The patterns of non-negative integer solutions to the equation 

 are exemplified by  

 where  

Proof: 

Let be two non-negative integers such that . 

The alteration of the above equation  ensures that divides 

and henceforth  for some non-negative integer . 

Suppose that a certain prime number  divides both  and . 
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Then  and also the relation holds for all , the set 

of all positive integers. 

Thus,  divides  and the chance of such  is  . 

This condition confirms that  for some and perceptibly 

the equation in which solutions to be evaluated is converted into 

 where . 

By the argument as explained above, and hence  for some . 

Again, if  and , then  and the precise relation is 

also true for all . 

Carrying on this procedure till the equation  is reached. 

Further if  and , then  and the accurate equation 

is detected for all . 

Finally,  divides 1 which is impossible. 

As a result, our supposition that  and  have common divisors is erroneous. This 

shows that that . 

Thus, by the necessary and sufficient condition that the product two coprime numbers 

should be a perfect square if and only if each of them is a perfect square,  and 

 where  and . 

These adoptions of  and  provides that  and subsequently the essential 

equation can be developed into . 
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By Corollary 6.14.1, the values of  and  are searched by  

. 

Therefore , . 

Corollary 6.17.1 

The non-negative integer solutions for the equation  are 

symbolized by  where  

Theorem 6.18 

(i) The patterns of positive integer solutions to the equation 

 are incarnated by the Jacobsthal numbers 

 where  

(ii)  The infinitely several positive integer solutions to the equation 

 are signified by  

where  

Theorem 6.19 

The feasible solution in Jacobsthal-Lucas numbers for two unlike binary quadratic 

equations  and  are presented by 

,  and  

respectively. 

Theorem 6.20 

Let  be two distinct natural numbers. 

(i) If , then  , . 

(ii)  If , then  ,  
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Theorem 6.21 

If  be any two non-negative integers such that , then 

either 

,  or 

, . 

Proof: 

Assume that  for some non-negative integers  and . 

If , then  and  for some  

Therefore, the needed equation in two unknowns  and  is enhanced in terms of  

and  as . 

By corollary 6.15.1, 

. 

If , then by theorem [IV],  and . 

These choices of  and  simplifies the considered equation into the following one 

. 

By theorem 6.19, it is resolved that 

 where . 

Conversely if , then by the implementation of 

corollary 6.13.2 

  

   , 
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Likewise, the very same equation might well be fulfilled for 

. 

Theorem 6.22 

Let , the set of all positive integers. 

(i)  If , then the solution is either of the form 

 or of the form 

. 

(ii)  If , then the solution in Jacobsthal sequence is 

 or in Jacobsthal-Lucas 

sequence is . 

(iii)  If , then the solution of the equation is either in 

Jacobsthal numbers  or in 

Jacobsthal-Lucas numbers . 

Theorem 6.23 

Let  be two distinct non-negative integers. Then 

(i) The two different sets ofs non-negative integer solutions to the equation 

 are discovered by Jacobsthal numbers 

 and  by Jacobsthal-Lucas 

numbers  . 

(ii)  All possible solutions in Jacobsthal and Jacobsthal-Lucas numbers to the 

equation  are determined by 
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 and 

. 

(iii)  If , then two sequences of solutions in integers 

are presented by  and  

. 

(iv) If , then one of the following two solutions 

exists:  or 
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CHAPTER  VII 

Mordell Type Diophantine Equations 

Chapter VII entails of two sections 7.1 and 7.2. 

In Section 7.1, three unrivalled forms of Mordell Diophantine equations 

,   where   are integers together 

with some prime number  satisfying certain congruence relations are examined and 

proved that all such equations have no solution in integer. 

In Section 7.2, four types of Mordell equations ,  are 

considered and showed that two of the equations  have 

no integer solutions and the remaining two equations  

have restricted number of integer solutions by mainly using the perceptions of 

properties of congruences. 
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7.1 Methodology of Proving no Solutions to three Categories of 

Mordell Type Diophantine Equations 

Definition 

The Legendre symbols are well-defined by 

(i)  

(ii)   

In this section, three different Mordell kind Diophantine Equations , 

,  are considered and proved that all 

these equations have no solutions by the following theorems. 

Theorem 7.1 

Let  and  be integers such that  and for any prime 

number  divides implies that ). Then, the equation  

where  has no integer solution . 

Proof: 

Suppose that it happens a solution  in integers to an explored equation. 

Since  , it is noticed that  

Hence, and  and so . 

Now, the deliberated equation for the preferred choice of  can be adapted into 

   (7.1) 

As , it must be 

  

Hence,  is odd and by (7.1) it has a prime factor , . 
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Thus, . 

By our assertion, .  Hence, 

  

which is true only when  denies the fact that . 

Therefore, our assumption is wrong. 

This proves that the examined equation  with the considered  has no 

solution. 

Theorem 7.2 

Let  be integers sustaining the conditions . 

If a prime number  divides  implies that , then the equation 

 where  has no solution  in integers. 

Proof: 

Suppose that  is an integer solution of the inventive equation with an apt . 

Since, , it is achieved by . 

Hence, . 

Now, the original equation is reformed for the prescribed value of as 

  (7.2) 

Since and  it is found that 

 

Hence,  is odd and by (7.2) it has a prime factor , . 

Thus, . 

By our assumption,  and hence  
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But, . 

This is correct only for contradicts the chance that . 

Hence, the Diophantine equation  for the selected  has no solution. 

Theorem 7.3 

Let  be integers nourishing with the conditions  

. If  is a prime such that  and  divides , then the 

equation  where  has no integral solution. 

Proof: 

For the choice , it must be 

  

Therefore,  and consequently  

Hence, 

Moreover,  

So that  

Now,   

As  and  it is seen that  

and  

  has a prime factor  such that 

 By our hypothesis,  and  

Also, contrasting 

Hence, it is resolved that there exists no solution for the Diophantine equation 

 when . 
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Theorem 7.4 

Assume  and . Let  be a prime number such 

that  and . Then, the equation , where 

 does not embrace any integer solution. 

Proof: 

Since, , it is detected that  

Then,  and subsequently 

Hence 

If , then  which is not possible.

Thus, . 

Now,  

  

Therefore  is odd and is divisible by an odd prime  with 

 

 . 

By our postulation,  

 

disagreeing  

Hence the proof. 

7.2 Attesting Finite Number of Integer Solutions or No Integer 

Solutions to Four Mordell Kind Equations 

The intention of each phase is to treasure comprehensive solutions for Mordell type 

Diophantine equations of the form  where . 
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Applicable Theorem I 

In [136],  denote a prime. Then  has solutions if and only if 

 or  

Theorem 7.5 

If , then there is no solution to . 

Proof: 

Initially let us assume that  has an integer solution . 

If  and , then  and  

respectively. But, both of them are impossible. 

Hence, it is possible that  because it leads to . 

Now, the implicit equation can be considered as 

 . 

As ,  

This implies that is divisible by a prime number  such that  

That is,  where  

This is a contradiction to theorem I. 

Hence,  has no integer solution. 

Theorem 7.6 

The feasible integral solutions to the particular Mordell equation  are 

. 

Proof: 

Rewrite the proposed equation as  (7.3) 
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If  is even, then  is odd. If  is odd, then  is even. If  is the common divisor of 

 and , then  also divides their difference . 

Therefore,  must be any one of the values . 

Case 1: Suppose  is even 

Then,  and  are both odd. So,  is either 1 or 3. 

If , then they are relatively prime. Since their product is a cube, 

they both are cube. 

That is  and  

 

However, no two odd cubes produce a difference 6. 

Hence,  

Since  is even,  or  

Subcase 1.1: Suppose  

Then,  and .  

Dividing (7.3) by 27, it is emblazoned as 

  

Due to the fact that division of each component by a multiple of , 

the right-hand side of the preceding equation comprehends relatively prime factors and 

therefore each factor is a cube. 

That is,  and  

 

  

This is factual only for  
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If  or , then  and . 

Therefore, an integral solution to 7.3 is  

Subcase 1.2: Suppose  

However,  and .  

By dividing (7.3) by 27, it is converted into 

 

As the description specified in subcase 1.1, it is possible to designate the components 

on the right-hand side of the previous equation as 

  and  

 

 

The only possibility of the above equation is , . 

Either of the above choices of  and delivers  and . 

Therefore, in this circumstance the comprehensive solution is  

As an effect, this case grants two integral solutions . 

Case 2: Presume  is odd 

Then, both the factors in the right-hand side of (7.3) are even and  is 

either 2 or 6. 

Also,  or  

Subcase 2.1: 

If  and  then  and 

. 

Divide both sides of (7.3) by 8, it is received that 
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As in case 1, it is taken as 

  and  

 

 

The preparable chances of  and  are declared by 

 and  

If  or , then  and . 

If  or , then  and . 

Therefore, the two integral solutions to (7.3) achieved in this instance are 

. 

Subcase 2.2: 

If  then  and  and proceeding 

as in case 1, it is concluded that . 

Similarly, if , then integer solutions  of (7.3) 

are accomplished for both selections of  and  by means 

of the same methodology in case 1. 

Case 3: 

In all the above two cases, the fact about the unique factorization domain in the ring of 

integers is considered. But one of the factors in the right-hand side of (7.3) divided by 

 can be stretched to a fractional number. 

That is,  or  may be a fractional number. The product of an integer and a 

fractional number is a cube of an integer means that it fulfils the following conditions. 
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  and  or  and  

These choices afford the succeeding equations 

 or  

Solving them for , it is acquired that 

 or  

In these two equations, the discriminant is a positive integer if and only if . 

Implementing this condition, a diverse solution is obtained as follows: 

  and  

 

 

 

 and hence . 

So, all the solutions assimilated for the preferred equation are 

 

Theorem 7.7 

If , then the equation  has no solution. 

Proof: 

Redraft the suggested equation as 

     (7.4) 

Since , either  and  are both even or they are both odd. 

Case 1: Suppose and  are both odd 

If  is a common divisor of  and , then  divides their difference 
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. 

Hence, there exists some  such that . 

Since norm is multiplicative in , the norm of  denoted by ��������	�
�

 

This implies that  divides  where  is the norm 

of the Gaussian integer . 

As well as  divides which is odd. 

Then,  and thus  is a unit in . It is well known that every unit is a cube 

in . 

This means that  and  are relatively prime. 

From (7.4), both  and  are cubes. 

Contemplate 

 

  and  

From the second of the above equations,  must be  or  or . None of these 

values of  gives an integer value for . 

Hence, the projected equation has no solution when and  are both odd. 

Case 2: Suppose and  are both even. 

Transcribe  and  

Then, (7.4) can be swotted into the following equation 

       (7.5) 

  is even 
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If  is odd, then . This is not possible, since even squares are always 

congruent to 0 modulo 4. 

Hence,  is even. 

Now, designate  and . 

Engaging these two alternations in (7.5), it can be extolled by 

  implies that is odd 

If  is odd or even, then  which is impossible because 

. 

Hence, this case offers no solution to the predictable equation. 

Theorem 7.8 

The limited number of integral solutions to the definite type of Mordell equation 

 are . 

Proof: 

The considered equation can be rephrased as 

      (7.6) 

Here both  and  are either even or odd. If  and  have a common 

divisor , then their difference  is also divided by . 

Therefore,  essentially be any one of the values . 

Case 1: Suppose  and  are even 

Then,  and  are together even and also 

. 

If , then by dividing (7.6) by 8, the following conjectures can 

be made 
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  or  

 or  

It is scrutinized that both equations do not have solution in integers. 

When , then dividing (7.6) by 64 and utilizing the prior 

technique as revealed earlier, the subsequent equations are grasped 

  or  

  or  

If  and , then . 

If  and , then  

Hence, the needed solution is  

If , then dividing (7.6) by  and using the identical method as 

acknowledged in earlier theorems, it is scrutinized that the ensuing equations 

  or  

procure no integer values for both  and . 

If , then dividing (7.6) by  and by the similar procedures 

as given above, the succeeding equations are detected 

 or  

  or  

If  and , then . 

If  and , then . 

Hence, the necessary solution is  

This scenario thus provides the ideal solutions . 
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Case 2: Suppose  and  are odd 

Then both the factors on the right-hand side of (7.6) are odd and  is 

either 1 or 3. 

If , then it is evidenced that 

  and  

 

But the difference is not 12 between any two odd cubes. 

Hence, . Then for both selections  and 

 and by utilizing the undistinguishable approach, it is noted that 

  or  

 

  

Henceforth, the outcome in this case, is . 

Case 3: 

Appeal the concept of case 3 in theorem 7.5, an exclusive solution is perceived when 

 as follows 

  and  

  

  

 and hence . 

The solution obtained in this case is . 
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CHAPTER - VIII 

Exponential Diophantine Equations 

This chapter is composed of three sections, 8.1 to 8.3. 

In Section 8.1, an exclusive exponential Diophantine equation  

such that the sum of integer powers  and  of two consecutive prime numbers 

engrosses a square is examined for estimating enormous integer solutions by exploiting 

the fundamental notions of Mathematics and the speculation of divisibility for all 

possibilities of  

In Section 8.2, an inimitable Diophantine equation with variables as exponents 

, , the collection of all-natural numbers in order to estimate 

immense non-negative integer solutions by implementing ultimate moralities of 

Mathematics and the formulae for solutions of acquainted Pell equations is investigated 

for whole categories of two exponents  and  such that . 

In Section 8.3, a particular kind of an exponential  Diophantine equation  

 where  is a prime triplet of the forms 

 or  and 

 or  for certain 

, the combination of  takes the values either  or  is investigated with the 

help of MATLAB program and basic concepts of Mathematics. 
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8.1 Exploration of Solutions for an Exponential Diophantine 

Equation  

In this section, the possible integer solutions to an exponential Diophantine equation 

 are explored in the following theorem. 

Theorem 8.1 

If  is any prime and  and  are integers persuading the condition that 

, then all feasible integer solutions to an exponential Diophantine 

equation  are given by 

 when  and 

where  for  

Proof: 

The equation for performing solutions in integer is taken as 

       (8.1) 

All doable predilection of the supposition  is carried out by eight cases 

for assessing solutions in integers. 

Case 1:  ,  

The equation (8.1) to explore solutions in integers trims down by 

         (8.2) 

If , then  

Hence, the one and only one integer solution is communicated as 
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If  is an odd prime, then  is an odd number. 

This means that is an odd number and consequently is also an odd number. 

If , then  which is impossible. 

As a result, . 

Describe       (8.3) 

The square of the selection of  in (8.3) can be characterized by 

,  

Insight of (8.2), the promising value of an odd prime complied with the specified 

equation is distinguished by 

 ,  

Hence, the enormous solutions to (8.1) is  

where  

Case 2: ,  

The inventive equation (8.1) is diminished as 

         (8.4) 

If , then  which is not possible for the integer value of . 

If  is an odd prime, then  is an even number which can be articulated by 
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Match up the above equation with (8.4),  is a perfect square only if  where 

. 

Thus, . 

If then  

Therefore, the solution belongs to the set  of integers is  

If , then  

If divides , then and as a consequence  

Thus,  and leads to the ensuing equation 

 

But the above equation is not true for any integer value of . 

If divides , then and from now  

Therefore,  and consequently  which is not factual for 

any integer options for . 

Hence, in this case there exists a unique solution to (8.1) given by 

. 

Case 3:  ,  

The creative equation (8.1) is adjusted by 

  

Since  is an odd number for all selections of , it follows that 
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Capture that  which means that  for some positive integer  

This declaration is possible only when  

Then , and  which is not a perfect square of an integer. 

Hence, in this case, there is no integer solution to the presupposed equation. 

Case 4 : ,  

The resourceful equation (8.1) is reconstructed as 

          

     (8.5) 

If , then  and  

Executions of these two equations in (8.5) go along with the subsequent quadratic 

equation in  

  

which consent the value of  

It is deeply monitored that no prime number  provides an integer value for k. 

An alternative vision of  reveals that  and  

By making use of these two equations in (8.5) espouse the second-degree equation in  

as 
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which yields . 

The above value of  is a complex number for any prime . 

Hence, the ultimate result is no integer solutions to the most wanted equation (8.1). 

Case 5 : ,  

The quick-witted equation (8.1) is restructured as 

         

     (8.6) 

It follows from equation (8.6) that  must divide any one of the values  or 

. 

If , then and for some integer . 

Then, equation (8.6) makes available with the value of  as 

         (8.7) 

Accordingly, one can easily notice that the right-hand side of (8.7) can never be a prime 

number for . 

This circumstance offers that . 

If , then and for some integer . 

Then, equation (8.6) endows with the value of  as 

        (8.8) 

None of the value of  in the right-hand side of (8.8) supplies the prime number 

establish that 
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. 

Hence, this case does not grant an integer solution for equation (8.1). 

Case 6 : ,  

For these choices of  and , the well-groomed equation (8.1) be converted into 

       (8.9) 

If ,  which make sure that  cannot be an integer. 

If  is any odd prime, then takes any one of the forms  or . 

If  and the perception that  must be odd reduces (8.9) to 

 

     (8.10) 

It is perceived that none of the values of ensures that the left-hand side of (8.10) as 

the product of two consecutive integers. 

Similarly, the chance of , and the discernment that  is an odd integer 

reduces (8.9) to 

  

 

The above equality does not hold since the left-hand side is twice an odd number and 

the right-hand side is a multiple of 4. 

Hence, in this case there does not exist an integer solution. 

Case 7: ,  

These preferences of  and  altered the well-designed equation (8.1) into 
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      (8.11) 

Since  is an odd number,  

Then,         

Hence, either  or  is a multiple of 2. 

If  is a multiple of 2, then  must be 2. 

Implementation of this value of  in (8.7) furnishes  which does not enable as 

an integer for . 

If  is a multiple of 2, then  for some . 

The only odd prime satisfying all the above conditions is 3 and the corresponding value 

of  

Consequently, the only integer solution to (8.1) is  

Case 8: ,  

The original equation (8.1) can be written as 

   

If , then  which cannot acquiesce an integer for . 

Also,  and  which implies that either  or 

 

For the reason that  is an odd prime,  and so  

This is not possible since  can take either of the forms  or  
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. 

Hence, the conclusion of this case is there cannot discover an integer solution to (8.1). 

8.2 Tactics of achieving Non-Negative Integer Solutions to an 

Exponential Equation with the base as Natural Numbers 

Theorem: 8.2 

If , the set of all-natural numbers and  and  are integers such that 

, then all viable non-negative integer solutions to an exponential 

Diophantine equation  are prearranged by 

 

  

  

where , , h 

. 

Proof: 

The equation for executing integer solutions is measured as 

 ,      (8.12) 

The succeeding categories are analyzed for receiving non-negative integer solutions for 

all effective inclinations of the estimations . 

Case 1:  ,  

The equation (8.12) for looking solutions in integers is curtailed by 
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         (8.13) 

If  is an odd number, then  and hence  is also an odd number. 

Presume that  

In the vision of (8.13), the choice of  is then led by 

 

Foremost if  is an even number, then  also ensures that  is an even number. 

Adopt that  

Then, (8.13) leads to the already mentioned value of  as 

 

Hence, the massive solutions to (8.12) is embodied by 

 and  

where . 

Case 2: ,  

The desirable equation (8.12) to discover integer solutions is revised by 

         (8.14) 

If  is an odd number, then  and also  are even numbers. 

Let us select  

Replacing this choice of  in (8.14), the equivalent option for the selected natural 

number  is given by 
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On the other hand, if  is an even number then  as well as  is an odd number. 

For easy accessibility, it is denoted by  where  

Exchanging the precise value of  in (8.14), the corresponding possibility of  is 

attained by 

  

Hence, in this case all probable solutions to (8.12) are decided by 

 and  where 

 

Case 3:  ,  

The above chosen values of  and  diminished (8.12) to the successive equation 

 

Since any square of an integer added with one can never be a square of an integer,  

and subsequently  cannot be an integer. 

Case 4: ,  

These selections of  and shortened (8.12) to 

  

Since any square of an integer reduced by one is not at all a square of an integer,  and 

then  are not integers. 

Hence, for Case 3 and Case 4, it is impossible to treasure an integer value for all 

necessary variables. 
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Case 5:  ,  

The structure of an inventive equation (8.12) is symbolized by 

  

Since the left-hand side is an odd number for all , the value of  implying that 

z is also an odd number. 

Perceive that  for all . Clearly, . 

As a result, the solution is detected by  where 

. 

Case 6: ,  

The ingenious equation (8.12) is revamped as 

          

      (8.15) 

If  is odd, then  and  implying that  

Our presumption cannot acknowledge . 

As an effect, and thus  

If  is even, then . 

Obviously,  and  together gives  

But, the roots of this quadratic equation do not belong to , the set of all integers. 

Thus, . 
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As a consequence, the end outcome is . 

Case 7: ,  

The original equation (8.12) is renovated as 

         

     (8.16) 

Then, both  and  are factors of . 

This is feasible for no integer value of . 

Hence, no integer solution exists for the scheme of  and . 

Case 8: ,  

The shrewd equation (8.12) is reorganized as 

         

      (8.17) 

This equation is not achievable irrespective of . 

Eventually, this case does not contribute an integer solution for equation (8.12). 

Case 9: ,  

The proficient equation (8.12) is reassembled as 

          

       (8.18) 

If  and  are both odd, then they are coprime. 
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Thus,  and  where  and  which stretches 

(8.18) as 

 

But no two natural numbers please this condition. 

If  and  are both even, then (8.18) becomes  

That is,        (8.19) 

If either  or  is an even number, then they are relatively prime. Using the well-

known fact that the factors of a cubic number are always a cubic number, equation 

(8.19) is valid only for  None other values of confirm the above statement 

which suggests that  and . 

Hence, the imminent result is . 

Case 10: ,  

The well-made equation (8.12) be transmuted into 

        

     (8.20) 

Suppose that from equation (8.20),  and  

A simple analysis of these assumptions produces the equation  

It is examined that none of the integer values of  assures the preceding third-degree 

equation. 

Hence, for this case, there does not occur an integer solution. 
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Case 11: ,  

These espousals of  and  convert equation (8.12) into 

        (8.21) 

It is analyzed that, the prereferral equation (8.21) is satisfied only for two couples 

 and . 

This can be established by the subsequent MATLAB Program: 

 

 

 

 

 

 

 

 

 

 

 

Hence, the anticipated solutions are  
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Case 12: ,  

These appropriate picks of  and  reformed the well-framed equation (8.12) into the 

standard equation 

      (8.22) 

where         (8.23) 

The primary values obeying (8.22) are .   

The recurrence relations to the equation (8.22) are specified by 

        (8.24) 

 ,     (8.25) 

From (8.23) and (8.24), the sequence of necessary values of  is noted by 

 ,    (8.26) 

Consequently, the patterns of positive integer solutions to (8.12) are executed by 

  with  and  

The successive values of  and  can be evaluated by (8.25) and (8.26).  

Case 13: ,  

The equation (8.12) can be scratched as 

  

This is satisfied only for the pair . 
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This can be done through the following MATLAB Program: 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the essential non- negative integer solution is . 

Case 14: ,  

The equation (8.12) can be engraved as  

 

  

Proceeding similarly as in case 10, it is not predicted integer solutions to (8.12). 

Hence, the theorem. 
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8.3 Investigation of Solutions to an Exponential Diophantine 

Equation  

The 3-tuples consisting three distinct prime numbers such that the difference between 

the biggest and smallest prime numbers is six, then the 3-tuple is called a prime triplet. 

For example, the 3-tuple  or  where  is neither 

2 nor 3 are prime triplets. 

The approach of existence of integer solutions to an equation  

where  is a prime triplet of the forms 

  or  

and  or  

for certain , the collection of  are either  or  is analyzed in the following 

theorems. 

Theorem 8.3 

If  and  is a prime triplet of the form 

 for fixed  then an equation 

 has no solution. 

Proof: 

The theorem is proved by considering the following eight cases. 

Case 1:  

Then, 
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It is scrutinized that the expression  is not a perfect square for any . 

The following MATLAB Program demonstrates the statement given above. 

 

 





















Case 2:  

The equation to analyze solutions in integers can be written as 
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This is possible only when and . But no such  satisfies the 

equation . 

Case 3:  

For these choices of , the original equation is reduced into 

  

 

 

 

It is well-known that the difference of two square numbers cannot be 1. 

Case 4 :  

The selected values of the variables convert the given equation as follows 
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This is true only if and . But for any ,  is not valid. 

Case 5 :  

The desired equation becomes 

  

 

Case 6 :  

The considered equation becomes 

  

 

Case 7:  

Then,  

 

 

Case 8:  

The given equation can be written as 

  

 

It is a well-known fact that if , the quadratic polynomial  is a 

perfect square. 
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But, the quadratic equation in  mentioned above from case 5 to case 8 does not meet 

this criterion. 

Consequently, none of the choices of  considered from case 5 to case 8 provides 

solutions to an equation. 

As a conclusion, all the cases are not providing possible solutions to the equation. 

Theorem 8.4 

A solution to the equation  where  is 

inconceivable if  is a prime triplet of the form  

 for suitable  

Proof: 

This theorem is showed by the succeeding eight cases as in theorem 8.3. 

Case 1:  

Then,   

 

 

This is not true for any . This statement is confirmed by the succeeding 

MATLAB Program. 

 

 


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













 

 

Case 2:  

The required equation to be solved becomes 

  

 

 

 

This declaration is true only when and . But there is no  

sustaining the condition . 

Case 3:  

The developed equation can be modified into 
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As is case 2 of theorem 2.1, this is impossible. 

Case 4 :  

The given equation can be rewritten as 

 

 

 

 

and  

But for any ,  is not possible. 

Case 5 :  

The stated equation becomes 

 

 

Case 6 :  

The considered equation is converted into 

  

 

Case 7:  

These options of the variables reduce the scrutinized equation into  

  

 



 

Chapter - VIII   Exponential Diophantine Equations 

150 

 

Case 8:  

The equation in which solutions to be discovered becomes 

  

 

As in theorem 8.3, in this theorem also case 5 to case 8 does not yield the solution to an 

equation. Hence, there exists no solution in the integer to the given equation. 

Theorem 8.5 

There are infinitely many solutions to the equation  if 

 is a prime triplet the form  for selected 

,  are either of 1 or 2. 

Proof: 

The theorem is proved as in previous two theorems. 

Case 1:  

Then,  

 

 

It is observed from the following MATLAB Program, there are enormous prime triplets 

can be extracted. For instance, if  provides the prime triplets 

 as solutions to the 

designated equation. 
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











 



 

 

Case 2:  

The assumed equation becomes 

  

 

 

 

This is achievable only when and . However, for every , the 

equation  is invalid. 

Case 3:  

The elected choices of  minimizes the given equation as 
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Therefore, and  are the only values that enable the above equation 

to be accomplished. But  is not conceivable for any . 

Case 4 :  

For these options of , the equation to be resolved is 

  

 

 

 

The only values which attain the above condition are and . 

But for any ,  is not possible. 

Case 5 :  

Therefore, the original equation is converted into the quadratic equation as follows 

 

Case 6 :  

Then, the equation is altered into the quadratic equation in  as given below. 

 

Case 7:  

The similar form of the given equation is 

 

Case 8:  

The identical from of the considered equation is 
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As the explanation given in theorem 8.3, there is no solution in integers for the cases 

listed above from 5 to 8. 

Hence, the combinations of all the cases of are not solutions to an equation. 

Theorem 8.6 

Any  such that  is a prime number and  is a prime 

triplet, then  has no solution when  are either 1 

or 2. 

Proof: 

The proof is analogous to theorem 8.3 

Remarks: 

(i) If  , then the possible solutions of 

��� ��� � 

(ii)  If  , then there is no solution to the proposed equation 

. 
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CHAPTER - IX 

Application of Linear Diophantine Equation in Chemistry 

In Section 9.1, it is exhibited with few examples of how to use the linear Diophantine 

equation to contract the molecular formulae of organic or inorganic chemical 

compounds in order to determine their structure. 
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9.1 Usage of Linear Diophantine Equation in the Resolution of 

Molecular Formulae for Various Chemical Substances 

Needed Theorem [1] 

The linear Diophantine equation  has a solution if and only if  divides  

where . Furthermore, if  is a solution of this equation, then the 

set of solutions of the equation consists of all pairs  where  and 

 , . 

9.1.1 Determination of Chemical Molecular Formulae  

Enabling the possibility that a chemical substance with a molecular weight  

encompasses elements  and  with atomic weights  and  respectively 

and that the numbers  and  represent the number of atoms of elements  and 

  

      (9.1) 

Let  and  constitutes the integers closest to the values  and  and let  

signify the integer closest to the value . 

Then the similar form of linear Diophantine equation (9.1) to be solved is represented 

by 

       (9.2) 

If a limit is imposed on the integers  and  in (9.1), then (9.2) can be solved under 

a restriction 

   (9.3) 
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If more solutions of (9.2) are retrieved, then the genuine values can be found by 

substituting them in (9.1) and assessing which satisfies (9.2) with the least significant 

deviation from . 

The process of finding molecular formulae for three chemical substances using the 

linear Diophantine equation is enlightened as follows. 

9.1.2 Molecular Formula for Substance 1 

Consider substance 1 as the chemical compound comprising Carbon, Hydrogen, and 

Oxygen has a molecular weight of 342.2965 g/mol. 

Let  and  stand for the number of atoms of Carbon, Hydrogen and Oxygen 

respectively. Consider the first-degree Diophantine equation as 

    (9.4) 

where  and  are the atomic weights of Carbon, Hydrogen 

and Oxygen respectively. 

Next, it is clear that  and . 

Furthermore, the corresponding linear form of (9.4) to discover molecular formula is 

converted into 

       (9.5) 

subject to the constraint 

 

which provides that  

Modify (9.5) as in the following form 

  where  
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Then, its common solution is given by 

  

 , . 

It is assured that the values of  must be greater than 0. Hence, it is enabled to 

discover the ranges for  and . 

Now, 

 

 

 

In particular, if , then  leads to . 

Thus, the range for  should be . 

Continuing the process for , it is received that . 

But for ,  contradicting . 

Thus, the range for  should be . 

Therefore, there exist 588 solutions in combinations of  and . 

Eliminate the solutions which violating the conditions that  

and  by the succeeding MATLAB Program: 
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The residual solutions which satisfy the necessary conditions are listed in table 9.1. 

Table 9.1 

   

10 14 13 

11 2 13 

11 18 12 

12 6 12 

12 22 11 

Note that the last two solutions represent the compounds  (Mellitic acid) and 

 (Sucrose or Table Sugar) with molar mass 342.16 g/mol and 342.2965 

g/mol respectively. 

Therefore, the exact solution is . 

9.1.3 Molecular Formula for Substance 2 

Let us choose substance 2 as the chemical compound with a molecular weight of 

98.079 g/mol and a mixture of Hydrogen, Sulphur, and Oxygen. 
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Let  and  be the number of atoms of Hydrogen, Sulphur, and Oxygen with 

respective atomic mass  and  respectively. 

As in Section 9.1.2, choose the linear Diophantine equation in three variables as 

    

Clearly,  and . 

Consequently, let us solve the ensuing linear Diophantine equation 

      (9.6) 

subject to the restriction 

 

The upper limit for the choices of  and  are noted by 

      (9.7) 

From (9.6),  and .  (9.8) 

All the possibilities of  and  supporting (9.8) are evaluated by 

 

The only choice of  that satisfies (9.7) is . 

Hence, the component is , which is Sulphuric Acid with a molar mass 98.079 

g/mol. 

9.1.4 Molecular Formula for Substance 3 

Consider Substance 3 is a combination of Zinc, Sulphur, and Oxygen having a 

molecular weight of 161.47 g/mol. 

Let  and  be the number of atoms of Zinc, Sulphur, and Oxygen with respective 

atomic mass  and  respectively. 

As in the previous two sections, the equation to be resolved is 
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   (9.9) 

With the same notations as in section 9.1.2,  and . 

Then, an equivalent form of (9.9) to be solved is taken as 

      (9.10) 

together with the condition that 

 

The options of such  and  in (9.10) are viewed by 

  

Since  and  are positive, the only possibility of  and  are pointed out by 

 

Now, rearrange (9.10) in the form as given below 

      (9.11) 

where         (9.12) 

In (9.11),  and 1 divide 161. 

Also, the least solution to (9.11) is taken as  and  

Hence by theorem [I], there exists infinitely many integer solutions to (9.11) which are 

represented by 

       (9.13) 

       (9.14) 

where  

Since , the chance of  is evaluated from (9.13) as 

 

Note that (9.12) is satisfied by  and . Also,  
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Again, by Theorem [I] the infinitely many solutions to (9.12) are received by 

     (9.15) 

,    (9.16) 

Since  the value of  is calculated from (9.15) by 

 

Substituting the values of  and  in (9.16), it is determined that 

 

The only solution that satisfies (9.10) is . 

Hence, the component is , which is Zinc Sulphate with a molar mass 161.47 

g/mol. 
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CONCLUSION 

In this dissertation, peculiar patterns of numbers baptized as Cheldhiya, Cheldhiya 

Companion, Pan-San, Pan-San Comrade, Pan-San Buddy, and Pan-San Mate sequences 

are being emphasized by assigning specific values for a square free integer in the 

worldwide recognized Pell equation and topographies of all these sequences 

are investigated by utilizing the normalizing technique in Matrices. 

Variety of triples which comprise all the above consequent sequences sustaining 

numerous characteristics are explored. Conclusions have also been made for integer 

quadruples and quintuples that have exclusive properties. 

The congruence relationship and divisibility properties between Pell and Pell Lucas 

numbers has also been illustrated. Certain theorems have been successfully proved by 

employing these congruence relations. 

In addition to this, procedures for acquiring an infinitely large number of non-zero 

integer solutions in terms of Pell numbers, Pell-Lucas numbers, Jacobsthal as well as 

Jacobsthal-Lucas numbers for various second-degree Diophantine equations consisting 

two variables are assessed. 

Some Mordell-type Diophantine equations of the form for selected 

values of  have been displayed and proved that some of them have limited number of 

integer solutions, few of them have no solutions. 
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Analyses for equations having finite number of integer solutions are also being 

done on exponential Diophantine equations that embrace natural numbers and prime 

numbers with the assistance of elementary concepts of Mathematics. 

Investigations are being carried out on the possibility of applications of linear 

Diophantine equations subject to certain restrictions in Chemistry especially for 

determining the molecular formulae of chemical compounds. 
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Abstract- In this paper, two peculiar sequences named as Cheldhiya sequence and Cheldhiya Companion sequence 
are discovered. The general formula for Cheldhiya sequence is enumerated by using the special property called as 
normalization of the matrix. Also, few theorems involving these sequences are elucidated. 
 
Index Terms-Cheldhiya sequence; Cheldhiya Companion sequence;eigenvalues;eigenvectors. 

1. INTRODUCTION 

The Pell Equation is a quadratic Diophantine equation 
of the form where  is a positive 
square-free integer. The equation has 
infinitely many solutions whereas the negative 
Pellequation does not always have a 
solution. In this communication the sequences of the 
solution to the equation , for certain 
d,are developed as Cheldhiya sequence and Cheldhiya 
Companion sequence. Also, a few theorems are 
proved based on these sequences. 

2. MAIN RESULTS 
The  values of the equation  

for certain non-zero square-free integer d can be 

generally sequenced as  
called as Cheldhiya sequence. The nth term of this 
sequence is generalized by the recurrence relation 

 

with initial values . 

The  values of the equation  for 
certain non-zero square-free integer d can be generally 
sequenced as  called as 
Cheldhiya Companion Sequence. The nth term of 
this sequence is generalized by the recurrence relation 

 

with initial values . 

Here  and can be related as where  
indicates the order of the  sequence while  indicates 
the number of terms in the order sequence. 

Define the Cheldhiya sequence matrix as 

  

Now, 

 

Also, 

 

In general, 

 

Theorem:2.1 

If  is a Cheldhiya sequence matrix, then 

(i)  for all . 

(ii)   for all . 
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Proof: 

This theorem can be proved by using the principle of 
mathematical induction on . 

(i) Since , the 
excvlusive Cheldhiya sequence matrix is 
interpreted by 

 

Therefore, the theorem is valid for . 

Assume that the result is true for . 

That is 

 

Now, 

 

Thus, the theorem is valid for . 

Hence, the conclusion of the theorem is 

perceived by  

(ii)  Since, 

 

the theorem is valid for . 

Assume that the theorem is true for . 

That is, 

 

Now, consider 

 

Hence, 

 

Theorem: 2.2 Generalization of Cheldhiya 
sequence 

If  is a Cheldhiya sequence matrix, then 

the nth term of the Cheldhiya Sequence is generalized 
by  

, where . 

Proof: 

Given 

 

The two eigenvalues of the above matrix can be derived 
from the characteristic equation 

 

as  and . 

The eigenvectors of  are given by 

 

which implies that 

  (1) 

Case1: If , then one of the eigen 
vector of  is performed from Eq. (1) by 

 

Case 2: If , then the other eigen 
vector of  is computed from Eq. (1) by 

 

If the Diagonal matrix of  is given by, 
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, then  

Let the Normalized eigenvector matrix be 

 

Now, by applying theorem (1) the orthogonal 
transformation of the symmetric matrices 

 

can be established by 

 

Simplifying the right-hand side of the equation and 
equating the  entry on both sides, the generalized 
form of Cheldhiya sequence is estimated by 

 

where . 

Remark: 

The above identity can also be written as  

where . 

Theorem: 2.3 

If  is the Cheldhiya sequence, then the sum of its 
first n terms is given by 

 

Proof: 

 

 

 

 

 

Hence, 

  

 

 

 

 

 

 

Theorem: 2.4 

If  is the Generating function, then 
the corresponding function forCheldhiya Sequence 
is  

Proof: 
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Hence, 

 

 

Theorem: 2.5 

If  is the nth term of the Cheldhiya sequence, then 
 

Proof: 

 

 

 

 

 

Hence, 

  

 

Theorem: 2.6 

If  and  are CheldhiyaCompanion sequence 
and Cheldhiya sequence respectively, then 

[1]  

[2]  

[3]  

[4]  

[5]  

[6]  

Proof: 

[1] Define the Cheldhiya Companion sequence 
matrix as 

 

Then, the characteristic roots of  are 

determined by 

. 

Note that, . 

The closed form the Cheldhiya Companion 
sequence is given by 

  (2) 

By applying the initial values , 
the linear system of equations are evaluated 
by  and . 

Thus,  and  

Then, Eq. (2) becomes 

 

 

 

 

[2]  
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[3]  

 

Since . Therefore, 

. 

 Hence, 

 

 

[4]  

 

 

  

[5]  

 

 

 

 

 

 

[6]  

 

 

 

 

Hence, 

  

Remark: 

In the above result, it is observed that 

[1]  

 

Hence, 

 

[2]  
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Theorem: 2.7 

If  is a Cheldhiya Companion sequence, then for 
 

[1]  
[2]  

Proof: 

[1]  

 

 

 

 

 

Hence, 

  
  

[2]  

 

 

 

 

Hence, 

  

 

 

3. CONCLUSION 

In this paper, the general solution to the Pell equation 
for some particular positive values of  

are developed as Cheldhiya and Cheldhiya Companion 
sequences. Based on these sequences some interesting 
results are provided. In this manner, one can develop 
various sequences for any other values of d and 
investigate some other results. 
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Abstract- In this paper, four novel sequences named as Pan-San, Pan-San Buddy, Pan-San Comrade 

and Pan-San Mate sequences are discovered. Also, the recurrence relations, the general formulae for 

all sequences and some theorems are invented by exploiting basic concepts of matrices. 
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Mate sequence, characteristic equation, eigenvalues.

1. INTRODUCTION 

Assume that  is any positive square free integer. Then the equation  is called as 

the classical Pell equation. There are numerous integer solutions  for , for this Pell 

equation. Many authors such as Lenstra [4], Matthews [5], Techan [9] and others take some certain 

Pell equations and solutions into account. Pandichelvi .V, Sandhya .P [7] discovered two tremendous 

sequences Cheldhiya and Cheldhiya companion sequences by taking  in the Pell equation 

. The Pan-San, Pan-San Buddy, Pan-San Comrade and Pan-San Mate sequences are 
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formed in this communication for the solution to the equation  for some specific . 

A few theorems are also supported using these sequences. 

2. PAN-SAN AND PAN-SAN BUDDY SEQUENCES 

The  and  values in the universal equation  for certain non-zero square-free integer 

 propagates two novel sequences 

 and  

and named as Pan-San sequence and Pan-San Buddy sequence respectively. The nth term of the first 

sequence is interpreted by the recurrence relation 

  

where . 

The nth term of the second sequence is standardized by the recurrence relation 

  

where . 

Define the Pan-San sequence matrix as 

   

Now, 

 

Also, 
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More generally, 

 

Theorem: 2.1 

If  is a Pan-San sequence matrix, then the nth term of the Pan-San sequence 

is generalized by  

, where , the set of all 

whole numbers. 

Proof: 

Given 

  

The characteristic equation  of  reveals two distinct eigen values 

 and  . 

Also,  
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In general,        (1) 

Since both  and  are the characteristic values, they must satisfy (1), hence 

 and  

 

Therefore,  

, where , the set of all 

whole numbers. 

Theorem: 2.2 

If  and  are Pan-San Buddy sequence and Pan-San sequence respectively, then 

i.  

ii.  

iii.   

iv.  

v.  
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vi.  

Proof: 

i. By using the characteristic values of the Pan-San sequence as explained in theorem 2.1, their 

product is given by . 

 The closed form the Pan-San Buddy sequence is specified by 

        (2) 

The fundamental values  provides the subsequence system of linear 

equations  

. 

Precisely,  and  

Consequently, the specific value of  is pointed out by 

  

  

   

 

ii.  The alternative forms of the above values of  and are epitomized by 
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The equivalent values of the general term of the Pan-San Buddy sequence is noted as 

 

Hence, 

 

  

  

iii.   

  

    

    

  

  

iv.  
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v.  

    

  

vi.  
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3. PAN-SAN COMRADE AND PAN-SAN MATE SEQUENCES 

The values of  and  in the world-wide equation  for a firm non-zero square-free 

integer  creates two handsome sequences 

 and 

 And Called As Pan-San Comrade And Pan-San Mate Sequences. The nth term of the earlier 

sequence is construed by the relation 

 where  and  is the set of all-

natural numbers. 

The nth term of the later sequence is inferred by the recurrence relation 

  where ,  and , the set 

of whole numbers. 

Define the Pan-San Comrade sequence matrix as 

   

Now, 

 

Also, 
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In general,  

As to section, it is possible to prove the following theorem. 

Theorem: 3.1 

If  is a Pan-San Comrade sequence matrix, then the nth term of the Pan-San 

Comrade Sequence is hypothesized by  

, where . 

Theorem:3.2 

If  and  are Pan-San Comrade and Pan-San Mate sequences respectively, then 

i.  

ii.  

iii.   

iv.  

v.  

vi.  

4. CONCLUSION 

In this paper, four disparate sequences and their recurrence relations named as Pan-San, Pan-San 

Buddy, Pan-San Comrade and Pan-San Mate sequences are established by utilizing the generalized 
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solutions (x,y) to the universal equation called as Pell equation for two non-zero square-free integers 

where . Also, the general formulae and few theorems are 

proved involving such sequences for distinct values of  and can analyze the corresponding results. 
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I.  Abstract:   

In this manuscript, the patterns of Diophantine triples  reside in Cheldhiya 

companion sequence with splendid properties   are investigated. 

Keywords: Cheldhiya companion sequence, Diophantine triples, Pellian equation. 

II.  I ntroduction:  

 A Diophantine -tuple with property is a set of  positive integers  such that  is a 

perfect square for all  in . Diophantus has already researched how to locate these and he found the 

rational quadruple  with the property  (see[1]). Fermat has discovered the first 

integer quadruple  with the same property. Euler gave the solution 

,4,2,, brarrrbaba where 
21 rab (see[2]). For all-embracing review of a variety of 

articles one may refer [3 - 14]. In this communication, the patterns enclosing three elements each of which is a 

Cheldhiya companion sequence with impressive properties

 are examined. 

III. Method of Analysis: 

Presume that 

where  

be any two integers such that  is a perfect square. 

Let  be another positive integer which satisfy the consequent provision 

          (1) 
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          (2) 

Resolving (1) and (2), the value of  is attained by 

           (3) 

 By utilizing (3) in (2), the relation to be perceived is 

      (4) 

Create the succeeding linear alterations 

           (5) 

           (6) 

Restoring the above values of  and  in (4), the quadratic equation with two unknowns is 

estimated by 

         (7) 

Selecting the least solution to (7) as 

 

and the implementation this solution in (5) and (6) endow with the relations that 

 

 

Exchanging the above said suitable modifications in (3), the third element in the essential patterns which assure the 

postulation is specified by 

 

 Hence, 

 is a Diophantine triple with the property  

Let  be a new-fangled positive integer such that 

        (8) 

        (9) 

Subtracting (9) from (8) and make a simple computation, the significant value of  is determined by 

          (10) 
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Now, choose  be a positive integer which satisfies the conditions that 

        (11) 

        (12) 

By exploiting a plain numerical calculation in (11) and (12), it is to be noticed that 

         (13) 

Suppose that 

        (14) 

        (15) 

where  

Following the prior process in (14) and (15), the equivalent value of the factor  in the sequence is established by 

          (16) 

Since the objective is to accomplish the appropriate integer values for the parameters in the crucial patterns, make use 

of the subsequent transformations 

 

 

 

 

 

 

where  is the sequence of odd numbers from (8) to (16) and proceeding the same mechanism 

as explained above, the elements in the necessary patterns with the suitable property are studied by 

 

 

 

Thus, 

, 
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, 

, 

 

are patterns of Diophantine triples concerning Cheldhiya companion sequence such that the 

product of any two of them decreased by  is a perfect square where  is a natural number. 

Hence, the patterns of Diophantine triples  in which the factors are Cheldhiya 

companion sequence with the property  where  are evaluated. 

 

Examples for the numerical replacement of the above patterns of Diophantine triples with the property 

 are specified in the tabular form as follows. 

       

1 1 2     

2 1 5     

3 3 10     

Remark: 

 Applying the similar procedure as enlightened above, it is pointed out the consequent patterns of Diophantine 

triples in which every element is a Cheldhiya companion sequence such that the product of any two of them increased 

by  is a perfect square. 

 , , 

 , 

  

A small number of numerical cases for the above sequences of Diophantine triples with the property  

are stated below 

       

1 1 2     

2 1 5     

3 2 10     
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Verification of the numerical examples is displayed by the ensuing C program. 

#include<stdio.h> 
#include<conio.h> 
#include<math.h> 
void main() 
{ 
int m,ca,k,n,p; 
char ch; 
long long int x(int n,int k),a,b,c,d,e,f,A; 
clrscr(); 
do 
{ 
printf("\nEnter the value of  and "); 
scanf("%d%d",& ,& ); 
printf("\nEnter your choice 1 or 2 for "); 
scanf("%d",&ca); 
switch (ca) 
{ 
case 1: 












break; 
case 2: 










break; 
} 
printf("\n(%lld,%lld,%lld),(%lld,%lld,%lld),(%lld,%lld,%lld),(%lld,%lld,%lld),...",a,b,c,b,c,d,c,d,e,d,e,f); 
printf("\nDo you want to continue for different  and  (y/n)?\n"); 
ch=getche(); 
}while (ch=='y'||ch=='Y'); 
getch(); 
} 
long long int x(int n,int k) 
{ 
long long int ; 




int i; 
for 


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
return ; 
} 
IV. Conclusion: 

 In this article, the patterns of Diophantine triples comprising the Cheldhiya companion sequence satisfying 

certain intriguing characteristics are created. In this manner, different patterns of Diophantine triples, quadruples, 

quintuples, etc. can be look into the research with some other characteristics. 
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A STATE OF THE-ART OF SUMS, CONGRUENCE RELATIONS AND DIVISIBILITY 
PROPERTIES OF PELL AND PELL-LUCAS NUMBERS 

P. SANDHYA AND V. PANDICHELVI  

ABSTRACT 
In this document, several new-fangled identities regarding Pell and Pell-Lucas numbers enable to provide 
certain congruence relations for those numbers are deliberated. Also, divisibility properties of Pell and Pell-
Lucas numbers are revealed by means of these derived congruence relations. 

Keywords: Pell numbers, Pell-Lucas numbers, congruence relations 

I.  INTRODUCTION 
,and  for  establish the Pell sequence .  is referenced to the 

Pell number. The Pell-Lucas sequence  is defined as . For each , 
 for and . For more information on the Pell and Pell-Lucas sequences, see [1]. 

Numerous well-known relationships exist among the Pell and Pell-Lucas numbers. Typically, these relations are 

achieved using Binet's formula, which is signified by and , for any , where 

and . Additionally, the most well-known formulas for Pell numbers are 
and , for . 

Numerous sums incorporating Pell and Pell-Lucas numbers are provided in this study. Following that, certain 
congruences relating Pell and Pell-Lucas numbers are elaborated. These congruences enable one to establish a 
number of previously known characteristics. Additionally, with the use these congruences, many additional 
theorems are acclaimed. 

II.  SUMS AND CONGRUENCESOF PELL AND PELL-LUCAS NUMBERS 
Theorem:2.1 
If  is a square matrix with , then for every integer . 

Proof: 
Let  and  

Define a function by . 

Then is a ring isomorphism. Moreover, it is clear that  and . 

Therefore,  

Corollary: 1.1 

If , then . 

Proof: 
Since, , it follows from theorem (1) that 

 

. 

Remark: 
From the fact that , defined by  is a ring isomorphism, it is observed 
that 

        (1) 

and        (2) 
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Applying the function on each side of (1) and (2), the relations discovered are pointed out by: 

      (3) 

and       (4) 

where . 

Theorem: 2.2 
If  and , then 

 

and  

Proof: 
From (3), it is noted that 

        (5) 

Raising  power on both sides of (5). 

Then,  

 

 

Therefore,  

It comprehends from corollary 1.1 that 

 

and  

Corollary 2.2.1: 
      (6) 

and       (7) 

for every  and . 

Remark: 
i.Since  

ii.  and . 

Theorem2.3: 
If  and , then 
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and  

 

Proof: 
From (4), it follows that 

 

Therefore,  

 

 

 

 

We will get the results by trading the matrices  and  on both sides and equating the same entries. 

Corollary 2.3.1: 
If  and , then 

       (8) 

and       (9) 

III.  DIVISIBILITY PROPERTIES OF PELL AND PELL-LUCAS NUMBERS 

To begin, it is established two well-known theorems in a novel manner by exploiting the congruences postulated 
in Corollaries 2.2.1 and 2.3.1. Regarding the divisibility of Pell and Pell-Lucas numbers, readers will investigate 
the formulae and learn how to use them efficiently to resolve problems. Thus, this article explains the 
fundamental divisibility for Pell and Pell-Lucas numbers. 

Theorem 3.1: 
The necessary and sufficient conditions for  are 

i.  and 

ii.   is an odd integer 

for all  and . 

Proof: 
Presume that  

Suppose , then by fundamental property of divisibility,  can be expressed as  

If  is an even integer, then  for some . 

From (6), it follows that 

 

Since , . This is a contradiction since as . Hence,  is an odd integer. Sustain
 for some . So, 
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Also, since . 

To prove:  
Suppose . By the identity , the above implies that . 

Since , it follows that . This is a contradiction to the fact that if , then 
. As a result, it is resolved that . 

Thus, that , with  being an odd integer. 

Conversely, suppose that  and  is an odd integer, 

That is, , for some integer . Then it isprocured that, 

 

. 

Hence, the result. 

Theorem 3.2: 
Let  and . Then  if and only if  and  is an even integer. 

Proof: 
Suppose that  and .This assumption means that  where . 

If  is an odd integer, it may phrase  for some integer . 

From (7), it is pointed out that 

 

Then,  and hence . It is well-known that , then . 
Since  and  are relatively prime, the only possibility is . But delivers . So, 

. This conflict befalls as a result of our erroneous assumption about  being an odd number. Therefore,  is 
an even integer. Thus, it may have  for some integer . Hence, 

Form (7),  

Since , . However, this cannot be true since  and hence . This contributes that 
. So, it can be concluded that ,  is an even integer. 

Conversely, suppose that  and  for some . Then,it isacquired from (7) that 

 

It follows that . 

Theorem3.3: 
For all  and ,  if and only if . 

Proof: 
Initially consider that  but . Then  with . Now, suppose that  is an even 
integer, then this may be taken as  for any integer . 

Hence, (9) provides the succeeding identity 

 

Since , by applying the above identity, . Since, if  and , it leads to 

. Hence,  must be an odd integer. Then , for some . Thus, (9) becomes 
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Since , it follows that . By the identity, , it is noted that . 
Due to the fact that , it isreceived that , which is a contradiction. This emerges as a 
consequence of  as  and . As a result,  and subsequently , resulting in . 

Conversely, pretend that . Then, the conclusion is  for some natural number . As an outcome, 

 

Hence, it is realized that . 

IV.  MAIN THEOREMS 
From the identity , it can be seen that or . 
Furthermore, 

       (10) 

From equation (8), it is seen that  and therefore , for every natural number . 

Now, we'll go over some Pell-Lucas numbers identities that will be necessary in the sequel: 

        (11) 

        (12) 

Theorem4.1: 
Let , be an odd number and . Then, there is no Pell-Lucas number such that  

Proof: 
Assume that  and  is an odd number. Then  and . Then,  and  for 
some odd natural number  by theorem 2.4, . It is thus obvious that , for 
some odd . Since  and  is an odd natural number, it can be written as  with  and 

. Hence, 

 

 

 

Similarly, it can be seen that . 

Since,  is an odd natural number, it is obtained that . Then it follows that 

 

Moreover, and , 

 which contradicts the fact that . This concludes the proof. 

Theorem4.2: 
 for every  and for every odd natural number . 

Proof: 
Assume that  is an odd natural number, then . Moreover, it can be proved by 
induction that  for . . 

Therefore,  or  for . Then it seeks that 

 

Or 

 

Thus, . 

Now, it is possible to generalize theorem as follows: 
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Theorem4.3: 
Let  and  be an odd natural number. Then there is no Pell-Lucas number  such that 

. 

Proof: 
Assume that  and t is an odd natural number. Since  and , there exist two odd 
natural numbers  and  such that  and  by theorem 3.1. Thus, we have , for some 

, because  and  are odd natural numbers. Then, we have 4 divides both , by 
the fact that . Hence,  with . Thus, 

 

Since , it follows that 

 

It may be observed in a similar manner that 

 

On the other hand,  by theorem (8). 

If , then . 

Since  and , , which is a contradiction to 
the fact that . 

Therefore, . Then 

. 

Since  and , , which denies the fact that 
. Hence the proof. 

Theorem4.4: 
If  and  are odd natural numbers, then there is no Pell-Lucas number  such that . 

Proof: 
Assume that , for  and  and are odd numbers. Since  and , there exist two 
odd natural numbers  and  such that  and . 

Hence, we have  for some . Therefore, we get . 

 

i.e.,         (13) 

Similarly, it can be obtained that 

        (14) 

Suppose that  then an odd integer which is not possible. Hence  which implies that 

. Then by equations (13) and (14), 

 and  

 and  

 

By equation (11), 

 

, 

which is a contradiction. This completes the proof of the theorem. 

Corollary 4.4.1: 
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There is no Pell-Lucas number  such that , for any  and . 

Proof: 
If  and even, then ther proof follows from theorems (7) and (9). 

If  and  are odd natural numbers, then it is proved in theorem (10). 

V. CONCLUSION  
In this research, various quantities by means of the Pell and Pell-Lucas numbers are presented. Then, some 
specific congruences concerning the Pell and Pell-Lucas numbers have been provided. These analogues allowed 
to govern a number of previously known features. These congruences have also been utilized to prove many 
other theorems. 
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EQUATION WHICH HAS NO SOLUTION FOR CERTAIN SELECTION OF K 

P. SANDHYA AND V. PANDICHELVI  

 
ABSTRACT  
This article examines an incomparable Diophantine equation  , , the set of all integers and 
demonstrates for which values of , no solution in integer has been provided in the suggested equation 

Keywords: . 

I.  INTRODUCTION 
The equation , for , is alluded to as Mordell's equation due to Mordell's deep passion in it. 
Mordell [4] established in 1920 that the equation  has an infinite number of integral solutions for 
any . Michael A. Bennett and Amir Ghadermarzi [2] cast-off the traditional link between Mordell and 
cubic Thue equations to solve the Diophantine problem  for all non-zero integers with . 

In this artefact,an unrivalled Diophantine equation , , the set of all integers is studied and it 
is exposed that, for which values of  in theprofessed equation, no integer solution was supplied by using some 
classical congruence relations and Legendre symbols. 

II.  MAIN RESULTS 
Congruence relations and Legendre symbolsare exploited to demonstrate that does not have an 
integer solution for certain values of. 

Theorem: 2.1 
Let  be integers such that and Let  and ), where  is a 
prime number.Then the equation , where has no integer solution . 

Proof: 
Suppose that there exists a solution in integers. 

As & we have  

Hence, and  and so . 

Now,     (1) 

As , it should be 

. 

Hence, is odd and by (1) it has a prime factor, . Thus, . 

By our assertion, .  Hence, 

, 

denying to . 

This proves that the Diophantine equation  has no solution. 

Theorem: 2.2 
Let  be integers satisfying . If a prime number  divides  and 

, then the Diophantine equation  where  has no solution  in 
integers. 

Proof: 
Suppose that is an integer solution of the equation  

Since, , it is attained by . 

Hence, . 
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Now, the original equation is converted for the prescribe value of  as 

    (2) 

Since  

 

Hence, is odd and by (2) it has a prime factor, . Thus, . 

By our assertion, .  Hence, . 

, 

denying . 

Hence, the Diophantine equation  has no solution. 

Theorem: 2.3 
Let  be integers nourishing with the conditions . If is a prime such 
that  and  divides , then the equation , where has no integral 
solution. 

Proof: 
Since, , it must be



Therefore, and consequently 

Hence, 

Moreover,  

So that  

Now,  

As  and it is seen that  and  

has a prime factor  such that 

By our assumption,  and  



contrasting 

Hence no solution for the Diophantine equation , if . 

Theorem: 2.4 
Assume  and . Let  be a prime number such that  and 

. Then the equation , where  does not embrace any integer solution. 

Proof: 
Since, , then  

and hence 

Hence 

If , then which is not possible.

Thus, .

Now,  

 

Therefore  is odd and is divisible by an odd prime  with  
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. 

By our postulation,  



disagreeing  

Hence the proof. 

III.  CONCLUSION 
As a result, using certain traditional mathematical tools like as congruence and Legendre symbols, it is sensed 
that the hypothesized equation does not have a solution in integers for some specific integer values of . Thus, 
one may ascertain the values of  for which the Mordell's equation has no integer solution by following the 
steps described above. 
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Abstract: In this text, the exclusive exponential Diophantine equation px + (p + 1)y= z2such that the sum of integer powers  and  of 
two consecutive prime numbers engrosses a square is examined or estimating enormous integer solutions by exploiting the 
fundamental notion of Mathematics and the speculation of divisibility or all possibilities of x + y = 1, 2, 3, 4.. 

Keywords: exponential Diophantine equation; integer solutions 
 

 
1. INTRODUCTION 

 
The study of an exponential Diophantine equations has stimulated the curiosity of plentiful Mathematicians since ancient times as can 
be seen from [2-6, 9].BanyatSroysang [7] showed that 7x+ 8y= z2 has a unique non-negative integer solution (x, y, z) as (0,1,3) in 2013 
and he proposed an open problem where x, y and z are non-negative integers and p is a positive odd prime number. In 2014, 
Suvarnamani. A [8] proved thatpx + (p + 1)y= z2has a unique solution (p, x, y, z) = (3, 1, 0, 2) and was disproved by Nechemia 
Burshtein [1] by few examples. In this text, the list of infinite numbers of integer solutions of the equationpx + (p + 1)y= z2 where p is 
a prime number by using the basic concept of Mathematics and the theory of divisibility. 
 

2. APPROACHOF RECEIVINGINTEGERSOLUTIONS 
 

The approach of search out an integer solution to the equation under contemplation is proved by the following theorem. 
Theorem: 
If p is any prime and x, y and z are integers persuading the condition that x + y = 1, 2, 3, 4,then all feasible integer solutions to the 
exponential Diophantine equation                  px + (p + 1)y= z2 are given by (p, x, y, z) = {(2,0,1,2), (3,1,0,2), (3,2,2,5)}when p = 2, 
3and (p, x, y, z) = (4n2 + 4n  1, 0, 1,2n + 1) where n  N for p > 3. 
 
Proof: 
 
The equation for performing solutions in integer is taken as 

px + (p + 1)y = z2   (1) 
All doable predilection ofthe supposition  arecarried out by eight cases for assessing solutions in integers. 
 
Case 1: x = 0, y = 1 
 Equation (1)toexplore solutionsinintegertrimsdown by 

p + 2 = z2    (2) 

If p = 2, then z = 2. Hence, theoneandonly oneinteger solution iscommunicated as (p, x, y, z) = (2,0,1,2). 
If p is an odd prime, then p + 2 is an odd number. 
Thismeansthat z2is anoddnumber and consequently z is also an odd number. 
Ifz = 1, then p + 2 =1which isimpossible. 
Asaresult, z  3. 

Describe z = 2n + 1, n N (3) 
The square of the selection of z in (3) can be characterized by z2 = 4n2 + 4n + 1, n  N. In sight of (2), the promising value of anodd 
prime complied with the specified equation is distinguished by p = 4n2 + 4n  1, n N 
Hence, the enormous solutions to (1) is (p, x, y, z) = (4n2 + 4n  1, 0, 1, 2n + 1) where n  N 
 
Case 2: x = 1, y = 0 
The inventive equation (1) is diminished as 
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p + 1 = z2   (4) 
If p =2, then z2= 3 which is not possible for integer value of z. 
If p is an odd prime, then p + 1 is an even number which can be articulated by 
p + 1 = 2n, n  N 
Match up the above equation with (4), 2n is a perfect square only if n = m2 where m  N. 
Thus, p = (2m)2  1. 
If m = 1, then p = 3. Therefore, the solution belongs to the set Z of integers is (p, x, y, z) = (3,1,0,2). 
I  1) (2m + 1) 
If p divides (2m  1), then 2m  1 = ap and as a consequence2m + 1 = ap + 2. 
Thus, p = ap(ap + 2) and leads to the ensuing equation          1 = a (a + 2). 
But the above equation is not true for any integer value of a. 
Ifp divides(2m + 1), then 2m + 1 = bp and from now2m  1 = bp  2. 
Therefore, p = bp(bp  2) andconsequently 1 = b (b + 2) which is not factual for any integer options for b. 
Hence, in this case there exists a unique solution to (1) given by (p, x, y, z) = (3,1,0,2) 
 
Case 3: x = 1, y = 1  
The creative equation (1) is adjust by 
  2p + 1 = z2 
Since z2is an odd number for all selections of, it follows that 
z2  

 
 

Capture that 2p = 4kwhich means that p = 2k for some positive integer k. 
This declaration is possible only when k = 1. 
Then p = 2, and 2p + 1 =5 which is not a perfect square of an integer. 
Hence, in this case there is no integer solution to the presupposed equation. 
 
Case 4 : x = 1, y = 2 
The resourceful equation (1) is reconstructed as 
P2 + 3p = z2  1 

p (p + 3) = (z  1) (z + 1)  (5) 
If p | (z  1), then z  1 = kp, and z + 1 = kp + 2.Executions of these two equations in (5) go along with the subsequent quadratic 
equation in k 
pk2 + 2k  (p + 3) = p, 
which consent the value of k = (-1 (p(p +3) + 1)) / p. It is deeply monitored that no prime number p provides an integer value for k. 
An alternative vision of p|(z + 1) reveals that z + 1 = lp and z  1 = lp  2 
By make use of these two equations in (5) espouse the second degree equation in l as 
pl2  2l  (p + 3) = 0 

which yields l = (1 (1- p(p +3) 1)) / p. 
The above value ofl is a complex number or any prime p. 
Hence, the ultimate result is no integer solutions to the most wanted equation (1). 
 
Case 5 :x = 2, y = 1 
The quick-witted equation (1) is restructured asp2 + p = z2  1 

p(p + 1) = (z  1)(z + 1) (6) 
It follows from equation (6) that p must divide any one of the values (z  1) or (z + 1) 
If p|(z  1), then z  1 = mp and z + 1 = mp + 2for some integer m. 
Then, (6) make available with the value ofp as 
p = (1  2m) / (m2  1)   (7) 
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Accordingly, one can easily notice that the right-hand side of (7) can never be a prime number for m  Z. 
 
This circumstance offers that p does not divide (z  1). 
If p|(z + 1), then z + 1 = np and z  1 = np  2 for some integer n. Then, (6) endow with the value ofpas 
p = (1 + 2n) / (n2  1)   (8) 
None of the value of n  Z in the right-hand side of (8) supplies the prime number establish that p does not divide(z + 1) 
Hence, this case does not grant an integer solution for (1). 
 
Case 6 :x = 1, y = 3 
For these choices ofx and y, the well-groomed equation (1) be converted into 
(p + 1)3 + p = z2   (9) 
If p = 2, z2 = 29 which make sure that z cannot be an integer.If p is any odd prime, then p takes any one of the forms 4N + 1 or 4 N + 
3. 
If p = 4N + 1 and the perception thatz2must be odd reduces (9) to 
64N3 + 96N2 + 52N + 9 = (2T  1)2 

16N3 + 24N2 + 13N + 8 = T (T  1) (10) 
It is perceived that none of the values ofN ensure that the left hand side of (10) as the product of two consecutive integers. 
Similarly, the chance of p = 4N + 3, and the discernment thatz2 is an odd integer reduces (9) to 
64N3 + 192N2 + 196N + 67 = (2T  1)2 

 2(32N3 + 96N2 + 94N + 33)= 4T (T  1)  

The above equality does not hold since the left hand side is a twice an odd number and the right hand side is a multiple of 4. 
Hence, in this case there does not exist an integer solution. 
 
Case 7: x = 2, y = 2 
These preferences of x and y altered the well-designed equation (1) into 
p2 + (p + 1)2 = z2 

2p (p + 1) + 1 = z2   (11) 
Sincez2 is an odd number, z2  
Then, 2p (p + 1)  0 (mod 4)   
Hence, either p or p + 1 is a multiple of 2. 
If p is a multiple of 2, then p must be 2. 
Implementation of this value of p in (7) furnishes z2 = 13 which does not enable as an integer for . 
If p + 1 is a multiple of 2, thenp + 1 = 2A, for some A  Z. 
The only odd prime satisfying all the above conditions is 3 and the corresponding value of z = 3 
Consequently, the only integer solution to (1) is 
(p, x, y, z) = (3, 2, 2, 5) 
 
Case 8: x = 3, y = 1 
The original equation (1) can be written as 
p3 + p + 1 = z2 
If p = 2, then z2 = 11 which cannot acquiesce an integer for z. 
Also, z2  1 (mod 4) and p(p2 + 1)  0 (mod 4) which implies that either 4|p or 4|(p2 + 1) 
For the reason that p is an odd prime, 4 does not divide pand so p2 + 1 = 4n 
This is not possible since p can take either of the form4N + 1, N  1 or 4N + 3, N 0. 
Hence, the conclusion of this case is there cannot discover an integer solution to (1). 
 

3. CONCLUSION 
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In this text, the special exponential Diophantine equation      px + (p + 1)y = z2 where p is a prime number and x, y and z are integers is 
studied by developing the fundamental concept of Mathematics and the conjecture of divisibility for all possibilities of x + y = 1, 2, 3, 
4.  In this manner, one can find an integersolutions by using the property ofcongruence and other thoughts of Number theory. 
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Abstract 
In this article, it is exhibited few examples for how to use the linear Diophantine equation to 
contract the molecular formulae of organic or inorganic chemical compounds in order to 
determine their structure. 

Keywords: linear Diophantine equation, integer solutions, molar mass, molecular formula. 

I.  Introduction 

There is a widespread belief that Number theory is the purest field of pure Mathematics, and that 
it has few meaningful applicability to real-world issues as a result of this belief. The significance 
of Number theory is derived from its prominent position in Mathematics; its ideas and problems 
have played a crucial role in the development of many areas of Mathematics throughout history. 
A Diophantine equation is a multivariable equation that concedes only integer solutions. One of 
its particular instances is the linear Diophantine equation which has the general form 

 where  and whose solutions must be 
integers. For instance, [5] proposes techniques based on Euclidean algorithm arguments. 
Furthermore, practical issues involving the splicing of telephone lines have been resolved by using 
techniques of basic number theory [9]. Many more fascinating applications may be found in the 
book Number Theory and the Periodicity of Matter [1], which has a large number of additional 
examples. Additionally, the reader is recommended to refer [2-4,7, 10-13] in this respect. 
It is common to perceive linear Diophantine equations in many disciplines, but they are particularly 
prevalent in chemistry [6,8,14], In this article, it is revealed the application of linear Diophantine 
equation in Chemistry specially how to find the molecular formulae of organic or inorganic 
chemical compounds in order to determine their structure with few specimens. 
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Needed Theorem [1] 

The linear Diophantine equation  has a solution if and only if  divides  where 
. Furthermore, if  is a solution of this equation, then the set of solution of 

the equation consists of all pairs  where  and  ,  

II . Determination of chemical molecular formula 

Enabling the possibility that a chemical substance with a molecular weight  encompasses 
elements  and  with atomic weights  and  respectively and that the numbers  
and  represent the number of atoms of elements  and  
molecules. Then, it is obtained that 
         (1) 
Let  and  constitutes the integers closest to the values  and  and let  signify the 
integer closest to the value . 
Then the similar form of linear Diophantine equation (1) to be solved is represented by 
         (2) 
If a limit is imposed on the integers  and  in (2), then it can be solved under a restriction 
     (3) 
If more solutions of (2) are retrieved, then the genuine values can be found by substituting them 
in (1) and assessing which of satisfies (2) with the least significant deviation from . 
The process of finding molecular formulae for three chemical substances using the linear 
Diophantine equation is enlightened as follows. 
 
2.1. Molecular formula for substance 1 
Consider the substance 1 as the chemical compound comprising Carbon, Hydrogen, and Oxygen 
having a molecular weight of 342.2965 g/mol. 
Let  and  stand for the number of atoms of Carbon, Hydrogen and Oxygen respectively. 
Consider the first-degree Diophantine equation as 
  (4) 
where  and  are the atomic weights of Carbon, Hydrogen and 
Oxygen respectively. 
Next, it is clear that  and . 
Furthermore, the corresponding linear form of (4) to discover molecular formula is converted into 
    (5)  
subject to the constraint 

 
which provides that  
Modify (5) as in the following form 
  where  
Then, its common solution is given by 
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  
 , . 
It is assured that the values of  must be greater than 0. Hence, it is enabled to discover the 
ranges for  and . 
Now, 
  
  
  
In particular, if , then  leads to . 
Thus, the range for  should be . 
Continuing the process for , it is received that . But for 

,  contradicting . 
Thus, the range for  should be . 
Therefore, there exists 588 solutions in combinations of  and . 
Eliminate the solutions which violating the conditions that  and 

 by the succeeding MATLAB Program: 
clear all; clc; 
for t=-21:-1 
 for k=-27:0 
 x=28+k; 
 y=6+16*t-12*k; 
 z=-t; 
 if (x<13 && y<24 && z<14) 
 fprintf('x=%d,y=%d,z=%d\n',x,y,z) 
 end 
 end 
end 
The residual solutions which satisfy the necessary conditions are listed in the table below. 

   

10 14 13 

11 2 13 

11 18 12 

12 6 12 

12 22 11 

Note that the last two solutions represent the compounds  (Mellitic acid) and  
(Sucrose or Table Sugar) with molar mass 342.16 g/mol and 342.2965 g/mol respectively. 

Pramana Research Journal

Volume 12, Issue 3, 2022

ISSN NO: 2249-2976

https://pramanaresearch.org/17



Therefore, the exact solution is . 
 
2.2. Molecular formula for substance 2 
Let us choose the substance 2 as the chemical compound with the molecular weight of 
98.079 g/mol and a mixture of Hydrogen, Sulphur, and Oxygen. 
Let  and  be the number of atoms of Hydrogen, Sulphur, and Oxygen with respective atomic 
mass  and  respectively. 
As in Section 2.1, choose the linear Diophantine equation in three variables as 
       
Clearly,  and . 
Consequently, let us solve the ensuing linear Diophantine equation 
         (6) 
subject to the restriction 
  
The upper limit for the choices of  and  are noted by 
        (7) 
From (6),  and .                                                      (8) 
All the possibility of  and  supporting (8) are evaluated by 

 
The only choice of  that satisfies (7) is . 
Hence, the component is , That is Sulphuric Acid with molar mass 98.079 g/mol. 
 
2.3. Molecular formula for substance 3 
Consider Substance 3 is a combination of Zinc, Sulphur, and Oxygen having a molecular weight 
of 161.47 g/mol. 
Let  and  be the number of atoms of Zinc, Sulphur, and Oxygen with respective atomic mass 

 and  respectively. 
As in the previous two sections, the equation to be resolved is 
      (9)  
With the same notations as in section 2.1,  and . 
Then, an equivalent form of (9) to be solved is taken as 
         (10) 
together with the condition that 

 
The options of such  and  in (10) are viewed by 
  
Since  and  are positive, the only possibility of  and  are pointed out by 

 
Now, rearrange (10) the form as given below 
       (11) 
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where           (12) 
In (11),  and 1 divide 161. 
Also, the least solution to (11) is taken as  and  
Hence by theorem [1], there exists infinitely many integer solutions to (11) which are represented 
by 
  (13) 
  (14) 
where  
Since  , the chance of  is evaluated from (13) as 
  
Note that (12) is satisfied by  and . Also,  
Again, by Theorem [1] the infinitely many solutions to (12) are received by 

       (15) 
 ,       (16) 
Since  the value of  is calculated from (15) by 
  
Substituting the values of  and  in (16), it is determined that 
  
The only solution that satisfies (9) is . 
Hence, the component is , that is Zinc Sulphate with molar mass 161.47 g/mol. 
 

III. Conclusion 
With the help of a few instances, the application of the linear Diophantine equation in finding the 
chemical molecular formula for three different substances are evaluated in this editorial. Finally, 
new and interesting applications of Number theory include cryptography, coding theory, and 
random number generation, among other things. These areas are developing at a breakneck pace 
as a result of the widespread use of computers, and their significance is growing all the time. 
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