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CHAPTER -1 

INTRODUCTION 

 

In this chapter, introduction on graph theory, semigraph theory, fuzzy 

graph theory and some basic definitions that are required for the research 

work and organization of the thesis work are given. 

1.1.  INTRODUCTION 

The study of graph theory came into existence with the Konigsberg 

bridge problem in 1735[3]. Graph theory [13, 14, 15] finds its wide range of 

applications in the field of chemistry, physics, social sciences, communication 

engineering, etc., Because of this diversity of applications it is useful to 

develop and study the object in abstract terms and to interpret its results in 

terms of the objects of any specific case in which one may wish. Graph theory 

plays an important role in several areas of Computer science such as Artificial 

Intelligence, Formal Languages, Computer Graphics, Operating Systems, etc., 

 Fuzzy sets are introduced by Lofti A. Zadeh [63] in 1965. The study of  

Fuzzy sets and system play a vital role in pattern recognition, image 

processing, robotics, artificial intelligence, decision making,  data analysis, 

data mining, etc. Fuzzy mathematical Theories contribute considerably to 

Economics, Finance, Management, Industries, Electronics and 

communications. 
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 Fuzzy sets and Fuzzy relations gave birth to fuzzy graphs [11, 12, 57]. 

Fuzzy relations play a crucial role in the areas of clustering analysis, neural 

networks, computer networks, pattern recognition, etc… In each of the above 

areas the basic mathematical structure is that of fuzzy graphs. 

 The notion of fuzzy graphs was introduced by Rosenfeld [58] in the year 

1975. In recent years, fuzzy graph theory has emerged as one of the vast areas 

of research. Applications of fuzzy graphs include data mining, image 

segmentation, clustering, image capturing, networking, communication, 

planning, scheduling, etc.., 

 Crisp graphs and fuzzy graphs are structurally similar, but when there is 

uncertainty on vertices and edges then fuzzy graphs have separate importance.  

1.2.  REVIEW OF LITERATURE   

 The notion of fuzzy graph was introduced by Rosenfeld. A [58] in the 

year 1975.Theconcept of fuzziness in crisp graph theory, like connectedness, 

completeness, isomorphism, degree sequence, etc were studied afterwards. 

 Eccentricity concepts and centre of fuzzy graphs were developed by 

Bhattacharya [6] . The notions of strong arcs, fuzzy end nodes and geodesics 

in fuzzy graphs were contributed by Bhutani and Rosenfeld [8, 9, 10]. Bhutani. 

K.R, Mordeson  and Rosenfeld[12] studied the Degrees of  End nodes and Cut 

nodes in Fuzzy graphs. Dewdney. A[18] has contributed some useful results 
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on Degree sequences in complexes and hypergraphs. C. Berg. [5] studied some 

properties of  hypergraphs. 

 Boonyasombet. V [16] contributed some useful results to Degree 

sequences of connected hypergraphs and hypertrees. Choudam. S .A [17] 

studied Graphic and 3-hypergraphic sequence. 

 Bhave. N. S., Bam. B. Y and and Deshpande .C.M [7] studied the 

Characterization of Degree Sequences of Linear Hypergraphs. Mordeson. J.N 

and Nair. P.S [27, 28, 29] made a comparative study on Fuzzy Graphs with 

Fuzzy Hypergraphs and also studied Fuzziness and soft computing. 

 Sampathkumar. E [60] introduced the concept of graphoids.  Acharya. 

B. D and Sampathkumar. E [1] introduced and contributed considerably to 

Graphoidal covers and graphoidal covering number of a graph. B. D. Acharya 

coined the term semigraph for graphoids which was introduced and developed 

by E. Sampathkumar. 

 Bam. B. Y and Bhave. N. S [4] contributed considerably to degree, 

degree sequences, complete semigraphs ,connectivity in semigraphs. 

 Sampathkumar. E and Pushpalatha. L [59] introduced the concept of 

bipartite semigraphs and Dendroids. They also contributed towards 

isomorphism of semigraphs matrix representation of Semigraphs 
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 K. Kayathri and S. Pethanachi Selvam [24,25] studied the Edge 

Completeness in semigraphs. 

 Operations of union, join, cartesian product and composition of fuzzy 

graphs were introduced and some of their properties were  studied by 

Mordeson. J.N  and Peng. C.S [30] . 

Nagoor Gani. A. and Bhsheer Ahamed. M [39] defined order, size and 

effective edges in fuzzy graphs. Nagoorgani. A and Jahir Hussain. R [44] 

defined and studied the properties of effective fuzzy Euler graph and fuzzy 

Hamiltonian graph. Sunitha. M.S and Vijayakumar. A [62] gave a definition 

for the complement of a fuzzy graph. They studied some properties of fuzzy 

bridges and fuzzy cut vertices and gave a characterization of fuzzy tree using 

them. They also studied some metric aspects [62] of fuzzy graphs      

 Nagoor Gani. A and Radha. K [47, 48] introduced regular and totally 

regular fuzzy graphs and obtained some useful results on regular fuzzy graphs.. 

 Nagoor Gani. A and Malarvizhi. J [45,46] discussed the concept of 

isometry in fuzzy graphs and studied its properties and also studied some 

properties of isomorphism on fuzzy graphs[45].  Nagoor Gani. A and Fathima  

Kani. B [43] introduced alpha, beta and gamma product of fuzzy graphs.  

 Radha. K and Kumaravel. N [56] introduced the concept of edge regular 

fuzzy graphs. They also studied the degree of an edge in union and join of two 
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fuzzy graphs.  Radha. K and Arumugam. S [54] made a study on direct sum of 

two fuzzy graphs. Radha. K and Rosemine. A [57] introduced the concept of 

degree sequence of a fuzzy graph. 

1.3.  SCOPE AND ORGANIZATION OF THE THESIS 

Chapter I In this chapter, introduction on fuzzy graph theory, 

semigraph theory, fuzzy semigraphs and some basic definitions that are 

required for the research work and organization of the thesis work are studied. 

Chapter II In this chapter, the concept of Fuzzy semigraphs is 

introduced. The fuzzy sub semigraphs, spanning fuzzy sub semigraphs and 

induced fuzzy subsemigraphs are defined. The effective fuzzy semigraph is 

introduced and some results on effective fuzzy semigraphs have been derived. 

The concept of bipartite fuzzy semigraphs is introduced and some of their 

properties are studied. 

Chapter III The end vertex fuzzy graph, fuzzy adjacency graph, fuzzy 

consecutive adjacency graph are studied. It is proved that the adjacency fuzzy 

graph is connected if and only if the given fuzzy semigraph is connected. Many 

properties of these fuzzy graphs are derived. 

Chapter IV In this chapter, isomorphism, weak isomorphism and co-

weak isomorphism of fuzzy semigraphs are introduced and some of their 

properties are studied. End vertex isomorphism (ev-isomorphism), edge 

isomorphism  (e-isomorphism) and adjacency isomorphism (a-isomorphism) 
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of fuzzy semigraphs are defined. Properties of effective edges and effective 

fuzzy semigraphs under isomorphism are studied. Also, it is proved that 

isomorphism is an equivalence relation and week isomorphism is a partial 

order relation. 

Chapter V In this chapter, various degrees of a vertex in a fuzzy 

semigraph are defined. Degree, edge degree, adjacent degree and consecutive 

adjacent degree of a vertex in a fuzzy semigraph are introduced. Their 

properties under various isomorphisms are discussed. The degree of an edge is 

also defined. 

Chapter VI Various regular properties of fuzzy semigraphs are studied. 

The regular, edge degree regular, adjacency regular and consecutive adjacency 

regular fuzzy semigraphs are introduced and some of their properties are 

studied. Also biregular fuzzy semigraphs and totally regular fuzzy semigraphs 

are defined.   

1.4.  BASIC CONCEPTS  

Definition 1.4.1[58]  

 Let 𝑉 be a non-empty finite set and 𝐸 ⊆ 𝑉 × 𝑉. A fuzzy graph 𝐺: (𝜎, 𝜇) 

is a pair of functions 𝜎: 𝑉 → [0,1]  and 𝜇: 𝐸 → [0,1] such that  

𝜇(𝑥, 𝑦) ≤ 𝜎(𝑥)˄ ∧ 𝜎(𝑦) for all 𝑥, 𝑦 ∈ 𝑉. Underlying crisp graph of 𝐺: (𝜎, 𝜇) 

is denoted by 𝐺∗: (𝑉, 𝐸). 
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Definition 1.4.2[58] 

 A fuzzy graph 𝐻: (𝜏, 𝜌) is called fuzzy subgraph of 𝐺: (𝜎, 𝜇)if 𝜏(𝑢) ≤

𝜎(𝑢), ∀ 𝑢 ∈ 𝑉  and 𝜌(𝑢𝑣) ≤ 𝜇(𝑢𝑣), ∀ 𝑢, 𝑣 ∈ . If 𝜏(𝑢) = 𝜎(𝑢), ∀𝑢 ∈ 𝑉 and 

𝜌(𝑢𝑣) ≤ 𝜇(𝑢𝑣), ∀ 𝑢, 𝑣 ∈ 𝑉, then H is called a spanning fuzzy subgraph of G. 

𝐻: (𝜏, 𝜌) is called induced fuzzy subgraph of 𝐺: (𝜎, 𝜇)induced by τ if 𝜏(𝑢) =

𝜎(𝑢), ∀ 𝑢 ∈ 𝑉(𝐻) and 𝜌(𝑢𝑣) = 𝜇(𝑢𝑣), ∀𝑢, 𝑣 ∈ 𝑉(𝐻). 

Definition 1.4.3[44] 

𝐺  is an effective fuzzy graph if 𝜇(𝑥𝑦) = 𝜎(𝑥)˄𝜎(𝑦)for all 𝑥, 𝑦 ∈ E. 𝐺  is a 

complete fuzzy graph if 𝜇(𝑥𝑦) = 𝜎(𝑥)˄𝜎(𝑦)for all 𝑥, 𝑦 ∈ V. 

Definition 1.4.4[39] 

 The order and size of a fuzzy graph 𝐺: (𝜎, 𝜇) are defined by          

𝑂(𝐺) = ∑ 𝜎(𝑥)and𝑆(𝐺) = ∑ 𝜇(𝑥𝑦)𝑥𝑦∈𝐸𝑥∈𝑉 . 

Definition 1.4.5[40] 

 If 𝜇(𝑥𝑦) > 0 then 𝑥 and 𝑦 are called neighbours, 𝑥 and 𝑦 are said to 

lie on the edge 𝑒 = 𝑥𝑦. A path ρ in a fuzzy graph 𝐺: (𝜎, 𝜇) is a sequence of 

distinct nodes 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛  such that  𝜇(𝑣𝑖 , 𝑣𝑖−1) > 0,1 ≤ 𝑖 ≤ 𝑛 . Here 

‘𝑛’ is called the length of the path. The consecutive pairs (𝑣𝑖 , 𝑣𝑖−1) are called 

arcs of the path. 
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Definition 1.4.6[54]  

 Let 𝐺: (𝜎, 𝜇)  be a fuzzy graph on 𝐺∗: (𝑉, 𝐸).The degree of vertex 𝑥 is 

𝑑𝐺(𝑥) = ∑ 𝜇(𝑥𝑦).𝑥≠𝑦  If each vertex in 𝐺 has same degree 𝑘, then 𝐺 is said to 

be a regular fuzzy graph or 𝑘 -regular fuzzy graph. 

Definition 1.4.7 [34] 

 Let G: (𝜎, 𝜇) be a  fuzzy graph. Then the total degree of the vertex u is 

td(u) = ∑ 𝜇(𝑢𝑣) + 𝜎(𝑢) = 𝑑(𝑢) + 𝜎(𝑢)𝑢≠𝑣 . If the total degree of all the 

vertices is r, then G is said to be a totally regular fuzzy graph of degree r or a 

r-totally regular fuzzy graph. 

Definition 1.4.8[27]  

 If 𝑢, 𝑣 are nodes in 𝐺: (𝜎, 𝜇) and if they are connected by means of a 

path then the strength of that path is defined as ∑ 𝜇𝑛
𝑖=1 (𝑣𝑖−1, 𝑣𝑖). ie.,  it is the 

strength of the weakest arc. If 𝑢, 𝑣 are connected by means of paths of length 

‘ 𝑘 ’ then 𝜇𝑘(𝑢, 𝑣) = 𝑠𝑢𝑝 {𝜇(𝑢, 𝑣1)˄𝜇(𝑣1, 𝑣2)˄𝜇(𝑣2, 𝑣3)˄ … ˄𝜇(𝑣𝑘−1, 𝑣)/

 𝑢, 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑘−1𝑣 ∈ 𝑉} 

If  𝑢, 𝑣 ∈ 𝑉, the strength of connectedness between 𝑢 and 𝑣 is,  

𝜇∞(𝑢, 𝑣) = 𝑠𝑢𝑝 {𝜇𝑘(𝑢, 𝑣)/ 𝑘 = 1,2,3, … } 
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Definition 1.4.9[41] 

 A fuzzy graph 𝐺: (𝜎, 𝜇)  is connected if 𝜇∞(𝑢, 𝑣) > 0 for all 𝑢, 𝑣 ∈ 𝑉. 

An edge xy is said to be a strong edge if  𝜇(𝑥, 𝑦) > 𝜇∞(𝑢, 𝑣). A vertex 𝑥 is 

said to be an isolated vertex if 𝜇(𝑥𝑦) = 0, ∀ 𝑦 ≠ 𝑥. 

Definition 1.4.10[36] 

 A homomorphism of fuzzy graphs 𝑓: 𝐺 → 𝐺′ is a map 𝑓: 𝑉 → 𝑉′which 

satisfies  𝜎(𝑢) ≤  𝜎′(𝑓(𝑢)) 𝑓𝑜𝑟 𝑎𝑙𝑙 u ∈ V ,  𝜇(𝑢𝑣) ≤ 𝜇′(𝑓(𝑢)𝑓(𝑣))  for all  

𝑢, 𝑣 ∈ 𝑉. 

Definition 1.4.11[36] 

 A isomorphism of fuzzy graphs 𝑓: 𝐺 → 𝐺′  is a bijective map 

𝑓: 𝑉 → 𝑉′ which satisfies 𝜎(𝑢) =  𝜎′(𝑓(𝑢)) 𝑓𝑜𝑟 𝑎𝑙𝑙 u ∈ V and 𝜇(𝑢𝑣) =

𝜇′(𝑓(𝑢)𝑓(𝑣)) for all  𝑢, 𝑣 ∈ 𝑉. 

Definition 1.4.12[36] 

 A weak isomorphism of fuzzy graphs 𝑓: 𝐺 → 𝐺′  is a map 𝑓: 𝑉 →

𝑉′ 𝑤ℎ𝑖𝑐ℎ  is bijective and satisfies 𝜎(𝑢) =  𝜎′(𝑓(𝑢)) 𝑓𝑜𝑟 𝑎𝑙𝑙 u ∈ V and  

𝜇(𝑢𝑣) ≤ 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all  𝑢, 𝑣 ∈ 𝑉. 

Definition 1.4.13[36] 

 A co-weak isomorphism of fuzzy graphs 𝑓: 𝐺 → 𝐺′ is a map𝑓: 𝑉 → 𝑉′ 

which is bijective and satisfies 𝜎(𝑢) ≤  𝜎′(𝑓(𝑢)) for all u ∈ Vand 𝜇(𝑢𝑣) =

𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢, 𝑣 ∈ 𝑉. 
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Definition 1.4.14[59]  

 𝐺 is e-bipartite if its vertex set 𝑉 can be partitioned into sets{𝑉1, 𝑉2} such 

that 𝑉1, 𝑉2are e- independent. 

Definition 1.4.15[58] 

 𝐺  is strongly bipartite if its vertex set 𝑉  can be partitioned into 

sets{𝑉1, 𝑉2} such that 𝑉1, 𝑉2 are strongly independent. 

Definition 1.4.16[59]  

 The edge clique number of 𝐺 is the maximum cardinality of an edge 

clique in 𝐺. 

Definition 1.4.17[41] 

 Fuzzy independent set: Two vertices are said to be Fuzzy independent 

if there is no strong arc between them. A subset 𝑆 of 𝑉 is fuzzy independent 

of 𝐺 if any two vertices of 𝑆 are fuzzy independent. 

Definition 1.4.18 [35]  

 A fuzzy graph 𝐺 is fuzzy bipartite then its vertex set 𝑉 can be partitioned 

into sets {𝑉1, 𝑉2} such that 𝑉1  and  𝑉2  are fuzzy independent sets. These 

𝑉1, 𝑉2are called fuzzy bipartitions of  𝑉. 

Definition 1.4.19 [35]  

 The size of a fuzzy bipartite graph is defined to be the sum of the 

membership values of all strong arcs of it. 
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Definition 1.4.20 [35] 

 A fuzzy bipartite graph 𝐺 with fuzzy bipartition {𝑉1, 𝑉2}is said to be 

complete fuzzy bipartite if between every vertex of 𝑉1 and each vertex of 𝑉2 

there is a strong arc. 

Definition 1.4.21[60] 

 A semigraph is a pair (𝑉, 𝑋), where 𝑉 is a non-empty set of elements 

called vertices and 𝑋 is a set of 𝑛-tuples called edges of distinct vertices for 

various   𝑛 ≥ 2 satisfying the following conditions:  

1. Any two edges have at most one vertex in common 

2. Two edges 𝐸1 = (𝑢1,𝑢2, … , 𝑢𝑛), 𝐸2 = (𝑣1,𝑣2, … , 𝑣𝑚) are considered to 

be equal  if and only if    

a) 𝑚 = 𝑛  b) either 𝑢𝑖 = 𝑣𝑖 for i = 1 to 𝑛 or 𝑢𝑖 = 𝑣𝑛−𝑖+1 for I = 1to 𝑛.  

In the edge 𝐸 = (𝑢1,𝑢2, … , 𝑢𝑛), 𝑢1and 𝑢𝑛 are called the end vertices and all 

vertices in between  them are called middle vertices (𝑚- vertices). If a middle 

vertex is an end vertex of some other edge, it is called middle end vertex (𝑚𝑒- 

vertices). 

Definition 1.4.22[60] 

 A subedge (fs-edge) of an edge 𝐸 = (𝑣1,𝑣2, … , 𝑣𝑛)  is a 𝑘 − tuple                              

𝐸 = (𝑣𝑖1
, 𝑣𝑖2

, … . 𝑣𝑖𝑘
)  where 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑛  or 1 ≤ 𝑖𝑘 < 𝑖𝑘−1 <

⋯ < 𝑖1 ≤ 𝑛. 
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Definition 1.4.23[60]  

 A partial edge (fp-edge) of an edge 𝐸 = (𝑣1,𝑣2, … , 𝑣𝑛) is a (𝑗 − 𝑖 + 𝑛)- 

tuple 𝐸 = (𝑣𝑖,𝑣𝑖−1, … , 𝑣𝑗) where 1 ≤ 𝑖 ≤ 𝑛. 

Definition 1.4.24[60] 

 Let 𝐺 = (𝑉, 𝑋)be a semigraph. There are three different types of graphs 

associated with 𝐺. 

 The end vertex graph 𝐺𝑒: Two vertices in  𝐺𝑒 are adjacent if and only if 

they are end vertices of an edge in 𝐺. 

 The Adjacency graph 𝐺𝑎: Two vertices in 𝐺𝑎 are adjacent if and only if 

they are adjacent in 𝐺. 

 The Consecutive Adjacency graph 𝐺𝑐𝑎 : Two vertices in 𝐺𝑐𝑎   are 

adjacent if and only if they are consecutively adjacent vertices in 𝐺. 

Definition 1.4.25[59] 

 Let 𝐺1: (𝑉1, 𝑋1) and 𝐺2: (𝑉2, 𝑋2) be two semigraphs and 𝑓 be a bijection 

from 𝑉1 to 𝑉2. Let 𝑥 = (𝑣1, 𝑣2, … , 𝑣𝑛) be an edge in 𝐺1. 𝑓 is an isomorphism if 

(𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)) is an edge in 𝐺2 .𝑓  is an end vertex isomorphism           

(𝑒𝑣-isomorphism) if the set {𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)} forms an edge in 𝐺2 with 

end vertices 𝑓(𝑣1) and 𝑓(𝑣𝑛). 𝑓 is an edge isomorphism (𝑒 −isomorphism) if  

the set {𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)} forms an edge in 𝐺2 . 𝑓  is an adjacency 

isomorphism (a-isomorphism) if the adjacent vertices in 𝐺1 are mapped onto 

adjacent vertices in  𝐺2. 
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Definition 1.4.26[58] 

 A set 𝑆 of vertices in a semigraph 𝐺 = (𝑉, 𝑋) is independent if no edge 

is a subset of  𝑆.  

𝑆 is e-independent if no two end vertices of an edge belong to 𝑆. 

𝑆 is strongly independent if no two adjacent vertices belong to 𝑆. 

Definition 1.4.27[60] 

 A semigraph 𝐺 is bipartite if its vertex set 𝑉 can be partitioned into sets 

{𝑉1, 𝑉2} such that 𝑉1, 𝑉2 are independent. 

Definition 1.4.28[59] 

 A semigraph 𝐺 is edge complete if any two edges in 𝐺 are adjacent. 

Definition 1.4.28[59] 

 A set 𝑆 of edges in a semigraph 𝐺 is said to form an edge clique if any 

two edges in 𝑆 are adjacent. 

Definition 1.4.29[58] 

 A semigraph 𝐺 is r-uniform if all the edges of G contains r vertices. 

Definition 1.4.30 [55] 

 A vertex u in a fuzzy graph G is simplicial in G if 𝑁𝐺[𝑢]  

is a complete fuzzy graph. In other words, u is simplicial in G if u is simplicial 

in G and each edge of 𝑁𝐺[𝑢] is an effective edge. 

 



 

  

Chapter 2 

Fuzzy Semigraphs 
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CHAPTER -2 

FUZZY SEMIGRAPHS 

 

In this chapter, the concept of fuzzy semigraphs is introduced. The fuzzy 

sub semigraphs, spanning fuzzy sub semigraphs and induced fuzzy 

subsemigraphs are defined. The effective fuzzy semigraph is introduced and 

some results on effective fuzzy semigraphs have been derived. The concept of 

bipartite fuzzy semigraphs is introduced and some of their properties are 

studied. 

2. 1. FUZZY GRAPHS ASSOCIATED WITH SEMI GRAPHS 

 In this section, fuzzy semigraph is introduced. 

Definition 2.1.1 

 Consider a semigraph𝐺∗: (𝑉, £, 𝑋). A fuzzy semigraph on 𝐺∗: (𝑉, £, 𝑋) 

is defined as 𝐺: (𝜎, 𝜇, 𝜂) where 𝜎: 𝑉 → [0,1], 𝜇: 𝑉 × 𝑉 → [0,1],:𝜂: 𝑋 → [0,1] 

are such that  

(i) 𝜇(𝑢, 𝑣) ≤ 𝜎(𝑢)˄𝜎(𝑣)  ∀(𝑢, 𝑣) ∈ 𝑉 × 𝑉 

(ii) 𝜂(𝐸) = 𝜇(𝑢1, 𝑢2)˄𝜇(𝑢2, 𝑢3)˄…˄𝜇(𝑢𝑛−1, 𝑢𝑛) ≤

𝜎(𝑢1)˄𝜎(𝑢𝑛),  

𝐸 = (𝑢1,𝑢2, … , 𝑢𝑛), 𝑛 ≥ 2 is an edge in 𝐺. 

Here (𝜎, 𝜇) is a fuzzy graph on (𝑉, £). 
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Example 2.1.2 

 To illustrate the above definition, we consider the fuzzy semigraph 

𝐺: (𝜎, 𝜇, 𝜂) in Figure 2.1. 

 

Here V = {𝑣1,𝑣2, 𝑣3, 𝑣4, 𝑣5} 

          £ = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣5, 𝑣5𝑣1} 

          X = {𝐸1 = (𝑣1, 𝑣2), 𝐸2 = (𝑣2, 𝑣3, 𝑣4), 𝐸3 = (𝑣4, 𝑣5, 𝑣1)} 

 𝜂(𝐸1) = 0.4, 𝜂(𝐸2) = 0.2, 𝜂(𝐸3) = 0.3. 

𝜇(𝑣1𝑣2) = 0.4, 𝜇(𝑣2𝑣3) = 0.2, 𝜇(𝑣3𝑣4) = 0.3, 𝜇(𝑣4𝑣5) = 0.3, 𝜇(𝑣5𝑣1) = 0.3 

(𝜎, 𝜇, 𝜂) satisfy the condition of the fuzzy semigraph. 

  

[0.3] 

[0.2] 

𝑭𝒊𝒈 𝟐. 𝟏: 𝑮: (𝝈, 𝝁, 𝜼) 

0.4 

0.3 0.3 

𝑣5(0.3) 

0.3 

𝑣1(0.4) 

0.2 

𝑣4(0.4) 

 

𝑣3(0.3) 

𝑣2(0.5) 
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Definition 2.1.3 

 A fuzzy semigraph G:(𝜎, 𝜇, 𝜂) on G*(V, £, X) is a fuzzy semigraph of 

stage p if 𝜎(u) = p, for all u∈V, 𝜇(uv) = p, for all uv∈ £ and 𝜂(E) = p, for all 

E∈X where     0 < p ≤ 1. 

Definition 2.1.4 

 Consider a fuzzy semigraph G:(𝜎, 𝜇, 𝜂) on G*(V, £, X). 

       The order of G is O(G) = ∑ 𝜎(𝑢)𝑢∊𝑉 . 

         The size of G is S(G)  = ∑ 𝜂(𝐸)𝐸∈𝑋 . 

The total size of G is TS(G) = ∑ µ(𝑒)𝑒∊£ . 

Example 2.1.5 

For the fuzzy semigraph in Fig.2.1,  

O(G) = 1.3,      S(G)  =  0.9,        TS(G) = 1.5 

Definition 2.1.6 

 Consider a fuzzy semigraph G:(𝜎, 𝜇, 𝜂) on G*(V, £, X). A path in G is a 

sequence of vertices 𝑣1𝑣2  … , 𝑣𝑛  such that 𝑣𝑖𝑣𝑖+1 ∈ £ and 𝜇(𝑣𝑖𝑣𝑖+1)> 0 for  

all i. 

Definition 2.1.7 

 Consider a fuzzy semigraph G:(𝜎, 𝜇, 𝜂) on G*(V, £, X). G is connected if 

there is a path between any two vertices of G. 
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Theorem 2.1.8 

 If G:(𝜎, 𝜇, 𝜂)  is a r-uniform fuzzy semigraph of stage p on G*(V, £, X)  

with m edges, then size of G is S(G) = mp and the total size of G ,  

TS(G)= m(r-1)p 

Proof:  

Since G is a fuzzy semigraph of stage  p, 

𝜎(u) = p, ∀ u∈V, 𝜇(uv) = p, for all uv∈ £ 

and 𝜂(E) =p, for all E∈X. where 0< p≤ 1. 

Therefore S(G)  = ∑ 𝜂(𝐸)𝐸∈𝑋  

          =∑ 𝑝𝐸∈𝑋  

                             = mp. 

Total size is TS(G) = ∑ µ(𝑒)𝑒∊£  

                               =∑ 𝑝𝑒∊£  

   = m(r-1)p. 

Theorem 2.1.9 

 If G;(𝜎, 𝜇, 𝜂)  is a fuzzy semigraph of stage p on G*:(V, £, X), then the 

order of G is, O(G) = np, where n is the number of vertices of G. 

Proof: Since G is a fuzzy semigraph of stage p, 𝜎(u) = p, ∀ u∈V, 𝜇(uv) = p, 

for all uv∈ £  and 𝜂(E) = p, for all E∈X. where 0<p≤ 1. 

 Now  order of G, O(G) = ∑ 𝜎(𝑢)𝑢∊𝑉  
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Therefore O(G) = ∑ 𝑝𝑢∊𝑉  

                           = n.p, which proves the theorem. 

Theorem 2.1.10 

 Let G;(𝜎, 𝜇, 𝜂)   be a fuzzy semigraph on G*:(V, £, X). Then G is 

connected if and only if there is a path between any two end vertices of G. 

Proof: 

 If G is connected, then by the definition 2.1.7, there is a path between 

any two end vertices of G. 

Conversely, suppose there is a path between any two end vertices of G. 

Let u and v be any two middle vertices of G.  

Let E1 and E2 be the edges containing u and v respectively.  

Let 𝑢𝑖 and 𝑣𝑖 be the end vertices of 𝐸𝑖 , 𝑖 = 1, 2.   

By hypothesis, there is a path P between 𝑢1 and 𝑢2.  

Then the partial edge (u, ⋯, 𝑢1) of E1, the path P and the partial edge (𝑢1,  ⋯, 

v) of E2 constitute a path between u and v. Hence G is connected. 

2.2.  EFFECTIVE FUZZY SEMIGRAPHS  

Definition 2.2.1  

 An edge E = (𝑢1,𝑢2, … , 𝑢𝑛) in X of a fuzzy semigraph is called an 

effective edge if 

 𝜂(𝐸) = 𝜂(𝑢1,𝑢2, … , 𝑢𝑛) = 𝜎(𝑢1)˄𝜎(𝑢𝑛) 

 and  𝜇(𝑢𝑖𝑢𝑗) = 𝜎(𝑢𝑖)˄𝜎(𝑢𝑗) for all 𝑖 ≠ 𝑗. 
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E = (𝑢1,𝑢2, … , 𝑢𝑛) in X of a fuzzy semigraph is called an e-effective edge if 

 𝜂(𝐸) = 𝜂(𝑢1,𝑢2, … , 𝑢𝑛) = 𝜎(𝑢1)˄𝜎(𝑢𝑛). 

Definition 2.2.2 

 A fuzzy semigraph G: (𝜎, 𝜇, 𝜂) 𝑜𝑛 𝐺∗: (V, £, X)  is said to be an effective 

fuzzy semigraph if all the edges of 𝐺 are effective edges. 

 A fuzzy semigraph G: (𝜎, 𝜇, 𝜂) 𝑜𝑛 𝐺∗: (V, £, X)  is said to be an e-

effective fuzzy semigraph if all the edges of 𝐺 are e-effective edges. 

 An effective fuzzy semigraph is shown in Fig (2.2) 

 

Definition 2.2.3 

 A fuzzy subsemigraph H of a fuzzy semigraph 𝐺: (𝜎, 𝜇, 𝜂) is said to be 

a  fuzzy effective sub semigraph if all its edges are effective edges.  

0.6 

0.6 

𝑣1(0.5) 

𝑣4(0.8) 

 

0.5 

[0.5] 

𝑣5(0.6) 𝑣3(0.7) 

𝑣2(0.6) 

0.6 

0.7 
[0.6] 

0.5 

𝑭𝒊𝒈 𝟐. 𝟐: 𝑬𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆 𝑺𝒆𝒎𝒊𝒈𝒓𝒂𝒑𝒉  
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Example 2.2.4 

 Consider the fuzzy semigraph in  Fig. 2.3, The  fuzzy subsemigraph of 

2.3 is given in  the Fig. 2.4. 

 

Fig. 2.3 Fuzzy Semigraph 

Fig 2.4 – Fuzzy Effective subsemigraph of the fuzzy semigraph in Fig 3.2 

Remark 2.2.5 

 Fuzzy sub semigraphs and spanning fuzzy sub semigraphs of an 

effective fuzzy semigraph need not be effective. 

Theorem 2.2.6 

 Induced sub semigraphs of an effective fuzzy semigraph are effective. 
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Proof: 

 Since membership values are preserved in induced fuzzy sub 

semigraphs, induced sub semigraphs of an effective fuzzy semigraph are 

effective. 

Theorem 2.2.7 

 Any fuzzy semigraph G: (𝜎, 𝜇, 𝜂)𝑜𝑛 𝐺∗: (V, £, X)  of stage p is an edge 

effective fuzzy semigraph. 

Proof: 

Since G is a fuzzy semigraph of  stage p, 

𝜎(u) = p, ∀ u∈V, 𝜇(uv) = p, for all uv∈ £,  

and 𝜂(E) = p, for all E∈ X where 0< p ≤ 1. 

Then 𝜇(uv) = p = 𝜎(𝑢) ∧  𝜎(𝑣),∀𝑢𝑣 ∈ £, and  

If E = (u1,u2, ⋯ , un), then 

η(E) = µ(u1u2)∧ µ(u2u3)∧ µ(u3u4)∧…… ∧µ(un-1un) 

                  = p∧p∧⋯∧p  

                  = p 

Therefore η(E) = p = 𝜎(𝑢1) ∧  𝜎(𝑢2), ∀𝐸 ∊ 𝑋 

 Hence G:(𝜎, 𝜇, 𝜂) in an edge effective fuzzy semigraph. 

Remark 2.2.8 

 The converse of the above theorem 2.2.7 need not be true. 
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Definition 2.2.9 

 A fuzzy semigraph 𝐺: (𝜎, 𝜇, 𝜂) 𝑜𝑛 𝐺∗: ( 𝑉, 𝑋)  is a complete fuzzy 

semigraph if 

1.𝐺∗is a complete semigraph.(ie ) any two vertices lie on the same edge 

2. 𝐺 is an effective fuzzy semigraph. 

Example 2.2.10 

 

 

 

 

 

 

 

Remark 2.2.11 

 A complete fuzzy semigraph on n vertices is not unique. 

Definition 2.2.12 

 A complete fuzzy semigraph containing a given fuzzy semigraph as an 

induced sub semigraph is denoted by K(G). 

𝐹𝑖𝑔 2.5: 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 𝑭𝒖𝒛𝒛𝒚 𝑺𝒆𝒎𝒊𝒈𝒓𝒂𝒑𝒉  
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Example 2.2.13 

 The fuzzy semigraph in Fig.2.5 is a complete fuzzy semigraph K(G) 

containing G in Fig.2.6. 

 

2.3.  BIPARTITE FUZZY SEMIGRAPHS 

Definition 2.3.1 

 Bipartite Fuzzy Semigraph: Let 𝐺: (𝜎, 𝜇, 𝜂)be a fuzzy semigraph.Then 

𝐺is said to be bipartite if its vertex set 𝑉 can be partitioned into {V1, V2}sets 

such that  𝑉1 and  𝑉2  are independent. Here 𝐺∗: (𝑉, £, 𝑋) is the underlying 

semigraph and (𝜎, 𝜇) is a fuzzy graph.  

 

 

𝑭𝒊𝒈 𝟐. 𝟔: 𝑮: (𝝈, 𝝁, 𝜼)𝑭𝒖𝒛𝒛𝒚 𝑺𝒆𝒎𝒊𝒈𝒓𝒂𝒑𝒉 𝑮  
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Definition2.3.2 

 e -Bipartite Fuzzy Semigraph: Let 𝐺: (𝜎, 𝜇, 𝜂)be a fuzzy semigraph on 

𝐺∗: (𝑉, £, 𝑋) Then 𝐺  is said to be e-bipartite  if its vertex set 𝑉  can be 

partitioned into {𝑉1, 𝑉2}such that  𝑉1and  𝑉2 are e- independent.  

Definition: 2.3.3 

 Strongly Bipartite Fuzzy Semigraph: Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy 

semigraph on 𝐺∗: (𝑉, £, 𝑋) Then 𝐺 is said to be strongly bipartite if its vertex 

set 𝑉  can be partitioned into sets {𝑉1, 𝑉2}such that  𝑉1 and  𝑉2  are strongly 

independent.  

Definition 2.3.4 

 The size of a bipartite fuzzy semigraph 𝐺: (𝜎, 𝜇, 𝜂)is defined to be the 

sum of the membership values of all edges of  it. 

Size of 𝐺 = ∑ 𝜂(𝐸)𝐸∈𝑋  

Theorem 2.3.5 

 A fuzzy semigraph 𝐺: (𝜎, 𝜇, 𝜂)is e-bipartite if and only if, its e-graph 

𝐺𝑒is bipartite. 

Proof:  

 Suppose 𝐺: (𝜎, 𝜇, 𝜂)is e- bipartite, 
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 This implies that 𝑉 can be partitioned into sets {𝑉1, 𝑉2} such that 𝑉1and  

𝑉2 are e- independent.  

Therefore no two end vertices of an edge of 𝐺 belong to 𝑉1 

Similarly, no two end vertices of an edge of 𝐺 belong to 𝑉2 

This implies that no two end vertices of an edge of 𝐺𝑒belong to 𝑉1and 

no two end vertices of an edge of 𝐺𝑒belong to 𝑉2 

Since all the vertices of 𝑉1 and 𝑉2are e- independent, 

 𝑉1and  𝑉2are e- independent in𝐺𝑒. 

Therefore 𝐺𝑒is bipartite. 

Conversely, suppose 𝐺𝑒is bipartite. 

Then the vertex set𝑉 where all the vertices are the end vertices of 𝐺 can 

be partitioned into sets {𝑉1, 𝑉2}such that 𝑉1and  𝑉2are e-independent. 

ie . 𝐺 is e-bipartite. 

Theorem 2.3.6 

 If a fuzzy semigraph 𝐺: (𝜎, 𝜇, 𝜂) is e-bipartite then it is bipartite. 

Proof:  

 Suppose 𝐺: (𝜎, 𝜇, 𝜂) is e- bipartite. 

 This implies that V can be partitioned into sets {𝑉1, 𝑉2}such that V1 and  

V2 are  e- independent. 

 Here𝐺∗: (𝑉, 𝑋)is the underlying semigraph and (𝜎, 𝜇) is a fuzzy graph. 
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 ie.   no two end vertices of an edge of  𝐺belong to 𝑉1. 

 Similarly, no two end vertices of an edge of 𝐺belong to 𝑉2. 

 ie . no edge of 𝐺 belong to 𝑉1 

Similarly, no edge of 𝐺 belong to 𝑉2. 

This implies that  𝑉1and  𝑉2 are independent  in 𝐺. 

Hence 𝐺 is bipartite. 
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CHAPTER – 3 

FUZZY GRAPHS ASSOCIATED WITH GIVEN 

FUZZY SEMIGRAPH 

 

In this chapter, the end vertex fuzzy graph, adjacency fuzzy graph, 

consecutive adjacency fuzzy graph are defined and their properties are 

studied. It is proved that the adjacency fuzzy graph is connected if and only if 

the given fuzzy semigraph is connected. Many properties of these fuzzy graphs 

are derived. 

3.1  END VERTEX FUZZY GRAPH 

Definition 3.1.1 

End Vertex Fuzzy Graph (e-Fuzzy Graph)  𝑮𝒆: 

Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph 𝑜𝑛 𝐺∗: (𝑉, £, 𝑋).  

Define 𝐺𝑒: (𝜎𝑒 , 𝜂𝑒)on (𝑉𝑒, £𝑒) where 𝑉𝑒 = 𝑉  

and £𝑒 = {𝑢𝑣 /  𝑢 and 𝑣 are end vertices of an edge E in 𝐺} as 

𝜎𝑒(𝑢) = 𝜎(𝑢) for every 𝑢 in 𝑉  

and 𝜂𝑒(𝑢𝑣) = 𝜂(𝐸) for every 𝑢𝑣 ∈ £𝑒 , where 𝐸  is an edge in 𝐺  with end 

vertices  𝑢  and 𝑣 in 𝐺. 

               Now 𝜂𝑒(𝑢𝑣) = 𝜂(𝑢𝑣)  

                                     ≤ 𝜎(𝑢) ∧ 𝜎(𝑣)  

                                     = 𝜎𝑒(𝑢) ∧ 𝜎𝑒(𝑣)  

 Hence (𝜎𝑒 , 𝜂𝑒) satisfy the condition of fuzzy graph. 
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Therefore 𝐺𝑒: (𝜎𝑒 , 𝜂𝑒) is a fuzzy graph on (𝑉𝑒 , 𝐸𝑒). This is called the end vertex 

fuzzy graph of 𝐺. 

Example 3.1.2 

 The end vertex fuzzy graph (e-fuzzy graph) 𝐺𝑒 of 𝐺 is given in Figure 

2.2. 
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Theorem 3.1.3:  

Let 𝐺: (𝜎, 𝜇, 𝜂)be a connected fuzzy semigraph on 𝐺∗: (𝑉, £, 𝑋). The end 

vertex fuzzy graph has no isolated vertices if and only if 𝐺  has no middle 

vertices and no middle- end vertices. 

Proof:  

 Since only the end vertices of 𝐺 are adjacent in  𝐺𝑒, the middle vertices 

and middle end vertices of 𝐺 are not adjacent to any vertex of  𝐺𝑒. Hence the 

theorem follows. 

Theorem 3.1.4 

 Let 𝐺: (𝜎, 𝜇, 𝜂)be a connected fuzzy semigraph. The endvertex fuzzy 

graph is connected if and only if 𝐺 has no middle vertices and no middle- end 

vertices. 

Proof:  

 Since only the end vertices of 𝐺 are adjacent in  𝐺𝑒, the middle vertices 

and middle end vertices of 𝐺 are not adjacent to any vertex of  𝐺𝑒. Hence if  𝐺𝑒 

is connected, it has no isolated vertices. Therefore 𝐺 has no middle and middle-

end vertex. 

 Conversely if 𝐺  has no middle vertices and no middle- end vertices, 

there is no isolated vertices in 𝐺𝑒. The remaining vertices of  𝐺𝑒 correspond to 

end vertices of 𝐺. Also 𝐺 is connected. Hence  𝐺𝑒 is connected. 

 

 

 

 



30 

Theorem 3.1.5 

 Let G:(𝜎, 𝜇, 𝜂) be a fuzzy semigraph 𝑜𝑛 𝐺∗: (𝑉, £, 𝑋).Then the size of G 

and the size of its end vertex fuzzy graph are equal. 

Proof: Let Ge be the end vertex fuzzy graph of G. 

Let E = ( u1, u2, u3, …, un ) be an edge in G. 

Then u1un is an edge in Ge and 

𝜇e (u1, un) = 𝜇(u1u2) ∧𝜇(u2u3) ∧ … ∧𝜇 (un-1un) = η (E ) 

Therefore    S(Ge)  =   ∑ 𝜂𝑒(𝑢𝑣)𝑢𝑣∈£𝑒
 

                               =∑ 𝜂(𝑢, ⋯ , v)(𝑢,⋯,v)∈E  

                                  =S(G). 

Theorem 3.1.6 

 The end vertex fuzzy graph of an effective fuzzy semigraph is an 

effective fuzzy graph. 

Proof: 

Let 𝐺: (𝜎, 𝜇, 𝜂) be an effective fuzzy semigraph on 𝐺∗: (𝑉, £, 𝑋). 

Let 𝑢𝑣 be any edge in  𝐺𝑒. 

Then for any edge 𝐸 with end vertices 𝑢 and 𝑣, 

𝜂(𝐸) = 𝜎(𝑢) ∧ 𝜎(𝑣) 

Let 𝑢𝑣 be any edge in  𝐺𝑒. 
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Then 𝑢 and 𝑣 are end vertices of 𝐺. 

Therefore  𝜂𝑒(𝑢𝑣) = 𝜂(𝐸), where 𝐸 is an edge with end vertices 𝑢 and 𝑣             

                        = 𝜎(𝑢) ∧ 𝜎(𝑣) 

                                    =  𝜎𝑒(𝑢) ∧  𝜎𝑒(𝑣), Hence  𝐺𝑒 is an effective fuzzy graph. 

Theorem 3.1.7 

 The end vertex fuzzy graph of an e-effective fuzzy semigraph is an 

effective fuzzy graph. 

Proof: 

  If  𝐺: (𝜎, 𝜇, 𝜂) is an e-effective fuzzy semigraph on 𝐺∗: (𝑉, £, 𝑋), then 

for every pair of end vertices u and v in G, 

           𝜂e(uv) = 𝜂(u, ⋯, v) = σ(u)∧ σ(v) = σe(u)∧ σe(v) 

Hence the theorem follows. 

3.2.  ADJACENCY FUZZY GRAPH 

Definition 3.2.1 

Adjacency Fuzzy Graph (a-Fuzzy Graph) 𝑮𝒂:  

Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on  𝐺∗: (𝑉, £, 𝑋).  

Define 𝐺𝑎: (𝜎𝑎, 𝜂𝑎)on (𝑉𝑎, £𝑎) where 𝑉𝑎 = 𝑉  

and £𝑎 = {𝑢𝑣 /𝑢 and 𝑣  are adjacent in 𝐺} as 

𝜎𝑎(𝑢) = 𝜎(𝑢) for every 𝑢 in 𝑉 and 

𝜇𝑎(𝑢𝑣) = 𝜇(𝑢𝑣𝑖) ∧ ˄𝜇(𝑣𝑖𝑣𝑖+1)˄ ∧ … ∧ ˄𝜇(𝑣𝑗𝑣) for every 𝑢𝑣 ∈ £𝑎, 

 where (𝑢, 𝑣𝑖 , 𝑣𝑖+1, … , 𝑣𝑗 , 𝑣) is an edge or a partial edge of 𝐺. 
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                  Here 𝜇𝑎(𝑢𝑣) ≤ 𝜎(𝑢) ∧ 𝜎(𝑣𝑖) ∧ … ∧ 𝜎(𝑣𝑗) ∧ 𝜎(𝑣) 

≤ 𝜎(𝑢) ∧ 𝜎(𝑣) 

= 𝜎𝑎(𝑢) ∧ 𝜎𝑎(𝑣) 

Hence (𝜎𝑎, 𝜂𝑎) satisfy the condition of fuzzy graph. 

𝐺𝑎: (𝜎𝑎, 𝜂𝑎) is called the adjacency fuzzy graph of the semigraph G. 

Example 3.2.2 

 The adjacency fuzzy graph (a-fuzzy graph) 𝐺𝑎of 𝐺 in Fig3.1 is given in 

Fig.3.3. 
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Theorem 3.2.3: Let 𝐺: (𝜎, 𝜇, 𝜂) be a connected fuzzy semigraph on 

 𝐺∗: (𝑉, £, 𝑋) .The adjacency fuzzy graph is connected if and only if 𝐺  is 

connected. 

Proof:  

 Since adjacent vertices in 𝐺 are all adjacent in  𝐺𝑎, 𝐺𝑎 is connected if 

and only if 𝐺 is connected. 

Theorem 3.2.4 

 Let 𝐺: (𝜎, 𝜇, 𝜂)be a connected fuzzy semigraph. The adjacency fuzzy 

graph is connected if and only if 𝐺 is connected. 

Proof:  

 Since consecutively adjacent vertices in 𝐺 are all adjacent in  𝐺𝑐𝑎,  𝐺𝑐𝑎 

is connected if and only if 𝐺 is connected. 

Remark 3.2.5 

 Adjacency Fuzzy Graph (Ga-Fuzzy Graph) of an e-effective fuzzy 

semigraph need not be effective. 

Remark 3.2.6 

 Adjacency fuzzy graph of an effective fuzzy semigraph need not be 

effective. 
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Theorem 3.2.7 

 If G:( 𝜎, 𝜇, 𝜂 ) is both effective and e-effective then its consecutive 

adjacency fuzzy graph is effective. 

Proof: 

  In the consecutive adjacency fuzzy graph associated with the given 

fuzzy semigraph G with vertex set V, two vertices are adjacent if and only if 

they are adjacent in G. 

 Since G is effective,  𝜇 (xy)= 𝜎(𝑥) ∧ 𝜎(𝑦) = 𝑐, ∀𝑥𝑦 ∊ £  and 𝜂(𝐸) =

𝜂(𝑢1,𝑢2, … , 𝑢𝑛) = 𝜎(𝑢1)˄𝜎(𝑢𝑛), where E = (𝑢1,𝑢2, … , 𝑢𝑛) is an edge in G  

Also 𝜎ca (u) = 𝜎(𝑢), ∀ u∈ Vca. 

Now    𝜇ca (xy) = 𝜇(xy), ∀ xy 𝜖 𝐸𝑐𝑎 

                         = 𝜎(𝑥)∧𝜎(𝑦), ∀ xy 𝜖 £𝑐𝑎 

                         = 𝜎𝑐𝑎(𝑥)∧𝜎𝑐𝑎(𝑦), ∀ xy 𝜖 £𝑐𝑎 

which implies that Gca is effective. 

Theorem 3.2.8 

 Let 𝐺∗: (𝑉, 𝐸, 𝑋) be a semigraph. The subgraph of adjacency graph 𝐺𝑎* 

induced by the vertices of any edge in 𝐺∗ is complete. 

Proof: 

Let E=(u1,u2 , ⋯,un) be any edge in 𝐺∗.  

Then any two vertices ui and uj, i ≠ j, are adjacent in  𝐺∗.  
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Hence they are adjacent in 𝐺𝑎*.  

Therefore the subgraph induced by the vertices u1,u2 , ⋯,un is complete. 

Corollary 3.2.9 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be an effective fuzzy semigraph on a 

semigraph𝐺∗: (𝑉, 𝐸, 𝑋). Then the fuzzy subgraph of the adjacency fuzzy graph 

𝐺𝑎 induced by the vertices of any edge in 𝐺 is complete. 

Proof: 

 Since the adjacency fuzzy graph of an effective fuzzy semigraph is 

effective, by theorem 3.2.8, the fuzzy subgraph of the adjacency fuzzy graph 

𝐺𝑎 induced by the vertices of any edge in 𝐺 is complete. 

Theorem 3.2.10 

 Let 𝐺∗: (𝑉, £, 𝑋) be a semigraph. Let E=(u1,u2 , ⋯,un) be an edge of G* 

which has no middle-end vertex. Then the vertices u2 , u3  , ⋯,un-1 are simplicial 

in the adjacency graph 𝐺𝑎* of 𝐺∗. 

Proof:  

 By theorem 3.2.8, the subgraphs induced by u2 , u3  , ⋯,un-1  are all 

complete.  Also E has no middle-end vertex.  Therefore the neighbours of ui 

for i ≠ 1, i ≠ 𝑛, are u1,u2 , ⋯,ui-1,ui+1 , ⋯,  un-1, un in 𝐺𝑎.  Hence the subgraph 

induced by N[u2], N[u3], ⋯,N[un-1] are all complete.  Therefore u2 , u3  , ⋯,un-1 

are simplicial in 𝐺∗. 
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Corollary 3.2.11 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be an effective fuzzy semigraph on a 

semigraph 𝐺∗: (𝑉, £, 𝑋) with more than one edge. Let E=(u1,u2 , ⋯,un) be a edge 

of G which has no middle-end vertex. Then the vertices u2 , u3  , ⋯,un-1 are 

simplicial in the adjacency graph 𝐺𝑎* of G*. 

Proof: 

 Since the adjacency fuzzy graph of an effective fuzzy semigraph is 

effective, the result follows from theorem 3.2.10. 

Remark 3.2.12 

 If the semigraph 𝐺∗ has more than one edge, then the end vertices u1 and 

un will be adjacent to other end vertices.  Hence they need not be adjacent in 

𝐺𝑎. 

Theorem 3.2.13 

 If the semigraph 𝐺∗ has only one edge, then all the vertices of the 

adjacency graph 𝐺𝑎* are simplicial vertices. 

Proof: 

 By theorem 3.2.8, the subgraph induced by the edge is complete. 

Therefore the adjacency graph 𝐺𝑎* is complete. Therefore for any vertex u, the 

subgraph induced by N[u] is complete. Hence all the vertices of the adjacency 

graph 𝐺𝑎* are simplicial vertices. 
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Theorem 3.2.14 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be an effective fuzzy semigraph with only one edge. 

Then all the vertices of the adjacency fuzzy graph 𝐺𝑎 are simplicial vertices. 

Proof: 

 By Corollary 3.2.13, all the vertices of the adjacency graph 𝐺𝑎 * are 

simplicial vertices. Also since G is effective, the adjacency fuzzy graph Ga is 

also effective. Hence all the vertices of the adjacency fuzzy graph 𝐺𝑎* are 

simplicial vertices. 

3.3  CONSECUTIVE ADJACENCY FUZZY GRAPH 

Definition 3.3.1 

Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on 𝐺∗: (𝑉, £, 𝑋).  

Define 𝐺𝑐𝑎: (𝜎𝑐𝑎, 𝜂𝑐𝑎) on (𝑉𝑐𝑎, £𝑐𝑎 ) where 𝑉𝑐𝑎 = 𝑉 and 

£𝑐𝑎 = {𝑢𝑣 /𝑢 and 𝑣 are consecutively adjacent in 𝐺} as, 

𝜎𝑐𝑎(𝑢) = 𝜎(𝑢) for every 𝑢 in 𝑉 

and 𝜇𝑐𝑎(𝑢𝑣) = 𝜇(𝑢𝑣) for every 𝑢𝑣 ∈ £𝑐𝑎,  

Then  𝜇𝑐𝑎(𝑢𝑣) = 𝜇(𝑢𝑣) 

                                   ≤ 𝜎(𝑢) ∧ 𝜎(𝑣)  

                                   = 𝜎𝑐𝑎(𝑢) ∧ 𝜎𝑐𝑎(𝑣)  

Hence (𝜎𝑐𝑎 , 𝜂𝑐𝑎) satisfy the condition of fuzzy graph. This is called the 

consecutive adjacency fuzzy graph o rca-fuzzy graph 𝐺𝑐𝑎. 
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Example 3.3.2: 

 The consecutive adjacency fuzzy graph (ca-fuzzy graph) 𝐺𝑐𝑎  of G in 

Fig.3.1 is given in Figure 3.4. 

 

Remark 3.3.3 

 Consecutive Adjacency fuzzy graph of an e-effective fuzzy semigraph 

need not be effective. 

Theorem 3.3.4  

 G is an effective fuzzy semigraph if and only if the consecutive 

adjacency fuzzy graph of G is an effective fuzzy graph. 
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Proof:  

 In the consecutive adjacency vertex fuzzy graph Gca: (σca,µca) with 

vertex set V, two vertices are adjacent if and only if they are consecutively 

adjacent in G. Also σca(u) = σ(u) for every u in V and µca(u) = µ(uv) for every 

pair of consecutive adjacent vertices u and v in G.  

Hence G is effective if and only if µ(uv) = σ(u) ∧ σ(v) 

                                  if and only if µca(uv) = σca(u)∧ σca(v) 

                                  if and only if Gca is effective. 

  



 

  

Chapter 4 
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CHAPTER – 4 

VARIOUS ISOMORPHISMS OF 

FUZZYSEMIGRAPHS 

 

In this chapter, isomorphism, weak isomorphism and co-weak 

isomorphism of fuzzy semigraphs are introduced and some of their properties 

are studied. End vertex isomorphism (ev-isomorphism), edge isomorphism  (e-

isomorphism) and adjacency isomorphism (a-isomorphism) of fuzzy 

semigraphs are defined. Properties of effective edges and effective fuzzy 

semigraphs under isomorphism are studied. Also, it is proved that isomorphism 

is an equivalence relation and week isomorphism is a partial order relation. 

4.1.  VARIOUS ISOMORPHISMS 

 In this section four types of isomorphisms, namely, isomorphism, end 

vertex isomorphism, an edge isomorphism (e-isomorphism), an adjacency 

isomorphism (a-isomorphism) are defined. 

Definition 4.1.1: 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  and 𝐺′: (𝜎′, 𝜇′, 𝜂′)  be two fuzzy semigraphs with 

underlying semigraphs 𝐺∗: (𝑉, £, 𝑋)and 𝐺′∗: (𝑉′£′, 𝑋′). An isomorphism of 

fuzzy semigraphs 𝑓: 𝐺 → 𝐺′ is a bijective map denoted by  𝑓: 𝑉 → 𝑉′ which 

satisfies 

1. If 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛)  is an edge in 𝐺 then 

{𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)}forms  an edge in 𝐺′ 
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2. 𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ V, 

3. 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £ and  

4. 𝜂(𝐸) =  𝜂′(𝑓(𝐸)), for all  𝐸 ∈ X. 

Definition 4.1.2 

 An end vertex isomorphism (ev-isomorphism) of fuzzy semigraphs 

   𝑓: 𝐺 → 𝐺′  is a bijective 𝑓: 𝑉 → 𝑉′which satisfies 

1. If 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛)  is an edge in 𝐺 then 

{𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)} forms  an edge in 𝐺′with end vertices 𝑓(𝑣1) 

and 𝑓(𝑣𝑛). 

2. 𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ V, 

3. 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £ and  

4. 𝜂(𝐸) =  𝜂′(𝑓(𝐸)), for all  𝐸 ∈ X. 

Definition 4.1.3: 

 An edge isomorphism (e-isomorphism) of fuzzy semigraphs 𝑓: 𝐺 →

𝐺′  is a bijective map 𝑓: 𝑉 → 𝑉′which satisfies 

1. If 𝐸  = (𝑣1, 𝑣2, … , 𝑣𝑛)  is an edge in 𝐺 , then {𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)} 

forms  an edge in 𝐺′ 

2. 𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ V, 

3. 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £ and  

4. 𝜂(𝐸) =  𝜂′(𝑓(𝐸)), for all  𝐸 ∈ X. 
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Definition 4.1.4 

An adjacency isomorphism (a-isomorphism) of fuzzy semigraphs 𝑓: 𝐺 → 𝐺′ 

is a bijective  𝑓: 𝑉 → 𝑉′which satisfies 

1. the adjacent vertices in 𝐺are mapped onto adjacent vertices in 𝐺′, 

2. 𝜎(𝑢) = 𝜎′(𝑓(𝑢))for all 𝑢 ∈ V, 

3. 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £ and  

4. 𝜂(𝐸) =  𝜂′(𝑓(𝐸)), for all  𝐸 ∈ X. 

Theorem 4.1.5 

 An edge isomorphism of a fuzzy semigraph is an adjacency 

isomorphism but the converse need not be true.  

Proof: 

 Since any two vertices in an edge of a fuzzy semigraph are adjacent, the 

theorem follows. 

Remark 4.1.6  

 The converse of theorem 4.15 need not be true. 

Theorem 4.1.7 

 An end vertex isomorphism of a fuzzy semigraph is an edge 

isomorphism. 
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Proof: 

 For en end vertex isomorphism, if  𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛) is an edge in 𝐺, 

then (𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛))forms an edge in 𝐺′ with end vertices 𝑓(𝑣1) and 

𝑓(𝑣𝑛). Hence f is an edge isomorphism. 

Remark 4.1.8  

 The converse of theorem 4.1.7 need not be true. 

Theorem 4.1.9 

 An isomorphism of a fuzzy semigraph is both an edge isomorphism and 

the end vertex isomorphism. 

Proof: 

 For an isomorphism, if 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛)  is an edge in 𝐺 then 

(𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)) forms an edge in 𝐺′. 

 It follows that {𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)} forms an edge in 𝐺′ with end 

vertices 𝑓(𝑣1) and 𝑓(𝑣𝑛). Hence it is edge isomorphism as well as end vertex 

isomorphism. 

Theorem 4.1.10 

 Isomorphism between fuzzy semigraphs is an equivalence relation. 

Proof:  

 Let 𝐺: (𝜎, 𝜇, 𝜂),𝐺′: (𝜎′, 𝜇′, 𝜂′)and 𝐺′′: (𝜎′′, 𝜇′′, 𝜂′′) be fuzzy semigraphs 

with vertex sets 𝑉, 𝑉′and 𝑉′′a respectively. 
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Let 𝑓: 𝑉 → 𝑉′be such that 𝑓(𝑣) = 𝑣, ∀ 𝑣 ∈ 𝑉. This mapping 𝑓 is a bijection.  

Also,  𝜎(𝑢) = 𝜎(𝑓(𝑢))for all 𝑢 ∈ 𝑉, 

𝜇(𝑢𝑣) = 𝜇(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £, 

𝜂(𝐸) = 𝜂(𝑓(𝐸)) for all 𝐸 ∈ 𝑋.  

Thus 𝑓is an isomorphism from 𝐺 to itself. 

Hence isomorphism is a reflexive relation. 

Let 𝑓: 𝐺 → 𝐺′be an isomorphism between the fuzzy semigraphs 𝐺 and 𝐺′ then 

the mapping 𝑓: 𝑉 → 𝑉′is  

𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ 𝑉 and     ...... (1) 

 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣) )for all 𝑢𝑣 ∈ £     ...... (2) 

 𝜂(E)= 𝜂′(𝑓(𝐸)), for all 𝐸 ∈ 𝑋       ...... (3) 

Since 𝑓  is bijective, for 𝑢′ in 𝑉′ , there exists 𝑢  in 𝑉  such that 𝑓−1(𝑢′) = 𝑢 . 

Hence by (1) 𝜎(𝑓−1(𝑢′)) = 𝜎′(f(u)) = 𝜎′(𝑢′)for all 𝑢′ ∈ 𝑉.  

Similarly, 

𝜇(𝑓−1(𝑢′)𝑓−1(𝑣′)) = (𝑓(𝑢)𝑓(𝑣)) = (𝜇′(𝑢′𝑣′))for all 𝑢′𝑣′ ∈ £...   (4) 

Hence we get a 1-1, onto map 𝑓−1: 𝑉 → 𝑉′whichis an isomorphism. 

Thus 𝐺 is isomorphic to 𝐺′  implies 𝐺′ is isomorphic to 𝐺. 

Hence isomorphism satisfies the symmetric relation. 

Let 𝑓: 𝑉 → 𝑉′ and 𝑔: 𝑉′ → 𝑉′′be isomorphisms from fuzzy semigraphs 

𝐺to 𝐺′   and 𝐺′   to 𝐺′′  respectively. 

Then  𝑔  ° f is 1-1 and onto map from  𝑉 → 𝑉′′ where 

(𝑔  ° f )(𝑢) = 𝑔(𝑓(𝑢), for all 𝑢 ∈ 𝑉 
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Since 𝑓: 𝐺 → 𝐺′is an isomorphism between the fuzzy semigraphs 𝐺 and 𝐺′then 

the mapping 𝑓: 𝑉 → 𝑉′ given by  

𝑓(𝑣) = 𝑣′for all 𝑣 in 𝑉 is bijective and satisfies  

𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ 𝑉 and      ...... (5)  

𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈  £     ...... (6) 

Since 𝑔: 𝐺′ → 𝐺′′is an isomorphism between the semigraphs 𝐺′ and 𝐺′′ then 

the mapping 𝑔: 𝑉′ → 𝑉′′ given by 

  𝑔(𝑣′) = 𝑣′′𝑓or all 𝑣′in 𝑉′       ...... (7) 

is bijective and satisfies   

𝜇′(𝑢′𝑣′) = 𝜇′′(𝑔(𝑢′)𝑔(𝑣′)) for all 𝑢′𝑣′ ∈ £′                        ...... (8) 

Using (5) and (7) and using 𝑓(𝑣) = 𝑣′𝑓or all 𝑣 in 𝑉 

𝜎(𝑢) = 𝜎′(𝑢′) = 𝜎′′(𝑢′′) = 𝜎′′(𝑔(𝑢′))   = 𝜎′′(𝑔(𝑓(𝑢)))for all 𝑢 in 𝑉 

From (6) and (8), we have 

                            𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣))  

                                        = 𝜇′(𝑢′𝑣′) 

                                        = 𝜇′′(𝑢′′
𝑣′′) 

                                        = 𝜇′′((𝑔(𝑢′)𝑔(𝑣′)) 

                                        = 𝜇′′((𝑔(𝑓(𝑢)𝑔(𝑓(𝑣)),∀𝑢𝑣 ∈ £ 

Therefore 𝑔 °𝑓is an isomorphism between 𝐺 and  𝐺′. 

Hence isomorphism between fuzzy semigraphs is transitive and hence it is an 

equivalence relation. 
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Theorem 4.1.11 

 Let 𝐺: (𝜎, 𝜇, 𝜂)   and 𝐺′: (𝜎′, 𝜇′, 𝜂′)   be two isomorphic fuzzy 

semigraphs, then an edge in 𝐺  is an effective edge if and only if the 

corresponding image edge in 𝐺′is effective. 

Proof: 

 Let 𝑓: 𝐺 → 𝐺′  be an isomorphism between the fuzzy semigraphs 𝐺 and 

𝐺′with underlying sets 𝑉 and  𝑉′. 

Let 𝐸 be an effective edge in 𝐺then 

𝜂(𝐸) = 𝜇(𝑢1𝑢2) ∧ 𝜇(𝑢2𝑢3) ∧ … ∧ 𝜇(𝑢𝑛−1𝑢𝑛) = 𝜎(𝑢1) ∧ ˄ 𝜎(𝑢𝑛)  ...... (9) 

Where  𝐸 = (𝑢1, 𝑢2, … , 𝑢𝑛) 

Since 𝑓 is an isomorphism, 𝜇(𝑢𝑣) =  𝜇′(𝑓(𝑢)𝑓(𝑣)) for all  𝑢𝑣 ∊ £   and 

Since 𝑥is an effective edge.We have, 𝜇(𝑢𝑣) = 𝜎(𝑢)˄ 𝜎(𝑣), ∀𝑢𝑣 ∈ £   

𝜂′(𝑓(𝑥)) = 𝜇′((𝑓(𝑢1)𝑓(𝑢2)) ∧ 𝜇′((𝑓(𝑢2)𝑓(𝑢3)) ∧ … ∧ 𝜇′((𝑓(𝑢𝑛−1)𝑓(𝑢𝑛)) 

                 = 𝜇(𝑢1𝑢2) ∧ 𝜇(𝑢2𝑢3) ∧ … ∧ 𝜇(𝑢𝑛−1𝑢𝑛)  (Since 𝑓  is an 

isomorphism) 

                 =  𝜎(𝑢1)˄ 𝜎(𝑢𝑛), (Using (9)) 

                 = 𝜎′(𝑓(𝑢1))˄𝜎′(𝑓(𝑢𝑛))    (Since 𝑓 is an isomorphism) 

Hence 𝑓(𝐸) is an effective edge in 𝐺′. 

Conversely, suppose 𝑓(𝐸) is an effective edge in 𝐺′. 

Since 𝑓 is a bijective isomorphism, the pre- image of the edge 𝑓(𝐸)in 𝐺′is also 

effective in 𝐺. 
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Theorem 4.1.12 

 If 𝐺  and 𝐺′  are isomorphic fuzzy semigraphs then 𝐺  is an effective 

fuzzy semigraph if and only if 𝐺′is also effective. 

Proof:  

 Since 𝐺 is isomorphic to 𝐺′, there is an isomorphism 𝑓: 𝐺 → 𝐺′which is 

a bijection and satisfies 

1. 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛) is an edge in 𝐺, then (𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)) forms 

an edge in 𝐺. 

2. 𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ 𝑉. 

3. 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £ and  

4. 𝜂(𝐸) = 𝜂′(𝑓(𝐸)), for all  𝐸 ∈ 𝑋. 

Since G is effective 

η(E) = μ(u1u2)˄μ(u2u3) ˄…˄μ(un-1un) =  σ(u1)˄ σ(un), for all E∈ X.   

and μ(uiui+1) = σ(ui)˄ σ(ui+1) for all i. 

Therefore 

μ′(𝑓(ui)𝑓(ui+1)) = μ(uiui+1) 

                              = σ(ui)˄ σ(ui+1) 

                                  = σ′(𝑓(ui))˄ σ′(𝑓(ui+1)), for all i. 

 Also   η(E) = σ(u1)˄ σ(un) gives 

            η′(𝑓(E))  =  σ′(𝑓(u1))˄ σ′((un)), for all E∈ X.   

         Hence G′ is effective. 
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Theorem 4.1.13 

 Isomorphism of fuzzy semigraphs preserves order and size.  

Proof:  

 Let G:(𝜎, 𝜇, 𝜂) and G′:(𝜎′, 𝜇′, 𝜂′) be two fuzzy semigraphs on G*:(V, £, 

X) and G′*:(V′, £ ′, X′) respectively. 

Let f: G→G’ be an isomorphism between the fuzzy semigraphs G and G′. 

Then the mapping f: V→ 𝑉′is such that, 

  𝜎(u)= 𝜎′(f(u)) for all u∈V and  

  𝜇(uv)= 𝜇′(f(u)f(v)) for all u𝑣 ∈ £   

  𝜂(E)=  𝜂′(𝑓(𝐸)), for all E∈ 𝑋.   

Therefore 

Order of G = ∑ 𝜎(𝑢)𝑢∈𝑉  

                   = ∑ 𝜎′(𝑓(𝑢))𝑢∈𝑉   

                   = Order of G′ 

Size of G = S(G) = ∑ 𝜂 (𝐸)𝐸∈𝑋  = ∑ 𝜂′(𝑓(𝐸))𝐸∈𝑋  = Size of G′ 

Similarly T S(G) = T S(G′).  

Remark 4.1.14 

 Converse of the above theorem 4.1.13 need not be true. 
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4.2.  WEAK ISOMORPHISMS 

Definition 4.2.1 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  and 𝐺′: (𝜎′, 𝜇′, 𝜂′)  be two fuzzy semigraphs with 

underlying semigraphs 𝐺∗(𝑉, £ , 𝑋) and 𝐺′∗
(𝑉′, £′, 𝑋′) . 

 A weak isomorphism of fuzzy semigraphs 𝑓: 𝐺 → 𝐺′  is a bijective  

map 𝑓: 𝑉 → 𝑉′ which satisfies  

1. If 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛 ) is an edge in G 

then{𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)}forms an edge in 𝐺′. 

2. 𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ 𝑉. 

3. 𝜇(𝑢𝑣) ≤ 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £ . 

 A weak-end vertex isomorphism (weak-ev isomorphism) of fuzzy 

semigraphs 𝑓: 𝐺 → 𝐺′ is a bijective map 𝑓: 𝑉 → 𝑉′which satisfies,  

1. If 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛)  is an edge in 𝐺  then 

{𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)}forms an edge in 𝐺′ with end vertices 𝑓(𝑣1) 

and 𝑓(𝑣𝑛). 

2. 𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ 𝑉. 

3. 𝜇(𝑢𝑣) ≤ 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £. 

 A weak-edge isomorphism (weak-e isomorphism) of fuzzy 

semigraphs 

𝑓: 𝐺 → 𝐺′ is a bijective map 𝑓: 𝑉 → 𝑉′which satisfies,  
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1. If 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛)  is an edge in 𝐺  then 

{𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)}forms an edge in 𝐺′ with end vertices 𝑓(𝑣1) 

and 𝑓(𝑣𝑛). 

2. 𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ 𝑉. 

3. 𝜇(𝑢𝑣) ≤ 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £. 

 A weak-adjacency isomorphism (weak-a isomorphism) of fuzzy 

semigraphs 𝑓: 𝐺 → 𝐺′ is a bijective map 𝑓: 𝑉 → 𝑉′which satisfies,  

1. If the adjacent vertices in G are mapped onto adjacent vertices in G′, 

2. 𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ 𝑉. 

3. 𝜇(𝑢𝑣) ≤ 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £. 

Theorem 4.2.2  

 Weak is isomorphism between fuzzy semigraphs is a partial order 

relation. 

Proof:  

 Let 𝐺: (𝜎, 𝜇, 𝜂),𝐺′: (𝜎′, 𝜇′, 𝜂′) and𝐺′′: (𝜎′′, 𝜇′′, 𝜂′′)be fuzzy semigraphs 

with vertex sets 𝑉, 𝑉′  and 𝑉′′respectively. 

Let 𝑓: 𝑉 → 𝑉′such that 𝑓(𝑣) = 𝑣, ∀𝑣 ∈ 𝑉.  

This mapping 𝑓 is a bijection. 

Hence 𝜎(𝑢) = 𝜎(𝑓(𝑢)) for all 𝑢 ∈ 𝑉, 

𝜇(𝑢𝑣) = 𝜇(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £  

Thus 𝑓is a weak isomorphism to itself and hence it satisfies reflexive relation. 



51 

Thus 𝐺 is weak isomorphic to itself. 

Let 𝑓: 𝑉 → 𝑉′and 𝑔: 𝑉′ → 𝑉be weak isomorphisms on fuzzy semigraphs 𝐺 to 

𝐺′ and 𝐺′ to 𝐺 respectively 

Then 𝑓: 𝑉 → 𝑉′ is a bijective map (𝑢) = 𝑢′ , ∀𝑢 ∈ 𝑉 satisfying 

𝜎(𝑢) = 𝜎′(𝑓(𝑢)), ∀𝑢 ∈ 𝑉 and  

 𝜇(𝑢𝑣) ≤ 𝜇′(𝑓(𝑢)𝑓(𝑣)), ∀𝑢𝑣 ∈ £.      .... (10)

  

Similarly 𝑔: 𝑉′ → 𝑉is a bijective map (𝑢′) = 𝑢 , ∀𝑢′ ∈ 𝑉′ satisfying 

𝜎′(𝑢′) = 𝜎(𝑔(𝑢′)) = 𝜎(𝑔(𝑓(𝑢))), ∀𝑢′ ∈ 𝑉′ and  

 𝜇′(𝑢′𝑣′) ≤ 𝜇(𝑔(𝑓(𝑢)𝑔𝑓(𝑣)), ∀𝑢′𝑣′ ∈ £′.     .... (11) 

 Inequalities (10) and (11) hold good on the underlying vertex sets 𝑉 

and 𝑉′  only when 𝐺  and 𝐺′  have the same number of edges and the 

corresponding membership values of the edges are equal. Hence 𝐺 and 𝐺′ are 

identical.  

 Thus Weak isomorphism between fuzzy semigraphs is antisymmetric. 

 Let 𝑓: 𝑉 → 𝑉′  and 𝑔: 𝑉′ → 𝑉′′ be weak isomorphisms on fuzzy 

semigraphs 𝐺 to 𝐺′ and 𝐺′ to 𝐺′′respectively. 

 Then 𝑔   ⃘𝑓is 1-1 and onto map from 𝑉 → 𝑉′′where 

 (𝑔   ⃘𝑓) (𝑢) = 𝑔(𝑓(𝑢)), for all 𝑢 ∈ 𝑉 



52 

Since 𝑓: 𝐺 → 𝐺′is a weak isomorphism between the fuzzy semigraphs 𝐺 and 

𝐺′ then the mapping 𝑓: 𝑉 → 𝑉′is bijective, 

𝑓(𝑣) = 𝑣′for all 𝑣in 𝑉 such that    

𝜎(𝑢) = 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ 𝑉 and       .... (12) 

𝜇(𝑢𝑣) ≤ 𝜇′((𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £     .... (13) 

Since 𝑔: 𝐺′ → 𝐺′′ is an isomorphism between the fuzzy semigraphs 𝐺′  and 

𝐺′′then the mapping 𝑔: 𝑉′ → 𝑉′′is bijective. 

𝑔(𝑣′) = 𝑣′′ for all 𝑣 in𝑉′ such that 

𝜎′(𝑢′) = 𝜎′′(𝑔(𝑢′)) for all 𝑢′ ∈ 𝑉′       .... (14) 

and 𝜇′(𝑢′𝑣′) ≤ 𝜇′′(𝑔(𝑢′)𝑔(𝑣′)) for all 𝑢′𝑣′ ∈ 𝑉′     .... (15) 

Using (12), (14) and using 𝑓(𝑣) = 𝑣′for all 𝑣 in𝑉 

𝜎(𝑢) = 𝜎′(𝑢′) = 𝜎′′(𝑢′′) = 𝜎′′(𝑔(𝑢′))   

                                           = 𝜎′′
(𝑔(𝑓(𝑢))) , for all 𝑢 in 𝑉 

From (13) and (15), we have  

                   𝜇(𝑢𝑣) ≤ 𝜇′((𝑓(𝑢)𝑓(𝑣))), for all 𝑢, 𝑣 ∈ 𝑉 

                              = 𝜇′(𝑢′𝑣′)  

                              = 𝜇′′(𝑢′′𝑣′′)  

                              = 𝜇′′(𝑔(𝑢′)𝑔(𝑣′)),   

                              ≤ 𝜇′′(𝑔(𝑓(𝑢))𝑔(𝑓(𝑣))),∀𝑢, 𝑣 ∈ 𝑉 

Therefore 𝑔   ⃘𝑓 is a weak isomorphism between 𝐺 and 𝐺′′ 

Hence isomorphism between fuzzy semigraphs is transitive and hence the 

weak isomorphism between fuzzy semigraphs is a partial order relation. 
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Theorem 4.2.3 

 If 𝑓: 𝐺 → 𝐺′ is a weak isomorphism on fuzzy semigraphs 𝐺 and 𝐺′ and 

if 𝐺  is an effective fuzzy semigraph, then 𝐺′  is also an effective fuzzy 

semigraph. 

Proof:  

 Since 𝑓: 𝐺 → 𝐺′  is a weak isomorphism, it is bijective and satisfies 

 if 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛) is an edge in 𝐺, then = (𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛))is an 

edge in 𝐺′, 

 𝜎(𝑢) =  𝜎′(𝑓(𝑢)) , for all 𝑢 ∈ 𝑉                                                     

𝜇(𝑢𝑣) ≤ 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £ 

 Since 𝐺 is an effective fuzzy semigraph, 

      𝜇(𝑢𝑣) = 𝜎(𝑢) ˄ 𝜎(𝑣) 

Now 𝜇′(𝑓(𝑢)𝑓(𝑣))  = 𝜇(𝑢𝑣 ) 

                                 = 𝜎(𝑢)˄𝜎(𝑣) 

                                  ≥  𝜎′(𝑓(𝑢))˄ 𝜎′(𝑓(𝑣))            

But 𝜇′(𝑓(𝑢)𝑓(𝑣)) ≤   𝜎′(𝑓(𝑢))˄ 𝜎′(𝑓(𝑣))                                                                        

Hence 𝜇′(𝑓(𝑢)𝑓(𝑣)) =   𝜎′(𝑓(𝑢))˄ 𝜎′(𝑓(𝑣))   

Thus 𝐺 is an effective fuzzy semigraph. 

Remark 4.2.4 

 If G is weak isomorphic to G′, then the effectiveness of G′ need not 

imply the effectiveness of G. The fuzzy semigraph 𝐺  in Fig.4.1 is weak 
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isomorphic to the fuzzy semigraph 𝐺′ in Fig.4.2. Here 𝐺′ is effective but 𝐺 is 

not effective. 
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Remark 4.2.5 

 It is observed from Fig 4.1 and Fig.4.2 that order of fuzzy semigraphs 

are preserved under weak isomorphisms. 

Theorem 4.2.6 

 The weak isomorphism of fuzzy semigraphs preserves order. 

Proof:  

 Let G:(𝜎, 𝜇, 𝜂) and G′:(𝜎′, 𝜇′, 𝜂′) be two fuzzy semigraphs on G*:(V, £, 

X) and G′*:(V′, £′, X′) respectively. 

Let f: G→G’ be an isomorphism between the fuzzy semigraphs G and G′. 

Then the mapping f: V→ V′is such that, 

  σ(u) = σ′(f(u)) for all u∈V and  

  μ(uv) ≤ μ′(f(u)f(v)) for all uv ∈ £    

Therefore Order of G is = ∑ σ(u)u∈V   

                                       = ∑ σ′(f(u))u∈V   

                                       = Order of G′ 

Remark 4.2.7 

 Converse of the above theorem 4.2.5 need not be true. 

Remark 4.2.8  

 The week isomorphism need not preserve effective property. 
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4.3.  CO -WEAK ISOMORPHISMS  

Definition 4.3.1 

 A co-weak isomorphism of fuzzy semigraphs 𝑓: 𝐺 → 𝐺′ is a bijective 

map 𝑓: 𝑉 → 𝑉′ which satisfies  

1. If 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛 ) is an edge in 𝐺  then {𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)} 

forms an edge in 𝐺′. 

2. 𝜎(𝑢) ≤ 𝜎′(𝑓(𝑢)), for all 𝑢 ∈ 𝑉. 

3. 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)),for all 𝑢𝑣 ∈ £. 

4.  𝜂(𝐸) =  𝜂′(𝑓(𝐸)), for all 𝐸 ∈ 𝑋. 

Definition 4.3.2 

 Let 𝐺: (𝜎, 𝜇, 𝜂) and 𝐺′: (𝜎′, 𝜇′, 𝜂′)  be two fuzzy semigraphs with 

underlying semigraphs 𝐺∗(𝑉, £, 𝑋) and 𝐺′∗(𝑉′, £′, 𝑋′) respectively. A co-weak 

end vertex isomorphism (co-weak ev-isomorphism) of fuzzy semigraphs 

𝑓: 𝐺 → 𝐺′is a bijective map denoted by 𝑓: 𝑉 → 𝑉′and which satisfies,  

1. If  𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛 ) is an edge in 𝐺  then {𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)} 

forms an edge in 𝐺′with end vertices 𝑓(𝑣1) and 𝑓(𝑣𝑛),  

2. 𝜎(𝑢) ≤ 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ 𝑉. 

3. 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £. 

4.  𝜂(𝐸) =  𝜂′(𝑓(𝐸)), for all 𝐸 ∈ 𝑋. 
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Definition 4.3.3 

 A co-weak edge isomorphism (co-weak edge isomorphism) of fuzzy 

semigraphs 𝑓: 𝐺 → 𝐺′  is a bijective map denoted by 𝑓: 𝑉 → 𝑉′and   which 

satisfies  

1. If  𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛) is an edge in 𝐺  then {𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛)} 

forms an edge in 𝐺′ 

2. 𝜎(𝑢) ≤ 𝜎′(𝑓(𝑢)) for all 𝑢 ∈ 𝑉. 

3. 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £. 

4.  𝜂(𝐸) =  𝜂′(𝑓(𝐸)), for all 𝐸 ∈ 𝑋. 

Definition 4.3.4 

 A co-weak adjacency isomorphism (co-weak a isomorphism) of fuzzy 

semigraphs 𝑓: 𝐺 → 𝐺′ is  a bijective map 𝑓: 𝑉 → 𝑉′which satisfies, 

1. If the adjacent vertices in 𝐺 are mapped onto adjacent vertices in 𝐺′ 

2. 𝜎(𝑢) ≤  𝜎′(𝑓(𝑢)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉, 

3. 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £  and  

4. 𝜂(𝐸) =  𝜂′(𝑓(𝐸)), for all 𝐸 ∈ 𝑋. 

Theorem 4.3.5 

 If 𝑓: 𝐺 → 𝐺′ is a co-weak isomorphism on fuzzy semigraphs 𝐺 and 𝐺′ 

and if 𝐺′  is an effective fuzzy semigraph then 𝐺  is also an effective fuzzy 

semigraph. 
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Proof:  

Since 𝑓: 𝐺 → 𝐺′  is a co-weak isomorphism, it is bijective and satisfies  

 if 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛) be an edge in 𝐺  then = (𝑓(𝑣1), 𝑓(𝑣2), … , 𝑓(𝑣𝑛))is an 

edge in 𝐺′. 

𝜎(𝑢) ≤  𝜎′(𝑓(𝑢)) , for all 𝑢 ∈ 𝑉       .... (16) 

𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £ 

 and 𝜂(𝐸) = 𝜂′(𝑓(𝐸)), for all 𝐸 ∈ 𝑋.  

Since 𝐺′ is an effective fuzzy semigraph, 

𝜇′((𝑓(𝑢)𝑓(𝑣)) =  𝜎′(𝑓(𝑢))˄𝜎′(𝑓(𝑣)), ∀ 𝑓(𝑢)𝑓(𝑣) ∈ £   .... (17) 

Now 𝜇(𝑢𝑣 )  = 𝜇′(𝑓(𝑢)𝑓(𝑣)) 

                      =  𝜎′(𝑓(𝑢)) ˄𝜎′(𝑓(𝑣))    (using (17) 

                      ≥ 𝜎(𝑢)˄𝜎(𝑣) )                                         .... (18)  

But 𝜇(𝑢𝑣 ) ≤  𝜎(𝑢)˄𝜎(𝑣)              .... (19) 

Using (18) and (19),  

𝜇(𝑢𝑣 ) =  𝜎(𝑢)˄𝜎(𝑣), for all 𝑢𝑣 ∈ £              .... (20) 

Thus 𝐺 is an effective fuzzy semigraph. 

Remark 4.3.6  

 The effectiveness of 𝐺 need not imply the effectiveness of 𝐺′ when 𝐺 is 

co-week isomorphic to 𝐺′. 
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 Here 𝐺  is co-weak isomorphic to 𝐺′ . 𝐺  is an effective fuzzy 

semigraph but 𝐺 is not effective. 

Remark 4.3.7 

 It is observed from Fig 4.3 and 4.4 that co-weak isomorphisms of 

fuzzy semigraphs preserve the size of fuzzy semigraphs. 

Theorem 4.3.8 

 The co-weak Isomorphism of fuzzy semigraphs preserves the size of 

fuzzy semigraphs.  

Proof:  

Let G:(𝜎, 𝜇, 𝜂) and G′:(𝜎′, 𝜇′, 𝜂′) be two fuzzy semigraphs on G*:(V, £, X) and 

G′*:(V′, £′, X′) respectively. 

Let f: G→G′ be an isomorphism between the fuzzy semigraphs G and G′. 

Then the mapping f: V→ 𝑉′is such that, 

  𝜎(u)≤ 𝜎′(f(u)) for all u∈V and  

  𝜇(uv)= 𝜇′(f(u)f(v)) for all u𝑣 ∈ £  

  𝜂(E)= 𝜂′(𝑓(𝐸)), for all E∈ 𝑋.   

Therefore 

Size of G  = S(G) = ∑ 𝜂 (𝐸)𝐸∈𝑋  = ∑ 𝜂′(𝑓(𝐸))𝐸∈𝑋  = Size of G′. 

Similarly T S(G) = T S(G′). 
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Remark 4.3.9 

Converse of the above theorem 4.3.8 need not be true. 

That is, there are fuzzy semigraphs with same size which are not co- weak 

isomorphic.  

For example consider the fuzzy semigraphs G in Fig.4.5 and G′ in Fig.4.6. 

Size of G = S(G) = 0.75 = Size of G′.  

Total size of G = 1.65 = Total size of G′. 

But the fuzzy semigraph G is not co-weak isomorphic to G′. 
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CHAPTER – 5 

DEGREES OF VERTICES AND EDGES IN 

FUZZY SEMIGRAPHS 

 In this chapter, various degrees of a vertex in a fuzzy semigraph are 

defined. Degree, edge degree, adjacent degree and consecutive adjacent 

degree of a vertex in a fuzzy semigraph are introduced. Their properties under 

various isomorphisms are discussed. The degree of an edge is also defined. 

5.1.  DEGREE OF A VERTEX IN FUZZY SEMIGRAPH 

Definition 5.1.1 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be a fuzzy semigraph on 𝐺∗: (𝑉, £, 𝑋) . Let 𝑢 be any 

vertex in  𝐺 , then the degree of  𝑢  denoted by 𝑑(𝑢) is defined by 𝑑(𝑢) =

∑ 𝜂(𝐸) where the summation runs over all edges 𝐸 having 𝑢 as an end vertex. 

 The total degree of  𝑢 denoted by 𝑡𝑑(𝑢) is defined by 𝑡𝑑(𝑢) = ∑ 𝜂(𝐸) 

where the summation runs over all edges 𝐸 having 𝑢 as an end vertex. 

Example 5.1.2 

 Consider the following fuzzy semigraph G: (𝜎, 𝜇, 𝜂)  in fig. 5.1. 

 The degree of the vertices are 

d(𝑣1) = 0.8, d(𝑣2) = 0, d(𝑣3) = 1.0, d(𝑣4) = 1.0, d(𝑣5) = 0.4, d(𝑣6) = 0.4. 

The total degree of the vertices are 

td(𝑣1) = 1.4, td(𝑣2) = 0.5, td(𝑣3) = 1.7, td (𝑣4) = 1.8, td(𝑣5) = 0.8, td(𝑣6) = 0.9. 
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Fig.5.1 G: (𝜎, 𝜇, 𝜂) 

Theorem 5.1.3 

 Let G( σ, μ, η)be a fuzzy semigraph on G*(V,£,X). The degree of a 

middle vertex of an edge is zero. 

Proof: 

 Since the middle vertex is not the end vertex of any edge, its degree is 

zero. 

Theorem 5.1.4 

 Let G( σ, μ, η)be a fuzzy semigraph on G*(V,£,X). The degree of a 

vertex v in the end vertex fuzzy graph Geis the degree of u in G, if v is the end 

vertex or middle end vertex of G. The degree of v in Ge is 0 if v is a middle 

vertex of G. 

Proof:  

 Let u ∊V be an end vertex of  G. 

Then d Ge (u) = ∑ ηeuv∊£(Ge) (uv) 

0.4 
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                      = ∑ η(E), the summation runs over all edges with one end u 

                     = dG(u) 

Let u∊v be a middle vertex of G. 

Then u is not adjacent to any other vertex of Ge. 

Therefore dGe
(u) = 0. 

Theorem 5.1.5 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be a fuzzy semigraph on 𝐺∗: (𝑉, £, 𝑋)  where 𝑉 =

{𝑣1, 𝑣2, … , 𝑣𝑛} and 𝑋 = {𝐸1, 𝐸2, … , 𝐸𝑚}, then ∑ 𝑑𝑒𝑔 (𝑣𝑖
𝑛
𝑖=1 ) = 2S(G) ≤ 2m. 

Proof : 

∑ 𝑑𝑒𝑔 (𝑣𝑖
𝑛
𝑖=1 ) = ∑ ∑ 𝜂(𝐸)𝑛

𝑖=1  where 𝐸 runs over all the edges 𝐸 having 𝑣 as 

an end vertex. 

In ∑ ∑ 𝜂(𝐸)𝑛
𝑖=1 , each 𝜂(𝐸) appears twice. 

Therefore ∑ 𝑑𝑒𝑔 (𝑣𝑖
𝑛
𝑖=1 ) = 2 ∑ 𝜂(𝐸𝑖)

𝑚
𝑖=1 = 2S(G) 

Also 2𝑆(𝐺) = ∑ 𝜂(𝐸𝑖)𝑚
𝑖=1 ≤ 2 ∑ 1𝑚

𝑖=1  = 2m 

Therefore  ∑ 𝑑𝑒𝑔 (𝑣𝑖
𝑛
𝑖=1 ) = 2S(G) ≤ 2m 

Theorem 5.1.6 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be a complete fuzzy semigraph on𝐺∗: ( 𝑉, 𝑋, 𝐸) . Let                   

𝑛 − 1 vertices be strictly end vertices and one vertex be middle vertex of 𝑘 

semiedges (𝑣𝑖 , 𝑢, 𝑣𝑘+𝑖), 𝑖 = 1, 2, … , 𝑘. Then 

i) 𝑑(𝑢) ≤ 𝑛 − 1 − 2𝑘 

ii) 𝑑(𝑣𝑖) ≤ 𝑛 − 2, 𝑖 = 1,2, … ,2𝑘 
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iii) 𝑑(𝑣) ≤ 𝑛 − 1, 𝑣 ∈ 𝑉 − {𝑢, 𝑣1, 𝑣2, … , 𝑣2𝑘} 

iv) 𝑆(𝐺) ≤
𝑛2−𝑛−2𝑘

2
 

Proof:  

 Since any two edges in 𝑥 have atmost one vertex in common, the end 

vertices of 1- semiedges 𝑣1, 𝑣2, … , 𝑣2𝑘are all distinct. 

There fore2𝑘 ≤ 𝑛 − 1, this implies k 𝑘 ≤
(𝑛−1)

2
 

 Hence the maximum possible value of 𝐾 is [
𝑛−1

2
]  

𝑉 − {𝑢, 𝑣1, 𝑣2, … , 𝑣2𝑘} has 𝑛 − 1 − 2𝑘 elements. 

Let 𝑉 − {𝑢, 𝑣1, 𝑣2, … , 𝑣2𝑘} = {𝑢1, 𝑢2, … , 𝑢𝑛−1−2𝑘} 

Let 𝐸𝑖 = (𝑣𝑖 , 𝑢, 𝑣𝑘+𝑖), 𝑖 = 1,2, … , 𝑘 

𝑢 is the only middle vertex and all the other vertices are strictly end vertices. 

 Since 𝐺 is complete, any two vertices must lie on the same edge. 

𝑋 = {𝐸1, 𝐸2, … , 𝐸𝑘} ∪ {(𝑢, 𝑢𝑖)/𝑖 = 1,2, … , 𝑛 − 1 − 2𝑘 ∪ {(𝑢𝑖 , 𝑣𝑗)/  𝑖

= 1, 2, … , 𝑛 − 1 − 2𝑘, 𝑗 = 1,2, … ,2𝑘} ∪ {𝑢𝑖 , 𝑢𝑗)/𝑖 < 𝑗,

𝑖, 𝑗 = 1,2, … , 𝑛 − 1 − 2𝑘} ∪ {(𝑣𝑖 , 𝑣𝑗)/𝑗 = 1,2, … ,2𝑘, 𝑗

≠ 𝑘 + 𝑖 if 𝑖 = 1,2, … , 𝑘, 𝑗 ≠ 𝑖 − 𝑘 𝑖𝑓 𝑖 = 𝑘 + 1, 𝑘 + 2, … ,2𝑘} 

(i) 𝑑(𝑢) = ∑𝜂(𝐸)over all 𝐸 with 𝑢 as an end vertex. 

Therefore 𝑑(𝑢) = ∑ 𝜂(𝑢𝑢𝑖
𝑛−1−2𝑘
𝑖=1 ) 

                          ≤ ∑ 1𝑛−1−2𝑘
𝑖=1   

                          = 𝑛 − 1 − 2𝑘  
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ii)  For 𝑖 = 1,2, … , 𝑘 

 𝑑(𝑣𝑖) = ∑𝜂(𝐸)  over all 𝐸 with 𝑣𝑖 as an end vertex. 

  = ∑ 𝜂(𝑣𝑖 , 𝑣𝑗)2𝑘
𝑗=1

𝑖≠𝑗,𝑗≠𝑘+𝑖

+ 𝜂(𝑣𝑖 , 𝑢, 𝑣𝑘 + 𝑖) + + ∑ 𝜂(𝑢𝑗 , 𝑣𝑖
𝑛−1−2𝑘
𝑗=1 ) 

  ≤ ∑ 12𝑘
𝑗=1

𝑖≠𝑗,𝑗≠𝑘+𝑖

+ 1 + ∑ 1𝑛−1−2𝑘
𝑗=1  

  = 2𝑘 − 2 + 1 + 𝑛 − 1 − 2𝑘 

  = 𝑛 − 2 

For 𝑖 = 𝑘 + 1, 𝑘 + 2, … ,2𝑘  

𝑑(𝑣𝑖) = ∑ 𝜂(𝑣𝑖 , 𝑣𝑗)2𝑘
𝑗=1

𝑖≠𝑗,𝑗≠𝑖−𝑘

+ 𝜂(𝑣𝑖 − 𝑘, 𝑢, 𝑣𝑘 + 𝑖, 𝑣𝑖) + ∑ 𝜂(𝑢𝑗 , 𝑣𝑖
𝑛−1−2𝑘
𝑗=1 ) 

 ≤ 2𝑘 − 2 + 1 + 𝑛 − 1 − 2𝑘  

           = 𝑛 − 2  

       Hence 𝑑(𝑣𝑖) ≤ 𝑛 − 2, 𝑖 = 1,2, … ,2𝑘. 

(iii)   For 𝑖 = 1,2, … , 𝑛 − 1 − 2𝑘, 

                 𝑑(𝑣) = ∑ 12𝑘
𝑗=1
….

+ 1 + ∑ 𝜂(𝑢𝑖 , 𝑣𝑗
2𝑘
𝑗=1 ) + ∑ 𝜂(𝑢𝑗 , 𝑣𝑖

𝑛−1−2𝑘
𝑗=1
𝑗≠𝑖

)  

                          ≤ 1 + 2𝑘 + 𝑛 − 1 − 2𝑘 − 1  

                          = 𝑛 − 1  

(iv) By theorem 5.1.4, 

             2𝑆(𝐺) = ∑ 𝑑(𝑣)𝑣∈𝑉   

                        = 𝑑(𝑢) + ∑ 𝑑(𝑣𝑖)2𝑘
𝑖=1 + ∑ 𝑑(𝑢𝑖)𝑛−1−2𝑘

𝑖=1   

                        ≤ 𝑛 − 1 − 2𝑘 + ∑ 𝑛 − 22𝑘
𝑖=1 + ∑ 𝑛 − 1𝑛−1−2𝑘

𝑖=1   
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                         = 𝑛 − 1 − 2𝑘 + 2𝑘(𝑛 − 2) + (𝑛 − 1 − 2𝑘)(𝑛 − 1)  

                         = 𝑛2 − 𝑛 − 2𝑘  

  Therefore 𝑆(𝐺) ≤ 
𝑛2−𝑛−2𝑘

2
   

Theorem 5.1.7 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a complete fuzzy semigraph on 𝐺∗: ( 𝑉, £, 𝑋 ) such 

that 𝜇 is a constant function of constant value 𝑐 .Let 𝑛 − 1vertices be strictly 

end vertices and one vertex be middle vertex of  𝑘1-semiedges (𝑣𝑖 , 𝑢, 𝑣𝑘+𝑖), 

𝑖 = 1,2, … , 𝑘. Then 

i)    𝑑(𝑢) = (𝑛 − 1 − 2𝑘)𝑐 

ii)   𝑑(𝑣𝑖) = (𝑛 − 2)𝑐, 𝑖 = 1,2, … ,2𝑘 

iii)  𝑑(𝑣) = (𝑛 − 1)𝑐, 𝑣 ∈ 𝑉 − {𝑢, 𝑣1, 𝑣2, … , 𝑣2𝑘} 

 iv)   2𝑆(𝐺) = 𝑛2 − 𝑛 − 2𝑘  

Proof:  

Consider V and X as in theorem 5.1.3, 

 Since 𝜇(𝑒) = 𝑐, ∀ 𝑒 ∈ 𝐸, 

η(𝐸) = 𝑐, ∀ 𝐸 ∈ 𝑋, 

(i)  𝑑(𝑢) = ∑ 𝜂(𝑢, 𝑢𝑖
𝑛−1−2𝑘
𝑖=1 ) 

              = ∑ 𝑐𝑛−1−2𝑘
𝑖=1   

              = (𝑛 − 1 − 2𝑘)𝑐  
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(ii) 𝑑(𝑣𝑖) = ∑ 𝜂(𝑣𝑖 , 𝑣𝑗)2𝑘
𝑗=1

𝑖≠𝑗,𝑗≠𝑘+𝑖

+ 𝜂(𝑣𝑖 , 𝑢, 𝑣𝑘 + 𝑖)+ ∑ 𝜂(𝑢𝑗 , 𝑣𝑖
𝑛−1−2𝑘
𝑗=1 ) 

                = ∑ 𝑐 +  𝑐 + ∑ 𝑐𝑛−1−2𝑘
𝑗=1

2𝑘
𝑗=1

𝑖≠𝑗,𝑗≠𝑘+𝑖

  

                = (2𝑘 − 2)𝑐 + 𝑐 + (𝑛 − 1 − 2𝑘)𝑐  

                = (𝑛 − 2)𝑐  

For  𝑖 = 𝑘 + 1, 𝑘 + 2, … ,2𝑘, 

𝑑(𝑣𝑖) = ∑ 𝜂(𝑣𝑖 , 𝑣𝑗)2𝑘
𝑗=1

𝑖≠𝑗,𝑗≠𝑖−𝑘

+ 𝜂(𝑣𝑖 − 𝑘, 𝑢, 𝑣𝑘 + 𝑖, 𝑣𝑖)+ ∑ 𝜂((𝑢𝑗 , 𝑣𝑖
𝑛−1−2𝑘
𝑗=1 ) 

          = ∑ 𝑐2𝑘
𝑗=1

𝑖≠𝑗,𝑗≠𝑖−𝑘

+  𝑐 + ∑ 𝑐𝑛−1−2𝑘
𝑗=1   

          = (2𝑘 − 2)𝑐 + 𝑐 + (𝑛 − 1 − 2𝑘)𝑐  

          = (𝑛 − 2)𝑐  

(iii) 𝑖 = 1,2, … , 𝑛 − 1 − 2𝑘, 

        𝑑(𝑣) = 𝜂(𝑢𝑢𝑖) + ∑ 𝜂(𝑢𝑖𝑣𝑗
2𝑘
𝑗=1 )+∑ 𝜂(𝑢𝑖𝑣𝑗

𝑛−1−2𝑘
𝑗=1
𝑗≠𝑖

)  

                 = 𝑐 + 2𝑘𝑐 + (𝑛 − 1 − 2𝑘)𝑐  

                 = (𝑛 − 1)𝑐  

(iv)   2𝑆(𝐺) = ∑ 𝑑(𝑣)𝑣∈𝑉 , by theorem 5.1.5  

                    = 𝑑(𝑢) + ∑ 𝑑(𝑣𝑖)2𝑘
𝑖=1 + ∑ 𝑑(𝑢𝑖)𝑛−1−2𝑘

𝑖=1   

                    = (𝑛 − 1 − 2𝑘)𝑐 + ∑ (𝑛 − 2)𝑐2𝑘    
𝑖=1 + ∑ (𝑛 − 1)𝑐𝑛−1−2𝑘

𝑖=1   

                    = (𝑛 − 1 − 2𝑘)𝑐 + 2𝑘(𝑛 − 2)𝑐 + (𝑛 − 1 − 2𝑘)(𝑛 − 1)𝑐  

                    = (𝑛2 − 𝑛 − 2𝑘)𝑐  
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Theorem 5.1.8 

 The degree of a vertex is preserved under an isomorphism. 

Proof: 

 Under an isomorphism 𝑓: 𝐺 → 𝐺′, 𝜂(𝐸) =  𝜂′(𝑓(𝐸)), for all  𝐸 ∈ X. 

Therefore 𝑑𝐺(𝑢) = ∑𝜂(𝐸), over all 𝐸 with 𝑢 as an end vertex. 

                            = ∑ 𝜂′(𝑓(𝐸)), over all 𝑓(𝐸) with 𝑓(𝑢) as an end vertex. 

                             = 𝑑𝐺′(𝑓(𝑢)) 

 The following theorems can be proved in a similar manner.  

Theorem 5.1.9 

 The degree of a vertex is preserved under an end vertex isomorphism. 

Theorem 5.1.10 

 The degree of a vertex is preserved under an edge isomorphism. 

Theorem 5.1.11 

 The degree of a vertex is preserved under an adjacency isomorphism. 

Theorem 5.1.12 

 The degree of a vertex is preserved under a co-weak isomorphism. 

Theorem 5.1.13 

 The degree of a vertex is preserved under a co-weak end vertex 

isomorphism. 
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Theorem 5.1.14 

 The degree of a vertex is preserved under a co-weak edge isomorphism. 

Theorem 5.1.15 

 The degree of a vertex is preserved under a co-weak adjacency 

isomorphism. 

Remark 5.1.16 

 The degree of a vertex need not be preserved under weak isomorphism, 

weak end vertex isomorphism, weak edge isomorphism and weak adjacency 

isomorphism since 𝜂(𝐸) ≤  𝜂′(𝑓(𝐸) ), for all  𝐸 ∈ X  under any of these 

isomorphisms. 

Theorem 5.1.17 

 The total degree of a vertex is preserved under an isomorphism, end 

vertex isomorphism, edge isomorphism and adjacency isomorphism.  

Remark 5.1.18 

 The total degree of a vertex need not be preserved under any weak 

isomorphism and under any co-weak isomorphism. 
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5.2.  EDGE DEGREE OF A VERTEX IN FUZZY SEMIGRAPH 

Definition 5.2.1: 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be a fuzzy semigraph on 𝐺∗: (𝑉, £, 𝑋) . Let 𝑢  be any 

vertex in 𝐺, then the edge degree of 𝑢 denoted by 𝑑𝑒(𝑢) is defined by 𝑑𝑒(𝑢) =

∑ 𝜂(𝐸) where the summation runs over all edges 𝐸 containing 𝑢. 

 The edge total degree of 𝑢  denoted by 𝑡𝑑𝑒(𝑢)  is defined by                                 

𝑡𝑑𝑒(𝑢) = ∑ 𝜂(𝐸) + 𝜎(𝑢)  where the summation runs over all edges 𝐸 

containing 𝑢. 

Example 5.2.2 

 Consider the fuzzy semigraph in fig. 5.1. The edge degree of the vertices 

are  de(𝑣1) = 0.8, de(𝑣2) = 0.4, de(𝑣3) = 1.0, de(𝑣4) = 1.0, de(𝑣5) = 0.8, de(𝑣6) = 0.4 

The edge degree of the vertices are  

tde(𝑣1) = 1.4, tde (𝑣2) = 0.9, tde (𝑣3) = 1.7, tde (𝑣4) = 1.8, tde (𝑣5) = 1.2, tde (𝑣6) = 0.9 

Theorem 5.2.3 

 Let G:(σ,µ,η)  be a fuzzy semigraph on a semigraph G*:(V,£, 𝑋). If u is 

an end vertex in G, then 𝑑𝐺(𝑢) = 𝑑𝐺
𝑒 (𝑢). 

Proof: 

 If u is the end vertex, then the edges containing u are precisely the edges 

with end vertex u.  

Therefore 
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         𝑑𝐺(𝑢) = ∑η(E), where the summation runs over all edges E with u  

     as an end vertex. 

          = ∑η(E), where the summation runs over all edges E containing u. 

                    = 𝑑𝐺
𝑒 (𝑢). 

Theorem 5.2.4  

 Let G*:(V,£, 𝑋)  be a semigraph. If u is an end vertex of an edge in G*, 

then dG*(u) = 𝑑𝐺∗
𝑒 (𝑢). 

Proof: 

 If u is the end vertex, then the edges containing u are precisely the edges 

with end vertex u. 

 Therefore dG*(u) = 𝑑𝐺∗
𝑒 (𝑢). 

Theorem 5.2.5 

 Let G:(σ,µ,η) be a fuzzy semigraph such that µ is a constant function. If 

u is an end vertex, then d(u) = de(u). 

Proof: 

Let µ(e) = c for every e in€ where c is a constant. 

Then η(E) = c for every edge E. Therefore  

           dG(u) = ∑η(E), where the summation runs over all edges E with u  

                                                                                            as an end vertex. 

                    = c × the number of edges E with u as an end vertex. 

                    = cdG*(u) 
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dG
e (𝑢) = ∑η(E), the summation runs over all edges E containing u. 

          = c × the number of edges E containing the vertex u 

           = cdG∗
e (𝑢) 

From theorem 5.2.4, if u is an end vertex, 

       dG*(u) = dG∗
e (u). 

       Hence dG(u) = dG
e (u). 

Theorem 5.2.6 

 The edge degree of a vertex is preserved under an isomorphism. 

Proof: 

Under an isomorphism 𝑓: 𝐺 → 𝐺′, 𝜂(𝐸) =  𝜂′(𝑓(𝐸)), for all  𝐸 ∈ X. 

Therefore 𝑑𝐺
𝑒 (𝑢) = ∑𝜂(𝐸), over all 𝐸 containing 𝑢. 

                            = ∑ 𝜂′(𝑓(𝐸)), over all 𝑓(𝐸) containin 𝑓(𝑢). 

                             = 𝑑𝐺′
𝑒 (𝑓(𝑢)) 

 The following results follow in a similar manner. 

Theorem 5.2.7 

 The edge degree of a vertex is preserved under an end vertex 

isomorphism. 

Theorem 5.2.8 

 The edge degree of a vertex is preserved under an edge isomorphism. 

Theorem 5.2.9 
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 The edge degree of a vertex is preserved under an adjacency 

isomorphism. 

Theorem 5.2.10 

 The edge degree of a vertex is preserved under a co-weak isomorphism. 

Theorem 5.2.11 

 The edge degree of a vertex is preserved under a co-weak end vertex 

isomorphism. 

Theorem 5.2.12 

 The edge degree of a vertex is preserved under a co-weak edge 

isomorphism. 

Theorem 5.2.13 

 The edge degree of a vertex is preserved under a co-weak adjacency 

isomorphism. 

Remark 5.2.14 

 The edge degree of a vertex need not be preserved under weak 

isomorphism, weak end vertex isomorphism, weak edge isomorphism and 

weak adjacency isomorphism since 𝜂(𝐸) ≤  𝜂′(𝑓(𝐸)), for all  𝐸 ∈ X under any 

of these isomorphisms. 
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Theorem 5.2.15 

 The total edge degree of a vertex is preserved under an isomorphism, 

end vertex isomorphism, edge isomorphism and adjacency isomorphism.  

Remark 5.2.16 

 The total edge degree of a vertex need not be preserved under any weak 

isomorphism and under any co-weak isomorphism. 

5.3.  ADJACENT DEGREE OF A VERTEX IN FUZZY SEMIGRAPH 

Definition 5.3.1 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be a fuzzy semigraph on 𝐺∗: (𝑉, £, 𝑋) . Let 𝑢  be any 

vertex in 𝐺. Then the adjacent degree of 𝑢 denoted by 𝑑𝑎(𝑢) is defined by                        

𝑑𝑎(𝑢) = ∑ ∑ 𝜇(𝑒)𝑒∈𝐸  where the outer summation runs over all edges 𝐸 

containing 𝑢. 

 The adjacent total degree of 𝑢  denoted by 𝑡𝑑𝑎(𝑢)  is defined by                                  

𝑡𝑑𝑎(𝑢) = ∑ ∑ 𝜇(𝑒)𝑒∈𝐸 + 𝜎(𝑢) where the outer summation runs over all edges 

𝐸 containing 𝑢. 

Example 5.3.2 

Consider the fuzzy semigraph in fig. 5.1. 

The adjacent degrees of the vertices are 

 da(𝑣1) = 1.6, da(𝑣2) = 0.9, da(𝑣3) = 1.5, da(𝑣4) = 1.3, da(𝑣5) = 0.8, da(𝑣6) = 0.4 

The adjacent total degrees of the vertices are 

 tda(𝑣1) = 2.2, tda(𝑣2) = 1.4, tda(𝑣3) = 2.2, tda(𝑣4) = 2.1, tda(𝑣5) = 1.2, tda(𝑣6) = 0.9 
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Theorem 5.3.3 

 Let G*: (V,£, 𝑋) be a k-uniform semigraph. If u is an end vertex in G*, 

then 𝑑𝐺∗
𝑎 (𝑢) = (k - 1) dG*(u) = (k - 1) 𝑑𝐺∗

𝑒 (𝑢). 

Proof: 

 Since G* is k-uniform and u is an end vertex, the number of vertices 

adjacent to u from a single edge is k-1. 

The number of edges adjacent to u is dG*(u). 

Therefore 𝑑𝐺∗
𝑎 (𝑢) = (k-1)da*(u). 

If u is the end vertex, then the edges containing u are precisely the edges with 

end vertex u. 

Therefore dG*(u) = 𝑑𝐺∗
𝑒 (𝑢). 

Hence 𝑑𝐺∗
𝑎 (𝑢) = (k-1)𝑑𝐺∗

𝑒 (𝑢). 

Theorem 5.3.4 

 Let G:(σ,µ,η) be a k-uniform fuzzy semigraph on G*:(V,£, 𝑋 ) such that 

µ is a constant function of constant value c. If u is an end vertex in G, then 

 dG
a (u) = (k - 1).c.dG*(u)  

dG
a (u)=(k-1).c.dG∗

e (u). 

Proof: 

The adjacent degree of u is  

dG
a (𝑢) = ∑ ∑ µ(𝑒)e∈£E ,  outer summation runs over all edges with end vertex u 

          = ∑ ∑ ce∈£E ,  outer summation runs over all edges with end vertex u 
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          = ∑ (k − 1)cE ,  the summation runs over all edges with end vertex u 

          = (k - 1)cdG*(u) 

Also since dG*(u) = 𝑑𝐺∗
𝑒 (𝑢), dG

a (u) = (k - 1)cdG∗
e (𝑢). 

Theorem 5.3.5 

 Let G*(V,£, 𝑋)  be a k-uniform semigraph. If u is a middle vertex in G*, 

then 𝑑𝐺∗
𝑎 (𝑢) = (k- 1). 

Proof: 

 Since G* is k-uniform, the number of vertices adjacent to a middle vertex 

u is k -1. Also u is a middle vertex of exactly one edge.  

 Hence  𝑑𝐺∗
𝑎 (𝑢) = (k - 1). 

Theorem 5.3.6 

 Let G:(σ,µ,η) be a k-uniform fuzzy semigraph on G*:(V,£, 𝑋 ) such that 

µ is a constant function of constant value c. If u is a middle vertex in G*,  

then        𝑑𝐺∗
𝑎 (𝑢) = (k- 1)c. 

Proof: 

 Since G* is k-uniform, the number of vertices adjacent to a middle vertex 

u is k -1. Also u is a middle vertex of exactly one edge.  

Therefore the adjacent degree of u is  

                    dG
a (𝑢) = ∑ µ(𝑒)e∈£  = ∑ 𝑐e∈£  = (k- 1)c. 
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Theorem 5.3.7 

 Let G*(V,£, 𝑋)  be a k-uniform semigraph. If u is a middle-end vertex 

in G*, then 𝑑𝐺∗
𝑎 (𝑢) = (k - 1)[ dG*(u) + 1]. 

Proof: 

dG*(u) edges have u as end vertex.  

The (k - 1)dG*(u) vertices in them are all adjacent to u.  

Also the k - 1 vertices in the edge containing u as middle vertex are also 

adjacent to the vertex u. 

Hence dG∗
a (𝑢) = (k - 1)dG*(u) + (k - 1) 

                       = (k - 1)[ dG*(u) + 1]. 

Theorem 5.3.8 

 Let G:(σ,µ,η) be a k-uniform fuzzy semigraph on G*:(V,£, 𝑋 ) such that 

µ is a constant function of constant value c. If u is a middle-end vertex in G*, 

then 𝑑𝐺∗
𝑎 (𝑢) = (k - 1)c[ dG*(u) + 1]. 

Proof: 

 dG*(u) is the number of edges E with u as end vertex. Only one edge has 

u as a middle vertex. 

Therefor the adjacent degree of u is  

dG
a (𝑢) = ∑ ∑ µ(𝑒)e∈£E ,  outer summation runs over all edges E containing u 

          = ∑ ∑ ce∈£E ,  outer summation runs over all edges E containing u 

          = ∑ (k − 1)cE ,  the summation runs over all edges E containing u 
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           = ∑ (k − 1)cE ,  the summation runs over all edges E with u as end vertex 

                  + ∑ (k − 1)cE ,  the summation runs over all edges E with u as a  

                                                                                                      middle vertex 

           = (k - 1)cdG*(u) + (k - 1)c. 

           = (k - 1)c[ dG*(u) + 1].          

Theorem 5.3.9 

 The adjacent degree of a vertex is preserved under an isomorphism. 

Proof: 

Under an isomorphism 𝑓: 𝐺 → 𝐺′, 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £ 

Therefore 

 𝑑𝐺
𝑎(𝑢) = ∑ ∑ µ(𝑒)e∈£E , the outer summation runs over all edges containing u 

           = ∑ ∑ 𝜇′(𝑓(𝑒))e∈£𝑓(E) , the outer summation runs over all edges 𝑓(𝐸)  

                                                                                                 containing 𝑓(𝑢) 

             = 𝑑𝐺′
𝑎 (𝑓(𝑢)) 

Hence the theorem. 

The same result holds for other isomorphisms and co-weak 

isomorphisms under the same reasoning. 

Theorem 5.3.10 

 The adjacent degree of a vertex is preserved under an end vertex 

isomorphism. 
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Theorem 5.3.11 

 The adjacent degree of a vertex is preserved under an edge isomorphism. 

Theorem 5.3.12 

 The adjacent degree of a vertex is preserved under an adjacency 

isomorphism. 

Theorem 5.3.13 

 The adjacent degree of a vertex is preserved under a co-weak 

isomorphism. 

Theorem 5.3.14 

 The adjacent degree of a vertex is preserved under a co-weak end vertex 

isomorphism. 

Theorem 5.3.15 

 The adjacent degree of a vertex is preserved under a co-weak edge 

isomorphism. 

Theorem 5.3.16 

 The adjacent degree of a vertex is preserved under a co-weak adjacency 

isomorphism. 

Remark 5.3.17 

 The adjacent degree of a vertex need not be preserved under weak 

isomorphism, weak end vertex isomorphism, weak edge isomorphism and 
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weak adjacency isomorphism since 𝜇(𝑢𝑣) ≤ 𝜇′(𝑓(𝑢)𝑓(𝑣))  for all 𝑢𝑣 ∈ £ 

under any of these weak isomorphisms. 

Theorem 5.3.18 

 The total adjacent degree of a vertex is preserved under an isomorphism, 

end vertex isomorphism, edge isomorphism and adjacency isomorphism.  

Remark 5.3.19 

 The total adjacent degree of a vertex need not be preserved under any 

weak isomorphism and under any co-weak isomorphism. 

5.4.  CONSECUTIVE ADJACENT DEGREE OF A VERTEX IN 

FUZZY SEMIGRAPH 

Definition 5.4.1 

 The consecutive adjacent degree of 𝑢 denoted by 𝑑𝑐𝑎(𝑢) is defined by 

𝑑𝑐𝑎(𝑢) = ∑ 𝜇(𝑢𝑣) where the summation runs over all vertices 𝑣 which are 

consecutively adjacent to 𝑢. 

 The consecutive adjacent total degree of 𝑢  denoted by 𝑡𝑑𝑐𝑎(𝑢)  is 

defined by 𝑡𝑑𝑐𝑎(𝑢) = ∑ 𝜇(𝑢𝑣) +  𝜎(𝑢) where the summation runs over all 

vertices 𝑣 which are consecutively adjacent to 𝑢. 

Example 5.4.2 

 Consider the fuzzy semigraph in fig. 5.1. 

 The Consecutive adjacent degrees of the vertices are 

 dca(𝑣1) = 0.8, dca(𝑣2) = 0.9, dca(𝑣3) = 1.1, dca(𝑣4) = 1.0, dca(𝑣5) = 1.2, dca(𝑣6) = 0.4 
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The Consecutive adjacent total degrees of the vertices are 

 tdca(𝑣1) = 1.4, tdca(𝑣2) = 1.4, tdca(𝑣3) = 1.8, tdca(𝑣4) = 1.8, tdca(𝑣5) = 1.6, tdca(𝑣6) = 0.9 

Theorem 5.4.3 

 Let G*:(V,£, 𝑋)  be a semigraph. If u is an end vertex of an edge in G*, 

then dG*(u) = 𝑑𝐺∗
𝑒 (𝑢) = 𝑑𝐺∗

𝑐𝑎(𝑢). 

Proof: 

 If u is the end vertex, then the edges containing u are precisely the edges 

with end vertex u. 

Therefore dG*(u) = 𝑑𝐺∗
𝑒 (𝑢). 

Also if u is the end vertex, then the number of edges with end vertex u is the 

same as the number of vertices consecutively adjacent to u.  

Therefore dG*(u) = 𝑑𝐺∗
𝑐𝑎(𝑢). 

Theorem 5.4.4 

 Let G:(σ,µ,η) be a fuzzy semigraph such that µ is a constant function. If 

u is an end vertex, then d(u) = de(u) = dca(u). 

Proof: 

Let µ(e) = c for every e ∈ £  where c is a constant. 

Then η(E) = c for every edge E. 

Therefore  

dG(u) = η(E), the summation runs over all edges E with u as an end vertex. 

          = c × the number of edges E with u as an end vertex. 

         = c.d.G*(u) 
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dG
e (u) = ∑η(E), the summation runs over all edges E containing u. 

          = c × the number of edges E containing the vertex u 

         = cdG∗
e (u) 

dG
ca(u) = ∑ µ(uv)uv∈E  

            = c∑ 1uv∈E  

            = cdG∗
ca(u) 

From theorem 5.2.4, if u is an end vertex, dG*(u) = dG∗
e (u) and therefore 

 dG*(u) = dG∗
e (u) = dG∗

ca(u). 

Hence dG(u) = dG
e (u) = dG

ca(u). 

Theorem 5.4.5 

 Let G*: (V,£, 𝑋) be a k-uniform semigraph. If u is an end vertex in G*, 

then 𝑑𝐺∗
𝑎 (𝑢)= (k - 1)𝑑𝐺∗

𝑐𝑎(𝑢). 

 [or 𝑑𝐺∗
𝑎 (𝑢)= (k - 1) 𝑑𝐺∗

𝑒 (𝑢) or 𝑑𝐺∗
𝑎 (𝑢)= (k - 1)(k - 1) dG*(u).] 

Proof: 

Since G* is k-uniform and u is an end vertex, the number of vertices adjacent 

to u from a single edge is k-1. 

The number of edges adjacent to u is dG*(u). 

Therefore 𝑑𝐺∗
𝑎 (𝑢) = (k - 1)dG*(u). 

From theorem 5.2.4, dG*(u) =  𝑑𝐺∗
𝑒 (𝑢) = dG*(u). 

Hence 𝑑𝐺∗
𝑎 (𝑢)= (k - 1)𝑑𝐺∗

𝑐𝑎(𝑢). 

The other expressions follow in a similar manner. 
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Theorem 5.4.6 

 Let G:(σ,µ,η) be a k-uniform fuzzy semigraph on G*:(V,£, 𝑋 ) such that 

µ is a constant function of constant value c. If u is an end vertex in G*, then 

𝑑𝐺∗
𝑎 (𝑢)= (k - 1)𝑐𝑑𝐺∗

𝑐𝑎(𝑢). 

[or 𝑑𝐺∗
𝑎 (𝑢)= (k - 1)𝑐 𝑑𝐺∗

𝑒 (𝑢) or 𝑑𝐺∗
𝑎 (𝑢)= (k - 1)cdG*(u).] 

Proof: Let u ∊V be any vertex. 

Then dGa
(u) = ∑ μcauv∊E(Gca) (uv) 

                    = ∑ μuv∈E (uv) 

                    =  ∑ cuv∈E  

                    = (k - 1)cdG*(u). 

If u is an end vertex, then dG*(u) = dG∗
e (u) = dG∗

ca(u). 

Hence the theorem follows. 

Theorem 5.4.7 

 Let G(σ, μ, η) be a fuzzy semigraph on G*(V,£,X). Then the degree of a 

vertex u in the consecutive adjacency fuzzy graph Gca is dG
ca(u). 

Proof: Let u ∊V be any vertex. 

Then dGa
(u) = ∑ μcauv∊E(Gca) (uv) 

                    = ∑ μuv∈E (uv) 

                   = dG
ca(u). 
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Theorem 5.4.8 

 Let G:(σ,µ,η) be a fuzzy semigraph on G*:(V,£, 𝑋)  such that µis a 

constant function. Then for any vertex u, 

i. dG(u) = cdG*(u) 

ii. dG
e (u) = cdG∗

e (u) 

iii. dG
ca(u) = cdG∗

ca(u) 

iv. d
G
a (u) = cdG∗

a (u) 

Proof: 

Let µ(e) = c for every e ∈ £. 

Then η(E) = c for every E ∈ X. 

i. dG(u) = ∑η(E), the summation runs over all edges E with u as an end, 

                   = ∑c, the summation runs over all vertex edges with u as an end 

       vertex. 

                   = cdG*(u) 

ii. dG
e (u) =∑η(E), the summation runs over all edges containing u 

                   = ∑c, the summation runs over all edges containing u 

                   = cdG∗
e (u) 

iii. dG
ca(u) = ∑ µ(uv)uv∈E  

                    = ∑ cuv∈E  

                    = cdG∗
ca(u) 

iv. dG
a (u) = ∑ ∑ µ(e)e∈EE , the outer summation runs over all E containing u 
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                     = ∑ ∑ ce∈EE  

                     = cdG∗
a (u) 

 The following theorem gives the relation between the four degrees of a 

fuzzy semigraph. 

Theorem 5.4.9 

 For any vertex u in a fuzzy semigraph 𝐺: (𝜎, 𝜇, 𝜂)  on a 

semigraph𝐺∗: ( 𝑉, 𝑋), 𝑑(𝑢) ≤ 𝑑𝑒(𝑢) ≤  𝑑𝑐𝑎(𝑢)  ≤ 𝑑𝑎(𝑢)   

Proof :  

In 𝑑(𝑢) = ∑ 𝜂(𝐸), 𝐸 runs over all the edges having 𝑢 as an end vertex. 

But in 𝑑𝑒(𝑢) = ∑ 𝜂(𝐸), edges having 𝑢 as middle vertex are also included. 

Therefore 𝑑(𝑢) ≤ 𝑑𝑒(𝑢) 

For any edge 𝐸, 𝜂(𝐸) ≤  𝜇(𝑒) for every 𝑒 ∈ 𝐸  

Which implies  ∑ 𝜂(𝐸) ≤  𝜇(𝑢𝑣)where the summation on L. H. S runs over all 

the edges containing 𝑢 and the summation on R. H. S runs over all the vertices 

𝑣consecutively adjacent to 𝑢.  

Hence 𝑑𝑒(𝑢) ≤  𝑑𝑐𝑎(𝑢). 

If 𝑢𝑣 ∈ 𝐸, then𝜇(𝑢𝑣) ≤ ∑ 𝜇(𝑒)𝑒∈𝐸 . Hence 𝑑𝑐𝑎(𝑢)  ≤ 𝑑𝑎(𝑢)   

Therefore 𝑑(𝑢) ≤ 𝑑𝑒(𝑢) ≤  𝑑𝑐𝑎(𝑢)  ≤ 𝑑𝑎(𝑢)   
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Remark 5.4.10 

 In the fuzzy semigraph in Fig 5.1, 

𝑑(𝑣1) = 0.8,  𝑑𝑒(𝑣1) = 0.8,  𝑑𝑎(𝑣1) = 1.6,  𝑑𝑐𝑎(𝑣1) = 0.8 

Therefore 𝑑(𝑣1) ≤ 𝑑𝑒(𝑣1) ≤  𝑑𝑐𝑎(𝑣1)  ≤ 𝑑𝑎(𝑣1). 

Remark 5.4.11 

 If u is an end vertex in a semigraph G:(σ,µ,η), then dG(u) or dG
e (u) need 

not be equal to dG
ca(u). For example, consider the semigraph in Fig.5.3 

 

𝐹𝑖𝑔 5.2  G:(σ,µ,η) 

Here u is the end vertex of the edge E = (u, v, x, w). 

          d(u) = η(E) = 0.3 

         de(u) = η(E)  = 0.3 

 But dca(u) = µ(uv) = 0.5 

 Therefore d(u) ≠ dca(u)  

                  and de(u) ≠ dca(u). 

Theorem 5.4.12 

 The consecutive adjacent degree of a vertex is preserved under an 

isomorphism. 



89 

Proof: 

 Under an isomorphism 𝑓: 𝐺 → 𝐺′ , 𝜇(𝑢𝑣) = 𝜇′(𝑓(𝑢)𝑓(𝑣))  for all  

𝑢𝑣 ∈ £ 

Therefore 

              𝑑𝐺
𝑐𝑎(u) = ∑ µ(uv)uv∈E   

                         =  ∑ 𝜇′(𝑓(𝑢)𝑓(𝑣))uv∈E   

                           = 𝑑𝐺′
𝑐𝑎(𝑓(𝑢)) 

 The following theorems hold similarly under the same reasoning. 

Theorem 5.4.13 

 The consecutive adjacent degree of a vertex is preserved under an end 

vertex isomorphism. 

Theorem 5.4.14 

 The consecutive adjacent degree of a vertex is preserved under an edge 

isomorphism. 

Theorem 5.4.15 

 The consecutive adjacent degree of a vertex is preserved under an 

adjacency isomorphism. 

Theorem 5.4.16 

 The consecutive adjacent degree of a vertex is preserved under a co-

weak isomorphism. 
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Theorem 5.4.17 

 The consecutive adjacent degree of a vertex is preserved under a co-

weak end vertex isomorphism. 

Theorem 5.4.18 

 The consecutive adjacent degree of a vertex is preserved under a co-

weak edge isomorphism. 

Theorem 5.4.19 

 The consecutive adjacent degree of a vertex is preserved under a co-

weak adjacency isomorphism. 

Remark 5.4.20 

 The consecutive adjacent degree of a vertex need not be preserved under 

weak isomorphism, weak end vertex isomorphism, weak edge isomorphism 

and weak adjacency isomorphism since 𝜇(𝑢𝑣) ≤ 𝜇′(𝑓(𝑢)𝑓(𝑣)) for all 𝑢𝑣 ∈ £ 

under any of these weak isomorphisms. 

Theorem 5.4.21 

 The total consecutive adjacent degree of a vertex is preserved under an 

isomorphism, end vertex isomorphism, edge isomorphism and adjacency 

isomorphism.  
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Remark 5.4.22 

 The total consecutive adjacent degree of a vertex need not be preserved 

under any weak isomorphism and under any co-weak isomorphism. 

5.5  THE DEGREE OF AN EDGE IN FUZZY SEMIGRAPH 

Definition 5.5.1 

 Let G:(σ,µ,η) be a fuzzy semigraph on G*:(V, £,X). The degree of an 

edge E in X of G is dG(E) = ∑ η(Ei)Ei≠E  where the summation runs over all 

edges Ei adjacent to E. 

Definition 5.5.2 

The degree of the partial edge e = uv ϵ £ is  

 dG(e) = ∑ µ(𝑢𝑤)uwε£,
w≠u

 + ∑ µ(𝑣𝑤)vwε£,
w≠u

. 

Example 5.5.3 

Consider the fuzzy semigraph in Fig.5.1.  

Here V = {𝑣1,𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} 

          £ = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣5, 𝑣5𝑣1, 𝑣5𝑣6} 

          X = {𝐸1 = (𝑣1, 𝑣2, 𝑣3), 𝐸2 = (𝑣3, 𝑣4), 𝐸3 = (𝑣4, 𝑣5, 𝑣1), 𝐸4 = (𝑣5, 𝑣6)} 

 𝜂(𝐸1) = 0.4, 𝜂(𝐸2) = 0.6, 𝜂(𝐸3) = 0.4, 𝜂(𝐸4) = 0.4. 

  𝜇(𝑣1𝑣2) = 0.4,   𝜇(𝑣2𝑣3) = 0.5,   𝜇(𝑣3𝑣4) = 0.6 ,   

𝜇(𝑣4𝑣5) = 0.4,    𝜇(𝑣5𝑣1) = 0.4,   𝜇(𝑣5𝑣6) = 0.4  

Therefore the degree of the edges in X are 

                 𝑑(𝐸1) = 0.4 + 0.6 = 1,                 𝑑(𝐸2) = 0.4 + 0.4 = 0.8 
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                𝑑(𝐸3) = 0.4 + 0.6 + 0.4 = 1.4,     𝑑(𝐸4) = 0.4  

The degree of the edges in £ are 

           𝑑(𝑣1𝑣2) = 0.4 + 0.5 = 0.9,                𝑑(𝑣2𝑣3) = 0.4 + 0.6 = 1,   

𝑑(𝑣3𝑣4) = 0.5 + 0.4 = 0.9 ,               𝑑(𝑣4𝑣5) = 0.6 + 0.4 = 1, 

𝑑(𝑣5𝑣1) = 0.4 + 0.4 + 0.4 = 1.2,   𝑑(𝑣5𝑣6) = 0.4 + 0.4 = 0.8.  

Theorem 5.5.4  

 Let G:(σ, µ, η) be a fuzzy semigraph on G*:(V, £, X). The degree of an 

edge E in G is dG(e)=∑ [de (v) −vεE η(E)]. 

Proof: 

 The edges adjacent to E are the edges incident on the end vertices and 

on the middle-end vertices of E.  

Also for any middle vertex u of E, the edge degree of u is  

 de(u) = η(E) ⇒ de(u) - η(E) = 0. 

Now dG(u) = ∑ η(Ei)Ei≠E
Ei adjacent to E

 

                 = ∑ η(Ei)Ei≠E,Ei has e−vertex of E,
Ei adjacent to E

 + ∑ η(Ei)Ei≠E,Ei has me−vertex of E,
Ei adjacent to E

 

                = ∑ [de (v) −vis e−vertex of E η(E)]+∑ [de (V) −v is me−vertex of E η(E)] 

      =∑ [de (V) −Vis e−vertex of E η(E)]+∑ [de (V) −v is me−vertex of E η(E)]   

                                                                    +∑ [de (V) −vis m−vertex of E η(E)] 

                 = ∑ [dG
e (V) −vϵE η(E)]  
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Corollary 5.5.5 

 Let G:(σ, µ, η) be a k-uniform fuzzy semigraph on G*:(V, £, X). The 

degree of an edge E∈ X is dG(E)=∑ [dG
e (𝑣) −vϵE 𝑘η(E)]. 

Proof: 

 Since G is k-uniform, the number of vertices is k. 

Therefore  dG(E) = ∑ [de(v) −VϵE η(E) 

                           = ∑ [de(v) −vϵE ∑ η(E)vϵE  

                           = ∑ [dG
e (v) −vϵE kη(E)] 

Corollary 5.5.6  

 Let G:(σ,µ,η) be a k-uniform fuzzy semigraph on G*:(V, £,X) such that 

µ is a constant function of constant value c. Then the degree of an edge E∈X 

is dG(E) = c∑ dG∗
e (v) −vϵE kc. 

Proof: 

Since µ(e) = c for every e∈ £, 

          η(E) = c for every E∈X. 

Also de(v) = cdG∗
e (v) for every v ∈ V. 

Therefore by corollary 5.5.5, 

 dG(E) = ∑ [de(v) −𝑣ϵE kη(E)] 

                    = c ∑ dG∗
e (v) −𝑣ϵE kc 
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Corollary 5.5.7 

 Let G(σ, μ, η) be a fuzzy semigraph on G*(V, £, X) such that μ is a 

constant function. Then the degree of an edge E is dG(E) = c∑v∊F [dG∗
e (v) − 1]. 

Proof : 

 Here dG
e (v) = cdG∗

e (v) and  η(E) = c, 

          Therefore by theorem 5.5.4, 

                    dG(E) = ∑ [de(v) −𝑣ϵE η(E)] 

                           = ∑ [𝑐dG∗
e (v) −𝑣ϵE c] 

                           = 𝑐 ∑ [dG∗
e (v) −𝑣ϵE 1]                                                

Theorem 5.5.8 

 Let G:( σ, μ, η ) be a fuzzy semigraph on G*:(V, £, X ). Let E ∈ X be an 

edge with end vertices u and v and with no middle-end vertex. Then the degree 

of E is dG(E) = dG(u) + dG(v) - 2η(E). 

Proof: 

 Since E has no middle-end vertex, the edges adjacent to E are incident 

on the end vertices of E.  

Therefore  

 dG(E) = ∑ η(Ei)Ei≠E , the summation runs over all Ei adjacent to E    

                    = ∑ η(Ei)Ei is adjacent to E,Ei≠E

one end of Ei is u

 + ∑ η(Ei)Ei is adjacent to E,Ei≠E

one end of Ei is v

 

                    = dG(u) - η(E) + dG(v) - η(E) 

Hence dG(E) = dG(u) + dG(v) - 2η(E). 
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Theorem 5.5.9 

 Let G:(σ, μ, η ) be a fuzzy semigraph on G*:(V, £, X). The degree of the 

partial edge e = uv in £ is dG
ca(u) + dG

ca(v) − 2µ(uv). 

Proof: 

The degree of the partial edge e = uv is 

 dG(e) = ∑ µ(uw)uwε£,
w≠v

+∑ µ(vw)vwε£,
w≠u

. 

                   = ∑ µ(uw)uwε£,
w≠v

 + µ(uv) + ∑ µ(vw)vwε£,
w≠u

 + µ(uv) − 2µ(uv) 

                   = ∑ µ(uw)uwε£  + ∑ µ(vw)vwε£  - 2µ(uv) 

                   = dG
ca(u) + dG

ca(v) − 2µ(uv) 

Theorem 5.5.10  

 Let G( σ, μ, η)be a fuzzy semigraph on G*(V,£,X) such that μ  is a 

constant function .Then the degree of the edge E∊X is dG(E) = cdG∗(E). 

Proof: 

Since µ(e) = c, for every e∊£, 

         η(E) = c, for every E∊ X. 

Therefore, dG(E) = ∑ η(EiEi adjacent to E
) 

                     = c× the number of edges adjacent to E 

                     = c.dG∗(E) 
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Theorem 5.5.11  

 Let G( σ, μ, η)be a fuzzy semigraph on G*(V,£,X) such that μ  is a 

constant function.Then the degree of the partial edge e= uv∊£ is dG(e) = 

cdG∗(e). 

Proof: 

The degree of e = uv is 

             dG(e) = ∑ µ(uw)uw∈£,
w≠u

 + ∑ µ(vw)vw∈£,
w≠v

 

                      = ∑ cuw∈£,
w≠u

 + ∑ cvw∈£,
w≠v

 

                     = cdG∗(e) 

Theorem 5.5.12 

 Let G(σ, μ, η)  be a fuzzy semigraph on G* (V,£,X). Let E be an edge in 

G with end vertices u and v. If  E has no middle – end vertex, then the degree 

of  the edge uv in e- fuzzy graph Ge is the degree of the edge E in the fuzzy 

semigraph G. That is, dGe (uv) = dG(E). 

Proof: 

 Since E has no middle – end vertex, the edges adjacent to E or the edges 

incident on the end vertices u and v. 

Now  d Ge (uv)  = ∑ μew≠u,
uw∈E(Ge)

(uw) + ∑ μew≠v,
vw∈E(Ge)

(vw) 

                         = ∑ η(EiEi incident on u
Ei≠E

) + ∑ η(EiEi incident on v
Ei≠E

) 
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                         = ∑ η(EiEi adjacent to E
Ei≠E

) 

                          = dG(E). 

Theorem 5.5.13 

 Let G(σ, μ, η) be a fuzzy semigraph on G**(V, £, X). Let E be an edge 

in G with end vertices u and v. If  E has no middle – end vertices, then the 

degree of the edge uv in the end vertex graph is  𝑑𝐺𝑒
(uv)  = dG(E) - ∑ η(Ei) 

where the summation in the second term runs over all edges Ei  which are 

incident on the middle-end vertices of  E. 

Proof: 

 The edges adjacent to E in G are the edges incident on the end vertices 

u and v and on the middle-end vertices of E. 

Therefore  

d Ge (u) = ∑ μ(uw)w≠u
ue∈E(Ge)

 +∑ μ(vw)w≠v
ve∈E(Ge)

 

                      =   ∑ η(Ei)Ei≠E
Ei is incident on 𝑢

 +∑ η(Ei)Ei≠E
Ei is incident on 𝑣

 

   =   ∑ η(Ei)Ei≠E
Ei is adjacent to E

-∑ η(Ei)Ei≠E
Ei is incident on me−vertex of E

 

  = d G(E) - ∑ η(Ei)E i is incident on
me−vertexof E 

 

Theorem 5.5.14 

 The degree of an edge is preserved under an isomorphism, end vertex 

isomorphism, edge isomorphism and adjacency isomorphism. 
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Theorem 5.5.15 

 The degree of an edge is preserved under a co-weak isomorphism, co-

weak end vertex isomorphism, co-weak edge isomorphism and co-weak 

adjacency isomorphism.  

Remark 5.5.16 

 The degree of an edge need not be preserved under any weak 

isomorphism.  
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CHAPTER – 6 

VARIOUS REGULAR PROPERTIES OF FUZZY 

SEMIGRAPHS 

 

 Various regular properties of fuzzy semigraphs are studied. The regular, 

edge degree regular, adjacency regular and consecutive adjacency regular 

fuzzy semigraphs are introduced and some of their properties are studied. Also 

biregular fuzzy semigraphs and totally regular fuzzy semigraphs are defined 

and their properties are studied.  

6.1.  REGULAR FUZZY SEMIGRAPHS 

Definition 6.1.1 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is a 

regular fuzzy semigraph of degree r or r-regular fuzzy semigraph if the degree 

of each vertex is r. 

Definition 6.1.2 

Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is a v-edge 

degree regular fuzzy semigraph of vertex edge degree r or r- v-edge degree 

regular fuzzy semigraph if the edge degree of each vertex is r. 
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Definition 6.1.3 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is an 

adjacent regular fuzzy semigraph of adjacent degree r or r- adjacent regular 

fuzzy semigraph if the adjacent degree of each vertex is r. 

Definition 6.1.4 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is a 

consecutive adjacent regular fuzzy semigraph of consecutive adjacent degree 

r or r- consecutive adjacent regular fuzzy semigraph if the consecutive adjacent 

degree of each vertex is r. 

Theorem 6.1.5 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be a fuzzy semigraph on a r-regular semigraph 

𝐺∗: (𝑉, £, 𝑋) such that µ is a constant function. Then the end vertex fuzzy graph 

𝐺𝑒 is regular. 

Proof : 

Let 𝜇(𝑒) = 𝑐  for every  . 

Then 𝜂(𝐸) = 𝑐 for every 𝐸𝜖𝑋 

Let E be an edge in G with end vertices u and v. 

Then 𝜇𝑒(𝑢𝑣) = 𝜂(𝐸) = 𝑐 

This is true for every edge uv in the end vertex fuzzy graph 𝐺𝑒 . 

Therefore µ
𝑒
 is also a constant function of constant value c. 

Also, 𝑑𝐺𝑒
∗(𝑢) = 𝑑𝐺∗ = 𝑟 
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Now          𝑑𝐺𝑒
(𝑢) = ∑ 𝜇(𝑢𝑣)𝑢𝑣𝜖𝐸(𝐺𝑒)  

                              = ∑ 𝑐𝑢𝑣𝜖𝐸(𝐺𝑒)   

                              = 𝑐𝑑𝐺𝑒
∗(𝑢)  

                              = 𝑐𝑟  

This is true for every vertex u in 𝐺𝑒. 

Hence 𝐺𝑒 is cr-regular. 

Corollary 6.1.6 

 If G(𝜎, 𝜇, 𝜂)is a fuzzy semigraph of stage c on an r-regular semigraph, 

then its end vertex fuzzy graph is regular. 

Proof:  

 Since G is a fuzzy semigraph of stage c, 𝜇 is a constant function of 

constant value c. Therefore the result follows from theorem 6.1.5. 

Theorem 6.1.7 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be an effective fuzzy semigraph on a r-regular 

semigraph𝐺∗: (𝑉, £, 𝑋) such that 𝜎 is a constant function. Then the end vertex 

fuzzy graph 𝐺𝑒 is regular. 

Proof : 

Let 𝜎(𝑢) = 𝑐  for every u𝜖𝑉 . 

Let E be any edge of G with end vertices u and v. 

Since G is an effective fuzzy semigraph, 𝜂(𝐸) = 𝜎(𝑢) ∧ 𝜎(𝑣) = 𝑐 
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Therefore 𝜇𝑒(𝑢𝑣) = 𝜂(𝐸) = 𝑐 

This is true for every edge uv in the end vertex fuzzy graph 𝐺𝑒 . 

Then proceeding as in theorem 6.1.5, 𝐺𝑒is cr-regular. 

Theorem 6.1.8 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on a semigraph 𝐺∗: (𝑉, £, 𝑋). Then 

G is a r-regular fuzzy semigraph if and only if 𝐺𝑒 is a r-regular fuzzy graph. 

Proof: 

The degree of an end vertex u of G is 

                  𝑑𝐺(𝑢) =  ∑ 𝜂(𝐸), the summation runs over all edges E with u as  

                                                                                                  an end vertex. 

                             = ∑ 𝜂(𝑢, … , 𝑣)(𝑢,…,𝑣)∈𝑋   

                             = ∑ 𝜇(𝑢𝑣)𝑢𝑣𝜖𝐸(𝐺𝑒)   

                             = 𝑑𝐺𝑒
(𝑢)  

This is true for every end verex u of G. 

Hence the fuzzy semigraph G is r-regular if and only if its end vertex fuzzy 

graph is r-regular. 

Theorem 6.1.9 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on a semigraph 𝐺∗: (𝑉, £, 𝑋). Then 

G is a r-consecutive adjacent regular fuzzy semigraph if and only if its 

consecutive adjacency fuzzy graph 𝐺𝑐𝑎 is r-regular. 
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Proof: 

The consecutive adjacent degree of a vertex u in G is 

                   𝑑𝐺
𝑐𝑎 (𝑢) = ∑ 𝜇(𝑢𝑣)𝑢𝑣𝜖𝐸(𝐺𝑐𝑎)   

                                = 𝑑𝐺𝑐𝑎
(u)  

                                = the degree of u in 𝐺𝑐𝑎 . 

Hence the fuzzy semigraph G is r- consecutive adjacent regular if and only if 

its consecutive adjacency fuzzy graph  𝐺𝑐𝑎 is r-regular. 

Theorem 6.1.10 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on a semigraph 𝐺∗: (𝑉, £, 𝑋) such 

that 𝜇 is a constant function and its end vertex graph 𝐺𝑒* is a cycle. Then G is 

a regular fuzzy semigraph. The end vertex fuzzy graph Ge is also regular. 

Proof: 

 Let E1,  E2 , ⋯, Em  be the edges of G such that its end vertex graph 𝐺𝑒* 

is a cycle.  

 Since 𝜇 is a constant function, the degree of each edge Ei in G is 2c. 

Therefore G is 2c – regular. Similarly the end vertex fuzzy graph Ge is 2c- 

regular. 
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6.2  BIREGULAR FUZZY SEMIGRAPHS 

Definition 6.2.1 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is a 

biregular fuzzy semigraph of degree (k, r) or (k, r)-biregular fuzzy semigraph 

if the degree of each vertex is either k or r. 

Definition 6.2.2 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is a 

v-edge degree biregular fuzzy semigraph of vertex edge degree (k, r) or (k, r)- 

v-edge degree biregular fuzzy semigraph if the edge degree of each vertex is 

either           k or r. 

Definition 6.2.3 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is an 

adjacent biregular fuzzy semigraph of adjacent degree (k, r) or (k, r)- adjacent 

biregular fuzzy semigraph if the adjacent degree of each vertex is either k or r. 

Definition 6.2.4 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is a 

consecutive adjacent biregular fuzzy semigraph of consecutive adjacent degree 

(k, r) or (k, r)- consecutive adjacent biregular fuzzy semigraph if the 

consecutive adjacent degree of each vertex is either k or r. 
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Theorem 6.2.5 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be a k-uniform fuzzy semigraph on a semigraph 

𝐺∗: (𝑉, £, 𝑋) such that 𝜇 is a constant function, with no middle-end vertex and 

its end vertex graph 𝐺𝑒* is a star.  

i. The semigraph G is a v-edge degree biregular and adjacent biregular 

ii. G is a consecutive adjacent biregular fuzzy semigraph if and only if 

the number of edges is 2.  

Proof: 

 Let E1,  E2 , ⋯, Em  be the edges of G with a common end vertex u such 

that its end vertex graph 𝐺𝑒* is a star with u as an apex vertex.  

Let 𝜇 be a constant function of constant value c. G is k-uniform.   

i.       The edge degree of the vertex u in G is mc. The edge degree of all the 

other vertices is c. Hence G is a (mc, c)- v-edge degree biregular fuzzy 

semigraph. 

       The adjacent degree of the vertex u in G is mc(k – 1). The adjacent 

degree of all the other vertices is c(k – 1). Hence G is a (mc(k – 1), c(k – 

1))- adjacent biregular fuzzy semigraph. 

ii. The consecutive adjacent degree of the vertex u in G is mc. The 

consecutive adjacent degree of the end vertices is c. The consecutive 

adjacent degree of the middle vertices vertices is 2c.  

Hence G is a biregular fuzzy semigraph if and only if mc = 2c 

                                                          if and only if m = 2 
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Theorem 6.2.6 

 Let 𝐺: (𝜎, 𝜇, 𝜂)  be a k-uniform fuzzy semigraph on a semigraph 

𝐺∗: (𝑉, £, 𝑋) such that 𝜇 is a constant function and its end vertex graph 𝐺𝑒* is 

a cycle. Then the adjacency fuzzy graph Ga of G is a biregular fuzzy graph. 

Proof: 

 Let u1,u2 , ⋯,un  be the end vertices of G such that its end vertex graph 

𝐺𝑒* is a cycle u1u2⋯unu1.   

 Since G is k-uniform, the fuzzy subgraph induced by the k vertices of 

each edge (ui,⋯, ui+1) is complete in the adjacency graph 𝐺𝑎*. 

 The adjacency graph 𝐺𝑎* has the cycle u1u2⋯unu1 together with the n 

complete graphs formed by the vertices of the edge (ui,⋯, ui+1), 1≤i≤n, where 

un+1=u1. 

Therefore 𝑑𝐺𝑎
∗ (𝑣𝑖) = 2(𝑘 − 1), 𝑖 = 1,2, ⋯ , 𝑛 

If u is any middle vertex, 𝑑𝐺𝑎
∗ (𝑢) = k - 1. 

Let µ(e) = c for every e∈E. Then 𝜇𝑎(e) = µ(e)=c for every e∈ 𝐸𝑎.   

Now  

𝑑𝐺𝑎
(𝑢) = ∑ 𝜇𝑎(𝑢𝑣)

𝑢𝑣𝜖𝐸𝑎

 

                                                           = c 𝑑𝐺𝑎
∗ (𝑢) 

Therefore  𝑑𝐺𝑎
(𝑢) = 2𝑐(𝑘 − 1), if u is an end vertex of an edge in G 

 and 𝑑𝐺𝑎
(𝑢) = c (k-1), if u is a middle vertex of an edge in G. 

Therefore Ga is (2c(k-1),c(k-1))- biregular. 
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6.3  TOTALLY REGULAR FUZZY SEMIGRAPHS 

Definition 6.3.1 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is a 

regular fuzzy semigraph of total degree r or r-totally regular fuzzy semigraph 

if the total degree of each vertex is r. 

Definition 6.3.2 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is a 

v-edge degree totally regular fuzzy semigraph of total vertex edge degree r or 

r- v- total edge degree regular fuzzy semigraph if the total edge degree of each 

vertex is r. 

Definition 6.3.3 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is an 

adjacent totally regular fuzzy semigraph of adjacent total degree r or r- 

adjacent totally regular fuzzy semigraph if the adjacent total degree of each 

vertex is r. 

Definition 6.3.4 

 Let 𝐺: (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on semigraph 𝐺∗: (𝑉, £, 𝑋). G is a 

consecutive adjacent totally regular fuzzy semigraph of consecutive adjacent 

total degree r or r- consecutive adjacent totally regular fuzzy semigraph if the 

consecutive adjacent total degree of each vertex is r. 
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Theorem 6.3.5 

 Let G(𝜎, 𝜇, 𝜂) is a fuzzy semigraph on G*(V, £, X). Then 𝜎 is a constant 

function if and only if the following are equivalent. 

      i). G is a regular fuzzy semigraph. 

     ii). G is a totally regular fuzzy semigraph. 

Proof 

Suppose 𝜎 is a constant function of constant value c. 

Assume that G is a k-regular fuzzy semigraph. 

Then de(u) = k, for all u ∈ V 

        tde(u) = de(u) + 𝜎(𝑢) 

         = k + p, for all u ∈V 

 Therefore G is a (k + p)-totally regular fuzzy semigraph. 

Hence (i) implies (ii). 

Suppose that Ge is a q- totally regular fuzzy semigraph. 

Therefore tde(u) = q, ∀ u∈V 

     de(u) + 𝜎(𝑢) = q, ∀ u∈V 

            de(u) = q - 𝜎(𝑢), ∀ u∈V 

       = q - p 

Hence G is a (q - p)-regular fuzzy semigraph. 

Hence (ii) implies (i). 

Therefore (i) and (ii) are equivalent. 

Conversely assume that (i) and (ii) are equivalent. 
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That is, G is a regular fuzzy semigraph if and only if it is a totally regular fuzzy 

semigraph. 

Assume that 𝜎 is not a constant function. 

Therefore 𝜎(𝑢) ≠ 𝜎(𝑣) for atleast one pair of vertices u, v∈V  

tde(u) = de(u) + 𝜎(𝑢) 

tde(v) = de(v) + 𝜎(𝑣) 

If G is a regular fuzzy semigraph, the above two equation imply that tde(u) ≠ 

tde(v)  

Hence G is not a totally regular fuzzy semigraph which is a contradiction. 

Hence 𝜎 is a constant function. 

The following theorems hold similarly under the same reasoning 

Theorem 6.3.6 

 Let G(𝜎, 𝜇, 𝜂) is a fuzzy semigraph on G*(V, £, X). Then 𝜎 is a constant 

function if and only if the following are equivalent. 

      i). G is a v-edge degree regular fuzzy semigraph. 

     ii). G is a v-edge degree totally regular fuzzy semigraph. 

Theorem 6.3.7 

 Let G(𝜎, 𝜇, 𝜂) is a fuzzy semigraph on G*(V, £, X). Then 𝜎 is a constant 

function if and only if the following are equivalent. 

      i). G is an adjacent regular fuzzy semigraph. 

     ii). G is an adjacent totally regular fuzzy semigraph. 
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Theorem 6.3.8 

 Let G(𝜎, 𝜇, 𝜂) is a fuzzy semigraph on G*(V, £, X). Then 𝜎 is a constant 

function if and only if the following are equivalent. 

      i). G is a consecutive adjacent regular fuzzy semigraph. 

     ii). G is a consecutive adjacent totally regular fuzzy semigraph. 

Theorem 6.3.9 

 Let G(𝜎, 𝜇, 𝜂) is a fuzzy semigraph on G*(V,E,X). Then 𝜎 is a constant 

function if and only if the following are equivalent. 

     i. The end vertex fuzzy graph Ge of G is a regular fuzzy graph. 

    ii. Ge is a totally regular fuzzy graph. 

Theorem 6.3.10 

 Let G(𝜎, 𝜇, 𝜂) is a fuzzy semigraph on G*(V,E,X). Then 𝜎 is a constant 

function if and only if the following are equivalent. 

     i. The adjacency fuzzy graph Ga of G is a regular fuzzy graph. 

     ii. Ga is a totally regular fuzzy graph. 

Theorem 6.3.11 

 Let G(𝜎, 𝜇, 𝜂) is a fuzzy semigraph on G*(V,E,X). Then 𝜎 is a constant 

function if and only if the following are equivalent. 

    i. The consecutive adjacency fuzzy graph Gca of G is a regular fuzzy graph. 

   ii. Gca is a totally regular fuzzy graph. 
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Theorem 6.3.12 

 If G( 𝜎, 𝜇, 𝜂)   is a fuzzy semigraph of stage c on r-regular fuzzy 

semigraph on G*(V,E,X), then its end vertex fuzzy graph Ge is totally regular. 

Proof:  

Let Ge be the end vertex fuzzy graph of G. Then  

𝑡𝑑𝐺𝑒
 (u) = 𝑑𝐺𝑒

(𝑢) +  𝜎(𝑢) 

              = ∑𝑢≠𝑣 𝜇(𝑢𝑣) + 𝜎(𝑢)  

              = cr + c 

     = c(r + 1)  

Therefore Ge  is  c(r +1)-totally regular. 

  



 

 

  

 

Conclusion 
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CONCLUSION 

 

 The concept of  fuzzy semigraph have been introduced. The definitions 

of fuzzy sub semigraphs spanning fuzzy subsemigraph have been provided and 

some definitions have also been illustrated with examples.  

 The concept of effective fuzzy semigraph is explained and   properties 

of effectiveness of the three associated fuzzy graphs of an effective fuzzy 

semigraphs are also discussed which may be used for future studies and 

research. Various degrees of a vertex of a fuzzy semigraph are defined and 

some results on degrees of vertices in a fuzzy semigraph are studied. Different 

types of isomorphisms on fuzzy semigraphs are studied. Complete fuzzy 

semigraph is defined. Transport networks and telecommunication networks 

can be modeled as fuzzy semigraphs. Hence our findings may be useful for 

future studies and research.  
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Abstract 

In this paper, effective fuzzy and various concepts in fuzzy semigraphs are defined and 

illustrated through examples. Some results on effective fuzzy semigraphs have been arrived. 

1. Introduction 

The theory of fuzzy graphs was introduced by Rosanfeld in 1975. 

characteristics of Fuzzy graphs were dealt by Azriei Rosanfeld [7]. 

Bhattacharya [1] contributed some useful remarks on fuzzy graphs. Some 

operations on fuzzy graphs were defined by J. N. Modeson and C. S. Peng [3]. 

The concept of semigraph was introduced by E. Sampath Kumar [2]. K. 

Radha [6] introduced the concept of Fuzzy semigraph. Fuzzy semigraphs 

have applications in road network, railway network and telecommunications. 

In this paper we have defined effective edge and effective fuzzy semigraphs. 

2. Preliminaries 

Definition 2.1. A graph G is a pair  EV ,  where V is a non empty set of 
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points which are called vertices and E is a set of ordered pairs of elements of 

V which are called edges of G. 

Definition 2.2. A simple graph is an undirected graph without self loops 

and parallel edges. 

Definition 2.3. A complete graph is a simple graph in which every pair of 

distinct vertices is connected by an edge. A graph G is connected if there 

exists a path between every pair of vertices.  

Definition 2.4 [7]. Let V be a non-empty finite set and .VVE   A 

fuzzy graph  ,:G  is a pair of functions  1,0:  V  and  1,0:  E  

such that      yxxy   for all ., Vyx   Underlying crisp graph is 

denoted by  .,: EVG  

Definition 2.5. G is an effective fuzzy graph if      yxxy   for all 

.Exy   

Definition 2.6. G is a complete fuzzy graph if      yxxy   for all 

., Vyx   

Definition 2.7 [7]. If   ,0 xy  then x and y are called neighbours, x and 

y are said to lie on the edge .xye   

Definition 2.8. A path  in a fuzzy graph  ,:G  is a sequence of 

distinct vertices nvvvv ,,,, 210   such that   .1,0,1 nivv ii    Here „n‟ 

is called the length of the path. The consecutive pairs  ii vv ,1  are called 

arcs of the path. 

Definition 2.9 [7]. The strength of that path is defined as  ii

n

i
vv 1

1



  

i.e., it is the Weight of the weakest edge. If vu,  are connected by means of 

paths of length „k‟, then            ,,sup 1132211 vuvvvvvvuvuv k
k

   

.,,, 112 EvvVvv iik    

Definition 2.10 [7]. The strength of connectedness between u and v is 

     .,,3,2,1,sup,  kvuvu k  A fuzzy graph G is connected if 

  0,  vu  for all ., Vvu   An edge xy is said to be a strong edge if 
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   .,, yxyx   A node x is said to be an isolated node if 

  .,0, Xyyx    

Definition 2.11 [8]. A semigraph is a pair  ,, XV  where V is a non-

empty set of elements called vertices and X is a set of n-tuples called edges of 

distinct vertices for various 2n  satisfying the conditions 

1. Any two edges have at most one vertex in common  

2. Two edges    mn vvvEuuuE ,,,,,,, 212211    are considered 

to be equal if and only if (a) nm   (b) either ii vu   for 1i  to n or 

1 ini vu  for 1i  to n. 

In the edge   121 ,,,, uuuuE n  and nu  are called called the end 

vertices and all vertices in between them are called middle vertices. (m- 

vertices). If a middle vertex is an end vertex of some other edge, it is called 

middle end vertex. 

Definition 2.12 [6]. Consider a semigraph  .,: XVG  A fuzzy 

semigraph on  XVG ,:  is defined as   ,,  where  ,1,0:  V  

   1,0:,1,0:  XVV  are such that 

(i)         VVvuvuvu  ,,  

(ii)            nnn uuuuuuuue   113221 ,,,   if 

  2,,,, 21  nuuue n  is an edge in G. 

Here  ,  is a fuzzy graph. 

Example 2.13 [6]. Consider the fuzzy semigraph in Figure 2.1. Here 

31 , vv  and 5v  are end vertices 2v  is a middle vertex 4v  and 6v  are middle-

end vertices. Here      543332125611 ,,,,,,,, vvvEvvvEvvvE   and 

 644 , vvE   are the edges of the semigraph. 



K. RADHA and P. RENGANATHAN 

Advances and Applications in Mathematical Sciences, Volume 20, Issue 5, March 2021 

898 

 

Figure 2.1. Fuzzy semi graph  .,,: G  

Definition 2.14 [6]. The fuzzy semigraph   ,,H  is called a fuzzy 

subsemigraph of   ,,G  if  

(i) all the edges of H are subedges of G, 

(ii)    uu   for all ,Vu   

(iii)    uvuv   for all   ,, VVvu   

(iv)    ee   for all .Xe    

Definition 2.15 [6]. The fuzzy subsemigraph   ,,H  is called a 

spanning fuzzy subsemigraph of the fuzzy semi graph   ,,G  if 

   uu   for all .Vu   

In this case the fuzzy semigraph and its spanning fuzzy semigraph differ 

in the weights of their edges. Spanning fuzzy sub semi graph   ,,H  of 

the fuzzy semigraph   ,,:G  is given in Figure 2. 

 

Figure 2.2. Fuzzy subsemigraph of the graph in 2.1. 
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Figure 2.3. Spanning fuzzy subsemigraph of figure 2.1. 

Definition 2.16 [6]. A subedge (fs-edge) of an edge 

 nvvvvE ,,,, 321   is a k-tuple  
kiii vvv ,,,

21
  where  211 ii  

nik   or .1 11 niii kk     

Definition 2.17 [6]. A partial edge (fp-edge) of an edge 

 nvvvvE ,,,, 321   is a  -nij  tuple  jii vvvE ,,, 1   where 

.1 ni   

3. Fuzzy Graphs Associated with Semigraphs 

In this section, we define three fuzzy graphs associated with given fuzzy 

semigraph and discuss some of their properties. 

Definition 3.1. End Vertex Fuzzy Graph (e-Fuzzy Graph) :eG  

Let    ,,:G  be a fuzzy semigraph  ., XVG  The fuzzy graph 

 eeeG  ,:  with vertex set V in which two vertices are adjacent if and only 

if they are end vertices of an edge in G such that    uue   for every u in 

V and    uvuve   for every pair of end vertices u and v in G is called the 

end vertex fuzzy graph associated with G.  

Definition 3.2. Adjacency Fuzzy Graph (a-Fuzzy Graph) :aG  

The fuzzy graph  aaaG  ,:  with vertex set V in which two vertices 

are adjacent if and only if they are adjacent in G such that    uue   for 

every u in V and        vvvvuvuv jiiie   ,,1   for every pair of 

adjacent vertices u and v in G, where  vvvvu jii ,,,,, 1   is an edge or a 
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partial edge of G, is called the adjacency vertex fuzzy graph associated with 

G. 

Definition 3.3. Consecutive adjacency fuzzy graph (ca-fuzzy graph) 

:caG   

Let   ,,:G  be a fuzzy semigraph  ., XVG  The fuzzy graph 

 cacaeG  ,:  with vertex set V in which two vertices are adjacent if and 

only if they are consecutively adjacent in G such that    uuca   for every 

u in V and    uvuvca   for every pair of consecutive adjacent vertices u 

and v in G is called the consecutive adjacency vertex fuzzy graph associated 

with G. 

4. Various Concepts in Fuzzy Semigraphs 

Definition 4.1. Two vertices in a fuzzy semigraph G are said to be 

adjacent if they belong to the same edge and are consecutively adjacent if in 

addition they are consecutive in order as well. 

Definition 4.2. Any two edges in a fuzzy semigraph are adjacent if they 

have a vertex in common. 

Definition 4.3. Any two edges in a fuzzy semigraph are said to be 

(i) ee-adjacent if common vertex of the edges is end vertex in both the 

edges, 

(ii) em-adjacent if common vertex of the edges is an end vertex of one edge 

and middle vertex of the other edge and 

(iii) mm-adjacent if common vertex of the edges is a middle vertex in both 

the edges. 

Definition 4.4. Cardinality of an edge in a semigraph is said to be k if 

the edge contains k number of vertices. 

Definition 4.5. An edge in a semigraph G is said to be an s-edge if its 

cardinality .3K  

Example 4.6. Consider Figure 2.1. 
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1. 1v  and 5v  are adjacent vertices since they belong to the same edge 

11 , vE  and 5v  are consecutively adjacent. 

2. 1E  and 3E  are ee-adjacent. 1E  and 4E  are em-adjacent. 

3. 21 , eE  and 3E  have cardinality 3. 4E  has cardinality 2. 

5. Effective Edges 

Definition 5.1. An effective edge in a fuzzy semigraph. 

An edge “e” of a fuzzy semigraph is called an effective edge if 

       nn uuuuue  121 ,,,   for Xe   and      vuuv   

for every .Euv   An edge “e” of a fuzzy semigraph is called an e-effective 

edge if        nn uuuuue  121 ,,,   for .2n  

Definition 5.2. Effective fuzzy semigraph. 

A fuzzy semigraph   ,,:G  is said to be an Effective Fuzzy 

semigraph if all the edges of G are effective edges. In other words 

        Xeuuuuue nn  121 ,,,   and      vuuv   for 

every edge .Euv   

An effective fuzzy semigraph is shown in Figure 5.1. 

 

Figure 5.1. Effective semigraph. 

Definition 5.3. Fuzzy effective subsemigraph. 

A fuzzy subsemigraph H of a fuzzy semigraph   ,,:G  is said to be a 

fuzzy effective sub semigraph if all its edges are effective edges. 

Example 5.4. Consider the fuzzy semigraph in Figure 5.2, the fuzzy 

subsemigraph of (5.2) is given in the figure 5.3. 
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Figure 5.2. Fuzzy semigraph. 

 

Figure 5.3. Fuzzy effective subsemigraph of the fuzzy semigraph in Figure 

5.2. 

6. Some Properties 

Remark 6.1. Fuzzy sub semigraphs and spanning fuzzy sub semigraphs 

of an effective fuzzy semigraph need not be effective. 

Theorem 6.2. Induced subsemigraphs of an effective fuzzy semigraph are 

effective. 

Proof. Since membership values are preserved in induced fuzzy 

subsemigraphs, induced subsemigraphs of an effective fuzzy semigraph are 

effective. 

Theorem 6.3. End vertex fuzzy graph of an effective fuzzy semigraph is 

an effective fuzzy graph. 

Proof. In the end vertex fuzzy graph associated with  eeeGG  ,:,  

with vertex set V, two vertices are adjacent if and only if they are end vertices 

of an edge in G such that    uue   for every u in V and    uvuve   

for every pair of end vertices u and v in G. 

If G is an effective fuzzy semigraph, then      vuuv   for every 

pair of end vertices u and v in G. 
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Therefore            vuvuuvuv eee   for every edge uv 

in .eG  Hence eG  is an effective fuzzy graph. 

Theorem 6.4. End vertex fuzzy graph of an e-effective fuzzy semigraph is 

an effective fuzzy graph. 

Proof. If G is an e-effective fuzzy semigraph, then      vuuv   for 

every pair of end vertices u and v in G and hence the theorem follows. 

Remark 6.4. Adjacency fuzzy graph (ea-Fuzzy Graph) of an e-effective 

fuzzy semigraph need not be effective. 

Remark 6.5. Consecutive adjacency fuzzy graph of an e-effective fuzzy 

semigraph need not be effective. 

Remark 6.6. Adjacency fuzzy graph of an effective fuzzy semigraph need 

not be effective. 

Theorem 6.7. If G is an effective fuzzy semigraph, then the consecutive 

adjacency fuzzy graph of G is an effective fuzzy graph. 

Proof. In the consecutive adjacency vertex fuzzy graph associated with 

 cacacaGG  ,:,  with vertex set V, two vertices are adjacent if and only if 

they are consecutively adjacent in G.  

Also    uuca   for every u in V and    uvuvca   for every pair of 

consecutive adjacent vertices u and v in G. 

Hence G is effective      vuuv   

     vuuv cacaca   

caG  is effective.  

7. Conclusion 

In this paper we have introduced the concept of effective fuzzy 

semigraph. Some properties of effectiveness of the three associated fuzzy 

graphs of an effective fuzzy semigraphs are also discussed which may be used 

for future studies and research. Neural networks and transportation 

networks can be modeled into fuzzy semigraphs and effective fuzzy 

semigraphs. 
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Abstract 

In this paper, isomorphism, weak isomorphism and co-weak isomorphism of fuzzy 

semigraphs are introduced and some of their properties are studied. End vertex isomorphism 

(ev-isomorphism), edge isomorphism (e-isomorphism) and adjacency isomorphism (a-

isomorphism) of fuzzy semigraphs are defined. Properties of effective edges and effective fuzzy 

semigraphs under isomorphism are studied. Also, it is proved that isomorphism is an 

equivalence relation and week isomorphism is a partial order relation.  

1. Introduction 

In the year 1975 Rosenfeld introduced the theory of fuzzy graphs. 

Characteristics of fuzzy graphs were dealt by him. Some wonderful results 

and remarks on fuzzy graphs were contributed by Bhattacharya. Some 

operations on fuzzy graphs were defined by Modeson and J. N. Peng. A. 

Nagoor Gani and K. Radha studied the regularity properties of fuzzy graphs. 

The concept of semigraph was introduced by E. Sampath Kumar. The 
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Concept of fuzzy semigraphs was introduced by K. Radha and P. 

Renganathan, K. Radha and P. Renganathan defined effective fuzzy 

semigraph and studied some properties of it. The order, size and the degree of 

isomorphic fuzzy graphs were studied by A. Nagoor Gani and J. Malarvizhi. 

The degree sequence and the degree set of fuzzy graphs and their properties 

were studied by K. Radha and A. Rosemine. Fuzzy K. Radhaand P. 

Renganathan semigraphs have wide range of applications in Railway 

network, Road network, telecommunication system, etc. In this paper 

isomorphism, weak isomorphism and co-weak isomorphism of fuzzy 

semigraphs are introduced. Also, some isomorphic properties of fuzzy 

semigraphs are discussed. 

2. Preliminaries 

Definition 2.1. A graph G is a pair  ,, EV  where V is a non-empty set of 

points which are called the vertices and E is a set of ordered pairs of elements 

of V which are called edges of G.  

Definition 2.2. A fuzzy graph  ,:G  on  EVG ,:  is a pair of 

functions  1,0:  V  and  1,0:  VV  such that      ,vuuv   

.Euv   

Definition 2.3. G is an effective fuzzy graph if      vuuv   for all 

Euv   and G is a complete fuzzy graph if      vuuv   for all 

., Vvu    

Definition 2.4 [3]. A semigraph is a pair  ,, XV   where V is a non-

empty set of elements called vertices and X is a set of n-tuples called edges of 

distinct vertices for various 2n  satsfying the conditions  

(1) Any two edges have at most one vertex in common  

(2) Two edges  nuuux ,,, 211   and  mvvvx ,,, 212   are 

considered to be equal if and only if (a) nm   (b) either ii vu   for 

ni ,,2,1   or 1 ini vu  for .,,2,1 ni    

In the edge   121 ,,,, uuuux n  and nu  are called the end vertices and 
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all the vertices in between them are called middle vertices (m-vertices). If a 

middle vertex is an end vertex of some other edge, then it is called a middle 

end vertex.  

Definition 2.5 [3]. A subedge (fs-edge) of an edge  nvvvvx ,,,, 321   

is a k-tuple  
kiii vvvx ,,,

21
  where niii k  211  or ki1   

niik   11   and a partial edge (fp-edge) of an edge 

 nvvvvx ,,,, 321   is a  1 ij -tuple  jii vvvx ,,, 1   where 

.1 ni    

If VVE   is taken as the set of all uv  which is a partial edge of some 

edge ,Xx   then a semigraph can be taken as a triple  .,, XEV    

Definition 2.6 [5]. A fuzzy semigraph on  XEVG ,,:  is defined as 

  .,:G  where      1,0:,1,0:,1,0:  XVVV  are such 

that  

(i)       Euvvuuv  ,   

(ii)            nnnn uuuxuuuuuux ,,,, 211121     

.2,  nX   

Definition 2.7 [6]. An edge  nuuux ,,, 21   of a fuzzy semigraph is 

called an effective edge, if        nn uuuuuux 13221    

   nuu  1  and      11   iiii uuuu  for all i.  

Definition 2.8 [6]. A fuzzy semigraph   .,:G  is said to be an 

effective fuzzy semigraph if all the edges of G are effective edges.  

Definition 2.9 [4]. A homomorphism of fuzzy graphs GGf :  is a 

map VVf :  such that     ufu   for all       vfufuvVu  ,  

for all ., Vvu    

Definition 2.10 [4]. An isomorphism of fuzzy graphs GGf :  is a 

bijective map VVf :  such that       uvVuufu  ,,  

     .,, Vvuvfuf   
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Definition 2.11 [4]. A weak isomorphism of fuzzy graphs GGf :  is a 

map VVf :  which is bijective and satisfies     ufu   for all Vu   

and       vfufuv   for all ., Vvu   

Definition 2.12 [4]. A co-weak isomorphism of fuzzy graphs GGf :  

is a map VVf :  which is bijective and satisfies     ufu   for all 

Vu   and       vfufuv   for all ., Vvu   

Definition 2.13 [3]. Let  111 ,: XVG  and  222 ,: XVG  be two 

semigraphs and f is a bijection from 1V  to .2V  Let  nvvvx ,,, 21   be an 

edge in fG ,1  is an isomorphism if  nvvv ,,, 21   is an edge in 1G  then 

      nvfvfvf ,,, 21   is an edge in fG ,2  is an end vertex isomorphism (ev-

isomorphism) if the set       nvfvfvf ,,, 21   forms an edge in 2G  with end 

vertices  1vf  and  .nvf  f is an edge isomorphism (e-isomorphism) if the set 

      nvfvfvf ,,, 21   forms an edge in 2G  and f is an adjacency 

isomorphism (a-isomorphism) if the adjacent vertices in 1G  are mapped onto 

adjacent vertices in .2G   

3. Isomorphisms on Fuzzy Semigraphs 

Definition 3.1. Let   ,,:G  and   ,,:G  be two fuzzy 

semigraphs with underlying semigraphs  XEVG ,,:  and  .,,: XEVG   

A homomorphism of fuzzy semigraphs GGf :  is a map denoted by 

VVf :  which satisfies     ufu   for all       vfufuvVu  ,  

for all Vvu ,  and     ,xfx   for all .Xx    

Definition 3.2. Let   ,,:G  and   ,,:G  be two fuzzy 

semigraphs with underlying semigraphs  XEVG ,,:  and  .,,: XEVG   

An isomorphism of fuzzy semigraphs GGf :  is a bijective map denoted 

by VVf :  which satisfies (1). If  nvvvx ,,, 21   is an edge in G, then 

      nvfvfvf ,,, 21   is an edge in G  (2).     ufu   for all Vu    

(3).       vfufuv   for all Euv   and 4.     ,xfx   for all 

.Xx    
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Definition 3.3. An end vertex isomorphism (ev-isomorphism) of fuzzy 

semigraphs GGf :  is a bijective map VVf :  which satisfies (1). If 

 nvvvx ,,, 21   is an edge in G, then       nvfvfvf ,,, 21   forms an 

edge in G  with end vertices  1vf  and  .nvf  (2).     ufu   for all 

Vu   (3).       vfufuv   for all ,Euv   and (4).     ,xfx   for all 

.Xx   

Definition 3.4. An edge isomorphism (e-isomorphism) of fuzzy 

semigraphs GGf :  is a bijective map VVf :  such that 1. If 

 nvvvx ,,, 21   is an edge in G, then       nvfvfvf ,,, 21   forms an 

edge in .G  (2)      ,, Vuufu   3.        ,, Euvvfufuv   4. 

     ., Xxxfx   

Definition 3.5. An adjacency isomorphism (a-isomorphism) of fuzzy 

semigraphs GGf :  is a bijective map VVf :  which satisfies (1). The 

adjacent vertices in G are mapped onto adjacent vertices in ,G  (2). 

    ufu   for all ,Vu   (3).       vfufuv   for all Euv   and (4). 

    ,xfx   for all .Xx    

Theorem 3.6. Isomorphisms between fuzzy semigraphs is an equivalence 

relation.  

Proof of Theorem 3.6. Let     ,,:,,,: GG  and 

  ,,:G  be fuzzy semigraphs with vertex sets VV ,  and V   

respectively.  

Let VVf :  be such that   ., Vvvvf   This mapping f is a 

bijection. Also     ufu   for all       vufuvVu  ,,  for all 

Euv   and     ,xfx   for all .Xx   Thus f is an isomorphism from G to 

itself.  

Hence isomorphism is a reflexive relation.  

Let GGf :  be an isomorphism between the fuzzy semigraphs G and 

G  Then the mapping VVf :  satisfies  

    ufu   for all Vu   and  (1)  
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      vufuv  ,  for all Euv   (2)  

    ,xfx   for all .Xx   (3)  

Since f is bijective, for u  in ,V   there exists u in V such that   uuf 1   

Hence by (1)        uufuf  1  for all .Vu   From this it 

follows that     ,1 xfx    for all x   in .X    

Also            vuvfufvfuf   11  for all Evu   (4)  

Hence we get a 1-1, onto map VVf  :1
 which is an isomorphism.  

Thus G  is isomorphic to G. Hence isomorphism is the symmetric.  

Let VVf :  and VVg :  be isomorphisms from fuzzy 

semigraphs G to G  and from G  to G   respectively.  

Then fg   is 1-1 and onto map from VV   where     ,ufgufg    

for all .Vu    

Then         ufgufu   for all u in V  

              Euvvgufgvufuv  ,,,   

     xfgx   for all .Xx    

Therefore fg   is an isomorphism between G and G    

Hence isomorphism is transitive and hence it is an equivalence relation.  

Theorem 3.7. Let   ,,:G  and   ,,:G  be two isomorphic 

fuzzy semigraphs. Then an edge in G is an effective edge if and only if the 

corresponding image edge in G  is effective.  

Proof of Theorem 3.7. Let GGf :  be an isomorphism between the 

fuzzy semigraphs G and G  with underlying sets V and .V    

x is an effective edge in G  

           ,113221 nnn uuuuuuuux     
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 nuuux ,,, 21   

                  nnn ufufufufufufxf   1121   

 xf  is an effective edge in .G  

Also for any uve   in E,  

                .vfufvfufvuuv   

Theorem 3.8. If G and G  are isomorphic fuzzy semigraphs then G is an 

effective fuzzy semigraph if and only if G  is also effective.  

Proof of Theorem 3.8. Since G is isomorphic to ,G  there is an 

isomorphism .: GGf   Therefore G is an effective fuzzy semigraph  

Each edge in G is effective  The image of each edge in G is effective  Each 

edge in G  is effective G  is an effective fuzzy semigraph.  

Definition 3.9. An edge  nuuux ,,, 21   of a fuzzy semigraph is 

called an e-effective edge if  

         nnn uuuuuux   1121   for .2n  

An edge  nuuux ,,, 21   of a fuzzy semigraph is called a semi-effective 

edge if      11   iiii uuuu  for all i.  

Definition 3.10. A fuzzy semigraph   ,,:G  is said to be an e-

effective fuzzy semigraph if all the edges of G are e-effective edges.  

G is said to be a semi-effective fuzzy semigraph if all the edges of G are 

semi-effective edges. 

Theorem 3.11. Let   ,,:G  and   ,,:G  be two isomorphic 

fuzzy semigraphs. Then an edge in G is an e-effective edge if and only if the 

corresponding image edge in G  is e-effective.  

Theorem 3.12. Let   ,,:G  and   ,,:G  be two isomorphic 

fuzzy semigraphs. Then an edge in G is a semi-effective edge if and only if the 

corresponding image edge in G  is semi-effective.  

Theorem 3.13. Let   ,,:G  and   ,,:G  be two isomorphic 
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fuzzy semigraphs. Then G is an e-effective fuzzy semigraph if and only if G  is 

e-effective.  

Theorem 3.14. Let   ,,:G  and   ,,:G  be two isomorphic 

fuzzy semigraphs. Then G is a semi-effective fuzzy semigraph if and only G  is 

semi-effective.  

4. Weak Isomorphisms 

Definition 4.1. Let   ,,:G  and   ,,:G  be two fuzzy 

semigraphs with underlying semigraphs  XEVG ,,:  and  .,,: XEVG   

A weak isomorphism of fuzzy semigraphs GGf :  is a bijective map 

VVf :  which satisfies (1). If  nvvve ,,, 21   is an edge in G, then 

      nvfvfvf ,,, 21   forms an edge in .G  (2).     ufu   for all vertices 

Vu   (3).       vfufuv   for all .Euv    

A weak-end vertex isomorphism (weak-ev-isomorphism) of fuzzy 

semigraphs GGf :  is a bijective map VVf :  which satisfies, (1). If  

 nvvve ,,, 21   is an edge in G then       nvfvfvf ,,, 21   forms an edge 

in G  with end vertices  1vf  and  ,nvf  (2).     ufu   for all ,Vu   (3). 

      vfufuv   for all .Euv    

A weak-edge isomorphism (weak-e isomorphism) of fuzzy semigraphs 

GGf :  is a bijective map denoted by VVf :  and which satisfies (1). 

If   nvvve ,,, 21   is an edge in G, then       nvfvfvf ,,, 21   forms an 

edge in G  (2).     ufu   for all ,Vu   (3).       vfufuv   for all 

., Vvu    

A weak-adjacency isomorphism (weak-a isomorphism) of fuzzy 

semigraphs GGf :  is a bijective map denoted by VVf :  and which 

satisfies (1). If the adjacent vertices in G are mapped onto adjacent vertices in 

,G  (2).     ufu   for all ,Vu   (3).       vfufuv   for all .Euv   

Theorem 4.2. Weak isomorphism between fuzzy semigraphs is a partial 

order relation.  
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Proof of Theorem 4.2. Let     ,,:,,,: GG  and 

  ,,:G  be fuzzy semigraphs with vertex sets VV ,  and V   

respectively. 

Let VVf :  such that   ., Vvvvf   Then f is a weak 

isomorphism from G to itself. Thus G is weak isomorphic to itself. Hence 

weak isomorphism satisfies reflexive relation.  

Let VVf :  and VVg :  be weak isomorphisms from fuzzy 

semigraphs G to G  and from G  to G respectively  

Then f and g satisfies        .Euvvfufuv    

And         ,vfgufgvu   for all .Evu    

This can happen only when G and G  have the same number of edges 

and the corresponding membership values of the edges are equal. Hence G 

and G  are identical (apart from the naming of the vertices). Thus Weak 

isomorphism between fuzzy semigraphs is anti symmetric.  

Let VVf :  and VVg :  be weak isomorphisms on fuzzy 

semigraphs G to G  and G  to G   respectively.  

Then         ufgufu   for all u in V  

              Vvuvfgufgvfufuv  ,,  

Thus fg   is a weak isomorphism between G and G   and therefore 

weak isomorphism between fuzzy semigraphs is transitive. Hence the weak 

isomorphism between fuzzy semigraphs is a partial order relation.  

Remark 4.3. When   ,,:G  is weak isomorphic to  ,,, G  then 

the effectiveness of one fuzzy semigraph need not imply the effectiveness of 

the other. The Fuzzy semigraph G in Figure 4.1 and the Fuzzy semigraph G  

in Figure 4.2 are weak isomorphic, G is effective but G  is not effective. Also 

the Fuzzy semigraph G in Figure 4.3 and the Fuzzy semigraph G  in Figure 

4.4 are weak isomorphic, G  is effective but G is not effective. 
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 Figure 4.1.  .,,: G               Figure 4.2.  .,,: G  

             

Figure 4.3.  .,,: G            Figure 4.4.  .,,: G  

Remark 4.4. Weak isomorphism need not preserve the e-effective and 

the semi-effective properties of the edges.  

5. Co-Weak Isomorphisms 

Definition 5.1. Let   ,,:G  and   ,,:G  be two fuzzy 

semigraphs with underlying semigraphs  XEVG ,,:  and  .,,: XEVG   

A co-weak isomorphism of fuzzy semigraphs GGf :  is a bijective map 

VVf :  which satisfies (1). If  nvvvx ,,, 21   is an edge in G, then 

      nvfvfvf ,,, 21   forms an edge in G  (2).     ufu   for all Vu   

(3).         xEuvvfufuv  ,,     ., Xxxf    

A co-weak end vertex isomorphism (co-weak ev-isomorphism) of fuzzy 

semigraphs GGf :  is a bijective map VVf :  and which satisfies, 

(1). If  nvvvx ,,, 21   is an edge in G then       nvfvfvf ,,, 21   forms 
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an edge in G  with end vertices  1vf  and  ,nvf  (2).     ufu   for all 

,Vu   (3).       vfufuv   for all ,Euv   (4).     ,xfx   for all 

.Xx   

A co-weak edge isomorphism (co-weak e-isomorphism) of fuzzy 

semigraphs GGf :  is a bijective map VVf :  and which satisfies (1). 

If  nvvvx ,,, 21   is an edge in G, then       nvfvfvf ,,, 21   forms an 

edge in G  (2).     ufu   for all ,Vu   (3).       vfufuv   for all 

Euv   and 4.     ,xfx   for all .Xx    

A co-weak adjacency isomorphism (co-weak a-isomorphism) of fuzzy 

semigraphs GGf :  is a bijective map VVf :  which satisfies, (1). If 

the adjacent vertices in G are mapped onto adjacent vertices in G  (2). 

    ufu   for all ,Vu   (3).       vfufuv   for all Euv   and (4). 

    ,xfx   for all .Xx    

Theorem 5.2. If GGf :  is a co-weak isomorphism on fuzzy 

semigraphs G and G  and if G  is a semi-effective fuzzy semigraph, then G is 

also a semi-effective fuzzy semigraph.  

Proof of Theorem 5.2. Since G  is an effective fuzzy semigraph and f is 

a co-weak isomorphism,  

Now                 vuvfufvfufuv   

But      .vuuv   Hence      ,vuuv   for all Euv   

Thus G is a semi-effective fuzzy semigraph.  

Remark 5.3. The semi-effectiveness of G need not imply the semi-

effectiveness of G  when G is co-week isomorphic to .G  
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Figure 5.1.  .,,: G                   Figure 5.2.  .,,: G  

Here G is co-weak isomorphic to .G  G is a semi-effective fuzzy semigraph 

but G  is not semi-effective.  

6. Conclusion 

In this work, isomorphism, weak isomorphism and co-weak isomorphism 

of a fuzzy semigraph are introduced and their properties are discussed. 

Transport networks and telecommunication networks can be modeled as 

fuzzy semigraphs. Hence our findings may be useful for future Studies and 

Research.  
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