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ABSTRACT

The concept of graph theory was initially developed by Euler in 1736. In 1965, Lotfi. A. Zadeh intro-
duced the concept of fuzzy sets, which has since been successfully applied to several uncertain real-world
decision problems. Berge introduced dominance as a theoretical term in graph theory in 1958. In 1983,
Atanassov presented intuitionistic fuzzy sets as a generalization of fuzzy sets. As described by Zadeh in
1975, interval-valued fuzzy sets are an extension of fuzzy sets in which the values of the membership de-
grees are intervals of numbers rather than integers. In 1993, Gau and Buehrer proposed a vague set theory,
which is a generalization of Zadeh’s fuzzy set theory. Picture fuzzy set is a modified version of fuzzy set
and intuitionistic fuzzy set presented by Cuong and Kreinovich. Pathinathan and Jon Arockiyaraj presen-
ted the hesitancy fuzzy graph, a new fuzzy graph with different theoretical features and validations. This
research work is focused on various kinds of domination and edge sequences in different fuzzy graphs. In
this research, we applied real-life applications to the above domination concept and we get the best result

from our all concepts.
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PREFACE

In 1736 the concept of graph theory was introduced by Euler. Fuzzy set theory was first introduced
by Zadeh in 1965. Rosenfield developed the structure of fuzzy graphs and obtained analogs of several
graph’s theoretical concepts. Mordeson proposed concepts in Fuzzy Incidence Graphs. Ore and Berge
introduced the concept of domination in 1962. Cockayne further developed the concept of domination.
Domination in graphs has been examined further by Haynes. Domination in fuzzy graphs using effective
edges was introduced by Somasundaram. Parvathi (2010) introduced the concept of domination number in
intuitionistic fuzzy graphs. Manjusha has also expressed strong domination. Irfan Nazeer has established
dominance in fuzzy incidence graphs. AM Ismayil has also expressed accurate split domination in fuzzy
graphs. AN Shain has discussed the inverse dominating set of interval-valued fuzzy graphs. Mathew and
Sunil Mathew introduced the concept of sequence in fuzzy graphs. This thesis “An intensive search on
distinct domination and edge sequence in various fuzzy graphs”Comprises ten chapters.

Chapter 1 contains a brief history of the theory of graphs, fuzzy graphs, domination in fuzzy graphs,
intuitionistic fuzzy graphs, interval-valued fuzzy graphs, vague fuzzy graph, and picture fuzzy graphs.
Some basic definitions and theorems on fuzzy graphs which are needed for the subsequent chapters have
been presented.

Chapter 2 focuses on a kind of strong domination constant number in pseudo regular fuzzy graph
and complete fuzzy graph were discussed. Definitions, results, and properties of strong domination con-
stant number are presented. The relationship between the strong domination constant number of a pseudo
regular fuzzy graph and the complete fuzzy graph is also examined. Further, the concept of a strong dom-
ination constant number is discussed with the inclusion of the relationship between pseudo regular and
totally pseudo regular fuzzy graph.

Chapter 3 explores a dual strong domination in vertex squared and vertex squared split intuitionistic
fuzzy graphs. Direct product, semi-strong product, and semi-product of two vertex squared intuitionistic
fuzzy graphs and join product of two vertex squared split intuitionistic fuzzy graphs are explained. The
properties and theorems related to these parameters are compared with other known domination paramet-
ers.

Chapter 4 starts with the concept of split domination in vertex squared interval-valued fuzzy graphs

namely n- split dominating set, n- split domination number. Moreover, this chapter consists vertex



squared cardinality, vertex squared independent set.

Chapter 5 introduces the new concept of perfect domination in the cartesian product of two interval-
valued fuzzy incidence graphs and tensor product of two interval-valued fuzzy incidence graphs utilizing
incidence pairs. Also, the concept of perfect domination number is used to discover which countries
(country) have the best education policies among various countries.

Chapter 6 focuses on some kinds of strong and weak domination in the composition of two vague
fuzzy incidence graphs. The strong edge incidentally dominating set, and weak edge incidentally dom-
inating set, strong edge incidentally domination number, and weak edge incidentally domination number
has been discussed.

Chapter 7 explores new kinds of strong and weak domination in complete intuitionistic fuzzy in-
cidence graphs. For different classes of complete intuitionistic fuzzy incidence graphs, we compute the
intuitionistic fuzzy incidence domination number, strong intuitionistic fuzzy incidence domination num-
ber, and weak intuitionistic fuzzy incidence domination number, and some theorems have been explained.

Chapter 8 introduce various types of dominating sets in product picture fuzzy graphs, such as the
fixed vertex dominating set, fixed edge dominating set, total fixed edge dominating set, and fixed edge
restrained dominating set. The properties with examples has been presented.

Chapter 9 explores a new concept of twin perfect domination in hesitancy fuzzy graphs and Omicron
products of two hesitancy fuzzy graphs offering some interesting results have been included. The proper-
ties with examples has been presented.

Chapter 10 starts with the concept of edge sequences in regular fuzzy graphs and pseudo regular
fuzzy graphs are explained by theorems with examples. In addition, a comparison of regular fuzzy graphs

and totally regular fuzzy graphs are also discussed.
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Chapter 1

Introduction

1. Introduction

1.1 Graph Theory

In the Seventeenth Century, great Mathematician Leonard Euler created the basic idea of graph theory.

Figure 1.1.1: LEONARD EULER

Euler in 1736 first introduced the concept of graph theory. Graph theory is an important branch of Math-
ematics. A graph is a useful tool for describing information regarding object relationships. Vertices,

relations, and edges are used to show the objects. In recent years, Graph Theory has seen a surge in
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Research activity.

1.2 Konigsberg Bridge Problem

Euler’s work on the Konigsberg Bridge problem can be traced back to the beginnings of graph theory. The
City of Konigsberg was located on the Pregel river in Prussia. The city occupied the island of Kneiphopf
plus areas on both banks. These regions were linked by seven bridges. The objective was to find a closed
path that ran across each of Konigsberg’s seven bridges exactly once. Euler demonstrated that there is

no solution to this problem. Konigsberg is now called Kaliningrad and is in Lithuania which recently

separated from U.S.S.R.

Figure 1.2.1: KONIGSBERG BRIDGE PROBLEM

1.3 Symposium on Graph Theory

A symposium on graph theory was organized in Delhi in 1973. A symposium on graph theory was held
at I.S.I. Calcutta in December 1976, and the proceedings were published by Macmillan Company India

Ltd. A conference on Combinatorics and graph theory was organized at [.S.I. Calcutta in February 1980.



1.4 Fuzzy Graph Theory

Springer-Verlag, Berlin, published the proceedings. 1.S.I. Calcutta held a Seminar on Combinatorics
and Applications’ in December 1982. Graph Theory and Combinatorics now account for one-third of all
Mathematics research papers published on a global scale. Due to its wide range of applications in many

domains such as Engineering, Social and Biological sciences, graph theory has grown dramatically.

1.4 Fuzzy Graph Theory

Several Mathematicians have discovered a new concept of graph theory. The new concepts like labeling,
coloring, and domination are helpful to all field. One of the most important Mathematical breakthroughs
of the twentieth century was a fuzzy set theory. Lotfi. A. Zadeh established the concept of fuzzy sets in
1965, and it has since been successfully used for a variety of real-life decision problems that are typically
ambiguous. A fuzzy set is a variant of a crisp set in which the set’s elements have various degrees of
membership. The crisp set is made up of two truth values O (false) and 1 (truth), and it is unable to deal
with ambiguous real-world problems.

Zadeh created a Mathematical theory that could deal with uncertainty and imprecision. The advantage
of substituting classical sets with fuzzy sets is that it improves accuracy. A fuzzy set model is, therefore,
more efficient than a classical model in systems with imprecision. Natural variables and traits such as

intelligence, beauty, and consistency can be studied efficiently using fuzzy sets.

1.5 Roman Domination

The Roman Empire was under attack some 1700 years ago, and Emperor Constantine had to determine
where to station his four field army units to defend eight regions. His strategy was to position the army
units so that each region was either defended by its own army (one to two units) or by a neighbour with two
army units, one of which could be moved directly to the undefended region if a conflict arose. Constantine
stationed two army units in Rome and two in Constantinople, his new capital. As a result, only Britain
could be reached in a single step. Constantine’s successors ended up losing control of Britain. The causes
were undoubtedly more complicated than our basic model could describe.

Apart from the placement of Roman army units, the same Mathematics can be applied to optimize
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the position of dwindling British fleets at the end of the Nineteenth Century or American military army
units during the Cold War. In addition to army placement, the same type of math is important when
determining the optimal location for a new hospital, fire station, or fast food restaurant in a town. Roman
dominion or its variants can often be used to model similar optimization Challenges. Cockayne formally
defined Roman dominant functions. Due to historical causes deriving from the Ancient Roman Empire,

one notable variation of domination in graphs is Roman domination.

Figure 1.5.1: ROMAN DOMINATION

1.6 Chess Domination

The game of chess, which was popular in ancient India, inspired the introduction of dominance. Around
1850, the study of domination in graphs began with the goal of putting the fewest number of queens on
an nxn chessboard while covering or dominating every square with at least one queen. These problems’
solutions are simply dominating sets in a graph, with the vertices representing chessboard squares and the
edges indicating the queen’s possible moves. Berge introduced dominance as a theoretical term in graph

theory in 1958.

In coding theory, the term ”dominance” is frequently employed. We defined various new domination and

edge sequences in fuzzy graphs.



1.7 Intuitionistic Fuzzy Graph

Figure 1.6.1: CHESS DOMINATION

1.7 Intuitionistic Fuzzy Graph

As a generalization of fuzzy sets, Atanassov introduced intuitionistic fuzzy sets in 1983. In the concept
of fuzzy set, Atanassov included a new component like the degree of non-membership. The degree of
membership of an element in a given set is given by fuzzy sets, whereas intuitionistic fuzzy sets give
both a degree of membership and a degree of non-membership that are more-or-less independent of one
another, with the only requirement that the sum of these two degrees is not greater than 1. Interval-valued
fuzzy sets are an extension of fuzzy sets in which the values of the membership degrees are intervals of
numbers rather than integers, as presented by Zadeh in 1975. Interval-valued fuzzy sets are consequently

important in applications like fuzzy control.

1.8 Vague Fuzzy Graph

Gau and Buehrer established the concept of vague set theory in 1993, which is a generalization of Zadeh’s
fuzzy set theory. The existence of the faulty membership degree may be explained quite well with a vague

set. When paired with systems that run on fuzzy graphs, a vague fuzzy graph is a generalized form of a
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fuzzy graph that provides more exactness, flexibility, and compatibility to a system. A vague fuzzy graph
can focus on determining the uncertainty, as well as the inconsistent and indeterminate information, of

any real-world scenario, when fuzzy graphs may not provide sufficient results.

1.9 Picture Fuzzy Graph

Picture fuzzy set is a modified version of fuzzy set and intuitionistic fuzzy set presented by Cuong and
Kreinovich. To deal with real-life circumstances containing information kinds such as yes, abstention,
no, and rejection, the picture fuzzy graph is more exact, adaptable, and compatible than the intuitionistic

fuzzy graph.

1.10 Hesitancy Fuzzy Graph

Pathinathan and Jon Arockiaraj introduced a new fuzzy graph labeled hesitancy fuzzy graphs and dis-
cussed their various theoretical properties and validations. The concept of hesitancy fuzzy graph is ap-
plied for choosing a time minimized emergency route to transport the accident victims to the preferred

hospital.

> A new kind of strong domination constant number in pseudo regular fuzzy graph and complete

fuzzy graph are discussed.

> A unique type of dual strong domination is established in vertex squared and vertex squared split

intuitionistic fuzzy graphs.
> A new concept of split domination is proposed for vertex squared interval-valued fuzzy graphs.

> A novel concept for perfect domination in cartesian product of two interval valued fuzzy incidence
graphs and tensor product of two interval valued fuzzy incidence graphs is offered using incidence

pair.

> In the composition of two vague fuzzy incidence graphs, a new concept of strong and weak domin-

ation is introduced.



1.11 Basic concepts in fuzzy graph theory

> In complete intuitionistic fuzzy incidence graphs, a new thing of strong and weak domination is

established.
> A specific type of fixed domination is proposed in product picture fuzzy graphs.

> A new kind of twin perfect domination in hesitancy fuzzy graph and Omicron product of two hes-

itancy fuzzy graphs are discussed.

> A new concept of edge sequences is offered in regular fuzzy graphs and pseudo regular fuzzy

graphs.
PRELIMINARIES

The chapter contains the basic definitions and theorems required to develop the subsequent chapter of this

thesis.

1.11 Basic concepts in fuzzy graph theory

Definition 1.11.1 A graph is a finite non empty set of objects called vertices together with a set of un-
ordered pair of distinct vertices of G, called edges. The vertex set and the edge set of G are respectively
denoted by V (G) and E(G). A graph G with vertex set and edge set is denoted by G = (V, E).

Definition 1.11.2 Let X be a non empty set. Then a fuzzy set A in X (that is a fuzzy subset A of X)
is characterized by a function of the form jia : X — [0,1] such a function i is called the membership
function and for each x € X, pa(x) is the degree of membership of © (membership grade of x) in the
fuzzy set A. In other words, A = {(z, pa(x))/x € X} where uy : X — [0, 1].

Definition 1.11.3 A fuzzy graph is denoted by G : (V, 0, j1), where V is a node set, o and . are mappings
definedas o :'V — [0,1] and jn : V X V, where o and |1 denote the membership values of a node and an

arc respectively. For any fuzzy graph, ju(x,y) < min{o(z),o(y)}.

Definition 1.11.4 Two nodes u and v in a fuzzy graph G are said to be adjacent if, ji(u,v) > 0.



Introduction

Definition 1.11.5 The order p and size q of a fuzzy graph G : (V, 0, i) are defined to be p = Y o(x)

zeV
adg= T pley)
(z,y)EV XV

Definition 1.11.6 An arc (u,v) of a fuzzy graph is called an effective arc (M-strong arc) if p(u,v) =
o(u) Ao(v).

Definition 1.11.7 A fuzzy graph G : (V, o, 1) is connected if for every x,y in o*, CON Ng(x,y) > 0.

Definition 1.11.8 Let G : (V, 0, 1) be a fuzzy graph and S C V. Then the scalar cardinality of S is

defined to be Y o(v) and it is denoted by |S|. Let p denotes the scalar cardinality of V, also called the
veS

order of G.

Definition 1.11.9 The strength of connectedness between two nodes of x and y is defined as the max-

imum of the strengths of all paths between x and y and is denoted by CON N¢(z,y).

Definition 1.11.10 An arc of a fuzzy graph G : (V, 0, i) is called strong if its weight is at least as great

as the strength of connectedness of its end nodes should be deleted.

Definition 1.11.11 A path P is called strong path if P contains only strong arcs. If p(u,v) > 0, then u
and v are called neighbours. The set of all neighbors of u is denoted by N (u).

Definition 1.11.12 A node wu is said to be isolated if p(u,v) = 0 for all v # w.
Definition 1.11.13 The fuzzy graph G is called a strong fuzzy graph if each arc in G is a strong arc.

Definition 1.11.14 An arc (z,y) in G is a- strong if ji(x,y) > CONNg_(z)(2,y). Anarc (z,y) in G is
B-strong if 1(x,y) = CONNg_(2)(x,y). Anarc (x,y) in G is 6- arcif u(x,y) < CONNg_(z,) (2, ).
An arc (z,y) is a strong if it is either - strong or (3- strong. Also y is called strong neighbour of z if

arc (x,y) is strong.

Definition 1.11.15 Let G : (o0, i) be a fuzzy graph G* : (V, E). The degree of a vertex u is dg(u) =

> w(u,v). The minimum degree of G is §(u) = min{dg(v),Vv € V'} and the maximum degree of G is
uFv
A(u) = max{dg(v),Vv € V}.
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Definition 1.11.16 Let G : (o, p) be a fuzzy graph G* = (V, E). If d(v) = k for all v € V, then G is said
to be a regular fuzzy graph of degree k.

Definition 1.11.17 The total degree of a vertex v € V is defined by tdg(u) = > p(u,v) + o(u) =
uFv
dg(u) + o(u). If each vertex of G has the same degree k, then G is said to be a totally regular fuzzy

graph of total degree k or k-totally regular fuzzy graph.

Definition 1.11.18 Let G : (0, i) be a fuzzy graph G* : (V, E). The 2-degree of a vertex v in G is defined
as the sum of degrees of the vertices adjacent to v and is denoted by tg(v). That is, tc(v) = > dg(u),

where dg(u) is the degree of the vertex u which is adjacent with the vertex v.

Definition 1.11.19 Let G : (o, 1) be a fuzzy graph G* : (V| E). A pseudo (average) degree of a vertex
ta(v)

v in fuzzy graph G is denoted by d,(v) and is defined by d,(v) = 72.(0)
¢

, where df,(v) is the number of

edges incident at v.

Definition 1.11.20 Let G : (o, ) be a fuzzy graph G* : (V, E). If d,(v) = k, for all v in V then G is
called k-pseudo regular fuzzy graph.

Definition 1.11.21 Let G : (o, p) be a fuzzy graph G* : (V, E). The total pseudo degree of a vertex v is
G is denoted by td,(v) and is defined as td,(v) = d,(v) + o(v) forallv € V.

Definition 1.11.22 Let G : (o, i) be a fuzzy graph G* : (V, E). If all the vertices of G have the same

total pseudo degree k, then G is said to be a totally k-pseudo regular fuzzy graph.

Definition 1.11.23 A fuzzy graph G : (V, 0, i) is said to be complete if p(u,v) = o(u) A o(v) for all

u,v € o

Definition 1.11.24 Let X be a given set. An intuitionistic fuzzy set A in X is given by
A ={(z, pa(x),v4(x))/x € X}, where pia : X —[0,1], 74 : X = [0,1) and 0 < pa(x) + ya(z) < 1,
where 4 () is the degree of membership of the element x in A and () is the degree of non membership

of the element x in A.

Definition 1.11.25 An intuitionistic fuzzy graph is of the form G : (V, E) where
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(i) V =A{vy,vq,...,0,} suchthat py -V — [0,1] and v, : V' — [0, 1] denote the degree of membership
and non membership of the element v; € V respectively and 0 < p1(v;) + v1(v;) < 1 for every
v, eV(i=12,...,n)

(ii) ECV x V where iy : V xV — [0,1] and 2 : V x V — [0, 1] are such that
p2(vi, ;) < min (g (0:), pa (v;))

Yo (vi, v5) < max(y1(vi), 71(vy))

0 < po(vi,v;) + Y2(vi, v;) < 1 forevery (vi,v;) € E (1, =1,2,...,n)

Definition 1.11.26 Ifv;,v; € V' C G, the i - strength of connectedness between v; and v; is j13° (v, v;) =
sup{p& (v, v;)\k = 1,2,...,n} and ~ - strength of connectedness between v; and v; is 15°(v;,v;) =

inf {75 (v, v;)\k =1,2,...,n}.

Definition 1.11.27 An intuitionistic fuzzy graph G : (V. E) is said to be strong intuitionistic fuzzy

graph if ps(v;, v;) = min(pa (v;), p1(v)) and Y2 (vi, v;) = max(y1(v), 71(vy)) for every v;, v; € E.

Definition 1.11.28 An edge (u,v) is said to be strong edge if po(u,v) > p3(u,v) and ~o(u,v) >

75° (u, v).

Definition 1.11.29 If all the edges are strong edge in an intuitionistic fuzzy graph then it is called

strengthen intuitionistic fuzzy graph.

Definition 1.11.30 The order p and size q of a intuitionistic fuzzy graph G : (V, E) are defined to be

p- 3 [Pt nl] g

v; €V

= Y {1+u2(viavj§—72(%vj)]_

v;,v; €L

Definition 1.11.31 An intuitionistic fuzzy graph G : (V, E) is said to be complete intuitionistic fuzzy

graph if i, (v;, Uj) = min(p1 (vs), Ml(vj)) and 5 (v, Uj) = max(y1(vi), 11 ("Uj))fo” every v;,v; € V.
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Definition 1.11.32 An interval-valued fuzzy set A on a set V is defined by A = {x, ([u, (), u}(x)]) :
x € V'} where ji; and i’y are fuzzy subsets of V such that p,(z) < pl(z) forallz € V. If G* : (V,E)
is a crisp graph, then by an interval-valued fuzzy relation B on 'V we mean an interval-valued fuzzy set
on E such that py(zy) < min{u,(x), uy(y)} and ph(ry) < max{u}(x), u}(y)} for all vy € E and
we write B = {zy, ([up(2y), up(zy))) : vy € E}.

Definition 1.11.33 An interval-valued fuzzy graph of a graph G* : (V, E) is a pair G : (A, B), where
A = [uy, ] is an interval-valued fuzzy set on' V and B = [uyg, ] is an interval-valued fuzzy relation

onV.

Definition 1.11.34 Ler A be a picture fuzzy set. A in X is defined by A = {z, pa(x),na(z), va(z)/x €
X}, where pa(z),na(x) and va(x) follow the condition 0 < pa(x) + na(z) + va(xz) < 1. The
pa(z),na(z),va(x) € [0,1], denote respectively the positive membership degree, neutral membership
degree and negative membership degree of the element x in the set A. For each picture fuzzy set Ain X,

the refusal membership degree is described as wa(x) = 1 — {pa(x) + na(z) + va(x)}.

Definition 1.11.35 Let G* = (V, E) is a graph. A pair G = (A, B) is called a picture fuzzy graph on
G* where A = {pa,na,Ya} isa PES onV and B = {ug,np, s} is picture fuzzy seton E C'V X V

such that for each edge uv € E.

pp(uv) < min(pa(u), pa(v)),
ng(uv) < min(na(u), na(v)),

v8(uv) = max(ya(u), 7a(v)),

Definition 1.11.36 A picture fuzzy graph G = (A, B) is said to be strong picture fuzzy graph if

pp(uv) = min(pa(w), pa(v)),
np(uv) = min(na(u),na(v)),

vp(uv) = max(ya(u), va(v)), Yuv € E.
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Definition 1.11.37 A picture fuzzy graph G = (A, B) is said to be complete picture fuzzy graph if

pp(uv) = min(pa(w), pa(v)),
np(uv) = min(na(u), na(v)),

vp(uv) = max(ya(u), va(v)), Yuv € V.

Definition 1.11.38 If up(uv) > puF (uv), np(uv) > 0% (uww) and yp(uv) < vF (uv) for every uv € V, an
edge uv is called a strong edge, where 155 (uv), n% (uv) and v¥ (uv) are the strength of the connectedness

between u and v in the picture fuzzy graph produced from G by removing the edge uv.

Definition 1.11.39 Let G = (V, E) be a graph. Then, G = (V, E, I) is named as an incidence graph,
where I CV x K.

Definition 1.11.40 Let G = (V, E) be a graph. u be a fuzzy subset of V, and ~y be a fuzzy subset
of V. x V and Let ¢ be a fuzzy subset of V- x E. If {(wy,wiws) < min{u(wy), y(wiws)} for every

wy € V,wywy € E, then 1) is a fuzzy incidence of G.

Definition 1.11.41 Let G be a graph and (., ) is a fuzzy sub graph of G. If ¢ is a fuzzy incidence of G,
then G = (p,y, ) is named as fuzzy incidence graph of G.

Definition 1.11.42 An intuitionistic fuzzy incidence graph is of the form G = (V, E. I, p, ¢, x) where
p = (p1,p2), & = (61,02), x = (x1,Xx2) and V = {xg,x1,...,2,} such that p; : V — [0,1] and
p2 : V. — [0, 1] represent the degree of membership and non membership of the vertex ©1 € V respect-
welyand 0 < p1+py < 1foreachx; € V(i=1,2,...,n), ¢ : VxV = [0,1] and ¢ : VxV — [0, 1];
O1(x1, x2) and Pa(x1, x2) show the degree of membership and non membership of the edge (1, x2), re-
spectively, such that ¢1(x1,x2) < min{p;(z1), p1(x2)} and ¢o(x1,22) < max{ps(x1), pa(z2)}, 0 <
O1(21, x2) + Po(x1, 22) < 1 forevery (x1,22). x1: VX E = [0,1]and xo : VX E = [0,1]; x1(z1, 2122)
and x3(x1,x172) show the degree of membership and non membership of the incidence pair respect-
ively, such that x1(x1,x122) < min{p;(x1), d1(z122)} and x2(x1, v122) < max{ps(z1), p2(z122)},

0< X1($1,$1$2) + X2($1,$1$2) < 1forevery (Jfl,xlxz)-
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Definition 1.11.43 A vague set A is a pair (L4, f4) on set V where t 4 and f4 are taken as real valued
functions which can be defined on V- — [0, 1], so that ts(m) + fa(m) < 1, for all m belongs V. The

interval [t 4(m), 1 — fa(m)] is known as the vague value of m is A.

Definition 1.11.44 A pair G = (A, B) is said to be a vague graph on a crisp graph G = (V, E), where

A = (ta, fa) is avague seton'V and B = (tp, [g) is a vague set on E C V x V such that

tp(mn) < min(ta(m),ta(n)),

fe(mn) > max(fa(m), fa(n)), for each edge mn € E.

Definition 1.11.45 Let ( = (A, B, C) is called a vague incidence graph of underlying crisp incidence
graph G* = (V. E | I) if

A= {{ta(v), fa)) v € VY,
B = {{tg(mn), fs(mn)) /mn € E},
C = {{te(v,mn), fo(v,mn)) /(v,mn) € T}

such that

tp(mn) <ta(m) Ata(n), fo(mn)= fa(m)V fa(n),

to(v,mn) <ta(v) Atg(mn), fo(v,mn)> fa(v)V fe(mn),Yv eV, mn € E.

and

0 <ta(v) + falv) <1,0 <tg(mn)+ fg(mn) < 1,0 <tc(v,mn)+ fo(v,mn) <1

Definition 1.11.46 A hesitancy fuzzy graph is of the form G = (V, E), where V' = {vy,v3,v3...,0,}
such that iy 'V — [0,1], v : V = [0,1] and 81 : V — [0,1] denote the degree of membership,
non-membership and hesitancy of the element vi € V respectively and i1 (v;) + 71 (v;) + Pi(v;) = 1
for every v; € V, where 1(v1) = 1 — [pu1(v;) + (vy)] and E CV x V where us - 'V xV — [0,1],
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Yo : V xV —[0,1] and By : V x V — [0, 1] are such that

pr2(vi, v;) < minfgy (v;), pa (vy)]
Ya(vi, v5) < max|yi(vi), v1(v;)]

Ba(vi, v;5) < min[By (v;), B1(vy)]

and 0 < p5(v;, v;) + y2(vi, v5) + Ba(vi, v;) < 1 for every (v;,v;) € E.

Definition 1.11.47 A set of vertices in GG is independent if no two vertices in the set are adjacent.

Definition 1.11.48 An independent set K of G is named as retrained independent set if all nodes of K

have the same degrees.

Definition 1.11.49 A ser S of vertices of G is a dominating set of G if every vertex of V(G) — S is
adjacent to some vertex in S. A dominating set S of G is referred to as minimal dominating set in no

proper subset of S is a dominating set.

Definition 1.11.50 A minimum dominating set in a graph G is a dominating set of minimum cardinality.

The cardinality of a minimum dominating set is called the domination number of G and is denoted by

v(G).

Definition 1.11.51 Let G : (o, 1) be a fuzzy graph with node set V. Let u and v be any two nodes of G.
We say that u dominates v if (u,v) is a strong arc. A subset D of v is called a dominating set of G if for

every v & D, there exists u € D such that uw dominates v.

Definition 1.11.52 A dominating set D is called a minimal dominating set if no proper subset of D is
a dominating set. The smallest number of nodes in any dominating set of G is called its domination

number and is denoted by v(G).

Definition 1.11.53 A set D of nodes of G is a strong dominating set of G if every vertex of V(G) — D

is a strong neighbour of some node in D.
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Definition 1.11.54 A minimum strong dominating set as a strong dominating set of minimum scalar car-
dinality. The scalar cardinality of a minimum strong dominating set is called the strong domination

number of G.

Definition 1.11.55 The weight of a strong dominating set D is defined as W (D) = > u(u,v), where
ueD

p(u,v) is the minimum of the membership values (weight) of the strong arcs incident on u. The strong

domination number of a fuzzy graph G is defined as the minimum weight of strong dominating sets of G

and it is denoted by ys(G).

Definition 1.11.56 Let G be a fuzzy graph and e; and e; be two adjacent edges of G. We say that e; if
e; is an effective edge. An edge subset K of F in a G is called an edge dominating set if, for each edge

e; € B — K, there are effective edge e; € K so that e; and e; .

Definition 1.11.57 An edge dominating set K of a GG is said to be a minimal edge dominating set if for
each edge e € K, K — {e} is not an edge dominating set. The minimum cardinality between all minimal

edge dominating sets is called an edge dominating number and is denoted by v(QG).
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1.12 List of Abbreviation

CFG - Complete Fuzzy Graph

RFG - Regular Fuzzy Graph

PRFG - Pseudo Regular Fuzzy Graph

VSIFG - Vertex Squared Intuitionistic Fuzzy Graph
VSSIFG - Vertex Squared Split Intuitionistic Fuzzy Graph
VSIVFG - Vertex Squared Interval-Valued Fuzzy Graph
PPFG - Product Picture Fuzzy Graph

HFG - Hesitancy Fuzzy Graph

IVFIG - Interval-Valued Fuzzy Incidence Graph

VFIG - Vague Fuzzy Incidence Graph

CT-VFIG - Composition of Two Vague Fuzzy Incidence Graph
CIFIG - Complete Intuitionistic Fuzzy Incidence Graph
SDCN - Strong Domination Constant Number

DSDN - Dual Strong Domination Number

n-SDN - n-Split Domination Number

PDN - Perfect Dominating Number

EIDN - Edge Incidentally Dominating Number

SIFIDN - Strong Intuitionistic Fuzzy Incidence Domination Number
FVDN - Fixed Vertex Domination Number

TPDN - Twin Perfect Domination Number

1.13 Literature Review

In 1736 the concept of graph theory was introduced by Euler. Graph theory is an important branch of
Mathematics. In recent years, graph theory has seen a surge in Research activity. Fuzzy set theory was

first introduced by Zadeh in 1965 [Zad65,Zad75]. The first definition of fuzzy graph was introduced by
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Haufmann in 1973 based on Zadeh’s fuzzy relations in 1971. The fuzzy relations between fuzzy sets
were also considered by Rosenfield. Rosenfield developed the structure of fuzzy graphs and obtained
analogues of several graphs theoretical concepts. Generalized theory and fuzzy logic have been focused
on by Zadeh and Yeh [Zad08, YB75]. Fuzzy graphs were introduced by Rosenfeld, who has described
the fuzzy analogue of different graph theoretic concepts like paths, cycles, trees and connectedness and
established some of their properties [Ros71]. Some important works in fuzzy graph theory were discussed
by Mordeson [MNOO, MP94][48,49]. Sunil Mathew [MM16, SMY 19, MS09, MS10, MS13] defined and
classified different types of arcs in fuzzy graphs. Samanta [SP11] have also expressed various fuzzy
graphs. Pathinathan [PR14, TPR15] defined relationship between different types of arcs in both regular
and totally regular fuzzy graph. Santhi Maheswari [MS16] introduced on pseudo regular fuzzy graphs.
Mahalakshmi have also expressed fuzzy strong graphs [KM17,KM18]. Bhutani [BR03a, BR03b] have in-
troduced the concept of strong arcs. Kalaiarasi [Kall1a,Kall1b] defined Optimization of fuzzy integrated

vendor-buyer inventory models in 2011.

In 1983 Atanassov [Atal5] introduced the concept of intuitionistic fuzzy sets as a generalization of
fuzzy sets. The first definition of intuitionistic fuzzy relations and intuitionistic fuzzy graphs were intro-
duced by Atanassov (1999). Intuitionistic fuzzy sets have been applied in a wide variety of fields includ-
ing Computer Science, Engineering, Mathematics, Medicine, Chemistry and Economics [SDRO1]. Par-
vathi [RPA09, PK06] have initiated the idea of intuitionistic fuzzy graphs. In intuitionistic fuzzy graphs,
Gani [NB10] established the concepts of degree, order, and size. Products in intuitionistic fuzzy graphs
were discussed by Sahoo [SP15][69]. Pal [SP16], [SP16,SP17a] researched some types of fuzzy graphs.
Sahoo [SP17b] initatied new ideas in intuitionistic fuzzy graphs. Different types of intuitionistic fuzzy

graphs and their applications can be found in different research papers.

The concept of fuzzy sets was discussed by Turksen [Tur86]. We summarise Gorzalczany’s work on
interval-valued fuzzy sets [Gor89] fuzzy relations because interval-valued fuzzy sets are frequently ap-
plied. Hossein Rashmanlou have also expressed interval-valued sub semigroups and subgroups [HL09].
Akram [AD11, MAPI17] has given the idea that fuzzy graphs. Rashmanlou [RP13] recommended ir-
regular interval-valued fuzzy graphs. Hongmei have also expressed interval-valued sub semigroups and
subgroups [HLO09]. Sahoo [SSS20] presented a fuzzy graph with application. The product of the new
graph was produced by Irfan Nazeer [ING21] in 2021.
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Fuzzy incidence graphs were discussed by Dinesh [Dinl6]. Borzooei [JMB18] developed incid-
ence cuts in fuzzy incidence graphs. Mordeson [MM17, SMY 19] proposed concepts in Fuzzy Incidence
Graphs. Cuong [Cuol4] proposed a picture fuzzy set ranking method as well as a set of picture fuzzy
set attributes. Singh [Sin15] campaigned for picture fuzzy sets. Peng [PD17] suggested and implemented
an algorithmic technique for picture fuzzy set in a decision-making situation. Wei [Weil7] has presented
a strategy for determining decisions. Wei discussed how to measure picture fuzzy sets. Mean operat-
ors and their applications have been extended by Cen Zuo [CZD19]. Notions of picture fuzzy graph
were discussed by Rukhshanda [RAG21]. Bipolar picture fuzzy graphs have been created by Babir Ali
since 2021 [WAKT21]. Vague sets were first proposed by Gau [GB93]. The concept of vague graphs
was developed by Ramakrishna [Ram09]. Akram [MAS14] proposed vague hyper graphs. Degree of
vertices in vague graphs were proposed by Borzooei [BR15]. Pal [RBP16] suggested and implemen-
ted regularity of vague graphs. Properties of vague graphs extended by Rao [YRS20]. Pathinathan and
Jesintha [TPR15] introduced the hesitancy fuzzy graphs. Pathinathan and Jesintha [TPR15] introduced
the hesitancy fuzzy graphs. Graph theory was discussed by Arumugam [ARO1]. Begum [SS17b] is also
expressed by different fuzzy graphs. Bhattacharya [Bha87] presented some remarks on fuzzy graphs.
Bustince [HBG10,HBP] has introduced the concept of fuzzy relations and operators. Cao [Ca098] estab-
lished the bounds on eigen values. An automorphism of fuzzy graphs was proposed by Butani [Bhu89].
De and Srinivasan [SDROI1, SS17a] investigated intuitionistic fuzzy graphs. Harary [Har73] were dis-
cussed graph theory. Salen [Sall12] has also expressed inter-valued fuzzy topological space. Son [Son16]
presented a picture fuzzy graph with applications. Isomorphism on inter-valued fuzzy graphs was dis-

cussed by Talebi [TR13]. The concept of the spectral radius of graphs was discussed by Tian [AYT04].

Ore and Berge introduced the concept of domination in 1962. Cockayne [CH77] further developed the
concept of domination. Domination in fuzzy graphs using effective edges were introduced by
Somasundaram [SS98]. Domination in graphs has been examined further by Haynes [THS98]. Parvathi
(2010) introduced the concept of domination number in intuitionistic fuzzy graphs. Xavior [DXC13]
was discussed about domination in fuzzy graphs. Equitable domination number for fuzzy graphs was
introduced by Revathi in [RH14]. Manjusha have also expressed strong domination [MS15]. Manjusha
[MS19] has discussed paired domination in fuzzy graphs. Sarala has also expressed (1,2)-domination for

fuzzy graphs [SK16]. Chandrasekaran was discussed about strong arcs [NC16, ANR21]. Dharmalingam
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has also expressed domination parameters for fuzzy graphs [DN17]. Pradip Debnath has given the char-
acterization for a minimal dominating set [Deb13]. Irfan Nazeer [ING21] have established dominance
in fuzzy incidence graphs. AM Ismayil [[H21] have also expressed accurate split domination in fuzzy
graphs. Bhimani [BB21] presented new definition of corona product with another path graph P, ;. AN
Shain [SS21] has discussed inverse dominating set of an interval-valued fuzzy graphs. Selvam [SP21]
investigated domination in join of fuzzy graphs. Begum [NB10,NR10] was discussed about the extension
of fuzzy graphs. Sriram Kalyan and Sunitha [Sri21, SM15, SV99, SV02, SV05] presented various fuzzy

graphs with different domination. Yongsheng Roa [YRK21] defined domination in vague graphs.

1.14 Genesis of the Thesis

Lotfi. A. Zadeh established the concept of fuzzy sets in 1965, and it has since been successfully used for a
variety of real-life decision problems that are typically ambiguous. A.Nagoorgani and V.T.Chandrasekaran
introduced fuzzy domination as a theoretical term in fuzzy graph theory in 2006. In coding theory, the
term dominance is frequently employed. So the present research focuses its attention on the domination
and edge sequence through pseudo regular fuzzy graph, complete fuzzy graph, vertex squared intuition-
istic fuzzy graphs, vertex squared split intuitionistic fuzzy graphs, vertex squared interval-valued fuzzy
graphs, cartesian product of two interval-valued fuzzy incidence graphs, tensor product of two interval-
valued fuzzy incidence graphs, composition of two vague fuzzy incidence graphs, complete intuitionistic
fuzzy incidence graphs, Omicron product of two hesitancy fuzzy graphs, product picture fuzzy graphs.

Finally, we performed real-life applications to find exact results for it.

1.15 Motivations and Scope of Research work

> The features of a pseudo regular fuzzy graph and a complete fuzzy graph has described. The concept
of strong domination constant number in pseudo regular and complete fuzzy graphs, offering some

interesting results have been included.

> In vertex squared and vertex squared split intuitionistic fuzzy graphs, a novel type of dual strong

domination is established. The properties and theorems related to these parameters are compared
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with other known domination parameters.

In vertex squared interval-valued fuzzy graphs, a new concept of split domination has been pro-
posed. With the support of the split domination concept, vertex squared interval-valued fuzzy
graphs to choose which oxygen cylinder agencies have the lot of oxygen cylinder among various

oxygen cylinder agencies inspected.

Using incidence pair, a unique idea for perfect domination in cartesian product of two interval-
valued fuzzy incidence graphs and tensor product of two interval-valued fuzzy incidence graphs
were proposed. Eventually, the concept of perfect domination number is used to discover which

countries (country) have the best education policies among various countries.

The special concept of strong and weak domination in vague fuzzy incidence graphs helps to
identify the maximum percentage of progress and minimum percentage of non-progress in vari-

ous journal publications.

With the support of the strong and weak domination concept, complete intuitionistic fuzzy incidence

graphs were used to choose the best treatment facility accessible clinic in various clinics.

In product picture fuzzy graphs, a specific type of fixed domination were proposed and using these
fixed domination concept were proposed to find the nearest hospital for a emergency time in high-

way roads.

There are some fascinating results from a new notion of twin perfect domination in hesitancy fuzzy

graphs and Omicron products of two hesitancy fuzzy graphs.

In regular fuzzy graphs and pseudo regular fuzzy graphs, a new concept of edge sequences were
offered. In addition, with distinct categories of edge sequences, an analogy has been conducted

between pseudo regular fuzzy graphs and totally pseudo regular fuzzy graphs.
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1.16 Organization of the Thesis

The entire dissertation consists of ten chapters and each chapter is subdivided into a number of sections.

CHAPTER I contains a brief history of the theory of graphs, fuzzy graphs, domination in fuzzy graphs,
intuitionistic fuzzy graphs, interval-valued fuzzy graphs, vague fuzzy graph, and picture fuzzy graphs.
Some basic definitions and theorems on fuzzy graphs which are needed for the subsequent chapters have

been presented.

CHAPTER 1I focuses on a kind of strong domination constant number in pseudo regular fuzzy graph
and complete fuzzy graph were discussed. Definitions, results, and properties of strong domination con-
stant number are presented. The relationship between the strong domination constant number of a pseudo
regular fuzzy graph and the complete fuzzy graph is also examined. Further, the concept of a strong dom-
ination constant number is discussed with the inclusion of the relationship between pseudo regular and

totally pseudo regular fuzzy graph.

CHAPTER III explores a dual strong domination in vertex squared and vertex squared split intuitionistic
fuzzy graphs. Direct product, semi-strong product, and semi-product of two vertex squared intuitionistic
fuzzy graphs and join product of two vertex squared split intuitionistic fuzzy graphs are explained. The
properties and theorems related to these parameters are compared with other known domination paramet-

€rs.

CHAPTER IV starts with the concept of split domination in vertex squared interval-valued fuzzy graphs
namely n- split dominating set, n- split domination number. Moreover, this chapter consists vertex

squared cardinality, vertex squared independent set.

CHAPTER YV introduces the new concept of perfect domination in the cartesian product of two interval-
valued fuzzy incidence graphs and tensor product of two interval-valued fuzzy incidence graphs utilizing

incidence pairs. Also, the concept of perfect domination number is used to discover which countries
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(country) have the best education policies among various countries.

CHAPTER VI focuses on some kinds of strong and weak domination in the composition of two vague
fuzzy incidence graphs. The strong edge incidentally dominating set, and weak edge incidentally dom-
inating set, strong edge incidentally domination number, and weak edge incidentally domination number

has been discussed.

CHAPTER VII explores new kinds of strong and weak domination in complete intuitionistic fuzzy in-
cidence graphs. For different classes of complete intuitionistic fuzzy incidence graphs, we compute the
intuitionistic fuzzy incidence domination number, strong intuitionistic fuzzy incidence domination num-

ber, and weak intuitionistic fuzzy incidence domination number, and some theorems have been explained.

CHAPTER VIII introduce various types of dominating sets in product picture fuzzy graphs, such as the
fixed vertex dominating set, fixed edge dominating set, total fixed edge dominating set, and fixed edge

restrained dominating set. The properties with examples has been presented.

CHAPTER IX explores a new concept of twin perfect domination in hesitancy fuzzy graphs and Omic-
ron products of two hesitancy fuzzy graphs offering some interesting results have been included. The

properties with examples has been presented.

CHAPTER X starts with the concept of edge sequences in regular fuzzy graphs and pseudo regular fuzzy
graphs are explained by theorems with examples. In addition, a comparison of regular fuzzy graphs and

totally regular fuzzy graphs are also discussed.



Chapter 2

Strong Domination in Pseudo Regular and

Complete Fuzzy Graphs

A wide range of practical difficulties can be modeled and solved using fuzzy graph algorithms. In general,
fuzzy graph theory has a wide range of applications in a variety of domains. An expert must model
these issues using a fuzzy network since ambiguous information is a prevalent real-life problem that
is frequently uncertain. This chapter establishes the concept of strong domination constant number by
using membership values of strong arcs in fuzzy graphs. The strong domination constant number of a
pseudo regular fuzzy graph and a complete fuzzy graph is found. In addition, with reference to the strong
dominating constant number, a comparison study is conducted between pseudo regular and totally pseudo
regular fuzzy graphs. The relationship between the strong domination constant number of a pseudo regular

fuzzy graph and the complete fuzzy graph is also examined, as well as theorems relating to these ideas.

2.1 Strong Domination Constant Number in Pseudo Regular Fuzzy

Graph

In this section, the new concept of strong domination constant number in pseudo regular fuzzy graph

(PRFG) is defined and discussed notation of vsc(Gpr).

Definition 2.1.1 Let Gpr : (0pr, tpr) be a pseudo regular fuzzy graph on Ghp. A set Dpg vertices of
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G pr is a strong dominating set of G pr if every vertex of o pr — Dpr is a strong neighbour of some vertex

in DPR-

Definition 2.1.2 Let Gpg : (0pg, ftpr) be a pseudo regular fuzzy graph on G p. The weight of a strong
dominating set (SDS) Dpg is defined as W (Dpr) = >, upr(mii, maa), where jpr(miy, mag) is
the minimum of the membership value (MV) ( weight)moljlfetll?lsttrong arcs incident on myy. The strong
domination number of a G pg is defined as the minimum weight of strong dominating sets of G pr amd it

is denoted by vs(Gpr).

Definition 2.1.3 Let Gpr : (0pr, pipr) be a pseudo regular fuzzy graph on G p. The weight W (Dpp) =
C(constant), if each strong dominating sets having equal number of vertices. Then C'is labeled strong

domination constant number (SDCN). It is denoted by vsc(Gpr)-

Example 2.1.1 Let Gpg : (0pr, tpr) be a PREG with the vertices ki1, 111, m11, n11 and edges (ki1,111),

(kllv 7111),(7111, m11)7 (m117 511)-

ny,(0.7)

Figure 2.1.1: Strong Domination Constant Number in PRFG

In figure 2.1.1, the strong arcs are (kq1,l11), (k11, n11), (n11, m11) and (mqq, l11).

The two vertices of SDSs are D11 = (]{311, l11)7 D22 = (klla mll), D33 = (klla nll), D44 = (nll, m]_l),
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Dss = (n11, 1), Deg = (mq1,l11) where

W(Dy) =02+ 0.2=0.4,W(Dy) =02+02=04,W(Ds3) =02+ 0.2=0.4

W(Dy) =02+ 0.2 =04, W(Ds;) = 0.2+ 0.2 = 0.4, W(Dgg) = 0.2+ 0.2 = 0.4

Hence vs¢(Gpr) = 0.4.
The three vertices of SDSs are D77 = (kll,lu,mn), Dgg = (ln,mn,nn), Dgg = (mn,nn,kn),

Do = (K11, l11,m11) Where

W (D7) =02+0.2+0.2=0.6, W(Dgg) = 0.2+ 0.2+0.2 = 0.6

W (Dgg) = 0.2+ 0.2+ 0.2 = 0.6, W (Do) = 0.2+ 0.2+ 0.2 = 0.6

Hence, vs¢(Gpr) = 0.6.
Therefore, the above example having two SDCN.
That is y7sc(Gpr) = 0.4 and vsc(Gpr) = 0.6.

Remark 2.1.1 If all the vertices are isolated, then opp is the only strong dominating set of G pr of order

ppr and vsc(Gpr) = 0.

Remark 2.1.2 A strong domination constant number of fuzzy graph need not be a pseudo regular fuzzy

graph.

Example 2.1.2 Consider Grq be a fuzzy graph with the vertices e11, fi1, 11, h11 and edges (e11, f11),
(611,911), (611, hll), (f11,911) and (911, h11)-
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(0.5)en

hi,(0.4)

Figure 2.1.2: Strong Domination Constant Number of Fuzzy Graph

In figure 2.1.2, strong arcs are (eq1, f11), (€11, g11)s (€11, P11)s (fi1,911) and (g11, ha1).
One vertex of SDSs are D11 = (e11), Das = (g11) where W(Dy;) = 0.1, W(Dsy) = 0.1. Hence

’YSC(GPR) =0.1.
The two vertices of SDSs are D33 = (e11, f11), Daa = (€11, ¢11), Dss = (€11, h11), Des = (fi1,911)s
Dqr = (fn, hn), and Dgg = (9117 hn) where

W(Ds3) =0.140.1=0.2,W(Dy) =0.140.1=0.2,W(Ds;) =0.1+0.1=0.2

W(Dgg) = 0.14+0.1 =0.2, W (D7) = 0.1 + 0.1 = 0.2, W (Dgg) = 0.1 + 0.1 = 0.2

Hence vs5c(Gpr) = 0.2.
The three vertices of SDSs are Dgg = (€11, f11,911), Do = (€11, 911, h11), D11 = (f11, 911, h11)s D12 =

(611, hi, fll) where

W (Dgg) = 0.1+ 0.1+ 0.1 = 0.3, W (D) = 0.1+0.1+0.1=0.3

W(Dy;) =01+0.1+0.1=03W(Dyp) =01+0.1+0.1=0.3
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Hence, vs¢(Gpr) = 0.3.

Therefore, the above example having three SDCN.

That is vs¢(Gpr) = 0.1, vs¢(Gpr) = 0.2 and y5¢(Gpr) = 0.3.

The fuzzy graph G p¢ is SDCN of fuzzy graph. But d,(e11) # du(hi11). Hence G is not a PRFG.

Theorem 2.1.1 If Gpg : (0pr, tpr) be a pseudo regular fuzzy graph and each strong dominating sets

having exactly n vertices, then vsc(Gpr) = n{min(upr(mi1, ma2)/mi1, mas € opg)}.

Proof. Since G pp is a PRFG, all arcs are strong and some node is adjacent to all other nodes. Hence,
DpR = {TTLH, Mmoo, ... ,mm} is a SDSs for each mi1, Mo, ..., Myn € O'}SR.

Hence fYSC<GPR) = n{min(upR(mH, m22)/m11, Moo € O'}';R)}.

Example 2.1.3 (i) LetGpgr : (0pr, ipr) be a PRFG with the vertices i11, ji1, k11, (11 and edges (i11, j11),
(711, k11), (K1, L), (ian, Li)-

J11 (0.9)

k11(0.6)

(0.8)111

Figure 2.1.3: PRFG with Strong Domination Constant Number

In figure 2.1.3, G'pr be a PRFG and each arcs are strong.
For n = 2, the SDSs are D1y = (i11,J11), D22 = (ji1, k11), Daz = (k11,li1), Daa = (11, l1), Dss =
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(711, l11), Des = (411, k11) where

W(Ds;) = 0.4+ 0.4 = 0.8 W(Da) =04+04 =08,
W (Ds3) = 0.4 + 0.4 = 0.8, W(Dyy) = 0.4+ 0.4 = 0.8,
W (Dss) = 0.4 + 0.4 = 0.8, W (Dgg) = 0.4+ 0.4 = 0.8

Therefore vsc(Gpr) = 0.8.

Hence,

vso(Gpr) = 2{min(ppr(mii, ma)/mi1, me € opr)}
— 2{min(0.4,0.5,0.4,0.5)}
=0.8

Hence the result.

Example 2.14 (ii) Let GPR be a PRFG with the vertices 111, j117 ]{311, l11 and 6dg€S (illyjll); (jn, kll)’

(k11, 1), (411, l1), (ing, k11), (Jia, lin). Here each arcs are strong.

For n = 3, the SDSs are Dyy = (11, J11, k1), D22 = (11, k11, 0i1), D3z = (411,711, l1)s Dag =

(J11, k11, li1) where

W(Dy) =04 +04+04=12W(Dgyp)=04+04+04=12,

W (Dss) = 0.4+ 0.4 +04=12W(Dy) =04+04+04=12

Therefore ysc(Gpr) = 1.2.

Here,

Ysc(Gpr) = 3{min(ppr(mir, maz)/mi1, Moy € opr)}
— 3{min(0.5,0.5,0.5,0.5,0.4,0.4)}

=1.2
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(0.6) 111 k11(0.8)

111 (0.5)
Figure 2.1.4: PRFG with Strong Domination Constant Number
Hence the result.

Remark 2.1.3 The above result is also true for totally pseudo regular fuzzy graph (TPRFG).

Example 2.1.5 (i) Consider Grpr be a TPRFG with the vertices €11, fi1, 911, h11 and edges (e11, f11),
(611, hn), (f117911), (911,h11)~

5’11(0_5)

D1 (0.5)

Figure 2.1.5: TPRFG with Strong Domination Constant Number
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Hence the result.

In figure 2.1.5, Grpr be a TPRFG and each arcs are strong.

For n = 2, the SDSs are D1, = (e11, f11), D22 = (fi1,911), D33 = (g11, h11), Daa = (e11, h11), Dss =
(fi1, h11), Des = (€11, g11) Where

W(Di1) = 0.2+ 0.2 = 0.4, W(Dy) = 0.2+ 0.2 = 0.4,

W(Ds3) = 0.2+ 0.2 = 0.4, W(Dy) =02+0.2=0.4

Therefore, ysc(Gpr) = 0.4.

Here

vso(Gpr) = 2{min(pupr(mii, ma2))/mi1, mea € 07 pr}
— 2{min(0.2,0.4,0.2,0.4)}

=04

Hence the result.

Example 2.1.6 (ii) Let Grpr be a TPRFG with the vertices i1, j11, k11,11 and edges (i11, j11), (J11, k11),
(K11, l), (411, la1), (11, k1a )y (Jaa, b))

0.4

11 (0.6) - ki; (0.6)

Figure 2.1.6: TPRFG with Strong Dominating Constant Number
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In fig 2.1.6, G1pgr be a TPRFG and each arcs are strong.
For n = 3, the SDSs are D; = (i11,j117/€11), Dyy = (i117k117l11)’ D33 = (i11;j117l11)’ Dy =

(J11, k11, l11) where

W(Diy1) = 04404+ 04 =12 W(Dsy) =04+04+04=1.2,

W(D33) =04+04+04=12W(Dy)=04+04+04=12

Here VSC(GTPR) =1.2.

Therefore,

vsco(Grpr) = 3{min(upr(mii, ma2)/mi1, ma € opg)}
= 3{min(0.5,0.5,0.5,0.5,0.4,0.4)}

=12

Hence the result.

Theorem 2.1.2 Let Gpg : (0pg, tipr) be a pseudo regular fuzzy graph of size qpr. Then vsc(Gpr) =
4dpPRr

o 7
(i) all edges have equal membership value
(ii) All strong dominating sets having exactly two vertices

Proof. If all edges have equal MV and all SDS of Gpp is a set Dpg containing exactly two vertices.

— 49PR

Hence, SDCN is exactly vsc(Gpr) = >, ppr(mii, ma) = 458,

m11€DpR
Contrarily, suppose that vs¢(Gpr) = 45%. To prove that all edges have equal MV and all SDSs having
exactly two vertices. If the alternative edges have equal MV and all SDSs having more than two vertices,

then vsc(Gpr) # ‘J%R, which is a contradiction. Hence, all conditions are sufficient.

Example 2.1.7 Let Gpr be a PRFG with the vertices viy, w1, T11, Y11 and edges (vi1,w11), (w11, T11),

(x11,%11), (v11,y11). Here each arcs are strong.
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wi1(0.3)

(0.3)¥11

Figure 2.1.7: PRFG with Strong Domination Constant Number

The two vertices of SDSs are Dy = (vy1,wi1), Daa = (w11, 211), D3g = (x11,911), Daa = (v11, y11)s

Dss = (vi1,211), Deg = (w11, 911), Where

W(D11) =0.1+0.1=0.2,W(Dy) =0.1+0.1=0.2,
W (Ds3) = 0.1+ 0.1 = 0.2, W(Dyy) = 0.1+0.1 =0.2,

W(Dss) = 0.1+ 0.1 =0.2,W(Dgg) = 0.1+ 0.1 = 0.2

Therefore vsc(Gpr) = 0.2.

Here,
q
vsc(Gpr) = LR _ 2.2
Hence the result.

Remark 2.1.4 The above condition is also true for TPRFG.

Example 2.1.8 Let Grpr be a TPRFG with the vertices vi1, w11, T11, Y11 and edges (vi1, w11), (w1, T11),

(x11,y11), (v11,Y11). Here each arcs are strong.
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(0.4) V11 X11(0.4)

y11(0.4)

Figure 2.1.8: TPRFG with SDCN

The two vertices of SDSs are D11 = (UH,U}H), D22 = (wn,xu), D33 = ($11,yl1), D44 = (Ulhyll),

D55 = (v11, 211), Des = (w11, y11), where

W(Dy1) =02+0.2=04,W(Dyp)=02+0.2=04,
W(Ds3) = 0.2+ 0.2 = 0.4, W(Dyy) = 0.2+ 0.2 = 0.4,

W(Ds5) = 0.2+ 0.2 = 0.4, W (Dgs) = 0.2 + 0.2 = 0.4

Therefore vso(Grpr) = 0.4.

Here,

0.8
vsco(Grpr) = q}%R = > =04

Hence the result.

Theorem 2.1.3 A pseudo regular fuzzy graph Gpg : (0pg, pr) With its crisp graph Gy, as even cycle

is both pseudo regular fuzzy graph and totally pseudo regular fuzzy graph then Gppr contains strong

domination constant number.
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Proof. Let Gpg : (0pg, tpr) be a PRFG. Then its crisp graph G, as even cycle and G pg be both PRFG
and TPRFG. Here are two cases that arise.

Case (i)

Let Gpgr be both PRFG and TPRFG with stable values in opg and ppg. In Gpg all arcs are strong and

some SDSs of Gpg having equal number of vertices. Then by the 2.1.3 definition GG pr contains SDCN.

Example 2.1.9 Let G pr be both PRFG and TPRFG with the vertices €11, f11, 911, h11 and edges (e11, fi1),

(e11, h11), (f11,911), (911, h11). Here all arcs are strong.

f11(0.5)

911(0.5)

}111(03)

Figure 2.1.9: PRFG and TPRFG with Strong Domination Constant Numbers

vsc(Gpr) = 0.8 and vsc(Gpr) = 1.2.

The graph G'pg is PRFG and TPRFG with SDCNs.

Case (ii)

Let G pr be both PRFG and TPRFG with stable values in o pr and with equal alternative values in ppg. In
all arcs are strong and some SDSs of Gpg having equal number of vertices. Then by the 2.1.3 definition

G pr contains SDCN.
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Example 2.1.10 Let G'pr be both PRFG and TPRFG with the vertices €11, f11, g11, h11 and edges (e11, f11),

(e11, h11), (fi1,911), (911, h11). Here all arcs are strong.

0.2

fi1 (0.4)

(07-.1:) hll 0.9 gll(04)
Figure 2.1.10: PRFG and TPRFG with Strong Domination Constant Number

Ysc(Gpr) = 0.2 and vs¢(Gpr) = 0.3.
The graph G'pg is PRFG and TPRFG with SDCNS.

Theorem 2.1.4 Let Gpr : (0pr, jtpr) be a PRFG, vs¢c = Z% iff the following conditions hold
(i) Gpgrisa TPRFG
(ii) All vertices and edges having same membership value

(iii) All strong dominating sets having exactly two vertices.

Proof. If Gpp is a TPRFG and all vertices and edges having same membership value, then all SDS of

Gpr is a set Dpp containing exactly two vertices. Hence, SDCN is exactly ysc(G) = %.

Contrarily, suppose that ys¢(G) = Z%. To prove that G'pp is a TPRFG and all vertices and edges having
same membership value. If possible and some nodes say mq; and mos have different weights, then the arc
weight corresponding to these vertices is fipr(mi1, M) < opr(mir) A opr(mas).

If ppr(mii, maos) < opr(mii) A opr(mas), then obviously vsc(G) # Z%, a contradiction and if
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pupr(mir, maog) = opr(mir) A opr(mas), then clearly vso(G) # %, a contradiction. Hence, all the

conditions are sufficient.

Example 2.1.11 Consider G pr be both PRFG and TPRFG with the vertices uy1, V11, W11, €11 and edges

(u11,v11), (v11,w11), (w1, 211), (w11, x11). Here all are strong arcs.

W11 (0.2)

X11 (0.2)

Figure 2.1.11: PRFG with SDCN v5¢(G) = 0.4

The graph G pr is PRFG and TPRFG with SDCN 75¢(G) = 0.4.

0.8
Here, vs5c(Gpr) = % =5 = 0.4. Hence the result.
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2.2 Complete Fuzzy Graph with Strong Domination Constant Num-

ber

In this section the new concept of strong domination constant number in complete fuzzy graph (CFG) is

defined and related theorems are discussed.

Definition 2.2.1 Let G¢ : (0¢, ic) be a complete fuzzy graph on G§. A set D¢ vetices of G¢ is a strong

domination set of G if every vertex of o — D¢ is a strong neighbour of some vertex in De.

Definition 2.2.2 Let G¢ : (o¢, jic) be a complete fuzzy graph on G§. The weight of a strong domin-
ating set D¢ is defined as W (D¢) = > po(mar, mag), where pc(may, mog) is the minimum of the
m11€D¢

membership value (weight) of the strong arcs incident on my1. The strong domination number of a G¢ is

defined as the minimum weight of strong dominating sets of G¢ amd it is denoted by vs(G¢).

Definition 2.2.3 Let G¢ : (o¢, puc) be a complete fuzzy graph on G,.. The weight W (D) = C(constant),
if each strong dominating sets having equal number of vertices. Then C'is labeled strong domination con-

stant number. It is denoted by vsc(Gc).

Example 2.2.1 Let G¢ : (0¢, uc) be a CFG with the vertices w11, T11, Y11, 211 and edges (w1, T11),

(211, y11), (211, y11), (w11, 211). Here each arcs are strong.

In fig 2.2.1, the strong arcs are (wy1, z11), (w11, 211), (211, ¥11) and (y11, T11)-
The two vertices of SDSs are D11 = (wn, 1’11), D22 = (wn, yn), D33 = (wn, 211)7 D44 = (le,yH),

Dss = (2'11,9511), Dgg = (y11,$11) where

W(Di1) = 0.1+ 0.1 =0.2,W(Ds) = 0.1+ 0.1 = 0.2, W(Ds3) = 0.1+ 0.1 =0.2

W(Dy) =01+01=0.2W(Ds5)=0.140.1=02W(Dg)=01+01=0.2

Hence vy5¢(G¢) = 0.2.

The three vertices of SDSs are D77 = (wy1, %11, Y1), Dss = (w11, Y11, 211), Dog = (11, Y11, 211)> D10 =
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(0.2)wyy y11(0.2)

Figure 2.2.1: SDCN in CFG

(.%'11, w11, 211) where

W (D7) =0.1+0.1+0.1=0.3W(Dgs) =0.1+0.1+0.1=0.3

W (Dgg) = 0.1+ 0.1+ 0.1 = 0.3, W (D) = 0.1+0.1+0.1=0.3

Hence, vsc(G¢) = 0.3.

Therefore, the above example having two SDCN.

Remark 2.2.1 A complete fuzzy graph need not be a strong domination constant number of fuzzy graph.

Example 2.2.2 Let G¢ : (0¢, puc) be a CFG with the vertices w11, 11, Y11, 211 and edges (w11, T11),

(11, y11), (211, y11), (w11, 211). Here each arcs are strong.

In figure 2.2.2, the strong arcs are (w1, 11), (W11, 211), (211, ¥11) and (y11, 211).

The two vertices of SDSs are D11 = (wll,xll), D22 = (wll, yll), D33 = (wll, 211), D44 = (le,yll),
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0.4 ,
(0.5) wyy X11(0.4)
0.9 0.3
(0.2) z11 05 ¥11(0.3)

Figure 2.2.2: CFG without Strong Domination Constant Number

Dss5 = (211;5611), Deg = (y1173711) where

W (D) = 0.2+ 0.2 = 0.4, W (Ds5) = 0.2+ 0.3 = 0.5, W(Dgg) = 0.2+ 0.3 = 0.5

Here the weight of all SDSs of G/ are not constant.
The three vertices of SDSs are D7y = (w11, 11, Y1), Dss = (w11, Y11, 211), Dog = (211, Y11, 211)s D10 =

(CL’H, w11, 211) where

W(Ds)=02+03+02=0.7, W(Dg) =0.2+0.2+0.2 = 0.6

W(Dgg) =0.3+0.2+0.2=0.7, W(Dy) =02+0.3+02=0.7

Here the weight of all SDSs of GG are not constant.

Hence G¢ is not a SDCN of fuzzy graph.

Remark 2.2.2 A strong domination constant number of fuzzy graph need not be a complete fuzzy graph.

Example 2.2.3 Let Grg be a fuzzy graph with the vertices eiq, fi1, 911, h11 and edges (ei1, fi1),
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(fi1, 11),(g11, h11), (e11, h11). Here each arcs are strong.

11
(0.6)

€11

hi1(0.7)

Figure 2.2.3: Strong Domination Constant Number of Fuzzy Graph

In figure 2.2.3, the strong arcs are (eqq, f11), (€11, h11), (h11, 911) and (g11, f11)-
The two vertices of SDSs are D1 = (e11, fi1), D22 = (€11, 011), D33 = (€11, h11), Daa = (ha1, 911)s
Dss = (hi1, fi1), Des = (11, f11) Where

W(Dy1) =0.2+0.2=04,W(Dy) =02+02=0.4,W(Ds3) =02+02=04

W (D) =0.2+0.2=04,W(Ds5) =024 0.2 =04, W(Dgs) = 0.2+ 0.2 = 0.4

Hence v5c(G¢) = 0.4.
The three vertices of SDSs are D7y = (e11, fi1, 911), Dss = (€11, 611, h11), Dog = (f11, 611, h11), D1o =

(h11, €11, f11) where

W (D7) =02+0.2+0.2= 0.6, W(Dgg) = 0.2+ 0.2+ 0.2 = 0.6

W (Dgg) = 0.2+ 0.2+ 0.2 = 0.6, W (Dyo) = 0.2+ 0.2+ 0.2 = 0.6

Hence v5c(G¢) = 0.6.
The fuzzy graph G'r¢ is SDCN of fuzzy graph. But Gz is not a CFG.
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Theorem 2.2.1 Let G¢ : (0¢, ic) be a complete fuzzy graph of size qc. Then ysc(Ge) = q?(] if and only

if alternative vertices have equal weight.

Proof. If alternative vertices have equal weight, then all the edges have equal MV and all arcs are strong,

then the SDS of G¢ is a set D¢ containing two nodes. Hence, SDCN is exactly

qc
'VSC(GC) = Z Mc(mn;mm) = ?
mi11€D¢

Conversely, suppose that vsc(Ge) = %C To prove that alternative nodes have equal weight. If possible
all nodes have different weight and all arcs are strong, then the arcs weight corresponding to nodes is
e (mar, mag) < oc(mar) A oc(mas).

If pe(mag, mas) < oc(mar) A oc(mas), then obviously vso(Geo) = 0 or yso(Ge) < q?c’ but G« is not
a CFG which is a contradiction and if pc(mq1,ma2) = oc(mi1) A oc(mas), then clearly vso(Ge) = 0,

which is a contradiction. Hence, alternative vertices have equal weight.

Example 2.2.4 Consider G¢ : (0¢, puc) be a CFG with the vertices w11, x11, Y11, 211 and edges (w1, x11),

(Ina yn),

(211, ¥11), (w11, 211). Here each arcs are strong.

In figure 2.2.4, vs5¢(G¢) = 0.6 and gc = 1.2.

1.2
Then %C =5 =06,
Therefore vsc(Go) = q?C

Theorem 2.2.2 Let G¢ : (0¢, puc) be a CFG, vsc(Ge) > % iff the following conditions hold
(i) Alternative nodes have equal weight.
(ii) All edges have equal membership value.

Proof. If alternative vertices have equal weight and all edges have equal MV, then the SDS of G is a set

D¢ containing two vertices. Hence, SDCN ~yg¢(G¢) > %

Contrarily, suppose that vs5¢(G¢) > % To prove that alternative nodes have equal weight and all edges

have equal MV. If all nodes have equal weight and alternative edges have equal MV then vs¢(G¢) > %

or ysc(Ge) < % but GG is not a CFG, which is a contradiction. Hence, all the conditions are sufficient.
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(0_3)}{11 211(0_3)

W11 (0—1)

Figure 2.2.4: CFG with SDCN

Example 2.2.5 Let Go : (0¢, pc) be a CFG with the vertices ay1,b11,c11,d11 and edges (aq1,b11),

(b11,c11), (c11, di1), (@11, d11). Here each arcs are strong.

0.1

(0.2) 4, b1y (0.1)
0.1 0.1
(0.1)dyy 0.1 c1(0.2)

Figure 2.2.5: CFG with Strong Domination Constant Number
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In figure 2.2.5, vs5¢(G¢) = 0.2 and pc = 0.6.

Then 2¢ = 90 _ o
3 3 D
Therefore vsc(Go) = ?C

Example 2.2.6 Let G¢ : (0¢, ic) be a CFG with the vertices w11, 11, Y11, 211 and edges (w11, T11),

(z11,11), (211,Y11), (w11, 211). Here each arcs are strong.

x11(0.2)

(0.3)
W11

(0.3)

Y11

711 (0.2)

Figure 2.2.6: CFG with Strong Domination Constant Number

In figure 2.2.6, ysc(G¢) = 0.4 and pc = 1.
1
Then % = 5 =033,
Therefore vsc(Go) > %
Domination theory survey is exciting because of the wide range of applications and domination traits
that can be established. The goal of this chapter is to introduce a study of domination theory in the

context of pseudo regular and complete fuzzy graphs. We introduced a definition of the weight of strong

domination set using strong arcs. The perception of strong domination constant number for pseudo regular
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fuzzy graph and complete fuzzy graph has been introduced in this chapter, and some intriguing results
have been demonstrated. In addition, with reference to strong domination constant number, a comparison

study is conducted between pseudo regular fuzzy graph and totally pseudo regular fuzzy graph.



Chapter 3

Dual Strong Domination in Vertex Squared
and Vertex Squared Split Intuitionistic Fuzzy

Graph

The concept of connectivity plays an important role in both theory and applications of fuzzy graphs. An
intuitionistic fuzzy set is a generalization of the notion of a fuzzy set. Intuitionistic fuzzy models give
more precision, flexibility and compatibility to the system as compared to the classic and fuzzy models.
In this chapter, we introduce the notion of vertex squared intuitionistic fuzzy graph, and we define direct
product, semi-strong product and semi product. Also we introduce vertex squared split intuitionistic fuzzy
graph and we define join product. We generalize the concept of dual strong domination in vertex squared
and vertex squared split intuitionistic fuzzy graph and we introduced a definition of weight of strong
dominating set using strong arcs. We determine the dual strong domination number for several classes of
vertex squared and vertex squared split intuitionistic fuzzy graphs and establish some of their properties.

In addition we investigated many interesting results regarding the concept.

3.1 Vertex Squared Intuitionistic Fuzzy Graph

Definition 3.1.1 An vertex squared intuitionistic fuzzy graph (VSIFG) is of the form

Gvsire : Vvsira, Evsira) where
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(i) the vertex set Virsrra = {V11,V22, - - -, Unn } such that pidrgipe © Vwsirag — [0,1] and v gipe

Vwsira — [0, 1] denote the degree of membership value and non membership value of the element
vy € Visira respectively and 0 < 'U“%/VSIFG(U”) + 7‘2/vszm<vii) < 1 for every v;; € Vysipa(i =

1,2,...,n).

(ll) EVSIFG g VVSIFG X VVSIFG where UEysira - VVSIFG X VVSIFG — [0, 1] and YEvsire - VVSIFG X

Vivsira — [0, 1] are such that

HEBvsira (Uii’ vjj) S min('u%/vsmc (Uii)a M%/VSIFG (vjj))

TEvsira (i, vjj) < ma‘X(fY%/VSIFG (via), 7\2/V51FG <Ujj))
and pgyo1pe (Viis V) + VBvsrra (Vi v45) < 1 for every (vii,vj5) € Bvsirg, (i,j = 1,2,...,n).

Example 3.1.1 Let Gysrra : (Visira, Evsira) be a VSIFG withmyy = (0.72,0.42), mgs = (0.9%,0.82%),
maz = (0.9%,0.2%), my = (0.3%,0.2%), ms5 = (0.22,0.22), my1,maz = (0.49,0.16), ma1,may =
(0.09,0.16), maz, maz = (0.70,0.60), maz, mss = (0.02,0.60), maz, mas = (0.09,0.04), mys,mss =
(0.04, 0.04).

IIqq (0.72, 042)

0.09,0.16 0.70,0.60

mg3(0.9%,0.2%)

0.02, 0.60
0.09,0.04

M44(0.32,0.22)

mss (0.22, 0.22)

Figure 3.1.1: VSIFG
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Definition 3.1.2 A vertex squared intuitionistic fuzzy graph Gvsire : (Vvsira, Evsirg) is said to be

strong if

IU/EVSIFG (Uiia U]J) - min(ﬂ%/'vs]pg (Uii)7 ’U/%/VSIFG (UJ]))

ﬁyEVSIFG (Uii7 v]]) = maX(’y‘Q/VS]FG (/Uii>7 V‘Z/VVSIFG (U]J>> for all (Uii7 /U.]j) € VVSIFG

Definition 3.1.3 A vertex squared intuitionistic fuzzy graph Gvsire : (Vvsira, Evsirg) is said to be

complete if

IU/EVSIFG (Uiia U]J) - min(ﬂ%/‘/s]pg (Uii)7 ILL%/VS]FG (UJ]))

VEVSIFG (Uii7 v]]) = ma’X(’y‘Q/'VS]FG (/Uii)7 V‘Q/VVSIFG (UJ.]>> for all (Uii7 /UJJ) € VVSIFG

Definition 3.1.4 [f all the edges are strong edge in an vertex squared intuitionistic fuzzy graph then it is

called strengthened VSIFG.

Example 3.1.2 Let Gysire : (Visira, Evsira) be a VSIFG withmy; = (0.32,0.2%), may = (0.1%,0.62),
mag = (0.52,0.32), may = (0.32,0.42), mss = (0.42,0.52), mes = (0.62,0.22), mi1, mas = (0.01,0.36),
mir, mes = (0.09,0.04), mag, mgs = (0.01,0.36), mas, mss = (0.16,0.25), ms3, myy = (0.09,0.16),
myq, mss = (0.09,0.25).
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0.01,0.36

(0.32,0.2%) myy m

[
[}

(0.12,0.6%)

0.09,0.04

0.09,0.25

(0.3%,0.4%) myq ms3 (0.52,0.3%)

0.09,0.16

Figure 3.1.2: Strengthened VSIFG

3.2 Dual Strong Domination In Vertex Squared Intuitionistic Fuzzy

Graph

Definition 3.2.1 Let Gy s;pq be VSIFG. A set Dy srra of nodes of Gy srra is a dual strong dominating
set (DSDS) of Gy srra if every node of Viysira — Dvsira is a strong neighbour of atleast two nodes in

Dy srra.

Definition 3.2.2 The weight of a dual strong dominating set Dy srrc of VSIFG is defined as

1 _
W(Dysrra) = Z { +|M2(m“’m22§ Ya(mar, maz)| 7

m11€DvsIFG

where ji5(my1, M) — Yo(my1, Mao)| is the minimum of the membership value and non membership

value of the strong arcs incident on my,. The dual strong domination number (DSDN) of a VSIFG
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Gvsira is defined as the minimum weight of dual strong dominating set of Gy sirq and it is denoted

by vpsp(Gvsrre)-

Example 3.2.1 Let Gysira : (Vvsira, Evsira) be a VSIFG with each edges are strong.

0.49,0.16

(0.7%,0.4%) my; 0.09,0.16 mys (0.82,0.3)

bo
(3]

0.09,0.16

My (0.42_.. 0-52)

Figure 3.2.1: VSIFG with ”)/DSD(Gvgjpg)

The DSDSs are S11 = {mq1, mas}, Sao = {mas, mus}, ... After calculating the weight of SDSs are
S11 = 0.14 and Say = 0.14. Therefore ypsp(Gysrra) = 0.6.

Theorem 3.2.1 If Gysira : (Vvsira, Evsirg) is a strengthened vertex squared intuitionistic fuzzy

graph, then equal number of vertices of dual strong dominating sets of Gy s;rq having equal weight.

Proof. Assume that Gysire : (Visira, Evsirg) s a strengthened VSIFG. Then every edge of Gy srra

is strong edge. If possible let (11, m92) be an edge of Gy s;r¢ Which is not strong edge. Then equal
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number of vertices DSDSs of Gy s;r¢ having equal weight. But Gy s7r¢ is not a strengthened VSIFG,

which is a contradiction. Hence all DSDSs of G s7r¢ having equal weight.

Example 3.2.2 Let Gysipg be a strengthened VSIFG and all edges are strong. Here all DSDSs of

Gysira having equal weight.

my1(0.7%,0.3?%)

(0.42,0.22) myy 0.49,0.09

mys (0.82,0.32)

Figure 3.2.2: Strengthened VSIFG

Theorem 3.2.2 Let Gysire @ (Vvsira, Evsira) be an vertex squared intuitionistic fuzzy graph and if

Gvsira contains only one strong arc, then ypsp(Gysrra) = 0.

Proof. Let Gysirg : (Vyvsira, Evsira) be an VSIFG. If Gygrrg contains only one strong arc, then
Ypsp(Gvsira) = 0. Conversely, suppose that ypsp(Gvsira) = 0. To prove that Gy ;g contains only
one strong arc. If possible Gy g;r¢ contains more than one strong arc, then ypsp(G) # 0 which is a

contradiction. Hence GGy g7 contains only one strong arc.

Example 3.2.3 Let Gy srre be a strengthened VSIFG. Here {m1, maa} is a only strong arc.
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mi1(0.42,0.3%)

aN0.01,0.03

(062052}11] (052022)

]
b

m44 (0.22,0.12)

Figure 3.2.3: VSIFG

Theorem 3.2.3 Let Gysirg : (Vvsira, Evsira) be an vertex squared intuitionistic fuzzy graph and
if Gysrrg is complete vertex squared intuitionistic fuzzy graph then all dual strong dominating sets of

Gvsira have equal value.

Proof. Assume that Gy ;¢ is complete VSIFG. Then by the definition of complete VSIFG, 1i5(m11, mas) =
min (g (ma1), p1(maez)) and yo(mq1, mog) = max(vy;(ma1), y1(maeg)) for every myq, mas € Vi sreg. Sup-
pose Gy srrq has at least one weak (mq1, mas) edge then, pia(mq1, mag) < ps°(ma1, maz) and ya(myq, mas) <
75°(ma1, ma2) which implies that yi5 (m11, ma2) < min(p (ma1), 1 (ma2)) and ya(ma1, maz) < max(y1(mai),
~1(ma2)), for some myq1, moe € Vipg. This contradicts our assumption that Gy sy p¢ is complete VSIFG.

Hence all DSDSs have equal value.

3.3 Direct Product of Two Vertex Squared Intuitionistic Fuzzy Graph

Definition 3.3.1 The direct product of two vertex squared intuitionistic fuzzy graph G, = (Vi, Ey, o', i//)
and Gy = (Va, By, 0", 1) such that ViNVy = ¢ is defined to be the VSIFG G111Gy = (V, E, o'Tlo”, 1/TIn")
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where

V=V xV,,

E={{(z1,11), (x2,2)]/(x1,22) € En, (y1,92) € En}.

The MV and NMV of the vertex (x,y) in G111G5 are given by

(o11107) (2, y) = min{o7*(x), o1*(y)}

(o5110%) (2, y) = max{oy(x), 05" (y)}

The MV and NMV of the edge (x1,11), (72, y2) in G1I1Gy are given by

(M) { (1, 91, (w2, 92)} = min{pd (w1, 72), 17 (91, 92) }

(5T ) { (21, y1), (w2, y2) } = max{py (w1, 22), iy (Y1, y2) }

Example 3.3.1 Let G1 be a VSIFG with mi1 = (0.52, 0.32), TMog = (0.22, 0.42), mi1, Moy = (004, 00625)

(0.5%,0.3*) mi1 @ 0.04,0.0625 e My ((.22,0.4?)

Figure 3.3.1: VSIFG G,

Let G2 be a VSIFG with niyp = (0.12, 0.22), Nog = (0.22, 0.52), N1, N9 = (00001, 00620)
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0.0001, 0.0620

(0.12,0.22)ny; o @ 1132 (0.22,0.52)

Figure 3.3.2: VSIFG G,

Let G1HG2 be a VSIFG with miiniy = (0.12, 0.32), mi1Ngg = (0.22, 0.52>, Moo, 11 = (0.12, 0.42),
MooNos = (0.22, 0.52), (mnnn, m22n22) = (00001, 00625), (mnngz, m22n11) = (00001, 00625)

myinii((,12,0.32) mynas (0.22,0.5%)

Mmooy (0, 12, 0.42)

0.0001, 0.0625
G290°0 'T000°0

Figure 3.3.3: VSIFG G,11G,

Theorem 3.3.1 If G, = (Vi, Ey,0', i) and Gy = (Va, Eo, 0", ") are vertex squared intuitionistic fuzzy

graph, then G111G, is also vertex squared intuitionistic fuzzy graph.
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Proof. Let Gy = (V3, Ey, 0, i) and Gy = (Vs, By, 0", 1i") are VSIFG, then

1y (21, 22) = min{of(21), 01*(x2)}

py(w1, w2) = max{oy (z1), 0% (x2) }

"

"2
Hq
!

y1,92) = min{o (y1), 01 (y2)}

/ 12

(
1 (y1, y2) = max{o% (y1),05%(y2)} forall (z1,22) € Ey and(y1,ys) € Eo.

)
)
)
)

Now

(e Tp)){ (1, y1), (w2, 92)} = 1y (21, 2) A p (91, 2)
= min{[min{o7*(21), 07*(x2)}], [min{o (y1), o7 (y2) }}
= min{[min{o?(21), 07 (1)}, min{o7?(22), 07*(y2) }|}
= {(o11lo7) (21, y1) } A {(o1 o)) (2, y2) }

(i Ip){ (1, 91), (2, 92)} = {(o11loY) (21, 1)} A {(011107) (22, y2) }

In addition

(T ) { (21, 1), (w2, 92) } = {21, w2) V 1y (Y1, y2) }
= max{[max{o5 (1), 05%(22)}], [max{o5 (y1), 05> (y2) }]}
= max{[max{o% (1), 0% (y1)}], (max{oy”(z2), 05> (y2) }]}

= {(o5lloy)(z1,y1)} V {(051105) (22, y2) }

(1113 { (1, 91), (22, 92)} = {(031103) (21, 1)} V {(051103) (22, 42) }

Therefore (G; and G5 are VSIFG, then G11G5 is also a VSIFG.

Theorem 3.3.2 If G, = (V4, By, 0', 1) and Gy = (Va, Es, 0", 1) are strengthen VSIFG, then G111G5 is

a strengthen vertex squared intuitionistic fuzzy graph.

Remark 3.3.1 If Gy = (Vi, Ey,0', 1)) and Gy = (Va, Eq, 0", ") are strong VSIFG, then G111G5 is not

a strong vertex squared intuitionistic fuzzy graph.
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3.4 Semi-Strong Product of Two Vertex Squared Intuitionistic Fuzzy

Graphs

Definition 3.4.1 The semi strong product of two vertex squared intuitionistic fuzzy graph G, = (Vy, Ey, o', 1)
and Gy = (Va, By, 0", 1) such that Vi N Vy = ¢ is defined to be the vertex squared intuitionistic fuzzy

graph G1 e Gy = (V,E o' e " 1/ e 1) where

V=VixV,s, and

E=A{[(z,n), (x,92)]/7 € E1, (y1,92) € Ea} U{[(x1,41), (z2,y2)]/ (71, 72) € 1, (y1,Y2) € En}.

The MV and NMV of the vertex (x,y) in G ® G are given by

(01 @ 01%)(w,y) = o7'(z) A oy*(y)

(05 @ 03%)(,y) = 05'(z) A oy*(y)

In addition, the MV and NMV of the edge in G, G5 are given by

o1 (x) A (y1, )}

py (w1, w2) A p (y1, y2) }

(17 @ 1)) ((,91), (2, 2

(N/1 'M/f)( 9517341) (22, Y2

) )
( ) =
(1 @ 15) (2, 91), (2, 40)) = 05 () V i (y1, yo)

(1 @ 1) (1, 91), (22,92)) = po(a1, w2) V p3 (Y1, y2)

Example 3.4.1 Let G1 be a VSIFG with mi1 = (0.52, 0.32),77122 = (0.22, 0.42),(m11, m22) = (004, 016)

(0.52,0.3%)my1 o 0.04,0.16 e Myy (0122 0.4%)

Figure 3.4.1: VSIFG G,
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Let G2 be a VSIFG with ny = (0.12, 0.22),71/22 = (0.22, 0.52),(7111, n22) = (001, 025>

0.01,0.25
(0.12,0.22) 0 0 Ak en; (0.22,0.52)

Figure 3.4.2: VSIFG G,

Let G1 [ ] GQ be a VSIFG with miinip = (0.12, 0.32),m11n22 = <0.22, 0.52), MooN11 = <0.12, 0.42),
MooMNog = (0.22, 0.52),(m11n11, m22n22) = (001, 025), (mnngg,mggnn) = (001, 025)

0.01,0.25

(0.12,0.3%) myynqy myngo (0.2%,0.5%)

(0.12,0.4%) mopnyy maonag (0.2%,0.5%)

0.01,0.25

Figure 3.4.3: VSIFG G ¢ G,

Theorem 3.4.1 IfGy = (V1, By, 0’ 1') and Gy = (Va, Es, 0", ") are strong vertex squared intuitionistic

fuzzy graph, then G, ® G5 is also a strong vertex squared intuitionistic fuzzy graph.
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Proof. Because G; =

(Vi, By, o', 1) and Gy =

(Va, By, 0", 1) are strong VSIFG, then

p (21, 22) = 0 (21) A 0 (2)
ps (w1, 22) = 0% (21) V 05 (5)
1 (Y1, y2) = 07 (y1) A o (y2)
1y (Y1, y2) = 05°(y1) V 03

If ((‘T7 y1>7 (‘xa y2)) c E, then

(y o 1)) (2, 01), (2, 92)) =

Similarly, we can show that

(1 ® i) ((z, 1), (2, 2)) =

Again if ((z1,v1), (x2,92)) € E, then

(y2) forall (z1,22) € Ey and (y1,92) € Eo

= ‘71 ( ) A :U'l(yl;y2)
) A ()]
[0 () A a?(y)] A lo () A o (ya)]

= {lo7* 01" (z,y1)} A {07 @ 01%](2, 1)}

or(z) Ao

2

{lo5 & 057 (z,y1)} v {[o}" @ 037](w, 1) }

(1) @ ) ){(w1,91), (w2, 92) } = {1y (21, 22) A (y1, 92) }

Similarly,

(1 & p){(@1, 1), (22, 52)} = {(0%" @ 03%) (w1, 91)} V { (07

= [0 (1) A o (22)] A [0 (1) A o (32)]
= [0 (z1) Ao ()] Aot (22) A o (y2)]

= {lo7* @ o1*](z1,51)} A {07 @ 07" (w2, 42) }

5 hd 052)(%,@/2)}
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Therefore G, ® (G5 is also strong VSIFG.

Theorem 3.4.2 If G, = (V4, By, 0, 1) and Gy = (Va, B, 0", ") are vertex squared intuitionistic fuzzy

graph, then G e G5 is also a vertex squared intuitionistic fuzzy graph.

Remark 34.1 If G, = (Vi, By, 0, 1) and Gy = (Va, Ey, 0", ") are non strong VSIFG, then G, @ Gy is
a VSIFG.

3.5 Semi Product of Two Vertex Squared Intuitionistic Fuzzy Graphs

Definition 3.5.1 The semi-product of two vertex squared intuitionistic fuzzy graph G, = (V4, Eq, 0’ 1)
and Gy = (Va, By, 0", 1) such that Vi NV, = ¢ is defined to be the vertex squared intuitionistic fuzzy

graph G1 @ Go = (V, E,0' @ o”, i/ @ u") where

V=V, xV,, and
E={[(z, 1), (z,92)]/x € Er, (y1,92) € Eo} U{[(21,9), (z2,y)]/ (1, 22) € Er,y € En}

UA[(m1,91), (T2, y2)]/ (21, 22) € B, (y1,92) € Ea}

The MV and NMV of the vertex (x,y) in G1 ® Gy are given by

(07 ® o) (2, y) = o7'(z) A o1 (y)

(03 ® 05°)(2,y) = 05 (x) A 05> (y)
In addition, the MV and NMV of the edge in G| @ G5 are given by

(1 @ 1) (2, 91), (2, 92)) = 07" (%) A 1 (91, 92) }
(@ ) ((21,9); (22, 9)) = i (w1, 22) A o (y)}

!/

(1 @ ) (21, 91), (22, 92)) = ph (w1, 22) A i (Y1, 92)
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(1 @ ) (2,91, (2, 2)) = 05 () V sy (y1, y2)
(1 @ py) (21, 1), (22, 9)) = o1, 22) V 05°(y)

!/

(1o, ® pin) (21, 91), (22, y2)) = pg(w1, 22) V pay (Y1, 2)

Example 3.5.1 Consider Gy be a VSIFG with m1; = (0.5%,0.3%), ma = (0.22,0.4%), my1, mey =
(0.04,0.16)

]

(0.5%,0.3%) my; o 0.04,0.16 o my (0.22,0.47)

Figure 3.5.1: VSIFG G,

Consider G2 be a VSIFG with ny = (0.12, 0.22), Moo = (0.22, 0.52), N11, N9y = (001, 025)

. .01,0.25
(0.12,02%) nyyo 0.01,0.25 on23(0.22,0.5?)

Figure 3.5.2: VSIFG G-

Let G; ® G be a VSIFG with myny; = (0.1%,0.32), mying = (0.2%,0.5%), mao, ny1 = (0.12,0.4%),
Maanae = (0.22,0.5%), (my1nq1, Magnas) = (0.01,0.25), (mq1n92, maanyy) = (0.01,0.25),
(my1n11, miinges) = (0.01,0.25), (my1nge, magnge) = (0.04,0.25), (maganiy, magngs) = (0.01,0.25),
(mqy1m11, magnqy) = (0.01,0.16).

Theorem 3.5.1 If G, = (V4, By, 0', 1) and Gy = (Va, By, 0", 1i"") are complete vertex squared intuition-

istic fuzzy graph, then G| ® G5 is complete vertex squared intuitionistic fuzzy graph.
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0.01.0.25

myn9,(0.2%,0.5%)

(0.12,0.3%) myinyy MaoTizo(0.22,0.57)

mgsnyy(0.12,0.42)

Figure 3.5.3: VSIFG G ® G4

Proof. Because G| = (V4, By, o', 1/) and Gy = (Va, By, 0", 1”") are complete VSIFG, then

If ((,31), (z,12)) € E, then

(s @ p) (2,01, (2, 92)) = 02 () Al (y1, 2)
= o (x) Ao (1) A o7 (12)]
= [0F(x) NP ()] A [0 () A oi?(y2)]

= {0t @ o1’|(z,y1)} Ao @ 07")(w, y2) }
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Similarly, we can show that

(1 ® 15)((z, 1), (2, 92)) = {[o’ @ 03" (2, 11)} V {[05’ ® 057 (,2)}

If ((w1,y), (22,¥)) € E, then

(1 @ (21, 9), (22, 9) } = { (21, w2) A 0T (y)}
= [0 (21) A of (22)] A o?(y)
= [o7(x1) AP (y)] A [0F (22) A 0T (y)]

= {lor @ o1l(z1,9)} AMlor @ 0722, 9)}

Again if ((z1,v1), (z2,42)) € E, then

(1 @ p)){(x1, 91), (w2, 92) } = {p (21, w2) A iy (Y1, 92) }
= [0 (x1) AN o (@2)] A [0 (y1) A o7 (y2)]
= [0 (21) Ao (1)) A [0 (22) A 07 (y2))]

= {07’ ® 07*)(z1,51)} A{lo7 @ 01°](22, 1)}

Similarly,

(1 ® ) (21, 31), (22, 12)) = {(0F @ 05°) (21, 91)} V{(0F ® 05%)(22,12)}

Therefore G; ® G5 is also complete VSIFG.

Theorem 3.5.2 Let Gy srra and Goysira be two vertex squared intuitionistic fuzzy graph and if Givsira
and Goy g are strong VSIFG, then the semi - product of two vertex squared intuitionistic fuzzy graph

contains dual strong domination number.

Proof. Let GIVSIFG’ and GQVSIFG be two VSIFG . If GIVSIFG and GQVSIFG are strong SMIFG, then the
semi - product of two SMIFG contains dual strong domination number.

Conversely , Suppose that the semi - product of two SMIFG contains SDSN. To prove that Gy s;r¢ and
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Govsira are strong VSIFG. If possible Gy srrpe and Goysrre are non strong VSIFG, then all arc of
Ghvsira and Goysrpg are non strong arc. Therefore the semi - product of two VSIFG does not have

DSDN, which is a contradiction. Hence Gy s7r¢ and Gaoy g1 are strong VSIFG.

Example 3.5.2 In figure 3.5.1 and 3.5.2 are strong VSIFG. Then by figure 3.5.3 GG; ® G5 having all arcs
are strong. Therefore Gy @ G5 contains DSDN.

3.6 Vertex Squared Split Intuitionistic Fuzzy Graph

The new concept of dual strong domination in VSSIFG are defined in this section, along with related

results.

Definition 3.6.1 An  vertex squared split intuitionistic fuzzy graph is of the form

Gvssira : Vwssira, Evssira) where

(i) the vertex set Viyssrra = {V11, V22, - - -, Unn } Such that 113 gsrpe : Vvssirg — [0,1] and v g1 rc
Vissira — |0, 1] denote the degree of membership value and non membership value of the element
vii € Vyssipg respectively and 0 < i (Vi) + V55, oo, v (Vi) < 1 for every vy € Vyssrra(i =

1,2,...,n).

(ii) Evssirec C Vvssira X Vwssipa where g, oo ne @ Vvssira X Vwssira — [0,1] and Ve, og, e

Vvssira X Vyssirg — [0, 1] are such that

2 v 2 -
luEvsszpc:(Uz’i’Ujj) < min (MVVSSIFG( is) /”LVvsstc< ]J))

2 ’ 2
I Vg - Vs
VEvssira (vii, Ujj) < max (VVVSSIgG( ), 7Vvsslrgc;( J]))

and () < KEvssira (viiu Ujj)+7EVSSIFG (Uii7 Ujj) < 1 forevery (Uii7 Ujj) € Eyssira, <Z7j =1,2,... 7”)'
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Example 3.6.1 Let Gy ssrra be a VSSIFG with

— 0. 72 0.2? — 0.3%2 0.42 S 0.22 0.72 — 0.5% 0.62
11 — 9 9 ) 11022 — 9 ) 9 ) 11633 — 9 ) 9 y 1144 —
0.3% 32 0.4 42
Mys = mn, m22 (0045, 008), (mn, m33) = (002, 0245),

(mn, m55) (0 030 0. 10), (m22, TTL33) (0 02 0. 245) <m227 m44) = (0045, 018),
(mag, mag) = (0.02,0.245), (myq, ms5) = (0.030,0.10)

(072 0.22)
myy [ —,
27 2

0.030,0.10
) 0.045,0.18

0.045,0.18

s 0.5%2 0.6%
27 2

Figure 3.6.1: VSSIFG

Definition 3.6.2 A vertex squared split intuitionistic fuzzy graph Gvssira : (Vwssira, Evssira) is said
to be strong if

: Vi) 2 Vis
BBy ssire (Vii; Vj;) = min (MVVSSIFG( is) MVVSSIFG< JJ))

2 ’ 2
%2/ (vii) 7\2/ (vj)
VEy ssrre (Viis Vjj) = max VSS;G , VSSISG for all (v;,vj;) € Evssira
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Definition 3.6.3 A vertex squared split intuitionistic fuzzy graph Gvssire : (Vwssira, Evssira) is said

to be complete if

2 2
1By ssre (Viis Vjj) = min (MVVSSISG( “)’ MVVSSI;‘G( ]]))

2 2
YEvssira (Uiiavjj) = max <,YVVSSIQFG( ”)7 ,YVVSSISG( ”)) for all (Um Ujj) € FEyssira

3.7 The Join Product of Two Vertex Squared Split Intuitionistic

Fuzzy Graph

In this section the join product of two vertex squared split intuitionistic fuzzy graph are defined and related

theorems are discussed.

Definition 3.7.1 The join product of two VSSIFG G| = (Vi, Ey) and G5 = (V4 Es) denoted by
Gi+Gy=[ViUVy, By U Ey, U EN]
where EV is the new edge joining V, and Vs, its MV and NMV are defined as follows

Hv,y (U) lf ueVi
(:uVl + sz)(u) =
vy (u) lf uc Vé

% (u) lf UAS ‘/1
(7 + ) (u) =
e (u) lf (S ‘/2
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.

pg, (uv) if w e k)
(1Ey + 1Es) (W) = € g, (uv) if wv € Fy

1y () pd (v) . N
\mln{ > } ifuv e &

,

Vi, (uv) if uv € By
(Ve + 7E:) (w0) = { g, (uv) if uv € Ey
2 u 2 v
max {7“2( ), 7V22( )} ifuv € EN
\

Example 3.7.1 Let G| be a VSSIFG with

0.7 0.22 0.3%2 0.42
mll — (T’ T)’ m22 = <T7 T), (m117m22) == (00457008>

=2 02
077 027 0.045,0.08 0.3% 0.4?
5 ' 9 11 @ 11129 5 9

Figure 3.7.1: VSSIFG G,

0.5% 0.6 0.32 0.4
Let G2 be a VSSIFG with ni = (T, T) , g2 = (T, T) , (TLH, ngg) = (0030, 010)

05 06 0.030,0.10 03 0.4

Figure 3.7.2: VSSIFG G-
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. 0.72 0.22 0.32 0.42 0.5%2 0.62
Let G1 + G2 be a VSSIFG with m; = (T’ T) , Mgy = (T’ T) Ny = (T’ T) ,
0.32 0.4
Noo = T, T . (mn,mgg) = (()045, 008>, (nll,ngg) = (0030, 010), (mn, 7111) = (0125, 018),

(mgg, n22) = (0045, 008), (m11,n22) = (0045, 008), (m22, nu) = (0045, 008)

0.045,0.18 0.045,0.08

0.045,0.08

0.125,0.18

0.030,0.10

(0'52 0'62)1111 nyy (0.3% 047
22 2 ' 2

Figure 3.7.3: VSSIFG G, + G,

Theorem 3.7.1 The join of two vertex squared split intuitionistic fuzzy graph is again an vertex squared

split intuitionistic fuzzy graph.

Proof. Let G; = [V4, E1] and G2 = [Vi, Es] be VSSIFG, we have to prove that the join of G; and G»
denoted by G + Gy = [V} UVa, E;UE,U EYN] where EV is the new edge joining V; and V3 is an VSSIFG.

By definition, we have if x € V] then

(:U’Vl + :qu)(a:) = My (LU) &
(1 + 1) () = i ()
therefore, 0 < (MV1 + MV2>(I) + (7V1 + ’YVZ)('I) <1
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Similarly, if z € V5 then

(v, + ) (x) = () &
(i +715)(@) = M ()

therefore, 0 < (uy; + pv,) () + (v + ) () <1

and if zy € E,, then

(NE1 + MEg)(fE, y) = Ug, (l’y)

(up, + pE,)(z,y) < min <“‘2/12(1')7 M%/l(y))

< min <(Mv1 + ) () (uy, + WQ)?(y))

9 ’ 2
and (vg, + VE,) (7, y) = Ve, (2Y)

(Ve +7e.) (.9) < max (751 (@) 75 <y>)

< max ((Wl +m)’(@) (o + vvz)z(y))

2

2 ’ 2

Similarly, if zy € Es

(/‘LEI + MEQ)(xv y) < min (('uvl + #V2)2(l’) (,uvl + MVQ)Q(y)>

2 7 2
(Pyvl + 7V2>2('T) (7‘/1 + 7V2)2(y))

and (vg, + Vm,)(z,y) < max ( 5 : :
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If xy € EV,

/'le 'uV1 )

(1E, + pp,)(7,y) = min (
(v + MVQ x) (i + ) (y)
2
Y, () 7 (y)

<7E1 + 7E2 = max < ; 9 )

(' +7v2)2 l’) (s +7v2) (y)>

Therefore GG; + G is also an VSSIFG.

Theorem 3.7.2 If G| and G4 are strong vertex squared split intuitionistic fuzzy graph, then their join

denoted by G| + G4 is again strong vertex squared split intuitionistic fuzzy graph.

Proof. Since (; and G are strong VSSIFG

() k3 ()
fiE, (2,y) = min : and
2 2
2 T 2
YE, (C(Z,y) = Inax (7V12( )7 7V12(y)) v x,y € El
2 2
and piz, (z,y) = min <MVQ(IL’)’ MVZQ@)) and

Ve, (%, y) = max (

pe (z,y) if xy € B
(tg, + gy )(x,y) =
pe,(z,y) if zy € By

(

B3 (@) B ()
mln{lT, 5 }

< 2
13, (@) b, () }
| min {—2 =3

(

Ve (2, y) if zy € By
(e, +78,) (2,y) =

|V (,y) if 2y € By
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s {7\2/12(96)’ 7\2/12 (v) }

T, (@) i, (1) }

max{ >

andif z,y € BV

(tE, + pE,)(7,y) = min

(’YEI + ,VEQ)("L‘v y) = max

/_\/—\
=
<l\)

b |2
)
S~—
o
ro [
s
N—

Therefore GG; 4+ G5 is strong VSSIFG.

Theorem 3.7.3 If Gy and G4 are complete vertex squared split intuitionistic fuzzy graph, then their join

product denoted by G + G5 is again complete vertex squared split intuitionistic fuzzy graph.

Proof. Since G; and G5 are complete VSSIFG

g (2.) = min (/ﬂvl2 (fv)7 /fvlz (y)) ond

7 () = max (’v%l 2(:z:) | 73—12(31)) VeV
and jup, (2.1) = min (/ﬂvz2 (x)7 M%QQ (y)) ond

o (2.y) = max (%2/22(:1:) | 7522@)) Ve eV

(ME1 + ME2)(‘T’ y) =
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(

Ve, (T, y) if xy € By
(7E1 + 'VEz)(xa y) =
z,y)

\7E2( if zy € F,

( e {7‘2/1 () %, () }

= 22 Va,ye Vs

7 (@) 2 (v)
o (2. 5]

andif z,y € EN

2
A
(#E1+ME2)(xay):mln( 9 ; 9 )VCE,ZUGVl

(Ye, + 7B,) (2, y) = max (

Therefore GG; + G is complete VSSIFG.

3.8 Dual Strong Domination in Vertex Squared Split Intuitionistic
Fuzzy Graph

In this section, the concept of dual strong domination in VSSIFG is defined and discussed the notion of

Ypsp(Gvssira)-

Definition 3.8.1 Let Gy ssirg be a VSSIFG. A set Dy ssira of nodes of Gy ssrra is a dual strong dom-

inating set of Gy ssira if every node of Viyssira — Dyvssira is a strong neighbor of at least two node in

Dy ssrre-

Definition 3.8.2 The weight of a dual strong dominating set Dy ssira of VSSIFG is defined as

W(Dyssira) =

Z 1+ |pa(mar, maz) — Ya(mar, mas)|
2 )
m11€DyssIFG
where [15(mq1, Mag) — Y2 (my1, Mao)| is the minimum of the membership value and non menbership value

of the strong arcs incident on myy. The dual strong domination number of a VSIFG Gy ssirc is defined

as the minimum weight of dual strong dominating set of Gy ssirc and it is denoted by vpsp(Gvssira)-
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Example 3.8.1 Let Gy ssrrg be a VSSIFG with all edges are strong.

0.18,0.045

Figure 3.8.1: VSSIFG with vpsp(Gyssira)

The DSDSs are S11 = {ma1}, Sa2 = {maa} and Ss3 = {mass}. After calculating the weight of SDSs
are S1; = 0.08 and Sas = 0.08 and S33 = 0.08. Therefore vpsp(Gvssira) = 0.08.

Theorem 3.8.1 Let Gi + G4 be an VSSIFG and if G1 + Gy having at most two non strong arcs, then

G1 + G contains dual strong dominating set.

Proof. Let GG; + G5 be an VSSIFG. If G| 4+ G5 having at most two non strong arcs, then G'; + G5 contains
dual strong dominating set.

Conversely, suppose that GG; + G, contains DSDS. To prove that GG; + GG having at most two non strong
arcs. If possible G; 4+ (G5 contains more than two non strong arcs, then G; + (G5 does not contain a DSDS,

which is a contradiction. Hence G; 4+ G5 having at most two non strong arcs.

Remark 3.8.1 If G| + G5 contains dual strong domination number then G, and G4 need not be strong

VSSIFG.

In this chapter, we introduce the notion of vertex squared intuitionistic fuzzy graph and we define

strong vertex squared intuitionistic fuzzy graph, complete vertex squared intuitionistic fuzzy graph. Also,
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a direct product of two vertex squared intuitionistic fuzzy graph, semi-strong product and semi product
of two vertex squared intuitionistic fuzzy graph are defined, and many interesting results involving these
concepts are investigated. We develop the concept of vertex squared split intuitionistic fuzzy graph, strong
vertex squared split intuitionistic fuzzy graph, complete vertex squared split intuitionistic fuzzy graph and
join product of two vertex squared split intuitionistic fuzzy graph are defined, and many interesting results
involving these concepts are investigated. The relationship between the vertex squared intuitionistic fuzzy
graph of a dual strong domination and theorems relating to these notions are also analyzed. Moreover, we

discuss dual strong domination number and investigated their many interesting results.



Chapter 4

Split Domination in Vertex Squared

Interval-Valued Fuzzy Graphs

In this chapter we study different concepts like vertex squared interval-valued fuzzy graph, vertex squared
cardinality, vertex squared independent set, n- split dominating set, n-split domination number. We like-
wise, investigate a relationship between n - split dominating set and vertex squared independent set for
vertex squared interval-valued fuzzy graphs. The vertex squared interval-valued fuzzy graphs are more
adaptable and viable than fuzzy graphs because of the way that they have numerous applications in net-
works. This work will be useful to concentrate enormous vertex squared interval-valued fuzzy graphs as a
mix of little vertex squared interval-valued fuzzy graphs. Vertex squared interval-valued fuzzy graph hy-
pothesis is presently developing and growing its applications. The theoretical improvement in this space
is talked about here. Eventually, genuine utilization of n-split domination number to choose which oxygen

cylinder agencies have the lot of oxygen cylinder among various oxygen cylinder agencies is inspected.

4.1 Vertex Squared Interval-Valued Fuzzy Graph

Definition 4.1.1 An vertex squared interval-valued fuzzy set (VSIVFS) X1y on a set Vi is denoted by
Xrv = {(i11, [(a)}[v(in))Q, (0}1‘/(2’11))2]), i1 € Viv}, where ((7;{1‘/)2 and (aj(w)Q are fuzzy subsets of
Viv such that (o, (i11))* < (0%, (i11))? for all iyy € Viy. If Gy = (Viv, Erv) is a crisp graph, then

by an vertex squared interval-valued fuzzy relation Yy on Viy we mean an VSIVFS on Epy such that
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Oy, (i1i22) < min{(oy,, (i11))% (0, (i22))*} and oy, (inise) < maz{(oy,, (i11))% (0, (i22))*}

fOl’ all 111199 € E[V and we write 3/[\/ = {(illigg, [O';/IV (i11i22>, O';;IV (illizg)]), 111092 € E[V}.

Definition 4.1.2 An vertex squared interval-valued fuzzy graph of a graph G\, = (Viv, Erv) is a pair
Grv = (X1v,Yiv), where Xy = [(0%,,)?, (0%,,,)?] is an VSIVFS on Viy and Yy = [0y, ,0f ] is an

vertex squared interval-valued fuzzy relation on Viy.

Example 4.1.1

129 (0.12,0.42)

(0.22,0.3%) iy, i33(0.32,0.6%)

144(0.42,0.5%)

Figure 4.1.1: VSIVFG (G,y)

In the above figure,
Viv = {11,922, 133, 144}
Erv = {11922, 122133, 133044, 144711 }

Here we take Xy be an VSIVES on V}y and Y7y be an VSIVES on Ey C Viy X Vi defined by
X — i1 122 133 U4 i1 122 133 l44
v (0.2)27 (0.1)2" (0.3)2" (0.4)2 (0.3)27 (0.4)2" (0.6)2" (0.5)2

Y _ i11i22 i22i33 i33i44 i44i11 i11i22 i22i33 i33i44 i44i11
v 0.01° 0.01° 0.09° 0.02 0.10° 0.36 0.34° 0.25

Then GIV = (va, }/[V) is an VSIVFG.
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Definition 4.1.3 The order pyy and size qry of an VSIVFG Gy = (Xpv,Yv) of a graph G5, =
(Viv, Ev) are denoted by

1+ (ox,,(i11))* = (0%, (111))?
Prv = Z 5

111€VIV

and

Z 14 J;IV (i11992) — oy (411722)
2

qpy =

i11922€ Vv

Definition 4.1.4 Let Gy = (va, }/[V) be an VSIVFG on G?V = (‘/[V, E]V) and Spy C V. Then the

vertex squared cardinality of Sty is defined to be

1+ (0%, (i11))* = (0%, (i22))?
2 3

i111E€EVIV

Definition 4.1.5 An arc ey = 111199 of the VSIVFG is called a vertex squared effective edge if

oy, (i1iz) = min{(oy, (i11))% (o, (i22))*}

and

oy, (iniz) = max{(oy,  (i11))?, (0%, (i22))*}

Definition 4.1.6 A set S;y of vertices of the VSIVFG is called the vertex squared independent set (VSIS)
if

oy, (i1i) < min{(oy, (i11))% (o, (i22))*}
and

oy, (iniz2) < max{(oy,  (i11))?, (0%, (i22))*}

fOI” all iu,igg c S[\/.
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4.2 n-Split Domination in Vertex Squared Interval-Valued Fuzzy

Graph

Definition 4.2.1 Let Gy = (Xv,Yv) be an vertex squared interval-valued fuzzy graph on Vi and

111,122 € Viv. We say i1, n-split dominates "is5” if

n n

(0%, (111))? (UX,V(i22))2}

O-;IV (7:117:22) = min { s

n n

(0%, (111))? (0%, (izz))z} ‘

+ i —
and OYIV (211222) = Imax { s

Example 4.2.1

111(0.42,0.5%)

0.005,0.125 0.02,0.125

(0.12,0.22) 14 92 (0.22,0.32)

0.005, 0.045

Figure 4.2.1: VSIVFG (G/y) with 2-Split Dominates

In the above figure,
‘/IV = {2'117 i227 Z‘33}'

Eny = {211222, 122133, 133111}
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Here we take Xy be an VSIVFS on V}y and Y7y be an VSIVES on Ejyy C Viy X Vi denoted by

X _ Z‘11 7;22 Z.33 7;11 7;22 Z.33
v (0.4)2° (0.2)2" (0.1)? (0.5)27 (0.3)27 (0.2)2
Y _ i11i22 Z-222-33 Z'332'11 Z.111.22 7;227;33 Z-33Z-11
v 0.02 0.005’ 0.005 0.125° 0.045° 0.125

Then G[v = (X[\/, Y[\/> is an VSIVFG.

In this figure 4.2.1 for n = 2,

Similarly, O';IV (i22i33) = 0.005 and O';IV (i22i33) = 0045,
O-;IV (?;11?:33) = (0.005 and O-;IV (?;11?:33) = 0.125.

Therefore all edges are 2- split dominate edges.

Definition 4.2.2 A subset Spy of Vv is called a n-split dominating set (n-SDS) in VSIVFG if for every
ioo & Stv, there exist i1 € Spy such that i1, n-split dominates io5. A n-split dominating set Ry of a
VSIVFG is called the minimal n-split dominating set if no proper subset of Ry is a n-split dominating

set of VSIVFG.

Definition 4.2.3 The minimal vertex squared cardinality of a n-split dominating set in VSIVFG is said to

be n-split domination number of VSIVFG and is denoted by v,spp(Grv).
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Example 4.2.2 In Figure 4.2.2, Vi = {i11, 122,133}

Erv = {i11192, 922133, 133011 }

Here we take Xy be an VSIVFS on Vi and Yy be an VSIVFS on Epy C Viy X Viy denoted by

Xiv = < <((f.2)2’ (oi.zz:)” (5.§)2> > < ((5-151)2’ ((fj)” (oﬁ)?) >

Y _ i11i22 Z-222‘33 i33i11 i11i22 Z-222‘33 7;337;11
v 0.045 0.02° 0.02 0.125 0.08 ' 0.125

Then Gy = (Xpv, Yyv) is an VSIVFG.

0.02,0.125

122 (0.3%,0.42)

0.045,0.125
(0.42,0.52) iy, (D igs (0.22,0.42)

Figure 4.2.2: VSIVFG (Gy) with 2-Split Domination Number
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For n=2, the 2-split dominating sets (2-SDSs) are

1+ (0.5)2 — (0.4)?

Dy ={in} = 5 = 0.55
, 1+ (0.4)%2 —(0.3)?

Dy = {ign} = ( )2 (03) =0.54
. 1+ (0.4)%2 —(0.2)?

Dy = {igs} = ( )2 (02) = 0.56

1+ (0.4)2 —(0.3)*

1+m5ﬁ—m4ﬂ+

Dy = {11,020} = 5 5 = 1.09
o 14 (0.4)%2 — (0.3)2 14 (0.4)2 — (0.2)2

Dy~ i) - LEO O3 1502028,
L 14+ (0.5)%2 — (0.4)2 14 (0.4)2 — (0.2)2

Do = {ins,iss} — ( )2 (0.4) N ( )2 027 _ 4

Then the minimal vertex squared cardinality of a 2-SDS is {is} and yospp(Gry) = 0.54.

Theorem 4.2.1 A vertex squared independent set is a maximal vertex squared independent set of a vertex

squared interval-valued fuzzy graph iff it is a vertex squared independent set and n-split dominating set.

Proof. Let Sy is a maximal vertex squared independent set of a VSIVFG. Thus for each z € Vi, — Sy,
the set Sy U {z} is not vertex squared independent set. In this way, for each vertex = € Vjy — Sy, there
is a vertex y € Syy to such an extent that y is n-split dominated by x.

Consequently Syy is a n-SDS. Hence Syy is an vertex squared independent and n-SDS.

Conversely, let S7y be vertex squared independent set and n-SDS. If conceivable, assume Sy is not a
maximal vertex squared independent set. Then there exists = € Vj, — Sy to such an extent that the set
Spv U{x} is vertex squared independent set. Then no vertex in Sy is n-split dominated by =. Hence Sy
cannot be a n-SDS, which is a contradiction. Hence Sy should be a maximal vertex squared independent

set.
Example 4.2.3

In the above figure the maximal vertex squared independent sets are S; = {411, i29, 133}, S2 = {22, 933, la4 }-

This S; and S5 is also a vertex squared independent set and 2-SDS.

Theorem 4.2.2 In a vertex squared interval-valued fuzzy graph, every maximal vertex squared independ-

ent set is a minimal n-split dominating set.
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0.040,0.15

0.02,0.125

(0.3%,0.5%) igs(0) (D133 (0.5%,0.5%)

0.045,0.18 0.08,0.18

(Disa(0.42,0.5?)
Figure 4.2.3: VSIVFG (Gy) with 2-Split Dominating Set

Proof. Let S;, be a maximal vertex squared independent set in VSIVFG. By the theorem 4.2.1, S;y is a
n-SDS. Assume Sy be not a minimal n-split dominating set. Then there exists somewhere around one
vertex © € Spy for which Spy — {z} is a n-SDS. Yet, if Sy — {z} n-split dominates V;y — (S — {z})
then at least one vertex in S;y — {x} must n-split dominate x. This contradicts the way that Sy is a

vertex squared independent set of VSIVFG. Hence Sy should be a minimal n-split dominating set.
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Example 4.2.4

122(0.32,0.52)

0.02,0.125

(0.22,0.42) iy 133 (0.22,0.4?)

0.02,0.125

142(0.32,0.52)

Figure 4.2.4: VSIVFG (Gy) with 2-Split Dominating Set

In the above figure the maximal vertex squared independent sets are S; = {i11, 492}, S2 = {i22, 433}, S5 =

{433,944}, Ss = {i11, 744} and 2-SDSs are

L (047 = (027 | 14 (0.5)° — (0.3

Dy = {i1,in} = 5 5 =12
Dy = {11, i33} = Lt (0'4); — 027 s (0'4); —02°_,,
Dy = {iry,in} = 1+ (0.4); —(0.2)? . 1+ (0.5); —(0.3)? _ 19
Dy = {ing, i3} — 1+ (0.5); —(0.3)? L 1+ (0.4); —(0.2)? _ 19
Ds = {ing,ina} = 1+ (0.5); —(0.3)? n 1+ (0.5); —(0.3)? _ 19
Do = {iss,ina} — 1+ (0.4); —(0.2)? n 1+ (0.5); —(0.3)? _ 19

This shows that every maximal vertex squared independent set is a minimal 2-SDS.

Theorem 4.2.3 Let Gy be a vertex squared interval-valued fuzzy graph with n-split dominate edges. If

Stv is a minimal n-split dominating set, then Vi, — Sy is a n-split dominating set.
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Proof. Let S;, be a minimal n-split dominating set of VSIVFG. Assume Vi — Sy is not n-split
dominating set. Then there exist a vertex to x € Sy, such an extent that z is not n-split dominated by
anyone vertex in Vyy — Spy. Since Gy has n-split dominate edges, x is a n-split dominate of somewhere
around one vertex in Sy — {z}. Then S;y — {z} is a n-split dominating set, which contradicts the
minimality of Sp,. Subsequently, every vertex in Sy is a n-split dominate of no less than one vertex in

Viv — Spv. Hence Vi — Sy is a n-split dominating set.

Example 4.2.5

122 (0.22,0.42)

0.02,0.125 0.02,0.08

(0.3%,0.5%)i11 () (Di33(0.22,0.3%)

0.045,0.125 0.02,0.125

Figure 4.2.5: VSIVFG (Gy) with 2-Split Dominating Set

For n=2, the 2-split dominating sets are

1+ (0.5)% — (0.3)? N 1+ (0.4)2 — (0.2)?

=it} = 2 5 —1.2
Dy = {in, iz} = L+ (0'5); —(0.3)° . 1+ (0.3); — (0.2)?2 o
Dy = {in i} = (0'5); —03° 1% (0-5>; ~(05° _ |,
- O 021s103E
Dy = {im i} = (0'4); —02 1+ (0-5>; - (05
Do = {igg,ias} = 02— (037 1+ O = (057 _,

2 2
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Then the minimal vertex squared cardinality of a 2-SDS is {i33, 444} and y25pp(Grv) = 1. Here Viy =

{ilh iQQ, ’i33, 1'44}, then VIV — Dﬁ = {i117 iQQ} is also a 2-SDS.

4.3 Application

Many individuals today have been contaminated will the Corona virus infection and now and again passed
on. Lamentably, the oxygen cylinder insufficiency in agencies has expanded the demise rate. Hence we
have attempted to recognize the lot oxygen cylinder accessible agencies with the assistance of 2-split
dominating sets to save both expense and time. For this reason, assume that five unique oxygen cylinder
agencies are working in a city for providing oxygen cylinders to the medical clinics.

Consider the oxygen cylinder agencies A1, Agy, Ass, Ay and Ass. In VSIVFEGs, the vertices show the
agencies, and edges show the collaboration of one agency with another agency and non collaboration with
one another. The diagram 2-split dominating sets is the arrangement of agencies that produce the oxygen
cylinder independently.

The vertex A44((0.3)%,(0.4)?) implies that it has 30% of the oxygen cylinder accessible for the agencies
and 40% of the oxygen cylinder inaccessible for the agencies. The edge A;q, A22(0.02,0.125) show that
there is just 0.02% of the connection between the two agencies, and because of the contest, and 0.125%
on the conflict between them.

The 2-split dominating sets for the figure 4.3.1 are

Dl - {A44}7-D2 - {A117A22}7 D3 - {A117A33}7 D4 - {A117A44}7 D5 - {A227A44}7
DG = {A227A55}7 D7 = {A337A44}7D8 = {A337A55}7D9 = {A447A55}

after calculating the vertex squared cardinality of Dy, Do, ..., Dy, ...

Dy = 0.535, Dy = 1.07, Dy = 1.145, D, = 1.08, D5 = 1.06,

D¢ = 1.085, D; = 1.135, Dg = 1.16, Dy = 1.095
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(0.4%,0.5%) A, A9 (0.22,0.3%)
0.02,0.125

0.045,0.125

0.02,0.125 (O A33(0.4%,0.6%)

0.045,0.18

L 0.02,0.08
(0.22,0.4%) A;; A41(0.32,0.4?)

Figure 4.3.1: VSIVFG (Gy) with 2-Split Dominating Set

Obviously Dy has the base vertex squared cardinality among other 2-split dominating sets, so we presume
that it tends to be the most ideal decision since it will set aside time and cash for patients. Along these
lines, the excess agencies should expand oxygen cylinder creation, with the goal that patients can be
distinguished at the earliest opportunity and don’t need to go to various agencies and went through a huge

load of cash.

110 H mAGAINSE

COVID-19

Figure 4.3.2: Oxygen Cylinder
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4.4 Motivation and Comparative Analysis

Our examination will be gainful to grasp the further qualities of VSIVFGs exhaustively. We have applied
the model on VSIVFGs given in figure 4.4.1 and interval-valued fuzzy graphs gave in figure 4.4.2 and
we get the accompanying outcome. In figure 4.4.1 vo5pp = 0.525 and figure 4.4.2 v = 0.55. Here
Yaspp < 7. Because of this explanation, the current model isn’t useful to choose which agencies have the

lot of oxygen cylinder. Thusly our proposed strategy is superior to the current technique.

(0.22,0.32) A,

O

. o )
0.02,0.125 A2 (0.32,0.5%)

Figure 4.4.1: VSIVFG (Gy) with 2-Split Dominating Set

(0.2,0.3) Ay A2 (0.3,0.5)

0.1,0.25
O :

Figure 4.4.2: IVFG with Dominating Set

The dominance theory survey is intriguing because of the wide range of applications and dominant
features that can be established. The new thought has been explained in this chapter for vertex squared
cardinality, vertex squared effective edge, n-split dominating set, and n-split domination number. Theor-
ems identified with this concept are inferred and the relation between n-split domination set and vertex
squared independent set are set up. Vertex squared interval-valued fuzzy graphs are more adaptable and
practical than fuzzy graphs because of their many applications in networks. The fuzzy graph hypothesis
with vertex squared interval-valued is actively being explored and modified. We trust our investigation
will empower us to expand fuzzy graph classes, for example, interval-valued fuzzy incidence graphs and

intuitionistic fuzzy incidence graphs.



Chapter 5

Perfect Domination in Product of

Interval-Valued Fuzzy Incidence Graphs

Fuzzy graphs, also known as fuzzy incidence graphs, are a useful and well-organized tool for encapsu-
lating and resolving a variety of real-world situations involving ambiguous data and information. In this
investigation article, we introduced the chance of interval-valued fuzzy incidence graphs alongside their
specific properties. The operations of Cartesian Product (CP), Tensor Product (TP) in interval-valued
fuzzy incidence graphs are additionally examined. The technique to compute the degree of interval-
valued fuzzy incidence graphs acquired by Cartesian Product and Tensor Product is examined. Some
significant hypotheses to figure the degree (DG) of the vertices of interval-valued fuzzy incidence graphs
gained by Cartesian Product and Tensor Product are explained. An innovative idea of perfect domination
in Cartesian product of two interval-valued fuzzy incidence graphs and Tensor Product of two interval-
valued fuzzy incidence graphs utilizing incidence pair are presented and gotten the connection between
them. Eventually, genuine utilization of perfect domination number to discover which countries (country)

have the best education policies among various countries is inspected.
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5.1 Degree of a Vertex in Cartesian Product of Two Interval-Valued

Fuzzy Incidence Graphs

Definition 5.1.1 An interval-valued fuzzy incidence graph is of the form Gy = (Vivr, Ervr, Lvi, b, for, foar)
where jie = (g, pe)s b = (g, pp)s pinr = (g ) and Vivr = {wo,wi, ..., w,} such that
tx : Vive = [0,1] and pj: = Vivi — [0,1] represent the degree of membership (MS) and non mem-
bership (NMS) of the vertex w;; € Vyy respectively, and py (wy < pie(wiy), 0 < pg + pje < 1 for each
wi; € Vivi(i = 1,2,...,n), up = Vive X Viyr — [0,1] and pf = Vivr x Vivr — [0, 1), py (w1, wae)
and pif (wy1, way) show the degree of membership and non membership of the edge (w1, way) respect-
ively, such that ji; (w11, wae) < min{py (wiy), pr (W)} and pf (w1, wae) < max{pk(wi1), ui(w2)},
0 < py (w1, wae) + pf (w11, waz) < 1 for every (w1, waz), iy = Vive X Epvy — [0,1) and pf; : Vi X
Ervr — [0,1] and py,(wi1, wigwaes) and ph, (wyy, wiiway) show the degree of membership and non mem-
bership of the incidence pair respectively, such that jiy; (w1, w11wee) < min{ g (wir), pg (w11, wa2) }
and ph; (wi1, wiwes) < max{ug(wi), uf (i, wa2)}, 0 < py(win, wirwae) + i (wir, wiiweg) <1

for every (w1, wiywas).

Definition 5.1.2 Let Gy = (Vivr, Erve, Livr, ik, 1on, par) Bs an interval-valued fuzzy incidence graph
and wyy € Vyvy, then its degree is represented by dg,,,,(w11) = (dig,,, (w11), dag,,, (w11)) and defined
by

leIVI (wll) - Z (w117w11w22> €Iy

w11 FW22

and dQG,V,(wn) = Z (w11, wi1weg) € Iryy

wll?’éwQZ

Definition 5.1.3 The Cartesian Product of two interval-valued fuzzy incidence graphs G,y = (Vi 1, Ebvr, Thrs |
and

G%, 1 = (VA 1 E3p, Ty, 13, 12, 13, is defined as an interval-valued fuzzy incidence graph

Grvr = Gy x G = Vv, Ervr, Invi, e X e, (1, X [, fihy X f1ay)

where Viyr = Vi, x VA, and
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Ervr = {((miny), (ma,na))/my = ma, (ny,n9) € E?w orny = ng, (my, my) € E}w}
Ity = {(mﬂh), (ml,nl)(ml,m)/ml = My, (711,”1712) € IIQVI, (nzﬂlmz) c IIZV[ or

ny = ng, (my, mima) € Ity g, (Mg, mims) € Iy} with

X N;;) (my,ny) = min{pug (m1), pg (n)WV(me,m) € Vi, x V&,

2 1 2
(uK X i ) (ma,m1) = max{pug (m1), pg (m)}V(ma,m) € Viyp x Vg,

(

1 min{py (ma), . (n1,n2)} if ma = ma, (n1,m2) € By
(k2" 2" ((ma,m0) (2, ma) = 1 2
| min{pup (m1,ma), e (n1)} if ma = na, (ma,me) € Ejy
y

max{p; (m1), i} (n1,m9)} if ma = ms, (n1, ) € By,
m17n1 m27n2>)

kmaX{Mf(mhm%M}Q (n1)} if na = ng, (my,ma) € Efy,
: ) i, 1), (ma, ) (ma,na)] = min{ug (ma), s (n4, nans)}

if my = ma, (ny,mng) € I,

it X piag ) [, ma), (ma,ma)(ma, mg)] = mind ey (ma), i (2, mama)

if my = may, (ng,ning) € %4,

g piag ) o), (ma ) (ma, )] = min{usy (ma, mama). i ()}

if ng = ng, (M, mimy IVI

2

)

(

it % 1i3g ) [mz,ma). (ma ) (ma, mo)] = min{py (ma, mum), iz ()}
if 1 = ng, (Mo, mams) € Iy

)(ma, na)] = min{ iy (my, mims), pg (na)}
(

(
(
(
(
(
(MX; X M&) [(m1,ng), (M1, ny
ifny = ny, (my, mymy) € It
(137 ¢ 137 ) [(m,ma), (1, ma) (s, ma)] = mind sy (ma, mama), i (na)}
if ny = ng, (Mg, myma) € Iy,
(137 > 37 ) [(may ). (ma,ma)ma, ma)] = min ey (s, mina). i (ma)
if my = may, (ng,n1ng) € II2V]
(Nz& X Mﬁ) [(m2, 1), (Mo, 1) (Mo, m2)] = min{puy (n2, nana), g (m2)}
if my = ma, (ne,mang) € I,
( X uﬁ) [(mr, 11, (ma,na) (m, n2)] = max{ud; (m1), gy (n1, nane)}
(

if my = ma, (n1,nng) € [12\/1

X pify ) [(ma,ma), (ma, ma)(ma, no)] = ma gl (ma), ey (na, mana)}
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if my = ma, (ng,nny) € [?VI

if ny = no, (m , MM IVI

if ny = ng, (Mg, mimy) € I},

2

ifm = Nao, (m27m1m2) € ]IVI

it % it ) [, ), (ma, o) (s, ma)] = max{py (ma, mins), i (ma)

if my = ma, (n,mng) € IH,;

(
(
( (
ifny = ng, (M1, mimy) € IIVI
( (
(
(

X Mﬁ) [(m2,n2), (M2, n1) (M2, n2)] = maX{/Gj (n2, ”1”2)7,!!}?1(7”2)

if my = mg, (ng, ning) € I#,;

Example 5.1.1 Let Gpyp = (Viyr, Epyr Iy, tis By i) be a IVFIG

my (0.4,0.5)

ms (0.1,0.2)

Figure 5.1.1: G}/,

Figure 5.1.1 pk-(my) = (0.4,0.5), pk(ms) = (0.1,0.2), ut(mymsy) = (0.1,

(0.1,0.5), puk;(ma, myms) = (0.1,0.5) and satisfies the IVFIG conditions.

Let Gy = (Vivr Efvr Iivrs wk, 13, 13,) be a IVFIG. Figure 5.1.2 pij(n1) =

(0.5,0.6), ut (ning) = (0.2,0.6), b (ny,ning) = (0.2,0.6), ph,(ng, ning) =

< gy ) 1masma), (ma, m) (ma, m)] = ma{ ey (ma, mams), i (1)}
)€

it X 107 ) Lmayma), (ma, ) (may )] = masc{ ey (ma, mama), il (m)}
)

X pify ) 1ma,ma), (mi, m) (ma, ma)] = mac{jeiy (ma, mama), g’ (n2))

it % 10 ) [may ma), (ma, me) (may ma)] = ma{ ey (ma, mama), il (n2)}

}

}

0.5), ub(my,mimsy) =

(0.2,03), pk(na) =
(0.2,0.6) and satisfies the
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11 (0.2,0.3)

(0.2,0.6)

(0.2,0.6)

N3 (0.5,0.6)

Figure 5.1.2: G%,

IVFIG conditions.

Let G}VI X G%VI = (‘/IVDEIVI,IIVDPJ}( X ,LL%(,,U}J X M%,M}VI X M?\/[) be a CP of two IVFIGs.

(0.2,0.5)
119119

(0.1,0.5)/'

(0.1,0.5)

(0.1,0.6)
(0.1,0.3) mony

(D.l,O.G&

Figure 5.1.3: G},; x G%,; of Figure 5.1.1 and 5.1.2

msns
(0.1,0.6)
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Figure 5.1.3,
(i % pge)(many) = (0.2,0.5), (g x pi)(mang) = (0.4,0.6),

(nx X pg)(many) = (0.1,0.3), (i x pk)(manz2) = (0.1,0.6),

(u} x p2)(ming, ming) = (0.2,0.6), (u} x p2)(ming, mony) = (0.1,0.5),

(ub x p2)(myng, many) = (0.1,0.6), (ub x p2)(many, mansy) = (0.1,0.6),

(uhs X p3,) (ming, minyming) = (0.2,0.6), (ub; X p3;)(ming, minyming) = (0.2,0.6),
(b, x p3,)(ming, mingmansy) = (0.1,0.6), (ul, x p%,)(mang, minamans) = (0.1,0.6),
(udy X p3,) (many, manymans) = (0.1,0.6), (ul; X p3,)(mang, manymans) = (0.1,0.6),

(thr X p3g) (mang, mynamany) = (0.1,0.5), (py, X i) (many, mnymang ) = (0.1,0.5).

Definition 5.1.4 Let G]V] = G}VI X G%VI = (‘/]V],E]V[,I[V],/L}( X /L%(,,ui X ,LL%,,U,Jl\/[ X ,u?v‘,)
be the Cartesian Product of two IVFIGs G, = (Vi Ehy Ly ke b, pwhy)  and
G4, = (VA B3 Ih 13, 12, 13,). Then the degree of Viyr = (my,ny) is represented by

der, xaz,, (M) = (digr, xaz,, (M1, 1), dacr a2, (i, 1) and defined by

) 1 _2
le}VIXG§VI (ml’ nl) - Z mln{:U'K (777,1), 1257} (nlu n1n2)}
my1=mg,(n1,n1n2)€l?
+ Z min{u&1 (my, myms), u;j (n1)}
n1=n2,(ml,m1m2)611
1 2
d2G}v1XG%v1 (ml’ nl) - Z max{ﬂ—}; (ml)v M]TJ (nla nl”?)}
mlzmg,(n1,n1n2)612
+ Z max{,uL1 (my, myms), ,u}r: (n1)}

ni=ng,(mi,mimz)el’

Theorem 5.1.1 Let Gy = (Viyr, Etyr, Iy, ftigs s i) and Gy = (Vivr, Efvr Tivr, e 17 143r)
1 1 1 ) 1 2 ) 2 2 1 2 1
be two IVFIGs. If jize < g, fge > fiag, pie < oy and pe < e, e > oy, pie < pyy then

der, xcz,, (ma,n1) = (dgr, (ma) +dgz, (1))
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Proof. In Cartesian Produxt by the definition of the degree of a vertex, we have

. 1 _2
le}VIXG%VI (ml’ nl) - Z mln{:uK (m1>: 1257} (nh nan)}

mi=ma,(n1,nin2)€Il?

+ Z min{yuy; (my, mims), g (n1)}

ni=na,(mi,mimz)€l’

S mmmma)+ Y gy (ma,mama)

(n1,nin2)el? (m1,mimg)el’l

. 1 +1 ! 2 2 1
SINCE [ire < iy s e 2 Mg s Pie 2 Hoag

= Z M]T; (ma, mima) + Z ,LLXZ (1, nanz)

(m1,mima)erl! (n1,n1n2)€l?

= dyc1,, (m1) + digz,, (n1)

VI

1 2
dZG}VIXG§VI (ml’ 711) - Z max{ﬂ;r( (ml)a ,U/X/I (nh n1n2)}

mi=ma,(n1,n1n2)€I?

2

4 Z max{,uj\j(mh mima), pge (n1)}

ni=ng,(m1,mima)€l’

= Y pimn) + > ks (ma,mamy)

(n1,nin2)el? (m1,mime)ell

. _2 +2 +1 +2 +2 1
since pye < pgcs e < s B < Har

- > piar (ma, mymg) + > i1 (na, mims)

(m1,mimg)el? (n1,m1ng)er?
= dycn,, (m1) + dogz,, (n1)

dar, xaz,, (mi,m) = (dgy (ma) +dgz, (n1))

Therefore the degree of each vertex of Cartesian Product of two IVFIGs is equal to sum of corresponding

vertices of G},,; and G%y/;.
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Example 5.1.2 Let G}y,; and G%,; be two IVFIGs as shown in figures 5.1.1 and 5.1.2, and their CP is
provided in figure 5.1.3 with

1 1 1 2 1 2 2 2 2 1 2 1
Hre < el 2 Hags e < pay and jue < e je 2> o e < fgy -

Then, by theorem 5.1.1, we have le}WXg%W(ml, ny) = le}VI

(ml) + dlg%‘”(Th) =0140.2 = 03,

dagr, xcz,, (ma,n1) = dygr (M) +dygz (n1) = 0.5+0.6 =11 Sodg 2, (m1,m) = (0.3,1.1)

5.2 Degree of a Vertex in Tensor Product of Two Interval-Valued

Fuzzy Incidence Graphs

Definition 5.2.1 The Tensor Product of two IVFIGs G, = (VA1 Elvr iy e, ik, b)) and G2y, =
(Vivr Etvrs Tivr i, 11, 13p) is defined as an IVFIG, Grvr = Gy o Gy = (Vive, Erve, v, o ©

Wic, 1, © W, g © Wap), where Vv = Vi x Vi,
Ervr = {((m1,m), (ma,n2))/(m1,mz) € Ejy,p, (n1,n2) € Efyp}
and

Iivi = {(my, 1), (my, n1)(my, n2) /(my, myms) € Iy g, (Mo, mims) € I}y,

(n1,mng) € Iy, (ng,mang) € Iy}
with (M%l o /ﬁ:) (ma1,m1) = min{pg (ma), g (m)}V(ma,m) € Vi o V3,

1 2 1 2
(M}? <>M?}> (ma,ny) = max{pug (ma), g (na) }V(ma, ) € Vi o Vi,

2

(n1,m9)}

(MZI 0#22> ((m1, 1) (ma, np)) = min{py (ma,ma), g

V(my,ms) € B}y, (n1,n2) € Efy;
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(MZI o /fLLQ) ((ma, m1)(ma, na)) = max{uf (my, ma), i (n1,m2)}
V(mi,m2) € Efyrp, (n1,n2) € Efy g

(s © piar ) [, ma), (ma,ma)(ma, ma)] = mind ey (ma, mama), g (1, mama)
V(my,mims) € Inyp, (n1,mine) € Iy

(u;j o u]‘\;) (2, 12), (1, 71) (M2, 12)] = min{py (ma, myma), iy (n2, nins)}
V(ma, mims) € Iy g, (n2,mang) € Iy,

(MX; o Mﬁ) [(ma, n2), (M1, m2) (M2, m1)] = min{puy, (ma, maima), iy (n2, nina)}
V(ml,mlmg) € [IIVD (ng,nan) S [IQVI

(131 © pir ) [(ma,ma), (ma,ma)(ma, my)] = mind ey (ma, mama), gz (1, mana)
V(ma, mims) € Iy, (n1,ning) € T3/

(uﬂl © #ﬁ) [(m1, 1), (M1, n1) (M2, ng)] = maX{MLI(mla mims), Mﬁ(”la ning)}

V(my, mims) € Ity (n1,mang) € 17y,

(Mﬁl © Mﬁ) [(m2,m2), (M1, n1) (M2, n2)] = maX{Mﬂ(mza mima), MJT;(”% ning)}

V(mg, mims) € I}y, (n2,mang) € Iy,

(MX; © Mﬁ) [(m1,n2), (M1, n2) (M2, n1)] = maX{MzJ\j(mla mima), Mﬁ(”m ning)}

V(my, mims) € I}yg, (N2, ning) € I3/

(/ﬁ; Oﬂfj) [(m2,m1), (M1, n2)(ma, n1)] = maX{Mﬂ(m% mims), Mﬁ(”hnl%)}

V(ma, mims) € Ity p, (N1, mang) € I3y,

Example 5.2.1 Let Gpyp = (Vi Ejyr Iy, s By i) be a IVFIG.
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m, (0.2, 0.4)

m, (0.4, 0.5)

Figure 5.2.1: G/,

Figure 5.2.1, pi(my) = (0.2,0.4), pk(mz) = (0.4,0.5), ut(mims) = (0.2,0.5), ph;(my, mimy) =
(0.2,0.5), uk;(ma, mims) = (0.2,0.5) and satisfies the IVFIG conditions.
Let Gy = (Vi Efvr Iivr, ik, 12, 13r) be a IVFIG.

n1(0.1,0.2)

0.ly
ﬁum)

12 (0.3,0.4)

Figure 5.2.2: G%,;

Figure 5.2.2, uk-(ny) = (0.1,0.2), pk(na) = (0.3,0.4), pt(ning) = (0.1,0.4), ul;(n1,ning) =
(0.1,0.4), ks (na,ming) = (0.1,0.4) and satisfies the IVFIG conditions.

Let G}VI < G%V[ = (‘/[V[, EIVI; IIVI, ILL}{ & M%{’ Iui < ,u%, M}\J < ,LL?VI) be a TP of two IVFIGs.
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i1 (() 1, 0).4) mili2 (0.2,0.4)

(0.1,0.5)

moni (0.1,0.5)  (0.3,0.5)many

Figure 5.2.3: GL,; o G%,; of Figure 5.2.1 and 5.2.2

Figure 5.2.3 indicates a TP of two IVFIGs

(1 © pfc) (mam (mins) = (0.2,0.4),

)
(13 © p3 ) (many 0.1,0.5), (ug © u3)(mang) = (0.3,0.5),
(

0.1,0.5), (b, © pi3;) (mang, minimans) = (0.1,0.5),

( ), (ki

( ) (

(0.1,0.5), (u}, o p3 ) (myng, many) = (0.1,0.5),
(par © prag) (many, manymany) = ( ) (
(0.1,0.5), (

) =
) =
(ug © pg ) (mang, mong) =
) = )
(13 © pa,) (ming, mingman, ) = (o 13, (many, minamany) = (0.1,0.5)

Definition 5.2.2 Let Gy = G 0GH = (Vive, Ervr, Iivr, pge © e, g, © 3, gy © 13,) be the Tensor
Product of two IVFIGs Gy.r = (Vv r, Efvr, Ity ftics ips tiag) and Gy = (Vi Efyp, Tyrs i B2, 13-
Then the DG of Vivy = (mq,ny) is represented by dglwoglw(ml,nl) = (dlg}wa%W(ml,nl),
(m1,n1)) and defined by

d2GIVI<>GIVI

. _1 _2
le}VIQG%VI (ml’ nl) - Z mln{ﬂM (mh m1m2>, 1253 (n17 n1n2)}
(m1,m1me)€l (n1,nin2)el?

1 2
dQG}VIQG%VI (ml’ 7’L1) = Z maX{M-’]\_J (mla mlmZ)a M]T/[ (711, nl”?)}
(m1,mima)€l (n1,n1n2)el?

Theorem 5.2.1 Let G}VI = (VIIVb E}wa Ill\/b//“}{v Mia M}w) and G%VI = (VI2VD E%vp ]12\/17 M%{a U%?#?\/I)
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be two IVFIGs. If,u;(1 < u}l, u]j > ,u]j, /f](j < /ﬁ;, then dgy  oc2, (mi,n1) = dg1 (ma) and if

v

2 42 1 2 41 42 .
P < P B = Hags fap < fay then dG}WoG§W (ma,m1) = dG%V,ml)-

Proof. Suppose (i, < pk' .,y > pag s pi; < piy, then

. _1 _2
le}wOG?w(mh n) = Z min{ sy, (my, mima), gy, (1, ning)}
(m1,mim2)€ll,(n1,n1ng2)el?

1
= par (ma,mamy) = digr (m)

2
dQG}VIOGfWI (ml’ nl) - Z maX{NK/II (m17 m1m2>7 NX/[ (nla n1n2)}
(m1,mimg)€ll,(n1,n1ng)€I?

1
= Z fiar (M1, mams) = dygr (M)

o . . . . . _2 2 _1 _2 1 2
This implies de1 g2, (M1, 1) = dgy (ma). Similarly if e < pge, pyy > pags pay < oy » then

. _1 _2
dig, 062, (m1,m) = Z min{yiy, (my, mime), pyy (n1, nang)}t
(m1,m1MQ)€[1,(n1,n1n2)612

2
=ty (n1,many) = diga (ma)

1 2
dQG}wOG?w (ma,n1) = Z max{py; (my, mims), i, (n1, ning)}
(m1,mim2)€I (n1,n1n2)EI2

2
=Y il (1, mins) = dogz (1)

This implies dg1 oq2, (M1, n1) = dgz (1)
Therefore, if u;(l < u}l, ,u]j > u;j, ,uj\t; < ,uj\j, then the degree of each vertex TP of two IVFIGs is
equal to corresponding vertex of G},,; and if ,u;: < ,u}r:, p]}[l > ,u;j, ,uj\j < u}j, then the degree of each

vertex TP of two IVFIGs is equal to corresponding vertex of G%y;.

Example 5.2.2 In Figure 5.2.1 and 5.2.2 ,uf_(l < M}l, MX/; > M]T;, ,MX; < ,uj\’/[l and ul_j < ,u}f, ,u]\_/fl > /L]Tj,

u]\}l < uﬁ. Then, by theorem 5.2.1, we have

digt, 0c2,, (Mm1,n1) = 0.1 =dygr (ma),

dQG}VIoG§V, (mi,m) =0.5= d2G§V,("1)-
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Hence dgy oc2, (ma,n1) = (0.1,0.5).

v

5.3 Perfect Domination in Cartesian Product and Tensor Product

of Two Interval-Valued Fuzzy Incidence Graphs

Definition 5.3.1 A vertex wy; in an Gy dominates to vertex was if j17 (w11, Wae) = min{ pp (w11), p (wa2)}

and i, (wyy, weg) = max{pl (wiy), i (wae) }. Then (wyy,was) edge is called dominates edge.

Definition 5.3.2 A subset Wy of Vv is said to be a perfect dominating set (PDS) if for each vertex w1,

not in Wry, wyy is dominates exactly one vertex of Wy .

Definition 5.3.3 A perfect dominating set Wy of the Gy is said to be a minimal perfect dominating set

if each vertex wyy in Wyy, Wry — {w11} is not a perfect dominating set.
Definition 5.3.4 A PDS with the lowest vertex cardinality is called a minimum PDS.

Definition 5.3.5 A vertex cardinality of a minimum perfect dominating set is called perfect domination

number (PDN) of the G y. It is denoted by ypry

Example 5.3.1

m2 (0.4,0.5)

Figure 5.3.1: Gy

Figure 5.3.1 indicates aG[V = (‘/]V, E[V, MK, ,uL), ,uK(ml) = (02, 05), uK(mg) = (04, 05), uL(mlmg) =
(0.2,0.5). The above figure 5.3.1, the dominates edge is {my, m2} and the PDSs are S;; = {m;},
Sao = {my}. After calculating the vertex cardinality of S7; and Sy, we obtain |Sy;| = 0.7, |Sa2| = 0.6.

The vertex cardinality of a minimum PDS is |Ss,| = 0.6 and yp;y = 0.6.
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Definition 5.3.6 A vertex wyy in an G}y,; X G%,; (or Gy, © G%,;) incidentally dominates to vertex way if

oy (Win, winwes) = min{ g (wi1), pg (w11, waz) } and M&(wn, Wi Wa) = max{,u}g(wn), N]:L(wn, waa) }.

Then (w11, wq) edge is called incidentally dominates edge.

Definition 5.3.7 A subset Wy of Vv is said to be a perfect dominating set if for each vertex wi, not in

Wiy, wyy is incidentally dominates exactly one vertex of Wy .

Definition 5.3.8 A PDS Wy of the Gl X G2y (or Gl © G%,;) is said to be a minimal PDS if each

vertex wyy in Wiy, Wiy — {wi1} is not a PDS.

Definition 5.3.9 A perfect dominating set with the lowest vertex cardinality is called a minimum perfect

dominating set.

Definition 5.3.10 A vertex cardinality of a minimum perfect dominating set is called perfect dominating

number of the Gy, X Gy (or Gy © G3;). 1t is denoted by vpryr.

Example 5.3.2 In figure 5.1.3, the incidentally dominates edge are {mini, mins},
{ming, mans}, {maong, mony}, {miny, mon,} and the PDSs are S11 = {mini, mins}, Seg = {ming, mons},
Sy = {ang, anl}, Sy = {mmh anl}, Ss5 = {mmh ang}, Se6 = {mlnz,mﬂll}-

After calculating the vertex cardinality of Si1, Sa2, ...Ses, we obtain |S11| = 1.3, |Sa| = 1.4, |Ss3| =

1.4, S44| = 13, 555| = 15,

Ses| = 1.2. The vertex cardinality of a minimum PDS is |Sgs| = 1.2 and
vervi = 1.2,

In figure 5.2.3, the incidentally dominates edge are {mini, many}, {mins, mon,} and the PDSs are
S = {mlnla mmz}, Sop = {man, m2n2}, Sag = {anQ, m2n1}, Sy = {mlnh m2n1}-

Sao| = 1.2,

After calculating the vertex cardinality of Si1, ..., Sy, we obtain |S1;| = 1.3, Saz| = 1.3,

|Sus| = 1.4. The vertex cardinality of a minimum PDS is |Sa| = 1.2 and ypry; = 1.2.

Theorem 5.3.1 If G},,; x G%,; be a Cartesian Product of two IVFIGs without isolated vertices and Wy

is the minimal perfect dominating set in Gy, X G%,,, then Viyr — Wy is a perfect dominating set.

Proof. Assume Wy is any minimal PDS of G}v 7 X G%V ; and vertex wy; € Wiy 1s not incidentally

dominated by any vertex in Vjy,; — Wiy 7. Since G’}V 7 X G%V ; has no isolated vertex, w;; must incidentally
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be dominated by at least one vertex in Wy ;—{ws1 }, then Wy —{ws,} is a PDS, which is a contradiction
with the minimality of Wjy ;. Therefore any vertex in Wy ; incidentally dominated by at least one vertex

in ‘/IVI — W[v] and so ‘/}VI - W[\/] is a PDS.

Example 5.3.3 Let G}, x G%,; be a CP of two IVFIGs shown in figure 5.1.3 with the incidentally
dominates edges are {miny, miny}, {ming, mony}, {mang, mony}, {Mmini, mon,} and the PDSs are
S = {m1n1,m1n2}, Sap = {m1n2,m2n2}, Sz3 = {m2n2,m2n1}, Sy = {m1n1,m2n1}, Sss =
{mini,mans}, Ses = {ming, many}. After calculating the vertex cardinality of Si1, S92, ..., Ses, We

obtain

a minimum PDS is Sgg, then Vv — Segg is also a PDS.

Remark 5.3.1 The above theorem is also true for Tensor Product of two interval-valued fuzzy incidence

graphs.

Example 5.3.4 Let G},,;©G%,; be a TP of two IVFIGs shown in figure 5.2.3 with the incidentally domin-
ates edge are {myny, mans}, {ming, man} and the PDSs are

St = {mini,ming}, Saea = {ming, mana}, Ss3 = {mang, mony}, Sy = {mini, man,}. After cal-

culating the vertex cardinality of Si1, ...S44, we obtain |S1;| =

The vertex cardinality of a minimum PDS is Sy, then Vi — Sas is also a PDS.

Pryr
5

Proof. If Wy is a minimal PDS of Gy, ¢ G%,;, then Vi ; — Wiy is a PDS. Therefore Pry; = |Vivy| =

Theorem 5.3.2 For a G},,; © G3,; without isolated vertices, then Ypry <

IWrvil + |Vivi — Wiyo|. Thus, at least one of the sets Wy or Vi — Wiy has the cardinality equal

% or less.

Example 5.3.5 (i) Let G},; o G3,; be a TP of two IVFIGs with

= ( ), (15 © Hi)(manz) = (0.2,0.4),

( ), (1x © Hi)(manz) = (0.3,0.5),

= (0.1,0.5), (u} © p3 ) (ming, mony) = (0.1,0.5),

= ( ) (tar © pag) (mana, manimans) = (0.1,0.5),
= (0.1,0.5), ( )

fips © () (many, mingmang) = (0.1,0.5),
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the incidentally dominates edge are {mini, maons}, {ming, man,} and the PDSs are S1; = {mini, miny},
Sgo = {myng,mans}, Ss3 = {maong, mony}, Sy = {miny, mon,}. After calculating the vertex

cardinality of Si1, ...S44, we obtain |S11| = 1.3, |Sa| = 1.2, |S33| = 1.3, |Sy| = 1.4. The vertex

cardinality of a minimum PDS is Sas with ypry; = 1.2 and vertex cardinality (Pry1) of Ghy 10 G344

P,
is 5.2, then ypryr < % that is 1.2 < 2.6.

(ii) Let G}y, © G3,; be a TP of two IVFIGs with

(mlng) = (04, 07),

=
N)—‘
<&
. R 3

) =(0.1,0.5), (
(1 © pic) (mann) = (0.1,0.4), ( (manz) = (0.3,0.7),
(pg © pu3)(ming, mony) = (0.1,0.7), (g © p3)(ming, mony) = (0.1,0.7),
(13 © p3g) (many, minymaong) = (0.1,0.7), (b, © p3,) (Mang, minimany) = (0.1,0.7),
(1ag © p3y) (mamg, mangmeana) = (0.1,0.7), (uy, © i) (mana, mangmena) = (0.1,0.7),

the incidentally dominates edge are {miny, maons}, {ming, mon } and the PDSs are S1; = {mini, minsy},
Sag = {ming, mans}, Sz3 = {mang, mani}, Suy = {miny, man, }. After calculating the vertex car-

dinality of Sy, ...Su, we obtain |S11| = 1.4, [Sp| = 1.4, [Ss3| = 1.4,

Sus| = 1.4. Here all vertex
cardinality of PDS is equal with ypry; = 1.4 and vertex cardinality (Pryv1) of G}yyp © G%,; is 2.8,

P
then ypryr = % thatis 1.4 = 1.4.

Theorem 5.3.3 Let G}y,; x G%,; be a Cartesian Product of two IVFIGs and if anyone G},,; or G3,

must having incidentally dominates edges, then the Cartesian Product of two IVFIGs contains Ypyyy.

Proof. Let GL,; x G2, be a CP of two IVFIGs. If anyone G},; or G%,; must having incidentally
dominated edges, then the CP of two IVFIG contains vpjy .

Conversely, suppose that the CP of two IVFIG contains vpry7. To prove that anyone Gy, or G%,;, must
have incidentally dominates edges. If possible G}, or G%,; does not have incidentally dominates edges,
then G},; x G%,; dose not having ypry 7, which is a contradiction. Hence anyone G}y, or G%,, must

having incidentally dominates edges.
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Example 5.3.6 Let G}/, be a IVFIG with u}.(my) =
(0.2,0.5), ph;(my,mimy) =
(0.2,0.3), pugc(n2) =

pigc(n1) =

(0.2,0.5), ul;(mao,mimy) =
(0.5,0.6), pr (ning) =

(0.4,0.5), pgc(ma) =

(0.2,0.6), uk;(n1,n1ng) =

(0.2,0.3), pp(my, mg) =

(0.2,0.5) and let G%,; be a IVFIG with
(0]_, 04), [LM(TLQ, n1n2> =

(0.1,0.3). Here GL,,; having incidentally dominates edge, but G3,; does not have an incidentally dom-

inates edge.

Assume G}y,; X G%,; is a CP of two IVFIGs with

(i % pgc) (mamn) = (0.2,0.5), (g X pic)(mang) = (0.4,0.6)
(pxc % pic) (many) = (0.2,0.3), (g X pic) (manz) = (0.2,0.6),
(g X p)(mani, mang) = (0.2,0.6), (ug, x 7 )(mang, mona) = (0.2,0.5),
(uy, X p)(mang, mang) = (0.2,0.6), (ug, X pi7 ) (many, mans) = (0.2,0.6),
(13 X pag)(mang, mynyming) = (0.1,0.5), (ug,; X pi,)(ming, myniming) = (0.1,0.5)
(13 X (i) (mang, mingmany) = (0.2,0.6), (uy, X p,) (mang, minamans) = (0.2,0.6),
(13 % () (many, manimany) = (0.2,0.6), (uy,; X pa,)(mang, menimans) = (0.1,0.3),
(3 X p3)) (ming, minymany) = (0.2,0.5), (13, X 13,) (many, minimaen,) = (0.2,0.5)

Here the incidentally dominates edges are {mins,mons}, {mini,msni} and the PDSs are
S = {mlnla m1n2}, Sop = {m2n2, mznl}, Sz = {mlnl, m2n2}, Suy = {man, m2n1}-

After calculating the vertex cardinality of Sii, ...Su, we obtain |S11| = 1.3, [Sy| = 1.3, |S33| = 1.4,
|Sus| = 1.2. The vertex cardinality of a minimum PDS is Sy4 and vpry; = 1.2. Therefore G]VI X GIVI

contains Ypryi.

Theorem 5.3.4 Let G}y, © G3,; be a Tensor Product of two IVFIGs and if G},,; and G3,; both having

incidentally dominates edges, then the Tensor Product of two IVFIGs contains Ypyy .

Proof. Let G},,; © G3,,; be a TP of two IVFIGs. If Gj,,,; and G?,,; both having incidentally dominates
edges, then the TP of two IVFIGs contains vpy ;.

Conversely, suppose that the TP of two IVFIGs contains ypy 7. To prove that G}y, and G%,; both

having incidentally dominates edges. If possible Gy, does not having incidentally dominant edges, then
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the TP of two IVFIGs does not contains vpry7, which is a contradiction. Hence G7,,; and G%,; must

having incidentally dominated edges.

Example 5.3.7 In figure 5.2.1 and 5.2.2 is a interval-valued fuzzy incidence graphs with incidentally
dominated edges and figure 5.2.3 contains PDSs are S11 = {miny, mins}, Seg = {ming, mans}, Ss3 =
{mang,mani}, Syy = {mini, maony}. After calculating the vertex cardinality of Si1,...S44, we obtain

|Sl1| - 13, 522| - 12, 533| - 13,

Sus| = 1.4. The vertex cardinality of a minimum PDS is | S| = 1.2

and ypryvr = 1.2. Therefore G, o G%,; contains ypryr.

5.4 Application

Here we, incorporate a genuine use of perfect domination number in a matter of education policies among
various countries. As an outline case, consider an network G7,,; X G%,; of four vertices addressing
four distinct countries C(mny), Co(ming), C3(maons) and Cy(maon,) as displayed in figure 5.1.3. The
MS value of the vertices shows the percentage of people who are educated and the NMS value of the
vertices demonstrates the percentage of those people who are uneducated. The MS value of the edges
communicates the cooperation of one country with another country to enhance the percentage of educated
people and the NMS value indicates the non cooperation with one another. The MS value of the incidence
pair means the education policies among these countries and the NMS value of the incidence pair indicates
the un education policies among these countries. With the assistance of the perfect domination number,
we will want to discover which country (countries) have the best education policies.

In figure 5.1.3, the PDSs are 511 = {C1,Ca}, Soo = {Cs,C3}, Ss3 = {C5,Cy}, Sy = {C1,Cy},
Ss5 = {C1,C3}, Se = {Ca, Cu}.

After calculating the vertex cardinality of Si;, So2, ...Sgs, We obtain |Sy1| = 1.3, |Sao| = 1.4, |Ss3| = 1.4,
|S44| = 1.3, |Ss5] = 1.5, |Ses] = 1.2. The vertex cardinality of a minimum PDS is |Sgs| = 1.2 and
vervr = 1.2.

It is obvious that Sgs has the minimum perfect dominating set between other perfect dominating sets,

hence we conclude that C'; and Cy countries have best education policies among all other countries.
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Figure 5.4.1: EDUCATION POLICIES

5.5 Comparative Analysis

In figure 5.1.3 a G},,; X G%,,; indicating four different countries Cy, Cy, C5 and C, and we get minimum
PDS Sgs = {Cs, Cy} with yp; = 1.2. But in figure 5.1.3 if we remove all the incidence pairs we get
interval valued fuzzy graph (IVFG). In the case of IVFG, we find the all PDSs. All possible PDSs of
the IVFG are Wy, = {C1, Cso}, Way = {Cy, C3}, Wiz = {Cs, Cy}, Wy = {C, Cy}, Wis = {C1, Cs},
Wee = {Ca, Cy} with vertex cardinality |Wyy| = 1.3, [Wae| = 1.4, [Wss| = 1.4, [Wyy| = 1.3, |W;s5| = 1.5,
|Wee| = 1.2. The vertex cardinality of a minimum PDS is |Wgg| = 1.2 with vp;y = 1.2. By applying the
model on the G}/, © G%,; given in figure 5.2.3, we get minimum PDS Soy = {C5, C3} with ypryr = 1.2,
But in figure 5.2.3 if we remove all the incidence pairs we get IVFG. In the case of IVFG, we find the
all PDSs. All possible PDSs of the IVFG are M;; = {C1,Cs}, My = {Cs, Cs}, M3z = {Cs,C4},
My = {C4, Cy} with vertex cardinality | M| = 1.3, |May| = 1.2, |M33| = 1.3, |My4] = 1.3. The vertex
cardinality of a minimum PDS is | M| = 1.2 with vp7y = 1.2. Here G},; x G3,,; and G},,; © G%,,; both
the models vp; = vprv 1, however, on account of IVFG, we can’t discuss best education policies because
of the non-accessibility of incidence pairs. IVFGs can show the relationship among various countries yet

quiet to discuss education policies among various countries. In this way, IVFIGs are more advantageous
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and compelling IVFGs.

In this exploration chapter, Cartesian Product and Tensor Product in IVFIGs are presented and we
inspected the degree of the vertices of the IVFIGs G1,,; x G%,,; and G}, ;0G?%,; under specific agreements
and showed them with different models. We additionally settled some new outcomes on the degree of
a vertex as far as hypotheses. The idea of perfect domination in IVFIGs utilizing incidence pairs is
additionally considered. The perfect domination number of IVFIGs is determined. It is also possible to

use perfect domination number in the context of education policies in different countries.



Chapter 6

Strong And Weak Domination in Vague Fuzzy

Incidence Graphs

Fuzzy graphs also known as fuzzy incidence graphs, are a well-organized and useful tool for capturing
and resolving a range of real-world scenarios involving ambiguous data and information. In this chapter,
we define the composition of two vague fuzzy incidence graphs and use incidence pairs to extend the
idea of fuzzy graph dominance to composition of two vague fuzzy incidence graphs. Examples are used
to clarify the concepts of edge incidentally dominating set, strong edge incidentally dominating set, and
weak edge incidentally dominating set. CT-VFIGs have an edge incidentally domination number, a strong
edge incidentally domination number, and a weak edge incidentally domination number. In the research
field, CT-VIFGs are used to find the finest consolidations of journal publications that express the most
progress and the least amount of non - progress. The results of our investigation are compared to those
of other studies. Our research will help us fully appreciate and comprehend the additional properties of
CT-VFIGs. Another benefit of our research is that it will aid in determining the maximum percentage of

progress and the minimum percentage of non- progress in various journal publications.

6.1 Composition of Two Vague Fuzzy Incidence Graphs

Definition 6.1.1 The composition of two VFIGs (CT-VFIGs) GY,; = (Vi};, Ebp, Iy, AV ey B, Crg)

and G, = (Vi B3, I3, A% p, Bé,,, C2 ;) is defined as an vague fuzzy incidence graph (VFIG)
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Gevr =Gy 0GY = (Wi, Bvr, Ive, Ay p © A pp, By, © B, Cypp © CYypp) where Voyr = Vi ©
V\% and Ecyr = {((m11,n11), (Ma2, nae)) /mar = mag, (N1, nae) € E\Q/[ or my1 = Nag, (My1, Maa) €
Ey.}

Ievi = {(mag,nn), (Mg, na)(man, nog) /may = mag, (nar, naange) € Ijg, (no2, nuing) € I3

or ny1 = Naa(Myy, Mmi1mas) € [\1/'[7 (mag, m11mas) € 111/1} with
(A%VIP © A%VIP)(mH? ni) = min{A%VIP(mll)a A%VIP(HH)}V (ma1,n11) € V‘}I © V\%I?

(A%VIP © Ang)(mll? ni) = maX{A%VIP<m11)7 AgVIP(nll)}v (ma1,m11) € VX}I © Vg[

(Blyp © Biyrp)((mag, na)(maz, naz))

;

miH{A%V[p(mu), B%V]L(n117n22)}7 if my; = mao, (7111, n22) S E%/[

= § min{Bjy;; (mi1, ma2), Ay p(na1)}, if niy = ngo, (mar, mas) € Ey;

\min{BllVIL<m117m22)7A%VIP(n11)7 A3y p(nos)}, if nay # nag, (may, mas) € By

(lewL © B%VIL)((mlb n11)(Ma2, Na2))

.
max{ Ay p(mi), Bayrp, (i1, n22) }, if may = mag, (11, n22) € ExQ/I

- maX{B%V]L(m11>m22)aA%VIP(”H)}; if 11 = ngg, (Ma1,Ma2) € E\l/']

\maX{BllVIL(mllvaZ)’ Alyrp(nin), Alyrp(na2) }, if nan # nag, (mar, mag) € By

(Cly11 © Chyrp)[(mar, nay), (mar, nar) (mar, nea)] = min{ A}y p(ma1), Cfy (i, nainaa)}
ifmi1 = maga, (n11,n11n922) € 1\2/1

(Cly1r © Clypp)l(mir, na2), (mar, ma1)(mar, na2)] = min{ Ajy p(mun), Cfypy(n22, minas) }
ifmiy = mag, (ng2, n11n22) € I,

(Clyrr © Cypp)[(man, man), (mar, nan) (maz, nan)] = min{Cly rr(ma1, miimas), Ajy rp(ni1)}

)
ifn11 = noa, (M1, miimas) € Iy,
(Cly 11 © Chypp)l(maz, nay), (mll, n11)(maz, n11)] = min{C{y,;; (maa, mi1mas), Ay, p(n11)}
) €

if n11 = naa, (M2, mi1mas
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(Cly11 © Chyrp)[(mar, nar), (mar, nin) (maz, n2g)]
ifmy1 # mag, n11 # naz, (M11, mi1maz) € IVI
(Clyrr © Chyrp)[(maz, n2g), (ma1, na1) (mas, n22)]

if mqq 7é ma2,M11 7’5 na2, (77122, mii1ma2

(
)
(
) €
(Cly1r © Clyrp)l(mar, na2), (muy, n22)(m227 nn)]
ifmi1 # mag, n11 # nag, (M11, miymae) € I,
(Cly11 © Clyrp)l(maz, na), (man, nzz)(mm’ n11)]
if my1 # maz, n11 # naa, (Ma2, m11mae) €

(Cavir © Coyrpllmar, man), (mag, nan ) (man, n22)]
ifmyy = mag, (n11, n11ng2) € 1%

(Covrr © O3y p)l(man, n22), (ma, nar) (mar, nao)]
ifm11 = mag, (n22, ni1nge) € I

(Cavrr © Cyrp)l(mu, nan), (mlh n11)(maz, ni1)]
e 1

ifni1 = nag, (M11, mi1mas

)

)

(Covrr © O3y pp)l(maz, na1), (mna n11)(maz, mi1)]

ifny1 = naa, (Mo, mirmag) € I,

(Covrr © O3y p)[(man, man), (max, nn)(mma n22)]

ifmy1 # maa, n11 # naz, (M11, mi1maz) €

(Cavir © Clyrp)l(maz, na2), (ma, nn)(mma n22)]

ifmi1 # mag, n11 # nag, (Mg, mi1mae) € I,

(Cov i1 © Clyrp)l(man, naz), (man, n22)(m227 n11)]

ifmi1 # maa, n11 # naz, (M1, mi1maz) €

(Covrr © O3y p)[(maz, man), (man, naz) (mas, nn)]
)

ifmi1 # mag, n11 # nag, (Mg, miymae) € I

= min{c%vn(mlla mi1ma2), A%VIP(nll)a A%VIP(T'Q?)}:

= min{cllvu(mmv mi1ma2), A%VIP(nll)’ A%VIP(HQQ)}v

= min{C1y, ;;(m11, miimas), ALy p(n11), Ay p(n22)},

= min{cllvn(m% mi1maa), A%VIP(nll)’ A%VIP(TQQ)}a

= max{A3y;p(m11), Cy 17 (n11, niinae) },

= max{A43,;p(m11), C5, ;7 (n2g, n11n22)},

= maX{CQIVH(mll’ mi1maz), A%VIP(nll)}a

= max{Cyy 17 (maz, miimaz), A3y p(nan)},

= maX{CQIVH(mll, mi1maz), A%Vjp(nll), A%VIP(TL22)}7

= max{C3y ;;(maz, m11maa), A3y p(n11), Ay p(na2)},

= max{Cyyr(mi1, mumaz), Ay rp(nu), Ay p(n22)},

= max{C3y ;;(maz2, m11maa), A3y p(n11), ATy p(na2)},
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Example 6.1.1

(()3, 05), B‘I,IL(mnmgg) = (03, 06), C"l/H(mH, mnmgg) = (037 07), C‘l/jl(mgg, m11m22) = (02, O6)

(0.3,0.7) (0.2,0.6)
mi 1@ @ 11199

(0.4,0.2) (0.3,0.6) (0.3,0.5)

Figure 6.1.1: VFIG G},

Let Gy = (Vi?p, Yy Iy, AV p, By 1, Cfpp) be a VFIG with A p(n11) = (0.6,0.3), AY p(n22) =
(02,05), B‘Q/IL(nll/nQQ) = (01,05), 0‘2/11(7111,’”117122) = (01,05), C‘%I[(nQQ,nlanQ) = (01,07)

(0.1,0.5) (0.1,0.7)
ng; @ ] - ® 1199
(0.6,0.3) (0.1,0.5) (0.2,0.5)

Figure 6.1.2: VFIG G%,
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(0.4,0.3)
IIIEERISE
(0.3,0.7) —

(0.2,0.6) €65

€44(0.3,0.6)

(O.Q:Oy

(0.2, 0.6\
) Mool g M9oI99
O 3,0. J)

(0.2,0.5)
/0_1:0_7)

Figure 6.1.3: Composition of figure 6.1.1 and figure 6.1.2

(0.1,0.5

Avrp © A rp(mar,nin) = (0.4,0.3), (Ayrp @ AT yp)(mar, nae) = (0.2,0.5)
Avrp © A rp(maz,nin) = (0.3,0.5), (Ayrp © A pp)(maz, naz) = (0.2,0.5)
(By 1, © Byp)((ma, nan) (man, nag)) = (0.1,0.5),

(Bi 11, © By ) ((min; nas) (mag, na2)) = (0.2,0.6)

(By 1, © Bir)((ma2, n11)(maz, na2)) = (0.1,0.5),

(By 1z, © Byrp)((mag, na1)(maz, na1)) = (0.3,0.6)

(Byr, © Byyn)((man, nar) (mas, nas)) = (0.2,0.6),

(By 1, © By)((ma1, na2)(maz, n11)) = (0.2,0.6)

(Cyrr © CFpp)[(may, nan), (max, nar) (mas, nag)] = (0.1,0.5),

(Chr © CEr)(mat, nag), (may, nar) (mar, nas)] = (0.1,0.7),

(Corr © Cpp)l(man, maa), (a1, ma) (Maz, nga)] = (0.2,0.7),

(Cyrr © Copp)l(miaa, ma2), (a1, 2) (Ma2, ng2)] = (0.2,0.6),
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Cyrr © Copy

C(11/'11 © 012/[[

C(11/'11 © 012/[]

0‘1/[] © 0\2/11

I
e
o
o
=

)
)
)
)
)
)
)
Corr ©CErp)

In figure 6.1.3 satisfies the condition of VFIG. Therefore G1,; ® G% is also a VFIG.

Definition 6.1.2 Let Gy be a composition of two vague fuzzy incidence graphs

(i) Geoyr cardinality is determined by

Gevil= Y 1+tAwp(wn)—wap(wn)Jr T 14ty (Winwss) — oy, (w11wss)

2 2
w11 €EVyr witw22 €Ly 1
1+ tey,, (win, wiiwaee) — fou,, (wir, wiiwss)
+
w11, wiiwe2€ly
(ii) Gevy vertex cardinality is determined by
L4+ tay,p(wi1) — fay,p(wi)
Vevi| = Z o 9 E Vwn € Vovr

w1 €Veovr

(iii) Gy edge cardinality is specified by

Z 1+ thL(wuwzz) - va1L<w11w22)
2

|Ecvi| =

wiiw22€Lcyr

Vwnwe € Ecvr
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(iv) Gov incidence pair cardinality is specified by

Z 1+ tCVH (wu, wnwzz) - fcvu(wn, w11w22)

\Iovi| = YV wi, wnwae € Iovr

wi1,wiiwe2€lcvr

Example 6.1.2 In figure 6.1.3, |Voy | = 1.65,
\Ecvi| + |Iovi|= 1.65+1.85+3.25=6.75.

Ecvi| = 1.85,

ICVI‘ = 3.25 and |GCVI| = ‘VCVI’ +

6.2 Relationship between order and size of composition of two vague
fuzzy incidence graphs

Definition 6.2.1 Assume Gy is a CT-VFIGs. Then

1 t ’ - W11, W11 W
Ocvi(Geyr) = Z < + teey, (wn w11w22; feoy, (win, wis 22))
w11 Fwaz2,wi1,w22EVov
is called order of Goyy and
SCVI(GCVI) = Z (1 + thvl (wlla 1U222) - fBCVI (wllwgg))

wil,w22€EcvT

is called size of Goyy.

Definition 6.2.2 The edge degree of a ey in a CT-VFIGs is defined as the sum of the weights of edges
incident to eyyr. It is defined by |dg,.,,(e1v1)| = {deg'(e1v1),deg’ (e1v1)}. The minimum cardinality of
edge degree of Goyr is dcvi(Geyr) = min{dg.,,(e1vi)/ewvi € Ecvi}. The maximum cardinality of

edge degree of Gevr is Acvi(Gevr) = max{dg,.,,(ewvi)/ewvr € Ecvr}
Proposition 6.2.1 In a composition of two vague fuzzy incidence graphs Ocvi(Govr) > Scvi(Geovr).

Proof. Let Gy be a CT-VFIGs with one node. Then Ocy(Geyy) = Scvi(Geyr) = 0. That is

Ocvi(Gevr) = Sevi(Gevr) (6.1)
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It is a frivolous case. Assume Gy 7 with more than one nodes. Ocy(Geyy) is the sum of all incidence
pairs cardinality of Gy ;. Since incidence pairs are two times of edges. Therefore, the total sum of all

the incidence pairs cardinality will invariably greater than the total sum of all the edge cardinality.

Ocvi(Gevr) > Sevi(Gevr) (6.2)

From equations (6.1) and (6.2), we get Ocy(Gevr) > Scvi(Gevr).

Example 6.2.1 Suppose any CT-VFIGs with one node. Then Ocy(Geovi) = Scvi(Geovr) = 0.
That is Ocyi(Gevr) = Sevi(Gevr)

In figure 6.1.3, Ocy(Govr) = 3.25 and Scvi(Geyr) = 1.85.

That is Ocvi(Gevr) > Sovi(Gevr)

Therefore Ocvi(Gevi) > Sevi(Gevi).

Proposition 6.2.2 For any composition of two vague fuzzy incidence graphs the following inequality

holds

devi(Gevr) < Acvi(Gevr) < Sevi(Gevr) < Ocvi(Gevr).

Proof. Assume Gy is a CT-VFIGs with non empty node set. Since dcy;(Gov ) represents lowest edge

degree and Aoy (Geovy) denotes highest edge degree of Gy .

devi(Gevr) < Acvi(Gevr) (6.3)

We know

Ocvi(Gevr) = >

w11 Fw22,w11,w22E€EVovT

(1 + tegy, (Wi, witwes) — fooy, (W11, w11w22))

and

1+t Wiy, Wag) — Wra W
SCVI(GCVI): Z ( Bcw( 11 222) chvz( 11 22)).

wi1l,w22€EcvT
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By definition of size of Gy,

141t wag) —
Sevi(Govi) = Y < vy (11 w222) JBevs (w11w22)> > max{dGy,(e1vi)/ewvr € Ecvr}
wit,w22EEcyr
That is
Scovi(Geovi) > Acvi(Gevr) (6.4)

Also, in a CT-VFIGs, G¢y by proposition 6.2.1

Ocvi(Gevr) > Sevi(Gevr) (6.5)

From inequalities (6.3), (6.4) and (6.5), we obtained

devi(Gevr) < Acvi(Gevr) < Sevi(Gevr) < Ocvi(Gevr).

Example 6.2.2 In figure 6.1.3, dcvi(Geoyr) = 0.25
Acvi(Govr) = 0.3

Sevi(Gevr) = 1.85 and

Ocvi(Geovr) = 3.25.

That is 0.25 < 0.3 < 1.85 < 3.25.

Therefore ocvi(Govr) < Acvi(Govi) < Scvi(Gevr) < Ocvi(Gevr).

6.3 Domination in Composition of Two Vague Fuzzy Incidence Graphs
Definition 6.3.1 A edge ey in an CT-VFIGs Gy is called incidentally dominate edge if
teoy, (Wi, wiwse) = min{tas,, (W), tpey, (Wit wa2) }

and

fccw (U/117 w11w22) = max{fAcw (wll)a fBCVI (w117 w22)}
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Definition 6.3.2 A edge e,y in an CT-VFIGs G ¢y dominates to edge esy | if they are incidentally dom-

inate edges.

Definition 6.3.3 A subset Rcy 1 of Ecvy is said to be edge incidentally dominating set (EIDS) if for each

edge ey notin Royy, eryr is dominate at least one edge in Reoyy.

Definition 6.3.4 A edge incidentally dominating set Rey 1 of the CT-VFIGs Gy is said to be a minimal
EIDS of CT-VFIGs Gcyy if each edge in Reovy, the set Royy — {eyy 1} is not a EIDS.

Definition 6.3.5 A EIDS with the lowest edge cardinality is labeled a minimum EIDS. The edge cardin-
ality of a minimum EIDS is called edge incidentally dominating number (EIDN) of the CT-VFIGs Gcy .

It is denoted by v 1(Geoyr).

Example 6.3.1 In figure 6.1.3, the incidentally dominating edges are {e11},{ex2},{€s3}, {€as}, {55},
{666} and the EIDSs are S;, = {611622}7 Soy = {611633}, Sg3 = {611644}, Sy = {611655}, S5 =
{e11€66}, - - .. After calculating the edge cardinality of S11, Sa2, S33, Sua, - . . , we obtain | S11| = 0.6, | S| =
0.6, |S33| = 0.65,|S44| = 0.6, |Ss5| = 0.6,.... The edge cardinality of a minimum EIDS is |S1;| = 0.6
and vq,.,,, = 0.6.

Theorem 6.3.1 Let Gi,; = (AV;p, By, Crpp) and G, = (A%,p, Bé 1, CEp;p) be two vague fuzzy

incidence graphs. Then vy 1(Goyr) = min{ A}, p(ma1), A2 p(n11) } where myy € Gi; and nyy € G3).

Proof. Assume GY,; = (AL, p, Bl Clyp) and G3; = (A}, B, C%,;) are two VFIGs. Since GY,;
and G%,; are two VFIGs, then G{,;©G%,; will be a VFIGs. So, each two edges in G{,;©G%,; will dominates

remaining edges. Then by definition of EIDN, vy (G oy ) = min{cardinality of (A}, p(m11), A¥;p(n11))}-

Example 6.3.2 In figure 6.1.1 and 6.1.2, min{cardinality of (A}, ;p(m11), A% p(n11))} = 0.6. In figure
6]3, the EIDSs are |SH| == 06, 522| == 06, |Sgg| == 06, S44| == 06, S55| == 06, c.
The edge cardinality of a minimum EIDS is |S11| = 0.6 and vy (Geyr) = 0.6.

Therefore vy 1(Geoyr) = min{cardinality of (AL ;p(ma1), A% p(n11))}-

Theorem 6.3.2 Let Gi,; = (AV,p, By, Clpp) and G3; = (A%,p, Bé 1, CE;;p) be two vague fuzzy

incidence graphs with k > 2 and | > 2, where k and | are representing the number of vertices in G3,; and
wi(Gevr)

5 = min{cardinality of (B{;;; (m11mas), B (n11na2)) }.

G%,,, respectively. Then
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Proof. Consider GY,; = (A{;p, By, Crpp) and G3; = (A% p, B, C% ;) are two VFIGs. Since Gy,

and G%, are VFIGs. Then Gy, © G%, wil also a VFIG with

wi(Gevr)
2

G3; ® G2, dominates to all remaining edges.

= min{cardinality of (Bl ;; (m11mas), B¥;;(n11n92))} because each two edges in

Example 6.3.3 In figure 6.1.1 and 6.1.2, min{cardinality of (Bl,;; (m11mas), B ;1 (n11n92))} = 0.3. In
figure 6.1.3, the EIDSs are |S11| = 0.6, |Saa| = 0.6, [S33| = 0.6, |Sa4| = 0.6, |S55| = 0.6, . ..

G
The edge cardinality of a minimum EIDS is |S11| = 0.6, vy (Gevr) = 0.6 and wi(Govi) =0.3.
G
Therefore M = min{cardinality of (Bi,;; (m11mas), B ;1 (n11m92)) }.

6.4 Strong and Weak Domination in Composition of Two Vague

Fuzzy Incidence Graphs
The strong and weak domination in graph theory was introduced by Sampathkumar and Pushpalatha in
1996.

Definition 6.4.1 Let Govyy be a CT-VFIGs. For any two edges eyyy, eavr € Ecoyr, ey strongly domin-
ates egy g in CT-VFIGs Geyr if

(i) they are incidentally dominate edges
(ii) deg'(ery) > deg'(eavr), deg’ (ervr) < deg” (eqvr)
Similarly ey weakly dominates ey 1 if

(i) they are incidentally dominate edges

(ii) deg'(eqvr) > deg'(eivr), deg’ (eav) < deg’ (e1v)

Definition 6.4.2 An edge incidentally dominating set Royv; C Ecyy is labeled a strong (weak) edge
incidentally dominating set (SEIDS,WEIDS) of Gcv if, for each eyyv; € Ecoyr — Revy, there exist at
least one edge ey € Reovyy, so that eyyy strongly (weakly) dominates eqy ;. The strong (weak) edge
incidentally domination number of Gov 1 denoted by sy (Geovi)ywvi(Gevr), is called as the minimum

cardinality of a strong (weak) edge incidentally dominating set of Gy .
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Example 6.4.1 In figure 6.1.3, the incidentally dominating edges are {e11},{ex},{€s3}, {€as}, {55},
{ees} and the SEIDS are S11 = {e11€22}, S2o = {€11€44}, S35 = {eanes3}, Sua = {esseqs}. After calculat-
ing the edge cardinality of S11, Saa, S33, S44 we obtain |S11| = 0.6, |Sas| = 0.65, |S33] = 0.6, |S4s| = 0.6.
The edge cardinality of a minimum SEIDS is |S11| = 0.6 and sy (Gevr) = 0.6. The WEIDSs are
Sss = {e11€55}, Se6 = {e11€66}, S77 = {essees}. After calculating the edge cardinality of Sss, Ses, S77
we obtain |Ss5| = 0.6, |Ses| = 0.6, |S77| = 0.6. The edge cardinality of a minimum WEIDS is |Ss5| = 0.6
and ywvi(Gevr) = 0.6.

Theorem 6.4.1 Let Gy be a CT-VFIGs without single node and Rcvy be a minimum strong edge

incidentally dominating set of Gy, then Ecyy — Revy is an strong edge incidentally dominating set of

CT-VFIGs.

Proof. Let Gy be a CT-VFIGs with minimum SEIDS, then for each edge e ; € Ry, there is at least

one edge elvr € ECVI — NCVI so that degt(elw) Z degt(egw), degf(elw) S degf(egw) and

tooy, (W11, wi1wae) = min{ta..,, (W11), teay, (Wi, wae) }

and

chvz (wn, w11w22) = maX{fACVI (wu), fBCV] (wu, w22)}~

Hence, Ecy— Reoyy strongly dominates each edge of Royy. So, Eoyvi— Revyyis an SEIDS of CT-VFIGs.
Example 6.4.2 In figure 6.1.3, the SEIDSs are S1; = {e11€22}, So2 = {e11€4a}, S33 = {€ane33}, Syy =
{esseqs}. After calculating the edge cardinality of Sy, Saa, S33,Ssq we obtain |S11| = 0.6, |5| =
0.65, |S33] = 0.6, |S44| = 0.6. The edge cardinality of a minimum SEIDS is | S11| = 0.6, then Ecyr—Si, =

{ess, eus, €55, €6 } is also a SEIDS.

Theorem 6.4.2 Let Gy be a CT-VFIGs without single node and Rcyv 1 be a minimum weak edge in-

cidentally dominating set of Govy, then Ecyy — Ry is an weak edge incidentally dominating set of

CT-VFIGs.

Theorem 6.4.3 For any CT-VFIGs with tc,,, (w11, wiiwes) = min{ta.,,(wi1), te.,, (W11, we)} and
fCCVI(wn,wnwm) = maX{fACVI(wll)ufBCVI(wllaWQQ)}for all wy; € Voyr,wiiwee € Ecvyy, then

YSvI = YWVI-
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Proof. Let Goyy be a CT-VFIGs with t¢,.,,, (w11, wi1wae) = min{ta.,,(wi1),ts.,, (Wi, we)} and
fooy, (w11, wirwae) = maxq{ fa.,, (w11), [Bey, (W11, we2) }. Assume for every node have same or differ-
ent value. Since Goyy is CT-VFIGs with tp_,, (w11, wes) = min{ta.,,(wi1),ta.,, (W)} and
IBov (Wit wa) = max{ facy, (Wi1), facy, (waez)} for all wiy, we € Voyr and teg,, (wir, wiwe) =

min{tacy, (W), teey, (Win, wa) } and foo,, (w1, wiwes) = max{fac,, (wi), fey, (wir, we)} for all

wi1 € Vovi,wiiwee € Eoyy. Thus every egyresy; € Eeyy is SEIDS as well as WEIDS. Therefore,

Ysvi = YWVI-

Example 6.4.3 In figure 6.1.3, the incidentally dominating edges are {e11},{ea2},{€s3}, {€as}, {€55},

{ees} and the SEIDSs are S1; = {e11€92}, Soo = {e11€44}, S35 = {eaness}, Sua = {eszeas}. After calcu-
lating the edge cardinality of S11, S22, S33, Saa we obtain |S11| = 0.6, |Saa| = 0.65,|Ss3| = 0.6, |Su| =
0.6 and vsv(Govy) = 0.6. The WEIDSs are Ss5 = {e11e55}, Se6 = {e11€66}, St = {essee6}. After
calculating the edge cardinality of Sss, Ses, S77 we obtain |Ss5| = 0.6,|Ses| = 0.6, |S77| = 0.6 and

’}/WV[(GCV[) = 0.6. Therefore Ysvi = YWVI-

Theorem 6.4.4 For a composition of two vague fuzzy incidence graphs, the below inequalities are true.

(i) wi <vsvi < Ocvi(Geoyr)— maximum dg,,,, of Govr.

(ii) vwi < ywvi < Ocvi(Geoyr)— minimum dg,.,,, of Govr.

Proof.

(1) From definition 6.4.1 and 6.4.2 we have

Wi < Vsvi (6.6)

We know Ocy(Geoyy) = the sum of the incidence pair of CT-VFIGs. Also Oy (Geyy)— not

including the maximum dg,,,,, of CT-VFIGs

= Ocvi(Geovi) — Acvi(Gevr) (6.7)



6.5 Real-Life Application of CT-VFIGs 119

From equation (6.6) and (6.7),

wi <vsvi < Ocvi(Gevr) — mazimum deg,,0f Gevr.

(ii) From definition 6.4.1 and 6.4.2 domination number ~y; of CT-VFIGs is less that or equal to the
Ywyv 1 of CT-VFIGs, because the edges of WEIDS My, it weakly dominates any one of the edges

of Ecyvi — Mcyvy. Therefore,

Yevi(Gevr) > wi(Gevr) (6.8)

Also Ocy(Geyr)— not including the minimum dg,,,, of CT-VFIGs

= Ocvi(Geovi) — bovi(Gevr) (6.9)

From equation (6.8) and (6.9), we get

wi < ywvr < Ocvi(Geyr) — minimumde,,,0fGovi

6.5 Real-Life Application of CT-VFIGs

An application of CT-VFIGs is included here. Consider two networks (CT-VFIGs) G1,; and G%,;, which
have two and two vertices, respectively, and show distinct journal publications from different journals
of a research filed. The vertices membership (MS) value indicates the percentage of accepted research
papers in journal publishing, while the non membership (NMS) value represents the rejected research
papers. The MS value of the edges indicates that the journal publications are mutually collaborative,
whereas the NMS value indicates that the journal publications are not mutually collaborative. The MS
value of the incidence pairs represents the percentage of progress, whereas the NMS value represents the
percentage of journal publications that have not progressed. As in figure 6.1.3 composition of G1,; and
G%, show the percentage of progress of journal publication my; with journal publications n;; and ngs
has the maximum MS value and the percentage of non progress of journal publication 74, with journal

publications n1; and n9o has the lesser NMS value. As a result, the best suited combinations of journal
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publications demonstrating the largest percentage of progress and the lowest percentage of non-progress

in the research field exist.

Figure 6.5.1: Journal Publications

6.6 Comparative Analysis

In figure 6.1.3, calculate the edge cardinality of each edge, we get all the edges have same value. In our
study the edge degree cardinality of the CT-VIFGs |dg,.,, (e1vr)| = 0.2 and |dg,.,, (e2vr)| = 0.3 are not
all the same. It can be observed that the edge degree of the edges |d¢..,, (e1vr)| = {0.9,2.4} shows the
percentage of progress of journal publication m;; with journal publications n1; and n9s has the maximum
MS value and the percentage of non progress of journal publication m;; with journal publications n
and n99 has the lesser NMS value. As a result, the current method is ineffective in determining which

journal publications have the highest percentage of progress and the lowest percentage of non-progress.
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The current method is useful for single networks, but it is insufficient to explain the overall impact of dif-
ferent networks’ products. However, we may use composition to discuss the overall impact of combining
multiple networks in our strategy. Our technique works with several networks as well as a single network.
This allows us to discuss the overall influence of various networks products. As a result, our proposed

strategy outperforms the existing one.

CT-VFIGs are extremely useful tools for researching a variety of computational intelligence and com-
puter science topics. CT-VFIGs are used in a variety of fields, including natural networks and operations
research. We introduced three new CT-VIFG concepts in this chapter edge incidentally dominating set,
strong edge incidentally dominating set and weak edge incidentally dominating set. In the CT-VFIGs,
some advantageous and instrumental theorems of domination are also explained. A study of the makeup
of VFIGs in the field of research is also included. We plan to expand our research into CT-VFIG coloring,
Hamiltonian CT-VFIGs, and CT-VFIG chromaticity in the future.



Chapter 7

Strong And Weak Domination in Complete

Intuitionistic Fuzzy Incidence Graphs

Fuzzy graphs, also known as fuzzy incidence graphs, are a well-organized and useful tool for capturing
and resolving a range of real-world scenarios involving ambiguous data and information. The concept of
complete intuitionistic fuzzy incidence graphs was presented in this chapter of the investigation. Complete
intuitionistic fuzzy incidence graphs are characterised in terms of order, size, degree cardinality, strong
intuitionistic fuzzy incidence dominating set and weak intuitionistic fuzzy incidence dominating set. For
different classes of complete intuitionistic fuzzy incidence graphs, we compute the intuitionistic fuzzy
incidence domination number, strong intuitionistic fuzzy incidence domination number, and weak intu-
itionistic fuzzy incidence domination number, and some theorems are explored. With the help of various
outline models, we can better understand these concepts. In addition, for the delineation, the application
of domination for complete intuitionistic fuzzy incidence graph to determine the best treatment facility

accessible clinic is discussed.
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7.1 Complete Intuitionistic Fuzzy Incidence Graph

Definition 7.1.1 The support of intuitionistic fuzzy incidence graph (IFIG) Gr; = (R, S, T) is supp(Gry) =
{supp(R), supp(R), supp(T')} so that

supp(R) = {x11/p1(x11) > 0, pa(z11) > 0}
supp(S) = {x11222/P1(x11222) > 0, Po(x11292) > 0}

SUPP(T) = {($117$11$22)/X1($11,$11=T22) > 0,X2($11,$11$22) > 0}

p*, @* and x* are representing support of p, ¢ and x respectively.

Definition 7.1.2 A [FIG is said to be complete intuitionistic fuzzy incidence graph if
X1(Z11, T11%22) = min{p(211), p1(x11222) } and xa2(x11, ¥11222) = max{ps(x11), P2(x11722)}, for each

X1(211, T11%22), X2 (@11, T11%22) € X*
Remark 7.1.1 Every CIFIG is a intuitionistic fuzzy incidence graph but not conversely.

Definition 7.1.3 Assume G]F] = (pIFI; ¢IFI> XIFI) is a CIFIG. Then

O(GIFI) _ Z (1 + X1(£C117 361155222 - X2(37117 37113722)>

T117#%22,011222€VI T

is called order of Gpr and

S(Grrr) = Y

x11222€Q*

1+ ¢1(x11222) — P2(211292)
2
is called size of G .

7.2 Domination in Complete Intuitionistic Fuzzy Incidence Graph

Definition 7.2.1 A vertex x1; in a complete intuitionistic fuzzy incidence graph dominates to vertex T if

X1($11, $11$22) = min{P1($11)7 o1 (1‘113022)} and Xz(l’n, $111’22) = maX{Pz(JCu), ¢2(I11$22)}-
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Remark 7.2.1 For any x11, x99 € Vipy, if x11 dominates xo5 then x99 also dominates xq.

Definition 7.2.2 A set M;p; C Vipy is a intuitionistic fuzzy incidence dominating set (IFIDS) if each

nodes in Vipr — My is dominated by atleast one node in Mp;.

Definition 7.2.3 The lowest intuitionistic fuzzy incidence cardinality of a IFIDS is uttered as the intu-

itionistic fuzzy incidence domination number and it is represented by Y11 (Gpr) or iy

Definition 7.2.4 Consider Gir; = (Virr, Errr, Lirr, prrr, @171, X1r1) is an CIFIG and xq1 € Vigy then

its degree is expressed by dg,.,(r11) = (dig;p;(11),doc,p,(T11)) and represented by
diGre (1) = Y. (@11, 211%22) € Irpr and dog, ., (211) = Y (T11, T11%22) € Irpr.
T117T22 T117£T22

7.3 Strong and Weak Domination in CIFIGs

Definition 7.3.1 Let Gr; be a complete intuitionistic fuzzy incidence graph. Then the degree cardinality

1+ leIFI (xH) - d2G1F1 ($11>
5 .

cardinality of Gy is defined by 0(Grrr) = min{dg, ., (x11)/x11 € Virr} and highest degree cardinality

of Grpy is defined by A(Grpr) = max{dg,,,(z11)/x11 € Vips}.

of dg,,(711) is represented to be |dg,,,(x11)| = The lowest degree

Definition 7.3.2 Assume Gy is a complete intuitionistic fuzzy incidence graph and let x1, and x49 be
the nodes of Grrr. Then xq, strongly dominates a9 or Tos weakly dominates xqy if d;(x11) > d;i(x92)
and x1(x11, ¥11%22) = min{py(z11), d1(x11222)}, Xo(@11, 11022) = max{ps(r11), P2(z11222)}. We call
X9y strongly dominates x1, or x11; weakly dominates xoy if d;(xey) > di(x11) and x1(Ta2, T11T92) =

min{p1 (9522), ¢1($119022)} and Xz(Izz, $11I22) = maX{Pz(fEQz), ¢2($11$22)},

Definition 7.3.3 A set S;r; C Vipy is a strong intuitionistic fuzzy incidence dominating set (SIFIDS) if
every vertex in Vipy — Sypy is strongly fuzzy incidence dominated by at least one vertex in Sypy. Similarly,
Stry is labeled a WIFIDS if every vertex in Vip; — Stry is weakly fuzzy incidence dominated by at least

one vertex in Stry.

Definition 7.3.4 The lowest intuitionistic fuzzy incidence cardinality of a SIFIDS is uttered as the SIFIDN

and it is represented by vsrrp1(Grrr) or vsirr and the lowest intuitionistic fuzzy incidence cardinality of
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a weak intuitionistic fuzzy incidence dominating set (WIFIDS) is uttered as the weak intuitionistic fuzzy

incidence domination number (WIFIDN) and it is represented by vy 1r1(Grrr) or Ywirr-

Example 7.3.1

(0.3,0.6)

Figure 7.3.1: CIFIG with YSIFI = 0.5 and YWIFT = 0.4

Assume Grrr = (prrr, ¢1r1, X1rr) is an CIFIG given in above figure 7.3.1 having Vipr = (211, a2, 33)

and

p(x11) = (0.4,0.5), p(z92) = (0.5,0.3), p(z33) = (0.3,0.6)
d(x11, T92) = (0.4,0.5), p(x99, x33) = (0.3,0.6), p(x33,211) = (0.3,0.6)
X(Z11, 112722) = (0.4,0.5), x (222, T11792) = (0.4,0.5), x (w92, x92x33) = (0.3,0.6),
X (33, Xa0233) = (0.3,0.6), x (211, x11733) = (0.3,0.6), x (733, T11233) = (0.3, 0.6)

Assume Djp; = {x33}. We have Vip; — Dypp = {11, x93 }. Here x33 weakly fuzzy incidence dominates

T11, Tog because dg, ., (x33) = 0.2 is less than the d, ., of all the remaining vertices. Thatis dg, ., (z11) =
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0.3, dg,, (z33) = 0.3. There is no other weak intuitionistic fuzzy incidence dominating sets. Thus the
only weak intuitionistic fuzzy incidence dominating set is D;r; = {x33}. Therefore vy = 0.4. We

have strong IFIDS is D;p; = {11} with ys72;7 = 0.5.

Theorem 7.3.1 For any CIFIG with X1 (ZL’H, ZL’HZEQQ) = min{pl(xn), ¢1 (ZL’H.TQQ)} and XQ(ZL'H, ZEHZEQQ) =

max{pa(211), p2(T11292) } for all x11 € Vipr, x11022 € Erpy, then
(i) Ysirr = YWIFI
(ii) Ysirr > YWIFI

Proof. Let Girr = (prrer, ¢rr1, X1r1) be @ CIFIG with x1 (211, £11222) = min{p1(x11), ¢1(x11222)} and
X2(Z11, T11T22) = max{ps(x11), p2(z11222)}. Assume for all 17 € Vigr, (p1(x11), p2(211)) have same
value.  Since Gyp; is CIFIG with ¢(z11722) = min{pi(x11),p2(x11)} and ¢o(z11722) =
max{pz(x11), p2(x11)} for all xy1, 290 € Vipr and x1(211, 11292) = min{pi(x11), ¢1(x11292)} and
X2(11, T11%22) = max{pa(r11), P2(211222)} for all 21y € Vipr, 211292 € Erpy. Thus every 211 € Vipy

is SIFIDS as well as WIFIDS. Therefore vy r; = vsirr-

Assume for all z11 € Vipr, (p1(x11), p2(211)) have different value. In a CIFIG with dg,,., (1) >
dc, »; (x22) from all the nodes one of them strongly dominates all the remaining nodes, if it is smallest
among all the nodes then the IFIDS with that node is called WIFIDN, that is vy rr = (p1(211), p2(211))
with dg, ., (211) < dg,p, (292) for all 211299 € Vipr and xq (211, T11292) = min{p1(x11), ¢1(x11222)} and
X2(Z11, T11T92) = max{ps(x11), p2(x11222)} for all z1; € Vipr, 112090 € Erpy. Certainly, the strong

IFIDS has a node set other than the that node set. This implies vs;r;r > Ywirs-
Theorem 7.3.2 For a CIFIG, the below inequalities are true.
(i) virr < vsipr < O(Grpr)— maximum dg, ., of Gipr

(ii) virr < ywrrr < O(Grpr)— minimum dg, ., of Grpr
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Proof.

(1) From definition 7.3.2, 7.3.3 and 7.3.4, we have

Yrrr < YSIFT (7.1)

We know O(Gpr) = the sum of the incidence pair of CIFIG.
Also O(Gypp)- not including the maximum dg, ., of CIFIG

= O(Grrr) — A(Grrr) (1.2)

From equation (7.1) and (7.2),

virr < ysrrr < O(Grpr) — maximum dg, ., of Grpy

(ii) From definition 7.3.2, 7.3.3 and 7.3.4 domination number ~y;r; of CIFIG is less than or equal to the
Ywir1 of CIFIG, because the vertices of WIFIDS M;z;, it weakly dominates any one of the vertices

of Vipr — M;p;. Therefore

YWIFI (GIFI) > WFI(GIFI) (7.3)

Also O(Gypy)- not including the minimum dg, ., of CIFIG

= O(Grrr) — 0(Grrr) (7.4)

From equation (7.3) and (7.4), we get

Yier < ywirr < O(Grpr) — minimum dg, ., of Grpy
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7.4 Application

Here, we incorporate an every day life model. Assume there are five multispeciality clinics are working
(24 hours) in a city for giving crisis treatment to individuals. Here in our examination we are not referen-
cing the original names of these clinics in this manner think about the clinics i1, hog, hss, hyy and hss. In
CIFIGs, the vertices show the clinics and edges show the contract conditions between the clinics to share
the facilities. The incidence pairs show the transferring of patients from one clinic to another because
of the lack of resources. The vertex h;;(0.4,0.6) means that it has 40% of the necessary facilities for
treatment and unfortunately lacks 60% of the equipment. The edge h11h22(0.14,0.86) shows that there is
only 14% of the interaction and relationship between the two clinics, and due to financial issues, there is
86% on the conflict between them. IFIDS ruling arrangements of the graph is the arrangement of clinics
which give the crisis treatment autonomously. Along these lines, we can save the time of patients and

conquer the long going of patients by giving the couple of offices to the remainder of the clinics.

Figure 7.4.1: MULTISPECIALITY CLINIC

Assume G[F[ = (‘/IFIaEIFI,IIFI,pIFI;QSIFI,XIFI) is a CIFIG show in ﬁgure 7.4.2 having ‘/IFI =
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<h117 h22, h33, h44, h55> and

p(hi) = (0.4,0.6), p(has) = (0.14,0.86), p(hs3) = (0.52,0.48), p(has) = (0.24,0.76),
p(hss) = (0.24,0.76), ¢(hi1, haa) = (0.14,0.86), ¢(h11, hss) = (0.4,0.6), ¢(h11, has) =
d(haz, hat) = (0.24,0.76), ¢(haa, hiss) = (0.24,0.76), X (h11, hi1has) = (0.14,0.86),
X (a2, hithas) = (0.14,0.86), x(h1, haihas) = (0.4,0.6), x(hss, ha1has) = (0.4,0.6),
X(hu1, hithas) = (0.24,0.76), x(hag, harhas) = (0.24,0.76), x(hss, hashas) = (0.24,0.76),
X (has, hgzhas) = (0.24,0.76), X (has, hashss) = (0.24,0.76)x (hss, hashss) = (0.24,0.76)

Example 7.4.1

(0.14, [}V

(0.14,0.86)
(0.4,0.6)
0.4,0.6) ——»
(0.4,0.6) Ly, (04,06) ,
%,U-TGJ (0.4,0.6)
(0.24,0% (0.24,0.76)

(0.24, 0.76)

(0.24,0.76)
(0.24,0.76) hss >
(0.24,0.76) —0
(0.24,0.76)

has (0.14,0.86)

(0.14,0.86)

¢ h33 (0.52,0.48)

(0.24,0.76)

(0.24,0.76)

h4(0.24,0.76)

Figure 7.4.2: CIFIG with v;p; = 0.38

In figure having intuitionistic fuzzy incidence dominating set are D;p;

= {ha2, has} and y;p; = 0.38.

(0.24,0.76),
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This shows that patients can visit any one of the clinics from this set. The rest of the clinics upgrade their

facilities to provide better treatment to the people.

The dominance theory survey is intriguing because of the wide range of applications and dominant
qualities that can be established. Domination in complete intuitionistic fuzzy incidence graphs is essen-
tial from both a religious and an application standpoint. The feasibility of a complete intuitionistic fuzzy
incidence graph, as well as strong and weak intuitionistic fuzzy incidence dominating sets and strong and
weak intuitionistic fuzzy incidence dominating numbers, is examined in this research. We compute the
intuitionistic fuzzy incidence domination number, strong intuitionistic fuzzy incidence domination num-
ber, and weak intuitionistic fuzzy incidence domination number for distinct classifications of complete
intuitionistic fuzzy incidence graphs, as well as associated theorems. The relationship between the com-
plete intuitionistic fuzzy incidence graph of an intuitionistic fuzzy incidence domination number, strong

intuitionistic fuzzy incidence domination number, order, and maximum degree cardinality is examined.



Chapter 8

Fixed Domination in Product Picture Fuzzy

Graphs

Fuzzy graph algorithms can be used to model and solve a wide range of practical issues. Fuzzy graph the-
ory, in general, has a wide range of applications in a wide range of domains. Because ambiguous inform-
ation is a common real-life problem that is frequently uncertain, an expert must model these challenges
using a fuzzy graph. A useful mathematical model for dealing with uncertain real-world circumstances
is the picture fuzzy set. The picture fuzzy set (PFS) is a variant of the traditional fuzzy set. It can be
particularly effective in ambiguous settings that require more yes, no, abstain, and rejection responses.
This research introduces the concept of a product picture fuzzy graph. Some varieties of product picture
fuzzy graphs are discussed, including strong product picture fuzzy graph and complete product picture
fuzzy graph, as well as their features. One of the most extensively utilized notions in numerous areas is
dominance in fuzzy graphs theory. Many current research investigations are attempting to uncover new
uses for dominance in their sector if there is enough interest. As a result, in this chapter, we introduce
various types of dominating sets in product picture fuzzy graphs, such as the fixed vertex dominating set,
fixed edge dominating set, total fixed edge dominating set, and fixed edge restrained dominating set, and
try to represent their properties using examples. Finally, we give a medical example to demonstrate the

importance of fixed vertex domination (FVD) in product picture fuzzy graphs.
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8.1 Product Picture Fuzzy Graphs

Definition 8.1.1 Let Rpp be product picture fuzzy set (PPFS). Rpp in Xpp is defined by Rpp = {xpp, tirp, (Tpp),
NRpp(TPP), YRpp(Tpp)/Tpp € Xpp}, where g, .(xpp), Nrpp(xpp) and Yr,,(xpp) follow the condi-
tion 0 < pppp(Tpp) X MRpp(Tpp) X Yrpp(xpp) < 1. The pigpp (Tpp), MRpp(Tpp), Yrpp(2pp) € [0, 1],
denote respectively the positive membership degree, neutral membership degree and negative membership
degree of the element xpp in the set Rpp. For each PPFS Rpp in Xpp, the refusal membership degree is

described as

Trep(@pp) =1 = {irpp (TPP) X NRpp(TPP) X YRpp(Tpp)}-

Definition 8.1.2 Assume G5, = (Vpp, Epp) is a graph. A pair {pp = (Rpp, Spp) is referred a
product picture fuzzy graph on Gp where Rpp = {ltgpps MRpps VRpp ) i @ PPES on Vpp and Spp =

{lsppsNsppsVspp } i a PPES on Epp C Vpp x Vpp such that for each edge fpphpp € Epp.

'LLSPP(fPPhPP) S /’LRPP(fPP) X ILLRPP(h/PP);
nSPP(fPPhPP) < nRPP(fPP> X anp(hPP)y

YSpp (fPPhPP) > ’yRPP(fPP) X PYRPP(hPP)'

Example 8.1.1 Consider a PPFG &pp as in Figure 8.1.1, such that Vpp = { fpp, hpp,ipp, jrr} Epp =

{fephpp, hppirp,ippjrr, jrpfrr}
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hpp (0.2,0.1,0.5)

€1pp

(0.02,0.01,0.2)

©2pp

(0.04,0.02,0.06)

(0.1,0.2,0.4) f, Ipp (0.2,0.3,0.1)

P

Capp

(0.03, 0.02, 0.09)
€3pp (0.08,0.02, 0.02)

Jrp (0.4,0.1,0.2)

Figure 8.1.1: PPFG &épp

Note 8.1.1 There is no edge between fpp and hpp when pus,.(fpphpp) = ns..(fprhpp) =

VSpp (fPPhPP) =0.
Remark 8.1.1 A product picture fuzzy graph is not necessarily a picture fuzzy graph.

Example 8.1.2 In Figure 8.1.1, it is easy to show that PPFG but not PFG.

Definition 8.1.3 A product picture fuzzy graph {pp = (Rpp, Spp) is said to be strong product picture

fuzzy graph if

tspp(fPPhrp) = lRpp(fPP) X pRpp(hPP),
77SPJP(fPPhPP) = 77RPP<fPP> X URpp(hPP)>

,YSPP(fPPhPP) = 'VRPp(fPP) X ’YRpp(hPP) VY fpphpp € Epp.
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Example 8.1.3 Consider a strong PPFG {pp as in Figure 8.1.2, such that Vpp = {fpp, hpp,ipp, jpp}

Epp = {fpphpp,hppiprp,irpjprp, jrpfre, frrirp}.

hyp(0.4,0.1, 0.3)
(0.08,0.04, 0.06)

(0.2,0.02,0.03)
€2pp

(0.2,0.4,0.2) £,y bp (0.5,0.2,0.1)

(0.02,0.2,0.04)

€4pp

(0.05,0.1, 0.02)

€3pp

Jop (0.1,0.5,0.2)

Figure 8.1.2: Strong PPFG {pp

Definition 8.1.4 A product picture fuzzy graph Epp = (Rpp, Spp) is defined as complete PPFG if

MSPP(]EPP; hPP) = URpp (fPP) X :uRPP(hPP)7
Nspp(fPPhPP) = NRpp (fPP) X NRpp(RpPP),

Yspp (frPhrP) = YRpp (fPP) X YRpp(hpp) Y frPhpp € Epp.

Example 8.1.4 Consider a complete PPFG {pp as in Figure 8.1.3, such that Vpp = { fpp, hpp,ipp, jpp}

Epp = {fpphrp,hppirp,ippjrp, jrrfrp, frrirp. hrpjipp}.
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e5pp (0.1,0.08,0.02)

hpp(0.4,0.1,0.3)

(0.08,0.04,0.06) (0.2,0.02,0.03)

(0.2,0.4,0.2) £, (0.04,0.05,0.06) ipp (0.5,0.2,0.1)

(0.02,0.2,0.04)

(0.05,0.1,0.02)
€4pp

€3pp
Jpp (0.1,0.5,0.2)
Figure 8.1.3: Complete PPFG {pp
Remark 8.1.2 Every complete product picture fuzzy graph is a strong product picture fuzzy graph but not

conversely.

Example 8.1.5 In Figure 8.1.2, it is simple to demonstrate that {pp is a strong PPFG but not a complete

PPFG.

Definition 8.1.5 Let {pp = (Rpp, Spp) be a product picture fuzzy graph

1. &pp cardinality is determined by

1+ pp) — ; — ;
I€pp| = Z fRpp (fiPP) 77Rp2p(f PP) = Vrpp(fipP)
fipPEVPP
Z L+ pspp(firp, hirp) — Nspp (fipp, hirp) — Yspp (fipp, Rirp)

* 2

fipp,hipPEEPP
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2. &pp vertex cardinality is determined by

1+ iPP) — iPP) — i
V| = Z trpp(fipp) Uszp(fPP) Yrpp(fiPP) Vipp € Vop.

fipp€Vpp
is referred the order of a PPFG Epp, and it is denoted by p({pp).

3. &pp edge cardinality is specified by

B L+ ps,p(fipp, hipp) — Nspp(fipps hipp) — Vspp (fipp, hipp)
Eppl = Y 5 ,

fipp,hipPEEPP

Vfipp, hipp € Epp is referred the size of a PPFG Epp, and it is denoted by q({pp).

Example 8.1.6 In Figure 8.1.1,

[Vpp| = 0.25 4+ 0.3+ 0.4 4+ 0.55 = 1.5
|Epp| = 0.405 + 0.48 4+ 0.52 + 0.46 = 1.865

|€pp| = 1.5 4 1.865 = 3.365

Definition 8.1.6 An edge fpp,hpp in a product picture fuzzy graph Epp = (Rpp, Spp) is called the
strong edge if

tspp(frp, hpp) > pg,,(frp, hpp),
nspp(frp, hpp) > 15, . (frp, hpp),

Yspp(fPPyhpP) <75, (fPP, hPP)

Example 8.1.7 In Figure 8.1.1, espp, espp, e4pp are strong edges.

8.2 Fixed Vertex Domination in Product Picture Fuzzy Graphs

Definition 8.2.1 In a product picture fuzzy graph, two vertices fpp and hpp are considered to be neigh-

bors if one of the following conditions holds.
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L pspp(fephep) > 0,150, (frrhep) > 0,9s,, (frPhpp) > 0

2. pspp(frrhpp) = 0,05, (fPPhpP) > 0,955, (fPPhPP) > 0

3. pspp(ferhpp) > 0,05, (frrhpp) = 0,75, (frPhpp) >0

4. pspp(fephpp) > 0,ms,,(frphpp) > 0,vs,,(frphpp) > 0,Y fpphpp € Vpp.

Definition 8.2.2 In a product picture fuzzy graph pp, the two vertices fpp and hpp are considered to be

strong neighbours if

tspp(frPhpp) = lRpy (fPP) X HRpp(hpp)
NSpp (fPPhPP) = nRPP(fPP> X NRpp (hPP)

YSpp (fPPhPP) = ’YRPP(fPP) X /yRPP(hPP)

Definition 8.2.3 Let Epp be a PPFG and fpp and hpp are neighbors of Epp. We say that fpp dominates
hpp if they are strong neighbors. An vertex subset Mpp of Vpp in a PPFG &pp is called an fixed vertex
dominating set (FVDS), if for each vertex Vpp — Mpp is dominates exactly one vertex in Mpp. An fixed
vertex dominating set Mpp of a PPFG Epp is said to be a minimal fixed vertex dominating set if for
each edge fpp € Mpp, Mpp — {fpp} is not an fixed vertex dominating set. An fixed vertex domination
number (FVDN) of {pp is the smallest cardinality between all minimal fixed vertex dominating sets, and

it is described by yv,.,.(Epp) or simply vy, .

Example 8.2.1 Consider the PPFG £pp as in figure 8.2.1, Dyy = {fpp,hpp}, Dos = {hpp,ipp},

Dss = {ipp,jpr}, Das = {frp,jpp} is a fixed vertex dominating sets and ~yy,,.({pp) = 0.5.
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hpp (0.4,0.1,0.3)

(0.08,0.04, 0.06)

€9
elpp PP

(0.2,0.02,0.03)

(0.2,0.4,0.2)f,, ipp (0.5,0.2,0.1)

(0.02,0.2,0.04)

Cipp (0.05,0.1,0.02)

€3pp

Jpp (0.1,0.5,0.2)

Figure 8.2.1: PPFG {pp with FVDS

8.3 Fixed Edge Domination in Product Picture Fuzzy Graphs

Definition 8.3.1 Iftwo edges e1pp and espp in a PPFG &pp are neighbours, they are said to be adjacent.

Definition 8.3.2 An edge subset Lpp of Epp in a PPFG Epp is referred an edge independent set (EIS) if

tspp(frrhpp) < trpp(fPP) X trpp(RpP)
Nspp(frPRPP) < NMRpp(fPP) X NRpp(RpP)

Yspp(frPhPP) > YRpp (fPP) X YRpp (hpp)YfrPhpp € Lpp.

The edge independent number (EIN) is the highest cardinality among all maximal edge independent set

(EIS) in {pp, and it is indicated by Brpp(Epp) or Brpp.

Example 8.3.1 Inﬁgure 831, {ezpp,egpp}, {€2pp,64pp}, {63pp,64pp}, {egpp,egpp,64pp} are EISs

in gpp and /B[pp(fpp) = 1.495.
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€1pp
(0.03,0.04, 0.02)

(0.1,0.2,0.1) £, hpp (0.3,0.2,0.2)

€2pp

€3
(0.05,0.05,0.03) PP

(0.15,0.05,0.05)

ipp (0.6,0.3,0.1)

(0.10,0.10,0.03)

Capp
Jpp (0.2,0.4,0.1)

Figure 8.3.1: PPFG ¢pp with EISs

Definition 8.3.3 If an edge e, pp and a vertex kpp in a product picture fuzzy graph {pp are incident, they

are said to cover each other.

Definition 8.3.4 An edge subset Lpp of Epp in a PPFG &pp, which covers all nodes in {pp, is termed
a edge cover set (ECS) of Epp. The edge cover number (ECN) of Epp is the lowest cardinality among all

edge cover set (ECS), and it is denoted by acpp({pp) or simply acpp.

Example 8.3.2 Consider the PPFG Epp in figure 8.1.1.

Here {e1pp,espp} and {eapp,espp} are ECSs and acpp(Epp) = 0.925.

Theorem 8.3.1 An edge subset Lpp C Epp in a product picture fuzzy graph pp is an edge independent

setin épp if Epp — Lpp is an edge cover set of Epp.
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Proof. Lpp is an EIS if and only if no two of its edges are adjacent, if and only if each of its edges is

incident with at least one vertex of Fpp — Lpp, and if and only if Epp — Lpp is an ECS of {pp.

Example 8.3.3 Consider the PPFG Epp as in figure 8.3.2. It is easy to show that Lpp = {eapp, espp} is
an EIS and Epp — Lpp = {e1pp, espp} is an ECS.

fop (0.6,0.2,0.1)

C4pp
(0.15,0.03,0.07)

(0.3,0.2,0.5) jpp hpp(0.3,0.2,0.2)

(0.06,0.08,0.05) ¥ (0.05,0.07,0.1)

p—

Figure 8.3.2: PPFG {pp with EIS and ECS

Definition 8.3.5 An edge fpphpp in a product picture fuzzy graphs Epp is labeled an effective edge if

tspp(fPPhpp) = WRpp (fPP) X fRp, (heP)
Nspp(fPPhPP) = NRpp (fPP) X NRpp(heP)

Vspp (fPPhPP) = VRpp (fPP) X VRpp (hpP).

Example 8.3.4 Consider a PPFG Epp as in figure 8.3.3, such that Vpp = {fpp, hpp,ipp}

Epp ={fpp,hrp, hppirp,irpfrp}.
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fop(0.1,0.3,0.2)

€1pp

€2pp
(0.01,0.15, 0.06)

(0.03,0.05,0.02)

(0.1,0.5,0.3)1,, hpp (0.4,0.2,0.1)

(0.03,0.1,0.4)
€3pp

Figure 8.3.3: PPFG £pp with effective edge

Here e pp is an effective edge.

MSPP(fppipp) =0.1x0.1=0.01
Nspp(frpipp) = 0.3 x 0.5 =0.15

Yspp(frPipp) = 0.2 x 0.3 = 0.06.

Definition 8.3.6 An edge epp of a PPFG Epp is said to be an isolated edge (IE) if no effective edge are

incident with the vertices of epp. As a result, no other edge in £pp is dominated by an isolated edge.

Example 8.3.5 In figure 8.3.2, the edges e, pp and e3pp are isolated edges.

Theorem 8.3.2 For any PPFG gpp = (RPP, Spp) with isolated edges, Ofcpp(ﬁpp) +/8[pp(£Pp) = gpp.

Proof. Let Lpp be an edge independent set in {pp and Mpp be an edge cover set in {pp so that |Lpp| =

Brpp(Epp) and [Mpp| = acpp(Epp). Then, by theorem 8.3.1, Epp — Lpp is an edge cover set of Epp.
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Therefore, |Mpp| < |Epp — Lpp| and acpp(&pp) < qpp — Brpp(§pp) OF

acpp(&pp) + Birp(Epr) < qprp (8.1

Furthermore, by theorem 8.3.1, Epp — Mpp is an EIS in {pp, so |Lpp| > |Epp — Mpp|. Therefore,

Brep(&pp) > qrp — acpp(&pp) o acpp(Epp) + Brrp(Epr) > qrp (8.2)

From (81) and (82), we obtain Oécpp(fpp) -+ ﬂ[pp(ﬁpp) = q4pp.

Example 8.3.6 Inﬁgure 8.3.2, aopp(fpp) = 1025, ijp(gpp) = 0.965 and dpp = 1.99.

Definition 8.3.7 Let epp be any edge in a PPFG Epp. Then, N(epp) = {mpp € Epp : mpp is an
effective edge incident with the nodes of epp} and is called the open degree neighborhood set of epp.

Nlepp| = N(epp) U{epp} is nemed the closed neighborhood set of epp.

Definition 8.3.8 Let epp be any edge in a PPFG £pp. Then, dy(epp) = > |lpp| is termed the
lppEN(epp)

edge neighborhood degree of e pp. The minimum edge neighborhood degree of a PPFG Epp is On(Epp)

min{dy(epp)/epp € Epp}. The maximum edge neighborhood degree of a PPFG {pp is An(Epp) =

maX{dN<€pp>/€Pp € Epp}.

Example 8.3.7 Consider the PPFG &pp as in figure 8.1.2. It is obvious that N (e1pp) = {eapp, €4pp, €5pp}
and dN(Glpp) = 1.465.

Definition 8.3.9 Two edges e pp and espp in a product picture fuzzy graph Epp, are said to be strong

neighbor if they are effective edges.

Definition 8.3.10 Let Epp be a PPFG and e1pp and espp be two edges of Epp. We say that e1pp domin-
ates espp if e1pp is effective edge and they are adjacent. An edge subset Lpp of Epp in a PPFG Epp is
named an fixed edge dominating set (FEDS) if, for each edge Epp — L pp is dominates exactly one edge in
Lpp. An fixed edge dominating set Lpp of a PPFG Epp is said to be a minimal fixed edge dominating set

if for each edge epp € Lpp, Lpp — {epp}, is not an fixed edge dominating set. An fixed edge domination
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number (FEDN) of {pp is the least cardinality between all minimal fixed edge dominating sets and is

denoted by Vg, ({pp) or simply Vg, .. An fixed edge dominating set Lpp of a PPFG &pp is said to be

independent if

MSPP(fPPhPP) < IuRPP(fPP> X NRPP(hPP)a

T]SPP(fPPh’PP) < TIRPP(fpp) X anp<hPP)7

fySPP(fPPhPP) > fYRPP(fPP) X ’yRPP(hPP)7 vaPhPP € Lpp.
Example 8.3.8

hyp (0.4,0.1,0.3)

€1pp

(0.08,0.04,0.06) (0.2,0.02,0.03)

(0.2,0.4,0.2)f,, ipp (0.5,0.2,0.1)

€3pp

(0.02,0.2,0.04) (0.05,0.1,0.02)

jpp (0.1,0.5,0.2)

Figure 8.3.4: PPFG £pp with FEDSs

Consider a PPFG &pp as in figure 8.3.4, D1y = {e1pp, e2pp}, Dao = {€2pp,e3pp}, D33 = {espp,eapp}

and D44 = {61pp, €4pp} are FEDSs and YEpp (fpp) = (.88.
Theorem 8.3.3 For any product picture fuzzy graph without isolated edges, Vg, ({pp) < q’%.

Proof. Any product picture fuzzy graph without isolated edges has two disjoint fixed edge dominating

sets and hence Vg, ({pp) < q}%P.

Example 8.3.9 Consider the PPFG pp as in figure 8.3.4 with qpp = 1.92 and vg,.,.(épp) = 0.88 <

arP _ .96,

2
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Theorem 8.3.4 An edge independent set Lpp of a PPFG Epp is a maximal edge independent set iff it is

an edge independent set and fixed edge dominating set.

Proof. Let Lpp be a maximal EIS in a PPFG £pp and, hence for each edge epp € Epp — Lpp, the set
Lpp U {epp} is not independent. For each edge epp € Epp — Lpp is dominated exactly one edge in
Lpp. Hence, Lpp is an FEDS. Therefore, L pp is both an FEDS and EIS.

Conversely, assume L pp is both independent and an FEDS. Suppose that L pp is not a maximal EIS, then
there exist an edge epp € Epp — Lpp, and the set Lpp U {epp} is independent. If Lpp U {epp} is
independent, then no effective edge inL pp is strong neighbor to epp. Therefore, L pp cannot be an FEDS,

which is a contradiction. Thus, {pp is a maximal EIS.

Example 8.3.10 Consider a PPFG {pp as in figure 8.3.5, {espp, e3pp} is a maximal EIS that is both an
EIS and FEDS.

Cipp
. 0.03,0.04,0.02
(0.1,02,0.1) £, o (0.03, ) hpp (0.3,0.2,0.2)

€2pp
(0.15,0.05,0.05)

(0.6,0.3,0.1) Jpp @i, (0.2,0.4,0.1)

(0.10,0.10,0.03)
€3pp

Figure 8.3.5: PPFG £pp with EIS and FEDS

Theorem 8.3.5 Every maximal edge independent set Lpp in a PPFG &pp is a minimal fixed edge dom-

inating set.

Proof. Let L pp be a maximal EIS in a PPFG £pp. By theorem 8.3.4, Lpp is an FEDS. Assume L pp is not
a minimal FEDS. There exist at least one edge epp € Lpp for which Lpp — {epp} is an FEDS. However,

if Epp — {Lpp — {epp}} dominates Lpp — {epp}, then at least one edge in Epp — {Lpp — {epp}}
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must be strong neighbor to epp. This contradicts the fact that Lpp is an EIS in {pp. Hence, Lpp must be

a minimal FEDS.

8.4 Total Fixed Edge Domination in Product Picture Fuzzy Graph

In this section, the concept of total fixed edge domination in PPFG is defined and discussed notation of

'YTPP(gPP)-

Definition 8.4.1 Let pp = (Rpp, Spp) be a product picture fuzzy graphs without isolated edges. An
edge subset Lpp of Epp is said to be total fixed edge dominating set (TFEDS) if for each edge epp € Epp,
there exist an edge gpp € Lpp,gpp # epp, so that epp dominates exactly one edge in Lpp and the

corresponding vertex for each edge in Lpp have same degree.

Definition 8.4.2 The total fixed edge domination number (TFEDN) of {pp is represented by ~vr,.(pp)

and is the smallest cardinality among all total fixed edge dominating sets.

Theorem 8.4.1 Let Epp = (Rpp, Spp) be any product picture fuzzy graph without isolated edges. Then,
for each minimal total fixed edge dominating set Lpp, Epp — Lpp, is also an total fixed edge dominating

set.

Proof. Let epp be any edge in Lpp. Since {pp has no IEs, there is an edge gpp € N(epp) and
gpp € Epp — Lpp. Hence, each element of Epp — Lpp is dominated exactly one edge in Lpp and

the corresponding vertex for each edge in L pp have same degree. Thus Epp — Lpp is an TFEDS in {pp.

8.5 Fixed Edge Restrained Domination in Product Picture Fuzzy

Graph
In this section, the concept of fixed edge restrained dominating set and edge restrained independent set in
PPFG are discussed.

Definition 8.5.1 Let Epp = (Rpp, Spp) be a PPFG. An edge subset Lpp C Epp is called fixed edge
restrained dominating set (FERDS) if
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1. Each edge in Epp — Lpp is dominates exactly one edge in Lpp.

2. In Lpp, all of the edges have the equal degree.

Example 8.5.1 Inﬁgure 8.5.1, D11 = {elpp,egpp}, D22 = {Ggpp,egpp}, D33 = {63pp,€4pp} and

D4y = {e1pp,espp} are FERDSs.

hpp (0.2,0.4,0.1)

€1pp
(0.06,0.12,0.02)

€2pp
(0.06,0.12,0.02)

(0.3,0.3,0.2)f,, Ipp (0.3,0.3,0.2)

(0.06,0.12,0.02)

(0.06,0.12,0.02)
Capp

jpp (0.2,0.4,0.1)

Figure 8.5.1: PPFG £pp with FERDS

Definition 8.5.2 An edge independent set Lpp of a PPFG Epp is labeled an edge restrained independent
set (ERIS) if all the edges of Lpp have the equal degrees. Lpp is a maximal edge restrained independent

set if for every fpp € Vpp — Lpp, and the set Lpp U {fpp} is not an edge restrained independent set.

Example 8.5.2 Consider the PPFG {pp as in figure 8.5.2, D11 = {e1pp, espp} is a ERIS.
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€ipp ©2pp
(0.05,0.10,0.01) (0.06,0.12,0.02)

PP Ipp (0.3,0.3,0.2)

(0.3,0.3,0.2)

(0.2,0.4,0.1)

Capp

€3
(0.05,0.10,0.01) PP

(0.06,0.12,0.02)

Jpp (0.2,0.4,0.1)

Figure 8.5.2: PPFG £pp with ERIS

Theorem 8.5.1 An edge restrained independent set is a maximal edge restrained independent set of a

PPFG &pp iff it is an edge restrained independent set and FERDS.

Proof. Let Lpp be a maximal ERIS in a PPFG {pp, then foreach tpp € Epp — Lpp, the set LppU{tpp}
is not an independent set, that is for every tpp € Epp — Lpp, there exist a edge npp € Lpp so that tpp
dominates npp . Therefore, Lpp is a FERDS of £pp and also an ERIS of £pp. Therefore, Lpp is an ERIS
and FERDS.

Conversely, assume that L pp is both an ERIS and FERDS of ¢ pp. We have to prove that L pp is a maximal
ERIS. Suppose that Lpp is not a maximal independent set. Then, there exist a edge tpp ¢ Lpp so that
LppU{tpp} is an independent set , there is no edge in Lpp strong neighbor to ¢ pp, and hence, ¢pp is not
dominated any edge in Lpp. Thus, Lpp cannot be a FERDS of £pp, which is a contradiction. Therefore,

L pp is a maximal ERIS.
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8.6 Application

Many emergency accident patients have died in the past as a result of transportation delays to the hospital.
One of the elements driving this delay is traffic congestion in cities. As a result, we attempted to find the
closest hospitals in our study based on distance, traffic load, and patient suggestions. We evaluate five
hospitals located in diverse locations along the by-pass road for this purpose. The hospital is depicted
as Ago, Ass, Ay, Ass, Ags. In this PPFG, one vertex (A;;) represents the accident site, while the other

vertices correspond to hospitals located throughout the bypass road.

The vertex A22(0.2,0.1,0.1) indicates that it has 20% of the essential amenities for treating the patient,
but only 10% of the required equipment and only 10% of patient referrals to the proper hospital. The edge
A11As denotes a 4% distance between the accident site and the hospital, a 4% low traffic load on the
patient’s ambulance transport route to the hospital, and a 2% heavy traffic load on the patient’s ambulance
transport route to the hospital. The fixed vertex dominating sets for figure 8.6.1 are as follows.

Dipp = {An1Au}, Dapp = {A11 433}, Dspp = {A11 455}, Dapp = {A11 466},
Dspp = {A11Agp Ass}

After calculating the cardinality of Dypp, Dopp, D3pp, Dipp and Dspp we obtain

|D1PP| = 057 |D2PP’ = 067 ‘D3PP| = 097 ’D4PP| = 087 ’D5PP‘ =1
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€1
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(0.2,0.3,0.1) A gy Ay (0.2,0.1,0.5)

5

€3 (0.04,0.04, 0.10)
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A1 (0.2,0.4,0.2)
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(0.4,0.1,0.3)
(0.5,0.2,0.1)

Figure 8.6.1: PPFG £pp

Because D, pp has the smallest size among the other fixed vertex dominating set, we conclude that it
is the best option because it allows the ambulance to travel from the accident scene to the hospital A4y
with more free space, allowing it to transport patients to their desired location faster, saving our lives,
time, and money. Second, hospital A4, offers a tremendous medical services than some other hospitals.
As aresult, the government should invest more money on improving intercity routes and traffic control so

that ambulances can deliver patients to specialist hospitals swiftly.
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Figure 8.6.2: BY-PASS ROAD AMBULANCE AND HOSPITAL

8.7 Analytical Comparison

Our investigation will be fruitful in fully comprehending the additional properties of fixed vertex dom-
ination in PPFG. We applied the model to fixed vertex domination in PPFG (fig 8.6.1) and domina-
tion in picture fuzzy graph (PFG)(example 8.7.1) and obtained the following results. In figure 8.6.1,
Waep(Epp) = 0.5 and example 8.7.1, vp(Gp) = 0.6. Here vy, < yp. As a result of this explanation, the
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current model is useful for estimating the best hospital in approximate. However, our method is effective
in determining the best hospital in accurate. As a result, our proposed strategy outperforms the current

method.

Example 8.7.1 Let Gp be a PFG with Ay, = (0.2,0.4,0.2), Ass = (0.2,0.1,0.5), Az = (0.2,0.3,0.1),
Au = (0.1,05,02),A5s = (05,02,0.1), 46 = (0.4,0.1,0.3),e1p = (0.2,0.1,0.5),
eap = (0.2,0.1,0.5), e3p = (0.2,0.3,0.2), eap = (0.1,0.4,0.2), esp = (0.2,0.2,0.2), egp = (0.2,0.1,0.3)
and the PFDSs are D1p = {A11 A}, Dop = {A11433}, D3p = { A A3z} with yp(Gp) = 0.6.

In a range of domains, a fuzzy graph is a useful tool for replicating a variety of uncertain real-world
decision-making difficulties. A direct extension of fuzzy set and picture fuzzy set is the product picture
fuzzy set. We also go through some of the many forms of PPFG, such as strong PPFG and complete
PPFG. When compared to traditional fuzzy graph models, the PPFG can boost flexibility, efficiency,
precision, and comparability when modeling complicated real-world settings. One of the most commonly
discussed subjects in numerous sciences, artificial intelligence, and other fields is dominance in fuzzy
graphs. As a result, we describe numerous types of dominating sets in PPFGs in this study, such as
fixed vertex dominating set, fixed edge dominating set, total fixed edge dominating set, and fixed edge
restrained dominating set. We also establish the relationship between edge independent sets and edge
cover sets by presenting the attributes of each through numerous examples. Finally, we discussed how
dominance can be used in the transportation system. The concept of a PPFG can be used to database
systems, transportation networks, and image processing, among other things. The examination of new
concepts of product picture bridges, product picture cycles, and product picture competition graphs, as

well as their applications in medical sciences, will be the focus of future research.



Chapter 9

Twin Perfect Domination in Omicron Product

of Two Hesitancy Fuzzy Graphs

A wide range of logistical challenges can be modeled and solved using fuzzy graph algorithms. In general,
fuzzy graph theory has a wide range of applications in a variety of domains. An expert must model
these issues using a fuzzy network since ambiguous information is a prevalent real-life problem that is
frequently uncertain. The Omicron Product of two hesitancy fuzzy graphs is defined in this chapter. The
connection between an innovative notion of twin perfect domination in hesitancy fuzzy graph and the
Omicron Product of two hesitancy fuzzy graphs is provided. For numerous kinds of Omicron Product
of two hesitancy fuzzy graphs, the twin perfect domination number is determined. The twin perfect
domination number of a hesitancy fuzzy graph and the Omicron Product of two hesitancy fuzzy graphs

are also presented, as well as their features and bounds.

9.1 Duplicate Hesitancy Fuzzy Graph

Definition 9.1.1 A duplicate hesitancy fuzzy graph is denoted by ( = (v, ju) with set of vertices and edges.

Example 9.1.1 Let us observe HFG ( with 6 vertices then their duplicate of a hesitancy fuzzy graph ('
showing in the following figures 9.1.1 and 9.1.2.
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X11(0.2,0.5,0.3)

(0.1,0.4,0.2)
(0.7,0.1,0.2) Xs5 X22(0.3,0.1,0.6)

(0.6,0.2,0.1) (0.2,0.1,0.1)

(0.6,0.2,0.1)X44% (0.4,0.3,0.1) %33 (0.4,0.3,0.3)

Figure 9.1.1: ¢

X11(0.2,0.5,0.3)

(0.1,0.4,0.2)
(0.7,0.1,0.2) Xss X92(0.3,0.1,0.6)

(0.6,0.2,0.1) (0.2,0.1,0.1)

(0.6,0.2,0.1) X44®™ (0.4,0.3,0.1) X33 (0.4,0.3,0.3)

Figure 9.1.2: ('

9.2 Omicron Product of Two Hesitancy Fuzzy Graphs

Definition 9.2.1 The Omicron Product of two hesitancy fuzzy graphs (1 and (s is the hesitancy fuzzy
graph denoted by (; ® (o, is the hesitancy fuzzy graph obtained by taking one duplicate of ¢, and |v(()]
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duplicates of (» such that m™ vertex of the duplicate of (, is adjacent to each vertex of the m™ duplicate

of Ca-

Example 9.2.1 Consider the following figure 9.2.1, a HFG (; with 9 vertices and figure 9.2.2 , a HFG (5
with 3 vertices now we obtain the Omicron Product of these two HFGs (1 © (o showing in the following
figure 9.2.3

X33

X990

X8y X44

X66

Figure 9.2.1: (4

N b

A Y22 Y33

Figure 9.2.2: (5
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Figure 9.2.3: Omicron Product of hesitancy fuzzy graphs (; and ¢,

Vertex Value Vertex Value
11 0.2,0.5,0.3 Ty 0.5,0.3,0.2
To9 0.6,0.3,0.1 gy 0.1,0.4,0.5
33 0.3,0.4,0.3 Zg9 0.3,0.3,0.4
Ty 0.2,0.6,0.2 Y11 0.5,0.2,0.3
Ts5 0.4,0.2,0.4 Yoo 0.4,0.3,0.3
Te6 0.7,0.2,0.1 Y33 0.2,0.4,0.4

Table 9.2.1: Vertex values of Figure 9.2.1, Figure 9.2.2, Figure 9.2.3
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Edge Value Edge Value
T11, Lo 0.2,0.5,0.1 T4, Y22 0.1,0.3,0.2
To9, T33 0.3,0.4,0.1 T4, Y33 0.2,0.5,0.2
33, Taq 0.2,0.5,0.1 Ts55, Y11 0.4,0.2,0.3
T4, Tss 0.1,0.5,0.2 55, Y22 0.2,0.3,0.1
55, Tes 0.4,0.1,0.1 55, Y33 0.2,0.4,0.2
66, T77 0.5,0.3,0.1 66, Y11 0.5,0.2,0.1
T77, Tss 0.1,0.4,0.2 66, Y22 0.4,0.3,0.1
s, T99 0.1,0.4,0.4 66, Y33 0.2,0.4,0.1
11, Tog 0.2,0.5,0.1 77, Y11 0.4,0.3,0.1
211, Y11 0.1,0.4,0.2 77, Y22 0.3,0.2,0.2
11, Y22 0.2,0.3,0.2 77, Y33 0.2,0.4,0.2
11, Y33 0.2,0.4,0.1 88, Y11 0.1,0.4,0.3
22, Y11 0.4,0.3,0.1 288, Y22 0.1,0.3,0.3
22, Y22 0.4,0.2,0.1 88, Y33 0.1,0.4,0.4
99, Y33 0.2,0.4,0.1 99, Y11 0.3,0.3,0.3
33, Y11 0.3,0.2,0.3 99, Y22 0.2,0.3,0.1
33, Y22 0.3,0.3,0.1 299, Y33 0.2,0.4,0.3
33, Y33 0.2,0.4,0.1 Y11, Ya2 0.4,0.3,0.2
T4, Y11 0.2,0.4,0.2 Yo2, Y33 0.2,0.4,0.3

Table 9.2.2: Edge values of Figure 9.2.1, Figure 9.2.2, Figure 9.2.3

9.3 Twin Perfect Domination in Hesitancy Fuzzy Graph

Definition 9.3.1 A subset M of v(() is said to be a twin perfect dominating set if for every vertex x11 not

in M, x1; is adjacent to exactly two vertex of M.

Example 9.3.1 Consider the following figure 9.3.1 with four vertices say x11, o2, 33 and x4y in which

the set My = {11, w33} and My = {229, 44} are twin perfect dominating sets.
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(0.1,0.3.0.2) (0.1,0.2,0.3)

(0.3,0.2,0.5)){11 ng(O.LO.S,O.ﬁ)

(0.2,0.4,0.4)

(0.3,0.2,0.3) (0.1,0.3,0.3)

X1 (0.5,0.2,0.3)

Figure 9.3.1: Hesitancy Fuzzy Graph with Twin Perfect Dominating Sets

Definition 9.3.2 A twin perfect dominating set M of the hesitancy fuzzy graph ( is said to be minimal

twin perfect dominating set if each vertex 11 in M , M = {x11} is not a twin perfect dominating set.

Example 9.3.2 Consider a following figure 9.3.2, a HGF with 6 vertices say 11, o2, 33, T44, T55, T66-

The set My = {x11,x33} is a minimal twin perfect dominating set of v(C) and also a twin perfect domin-

ating set.

X11(0.4,0.2,0.4)

(0.4,0.2,0.1)

(0.4,0.3,0.2) (0.1,0.2,0.3)

(0.4,0.2,0.3)

(0.2,0.7,0.1)
0.1,04,0.1) ‘o
(0.5,0.3.0.2)

(0.2,0.4,0.1)

(0.2,0.3,0.5)

(0.1.0.6,0.1)

(0.1,0.5,0.1)

(0.6,0.1,0.3) . x5 (0.7,0.2,0.1)

Figure 9.3.2: Hesitancy Fuzzy Graph with Minimal Twin Perfect Dominating Set
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Definition 9.3.3 A twin perfect dominating set with smallest cardinality is called minimum twin perfect

dominating set.

Definition 9.3.4 A cardinality of minimum twin perfect dominating set is called twin perfect domination

number of ¢ and it is denoted by ;,4(C).

Example 9.3.3 In the following figure 9.3.3, a HFG with 4 vertices say x11, a2, T33, T44. We observe that

the twin perfect domination number of HFG, 71,q(C) = 2.

X11(0.2,0.4,0.4)

(0.2,0.4,0.2) (0.2,0.3,0.3)

(0.6,0.1,0.3)

Xqq e
(0.3,0.502)  (01,0502)  (0.3,020.:2) %2(0.5,0302)

Figure 9.3.3: Hesitancy Fuzzy Graph with Twin Perfect Domination Number

Let ( = (v, 1) be any HFG where v indicates set of vertices and x indicates set of edges. Through
out the result we are consider HFG ¢, with p number of vertices and p — 1 number of edges in which
we invented some new results regarding the twin perfect domination number of HFG ¢, and its Omicron

Product with the (,_;.

Theorem 9.3.1 Let ¢, be any hesitancy fuzzy graph with p number of vertices and p — 1 number of edges

the twin perfect domination number of hesitancy fuzzy graph ¢, is given by

wis

, where p = 3n,n € N

Vipd(Cp) = ’%1, where p=3n—1,née N
p+2

5=, wherep=3n—-2neN

\



9.3 Twin Perfect Domination in Hesitancy Fuzzy Graph 159

where N indicates set of natural numbers.

Proof

Here we are proving this theorem by using Principle of Mathematical Induction theory. First we are trying
to prove that the given result in the hypothesis is true for p = 1 . Now for p = 1 is suitable in the order of
3n — 2 so that we take n = 1.

Therefore vpq(¢1) = 1;:—2 = % = 1. Since the twin perfect domination number of isolated vertex is must
be 1 and hence it is true for p = 1.

Now we assume that above result is true for p = r, where r be any positive integer then we get

, where r = 3n,n € N

w3

Yipa(Cr) = =l wherer =3n—1neN

=2 wherer =3n—-2,neN
\

Next we trying to prove that above result given in the hypothesis is true for p = r + 1, where r be any

positive integer.

To prove
=L wherer+1=3n,neN
Vepd(Gri1) = %2, wherer+1=3n—1,ne N
\%, where r+! =3n -2, n € N
Case (i)

If r + 1 = 3n , this implies r + 1 is a multiple of 3. Here r be any positive integer.
Therefore r + 1 = « is must be a positive integer for some n € N follows o = 3n so according to above

result
r+1
3

a
= Ypa(Ca) = 3 but = r + 1, then v4pq((rp1) =

Case (ii)

Ifr+1=3n—1,this implies  + 1 is a multiple of 3 minus 1(one). Here r be any positive integer.
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Therefore » + 1 = [ is must be a positive integer for some n € N follows § = 3n — 1 so according to

above result

+1 r+2
P bt g = v 41, then ipa(Gn) =

= ’Ytpd(Cﬁ> =

Case (iii)

Ifr +1 = 3n — 2, this implies r + 1 is a multiple of 3 minus 2(two). Here r be any positive integer.

Therefore » + 1 = ¢ is must be a positive integer for some n € N follows § = 3n — 2 so according to

above result

§+2 3
+ but 0 =7+ 1, then %pd(frﬂ) = 7"—:;—

= Yipa(Cs) =

Hence the result.

Example 9.3.4 Consider the following HFG, showing in the figure 9.3.4, then 4 = 3n — 2, where

n = 2 € N then the theorem 9.3.1, the twin perfect domination number of HFG (4 is

p+2 442

6
’Ytpd(CZl) - 3 3 g = 2

X11(0.1,0.3,0.6)

[0.1,0.3,0.3) (0.1,0.4,0.4)

(0.4,0.3,0.3) 344 x22(0.2,0.4,0.4)

(0.1,0.2,0.1) (0.2,0.4,0.2)

%33 (0.6,0.2,0.2)

Figure 9.3.4: HFG with 4-vertices
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9.4 Bounds of Twin Perfect Domination Number of Hesitancy Fuzzy
Graphs

Theorem 9.4.1 Let (, be any hesitancy fuzzy graph with p-vertices and ~pq((,) indicates the twin perfect

domination number of hesitancy fuzzy graph ¢, then p — 3 < Va((,) < p — 1, wherep > 3 € N.

Proof.
Here we can try to prove the above result by contradictory way.
To prove p — 3 < Y1pa(¢y) < p— 1, where p € N. Now we partitioned an interval (p — 3,p — 1) in to two

parts.
(1) p— 3 < 7tpd<<p) and

(i) Ypa(Cp) <p—1

Now conversely we assume that p — 3 > 74,4(¢,) and v4,4(¢,) > p — 1. By the above theorem 9.3.1, we
divide the hypothesis into three cases as follows

Case (i)

If p = 3n, for some n € N then ;,4((,) =

wis

Now let p — 3 > v4,4(()

=p—-3>%

=3p—-9>p

=2p>9

=p> g is contradict with our assumption because if we take n = 1 follows p = 3 it gives 3 > % this is
conflict. So our assumption is wrong. Therefore p — 3 < Ypa((,).

Now let 7pa(Cp) > p — 1,

=Ef>p—1

=p>3p—3

= 3 > 2p, this is contradiction,

It is true for all p = 3n,n € N. Since n = 1 follows p = 3 this gives 3 > 6 is conflict, therefore our

assumption is wrong and hence 7;,4(¢,) < p — 1. So in this case (i) the result is true for all p € N.
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Case (ii)
p+1

If p=3n — 1, for some n € N then v;,4((,) = 3

Now let p — 3 > v4,a((p)
1
=>p—-3> Pt
3
=3p—-9>p+1
= 2p > 10 is contradict with our assumption because if we take n = 1 follows p = 2 it gives 4 > 10 this
is conflict. So our assumption is wrong. Therefore p — 3 < ¥4,4((,)-
Let vipa(Cp) > p — 1,
1
=>——>p-—1
3 p
=p+1>3p—-3
=4 > 2p.
It is true for all p = 3n — 1,n € N. Since n = 1 follows p = 2 this gives 4 > 4 is conflict, therefore our

assumption is wrong and hence 7;,4(¢,) < p — 1. So in this case (ii) the result is true for all p € V.

Case (iii)
p+2
If p=3n — 2, for some n € N then y4,4((,) = —
Now let p — 3 > v1a((p)
2
=>p—-3> Z%

=3p—-9>p+2
= 2p > 11 is contradict with our assumption because if we take n = 1 follows p = 1 it gives 2 > 11 this
is conflict. So our assumption is wrong. Therefore p — 3 < V4,4((p)-
Let vipa(Gp) > p — 1,
=>—>p—-1
3 p

=>p+2>3p—3
=5>2p
= 0 >

o P -
It is true for all p = 3n — 2,n € N. Since n = 2 follows p = 4 this gives 3 > 4 is conflict, therefore our

assumption is wrong and hence v;,4((,) < p — 1. So in this case (iii) the result is true for all p € N.

Theorem 9.4.2 Let (,_1 be any hesitancy fuzzy graph with p — 1 vertices and v,,4((,—1) indicates the
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twin perfect domination number of hesitancy fuzzy graph (,—1 then p — 4 < Ypa((p—1) < p — 2, where
p>4¢€N.

Proof. Here we can try to prove the above result by contradictory way.
To prove p — 4 < v1,4((p) < p — 2, where p € N. Now we partitioned an interval (p — 4, p — 2) in to two

parts.
(i) p—4 < Yipa(Cp-1) and
(i) Yipa(Gp-1) <p —2

Now, conversely we assume that p — 4 > v.,4((p—1) and va(¢p—1) > p — 2. By the above theorem 9.3.1,
we divide the hypothesis into three cases as follows
Case (i)
If p = 3n, for some n € N then vya((p-1) = §.
Now let p — 4 > via((p1)
=p—4>£
=3p—-12>p
= 2p > 12
= p > 6 1s contradict with our assumption because if we take n = 1 follows p = 3 it gives 6 > 12 this is
conflict. So our assumption is wrong. Therefore p — 4 < Y1a((p—1).
Let vpa(Gp-1) > p — 2,
=E>p—2
=p>3p—6
=6 > 2p.
It is true for all p = 3n,n € N. Since n = 1 follows p = 3 this gives 6 > 6 is conflict, therefore our
assumption is wrong and hence %pd(Cp—l) < p — 2. So in this case (i) the result is true for all p € N.
Case (ii)
p+1

If p=3n — 1, for some n € N then ypq((p—1) = 5

Now letp — 4 > thd(Cpfl)
p+1

=>p—4>—
b 3
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=3p—12>p+1
= 2p > 13 is contradict with our assumption because if we take n = 1 follows p = 2 it gives 4 > 13 this

is conflict. So our assumption is wrong. Therefore p — 4 < V;a((p—1)-

Let yipa(Cp-1) > p — 2,
1
= I% >p—2

=p+1>3p—-6

= 7> 2p.

It is true for all p = 3n — 1,n € N. Since n = 2 follows p = 5 this gives 7 > 10 is conflict, therefore our
assumption is wrong and hence 7;,4((,—1) < p — 2. So in this case (ii) the result is true for all p € N.

Case (iii)
2
If p=3n — 2, for some n € N then ypq((p—1) = Z%

Now let p — 4 > vipa(Cp-1)

=p—4> ]%2

=3p—-12>p+2

= 2p > 14 is contradict with our assumption because if we take n = 1 follows p = 1 it gives 2 > 14 this

is conflict. So our assumption is wrong. Therefore p — 4 < Yipa(Cp—1)-

Let Vipa(Gp-1) > p — 2,
p+2

= 3 >p—2

=>p+2>3p—6

=8> 2p

=4 >p.

It is true for all p = 3n — 2,n € N. Since n = 2 follows p = 4 this gives 4 > 4 is conflict, therefore our

assumption is wrong and hence 7;,4((,—1) < p — 2. So in this case (iii) the result is true for all p € N.
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9.5 Bounds of Twin Perfect Domination Number of Omicron Products
of Two Hesitancy Fuzzy Graphs ¢, and (,_;.

Lemma 9.5.1 The twin perfect domination number of Omicron Product of two hesitancy fuzzy graphs C,

and (, 1 is given by Vipa (¢, © (p_1) and it is bounded by 0 < 71,4 (¢, ® (1) < p?, where p > 3.

Proof. Here we want to prove that 0 < 7,4 ({, ® (1) < p*, where p > 3.

That can be written as

0 < Yipa (Gp © Gp—1) and 9.1)
Vepd (Cp © Gp1) < P’ 9.2)

Since twin perfect domination number is always greater than zero.

So the above inequality (9.1) is obvious. For the further proof of result (9.2) observe the following figure
9.5.1.

Let us consider HFG ¢, with p vertices say wi,ws,ws, . ..,w,—1,w, and another HFG (,_; with p — 1
vertices namely vy, v, Us, . . ., Up_1, Up. Now take a omicron product of them, we get at most p? vertices.
Since each vertex of HFG (, is adjacent with every vertex of HFG (,_;. So as per the definition of
minimum twin perfect dominating set it contains at least two vertices and most p? vertices.

In figure 9.5.1, the twin perfect domination number of omicron product of HFGs ¢, and (,,_; is almost p?

and always greater than zero that is 0 < via ({, ® (,—1) < p?, where p > 3. Hence the result.
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Figure 9.5.1: Omicron Product of , ©® (,—1

Vertex Value
w1 0.6,0.3,0.1
Wy 0.4,0.3,0.3
ws 0.7,0.2,0.1
Wy 0.2,0.6,0.2

Whn—1 0.2,0.5,0.3
Wn 0.4,0.4,0.2
U1 0.3,0.2,0.5
Vg 0.4,0.3,0.3
Us 0.1,0.5,0.4

Table 9.5.1: Vertex values of Figure 9.5.1
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Edge Value Edge Value
W1, Wa 0.4,0.3,0.1 W3, Vg 0.4,0.3,0.1
Wa, W3 0.4,0.3,0.1 W3, Up—1 0.1,0.5,0.1
w3, Wy 0.2,0.6,0.1 Wy, U1 0.2,0.6,0.1
Wy, Wp—1 0.1,0.6,0.2 Wy, Vo 0.2,0.4,0.1
Wn_1,Wn 0.2,0.5,0.2 Wq, Up_1 0.1,0.5,0.2
Wy W1 0.4,0.4,0.1 Wh—1,V1 0.2,0.5,0.2
w1, V1 0.3,0.3,0.1 Wn—1, U2 0.2,0.4,0.1
W1, Uy 0.4,0.3,0.1 Wn—1, Un—1 0.1,0.5,0.3
W1, Up—1 0.1,0.5,0.1 Why U1 0.3,0.4,0.2
Wa, V1 0.3,0.3,0.3 W, U2 0.4,0.3,0.2
Wa, Vo 0.4,0.3,0.2 Whyy Up—1 0.1,0.2,0.2
W, Up—1 0.1,0.5,0.3 V1, Vo 0.3,0.3,0.3
w3, Uy 0.3,0.2,0.1 Vg, Up—1 0.1,0.5,0.3

Table 9.5.2: Edge values of Figure 9.5.1

9.6 The Twin Perfect Domination Number of Omicron Products of

Two Hesitancy Fuzzy Graphs (, and (,_;

Theorem 9.6.1 Let (,, hesitancy fuzzy graph with p vertices and (, 1, hesitancy fuzzy graph with p — 1
Vertices Where p Z 3 € N then 'thd (Cp @ Cp—l) Z 'thd(gp) + ’Ytpd(Cp—l) + pfO’" some p Z 3

Proof. The given hypothesis is proving by using contradictory method as follows. Now by theorem 9.4.1,

theorem 9.4.2, and lemma 9.5.1 , we have
(i) p—3<vpa(¢y) <p—1,wherep >3 €N
(i) p—4< %pd(Cp_1) <p—2,wherep>4€ N

(iii) 0 < y1pa(p © Cp-1) < p*, where p > 3
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Now construct (i) + (ii), we get

p—T7< 'Ytpd(Cp) +’Ytpd(gp71) <p—1l+p-2
= 2p — T+ D < Yipa(Gp) + Vipa(Gpo1) +p<p—14+p—2+p

= 3p — 7 < Yipa(Cp) + Vepa(Gp—1) < 3p —3 where 3p > 8 € N (9.3)

Conversely, assume that

%pd(Cp © Cp—l) < 7tpd(§p) + %pd(Cp—l) +p

This can be rewritten as

0 < pa(Cp © Cp—1) < Y1pa(Cp) + Yipa(Cp—1) + P

= 0 < Yipa(Gp @ 1) < P° < YipalGp) + Vepa(Gp1) +p < 3p—3
=pP<3p-3

= p2 —3p < -3

=plp—3)< -3

= Eitherp < —3andp—3 < -3

= p < —3 and p < 0, is conflict with values of p,p > 3

Therefore our assumption is wrong and hence proved the theorem.

That is Vipa (Cp © Gp—1) = Yipa(Cp) + Vipa(Cp-1) + p for some p > 3,p € N.

Example 9.6.1 Let (, HFG having 4 vertices with 7,q4(C4) = 2 and (3 HFG having 3 vertices with

Yipa(C3) = 2. In figure 9.6.1, the twin perfect domination number of Omicron Product of two HFGs (4

and (3 is Yipa(Cs © (3) = 8.
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Here

P =4, %pa(Ca) = 2, Ypa(C3) = 2 and vypa (s © (3) = 8
=8>2+2+14

=8=38

Therefore Vipq ($p © Go—1) > Vipa(Cp) + Vipa(Cp—1) + p. Hence the result.

99

N33 111
1122

199

19 N33

112

Figure 9.6.1: ({4 ® (3) with Twin Perfect Domination Number
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Vertex Value
miy 0.2,0.4,0.4
Mo 0.1,0.3,0.6
mss3 0.4,0.5,0.1
Myy 0.3,0.5,0.2
nii 0.1,0.4,0.5
Nog 0.3,0.6,0.1
N33 0.5,0.3,0.2

Table 9.6.1: vertex values of Figure 9.6.1

Edge Value Edge Value
mi1, Moo 0.1,0.4,0.4 Moo, N33 0.1,0.3,0.2
Moo, M33 0.1,0.5,0.1 mss, N1 0.1,0.5,0.1
Ma33, Mg 0.3,0.5,0.1 M33, Noo 0.2,0.4,0.1
Myq, M1 0.2,0.4,0.1 Ma33, N33 0.3,0.4,0.1
mi1, N11 0.1,0.4,0.4 Myga, N11 0.1,0.5,0.2
M1, Moo 0.2,0.6,0.1 Maq, Moo 0.3,0.4,0.1
my1, N33 0.2,0.4,0.2 Mya, N33 0.2,0.4,0.2
Moo, N1 0.1,0.4,0.3 11, N2 0.1,0.6,0.1
Mag, Nao 0.1,0.6,0.1 N33, N11 0.2,0.4,0.1

Table 9.6.2: Edge values of Figure 9.6.1

Example 9.6.2 Let (5 HFG having 5 vertices with vi,q((5) = 2 and (4 HFG having 4 vertices with
Yipa(Cs) = 2. In figure 9.6.2, the twin perfect domination number of Omicron Product of two HFGs (5

and Cy s Yipa(Cs © (1) = 15.
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Here

P =5 Ypa((5) = 2, Yipa(Ga) = 2 and 74,4((4OC3) = 15
=15>2+2+5

=15>9

Therefore V1,4 ((p © Go—1) > Yipa(Cp) + Yipa(Cp—1) + p. Hence the result.

Figure 9.6.2: ({5 ® (4) with Twin Perfect Domination Number
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Vertex Value
11 0.2,0.6,0.4
T2 0.7,0.2,0.1
33 0.6,0.3,0.1
T4 0.3,0.4,0.3
T55 0.4,0.3,0.4
Y11 0.2,0.5,0.3
Y22 0.5,0.3,0.2
Y33 0.4,0.3,0.3
Yaa 0.3,0.2,0.5

Table 9.6.3: Vertex values of Figure 9.6.2

Edge Value Edge Value
T11, Lo 0.2,0.6,0.1 33, Yoo 0.5,0.3,0.1
To9, T33 0.3,0.3,0.1 33, Y33 0.4,0.3,0.1
T33, Taa 0.3,0.4,0.1 33, Yaa 0.3,0.3,0.1
T44, Tss 0.2,0.4,0.1 T4, Y11 0.2,0.5,0.1
Tss5, T11 0.2,0.5,0.1 T4, Yoo 0.3,0.4,0.2
T11, Y11 0.2,0.3,0.2 T4, Y33 0.3,0.4,0.1
T11, Yoo 0.1,0.4,0.2 T4, Yaq 0.3,0.4,0.2
T11, Y33 0.2,0.5,0.1 55, Y11 0.2,0.4,0.2
T11, Yaa 0.2,0.4,0.2 55, Y22 0.4,0.3,0.2
a2, Y11 0.2,0.5,0.1 55, Y33 0.4,0.2,0.1
T2, Y22 0.5,0.3,0.1 55, Yaa 0.3,0.3,0.2
T99, Y33 0.4,0.3,0.1 Y11, Y22 0.2,0.5,0.2
99, Yaa 0.3,0.2,0.1 Yoo, Y33 0.4,0.3,0.2
33, Y11 0.2,0.5,0.1 Y33, Yasa 0.3,0.3,0.3

Table 9.6.4: Edge values of Figure 9.6.2

Theorem 9.6.2 Let (; and (5 are two hesitancy fuzzy graph. Let My, and Mo be the twin perfect dom-

inating sets of (; and (y respectively. Then the twin perfect domination number of Vipa(Gi © (o) >
| M| 4 | Masl.
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Proof. Let (; and (, are two HFG. Assume M;; and My, be the twin perfect dominating sets of (; and
(o respectively. If every vertex z1; € (; ® (5 this implies x1; € (; or x1; € (s, therefore there is a
vertices Too, T3z € My Or Tog, £33 € Moo such that zq; is adjacent to exactly two vertices in M1 or Mos.
Since M7, and My, be the twin perfect dominating sets of (; and (, respectively. Then the twin perfect

domination number of Y,4((1 © () > [ Mi1| + | Mas|.

Example 9.6.3 Let (4 HFG having 4 vertices with twin perfect dominating sets of M1 = (mq1, mag, m33)
and (3 HFG having 3 vertices with Mys = (111, ng3). In figure 9.6.1, the twin perfect domination number
of Omicron Product of two HFGs (4 and (s is Ypa(Cs © (3) = 8.

Here

| M| = 3, [ Mas] = 2 and y1pq(( © (3) = 8
=8>3+2

=8>5H

Therefore V1,4 (1 © (2) > |Mi1] + | Ma2|. Hence the result.

Theorem 9.6.3 Let (; and (s are two hesitancy fuzzy graph. If |v((1)| = |v((s)
Yepa(C1 © o).

» then [u(Gr)| +[v(G)| <

Proof. Let (; and (, are two HFG. Let |v((;)| and |v((2)| be the cardinality in vertices of (; and (,

respectively. In (; ® (, every vertex in (; is adjacent to every vertices in (o. If |v((1)| = |v((2)], then the

minimal twin perfect domination number of ¢; ® (s is |v(G1)| + |v(C2)] < Yipa (G © Ca).

Example 9.6.4 Let (; HFG having 4 vertices and (; HFG having 4 vertices. In figure 9.6.3, the twin
perfect domination number of Omicron Product of two HFGs ¢y and (s is Yipa(G1 © (2) = 12.

Here

[0(C1)] =4, [v(G)] = 4 and Yipa(C1 © G2) = 12
=44+4<12

=8< 12
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Therefore ¢; ® (o is [v(G1)| + [v((2)] < Ypa(Ct © (o). Hence the result.

Figure 9.6.3: ((; ® () with Twin Perfect Domination Number

Vertex Value
11 0.2,0.5,0.3
o9 0.6,0.3,0.1
T33 0.3,0.4,0.3
T4 0.2,0.6,0.2
Ts5 0.4,0.2,0.4
Te6 0.7,0.2,0.1
Y11 0.5,0.2,0.3
Y22 0.4,0.3,0.3
Y33 0.2,0.4,0.4

Table 9.6.5: Vertex values of Figure 9.6.3
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Edge Value Edge Value
11, To9 0.2,0.5,0.1 33, Yoo 0.3,0.3,0.1
22, T33 0.3,0.4,0.1 33, Y33 0.2,0.4,0.1
33, Taq 0.2,0.5,0.1 T4, Y11 0.2,0.4,0.2
T4, Tss 0.1,0.5,0.2 T44, Yoo 0.1,0.3,0.2
T55, Te6 0.4,0.1,0.1 T4, Y33 0.2,0.5,0.2
66, T11 0.2,0.3,0.1 T55, Y11 0.4,0.2,0.3
11, Y11 0.1,0.4,0.2 T55, Y2 0.2,0.3,0.1
11, Y22 0.2,0.3,0.2 T55, Y33 0.2,0.4,0.2
11, Y33 0.2,0.4,0.1 66, Y11 0.5,0.2,0.1
T2, Y11 0.4,0.3,0.1 66, Y22 0.4,0.3,0.1
22, Y22 0.4,0.2,0.1 66, Y33 0.2,0.4,0.1
22, Y33 0.2,0.4,0.1 Y11, Y22 0.4,0.3,0.2
33, Y11 0.3,0.2,0.3 Y22, Y33 0.2,0.4,0.3

Table 9.6.6: Edge values of Figure 9.6.3

Example 9.6.5 Let (; HFG having 3 vertices and (5 HFG having 3 vertices. In figure 9.6.4, the twin

perfect domination number of Omicron Product of two HFGs (; and (s is Yipa(G1 © (2) = 6.

Here

[v(C)] = 3, [v(G)] = 3 and yipa(Ct © () = 6

=34+3=6

Therefore |v((1)| + |v((2)| = Ypa(C1©C2). Hence the result.
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Figure 9.6.4: ((; ® () with Twin Perfect Domination Number

Vertex Value
T 0.6,0.3,0.1
T2 0.5,0.3,0.2
T33 0.4,0.3,0.3
Y11 0.2,0.6,0.2
Y22 0.7,0.2,0.1
Y33 0.6,0.3,0.1

Table 9.6.7: Vertex values of Figure 9.6.4
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Edge Value Edge Value
211, Too 0.2,0.3,0.1 222, Y22 0.4,0.2,0.1
T92, T33 0.4,0.3,0.2 22, Y33 0.3,0.3,0.1
33, T11 0.4,0.3,0.1 T33, Y11 0.4,0.3,0.1
T11, Y11 0.2,0.4,0.1 33, Yoo 0.3,0.3,0.1
211, Yoo 0.6,0.2,0.1 33, Y33 0.4,0.3,0.1
11, Y33 0.5,0.2,0.1 Y11, Y22 0.2,0.6,0.1
22, Y11 0.2,0.5,0.2 Yo2, Y33 0.4,0.3,0.1

Table 9.6.8: Edge Values of Figure 9.6.4

The Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE) is an independent group
of experts that periodically monitors and evaluates the evolution of SARS-CoV-2 and assesses if specific
mutations and combinations of mutations alter the behavior of the virus. The TAG-VE was convened on
26 November 2021 to assess the SARS-CoV-2 variant B.1.1.529. The B.1.1.529 variant was first reported
to WHO from South Africa on 24 November 2021 and has been named Omicron.
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Figure 9.6.5: Omicron Virus

In this chapter the Omicron Product of two hesitancy fuzzy graphs is defined. In hesitancy fuzzy
graphs, the concept of domination has a lot of theoretical and practical implications. The concept of twin
perfect domination number in hesitancy fuzzy graphs and the Omicron Product of two hesitancy fuzzy
graphs are introduced in this chapter. The bounds of the twin perfect domination number of the Omicron
Product of two hesitancy fuzzy graphs are determined. In a hesitancy fuzzy graph, those vertices that are
in the minimum twin perfect dominant set operate as a special node, server, or controller. The Omicron
Product of two hesitancy fuzzy graphs creates a complex network, and their twin perfect dominating set
represents the number of vertices that operate as a server. As a result, we can quickly identify our best

server within the complex network.



Chapter 10

Distinct Categories of Edge Sequence in

Regular and Pseudo Regular Fuzzy Graphs

The concept of applications of fuzzy graphs with connectedness is crucial. This chapter divides the edge
sequence of a fuzzy graph into separate types based on the strength of an edge. The concept of edge
sequences in regular fuzzy graphs and pseudo regular fuzzy graphs are explained by theorems and ex-
amples. These ideas are inspired by the concept of fuzzy graph connectedness. In addition, a comparison
of regular fuzzy graphs and total regular fuzzy graphs is made about distinct categories of edge sequences
in fuzzy graphs. In terms of edge sequence, a required condition for a graph to be regular fuzzy graph
and total regular fuzzy graph are explained, and the concepts of pseudo regular fuzzy graphs, total pseudo
regular fuzzy graphs, and distinct categories of edge sequence are examined. Also we identify strong edge
sequence in regular fuzzy graphs and pseudo regular fuzzy graphs. In addition, with distinct categories of
edge sequences, an analogy is conducted between pesudo regular fuzzy graphs and total pseudo regular

fuzzy graphs.

10.1 Edge Sequence in Regular Fuzzy Graphs

The new concepts of a- edge sequence, - edge sequence and d- edge sequence in regular fuzzy graphs

are defined in this section, along with related theorems.
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Definition 10.1.1 Let Gy : (0g, ur) be a regular fuzzy graph (RFG) with o3, = {v11, Va2, . . ., Ugq} in any

form. Then a finite sequence aps(Gr) = (n11,Naz, . . ., Nyq) is named the a-edge sequence (ES) of G if

r, where r is number of o — strong edges incident on vy,
ng =

0, otherwise

Example 10.1.1 Consider Gy : (og, pir) where

O'R(mn) = 04, O'R(mQQ) == 05, O'R(TTL33) == 05, O'R(m44) =04

pr(mar, mea) = 0.4, pr(maz, mas) = 0.3, ur(mar, mss) = 0.3 and p1r(mss, may) = 0.4

(a — SE)
(0.4) myy 04 mys (0.5)
0.3 0.3
(0.5) mas 0.1 e (0.4)
(a — SE)

Figure 10.1.1: RFG with a-edge sequence

OzEs(GR) = (]_, 1, 1, 1)

Here (mj1,moz) and (mss, myy) are a- strong edges. Then every vertex having one «-ES. Therefore

OzEs(GR) = (]_, 1, 1, 1)

Definition 10.1.2 Let G : (0r, pr) be a regular fuzzy graph with oy, = {v11, Vaa, . .., Ve } in any form.
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Then a finite sequence Ssg(GRr) = (n11, N2z, . . ., Nyq) is labeled the [(-edge sequence of G if

r, where r is number of 5 — strong edges incident on vy,
ne =

0, otherwise

Example 10.1.2 Consider G : (or, jtr) where

O'R(mll) = 03, O'R(ng) = 02, O'R(mgg) = 03, O'R(m44) = 02

pr(mar, maz) = 0.2, ur(maz, mas) = 0.2, up(mar, maz) = 0.2 and pup(mss, maa) = 0.2

(0.3)111“ 0.2 Moo (02)

(B —SE) 0.2

(0.3)ms33 0.2

2 44 (0.2)
(8 —SE)

Figure 10.1.2: RFG with 3-edge sequence

BES(GR) = (27 2,2, 2)

Here (m11, mas), (Mag, May), (M11, ms3) and (mss, myq) are S- SEs. Then every vertex having two [3-ES.

Therefore Gps(GRr) = (2,2,2,2).

Definition 10.1.3 Let G : (or, ur) be a regular fuzzy graph with o3, = {v11, Vaa, . .., Ve } in any form.

Then a finite sequence dsp(Gr) = (11, N2g, - . ., Nyq) IS termed the §-edge sequence of G g if

r, where r is number of § — edges incident on vy
ng =

0, otherwise
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Example 10.1.3 Consider Gy : (og, i) where

or(mi1) = 0.5,0r(ma2) = 0.4, 0r(m33) = 0.4, 05(Mmy4q) = 0.6
pr(mar, maz) = 0.4, pp(mag, mas) = 0.2, pr(mar, ma3) = 0.2, pur(mss, mas) = 0.4,

pr(mar, mas) = 0.1 and pir(mag, maz) = 0.1

(5 — Edge) 0.1 0.1 (4 —Edge)

0.4
33 0.4) Mas (0.6)

Figure 10.1.3: RFG with §-edge sequence

dps(Gr) = (1,1,1,1)

Here (my1, m44) and (mag, mss3) are -edges. Then every vertex having one 6-ES. Therefore dgs(GRr) =

(1,1,1,1).

Definition 10.1.4 Let G : (or, jir) be a regular fuzzy graph with o, = {vi1, Va2, . . ., Vgq} in any form.

Then a finite sequence Sps(Gr) = (11, N2, . . ., Nyq) is labeled the strong edge sequence (SES) of G, if

r, where r is number of a-strong edges and [ — strong edges incident on vy,
N —

0, otherwise
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Example 10.1.4 Consider Gy : (og, jir) where

UR(mH) = 02, UR<m22) = 02, O'R(mgg) = 04, O’R(m44) = 06, O'R(m55) =04
pr(mar, mea) = 0.1, pr(mar, msg) = 0.1, pr(mar, mas) = 0.1, ur(may, mss) = 0.1,

(i (Mo, mas) = 0.3 and jug(mag, mss) = 0.3

myq (0.2)

Figure 10.1.4: RFG with Strong Edge Sequence

&ES(GR> = (07 17 17 17 1>7BES(GR) - (47 17 17 17 1)7 SES(GR) = (47 27 27 27 2)

Here (mgz, m33), (m44, m55) are «o-SEs. (m11, mQQ), (mn, mgg), (mn, m44), (mn, m55) are 5-SES and

therefore

Oégs(GR) = (O, 1, 1, 1, 1)
BES(GR) - (4a 17 17 17 1)
Ses(Gr) = (4,2,2,2,2)

Remark 10.1.1 Let Gr : (or, ur) be a RFG with all types of edge sequence
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Example 10.1.5 Consider G : (og, i) where

0'R<m11) = 05, O'R(mgg) = 05, O'R(m33> = O.5,0’R<m44) = 05
pr(mar, maz) = 0.5, pr(mag, mas) = 0.3, pr(ma1, ma3) = 0.3, pr(mss, mas) = 0.5,

pr(mar, mas) = 0.1 and pir(mag, maz) = 0.1

Figure 10.1.5: RFG with all types of Edge Sequences

QES(GR) = (17 L, 17 1)>BES(GR) = (17 17 17 1)7 5ES(GR) = (17 L, 17 1)7 SES(GR) = (27 27 2, 2)

Here (mq1, mag), (Mmss, may) are a-SEs. (mag, myq), (M11, m33) are B-SEs and (mq1, mayq), (Ma2, m33)
are d-edges. Then each vertex having one «-ES, one $-ES and one 4-ES.

Thatis aps(Ggr) = (1,1,1,1), Bes(Gr) = (1,1,1,1) and 0ps(GRr) = (1,1,1,1).

Therefore Sps(Gr) = (2,2,2,2).

Definition 10.1.5 A zero sequence is a real sequence having only ‘0'. It is represented by (0).

Theorem 10.1.1 A fuzzy graph G whose crisp graph is an odd cycle is regular if and only if 1 is a constant
function. [NRI10]
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Theorem 10.1.2 A fuzzy graph G whose crisp graph is an even cycle is regular if and only if 1 is a

constant function or alternative edges will have same values. [NR10]

Theorem 10.1.3 Let Gy : (og, tr) be a regular fuzzy graph such that crisp graph G5, is an odd cycle.
Then G is a regular fuzzy graph iff ags(Gr) = (0) and 0ps(GRr) = (0).

Proof. Suppose that aps(Gr) = (0) and dgs(Gr) = (0). This means G'r contains only Sgs(Gr). Then
by 10.1.2 definition, we have pig(m11, mMa2) = CON NG~ (m1y,ma0) (M11, Ma2). Thus all the edges in G
will have the equal membership value (MV). Then by the 10.1.1 theorem, we get G as a RFG.
Contrarily, suppose that G be a RFG. Then by the 10.1.1 theorem, the membership value is a constant
function. Thus the removals of any edge in Gg will not change the strength of connectedness of any
mq, — Mmyq path in Gg.

That is, pr(mii, maz) = CON NG, —(my1,mas) (M1, M22)V (M1, Mma2) € GR.

That is G contains only Sgs(GRr).

Thus ags(Gr) = (0) and 0gs(Gr) = (0).

Example 10.1.6

(A—=SE)0.1 0.1(8 — SE)

maz(0.3)

Figure 10.1.6: RFG without ags(GR) and dgs(GRr)

In the above example G is a RFG with 3-SEs.

Here (mq1,ma2), (Mag, Muy), (M33,myy) and msz, myy are S-SEs. Then each vertex having two [3-ESs.
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Therefore aps(Gr) = (0,0,0,0) and dps(Gr) = (0,0,0,0).

Remark 10.1.2 The above result does not hold for a totally regular fuzzy graph (TRFG).

Example 10.1.7 Consider Grg : (orr, lirr) where

O'TR(mH) = 06, O'TR(mQQ) = 07, O'TR(m33) =0.7

prr(mir, mae) = 0.6, pprr(mar, mss) = 0.6 and pirr(Mmas, ms3) = 0.5

mi1(0.6)

(v — SE)

(0.7)mag

0.5 (5 — SE)

Figure 10.1.7: TRFG without ags(Gg) and dgs(GR)

Here Grr is a TRFG. But it has aps(Grr) and dps(Grg).

Theorem 10.1.4 A regular fuzzy graph G : (og, pir) whose even cycle is the crisp graph G, contains

CtEs(GR) and BES(GR) Also 5ES<GR) = (O)

Proof. Assume dp5(GR) is a zero sequence. That is 0gs(Gr) = (0). Then by the 10.1.1 and 10.1.2
definitions, we have pg(mi1,ma2) > CONNG,—(m1y mas) (M1, Ma2) Wgich implies that MV up has
either stable or alternative edges will have equal values. Then by the 10.1.2 theorem, we get G'i as an

RFG.



10.1 Edge Sequence in Regular Fuzzy Graphs 187

Contrarily, Let Gr be an RFG. Then by the 10.1.2 theorem, the MV pupg is either stable or alternative
edges will have equal values.
That is, pr(mi1, maz) > CONNG,—(myy mas) (M1, Ma2).

This implies dpg(GRr) is a zero edge sequence. That is dgs(Gr) = (0).
Example 10.1.8 Consider Gy : (og, i) where

or(mii) = 0.2,0p(ma) = 0.6,0r(mss) = 0.3,0r(M44) = 0.5

pr(mar, mag) = 0.2, prp(mag, mas) = 0.3, pr(ma1, mss) = 0.3 and pir(mss, mas) = 0.2

M4
(0.5)

ma3 (0.3)

Figure 10.1.8: RFG without 655 (GRr)

Here (mq1,maa), (Mm33, may) are S-SEs and (mag, myg), (m11,m33) are a-SEs. Then each vertex having
one «-ES and one 5-ES.
That is OéEs(GR) = (1, 1, 1, 1)7ﬁE5<GR) = (1, 1, 1, 1) and 5ES(GR) = (0, 0, 0, 0)

Remark 10.1.3 The above result need not be true for a totally regular fuzzy graph.
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Example 10.1.9 Consider Grg : (0rr, irr) Where

O'TR(mH) = 04, UTR(mQQ) = 04, O'TR(mgg) = 06, O’TR(m44) =04
MTR(mll,mm) = 0.3, ,UTR(m22>m44) = 0-3,NTR(m11, mss) = 0.2,

,uTR(mH, m44) = 0.1 and ,UTR(mgg, m44) =0.2.

ms3 (0.6)

Figure 10.1.9: TRFG with 0gs(GR)
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Here GTR is a TRFG but it has 5ES(GTR)-

Theorem 10.1.5 A regular fuzzy graph G : (og, jir) with its crisp graph G, as even cycle is both
regular fuzzy graph and totally regular fuzzy graph then dps(Gr) = (0).

Proof. Let Gy : (0g, ur) be an RFG. Then its crisp graph G, is an even cycle and G i be both RFG and
TRFG. Here are two cases that arise.

Case (i)

Let G be both RFG and TRFG with stable values in o and i then by 10.1.2 definition, this means G

contains only Srs(Gr).

Example 10.1.10 Ler Gy is an RFG and TRFG without 6ps(GR). That is G g having 3-SEs. Therefore
dps(Gr) = (0,0,0,0).

(B —SE)0.1

Figure 10.1.10: RFG and TRFG without dz5(GR)

Case (ii)
Let Gr be both RFG and TRFG with stable values in o g and with equal alternative values in g then by
10.1.1 and 10.1.2 definitions, G i contains only agps(Gr) and Sgs(GR). This means dgs(Gr) = (0).

Example 10.1.11 Ler G is an RFG and TRFG without 0ps(GRr). That is G having «-SEs and [3-SEzs.
Therefore 0ps(Gr) = (0,0,0,0).
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(a —SE)0.4 0.3 (3 — SE)

Figure 10.1.11: RFG and TRFG without 6 gs(GR)

10.2 Edge Sequence in Pseudo Regular Fuzzy Graphs

In this section, the new idea of edge sequence in a pseudo regular fuzzy graph (PRFG) is defined and

discussed notation of a-edge sequence, S-edge sequence, and J-edge sequence.

Definition 10.2.1 Let Gpg : (0pg, itpr) be a pseudo regular fuzzy graph with opp = {v11, V92, ..., o4}

in any form. Then a finite sequence aps(Gpr) = (ni1,nog, ..., ny) is named the c-edge sequence of

Gpr if

r, where r is number of o — strong edges incident on v;
n; =

0, otherwise

Example 10.2.1 Consider Gpg : (0pg, ptpr) where

apR(mll) = 02, JPR(WLQQ) = 037 UPR(mgg) = 02, apR(m44) =0.3

ppr(mir, maz) = 0.1, ppr(Mmaz, mag) = 0.2, upr(mir, mas) = 0.2 and ppr(mss, maq) = 0.1

aES(GPR) = (1, L1, 1)
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my4(0.3)

Figure 10.2.1: PRFG with a-Edge Sequence

Here (m11, m44) and (mao, ms3) are a- SEs. Then every vertex having one o-ES. Therefore aps(Gpr) =

(1,1,1,1).

Definition 10.2.2 Let Gpg : (0pg, tpr) be a pseudo regular fuzzy graph with oy = {v11, V2, ..., vy}
in any form. Then a finite sequence Bsp(Gpr) = (n11,noa, ..., ny) is labeled the (-edge sequence of

Gprif

r, where r is number of § — strong edges incident on v;
n;, =

0, otherwise

Example 10.2.2 Consider Gpr : (0pg, ltpr) Where

O’pR(mH) = 03, O'PR(mgg) = 04, UPR(mgg) = 03, O’pR(m44) =04

ppr(mir, mea) = 0.2, pipr(Mmaz, mas) = 0.2, upr(mir, mas) = 0.2 and pipr(mss, mag) = 0.2

Brs(Grr) = (2,2,2,2)
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m33(0.3)

(B—SE) 0.2 0.2 (8 —SE)

my4(0.4)

Figure 10.2.2: PRFG with S-Edge Sequence

Here (m11, maa), (Mag, m33), (Ma3, mas) and (mq7, myy) are 5- SEs. Then every vertex having two 3-ESs.

Therefore fps(Gpr) = (2,2,2,2).

Definition 10.2.3 Let Gpg : (0pg, ipr) be a pseudo regular fuzzy graph with oy = {v11, Va2, ..., o4}
in any form. Then a finite sequence 6ps(Gpr) = (11, N2, . . ., Ny ) is termed the 6-edge sequence of Gpr
if

r, where r is number of 6 — edges incident on v;
n; =

0, otherwise

Example 10.2.3 Consider Gpr : (0pr, ptpr) where

O'pR(mH) = 04, UPR(mgz) = 03, UPR<m33) = 03, O'pR(m44) =0.5
MPR(mn,sz) = 0-3,MPR(m22,m44) = O-Q:NPR<m11am33) = 0-27MPR(m337 m44) = 0.3,

pupr(mii, mag) = 0.1 and ppr(mag, msz) = 0.1

5ES(GPR) = (17 17 17 1)



10.2 Edge Sequence in Pseudo Regular Fuzzy Graphs 193

a2 (0.3)

0.2 (B — SE)

myq(0.5)

m33((0).8)

0.1 (6 — Edge)

Figure 10.2.3: PRFG with 4-ES

Here (mq1, m4y) and (mag, ms3) are 6-edges. Then each vertex having one 0-ES. Therefore dps(Gpr) =

(1,1,1,1).

Definition 10.2.4 Let Gpg : (0pg, tpr) be a pseudo regular fuzzy graph with oy = {v11,ve2, ..., 4}
in any form. Then a finite sequence Sgs(Gpr) = (n11,N22, . .., ny) is labeled the strong edge sequence
of Gpr if

r, where r is number of o — strong edges and [ — strong edges incident on v;
n;, =

0, otherwise

Example 10.2.4 Consider Gpr : (0pg, ltpr) where

O'pR(mH) = O.5,O’pR(m22) = 04, O'pR(m33) = 05, O'pR(m44) = 03, apR(m55) =0.6
ppr(mir, mag) = 0.1, upr(mi1, ma3) = 0.1, upr(mar, mas) = 0.1, ppr(mi1, mss) = 0.1,

ppr(mas, ms3) = 0.3 and ppr(mag, mss) = 0.3
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(0.5) mgas m1((.3)

(B — SE)

(o = SE) 0.1 (8- SE)

0.3

(o — SE)
0.3

(0.4) mgy 0.1 my 0.1(5 — SE) © 55 (0.6)

(B—SE) (0.5

Figure 10.2.4: PRFG with Strong Edge Sequence

aES(GR) = (07 17 17 17 1)7BES(GR) = (4a 17 17 17 1)a SES(GR) = (4a 27 27 27 2)

Here (mgg, m33), (m44, m55) are o-SEs.

(mll, m22), (mlla m33), (m11> m44), (mlla m55) are 3-SEs.

Therefore OéEs(GpR) = (0, 1, 1, 1, 1), BES(GPR> = (4, 1, 1, 1, 1) and SES(GPR) = (4, 2, 2, 2, 2)
Remark 10.2.1 A pseudo regular fuzzy graph need not contain a strong edge sequence.

Example 10.2.5 The graph G pg is a PRFG. But aps(Gpr) = (0,0,0,0). Hence G pg does not contain
an SES.

0.2
(8 — SE)

144 (0).6)

Figure 10.2.5: PRFG without Strong Edge Sequence

ﬂES(GpR) = (2, 2, 2,2) 6ES(GPR> = (1, 1, 1, 1)
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Remark 10.2.2 An strong edge sequence of fuzzy graph need not be a pseudo regular fuzzy graph.

Example 10.2.6 The graph Gp¢ is an SES of fuzzy graph. But d,(my;) # da(mas). Hence G ¢ is not a
PRFG.

myy (0.5) Mgg

Figure 10.2.6: Strong Edge Sequence with Fuzzy Graph

aES(GPR) = (27 17 0, 17 17 1)7 ﬁES(GPR) = (Oa L, 47 17 17 1) and SES(GPR) = (27 27 47 27 2, 2)

Theorem 10.2.1 Let G : (o, p) be a fuzzy graph on G* : (V| E), a cycle of length n. If i is a constant
function, then G is a pseudo regular fuzzy graph. [MS16]

Theorem 10.2.2 Let G : (o, u) be a fuzzy graph on G* : (V| E), an even cycle of length n. If the

alternative edges have same membership values, then G is a pseudo regular fuzzy graph. [MS16]

Theorem 10.2.3 A pseudo regular fuzzy graph Gpg : (0pg, tpr) whose a cycle is the crisp graph Gy

have only - edge sequence, but no - edge sequence and - edge sequence.

Proof. If PRFG Gpr : (0pg, 1tpr) have only 5-ES. This means G pr does not have «-ES and 0-ES. Then
by 10.2.2 definition, we have fipr(mi1,ma2) = CON NG, —(m11,mes)(M11, Ma2). Thus all the edges in
G pr will have equal M V. Then by the 10.2.1 theorem, we get Gpg as a PRFG.
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Contrarily, Let Gpgr be a PRFG. Then by the 10.2.1 theorem, the MV ppg is a constant function. Thus
the removals of any edge in Gpg will not change the strength of connectedness of an m; — my4 path in
Gpr. Thatis, pipr(mi1, maz) = CONNG ., —(m11,mes) (M1, M22)V (M11,Ma2) € Gpr. Thus Gpr have
only 3-ES.

Remark 10.2.3 The above result is also true for a totally pseudo regular fuzzy graph (TPRFG).

Example 10.2.7 The graph is a TPRFG with 3-SEs. Then each vertes having two [-ESs. Therefore
SES(GTPR) = (27 27 27 2)

0.1(8 — SE)

my3(0.2)

Figure 10.2.7: TPRFG with $-Edge Sequence

Bes(Grer) = (2,2,2)

Theorem 10.2.4 Let Gpg : (0pg, tpr) be a pseudo regular fuzzy graph on Gy, : (V, E), an even cycle.
If upg is an alternative edges have equal membership value, then G pgr have only strong edge sequence,

but no 4- edge sequence.

Proof. Let Gpp : (0pg, ipr) be aPRFG on G}, @ (V, E), an even cycle. We want to prove that G pg has
an strong edge sequence. That is Gpg have only a-ES and 3-ES. If G pr have only SEs. That is Gpg has
no 6-ES. Then by 10.2.1 and 10.2.2 definition, we have pg(m11,m22) > CON NGy —(myy,mas) (M1, Ma2).
This means alternative edges have equal MV'. Then by the 10.2.2 theorem, we get G pg as a PRFG.
Contrarily, Let Gpgr be a PRFG. Then by the 10.2.2 theorem, the alternative edges have equal MV'. That
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is, fipr(Ma1, Maz) > CON NG~ (a1 mas) (M1, Ma2). Thus G pr have a-ES and $-ES. This means G pr

have only strong edge sequence.

Remark 10.2.4 The above result is also true for a totally pseudo regular fuzzy graph.

Example 10.2.8 The graph is a TPRFG with oa-SEs and (3-SEs. Then each vertex having one a-ESs and
one [-ES. That is OZEs(GTpR) = (1, 1,1, 1) and BES(GTPR) = (1, 1,1, 1) Therefore SES(GTPR) =
(2,2,2,2).

mao (0.4)

0.1 (8 —SE)

mga3 (0.4)

(8 — SE) 0.2 (o — SE)

my4 (0.4)

Figure 10.2.8: TPRFG with Strong Edge Sequence

aES(GTPR) = (17 17 17 1)7 BES(GTPR) = (17 17 17 1)7 SE'S(GTPR) = (27 27 27 2)

Theorem 10.2.5 A pseudo regular fuzzy graph Gpg : (0pg, upr) with its crisp graph Gy, : (V, E) as
even cycle is both pseudo regular fuzzy graph and totally pseudo regular fuzzy graph if G pr have either

(- edge sequence or strong edge sequence.

Proof. Let Gpr : (0pg, tpr) be a PRFG. Then its crisp graph G} : (V, E) as even cycle and Gpg be
both PRFG and TPRFG. Here are two cases that arise.

Case (i) Let G'pr be both PRFG and TPRFG with stable values in 0 pg and ptpr. Then by 10.2.2 definition,
G pg have only (- ES.



198 Distinct Categories of Edge Sequence in Regular and Pseudo Regular Fuzzy Graphs

Example 10.2.9 Let Gpp is an PRFG and TPRFG without 0 ps(Gpr). That is G pr having [3-SEs. There-
fore 5ES<GPR) = (0, 0, 0, 0)

1111

(0.3)

(0.3)

Figure 10.2.9: PRFG and TPRFG

/BES(GPR> - (2) 27 27 2)

Case (ii) Let G'pr be both PRFG and TPRFG with stable values in o pr and with equal alternative values
in ppr. Then by 10.2.1 and 10.2.2 definitions, G pr have a- ES and - ES. Thus G'pg have a strong edge

sequence.

Example 10.2.10 Let Gpg is an RFG and TRFG without §ps(Gpg). That is Gpr having «-SEs and
(-SEs. Therefore 6ps(Gpr) = (0,0,0,0).

aES(GPR) = (]-) 17 17 ]-)7 BES(GPR) = (17 ]-7 17 1)7 SES(GPR) = (2a 27 27 2)

This chapter covered the structural features of fuzzy graphs. Distinct categories of edge sequences in
fuzzy graphs have discussed and their concepts are based on edge classification. To identify regular fuzzy

graphs and totally regular fuzzy graphs, we exploited the features of distinct types of edge sequences.
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0.2(8 —SE)

(0.4)myy

0.3
(v — SE)

(0—1) My 11133(0_4)

0.2 (8 —SE)

Figure 10.2.10: PRFG and TPRFG with Strong Edge Sequence

In both pseudo regular fuzzy graphs and totally pseudo regular fuzzy graphs, the links between distinct
types of edge sequence are investigated. These many sorts of edge sequence classification aid in fully
comprehending the underlying structure of a fuzzy graph. Regular fuzzy graphs, Pseudo regular fuzzy
graphs,totally regular fuzzy graphs, and totally pseudo regular fuzzy graphs were classified based on the
features of different types of edge sequences. More investigation could lead to a better understanding of

the nature of fuzzy graphs.



Conclusion

This research work is focused on various kinds of domination and edge sequences in different fuzzy
graphs. The concept of strong domination constant number in pseudo regular fuzzy graph and complete
fuzzy graph were discussed. We introduced the notion of vertex squared and vertex squared split intu-
itionistic fuzzy graph based on dual strong domination.

Split domination is discussed on vertex squared interval-valued fuzzy graphs. Specific kinds of perfect
domination, both cartesian product of two interval-valued fuzzy incidence graphs and tensor product of
two interval-valued fuzzy incidence graphs are defined.

Strong and weak domination is found for the composition of two vague fuzzy incidence graphs. We
have explained the concept of strong and weak domination with the help of complete intuitionistic fuzzy
incidence graphs.

Some domination parameters such as fixed vertex domination, fixed edge domination, total fixed edge
domination, and fixed edge restrained domination are applied on picture fuzzy graphs, and results are
derived from them. The twin perfect domination number is determined for a variety of Omicron Products
of two hesitancy fuzzy graphs. The concept of edge sequences in regular fuzzy graphs and pseudo regular
fuzzy graphs are explained by theorems with examples.

We plan to expand our research into various edge sequences of Picture fuzzy incidence graphs, Hamilto-
nian fuzzy incidence graphs, interval-valued fuzzy incidence graphs, and Intuitionistic fuzzy incidence
graphs in the future.

In future research, the new different dominations of product complete fuzzy graphs, product regular fuzzy
graphs, product vague graphs, and product interval-valued fuzzy graphs, as well as their applications in

the shopping malls, transport systems, textile industries, medical sciences, will be applied.



Bibliography

[ADI1]

[ANR21]

[ARO1]

[Atal5]

[AYTO4]

[BB21]

[Bha87]

[Bhug9]

[BRO3a]

M. Akram and W.A. Dudek. Interval-valued fuzzy graphs. Computers & Mathematics with
Applications, 61(2):289-299, 2011.

V. Anusuya A. Nagoorgani and N. Rajathi. some properties on strong and weak domination in
picture fuzzy graphs. Advances and Applications in Mathematical Sciences, 20(4):679-709,
2021.

S. Arumugam and S. Ramachandran. [Invitation to Graph theory. Scitech Publication Pvt.

Ltd, India, 2001.
K.T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1):87-96, 2015.

M. Lu A. Yu and F. Tian. On the spectral radius of graphs. Linear Algebra and Its Applica-
tions, 387:41-49, 2004.

Tushar J Bhatt and G.C. Bhimani. Perfect domination number of path graph p,, and its corona

product with another path graph p,,_1. Malaya Journal of Matematik, 9(1):118-123, 2021.

P. Bhattacharya. Some remarks on fuzzy graphs. Pattern recognitions letters, 6(5):297-302,
1987.

K.R. Bhutani. On automorphism of fuzzy graphs. Pattern Recognition Letters, 9:159-162,
1989.

K.R. Bhutani and A. Rosenfield. Geodesies in fuzzy graphs. Electronic Nodes in Discrete
Mathematics, 15:49-52, 2003.



202

BIBLIOGRAPHY

[BRO3b]

[BRI15]

[Cao98]

[CHT77]

[Cuol4]

[CZD19]

[Deb13]

[Din16]

[DN17]

[DXC13]

[GB93]

[Gor89]

[Har73]

[HBG10]

K.R. Bhutani and A. Rosenfield. Strong arcs in fuzzy graphs. Information Sciences,

152(1):319-322, 2003.

R.A. Borzooei and H. Rashmanlou. Degree of vertices in vague graphs. J. Appl. Math.
Inform, 33:545-557, 2015.

D.S. Cao. Bounds on eigenvalues and chromatic numbers. Linear Algebra Appl., 270:1-13,

1998.

E.J. Cockayne and S.T. Hedetnieme. Towards a theory of domination in graphs. Networks,

7:247-261, 1977.
B.C. Cuong. Picture fuzzy sets. J.Comput. Sci. Cybern., 30:409-420, 2014.

Anita Pal Cen Zuo and Arindam Dey. New concepts of picture fuzzy graphs with application.

Mathematics, 7:470, 2019.

Pradip Debnath. Domination in interval valued fuzzy graphs. Annal of Fuzzy Mathematics

and Informatics, 6(2):363-370, 2013.
T. Dinesh. Fuzzy incidence graph-an introduction. Adv. Fuzzy Sets Syst., 21(1):33—48, 2016.

K. Dharmalingan and P. Nithya. Excellent domination in fuzzy graphs. Bulletin of the Inter-

national Mathematical Virtual Institute, 7:257-266, 2017.

F. Isido D.A. Xavior and V.M. Chitra. On domination in fuzzy graphs. International Journal

of Computing Algorithm, 2:248-250, 2013.
W.L. Gau and D.J. Buehrer. Vague sets. IEEE Trans. Syst. Man Cybern.,, 23:610-614, 1993.

M.B. Gorzalczany. An interval-valued fuzzy inference method some basic properties. Fuzzy

Sets and System, 31:243-251, 1989.
F. Harary. Graph Theory. Addison-Wesely, New York, 1973.

J. Fernandez M. Pagola J. Montero H. Bustince, E. Barrenechea and C. Guerra. Contrast of

a fuzzy relation. Information Sciences, 180:1326—1344, 2010.



BIBLIOGRAPHY

203

[HBP]

[HLO9]

[H21]

[ING21]

[JMB18]

[Kallla]

[Kall1b]

[KM17]

[KM18]

[MAP17]

[MAS14]

D. Goswami U. Mukherjee H. Bustince, G. Beliakov and N. Pal. On averaging operators for

atanassov’s intuitionstic fuzzy sets.

J. Hongmei and W. Lianhu. Interval-valued fuzzy sub semi groups and sub groups. WRI

Global Congress on Intelligent Systems, pages 484—487, 2009.

A.M. Ismayil and H.S.Begum. Accurate split (non split) domination in fuzzy graphs. Ad-
vances and Applications in Mathematical Sciences, 20(5):839-851, 2021.

Muhammad Tanveer Irfan Nazeer, Tabasam Rashid and Juan Luis Garcia Guirao. Domination
in join of fuzzy incidence graphs using strong pairs with application in trading system of

different countries. Symmetry, 13:15, 2021.

S. Mathew J.N. Mordeson and R.A. Borzooei. Vulnerability and government response to
human trafficking vague fuzzy incidence graphs. New Math. Nat. Comput., 14:203-219,
2018.

K. Kalaiarasi. Optimization of fuzzy integrated two-stage vendor-buyer inventory system.

International Journal of Mathematical Sciences and Applications, 1(2):660-670, 2011.

K. Kalaiarasi. Optimization of fuzzy integrated vendor-buyer inventory models. Annals of

Fuzzy Mathematics and Informatics, 2(2):239-257, 2011.

K. Kalaiarasi and L. Mahalakshmi. An introduction to fuzzy strong graphs, fuzzy soft graphs,
complement of fuzzy strong and soft graphs. Global Journal of Pure and Applied Mathem-
atics, 13(6):2235-2254, 2017.

K. Kalaiarasi and L. Mahalakshmi. On co-normal product of two intuitionistic fuzzy graphs.

International Journal of Pure and Applied Mathematics, 120(5):1321-1335, 2018.

S. Samanta M. Akram and M. Pal. Cayley vague graphs. J. Fuzzy Math, 25:449-462, 2017.

N. Gani M. Akram and A. Borumand Saeid. Vague hyper graphs. J. Intell. Fuzzy Syst.,
26:647-653, 2014.



204

BIBLIOGRAPHY

[MM16]

[MM17]

[MNOO]

[MP94]

[MSO09]

[MS10]

[MS13]

[MS15]

[MS16]

[MS19]

[NB10]

[NC16]

Jill K. Mathew and Sunil Mathew. Some special sequences in fuzzy graphs. Fuzzy Informa-

tion and Engineering, 8:31-40, 2016.

S. Mathew and J.N. Mordeson. Connectivity concepts in fuzzy incidence graphs. Information

Sciences, 382:326-333, 2017.

J.N. Mordeson and P.S. Nair. Fuzzy Graphs and Fuzzy Hypergraphs. Physica Verlag, New
York, 2000.

J.N. Mordeson and C.S. Peng. Operations on fuzzy graph. Inform. Sci., 79:159-170, 1994.

S. Mathew and M.S. Sunitha. Types of arc in a fuzzy graphs. Information sciences, 179:1760—
1768, 2009.

S. Mathew and M.S. Sunitha. Node connectivity and edge connectivity of a fuzzy graph.
Information sciences, 180:519-531, 2010.

S. Mathew and M.S. Sunitha. Strongest strong cycles and §-fuzzy graphs. IEEE Transactions
on Fuzzy Systems, 21(3):1096-1104, 2013.

O.T. Manjusha and M.S. Sunitha. Strong domination in fuzzy graphs. Fuzzy Information and
Engineering, 7:360-377, 2015.

N.R. Santhi Maheswari and C. Sekar. On pseudo regular fuzzy graphs. Annals of Pure and
Applied mathematics, 11(1):105-113, 2016.

O.T. Manjusha and M.S. Sunitha. Coverings, matchings and paried domination in fuzzy

graphs using strong arcs. Iranian Journal of Fuzzy Systems, 16(1):145-157, 2019.

A. Nagoorgani and S.S. Begum. Degree, order and size in intuitionistic fuzzy graphs. Inter-

national Journal of Algorithms, Computing and Mathematics, 3(3):11-16, 2010.

A. Nagoorgani and V.T. Chandrasekaran. Domination in fuzzy graph. Adv. In Fuzzy Sets and
Systems, 1(1):17-26, 2016.



BIBLIOGRAPHY 205

[NR10]

[PD17]

[PKO6]

[PR14]

[RAG21]

[Ram09]

[RBP16]

[RH14]

[Ros71]

[RP13]

[RPAO9]

[Sall2]

A. Nagoorgani and K. Radha. On regular fuzzy graphs. Journal of Physical Sciences, 12:33—
40, 2010.

X. Peng and J. Dai. Algorithm for picture fuzzy multiple attribute decision- making based on

new distance measure. Int. J. Uncertainty Quantification, 7:177-187, 2017.

R. Parvathi and M.G. Karunambigai. Intuitionistic fuzzy graphs, Computational Intelligence,

Theory and Applications. Springer, New York, USA, 2006.

T. Pathinathan and J. Jesintha Rosline. Characterization of fuzzy graphs in to different cat-

egories using arcs in fuzzy graphs. Journal of Fuzzy Set Valued Analysis, pages 1-6, 2014.

Abdu Gumaei Rukhshanda Anjum and Abdul Ghaffar. Certain notions of picture fuzzy in-

formation with applications. Journal of Mathematics, page 8, 2021.

N. Ramakrishna. Vague graphs. Int. J. Comput. Cogn., 7:51-58, 2009.

S. Samanta R.A. Borzooei, H. Rashmanlou and M. Pal. Regularity of vague graphs. J. Intell.
Fuzzy Syst., 30:3681-3689, 2016.

S. Revathi and C.V.R. Harinarayanan. Equitable domination in fuzzy graphs. Int. Journal of

Engineering Research and Applications, 4(6):80-83, 2014.

A. Rosenfield. Fuzzy groups. J. Math. Anal. Appl., 35:512-517, 1971.

H. Rashmanlou and M. Pal. Some properties of highly irregular interval-valued fuzzy graphs.

World Applied Sciences Journal, 27(12):1756—-1773, 2013.

M.G. Karunambigai R. Parvathi and K.T. Atanassov. Operations on intuitionistic fuzzy
graphs, fuzzy systems. IEEE International Conference on Fuzzy Systems, pages 1396-1401,
2009.

S. Salen. On category of interval valued fuzzy topological spaces. Ann. Fuzzy Math. Inform.,

4(2):385-392, 2012.



206 BIBLIOGRAPHY

[SDRO1] R. Biswas S.K. De and A.R. Roy. An application of intuitionistic fuzzy sets in medical
diagnosis. Fuzzy Sets and Systems, 117(2):209-213, 2001.

[Sinl5] P. Singh. Correlation coefficients for picture fuzzy sets. J. Intell. Fuzzy Syst., 28:591-604,
2015.

[SK16] N. Sarala and T. Kavitha. (1,2) - vertex domination in fuzzy graph. Int.Journal of Innovative
Research in Science, Engineering and Technology, 5(9):16501-16505, 2016.

[SM15] M.S. Sunitha and O.T. Manjusha. Strong domination in fuzzy graphs. Fuzzy Inf. Eng., 7:369—
377, 2015.

[SMY19] J.N. Mordeson S. Mathew and H.L. Yang. Incidence cuts and connectivity in fuzzy incidence
graphs. 16(2):31-43, 2019.

[Sonl6] ILH. Son. Generalized picture distance measure and applications to picture fuzzy clustering.
Appl. Soft Comput., 46:284-295, 2016.

[SP11] S. Samanta and M. Pal. Fuzzy threshold graphs. CITT International Journal of Fuzzy Sys-
tems, 3(12):360-364, 2011.

[SP15] S. Sahoo and M. Pal. Different types of product on intuitionistic fuzzy graphs. Pacific Science
Review A: Natural Science and Engineering, 17:87-96, 2015.

[SP16] S. Sahoo and M. Pal. Intuitionistic fuzzy competition graphs. Journal of Applied Mathemat-
ics and Computing, 52(1-2):37-57, 2016.

[SP17a] S. Sahoo and M. Pal. Intuitionistic fuzzy tolerance graphs with application. Journal of
Applied Mathematics and Computing, 55(1-2):495-511, 2017.

[SP17b] S. Sahoo and M. Pal. Product of intuitionistic fuzzy graphs and degree. Journal of intelligent
& Fuzzy Systems, 32(1):1059-1067, 2017.

[SP21] A. Selvam and C.Y. Ponnappan. Domination in join of fuzzy graphs using strong arcs. Ma-

terials Today Proceedings, 37:67-70, 2021.



BIBLIOGRAPHY 207

[Sri21] S.K. Sriram. K-regular domination in hesitancy fuzzy graph. International Journal of Mod-

ern Agriculture, 10(1):195-200, 2021.

[SS98] A. Somasundaram and S. Somasundaram. Domination in fuzzy graphs-i. Pattern Recognition

Letters, 19:787-791, 1998.

[SS17a] S. Dhavudh Sheik and R. Srinivasan. Intuitionistic fuzzy graphs of second type. Advances in
Fuzzy mathematics, Research India Publications, 12:197-204, 2017.

[SS17b] 6. Begum Syed Siddiqua and R. Srinivasan. Some properties of intuitionistic fuzzy sets of
third type. Advances in Fuzzy Mathematics, 12:189-195, 2017.

[SS21] A.N. Shain and MMQ Shubatah. Inverse dominating set of an interval-valued fuzzy graphs.
Asian Journal of Probability and Statistics, 11(3):42—-60, 2021.

[SSS20]  H. Rashmanlou S. Sahoo, S. Kosari and M. Shoib. New concepts in intuitionistic fuzzy graph

with application in water supplier systems. Mathematics, 8(8):12-41, 2020.

[SV99] M.S. Sunitha and A. Vijayakumar. A characterization of fuzzy trees. Information Sciences,

113:293-300, 1999.

[SV02] M.S. Sunitha and A. Vijayakumar. Complement of a fuzzy graph. Journal of Pure and
Applied Mathematics, 33:1451-1464, 2002.

[SVO5] M.S. Sunitha and A. Vijayakumar. Blocks in fuzzy graphs. The Journal of Fuzzy Mathemat-
ics, 13:13-23, 2005.

[THS98]  S.T. Hedetniemi T.W. Haynes and P.J. Slater. Fundamentals of Domination in Graphs. Mar-
cel Dekker, Inc., New York, 1998.

[TPR15] J. Jon Arockiaraj T. Pathinathan and J. Jesintha Rosline. Hesitancy fuzzy graphs. Indian
Jjournal of science and Technology, 8(35):1-5, 2015.

[TR13] A. Talebi and H. Rashmanlou. Isomorphism on interval valued fuzzy graphs. Ann. Fuzzy
Math. Inform., 6(1):47-58, 2013.



208 BIBLIOGRAPHY

[Tur86] B. Turksen. Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems,
20:191-210, 1986.

[WAKT21] Babir Ali Waheed Ahmad Khan and Abdelghani Taouti. Bipolar picture fuzzy graphs with
application. Symmetry, 13:14-27, 2021.

[Weil7] G. Wei. Some cosine similarity measures for picture fuzzy sets and their applications to
strategic decision making. Information, 28:547-564, 2017.

[YB75] R.T. Yeh and S.Y. Bang. Fuzzy relationsfuzzy graphs and their applications to cognitive and
decision process. Academic press, New York, pages 125-149, 1975.

[YRK21] Pu Wu Huiqin Jiang Yongsheng Rao, Ruxian Chen and Saeed Kosari. A survey on dom-
ination in vague graphs with application in transferring cancer patients between countries.
Mathematics, 9:12-58, 2021.

[YRS20] S. Kosari Y. Rao and Z. Shao. Certain properties of vague graphs with a novel application.
Mathematics, 8:16-47, 2020.

[Zad65] L.A. Zadeh. Fuzzy sets. Information and control, 8:338-353, 1965.

[Zad75] L.A. Zadeh. The concept of a linguistic and application to approximate reasoning 1. Inform
Sci., 8:199-249, 1975.

[Zad08] L.A. Zadeh. Is there a need for fuzzy logic. Information sciences, 178:2751-2779, 2008.



BIBLIOGRAPHY 209

List of Papers Published and Presented

A part of the work in the thesis has been published/presented/communicated to the proceedings/Journals

given below

Papers Published

1. Arc-Sequence in Complete and Regular Fuzzy Graphs, International Journal of Current Research,

Vol. 9, Issue 07, July 2017, Pg.n0:54502-54507, ISSN NO: 0975-833X, Impact Factor : 7.617

2. Different types of edge sequence in pseudo regular fuzzy graphs, International Journal of Pure
and Applied Mathematics, Vol. 118, No. 6, Special Issue, Feb 2018, Pg.no: 95-104, ISSN NO :
1314-3395, Impact Factor : 7.19

3. Strong Domination in Pseudo Regular and Complete fuzzy graphs, International Journal of Pure
and Applied Mathematics, Vol. 120, No. 5, Special Issue, Sep 2018, Pg.no:1273-1294, ISSN NO :
1314-3395, Impact Factor : 7.19

4. Storng and Weak Domination in Intuitionistic Fuzzy Graph, International Journal of Research and
Analytical Reviews, Vol. 06, Issue 1, Feb 2019, Pg.no: 265-269, ISSN NO: 2349-5138 Impact
Factor : 5.75

5. Various Product and Dual Strong Domination in Mixed and Square Mixed Intuitionistic Fuzzy
Graphs, Adalya Journal, Vol. 08, Issue 8, August 2019, Pg.no: 259-269, ISSN NO: 1301-2746,

Impact Factor : 5.3

6. The Join Product and Dual Strong Domination in Mixed Split Intuitionistic Fuzzy Graph, Parishodh
Journal, Vol IX, Issue I1I, March 2020, Pg.no:779-791, ISSN NO: 2347-6648, Impact Factor : 6.3

7. An Application of Domination in Vague Fuzzy Incidence Graphs, Journal of Mathematical Control
Science and Applications, Vol. 7, No. 1, June 2021, Pg no: 107-120, ISSN NO: 0974-0570, Impact
Factor : 6.24. (Scopus)



210

BIBLIOGRAPHY

. Domination in Complete Intuitionistic Fuzzy Incidence Graphs with Application, Journal of Math-

ematical Control Science and Applications, Vol. 7, No. 2 December 2021, Pg no: 189-199, ISSN
NO: 0974-0570, Impact Factor : 6.24. (Scopus)

. n-Split Domination in Vertex Squared Interval-Valued Fuzzy Graphs, Advances and Applications in

Mathematical Sciences, Vol. 21, Issue 3, January 2022, Pg no: 1579-1588, ISSN NO: 0974-6803.
(Web of Science)

Papers Presented

Different types of edge sequence in pseudo regular fuzzy graphs, International Conference on Math-
ematical Methods and Computations, organized by Department of Mathematics, Jamal Mohamed

College, Trichy on December 11, 2017.

Strong Domination in Pseudo Regular and Complete fuzzy graphs, International Conference on
Analysis and Applied Mathematics, organized by Department of Mathematics, National Institute of
Technology, Trichy on July 02, 2018.

List of Papers Accepted

K. Kalaiarasi and P. Geethanjali, “A Study on Domination in Product Picture Fuzzy Graph and its

Application ”(Web of Science).



Scopus preview - Scopus - Journ: X =+
q @ [n] @ scopus.com/sourceid/21100877663
@ Online Banking - Ka.. @ Consortium for Acs... Scopus preview - S.. M Gmail M Inbox - shafasp@g.. @ TANGEDCO Online...

' 1“ Scopus Preview

Source details

~ = X

P A (I W]

Author search ~ Sources ® m

Feedback » Compare sources »

. . R CiteScore 2020
Journal of Mathematical Control Science and Applications a1 @
Scopus coverage years: from 2015 to 2021
(coverage discontinued in Scopus)
Publisher: Muk Publications and Distributions gkféi @
ISSN:  0974-0570 ’
Subject area: (Mathema(ics: Applied Ma(hemali:s) (Malhema(ics: Control and Dp\imiza[icn)
Source type: Journal SNIP 2020 ®
1.074
|5 Save to source list Source Homepage
CiteScore  CiteScore rank & trend ~ Scopus content coverage
n Improved CiteScore methodology X

CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data

papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more »

CiteScore 2020

41 144 Citations 2017 - 2020
*= 35 Documents 2017 - 2020

Calculated on 05 May, 2021

Pl ¥ U L AT T



Journal of Mathematical Control Science and Applications
Vol7 No. 1 (January-June 2021)

Recelved: 20th February 2021 Revised: 19th March 2021  Accepted: 10th April 2021

AN APPLICATION OF DOMINATION IN VAGUE FUZZY
INCIDENCE GRAPHS

K.KALAIARASI *, P.GEETHANJALI

Abstract. Fuzzy Graphs (FGs), also known as Fuzzy Incidence Graphs (FIGs),
are a well-organized and useful tool for capturing and resolving a range of real-
world scenarios involving ambiguous data and information. In this paper, the
Composition of Two Vague Fuzzy Incidence Graphs (CT-VFIGs) and use
incidence pairs to extend the idea of FG dominance to CT-VFIGs defined .
Examples are used to clarify the concepts of Edge Incidentally Dominating Set
(EIDS), Strong Edge Incidentally Dominating Set (SEIDS), and Weak Edge
Incidentally Dominating Set (WEIDS).CT-VFIGs have an Edge Incidentally
Domination Number (EIDN), a Strong Edge Incidentally Domination Number
(SEIDN), and a Weak Edge Incidentally Domination Number (WEIDN). In
the research field, CT-VIFGs are used to find the best combinations of journal
publications that express the most progress and the least amount of non-
progress. The results of our investigation are compared to those of other
studies. Our research will help us fully appreciate and comprehend the
additional properties of CT-VFIGs.Another benefit of our research is that it
will aid in determining the maximum percentage of progress and the minimum

percentage of non-progress in various journal publications.

KEYWORDS: Vague Fuzzy Incidence Graph, Composition of two VFIGs, Strong
Edge Incidentally Dominating Set, Weak Edge Incidentally Dominating Set.

1. Introduction

Zadeh [40] [42] [43] introduced fuzzy set theory and related fuzzy logic as a technique
of dealing with and addressing a wide range of situations in which variables,
parameters, and relationships are only approximated, necessitating the employment of
approximate reasoning systems. This is true of practically all nontrivial occurrences,
processes, and systems that exist in reality, and standard binary logic mathematics
cannot sufficiently characterize them.We summariseGorzalczany's work on interval-
valued fuzzy sets(IVFSs) (8] and Roy et al. [29] works on fuzzy relations because
interval-valued fuzzy graphs (IVFGs) are commonly employed. Vague sets (VSs) were
first proposed by W.L Gau and D.] Buehrer [7]. FG operations were investigated by R.
Parvathi et al. [22]. In vague graphs (VGs), N. Ramakrishna [6] developed the
concepts. In IFGs, A. N. Gani [9] developed the concepts of degree, order, and size. S.
Samanta and M. Pal [30] have also expressed many FGs. H. Rashmanlou and M. Pal
[26] advised irregular IVFGs.Akram. M [2] proposed vague hyper graphs. Degree of
vertices in VGs were proposed by Borzooei [3]. Dinesh [5] looked at the topic of
FIGs.Borzooei et al. [4] suggested and implemented regularity of VGs. Kalaiarasi &
Mahalakshmi have also articulated and Kalaiarasi & Gopinath discussed fuzzy strong
graphs. Akram et al. [1] proposed the concept Cayley VGs. S. Mathew and ].N.
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Mordeson [17] proposed concepts in FIGs.Mordeson et al. [19] talked about VFIGs.
Properties of VGs extended by Rao et al. [27].
Ore and Berge were the first to introduce dominance. IrfanNazeer et al. [11],
developed the new graph'sproduct. Haynes and Hedetniemi[10] looked into
dominance in graphs further. Somasundaram and Somasundaram[33] have gained
supremacy in FGs by utilising effective edges. In FGs, Xavior et al. [38] suggested
dominance. PradipDebnath [23] has also shown dominance in IVFGs. For FGs,
Revathi and Harinarayaman [28] developed an equitable domination number.
Sunitha & Manjusha [34] have also declared that they have a stronghold..Nagoorgani
& Chandrasekaran [21] have also demonstrated dominance in a FG. Sarala & Kavitha
[35] have also expressed (1,2)-domination for FGs. Dharmalingam & Nithya[6] have
also provided dominance values for FGs. Manjusha et al. [18] have studied paired
domination. In FIGs, IrfanNazeer et al. [12] have achieved dominance. AN Shain and
MMQ Shubatah [36] advocated the inverted dominating set of IVFGs . Kalaiarasi &
Sabina have also expressedfuzzy inventory EOQ optimization mathematical model
[15]. Kalaiarasi & Gopinath suggested fuzzy inventory order EOQ model with
machine learning [16]. A new path graph definition was proposed by Tushar et al.
[32]. A Nagoor Gani et al.[10] addressed domination in FGs. AM Ismayil and HS
Begum([4] have both accurately depicted split dominance. In ambiguous graphs,
Yongsheng Rao et al.[39] established dominance. Shanmugavadivu and Gopinath
suggested non homogeneous ternary five degrees equation [31]. Shanmugavadivu and
Gopinath have also expressedon the homogeneous five degree equation [32].
Priyadharshini et al. have also expresseda fuzzy MCDM approach for measuring the
business impact of employee selection [24]. and Mapreduce Methodology for Elliptical
Curve Discrete Logarithmic Problems [41].
Section 2 gives some preliminary findings that are required in order to understand the
rest of the paper. A definition of CT-VIFGs is given in section 3. In section 4, we look
at the relationship between CT-VFIG order and size. Domination in CT-VFIGs is
discussed in Section 5. Strong and weak domination in CT-VFIGs is discussed in
section 6. The application of CT-VFIGs is discussed in section 7. A comparative
analysis is offered in section 8.

2. Preliminaries
Definition 2.1[12]
Assume G; = (V},E;) is a graph. Then, G, = (V,,E},I;) is named as an incidence
graph, where I; €V, X E|.
Definition 2.2[12]
Assume Gpg = (Vgg, Epg) is a graph, Upg is a fuzzy subset of Vgg, and ypg is a fuzzy
subset of Vgg X Vig. Let Ypg be a fuzzy subset of Vpg X Epg. If Ypg(Wyq,wiiwy,) <

min{ups(Wi1), Vrs (W11W52)} for every wyy € Vig, Wi Wyy € Efg, then g is a fuzzy

incidence of Gpg.

Definition 2.3[12]
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Assume G is a graph and (g;,y;) is a fuzzy sub graph of G,. If Y, is a fuzzy incidence
of G, then G; = (u;, v, ;) is named as FIG of G;.

Definition 2.4 [4]

A VS A is a pair (ty,, fya) on set V where t,, and f,, are taken as real valued
functions which can be defined on V — [0,1], so that t,,(Wy1) + fya(wy1) < 1, for
all wy;belongsV. The interval [t,,(W11),1 — fra(W11)] is known as the vague value of
Wqqis A.

Definition 2.5[6]

A pair G, = (4,B) is said to be a VG on a crisp graph G = (V,E), where A =
(tya fra) is a VS on V and B = (ty, fyg) is a VS on E €V XV such that
tys (W11W22) < min(ty,(wi1), tya(Wz2)) and fre(W11wa3) =
max(fya(Wi1), fva(Waz)), for each edge wy;w,, € E

Definition 2.6

An VFIG is of the form Gy; = (Vy;, Eyp, Iyg, Avy, By, Cyp) where Ay, = (tAVI’fAVI)'
By, = (tBV,,fBW), Cy; = (tcw,fcw) and Vy; = {wg,wq,....... wy} such that
tay,: Vvr = [0,1] and fy,,: Viy; = [0,1] represent the degree (DG) of membership(MS)
and non membership (NMS) of the vertex w;; € Vi, respectively, and 0 < t,,, +
fay, <1 for  each  wy €Vy(i=12,....,0),tp,: Vi XVy; = [0,1]  and

fa 1V, xV, — (01
By VI VI [ ]tBV) (Wlll WZZ) andeVl (W11' sz) ShOW the DG Of MS

and NMS of the edge (wyy,wy,) respectively, such thattp, (Wi, wyp) <
min{t,,, (W), ta,, (Wa2) Jandf,, (W11, W3) = max{fa,, W11), fa,, (W22)},0 <

ty; (W11, Wa2) + fr,, (W11, Wap) < 1 for every  (Wyg,Wa), t,,: Viy X Eyy = [0,1]
and fe,,:Vyr X Ey; = [0,1],tc,, (W11, Wi1W52) and fg,, (W11, Wi1W;5) show the DG
of MS and NMS of the incidence pair respectively, such that tg,, (Wig, Wigwsp) <
min{tAw (W11), tg,, (Wyq, sz)} and

foy, Wi, wigwp,) = max{wa W11, f3,, (W11'W22)}» 0 < tg,, (Wi, wiwyp) +

ch, (W11, W11 Wpp) < 1 for every (Wyq, Wi Wap).

3. Composition of two VFIGs

Definition 3.1

The Composition of two VFIGs (CT-VFIGs)Gy, =
W Edy 11, Avips B, Con) and Gip = (Wi, E¢y, 15, AG1p, Béy, Coyp) is defined as
an VFIG
Gevr = Gp10GE = (Vyp, Eyy, Ly, AvipO AT p, By OBYy, Cry OCH YwhereVey, =
Vi 0V
andEgy; = {((mllﬂnll)' (mzz'nzz))/mn = My, (N1, M22) € Ej orng, =
Ny, (My1,My,) € E1}1}
Iey; =
{(my,nq1), (Mg, 1) (Mg, Mp2) /My = Moy, (N1, M1 M23) € TGy, (g2, My Ng0) €
[Fr0mnyy = npp(myy, myymy;) € Iy, (Mg, myymy;) € I dwith
(Alyip@ALy1p) (Myg, 1) = min{Aiy;p(myy), Ay (111)}V (Mg, ny4) € V50V,

(AyipBASy1p) (M1, 1y1) = max{A%VIP(mll)'A%VIP(nll)}v(mllﬂnll) € VBV
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(B%VILBfVIL)((mllﬂnll)(mZZ'nZZ))
min{Aly;p(mi1), Biyi (11, M22)}, if Myy = My, (N4, na2) € E
= { min{Bly;, (My1, M23), Ayip (1)}, if iy = Ny, (Myg,my,) € Eyy
min{Bly;, (My1,M22), Alyip (M11), Alvip (N22)}, if Ny # Nga, (My1,my,) € Eyy
(Bzy1.BB3y11) ((m11'n11)(m22'n22))
max{Agy;p(My1), B3y, (N11,M22)}, if My = My, (11,15;) € EF,
= {max{Bjy;, (M11, M23), Adyip (N11)}, if Nyy = Npp, (Myq,My,) € Eyy
max{Bly;, (M1, M32), Alyip(M11), Alvip(22)}, if My # Ngp, (Mg, M) € Eyy
(ClynBCEy ) [(Myg, 1), (Mg, 1y1) (M1, 155)]
= min{Aiy;p(M11), Cfyy (M1, My np2) Y ifmyy
= Myy, (N11, N1 My2) € I
(ClynBCE D[4, 152), My 1, 111) (Mg, 152)]
= min{Ajy;p(M11), Clrir (a2 11 Mz) Y if myy
= Myy, (Mg, My Ny2) € I
(ClynBCE)[M11,111), (M1, M11) (M2, 014)]
= min{Cly;; (M1, M11My5), Alyip(M11)} if nyy
= Ny, (Mg, My 1My,) € Iy
(ClynBCE ) [(Ma2,111), (Ma1,M11) (M2, M4)]
= min{Cly;; (My2,M11My2), Alyip (M11)} if 1ay
= Nz, (Myp, My My,) € Iy,
(ClynBCE N [(My1,111), (Mg, M11) (M2, Mz2)]
= min{Cly; (11, My1M22), Alyip (11), Alyip (22)3}, if Mgy
# Myp, Ny # Nga, (Mg, My1My,) € Iy
(ClynBCHD[(Ma2,122), (My1,M11) (M2, Mz2)]
= min{Clyy (Maz, My1M23), Aly1p (11), Alyip (N22)}, if Mgy
# Moz, My1 # Ngg, (Mo, My1My,) € I
(ClynBCH ) [(M11,122), (M1, Mp2) (M2, 1)
= min{Cly; (My1, Mmy1Mzp), Alyip (111), Alyip (22)3}, if Mgy
# Myp, Ny # Nga, (Mg, My1My,) € Iy
(ClynBCH ) [(Ma2,111), (Mg, M52) (M2, 11)]
= min{Clyy; (Maz, My1M25), Aly1p (11), Alvip (N22)}, if Mgy
# Mo, Ny1 # Ngg, (Mo, My1My,) € I
(CvuBCE )My, n11), (Mg 1, 1y1) (Mg, 132)]
= max{Azy;p(M11), Ciy (11, My1Mp2) Y if myy
= Myy, (Ny1, N1 M22) € I
(ClrnBCE)[(My1,n32), (Mg, my1) (M1, 125))]
= max{Azy;p (M11), Ciy (a2, Myingz)} if myy
= Myp, (Ng2, 11 N2) € I
(ClvnBCE ) [(myg,ny1), (Mg, 1y1) (Mo, 1)
= max{Cay; (M1, M11My2), Adyip (M11)} if 1y
= Nga, (Mg, My1My,) € Iy
(CovunBCE)[(Maz, 1y1), (My1,1y1) (Mo, 141)]
= max{Cyy (Maz, M11My2), Adyip (41)} if g

_ 1
= Nyy, (Myz, My Myy) € Iy,
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(ClynBCED[(My1,144), (My1,M11) (M2, M2,)]
= max{Czyy (m11;m11m22);A%V1P (nll)'A%VIP (n22)}, ifmyy
F Myp, Nyg F Nap, (Mg, My My,) € Iy,

(Czlvuczzvu) [(M32, M22), (M1, M11) (M2, M) ]
= max{czlvn (m22'm11m22)1A%V1P (1), A%VIP (n22)}, if myy
F Myp, Nyg F Ny, (Myp, My Myy) € 11%1

(Czlvuczzvu) [(My11,M22), (M1, Mp2) (M2, M41)]
= max{czlvn (m11:m11m22):A%V1P (nll)'A%VIP (n22)}, ifmyy
F Myp, Nyg F Nap, (Mg, My My,) € 11%1

(C21VIIC22VII) [(M32,M11), (My1,M22) (M2, M41)]
= max{czlvn(mzz:mnmzz)'A%VIP (n11), A%VIP (n22)}, if myy
F Mya, Nyy F Nyp, (Myp, My Myy) € 11}1

Example 3.2

(0.3,0.7) 0.2,0.6)
— 4 —
(0.4,0.2) m, @ 03.0.6) ® (03,05

Figurel. VFIG G},

Figure 1 indicates a VFIGGY;, = (Vi, By, It Abyp, By, Cpp) with
Apip(myy) = (0.4,0.2), 47, (My) = (0.3,0.5),By, (my1m;,) = (0.3,0.6),
Cyr (myy, myyma;) = (0.3,0.7),C51; (Mgp, myyMy,) = (0.2,0.6)

(0.1,0.5) (0.1,0.7)
—_— e —

(0.6,0.3) 1y, ® 01.03) ® ,.02.05)

Figure2. VFIG G}
Figl]re 2 indiCateS a VFIGG&I = (VVgI’ E&I' 151, A%IP' B&IL' C&”) Wlth

AZVIP (ny) = (0-6'0-3)»1‘1515’ (ny2) = (0-2'0-5)»351L(n11n22) =
(0-1'0-5)»C1311(n11'n11n22) = (0-1:0-5)»6‘511(”22'nunzz) =(0.1,0.7).
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iy, (0.4, 0.3) iy (0.2, 0.5)

(0.3,0.7) (0.2,0.7)

L J
e,,(0.3,0.6) 2,,(0.2,0.6)

'\ e;5(02,0.6) 2:5(0.2,0.6) "

/oz 0.6) (o.zjo&

€;(0.1,05)
—., ‘—

0.1035) (0.1.0.7)

(0.2,0.6) (0.2,0.6)

mypm; (03, 05) Myy11y,(0.2,0.5)

Figure3. Composition of figure 1 and figure 2
Figure 3 indicates a CT-VFIGs

Gy BGE = (Vyr, vy, Iy, Avip BAG p, By BB, CoyBCH))
(AV1pBAG;p) (Myq,my1) = (0.4,0.3),(A4p0A7,p) (My1,152) = (0.2,0.5)

1 2 _
(RO XMz 1) = 0308) 4y m ) = 0205)

(BI}ILB!;lL)((mllrnll)(mll'nZZ)) =

0.1,0.5,(B 1, 0B§1,) (M1, n25) (M2, 152)) = 0.2,0.6,
(BI}IL@BiglL)((mZZrnll)(mzz'nZZ)) =0.1,0.5,
(B&IL@B%L)((mu'nn)(mzz'n11)) =0.3,0.6,
(Bl}lL@B%u)((mu'nu)(mzz:nzz)) =0.2,0.6,
(Bl}lL@B%u)((mu'nzz)(mzz:n11)) =0.2,0.6
(ConBCED[(My1,n11), (My1,n11) (M1, 125)] = (0.1,0.5)
(CHOCHD [(My1,M22), (M1, 1y1) (M1, Mp0)] =
(0.1,0.7),(Ci1 0CH ) [(My1, 122), (M1, 1122) (Mo, M22)] = (0.2,0.7),
(ConBCE[(Ma2,nz2), (M1, M22) (M2, 122)] = (0.2,0.6),

(CouBCHD Mgz, 1y1), (M2, ny1) (g2, n32)] = (0.1,0.5),
(CouBCHD[(Maz,n22), (M2, n11) (Ma2,Mz2)] = (0.1,0.7),
(CouBCHDIMy1,ny1), (Myg,1y1) (Mg, m41)] = (0.3,0.7),
(CouBCED(Maz, 1), (Myg, 1) My, 141)] = (0.2,0.6),
(CouBCE M1, ny1), Mgy, 1y1) (Mg, m22)] = (0.2,0.7),
(CouBCED[(Maz,n22), (M1, 111) (M2, n32)] = (0.2,0.6),
(CouBCHD[(Maz,1y1), (M2, ny1) (11, 152)] = (0.2,0.6),

(CruBCH) [(My1,152), (Ma2,11)(My1,M22)] = (0.2,0.7)
Definition 3.3
Let G¢y; be a CT-VFIGs

() Gy cardinality is determined by
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1Gop| = Z 1+ ty,,, Wi1) = fay,p W11)
cvi >

w11€Vy

i Z 1+tg, (wyiwpp) — fBV,L (wy1wy,) n

2
W11W22€Ey]
1+ teyu (W11, Wi Wyp) — fCV” (W11, W1aW3)
2
W11,W11W22€lyy
(i) Gcyvertex cardinality is determined by Vel =
1+t aypW1)—faypWi1)
ZW11EVCV1 > Vwyg € Veyg
(iii) Gcyredge cardinality is specified by |Ecy;| =
1+tgy; W11W22)=fBy Wi11W22)
ZwllwzzeECV, > YWy 1Wy; € Egyg
(iv) Gcy; incidence pair cardinality is specified by
_ 1+ teyn (W11, Wi Wap) — ch” (Wy1, WiaW33)
[ evi| = 2 W11, W11W22
W11,W11W22€lcyr
€ Iey;
4. Relationship between order and size of CT-VFIGs
Definition 4.1
Assume Geyvr is a CT-VFIGs. Then Ocyi(Geyy) =
1+teo, (WinWiaWa2) = fooy (Wi Wiawez)\ |
YWy Wap Wr 1 W2 €V Y ( > ) is called order of Ggy;
_ 1+tg o, (W11 W22) =By (W11W22) | .

and Scy; (Geyr) = Xy wazeEovr ( > ) is called size of Ggy;.

Definition 4.2

The edge degree of ae;y; in a CT-VFIGs is defined as the sum of the weights of edges
incident to ey;. It is defined by |dGcw(e1V1)| ={degt(esy;),deg” (e;y))}. The
minimum cardinality of edge degree of Gy is 8¢y (Geyy) = min{dccw(ew,)/ew, €

ECV,}. The maximum cardinality of edge degree of Geyris Acy;(Geyr) =

max{dccw (evi)/€wvi € Ecyr}

Proposition 4.3

In a CT-VFIGsO¢y; (Gevi) = Sevi(Gevr)

Proof. Let G¢y; be a CT-VFIGs with one node. ThenOcy; (Geyr) = Seyi(Geyr) = 0.
That is Ocy;(Gevi) = Sevi(Geyr) (1)

It is a trivial case. Assume Ggp; with more than one nodes. O¢y;(Gey) is the sum of
all incidence pairs cardinality ofG.y;. Since incidence pairs are two times of edges.
Therefore, the total sum of all the incidence pairs cardinality will always greater than
the total sum of all the edge cardinality.

Ocvi(Gevi) > Scvi(Gevi) (2)

From equations (1) and (2), we get O¢y;(Geyr) = Sevi (Gevr)-

Proposition 4.4

For any CT-VFIGs the following inequality holds

Scvi(Gevr) < Bevi(Gevr) < Sevi(Gevr) < Ocyi (Gevy)-

Proof. Assume Gy is a CT-VFIGs with non empty node set.
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Since 8¢y (Geyy) represents lowest edge degree and Acy; (Geyy) denotes highest edge

degree of Gcy;.
SCVI(GCVI) < CVI (GCVI) (3)
1+t (WinWi1Wwaz2)=feey, (W11'W11W22))

We know Ocy;(Geyp) = Zw11¢w22,w11,wzzevcw( >

1+t (W11.W22)=f By, (W11W22))

and Scy; (Geyr) = ZwllrWZZEECVI ( 2

By definition of size of Geyrs Scvi(Geyy) =

1+t oy, (W11.W22)=fB oy W11W22)
ZWn,szEEcw( 2 ) = max{dccw(e1v1)/e1v1 € ECVI}

That is Scvi(Gevi) Z Beyi (Gevy) (4)

Also, in a CT-VFIGs, G¢y; by 4.3 proposition

Ocvi(Gevi) = Scvi(Geyr) (5)

From inequalities (3), (4) and (5),we obtainedScy;(Geyr) < By (Geyr) <
Scvi(Gevi) < Ocyi(Geyr)

5. Domination in CT-VFIGs
Definition 5.1
A edge eyin an CT-VFIGs Gy, is called incidentally dominate edge if
teey (W11, WiaWap) = min{tACV, (W11), tagy, (W1, sz)}and feeyr (W11, WiiWap) =
max{fACV, (Wll):fBCV, (W11:W22)}
Definition 5.2
A edge eyy; in an CT-VFIGsGgy; dominates to edge e,y; if they are incidentally
dominate edges.
Definition 5.3
A subset Rgy; of Ecyyis said to be edge incidentally dominating set (EIDS) if for each
edge e;y; not in Reyy, €1y is dominate at least one edge in R¢y;.
Definition 5.4
A edge incidentally dominating set R¢y; of the CT-VFIGsGy; is said to be a minimal
EIDS of CT-VFIGsGy, if each edge in R¢y, the setRgy; — {e1y;} is not a EIDS.
Definition 5.5
AEIDS with the lowest edge cardinality is called a minimum EIDS. The edge
cardinality of a minimum EIDS is called edge incidentally dominating number of the
CT-VFIGsGy,lt is denoted by yy;(Geyr)
Example 5.6
In figure 3, the incidentally dominating edges are {e;1}, {22}, {€33}, {€ss},{€55}
{esctand the EIDSs are Si; = {e11€2,},52 = {€11€33},533 = {€11€44},540 =
{e11€55},Ss5 = {€11€66}ve-- After calculating the edge cardinality of
S11:Sp2r-Sa3) Sanrereimy e obtain  |Sy;| = 0.6,Sy,] = 0.6,Ss3] = 0.65,Sss| =
0.6,|Sss| = 0.6,....... Theedge cardinality of a minimum EIDS is |S;;| = 0.6and
Yvi(Geyi) = 0.6.
Theorem 5.7
Let Gy = (Ay1p, B, Coy) and G = (A%, BE1,C)  be two VFIGs. Then

Yvi(Geyr) = min{Ay;p (mll)'A%IP (ny1)} where my; € Gyiand ny; € G,
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Proof. Assume Gg; = (AYp, Bii, Cip) and G2, = (A%p, B2, C2p) are two VFIGs.

Since Gy; and G# are two VFIGs, then GE;0GE; will be a VFIGs. So, each two edges

in G£;0G2, will dominates remaining edges. Then by definition of EIDN,

Yvi(Geyr) = min{cardinalityof (Ayp(My11), Afrp (n11))}-

Theorem 5.8

Let Gy = (Ahp, B, Cly) and G2 = (A%;p,B2;,,C4)  be two VFIGs with
k = 2and [ = 2, where k and lare representing the number of vertices in

ywilGevD) _

G, and G&, respectively. Then .

min{cardinalityof (Bj;,(m11M32), Bf, (M11122))}-
Proof. ConsiderGg; = (AYp, Biy, Clip) and G2, = (A%p, BéL, C2p) are two VFIGs.
Since G, and GZ; are VFIGs. Then G3;0GE will also a VFIG with W =

min{cardinalityof (B}, (m1M33), B4, (M1112,))} because each two edges in

GE,0GE dominates to all remaining edges.

6. Strong and Weak Domination inCT-VFIGs

Definition 6.1
Let Ggyp be a CT-VFIGs. For any two edges ey, €,y € Ecyp,eq1y; strongly dominates
eyyr in CT-VFIGsGy, if

(i) they are incidentally dominate edges

(i) deg‘(ew;) = deg‘(eqy), deg’ (e1y) < deg” (ezy)
Similarly e;; weakly dominates e,y if

(i) they are incidentally dominate edges

(i) deg*(ezy) = deg*(ewy;), deg” (ey) < deg” (e1y))
Definition 6.2
An edge incidentally dominating set Rgy; € E¢y; is called a strong (weak) edge
incidentally dominating set (SEIDS,WEIDS) of Gy, if, for each eyy; € Ecy; — Reyy,s
there exist at least one edge e,y; € Reyy, so that e;y; strongly (weakly) dominates e,y;.
The strong (weak) edge incidentally domination number of Ggy; denoted by
Ysvi(GevD)Ywvi(Geyp), is called as the minimum cardinality of a strong (weak) edge
incidentally dominating set of G¢y;.
Example 6.3
In figure 3, the incidentally dominating edges are {e;;}, {22}, {€33}, {€ss},{€55}
{escyand the SEIDSs are Si; ={e11€2:},522 = {€11€44},533 = {€22€33},54s =
{eszess}. After calculating the edge cardinality of S;1,S,5,.S33,S4we obtain|S;;| =
0.6,]S5,| = 0.65,|S55] = 0.6,|S,4] = 0.6. Theedge cardinality of a minimum SEIDS
is  |S11] = 0.6and  ysy;(Geyy) = 0.6. The WEIDSs are  Sss = {€11€55},566 =
{e11€66},57,7 = {€33€66}. After calculating the edge cardinality of Sss,Seq,.S,,we
obtain|Sss| = 0.6,|S¢¢| = 0.6,]|S,,| = 0.6Theedge cardinality of a minimum WEIDS
is |Sss| = 0.6and Yy (Geyy) = 0.6.
Theorem 6.4
Let G¢y; be a CT-VFIGs without single node and R¢y; be a minimum SEIDS of Gy,
then E¢y; — Rey,is an SEIDS of CT-VFIGs.
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Proof. Let G¢y; be a CT-VFIGswith minimum SEIDS, then for each edge e,y; € Reyp,
there is at least one edge ejy; € Eqyy — Ngy; so  that  deg®(eqy;) =
deg*(er), deg’ (ery;) < deg” (em) and teer (W11, Wiy wyy) =
min{tACV, (W11), tpcy; (W11, sz)}» chw (W11, Wiiwy,) =
max{fAcw W11 fe, (W11,W22)}. Hence E¢y; — Rey; strongly dominates each edge
of Rey;- So, Ecy; — Reyy is an SEIDS of CT-VFIGs.
Theorem 6.5
Let Ggyp be a CT-VFIGs without single node and Rgy; be a minimum WEIDS of
Geyr, then Ecy; — Reyis an WEIDS of CT-VFIGs.
Theorem 6.6
For any CT-VFIGs with tc,, (W1, Wy1W2,) = min{tAcvz(Wll)' tBCV,(Wn:sz)}and
fCCV, (W11, Wi1Wyp) = max{fACV, (W11):fBCV, (W11:W22)} for all wy; €
Vevi, Wi11Wa, € Ecyy, then ygy, = Yy
Proof. Let Geyvr be a CT-VFIGs with ooy, Wi, Wiiwpy) =
min{tACV, (W11), 3 (W11, sz)}and chV,(Wn' W11 Wop) =
max{fACV,(Wll):fBCV,(W11rW22)}~ Assume for every node have same or different
value. Since Geyr is CT-VFIGs with gy, (W11, W2p) =
min{tACV, (W11), tacyr (sz)}andfscv, (W11, Wa3) = max{fACV[(Wll)'fACVI(WZZ)} for
all W11, Way € Veyg andtccw(Wn'Wanz) =
min{ta.,, (Wi1), tpe,, Wiz, Woo) Jandfe,,, (Wig, Wi wy,) =
max{fac,, (W11, fagy; Wiz, Wop) Jfor all wyy € Vey,WiWy, € Egyp. Thus  every
eivreayr € Ecyy is SEIDS as well as WEIDS. Therefore ysy; = Yyy-
Theorem 6.7
For a CT-VFIGs, the below inequalities are true.
@) vvi < Vsvi < Ocyi(Geyy) — max i mumdg,,, 0f Gey;.
(ii) Yvi < Ywvi < Ocvi(Geyr) — minimumdg,, 0f Gey,.
Proof. (i) From definition 6.1 and 6.2 we have Yy < Venr
(6)
We know O¢y;(Geyp) = the sum of the incidence pair of CT-VFIGs.
Also Ocy;(Geyp) - not including the maximum dg, ., of CT-VFIGs

=0¢vi(Gevr) = Beyi (Gevir)
)
From equation (6) and (7)

Yvi < Vsvi < Ocyi(Geyy) — max i mumd, ., 0f Gey,

(ii) From definition 6.1 and 6.2 domination number yy; of CT-VFIGs is less than or
equal to the Yy, of CT-VFIGs, because the edges of WEIDSMy,;, it weakly

dominates any one of the edges of E¢y; — Mgy,

Therefore Yevi(Gevi) 2 Yvi(Gevr)
®)
Also Ocy;(Geyy) -not including the minimum dg,,, of CT-VFIGs
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=0cvi(Gevr) — Scvi(Gevi)
)
From equation (8) and (9), we get

Yvi < Ywvr < Ocyi(Geyy) — mini mumdccw of Gey,

7. Real-Life Application of CT-VFIGs
An application of CT-VFIGs is included here. Consider two networks (CT-VFIGs)
GiandGE;, which have two and two vertices, respectively, and show distinct journal
publications from different journals of a research filed. The vertices MS value
indicates the percentage of accepted research papers in journal publishing, while the
NMS value represents the rejected research papers. The MS value of the edges
indicates that the journal publications are mutually collaborative, whereas the NMS
value indicates that the journal publications are not mutually collaborative. The MS
value of the incidence pairs represents the percentage of progress, whereas the NMS
value represents the percentage of journal publications that have not progressed. As in
figure 3 composition of Ggand GZ; show the percentage of progress of journal
publication m,;with journal publications n;; and n,, has the maximum MS value
and the percentage of non progress of journal publication m;; with journal
publications n;; and n,, has the lesser NMS value. As a result, the best suited
combinations of journal publications demonstrating the largest percentage of progress

and the lowest percentage of non-progress in the research field exist.

8. Comparative Analysis
In figure 3, calculate the edge cardinality of each edge, we get all the edges have same
value. In our study the edge degree cardinality of the CT-VIFGs |dGcw(elV1)| =02
and |dGcw (ezw)l = 0.3 are not all the same. It can be observed that the edge degree
of the edges |dGcw (€1V1)| = {0.9,2.4} shows the percentage of progress of journal
publication my; with journal publicationsn,; and n,, has the maximum MS value
and the percentage of non progress of journal publication m;with journal
publications ny; and n,, has the lesser NMS value. As a result, the current method is
ineffective in determining which journal publications have the highest percentage of
progress and the lowest percentage of non-progress. The current method is useful for
single networks, but it is insufficient to explain the overall impact of different
networks' products. However, we may use composition to discuss the overall impact of
combining multiple networks in our strategy. Our technique works with several
networks as well as a single network. This allows us to discuss the overall influence of
various networks products. As a result, our proposed strategy outperforms the existing
one.
9. Conclusion

CT-VFIGs are extremely useful tools for researching a variety of computational
intelligence and computer science topics. CT-VFIGs are used in a variety of fields,
including natural networks and operations research.Three new CT-VIFG concepts in
this article EIDS, SEIDS, and WEIDS. In the CT-VFIGs, some advantageous and
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instrumental theorems of domination are also explained. A study of the makeup of
VFIGs in the field of research is also included. Our research into CT-VFIG coloring,
Hamiltonian CT-VFIGs, and CT-VFIG chromaticity in the future. The results of

future research on these concepts will be revealed in upcoming papers.
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Abstract. In this exploration article, the possibility of Complete Intuitionistic
Fuzzy Incidence Graphs (CIFIG). Degree cardinality, strong and weak
domination for complete intuitionistic fuzzy incidence graphs is characterized.
The author clarifies these ideas with some outline models. Besides, a use of
domination for Complete Intuitionistic Fuzzy Incidence Graph (CIFIG) to
choose the best treatment facility accessible hospital is talked about for the

delineation.
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Cardinality, ~ Strong  Intuitionistic ~ Fuzzy  Incidence = Domination
Number(SIFIDN), Weak Intuitionistic ~Fuzzy Incidence Domination
Number(WIFIDN).

1. Introduction

Zadeh(28] [30] [31] [32] have initiated fuzzy sets. Parvathi and Karunambigai[13] have
initiated the idea ofIntuitionistic Fuzzy Graphs (IFGs). Gani and Begum [5] talked
about the extension of fuzzy graphs. Products in IFGs were discussed by Sahoo & Pal
[17].Sahoo and Pal [18,19] studied some types of fuzzy graphs. Sahoo et al [21]
initatied new ideas in intuitionistic fuzzy graphs. Kalaiarasi and Mahalakshmi have
also expressed fuzzy strong graphs [8].Shanmugavadivu and Gopinath, suggested non
homogeneous ternary five degrees equation [24]. Shanmugavadivu and Gopinath,
have also expressed on the homogeneous five degree equation [25], Bozhenyuk et al[2]
has talked about dominating set and Mapreduce Methodology for Elliptical Curve
Discrete Logarithmic Problems [29].

Ore and Berge introduced the concept of domination in 1962. Cockayne and
Hedetniemi have further studied about domination in graphs[6]. Somasundaram and
Somasundaram have initiated domination in fuzzy graphs by making use of effective
edges[23]. Xavior et al. [27] has talked about domination in fuzzy graphs but
differently. Dharmalingam and Nithya have also expressed domination parameters for
fuzzy graphs(3). Equitable domination number for fuzzy graphs was introduced by
Revathi and Harinarayaman in [16]. Sarala and Kavitha have also expressed (1,2)-
domination for fuzzy graphs[22]. Gani and Chandrasekaran have talked about strong
arcs[12]. Sunitha and Manjusha have also expressed strong domination [26]. Kalaiarasi
and Mahalakshmi have also expressedfuzzy inventory EOQ optimization
mathematical model [9]. Kalaiarasi and Gopinath suggested fuzzy inventory order
EOQ model with machine learning [10]. Fuzzy Incidence Graphs (FIGS) discussed by
Dinesh [4]. Mordeson talked about incidence cuts in FIGS [11].Priyadharshini et
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al.[18] have also expressed a fuzzy MCDM approach for measuring the business impact
of employee selection [15].

The design of this articlein section 2 provides some preliminary results which are
required to understand the remaining part of the article. In section 3 CIFIG is
defined. In section 4 conveys meaning domination in CIFIG. In section 5 we examine
Strong Intuitionistic Fuzzy Incidence Dominating Set (SIFIDS) and SIFIDN and
Weak Intuitionistic Fuzzy Incidence Dominating Set (WIFIDS) and WIFIDN. In

section 6 application of intuitionistic fuzzy incidence domination number is given.

2. Preliminaries

Definition 2.1[17]

An intuitionistic fuzzy graph is of the form GlF = (VIF ’ EIF 1 PiF ’¢IF) where

P =(p10,), O = (61, 6,) and Vie :{XO’Xl’XZ’"'X”} such that
Py Ve _)[011] and P2 ‘Vie _>[O'l]

represent the degree of membership and

non membership of the vertex X1 EVH: ! respectively and 0< Pt P; <1 for
X, €V (i=12,..n) ¢ V- xV,. —[0]]

each and

¢2 :\/”: X\/”: _)[0’1]’ ¢1(X11’X22) and ¢2 (Xll’xzz) show the degree of

membership and non membership of the edge (Xﬂ’ X22), respectively, such that
¢ (X1, X0) <IN {pl(xll)’pl(XZZ)} and

$, (X1, %) < rmx{pz(xn), P> (Xzz)}v 0< ¢ (X4, X5) + 5 (%3, X5,) <1

for every (Xﬂ’ X22) .

Definition 2.2[4]

:(\/l ’El) is a graph. Then,
I, Vi xE

G| =(V|,E|,|,)

Assume | is named as an

incidence graph, where

Definition 2.3[4]

G =V, E V,
Assume 9 ( FS? FS) is a graph, Hes is a fuzzy subset of =~ 75, and Vrs isa

Vs xV,

V.. xE
fuzzy subset of FS| Let Vs be a fuzzy subset of ~FS FS,

W rs (Wip, Wiy Why, ) < i {/uFS (W), 7es (W11W22)}

W, eV, W. W, € E
11 Fs1 VW W) FS then Ves

If
for every

is a fuzzy incidence of  FS.

Definition 2.4[4]
Assume G' is a graph and (‘u| 17 ) is a fuzzy sub graph of G' Y isa fuzzy

incidence of G' , then G' = (,Ll| 715V ) is named as FIG of G' .
Definition 2.5[7]
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An  intuitionistic =~ fuzzy  incidence  graph(IFIG) is of the form

G = Ve Bl P B0 X))
Pe = (P P2), b = (W) 2 = (200 22) nd
Ve, = {Xg) X, X5 000X, | ot e P Ve =01 o1V —[0]]
represent the degree of membership and non membership of the vertex X11 € VA
O<p+p, <1 . 4 % €Ve (i :ZLZ,...n)'
¢ Vo xVy —[01 bV Ve =01 (% %)

where

respectively  and

(%11 %2) howy the degree of membership and non membership of the edge
(X1 %z2) yeapectively, such thar A1 %22) SMN{01060), £1(%2)]
(% Xe2) < MEX {0, (%12), £, (%)} 0= b (X3, %) + b (X1, %) <1
for every (Xigs %o0) 7.V xE., —»[0]] -
2 Ve xE & [0,1]; 21 (X1 %11 %55) nd X2 (X112 %1 %) showw the degree

of membership and non membership of the incidence pair respectively, such that

Z1(X41, %41 %,) < min {pl(xll)' ¢1(X11X22)}

X2 (%11, X41%,) < rTHX{pz (Xll)’¢2(X11X22)}v
0 < 71 (%11, X43%00) + 22 (K11, X41%00) <1 for every (X115 %11%52) )

and

3. Complete Intuitionistic Fuzzy Incidence Graph

Definition 3.1
The support of IFIG G =(RST) is supp Ge) =(supp(R),supp(S),supp(T)} so
that supp(R)= %/ Py (%) >0, 5 (%) > O}
supp(S)= {anzz 14, (X1X%0) > 0,8, (X1%5,) > 0}
supp(T)- 1060 X03%0 )1 20 (X3 X01%0) > 0, 7 (X4 X3 %) > OF

* * *
P ’¢ and £ are representing support ofp’¢ and X respectively.
Definition 3.2

A TFIG is said to be complete intuitionistic fuzzy incidence graphif

J1 (Xg5 X1 %5,) = min {pl(xll)v¢1(x11X22)} and
X2 (Xu’ X11X22) = Mex {,02 (X11)1 b (X11X22)}’ for each

X1 (%41, X41%05)s X0 (K10, X41%00) € 27 )

Remark 3.3
Every CIFIG is a IFIG but not conversely.
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Definition 3.4

Assume Gr =0 9 Xi1) is a CIFIG. Then

0Gr)= Y (1+Z1(X11’X11X22)2—7(2(X11,XMXZZ)

X117% X2, X %02V

S(GIFI )= z (1+ ¢1(X11X22) — @, (Xllxzz)j

is called

. 2
order of ~IFl and X11X02 is called
size of G|F|
4. Domination in CIFIGs
Definition 4.1
Definition 4.1
X, . Xy .
A vertex 1 in aCIFIG dominates to vertex * 22 if

Z1(%41, X41%,) = min {pl(xll)1¢l(xllX22)}and
X (X1, %1 %5,) = MBX {Pz (%), 9, (X11X22)}

Remark 4.2

For any X115 %o EV”:l , if X dominates X2 then X2 also dominates X11.

Definition 4.3

A set M IFI g\/”:' is a intuitionistic fuzzy incidence dominating set (IFIDS) if each
nodes in V|F| -M IFl is dominated by atleast one node in M IFl,
Definition 4.4

The lowest intuitionistic fuzzy incidence cardinality of a IFIDSis uttered as the

intuitionistic fuzzy incidence domination number and it is represented by

Ve (G ) or VIFI

Definition 4.5
Consider GIFI = (VIFI ’EIFI ! 151 PIE :¢|F| ’ZlFl) is an CIFIG and X1 eVIFI
Ao, () = (le”:l (%41),dyg, (Xll)) and

then its degree is expressed by

represented by le'F' (Xll) - Z %17 %22, (Xll’ X11X22) <l P and
dze,Fl (%) = Z X% X (%11, X41%0) € 1 gy

5. Strong and Weak Domination in CIFIGs

Definition 5.1
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ds (x
Let G|F| be aCIFIG. Then the degree cardinality of ( 11) is representedto be
‘d ( )‘ _ 1+ le“:, (%1) _dZG,F, (%1)
G X)| = 2
. The lowest degree cardinality of
G 6(G ) = min dG”:, (%) /%, €Vig }

IFl s defined by and highest degree

cardinality of Giry is defined by AGyy) = mex{ dG'F' 1) /% €Vier} .

Definition 5.2

Assume G|F| is a CIFIG and let Xlland X22be the nodes ofG”:' . Then X1

Xi1if d, (%)= d; (X5,) and

. X X .
strongly dominates “220r 22 weakly dominates

20X X3 %e2) = MIN {0, (X01), (%01 %e) |

)

X (X1, %1 %5,) = MBX {Pz (%1), 9, (X]_1X22)}

We call Xzzstrongly dominates X1 or X1 weakly dominates X2 if

d; (Xz2)= d; (%) and 21 (Xe2: X11%,) = min {pl(xzz)v¢1(X11X22)},
X2 (Xz, X1 %p5) = MEX {pz (%22). &, (X11X22)}
Definition 5.3

A set SF' g\/”:' is a SIFIDS if every vertex in V|F| _SH is strongly fuzzy

incidence dominated by atleast one vertex in SF' . Similarly, SF' is labeled a
| V. -S, - |
WIFIDS if every vertex in  IFl FI' is weakly fuzzy incidence dominated by at least

one vertex in SF' .
Definition 5.4

The lowest intuitionistic fuzzy incidence cardinality of a SIFIDS is uttered as the

SIFIDN and it is represented by Vs (G'F' ) or 7 sk and the lowest intuitionistic
fuzzy incidence cardinality of a WIFIDS is uttered as the WIFIDN and it is

Ywir (G ) or TWIFI

represented by

Example 5.5
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(0.4, 0.5)
—_—

Xy (05.03) @ x,,(04,0.5)

—

(0.4, 0.35) (0.4, 0.3)

3,06)
% 0.6)

(0.3, 0.6)

(0.3.0.6) (0.3. 0.6)

X35(03,0.6)

Fig: 1CIFIG with Vsr =05 and YW = 04

Asume Ot = (P br Zim) g anCIFIG given in above figure having
Vier = (0% %) g

p(%) =(0405) p(x,,)=(0503) p(x;)=(0.306)

(X1 %,,) = (04,05) $(Xe,%s3) =(0.30.6) $(¥5,%,,) = (0.30.6)

X (%1, %1%,) = (0.4,0.5) (X0, %11%,) = (04,0.5)

(Ko XorXa3) = (0.30.6) 7(Xes, X2 %e5) = (0.30.6)

X (%11, %1 %3) = (0.3.0.6) 7(%a5, X11%5) = (0.3,0.6)

pssame P = U5 e pave Vim =Dt = D122} prere %o weakly fuzzy
X X5 1o Ua, (%) =02

is less than the CF of all

delF, (X11) =03 dG”:, (X33) =03

incidence dominates

the remaining vertices. That is . There is no

other weak intuitionistic fuzzy incidence dominating sets. Thus the only weak

D||:| :{X33}‘ Therefore

intuitionistic fuzzy incidence dominating set is

Yt = 04 We have strong IFIDS is D":' = {Xll} with Vsr = 05

Theorem 5.6

For anyCIFIG  with Z1(%41, %11%,) = min {pl(xll)l ¢1(X11X22)} and
X2 (%11, X41%,) = IMBX {Pz (%11), &, (X]_1X22)} for all

X3 €Vigys X1 X%y, € By then
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o) Ysr = Ywir

(i) Yse 2 Ywik
Proof
LetGIFI =(Pr Dr Xim) be a CIFIG with

X1(%41, X11%,) = min {pl(x11)v¢1(xuxzz)} and
Xo (X1, X1 %50) = nHX{Pz(Xu)a@(Xquz)}, Assume  for all a1 €V ,

(,01()(11), P (Xll))have samevalue.  Since G|F| is CIFIG  with
 (XXe2) = 11N {0, (%), 01 (Xe2) )

and
B, (X1 %o0) = n’HX{pZ (%2)s 22 (Xzz)} for ol XwXe €Ve o g
Z1(Xg5 X1 %00) = Min {pl(xll)1¢l(xllx22)}and
X2 (Xiq5 %43 %55) = MBX {:02 (%11), 8 (Xuxzz)} for all

X EV”:' » %11 € E'V' . Thus every X E\/”:' is SIFIDS as well as WIFIDS.

Therefore YwiFr = Vs .

Assume for all X1 E\/”:' , (’01()(11)"02 (Xll)) have different value . In a CIFIG
dg,, (%1) 2 dg (%)

all the remaining nodes, if it is smallest among all the nodes then the IFIDS with that

with from all the nodes one of them strongly dominates

node is called WIFIDN, that is Ywir :(pl(xll)’pz(xﬂ)) with

dGIFI (Xll) < dGIFI (X22) for all Xll’ X22 e\/IFI and
X1(%41, X11%,) = min {pl(xll)1¢l(xllx22)}and
X (X1, %1 %5,) = MBX {:02 (%), &, (Xuxzz)} for all

X1 €Vigy s X1 Xy, € By

. Certainly, the strong IFIDS has a node set other than

>
the that node set. This implies Vsr Z Vwir .
Theorem 5.7

For a CIFIG, the below inequalities are true.

0 Vit < 7sm SO(G ) —meximumd, - of GIFI’

(i) Vet < Ywin SO(Gg ) —minimumd, | of G, ‘
Proof

<
(i) From definition 5.2, 5.3 and 5.4 we have Vim =VsR (1)

We know O(G|F| ) =the sum of the incidence pair of CIFIG.
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Also O(G|F| ) " ot including the maximum  ©* of CIFIG
- O(Gg)-AGK) Q)

From equation (1) and (2)
7 < Vap SO(G ) —maximumd,  of G,

(ii) From definition 5.2, 5.3 and 5.4 domination number ViF of CIFIG is less than

or equal to the Ywri of CIFIG, because the vertices of WIFIDS M IFl it weakly

dominates any one of the vertices of *IFl ~ "V'IFI

Therefore 7 WIF! (CT e (cry (3)

Also OG ) -
- O(Gg)-6(Gg) 4)

d
not including the minimum ¥ of CIFIG

From equation (3) and (4), we get

Yie < Ywie S O(GIFI)_ min imumdelp, of G .

6. Application
Here, incorporate an every day life model. Assume there are five multispeciality
clinics are working (24 hours) in a city for giving crisis treatment to individuals. Here

in our examinationwe are not referencing the original names of these clinics in this

manner think about the clinics hll’ 222 h‘:'?’, 44 and hﬁ5. InCIFIGs, the vertices
show the clinics and edges show the contract conditions between the clinics to share

the facilities. The incidence pairs show the transferring of patients from one clinic to
(0.4,0.6)

40% of the necessary facilities for treatment and unfortunately lacks 60% of the

equipment. The edge P-ﬁlhzz (0.14,0.86)

interaction and relationship between the two clinics, and due to financial issues, there

another because of the lack of resources.The vertex hll means that it has

shows that there is only 14% of the

is 86% on the conflict between them.IFIDS ruling arrangements of the graph is the
arrangement of clinics which give the crisis treatment autonomously. Along these
lines, we can save the time of patients and conquer the long going of patients by giving

the couple of offices to the remainder of the clinics.

Assume GlFI = (\/IFI ’EIFI ’IIFI ’pIFI ’¢IFI ’IIFI) is a CIFIG show in figure
having Vier = (g, oy, Mg, 0y, heg) and p(h,)=(04,0.6) ’

p(h,,) =(014,086) p(h,,)=(0520.48)
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p(h,,) =(0.240.76) p(h;)=(0.240.76) ¢(h,,h,)=(0.14,0.86)
#(hy,i5) = (0.4,0.6) ¢(hy,,h,,) =(0.24,0.76)

#(haa,h,) = (024,0.76) ¢(h,,,hs) = (0.24,0.76)

x(hy,hyhy,) =(0.14,0.86) x(hy,,hyhy,) =(0.14,0.86)

(P, he) = (04,0.6) x(hgg, hyhyg) = (0.4,0.6)

2(h,hyhy) =(0.24,0.76) x(h,,, hyh,,) =(0.24,0.76)
2(hsa,high,,) = (0.240.76) x(hy,,hihy,) = (0.240.76)

(N, huhes) = (024,0.76) z(hyg, hyh) = (0.24,0.76)

Example 6.1

By, (0.14, 0.86)

(0.14, osi/)//'

(0.14. 0.86)
(0.14, 0.86)

Jy, (0.4, 0.6) (0.4, 0.6) (0.4, 0.6) F35(0.52, 0.48)

——
(0.4, 0.6)

(0.24, 0.76) (0.24, 0.76)

l (0.24,0.76)

S h,,(0.24.0.76)

(0.24, 0.76)

(0.24, 0.76)

(0.24, 0.76)
_—

h(D.24, 0.78) (024, 0.76)
-

(0.24, 0.76)

Fig: 2CIFIG with 7IF1 = 0.38

In figure having intuitionistic fuzzy incidence dominating set are — IFl — {hzz’ 44}

and Ve =038

This shows that patients can visit any one of the clinics from this set. The rest of the

clinics upgrade their facilities to provide better treatment to the people.

9. Conclusion
The idea of domination in CIFIGs is imperative from religious just as an applications
perspective. In this paper, the possibility of complete intuitionistic fuzzy incidence
graph, strong and weak intuitionistic fuzzy incidence dominating set and strong and
weak intuitionistic fuzzy incidence domination number is talked about. Further work

on these thoughts will be accounted for in impending papers.
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INTRODUCTION

Graph theory has now become a major branch of applied
mathematics due to its large variety of applications and
effectiveness. Graph theory is a widely used tool for solving
combinatorial problems in different areas such as geometry,
algebra, number theory, topology, optimization and computer
science. In models, when we have an uncertainty about either
the set of vertices or the set of edges or both, the models
becomes a fuzzy graph. Currently, the theory of fuzzy graphs is
an intense area of research. Fuzzy graphs differ from the
classical ones in several ways, among them the most prominent
one is connectivity. Distance and central concepts also play
important roles in applications related with fuzzy graphs.
Rosenfeld (1975) gave a mathematical definition for a fuzzy
graph in 1975. Bhattacharya (1987) had established some
connectivity concepts regarding fuzzy cutnodes and fuzzy
bridges. Bhutani (1989) had studied automorphisms on fuzzy
graphs and certain properties of complete fuzzy graphs.
Pathinathan and Jesintha Rosline (2014) defined relationship
between different types of arcs in both regular and totally
regular fuzzy graph. Sunil Mathew and Sunitha (Bhutani, 2003;
Mathew, 2009; Sunitha, 1999; Sunitha, 2002; Sunitha, 2005)
introduced many connectivity concepts in fuzzy graphs.
Kalaiarasi (2011) defined Optimization of fuzzy integrated
vendor-buyer inventory models.

*Corresponding author: Geethanjali, P.
PG and research Department of Mathematics, Cauvery College for
Women, Trichy-18, Tamil Nadu, India.

In this article, the concept of arc sequence in fuzzy graphs are
discussed. These concepts are derived from the notion of
connectivity in fuzzy graphs. Also a comparative study is made
between regular and totally regular fuzzy graphs with reference
to different types of arc sequence in fuzzy graphs. Also a
necessary condition for a graph to be regular or totally regular
is formulated in terms of arc-sequence

2. Preliminaries

Definition 2.1

A fuzzy graph G is a pair of function G: (0, 1) where O is a
fuzzy subset of a non empty set J and g is a symmetric fuzzy

relation on O . The underlying crisp graph of G: (0, L) is
denoted by G” : (V,E) where ECV XV

Definition 2.2

A fuzzy graphG is complete if z(uv)=o(u) Ao(v) for all
u,veV ,where UV denotes the edge between U and V

Definition 2.3

The strength of connectedness between two nodes X and y

is defined as the maximum of the strengths of all paths between
X and y and is denoted by CONN .. (x, y)-
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Abstract

The concept of connectivity plays an important role in both theory and
applications of fuzzy graphs. Depending on the strength of an edge, this paper
classifies edge sequence of a fuzzy graph in to different types. We analyze the
relation between different types of edge sequence in both pseudo regular and
totally pseudo regular fuzzy graphs. Also we identify strong edge sequence in
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1 Introduction

Euler in 1736 first introduced the concept of graph theory. Fuzzy graph theory is finding
numerous application in the fields of information theory, neural network, expert systems,
cluster analysis, medical diagnosis, control theory ect. Fuzzy set theory was first in-
troduced by Zadeh in 1965 [19]. The first definition of fuzzy graph was introduced by
Haufmann in 1973 based on Zadeh’s fuzzy relations in 1971. In 1975, A.Rosenfeld [16]
introduced the concept of fuzzy graphs. Sunil Mathew and Sunitha [10] defined different
types of arcs in fuzzy graphs and using them classified fuzzy graphs. Pathinathan and
Jesintha Rosline [15] defined relationship between different types of arcs in both regular
and totally regular fuzzy graph. Santhi Maheswari and Sekar [17] introduced on pseudo
regular fuzzy graphs. Butani and Rosenfeld [2] have introduced the concept of strong arcs.
Kalaiarasi [8] defined Optimization of fuzzy integrated vendor-buyer inventory models.
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Abstract

In this article, the perception of strong domination constant number is introduced by
using membership values of strong arcs in fuzzy graphs. The strong domination constant number
7. Of pseudo regular fuzzy graph and complete fuzzy graph is determined. Further the

relationship between the strong domination constant number of a pseudo regular fuzzy graph and
complete fuzzy graph are discussed and theorems related to these concepts are stated and proved.

Keywords:

Pseudo regular fuzzy graph, Totally pseudo regular fuzzy graph, Complete fuzzy graph,
Strong arcs, Weight of arcs, Strong domination constant number.
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!Dr.K.Kalaiarasi, ?P.Geethanjali

! Assistant Professor, 2 Assistant Professor
PG and research Department of Mathematics,
! Cauvery College for Women, Trichy-18, Tamil Nadu, India.

Abstract: In this article, we generalize the concept of strong and weak domination in intuitionistic fuzzy graph and we
introduced a definition of weight of strong dominating set using strong arcs and weight of weak dominating set using weak arcs of

intuitionistic fuzzy graphs. We determine the strong domination number g, (G) and weak domination number y,,¢(G)
for several classes of intuitionistic fuzzy graphs and some theorems are discussed.

Keywords: Intuitionistic fuzzy graph, Strong arcs, Weak arcs, Weight of arcs, Strong domination number, Weak domination
number.

1.Introduction

In 1983 Atanassov [2] introduced the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets [9] .
Atanassov added a new component (which determines the degree of non-membership) in the definition of fuzzy set. The fuzzy
sets give the degree of membership of an element in a given set ( and the non-membership degree equals one minus the
degree of membership), while intuitionistic fuzzy sets give both a degree of membership and a degree of non-membership
which are more —or-less independent from each other, the only requirement is that the sum of these two degrees is not greater
than 1. Intuitionistic fuzzy sets have been applied in a wide variety of fields including computer science, engineering,
mathematics, medicine, chemistry and economics[1,3].

Atanassov [1] introduced the concept of intuitionistic fuzzy relations and intuitionistic fuzzy graphs, and further
studied in [8]. In this article, we introduce the notion of strong and weak domination in intuitionistic fuzzy graphs. We
discuss strong domination number and weak domination number in intuitionistic fuzzy graphs.

2.Preliminaries

Definition 2.1

An intuitionistic fuzzy graph (IFG) is of the form G : (V, E) where

(@ V ={v;,Vv,,...,V,} such that z4 :V —[0]] and 7, :V —[0,1] denote the degree of membership and non

membership of the element v, €V respectively and O< (Vi) +y,(v,) <1 for every
v, eV(i=12,...,n)

(i) EcV xV where g, :V xV —[0]] and y, :V xV —[0,1] are such that
(Vi V) <min g4 (V). 14 (V)
72 (Vi vp) <mex(y:(v;), 71 (v)))
and 0< 14, (V;, V) +7,(V;,v;) <1 forevery (v;,v;) €E, (i, j=12,..,n)
Definition 2.2

If V;,V; eV <G, the p- strength of connectedness between V; and Vv, s

yg"(vi,vj)=sup{y2k(vi,vj)\k:LZ,....,n} and y - strength of connectedness between V; and V; is
vy (v, v;) =inf{ 75 (v;,v;)\k =1,2,....,n}.
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Abstract: In this article, we introduce the notion of mixed intuitionistic fuzzy graph, square mixed intuitionistic fuzzy graph and we
define direct product, semi-strong product and semi product. In addition we investigated many interesting results regarding the concept.

Finally we define dual strong domination number and some theorems are discussed.

Keyword: Mixed intuitionistic fuzzy graph, Square mixed intuitionistic fuzzy graph ,Direct product, Semi-strong product, Semi-product,
Weight of dual strong dominating set, Dual strong domination number .

1.Introduction

In 1975, Rosenfield [11]discussed the concept of the fuzzy graph, the basic idea of which was
introduced by Kauffman [8] in 1973. The fuzzy relations between fuzzy sets were also considered by
Rosenfield, he developed the structure of fuzzy graphs and obtained analogues of several graphs theoretical
concepts. The first definition of intuitionistic fuzzy relations and intuitionistic fuzzy graphs were introduced
by Atanassov (1999), and further studied in (2009). Different types of intuitionistic fuzzy graphs and their
applications can be found in several papers. Parvathi and Thamizhendhi (2010) introduced the concept of
domination number in intuitionistic fuzzy graphs.

In this paper, direct product of two mixed intuitionistic fuzzy graphs, semi-strong product and semi
product of two square mixed intuitionistic fuzzy graphs are defined, and many interesting results involving
these concepts are investigated. Moreover, we defined dual strong domination number and investigated their
many interesting results.

2.Preliminaries

Definition 2.1

An intuitionistic fuzzy graph (IFG) is of the form G: (V,E) where

(i) V={v,v,,..,v,} such that z, :V —[0]1] and y,:V —[0]1] denote the degree of membership and
non membership of the element v, eV respectively and 0< z(v,)+y,(v;) <1 for every
v, eV(i=12,...,n)

(i) E<V xV where w4, :V xV —[0]1] and y, :V xV —[0/1] are such that
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Abstract

In this paper, we introduce the notion of mixed split intuitionistic fuzzy graph, strong
mixed split intuitionistic fuzzy graph, complete mixed split intuitionistic fuzzy graph, join
product of two mixed split intuitionistic fuzzy graphs and establish some of their properties. Also
we discuss dual strong domination regarding the concept.

Keywords:
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Complete mixed split intuitionistic fuzzy graph, Join product of two mixed split intuitionistic
fuzzy graphs .
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Abstract

In this paper we study different concepts like vertex squared interval-valued fuzzy graph,
vertex squared cardinality, vertex squared independent set, n-split dominating set, n-split
domination number. We likewise, investigate a relationship between n-split dominating set and
vertex squared independent set for vertex squared interval-valued fuzzy graphs.

1. Introduction

Fuzzy graphs differ from the classical ones in several ways, among them
the most prominent one is connectivity. Distance and central concepts
additionally assume important parts in applications related to fuzzy graphs.
In 1965 Lotfi. A. Zadeh initiated fuzzy sets and later in 1983 Krassimir T.
Bhattacharya [3] has discussed fuzzy graphs. Kalaiarasi and Mahalakshmi

have also expressed fuzzy strong graphs [10].

2020 Mathematics Subject Classification: 05C12, 03E72.

Keywords: Vertex Squared Interval-Valued Fuzzy Graph (VSIVFG), n-Split dominating set, n-
Split domination number, Vertex squared independent set.
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