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ABSTRACT

The concept of graph theory was initially developed by Euler in 1736. In 1965, Lotfi. A. Zadeh intro-

duced the concept of fuzzy sets, which has since been successfully applied to several uncertain real-world

decision problems. Berge introduced dominance as a theoretical term in graph theory in 1958. In 1983,

Atanassov presented intuitionistic fuzzy sets as a generalization of fuzzy sets. As described by Zadeh in

1975, interval-valued fuzzy sets are an extension of fuzzy sets in which the values of the membership de-

grees are intervals of numbers rather than integers. In 1993, Gau and Buehrer proposed a vague set theory,

which is a generalization of Zadeh’s fuzzy set theory. Picture fuzzy set is a modified version of fuzzy set

and intuitionistic fuzzy set presented by Cuong and Kreinovich. Pathinathan and Jon Arockiyaraj presen-

ted the hesitancy fuzzy graph, a new fuzzy graph with different theoretical features and validations. This

research work is focused on various kinds of domination and edge sequences in different fuzzy graphs. In

this research, we applied real-life applications to the above domination concept and we get the best result

from our all concepts.
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PREFACE

In 1736 the concept of graph theory was introduced by Euler. Fuzzy set theory was first introduced

by Zadeh in 1965. Rosenfield developed the structure of fuzzy graphs and obtained analogs of several

graph’s theoretical concepts. Mordeson proposed concepts in Fuzzy Incidence Graphs. Ore and Berge

introduced the concept of domination in 1962. Cockayne further developed the concept of domination.

Domination in graphs has been examined further by Haynes. Domination in fuzzy graphs using effective

edges was introduced by Somasundaram. Parvathi (2010) introduced the concept of domination number in

intuitionistic fuzzy graphs. Manjusha has also expressed strong domination. Irfan Nazeer has established

dominance in fuzzy incidence graphs. AM Ismayil has also expressed accurate split domination in fuzzy

graphs. AN Shain has discussed the inverse dominating set of interval-valued fuzzy graphs. Mathew and

Sunil Mathew introduced the concept of sequence in fuzzy graphs. This thesis “An intensive search on

distinct domination and edge sequence in various fuzzy graphs”Comprises ten chapters.

Chapter 1 contains a brief history of the theory of graphs, fuzzy graphs, domination in fuzzy graphs,

intuitionistic fuzzy graphs, interval-valued fuzzy graphs, vague fuzzy graph, and picture fuzzy graphs.

Some basic definitions and theorems on fuzzy graphs which are needed for the subsequent chapters have

been presented.

Chapter 2 focuses on a kind of strong domination constant number in pseudo regular fuzzy graph

and complete fuzzy graph were discussed. Definitions, results, and properties of strong domination con-

stant number are presented. The relationship between the strong domination constant number of a pseudo

regular fuzzy graph and the complete fuzzy graph is also examined. Further, the concept of a strong dom-

ination constant number is discussed with the inclusion of the relationship between pseudo regular and

totally pseudo regular fuzzy graph.

Chapter 3 explores a dual strong domination in vertex squared and vertex squared split intuitionistic

fuzzy graphs. Direct product, semi-strong product, and semi-product of two vertex squared intuitionistic

fuzzy graphs and join product of two vertex squared split intuitionistic fuzzy graphs are explained. The

properties and theorems related to these parameters are compared with other known domination paramet-

ers.

Chapter 4 starts with the concept of split domination in vertex squared interval-valued fuzzy graphs

namely n- split dominating set, n- split domination number. Moreover, this chapter consists vertex



ix

squared cardinality, vertex squared independent set.

Chapter 5 introduces the new concept of perfect domination in the cartesian product of two interval-

valued fuzzy incidence graphs and tensor product of two interval-valued fuzzy incidence graphs utilizing

incidence pairs. Also, the concept of perfect domination number is used to discover which countries

(country) have the best education policies among various countries.

Chapter 6 focuses on some kinds of strong and weak domination in the composition of two vague

fuzzy incidence graphs. The strong edge incidentally dominating set, and weak edge incidentally dom-

inating set, strong edge incidentally domination number, and weak edge incidentally domination number

has been discussed.

Chapter 7 explores new kinds of strong and weak domination in complete intuitionistic fuzzy in-

cidence graphs. For different classes of complete intuitionistic fuzzy incidence graphs, we compute the

intuitionistic fuzzy incidence domination number, strong intuitionistic fuzzy incidence domination num-

ber, and weak intuitionistic fuzzy incidence domination number, and some theorems have been explained.

Chapter 8 introduce various types of dominating sets in product picture fuzzy graphs, such as the

fixed vertex dominating set, fixed edge dominating set, total fixed edge dominating set, and fixed edge

restrained dominating set. The properties with examples has been presented.

Chapter 9 explores a new concept of twin perfect domination in hesitancy fuzzy graphs and Omicron

products of two hesitancy fuzzy graphs offering some interesting results have been included. The proper-

ties with examples has been presented.

Chapter 10 starts with the concept of edge sequences in regular fuzzy graphs and pseudo regular

fuzzy graphs are explained by theorems with examples. In addition, a comparison of regular fuzzy graphs

and totally regular fuzzy graphs are also discussed.
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Chapter 1

Introduction

1. Introduction

1.1 Graph Theory

In the Seventeenth Century, great Mathematician Leonard Euler created the basic idea of graph theory.

Figure 1.1.1: LEONARD EULER

Euler in 1736 first introduced the concept of graph theory. Graph theory is an important branch of Math-

ematics. A graph is a useful tool for describing information regarding object relationships. Vertices,

relations, and edges are used to show the objects. In recent years, Graph Theory has seen a surge in
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Research activity.

1.2 Konigsberg Bridge Problem

Euler’s work on the Konigsberg Bridge problem can be traced back to the beginnings of graph theory. The

City of Konigsberg was located on the Pregel river in Prussia. The city occupied the island of Kneiphopf

plus areas on both banks. These regions were linked by seven bridges. The objective was to find a closed

path that ran across each of Konigsberg’s seven bridges exactly once. Euler demonstrated that there is

no solution to this problem. Konigsberg is now called Kaliningrad and is in Lithuania which recently

separated from U.S.S.R.

Figure 1.2.1: KONIGSBERG BRIDGE PROBLEM

1.3 Symposium on Graph Theory

A symposium on graph theory was organized in Delhi in 1973. A symposium on graph theory was held

at I.S.I. Calcutta in December 1976, and the proceedings were published by Macmillan Company India

Ltd. A conference on Combinatorics and graph theory was organized at I.S.I. Calcutta in February 1980.
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Springer-Verlag, Berlin, published the proceedings. I.S.I. Calcutta held a ’Seminar on Combinatorics

and Applications’ in December 1982. Graph Theory and Combinatorics now account for one-third of all

Mathematics research papers published on a global scale. Due to its wide range of applications in many

domains such as Engineering, Social and Biological sciences, graph theory has grown dramatically.

1.4 Fuzzy Graph Theory

Several Mathematicians have discovered a new concept of graph theory. The new concepts like labeling,

coloring, and domination are helpful to all field. One of the most important Mathematical breakthroughs

of the twentieth century was a fuzzy set theory. Lotfi. A. Zadeh established the concept of fuzzy sets in

1965, and it has since been successfully used for a variety of real-life decision problems that are typically

ambiguous. A fuzzy set is a variant of a crisp set in which the set’s elements have various degrees of

membership. The crisp set is made up of two truth values 0 (false) and 1 (truth), and it is unable to deal

with ambiguous real-world problems.

Zadeh created a Mathematical theory that could deal with uncertainty and imprecision. The advantage

of substituting classical sets with fuzzy sets is that it improves accuracy. A fuzzy set model is, therefore,

more efficient than a classical model in systems with imprecision. Natural variables and traits such as

intelligence, beauty, and consistency can be studied efficiently using fuzzy sets.

1.5 Roman Domination

The Roman Empire was under attack some 1700 years ago, and Emperor Constantine had to determine

where to station his four field army units to defend eight regions. His strategy was to position the army

units so that each region was either defended by its own army (one to two units) or by a neighbour with two

army units, one of which could be moved directly to the undefended region if a conflict arose. Constantine

stationed two army units in Rome and two in Constantinople, his new capital. As a result, only Britain

could be reached in a single step. Constantine’s successors ended up losing control of Britain. The causes

were undoubtedly more complicated than our basic model could describe.

Apart from the placement of Roman army units, the same Mathematics can be applied to optimize
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the position of dwindling British fleets at the end of the Nineteenth Century or American military army

units during the Cold War. In addition to army placement, the same type of math is important when

determining the optimal location for a new hospital, fire station, or fast food restaurant in a town. Roman

dominion or its variants can often be used to model similar optimization Challenges. Cockayne formally

defined Roman dominant functions. Due to historical causes deriving from the Ancient Roman Empire,

one notable variation of domination in graphs is Roman domination.

Figure 1.5.1: ROMAN DOMINATION

1.6 Chess Domination

The game of chess, which was popular in ancient India, inspired the introduction of dominance. Around

1850, the study of domination in graphs began with the goal of putting the fewest number of queens on

an nxn chessboard while covering or dominating every square with at least one queen. These problems’

solutions are simply dominating sets in a graph, with the vertices representing chessboard squares and the

edges indicating the queen’s possible moves. Berge introduced dominance as a theoretical term in graph

theory in 1958.

In coding theory, the term ”dominance” is frequently employed. We defined various new domination and

edge sequences in fuzzy graphs.
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Figure 1.6.1: CHESS DOMINATION

1.7 Intuitionistic Fuzzy Graph

As a generalization of fuzzy sets, Atanassov introduced intuitionistic fuzzy sets in 1983. In the concept

of fuzzy set, Atanassov included a new component like the degree of non-membership. The degree of

membership of an element in a given set is given by fuzzy sets, whereas intuitionistic fuzzy sets give

both a degree of membership and a degree of non-membership that are more-or-less independent of one

another, with the only requirement that the sum of these two degrees is not greater than 1. Interval-valued

fuzzy sets are an extension of fuzzy sets in which the values of the membership degrees are intervals of

numbers rather than integers, as presented by Zadeh in 1975. Interval-valued fuzzy sets are consequently

important in applications like fuzzy control.

1.8 Vague Fuzzy Graph

Gau and Buehrer established the concept of vague set theory in 1993, which is a generalization of Zadeh’s

fuzzy set theory. The existence of the faulty membership degree may be explained quite well with a vague

set. When paired with systems that run on fuzzy graphs, a vague fuzzy graph is a generalized form of a
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fuzzy graph that provides more exactness, flexibility, and compatibility to a system. A vague fuzzy graph

can focus on determining the uncertainty, as well as the inconsistent and indeterminate information, of

any real-world scenario, when fuzzy graphs may not provide sufficient results.

1.9 Picture Fuzzy Graph

Picture fuzzy set is a modified version of fuzzy set and intuitionistic fuzzy set presented by Cuong and

Kreinovich. To deal with real-life circumstances containing information kinds such as yes, abstention,

no, and rejection, the picture fuzzy graph is more exact, adaptable, and compatible than the intuitionistic

fuzzy graph.

1.10 Hesitancy Fuzzy Graph

Pathinathan and Jon Arockiaraj introduced a new fuzzy graph labeled hesitancy fuzzy graphs and dis-

cussed their various theoretical properties and validations. The concept of hesitancy fuzzy graph is ap-

plied for choosing a time minimized emergency route to transport the accident victims to the preferred

hospital.

â A new kind of strong domination constant number in pseudo regular fuzzy graph and complete

fuzzy graph are discussed.

â A unique type of dual strong domination is established in vertex squared and vertex squared split

intuitionistic fuzzy graphs.

â A new concept of split domination is proposed for vertex squared interval-valued fuzzy graphs.

â A novel concept for perfect domination in cartesian product of two interval valued fuzzy incidence

graphs and tensor product of two interval valued fuzzy incidence graphs is offered using incidence

pair.

â In the composition of two vague fuzzy incidence graphs, a new concept of strong and weak domin-

ation is introduced.
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â In complete intuitionistic fuzzy incidence graphs, a new thing of strong and weak domination is

established.

â A specific type of fixed domination is proposed in product picture fuzzy graphs.

â A new kind of twin perfect domination in hesitancy fuzzy graph and Omicron product of two hes-

itancy fuzzy graphs are discussed.

â A new concept of edge sequences is offered in regular fuzzy graphs and pseudo regular fuzzy

graphs.

PRELIMINARIES

The chapter contains the basic definitions and theorems required to develop the subsequent chapter of this

thesis.

1.11 Basic concepts in fuzzy graph theory

Definition 1.11.1 A graph is a finite non empty set of objects called vertices together with a set of un-

ordered pair of distinct vertices of G, called edges. The vertex set and the edge set of G are respectively

denoted by V (G) and E(G). A graph G with vertex set and edge set is denoted by G = (V,E).

Definition 1.11.2 Let X be a non empty set. Then a fuzzy set A in X (that is a fuzzy subset A of X)

is characterized by a function of the form µA : X → [0, 1] such a function µA is called the membership

function and for each x ∈ X,µA(x) is the degree of membership of x (membership grade of x) in the

fuzzy set A. In other words, A = {(x, µA(x))/x ∈ X} where µA : X → [0, 1].

Definition 1.11.3 A fuzzy graph is denoted byG : (V, σ, µ), where V is a node set, σ and µ are mappings

defined as σ : V → [0, 1] and µ : V × V , where σ and µ denote the membership values of a node and an

arc respectively. For any fuzzy graph, µ(x, y) ≤ min{σ(x), σ(y)}.

Definition 1.11.4 Two nodes u and v in a fuzzy graph G are said to be adjacent if, µ(u, v) > 0.
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Definition 1.11.5 The order p and size q of a fuzzy graph G : (V, σ, µ) are defined to be p =
∑
x∈V

σ(x)

and q =
∑

(x,y)∈V×V
µ(x, y).

Definition 1.11.6 An arc (u, v) of a fuzzy graph is called an effective arc (M-strong arc) if µ(u, v) =

σ(u) ∧ σ(v).

Definition 1.11.7 A fuzzy graph G : (V, σ, µ) is connected if for every x, y in σ∗, CONNG(x, y) > 0.

Definition 1.11.8 Let G : (V, σ, µ) be a fuzzy graph and S ⊆ V . Then the scalar cardinality of S is

defined to be
∑
v∈S

σ(v) and it is denoted by |S|. Let p denotes the scalar cardinality of V , also called the

order of G.

Definition 1.11.9 The strength of connectedness between two nodes of x and y is defined as the max-

imum of the strengths of all paths between x and y and is denoted by CONNG(x, y).

Definition 1.11.10 An arc of a fuzzy graph G : (V, σ, µ) is called strong if its weight is at least as great

as the strength of connectedness of its end nodes should be deleted.

Definition 1.11.11 A path P is called strong path if P contains only strong arcs. If µ(u, v) > 0, then u

and v are called neighbours. The set of all neighbors of u is denoted by N(u).

Definition 1.11.12 A node u is said to be isolated if µ(u, v) = 0 for all v 6= u.

Definition 1.11.13 The fuzzy graph G is called a strong fuzzy graph if each arc in G is a strong arc.

Definition 1.11.14 An arc (x, y) inG is α- strong if µ(x, y) > CONNG−(x,y)(x, y). An arc (x, y) inG is

β- strong if µ(x, y) = CONNG−(x,y)(x, y). An arc (x, y) in G is δ- arc if µ(x, y) < CONNG−(x,y)(x, y).

An arc (x, y) is a strong if it is either α- strong or β- strong. Also y is called strong neighbour of x if

arc (x, y) is strong.

Definition 1.11.15 Let G : (σ, µ) be a fuzzy graph G∗ : (V,E). The degree of a vertex u is dG(u) =∑
u6=v

µ(u, v). The minimum degree of G is δ(u) = min{dG(v),∀v ∈ V } and the maximum degree of G is

∆(u) = max{dG(v), ∀v ∈ V }.
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Definition 1.11.16 Let G : (σ, µ) be a fuzzy graph G∗ : (V,E). If d(v) = k for all v ∈ V , then G is said

to be a regular fuzzy graph of degree k.

Definition 1.11.17 The total degree of a vertex u ∈ V is defined by tdG(u) =
∑
u6=v

µ(u, v) + σ(u) =

dG(u) + σ(u). If each vertex of G has the same degree k, then G is said to be a totally regular fuzzy

graph of total degree k or k-totally regular fuzzy graph.

Definition 1.11.18 Let G : (σ, µ) be a fuzzy graph G∗ : (V,E). The 2-degree of a vertex v in G is defined

as the sum of degrees of the vertices adjacent to v and is denoted by tG(v). That is, tG(v) =
∑
dG(u),

where dG(u) is the degree of the vertex u which is adjacent with the vertex v.

Definition 1.11.19 Let G : (σ, µ) be a fuzzy graph G∗ : (V,E). A pseudo (average) degree of a vertex

v in fuzzy graph G is denoted by da(v) and is defined by da(v) =
tG(v)

d∗G(v)
, where d∗G(v) is the number of

edges incident at v.

Definition 1.11.20 Let G : (σ, µ) be a fuzzy graph G∗ : (V,E). If da(v) = k, for all v in V then G is

called k-pseudo regular fuzzy graph.

Definition 1.11.21 Let G : (σ, µ) be a fuzzy graph G∗ : (V,E). The total pseudo degree of a vertex v is

G is denoted by tda(v) and is defined as tda(v) = da(v) + σ(v) for all v ∈ V .

Definition 1.11.22 Let G : (σ, µ) be a fuzzy graph G∗ : (V,E). If all the vertices of G have the same

total pseudo degree k, then G is said to be a totally k-pseudo regular fuzzy graph.

Definition 1.11.23 A fuzzy graph G : (V, σ, µ) is said to be complete if µ(u, v) = σ(u) ∧ σ(v) for all

u, v ∈ σ∗.

Definition 1.11.24 Let X be a given set. An intuitionistic fuzzy set A in X is given by

A = {(x, µA(x), γA(x))/x ∈ X}, where µA : X → [0, 1], γA : X → [0, 1] and 0 ≤ µA(x) + γA(x) ≤ 1,

where µA(x) is the degree of membership of the element x inA and γA(x) is the degree of non membership

of the element x in A.

Definition 1.11.25 An intuitionistic fuzzy graph is of the form G : (V,E) where
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(i) V = {v1, v2, . . . , vn} such that µ1 : V → [0, 1] and γ1 : V → [0, 1] denote the degree of membership

and non membership of the element vi ∈ V respectively and 0 ≤ µ1(vi) + γ1(vi) ≤ 1 for every

vi ∈ V (i = 1, 2, . . . , n)

(ii) E ⊆ V × V where µ2 : V × V → [0, 1] and γ2 : V × V → [0, 1] are such that

µ2(vi, vj) ≤ min(µ1(vi), µ1(vj))

γ2(vi, vj) ≤ max(γ1(vi), γ1(vj))

0 ≤ µ2(vi, vj) + γ2(vi, vj) ≤ 1 for every (vi, vj) ∈ E (i, j = 1, 2, . . . , n)

Definition 1.11.26 If vi, vj ∈ V ⊆ G, the µ - strength of connectedness between vi and vj is µ∞2 (vi, vj) =

sup{µk2(vi, vj)\k = 1, 2, . . . , n} and γ - strength of connectedness between vi and vj is γ∞2 (vi, vj) =

inf{γk2 (vi, vj)\k = 1, 2, . . . , n}.

Definition 1.11.27 An intuitionistic fuzzy graph G : (V,E) is said to be strong intuitionistic fuzzy

graph if µ2(vi, vj) = min(µ1(vi), µ1(vj)) and γ2(vi, vj) = max(γ1(vi), γ1(vj)) for every vi, vj ∈ E.

Definition 1.11.28 An edge (u, v) is said to be strong edge if µ2(u, v) ≥ µ∞2 (u, v) and γ2(u, v) ≥

γ∞2 (u, v).

Definition 1.11.29 If all the edges are strong edge in an intuitionistic fuzzy graph then it is called

strengthen intuitionistic fuzzy graph.

Definition 1.11.30 The order p and size q of a intuitionistic fuzzy graph G : (V,E) are defined to be

p =
∑
vi∈V

[
1 + µ1(vi)− γ1(vi)

2

]
and

q =
∑

vi,vj∈E

[
1 + µ2(vi, vj)− γ2(vi, vj)

2

]
.

Definition 1.11.31 An intuitionistic fuzzy graph G : (V,E) is said to be complete intuitionistic fuzzy

graph if µ2(vi, vj) = min(µ1(vi), µ1(vj)) and γ2(vi, vj) = max(γ1(vi), γ1(vj)) for every vi, vj ∈ V .
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Definition 1.11.32 An interval-valued fuzzy set A on a set V is defined by A = {x, ([µ−A(x), µ+
A(x)]) :

x ∈ V } where µ−A and µ+
A are fuzzy subsets of V such that µ−A(x) ≤ µ+

A(x) for all x ∈ V . If G∗ : (V,E)

is a crisp graph, then by an interval-valued fuzzy relation B on V we mean an interval-valued fuzzy set

on E such that µ−B(xy) ≤ min{µ−A(x), µ−A(y)} and µ+
B(xy) ≤ max{µ+

A(x), µ+
A(y)} for all xy ∈ E and

we write B = {xy, ([µ−B(xy), µ+
B(xy)]) : xy ∈ E}.

Definition 1.11.33 An interval-valued fuzzy graph of a graph G∗ : (V,E) is a pair G : (A,B), where

A = [µ−A, µ
+
A] is an interval-valued fuzzy set on V and B = [µ−B, µ

+
B] is an interval-valued fuzzy relation

on V .

Definition 1.11.34 Let A be a picture fuzzy set. A in X is defined by A = {x, µA(x), ηA(x), γA(x)/x ∈

X}, where µA(x), ηA(x) and γA(x) follow the condition 0 ≤ µA(x) + ηA(x) + γA(x) ≤ 1. The

µA(x), ηA(x), γA(x) ∈ [0, 1], denote respectively the positive membership degree, neutral membership

degree and negative membership degree of the element x in the set A. For each picture fuzzy set A in X ,

the refusal membership degree is described as πA(x) = 1− {µA(x) + ηA(x) + γA(x)}.

Definition 1.11.35 Let G∗ = (V,E) is a graph. A pair G = (A,B) is called a picture fuzzy graph on

G∗ where A = {µA, ηA, γA} is a PFS on V and B = {µB, ηB, γB} is picture fuzzy set on E ⊆ V × V

such that for each edge uv ∈ E.

µB(uv) ≤ min(µA(u), µA(v)),

ηB(uv) ≤ min(ηA(u), ηA(v)),

γB(uv) ≥ max(γA(u), γA(v)).

Definition 1.11.36 A picture fuzzy graph G = (A,B) is said to be strong picture fuzzy graph if

µB(uv) = min(µA(u), µA(v)),

ηB(uv) = min(ηA(u), ηA(v)),

γB(uv) = max(γA(u), γA(v)), ∀uv ∈ E.
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Definition 1.11.37 A picture fuzzy graph G = (A,B) is said to be complete picture fuzzy graph if

µB(uv) = min(µA(u), µA(v)),

ηB(uv) = min(ηA(u), ηA(v)),

γB(uv) = max(γA(u), γA(v)), ∀uv ∈ V.

Definition 1.11.38 If µB(uv) ≥ µ∞B (uv), ηB(uv) ≥ η∞B (uv) and γB(uv) ≤ γ∞B (uv) for every uv ∈ V , an

edge uv is called a strong edge, where µ∞B (uv), η∞B (uv) and γ∞B (uv) are the strength of the connectedness

between u and v in the picture fuzzy graph produced from G by removing the edge uv.

Definition 1.11.39 Let G = (V,E) be a graph. Then, G = (V,E, I) is named as an incidence graph,

where I ⊆ V × E.

Definition 1.11.40 Let G = (V,E) be a graph. µ be a fuzzy subset of V , and γ be a fuzzy subset

of V × V and Let ψ be a fuzzy subset of V × E. If ψ(w1, w1w2) ≤ min{µ(w1), γ(w1w2)} for every

w1 ∈ V,w1w2 ∈ E, then ψ is a fuzzy incidence of G.

Definition 1.11.41 Let G be a graph and (µ, γ) is a fuzzy sub graph of G. If ψ is a fuzzy incidence of G,

then G = (µ, γ, ψ) is named as fuzzy incidence graph of G.

Definition 1.11.42 An intuitionistic fuzzy incidence graph is of the form G = (V,E, I, ρ, φ, χ) where

ρ = (ρ1, ρ2) , φ = (φ1, φ2), χ = (χ1, χ2) and V = {x0, x1, . . . , xn} such that ρ1 : V → [0, 1] and

ρ2 : V → [0, 1] represent the degree of membership and non membership of the vertex x1 ∈ V respect-

ively and 0 ≤ ρ1 +ρ2 ≤ 1 for each xi ∈ V (i = 1, 2, . . . , n), φ1 : V ×V → [0, 1] and φ2 : V ×V → [0, 1];

φ1(x1, x2) and φ2(x1, x2) show the degree of membership and non membership of the edge (x1, x2), re-

spectively, such that φ1(x1, x2) ≤ min{ρ1(x1), ρ1(x2)} and φ2(x1, x2) ≤ max{ρ2(x1), ρ2(x2)}, 0 ≤

φ1(x1, x2)+φ2(x1, x2) ≤ 1 for every (x1, x2). χ1 : V ×E → [0, 1] and χ2 : V ×E → [0, 1]; χ1(x1, x1x2)

and χ2(x1, x1x2) show the degree of membership and non membership of the incidence pair respect-

ively, such that χ1(x1, x1x2) ≤ min{ρ1(x1), φ1(x1x2)} and χ2(x1, x1x2) ≤ max{ρ2(x1), φ2(x1x2)},

0 ≤ χ1(x1, x1x2) + χ2(x1, x1x2) ≤ 1 for every (x1, x1x2).
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Definition 1.11.43 A vague set A is a pair (tA, fA) on set V where tA and fA are taken as real valued

functions which can be defined on V → [0, 1], so that tA(m) + fA(m) ≤ 1, for all m belongs V . The

interval [tA(m), 1− fA(m)] is known as the vague value of m is A.

Definition 1.11.44 A pair G = (A,B) is said to be a vague graph on a crisp graph G = (V,E), where

A = (tA, fA) is a vague set on V and B = (tB, fB) is a vague set on E ⊆ V × V such that

tB(mn) ≤ min(tA(m), tA(n)),

fB(mn) ≥ max(fA(m), fA(n)), for each edge mn ∈ E.

Definition 1.11.45 Let ζ = (A,B,C) is called a vague incidence graph of underlying crisp incidence

graph G∗ = (V,E, I) if

A = {〈tA(v), fA(v)〉 /v ∈ V },

B = {〈tB(mn), fB(mn)〉 /mn ∈ E},

C = {〈tC(v,mn), fC(v,mn)〉 /(v,mn) ∈ I}

such that

tB(mn) ≤ tA(m) ∧ tA(n), fB(mn) ≥ fA(m) ∨ fA(n),

tC(v,mn) ≤ tA(v) ∧ tB(mn), fC(v,mn) ≥ fA(v) ∨ fB(mn),∀v ∈ V, mn ∈ E.

and

0 ≤ tA(v) + fA(v) ≤ 1, 0 ≤ tB(mn) + fB(mn) ≤ 1, 0 ≤ tC(v,mn) + fC(v,mn) ≤ 1

Definition 1.11.46 A hesitancy fuzzy graph is of the form G = (V,E), where V = {v1, v2, v3 . . . , vn}

such that µ1 : V → [0, 1], γ1 : V → [0, 1] and β1 : V → [0, 1] denote the degree of membership,

non-membership and hesitancy of the element v1 ∈ V respectively and µ1(vi) + γ1(vi) + β1(vi) = 1

for every vi ∈ V , where β1(v1) = 1 − [µ1(vi) + γ1(vi)] and E ⊆ V × V where µ2 : V × V → [0, 1],
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γ2 : V × V → [0, 1] and β2 : V × V → [0, 1] are such that

µ2(vi, vj) ≤ min[µ1(vi), µ1(vj)]

γ2(vi, vj) ≤ max[γ1(vi), γ1(vj)]

β2(vi, vj) ≤ min[β1(vi), β1(vj)]

and 0 ≤ µ2(vi, vj) + γ2(vi, vj) + β2(vi, vj) ≤ 1 for every (vi, vj) ∈ E.

Definition 1.11.47 A set of vertices in G is independent if no two vertices in the set are adjacent.

Definition 1.11.48 An independent set K of G is named as retrained independent set if all nodes of K

have the same degrees.

Definition 1.11.49 A set S of vertices of G is a dominating set of G if every vertex of V (G) − S is

adjacent to some vertex in S. A dominating set S of G is referred to as minimal dominating set in no

proper subset of S is a dominating set.

Definition 1.11.50 A minimum dominating set in a graph G is a dominating set of minimum cardinality.

The cardinality of a minimum dominating set is called the domination number of G and is denoted by

γ(G).

Definition 1.11.51 Let G : (σ, µ) be a fuzzy graph with node set V . Let u and v be any two nodes of G.

We say that u dominates v if (u, v) is a strong arc. A subset D of v is called a dominating set of G if for

every v /∈ D, there exists u ∈ D such that u dominates v.

Definition 1.11.52 A dominating set D is called a minimal dominating set if no proper subset of D is

a dominating set. The smallest number of nodes in any dominating set of G is called its domination

number and is denoted by γ(G).

Definition 1.11.53 A set D of nodes of G is a strong dominating set of G if every vertex of V (G) −D

is a strong neighbour of some node in D.
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Definition 1.11.54 A minimum strong dominating set as a strong dominating set of minimum scalar car-

dinality. The scalar cardinality of a minimum strong dominating set is called the strong domination

number of G.

Definition 1.11.55 The weight of a strong dominating set D is defined as W (D) =
∑
u∈D

µ(u, v), where

µ(u, v) is the minimum of the membership values (weight) of the strong arcs incident on u. The strong

domination number of a fuzzy graph G is defined as the minimum weight of strong dominating sets of G

and it is denoted by γS(G).

Definition 1.11.56 Let G be a fuzzy graph and ei and ej be two adjacent edges of G. We say that ej if

ei is an effective edge. An edge subset K of E in a G is called an edge dominating set if, for each edge

ei ∈ E −K, there are effective edge ej ∈ K so that ej and ei .

Definition 1.11.57 An edge dominating set K of a G is said to be a minimal edge dominating set if for

each edge e ∈ K,K − {e} is not an edge dominating set. The minimum cardinality between all minimal

edge dominating sets is called an edge dominating number and is denoted by γ(G).
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1.12 List of Abbreviation

CFG - Complete Fuzzy Graph

RFG - Regular Fuzzy Graph

PRFG - Pseudo Regular Fuzzy Graph

VSIFG - Vertex Squared Intuitionistic Fuzzy Graph

VSSIFG - Vertex Squared Split Intuitionistic Fuzzy Graph

VSIVFG - Vertex Squared Interval-Valued Fuzzy Graph

PPFG - Product Picture Fuzzy Graph

HFG - Hesitancy Fuzzy Graph

IVFIG - Interval-Valued Fuzzy Incidence Graph

VFIG - Vague Fuzzy Incidence Graph

CT-VFIG - Composition of Two Vague Fuzzy Incidence Graph

CIFIG - Complete Intuitionistic Fuzzy Incidence Graph

SDCN - Strong Domination Constant Number

DSDN - Dual Strong Domination Number

n -SDN - n-Split Domination Number

PDN - Perfect Dominating Number

EIDN - Edge Incidentally Dominating Number

SIFIDN - Strong Intuitionistic Fuzzy Incidence Domination Number

FVDN - Fixed Vertex Domination Number

TPDN - Twin Perfect Domination Number

1.13 Literature Review

In 1736 the concept of graph theory was introduced by Euler. Graph theory is an important branch of

Mathematics. In recent years, graph theory has seen a surge in Research activity. Fuzzy set theory was

first introduced by Zadeh in 1965 [Zad65, Zad75]. The first definition of fuzzy graph was introduced by
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Haufmann in 1973 based on Zadeh’s fuzzy relations in 1971. The fuzzy relations between fuzzy sets

were also considered by Rosenfield. Rosenfield developed the structure of fuzzy graphs and obtained

analogues of several graphs theoretical concepts. Generalized theory and fuzzy logic have been focused

on by Zadeh and Yeh [Zad08, YB75]. Fuzzy graphs were introduced by Rosenfeld, who has described

the fuzzy analogue of different graph theoretic concepts like paths, cycles, trees and connectedness and

established some of their properties [Ros71]. Some important works in fuzzy graph theory were discussed

by Mordeson [MN00, MP94][48,49]. Sunil Mathew [MM16, SMY19, MS09, MS10, MS13] defined and

classified different types of arcs in fuzzy graphs. Samanta [SP11] have also expressed various fuzzy

graphs. Pathinathan [PR14, TPR15] defined relationship between different types of arcs in both regular

and totally regular fuzzy graph. Santhi Maheswari [MS16] introduced on pseudo regular fuzzy graphs.

Mahalakshmi have also expressed fuzzy strong graphs [KM17,KM18]. Bhutani [BR03a,BR03b] have in-

troduced the concept of strong arcs. Kalaiarasi [Kal11a,Kal11b] defined Optimization of fuzzy integrated

vendor-buyer inventory models in 2011.

In 1983 Atanassov [Ata15] introduced the concept of intuitionistic fuzzy sets as a generalization of

fuzzy sets. The first definition of intuitionistic fuzzy relations and intuitionistic fuzzy graphs were intro-

duced by Atanassov (1999). Intuitionistic fuzzy sets have been applied in a wide variety of fields includ-

ing Computer Science, Engineering, Mathematics, Medicine, Chemistry and Economics [SDR01]. Par-

vathi [RPA09, PK06] have initiated the idea of intuitionistic fuzzy graphs. In intuitionistic fuzzy graphs,

Gani [NB10] established the concepts of degree, order, and size. Products in intuitionistic fuzzy graphs

were discussed by Sahoo [SP15][69]. Pal [SP16], [SP16, SP17a] researched some types of fuzzy graphs.

Sahoo [SP17b] initatied new ideas in intuitionistic fuzzy graphs. Different types of intuitionistic fuzzy

graphs and their applications can be found in different research papers.

The concept of fuzzy sets was discussed by Turksen [Tur86]. We summarise Gorzalczany’s work on

interval-valued fuzzy sets [Gor89] fuzzy relations because interval-valued fuzzy sets are frequently ap-

plied. Hossein Rashmanlou have also expressed interval-valued sub semigroups and subgroups [HL09].

Akram [AD11, MAP17] has given the idea that fuzzy graphs. Rashmanlou [RP13] recommended ir-

regular interval-valued fuzzy graphs. Hongmei have also expressed interval-valued sub semigroups and

subgroups [HL09]. Sahoo [SSS20] presented a fuzzy graph with application. The product of the new

graph was produced by Irfan Nazeer [ING21] in 2021.
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Fuzzy incidence graphs were discussed by Dinesh [Din16]. Borzooei [JMB18] developed incid-

ence cuts in fuzzy incidence graphs. Mordeson [MM17, SMY19] proposed concepts in Fuzzy Incidence

Graphs. Cuong [Cuo14] proposed a picture fuzzy set ranking method as well as a set of picture fuzzy

set attributes. Singh [Sin15] campaigned for picture fuzzy sets. Peng [PD17] suggested and implemented

an algorithmic technique for picture fuzzy set in a decision-making situation. Wei [Wei17] has presented

a strategy for determining decisions. Wei discussed how to measure picture fuzzy sets. Mean operat-

ors and their applications have been extended by Cen Zuo [CZD19]. Notions of picture fuzzy graph

were discussed by Rukhshanda [RAG21]. Bipolar picture fuzzy graphs have been created by Babir Ali

since 2021 [WAKT21]. Vague sets were first proposed by Gau [GB93]. The concept of vague graphs

was developed by Ramakrishna [Ram09]. Akram [MAS14] proposed vague hyper graphs. Degree of

vertices in vague graphs were proposed by Borzooei [BR15]. Pal [RBP16] suggested and implemen-

ted regularity of vague graphs. Properties of vague graphs extended by Rao [YRS20]. Pathinathan and

Jesintha [TPR15] introduced the hesitancy fuzzy graphs. Pathinathan and Jesintha [TPR15] introduced

the hesitancy fuzzy graphs. Graph theory was discussed by Arumugam [AR01]. Begum [SS17b] is also

expressed by different fuzzy graphs. Bhattacharya [Bha87] presented some remarks on fuzzy graphs.

Bustince [HBG10,HBP] has introduced the concept of fuzzy relations and operators. Cao [Cao98] estab-

lished the bounds on eigen values. An automorphism of fuzzy graphs was proposed by Butani [Bhu89].

De and Srinivasan [SDR01, SS17a] investigated intuitionistic fuzzy graphs. Harary [Har73] were dis-

cussed graph theory. Salen [Sal12] has also expressed inter-valued fuzzy topological space. Son [Son16]

presented a picture fuzzy graph with applications. Isomorphism on inter-valued fuzzy graphs was dis-

cussed by Talebi [TR13]. The concept of the spectral radius of graphs was discussed by Tian [AYT04].

Ore and Berge introduced the concept of domination in 1962. Cockayne [CH77] further developed the

concept of domination. Domination in fuzzy graphs using effective edges were introduced by

Somasundaram [SS98]. Domination in graphs has been examined further by Haynes [THS98]. Parvathi

(2010) introduced the concept of domination number in intuitionistic fuzzy graphs. Xavior [DXC13]

was discussed about domination in fuzzy graphs. Equitable domination number for fuzzy graphs was

introduced by Revathi in [RH14]. Manjusha have also expressed strong domination [MS15]. Manjusha

[MS19] has discussed paired domination in fuzzy graphs. Sarala has also expressed (1,2)-domination for

fuzzy graphs [SK16]. Chandrasekaran was discussed about strong arcs [NC16, ANR21]. Dharmalingam
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has also expressed domination parameters for fuzzy graphs [DN17]. Pradip Debnath has given the char-

acterization for a minimal dominating set [Deb13]. Irfan Nazeer [ING21] have established dominance

in fuzzy incidence graphs. AM Ismayil [IH21] have also expressed accurate split domination in fuzzy

graphs. Bhimani [BB21] presented new definition of corona product with another path graph Pn−1. AN

Shain [SS21] has discussed inverse dominating set of an interval-valued fuzzy graphs. Selvam [SP21]

investigated domination in join of fuzzy graphs. Begum [NB10,NR10] was discussed about the extension

of fuzzy graphs. Sriram Kalyan and Sunitha [Sri21, SM15, SV99, SV02, SV05] presented various fuzzy

graphs with different domination. Yongsheng Roa [YRK21] defined domination in vague graphs.

1.14 Genesis of the Thesis

Lotfi. A. Zadeh established the concept of fuzzy sets in 1965, and it has since been successfully used for a

variety of real-life decision problems that are typically ambiguous. A.Nagoorgani and V.T.Chandrasekaran

introduced fuzzy domination as a theoretical term in fuzzy graph theory in 2006. In coding theory, the

term dominance is frequently employed. So the present research focuses its attention on the domination

and edge sequence through pseudo regular fuzzy graph, complete fuzzy graph, vertex squared intuition-

istic fuzzy graphs, vertex squared split intuitionistic fuzzy graphs, vertex squared interval-valued fuzzy

graphs, cartesian product of two interval-valued fuzzy incidence graphs, tensor product of two interval-

valued fuzzy incidence graphs, composition of two vague fuzzy incidence graphs, complete intuitionistic

fuzzy incidence graphs, Omicron product of two hesitancy fuzzy graphs, product picture fuzzy graphs.

Finally, we performed real-life applications to find exact results for it.

1.15 Motivations and Scope of Research work

â The features of a pseudo regular fuzzy graph and a complete fuzzy graph has described. The concept

of strong domination constant number in pseudo regular and complete fuzzy graphs, offering some

interesting results have been included.

â In vertex squared and vertex squared split intuitionistic fuzzy graphs, a novel type of dual strong

domination is established. The properties and theorems related to these parameters are compared
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with other known domination parameters.

â In vertex squared interval-valued fuzzy graphs, a new concept of split domination has been pro-

posed. With the support of the split domination concept, vertex squared interval-valued fuzzy

graphs to choose which oxygen cylinder agencies have the lot of oxygen cylinder among various

oxygen cylinder agencies inspected.

â Using incidence pair, a unique idea for perfect domination in cartesian product of two interval-

valued fuzzy incidence graphs and tensor product of two interval-valued fuzzy incidence graphs

were proposed. Eventually, the concept of perfect domination number is used to discover which

countries (country) have the best education policies among various countries.

â The special concept of strong and weak domination in vague fuzzy incidence graphs helps to

identify the maximum percentage of progress and minimum percentage of non-progress in vari-

ous journal publications.

â With the support of the strong and weak domination concept, complete intuitionistic fuzzy incidence

graphs were used to choose the best treatment facility accessible clinic in various clinics.

â In product picture fuzzy graphs, a specific type of fixed domination were proposed and using these

fixed domination concept were proposed to find the nearest hospital for a emergency time in high-

way roads.

â There are some fascinating results from a new notion of twin perfect domination in hesitancy fuzzy

graphs and Omicron products of two hesitancy fuzzy graphs.

â In regular fuzzy graphs and pseudo regular fuzzy graphs, a new concept of edge sequences were

offered. In addition, with distinct categories of edge sequences, an analogy has been conducted

between pseudo regular fuzzy graphs and totally pseudo regular fuzzy graphs.
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1.16 Organization of the Thesis

The entire dissertation consists of ten chapters and each chapter is subdivided into a number of sections.

CHAPTER I contains a brief history of the theory of graphs, fuzzy graphs, domination in fuzzy graphs,

intuitionistic fuzzy graphs, interval-valued fuzzy graphs, vague fuzzy graph, and picture fuzzy graphs.

Some basic definitions and theorems on fuzzy graphs which are needed for the subsequent chapters have

been presented.

CHAPTER II focuses on a kind of strong domination constant number in pseudo regular fuzzy graph

and complete fuzzy graph were discussed. Definitions, results, and properties of strong domination con-

stant number are presented. The relationship between the strong domination constant number of a pseudo

regular fuzzy graph and the complete fuzzy graph is also examined. Further, the concept of a strong dom-

ination constant number is discussed with the inclusion of the relationship between pseudo regular and

totally pseudo regular fuzzy graph.

CHAPTER III explores a dual strong domination in vertex squared and vertex squared split intuitionistic

fuzzy graphs. Direct product, semi-strong product, and semi-product of two vertex squared intuitionistic

fuzzy graphs and join product of two vertex squared split intuitionistic fuzzy graphs are explained. The

properties and theorems related to these parameters are compared with other known domination paramet-

ers.

CHAPTER IV starts with the concept of split domination in vertex squared interval-valued fuzzy graphs

namely n- split dominating set, n- split domination number. Moreover, this chapter consists vertex

squared cardinality, vertex squared independent set.

CHAPTER V introduces the new concept of perfect domination in the cartesian product of two interval-

valued fuzzy incidence graphs and tensor product of two interval-valued fuzzy incidence graphs utilizing

incidence pairs. Also, the concept of perfect domination number is used to discover which countries
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(country) have the best education policies among various countries.

CHAPTER VI focuses on some kinds of strong and weak domination in the composition of two vague

fuzzy incidence graphs. The strong edge incidentally dominating set, and weak edge incidentally dom-

inating set, strong edge incidentally domination number, and weak edge incidentally domination number

has been discussed.

CHAPTER VII explores new kinds of strong and weak domination in complete intuitionistic fuzzy in-

cidence graphs. For different classes of complete intuitionistic fuzzy incidence graphs, we compute the

intuitionistic fuzzy incidence domination number, strong intuitionistic fuzzy incidence domination num-

ber, and weak intuitionistic fuzzy incidence domination number, and some theorems have been explained.

CHAPTER VIII introduce various types of dominating sets in product picture fuzzy graphs, such as the

fixed vertex dominating set, fixed edge dominating set, total fixed edge dominating set, and fixed edge

restrained dominating set. The properties with examples has been presented.

CHAPTER IX explores a new concept of twin perfect domination in hesitancy fuzzy graphs and Omic-

ron products of two hesitancy fuzzy graphs offering some interesting results have been included. The

properties with examples has been presented.

CHAPTER X starts with the concept of edge sequences in regular fuzzy graphs and pseudo regular fuzzy

graphs are explained by theorems with examples. In addition, a comparison of regular fuzzy graphs and

totally regular fuzzy graphs are also discussed.



Chapter 2

Strong Domination in Pseudo Regular and

Complete Fuzzy Graphs

A wide range of practical difficulties can be modeled and solved using fuzzy graph algorithms. In general,

fuzzy graph theory has a wide range of applications in a variety of domains. An expert must model

these issues using a fuzzy network since ambiguous information is a prevalent real-life problem that

is frequently uncertain. This chapter establishes the concept of strong domination constant number by

using membership values of strong arcs in fuzzy graphs. The strong domination constant number of a

pseudo regular fuzzy graph and a complete fuzzy graph is found. In addition, with reference to the strong

dominating constant number, a comparison study is conducted between pseudo regular and totally pseudo

regular fuzzy graphs. The relationship between the strong domination constant number of a pseudo regular

fuzzy graph and the complete fuzzy graph is also examined, as well as theorems relating to these ideas.

2.1 Strong Domination Constant Number in Pseudo Regular Fuzzy

Graph

In this section, the new concept of strong domination constant number in pseudo regular fuzzy graph

(PRFG) is defined and discussed notation of γSC(GPR).

Definition 2.1.1 Let GPR : (σPR, µPR) be a pseudo regular fuzzy graph on G∗PR. A set DPR vertices of
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GPR is a strong dominating set of GPR if every vertex of σPR−DPR is a strong neighbour of some vertex

in DPR.

Definition 2.1.2 Let GPR : (σPR, µPR) be a pseudo regular fuzzy graph on G∗PR. The weight of a strong

dominating set (SDS) DPR is defined as W (DPR) =
∑

m11∈DPR

µPR(m11,m22), where µPR(m11,m22) is

the minimum of the membership value (MV) (weight) of the strong arcs incident on m11. The strong

domination number of a GPR is defined as the minimum weight of strong dominating sets of GPR amd it

is denoted by γS(GPR).

Definition 2.1.3 LetGPR : (σPR, µPR) be a pseudo regular fuzzy graph onG∗PR. The weightW (DPR) =

C(constant), if each strong dominating sets having equal number of vertices. Then C is labeled strong

domination constant number (SDCN). It is denoted by γSC(GPR).

Example 2.1.1 Let GPR : (σPR, µPR) be a PRFG with the vertices k11, l11,m11, n11 and edges (k11, l11),

(k11, n11),(n11,m11), (m11, l11).

Figure 2.1.1: Strong Domination Constant Number in PRFG

In figure 2.1.1, the strong arcs are (k11, l11), (k11, n11), (n11,m11) and (m11, l11).

The two vertices of SDSs are D11 = (k11, l11), D22 = (k11,m11), D33 = (k11, n11), D44 = (n11,m11),



2.1 Strong Domination Constant Number in Pseudo Regular Fuzzy Graph 25

D55 = (n11, l11), D66 = (m11, l11) where

W (D11) = 0.2 + 0.2 = 0.4,W (D22) = 0.2 + 0.2 = 0.4,W (D33) = 0.2 + 0.2 = 0.4

W (D44) = 0.2 + 0.2 = 0.4,W (D55) = 0.2 + 0.2 = 0.4,W (D66) = 0.2 + 0.2 = 0.4

Hence γSC(GPR) = 0.4.

The three vertices of SDSs are D77 = (k11, l11,m11), D88 = (l11,m11, n11), D99 = (m11, n11, k11),

D10 = (k11, l11, n11) where

W (D77) = 0.2 + 0.2 + 0.2 = 0.6,W (D88) = 0.2 + 0.2 + 0.2 = 0.6

W (D99) = 0.2 + 0.2 + 0.2 = 0.6,W (D10) = 0.2 + 0.2 + 0.2 = 0.6

Hence, γSC(GPR) = 0.6.

Therefore, the above example having two SDCN.

That is γSC(GPR) = 0.4 and γSC(GPR) = 0.6.

Remark 2.1.1 If all the vertices are isolated, then σPR is the only strong dominating set of GPR of order

pPR and γSC(GPR) = 0.

Remark 2.1.2 A strong domination constant number of fuzzy graph need not be a pseudo regular fuzzy

graph.

Example 2.1.2 Consider GFG be a fuzzy graph with the vertices e11, f11, g11, h11 and edges (e11, f11),

(e11, g11), (e11, h11), (f11, g11) and (g11, h11).
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Figure 2.1.2: Strong Domination Constant Number of Fuzzy Graph

In figure 2.1.2, strong arcs are (e11, f11), (e11, g11), (e11, h11), (f11, g11) and (g11, h11).

One vertex of SDSs are D11 = (e11), D22 = (g11) where W (D11) = 0.1, W (D22) = 0.1. Hence

γSC(GPR) = 0.1.

The two vertices of SDSs are D33 = (e11, f11), D44 = (e11, g11), D55 = (e11, h11), D66 = (f11, g11),

D77 = (f11, h11), and D88 = (g11, h11) where

W (D33) = 0.1 + 0.1 = 0.2,W (D44) = 0.1 + 0.1 = 0.2,W (D55) = 0.1 + 0.1 = 0.2

W (D66) = 0.1 + 0.1 = 0.2,W (D77) = 0.1 + 0.1 = 0.2,W (D88) = 0.1 + 0.1 = 0.2

Hence γSC(GPR) = 0.2.

The three vertices of SDSs are D99 = (e11, f11, g11), D10 = (e11, g11, h11), D11 = (f11, g11, h11), D12 =

(e11, h11, f11) where

W (D99) = 0.1 + 0.1 + 0.1 = 0.3,W (D10) = 0.1 + 0.1 + 0.1 = 0.3

W (D11) = 0.1 + 0.1 + 0.1 = 0.3,W (D12) = 0.1 + 0.1 + 0.1 = 0.3
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Hence, γSC(GPR) = 0.3.

Therefore, the above example having three SDCN.

That is γSC(GPR) = 0.1, γSC(GPR) = 0.2 and γSC(GPR) = 0.3.

The fuzzy graph GFG is SDCN of fuzzy graph. But da(e11) 6= da(h11). Hence GFG is not a PRFG.

Theorem 2.1.1 If GPR : (σPR, µPR) be a pseudo regular fuzzy graph and each strong dominating sets

having exactly n vertices, then γSC(GPR) = n{min(µPR(m11,m22)/m11,m22 ∈ σ∗PR)}.

Proof. Since GPR is a PRFG, all arcs are strong and some node is adjacent to all other nodes. Hence,

DPR = {m11,m22, . . . ,mnn} is a SDSs for each m11,m22, . . . ,mnn ∈ σ∗PR.

Hence γSC(GPR) = n{min(µPR(m11,m22)/m11,m22 ∈ σ∗PR)}.

Example 2.1.3 (i) LetGPR : (σPR, µPR) be a PRFG with the vertices i11, j11, k11, l11 and edges (i11, j11),

(j11, k11), (k11, l11), (i11, l11).

Figure 2.1.3: PRFG with Strong Domination Constant Number

In figure 2.1.3, GPR be a PRFG and each arcs are strong.

For n = 2, the SDSs are D11 = (i11, j11), D22 = (j11, k11), D33 = (k11, l11), D44 = (i11, l11), D55 =
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(j11, l11), D66 = (i11, k11) where

W (D11) = 0.4 + 0.4 = 0.8,W (D22) = 0.4 + 0.4 = 0.8,

W (D33) = 0.4 + 0.4 = 0.8,W (D44) = 0.4 + 0.4 = 0.8,

W (D55) = 0.4 + 0.4 = 0.8,W (D66) = 0.4 + 0.4 = 0.8

Therefore γSC(GPR) = 0.8.

Hence,

γSC(GPR) = 2{min(µPR(m11,m22)/m11,m22 ∈ σ∗PR)}

= 2{min(0.4, 0.5, 0.4, 0.5)}

= 0.8

Hence the result.

Example 2.1.4 (ii) Let GPR be a PRFG with the vertices i11, j11, k11, l11 and edges (i11, j11), (j11, k11),

(k11, l11), (i11, l11), (i11, k11), (j11, l11). Here each arcs are strong.

For n = 3, the SDSs are D11 = (i11, j11, k11), D22 = (i11, k11, l11), D33 = (i11, j11, l11), D44 =

(j11, k11, l11) where

W (D11) = 0.4 + 0.4 + 0.4 = 1.2,W (D22) = 0.4 + 0.4 + 0.4 = 1.2,

W (D33) = 0.4 + 0.4 + 0.4 = 1.2,W (D44) = 0.4 + 0.4 + 0.4 = 1.2

Therefore γSC(GPR) = 1.2.

Here,

γSC(GPR) = 3{min(µPR(m11,m22)/m11,m22 ∈ σ∗PR)}

= 3{min(0.5, 0.5, 0.5, 0.5, 0.4, 0.4)}

= 1.2
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Figure 2.1.4: PRFG with Strong Domination Constant Number

Hence the result.

Remark 2.1.3 The above result is also true for totally pseudo regular fuzzy graph (TPRFG).

Example 2.1.5 (i) Consider GTPR be a TPRFG with the vertices e11, f11, g11, h11 and edges (e11, f11),

(e11, h11), (f11, g11), (g11, h11).

Figure 2.1.5: TPRFG with Strong Domination Constant Number
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Hence the result.

In figure 2.1.5, GTPR be a TPRFG and each arcs are strong.

For n = 2, the SDSs are D11 = (e11, f11), D22 = (f11, g11), D33 = (g11, h11), D44 = (e11, h11), D55 =

(f11, h11), D66 = (e11, g11) where

W (D11) = 0.2 + 0.2 = 0.4,W (D22) = 0.2 + 0.2 = 0.4,

W (D33) = 0.2 + 0.2 = 0.4,W (D44) = 0.2 + 0.2 = 0.4

Therefore, γSC(GPR) = 0.4.

Here

γSC(GPR) = 2{min(µPR(m11,m22))/m11,m22 ∈ σ∗TPR}

= 2{min(0.2, 0.4, 0.2, 0.4)}

= 0.4

Hence the result.

Example 2.1.6 (ii) LetGTPR be a TPRFG with the vertices i11, j11, k11, l11 and edges (i11, j11), (j11, k11),

(k11, l11), (i11, l11), (i11, k11), (j11, l11).

Figure 2.1.6: TPRFG with Strong Dominating Constant Number
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In fig 2.1.6, GTPR be a TPRFG and each arcs are strong.

For n = 3, the SDSs are D11 = (i11, j11, k11), D22 = (i11, k11, l11), D33 = (i11, j11, l11), D44 =

(j11, k11, l11) where

W (D11) = 0.4 + 0.4 + 0.4 = 1.2,W (D22) = 0.4 + 0.4 + 0.4 = 1.2,

W (D33) = 0.4 + 0.4 + 0.4 = 1.2,W (D44) = 0.4 + 0.4 + 0.4 = 1.2

Here γSC(GTPR) = 1.2.

Therefore,

γSC(GTPR) = 3{min(µPR(m11,m22)/m11,m22 ∈ σ∗PR)}

= 3{min(0.5, 0.5, 0.5, 0.5, 0.4, 0.4)}

= 1.2

Hence the result.

Theorem 2.1.2 Let GPR : (σPR, µPR) be a pseudo regular fuzzy graph of size qPR. Then γSC(GPR) =
qPR
2

iff

(i) all edges have equal membership value

(ii) All strong dominating sets having exactly two vertices

Proof. If all edges have equal MV and all SDS of GPR is a set DPR containing exactly two vertices.

Hence, SDCN is exactly γSC(GPR) =
∑

m11∈DPR

µPR(m11,m22) = qPR

2
.

Contrarily, suppose that γSC(GPR) = qPR

2
. To prove that all edges have equal MV and all SDSs having

exactly two vertices. If the alternative edges have equal MV and all SDSs having more than two vertices,

then γSC(GPR) 6= qPR

2
, which is a contradiction. Hence, all conditions are sufficient.

Example 2.1.7 Let GPR be a PRFG with the vertices v11, w11, x11, y11 and edges (v11, w11), (w11, x11),

(x11, y11), (v11, y11). Here each arcs are strong.
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Figure 2.1.7: PRFG with Strong Domination Constant Number

The two vertices of SDSs are D11 = (v11, w11), D22 = (w11, x11), D33 = (x11, y11), D44 = (v11, y11),

D55 = (v11, x11), D66 = (w11, y11), where

W (D11) = 0.1 + 0.1 = 0.2,W (D22) = 0.1 + 0.1 = 0.2,

W (D33) = 0.1 + 0.1 = 0.2,W (D44) = 0.1 + 0.1 = 0.2,

W (D55) = 0.1 + 0.1 = 0.2,W (D66) = 0.1 + 0.1 = 0.2

Therefore γSC(GPR) = 0.2.

Here,

γSC(GPR) =
qPR
2

=
0.4

2
= 0.2

Hence the result.

Remark 2.1.4 The above condition is also true for TPRFG.

Example 2.1.8 LetGTPR be a TPRFG with the vertices v11, w11, x11, y11 and edges (v11, w11), (w11, x11),

(x11, y11), (v11, y11). Here each arcs are strong.
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Figure 2.1.8: TPRFG with SDCN

The two vertices of SDSs are D11 = (v11, w11), D22 = (w11, x11), D33 = (x11, y11), D44 = (v11, y11),

D55 = (v11, x11), D66 = (w11, y11), where

W (D11) = 0.2 + 0.2 = 0.4,W (D22) = 0.2 + 0.2 = 0.4,

W (D33) = 0.2 + 0.2 = 0.4,W (D44) = 0.2 + 0.2 = 0.4,

W (D55) = 0.2 + 0.2 = 0.4,W (D66) = 0.2 + 0.2 = 0.4

Therefore γSC(GTPR) = 0.4.

Here,

γSC(GTPR) =
qPR
2

=
0.8

2
= 0.4

Hence the result.

Theorem 2.1.3 A pseudo regular fuzzy graph GPR : (σPR, µPR) with its crisp graph G∗PR as even cycle

is both pseudo regular fuzzy graph and totally pseudo regular fuzzy graph then GPR contains strong

domination constant number.
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Proof. Let GPR : (σPR, µPR) be a PRFG. Then its crisp graph G∗PR as even cycle and GPR be both PRFG

and TPRFG. Here are two cases that arise.

Case (i)

Let GPR be both PRFG and TPRFG with stable values in σPR and µPR. In GPR all arcs are strong and

some SDSs of GPR having equal number of vertices. Then by the 2.1.3 definition GPR contains SDCN.

Example 2.1.9 LetGPR be both PRFG and TPRFG with the vertices e11, f11, g11, h11 and edges (e11, f11),

(e11, h11), (f11, g11), (g11, h11). Here all arcs are strong.

Figure 2.1.9: PRFG and TPRFG with Strong Domination Constant Numbers

γSC(GPR) = 0.8 and γSC(GPR) = 1.2.

The graph GPR is PRFG and TPRFG with SDCNs.

Case (ii)

LetGPR be both PRFG and TPRFG with stable values in σPR and with equal alternative values in µPR. In

all arcs are strong and some SDSs of GPR having equal number of vertices. Then by the 2.1.3 definition

GPR contains SDCN.
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Example 2.1.10 LetGPR be both PRFG and TPRFG with the vertices e11, f11, g11, h11 and edges (e11, f11),

(e11, h11), (f11, g11), (g11, h11). Here all arcs are strong.

Figure 2.1.10: PRFG and TPRFG with Strong Domination Constant Number

γSC(GPR) = 0.2 and γSC(GPR) = 0.3.

The graph GPR is PRFG and TPRFG with SDCNs.

Theorem 2.1.4 Let GPR : (σPR, µPR) be a PRFG, γSC =
pPR

2
iff the following conditions hold

(i) GPR is a TPRFG

(ii) All vertices and edges having same membership value

(iii) All strong dominating sets having exactly two vertices.

Proof. If GPR is a TPRFG and all vertices and edges having same membership value, then all SDS of

GPR is a set DPR containing exactly two vertices. Hence, SDCN is exactly γSC(G) =
pPR

2
.

Contrarily, suppose that γSC(G) =
pPR

2
. To prove thatGPR is a TPRFG and all vertices and edges having

same membership value. If possible and some nodes say m11 and m22 have different weights, then the arc

weight corresponding to these vertices is µPR(m11,m22) ≤ σPR(m11) ∧ σPR(m22).

If µPR(m11,m22) < σPR(m11) ∧ σPR(m22), then obviously γSC(G) 6= pPR
2

, a contradiction and if
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µPR(m11,m22) = σPR(m11) ∧ σPR(m22), then clearly γSC(G) 6= pPR
2

, a contradiction. Hence, all the

conditions are sufficient.

Example 2.1.11 Consider GPR be both PRFG and TPRFG with the vertices u11, v11, w11, x11 and edges

(u11, v11), (v11, w11), (w11, x11), (u11, x11). Here all are strong arcs.

Figure 2.1.11: PRFG with SDCN γSC(G) = 0.4

The graph GPR is PRFG and TPRFG with SDCN γSC(G) = 0.4.

Here, γSC(GPR) =
pPR

2
=

0.8

2
= 0.4. Hence the result.
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2.2 Complete Fuzzy Graph with Strong Domination Constant Num-

ber

In this section the new concept of strong domination constant number in complete fuzzy graph (CFG) is

defined and related theorems are discussed.

Definition 2.2.1 Let GC : (σC , µC) be a complete fuzzy graph on G∗C . A set DC vetices of GC is a strong

domination set of GC if every vertex of σC −DC is a strong neighbour of some vertex in DC .

Definition 2.2.2 Let GC : (σC , µC) be a complete fuzzy graph on G∗C . The weight of a strong domin-

ating set DC is defined as W (DC) =
∑

m11∈DC

µC(m11,m22), where µC(m11,m22) is the minimum of the

membership value (weight) of the strong arcs incident on m11. The strong domination number of a GC is

defined as the minimum weight of strong dominating sets of GC amd it is denoted by γS(GC).

Definition 2.2.3 LetGC : (σC , µC) be a complete fuzzy graph onG∗C . The weightW (DC) = C(constant),

if each strong dominating sets having equal number of vertices. Then C is labeled strong domination con-

stant number. It is denoted by γSC(GC).

Example 2.2.1 Let GC : (σC , µC) be a CFG with the vertices w11, x11, y11, z11 and edges (w11, x11),

(x11, y11),(z11, y11), (w11, z11). Here each arcs are strong.

In fig 2.2.1, the strong arcs are (w11, x11), (w11, z11), (z11, y11) and (y11, x11).

The two vertices of SDSs are D11 = (w11, x11), D22 = (w11, y11), D33 = (w11, z11), D44 = (z11, y11),

D55 = (z11, x11), D66 = (y11, x11) where

W (D11) = 0.1 + 0.1 = 0.2,W (D22) = 0.1 + 0.1 = 0.2,W (D33) = 0.1 + 0.1 = 0.2

W (D44) = 0.1 + 0.1 = 0.2,W (D55) = 0.1 + 0.1 = 0.2,W (D66) = 0.1 + 0.1 = 0.2

Hence γSC(GC) = 0.2.

The three vertices of SDSs are D77 = (w11, x11, y11), D88 = (w11, y11, z11), D99 = (x11, y11, z11), D10 =
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Figure 2.2.1: SDCN in CFG

(x11, w11, z11) where

W (D77) = 0.1 + 0.1 + 0.1 = 0.3,W (D88) = 0.1 + 0.1 + 0.1 = 0.3

W (D99) = 0.1 + 0.1 + 0.1 = 0.3,W (D10) = 0.1 + 0.1 + 0.1 = 0.3

Hence, γSC(GC) = 0.3.

Therefore, the above example having two SDCN.

Remark 2.2.1 A complete fuzzy graph need not be a strong domination constant number of fuzzy graph.

Example 2.2.2 Let GC : (σC , µC) be a CFG with the vertices w11, x11, y11, z11 and edges (w11, x11),

(x11, y11),(z11, y11), (w11, z11). Here each arcs are strong.

In figure 2.2.2, the strong arcs are (w11, x11), (w11, z11), (z11, y11) and (y11, x11).

The two vertices of SDSs are D11 = (w11, x11), D22 = (w11, y11), D33 = (w11, z11), D44 = (z11, y11),
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Figure 2.2.2: CFG without Strong Domination Constant Number

D55 = (z11, x11), D66 = (y11, x11) where

W (D11) = 0.2 + 0.3 = 0.5,W (D22) = 0.2 + 0.2 = 0.4,W (D33) = 0.2 + 0.2 = 0.4

W (D44) = 0.2 + 0.2 = 0.4,W (D55) = 0.2 + 0.3 = 0.5,W (D66) = 0.2 + 0.3 = 0.5

Here the weight of all SDSs of GC are not constant.

The three vertices of SDSs are D77 = (w11, x11, y11), D88 = (w11, y11, z11), D99 = (x11, y11, z11), D10 =

(x11, w11, z11) where

W (D77) = 0.2 + 0.3 + 0.2 = 0.7,W (D88) = 0.2 + 0.2 + 0.2 = 0.6

W (D99) = 0.3 + 0.2 + 0.2 = 0.7,W (D10) = 0.2 + 0.3 + 0.2 = 0.7

Here the weight of all SDSs of GC are not constant.

Hence GC is not a SDCN of fuzzy graph.

Remark 2.2.2 A strong domination constant number of fuzzy graph need not be a complete fuzzy graph.

Example 2.2.3 Let GFG be a fuzzy graph with the vertices e11, f11, g11, h11 and edges (e11, f11),
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(f11, g11),(g11, h11), (e11, h11). Here each arcs are strong.

Figure 2.2.3: Strong Domination Constant Number of Fuzzy Graph

In figure 2.2.3, the strong arcs are (e11, f11), (e11, h11), (h11, g11) and (g11, f11).

The two vertices of SDSs are D11 = (e11, f11), D22 = (e11, g11), D33 = (e11, h11), D44 = (h11, g11),

D55 = (h11, f11), D66 = (g11, f11) where

W (D11) = 0.2 + 0.2 = 0.4,W (D22) = 0.2 + 0.2 = 0.4,W (D33) = 0.2 + 0.2 = 0.4

W (D44) = 0.2 + 0.2 = 0.4,W (D55) = 0.2 + 0.2 = 0.4,W (D66) = 0.2 + 0.2 = 0.4

Hence γSC(GC) = 0.4.

The three vertices of SDSs are D77 = (e11, f11, g11), D88 = (e11, g11, h11), D99 = (f11, g11, h11), D10 =

(h11, e11, f11) where

W (D77) = 0.2 + 0.2 + 0.2 = 0.6,W (D88) = 0.2 + 0.2 + 0.2 = 0.6

W (D99) = 0.2 + 0.2 + 0.2 = 0.6,W (D10) = 0.2 + 0.2 + 0.2 = 0.6

Hence γSC(GC) = 0.6.

The fuzzy graph GFG is SDCN of fuzzy graph. But GFG is not a CFG.
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Theorem 2.2.1 Let GC : (σC , µC) be a complete fuzzy graph of size qC . Then γSC(GC) =
qC
2

if and only

if alternative vertices have equal weight.

Proof. If alternative vertices have equal weight, then all the edges have equal MV and all arcs are strong,

then the SDS of GC is a set DC containing two nodes. Hence, SDCN is exactly

γSC(GC) =
∑

m11∈DC

µC(m11,m22) =
qC
2

.

Conversely, suppose that γSC(GC) =
qC
2

. To prove that alternative nodes have equal weight. If possible

all nodes have different weight and all arcs are strong, then the arcs weight corresponding to nodes is

µC(m11,m22) ≤ σC(m11) ∧ σC(m22).

If µC(m11,m22) < σC(m11) ∧ σC(m22), then obviously γSC(GC) = 0 or γSC(GC) <
qC
2

, but GC is not

a CFG which is a contradiction and if µC(m11,m22) = σC(m11) ∧ σC(m22), then clearly γSC(GC) = 0,

which is a contradiction. Hence, alternative vertices have equal weight.

Example 2.2.4 ConsiderGC : (σC , µC) be a CFG with the verticesw11, x11, y11, z11 and edges (w11, x11),

(x11, y11),

(z11, y11), (w11, z11). Here each arcs are strong.

In figure 2.2.4, γSC(GC) = 0.6 and qC = 1.2.

Then
qC
2

=
1.2

2
= 0.6.

Therefore γSC(GC) =
qC
2

.

Theorem 2.2.2 Let GC : (σC , µC) be a CFG, γSC(GC) ≥ pC
3

iff the following conditions hold

(i) Alternative nodes have equal weight.

(ii) All edges have equal membership value.

Proof. If alternative vertices have equal weight and all edges have equal MV, then the SDS of GC is a set

DC containing two vertices. Hence, SDCN γSC(GC) ≥ pC
3

.

Contrarily, suppose that γSC(GC) ≥ pC
3

. To prove that alternative nodes have equal weight and all edges

have equal MV. If all nodes have equal weight and alternative edges have equal MV then γSC(GC) ≥ pC
3

or γSC(GC) <
pC
3

, but GC is not a CFG, which is a contradiction. Hence, all the conditions are sufficient.
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Figure 2.2.4: CFG with SDCN

Example 2.2.5 Let GC : (σC , µC) be a CFG with the vertices a11, b11, c11, d11 and edges (a11, b11),

(b11, c11), (c11, d11), (a11, d11). Here each arcs are strong.

Figure 2.2.5: CFG with Strong Domination Constant Number
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In figure 2.2.5, γSC(GC) = 0.2 and pC = 0.6.

Then
pC
3

=
0.6

3
= 0.2.

Therefore γSC(GC) =
pC
3

.

Example 2.2.6 Let GC : (σC , µC) be a CFG with the vertices w11, x11, y11, z11 and edges (w11, x11),

(x11, y11), (z11, y11), (w11, z11). Here each arcs are strong.

Figure 2.2.6: CFG with Strong Domination Constant Number

In figure 2.2.6, γSC(GC) = 0.4 and pC = 1.

Then
pC
3

=
1

3
= 0.33.

Therefore γSC(GC) >
pC
3

.

Domination theory survey is exciting because of the wide range of applications and domination traits

that can be established. The goal of this chapter is to introduce a study of domination theory in the

context of pseudo regular and complete fuzzy graphs. We introduced a definition of the weight of strong

domination set using strong arcs. The perception of strong domination constant number for pseudo regular
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fuzzy graph and complete fuzzy graph has been introduced in this chapter, and some intriguing results

have been demonstrated. In addition, with reference to strong domination constant number, a comparison

study is conducted between pseudo regular fuzzy graph and totally pseudo regular fuzzy graph.



Chapter 3

Dual Strong Domination in Vertex Squared

and Vertex Squared Split Intuitionistic Fuzzy

Graph

The concept of connectivity plays an important role in both theory and applications of fuzzy graphs. An

intuitionistic fuzzy set is a generalization of the notion of a fuzzy set. Intuitionistic fuzzy models give

more precision, flexibility and compatibility to the system as compared to the classic and fuzzy models.

In this chapter, we introduce the notion of vertex squared intuitionistic fuzzy graph, and we define direct

product, semi-strong product and semi product. Also we introduce vertex squared split intuitionistic fuzzy

graph and we define join product. We generalize the concept of dual strong domination in vertex squared

and vertex squared split intuitionistic fuzzy graph and we introduced a definition of weight of strong

dominating set using strong arcs. We determine the dual strong domination number for several classes of

vertex squared and vertex squared split intuitionistic fuzzy graphs and establish some of their properties.

In addition we investigated many interesting results regarding the concept.

3.1 Vertex Squared Intuitionistic Fuzzy Graph

Definition 3.1.1 An vertex squared intuitionistic fuzzy graph (VSIFG) is of the form

GV SIFG : (VV SIFG, EV SIFG) where
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(i) the vertex set VV SIFG = {v11, v22, . . . , vnn} such that µ2
V SIFG : VV SIFG → [0, 1] and γ2V SIFG :

VV SIFG → [0, 1] denote the degree of membership value and non membership value of the element

vii ∈ VV SIFG respectively and 0 ≤ µ2
VV SIFG

(vii) + γ2VV SIFG
(vii) ≤ 1 for every vii ∈ VV SIFG(i =

1, 2, . . . , n).

(ii) EV SIFG ⊆ VV SIFG×VV SIFG where µEV SIFG
: VV SIFG×VV SIFG → [0, 1] and γEV SIFG

: VV SIFG×

VV SIFG → [0, 1] are such that

µEV SIFG
(vii, vjj) ≤ min(µ2

VV SIFG
(vii), µ

2
VV SIFG

(vjj))

γEV SIFG
(vii, vjj) ≤ max(γ2VV SIFG

(vii), γ
2
VV SIFG

(vjj))

and µEV SIFG
(vii, vjj) + γEV SIFG

(vii, vjj) ≤ 1 for every (vii, vjj) ∈ EV SIFG, (i, j = 1, 2, . . . , n).

Example 3.1.1 LetGV SIFG : (VV SIFG, EV SIFG) be a VSIFG withm11 = (0.72, 0.42),m22 = (0.92, 0.82),

m33 = (0.92, 0.22), m44 = (0.32, 0.22), m55 = (0.22, 0.22), m11,m33 = (0.49, 0.16), m11,m44 =

(0.09, 0.16), m22,m33 = (0.70, 0.60), m22,m55 = (0.02, 0.60), m33,m44 = (0.09, 0.04), m33,m55 =

(0.04, 0.04).

Figure 3.1.1: VSIFG
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Definition 3.1.2 A vertex squared intuitionistic fuzzy graph GV SIFG : (VV SIFG, EV SIFG) is said to be

strong if

µEV SIFG
(vii, vjj) = min(µ2

VV SIFG
(vii), µ

2
VV SIFG

(vjj))

γEV SIFG
(vii, vjj) = max(γ2VV SIFG

(vii), γ
2
VV SIFG

(vjj)) for all (vii, vjj) ∈ VV SIFG

Definition 3.1.3 A vertex squared intuitionistic fuzzy graph GV SIFG : (VV SIFG, EV SIFG) is said to be

complete if

µEV SIFG
(vii, vjj) = min(µ2

VV SIFG
(vii), µ

2
VV SIFG

(vjj))

γEV SIFG
(vii, vjj) = max(γ2VV SIFG

(vii), γ
2
VV SIFG

(vjj)) for all (vii, vjj) ∈ VV SIFG

Definition 3.1.4 If all the edges are strong edge in an vertex squared intuitionistic fuzzy graph then it is

called strengthened VSIFG.

Example 3.1.2 LetGV SIFG : (VV SIFG, EV SIFG) be a VSIFG withm11 = (0.32, 0.22),m22 = (0.12, 0.62),

m33 = (0.52, 0.32), m44 = (0.32, 0.42), m55 = (0.42, 0.52), m66 = (0.62, 0.22), m11,m22 = (0.01, 0.36),

m11,m66 = (0.09, 0.04), m22,m66 = (0.01, 0.36), m33,m55 = (0.16, 0.25), m33,m44 = (0.09, 0.16),

m44,m55 = (0.09, 0.25).
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Figure 3.1.2: Strengthened VSIFG

3.2 Dual Strong Domination In Vertex Squared Intuitionistic Fuzzy

Graph

Definition 3.2.1 Let GV SIFG be VSIFG. A set DV SIFG of nodes of GV SIFG is a dual strong dominating

set (DSDS) of GV SIFG if every node of VV SIFG −DV SIFG is a strong neighbour of atleast two nodes in

DV SIFG.

Definition 3.2.2 The weight of a dual strong dominating set DV SIFG of VSIFG is defined as

W (DV SIFG) =
∑

m11∈DV SIFG

[
1 + |µ2(m11,m22)− γ2(m11,m22)|

2

]
,

where µ2(m11,m22) − γ2(m11,m22)| is the minimum of the membership value and non membership

value of the strong arcs incident on m11. The dual strong domination number (DSDN) of a VSIFG
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GV SIFG is defined as the minimum weight of dual strong dominating set of GV SIFG and it is denoted

by γDSD(GV SIFG).

Example 3.2.1 Let GV SIFG : (VV SIFG, EV SIFG) be a VSIFG with each edges are strong.

Figure 3.2.1: VSIFG with γDSD(GV SIFG)

The DSDSs are S11 = {m11,m22}, S22 = {m33,m44}, . . . After calculating the weight of SDSs are

S11 = 0.14 and S22 = 0.14. Therefore γDSD(GV SIFG) = 0.6.

Theorem 3.2.1 If GV SIFG : (VV SIFG, EV SIFG) is a strengthened vertex squared intuitionistic fuzzy

graph, then equal number of vertices of dual strong dominating sets of GV SIFG having equal weight.

Proof. Assume that GV SIFG : (VV SIFG, EV SIFG) is a strengthened VSIFG. Then every edge of GV SIFG

is strong edge. If possible let (m11,m22) be an edge of GV SIFG which is not strong edge. Then equal
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number of vertices DSDSs of GV SIFG having equal weight. But GV SIFG is not a strengthened VSIFG,

which is a contradiction. Hence all DSDSs of GV SIFG having equal weight.

Example 3.2.2 Let GV SIFG be a strengthened VSIFG and all edges are strong. Here all DSDSs of

GV SIFG having equal weight.

Figure 3.2.2: Strengthened VSIFG

Theorem 3.2.2 Let GV SIFG : (VV SIFG, EV SIFG) be an vertex squared intuitionistic fuzzy graph and if

GV SIFG contains only one strong arc, then γDSD(GV SIFG) = 0.

Proof. Let GV SIFG : (VV SIFG, EV SIFG) be an VSIFG. If GV SIFG contains only one strong arc, then

γDSD(GV SIFG) = 0. Conversely, suppose that γDSD(GV SIFG) = 0. To prove that GV SIFG contains only

one strong arc. If possible GV SIFG contains more than one strong arc, then γDSD(G) 6= 0 which is a

contradiction. Hence GV SIFG contains only one strong arc.

Example 3.2.3 Let GV SIFG be a strengthened VSIFG. Here {m11,m22} is a only strong arc.
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Figure 3.2.3: VSIFG

Theorem 3.2.3 Let GV SIFG : (VV SIFG, EV SIFG) be an vertex squared intuitionistic fuzzy graph and

if GV SIFG is complete vertex squared intuitionistic fuzzy graph then all dual strong dominating sets of

GV SIFG have equal value.

Proof. Assume thatGV SIFG is complete VSIFG. Then by the definition of complete VSIFG, µ2(m11,m22) =

min(µ1(m11), µ1(m22)) and γ2(m11,m22) = max(γ1(m11), γ1(m22)) for everym11,m22 ∈ VV SIFG. Sup-

poseGV SIFG has at least one weak (m11,m22) edge then, µ2(m11,m22) < µ∞2 (m11,m22) and γ2(m11,m22) <

γ∞2 (m11,m22) which implies that µ2(m11,m22) < min(µ1(m11), µ1(m22)) and γ2(m11,m22) < max(γ1(m11),

γ1(m22)), for some m11,m22 ∈ VIFG. This contradicts our assumption that GV SIFG is complete VSIFG.

Hence all DSDSs have equal value.

3.3 Direct Product of Two Vertex Squared Intuitionistic Fuzzy Graph

Definition 3.3.1 The direct product of two vertex squared intuitionistic fuzzy graph G1 = (V1, E1, σ
′, µ′)

andG2 = (V2, E2, σ
′′, µ′′) such that V1∩V2 = φ is defined to be the VSIFGG1ΠG2 = (V,E, σ′Πσ′′, µ′Πµ′′)
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where

V = V1 × V2,

E = {[(x1, y1), (x2, y2)]/(x1, x2) ∈ E1, (y1, y2) ∈ E2}.

The MV and NMV of the vertex (x, y) in G1ΠG2 are given by

(σ′1Πσ
′′
1)(x, y) = min{σ′21 (x), σ′′21 (y)}

(σ′2Πσ
′′
2)(x, y) = max{σ′22 (x), σ′′22 (y)}

The MV and NMV of the edge (x1, y1), (x2, y2) in G1ΠG2 are given by

(µ′1Πµ
′′
1){(x1, y1), (x2, y2)} = min{µ′1(x1, x2), µ′′1(y1, y2)}

(µ′2Πµ
′′
2){(x1, y1), (x2, y2)} = max{µ′2(x1, x2), µ′′2(y1, y2)}

Example 3.3.1 LetG1 be a VSIFG withm11 = (0.52, 0.32),m22 = (0.22, 0.42),m11,m22 = (0.04, 0.0625)

Figure 3.3.1: VSIFG G1

Let G2 be a VSIFG with n11 = (0.12, 0.22), n22 = (0.22, 0.52), n11, n22 = (0.0001, 0.0620)
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Figure 3.3.2: VSIFG G2

Let G1ΠG2 be a VSIFG with m11n11 = (0.12, 0.32), m11n22 = (0.22, 0.52), m22, n11 = (0.12, 0.42),

m22n22 = (0.22, 0.52), (m11n11,m22n22) = (0.0001, 0.0625), (m11n22,m22n11) = (0.0001, 0.0625).

Figure 3.3.3: VSIFG G1ΠG2

Theorem 3.3.1 If G1 = (V1, E1, σ
′, µ′) and G2 = (V2, E2, σ

′′, µ′′) are vertex squared intuitionistic fuzzy

graph, then G1ΠG2 is also vertex squared intuitionistic fuzzy graph.
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Proof. Let G1 = (V1, E1, σ
′, µ′) and G2 = (V2, E2, σ

′′, µ′′) are VSIFG, then

µ′1(x1, x2) = min{σ′21 (x1), σ
′′2
1 (x2)}

µ′2(x1, x2) = max{σ′22 (x1), σ
′′2
2 (x2)}

µ′′1(y1, y2) = min{σ′21 (y1), σ
′′2
1 (y2)}

µ′′2(y1, y2) = max{σ′22 (y1), σ
′′2
2 (y2)} for all (x1, x2) ∈ E1 and(y1, y2) ∈ E2.

Now

(µ′1Πµ
′′
1){(x1, y1), (x2, y2)} = µ′1(x1, x2) ∧ µ′′1(y1, y2)

= min{[min{σ′21 (x1), σ
′′2
1 (x2)}], [min{σ′21 (y1), σ

′′2
1 (y2)}]}

= min{[min{σ′21 (x1), σ
′2
1 (y1)}], [min{σ′′21 (x2), σ

′′2
1 (y2)}]}

= {(σ′1Πσ′′1)(x1, y1)} ∧ {(σ′1Πσ′′1)(x2, y2)}

(µ′1Πµ
′′
1){(x1, y1), (x2, y2)} = {(σ′1Πσ′′1)(x1, y1)} ∧ {(σ′1Πσ′′1)(x2, y2)}

In addition

(µ′2Πµ
′′
2){(x1, y1), (x2, y2)} = {µ′2(x1, x2) ∨ µ′′2(y1, y2)}

= max{[max{σ′22 (x1), σ
′′2
2 (x2)}], [max{σ′22 (y1), σ

′′2
2 (y2)}]}

= max{[max{σ′22 (x1), σ
′2
2 (y1)}], [max{σ′′22 (x2), σ

′′2
2 (y2)}]}

= {(σ′2Πσ′′2)(x1, y1)} ∨ {(σ′2Πσ′′2)(x2, y2)}

(µ′2Πµ
′′
2){(x1, y1), (x2, y2)} = {(σ′2Πσ′′2)(x1, y1)} ∨ {(σ′2Πσ′′2)(x2, y2)}

Therefore G1 and G2 are VSIFG, then G1ΠG2 is also a VSIFG.

Theorem 3.3.2 If G1 = (V1, E1, σ
′, µ′) and G2 = (V2, E2, σ

′′, µ′′) are strengthen VSIFG, then G1ΠG2 is

a strengthen vertex squared intuitionistic fuzzy graph.

Remark 3.3.1 If G1 = (V1, E1, σ
′, µ′) and G2 = (V2, E2, σ

′′, µ′′) are strong VSIFG, then G1ΠG2 is not

a strong vertex squared intuitionistic fuzzy graph.
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3.4 Semi-Strong Product of Two Vertex Squared Intuitionistic Fuzzy

Graphs

Definition 3.4.1 The semi strong product of two vertex squared intuitionistic fuzzy graphG1 = (V1, E1, σ
′, µ′)

and G2 = (V2, E2, σ
′′, µ′′) such that V1 ∩ V2 = φ is defined to be the vertex squared intuitionistic fuzzy

graph G1 •G2 = (V,E, σ′ • σ′′, µ′ • µ′′) where

V = V1 × V2, and

E = {[(x, y1), (x, y2)]/x ∈ E1, (y1, y2) ∈ E2} ∪ {[(x1, y1), (x2, y2)]/(x1, x2) ∈ E1, (y1, y2) ∈ E2}.

The MV and NMV of the vertex (x, y) in G1 •G2 are given by

(σ′21 • σ′′21 )(x, y) = σ′21 (x) ∧ σ′′21 (y)

(σ′22 • σ′′22 )(x, y) = σ′22 (x) ∧ σ′′22 (y)

In addition, the MV and NMV of the edge in G1 •G2 are given by

(µ′1 • µ′′1)((x, y1), (x, y2)) = σ′21 (x) ∧ µ′′1(y1, y2)}

(µ′1 • µ′′1)((x1, y1), (x2, y2)) = µ′1(x1, x2) ∧ µ′′1(y1, y2)}

(µ′2 • µ′′2)((x, y1), (x, y2)) = σ′22 (x) ∨ µ′′2(y1, y2)

(µ′2 • µ′′2)((x1, y1), (x2, y2)) = µ′2(x1, x2) ∨ µ′′2(y1, y2)

Example 3.4.1 LetG1 be a VSIFG withm11 = (0.52, 0.32),m22 = (0.22, 0.42),(m11,m22) = (0.04, 0.16).

Figure 3.4.1: VSIFG G1
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Let G2 be a VSIFG with n11 = (0.12, 0.22),n22 = (0.22, 0.52),(n11, n22) = (0.01, 0.25).

Figure 3.4.2: VSIFG G2

Let G1 • G2 be a VSIFG with m11n11 = (0.12, 0.32),m11n22 = (0.22, 0.52), m22n11 = (0.12, 0.42),

m22n22 = (0.22, 0.52),(m11n11,m22n22) = (0.01, 0.25), (m11n22,m22n11) = (0.01, 0.25).

Figure 3.4.3: VSIFG G1 •G2

Theorem 3.4.1 If G1 = (V1, E1, σ
′, µ′) and G2 = (V2, E2, σ

′′, µ′′) are strong vertex squared intuitionistic

fuzzy graph, then G1 •G2 is also a strong vertex squared intuitionistic fuzzy graph.
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Proof. Because G1 = (V1, E1, σ
′, µ′) and G2 = (V2, E2, σ

′′, µ′′) are strong VSIFG, then

µ′1(x1, x2) = σ′21 (x1) ∧ σ′21 (x2)

µ′2(x1, x2) = σ′22 (x1) ∨ σ′22 (x2)

µ′′1(y1, y2) = σ′′21 (y1) ∧ σ′′21 (y2)

µ′′2(y1, y2) = σ′′22 (y1) ∨ σ′′22 (y2) for all (x1, x2) ∈ E1 and (y1, y2) ∈ E2

If ((x, y1), (x, y2)) ∈ E, then

(µ′1 • µ′′1)((x, y1), (x, y2)) = σ′21 (x) ∧ µ′′1(y1, y2)

= σ′21 (x) ∧ [σ′′21 (y1) ∧ σ′′21 (y2)]

= [σ′21 (x) ∧ σ′′21 (y1)] ∧ [σ′21 (x) ∧ σ′′21 (y2)]

= {[σ′21 • σ′′21 ](x, y1)} ∧ {[σ′21 • σ′′21 ](x, y2)}

Similarly, we can show that

(µ′2 • µ′′2)((x, y1), (x, y2)) = {[σ′22 • σ′′22 ](x, y1)} ∨ {[σ′22 • σ′′22 ](x, y2)}

Again if ((x1, y1), (x2, y2)) ∈ E, then

(µ′1 • µ′′1){(x1, y1), (x2, y2)} = {µ′1(x1, x2) ∧ µ′′1(y1, y2)}

= [σ′21 (x1) ∧ σ′21 (x2)] ∧ [σ′′21 (y1) ∧ σ′′21 (y2)]

= [σ′21 (x1) ∧ σ′′21 (y1)] ∧ [σ′21 (x2) ∧ σ′′21 (y2)]

= {[σ′21 • σ′′21 ](x1, y1)} ∧ {[σ′21 • σ′′21 ](x2, y2)}

Similarly,

(µ′2 • µ′′2){(x1, y1), (x2, y2)} = {(σ′22 • σ′′22 )(x1, y1)} ∨ {(σ′22 • σ′′22 )(x2, y2)}
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Therefore G1 •G2 is also strong VSIFG.

Theorem 3.4.2 If G1 = (V1, E1, σ
′, µ′) and G2 = (V2, E2, σ

′′, µ′′) are vertex squared intuitionistic fuzzy

graph, then G1 •G2 is also a vertex squared intuitionistic fuzzy graph.

Remark 3.4.1 If G1 = (V1, E1, σ
′, µ′) and G2 = (V2, E2, σ

′′, µ′′) are non strong VSIFG, then G1 •G2 is

a VSIFG.

3.5 Semi Product of Two Vertex Squared Intuitionistic Fuzzy Graphs

Definition 3.5.1 The semi-product of two vertex squared intuitionistic fuzzy graph G1 = (V1, E1, σ
′, µ′)

and G2 = (V2, E2, σ
′′, µ′′) such that V1 ∩ V2 = φ is defined to be the vertex squared intuitionistic fuzzy

graph G1 ⊗G2 = (V,E, σ′ ⊗ σ′′, µ′ ⊗ µ′′) where

V = V1 × V2, and

E = {[(x, y1), (x, y2)]/x ∈ E1, (y1, y2) ∈ E2} ∪ {[(x1, y), (x2, y)]/(x1, x2) ∈ E1, y ∈ E2}

∪ {[(x1, y1), (x2, y2)]/(x1, x2) ∈ E1, (y1, y2) ∈ E2}

The MV and NMV of the vertex (x, y) in G1 ⊗G2 are given by

(σ′21 ⊗ σ′′21 )(x, y) = σ′21 (x) ∧ σ′′21 (y)

(σ′22 ⊗ σ′′22 )(x, y) = σ′22 (x) ∧ σ′′22 (y)

In addition, the MV and NMV of the edge in G1 ⊗G2 are given by

(µ′1 ⊗ µ′′1)((x, y1), (x, y2)) = σ′21 (x) ∧ µ′′1(y1, y2)}

(µ′1 ⊗ µ′′1)((x1, y), (x2, y)) = µ′1(x1, x2) ∧ σ′′21 (y)}

(µ′1 ⊗ µ′′1)((x1, y1), (x2, y2)) = µ′1(x1, x2) ∧ µ′′1(y1, y2)}
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(µ′2 ⊗ µ′′2)((x, y1), (x, y2)) = σ′22 (x) ∨ µ′′2(y1, y2)

(µ′2 ⊗ µ′′2)((x1, y), (x2, y)) = µ′2(x1, x2) ∨ σ′′22 (y)

(µ′2 ⊗ µ′′2)((x1, y1), (x2, y2)) = µ′2(x1, x2) ∨ µ′′2(y1, y2)

Example 3.5.1 Consider G1 be a VSIFG with m11 = (0.52, 0.32), m22 = (0.22, 0.42), m11,m22 =

(0.04, 0.16)

Figure 3.5.1: VSIFG G1

Consider G2 be a VSIFG with n11 = (0.12, 0.22), n22 = (0.22, 0.52), n11, n22 = (0.01, 0.25)

Figure 3.5.2: VSIFG G2

Let G1 ⊗G2 be a VSIFG with m11n11 = (0.12, 0.32), m11n22 = (0.22, 0.52), m22, n11 = (0.12, 0.42),

m22n22 = (0.22, 0.52), (m11n11,m22n22) = (0.01, 0.25), (m11n22,m22n11) = (0.01, 0.25),

(m11n11,m11n22) = (0.01, 0.25), (m11n22,m22n22) = (0.04, 0.25), (m22n11,m22n22) = (0.01, 0.25),

(m11n11,m22n11) = (0.01, 0.16).

Theorem 3.5.1 If G1 = (V1, E1, σ
′, µ′) and G2 = (V2, E2, σ

′′, µ′′) are complete vertex squared intuition-

istic fuzzy graph, then G1 ⊗G2 is complete vertex squared intuitionistic fuzzy graph.
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Figure 3.5.3: VSIFG G1 ⊗G2

Proof. Because G1 = (V1, E1, σ
′, µ′) and G2 = (V2, E2, σ

′′, µ′′) are complete VSIFG, then

µ′1(x1, x2) = σ′21 (x1) ∧ σ′21 (x2)

µ′2(x1, x2) = σ′22 (x1) ∨ σ′22 (x2)

µ′′1(y1, y2) = σ′′21 (y1) ∧ σ′′21 (y2)

µ′′2(y1, y2) = σ′′22 (y1) ∨ σ′′22 (y2) for all (x1, x2) ∈ E1 and (y1, y2) ∈ E2

If ((x, y1), (x, y2)) ∈ E, then

(µ′1 ⊗ µ′′1)((x, y1), (x, y2)) = σ′21 (x) ∧ µ′′1(y1, y2)

= σ′21 (x) ∧ [σ′′21 (y1) ∧ σ′′21 (y2)]

= [σ′21 (x) ∧ σ′′21 (y1)] ∧ [σ′21 (x) ∧ σ′′21 (y2)]

= {[σ′21 ⊗ σ′′21 ](x, y1)} ∧ {[σ′21 ⊗ σ′′21 ](x, y2)}
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Similarly, we can show that

(µ′2 ⊗ µ′′2)((x, y1), (x, y2)) = {[σ′22 ⊗ σ′′22 ](x, y1)} ∨ {[σ′22 ⊗ σ′′22 ](x, y2)}

If ((x1, y), (x2, y)) ∈ E, then

(µ′1 ⊗ µ′′1){(x1, y), (x2, y)} = {µ′1(x1, x2) ∧ σ′′21 (y)}

= [σ′21 (x1) ∧ σ′21 (x2)] ∧ σ′′21 (y)

= [σ′21 (x1) ∧ σ′′21 (y)] ∧ [σ′21 (x2) ∧ σ′′21 (y)]

= {[σ′1 ⊗ σ′′1 ](x1, y)} ∧ {[σ′1 ⊗ σ′′1 ](x2, y)}

Again if ((x1, y1), (x2, y2)) ∈ E, then

(µ′1 ⊗ µ′′1){(x1, y1), (x2, y2)} = {µ′1(x1, x2) ∧ µ′′1(y1, y2)}

= [σ′21 (x1) ∧ σ′21 (x2)] ∧ [σ′′21 (y1) ∧ σ′′21 (y2)]

= [σ′21 (x1) ∧ σ′′21 (y1)] ∧ [σ′21 (x2) ∧ σ′′21 (y2)]

= {[σ′21 ⊗ σ′′21 ](x1, y1)} ∧ {[σ′21 ⊗ σ′′21 ](x2, y2)}

Similarly,

(µ′2 ⊗ µ′′2)((x1, y1), (x2, y2)) = {(σ′22 ⊗ σ′′22 )(x1, y1)} ∨ {(σ′22 ⊗ σ′′22 )(x2, y2)}

Therefore G1 ⊗G2 is also complete VSIFG.

Theorem 3.5.2 LetG1V SIFG andG2V SIFG be two vertex squared intuitionistic fuzzy graph and ifG1V SIFG

and G2V SIFG are strong VSIFG, then the semi - product of two vertex squared intuitionistic fuzzy graph

contains dual strong domination number.

Proof. Let G1V SIFG and G2V SIFG be two VSIFG . If G1V SIFG and G2V SIFG are strong SMIFG, then the

semi - product of two SMIFG contains dual strong domination number.

Conversely , Suppose that the semi - product of two SMIFG contains SDSN. To prove that G1V SIFG and
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G2V SIFG are strong VSIFG. If possible G1V SIFG and G2V SIFG are non strong VSIFG, then all arc of

G1V SIFG and G2V SIFG are non strong arc. Therefore the semi - product of two VSIFG does not have

DSDN, which is a contradiction. Hence G1V SIFG and G2V SIFG are strong VSIFG.

Example 3.5.2 In figure 3.5.1 and 3.5.2 are strong VSIFG. Then by figure 3.5.3 G1 ⊗G2 having all arcs

are strong. Therefore G1 ⊗G2 contains DSDN.

3.6 Vertex Squared Split Intuitionistic Fuzzy Graph

The new concept of dual strong domination in VSSIFG are defined in this section, along with related

results.

Definition 3.6.1 An vertex squared split intuitionistic fuzzy graph is of the form

GV SSIFG : (VV SSIFG, EV SSIFG) where

(i) the vertex set VV SSIFG = {v11, v22, . . . , vnn} such that µ2
V SSIFG : VV SSIFG → [0, 1] and γ2V SSIFG :

VV SSIFG → [0, 1] denote the degree of membership value and non membership value of the element

vii ∈ VV SSIFG respectively and 0 ≤ µ2
VV SSIFG

(vii) + γ2VV SSIFG
(vii) ≤ 1 for every vii ∈ VV SSIFG(i =

1, 2, . . . , n).

(ii) EV SSIFG ⊆ VV SSIFG × VV SSIFG where µEV SSIFG
: VV SSIFG × VV SSIFG → [0, 1] and γEV SSIFG

:

VV SSIFG × VV SSIFG → [0, 1] are such that

µEV SSIFG
(vii, vjj) ≤ min

(
µ2
VV SSIFG

(vii)

2
,
µ2
VV SSIFG

(vjj)

2

)
γEV SSIFG

(vii, vjj) ≤ max

(
γ2VV SSIFG

(vii)

2
,
γ2VV SSIFG

(vjj)

2

)

and 0 ≤ µEV SSIFG
(vii, vjj)+γEV SSIFG

(vii, vjj) ≤ 1 for every (vii, vjj) ∈ EV SSIFG, (i, j = 1, 2, . . . , n).
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Example 3.6.1 Let GV SSIFG be a VSSIFG with

m11 =

(
0.72

2
,
0.22

2

)
,m22 =

(
0.32

2
,
0.42

2

)
,m33 =

(
0.22

2
,
0.72

2

)
,m44 =

(
0.52

2
,
0.62

2

)
m55 =

(
0.32

2
,
0.42

2

)
, (m11,m22) = (0.045, 0.08), (m11,m33) = (0.02, 0.245),

(m11,m55) = (0.030, 0.10), (m22,m33) = (0.02, 0.245), (m22,m44) = (0.045, 0.18),

(m33,m44) = (0.02, 0.245), (m44,m55) = (0.030, 0.10)

Figure 3.6.1: VSSIFG

Definition 3.6.2 A vertex squared split intuitionistic fuzzy graph GV SSIFG : (VV SSIFG, EV SSIFG) is said

to be strong if

µEV SSIFG
(vii, vjj) = min

(
µ2
VV SSIFG

(vii)

2
,
µ2
VV SSIFG

(vjj)

2

)
γEV SSIFG

(vii, vjj) = max

(
γ2VV SSIFG

(vii)

2
,
γ2VV SSIFG

(vjj)

2

)
for all (vii, vjj) ∈ EV SSIFG
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Definition 3.6.3 A vertex squared split intuitionistic fuzzy graph GV SSIFG : (VV SSIFG, EV SSIFG) is said

to be complete if

µEV SSIFG
(vii, vjj) = min

(
µ2
VV SSIFG

(vii)

2
,
µ2
VV SSIFG

(vjj)

2

)
γEV SSIFG

(vii, vjj) = max

(
γ2VV SSIFG

(vii)

2
,
γ2VV SSIFG

(vjj)

2

)
for all (vii, vjj) ∈ EV SSIFG

3.7 The Join Product of Two Vertex Squared Split Intuitionistic

Fuzzy Graph

In this section the join product of two vertex squared split intuitionistic fuzzy graph are defined and related

theorems are discussed.

Definition 3.7.1 The join product of two VSSIFG G1 = (V1, E1) and G2 = (V2, E2) denoted by

G1 +G2 = [V1 ∪ V2, E1 ∪ E2 ∪ EN ]

where EN is the new edge joining V1 and V2, its MV and NMV are defined as follows

(µV1 + µV2)(u) =

µV1(u) if u ∈ V1

µV2(u) if u ∈ V2

(γV1 + γV2)(u) =

γV1(u) if u ∈ V1

γV2(u) if u ∈ V2
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(µE1 + µE2)(uv) =


µE1(uv) if uv ∈ E1

µE2(uv) if uv ∈ E2

min
{
µ2V1

(u)

2
,
µ2V2

(v)

2

}
if uv ∈ EN

(γE1 + γE2)(uv) =


γE1(uv) if uv ∈ E1

γE2(uv) if uv ∈ E2

max
{
γ2V1

(u)

2
,
γ2V2

(v)

2

}
if uv ∈ EN

Example 3.7.1 Let G1 be a VSSIFG with

m11 =

(
0.72

2
,
0.22

2

)
, m22 =

(
0.32

2
,
0.42

2

)
, (m11,m22) = (0.045, 0.08).

Figure 3.7.1: VSSIFG G1

Let G2 be a VSSIFG with n11 =

(
0.52

2
,
0.62

2

)
, n22 =

(
0.32

2
,
0.42

2

)
, (n11, n22) = (0.030, 0.10).

Figure 3.7.2: VSSIFG G2
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Let G1 +G2 be a VSSIFG with m11 =

(
0.72

2
,
0.22

2

)
, m22 =

(
0.32

2
,
0.42

2

)
, n11 =

(
0.52

2
,
0.62

2

)
,

n22 =

(
0.32

2
,
0.42

2

)
, (m11,m22) = (0.045, 0.08), (n11, n22) = (0.030, 0.10), (m11, n11) = (0.125, 0.18),

(m22, n22) = (0.045, 0.08), (m11, n22) = (0.045, 0.08), (m22, n11) = (0.045, 0.08)

Figure 3.7.3: VSSIFG G1 +G2

Theorem 3.7.1 The join of two vertex squared split intuitionistic fuzzy graph is again an vertex squared

split intuitionistic fuzzy graph.

Proof. Let G1 = [V1, E1] and G2 = [V2, E2] be VSSIFG, we have to prove that the join of G1 and G2

denoted byG1+G2 = [V1∪V2, E1∪E2∪EN ] whereEN is the new edge joining V1 and V2 is an VSSIFG.

By definition, we have if x ∈ V1 then

(µV1 + µV2)(x) = µV1(x) &

(γV1 + γV2)(x) = γV1(x)

therefore, 0 ≤ (µV1 + µV2)(x) + (γV1 + γV2)(x) ≤ 1
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Similarly, if x ∈ V2 then

(µV1 + µV2)(x) = µV2(x) &

(γV1 + γV2)(x) = γV2(x)

therefore, 0 ≤ (µV1 + µV2)(x) + (γV1 + γV2)(x) ≤ 1

and if xy ∈ E1, then

(µE1 + µE2)(x, y) = µE1(xy)

(µE1 + µE2)(x, y) ≤ min

(
µ2
V1

(x)

2
,
µ2
V1

(y)

2

)
≤ min

(
(µV1 + µV2)

2(x)

2
,
(µV1 + µV2)

2(y)

2

)
and (γE1 + γE2)(x, y) = γE1(xy)

(γE1 + γE2)(x, y) ≤ max

(
γ2V1(x)

2
,
γ2V1(y)

2

)
≤ max

(
(γV1 + γV2)

2(x)

2
,
(γV1 + γV2)

2(y)

2

)

Similarly, if xy ∈ E2

(µE1 + µE2)(x, y) ≤ min

(
(µV1 + µV2)

2(x)

2
,
(µV1 + µV2)

2(y)

2

)
and (γE1 + γE2)(x, y) ≤ max

(
(γV1 + γV2)

2(x)

2
,
(γV1 + γV2)

2(y)

2

)
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If xy ∈ EN ,

(µE1 + µE2)(x, y) = min

(
µ2
V1

(x)

2
,
µ2
V1

(y)

2

)
= min

(
(µV1 + µV2)

2(x)

2
,
(µV1 + µV2)

2(y)

2

)
(γE1 + γE2)(x, y) = max

(
γ2V1(x)

2
,
γ2V1(y)

2

)
= max

(
(γV1 + γV2)

2(x)

2
,
(γV1 + γV2)

2(y)

2

)

Therefore G1 +G2 is also an VSSIFG.

Theorem 3.7.2 If G1 and G2 are strong vertex squared split intuitionistic fuzzy graph, then their join

denoted by G1 +G2 is again strong vertex squared split intuitionistic fuzzy graph.

Proof. Since G1 and G2 are strong VSSIFG

µE1(x, y) = min

(
µ2
V1

(x)

2
,
µ2
V1

(y)

2

)
and

γE1(x, y) = max

(
γ2V1(x)

2
,
γ2V1(y)

2

)
∀ x, y ∈ E1

and µE2(x, y) = min

(
µ2
V2

(x)

2
,
µ2
V2

(y)

2

)
and

γE2(x, y) = max

(
γ2V2(x)

2
,
γ2V2(y)

2

)
∀ x, y ∈ E2

(µE1 + µE2)(x, y) =

µE1(x, y) if xy ∈ E1

µE2(x, y) if xy ∈ E2

=

min
{
µ2V1

(x)

2
,
µ2V1

(y)

2

}
min

{
µ2V2

(x)

2
,
µ2V2

(y)

2

}


(γE1 + γE2)(x, y) =

γE1(x, y) if xy ∈ E1

γE2(x, y) if xy ∈ E2
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=

max
{
γ2V1

(x)

2
,
γ2V1

(y)

2

}
max

{
γ2V2

(x)

2
,
γ2V2

(y)

2

}
and if x, y ∈ EN

(µE1 + µE2)(x, y) = min

(
µ2
V1

(x)

2
,
µ2
V2

(y)

2

)
(γE1 + γE2)(x, y) = max

(
γ2V1(x)

2
,
γ2V2(y)

2

)

Therefore G1 +G2 is strong VSSIFG.

Theorem 3.7.3 If G1 and G2 are complete vertex squared split intuitionistic fuzzy graph, then their join

product denoted by G1 +G2 is again complete vertex squared split intuitionistic fuzzy graph.

Proof. Since G1 and G2 are complete VSSIFG

µE1(x, y) = min

(
µ2
V1

(x)

2
,
µ2
V1

(y)

2

)
and

γE1(x, y) = max

(
γ2V1(x)

2
,
γ2V1(y)

2

)
∀ x, y ∈ V1

and µE2(x, y) = min

(
µ2
V2

(x)

2
,
µ2
V2

(y)

2

)
and

γE2(x, y) = max

(
γ2V2(x)

2
,
γ2V2(y)

2

)
∀ x, y ∈ V2

(µE1 + µE2)(x, y) =

µE1(x, y) if xy ∈ E1

µE2(x, y) if xy ∈ E2

=

min
{
µ2V1

(x)

2
,
µ2V1

(y)

2

}
min

{
µ2V2

(x)

2
,
µ2V2

(y)

2

}
∀ x, y ∈ V1
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(γE1 + γE2)(x, y) =

γE1(x, y) if xy ∈ E1

γE2(x, y) if xy ∈ E2

=

max
{
γ2V1

(x)

2
,
γ2V1

(y)

2

}
max

{
γ2V2

(x)

2
,
γ2V2

(y)

2

}
∀ x, y ∈ V2

and if x, y ∈ EN

(µE1 + µE2)(x, y) = min

(
µ2
V1

(x)

2
,
µ2
V2

(y)

2

)
∀ x, y ∈ V1

(γE1 + γE2)(x, y) = max

(
γ2V1(x)

2
,
γ2V2(y)

2

)
∀ x, y ∈ V2

Therefore G1 +G2 is complete VSSIFG.

3.8 Dual Strong Domination in Vertex Squared Split Intuitionistic

Fuzzy Graph

In this section, the concept of dual strong domination in VSSIFG is defined and discussed the notion of

γDSD(GV SSIFG).

Definition 3.8.1 Let GV SSIFG be a VSSIFG. A set DV SSIFG of nodes of GV SSIFG is a dual strong dom-

inating set of GV SSIFG if every node of VV SSIFG −DV SSIFG is a strong neighbor of at least two node in

DV SSIFG.

Definition 3.8.2 The weight of a dual strong dominating set DV SSIFG of VSSIFG is defined as

W (DV SSIFG) =
∑

m11∈DV SSIFG

[
1 + |µ2(m11,m22)− γ2(m11,m22)|

2

]
,

where µ2(m11,m22)− γ2(m11,m22)| is the minimum of the membership value and non menbership value

of the strong arcs incident on m11. The dual strong domination number of a VSIFG GV SSIFG is defined

as the minimum weight of dual strong dominating set of GV SSIFG and it is denoted by γDSD(GV SSIFG).
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Example 3.8.1 Let GV SSIFG be a VSSIFG with all edges are strong.

Figure 3.8.1: VSSIFG with γDSD(GV SSIFG)

The DSDSs are S11 = {m11}, S22 = {m22} and S33 = {m33}. After calculating the weight of SDSs

are S11 = 0.08 and S22 = 0.08 and S33 = 0.08. Therefore γDSD(GV SSIFG) = 0.08.

Theorem 3.8.1 Let G1 + G2 be an VSSIFG and if G1 + G2 having at most two non strong arcs, then

G1 +G2 contains dual strong dominating set.

Proof. Let G1 +G2 be an VSSIFG. If G1 +G2 having at most two non strong arcs, then G1 +G2 contains

dual strong dominating set.

Conversely, suppose that G1 +G2 contains DSDS. To prove that G1 +G2 having at most two non strong

arcs. If possible G1 +G2 contains more than two non strong arcs, then G1 +G2 does not contain a DSDS,

which is a contradiction. Hence G1 +G2 having at most two non strong arcs.

Remark 3.8.1 If G1 + G2 contains dual strong domination number then G1 and G2 need not be strong

VSSIFG.

In this chapter, we introduce the notion of vertex squared intuitionistic fuzzy graph and we define

strong vertex squared intuitionistic fuzzy graph, complete vertex squared intuitionistic fuzzy graph. Also,
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a direct product of two vertex squared intuitionistic fuzzy graph, semi-strong product and semi product

of two vertex squared intuitionistic fuzzy graph are defined, and many interesting results involving these

concepts are investigated. We develop the concept of vertex squared split intuitionistic fuzzy graph, strong

vertex squared split intuitionistic fuzzy graph, complete vertex squared split intuitionistic fuzzy graph and

join product of two vertex squared split intuitionistic fuzzy graph are defined, and many interesting results

involving these concepts are investigated. The relationship between the vertex squared intuitionistic fuzzy

graph of a dual strong domination and theorems relating to these notions are also analyzed. Moreover, we

discuss dual strong domination number and investigated their many interesting results.



Chapter 4

Split Domination in Vertex Squared

Interval-Valued Fuzzy Graphs

In this chapter we study different concepts like vertex squared interval-valued fuzzy graph, vertex squared

cardinality, vertex squared independent set, n- split dominating set, n-split domination number. We like-

wise, investigate a relationship between n - split dominating set and vertex squared independent set for

vertex squared interval-valued fuzzy graphs. The vertex squared interval-valued fuzzy graphs are more

adaptable and viable than fuzzy graphs because of the way that they have numerous applications in net-

works. This work will be useful to concentrate enormous vertex squared interval-valued fuzzy graphs as a

mix of little vertex squared interval-valued fuzzy graphs. Vertex squared interval-valued fuzzy graph hy-

pothesis is presently developing and growing its applications. The theoretical improvement in this space

is talked about here. Eventually, genuine utilization of n-split domination number to choose which oxygen

cylinder agencies have the lot of oxygen cylinder among various oxygen cylinder agencies is inspected.

4.1 Vertex Squared Interval-Valued Fuzzy Graph

Definition 4.1.1 An vertex squared interval-valued fuzzy set (VSIVFS) XIV on a set VIV is denoted by

XIV = {(i11, [(σ−XIV
(i11))

2, (σ+
XIV

(i11))
2]), i11 ∈ VIV }, where (σ−XIV

)2 and (σ+
XIV

)2 are fuzzy subsets of

VIV such that (σ−XIV
(i11))

2 ≤ (σ+
XIV

(i11))
2 for all i11 ∈ VIV . If G∗IV = (VIV , EIV ) is a crisp graph, then

by an vertex squared interval-valued fuzzy relation YIV on VIV we mean an VSIVFS on EIV such that
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σ−YIV (i11i22) ≤ min{(σ−XIV
(i11))

2, (σ−XIV
(i22))

2} and σ+
YIV

(i11i22) ≤ max{(σ+
XIV

(i11))
2, (σ+

XIV
(i22))

2}

for all i11i22 ∈ EIV and we write YIV = {(i11i22, [σ−YIV (i11i22), σ
+
YIV

(i11i22)]), i11i22 ∈ EIV }.

Definition 4.1.2 An vertex squared interval-valued fuzzy graph of a graph G∗IV = (VIV , EIV ) is a pair

GIV = (XIV , YIV ), where XIV = [(σ−XIV
)2, (σ+

XIV
)2] is an VSIVFS on VIV and YIV = [σ−YIV , σ

+
YIV

] is an

vertex squared interval-valued fuzzy relation on VIV .

Example 4.1.1

Figure 4.1.1: VSIVFG (GIV )

In the above figure,

VIV = {i11, i22, i33, i44}

EIV = {i11i22, i22i33, i33i44, i44i11}

Here we take XIV be an VSIVFS on VIV and YIV be an VSIVFS on EIV ⊆ VIV × VIV defined by

XIV =

〈(
i11

(0.2)2
,
i22

(0.1)2
,
i33

(0.3)2
,
i44

(0.4)2

)〉〈(
i11

(0.3)2
,
i22

(0.4)2
,
i33

(0.6)2
,
i44

(0.5)2

)〉

YIV =

〈(
i11i22
0.01

,
i22i33
0.01

,
i33i44
0.09

,
i44i11
0.02

)〉〈(
i11i22
0.10

,
i22i33
0.36

,
i33i44
0.34

,
i44i11
0.25

)〉
Then GIV = (XIV , YIV ) is an VSIVFG.
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Definition 4.1.3 The order pIV and size qIV of an VSIVFG GIV = (XIV , YIV ) of a graph G∗IV =

(VIV , EIV ) are denoted by

pIV =
∑

i11∈VIV

1 + (σ+
XIV

(i11))
2 − (σ−XIV

(i11))
2

2

and

q
IV

=
∑

i11i22∈VIV

1 + σ+
YIV

(i11i22)− σ−YIV (i11i22)

2

Definition 4.1.4 Let GIV = (XIV , YIV ) be an VSIVFG on G∗IV = (VIV , EIV ) and SIV ⊆ VIV . Then the

vertex squared cardinality of SIV is defined to be

∑
i11∈VIV

1 + (σ+
XIV

(i11))
2 − (σ−XIV

(i22))
2

2

Definition 4.1.5 An arc eIV = i11i22 of the VSIVFG is called a vertex squared effective edge if

σ−YIV (i11i22) = min{(σ−XIV
(i11))

2, (σ−XIV
(i22))

2}

and

σ+
YIV

(i11i22) = max{(σ+
XIV

(i11))
2, (σ+

XIV
(i22))

2}

Definition 4.1.6 A set SIV of vertices of the VSIVFG is called the vertex squared independent set (VSIS)

if

σ−YIV (i11i22) < min{(σ−XIV
(i11))

2, (σ−XIV
(i22))

2}

and

σ+
YIV

(i11i22) < max{(σ+
XIV

(i11))
2, (σ+

XIV
(i22))

2}

for all i11, i22 ∈ SIV .
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4.2 n-Split Domination in Vertex Squared Interval-Valued Fuzzy

Graph

Definition 4.2.1 Let GIV = (XIV , YIV ) be an vertex squared interval-valued fuzzy graph on VIV and

i11, i22 ∈ VIV . We say ’i11’ n-split dominates ’i22’ if

σ−YIV (i11i22) = min

{
(σ−XIV

(i11))
2

n
,
(σ−XIV

(i22))
2

n

}

and σ+
YIV

(i11i22) = max

{
(σ+

XIV
(i11))

2

n
,
(σ+

XIV
(i22))

2

n

}
.

Example 4.2.1

Figure 4.2.1: VSIVFG (GIV ) with 2-Split Dominates

In the above figure,

VIV = {i11, i22, i33}

EIV = {i11i22, i22i33, i33i11}
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Here we take XIV be an VSIVFS on VIV and YIV be an VSIVFS on EIV ⊆ VIV × VIV denoted by

XIV =

〈(
i11

(0.4)2
,
i22

(0.2)2
,
i33

(0.1)2

)〉〈(
i11

(0.5)2
,
i22

(0.3)2
,
i33

(0.2)2

)〉

YIV =

〈(
i11i22
0.02

,
i22i33
0.005

,
i33i11
0.005

)〉〈(
i11i22
0.125

,
i22i33
0.045

,
i33i11
0.125

)〉
Then GIV = (XIV , YIV ) is an VSIVFG.

In this figure 4.2.1 for n = 2,

σ−YIV (i11i22) = min

{
(σ−XIV

(i11))
2

n
,
(σ−XIV

(i22))
2

n

}

= min

{
(0.4)2

2
,
(0.2)2

2

}
= 0.02

σ+
YIV

(i11i22) = max

{
(σ+

XIV
(i11))

2

n
,
(σ+

XIV
(i22))

2

n

}

= max

{
(0.5)2

2
,
(0.3)2

2

}
= 0.125

Similarly, σ−YIV (i22i33) = 0.005 and σ+
YIV

(i22i33) = 0.045,

σ−YIV (i11i33) = 0.005 and σ+
YIV

(i11i33) = 0.125.

Therefore all edges are 2- split dominate edges.

Definition 4.2.2 A subset SIV of VIV is called a n-split dominating set (n-SDS) in VSIVFG if for every

i22 6∈ SIV , there exist i11 ∈ SIV such that i11 n-split dominates i22. A n-split dominating set RIV of a

VSIVFG is called the minimal n-split dominating set if no proper subset of RIV is a n-split dominating

set of VSIVFG.

Definition 4.2.3 The minimal vertex squared cardinality of a n-split dominating set in VSIVFG is said to

be n-split domination number of VSIVFG and is denoted by γnSPD(GIV ).
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Example 4.2.2 In Figure 4.2.2, VIV = {i11, i22, i33}

EIV = {i11i22, i22i33, i33i11}

Here we take XIV be an VSIVFS on VIV and YIV be an VSIVFS on EIV ⊆ VIV × VIV denoted by

XIV =

〈(
i11

(0.4)2
,
i22

(0.3)2
,
i33

(0.2)2

)〉〈(
i11

(0.5)2
,
i22

(0.4)2
,
i33

(0.4)2

)〉

YIV =

〈(
i11i22
0.045

,
i22i33
0.02

,
i33i11
0.02

)〉〈(
i11i22
0.125

,
i22i33
0.08

,
i33i11
0.125

)〉
Then GIV = (XIV , YIV ) is an VSIVFG.

Figure 4.2.2: VSIVFG (GIV ) with 2-Split Domination Number
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For n=2, the 2-split dominating sets (2-SDSs) are

D1 = {i11} =
1 + (0.5)2 − (0.4)2

2
= 0.55

D2 = {i22} =
1 + (0.4)2 − (0.3)2

2
= 0.54

D3 = {i33} =
1 + (0.4)2 − (0.2)2

2
= 0.56

D4 = {i11, i22} =
1 + (0.5)2 − (0.4)2

2
+

1 + (0.4)2 − (0.3)2

2
= 1.09

D5 = {i22, i33} =
1 + (0.4)2 − (0.3)2

2
+

1 + (0.4)2 − (0.2)2

2
= 1

D6 = {i11, i33} =
1 + (0.5)2 − (0.4)2

2
+

1 + (0.4)2 − (0.2)2

2
= 1.11

Then the minimal vertex squared cardinality of a 2-SDS is {i22} and γ2SPD(GIV ) = 0.54.

Theorem 4.2.1 A vertex squared independent set is a maximal vertex squared independent set of a vertex

squared interval-valued fuzzy graph iff it is a vertex squared independent set and n-split dominating set.

Proof. Let SIV is a maximal vertex squared independent set of a VSIVFG. Thus for each x ∈ VIV −SIV ,

the set SIV ∪{x} is not vertex squared independent set. In this way, for each vertex x ∈ VIV −SIV , there

is a vertex y ∈ SIV to such an extent that y is n-split dominated by x.

Consequently SIV is a n-SDS. Hence SIV is an vertex squared independent and n-SDS.

Conversely, let SIV be vertex squared independent set and n-SDS. If conceivable, assume SIV is not a

maximal vertex squared independent set. Then there exists x ∈ VIV − SIV to such an extent that the set

SIV ∪{x} is vertex squared independent set. Then no vertex in SIV is n-split dominated by x. Hence SIV

cannot be a n-SDS, which is a contradiction. Hence SIV should be a maximal vertex squared independent

set.

Example 4.2.3

In the above figure the maximal vertex squared independent sets are S1 = {i11, i22, i33}, S2 = {i22, i33, i44}.

This S1 and S2 is also a vertex squared independent set and 2-SDS.

Theorem 4.2.2 In a vertex squared interval-valued fuzzy graph, every maximal vertex squared independ-

ent set is a minimal n-split dominating set.
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Figure 4.2.3: VSIVFG (GIV ) with 2-Split Dominating Set

Proof. Let SIV be a maximal vertex squared independent set in VSIVFG. By the theorem 4.2.1, SIV is a

n-SDS. Assume SIV be not a minimal n-split dominating set. Then there exists somewhere around one

vertex x ∈ SIV for which SIV −{x} is a n-SDS. Yet, if SIV −{x} n-split dominates VIV − (SIV −{x})

then at least one vertex in SIV − {x} must n-split dominate x. This contradicts the way that SIV is a

vertex squared independent set of VSIVFG. Hence SIV should be a minimal n-split dominating set.
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Example 4.2.4

Figure 4.2.4: VSIVFG (GIV ) with 2-Split Dominating Set

In the above figure the maximal vertex squared independent sets are S1 = {i11, i22}, S2 = {i22, i33}, S3 =

{i33, i44}, S4 = {i11, i44} and 2-SDSs are

D1 = {i11, i22} =
1 + (0.4)2 − (0.2)2

2
+

1 + (0.5)2 − (0.3)2

2
= 1.2

D2 = {i11, i33} =
1 + (0.4)2 − (0.2)2

2
+

1 + (0.4)2 − (0.2)2

2
= 1.2

D3 = {i11, i44} =
1 + (0.4)2 − (0.2)2

2
+

1 + (0.5)2 − (0.3)2

2
= 1.2

D4 = {i22, i33} =
1 + (0.5)2 − (0.3)2

2
+

1 + (0.4)2 − (0.2)2

2
= 1.2

D5 = {i22, i44} =
1 + (0.5)2 − (0.3)2

2
+

1 + (0.5)2 − (0.3)2

2
= 1.2

D6 = {i33, i44} =
1 + (0.4)2 − (0.2)2

2
+

1 + (0.5)2 − (0.3)2

2
= 1.2

This shows that every maximal vertex squared independent set is a minimal 2-SDS.

Theorem 4.2.3 Let GIV be a vertex squared interval-valued fuzzy graph with n-split dominate edges. If

SIV is a minimal n-split dominating set, then VIV − SIV is a n-split dominating set.
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Proof. Let SIV be a minimal n-split dominating set of VSIVFG. Assume VIV − SIV is not n-split

dominating set. Then there exist a vertex to x ∈ SIV such an extent that x is not n-split dominated by

anyone vertex in VIV −SIV . Since GIV has n-split dominate edges, x is a n-split dominate of somewhere

around one vertex in SIV − {x}. Then SIV − {x} is a n-split dominating set, which contradicts the

minimality of SIV . Subsequently, every vertex in SIV is a n-split dominate of no less than one vertex in

VIV − SIV . Hence VIV − SIV is a n-split dominating set.

Example 4.2.5

Figure 4.2.5: VSIVFG (GIV ) with 2-Split Dominating Set

For n=2, the 2-split dominating sets are

D1 = {i11, i22} =
1 + (0.5)2 − (0.3)2

2
+

1 + (0.4)2 − (0.2)2

2
= 1.2

D2 = {i11, i33} =
1 + (0.5)2 − (0.3)2

2
+

1 + (0.3)2 − (0.2)2

2
= 1.1

D3 = {i11, i44} =
1 + (0.5)2 − (0.3)2

2
+

1 + (0.5)2 − (0.5)2

2
= 1.1

D4 = {i22, i33} =
1 + (0.4)2 − (0.2)2

2
+

1 + (0.3)2 − (0.2)2

2
= 1.1

D5 = {i22, i44} =
1 + (0.4)2 − (0.2)2

2
+

1 + (0.5)2 − (0.5)2

2
= 1.1

D6 = {i33, i44} =
1 + (0.2)2 − (0.3)2

2
+

1 + (0.5)2 − (0.5)2

2
= 1
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Then the minimal vertex squared cardinality of a 2-SDS is {i33, i44} and γ2SPD(GIV ) = 1. Here VIV =

{i11, i22, i33, i44}, then VIV −D6 = {i11, i22} is also a 2-SDS.

4.3 Application

Many individuals today have been contaminated will the Corona virus infection and now and again passed

on. Lamentably, the oxygen cylinder insufficiency in agencies has expanded the demise rate. Hence we

have attempted to recognize the lot oxygen cylinder accessible agencies with the assistance of 2-split

dominating sets to save both expense and time. For this reason, assume that five unique oxygen cylinder

agencies are working in a city for providing oxygen cylinders to the medical clinics.

Consider the oxygen cylinder agencies A11, A22, A33, A44 and A55. In VSIVFGs, the vertices show the

agencies, and edges show the collaboration of one agency with another agency and non collaboration with

one another. The diagram 2-split dominating sets is the arrangement of agencies that produce the oxygen

cylinder independently.

The vertex A44((0.3)2, (0.4)2) implies that it has 30% of the oxygen cylinder accessible for the agencies

and 40% of the oxygen cylinder inaccessible for the agencies. The edge A11, A22(0.02, 0.125) show that

there is just 0.02% of the connection between the two agencies, and because of the contest, and 0.125%

on the conflict between them.

The 2-split dominating sets for the figure 4.3.1 are

D1 = {A44}, D2 = {A11, A22}, D3 = {A11, A33}, D4 = {A11, A44}, D5 = {A22, A44},

D6 = {A22, A55}, D7 = {A33, A44}, D8 = {A33, A55}, D9 = {A44, A55}

after calculating the vertex squared cardinality of D1, D2, . . . , D9, . . .

D1 = 0.535, D2 = 1.07, D3 = 1.145, D4 = 1.08, D5 = 1.06,

D6 = 1.085, D7 = 1.135, D8 = 1.16, D9 = 1.095
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Figure 4.3.1: VSIVFG (GIV ) with 2-Split Dominating Set

ObviouslyD1 has the base vertex squared cardinality among other 2-split dominating sets, so we presume

that it tends to be the most ideal decision since it will set aside time and cash for patients. Along these

lines, the excess agencies should expand oxygen cylinder creation, with the goal that patients can be

distinguished at the earliest opportunity and don’t need to go to various agencies and went through a huge

load of cash.

Figure 4.3.2: Oxygen Cylinder
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4.4 Motivation and Comparative Analysis

Our examination will be gainful to grasp the further qualities of VSIVFGs exhaustively. We have applied

the model on VSIVFGs given in figure 4.4.1 and interval-valued fuzzy graphs gave in figure 4.4.2 and

we get the accompanying outcome. In figure 4.4.1 γ2SPD = 0.525 and figure 4.4.2 γ = 0.55. Here

γ2SPD < γ. Because of this explanation, the current model isn’t useful to choose which agencies have the

lot of oxygen cylinder. Thusly our proposed strategy is superior to the current technique.

Figure 4.4.1: VSIVFG (GIV ) with 2-Split Dominating Set

Figure 4.4.2: IVFG with Dominating Set

The dominance theory survey is intriguing because of the wide range of applications and dominant

features that can be established. The new thought has been explained in this chapter for vertex squared

cardinality, vertex squared effective edge, n-split dominating set, and n-split domination number. Theor-

ems identified with this concept are inferred and the relation between n-split domination set and vertex

squared independent set are set up. Vertex squared interval-valued fuzzy graphs are more adaptable and

practical than fuzzy graphs because of their many applications in networks. The fuzzy graph hypothesis

with vertex squared interval-valued is actively being explored and modified. We trust our investigation

will empower us to expand fuzzy graph classes, for example, interval-valued fuzzy incidence graphs and

intuitionistic fuzzy incidence graphs.



Chapter 5

Perfect Domination in Product of

Interval-Valued Fuzzy Incidence Graphs

Fuzzy graphs, also known as fuzzy incidence graphs, are a useful and well-organized tool for encapsu-

lating and resolving a variety of real-world situations involving ambiguous data and information. In this

investigation article, we introduced the chance of interval-valued fuzzy incidence graphs alongside their

specific properties. The operations of Cartesian Product (CP), Tensor Product (TP) in interval-valued

fuzzy incidence graphs are additionally examined. The technique to compute the degree of interval-

valued fuzzy incidence graphs acquired by Cartesian Product and Tensor Product is examined. Some

significant hypotheses to figure the degree (DG) of the vertices of interval-valued fuzzy incidence graphs

gained by Cartesian Product and Tensor Product are explained. An innovative idea of perfect domination

in Cartesian product of two interval-valued fuzzy incidence graphs and Tensor Product of two interval-

valued fuzzy incidence graphs utilizing incidence pair are presented and gotten the connection between

them. Eventually, genuine utilization of perfect domination number to discover which countries (country)

have the best education policies among various countries is inspected.
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5.1 Degree of a Vertex in Cartesian Product of Two Interval-Valued

Fuzzy Incidence Graphs

Definition 5.1.1 An interval-valued fuzzy incidence graph is of the formGIV I = (VIV I , EIV I , IIV I , µK , µL, µM)

where µK = (µ−K , µ
+
K), µL = (µ−L , µ

+
L), µM = (µ−M , µ

+
M) and VIV I = {w0, w1, ..., wn} such that

µ−K : VIV I → [0, 1] and µ+
K : VIV I → [0, 1] represent the degree of membership (MS) and non mem-

bership (NMS) of the vertex wii ∈ VIV I respectively, and µ−K(w11 ≤ µ+
K(w11), 0 ≤ µ−K +µ+

K ≤ 1 for each

wii ∈ VIV I(i = 1, 2, ...., n), µ−L : VIV I × VIV I → [0, 1] and µ+
L : VIV I × VIV I → [0, 1], µ−L(w11, w22)

and µ+
L(w11, w22) show the degree of membership and non membership of the edge (w11, w22) respect-

ively, such that µ−L(w11, w22) ≤ min{µ−K(w11), µ
−
K(w22)} and µ+

L(w11, w22) ≤ max{µ+
K(w11), µ

+
K(w22)},

0 ≤ µ−L(w11, w22) + µ+
L(w11, w22) ≤ 1 for every (w11, w22), µ−M : VIV I ×EIV I → [0, 1] and µ+

M : VIV I ×

EIV I → [0, 1] and µ−M(w11, w11w22) and µ+
M(w11, w11w22) show the degree of membership and non mem-

bership of the incidence pair respectively, such that µ−M(w11, w11w22) ≤ min{µ−K(w11), µ
−
L(w11, w22)}

and µ+
M(w11, w11w22) ≤ max{µ+

K(w11), µ
+
L(w11, w22)}, 0 ≤ µ−M(w11, w11w22) + µ+

M(w11, w11w22) ≤ 1

for every (w11, w11w22).

Definition 5.1.2 Let GIV I = (VIV I , EIV I , IIV I , µK , µL, µM) is an interval-valued fuzzy incidence graph

and w11 ∈ VIV I , then its degree is represented by dGIV I
(w11) = (d1GIV I

(w11), d2GIV I
(w11)) and defined

by

d1GIV I
(w11) =

∑
w11 6=w22

(w11, w11w22) ∈ IIV I

and d2GIV I
(w11) =

∑
w11 6=w22

(w11, w11w22) ∈ IIV I

Definition 5.1.3 The Cartesian Product of two interval-valued fuzzy incidence graphsG1
IV I = (V 1

IV I , E
1
IV I , I

1
IV I , µ

1
K , µ

1
L, µ

1
M)

and

G2
IV I = (V 2

IV I , E
2
IV I , I

2
IV I , µ

2
K , µ

2
L, µ

2
M) is defined as an interval-valued fuzzy incidence graph

GIV I = G1
IV I ×G2

IV I = (VIV I , EIV I , IIV I , µ
1
K × µ2

K , µ
1
L × µ2

L, µ
1
M × µ2

M)

where VIV I = V 1
IV I × V 2

IV I , and
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EIV I = {((m1n1), (m2, n2))/m1 = m2, (n1, n2) ∈ E2
IV I or n1 = n2, (m1,m2) ∈ E1

IV I}

IIV I = {(m1n1), (m1, n1)(m1, n2)/m1 = m2, (n1, n1n2) ∈ I2IV I , (n2, n1n2) ∈ I2IV I or

n1 = n2, (m1,m1m2) ∈ I1IV I , (m2,m1m2) ∈ I1IV I} with(
µ−

1

K × µ
−2

K

)
(m1, n1) = min{µ−1

K (m1), µ
−2

K (n1)}∀(m1, n1) ∈ V 1
IV I × V 2

IV I ,(
µ+1

K × µ
+2

K

)
(m1, n1) = max{µ+1

K (m1), µ
+2

K (n1)}∀(m1, n1) ∈ V 1
IV I × V 2

IV I ,(
µ−

1

L × µ
−2

L

)
((m1, n1)(m2, n2)) =

min{µ−1

K (m1), µ
−2

L (n1, n2)} if m1 = m2, (n1, n2) ∈ E2
IV I

min{µ−1

L (m1,m2), µ
−2

K (n1)} if n1 = n2, (m1,m2) ∈ E1
IV I(

µ+1

L × µ
+2

L

)
((m1, n1)(m2, n2)) =

max{µ+1

K (m1), µ
+2

L (n1, n2)} if m1 = m2, (n1, n2) ∈ E2
IV I

max{µ+1

L (m1,m2), µ
+2

K (n1)} if n1 = n2, (m1,m2) ∈ E1
IV I(

µ−
1

M × µ
−2

M

)
[(m1, n1), (m1, n1)(m1, n2)] = min{µ−1

K (m1), µ
−2

M (n1, n1n2)}

if m1 = m2, (n1, n1n2) ∈ I2IV I(
µ−

1

M × µ
−2

M

)
[(m1, n2), (m1, n1)(m1, n2)] = min{µ−1

K (m1), µ
−2

M (n2, n1n2)}

if m1 = m2, (n2, n1n2) ∈ I2IV I(
µ−

1

M × µ
−2

M

)
[(m1, n1), (m1, n1)(m2, n1)] = min{µ−1

M (m1,m1m2), µ
−2

K (n1)}

if n1 = n2, (m1,m1m2) ∈ I1IV I(
µ−

1

M × µ
−2

M

)
[(m2, n1), (m1, n1)(m2, n1)] = min{µ−1

M (m2,m1m2), µ
−2

K (n1)}

if n1 = n2, (m2,m1m2) ∈ I1IV I(
µ−

1

M × µ
−2

M

)
[(m1, n2), (m1, n2)(m2, n2)] = min{µ−1

M (m1,m1m2), µ
−2

K (n2)}

if n1 = n2, (m1,m1m2) ∈ I1IV I(
µ−

1

M × µ
−2

M

)
[(m2, n2), (m1, n2)(m2, n2)] = min{µ−1

M (m2,m1m2), µ
−2

K (n2)}

if n1 = n2, (m2,m1m2) ∈ I1IV I(
µ−

1

M × µ
−2

M

)
[(m2, n1), (m2, n1)(m2, n2)] = min{µ−2

M (n1, n1n2), µ
−1

K (m2)}

if m1 = m2, (n1, n1n2) ∈ I2IV I(
µ−

1

M × µ
−2

M

)
[(m2, n2), (m2, n1)(m2, n2)] = min{µ−2

M (n2, n1n2), µ
−1

K (m2)}

if m1 = m2, (n2, n1n2) ∈ I2IV I(
µ+1

M × µ
+2

M

)
[(m1, n1), (m1, n1)(m1, n2)] = max{µ+1

K (m1), µ
+2

M (n1, n1n2)}

if m1 = m2, (n1, n1n2) ∈ I2IV I(
µ+1

M × µ
+2

M

)
[(m1, n2), (m1, n1)(m1, n2)] = max{µ+1

K (m1), µ
+2

M (n2, n1n2)}
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if m1 = m2, (n2, n1n2) ∈ I2IV I(
µ+1

M × µ
+2

M

)
[(m1, n1), (m1, n1)(m2, n1)] = max{µ+1

M (m1,m1m2), µ
+2

K (n1)}

if n1 = n2, (m1,m1m2) ∈ I1IV I(
µ+1

M × µ
+2

M

)
[(m2, n1), (m1, n1)(m2, n1)] = max{µ+1

M (m2,m1m2), µ
+2

K (n1)}

if n1 = n2, (m2,m1m2) ∈ I1IV I(
µ+1

M × µ
+2

M

)
[(m1, n2), (m1, n2)(m2, n2)] = max{µ+1

M (m1,m1m2), µ
+2

K (n2)}

ifn1 = n2, (m1,m1m2) ∈ I1IV I(
µ+1

M × µ
+2

M

)
[(m2, n2), (m1, n2)(m2, n2)] = max{µ+1

M (m2,m1m2), µ
+2

K (n2)}

if n1 = n2, (m2,m1m2) ∈ I1IV I(
µ+1

M × µ
+2

M

)
[(m2, n1), (m2, n1)(m2, n2)] = max{µ+2

M (n1, n1n2), µ
+1

K (m2)}

if m1 = m2, (n1, n1n2) ∈ I2IV I(
µ+1

M × µ
+2

M

)
[(m2, n2), (m2, n1)(m2, n2)] = max{µ+2

M (n2, n1n2), µ
+1

K (m2)}

if m1 = m2, (n2, n1n2) ∈ I2IV I

Example 5.1.1 Let G1
IV I = (V 1

IV I , E
1
IV I , I

1
IV I , µ

1
K , µ

1
L, µ

1
M) be a IVFIG

Figure 5.1.1: G1
IV I

Figure 5.1.1 µ1
K(m1) = (0.4, 0.5), µ1

K(m2) = (0.1, 0.2), µ1
L(m1m2) = (0.1, 0.5), µ1

M(m1,m1m2) =

(0.1, 0.5), µ1
M(m2,m1m2) = (0.1, 0.5) and satisfies the IVFIG conditions.

Let G2
IV I = (V 2

IV I , E
2
IV I , I

2
IV I , µ

2
K , µ

2
L, µ

2
M) be a IVFIG. Figure 5.1.2 µ1

K(n1) = (0.2, 0.3), µ1
K(n2) =

(0.5, 0.6), µ1
L(n1n2) = (0.2, 0.6), µ1

M(n1, n1n2) = (0.2, 0.6), µ1
M(n2, n1n2) = (0.2, 0.6) and satisfies the
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Figure 5.1.2: G2
IV I

IVFIG conditions.

Let G1
IV I ×G2

IV I = (VIV I , EIV I , IIV I , µ
1
K × µ2

K , µ
1
L × µ2

L, µ
1
M × µ2

M) be a CP of two IVFIGs.

Figure 5.1.3: G1
IV I ×G2

IV I of Figure 5.1.1 and 5.1.2
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Figure 5.1.3,

(µ1
K × µ2

K)(m1n1) = (0.2, 0.5), (µ1
K × µ2

K)(m1n2) = (0.4, 0.6),

(µ1
K × µ2

K)(m2n1) = (0.1, 0.3), (µ1
K × µ2

K)(m2n2) = (0.1, 0.6),

(µ1
L × µ2

L)(m1n1,m1n2) = (0.2, 0.6), (µ1
L × µ2

L)(m1n1,m2n1) = (0.1, 0.5),

(µ1
L × µ2

L)(m1n2,m2n2) = (0.1, 0.6), (µ1
L × µ2

L)(m2n1,m2n2) = (0.1, 0.6),

(µ1
M × µ2

M)(m1n1,m1n1m1n2) = (0.2, 0.6), (µ1
M × µ2

M)(m1n2,m1n1m1n2) = (0.2, 0.6),

(µ1
M × µ2

M)(m1n2,m1n2m2n2) = (0.1, 0.6), (µ1
M × µ2

M)(m2n2,m1n2m2n2) = (0.1, 0.6),

(µ1
M × µ2

M)(m2n1,m2n1m2n2) = (0.1, 0.6), (µ1
M × µ2

M)(m2n2,m2n1m2n2) = (0.1, 0.6),

(µ1
M × µ2

M)(m1n1,m1n1m2n1) = (0.1, 0.5), (µ1
M × µ2

M)(m2n1,m1n1m2n1) = (0.1, 0.5).

Definition 5.1.4 Let GIV I = G1
IV I × G2

IV I = (VIV I , EIV I , IIV I , µ
1
K × µ2

K , µ
1
L × µ2

L, µ
1
M × µ2

M)

be the Cartesian Product of two IVFIGs G1
IV I = (V 1

IV I , E
1
IV I , I

1
IV I , µ

1
K , µ

1
L, µ

1
M) and

G2
IV I = (V 2

IV I , E
2
IV I , I

2
IV I , µ

2
K , µ

2
L, µ

2
M). Then the degree of VIV I = (m1, n1) is represented by

dG1
IV I×G

2
IV I

(m1, n1) = (d1G1
IV I×G

2
IV I

(m1, n1), d2G1
IV I×G

2
IV I

(m1, n1) and defined by

d1G1
IV I×G

2
IV I

(m1, n1) =
∑

m1=m2,(n1,n1n2)∈I2
min{µ−1

K (m1), µ
−2

M (n1, n1n2)}

+
∑

n1=n2,(m1,m1m2)∈I1
min{µ−1

M (m1,m1m2), µ
−2

K (n1)}

d2G1
IV I×G

2
IV I

(m1, n1) =
∑

m1=m2,(n1,n1n2)∈I2
max{µ+1

K (m1), µ
+2

M (n1, n1n2)}

+
∑

n1=n2,(m1,m1m2)∈I1
max{µ+1

M (m1,m1m2), µ
+2

K (n1)}

Theorem 5.1.1 Let G1
IV I = (V 1

IV I , E
1
IV I , I

1
IV I , µ

1
K , µ

1
L, µ

1
M) and G2

IV I = (V 2
IV I , E

2
IV I , I

2
IV I , µ

2
K , µ

2
L, µ

2
M)

be two IVFIGs. If µ−
1

K ≤ µ+1

K , µ−
1

K ≥ µ−
2

M , µ+1

K ≤ µ+2

M and µ−
2

K ≤ µ+2

K , µ−
2

K ≥ µ−
1

M , µ+2

K ≤ µ+1

M then

dG1
IV I×G

2
IV I

(m1, n1) = (dG1
IV I

(m1) + dG2
IV I

(n1))
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Proof. In Cartesian Produxt by the definition of the degree of a vertex, we have

d1G1
IV I×G

2
IV I

(m1, n1) =
∑

m1=m2,(n1,n1n2)∈I2
min{µ−1

K (m1), µ
−2

M (n1, n1n2)}

+
∑

n1=n2,(m1,m1m2)∈I1
min{µ−1

M (m1,m1m2), µ
−2

K (n1)}

=
∑

(n1,n1n2)∈I2
µ−

2

M (n1, n1n2) +
∑

(m1,m1m2)∈I1
µ−

1

M (m1,m1m2)

since µ−
1

K ≤ µ+1

K , µ−
1

K ≥ µ−
2

M , µ−
2

K ≥ µ−
1

M

=
∑

(m1,m1m2)∈I1
µ−

1

M (m1,m1m2) +
∑

(n1,n1n2)∈I2
µ−

2

M (n1, n1n2)

= d1G1
IV I

(m1) + d1G2
IV I

(n1)

d2G1
IV I×G

2
IV I

(m1, n1) =
∑

m1=m2,(n1,n1n2)∈I2
max{µ+1

K (m1), µ
+2

M (n1, n1n2)}

+
∑

n1=n2,(m1,m1m2)∈I1
max{µ+1

M (m1,m1m2), µ
+2

K (n1)}

=
∑

(n1,n1n2)∈I2
µ+2

M (n1, n1n2) +
∑

(m1,m1m2)∈I1
µ+1

M (m1,m1m2)

since µ−
2

K ≤ µ+2

K , µ+1

K ≤ µ+2

M , µ+2

K ≤ µ+1

M

=
∑

(m1,m1m2)∈I1
µ+1

M (m1,m1m2) +
∑

(n1,n1n2)∈I2
µ+2

M (n1, n1n2)

= d2G1
IV I

(m1) + d2G2
IV I

(n1)

dG1
IV I×G

2
IV I

(m1, n1) = (dG1
IV I

(m1) + dG2
IV I

(n1))

Therefore the degree of each vertex of Cartesian Product of two IVFIGs is equal to sum of corresponding

vertices of G1
IV I and G2

IV I .
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Example 5.1.2 Let G1
IV I and G2

IV I be two IVFIGs as shown in figures 5.1.1 and 5.1.2, and their CP is

provided in figure 5.1.3 with

µ−
1

K ≤ µ+1

K , µ−
1

K ≥ µ−
2

M , µ+1

K ≤ µ+2

M and µ−
2

K ≤ µ+2

K , µ−
2

K ≥ µ−
1

M , µ+2

K ≤ µ+1

M .

Then, by theorem 5.1.1, we have d1G1
IV I×G

2
IV I

(m1, n1) = d1G1
IV I

(m1) + d1G2
IV I

(n1) = 0.1 + 0.2 = 0.3,

d2G1
IV I×G

2
IV I

(m1, n1) = d2G1
IV I

(m1) + d2G2
IV I

(n1) = 0.5 + 0.6 = 1.1. So dG1
IV I×G

2
IV I

(m1, n1) = (0.3, 1.1)

5.2 Degree of a Vertex in Tensor Product of Two Interval-Valued

Fuzzy Incidence Graphs

Definition 5.2.1 The Tensor Product of two IVFIGs G1
IV I = (V 1

IV I , E
1
IV I , I

1
IV I , µ

1
K , µ

1
L, µ

1
M) and G2

IV I =

(V 2
IV I , E

2
IV I , I

2
IV I , µ

2
K , µ

2
L, µ

2
M) is defined as an IVFIG, GIV I = G1

IV I � G2
IV I = (VIV I , EIV I , IIV I , µ

1
K �

µ2
K , µ

1
L � µ2

L, µ
1
M � µ2

M), where VIV I = V 1
IV I × V 2

IV I ,

EIV I = {((m1, n1), (m2, n2))/(m1,m2) ∈ E1
IV I , (n1, n2) ∈ E2

IV I}

and

IIV I = {(m1, n1), (m1, n1)(m1, n2)/(m1,m1m2) ∈ I1IV I , (m2,m1m2) ∈ I1IV I ,

(n1, n1n2) ∈ I2IV I , (n2, n1n2) ∈ I2IV I}

with
(
µ−

1

K � µ
−2

K

)
(m1, n1) = min{µ−1

K (m1), µ
−2

K (n1)}∀(m1, n1) ∈ V 1
IV I � V 2

IV I

(
µ+1

K � µ
+2

K

)
(m1, n1) = max{µ+1

K (m1), µ
+2

K (n1)}∀(m1, n1) ∈ V 1
IV I � V 2

IV I

(
µ−

1

L � µ
−2

L

)
((m1, n1)(m2, n2)) = min{µ−1

L (m1,m2), µ
−2

L (n1, n2)}

∀(m1,m2) ∈ E1
IV I , (n1, n2) ∈ E2

IV I
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(
µ+1

L � µ
+2

L

)
((m1, n1)(m2, n2)) = max{µ+1

L (m1,m2), µ
+2

L (n1, n2)}

∀(m1,m2) ∈ E1
IV I , (n1, n2) ∈ E2

IV I

(
µ−

1

M � µ
−2

M

)
[(m1, n1), (m1, n1)(m2, n2)] = min{µ−1

M (m1,m1m2), µ
−2

M (n1, n1n2)}

∀(m1,m1m2) ∈ I1IV I , (n1, n1n2) ∈ I2IV I

(
µ−

1

M � µ
−2

M

)
[(m2, n2), (m1, n1)(m2, n2)] = min{µ−1

M (m2,m1m2), µ
−2

M (n2, n1n2)}

∀(m2,m1m2) ∈ I1IV I , (n2, n1n2) ∈ I2IV I

(
µ−

1

M � µ
−2

M

)
[(m1, n2), (m1, n2)(m2, n1)] = min{µ−1

M (m1,m1m2), µ
−2

M (n2, n1n2)}

∀(m1,m1m2) ∈ I1IV I , (n2, n1n2) ∈ I2IV I

(
µ−

1

M � µ
−2

M

)
[(m2, n1), (m1, n2)(m2, n1)] = min{µ−1

M (m2,m1m2), µ
−2

M (n1, n1n2)}

∀(m2,m1m2) ∈ I1IV I , (n1, n1n2) ∈ I2IV I

(
µ+1

M � µ
+2

M

)
[(m1, n1), (m1, n1)(m2, n2)] = max{µ+1

M (m1,m1m2), µ
+2

M (n1, n1n2)}

∀(m1,m1m2) ∈ I1IV I , (n1, n1n2) ∈ I2IV I

(
µ+1

M � µ
+2

M

)
[(m2, n2), (m1, n1)(m2, n2)] = max{µ+1

M (m2,m1m2), µ
+2

M (n2, n1n2)}

∀(m2,m1m2) ∈ I1IV I , (n2, n1n2) ∈ I2IV I

(
µ+1

M � µ
+2

M

)
[(m1, n2), (m1, n2)(m2, n1)] = max{µ+1

M (m1,m1m2), µ
+2

M (n2, n1n2)}

∀(m1,m1m2) ∈ I1IV I , (n2, n1n2) ∈ I2IV I

(
µ+1

M � µ
+2

M

)
[(m2, n1), (m1, n2)(m2, n1)] = max{µ+1

M (m2,m1m2), µ
+2

M (n1, n1n2)}

∀(m2,m1m2) ∈ I1IV I , (n1, n1n2) ∈ I2IV I

Example 5.2.1 Let G1
IV I = (V 1

IV I , E
1
IV I , I

1
IV I , µ

1
K , µ

1
L, µ

1
M) be a IVFIG.
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Figure 5.2.1: G1
IV I

Figure 5.2.1, µ1
K(m1) = (0.2, 0.4), µ1

K(m2) = (0.4, 0.5), µ1
L(m1m2) = (0.2, 0.5), µ1

M(m1,m1m2) =

(0.2, 0.5), µ1
M(m2,m1m2) = (0.2, 0.5) and satisfies the IVFIG conditions.

Let G2
IV I = (V 2

IV I , E
2
IV I , I

2
IV I , µ

2
K , µ

2
L, µ

2
M) be a IVFIG.

Figure 5.2.2: G2
IV I

Figure 5.2.2, µ1
K(n1) = (0.1, 0.2), µ1

K(n2) = (0.3, 0.4), µ1
L(n1n2) = (0.1, 0.4), µ1

M(n1, n1n2) =

(0.1, 0.4), µ1
M(n2, n1n2) = (0.1, 0.4) and satisfies the IVFIG conditions.

Let G1
IV I �G2

IV I = (VIV I , EIV I , IIV I , µ
1
K � µ2

K , µ
1
L � µ2

L, µ
1
M � µ2

M) be a TP of two IVFIGs.
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Figure 5.2.3: G1
IV I �G2

IV I of Figure 5.2.1 and 5.2.2

Figure 5.2.3 indicates a TP of two IVFIGs

(µ1
K � µ2

K)(m1n1) = (0.1, 0.4), (µ1
K � µ2

K)(m1n2) = (0.2, 0.4),

(µ1
K � µ2

K)(m2n1) = (0.1, 0.5), (µ1
K � µ2

K)(m2n2) = (0.3, 0.5),

(µ1
L � µ2

L)(m1n1,m2n2) = (0.1, 0.5), (µ1
L � µ2

L)(m1n2,m2n1) = (0.1, 0.5),

(µ1
M � µ2

M)(m1n1,m1n1m2n2) = (0.1, 0.5), (µ1
M � µ2

M)(m2n2,m1n1m2n2) = (0.1, 0.5),

(µ1
M � µ2

M)(m1n2,m1n2m2n1) = (0.1, 0.5), (µ1
M � µ2

M)(m2n1,m1n2m2n1) = (0.1, 0.5)

Definition 5.2.2 LetGIV I = G1
IV I �G2

IV I = (VIV I , EIV I , IIV I , µ
1
K �µ2

K , µ
1
L�µ2

L, µ
1
M �µ2

M) be the Tensor

Product of two IVFIGsG1
IV I = (V 1

IV I , E
1
IV I , I

1
IV I , µ

1
K , µ

1
L, µ

1
M) andG2

IV I = (V 2
IV I , E

2
IV I , I

2
IV I , µ

2
K , µ

2
L, µ

2
M).

Then the DG of VIV I = (m1, n1) is represented by dG1
IV I�G

2
IV I

(m1, n1) = (d1G1
IV I�G

2
IV I

(m1, n1),

d2G1
IV I�G

2
IV I

(m1, n1)) and defined by

d1G1
IV I�G

2
IV I

(m1, n1) =
∑

(m1,m1m2)∈I1,(n1,n1n2)∈I2
min{µ−1

M (m1,m1m2), µ
−2

M (n1, n1n2)}

d2G1
IV I�G

2
IV I

(m1, n1) =
∑

(m1,m1m2)∈I1,(n1,n1n2)∈I2
max{µ+1

M (m1,m1m2), µ
+2

M (n1, n1n2)}

Theorem 5.2.1 Let G1
IV I = (V 1

IV I , E
1
IV I , I

1
IV I , µ

1
K , µ

1
L, µ

1
M) and G2

IV I = (V 2
IV I , E

2
IV I , I

2
IV I , µ

2
K , µ

2
L, µ

2
M)
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be two IVFIGs. If µ−
1

K ≤ µ+1

K , µ−
2

M ≥ µ−
1

M , µ+2

M ≤ µ+1

M , then dG1
IV I�G

2
IV I

(m1, n1) = dG1
IV I

(m1) and if

µ−
2

K ≤ µ+2

K , µ−
1

M ≥ µ−
2

M , µ+1

M ≤ µ+2

M then dG1
IV I�G

2
IV I

(m1, n1) = dG2
IV I

(n1).

Proof. Suppose µ−
1

K ≤ µ+1

K , µ−
2

M ≥ µ−
1

M , µ+2

M ≤ µ+1

M , then

d1G1
IV I�G

2
IV I

(m1, n1) =
∑

(m1,m1m2)∈I1,(n1,n1n2)∈I2
min{µ−1

M (m1,m1m2), µ
−2

M (n1, n1n2)}

=
∑

µ−
1

M (m1,m1m2) = d1G1
IV I

(m1)

d2G1
IV I�G

2
IV I

(m1, n1) =
∑

(m1,m1m2)∈I1,(n1,n1n2)∈I2
max{µ+1

M (m1,m1m2), µ
+2

M (n1, n1n2)}

=
∑

µ+1

M (m1,m1m2) = d2G1
IV I

(m1)

This implies dG1
IV I�G

2
IV I

(m1, n1) = dG1
IV I

(m1). Similarly if µ−
2

K ≤ µ+2

K , µ−
1

M ≥ µ−
2

M , µ+1

M ≤ µ+2

M , then

d1G1
IV I�G

2
IV I

(m1, n1) =
∑

(m1,m1m2)∈I1,(n1,n1n2)∈I2
min{µ−1

M (m1,m1m2), µ
−2

M (n1, n1n2)}

=
∑

µ−
2

M (n1, n1n2) = d1G2
IV I

(n1)

d2G1
IV I�G

2
IV I

(m1, n1) =
∑

(m1,m1m2)∈I1,(n1,n1n2)∈I2
max{µ+1

M (m1,m1m2), µ
+2

M (n1, n1n2)}

=
∑

µ+2

M (n1, n1n2) = d2G2
IV I

(n1)

This implies dG1
IV I�G

2
IV I

(m1, n1) = dG2
IV I

(n1).

Therefore, if µ−
1

K ≤ µ+1

K , µ−
2

M ≥ µ−
1

M , µ+2

M ≤ µ+1

M , then the degree of each vertex TP of two IVFIGs is

equal to corresponding vertex of G1
IV I and if µ−

2

K ≤ µ+2

K , µ−
1

M ≥ µ−
2

M , µ+1

M ≤ µ+2

M , then the degree of each

vertex TP of two IVFIGs is equal to corresponding vertex of G2
IV I .

Example 5.2.2 In Figure 5.2.1 and 5.2.2 µ−
1

K ≤ µ+1

K , µ−
2

M ≥ µ−
1

M , µ+2

M ≤ µ+1

M and µ−
2

K ≤ µ+2

K , µ−
1

M ≥ µ−
2

M ,

µ+1

M ≤ µ+2

M . Then, by theorem 5.2.1, we have

d1G1
IV I�G

2
IV I

(m1, n1) = 0.1 = d1G1
IV I

(m1),

d2G1
IV I�G

2
IV I

(m1, n1) = 0.5 = d2G2
IV I

(n1).
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Hence dG1
IV I�G

2
IV I

(m1, n1) = (0.1, 0.5).

5.3 Perfect Domination in Cartesian Product and Tensor Product

of Two Interval-Valued Fuzzy Incidence Graphs

Definition 5.3.1 A vertexw11 in anGIV dominates to vertexw22 if µ−L(w11, w22) = min{µ−K(w11), µ
−
K(w22)}

and µ+
M(w11, w22) = max{µ+

K(w11), µ
+
K(w22)}. Then (w11, w22) edge is called dominates edge.

Definition 5.3.2 A subset WIV of VIV is said to be a perfect dominating set (PDS) if for each vertex w11

not in WIV , w11 is dominates exactly one vertex of WIV .

Definition 5.3.3 A perfect dominating set WIV of the GIV is said to be a minimal perfect dominating set

if each vertex w11 in WIV , WIV − {w11} is not a perfect dominating set.

Definition 5.3.4 A PDS with the lowest vertex cardinality is called a minimum PDS.

Definition 5.3.5 A vertex cardinality of a minimum perfect dominating set is called perfect domination

number (PDN) of the GIV . It is denoted by γPIV

Example 5.3.1

Figure 5.3.1: GIV

Figure 5.3.1 indicates aGIV = (VIV , EIV , µK , µL), µK(m1) = (0.2, 0.5), µK(m2) = (0.4, 0.5), µL(m1m2) =

(0.2, 0.5). The above figure 5.3.1, the dominates edge is {m1,m2} and the PDSs are S11 = {m1},

S22 = {m2}. After calculating the vertex cardinality of S11 and S22, we obtain |S11| = 0.7, |S22| = 0.6.

The vertex cardinality of a minimum PDS is |S22| = 0.6 and γPIV = 0.6.
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Definition 5.3.6 A vertex w11 in an G1
IV I×G2

IV I (or G1
IV I �G2

IV I) incidentally dominates to vertex w22 if

µ−M(w11, w11w22) = min{µ−K(w11), µ
−
L(w11, w22)} and µ+

M(w11, w11w22) = max{µ+
K(w11), µ

+
L(w11, w22)}.

Then (w11, w22) edge is called incidentally dominates edge.

Definition 5.3.7 A subset WIV I of VIV I is said to be a perfect dominating set if for each vertex w11 not in

WIV I , w11 is incidentally dominates exactly one vertex of WIV I .

Definition 5.3.8 A PDS WIV I of the G1
IV I ×G2

IV I (or G1
IV I �G2

IV I) is said to be a minimal PDS if each

vertex w11 in WIV I , WIV I − {w11} is not a PDS.

Definition 5.3.9 A perfect dominating set with the lowest vertex cardinality is called a minimum perfect

dominating set.

Definition 5.3.10 A vertex cardinality of a minimum perfect dominating set is called perfect dominating

number of the G1
IV I ×G2

IV I (or G1
IV I �G2

IV I). It is denoted by γPIV I .

Example 5.3.2 In figure 5.1.3, the incidentally dominates edge are {m1n1,m1n2},

{m1n2,m2n2}, {m2n2,m2n1}, {m1n1,m2n1} and the PDSs are S11 = {m1n1,m1n2}, S22 = {m1n2,m2n2},

S33 = {m2n2,m2n1}, S44 = {m1n1,m2n1}, S55 = {m1n1,m2n2}, S66 = {m1n2,m2n1}.

After calculating the vertex cardinality of S11, S22, ...S66, we obtain |S11| = 1.3, |S22| = 1.4, |S33| =

1.4, |S44| = 1.3, |S55| = 1.5, |S66| = 1.2. The vertex cardinality of a minimum PDS is |S66| = 1.2 and

γPIV I = 1.2.

In figure 5.2.3, the incidentally dominates edge are {m1n1,m2n2}, {m1n2,m2n1} and the PDSs are

S11 = {m1n1,m1n2}, S22 = {m1n2,m2n2}, S33 = {m2n2,m2n1}, S44 = {m1n1,m2n1}.

After calculating the vertex cardinality of S11, ..., S44, we obtain |S11| = 1.3, |S22| = 1.2, |S33| = 1.3,

|S44| = 1.4. The vertex cardinality of a minimum PDS is |S22| = 1.2 and γPIV I = 1.2.

Theorem 5.3.1 IfG1
IV I×G2

IV I be a Cartesian Product of two IVFIGs without isolated vertices andWIV I

is the minimal perfect dominating set in G1
IV I ×G2

IV I , then VIV I −WIV I is a perfect dominating set.

Proof. Assume WIV I is any minimal PDS of G1
IV I × G2

IV I and vertex w11 ∈ WIV I is not incidentally

dominated by any vertex in VIV I−WIV I . SinceG1
IV I×G2

IV I has no isolated vertex, w11 must incidentally
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be dominated by at least one vertex inWIV I−{w11}, thenWIV I−{w11} is a PDS, which is a contradiction

with the minimality of WIV I . Therefore any vertex in WIV I incidentally dominated by at least one vertex

in VIV I −WIV I and so VIV I −WIV I is a PDS.

Example 5.3.3 Let G1
IV I × G2

IV I be a CP of two IVFIGs shown in figure 5.1.3 with the incidentally

dominates edges are {m1n1,m1n2}, {m1n2,m2n2}, {m2n2,m2n1}, {m1n1,m2n1} and the PDSs are

S11 = {m1n1,m1n2}, S22 = {m1n2,m2n2}, S33 = {m2n2,m2n1}, S44 = {m1n1,m2n1}, S55 =

{m1n1,m2n2}, S66 = {m1n2,m2n1}. After calculating the vertex cardinality of S11, S22, ..., S66, we

obtain |S11| = 1.3, |S22| = 1.4, |S33| = 1.4, S44 = 1.3, |S55 = 1.5, |S66| = 1.2. The vertex cardinality of

a minimum PDS is S66, then VIV I − S66 is also a PDS.

Remark 5.3.1 The above theorem is also true for Tensor Product of two interval-valued fuzzy incidence

graphs.

Example 5.3.4 LetG1
IV I �G2

IV I be a TP of two IVFIGs shown in figure 5.2.3 with the incidentally domin-

ates edge are {m1n1,m2n2}, {m1n2,m2n1} and the PDSs are

S11 = {m1n1,m1n2}, S22 = {m1n2,m2n2}, S33 = {m2n2,m2n1}, S44 = {m1n1,m2n1}. After cal-

culating the vertex cardinality of S11, ...S44, we obtain |S11| = 1.3, |S22| = 1.2, |S33| = 1.3, |S44| = 1.4.

The vertex cardinality of a minimum PDS is S22, then VIV I − S22 is also a PDS.

Theorem 5.3.2 For a G1
IV I �G2

IV I without isolated vertices, then γPIV I ≤
PIV I

2
.

Proof. IfWIV I is a minimal PDS ofG1
IV I �G2

IV I , then VIV I−WIV I is a PDS. Therefore PIV I = |VIV I | =

|WIV I | + |VIV I −WIV I |. Thus, at least one of the sets WIV I or VIV I −WIV I has the cardinality equal
PIV I

2
or less.

Example 5.3.5 (i) Let G1
IV I �G2

IV I be a TP of two IVFIGs with

(µ1
K � µ2

K)(m1n1) = (0.1, 0.4), (µ1
K � µ2

K)(m1n2) = (0.2, 0.4),

(µ1
K � µ2

K)(m2n1) = (0.1, 0.5), (µ1
K � µ2

K)(m2n2) = (0.3, 0.5),

(µ1
L � µ2

L)(m1n1,m2n2) = (0.1, 0.5), (µ1
L � µ2

L)(m1n2,m2n1) = (0.1, 0.5),

(µ1
M � µ2

M)(m1n1,m1n1m2n2) = (0.1, 0.5), (µ1
M � µ2

M)(m2n2,m1n1m2n2) = (0.1, 0.5),

(µ1
M � µ2

M)(m1n2,m1n2m2n1) = (0.1, 0.5), (µ1
M � µ2

M)(m2n1,m1n2m2n1) = (0.1, 0.5),
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the incidentally dominates edge are {m1n1,m2n2}, {m1n2,m2n1} and the PDSs are S11 = {m1n1,m1n2},

S22 = {m1n2,m2n2}, S33 = {m2n2,m2n1}, S44 = {m1n1,m2n1}. After calculating the vertex

cardinality of S11, ...S44, we obtain |S11| = 1.3, |S22| = 1.2, |S33| = 1.3, |S44| = 1.4. The vertex

cardinality of a minimum PDS is S22 with γPIV I = 1.2 and vertex cardinality (PIV I) of G1
IV I �G2

IV I

is 5.2, then γPIV I ≤
PIV I

2
that is 1.2 < 2.6.

(ii) Let G1
IV I �G2

IV I be a TP of two IVFIGs with

(µ1
K � µ2

K)(m1n1) = (0.1, 0.5), (µ1
K � µ2

K)(m1n2) = (0.4, 0.7),

(µ1
K � µ2

K)(m2n1) = (0.1, 0.4), (µ1
K � µ2

K)(m2n2) = (0.3, 0.7),

(µ1
L � µ2

L)(m1n1,m2n2) = (0.1, 0.7), (µ1
L � µ2

L)(m1n2,m2n1) = (0.1, 0.7),

(µ1
M � µ2

M)(m1n1,m1n1m2n2) = (0.1, 0.7), (µ1
M � µ2

M)(m2n2,m1n1m2n2) = (0.1, 0.7),

(µ1
M � µ2

M)(m1n2,m1n2m2n1) = (0.1, 0.7), (µ1
M � µ2

M)(m2n1,m1n2m2n1) = (0.1, 0.7),

the incidentally dominates edge are {m1n1,m2n2}, {m1n2,m2n1} and the PDSs are S11 = {m1n1,m1n2},

S22 = {m1n2,m2n2}, S33 = {m2n2,m2n1}, S44 = {m1n1,m2n1}. After calculating the vertex car-

dinality of S11, ...S44, we obtain |S11| = 1.4, |S22| = 1.4, |S33| = 1.4, |S44| = 1.4. Here all vertex

cardinality of PDS is equal with γPIV I = 1.4 and vertex cardinality (PIV I) of G1
IV I � G2

IV I is 2.8,

then γPIV I =
PIV I

2
that is 1.4 = 1.4.

Theorem 5.3.3 Let G1
IV I × G2

IV I be a Cartesian Product of two IVFIGs and if anyone G1
IV I or G2

IV I

must having incidentally dominates edges, then the Cartesian Product of two IVFIGs contains γPIV I .

Proof. Let G1
IV I × G2

IV I be a CP of two IVFIGs. If anyone G1
IV I or G2

IV I must having incidentally

dominated edges, then the CP of two IVFIG contains γPIV I .

Conversely, suppose that the CP of two IVFIG contains γPIV I . To prove that anyone G1
IV I or G2

IV I must

have incidentally dominates edges. If possible G1
IV I or G2

IV I does not have incidentally dominates edges,

then G1
IV I × G2

IV I dose not having γPIV I , which is a contradiction. Hence anyone G1
IV I or G2

IV I must

having incidentally dominates edges.



102 Perfect Domination in Product of Interval-Valued Fuzzy Incidence Graphs

Example 5.3.6 Let G1
IV I be a IVFIG with µ1

K(m1) = (0.4, 0.5), µ1
K(m2) = (0.2, 0.3), µ1

L(m1,m2) =

(0.2, 0.5), µ1
M(m1,m1m2) = (0.2, 0.5), µ1

M(m2,m1m2) = (0.2, 0.5) and let G2
IV I be a IVFIG with

µ1
K(n1) = (0.2, 0.3), µ1

K(n2) = (0.5, 0.6), µ1
L(n1n2) = (0.2, 0.6), µ1

M(n1, n1n2) = (0.1, 0.4), µ1
M(n2, n1n2) =

(0.1, 0.3). Here G1
IV I having incidentally dominates edge, but G2

IV I does not have an incidentally dom-

inates edge.

Assume G1
IV I ×G2

IV I is a CP of two IVFIGs with

(µ1
K × µ2

K)(m1n1) = (0.2, 0.5), (µ1
K × µ2

K)(m1n2) = (0.4, 0.6),

(µ1
K × µ2

K)(m2n1) = (0.2, 0.3), (µ1
K × µ2

K)(m2n2) = (0.2, 0.6),

(µ1
L × µ2

L)(m1n1,m1n2) = (0.2, 0.6), (µ1
L × µ2

L)(m1n1,m2n1) = (0.2, 0.5),

(µ1
L × µ2

L)(m1n2,m2n2) = (0.2, 0.6), (µ1
L × µ2

L)(m2n1,m2n2) = (0.2, 0.6),

(µ1
M × µ2

M)(m1n1,m1n1m1n2) = (0.1, 0.5), (µ1
M × µ2

M)(m1n2,m1n1m1n2) = (0.1, 0.5)

(µ1
M × µ2

M)(m1n2,m1n2m2n2) = (0.2, 0.6), (µ1
M × µ2

M)(m2n2,m1n2m2n2) = (0.2, 0.6),

(µ1
M × µ2

M)(m2n1,m2n1m2n2) = (0.2, 0.6), (µ1
M × µ2

M)(m2n2,m2n1m2n2) = (0.1, 0.3),

(µ1
M × µ2

M)(m1n1,m1n1m2n1) = (0.2, 0.5), (µ1
M × µ2

M)(m2n1,m1n1m2n1) = (0.2, 0.5).

Here the incidentally dominates edges are {m1n2,m2n2}, {m1n1,m2n1} and the PDSs are

S11 = {m1n1,m1n2}, S22 = {m2n2,m2n1}, S33 = {m1n1,m2n2}, S44 = {m1n2,m2n1}.

After calculating the vertex cardinality of S11, ...S44, we obtain |S11| = 1.3, |S22| = 1.3, |S33| = 1.4,

|S44| = 1.2. The vertex cardinality of a minimum PDS is S44 and γPIV I = 1.2. Therefore G1
IV I × G2

IV I

contains γPIV I .

Theorem 5.3.4 Let G1
IV I � G2

IV I be a Tensor Product of two IVFIGs and if G1
IV I and G2

IV I both having

incidentally dominates edges, then the Tensor Product of two IVFIGs contains γPIV I .

Proof. Let G1
IV I � G2

IV I be a TP of two IVFIGs. If G1
IV I and G2

IV I both having incidentally dominates

edges, then the TP of two IVFIGs contains γPIV I .

Conversely, suppose that the TP of two IVFIGs contains γPIV I . To prove that G1
IV I and G2

IV I both

having incidentally dominates edges. If possible G1
IV I does not having incidentally dominant edges, then
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the TP of two IVFIGs does not contains γPIV I , which is a contradiction. Hence G1
IV I and G2

IV I must

having incidentally dominated edges.

Example 5.3.7 In figure 5.2.1 and 5.2.2 is a interval-valued fuzzy incidence graphs with incidentally

dominated edges and figure 5.2.3 contains PDSs are S11 = {m1n1,m1n2}, S22 = {m1n2,m2n2}, S33 =

{m2n2,m2n1}, S44 = {m1n1,m2n1}. After calculating the vertex cardinality of S11, ...S44, we obtain

|S11| = 1.3, |S22| = 1.2, |S33| = 1.3, |S44| = 1.4. The vertex cardinality of a minimum PDS is |S22| = 1.2

and γPIV I = 1.2. Therefore G1
IV I �G2

IV I contains γPIV I .

5.4 Application

Here we, incorporate a genuine use of perfect domination number in a matter of education policies among

various countries. As an outline case, consider an network G1
IV I × G2

IV I of four vertices addressing

four distinct countries C1(m1n1), C2(m1n2), C3(m2n2) and C4(m2n1) as displayed in figure 5.1.3. The

MS value of the vertices shows the percentage of people who are educated and the NMS value of the

vertices demonstrates the percentage of those people who are uneducated. The MS value of the edges

communicates the cooperation of one country with another country to enhance the percentage of educated

people and the NMS value indicates the non cooperation with one another. The MS value of the incidence

pair means the education policies among these countries and the NMS value of the incidence pair indicates

the un education policies among these countries. With the assistance of the perfect domination number,

we will want to discover which country (countries) have the best education policies.

In figure 5.1.3, the PDSs are S11 = {C1, C2}, S22 = {C2, C3}, S33 = {C3, C4}, S44 = {C1, C4},

S55 = {C1, C3}, S66 = {C2, C4}.

After calculating the vertex cardinality of S11, S22, ...S66, we obtain |S11| = 1.3, |S22| = 1.4, |S33| = 1.4,

|S44| = 1.3, |S55| = 1.5, |S66| = 1.2. The vertex cardinality of a minimum PDS is |S66| = 1.2 and

γPIV I = 1.2.

It is obvious that S66 has the minimum perfect dominating set between other perfect dominating sets,

hence we conclude that C2 and C4 countries have best education policies among all other countries.
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Figure 5.4.1: EDUCATION POLICIES

5.5 Comparative Analysis

In figure 5.1.3 a G1
IV I ×G2

IV I indicating four different countries C1, C2, C3 and C4 and we get minimum

PDS S66 = {C2, C4} with γPIV I = 1.2. But in figure 5.1.3 if we remove all the incidence pairs we get

interval valued fuzzy graph (IVFG). In the case of IVFG, we find the all PDSs. All possible PDSs of

the IVFG are W11 = {C1, C2}, W22 = {C2, C3}, W33 = {C3, C4}, W44 = {C1, C4}, W55 = {C1, C3},

W66 = {C2, C4}with vertex cardinality |W11| = 1.3, |W22| = 1.4, |W33| = 1.4, |W44| = 1.3, |W55| = 1.5,

|W66| = 1.2. The vertex cardinality of a minimum PDS is |W66| = 1.2 with γPIV = 1.2. By applying the

model on the G1
IV I �G2

IV I given in figure 5.2.3, we get minimum PDS S22 = {C2, C3} with γPIV I = 1.2.

But in figure 5.2.3 if we remove all the incidence pairs we get IVFG. In the case of IVFG, we find the

all PDSs. All possible PDSs of the IVFG are M11 = {C1, C2}, M22 = {C2, C3}, M33 = {C3, C4},

M44 = {C1, C4} with vertex cardinality |M11| = 1.3, |M22| = 1.2, |M33| = 1.3, |M44| = 1.3. The vertex

cardinality of a minimum PDS is |M22| = 1.2 with γPIV = 1.2. Here G1
IV I ×G2

IV I and G1
IV I �G2

IV I both

the models γPIV = γPIV I , however, on account of IVFG, we can’t discuss best education policies because

of the non-accessibility of incidence pairs. IVFGs can show the relationship among various countries yet

quiet to discuss education policies among various countries. In this way, IVFIGs are more advantageous



5.5 Comparative Analysis 105

and compelling IVFGs.

In this exploration chapter, Cartesian Product and Tensor Product in IVFIGs are presented and we

inspected the degree of the vertices of the IVFIGsG1
IV I×G2

IV I andG1
IV I�G2

IV I under specific agreements

and showed them with different models. We additionally settled some new outcomes on the degree of

a vertex as far as hypotheses. The idea of perfect domination in IVFIGs utilizing incidence pairs is

additionally considered. The perfect domination number of IVFIGs is determined. It is also possible to

use perfect domination number in the context of education policies in different countries.



Chapter 6

Strong And Weak Domination in Vague Fuzzy

Incidence Graphs

Fuzzy graphs also known as fuzzy incidence graphs, are a well-organized and useful tool for capturing

and resolving a range of real-world scenarios involving ambiguous data and information. In this chapter,

we define the composition of two vague fuzzy incidence graphs and use incidence pairs to extend the

idea of fuzzy graph dominance to composition of two vague fuzzy incidence graphs. Examples are used

to clarify the concepts of edge incidentally dominating set, strong edge incidentally dominating set, and

weak edge incidentally dominating set. CT-VFIGs have an edge incidentally domination number, a strong

edge incidentally domination number, and a weak edge incidentally domination number. In the research

field, CT-VIFGs are used to find the finest consolidations of journal publications that express the most

progress and the least amount of non - progress. The results of our investigation are compared to those

of other studies. Our research will help us fully appreciate and comprehend the additional properties of

CT-VFIGs. Another benefit of our research is that it will aid in determining the maximum percentage of

progress and the minimum percentage of non- progress in various journal publications.

6.1 Composition of Two Vague Fuzzy Incidence Graphs

Definition 6.1.1 The composition of two VFIGs (CT-VFIGs) G1
V I = (V 1

V I , E
1
V I , I

1
V I , A

1
V IP , B

1
V IL, C

1
V II)

and G2
V I = (V 2

V I , E
2
V I , I

2
V I , A

2
V IP , B

2
V IL, C

2
V II) is defined as an vague fuzzy incidence graph (VFIG)
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GCV I = G1
V I �G2

V I = (VV I , EV I , IV I , A
1
V IP �A2

V IP , B
1
V IL�B2

V IL, C
1
V II �C2

V II) where VCV I = V 1
V I �

V 2
V I and ECV I = {((m11, n11), (m22, n22))/m11 = m22, (n11, n22) ∈ E2

V I or n11 = n22, (m11,m22) ∈

E1
V I}

ICV I = {(m11, n11), (m11, n11)(m11, n22)/m11 = m22, (n11, n11n22) ∈ I2V I , (n22, n11n22) ∈ I2V I

or n11 = n22(m11,m11m22) ∈ I1V I , (m22,m11m22) ∈ I1V I} with

(A1
1V IP � A2

1V IP )(m11, n11) = min{A1
1V IP (m11), A

2
1V IP (n11)}∀ (m11, n11) ∈ V 1

V I � V 2
V I ,

(A1
2V IP � A2

2V IP )(m11, n11) = max{A1
2V IP (m11), A

2
2V IP (n11)}∀ (m11, n11) ∈ V 1

V I � V 2
V I

(B1
1V IL �B2

1V IL)((m11, n11)(m22, n22))

=


min{A1

1V IP (m11), B
2
1V IL(n11, n22)}, if m11 = m22, (n11, n22) ∈ E2

V I

min{B1
1V IL(m11,m22), A

2
1V IP (n11)}, if n11 = n22, (m11,m22) ∈ E1

V I

min{B1
1V IL(m11,m22), A

2
1V IP (n11), A

2
1V IP (n22)}, if n11 6= n22, (m11,m22) ∈ E1

V I

(B1
2V IL �B2

2V IL)((m11, n11)(m22, n22))

=


max{A1

2V IP (m11), B
2
2V IL(n11, n22)}, if m11 = m22, (n11, n22) ∈ E2

V I

max{B1
2V IL(m11,m22), A

2
2V IP (n11)}, if n11 = n22, (m11,m22) ∈ E1

V I

max{B1
1V IL(m11,m22), A

2
1V IP (n11), A

2
1V IP (n22)}, if n11 6= n22, (m11,m22) ∈ E1

V I

(C1
1V II � C2

1V II)[(m11, n11), (m11, n11)(m11, n22)] = min{A1
1V IP (m11), C

2
1V II(n11, n11n22)}

ifm11 = m22, (n11, n11n22) ∈ I2V I
(C1

1V II � C2
1V II)[(m11, n22), (m11, n11)(m11, n22)] = min{A1

1V IP (m11), C
2
1V II(n22, n11n22)}

ifm11 = m22, (n22, n11n22) ∈ I2V I
(C1

1V II � C2
1V II)[(m11, n11), (m11, n11)(m22, n11)] = min{C1

1V II(m11,m11m22), A
2
1V IP (n11)}

ifn11 = n22, (m11,m11m22) ∈ I1V I
(C1

1V II � C2
1V II)[(m22, n11), (m11, n11)(m22, n11)] = min{C1

1V II(m22,m11m22), A
2
1V IP (n11)}

ifn11 = n22, (m22,m11m22) ∈ I1V I
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(C1
1V II � C2

1V II)[(m11, n11), (m11, n11)(m22, n22)] = min{C1
1V II(m11,m11m22), A

2
1V IP (n11), A

2
1V IP (n22)},

ifm11 6= m22, n11 6= n22, (m11,m11m22) ∈ I1V I
(C1

1V II � C2
1V II)[(m22, n22), (m11, n11)(m22, n22)] = min{C1

1V II(m22,m11m22), A
2
1V IP (n11), A

2
1V IP (n22)},

ifm11 6= m22, n11 6= n22, (m22,m11m22) ∈ I1V I
(C1

1V II � C2
1V II)[(m11, n22), (m11, n22)(m22, n11)] = min{C1

1V II(m11,m11m22), A
2
1V IP (n11), A

2
1V IP (n22)},

ifm11 6= m22, n11 6= n22, (m11,m11m22) ∈ I1V I
(C1

1V II � C2
1V II)[(m22, n11), (m11, n22)(m22, n11)] = min{C1

1V II(m22,m11m22), A
2
1V IP (n11), A

2
1V IP (n22)},

ifm11 6= m22, n11 6= n22, (m22,m11m22) ∈ I1V I
(C1

2V II � C2
2V II)[(m11, n11), (m11, n11)(m11, n22)] = max{A2

2V IP (m11), C
2
2V II(n11, n11n22)},

ifm11 = m22, (n11, n11n22) ∈ I2V I
(C1

2V II � C2
2V II)[(m11, n22), (m11, n11)(m11, n22)] = max{A2

2V IP (m11), C
2
2V II(n22, n11n22)},

ifm11 = m22, (n22, n11n22) ∈ I2V I
(C1

2V II � C2
2V II)[(m11, n11), (m11, n11)(m22, n11)] = max{C1

2V II(m11,m11m22), A
2
2V IP (n11)},

ifn11 = n22, (m11,m11m22) ∈ I1V I
(C1

2V II � C2
2V II)[(m22, n11), (m11, n11)(m22, n11)] = max{C1

2V II(m22,m11m22), A
2
2V IP (n11)},

ifn11 = n22, (m22,m11m22) ∈ I1V I
(C1

2V II � C2
2V II)[(m11, n11), (m11, n11)(m22, n22)] = max{C1

2V II(m11,m11m22), A
2
1V IP (n11), A

2
1V IP (n22)},

ifm11 6= m22, n11 6= n22, (m11,m11m22) ∈ I1V I
(C1

2V II � C2
2V II)[(m22, n22), (m11, n11)(m22, n22)] = max{C1

2V II(m22,m11m22), A
2
1V IP (n11), A

2
1V IP (n22)},

ifm11 6= m22, n11 6= n22, (m22,m11m22) ∈ I1V I
(C1

2V II � C2
2V II)[(m11, n22), (m11, n22)(m22, n11)] = max{C1

2V II(m11,m11m22), A
2
1V IP (n11), A

2
1V IP (n22)},

ifm11 6= m22, n11 6= n22, (m11,m11m22) ∈ I1V I
(C1

2V II � C2
2V II)[(m22, n11), (m11, n22)(m22, n11)] = max{C1

2V II(m22,m11m22), A
2
1V IP (n11), A

2
1V IP (n22)},

ifm11 6= m22, n11 6= n22, (m22,m11m22) ∈ I1V I
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Example 6.1.1

Let G1
V I = (V 1

V I , E
1
V I , I

1
V I , A

1
V IP , B

1
V IL, C

1
V II) be a VFIG with A1

V IP (m11) = (0.4, 0.2), A1
V IP (m22) =

(0.3, 0.5),B1
V IL(m11m22) = (0.3, 0.6),C1

V II(m11,m11m22) = (0.3, 0.7),C1
V II(m22,m11m22) = (0.2, 0.6).

Figure 6.1.1: VFIG G1
V I

LetG2
V I = (V 2

V I , E
2
V I , I

2
V I , A

2
V IP , B

2
V IL, C

2
V II) be a VFIG withA2

V IP (n11) = (0.6, 0.3), A2
V IP (n22) =

(0.2, 0.5), B2
V IL(n11n22) = (0.1, 0.5), C2

V II(n11, n11n22) = (0.1, 0.5), C2
V II(n22, n11n22) = (0.1, 0.7).

Figure 6.1.2: VFIG G2
V I
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Figure 6.1.3: Composition of figure 6.1.1 and figure 6.1.2

Let G1
V I �G2

V I = (VV I , EV I , IV I , A
1
V IP � A2

V IP , B
1
V IL �B2

V IL, C
1
V II � C2

V II) be a CT-VFIGs with

A1
V IP � A2

V IP (m11, n11) = (0.4, 0.3), (A1
V IP � A2

V IP )(m11, n22) = (0.2, 0.5)

A1
V IP � A2

V IP (m22, n11) = (0.3, 0.5), (A1
V IP � A2

V IP )(m22, n22) = (0.2, 0.5)

(B1
V IL �B2

V IL)((m11, n11)(m11, n22)) = (0.1, 0.5),

(B1
V IL �B2

V IL)((m11, n22)(m22, n22)) = (0.2, 0.6)

(B1
V IL �B2

V IL)((m22, n11)(m22, n22)) = (0.1, 0.5),

(B1
V IL �B2

V IL)((m11, n11)(m22, n11)) = (0.3, 0.6)

(B1
V IL �B2

V IL)((m11, n11)(m22, n22)) = (0.2, 0.6),

(B1
V IL �B2

V IL)((m11, n22)(m22, n11)) = (0.2, 0.6)

(C1
V II � C2

V II)[(m11, n11), (m11, n11)(m11, n22)] = (0.1, 0.5),

(C1
V II � C2

V II)[(m11, n22), (m11, n11)(m11, n22)] = (0.1, 0.7),

(C1
V II � C2

V II)[(m11, n22), (m11, n22)(m22, n22)] = (0.2, 0.7),

(C1
V II � C2

V II)[(m22, n22), (m11, n22)(m22, n22)] = (0.2, 0.6),
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(C1
V II � C2

V II)[(m22, n11), (m22, n11)(m22, n22)] = (0.1, 0.5),

(C1
V II � C2

V II)[(m22, n22), (m22, n11)(m22, n22)] = (0.1, 0.7),

(C1
V II � C2

V II)[(m11, n11), (m11, n11)(m22, n11)] = (0.3, 0.7),

(C1
V II � C2

V II)[(m22, n11), (m11, n11)(m22, n11)] = (0.2, 0.6),

(C1
V II � C2

V II)[(m11, n11), (m11, n11)(m22, n22)] = (0.2, 0.7),

(C1
V II � C2

V II)[(m22, n22), (m11, n11)(m22, n22)] = (0.2, 0.6),

(C1
V II � C2

V II)[(m22, n11), (m22, n11)(m11, n22)] = (0.2, 0.6),

(C1
V II � C2

V II)[(m11, n22), (m22, n11)(m11, n22)] = (0.2, 0.7)

In figure 6.1.3 satisfies the condition of VFIG. Therefore G1
V I �G2

V I is also a VFIG.

Definition 6.1.2 Let GCV I be a composition of two vague fuzzy incidence graphs

(i) GCV I cardinality is determined by

|GCV I | =
∑

w11∈VV I

1 + tAV IP
(w11)− fAV IP

(w11)

2
+

∑
w11w22∈EV I

1 + tBV IL
(w11w22)− fBV IL

(w11w22)

2

+
∑

w11,w11w22∈IV I

1 + tCV II
(w11, w11w22)− fCV II

(w11, w11w22)

2

(ii) GCV I vertex cardinality is determined by

|VCV I | =
∑

w11∈VCV I

1 + tAV IP
(w11)− fAV IP

(w11)

2
∀ w11 ∈ VCV I

(iii) GCV I edge cardinality is specified by

|ECV I | =
∑

w11w22∈ECV I

1 + tBV IL
(w11w22)− fBV IL

(w11w22)

2
∀ w11w22 ∈ ECV I
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(iv) GCV I incidence pair cardinality is specified by

|ICV I | =
∑

w11,w11w22∈ICV I

1 + tCV II
(w11, w11w22)− fCV II

(w11, w11w22)

2
∀ w11, w11w22 ∈ ICV I

Example 6.1.2 In figure 6.1.3, |VCV I | = 1.65, |ECV I | = 1.85, |ICV I | = 3.25 and |GCV I | = |VCV I | +

|ECV I |+ |ICV I |= 1.65+1.85+3.25=6.75.

6.2 Relationship between order and size of composition of two vague

fuzzy incidence graphs

Definition 6.2.1 Assume GCV I is a CT-VFIGs. Then

OCV I(GCV I) =
∑

w11 6=w22,w11,w22∈VCV I

(
1 + tCCV I

(w11, w11w22)− fCCV I
(w11, w11w22)

2

)

is called order of GCV I and

SCV I(GCV I) =
∑

w11,w22∈ECV I

(
1 + tBCV I

(w11, w22)− fBCV I
(w11w22)

2

)

is called size of GCV I .

Definition 6.2.2 The edge degree of a e1V I in a CT-VFIGs is defined as the sum of the weights of edges

incident to e1V I . It is defined by |dGCV I
(e1V I)| = {degt(e1V I), degf (e1V I)}. The minimum cardinality of

edge degree of GCV I is δCV I(GCV I) = min{dGCV I
(e1V I)/e1V I ∈ ECV I}. The maximum cardinality of

edge degree of GCV I is ∆CV I(GCV I) = max{dGCV I
(e1V I)/e1V I ∈ ECV I}.

Proposition 6.2.1 In a composition of two vague fuzzy incidence graphs OCV I(GCV I) ≥ SCV I(GCV I).

Proof. Let GCV I be a CT-VFIGs with one node. Then OCV I(GCV I) = SCV I(GCV I) = 0. That is

OCV I(GCV I) = SCV I(GCV I) (6.1)
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It is a frivolous case. Assume GCV I with more than one nodes. OCV I(GCV I) is the sum of all incidence

pairs cardinality of GCV I . Since incidence pairs are two times of edges. Therefore, the total sum of all

the incidence pairs cardinality will invariably greater than the total sum of all the edge cardinality.

OCV I(GCV I) > SCV I(GCV I) (6.2)

From equations (6.1) and (6.2), we get OCV I(GCV I) ≥ SCV I(GCV I).

Example 6.2.1 Suppose any CT-VFIGs with one node. Then OCV I(GCV I) = SCV I(GCV I) = 0.

That is OCV I(GCV I) = SCV I(GCV I)

In figure 6.1.3, OCV I(GCV I) = 3.25 and SCV I(GCV I) = 1.85.

That is OCV I(GCV I) > SCV I(GCV I)

Therefore OCV I(GCV I) ≥ SCV I(GCV I).

Proposition 6.2.2 For any composition of two vague fuzzy incidence graphs the following inequality

holds

δCV I(GCV I) < ∆CV I(GCV I) < SCV I(GCV I) < OCV I(GCV I).

Proof. Assume GCV I is a CT-VFIGs with non empty node set. Since δCV I(GCV I) represents lowest edge

degree and ∆CV I(GCV I) denotes highest edge degree of GCV I .

δCV I(GCV I) < ∆CV I(GCV I) (6.3)

We know

OCV I(GCV I) =
∑

w11 6=w22,w11,w22∈VCV I

(
1 + tCCV I

(w11, w11w22)− fCCV I
(w11, w11w22)

2

)

and

SCV I(GCV I) =
∑

w11,w22∈ECV I

(
1 + tBCV I

(w11, w22)− fBCV I
(w11w22)

2

)
.
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By definition of size of GCV I ,

SCV I(GCV I) =
∑

w11,w22∈ECV I

(
1 + tBCV I

(w11, w22)− fBCV I
(w11w22)

2

)
> max{dGCV I

(e1V I)/e1V I ∈ ECV I}

That is

SCV I(GCV I) > ∆CV I(GCV I) (6.4)

Also, in a CT-VFIGs, GCV I by proposition 6.2.1

OCV I(GCV I) > SCV I(GCV I) (6.5)

From inequalities (6.3), (6.4) and (6.5), we obtained

δCV I(GCV I) < ∆CV I(GCV I) < SCV I(GCV I) < OCV I(GCV I).

Example 6.2.2 In figure 6.1.3, δCV I(GCV I) = 0.25

∆CV I(GCV I) = 0.3

SCV I(GCV I) = 1.85 and

OCV I(GCV I) = 3.25.

That is 0.25 < 0.3 < 1.85 < 3.25.

Therefore δCV I(GCV I) < ∆CV I(GCV I) < SCV I(GCV I) < OCV I(GCV I).

6.3 Domination in Composition of Two Vague Fuzzy Incidence Graphs

Definition 6.3.1 A edge eV I in an CT-VFIGs GCV I is called incidentally dominate edge if

tCCV I
(w11, w11w22) = min{tACV I

(w11), tBCV I
(w11, w22)}

and

fCCV I
(w11, w11w22) = max{fACV I

(w11), fBCV I
(w11, w22)}
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Definition 6.3.2 A edge e1V I in an CT-VFIGs GCV I dominates to edge e2V I if they are incidentally dom-

inate edges.

Definition 6.3.3 A subset RCV I of ECV I is said to be edge incidentally dominating set (EIDS) if for each

edge e1V I not in RCV I , e1V I is dominate at least one edge in RCV I .

Definition 6.3.4 A edge incidentally dominating set RCV I of the CT-VFIGs GCV I is said to be a minimal

EIDS of CT-VFIGs GCV I if each edge in RCV I , the set RCV I − {e1V I} is not a EIDS.

Definition 6.3.5 A EIDS with the lowest edge cardinality is labeled a minimum EIDS. The edge cardin-

ality of a minimum EIDS is called edge incidentally dominating number (EIDN) of the CT-VFIGs GCV I .

It is denoted by γV I(GCV I).

Example 6.3.1 In figure 6.1.3, the incidentally dominating edges are {e11}, {e22}, {e33}, {e44}, {e55},

{e66} and the EIDSs are S11 = {e11e22}, S22 = {e11e33}, S33 = {e11e44}, S44 = {e11e55}, S55 =

{e11e66}, . . . . After calculating the edge cardinality of S11, S22, S33, S44, . . . ,we obtain |S11| = 0.6, |S22| =

0.6, |S33| = 0.65, |S44| = 0.6, |S55| = 0.6, . . . . The edge cardinality of a minimum EIDS is |S11| = 0.6

and γGCV I
= 0.6.

Theorem 6.3.1 Let G1
V I = (A1

V IP , B
1
V IL, C

1
V II) and G2

V I = (A2
V IP , B

2
V IL, C

2
V II) be two vague fuzzy

incidence graphs. Then γV I(GCV I) = min{A1
V IP (m11), A

2
V IP (n11)} where m11 ∈ G1

V I and n11 ∈ G2
V I .

Proof. Assume G1
V I = (A1

V IP , B
1
V IL, C

1
V II) and G2

V I = (A2
V IP , B

2
V IL, C

2
V II) are two VFIGs. Since G1

V I

andG2
V I are two VFIGs, thenG1

V I�G2
V I will be a VFIGs. So, each two edges inG1

V I�G2
V I will dominates

remaining edges. Then by definition of EIDN, γV I(GCV I) = min{cardinality of (A1
V IP (m11), A

2
V IP (n11))}.

Example 6.3.2 In figure 6.1.1 and 6.1.2, min{cardinality of (A1
V IP (m11), A

2
V IP (n11))} = 0.6. In figure

6.1.3, the EIDSs are |S11| = 0.6, |S22| = 0.6, |S33| = 0.6, |S44| = 0.6, |S55| = 0.6, . . .

The edge cardinality of a minimum EIDS is |S11| = 0.6 and γV I(GCV I) = 0.6.

Therefore γV I(GCV I) = min{cardinality of (A1
V IP (m11), A

2
V IP (n11))}.

Theorem 6.3.2 Let G1
V I = (A1

V IP , B
1
V IL, C

1
V II) and G2

V I = (A2
V IP , B

2
V IL, C

2
V II) be two vague fuzzy

incidence graphs with k ≥ 2 and l ≥ 2, where k and l are representing the number of vertices in G1
V I and

G2
V I , respectively. Then

γV I(GCV I)

2
= min{cardinality of (B1

V IL(m11m22), B
2
V IL(n11n22))}.



116 Strong And Weak Domination in Vague Fuzzy Incidence Graphs

Proof. Consider G1
V I = (A1

V IP , B
1
V IL, C

1
V II) and G2

V I = (A2
V IP , B

2
V IL, C

2
V II) are two VFIGs. Since G1

V I

and G2
V I are VFIGs. Then G1

V I � G2
V I will also a VFIG with

γV I(GCV I)

2
= min{cardinality of (B1

V IL(m11m22), B
2
V IL(n11n22))} because each two edges in

G1
V I �G2

V I dominates to all remaining edges.

Example 6.3.3 In figure 6.1.1 and 6.1.2, min{cardinality of (B1
V IL(m11m22), B

2
V IL(n11n22))} = 0.3. In

figure 6.1.3, the EIDSs are |S11| = 0.6, |S22| = 0.6, |S33| = 0.6, |S44| = 0.6, |S55| = 0.6, . . .

The edge cardinality of a minimum EIDS is |S11| = 0.6, γV I(GCV I) = 0.6 and
γV I(GCV I)

2
= 0.3.

Therefore
γV I(GCV I)

2
= min{cardinality of (B1

V IL(m11m22), B
2
V IL(n11n22))}.

6.4 Strong and Weak Domination in Composition of Two Vague

Fuzzy Incidence Graphs

The strong and weak domination in graph theory was introduced by Sampathkumar and Pushpalatha in

1996.

Definition 6.4.1 Let GCV I be a CT-VFIGs. For any two edges e1V I , e2V I ∈ ECV I , e1V I strongly domin-

ates e2V I in CT-VFIGs GCV I if

(i) they are incidentally dominate edges

(ii) degt(e1V I) ≥ degt(e2V I), deg
f (e1V I) ≤ degf (e2V I)

Similarly e1V I weakly dominates e2V I if

(i) they are incidentally dominate edges

(ii) degt(e2V I) ≥ degt(e1V I), deg
f (e2V I) ≤ degf (e1V I)

Definition 6.4.2 An edge incidentally dominating set RCV I ⊆ ECV I is labeled a strong (weak) edge

incidentally dominating set (SEIDS,WEIDS) of GCV I if, for each e1V I ∈ ECV I − RCV I , there exist at

least one edge e2V I ∈ RCV I , so that e1V I strongly (weakly) dominates e2V I . The strong (weak) edge

incidentally domination number of GCV I denoted by γSV I(GCV I)γWV I(GCV I), is called as the minimum

cardinality of a strong (weak) edge incidentally dominating set of GCV I .
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Example 6.4.1 In figure 6.1.3, the incidentally dominating edges are {e11}, {e22}, {e33}, {e44}, {e55},

{e66} and the SEIDS are S11 = {e11e22}, S22 = {e11e44}, S33 = {e22e33}, S44 = {e33e44}. After calculat-

ing the edge cardinality of S11, S22, S33, S44 we obtain |S11| = 0.6, |S22| = 0.65, |S33| = 0.6, |S44| = 0.6.

The edge cardinality of a minimum SEIDS is |S11| = 0.6 and γSV I(GCV I) = 0.6. The WEIDSs are

S55 = {e11e55}, S66 = {e11e66}, S77 = {e33e66}. After calculating the edge cardinality of S55, S66, S77

we obtain |S55| = 0.6, |S66| = 0.6, |S77| = 0.6. The edge cardinality of a minimum WEIDS is |S55| = 0.6

and γWV I(GCV I) = 0.6.

Theorem 6.4.1 Let GCV I be a CT-VFIGs without single node and RCV I be a minimum strong edge

incidentally dominating set of GCV I , then ECV I − RCV I is an strong edge incidentally dominating set of

CT-VFIGs.

Proof. Let GCV I be a CT-VFIGs with minimum SEIDS, then for each edge e2V I ∈ RCV I , there is at least

one edge e1V I ∈ ECV I −NCV I so that degt(e1V I) ≥ degt(e2V I), deg
f (e1V I) ≤ degf (e2V I) and

tCCV I
(w11, w11w22) = min{tACV I

(w11), tBCV I
(w11, w22)}

and

fCCV I
(w11, w11w22) = max{fACV I

(w11), fBCV I
(w11, w22)}.

Hence,ECV I−RCV I strongly dominates each edge ofRCV I . So,ECV I−RCV I is an SEIDS of CT-VFIGs.

Example 6.4.2 In figure 6.1.3, the SEIDSs are S11 = {e11e22}, S22 = {e11e44}, S33 = {e22e33}, S44 =

{e33e44}. After calculating the edge cardinality of S11, S22, S33, S44 we obtain |S11| = 0.6, |S22| =

0.65, |S33| = 0.6, |S44| = 0.6. The edge cardinality of a minimum SEIDS is |S11| = 0.6, thenECV I−S11 =

{e33, e44, e55, e66} is also a SEIDS.

Theorem 6.4.2 Let GCV I be a CT-VFIGs without single node and RCV I be a minimum weak edge in-

cidentally dominating set of GCV I , then ECV I − RCV I is an weak edge incidentally dominating set of

CT-VFIGs.

Theorem 6.4.3 For any CT-VFIGs with tCCV I
(w11, w11w22) = min{tACV I

(w11), tBCV I
(w11, w22)} and

fCCV I
(w11, w11w22) = max{fACV I

(w11), fBCV I
(w11, w22)} for all w11 ∈ VCV I , w11w22 ∈ ECV I , then

γSV I = γWV I .



118 Strong And Weak Domination in Vague Fuzzy Incidence Graphs

Proof. Let GCV I be a CT-VFIGs with tCCV I
(w11, w11w22) = min{tACV I

(w11), tBCV I
(w11, w22)} and

fCCV I
(w11, w11w22) = max{fACV I

(w11), fBCV I
(w11, w22)}. Assume for every node have same or differ-

ent value. Since GCV I is CT-VFIGs with tBCV I
(w11, w22) = min{tACV I

(w11), tACV I
(w22)} and

fBCV I
(w11, w22) = max{fACV I

(w11), fACV I
(w22)} for all w11, w22 ∈ VCV I and tCCV I

(w11, w11w22) =

min{tACV I
(w11), tBCV I

(w11, w22)} and fCCV I
(w11, w11w22) = max{fACV I

(w11), fBCV I
(w11, w22)} for all

w11 ∈ VCV I , w11w22 ∈ ECV I . Thus every e1V Ie2V I ∈ ECV I is SEIDS as well as WEIDS. Therefore,

γSV I = γWV I .

Example 6.4.3 In figure 6.1.3, the incidentally dominating edges are {e11}, {e22}, {e33}, {e44}, {e55},

{e66} and the SEIDSs are S11 = {e11e22}, S22 = {e11e44}, S33 = {e22e33}, S44 = {e33e44}. After calcu-

lating the edge cardinality of S11, S22, S33, S44 we obtain |S11| = 0.6, |S22| = 0.65, |S33| = 0.6, |S44| =

0.6 and γSV I(GCV I) = 0.6. The WEIDSs are S55 = {e11e55}, S66 = {e11e66}, S77 = {e33e66}. After

calculating the edge cardinality of S55, S66, S77 we obtain |S55| = 0.6, |S66| = 0.6, |S77| = 0.6 and

γWV I(GCV I) = 0.6. Therefore γSV I = γWV I .

Theorem 6.4.4 For a composition of two vague fuzzy incidence graphs, the below inequalities are true.

(i) γV I ≤ γSV I ≤ OCV I(GCV I)− maximum dGCV I
of GCV I .

(ii) γV I ≤ γWV I ≤ OCV I(GCV I)− minimum dGCV I
of GCV I .

Proof.

(i) From definition 6.4.1 and 6.4.2 we have

γV I ≤ γSV I (6.6)

We know OCV I(GCV I) = the sum of the incidence pair of CT-VFIGs. Also OCV I(GCV I)− not

including the maximum dGCV I
of CT-VFIGs

= OCV I(GCV I)−∆CV I(GCV I) (6.7)
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From equation (6.6) and (6.7),

γV I ≤ γSV I ≤ OCV I(GCV I)−maximum dGCV I
ofGCV I .

(ii) From definition 6.4.1 and 6.4.2 domination number γV I of CT-VFIGs is less that or equal to the

γWV I of CT-VFIGs, because the edges of WEIDS MCV I , it weakly dominates any one of the edges

of ECV I −MCV I . Therefore,

γCV I(GCV I) ≥ γV I(GCV I) (6.8)

Also OCV I(GCV I)− not including the minimum dGCV I
of CT-VFIGs

= OCV I(GCV I)− δCV I(GCV I) (6.9)

From equation (6.8) and (6.9), we get

γV I ≤ γWV I ≤ OCV I(GCV I)−minimumdGCV I
ofGCV I

6.5 Real-Life Application of CT-VFIGs

An application of CT-VFIGs is included here. Consider two networks (CT-VFIGs) G1
V I and G2

V I , which

have two and two vertices, respectively, and show distinct journal publications from different journals

of a research filed. The vertices membership (MS) value indicates the percentage of accepted research

papers in journal publishing, while the non membership (NMS) value represents the rejected research

papers. The MS value of the edges indicates that the journal publications are mutually collaborative,

whereas the NMS value indicates that the journal publications are not mutually collaborative. The MS

value of the incidence pairs represents the percentage of progress, whereas the NMS value represents the

percentage of journal publications that have not progressed. As in figure 6.1.3 composition of G1
V I and

G2
V I show the percentage of progress of journal publication m11 with journal publications n11 and n22

has the maximum MS value and the percentage of non progress of journal publication m11 with journal

publications n11 and n22 has the lesser NMS value. As a result, the best suited combinations of journal
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publications demonstrating the largest percentage of progress and the lowest percentage of non-progress

in the research field exist.

Figure 6.5.1: Journal Publications

6.6 Comparative Analysis

In figure 6.1.3, calculate the edge cardinality of each edge, we get all the edges have same value. In our

study the edge degree cardinality of the CT-VIFGs |dGCV I
(e1V I)| = 0.2 and |dGCV I

(e2V I)| = 0.3 are not

all the same. It can be observed that the edge degree of the edges |dGCV I
(e1V I)| = {0.9, 2.4} shows the

percentage of progress of journal publication m11 with journal publications n11 and n22 has the maximum

MS value and the percentage of non progress of journal publication m11 with journal publications n11

and n22 has the lesser NMS value. As a result, the current method is ineffective in determining which

journal publications have the highest percentage of progress and the lowest percentage of non-progress.
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The current method is useful for single networks, but it is insufficient to explain the overall impact of dif-

ferent networks’ products. However, we may use composition to discuss the overall impact of combining

multiple networks in our strategy. Our technique works with several networks as well as a single network.

This allows us to discuss the overall influence of various networks products. As a result, our proposed

strategy outperforms the existing one.

CT-VFIGs are extremely useful tools for researching a variety of computational intelligence and com-

puter science topics. CT-VFIGs are used in a variety of fields, including natural networks and operations

research. We introduced three new CT-VIFG concepts in this chapter edge incidentally dominating set,

strong edge incidentally dominating set and weak edge incidentally dominating set. In the CT-VFIGs,

some advantageous and instrumental theorems of domination are also explained. A study of the makeup

of VFIGs in the field of research is also included. We plan to expand our research into CT-VFIG coloring,

Hamiltonian CT-VFIGs, and CT-VFIG chromaticity in the future.



Chapter 7

Strong And Weak Domination in Complete

Intuitionistic Fuzzy Incidence Graphs

Fuzzy graphs, also known as fuzzy incidence graphs, are a well-organized and useful tool for capturing

and resolving a range of real-world scenarios involving ambiguous data and information. The concept of

complete intuitionistic fuzzy incidence graphs was presented in this chapter of the investigation. Complete

intuitionistic fuzzy incidence graphs are characterised in terms of order, size, degree cardinality, strong

intuitionistic fuzzy incidence dominating set and weak intuitionistic fuzzy incidence dominating set. For

different classes of complete intuitionistic fuzzy incidence graphs, we compute the intuitionistic fuzzy

incidence domination number, strong intuitionistic fuzzy incidence domination number, and weak intu-

itionistic fuzzy incidence domination number, and some theorems are explored. With the help of various

outline models, we can better understand these concepts. In addition, for the delineation, the application

of domination for complete intuitionistic fuzzy incidence graph to determine the best treatment facility

accessible clinic is discussed.
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7.1 Complete Intuitionistic Fuzzy Incidence Graph

Definition 7.1.1 The support of intuitionistic fuzzy incidence graph (IFIG)GFI = (R, S, T ) is supp(GFI) =

{supp(R), supp(R), supp(T )} so that

supp(R) = {x11/ρ1(x11) > 0, ρ2(x11) > 0}

supp(S) = {x11x22/φ1(x11x22) > 0, φ2(x11x22) > 0}

supp(T ) = {(x11, x11x22)/χ1(x11, x11x22) > 0, χ2(x11, x11x22) > 0}

ρ∗, φ∗ and χ∗ are representing support of ρ, φ and χ respectively.

Definition 7.1.2 A IFIG is said to be complete intuitionistic fuzzy incidence graph if

χ1(x11, x11x22) = min{ρ1(x11), φ1(x11x22)} and χ2(x11, x11x22) = max{ρ2(x11), φ2(x11x22)}, for each

χ1(x11, x11x22), χ2(x11, x11x22) ∈ χ∗.

Remark 7.1.1 Every CIFIG is a intuitionistic fuzzy incidence graph but not conversely.

Definition 7.1.3 Assume GIFI = (ρIFI , φIFI , χIFI) is a CIFIG. Then

O(GIFI) =
∑

x11 6=x22,x11x22∈VIFI

(
1 + χ1(x11, x11x22)− χ2(x11, x11x22)

2

)

is called order of GIFI and

S(GIFI) =
∑

x11x22∈φ∗

(
1 + φ1(x11x22)− φ2(x11x22)

2

)

is called size of GIFI .

7.2 Domination in Complete Intuitionistic Fuzzy Incidence Graph

Definition 7.2.1 A vertex x11 in a complete intuitionistic fuzzy incidence graph dominates to vertex x22 if

χ1(x11, x11x22) = min{ρ1(x11), φ1(x11x22)} and χ2(x11, x11x22) = max{ρ2(x11), φ2(x11x22)}.
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Remark 7.2.1 For any x11, x22 ∈ VIFI , if x11 dominates x22 then x22 also dominates x11.

Definition 7.2.2 A set MIFI ⊆ VIFI is a intuitionistic fuzzy incidence dominating set (IFIDS) if each

nodes in VIFI −MIFI is dominated by atleast one node in MIFI .

Definition 7.2.3 The lowest intuitionistic fuzzy incidence cardinality of a IFIDS is uttered as the intu-

itionistic fuzzy incidence domination number and it is represented by γIFI(GIFI) or γIFI .

Definition 7.2.4 Consider GIFI = (VIFI , EIFI , IIFI , ρIFI , φIFI , χIFI) is an CIFIG and x11 ∈ VIFI then

its degree is expressed by dGIFI
(x11) = (d1GIFI

(x11), d2GIFI
(x11)) and represented by

d1GIFI
(x11) =

∑
x11 6=x22

(x11, x11x22) ∈ IIFI and d2GIFI
(x11) =

∑
x11 6=x22

(x11, x11x22) ∈ IIFI .

7.3 Strong and Weak Domination in CIFIGs

Definition 7.3.1 Let GIFI be a complete intuitionistic fuzzy incidence graph. Then the degree cardinality

of dGIFI
(x11) is represented to be |dGIFI

(x11)| =
1 + d1GIFI

(x11)− d2GIFI
(x11)

2
. The lowest degree

cardinality of GIFI is defined by δ(GIFI) = min{dGIFI
(x11)/x11 ∈ VIFI} and highest degree cardinality

of GIFI is defined by ∆(GIFI) = max{dGIFI
(x11)/x11 ∈ VIFI}.

Definition 7.3.2 Assume GIFI is a complete intuitionistic fuzzy incidence graph and let x11 and x22 be

the nodes of GIFI . Then x11 strongly dominates x22 or x22 weakly dominates x11 if di(x11) ≥ di(x22)

and χ1(x11, x11x22) = min{ρ1(x11), φ1(x11x22)}, χ2(x11, x11x22) = max{ρ2(x11), φ2(x11x22)}. We call

x22 strongly dominates x11 or x11 weakly dominates x22 if di(x22) ≥ di(x11) and χ1(x22, x11x22) =

min{ρ1(x22), φ1(x11x22)} and χ2(x22, x11x22) = max{ρ2(x22), φ2(x11x22)},

Definition 7.3.3 A set SIFI ⊆ VIFI is a strong intuitionistic fuzzy incidence dominating set (SIFIDS) if

every vertex in VIFI−SIFI is strongly fuzzy incidence dominated by at least one vertex in SIFI . Similarly,

SIFI is labeled a WIFIDS if every vertex in VIFI − SIFI is weakly fuzzy incidence dominated by at least

one vertex in SIFI .

Definition 7.3.4 The lowest intuitionistic fuzzy incidence cardinality of a SIFIDS is uttered as the SIFIDN

and it is represented by γSIFI(GIFI) or γSIFI and the lowest intuitionistic fuzzy incidence cardinality of
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a weak intuitionistic fuzzy incidence dominating set (WIFIDS) is uttered as the weak intuitionistic fuzzy

incidence domination number (WIFIDN) and it is represented by γWIFI(GIFI) or γWIFI .

Example 7.3.1

Figure 7.3.1: CIFIG with γSIFI = 0.5 and γWIFI = 0.4

Assume GIFI = (ρIFI , φIFI , χIFI) is an CIFIG given in above figure 7.3.1 having VIFI = (x11, x22, x33)

and

ρ(x11) = (0.4, 0.5), ρ(x22) = (0.5, 0.3), ρ(x33) = (0.3, 0.6)

φ(x11, x22) = (0.4, 0.5), φ(x22, x33) = (0.3, 0.6), φ(x33, x11) = (0.3, 0.6)

χ(x11, x11x22) = (0.4, 0.5), χ(x22, x11x22) = (0.4, 0.5), χ(x22, x22x33) = (0.3, 0.6),

χ(x33, x22x33) = (0.3, 0.6), χ(x11, x11x33) = (0.3, 0.6), χ(x33, x11x33) = (0.3, 0.6)

Assume DIFI = {x33}. We have VIFI −DIFI = {x11, x22}. Here x33 weakly fuzzy incidence dominates

x11, x22 because dGIFI
(x33) = 0.2 is less than the dGIFI

of all the remaining vertices. That is dGIFI
(x11) =
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0.3, dGIFI
(x33) = 0.3. There is no other weak intuitionistic fuzzy incidence dominating sets. Thus the

only weak intuitionistic fuzzy incidence dominating set is DIFI = {x33}. Therefore γWIFI = 0.4. We

have strong IFIDS is DIFI = {x11} with γSIFI = 0.5.

Theorem 7.3.1 For any CIFIG with χ1(x11, x11x22) = min{ρ1(x11), φ1(x11x22)} and χ2(x11, x11x22) =

max{ρ2(x11), φ2(x11x22)} for all x11 ∈ VIFI , x11x22 ∈ EIFI , then

(i) γSIFI = γWIFI

(ii) γSIFI > γWIFI

Proof. Let GIFI = (ρIFI , φIFI , χIFI) be a CIFIG with χ1(x11, x11x22) = min{ρ1(x11), φ1(x11x22)} and

χ2(x11, x11x22) = max{ρ2(x11), φ2(x11x22)}. Assume for all x11 ∈ VIFI , (ρ1(x11), ρ2(x11)) have same

value. Since GIFI is CIFIG with φ1(x11x22) = min{ρ1(x11), ρ2(x11)} and φ2(x11x22) =

max{ρ2(x11), ρ2(x11)} for all x11, x22 ∈ VIFI and χ1(x11, x11x22) = min{ρ1(x11), φ1(x11x22)} and

χ2(x11, x11x22) = max{ρ2(x11), φ2(x11x22)} for all x11 ∈ VIFI , x11x22 ∈ EIFI . Thus every x11 ∈ VIFI
is SIFIDS as well as WIFIDS. Therefore γWIFI = γSIFI .

Assume for all x11 ∈ VIFI , (ρ1(x11), ρ2(x11)) have different value. In a CIFIG with dGIFI
(x11) ≥

dGIFI
(x22) from all the nodes one of them strongly dominates all the remaining nodes, if it is smallest

among all the nodes then the IFIDS with that node is called WIFIDN, that is γWIFI = (ρ1(x11), ρ2(x11))

with dGIFI
(x11) ≤ dGIFI

(x22) for all x11x22 ∈ VIFI and χ1(x11, x11x22) = min{ρ1(x11), φ1(x11x22)} and

χ2(x11, x11x22) = max{ρ2(x11), φ2(x11x22)} for all x11 ∈ VIFI , x11x22 ∈ EIFI . Certainly, the strong

IFIDS has a node set other than the that node set. This implies γSIFI > γWIFI .

Theorem 7.3.2 For a CIFIG, the below inequalities are true.

(i) γIFI ≤ γSIFI ≤ O(GIFI)− maximum dGIFI
of GIFI

(ii) γIFI ≤ γWIFI ≤ O(GIFI)− minimum dGIFI
of GIFI
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Proof.

(i) From definition 7.3.2, 7.3.3 and 7.3.4, we have

γIFI ≤ γSIFI (7.1)

We know O(GIFI) = the sum of the incidence pair of CIFIG.

Also O(GIFI)- not including the maximum dGIFI
of CIFIG

= O(GIFI)−∆(GIFI) (7.2)

From equation (7.1) and (7.2),

γIFI ≤ γSIFI ≤ O(GIFI)−maximum dGIFI
of GIFI

(ii) From definition 7.3.2, 7.3.3 and 7.3.4 domination number γIFI of CIFIG is less than or equal to the

γWIFI of CIFIG, because the vertices of WIFIDS MIFI , it weakly dominates any one of the vertices

of VIFI −MIFI . Therefore

γWIFI(GIFI) ≥ γIFI(GIFI) (7.3)

Also O(GIFI)- not including the minimum dGIFI
of CIFIG

= O(GIFI)− δ(GIFI) (7.4)

From equation (7.3) and (7.4), we get

γIFI ≤ γWIFI ≤ O(GIFI)−minimum dGIFI
of GIFI
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7.4 Application

Here, we incorporate an every day life model. Assume there are five multispeciality clinics are working

(24 hours) in a city for giving crisis treatment to individuals. Here in our examination we are not referen-

cing the original names of these clinics in this manner think about the clinics h11, h22, h33, h44 and h55. In

CIFIGs, the vertices show the clinics and edges show the contract conditions between the clinics to share

the facilities. The incidence pairs show the transferring of patients from one clinic to another because

of the lack of resources. The vertex h11(0.4, 0.6) means that it has 40% of the necessary facilities for

treatment and unfortunately lacks 60% of the equipment. The edge h11h22(0.14, 0.86) shows that there is

only 14% of the interaction and relationship between the two clinics, and due to financial issues, there is

86% on the conflict between them. IFIDS ruling arrangements of the graph is the arrangement of clinics

which give the crisis treatment autonomously. Along these lines, we can save the time of patients and

conquer the long going of patients by giving the couple of offices to the remainder of the clinics.

Figure 7.4.1: MULTISPECIALITY CLINIC

Assume GIFI = (VIFI , EIFI , IIFI , ρIFI , φIFI , χIFI) is a CIFIG show in figure 7.4.2 having VIFI =
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(h11, h22, h33, h44, h55) and

ρ(h11) = (0.4, 0.6), ρ(h22) = (0.14, 0.86), ρ(h33) = (0.52, 0.48), ρ(h44) = (0.24, 0.76),

ρ(h55) = (0.24, 0.76), φ(h11, h22) = (0.14, 0.86), φ(h11, h33) = (0.4, 0.6), φ(h11, h44) = (0.24, 0.76),

φ(h33, h44) = (0.24, 0.76), φ(h44, h55) = (0.24, 0.76), χ(h11, h11h22) = (0.14, 0.86),

χ(h22, h11h22) = (0.14, 0.86), χ(h11, h11h33) = (0.4, 0.6), χ(h33, h11h33) = (0.4, 0.6),

χ(h11, h11h44) = (0.24, 0.76), χ(h44, h11h44) = (0.24, 0.76), χ(h33, h33h44) = (0.24, 0.76),

χ(h44, h33h44) = (0.24, 0.76), χ(h44, h44h55) = (0.24, 0.76)χ(h55, h44h55) = (0.24, 0.76)

Example 7.4.1

Figure 7.4.2: CIFIG with γIFI = 0.38

In figure having intuitionistic fuzzy incidence dominating set are DIFI = {h22, h44} and γIFI = 0.38.
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This shows that patients can visit any one of the clinics from this set. The rest of the clinics upgrade their

facilities to provide better treatment to the people.

The dominance theory survey is intriguing because of the wide range of applications and dominant

qualities that can be established. Domination in complete intuitionistic fuzzy incidence graphs is essen-

tial from both a religious and an application standpoint. The feasibility of a complete intuitionistic fuzzy

incidence graph, as well as strong and weak intuitionistic fuzzy incidence dominating sets and strong and

weak intuitionistic fuzzy incidence dominating numbers, is examined in this research. We compute the

intuitionistic fuzzy incidence domination number, strong intuitionistic fuzzy incidence domination num-

ber, and weak intuitionistic fuzzy incidence domination number for distinct classifications of complete

intuitionistic fuzzy incidence graphs, as well as associated theorems. The relationship between the com-

plete intuitionistic fuzzy incidence graph of an intuitionistic fuzzy incidence domination number, strong

intuitionistic fuzzy incidence domination number, order, and maximum degree cardinality is examined.



Chapter 8

Fixed Domination in Product Picture Fuzzy

Graphs

Fuzzy graph algorithms can be used to model and solve a wide range of practical issues. Fuzzy graph the-

ory, in general, has a wide range of applications in a wide range of domains. Because ambiguous inform-

ation is a common real-life problem that is frequently uncertain, an expert must model these challenges

using a fuzzy graph. A useful mathematical model for dealing with uncertain real-world circumstances

is the picture fuzzy set. The picture fuzzy set (PFS) is a variant of the traditional fuzzy set. It can be

particularly effective in ambiguous settings that require more yes, no, abstain, and rejection responses.

This research introduces the concept of a product picture fuzzy graph. Some varieties of product picture

fuzzy graphs are discussed, including strong product picture fuzzy graph and complete product picture

fuzzy graph, as well as their features. One of the most extensively utilized notions in numerous areas is

dominance in fuzzy graphs theory. Many current research investigations are attempting to uncover new

uses for dominance in their sector if there is enough interest. As a result, in this chapter, we introduce

various types of dominating sets in product picture fuzzy graphs, such as the fixed vertex dominating set,

fixed edge dominating set, total fixed edge dominating set, and fixed edge restrained dominating set, and

try to represent their properties using examples. Finally, we give a medical example to demonstrate the

importance of fixed vertex domination (FVD) in product picture fuzzy graphs.
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8.1 Product Picture Fuzzy Graphs

Definition 8.1.1 LetRPP be product picture fuzzy set (PPFS).RPP inXPP is defined byRPP = {xPP , µRPP
(xPP ),

ηRPP
(xPP ), γRPP

(xPP )/xPP ∈ XPP}, where µRPP
(xPP ), ηRPP

(xPP ) and γRPP
(xPP ) follow the condi-

tion 0 ≤ µRPP
(xPP )× ηRPP

(xPP )× γRPP
(xPP ) ≤ 1. The µRPP

(xPP ), ηRPP
(xPP ), γRPP

(xPP ) ∈ [0, 1],

denote respectively the positive membership degree, neutral membership degree and negative membership

degree of the element xPP in the set RPP . For each PPFS RPP in XPP , the refusal membership degree is

described as

πRPP
(xPP ) = 1− {µRPP

(xPP )× ηRPP
(xPP )× γRPP

(xPP )}.

Definition 8.1.2 Assume G∗PP = (VPP , EPP ) is a graph. A pair ξPP = (RPP , SPP ) is referred a

product picture fuzzy graph on G∗PP where RPP = {µRPP
, ηRPP

, γRPP
} is a PPFS on VPP and SPP =

{µSPP
, ηSPP

, γSPP
} is a PPFS on EPP ⊆ VPP × VPP such that for each edge fPPhPP ∈ EPP .

µSPP
(fPPhPP ) ≤ µRPP

(fPP )× µRPP
(hPP ),

ηSPP
(fPPhPP ) ≤ ηRPP

(fPP )× ηRPP
(hPP ),

γSPP
(fPPhPP ) ≥ γRPP

(fPP )× γRPP
(hPP ).

Example 8.1.1 Consider a PPFG ξPP as in Figure 8.1.1, such that VPP = {fPP , hPP , iPP , jPP} EPP =

{fPPhPP , hPP iPP , iPP jPP , jPPfPP}
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Figure 8.1.1: PPFG ξPP

Note 8.1.1 There is no edge between fPP and hPP when µSPP
(fPPhPP ) = ηSPP

(fPPhPP ) =

γSPP
(fPPhPP ) = 0.

Remark 8.1.1 A product picture fuzzy graph is not necessarily a picture fuzzy graph.

Example 8.1.2 In Figure 8.1.1, it is easy to show that PPFG but not PFG.

Definition 8.1.3 A product picture fuzzy graph ξPP = (RPP , SPP ) is said to be strong product picture

fuzzy graph if

µSPP
(fPPhPP ) = µRPP

(fPP )× µRPP
(hPP ),

ηSPP
(fPPhPP ) = ηRPP

(fPP )× ηRPP
(hPP ),

γSPP
(fPPhPP ) = γRPP

(fPP )× γRPP
(hPP ) ∀ fPPhPP ∈ EPP .
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Example 8.1.3 Consider a strong PPFG ξPP as in Figure 8.1.2, such that VPP = {fPP , hPP , iPP , jPP}

EPP = {fPPhPP , hPP iPP , iPP jPP , jPPfPP , fPP iPP}.

Figure 8.1.2: Strong PPFG ξPP

Definition 8.1.4 A product picture fuzzy graph ξPP = (RPP , SPP ) is defined as complete PPFG if

µSPP
(fPP , hPP ) = µRPP

(fPP )× µRPP
(hPP ),

ηSPP
(fPPhPP ) = ηRPP

(fPP )× ηRPP
(hPP ),

γSPP
(fPPhPP ) = γRPP

(fPP )× γRPP
(hPP ) ∀ fPPhPP ∈ EPP .

Example 8.1.4 Consider a complete PPFG ξPP as in Figure 8.1.3, such that VPP = {fPP , hPP , iPP , jPP}

EPP = {fPPhPP , hPP iPP , iPP jPP , jPPfPP , fPP iPP , hPP jPP}.
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Figure 8.1.3: Complete PPFG ξPP

Remark 8.1.2 Every complete product picture fuzzy graph is a strong product picture fuzzy graph but not

conversely.

Example 8.1.5 In Figure 8.1.2, it is simple to demonstrate that ξPP is a strong PPFG but not a complete

PPFG.

Definition 8.1.5 Let ξPP = (RPP , SPP ) be a product picture fuzzy graph

1. ξPP cardinality is determined by

|ξPP | =
∑

fiPP∈VPP

1 + µRPP
(fiPP )− ηRPP

(fiPP )− γRPP
(fiPP )

2

+
∑

fiPP ,hiPP∈EPP

1 + µSPP
(fiPP , hiPP )− ηSPP

(fiPP , hiPP )− γSPP
(fiPP , hiPP )

2
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2. ξPP vertex cardinality is determined by

|VPP | =
∑

fiPP∈VPP

1 + µRPP
(fiPP )− ηRPP

(fiPP )− γRPP
(fiPP )

2
∀fiPP ∈ VPP ,

is referred the order of a PPFG ξPP , and it is denoted by p(ξPP ).

3. ξPP edge cardinality is specified by

|EPP | =
∑

fiPP ,hiPP∈EPP

1 + µSPP
(fiPP , hiPP )− ηSPP

(fiPP , hiPP )− γSPP
(fiPP , hiPP )

2
,

∀fiPP , hiPP ∈ EPP is referred the size of a PPFG ξPP , and it is denoted by q(ξPP ).

Example 8.1.6 In Figure 8.1.1,

|VPP | = 0.25 + 0.3 + 0.4 + 0.55 = 1.5

|EPP | = 0.405 + 0.48 + 0.52 + 0.46 = 1.865

|ξPP | = 1.5 + 1.865 = 3.365

Definition 8.1.6 An edge fPP , hPP in a product picture fuzzy graph ξPP = (RPP , SPP ) is called the

strong edge if

µSPP
(fPP , hPP ) ≥ µ∞SPP

(fPP , hPP ),

ηSPP
(fPP , hPP ) ≥ η∞SPP

(fPP , hPP ),

γSPP
(fPP , hPP ) ≤ γ∞SPP

(fPP , hPP )

Example 8.1.7 In Figure 8.1.1, e2PP , e3PP , e4PP are strong edges.

8.2 Fixed Vertex Domination in Product Picture Fuzzy Graphs

Definition 8.2.1 In a product picture fuzzy graph, two vertices fPP and hPP are considered to be neigh-

bors if one of the following conditions holds.
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1. µSPP
(fPPhPP ) > 0, ηSPP

(fPPhPP ) > 0, γSPP
(fPPhPP ) > 0

2. µSPP
(fPPhPP ) = 0, ηSPP

(fPPhPP ) ≥ 0, γSPP
(fPPhPP ) > 0

3. µSPP
(fPPhPP ) > 0, ηSPP

(fPPhPP ) = 0, γSPP
(fPPhPP ) > 0

4. µSPP
(fPPhPP ) ≥ 0, ηSPP

(fPPhPP ) > 0, γSPP
(fPPhPP ) > 0,∀fPPhPP ∈ VPP .

Definition 8.2.2 In a product picture fuzzy graph ξPP , the two vertices fPP and hPP are considered to be

strong neighbours if

µSPP
(fPPhPP ) = µRPP

(fPP )× µRPP
(hPP )

ηSPP
(fPPhPP ) = ηRPP

(fPP )× ηRPP
(hPP )

γSPP
(fPPhPP ) = γRPP

(fPP )× γRPP
(hPP )

Definition 8.2.3 Let ξPP be a PPFG and fPP and hPP are neighbors of ξPP . We say that fPP dominates

hPP if they are strong neighbors. An vertex subset MPP of VPP in a PPFG ξPP is called an fixed vertex

dominating set (FVDS), if for each vertex VPP −MPP is dominates exactly one vertex in MPP . An fixed

vertex dominating set MPP of a PPFG ξPP is said to be a minimal fixed vertex dominating set if for

each edge fPP ∈ MPP , MPP − {fPP} is not an fixed vertex dominating set. An fixed vertex domination

number (FVDN) of ξPP is the smallest cardinality between all minimal fixed vertex dominating sets, and

it is described by γVPP
(ξPP ) or simply γVPP

.

Example 8.2.1 Consider the PPFG ξPP as in figure 8.2.1, D11 = {fPP , hPP}, D22 = {hPP , iPP},

D33 = {iPP , jPP}, D44 = {fPP , jPP} is a fixed vertex dominating sets and γVPP
(ξPP ) = 0.5.
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Figure 8.2.1: PPFG ξPP with FVDS

8.3 Fixed Edge Domination in Product Picture Fuzzy Graphs

Definition 8.3.1 If two edges e1PP and e2PP in a PPFG ξPP are neighbours, they are said to be adjacent.

Definition 8.3.2 An edge subset LPP of EPP in a PPFG ξPP is referred an edge independent set (EIS) if

µSPP
(fPPhPP ) < µRPP

(fPP )× µRPP
(hPP )

ηSPP
(fPPhPP ) < ηRPP

(fPP )× ηRPP
(hPP )

γSPP
(fPPhPP ) > γRPP

(fPP )× γRPP
(hPP )∀fPPhPP ∈ LPP .

The edge independent number (EIN) is the highest cardinality among all maximal edge independent set

(EIS) in ξPP , and it is indicated by βIPP (ξPP ) or βIPP .

Example 8.3.1 In figure 8.3.1, {e2PP , e3PP}, {e2PP , e4PP}, {e3PP , e4PP}, {e2PP , e3PP , e4PP} are EISs

in ξPP and βIPP (ξPP ) = 1.495.
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Figure 8.3.1: PPFG ξPP with EISs

Definition 8.3.3 If an edge e1PP and a vertex kPP in a product picture fuzzy graph ξPP are incident, they

are said to cover each other.

Definition 8.3.4 An edge subset LPP of EPP in a PPFG ξPP , which covers all nodes in ξPP , is termed

a edge cover set (ECS) of ξPP . The edge cover number (ECN) of ξPP is the lowest cardinality among all

edge cover set (ECS), and it is denoted by αCPP (ξPP ) or simply αCPP .

Example 8.3.2 Consider the PPFG ξPP in figure 8.1.1.

Here {e1PP , e3PP} and {e2PP , e4PP} are ECSs and αCPP (ξPP ) = 0.925.

Theorem 8.3.1 An edge subset LPP ⊆ EPP in a product picture fuzzy graph ξPP is an edge independent

set in ξPP if EPP − LPP is an edge cover set of ξPP .
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Proof. LPP is an EIS if and only if no two of its edges are adjacent, if and only if each of its edges is

incident with at least one vertex of EPP − LPP , and if and only if EPP − LPP is an ECS of ξPP .

Example 8.3.3 Consider the PPFG ξPP as in figure 8.3.2. It is easy to show that LPP = {e2PP , e4PP} is

an EIS and EPP − LPP = {e1PP , e3PP} is an ECS.

Figure 8.3.2: PPFG ξPP with EIS and ECS

Definition 8.3.5 An edge fPPhPP in a product picture fuzzy graphs ξPP is labeled an effective edge if

µSPP
(fPPhPP ) = µRPP

(fPP )× µRPP
(hPP )

ηSPP
(fPPhPP ) = ηRPP

(fPP )× ηRPP
(hPP )

γSPP
(fPPhPP ) = γRPP

(fPP )× γRPP
(hPP ).

Example 8.3.4 Consider a PPFG ξPP as in figure 8.3.3, such that VPP = {fPP , hPP , iPP}

EPP = {fPP , hPP , hPP iPP , iPPfPP}.
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Figure 8.3.3: PPFG ξPP with effective edge

Here e1PP is an effective edge.

µSPP
(fPP iPP ) = 0.1× 0.1 = 0.01

ηSPP
(fPP iPP ) = 0.3× 0.5 = 0.15

γSPP
(fPP iPP ) = 0.2× 0.3 = 0.06.

Definition 8.3.6 An edge ePP of a PPFG ξPP is said to be an isolated edge (IE) if no effective edge are

incident with the vertices of ePP . As a result, no other edge in ξPP is dominated by an isolated edge.

Example 8.3.5 In figure 8.3.2, the edges e1PP and e3PP are isolated edges.

Theorem 8.3.2 For any PPFG ξPP = (RPP , SPP ) with isolated edges, αCPP (ξPP ) +βIPP (ξPP ) = qPP .

Proof. Let LPP be an edge independent set in ξPP and MPP be an edge cover set in ξPP so that |LPP | =

βIPP (ξPP ) and |MPP | = αCPP (ξPP ). Then, by theorem 8.3.1, EPP − LPP is an edge cover set of ξPP .
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Therefore, |MPP | ≤ |EPP − LPP | and αCPP (ξPP ) ≤ qPP − βIPP (ξPP ) or

αCPP (ξPP ) + βIPP (ξPP ) ≤ qPP (8.1)

Furthermore, by theorem 8.3.1, EPP −MPP is an EIS in ξPP , so |LPP | ≥ |EPP −MPP |. Therefore,

βIPP (ξPP ) ≥ qPP − αCPP (ξPP ) or αCPP (ξPP ) + βIPP (ξPP ) ≥ qPP (8.2)

From (8.1) and (8.2), we obtain αCPP (ξPP ) + βIPP (ξPP ) = qPP .

Example 8.3.6 In figure 8.3.2, αCPP (ξPP ) = 1.025, βIPP (ξPP ) = 0.965 and qPP = 1.99.

Definition 8.3.7 Let ePP be any edge in a PPFG ξPP . Then, N(ePP ) = {mPP ∈ EPP : mPP is an

effective edge incident with the nodes of ePP} and is called the open degree neighborhood set of ePP .

N [ePP ] = N(ePP ) ∪ {ePP} is nemed the closed neighborhood set of ePP .

Definition 8.3.8 Let ePP be any edge in a PPFG ξPP . Then, dN(ePP ) =
∑

lPP∈N(ePP )

|lPP | is termed the

edge neighborhood degree of ePP . The minimum edge neighborhood degree of a PPFG ξPP is δN(ξPP ) =

min{dN(ePP )/ePP ∈ EPP}. The maximum edge neighborhood degree of a PPFG ξPP is ∆N(ξPP ) =

max{dN(ePP )/ePP ∈ EPP}.

Example 8.3.7 Consider the PPFG ξPP as in figure 8.1.2. It is obvious thatN(e1PP ) = {e2PP , e4PP , e5PP}

and dN(e1PP ) = 1.465.

Definition 8.3.9 Two edges e1PP and e2PP in a product picture fuzzy graph ξPP , are said to be strong

neighbor if they are effective edges.

Definition 8.3.10 Let ξPP be a PPFG and e1PP and e2PP be two edges of ξPP . We say that e1PP domin-

ates e2PP if e1PP is effective edge and they are adjacent. An edge subset LPP of EPP in a PPFG ξPP is

named an fixed edge dominating set (FEDS) if, for each edge EPP −LPP is dominates exactly one edge in

LPP . An fixed edge dominating set LPP of a PPFG ξPP is said to be a minimal fixed edge dominating set

if for each edge ePP ∈ LPP , LPP −{ePP}, is not an fixed edge dominating set. An fixed edge domination
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number (FEDN) of ξPP is the least cardinality between all minimal fixed edge dominating sets and is

denoted by γEPP
(ξPP ) or simply γEPP

. An fixed edge dominating set LPP of a PPFG ξPP is said to be

independent if

µSPP
(fPPhPP ) < µRPP

(fPP )× µRPP
(hPP ),

ηSPP
(fPPhPP ) < ηRPP

(fPP )× ηRPP
(hPP ),

γSPP
(fPPhPP ) > γRPP

(fPP )× γRPP
(hPP ), ∀fPPhPP ∈ LPP .

Example 8.3.8

Figure 8.3.4: PPFG ξPP with FEDSs

Consider a PPFG ξPP as in figure 8.3.4, D11 = {e1PP , e2PP}, D22 = {e2PP , e3PP}, D33 = {e3PP , e4PP}

and D44 = {e1PP , e4PP} are FEDSs and γEPP
(ξPP ) = 0.88.

Theorem 8.3.3 For any product picture fuzzy graph without isolated edges, γEPP
(ξPP ) ≤ qPP

2
.

Proof. Any product picture fuzzy graph without isolated edges has two disjoint fixed edge dominating

sets and hence γEPP
(ξPP ) ≤ qPP

2
.

Example 8.3.9 Consider the PPFG ξPP as in figure 8.3.4 with qPP = 1.92 and γEPP
(ξPP ) = 0.88 <

qPP
2

= 0.96.
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Theorem 8.3.4 An edge independent set LPP of a PPFG ξPP is a maximal edge independent set iff it is

an edge independent set and fixed edge dominating set.

Proof. Let LPP be a maximal EIS in a PPFG ξPP and, hence for each edge ePP ∈ EPP − LPP , the set

LPP ∪ {ePP} is not independent. For each edge ePP ∈ EPP − LPP is dominated exactly one edge in

LPP . Hence, LPP is an FEDS. Therefore, LPP is both an FEDS and EIS.

Conversely, assume LPP is both independent and an FEDS. Suppose that LPP is not a maximal EIS, then

there exist an edge ePP ∈ EPP − LPP , and the set LPP ∪ {ePP} is independent. If LPP ∪ {ePP} is

independent, then no effective edge inLPP is strong neighbor to ePP . Therefore, LPP cannot be an FEDS,

which is a contradiction. Thus, ξPP is a maximal EIS.

Example 8.3.10 Consider a PPFG ξPP as in figure 8.3.5, {e2PP , e3PP} is a maximal EIS that is both an

EIS and FEDS.

Figure 8.3.5: PPFG ξPP with EIS and FEDS

Theorem 8.3.5 Every maximal edge independent set LPP in a PPFG ξPP is a minimal fixed edge dom-

inating set.

Proof. Let LPP be a maximal EIS in a PPFG ξPP . By theorem 8.3.4, LPP is an FEDS. Assume LPP is not

a minimal FEDS. There exist at least one edge ePP ∈ LPP for which LPP −{ePP} is an FEDS. However,

if EPP − {LPP − {ePP}} dominates LPP − {ePP}, then at least one edge in EPP − {LPP − {ePP}}



8.4 Total Fixed Edge Domination in Product Picture Fuzzy Graph 145

must be strong neighbor to ePP . This contradicts the fact that LPP is an EIS in ξPP . Hence, LPP must be

a minimal FEDS.

8.4 Total Fixed Edge Domination in Product Picture Fuzzy Graph

In this section, the concept of total fixed edge domination in PPFG is defined and discussed notation of

γTPP (ξPP ).

Definition 8.4.1 Let ξPP = (RPP , SPP ) be a product picture fuzzy graphs without isolated edges. An

edge subsetLPP ofEPP is said to be total fixed edge dominating set (TFEDS) if for each edge ePP ∈ EPP ,

there exist an edge gPP ∈ LPP , gPP 6= ePP , so that ePP dominates exactly one edge in LPP and the

corresponding vertex for each edge in LPP have same degree.

Definition 8.4.2 The total fixed edge domination number (TFEDN) of ξPP is represented by γTPP
(ξPP )

and is the smallest cardinality among all total fixed edge dominating sets.

Theorem 8.4.1 Let ξPP = (RPP , SPP ) be any product picture fuzzy graph without isolated edges. Then,

for each minimal total fixed edge dominating set LPP , EPP −LPP , is also an total fixed edge dominating

set.

Proof. Let ePP be any edge in LPP . Since ξPP has no IEs, there is an edge gPP ∈ N(ePP ) and

gPP ∈ EPP − LPP . Hence, each element of EPP − LPP is dominated exactly one edge in LPP and

the corresponding vertex for each edge in LPP have same degree. Thus EPP −LPP is an TFEDS in ξPP .

8.5 Fixed Edge Restrained Domination in Product Picture Fuzzy

Graph

In this section, the concept of fixed edge restrained dominating set and edge restrained independent set in

PPFG are discussed.

Definition 8.5.1 Let ξPP = (RPP , SPP ) be a PPFG. An edge subset LPP ⊆ EPP is called fixed edge

restrained dominating set (FERDS) if
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1. Each edge in EPP − LPP is dominates exactly one edge in LPP .

2. In LPP , all of the edges have the equal degree.

Example 8.5.1 In figure 8.5.1, D11 = {e1PP , e2PP}, D22 = {e2PP , e3PP}, D33 = {e3PP , e4PP} and

D44 = {e1PP , e4PP} are FERDSs.

Figure 8.5.1: PPFG ξPP with FERDS

Definition 8.5.2 An edge independent set LPP of a PPFG ξPP is labeled an edge restrained independent

set (ERIS) if all the edges of LPP have the equal degrees. LPP is a maximal edge restrained independent

set if for every fPP ∈ VPP − LPP , and the set LPP ∪ {fPP} is not an edge restrained independent set.

Example 8.5.2 Consider the PPFG ξPP as in figure 8.5.2, D11 = {e1PP , e4PP} is a ERIS.
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Figure 8.5.2: PPFG ξPP with ERIS

Theorem 8.5.1 An edge restrained independent set is a maximal edge restrained independent set of a

PPFG ξPP iff it is an edge restrained independent set and FERDS.

Proof. Let LPP be a maximal ERIS in a PPFG ξPP , then for each tPP ∈ EPP −LPP , the set LPP ∪{tPP}

is not an independent set, that is for every tPP ∈ EPP − LPP , there exist a edge nPP ∈ LPP so that tPP

dominates nPP . Therefore, LPP is a FERDS of ξPP and also an ERIS of ξPP . Therefore, LPP is an ERIS

and FERDS.

Conversely, assume that LPP is both an ERIS and FERDS of ξPP . We have to prove that LPP is a maximal

ERIS. Suppose that LPP is not a maximal independent set. Then, there exist a edge tPP /∈ LPP so that

LPP ∪{tPP} is an independent set , there is no edge in LPP strong neighbor to tPP , and hence, tPP is not

dominated any edge in LPP . Thus, LPP cannot be a FERDS of ξPP , which is a contradiction. Therefore,

LPP is a maximal ERIS.
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8.6 Application

Many emergency accident patients have died in the past as a result of transportation delays to the hospital.

One of the elements driving this delay is traffic congestion in cities. As a result, we attempted to find the

closest hospitals in our study based on distance, traffic load, and patient suggestions. We evaluate five

hospitals located in diverse locations along the by-pass road for this purpose. The hospital is depicted

as A22, A33, A44, A55, A66. In this PPFG, one vertex (A11) represents the accident site, while the other

vertices correspond to hospitals located throughout the bypass road.

The vertexA22(0.2, 0.1, 0.1) indicates that it has 20% of the essential amenities for treating the patient,

but only 10% of the required equipment and only 10% of patient referrals to the proper hospital. The edge

A11A22 denotes a 4% distance between the accident site and the hospital, a 4% low traffic load on the

patient’s ambulance transport route to the hospital, and a 2% heavy traffic load on the patient’s ambulance

transport route to the hospital. The fixed vertex dominating sets for figure 8.6.1 are as follows.

D1PP = {A11A44}, D2PP = {A11A33}, D3PP = {A11A55}, D4PP = {A11A66},

D5PP = {A11A22A33}

After calculating the cardinality of D1PP , D2PP , D3PP , D4PP and D5PP we obtain

|D1PP | = 0.5, |D2PP | = 0.6, |D3PP | = 0.9, |D4PP | = 0.8, |D5PP | = 1
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Figure 8.6.1: PPFG ξPP

Because D1PP has the smallest size among the other fixed vertex dominating set, we conclude that it

is the best option because it allows the ambulance to travel from the accident scene to the hospital A44

with more free space, allowing it to transport patients to their desired location faster, saving our lives,

time, and money. Second, hospital A44 offers a tremendous medical services than some other hospitals.

As a result, the government should invest more money on improving intercity routes and traffic control so

that ambulances can deliver patients to specialist hospitals swiftly.
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Figure 8.6.2: BY-PASS ROAD AMBULANCE AND HOSPITAL

8.7 Analytical Comparison

Our investigation will be fruitful in fully comprehending the additional properties of fixed vertex dom-

ination in PPFG. We applied the model to fixed vertex domination in PPFG (fig 8.6.1) and domina-

tion in picture fuzzy graph (PFG)(example 8.7.1) and obtained the following results. In figure 8.6.1,

γVPP
(ξPP ) = 0.5 and example 8.7.1, γP (GP ) = 0.6. Here γVPP

< γP . As a result of this explanation, the
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current model is useful for estimating the best hospital in approximate. However, our method is effective

in determining the best hospital in accurate. As a result, our proposed strategy outperforms the current

method.

Example 8.7.1 Let GP be a PFG with A11 = (0.2, 0.4, 0.2), A22 = (0.2, 0.1, 0.5), A33 = (0.2, 0.3, 0.1),

A44 = (0.1, 0.5, 0.2), A55 = (0.5, 0.2, 0.1), A66 = (0.4, 0.1, 0.3), e1P = (0.2, 0.1, 0.5),

e2P = (0.2, 0.1, 0.5), e3P = (0.2, 0.3, 0.2), e4P = (0.1, 0.4, 0.2), e5P = (0.2, 0.2, 0.2), e6P = (0.2, 0.1, 0.3)

and the PFDSs are D1P = {A11A22}, D2P = {A11A33}, D3P = {A22A33} with γP (GP ) = 0.6.

In a range of domains, a fuzzy graph is a useful tool for replicating a variety of uncertain real-world

decision-making difficulties. A direct extension of fuzzy set and picture fuzzy set is the product picture

fuzzy set. We also go through some of the many forms of PPFG, such as strong PPFG and complete

PPFG. When compared to traditional fuzzy graph models, the PPFG can boost flexibility, efficiency,

precision, and comparability when modeling complicated real-world settings. One of the most commonly

discussed subjects in numerous sciences, artificial intelligence, and other fields is dominance in fuzzy

graphs. As a result, we describe numerous types of dominating sets in PPFGs in this study, such as

fixed vertex dominating set, fixed edge dominating set, total fixed edge dominating set, and fixed edge

restrained dominating set. We also establish the relationship between edge independent sets and edge

cover sets by presenting the attributes of each through numerous examples. Finally, we discussed how

dominance can be used in the transportation system. The concept of a PPFG can be used to database

systems, transportation networks, and image processing, among other things. The examination of new

concepts of product picture bridges, product picture cycles, and product picture competition graphs, as

well as their applications in medical sciences, will be the focus of future research.



Chapter 9

Twin Perfect Domination in Omicron Product

of Two Hesitancy Fuzzy Graphs

A wide range of logistical challenges can be modeled and solved using fuzzy graph algorithms. In general,

fuzzy graph theory has a wide range of applications in a variety of domains. An expert must model

these issues using a fuzzy network since ambiguous information is a prevalent real-life problem that is

frequently uncertain. The Omicron Product of two hesitancy fuzzy graphs is defined in this chapter. The

connection between an innovative notion of twin perfect domination in hesitancy fuzzy graph and the

Omicron Product of two hesitancy fuzzy graphs is provided. For numerous kinds of Omicron Product

of two hesitancy fuzzy graphs, the twin perfect domination number is determined. The twin perfect

domination number of a hesitancy fuzzy graph and the Omicron Product of two hesitancy fuzzy graphs

are also presented, as well as their features and bounds.

9.1 Duplicate Hesitancy Fuzzy Graph

Definition 9.1.1 A duplicate hesitancy fuzzy graph is denoted by ζ = (ν, µ) with set of vertices and edges.

Example 9.1.1 Let us observe HFG ζ with 6 vertices then their duplicate of a hesitancy fuzzy graph ζ ′

showing in the following figures 9.1.1 and 9.1.2.
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Figure 9.1.1: ζ

Figure 9.1.2: ζ ′

9.2 Omicron Product of Two Hesitancy Fuzzy Graphs

Definition 9.2.1 The Omicron Product of two hesitancy fuzzy graphs ζ1 and ζ2 is the hesitancy fuzzy

graph denoted by ζ1 � ζ2 , is the hesitancy fuzzy graph obtained by taking one duplicate of ζ1 and |ν(ζ1)|
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duplicates of ζ2 such that mth vertex of the duplicate of ζ1 is adjacent to each vertex of the mth duplicate

of ζ2.

Example 9.2.1 Consider the following figure 9.2.1, a HFG ζ1 with 9 vertices and figure 9.2.2 , a HFG ζ2

with 3 vertices now we obtain the Omicron Product of these two HFGs ζ1 � ζ2 showing in the following

figure 9.2.3

Figure 9.2.1: ζ1

Figure 9.2.2: ζ2
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Figure 9.2.3: Omicron Product of hesitancy fuzzy graphs ζ1 and ζ2

Vertex Value Vertex Value
x11 0.2, 0.5, 0.3 x77 0.5, 0.3, 0.2

x22 0.6, 0.3, 0.1 x88 0.1, 0.4, 0.5

x33 0.3, 0.4, 0.3 x99 0.3, 0.3, 0.4

x44 0.2, 0.6, 0.2 y11 0.5, 0.2, 0.3

x55 0.4, 0.2, 0.4 y22 0.4, 0.3, 0.3

x66 0.7, 0.2, 0.1 y33 0.2, 0.4, 0.4

Table 9.2.1: Vertex values of Figure 9.2.1, Figure 9.2.2, Figure 9.2.3
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Edge Value Edge Value

x11, x22 0.2, 0.5, 0.1 x44, y22 0.1, 0.3, 0.2

x22, x33 0.3, 0.4, 0.1 x44, y33 0.2, 0.5, 0.2

x33, x44 0.2, 0.5, 0.1 x55, y11 0.4, 0.2, 0.3

x44, x55 0.1, 0.5, 0.2 x55, y22 0.2, 0.3, 0.1

x55, x66 0.4, 0.1, 0.1 x55, y33 0.2, 0.4, 0.2

x66, x77 0.5, 0.3, 0.1 x66, y11 0.5, 0.2, 0.1

x77, x88 0.1, 0.4, 0.2 x66, y22 0.4, 0.3, 0.1

x88, x99 0.1, 0.4, 0.4 x66, y33 0.2, 0.4, 0.1

x11, x99 0.2, 0.5, 0.1 x77, y11 0.4, 0.3, 0.1

x11, y11 0.1, 0.4, 0.2 x77, y22 0.3, 0.2, 0.2

x11, y22 0.2, 0.3, 0.2 x77, y33 0.2, 0.4, 0.2

x11, y33 0.2, 0.4, 0.1 x88, y11 0.1, 0.4, 0.3

x22, y11 0.4, 0.3, 0.1 x88, y22 0.1, 0.3, 0.3

x22, y22 0.4, 0.2, 0.1 x88, y33 0.1, 0.4, 0.4

x22, y33 0.2, 0.4, 0.1 x99, y11 0.3, 0.3, 0.3

x33, y11 0.3, 0.2, 0.3 x99, y22 0.2, 0.3, 0.1

x33, y22 0.3, 0.3, 0.1 x99, y33 0.2, 0.4, 0.3

x33, y33 0.2, 0.4, 0.1 y11, y22 0.4, 0.3, 0.2

x44, y11 0.2, 0.4, 0.2 y22, y33 0.2, 0.4, 0.3

Table 9.2.2: Edge values of Figure 9.2.1, Figure 9.2.2, Figure 9.2.3

9.3 Twin Perfect Domination in Hesitancy Fuzzy Graph

Definition 9.3.1 A subset M of ν(ζ) is said to be a twin perfect dominating set if for every vertex x11 not

in M , x11 is adjacent to exactly two vertex of M .

Example 9.3.1 Consider the following figure 9.3.1 with four vertices say x11, x22, x33 and x44 in which

the set M1 = {x11, x33} and M2 = {x22, x44} are twin perfect dominating sets.
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Figure 9.3.1: Hesitancy Fuzzy Graph with Twin Perfect Dominating Sets

Definition 9.3.2 A twin perfect dominating set M of the hesitancy fuzzy graph ζ is said to be minimal

twin perfect dominating set if each vertex x11 in M , M = {x11} is not a twin perfect dominating set.

Example 9.3.2 Consider a following figure 9.3.2, a HGF with 6 vertices say x11, x22, x33, x44, x55, x66.

The set M1 = {x11, x33} is a minimal twin perfect dominating set of ν(ζ) and also a twin perfect domin-

ating set.

Figure 9.3.2: Hesitancy Fuzzy Graph with Minimal Twin Perfect Dominating Set
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Definition 9.3.3 A twin perfect dominating set with smallest cardinality is called minimum twin perfect

dominating set.

Definition 9.3.4 A cardinality of minimum twin perfect dominating set is called twin perfect domination

number of ζ and it is denoted by γtpd(ζ).

Example 9.3.3 In the following figure 9.3.3, a HFG with 4 vertices say x11, x22, x33, x44. We observe that

the twin perfect domination number of HFG, γtpd(ζ) = 2.

Figure 9.3.3: Hesitancy Fuzzy Graph with Twin Perfect Domination Number

Let ζ = (ν, µ) be any HFG where ν indicates set of vertices and µ indicates set of edges. Through

out the result we are consider HFG ζp with p number of vertices and p − 1 number of edges in which

we invented some new results regarding the twin perfect domination number of HFG ζp and its Omicron

Product with the ζp−1.

Theorem 9.3.1 Let ζp be any hesitancy fuzzy graph with p number of vertices and p− 1 number of edges

the twin perfect domination number of hesitancy fuzzy graph ζp is given by

γtpd(ζp) =


p
3
, where p = 3n, n ∈ N

p+1
3
, where p = 3n− 1, n ∈ N

p+2
3
, where p = 3n− 2, n ∈ N
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where N indicates set of natural numbers.

Proof

Here we are proving this theorem by using Principle of Mathematical Induction theory. First we are trying

to prove that the given result in the hypothesis is true for p = 1 . Now for p = 1 is suitable in the order of

3n− 2 so that we take n = 1.

Therefore γtpd(ζ1) = 1+2
3

= 3
3

= 1. Since the twin perfect domination number of isolated vertex is must

be 1 and hence it is true for p = 1.

Now we assume that above result is true for p = r, where r be any positive integer then we get

γtpd(ζr) =


r
3
, where r = 3n, n ∈ N

r+1
3
, where r = 3n− 1, n ∈ N

r+2
3
, where r = 3n− 2, n ∈ N

Next we trying to prove that above result given in the hypothesis is true for p = r + 1, where r be any

positive integer.

To prove

γtpd(ζr+1) =


r+1
3
, where r + 1 = 3n, n ∈ N

r+2
3
, where r + 1 = 3n− 1, n ∈ N

r+3
3
, where r+! = 3n− 2, n ∈ N

Case (i)

If r + 1 = 3n , this implies r + 1 is a multiple of 3. Here r be any positive integer.

Therefore r + 1 = α is must be a positive integer for some n ∈ N follows α = 3n so according to above

result

⇒ γtpd(ζα) =
α

3
but α = r + 1, then γtpd(ζr+1) =

r + 1

3

Case (ii)

If r + 1 = 3n− 1 , this implies r + 1 is a multiple of 3 minus 1(one). Here r be any positive integer.
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Therefore r + 1 = β is must be a positive integer for some n ∈ N follows β = 3n − 1 so according to

above result

⇒ γtpd(ζβ) =
β + 1

3
but β = r + 1, then γtpd(ζr+1) =

r + 2

3

Case (iii)

If r + 1 = 3n− 2 , this implies r + 1 is a multiple of 3 minus 2(two). Here r be any positive integer.

Therefore r + 1 = δ is must be a positive integer for some n ∈ N follows δ = 3n − 2 so according to

above result

⇒ γtpd(ζδ) =
δ + 2

3
but δ = r + 1, then γtpd(ζr+1) =

r + 3

3

Hence the result.

Example 9.3.4 Consider the following HFG, showing in the figure 9.3.4, then 4 = 3n − 2 , where

n = 2 ∈ N then the theorem 9.3.1, the twin perfect domination number of HFG ζ4 is

γtpd(ζ4) =
p+ 2

3
=

4 + 2

3
=

6

3
= 2

Figure 9.3.4: HFG with 4-vertices
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9.4 Bounds of Twin Perfect Domination Number of Hesitancy Fuzzy

Graphs

Theorem 9.4.1 Let ζp be any hesitancy fuzzy graph with p-vertices and γtpd(ζp) indicates the twin perfect

domination number of hesitancy fuzzy graph ζp then p− 3 < γtpd(ζp) < p− 1, where p ≥ 3 ∈ N.

Proof.

Here we can try to prove the above result by contradictory way.

To prove p− 3 < γtpd(ζp) < p− 1, where p ∈ N . Now we partitioned an interval (p− 3, p− 1) in to two

parts.

(i) p− 3 < γtpd(ζp) and

(ii) γtpd(ζp) < p− 1

Now conversely we assume that p − 3 > γtpd(ζp) and γtpd(ζp) > p − 1. By the above theorem 9.3.1, we

divide the hypothesis into three cases as follows

Case (i)

If p = 3n, for some n ∈ N then γtpd(ζp) = p
3

Now let p− 3 > γtpd(ζp)

⇒ p− 3 > p
3

⇒ 3p− 9 > p

⇒ 2p > 9

⇒ p > 9
2

is contradict with our assumption because if we take n = 1 follows p = 3 it gives 3 > 9
2

this is

conflict. So our assumption is wrong. Therefore p− 3 < γtpd(ζp).

Now let γtpd(ζp) > p− 1,

⇒ p
3
> p− 1

⇒ p > 3p− 3

⇒ 3 > 2p, this is contradiction,

It is true for all p = 3n, n ∈ N. Since n = 1 follows p = 3 this gives 3 > 6 is conflict, therefore our

assumption is wrong and hence γtpd(ζp) < p− 1. So in this case (i) the result is true for all p ∈ N.
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Case (ii)

If p = 3n− 1, for some n ∈ N then γtpd(ζp) =
p+ 1

3
.

Now let p− 3 > γtpd(ζp)

⇒ p− 3 >
p+ 1

3
⇒ 3p− 9 > p+ 1

⇒ 2p > 10 is contradict with our assumption because if we take n = 1 follows p = 2 it gives 4 > 10 this

is conflict. So our assumption is wrong. Therefore p− 3 < γtpd(ζp).

Let γtpd(ζp) > p− 1,

⇒ p+ 1

3
> p− 1

⇒ p+ 1 > 3p− 3

⇒ 4 > 2p.

It is true for all p = 3n− 1, n ∈ N. Since n = 1 follows p = 2 this gives 4 > 4 is conflict, therefore our

assumption is wrong and hence γtpd(ζp) < p− 1. So in this case (ii) the result is true for all p ∈ N.

Case (iii)

If p = 3n− 2, for some n ∈ N then γtpd(ζp) =
p+ 2

3
.

Now let p− 3 > γtpd(ζp)

⇒ p− 3 >
p+ 2

3
⇒ 3p− 9 > p+ 2

⇒ 2p > 11 is contradict with our assumption because if we take n = 1 follows p = 1 it gives 2 > 11 this

is conflict. So our assumption is wrong. Therefore p− 3 < γtpd(ζp).

Let γtpd(ζp) > p− 1,

⇒ p+ 2

3
> p− 1

⇒ p+ 2 > 3p− 3

⇒ 5 > 2p

⇒ 5

2
> p.

It is true for all p = 3n− 2, n ∈ N. Since n = 2 follows p = 4 this gives
5

2
> 4 is conflict, therefore our

assumption is wrong and hence γtpd(ζp) < p− 1. So in this case (iii) the result is true for all p ∈ N.

Theorem 9.4.2 Let ζp−1 be any hesitancy fuzzy graph with p − 1 vertices and γtpd(ζp−1) indicates the
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twin perfect domination number of hesitancy fuzzy graph ζp−1 then p − 4 < γtpd(ζp−1) < p − 2, where

p ≥ 4 ∈ N .

Proof. Here we can try to prove the above result by contradictory way.

To prove p− 4 < γtpd(ζp) < p− 2, where p ∈ N . Now we partitioned an interval (p− 4, p− 2) in to two

parts.

(i) p− 4 < γtpd(ζp−1) and

(ii) γtpd(ζp−1) < p− 2

Now, conversely we assume that p− 4 > γtpd(ζp−1) and γtpd(ζp−1) > p− 2. By the above theorem 9.3.1,

we divide the hypothesis into three cases as follows

Case (i)

If p = 3n, for some n ∈ N then γtpd(ζp−1) = p
3
.

Now let p− 4 > γtpd(ζp−1)

⇒ p− 4 > p
3

⇒ 3p− 12 > p

⇒ 2p > 12

⇒ p > 6 is contradict with our assumption because if we take n = 1 follows p = 3 it gives 6 > 12 this is

conflict. So our assumption is wrong. Therefore p− 4 < γtpd(ζp−1).

Let γtpd(ζp−1) > p− 2,

⇒ p
3
> p− 2

⇒ p > 3p− 6

⇒ 6 > 2p.

It is true for all p = 3n, n ∈ N. Since n = 1 follows p = 3 this gives 6 > 6 is conflict, therefore our

assumption is wrong and hence γtpd(ζp−1) < p− 2. So in this case (i) the result is true for all p ∈ N.

Case (ii)

If p = 3n− 1, for some n ∈ N then γtpd(ζp−1) =
p+ 1

3
.

Now let p− 4 > γtpd(ζp−1)

⇒ p− 4 >
p+ 1

3
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⇒ 3p− 12 > p+ 1

⇒ 2p > 13 is contradict with our assumption because if we take n = 1 follows p = 2 it gives 4 > 13 this

is conflict. So our assumption is wrong. Therefore p− 4 < γtpd(ζp−1).

Let γtpd(ζp−1) > p− 2,

⇒ p+ 1

3
> p− 2

⇒ p+ 1 > 3p− 6

⇒ 7 > 2p.

It is true for all p = 3n− 1, n ∈ N. Since n = 2 follows p = 5 this gives 7 > 10 is conflict, therefore our

assumption is wrong and hence γtpd(ζp−1) < p− 2. So in this case (ii) the result is true for all p ∈ N.

Case (iii)

If p = 3n− 2, for some n ∈ N then γtpd(ζp−1) =
p+ 2

3
.

Now let p− 4 > γtpd(ζp−1)

⇒ p− 4 >
p+ 2

3
⇒ 3p− 12 > p+ 2

⇒ 2p > 14 is contradict with our assumption because if we take n = 1 follows p = 1 it gives 2 > 14 this

is conflict. So our assumption is wrong. Therefore p− 4 < γtpd(ζp−1).

Let γtpd(ζp−1) > p− 2,

⇒ p+ 2

3
> p− 2

⇒ p+ 2 > 3p− 6

⇒ 8 > 2p

⇒ 4 > p.

It is true for all p = 3n− 2, n ∈ N. Since n = 2 follows p = 4 this gives 4 > 4 is conflict, therefore our

assumption is wrong and hence γtpd(ζp−1) < p− 2. So in this case (iii) the result is true for all p ∈ N.
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9.5 Bounds of Twin Perfect Domination Number of Omicron Products

of Two Hesitancy Fuzzy Graphs ζp and ζp−1.

Lemma 9.5.1 The twin perfect domination number of Omicron Product of two hesitancy fuzzy graphs ζp

and ζp−1 is given by γtpd (ζp � ζp−1) and it is bounded by 0 < γtpd (ζp � ζp−1) < p2, where p ≥ 3.

Proof. Here we want to prove that 0 < γtpd (ζp � ζp−1) < p2, where p ≥ 3.

That can be written as

0 < γtpd (ζp � ζp−1) and (9.1)

γtpd (ζp � ζp−1) < p2 (9.2)

Since twin perfect domination number is always greater than zero.

So the above inequality (9.1) is obvious. For the further proof of result (9.2) observe the following figure

9.5.1.

Let us consider HFG ζp with p vertices say ω1, ω2, ω3, . . . , ωp−1, ωp and another HFG ζp−1 with p − 1

vertices namely υ1, υ2, υ3, . . . , υp−1, υp. Now take a omicron product of them, we get at most p2 vertices.

Since each vertex of HFG ζp is adjacent with every vertex of HFG ζp−1. So as per the definition of

minimum twin perfect dominating set it contains at least two vertices and most p2 vertices.

In figure 9.5.1, the twin perfect domination number of omicron product of HFGs ζp and ζp−1 is almost p2

and always greater than zero that is 0 < γtpd (ζp � ζp−1) < p2, where p ≥ 3. Hence the result.
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Figure 9.5.1: Omicron Product of ζp � ζp−1

Vertex Value
ω1 0.6,0.3,0.1
ω2 0.4,0.3,0.3
ω3 0.7,0.2,0.1
ω4 0.2,0.6,0.2
ωn−1 0.2,0.5,0.3
ωn 0.4,0.4,0.2
υ1 0.3,0.2,0.5
υ2 0.4,0.3,0.3
υ3 0.1,0.5,0.4

Table 9.5.1: Vertex values of Figure 9.5.1
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Edge Value Edge Value

ω1, ω2 0.4,0.3,0.1 ω3, υ2 0.4,0.3,0.1

ω2, ω3 0.4,0.3,0.1 ω3, υn−1 0.1,0.5,0.1

ω3, ω4 0.2,0.6,0.1 ω4, υ1 0.2,0.6,0.1

ω4, ωn−1 0.1,0.6,0.2 ω4, υ2 0.2,0.4,0.1

ωn−1, ωn 0.2,0.5,0.2 ω4, υn−1 0.1,0.5,0.2

ωn, ω1 0.4,0.4,0.1 ωn−1, υ1 0.2,0.5,0.2

ω1, υ1 0.3,0.3,0.1 ωn−1, υ2 0.2,0.4,0.1

ω1, υ2 0.4,0.3,0.1 ωn−1, υn−1 0.1,0.5,0.3

ω1, υn−1 0.1,0.5,0.1 ωn, υ1 0.3,0.4,0.2

ω2, υ1 0.3,0.3,0.3 ωn, υ2 0.4,0.3,0.2

ω2, υ2 0.4,0.3,0.2 ωn, υn−1 0.1,0.2,0.2

ω2, υn−1 0.1,0.5,0.3 υ1, υ2 0.3,0.3,0.3

ω3, υ1 0.3,0.2,0.1 υ2, υn−1 0.1,0.5,0.3

Table 9.5.2: Edge values of Figure 9.5.1

9.6 The Twin Perfect Domination Number of Omicron Products of

Two Hesitancy Fuzzy Graphs ζp and ζp−1

Theorem 9.6.1 Let ζp, hesitancy fuzzy graph with p vertices and ζp−1, hesitancy fuzzy graph with p − 1

vertices where p ≥ 3 ∈ N then γtpd (ζp � ζp−1) ≥ γtpd(ζp) + γtpd(ζp−1) + p for some p ≥ 3.

Proof. The given hypothesis is proving by using contradictory method as follows. Now by theorem 9.4.1,

theorem 9.4.2, and lemma 9.5.1 , we have

(i) p− 3 < γtpd(ζp) < p− 1, where p ≥ 3 ∈ N

(ii) p− 4 < γtpd(ζp−1) < p− 2, where p ≥ 4 ∈ N

(iii) 0 < γtpd(ζp � ζp−1) < p2, where p ≥ 3
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Now construct (i) + (ii), we get

2p− 7 < γtpd(ζp) + γtpd(ζp−1) < p− 1 + p− 2

⇒ 2p− 7 + p < γtpd(ζp) + γtpd(ζp−1) + p < p− 1 + p− 2 + p

⇒ 3p− 7 < γtpd(ζp) + γtpd(ζp−1) < 3p− 3 where 3p ≥ 8 ∈ N (9.3)

Conversely, assume that

γtpd(ζp � ζp−1) < γtpd(ζp) + γtpd(ζp−1) + p

This can be rewritten as

0 < γtpd(ζp � ζp−1) < γtpd(ζp) + γtpd(ζp−1) + p

⇒ 0 < γtpd(ζp � ζp−1) < p2 < γtpd(ζp) + γtpd(ζp−1) + p < 3p− 3

⇒ p2 < 3p− 3

⇒ p2 − 3p < −3

⇒ p(p− 3) < −3

⇒ Either p < −3 and p− 3 < −3

⇒ p < −3 and p < 0, is conflict with values of p, p ≥ 3

Therefore our assumption is wrong and hence proved the theorem.

That is γtpd (ζp � ζp−1) ≥ γtpd(ζp) + γtpd(ζp−1) + p for some p ≥ 3, p ∈ N .

Example 9.6.1 Let ζ4 HFG having 4 vertices with γtpd(ζ4) = 2 and ζ3 HFG having 3 vertices with

γtpd(ζ3) = 2. In figure 9.6.1, the twin perfect domination number of Omicron Product of two HFGs ζ4

and ζ3 is γtpd(ζ4 � ζ3) = 8.
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Here

p = 4, γtpd(ζ4) = 2, γtpd(ζ3) = 2 and γtpd(ζ4 � ζ3) = 8

⇒ 8 ≥ 2 + 2 + 4

⇒ 8 = 8

Therefore γtpd (ζp � ζp−1) ≥ γtpd(ζp) + γtpd(ζp−1) + p. Hence the result.

Figure 9.6.1: (ζ4 � ζ3) with Twin Perfect Domination Number
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Vertex Value

m11 0.2, 0.4, 0.4

m22 0.1, 0.3, 0.6

m33 0.4, 0.5, 0.1

m44 0.3, 0.5, 0.2

n11 0.1, 0.4, 0.5

n22 0.3, 0.6, 0.1

n33 0.5, 0.3, 0.2

Table 9.6.1: vertex values of Figure 9.6.1

Edge Value Edge Value

m11,m22 0.1, 0.4, 0.4 m22, n33 0.1, 0.3, 0.2

m22,m33 0.1, 0.5, 0.1 m33, n11 0.1, 0.5, 0.1

m33,m44 0.3, 0.5, 0.1 m33, n22 0.2, 0.4, 0.1

m44,m11 0.2, 0.4, 0.1 m33, n33 0.3, 0.4, 0.1

m11, n11 0.1, 0.4, 0.4 m44, n11 0.1, 0.5, 0.2

m11, n22 0.2, 0.6, 0.1 m44, n22 0.3, 0.4, 0.1

m11, n33 0.2, 0.4, 0.2 m44, n33 0.2, 0.4, 0.2

m22, n11 0.1, 0.4, 0.3 n11, n22 0.1, 0.6, 0.1

m22, n22 0.1, 0.6, 0.1 n33, n11 0.2, 0.4, 0.1

Table 9.6.2: Edge values of Figure 9.6.1

Example 9.6.2 Let ζ5 HFG having 5 vertices with γtpd(ζ5) = 2 and ζ4 HFG having 4 vertices with

γtpd(ζ4) = 2. In figure 9.6.2, the twin perfect domination number of Omicron Product of two HFGs ζ5

and ζ4 is γtpd(ζ5 � ζ4) = 15.
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Here

p = 5, γtpd(ζ5) = 2, γtpd(ζ4) = 2 and γtpd(ζ4Θζ3) = 15

⇒ 15 ≥ 2 + 2 + 5

⇒ 15 > 9

Therefore γtpd (ζp � ζp−1) ≥ γtpd(ζp) + γtpd(ζp−1) + p. Hence the result.

Figure 9.6.2: (ζ5 � ζ4) with Twin Perfect Domination Number
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Vertex Value

x11 0.2, 0.6, 0.4

x22 0.7, 0.2, 0.1

x33 0.6, 0.3, 0.1

x44 0.3, 0.4, 0.3

x55 0.4, 0.3, 0.4

y11 0.2, 0.5, 0.3

y22 0.5, 0.3, 0.2

y33 0.4, 0.3, 0.3

y44 0.3, 0.2, 0.5

Table 9.6.3: Vertex values of Figure 9.6.2

Edge Value Edge Value
x11, x22 0.2, 0.6, 0.1 x33, y22 0.5, 0.3, 0.1

x22, x33 0.3, 0.3, 0.1 x33, y33 0.4, 0.3, 0.1

x33, x44 0.3, 0.4, 0.1 x33, y44 0.3, 0.3, 0.1

x44, x55 0.2, 0.4, 0.1 x44, y11 0.2, 0.5, 0.1

x55, x11 0.2, 0.5, 0.1 x44, y22 0.3, 0.4, 0.2

x11, y11 0.2, 0.3, 0.2 x44, y33 0.3, 0.4, 0.1

x11, y22 0.1, 0.4, 0.2 x44, y44 0.3, 0.4, 0.2

x11, y33 0.2, 0.5, 0.1 x55, y11 0.2, 0.4, 0.2

x11, y44 0.2, 0.4, 0.2 x55, y22 0.4, 0.3, 0.2

x22, y11 0.2, 0.5, 0.1 x55, y33 0.4, 0.2, 0.1

x22, y22 0.5, 0.3, 0.1 x55, y44 0.3, 0.3, 0.2

x22, y33 0.4, 0.3, 0.1 y11, y22 0.2, 0.5, 0.2

x22, y44 0.3, 0.2, 0.1 y22, y33 0.4, 0.3, 0.2

x33, y11 0.2, 0.5, 0.1 y33, y44 0.3, 0.3, 0.3

Table 9.6.4: Edge values of Figure 9.6.2

Theorem 9.6.2 Let ζ1 and ζ2 are two hesitancy fuzzy graph. Let M11 and M22 be the twin perfect dom-

inating sets of ζ1 and ζ2 respectively. Then the twin perfect domination number of γtpd(ζ1 � ζ2) >

|M11|+ |M22|.
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Proof. Let ζ1 and ζ2 are two HFG. Assume M11 and M22 be the twin perfect dominating sets of ζ1 and

ζ2 respectively. If every vertex x11 ∈ ζ1 � ζ2 this implies x11 ∈ ζ1 or x11 ∈ ζ2, therefore there is a

vertices x22, x33 ∈M11 or x22, x33 ∈M22 such that x11 is adjacent to exactly two vertices in M11 or M22.

Since M11 and M22 be the twin perfect dominating sets of ζ1 and ζ2 respectively. Then the twin perfect

domination number of γtpd(ζ1 � ζ2) > |M11|+ |M22|.

Example 9.6.3 Let ζ4 HFG having 4 vertices with twin perfect dominating sets ofM11 = (m11,m22,m33)

and ζ3 HFG having 3 vertices with M22 = (n11, n33). In figure 9.6.1, the twin perfect domination number

of Omicron Product of two HFGs ζ4 and ζ3 is γtpd(ζ4 � ζ3) = 8.

Here

|M11| = 3, |M22| = 2 and γtpd(ζ4 � ζ3) = 8

⇒ 8 ≥ 3 + 2

⇒ 8 > 5

Therefore γtpd (ζ1 � ζ2) > |M11|+ |M22|. Hence the result.

Theorem 9.6.3 Let ζ1 and ζ2 are two hesitancy fuzzy graph. If |υ(ζ1)| = |υ(ζ2)|, then |υ(ζ1)|+ |υ(ζ2)| ≤

γtpd(ζ1 � ζ2).

Proof. Let ζ1 and ζ2 are two HFG. Let |υ(ζ1)| and |υ(ζ2)| be the cardinality in vertices of ζ1 and ζ2

respectively. In ζ1 � ζ2 every vertex in ζ1 is adjacent to every vertices in ζ2. If |υ(ζ1)| = |υ(ζ2)|, then the

minimal twin perfect domination number of ζ1 � ζ2 is |υ(ζ1)|+ |υ(ζ2)| ≤ γtpd(ζ1 � ζ2).

Example 9.6.4 Let ζ1 HFG having 4 vertices and ζ2 HFG having 4 vertices. In figure 9.6.3, the twin

perfect domination number of Omicron Product of two HFGs ζ1 and ζ2 is γtpd(ζ1 � ζ2) = 12.

Here

|υ(ζ1)| = 4, |υ(ζ2)| = 4 and γtpd(ζ1 � ζ2) = 12

⇒ 4 + 4 < 12

⇒ 8 < 12
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Therefore ζ1 � ζ2 is |υ(ζ1)|+ |υ(ζ2)| < γtpd(ζ1 � ζ2). Hence the result.

Figure 9.6.3: (ζ1 � ζ2) with Twin Perfect Domination Number

Vertex Value

x11 0.2, 0.5, 0.3

x22 0.6, 0.3, 0.1

x33 0.3, 0.4, 0.3

x44 0.2, 0.6, 0.2

x55 0.4, 0.2, 0.4

x66 0.7, 0.2, 0.1

y11 0.5, 0.2, 0.3

y22 0.4, 0.3, 0.3

y33 0.2, 0.4, 0.4

Table 9.6.5: Vertex values of Figure 9.6.3



9.6 The Twin Perfect Domination Number of Omicron Products of Two Hesitancy Fuzzy Graphs ζp and ζp−1175

Edge Value Edge Value

x11, x22 0.2, 0.5, 0.1 x33, y22 0.3, 0.3, 0.1

x22, x33 0.3, 0.4, 0.1 x33, y33 0.2, 0.4, 0.1

x33, x44 0.2, 0.5, 0.1 x44, y11 0.2, 0.4, 0.2

x44, x55 0.1, 0.5, 0.2 x44, y22 0.1, 0.3, 0.2

x55, x66 0.4, 0.1, 0.1 x44, y33 0.2, 0.5, 0.2

x66, x11 0.2, 0.3, 0.1 x55, y11 0.4, 0.2, 0.3

x11, y11 0.1, 0.4, 0.2 x55, y22 0.2, 0.3, 0.1

x11, y22 0.2, 0.3, 0.2 x55, y33 0.2, 0.4, 0.2

x11, y33 0.2, 0.4, 0.1 x66, y11 0.5, 0.2, 0.1

x22, y11 0.4, 0.3, 0.1 x66, y22 0.4, 0.3, 0.1

x22, y22 0.4, 0.2, 0.1 x66, y33 0.2, 0.4, 0.1

x22, y33 0.2, 0.4, 0.1 y11, y22 0.4, 0.3, 0.2

x33, y11 0.3, 0.2, 0.3 y22, y33 0.2, 0.4, 0.3

Table 9.6.6: Edge values of Figure 9.6.3

Example 9.6.5 Let ζ1 HFG having 3 vertices and ζ2 HFG having 3 vertices. In figure 9.6.4, the twin

perfect domination number of Omicron Product of two HFGs ζ1 and ζ2 is γtpd(ζ1 � ζ2) = 6.

Here

|υ(ζ1)| = 3, |υ(ζ2)| = 3 and γtpd(ζ1 � ζ2) = 6

⇒ 3 + 3 = 6

Therefore |υ(ζ1)|+ |υ(ζ2)| = γtpd(ζ1Θζ2). Hence the result.
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Figure 9.6.4: (ζ1 � ζ2) with Twin Perfect Domination Number

Vertex Value

x11 0.6, 0.3, 0.1

x22 0.5, 0.3, 0.2

x33 0.4, 0.3, 0.3

y11 0.2, 0.6, 0.2

y22 0.7, 0.2, 0.1

y33 0.6, 0.3, 0.1

Table 9.6.7: Vertex values of Figure 9.6.4
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Edge Value Edge Value

x11, x22 0.2, 0.3, 0.1 x22, y22 0.4, 0.2, 0.1

x22, x33 0.4, 0.3, 0.2 x22, y33 0.3, 0.3, 0.1

x33, x11 0.4, 0.3, 0.1 x33, y11 0.4, 0.3, 0.1

x11, y11 0.2, 0.4, 0.1 x33, y22 0.3, 0.3, 0.1

x11, y22 0.6, 0.2, 0.1 x33, y33 0.4, 0.3, 0.1

x11, y33 0.5, 0.2, 0.1 y11, y22 0.2, 0.6, 0.1

x22, y11 0.2, 0.5, 0.2 y22, y33 0.4, 0.3, 0.1

Table 9.6.8: Edge Values of Figure 9.6.4

The Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE) is an independent group

of experts that periodically monitors and evaluates the evolution of SARS-CoV-2 and assesses if specific

mutations and combinations of mutations alter the behavior of the virus. The TAG-VE was convened on

26 November 2021 to assess the SARS-CoV-2 variant B.1.1.529. The B.1.1.529 variant was first reported

to WHO from South Africa on 24 November 2021 and has been named Omicron.
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Figure 9.6.5: Omicron Virus

In this chapter the Omicron Product of two hesitancy fuzzy graphs is defined. In hesitancy fuzzy

graphs, the concept of domination has a lot of theoretical and practical implications. The concept of twin

perfect domination number in hesitancy fuzzy graphs and the Omicron Product of two hesitancy fuzzy

graphs are introduced in this chapter. The bounds of the twin perfect domination number of the Omicron

Product of two hesitancy fuzzy graphs are determined. In a hesitancy fuzzy graph, those vertices that are

in the minimum twin perfect dominant set operate as a special node, server, or controller. The Omicron

Product of two hesitancy fuzzy graphs creates a complex network, and their twin perfect dominating set

represents the number of vertices that operate as a server. As a result, we can quickly identify our best

server within the complex network.



Chapter 10

Distinct Categories of Edge Sequence in

Regular and Pseudo Regular Fuzzy Graphs

The concept of applications of fuzzy graphs with connectedness is crucial. This chapter divides the edge

sequence of a fuzzy graph into separate types based on the strength of an edge. The concept of edge

sequences in regular fuzzy graphs and pseudo regular fuzzy graphs are explained by theorems and ex-

amples. These ideas are inspired by the concept of fuzzy graph connectedness. In addition, a comparison

of regular fuzzy graphs and total regular fuzzy graphs is made about distinct categories of edge sequences

in fuzzy graphs. In terms of edge sequence, a required condition for a graph to be regular fuzzy graph

and total regular fuzzy graph are explained, and the concepts of pseudo regular fuzzy graphs, total pseudo

regular fuzzy graphs, and distinct categories of edge sequence are examined. Also we identify strong edge

sequence in regular fuzzy graphs and pseudo regular fuzzy graphs. In addition, with distinct categories of

edge sequences, an analogy is conducted between pesudo regular fuzzy graphs and total pseudo regular

fuzzy graphs.

10.1 Edge Sequence in Regular Fuzzy Graphs

The new concepts of α- edge sequence, β- edge sequence and δ- edge sequence in regular fuzzy graphs

are defined in this section, along with related theorems.
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Definition 10.1.1 Let GR : (σR, µR) be a regular fuzzy graph (RFG) with σ∗R = {v11, v22, . . . , vqq} in any

form. Then a finite sequence αES(GR) = (n11, n22, . . . , nqq) is named the α-edge sequence (ES) of GR if

nk =

r, where r is number of α− strong edges incident on vk

0, otherwise

Example 10.1.1 Consider GR : (σR, µR) where

σR(m11) = 0.4, σR(m22) = 0.5, σR(m33) = 0.5, σR(m44) = 0.4

µR(m11,m22) = 0.4, µR(m22,m44) = 0.3, µR(m11,m33) = 0.3 and µR(m33,m44) = 0.4

Figure 10.1.1: RFG with α-edge sequence

αES(GR) = (1, 1, 1, 1)

Here (m11,m22) and (m33,m44) are α- strong edges. Then every vertex having one α-ES. Therefore

αES(GR) = (1, 1, 1, 1).

Definition 10.1.2 Let GR : (σR, µR) be a regular fuzzy graph with σ∗R = {v11, v22, . . . , vqq} in any form.
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Then a finite sequence βSE(GR) = (n11, n22, . . . , nqq) is labeled the β-edge sequence of GR if

nk =

r, where r is number of β − strong edges incident on vk

0, otherwise

Example 10.1.2 Consider GR : (σR, µR) where

σR(m11) = 0.3, σR(m22) = 0.2, σR(m33) = 0.3, σR(m44) = 0.2

µR(m11,m22) = 0.2, µR(m22,m44) = 0.2, µR(m11,m33) = 0.2 and µR(m33,m44) = 0.2

Figure 10.1.2: RFG with β-edge sequence

βES(GR) = (2, 2, 2, 2)

Here (m11,m22), (m22,m44), (m11,m33) and (m33,m44) are β- SEs. Then every vertex having two β-ES.

Therefore βES(GR) = (2, 2, 2, 2).

Definition 10.1.3 Let GR : (σR, µR) be a regular fuzzy graph with σ∗R = {v11, v22, . . . , vqq} in any form.

Then a finite sequence δSE(GR) = (n11, n22, . . . , nqq) is termed the δ-edge sequence of GR if

nk =

r, where r is number of δ − edges incident on vk

0, otherwise
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Example 10.1.3 Consider GR : (σR, µR) where

σR(m11) = 0.5, σR(m22) = 0.4, σR(m33) = 0.4, σR(m44) = 0.6

µR(m11,m22) = 0.4, µR(m22,m44) = 0.2, µR(m11,m33) = 0.2, µR(m33,m44) = 0.4,

µR(m11,m44) = 0.1 and µR(m22,m33) = 0.1

Figure 10.1.3: RFG with δ-edge sequence

δES(GR) = (1, 1, 1, 1)

Here (m11,m44) and (m22,m33) are δ-edges. Then every vertex having one δ-ES. Therefore δES(GR) =

(1, 1, 1, 1).

Definition 10.1.4 Let GR : (σR, µR) be a regular fuzzy graph with σ∗R = {v11, v22, . . . , vqq} in any form.

Then a finite sequence SES(GR) = (n11, n22, . . . , nqq) is labeled the strong edge sequence (SES) of GR if

nk =

r, where r is number of α-strong edges and β − strong edges incident on vk

0, otherwise
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Example 10.1.4 Consider GR : (σR, µR) where

σR(m11) = 0.2, σR(m22) = 0.2, σR(m33) = 0.4, σR(m44) = 0.6, σR(m55) = 0.4

µR(m11,m22) = 0.1, µR(m11,m33) = 0.1, µR(m11,m44) = 0.1, µR(m11,m55) = 0.1,

µR(m22,m33) = 0.3 and µR(m44,m55) = 0.3

Figure 10.1.4: RFG with Strong Edge Sequence

αES(GR) = (0, 1, 1, 1, 1), βES(GR) = (4, 1, 1, 1, 1), SES(GR) = (4, 2, 2, 2, 2).

Here (m22,m33), (m44,m55) are α-SEs. (m11,m22), (m11,m33), (m11,m44), (m11,m55) are β-SEs and

therefore

αES(GR) = (0, 1, 1, 1, 1)

βES(GR) = (4, 1, 1, 1, 1)

SES(GR) = (4, 2, 2, 2, 2)

Remark 10.1.1 Let GR : (σR, µR) be a RFG with all types of edge sequence
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Example 10.1.5 Consider GR : (σR, µR) where

σR(m11) = 0.5, σR(m22) = 0.5, σR(m33) = 0.5, σR(m44) = 0.5

µR(m11,m22) = 0.5, µR(m22,m44) = 0.3, µR(m11,m33) = 0.3, µR(m33,m44) = 0.5,

µR(m11,m44) = 0.1 and µR(m22,m33) = 0.1

Figure 10.1.5: RFG with all types of Edge Sequences

αES(GR) = (1, 1, 1, 1), βES(GR) = (1, 1, 1, 1), δES(GR) = (1, 1, 1, 1), SES(GR) = (2, 2, 2, 2).

Here (m11,m22), (m33,m44) are α-SEs. (m22,m44), (m11,m33) are β-SEs and (m11,m44), (m22,m33)

are δ-edges. Then each vertex having one α-ES, one β-ES and one δ-ES.

That is αES(GR) = (1, 1, 1, 1), βES(GR) = (1, 1, 1, 1) and δES(GR) = (1, 1, 1, 1).

Therefore SES(GR) = (2, 2, 2, 2).

Definition 10.1.5 A zero sequence is a real sequence having only ‘0′. It is represented by (0).

Theorem 10.1.1 A fuzzy graphGwhose crisp graph is an odd cycle is regular if and only if µ is a constant

function. [NR10]
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Theorem 10.1.2 A fuzzy graph G whose crisp graph is an even cycle is regular if and only if µ is a

constant function or alternative edges will have same values. [NR10]

Theorem 10.1.3 Let GR : (σR, µR) be a regular fuzzy graph such that crisp graph G∗R is an odd cycle.

Then GR is a regular fuzzy graph iff αES(GR) = (0) and δES(GR) = (0).

Proof. Suppose that αES(GR) = (0) and δES(GR) = (0). This means GR contains only βES(GR). Then

by 10.1.2 definition, we have µR(m11,m22) = CONNGR−(m11,m22)(m11,m22). Thus all the edges in GR

will have the equal membership value (MV). Then by the 10.1.1 theorem, we get GR as a RFG.

Contrarily, suppose that GR be a RFG. Then by the 10.1.1 theorem, the membership value is a constant

function. Thus the removals of any edge in GR will not change the strength of connectedness of any

m11 −m44 path in GR.

That is, µR(m11,m22) = CONNGR−(m11,m22)(m11,m22)∀ (m11,m22) ∈ GR.

That is GR contains only βES(GR).

Thus αES(GR) = (0) and δES(GR) = (0).

Example 10.1.6

Figure 10.1.6: RFG without αES(GR) and δES(GR)

In the above example GR is a RFG with β-SEs.

Here (m11,m22), (m22,m44), (m33,m44) and m33,m44 are β-SEs. Then each vertex having two β-ESs.
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Therefore αES(GR) = (0, 0, 0, 0) and δES(GR) = (0, 0, 0, 0).

Remark 10.1.2 The above result does not hold for a totally regular fuzzy graph (TRFG).

Example 10.1.7 Consider GTR : (σTR, µTR) where

σTR(m11) = 0.6, σTR(m22) = 0.7, σTR(m33) = 0.7

µTR(m11,m22) = 0.6, µTR(m11,m33) = 0.6 and µTR(m22,m33) = 0.5

Figure 10.1.7: TRFG without αES(GR) and δES(GR)

Here GTR is a TRFG. But it has αES(GTR) and δES(GTR).

Theorem 10.1.4 A regular fuzzy graph GR : (σR, µR) whose even cycle is the crisp graph G∗R contains

αES(GR) and βES(GR). Also δES(GR) = (0).

Proof. Assume δES(GR) is a zero sequence. That is δES(GR) = (0). Then by the 10.1.1 and 10.1.2

definitions, we have µR(m11,m22) ≥ CONNGR−(m11,m22)(m11,m22) wgich implies that MV µR has

either stable or alternative edges will have equal values. Then by the 10.1.2 theorem, we get GR as an

RFG.
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Contrarily, Let GR be an RFG. Then by the 10.1.2 theorem, the MV µR is either stable or alternative

edges will have equal values.

That is, µR(m11,m22) ≥ CONNGR−(m11,m22)(m11,m22).

This implies δES(GR) is a zero edge sequence. That is δES(GR) = (0).

Example 10.1.8 Consider GR : (σR, µR) where

σR(m11) = 0.2, σR(m22) = 0.6, σR(m33) = 0.3, σR(m44) = 0.5

µR(m11,m22) = 0.2, µR(m22,m44) = 0.3, µR(m11,m33) = 0.3 and µR(m33,m44) = 0.2

Figure 10.1.8: RFG without δES(GR)

Here (m11,m22), (m33,m44) are β-SEs and (m22,m44), (m11,m33) are α-SEs. Then each vertex having

one α-ES and one β-ES.

That is αES(GR) = (1, 1, 1, 1), βES(GR) = (1, 1, 1, 1) and δES(GR) = (0, 0, 0, 0).

Remark 10.1.3 The above result need not be true for a totally regular fuzzy graph.
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Example 10.1.9 Consider GTR : (σTR, µTR) where

σTR(m11) = 0.4, σTR(m22) = 0.4, σTR(m33) = 0.6, σTR(m44) = 0.4

µTR(m11,m22) = 0.3, µTR(m22,m44) = 0.3, µTR(m11,m33) = 0.2,

µTR(m11,m44) = 0.1 and µTR(m33,m44) = 0.2.

Figure 10.1.9: TRFG with δES(GR)
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Here GTR is a TRFG but it has δES(GTR).

Theorem 10.1.5 A regular fuzzy graph GR : (σR, µR) with its crisp graph G∗R as even cycle is both

regular fuzzy graph and totally regular fuzzy graph then δES(GR) = (0).

Proof. Let GR : (σR, µR) be an RFG. Then its crisp graph G∗R is an even cycle and GR be both RFG and

TRFG. Here are two cases that arise.

Case (i)

Let GR be both RFG and TRFG with stable values in σR and µR then by 10.1.2 definition, this means GR

contains only βES(GR).

Example 10.1.10 Let GR is an RFG and TRFG without δES(GR). That is GR having β-SEs. Therefore

δES(GR) = (0, 0, 0, 0).

Figure 10.1.10: RFG and TRFG without δES(GR)

Case (ii)

Let GR be both RFG and TRFG with stable values in σR and with equal alternative values in µR then by

10.1.1 and 10.1.2 definitions, GR contains only αES(GR) and βES(GR). This means δES(GR) = (0).

Example 10.1.11 Let GR is an RFG and TRFG without δES(GR). That is GR having α-SEs and β-SEs.

Therefore δES(GR) = (0, 0, 0, 0).
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Figure 10.1.11: RFG and TRFG without δES(GR)

10.2 Edge Sequence in Pseudo Regular Fuzzy Graphs

In this section, the new idea of edge sequence in a pseudo regular fuzzy graph (PRFG) is defined and

discussed notation of α-edge sequence, β-edge sequence, and δ-edge sequence.

Definition 10.2.1 Let GPR : (σPR, µPR) be a pseudo regular fuzzy graph with σ∗PR = {v11, v22, . . . , vll}

in any form. Then a finite sequence αES(GPR) = (n11, n22, . . . , nll) is named the α-edge sequence of

GPR if

ni =

r, where r is number of α− strong edges incident on vi

0, otherwise

Example 10.2.1 Consider GPR : (σPR, µPR) where

σPR(m11) = 0.2, σPR(m22) = 0.3, σPR(m33) = 0.2, σPR(m44) = 0.3

µPR(m11,m22) = 0.1, µPR(m22,m33) = 0.2, µPR(m11,m44) = 0.2 and µPR(m33,m44) = 0.1

αES(GPR) = (1, 1, 1, 1)
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Figure 10.2.1: PRFG with α-Edge Sequence

Here (m11,m44) and (m22,m33) are α- SEs. Then every vertex having one α-ES. Therefore αES(GPR) =

(1, 1, 1, 1).

Definition 10.2.2 Let GPR : (σPR, µPR) be a pseudo regular fuzzy graph with σ∗PR = {v11, v22, . . . , vll}

in any form. Then a finite sequence βSE(GPR) = (n11, n22, . . . , nll) is labeled the β-edge sequence of

GPR if

ni =

r, where r is number of β − strong edges incident on vi

0, otherwise

Example 10.2.2 Consider GPR : (σPR, µPR) where

σPR(m11) = 0.3, σPR(m22) = 0.4, σPR(m33) = 0.3, σPR(m44) = 0.4

µPR(m11,m22) = 0.2, µPR(m22,m33) = 0.2, µPR(m11,m44) = 0.2 and µPR(m33,m44) = 0.2

βES(GPR) = (2, 2, 2, 2)
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Figure 10.2.2: PRFG with β-Edge Sequence

Here (m11,m22), (m22,m33), (m33,m44) and (m11,m44) are β- SEs. Then every vertex having two β-ESs.

Therefore βES(GPR) = (2, 2, 2, 2).

Definition 10.2.3 Let GPR : (σPR, µPR) be a pseudo regular fuzzy graph with σ∗PR = {v11, v22, . . . , vll}

in any form. Then a finite sequence δES(GPR) = (n11, n22, . . . , nll) is termed the δ-edge sequence ofGPR

if

ni =

r, where r is number of δ − edges incident on vi

0, otherwise

Example 10.2.3 Consider GPR : (σPR, µPR) where

σPR(m11) = 0.4, σPR(m22) = 0.3, σPR(m33) = 0.3, σPR(m44) = 0.5

µPR(m11,m22) = 0.3, µPR(m22,m44) = 0.2, µPR(m11,m33) = 0.2, µPR(m33,m44) = 0.3,

µPR(m11,m44) = 0.1 and µPR(m22,m33) = 0.1

δES(GPR) = (1, 1, 1, 1)
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Figure 10.2.3: PRFG with δ-ES

Here (m11,m44) and (m22,m33) are δ-edges. Then each vertex having one δ-ES. Therefore δES(GPR) =

(1, 1, 1, 1).

Definition 10.2.4 Let GPR : (σPR, µPR) be a pseudo regular fuzzy graph with σ∗PR = {v11, v22, . . . , vll}

in any form. Then a finite sequence SES(GPR) = (n11, n22, . . . , nll) is labeled the strong edge sequence

of GPR if

ni =

r, where r is number of α− strong edges and β − strong edges incident on vi

0, otherwise

Example 10.2.4 Consider GPR : (σPR, µPR) where

σPR(m11) = 0.5, σPR(m22) = 0.4, σPR(m33) = 0.5, σPR(m44) = 0.3, σPR(m55) = 0.6

µPR(m11,m22) = 0.1, µPR(m11,m33) = 0.1, µPR(m11,m44) = 0.1, µPR(m11,m55) = 0.1,

µPR(m22,m33) = 0.3 and µPR(m44,m55) = 0.3



194 Distinct Categories of Edge Sequence in Regular and Pseudo Regular Fuzzy Graphs

Figure 10.2.4: PRFG with Strong Edge Sequence

αES(GR) = (0, 1, 1, 1, 1), βES(GR) = (4, 1, 1, 1, 1), SES(GR) = (4, 2, 2, 2, 2)

Here (m22,m33), (m44,m55) are α-SEs.

(m11,m22), (m11,m33), (m11,m44), (m11,m55) are β-SEs.

Therefore αES(GPR) = (0, 1, 1, 1, 1), βES(GPR) = (4, 1, 1, 1, 1) and SES(GPR) = (4, 2, 2, 2, 2).

Remark 10.2.1 A pseudo regular fuzzy graph need not contain a strong edge sequence.

Example 10.2.5 The graph GPR is a PRFG. But αES(GPR) = (0, 0, 0, 0). Hence GPR does not contain

an SES.

Figure 10.2.5: PRFG without Strong Edge Sequence

βES(GPR) = (2, 2, 2, 2) δES(GPR) = (1, 1, 1, 1).
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Remark 10.2.2 An strong edge sequence of fuzzy graph need not be a pseudo regular fuzzy graph.

Example 10.2.6 The graph GFG is an SES of fuzzy graph. But da(m11) 6= da(m22). Hence GFG is not a

PRFG.

Figure 10.2.6: Strong Edge Sequence with Fuzzy Graph

αES(GPR) = (2, 1, 0, 1, 1, 1), βES(GPR) = (0, 1, 4, 1, 1, 1) and SES(GPR) = (2, 2, 4, 2, 2, 2).

Theorem 10.2.1 Let G : (σ, µ) be a fuzzy graph on G∗ : (V,E), a cycle of length n. If µ is a constant

function, then G is a pseudo regular fuzzy graph. [MS16]

Theorem 10.2.2 Let G : (σ, µ) be a fuzzy graph on G∗ : (V,E), an even cycle of length n. If the

alternative edges have same membership values, then G is a pseudo regular fuzzy graph. [MS16]

Theorem 10.2.3 A pseudo regular fuzzy graph GPR : (σPR, µPR) whose a cycle is the crisp graph G∗PR

have only β- edge sequence, but no α- edge sequence and δ- edge sequence.

Proof. If PRFG GPR : (σPR, µPR) have only β-ES. This means GPR does not have α-ES and δ-ES. Then

by 10.2.2 definition, we have µPR(m11,m22) = CONNGPR−(m11,m22)(m11,m22). Thus all the edges in

GPR will have equal MV . Then by the 10.2.1 theorem, we get GPR as a PRFG.
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Contrarily, Let GPR be a PRFG. Then by the 10.2.1 theorem, the MV µPR is a constant function. Thus

the removals of any edge in GPR will not change the strength of connectedness of an m11 −m44 path in

GPR. That is, µPR(m11,m22) = CONNGPR−(m11,m22)(m11,m22)∀ (m11,m22) ∈ GPR. Thus GPR have

only β-ES.

Remark 10.2.3 The above result is also true for a totally pseudo regular fuzzy graph (TPRFG).

Example 10.2.7 The graph is a TPRFG with β-SEs. Then each vertes having two β-ESs. Therefore

SES(GTPR) = (2, 2, 2, 2).

Figure 10.2.7: TPRFG with β-Edge Sequence

βES(GTPR) = (2, 2, 2)

Theorem 10.2.4 Let GPR : (σPR, µPR) be a pseudo regular fuzzy graph on G∗PR : (V,E), an even cycle.

If µPR is an alternative edges have equal membership value, then GPR have only strong edge sequence,

but no δ- edge sequence.

Proof. Let GPR : (σPR, µPR) be a PRFG on G∗PR : (V,E), an even cycle. We want to prove that GPR has

an strong edge sequence. That is GPR have only α-ES and β-ES. If GPR have only SEs. That is GPR has

no δ-ES. Then by 10.2.1 and 10.2.2 definition, we have µPR(m11,m22) ≥ CONNGPR−(m11,m22)(m11,m22).

This means alternative edges have equal MV . Then by the 10.2.2 theorem, we get GPR as a PRFG.

Contrarily, Let GPR be a PRFG. Then by the 10.2.2 theorem, the alternative edges have equal MV . That
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is, µPR(m11,m22) ≥ CONNGPR−(m11,m22)(m11,m22). Thus GPR have α-ES and β-ES. This means GPR

have only strong edge sequence.

Remark 10.2.4 The above result is also true for a totally pseudo regular fuzzy graph.

Example 10.2.8 The graph is a TPRFG with α-SEs and β-SEs. Then each vertex having one α-ESs and

one β-ES. That is αES(GTPR) = (1, 1, 1, 1) and βES(GTPR) = (1, 1, 1, 1). Therefore SES(GTPR) =

(2, 2, 2, 2).

Figure 10.2.8: TPRFG with Strong Edge Sequence

αES(GTPR) = (1, 1, 1, 1), βES(GTPR) = (1, 1, 1, 1), SES(GTPR) = (2, 2, 2, 2).

Theorem 10.2.5 A pseudo regular fuzzy graph GPR : (σPR, µPR) with its crisp graph G∗PR : (V,E) as

even cycle is both pseudo regular fuzzy graph and totally pseudo regular fuzzy graph if GPR have either

β- edge sequence or strong edge sequence.

Proof. Let GPR : (σPR, µPR) be a PRFG. Then its crisp graph G∗PR : (V,E) as even cycle and GPR be

both PRFG and TPRFG. Here are two cases that arise.

Case (i) LetGPR be both PRFG and TPRFG with stable values in σPR and µPR. Then by 10.2.2 definition,

GPR have only β- ES.
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Example 10.2.9 LetGPR is an PRFG and TPRFG without δES(GPR). That isGPR having β-SEs. There-

fore δES(GPR) = (0, 0, 0, 0).

Figure 10.2.9: PRFG and TPRFG

βES(GPR) = (2, 2, 2, 2)

Case (ii) Let GPR be both PRFG and TPRFG with stable values in σPR and with equal alternative values

in µPR. Then by 10.2.1 and 10.2.2 definitions, GPR have α- ES and β- ES. Thus GPR have a strong edge

sequence.

Example 10.2.10 Let GPR is an RFG and TRFG without δES(GPR). That is GPR having α-SEs and

β-SEs. Therefore δES(GPR) = (0, 0, 0, 0).

αES(GPR) = (1, 1, 1, 1), βES(GPR) = (1, 1, 1, 1), SES(GPR) = (2, 2, 2, 2).

This chapter covered the structural features of fuzzy graphs. Distinct categories of edge sequences in

fuzzy graphs have discussed and their concepts are based on edge classification. To identify regular fuzzy

graphs and totally regular fuzzy graphs, we exploited the features of distinct types of edge sequences.
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Figure 10.2.10: PRFG and TPRFG with Strong Edge Sequence

In both pseudo regular fuzzy graphs and totally pseudo regular fuzzy graphs, the links between distinct

types of edge sequence are investigated. These many sorts of edge sequence classification aid in fully

comprehending the underlying structure of a fuzzy graph. Regular fuzzy graphs, Pseudo regular fuzzy

graphs,totally regular fuzzy graphs, and totally pseudo regular fuzzy graphs were classified based on the

features of different types of edge sequences. More investigation could lead to a better understanding of

the nature of fuzzy graphs.



Conclusion

This research work is focused on various kinds of domination and edge sequences in different fuzzy

graphs. The concept of strong domination constant number in pseudo regular fuzzy graph and complete

fuzzy graph were discussed. We introduced the notion of vertex squared and vertex squared split intu-

itionistic fuzzy graph based on dual strong domination.

Split domination is discussed on vertex squared interval-valued fuzzy graphs. Specific kinds of perfect

domination, both cartesian product of two interval-valued fuzzy incidence graphs and tensor product of

two interval-valued fuzzy incidence graphs are defined.

Strong and weak domination is found for the composition of two vague fuzzy incidence graphs. We

have explained the concept of strong and weak domination with the help of complete intuitionistic fuzzy

incidence graphs.

Some domination parameters such as fixed vertex domination, fixed edge domination, total fixed edge

domination, and fixed edge restrained domination are applied on picture fuzzy graphs, and results are

derived from them. The twin perfect domination number is determined for a variety of Omicron Products

of two hesitancy fuzzy graphs. The concept of edge sequences in regular fuzzy graphs and pseudo regular

fuzzy graphs are explained by theorems with examples.

We plan to expand our research into various edge sequences of Picture fuzzy incidence graphs, Hamilto-

nian fuzzy incidence graphs, interval-valued fuzzy incidence graphs, and Intuitionistic fuzzy incidence

graphs in the future.

In future research, the new different dominations of product complete fuzzy graphs, product regular fuzzy

graphs, product vague graphs, and product interval-valued fuzzy graphs, as well as their applications in

the shopping malls, transport systems, textile industries, medical sciences, will be applied.
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AN APPLICATION OF DOMINATION IN VAGUE FUZZY 

INCIDENCE GRAPHS 

 

K.KALAIARASI *, P.GEETHANJALI 

Abstract. Fuzzy Graphs (FGs), also known as Fuzzy Incidence Graphs (FIGs), 
are a well-organized and useful tool for capturing and resolving a range of real-
world scenarios involving ambiguous data and information. In this paper,   the 
Composition of Two Vague Fuzzy Incidence Graphs (CT-VFIGs) and use 
incidence pairs to extend the idea of FG dominance to CT-VFIGs defined . 
Examples are used to clarify the concepts of Edge Incidentally Dominating Set 
(EIDS), Strong Edge Incidentally Dominating Set (SEIDS), and Weak Edge 
Incidentally Dominating Set (WEIDS).CT-VFIGs have an Edge Incidentally 
Domination Number (EIDN), a Strong Edge Incidentally Domination Number 
(SEIDN), and a Weak Edge Incidentally Domination Number (WEIDN). In 
the research field, CT-VIFGs are used to find the best combinations of journal 
publications that express the most progress and the least amount of non-
progress. The results of our investigation are compared to those of other 
studies. Our research will help us fully appreciate and comprehend the 
additional properties of CT-VFIGs.Another benefit of our research is that it 

will aid in determining the maximum percentage of progress and the minimum 
percentage of non-progress in various journal publications. 

KEYWORDS: Vague Fuzzy Incidence Graph, Composition of two VFIGs, Strong 
Edge Incidentally Dominating Set, Weak Edge Incidentally Dominating Set. 
 

1. Introduction  

Zadeh [40] [42] [43] introduced fuzzy set theory and related fuzzy logic as a technique 

of dealing with and addressing a wide range of situations in which variables, 

parameters, and relationships are only approximated, necessitating the employment of 

approximate reasoning systems. This is true of practically all nontrivial occurrences, 

processes, and systems that exist in reality, and standard binary logic mathematics 

cannot sufficiently characterize them.We summariseGorzalczany's work on interval-

valued fuzzy sets(IVFSs) [8] and Roy et al. [29] works on fuzzy relations because 

interval-valued fuzzy graphs (IVFGs) are commonly employed. Vague sets (VSs) were 

first proposed by W.L Gau and D.J Buehrer [7]. FG operations were investigated by R. 

Parvathi et al. [22]. In vague graphs (VGs), N. Ramakrishna [6] developed the 

concepts.  In IFGs, A. N. Gani [9] developed the concepts of degree, order, and size. S. 

Samanta and M. Pal [30] have also expressed many FGs. H. Rashmanlou and M. Pal 

[26] advised irregular IVFGs.Akram. M [2] proposed vague hyper graphs. Degree of 

vertices in VGs were proposed by Borzooei [3]. Dinesh [5] looked at the topic of 

FIGs.Borzooei et al. [4] suggested and implemented regularity of VGs. Kalaiarasi & 

Mahalakshmi  have also articulated and Kalaiarasi & Gopinath discussed  fuzzy strong 

graphs. Akram et al. [1] proposed the concept Cayley VGs. S. Mathew and J.N. 

107

Journal of Mathematical Control Science and Applications
Vol7 No. 1 (January-June 2021)

Received: 20th February 2021         Revised: 19th March 2021       Accepted: 10th April 2021



K.KALAIARASI AND P.GEETHANJALI 

 
Mordeson [17] proposed concepts in FIGs.Mordeson et al. [19] talked about VFIGs. 

Properties of VGs extended by Rao et al. [27]. 

Ore and Berge were the first to introduce dominance. IrfanNazeer et al. [11], 

developed the new graph'sproduct. Haynes and Hedetniemi[10] looked into 

dominance in graphs further. Somasundaram and Somasundaram[33] have gained 

supremacy in FGs by utilising effective edges. In FGs, Xavior et al. [38] suggested 

dominance. PradipDebnath [23] has also shown dominance in IVFGs. For FGs, 

Revathi and Harinarayaman [28] developed an equitable domination number. 

Sunitha & Manjusha [34] have also declared that they have a stronghold..Nagoorgani 

& Chandrasekaran [21] have also demonstrated dominance in a FG. Sarala & Kavitha 

[35] have also expressed (1,2)-domination for FGs. Dharmalingam & Nithya[6] have 

also provided dominance values for FGs.  Manjusha et al. [18] have studied paired 

domination. In FIGs, IrfanNazeer et al. [12] have achieved dominance. AN Shain and 

MMQ Shubatah [36] advocated the inverted dominating set of IVFGs . Kalaiarasi & 

Sabina have also expressedfuzzy inventory EOQ optimization mathematical model 

[15]. Kalaiarasi & Gopinath  suggested fuzzy inventory order EOQ model with 

machine learning [16]. A new path graph definition was proposed by Tushar et al. 

[32]. A .Nagoor Gani et al.[10] addressed domination in FGs. AM Ismayil and HS 

Begum[4] have both accurately depicted split dominance. In ambiguous graphs, 

Yongsheng Rao et al.[39] established dominance. Shanmugavadivu  and Gopinath 

suggested non homogeneous ternary five degrees equation [31]. Shanmugavadivu and 

Gopinath have also expressedon the homogeneous five degree equation [32]. 

Priyadharshini et al. have also expresseda fuzzy MCDM approach for measuring the 

business impact of employee selection [24]. and Mapreduce Methodology for Elliptical 

Curve Discrete Logarithmic Problems [41]. 

Section 2 gives some preliminary findings that are required in order to understand the 

rest of the paper. A definition of CT-VIFGs is given in section 3. In section 4, we look 

at the relationship between CT-VFIG order and size. Domination in CT-VFIGs is 

discussed in Section 5. Strong and weak domination in CT-VFIGs is discussed in 

section 6. The application of CT-VFIGs is discussed in section 7. A comparative 

analysis is offered in section 8. 

2. Preliminaries 

Definition 2.1[12] 

Assume 𝐺𝐼 = (𝑉𝐼, 𝐸𝐼) is a graph. Then, 𝐺𝐼 = (𝑉𝐼, 𝐸𝐼 , 𝐼𝐼) is named as an incidence 

graph, where 𝐼𝐼 ⊆ 𝑉𝐼 × 𝐸𝐼. 

Definition 2.2[12] 

Assume 𝐺𝐹𝑆 = (𝑉𝐹𝑆, 𝐸𝐹𝑆) is a graph, 𝜇𝐹𝑆 is a fuzzy subset of 𝑉𝐹𝑆, and 𝛾𝐹𝑆 is a fuzzy 

subset of 𝑉𝐹𝑆 × 𝑉𝐹𝑆. Let 𝜓𝐹𝑆 be a fuzzy subset of 𝑉𝐹𝑆 × 𝐸𝐹𝑆. If 𝜓𝐹𝑆(𝑤11 ,𝑤11𝑤22) ≤

𝑚𝑖𝑛{𝜇𝐹𝑆(𝑤11), 𝛾𝐹𝑆(𝑤11𝑤22)} for every 𝑤11 ∈ 𝑉𝐹𝑆 , 𝑤11𝑤22 ∈ 𝐸𝐹𝑆, then 𝜓𝐹𝑆 is a fuzzy 

incidence of 𝐺𝐹𝑆. 

 

Definition 2.3[12] 
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Assume 𝐺𝐼 is a graph and (𝜇𝐼 , 𝛾𝐼) is a fuzzy sub graph of 𝐺𝐼. If 𝜓𝐼 is a fuzzy incidence 

of 𝐺𝐼, then 𝐺𝐼 = (𝜇𝐼, 𝛾𝐼, 𝜓𝐼) is named as FIG of 𝐺𝐼.                                           

Definition 2.4 [4] 

A VS 𝐴 is a pair (𝑡𝑉𝐴, 𝑓𝑉𝐴) on set 𝑉 where 𝑡𝑉𝐴 and 𝑓𝑉𝐴 are taken as real valued 

functions which can be defined on 𝑉 → [0,1], so that 𝑡𝑉𝐴(𝑤11) + 𝑓𝑉𝐴(𝑤11) ≤ 1, for 

all 𝑤11belongs𝑉. The interval [𝑡𝑉𝐴(𝑤11),1− 𝑓𝑉𝐴(𝑤11)] is known as the vague value of 

𝑤11is 𝐴. 

Definition 2.5[6] 

A pair 𝐺𝑉 = (𝐴,𝐵) is said to be a VG on a crisp graph 𝐺 = (𝑉, 𝐸), where  𝐴 =

(𝑡𝑉𝐴, 𝑓𝑉𝐴) is a VS on 𝑉 and 𝐵 = (𝑡𝑉𝐵 , 𝑓𝑉𝐵) is a VS on 𝐸 ⊆ 𝑉 × 𝑉 such that 

𝑡𝑉𝐵(𝑤11𝑤22) ≤ 𝑚𝑖𝑛(𝑡𝑉𝐴(𝑤11), 𝑡𝑉𝐴(𝑤22)) and 𝑓𝑉𝐵(𝑤11𝑤22) ≥

𝑚𝑎𝑥(𝑓𝑉𝐴(𝑤11), 𝑓𝑉𝐴(𝑤22)), for each edge 𝑤11𝑤22 ∈ 𝐸 

Definition 2.6 

An VFIG is of the form 𝐺𝑉𝐼 = (𝑉𝑉𝐼, 𝐸𝑉𝐼, 𝐼𝑉𝐼, 𝐴𝑉𝐼 , 𝐵𝑉𝐼 ,𝐶𝑉𝐼) where 𝐴𝑉𝐼 = (𝑡𝐴𝑉𝐼 , 𝑓𝐴𝑉𝐼), 

𝐵𝑉𝐼 = (𝑡𝐵𝑉𝐼 , 𝑓𝐵𝑉𝐼), 𝐶𝑉𝐼 = (𝑡𝐶𝑉𝐼 , 𝑓𝐶𝑉𝐼)  and 𝑉𝑉𝐼 = {𝑤0,𝑤1, . . . . . . . 𝑤𝑛} such that 

𝑡𝐴𝑉𝐼: 𝑉𝑉𝐼 → [0,1] and 𝑓𝐴𝑉𝐼: 𝑉𝑉𝐼 → [0,1] represent the degree (DG) of membership(MS) 

and non membership (NMS) of the vertex 𝑤𝑖𝑖 ∈ 𝑉𝑉𝐼 respectively, and  0 ≤ 𝑡𝐴𝑉𝐼 +

𝑓𝐴𝑉𝐼 ≤ 1 for each 𝑤𝑖𝑖 ∈ 𝑉𝑉𝐼(𝑖 = 1,2, . . . . , 𝑛),𝑡𝐵𝑉𝐼: 𝑉𝑉𝐼 × 𝑉𝑉𝐼 → [0,1] and 

 1,0:  VIVIB VVf
VI 𝑡𝐵𝑉𝐼(𝑤11, 𝑤22) and𝑓𝐵𝑉𝐼(𝑤11, 𝑤22) show the DG of MS 

and NMS of the edge (𝑤11, 𝑤22) respectively, such that𝑡𝐵𝑉𝐼(𝑤11,𝑤22) ≤

𝑚𝑖𝑛{𝑡𝐴𝑉𝐼(𝑤11), 𝑡𝐴𝑉𝐼(𝑤22)}and𝑓𝐵𝑉𝐼(𝑤11, 𝑤22) ≥ 𝑚𝑎𝑥{𝑓𝐴𝑉𝐼(𝑤11), 𝑓𝐴𝑉𝐼(𝑤22)},0 ≤

𝑡𝐵𝑉𝐼(𝑤11, 𝑤22) + 𝑓𝐵𝑉𝐼(𝑤11, 𝑤22) ≤ 1 for every  (𝑤11, 𝑤22), 𝑡𝐶𝑉𝐼 : 𝑉𝑉𝐼 × 𝐸𝑉𝐼 → [0,1] 

and 𝑓𝐶𝑉𝐼 : 𝑉𝑉𝐼 × 𝐸𝑉𝐼 → [0,1],𝑡𝐶𝑉𝐼(𝑤11,𝑤11𝑤22) and 𝑓𝐶𝑉𝐼(𝑤11,𝑤11𝑤22) show the DG 

of MS and NMS of the incidence pair respectively, such that 𝑡𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) ≤

𝑚𝑖𝑛{𝑡𝐴𝑉𝐼(𝑤11), 𝑡𝐵𝑉𝐼(𝑤11,𝑤22)} and  

𝑓𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) ≥ 𝑚𝑎𝑥{𝑓𝐴𝑉𝐼(𝑤11),𝑓𝐵𝑉𝐼(𝑤11, 𝑤22)}, 0 ≤ 𝑡𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) +

𝑓𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) ≤ 1 for every (𝑤11, 𝑤11𝑤22). 

 

3. Composition of two VFIGs 

Definition 3.1 

 The Composition of two VFIGs (CT-VFIGs)𝐺𝑉𝐼
1 =

(𝑉𝑉𝐼
1 ,𝐸𝑉𝐼

1 , 𝐼𝑉𝐼
1 , 𝐴𝑉𝐼𝑃

1 ,𝐵𝑉𝐼𝐿
1 , 𝐶𝑉𝐼𝐼

1 ) and 𝐺𝑉𝐼
2 = (𝑉𝑉𝐼

2 , 𝐸𝑉𝐼
2 , 𝐼𝑉𝐼

2 ,𝐴𝑉𝐼𝑃
2 , 𝐵𝑉𝐼𝐿

2 , 𝐶𝑉𝐼𝐼
2 ) is defined as 

an VFIG  

𝐺𝐶𝑉𝐼 = 𝐺𝑉𝐼
1 𝛩𝐺𝑉𝐼

2 = (𝑉𝑉𝐼,𝐸𝑉𝐼 , 𝐼𝑉𝐼 , 𝐴𝑉𝐼𝑃
1 𝛩𝐴𝑉𝐼𝑃

2 ,𝐵𝑉𝐼𝐿
1 𝛩𝐵𝑉𝐼𝐿

2 ,𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )where𝑉𝐶𝑉𝐼 =

𝑉𝑉𝐼
1 𝛩𝑉𝑉𝐼

2  

and𝐸𝐶𝑉𝐼 = {((𝑚11, 𝑛11), (𝑚22, 𝑛22)) 𝑚11 = 𝑚22, (𝑛11, 𝑛22) ∈ 𝐸𝑉𝐼
2⁄ 𝑜𝑟𝑛11 =

𝑛22, (𝑚11,𝑚22) ∈ 𝐸𝑉𝐼
1 } 

𝐼𝐶𝑉𝐼 =

{(𝑚11, 𝑛11), (𝑚11, 𝑛11)(𝑚11, 𝑛22) 𝑚11 = 𝑚22, (𝑛11, 𝑛11𝑛22) ∈ 𝐼𝑉𝐼
2 ,⁄ (𝑛22, 𝑛11𝑛22) ∈

𝐼𝑉𝐼
2 𝑜𝑟𝑛11 = 𝑛22(𝑚11,𝑚11𝑚22) ∈ 𝐼𝑉𝐼

1 , (𝑚22,𝑚11𝑚22) ∈ 𝐼𝑉𝐼
1 }with 

(𝐴1𝑉𝐼𝑃
1 𝛩𝐴1𝑉𝐼𝑃

2 )(𝑚11, 𝑛11) = 𝑚𝑖𝑛{𝐴1𝑉𝐼𝑃
1 (𝑚11), 𝐴1𝑉𝐼𝑃

2 (𝑛11)}∀(𝑚11, 𝑛11) ∈ 𝑉𝑉𝐼
1 𝛩𝑉𝑉𝐼

2 ,   

(𝐴2𝑉𝐼𝑃
1 𝛩𝐴2𝑉𝐼𝑃

2 )(𝑚11, 𝑛11) = 𝑚𝑎𝑥{𝐴2𝑉𝐼𝑃
1 (𝑚11), 𝐴2𝑉𝐼𝑃

2 (𝑛11)}∀(𝑚11, 𝑛11) ∈ 𝑉𝑉𝐼
1 𝛩𝑉𝑉𝐼

2  
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(𝐵1𝑉𝐼𝐿

1 𝛩𝐵1𝑉𝐼𝐿
2 )((𝑚11 , 𝑛11)(𝑚22, 𝑛22))

= {

𝑚𝑖𝑛{𝐴1𝑉𝐼𝑃
1 (𝑚11), 𝐵1𝑉𝐼𝐿

2 (𝑛11, 𝑛22)} , 𝑖𝑓𝑚11 = 𝑚22, (𝑛11, 𝑛22) ∈ 𝐸𝑉𝐼
2

𝑚𝑖𝑛{𝐵1𝑉𝐼𝐿
1 (𝑚11,𝑚22), 𝐴1𝑉𝐼𝑃

2 (𝑛11)} , 𝑖𝑓𝑛11 = 𝑛22, (𝑚11,𝑚22) ∈ 𝐸𝑉𝐼
1

𝑚𝑖𝑛{𝐵1𝑉𝐼𝐿
1 (𝑚11,𝑚22), 𝐴1𝑉𝐼𝑃

2 (𝑛11),𝐴1𝑉𝐼𝑃
2 (𝑛22)} , 𝑖𝑓𝑛11 ≠ 𝑛22, (𝑚11,𝑚22) ∈ 𝐸𝑉𝐼

1

 

(𝐵2𝑉𝐼𝐿
1 𝛩𝐵2𝑉𝐼𝐿

2 )((𝑚11, 𝑛11)(𝑚22, 𝑛22))

= {

𝑚𝑎𝑥{𝐴2𝑉𝐼𝑃
1 (𝑚11), 𝐵2𝑉𝐼𝐿

2 (𝑛11, 𝑛22)} , 𝑖𝑓𝑚11 = 𝑚22, (𝑛11, 𝑛22) ∈ 𝐸𝑉𝐼
2

𝑚𝑎𝑥{𝐵2𝑉𝐼𝐿
1 (𝑚11,𝑚22), 𝐴2𝑉𝐼𝑃

2 (𝑛11)} , 𝑖𝑓𝑛11 = 𝑛22, (𝑚11,𝑚22) ∈ 𝐸𝑉𝐼
1

𝑚𝑎𝑥{𝐵1𝑉𝐼𝐿
1 (𝑚11,𝑚22),𝐴1𝑉𝐼𝑃

2 (𝑛11), 𝐴1𝑉𝐼𝑃
2 (𝑛22)} , 𝑖𝑓𝑛11 ≠ 𝑛22, (𝑚11,𝑚22) ∈ 𝐸𝑉𝐼

1

 

(𝐶1𝑉𝐼𝐼
1 𝛩𝐶1𝑉𝐼𝐼

2 )[(𝑚11, 𝑛11), (𝑚11, 𝑛11)(𝑚11, 𝑛22)]

= 𝑚𝑖𝑛{𝐴1𝑉𝐼𝑃
1 (𝑚11),𝐶1𝑉𝐼𝐼

2 (𝑛11, 𝑛11𝑛22)} 𝑖𝑓𝑚11

= 𝑚22, (𝑛11, 𝑛11𝑛22) ∈ 𝐼𝑉𝐼
2  

(𝐶1𝑉𝐼𝐼
1 𝛩𝐶1𝑉𝐼𝐼

2 )[(𝑚11, 𝑛22), (𝑚11, 𝑛11)(𝑚11, 𝑛22)]

= 𝑚𝑖𝑛{𝐴𝐼𝑉𝐼𝑃
1 (𝑚11), 𝐶𝐼𝑉𝐼𝐼

2 (𝑛22, 𝑛11𝑛22)} 𝑖𝑓𝑚11

= 𝑚22, (𝑛22, 𝑛11𝑛22) ∈ 𝐼𝑉𝐼
2  

(𝐶1𝑉𝐼𝐼
1 𝛩𝐶1𝑉𝐼𝐼

2 )[(𝑚11, 𝑛11), (𝑚11, 𝑛11)(𝑚22, 𝑛11)]

= 𝑚𝑖𝑛{𝐶1𝑉𝐼𝐼
1 (𝑚11,𝑚11𝑚22), 𝐴1𝑉𝐼𝑃

2 (𝑛11)} 𝑖𝑓𝑛11
= 𝑛22, (𝑚11,𝑚11𝑚22) ∈ 𝐼𝑉𝐼

1  

(𝐶1𝑉𝐼𝐼
1 𝛩𝐶1𝑉𝐼𝐼

2 )[(𝑚22, 𝑛11), (𝑚11, 𝑛11)(𝑚22, 𝑛11)]

= 𝑚𝑖𝑛{𝐶1𝑉𝐼𝐼
1 (𝑚22,𝑚11𝑚22),𝐴1𝑉𝐼𝑃

2 (𝑛11)} 𝑖𝑓𝑛11
= 𝑛22, (𝑚22,𝑚11𝑚22) ∈ 𝐼𝑉𝐼

1  

(𝐶1𝑉𝐼𝐼
1 𝛩𝐶1𝑉𝐼𝐼

2 )[(𝑚11 , 𝑛11), (𝑚11, 𝑛11)(𝑚22, 𝑛22)]

= 𝑚𝑖𝑛{𝐶1𝑉𝐼𝐼
1 (𝑚11,𝑚11𝑚22), 𝐴1𝑉𝐼𝑃

2 (𝑛11), 𝐴1𝑉𝐼𝑃
2 (𝑛22)} , 𝑖𝑓𝑚11

≠ 𝑚22, 𝑛11 ≠ 𝑛22, (𝑚11,𝑚11𝑚22) ∈ 𝐼𝑉𝐼
1  

(𝐶1𝑉𝐼𝐼
1 𝛩𝐶1𝑉𝐼𝐼

2 )[(𝑚22, 𝑛22), (𝑚11, 𝑛11)(𝑚22, 𝑛22)]

= 𝑚𝑖𝑛{𝐶1𝑉𝐼𝐼
1 (𝑚22,𝑚11𝑚22), 𝐴1𝑉𝐼𝑃

2 (𝑛11),𝐴1𝑉𝐼𝑃
2 (𝑛22)} , 𝑖𝑓𝑚11

≠ 𝑚22, 𝑛11 ≠ 𝑛22, (𝑚22,𝑚11𝑚22) ∈ 𝐼𝑉𝐼
1  

(𝐶1𝑉𝐼𝐼
1 𝛩𝐶1𝑉𝐼𝐼

2 )[(𝑚11 , 𝑛22), (𝑚11, 𝑛22)(𝑚22, 𝑛11)]

= 𝑚𝑖𝑛{𝐶1𝑉𝐼𝐼
1 (𝑚11,𝑚11𝑚22), 𝐴1𝑉𝐼𝑃

2 (𝑛11), 𝐴1𝑉𝐼𝑃
2 (𝑛22)} , 𝑖𝑓𝑚11

≠ 𝑚22, 𝑛11 ≠ 𝑛22, (𝑚11,𝑚11𝑚22) ∈ 𝐼𝑉𝐼
1  

(𝐶1𝑉𝐼𝐼
1 𝛩𝐶1𝑉𝐼𝐼

2 )[(𝑚22, 𝑛11), (𝑚11, 𝑛22)(𝑚22, 𝑛11)]

= 𝑚𝑖𝑛{𝐶1𝑉𝐼𝐼
1 (𝑚22,𝑚11𝑚22), 𝐴1𝑉𝐼𝑃

2 (𝑛11),𝐴1𝑉𝐼𝑃
2 (𝑛22)} , 𝑖𝑓𝑚11

≠ 𝑚22, 𝑛11 ≠ 𝑛22, (𝑚22,𝑚11𝑚22) ∈ 𝐼𝑉𝐼
1  

(𝐶2𝑉𝐼𝐼
1 𝛩𝐶2𝑉𝐼𝐼

2 )[(𝑚11, 𝑛11), (𝑚11, 𝑛11)(𝑚11, 𝑛22)]

= 𝑚𝑎𝑥{𝐴2𝑉𝐼𝑃
1 (𝑚11), 𝐶2𝑉𝐼𝐼

2 (𝑛11, 𝑛11𝑛22)} 𝑖𝑓𝑚11

= 𝑚22, (𝑛11, 𝑛11𝑛22) ∈ 𝐼𝑉𝐼
2  

(𝐶2𝑉𝐼𝐼
1 𝛩𝐶2𝑉𝐼𝐼

2 )[(𝑚11, 𝑛22), (𝑚11, 𝑛11)(𝑚11, 𝑛22)]

= 𝑚𝑎𝑥{𝐴2𝑉𝐼𝑃
1 (𝑚11), 𝐶2𝑉𝐼𝐼

2 (𝑛22, 𝑛11𝑛22)} 𝑖𝑓𝑚11

= 𝑚22, (𝑛22, 𝑛11𝑛22) ∈ 𝐼𝑉𝐼
2  

(𝐶2𝑉𝐼𝐼
1 𝛩𝐶2𝑉𝐼𝐼

2 )[(𝑚11, 𝑛11), (𝑚11, 𝑛11)(𝑚22, 𝑛11)]

= 𝑚𝑎𝑥{𝐶2𝑉𝐼𝐼
1 (𝑚11,𝑚11𝑚22), 𝐴2𝑉𝐼𝑃

2 (𝑛11)} 𝑖𝑓𝑛11
= 𝑛22, (𝑚11,𝑚11𝑚22) ∈ 𝐼𝑉𝐼

1  

(𝐶2𝑉𝐼𝐼
1 𝛩𝐶2𝑉𝐼𝐼

2 )[(𝑚22, 𝑛11), (𝑚11, 𝑛11)(𝑚22, 𝑛11)]

= 𝑚𝑎𝑥{𝐶2𝑉𝐼𝐼
1 (𝑚22,𝑚11𝑚22),𝐴2𝑉𝐼𝑃

2 (𝑛11)} 𝑖𝑓𝑛11

= 𝑛22, (𝑚22,𝑚11𝑚22) ∈ 𝐼𝑉𝐼
1  

110



AN APPLICATION OF DOMINATION IN VAGUE FUZZY INCIDENCE GRAPHS  

 
 
(𝐶2𝑉𝐼𝐼

1 𝛩𝐶2𝑉𝐼𝐼
2 )[(𝑚11 , 𝑛11), (𝑚11, 𝑛11)(𝑚22, 𝑛22)]

= 𝑚𝑎𝑥{𝐶2𝑉𝐼𝐼
1 (𝑚11,𝑚11𝑚22),𝐴1𝑉𝐼𝑃

2 (𝑛11), 𝐴1𝑉𝐼𝑃
2 (𝑛22)} , 𝑖𝑓𝑚11

≠ 𝑚22, 𝑛11 ≠ 𝑛22, (𝑚11,𝑚11𝑚22) ∈ 𝐼𝑉𝐼
1  

(𝐶2𝑉𝐼𝐼
1 𝛩𝐶2𝑉𝐼𝐼

2 )[(𝑚22, 𝑛22), (𝑚11, 𝑛11)(𝑚22, 𝑛22)]

= 𝑚𝑎𝑥{𝐶2𝑉𝐼𝐼
1 (𝑚22,𝑚11𝑚22), 𝐴1𝑉𝐼𝑃

2 (𝑛11), 𝐴1𝑉𝐼𝑃
2 (𝑛22)} , 𝑖𝑓𝑚11

≠ 𝑚22, 𝑛11 ≠ 𝑛22, (𝑚22,𝑚11𝑚22) ∈ 𝐼𝑉𝐼
1  

(𝐶2𝑉𝐼𝐼
1 𝛩𝐶2𝑉𝐼𝐼

2 )[(𝑚11 , 𝑛22), (𝑚11, 𝑛22)(𝑚22, 𝑛11)]

= 𝑚𝑎𝑥{𝐶2𝑉𝐼𝐼
1 (𝑚11,𝑚11𝑚22),𝐴1𝑉𝐼𝑃

2 (𝑛11), 𝐴1𝑉𝐼𝑃
2 (𝑛22)} , 𝑖𝑓𝑚11

≠ 𝑚22, 𝑛11 ≠ 𝑛22, (𝑚11,𝑚11𝑚22) ∈ 𝐼𝑉𝐼
1  

(𝐶2𝑉𝐼𝐼
1 𝛩𝐶2𝑉𝐼𝐼

2 )[(𝑚22, 𝑛11), (𝑚11, 𝑛22)(𝑚22, 𝑛11)]

= 𝑚𝑎𝑥{𝐶2𝑉𝐼𝐼
1 (𝑚22,𝑚11𝑚22), 𝐴1𝑉𝐼𝑃

2 (𝑛11), 𝐴1𝑉𝐼𝑃
2 (𝑛22)} , 𝑖𝑓𝑚11

≠ 𝑚22, 𝑛11 ≠ 𝑛22, (𝑚22,𝑚11𝑚22) ∈ 𝐼𝑉𝐼
1  

Example 3.2 

 
Figure1.  VFIG  𝐺𝑉𝐼

1  

Figure 1 indicates a VFIG𝐺𝑉𝐼
1 = (𝑉𝑉𝐼

1 , 𝐸𝑉𝐼
1 , 𝐼𝑉𝐼

1 , 𝐴𝑉𝐼𝑃
1 , 𝐵𝑉𝐼𝐿

1 , 𝐶𝑉𝐼𝐼
1 ) with 

𝐴𝑉𝐼𝑃
1 (𝑚11) = (0.4,0.2),𝐴𝑉𝐼𝑃

1 (𝑚22) = (0.3,0.5),𝐵𝑉𝐼𝐿
1 (𝑚11𝑚22) = (0.3,0.6), 

𝐶𝑉𝐼𝐼
1 (𝑚11,𝑚11𝑚22) = (0.3,0.7),𝐶𝑉𝐼𝐼

1 (𝑚22,𝑚11𝑚22) = (0.2,0.6) 

 

 
Figure2.  VFIG  𝐺𝑉𝐼

2  

Figure 2 indicates a VFIG𝐺𝑉𝐼
2 = (𝑉𝑉𝐼

2 , 𝐸𝑉𝐼
2 , 𝐼𝑉𝐼

2 , 𝐴𝑉𝐼𝑃
2 , 𝐵𝑉𝐼𝐿

2 , 𝐶𝑉𝐼𝐼
2 ) with 

𝐴𝑉𝐼𝑃
2 (𝑛11) = (0.6,0.3),𝐴𝑉𝐼𝑃

2 (𝑛22) = (0.2,0.5),𝐵𝑉𝐼𝐿
2 (𝑛11𝑛22) =

(0.1,0.5),𝐶𝑉𝐼𝐼
2 (𝑛11, 𝑛11𝑛22) = (0.1,0.5),𝐶𝑉𝐼𝐼

2 (𝑛22, 𝑛11𝑛22) = (0.1,0.7). 
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Figure3. Composition of figure 1 and figure 2 

Figure 3 indicates a CT-VFIGs 

𝐺𝑉𝐼
1 𝛩𝐺𝑉𝐼

2 = (𝑉𝑉𝐼, 𝐸𝑉𝐼, 𝐼𝑉𝐼, 𝐴𝑉𝐼𝑃
1 𝛩𝐴𝑉𝐼𝑃

2 , 𝐵𝑉𝐼𝐿
1 𝛩𝐵𝑉𝐼𝐿

2 , 𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 ) 

(𝐴𝑉𝐼𝑃
1 𝛩𝐴𝑉𝐼𝑃

2 )(𝑚11, 𝑛11) = (0.4,0.3),(𝐴𝑉𝐼𝑃
1 𝛩𝐴𝑉𝐼𝑃

2 )(𝑚11, 𝑛22) = (0.2,0.5) 

   )5.0,3.0(, 1122
21  nmAA VIPVIP (𝐴𝑉𝐼𝑃

1 𝛩𝐴𝑉𝐼𝑃
2 )(𝑚22, 𝑛22) = (0.2,0.5) 

(𝐵𝑉𝐼𝐿
1 𝛩𝐵𝑉𝐼𝐿

2 )((𝑚11, 𝑛11)(𝑚11, 𝑛22)) =

0.1,0.5,(𝐵𝑉𝐼𝐿
1 𝛩𝐵𝑉𝐼𝐿

2 )((𝑚11, 𝑛22)(𝑚22, 𝑛22)) = 0.2,0.6, 

(𝐵𝑉𝐼𝐿
1 𝛩𝐵𝑉𝐼𝐿

2 )((𝑚22, 𝑛11)(𝑚22, 𝑛22)) = 0.1,0.5, 

(𝐵𝑉𝐼𝐿
1 𝛩𝐵𝑉𝐼𝐿

2 )((𝑚11, 𝑛11)(𝑚22, 𝑛11)) = 0.3,0.6, 

(𝐵𝑉𝐼𝐿
1 𝛩𝐵𝑉𝐼𝐿

2 )((𝑚11, 𝑛11)(𝑚22, 𝑛22)) = 0.2,0.6, 

(𝐵𝑉𝐼𝐿
1 𝛩𝐵𝑉𝐼𝐿

2 )((𝑚11, 𝑛22)(𝑚22, 𝑛11)) = 0.2,0.6 

(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚11, 𝑛11), (𝑚11, 𝑛11)(𝑚11, 𝑛22)] = (0.1,0.5) 

,(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚11, 𝑛22), (𝑚11, 𝑛11)(𝑚11, 𝑛22)] =

(0.1,0.7),(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚11, 𝑛22), (𝑚11, 𝑛22)(𝑚22, 𝑛22)] = (0.2,0.7), 

(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚22, 𝑛22), (𝑚11, 𝑛22)(𝑚22, 𝑛22)] = (0.2,0.6), 

(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚22, 𝑛11), (𝑚22, 𝑛11)(𝑚22, 𝑛22)] = (0.1,0.5), 

(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚22, 𝑛22), (𝑚22, 𝑛11)(𝑚22, 𝑛22)] = (0.1,0.7), 

(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚11, 𝑛11), (𝑚11, 𝑛11)(𝑚22, 𝑛11)] = (0.3,0.7), 

(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚22, 𝑛11), (𝑚11, 𝑛11)(𝑚22, 𝑛11)] = (0.2,0.6), 

(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚11, 𝑛11), (𝑚11, 𝑛11)(𝑚22, 𝑛22)] = (0.2,0.7), 

(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚22, 𝑛22), (𝑚11, 𝑛11)(𝑚22, 𝑛22)] = (0.2,0.6), 

(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚22, 𝑛11), (𝑚22, 𝑛11)(𝑚11, 𝑛22)] = (0.2,0.6), 

(𝐶𝑉𝐼𝐼
1 𝛩𝐶𝑉𝐼𝐼

2 )[(𝑚11, 𝑛22), (𝑚22, 𝑛11)(𝑚11, 𝑛22)] = (0.2,0.7) 

Definition 3.3 

Let 𝐺𝐶𝑉𝐼 be a CT-VFIGs 

(i) 𝐺𝐶𝑉𝐼cardinality is determined by 
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|𝐺𝐶𝑉𝐼| = ∑
1+ 𝑡𝐴𝑉𝐼𝑃(𝑤11) − 𝑓𝐴𝑉𝐼𝑃(𝑤11)

2
𝑤11∈𝑉𝑉𝐼

+ ∑
1+ 𝑡𝐵𝑉𝐼𝐿(𝑤11𝑤22) − 𝑓𝐵𝑉𝐼𝐿(𝑤11𝑤22)

2
𝑤11𝑤22∈𝐸𝑉𝐼

+ 

∑
1+ 𝑡𝐶𝑉𝐼𝐼(𝑤11, 𝑤11𝑤22) − 𝑓𝐶𝑉𝐼𝐼(𝑤11, 𝑤11𝑤22)

2
𝑤11,𝑤11𝑤22∈𝐼𝑉𝐼

 

(ii) 𝐺𝐶𝑉𝐼vertex cardinality is determined by |𝑉𝐶𝑉𝐼| =

∑
1+𝑡𝐴𝑉𝐼𝑃(𝑤11)−𝑓𝐴𝑉𝐼𝑃(𝑤11)

2𝑤11∈𝑉𝐶𝑉𝐼
∀𝑤11 ∈ 𝑉𝐶𝑉𝐼 

(iii) 𝐺𝐶𝑉𝐼edge cardinality is specified by                                        |𝐸𝐶𝑉𝐼| =

∑
1+𝑡𝐵𝑉𝐼𝐿(𝑤11𝑤22)−𝑓𝐵𝑉𝐼𝐿(𝑤11𝑤22)

2𝑤11𝑤22∈𝐸𝐶𝑉𝐼
∀𝑤11𝑤22 ∈ 𝐸𝐶𝑉𝐼 

(iv) 𝐺𝐶𝑉𝐼 incidence pair cardinality is specified by  

|𝐼𝐶𝑉𝐼| = ∑
1+ 𝑡𝐶𝑉𝐼𝐼(𝑤11, 𝑤11𝑤22) − 𝑓𝐶𝑉𝐼𝐼(𝑤11, 𝑤11𝑤22)

2
𝑤11,𝑤11𝑤22∈𝐼𝐶𝑉𝐼

∀𝑤11, 𝑤11𝑤22

∈ 𝐼𝐶𝑉𝐼 

4. Relationship between order and size of CT-VFIGs 

 

Definition 4.1 

Assume 𝐺𝐶𝑉𝐼 is a CT-VFIGs. Then 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) =

∑ (
1+𝑡𝐶𝐶𝑉𝐼(𝑤11,𝑤11𝑤22)−𝑓𝐶𝐶𝑉𝐼(𝑤11,𝑤11𝑤22)

2
)𝑤11≠𝑤22,𝑤11,𝑤22∈𝑉𝐶𝑉𝐼
 is called order of 𝐺𝐶𝑉𝐼 

and 𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) = ∑ (
1+𝑡𝐵𝐶𝑉𝐼(𝑤11,𝑤22)−𝑓𝐵𝐶𝑉𝐼(𝑤11𝑤22)

2
)𝑤11,𝑤22∈𝐸𝐶𝑉𝐼
 is called size of  𝐺𝐶𝑉𝐼. 

Definition 4.2 

The edge degree of a𝑒1𝑉𝐼 in a CT-VFIGs is defined as the sum of the weights of edges 

incident to 𝑒1𝑉𝐼. It is defined by |𝑑𝐺𝐶𝑉𝐼(𝑒1𝑉𝐼)| = {𝑑𝑒𝑔𝑡(𝑒1𝑉𝐼) , 𝑑𝑒𝑔
𝑓(𝑒1𝑉𝐼)}. The 

minimum cardinality of edge degree of 𝐺𝐶𝑉𝐼is 𝛿𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) = 𝑚𝑖𝑛{𝑑𝐺𝐶𝑉𝐼(𝑒1𝑉𝐼)/𝑒1𝑉𝐼 ∈

𝐸𝐶𝑉𝐼}. The maximum cardinality of edge degree of 𝐺𝐶𝑉𝐼is 𝛥𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) =

𝑚𝑎𝑥{𝑑𝐺𝐶𝑉𝐼(𝑒1𝑉𝐼)/𝑒1𝑉𝐼 ∈ 𝐸𝐶𝑉𝐼} 

Proposition 4.3 

In a CT-VFIGs𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≥ 𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) 

Proof. Let 𝐺𝐶𝑉𝐼 be a CT-VFIGs with one node. Then𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) = 𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) = 0. 

That is 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) = 𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) (1) 

It is a trivial case. Assume 𝐺𝐶𝑉𝐼 with more than one nodes. 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) is the sum of 

all incidence pairs  cardinality of𝐺𝐶𝑉𝐼. Since incidence pairs are two times of edges. 

Therefore, the total sum of all the incidence pairs cardinality will always greater than 

the total sum of all the edge cardinality. 

𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) > 𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) (2) 

From equations (1) and (2), we get  𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≥ 𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼). 

Proposition 4.4 

For any CT-VFIGs the following inequality holds 

𝛿𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≤ 𝛩𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≤ 𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≤ 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼). 

Proof.  Assume 𝐺𝐶𝑉𝐼 is a CT-VFIGs with non empty node set. 
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Since 𝛿𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) represents lowest edge degree and 𝛥𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) denotes highest edge 

degree of 𝐺𝐶𝑉𝐼. 

𝛿𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≤ 𝛩𝐶𝑉𝐼(𝐺𝐶𝑉𝐼)   (3) 

We know 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) = ∑ (
1+𝑡𝐶𝐶𝑉𝐼(𝑤11,𝑤11𝑤22)−𝑓𝐶𝐶𝑉𝐼(𝑤11,𝑤11𝑤22)

2
)𝑤11≠𝑤22,𝑤11,𝑤22∈𝑉𝐶𝑉𝐼
 

and 𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) = ∑ (
1+𝑡𝐵𝐶𝑉𝐼(𝑤11,𝑤22)−𝑓𝐵𝐶𝑉𝐼(𝑤11𝑤22)

2
)𝑤11,𝑤22∈𝐸𝐶𝑉𝐼
 

By definition of size of 𝐺𝐶𝑉𝐼, 𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) =

∑ (
1+𝑡𝐵𝐶𝑉𝐼(𝑤11,𝑤22)−𝑓𝐵𝐶𝑉𝐼(𝑤11𝑤22)

2
)𝑤11,𝑤22∈𝐸𝐶𝑉𝐼
≥ 𝑚𝑎𝑥{𝑑𝐺𝐶𝑉𝐼(𝑒1𝑉𝐼)/𝑒1𝑉𝐼 ∈ 𝐸𝐶𝑉𝐼} 

That is                               𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≥ 𝛩𝐶𝑉𝐼(𝐺𝐶𝑉𝐼)  (4) 

Also, in a CT-VFIGs, 𝐺𝐶𝑉𝐼 by 4.3 proposition  

𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≥ 𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼)  (5) 

From inequalities (3), (4) and (5),we obtained𝛿𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≤ 𝛩𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≤

𝑆𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≤ 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) 

 

5. Domination in CT-VFIGs 

Definition 5.1 

A edge 𝑒𝑉𝐼in an CT-VFIGs 𝐺𝐶𝑉𝐼 is called incidentally dominate edge if 

𝑡𝐶𝐶𝑉𝐼(𝑤11,𝑤11𝑤22) = 𝑚𝑖𝑛{𝑡𝐴𝐶𝑉𝐼(𝑤11), 𝑡𝐵𝐶𝑉𝐼(𝑤11, 𝑤22)}and 𝑓𝐶𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) =

𝑚𝑎𝑥{𝑓𝐴𝐶𝑉𝐼(𝑤11), 𝑓𝐵𝐶𝑉𝐼(𝑤11, 𝑤22)} 

Definition 5.2 

A edge 𝑒1𝑉𝐼  in an CT-VFIGs𝐺𝐶𝑉𝐼 dominates to edge 𝑒2𝑉𝐼 if they are incidentally 

dominate edges. 

Definition 5.3 

A  subset 𝑅𝐶𝑉𝐼  of 𝐸𝐶𝑉𝐼is said to be edge incidentally dominating set (EIDS) if for each 

edge 𝑒1𝑉𝐼 not in 𝑅𝐶𝑉𝐼 , 𝑒1𝑉𝐼 is  dominate at least one edge in 𝑅𝐶𝑉𝐼 .  

Definition 5.4 

A edge incidentally dominating set 𝑅𝐶𝑉𝐼  of the CT-VFIGs𝐺𝐶𝑉𝐼 is said to be a minimal 

EIDS of CT-VFIGs𝐺𝐶𝑉𝐼 if each edge in 𝑅𝐶𝑉𝐼 , the set𝑅𝐶𝑉𝐼 − {𝑒1𝑉𝐼} is not a  EIDS. 

Definition 5.5 

AEIDS with the lowest edge cardinality is called a minimum EIDS. The edge 

cardinality of a minimum EIDS is called edge incidentally dominating number of the 

CT-VFIGs𝐺𝐶𝑉𝐼It is denoted by 𝛾𝑉𝐼(𝐺𝐶𝑉𝐼) 

Example 5.6 

In figure 3, the incidentally dominating edges are {𝑒11}, {𝑒22}, {𝑒33}, {𝑒44},{𝑒55} , 

{𝑒66}and the EIDSs are 𝑆11 = {𝑒11𝑒22},𝑆22 = {𝑒11𝑒33},𝑆33 = {𝑒11𝑒44},𝑆44 =

{𝑒11𝑒55},𝑆55 = {𝑒11𝑒66},…….. After calculating the edge cardinality of 

𝑆11, 𝑆22, . 𝑆33, 𝑆44, . . . . .., we obtain |𝑆11| = 0.6,|𝑆22| = 0.6,|𝑆33| = 0.65,|𝑆44| =

0.6,|𝑆55| = 0.6,……. Theedge cardinality of a minimum EIDS is |𝑆11| = 0.6and 

𝛾𝑉𝐼(𝐺𝐶𝑉𝐼) = 0.6. 

Theorem 5.7 

Let 𝐺𝑉𝐼
1 = (𝐴𝑉𝐼𝑃

1 ,𝐵𝑉𝐼𝐿
1 , 𝐶𝑉𝐼𝐼

1 ) and 𝐺𝑉𝐼
2 = (𝐴𝑉𝐼𝑃

2 , 𝐵𝑉𝐼𝐿
2 ,𝐶𝑉𝐼𝐼

2 )  be two VFIGs. Then 

𝛾𝑉𝐼(𝐺𝐶𝑉𝐼) = 𝑚𝑖𝑛{𝐴𝑉𝐼𝑃
1 (𝑚11), 𝐴𝑉𝐼𝑃

2 (𝑛11)} where 𝑚11 ∈ 𝐺𝑉𝐼
1 and 𝑛11 ∈ 𝐺𝑉𝐼

2  

114



AN APPLICATION OF DOMINATION IN VAGUE FUZZY INCIDENCE GRAPHS  

 
 
Proof. Assume 𝐺𝑉𝐼

1 = (𝐴𝑉𝐼𝑃
1 , 𝐵𝑉𝐼𝐿

1 ,𝐶𝑉𝐼𝐼
1 ) and 𝐺𝑉𝐼

2 = (𝐴𝑉𝐼𝑃
2 , 𝐵𝑉𝐼𝐿

2 , 𝐶𝑉𝐼𝐼
2 ) are two VFIGs. 

Since 𝐺𝑉𝐼
1  and 𝐺𝑉𝐼

2  are two VFIGs, then 𝐺𝑉𝐼
1 𝛩𝐺𝑉𝐼

2  will be a VFIGs. So, each two edges 

in 𝐺𝑉𝐼
1 𝛩𝐺𝑉𝐼

2  will dominates remaining edges. Then by definition of EIDN, 

𝛾𝑉𝐼(𝐺𝐶𝑉𝐼) = 𝑚𝑖𝑛{𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑜𝑓(𝐴𝑉𝐼𝑃
1 (𝑚11), 𝐴𝑉𝐼𝑃

2 (𝑛11))}. 

Theorem 5.8 

Let 𝐺𝑉𝐼
1 = (𝐴𝑉𝐼𝑃

1 ,𝐵𝑉𝐼𝐿
1 , 𝐶𝑉𝐼𝐼

1 ) and 𝐺𝑉𝐼
2 = (𝐴𝑉𝐼𝑃

2 , 𝐵𝑉𝐼𝐿
2 ,𝐶𝑉𝐼𝐼

2 )  be two VFIGs with 

 𝑘 ≥ 2and 𝑙 ≥ 2, where 𝑘 and 𝑙are representing the number of vertices in 

𝐺𝑉𝐼
1  and 𝐺𝑉𝐼

2 , respectively. Then 
𝛾𝑉𝐼(𝐺𝐶𝑉𝐼)

2
=

𝑚𝑖𝑛{𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑜𝑓(𝐵𝑉𝐼𝐿
1 (𝑚11𝑚22), 𝐵𝑉𝐼𝐿

2 (𝑛11𝑛22))}. 

Proof. Consider𝐺𝑉𝐼
1 = (𝐴𝑉𝐼𝑃

1 , 𝐵𝑉𝐼𝐿
1 ,𝐶𝑉𝐼𝐼

1 ) and 𝐺𝑉𝐼
2 = (𝐴𝑉𝐼𝑃

2 , 𝐵𝑉𝐼𝐿
2 , 𝐶𝑉𝐼𝐼

2 ) are two VFIGs. 

Since 𝐺𝑉𝐼
1  and 𝐺𝑉𝐼

2  are VFIGs. Then 𝐺𝑉𝐼
1 𝛩𝐺𝑉𝐼

2  will also a VFIG with 
𝛾𝑉𝐼(𝐺𝐶𝑉𝐼)

2
=

𝑚𝑖𝑛{𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑜𝑓(𝐵𝑉𝐼𝐿
1 (𝑚11𝑚22), 𝐵𝑉𝐼𝐿

2 (𝑛11𝑛22))} because each two edges in 

𝐺𝑉𝐼
1 𝛩𝐺𝑉𝐼

2  dominates to all remaining edges. 

 

6. Strong and Weak Domination inCT-VFIGs 

Definition 6.1 

Let 𝐺𝐶𝑉𝐼 be a CT-VFIGs. For any two edges 𝑒1𝑉𝐼, 𝑒2𝑉𝐼 ∈ 𝐸𝐶𝑉𝐼,𝑒1𝑉𝐼 strongly dominates 

𝑒2𝑉𝐼 in CT-VFIGs𝐺𝐶𝑉𝐼 if  

(i) they are incidentally dominate edges 

(ii) 𝑑𝑒𝑔𝑡(𝑒1𝑉𝐼) ≥ 𝑑𝑒𝑔𝑡(𝑒2𝑉𝐼) , 𝑑𝑒𝑔
𝑓(𝑒1𝑉𝐼) ≤ 𝑑𝑒𝑔𝑓(𝑒2𝑉𝐼) 

Similarly 𝑒1𝑉𝐼 weakly dominates 𝑒2𝑉𝐼if  

(i) they are incidentally dominate edges 

(ii) 𝑑𝑒𝑔𝑡(𝑒2𝑉𝐼) ≥ 𝑑𝑒𝑔𝑡(𝑒1𝑉𝐼) , 𝑑𝑒𝑔
𝑓(𝑒2𝑉𝐼) ≤ 𝑑𝑒𝑔𝑓(𝑒1𝑉𝐼) 

Definition 6.2 

An edge incidentally dominating set 𝑅𝐶𝑉𝐼 ⊆ 𝐸𝐶𝑉𝐼 is called a strong (weak) edge 

incidentally dominating set (SEIDS,WEIDS) of 𝐺𝐶𝑉𝐼 if, for each 𝑒1𝑉𝐼 ∈ 𝐸𝐶𝑉𝐼 −𝑅𝐶𝑉𝐼 , 

there exist at least one edge 𝑒2𝑉𝐼 ∈ 𝑅𝐶𝑉𝐼 , so that 𝑒1𝑉𝐼 strongly (weakly) dominates 𝑒2𝑉𝐼. 

The strong (weak) edge incidentally domination number of 𝐺𝐶𝑉𝐼 denoted by 

𝛾𝑆𝑉𝐼(𝐺𝐶𝑉𝐼)𝛾𝑊𝑉𝐼(𝐺𝐶𝑉𝐼), is called as the minimum cardinality of a strong (weak) edge 

incidentally dominating set of 𝐺𝐶𝑉𝐼.      

Example 6.3 

In figure 3, the incidentally dominating edges are {𝑒11}, {𝑒22}, {𝑒33}, {𝑒44},{𝑒55} , 

{𝑒66}and the SEIDSs are 𝑆11 = {𝑒11𝑒22},𝑆22 = {𝑒11𝑒44},𝑆33 = {𝑒22𝑒33},𝑆44 =

{𝑒33𝑒44}. After calculating the edge cardinality of 𝑆11, 𝑆22, . 𝑆33, 𝑆44we obtain|𝑆11| =

0.6,|𝑆22| = 0.65,|𝑆33| = 0.6,|𝑆44| = 0.6. Theedge cardinality of a minimum SEIDS 

is |𝑆11| = 0.6and 𝛾𝑆𝑉𝐼(𝐺𝐶𝑉𝐼) = 0.6.The WEIDSs are 𝑆55 = {𝑒11𝑒55},𝑆66 =

{𝑒11𝑒66},𝑆77 = {𝑒33𝑒66}. After calculating the edge cardinality of 𝑆55 , 𝑆66, . 𝑆77we 

obtain|𝑆55| = 0.6,|𝑆66| = 0.6,|𝑆77| = 0.6Theedge cardinality of a minimum WEIDS 

is |𝑆55| = 0.6and 𝛾𝑊𝑉𝐼(𝐺𝐶𝑉𝐼) = 0.6. 

Theorem 6.4 

Let 𝐺𝐶𝑉𝐼 be a CT-VFIGs without single node and 𝑅𝐶𝑉𝐼  be a minimum SEIDS of 𝐺𝐶𝑉𝐼, 

then 𝐸𝐶𝑉𝐼 − 𝑅𝐶𝑉𝐼 is an SEIDS of CT-VFIGs. 
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Proof. Let 𝐺𝐶𝑉𝐼 be a CT-VFIGswith minimum SEIDS, then for each edge 𝑒2𝑉𝐼 ∈ 𝑅𝐶𝑉𝐼 , 

there is at least one edge 𝑒1𝑉𝐼 ∈ 𝐸𝐶𝑉𝐼 −𝑁𝐶𝑉𝐼 so that 𝑑𝑒𝑔𝑡(𝑒1𝑉𝐼) ≥

𝑑𝑒𝑔𝑡(𝑒2𝑉𝐼) , 𝑑𝑒𝑔
𝑓(𝑒1𝑉𝐼) ≤ 𝑑𝑒𝑔𝑓(𝑒2𝑉𝐼) and 𝑡𝐶𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) =

𝑚𝑖𝑛{𝑡𝐴𝐶𝑉𝐼(𝑤11), 𝑡𝐵𝐶𝑉𝐼(𝑤11, 𝑤22)}, 𝑓𝐶𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) =

𝑚𝑎𝑥{𝑓𝐴𝐶𝑉𝐼(𝑤11), 𝑓𝐵𝐶𝑉𝐼(𝑤11, 𝑤22)}. Hence 𝐸𝐶𝑉𝐼 − 𝑅𝐶𝑉𝐼  strongly dominates each edge 

of 𝑅𝐶𝑉𝐼 . So, 𝐸𝐶𝑉𝐼 −𝑅𝐶𝑉𝐼  is an SEIDS of CT-VFIGs. 

Theorem 6.5 

Let 𝐺𝐶𝑉𝐼 be a CT-VFIGs without single node and 𝑅𝐶𝑉𝐼  be a minimum WEIDS of 

𝐺𝐶𝑉𝐼, then 𝐸𝐶𝑉𝐼 −𝑅𝐶𝑉𝐼 is an WEIDS of CT-VFIGs. 

Theorem 6.6 

For any CT-VFIGs with 𝑡𝐶𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) = 𝑚𝑖𝑛{𝑡𝐴𝐶𝑉𝐼(𝑤11), 𝑡𝐵𝐶𝑉𝐼(𝑤11, 𝑤22)}and 

𝑓𝐶𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) = 𝑚𝑎𝑥{𝑓𝐴𝐶𝑉𝐼(𝑤11), 𝑓𝐵𝐶𝑉𝐼(𝑤11,𝑤22)} for all 𝑤11 ∈

𝑉𝐶𝑉𝐼 ,𝑤11𝑤22 ∈ 𝐸𝐶𝑉𝐼, then 𝛾𝑆𝑉𝐼 = 𝛾𝑊𝑉𝐼. 

Proof. Let 𝐺𝐶𝑉𝐼 be a CT-VFIGs with 𝑡𝐶𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) =

𝑚𝑖𝑛{𝑡𝐴𝐶𝑉𝐼(𝑤11), 𝑡𝐵𝐶𝑉𝐼(𝑤11, 𝑤22)}and 𝑓𝐶𝐶𝑉𝐼(𝑤11 ,𝑤11𝑤22) =

𝑚𝑎𝑥{𝑓𝐴𝐶𝑉𝐼(𝑤11), 𝑓𝐵𝐶𝑉𝐼(𝑤11, 𝑤22)}. Assume for every node have same or different 

value. Since 𝐺𝐶𝑉𝐼 is CT-VFIGs with 𝑡𝐵𝐶𝑉𝐼(𝑤11, 𝑤22) =

𝑚𝑖𝑛{𝑡𝐴𝐶𝑉𝐼(𝑤11), 𝑡𝐴𝐶𝑉𝐼(𝑤22)}and𝑓𝐵𝐶𝑉𝐼(𝑤11,𝑤22) = 𝑚𝑎𝑥{𝑓𝐴𝐶𝑉𝐼(𝑤11),𝑓𝐴𝐶𝑉𝐼(𝑤22)} for 

all 𝑤11, 𝑤22 ∈ 𝑉𝐶𝑉𝐼 and𝑡𝐶𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) =

𝑚𝑖𝑛{𝑡𝐴𝐶𝑉𝐼(𝑤11), 𝑡𝐵𝐶𝑉𝐼(𝑤11, 𝑤22)}and𝑓𝐶𝐶𝑉𝐼(𝑤11, 𝑤11𝑤22) =

𝑚𝑎𝑥{𝑓𝐴𝐶𝑉𝐼(𝑤11), 𝑓𝐵𝐶𝑉𝐼(𝑤11, 𝑤22)}for all 𝑤11 ∈ 𝑉𝐶𝑉𝐼 ,𝑤11𝑤22 ∈ 𝐸𝐶𝑉𝐼. Thus every 

𝑒1𝑉𝐼𝑒2𝑉𝐼 ∈ 𝐸𝐶𝑉𝐼 is SEIDS as well as WEIDS. Therefore 𝛾𝑆𝑉𝐼 = 𝛾𝑊𝑉𝐼. 

Theorem 6.7 

For a CT-VFIGs, the below inequalities are true. 

(i) 𝛾𝑉𝐼 ≤ 𝛾𝑆𝑉𝐼 ≤ 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) −𝑚𝑎𝑥 𝑖 𝑚𝑢𝑚𝑑𝐺𝐶𝑉𝐼𝑜𝑓𝐺𝐶𝑉𝐼. 

(ii) 𝛾𝑉𝐼 ≤ 𝛾𝑊𝑉𝐼 ≤ 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) −𝑚𝑖𝑛 𝑖𝑚𝑢𝑚𝑑𝐺𝐶𝑉𝐼𝑜𝑓𝐺𝐶𝑉𝐼.  

Proof. (i) From definition 6.1 and 6.2   we have 𝛾𝑉𝐼 ≤ 𝛾𝑆𝑉𝐼                                                         

(6) 

We know 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) = the sum of the incidence pair of CT-VFIGs. 

Also  𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) - not including the maximum 𝑑𝐺𝐶𝑉𝐼 of CT-VFIGs 

                        =𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) − 𝛩𝐶𝑉𝐼(𝐺𝐶𝑉𝐼)                                                                                    

(7) 

 From equation (6)    and   (7) 

𝛾𝑉𝐼 ≤ 𝛾𝑆𝑉𝐼 ≤ 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) −𝑚𝑎𝑥 𝑖 𝑚𝑢𝑚𝑑𝐺𝐶𝑉𝐼𝑜𝑓𝐺𝐶𝑉𝐼 

(ii) From definition 6.1 and 6.2 domination number 𝛾𝑉𝐼 ofCT-VFIGs is less than or 

equal to the  𝛾𝑊𝑉𝐼 of CT-VFIGs, because the edges of  WEIDS𝑀𝐶𝑉𝐼, it  weakly 

dominates any one of the edges of  𝐸𝐶𝑉𝐼 −𝑀𝐶𝑉𝐼. 

 Therefore    𝛾𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) ≥ 𝛾𝑉𝐼(𝐺𝐶𝑉𝐼)                                                                                            

(8) 

Also 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) -not including the minimum 𝑑𝐺𝐶𝑉𝐼 of CT-VFIGs 
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                               =𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) − 𝛿𝐶𝑉𝐼(𝐺𝐶𝑉𝐼)                                                                              

(9) 

From equation (8) and (9), we get  

𝛾𝑉𝐼 ≤ 𝛾𝑊𝑉𝐼 ≤ 𝑂𝐶𝑉𝐼(𝐺𝐶𝑉𝐼) − 𝑚𝑖𝑛 𝑖 𝑚𝑢𝑚𝑑𝐺𝐶𝑉𝐼𝑜𝑓𝐺𝐶𝑉𝐼 

 

 

7. Real-Life Application of CT-VFIGs 

An application of CT-VFIGs is included here. Consider two networks (CT-VFIGs) 

𝐺𝑉𝐼
1 and𝐺𝑉𝐼

2 , which have two and two vertices, respectively, and show distinct journal 

publications from different journals of a research filed. The vertices MS value 

indicates the percentage of accepted research papers in journal publishing, while the 

NMS value represents the rejected research papers. The MS value of the edges 

indicates that the journal publications are mutually collaborative, whereas the NMS 

value indicates that the journal publications are not mutually collaborative. The MS 

value of the incidence pairs represents the percentage of progress, whereas the NMS 

value represents the percentage of journal publications that have not progressed. As in 

figure 3 composition of 𝐺𝑉𝐼
1 and 𝐺𝑉𝐼

2  show the percentage of progress of journal 

publication 𝑚11with journal publications 𝑛11 and 𝑛22  has the maximum MS value 

and the percentage of non progress of journal publication 𝑚11 with journal 

publications 𝑛11 and 𝑛22  has the lesser NMS value. As a result, the best suited 

combinations of journal publications demonstrating the largest percentage of progress 

and the lowest percentage of non-progress in the research field exist. 

 

8. Comparative Analysis 

In figure 3, calculate the edge cardinality of each edge, we get all the edges have same 

value. In our study the edge degree cardinality of the CT-VIFGs |𝑑𝐺𝐶𝑉𝐼(𝑒1𝑉𝐼)| = 0.2 

and |𝑑𝐺𝐶𝑉𝐼(𝑒2𝑉𝐼)| = 0.3 are not all the same. It can be observed that the edge degree 

of the edges |𝑑𝐺𝐶𝑉𝐼(𝑒1𝑉𝐼)| = {0.9,2.4} shows the percentage of progress of journal 

publication 𝑚11 with journal publications𝑛11 and 𝑛22 has the maximum MS value 

and the percentage of non progress of journal publication 𝑚11with journal 

publications 𝑛11 and 𝑛22 has the lesser NMS value.  As a result, the current method is 

ineffective in determining which journal publications have the highest percentage of 

progress and the lowest percentage of non-progress. The current method is useful for 

single networks, but it is insufficient to explain the overall impact of different 

networks' products. However, we may use composition to discuss the overall impact of 

combining multiple networks in our strategy. Our technique works with several 

networks as well as a single network. This allows us to discuss the overall influence of 

various networks products. As a result, our proposed strategy outperforms the existing 

one. 

9. Conclusion 

CT-VFIGs are extremely useful tools for researching a variety of computational 

intelligence and computer science topics. CT-VFIGs are used in a variety of fields, 

including natural networks and operations research.Three new CT-VIFG concepts in 

this article EIDS, SEIDS, and WEIDS. In the CT-VFIGs, some advantageous and 
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instrumental theorems of domination are also explained. A study of the makeup of 

VFIGs in the field of research is also included. Our research into CT-VFIG coloring, 

Hamiltonian CT-VFIGs, and CT-VFIG chromaticity in the future. The results of 

future research on these concepts will be revealed in upcoming papers. 
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DOMINATION IN COMPLETE INTUITIONISTIC FUZZY 

INCIDENCE GRAPHS WITH APPLICATION 

 

K.KALAIARASI *, P.GEETHANJALI 

Abstract. In this exploration article, the possibility of Complete Intuitionistic 
Fuzzy Incidence Graphs (CIFIG). Degree cardinality, strong and weak 
domination for complete intuitionistic fuzzy incidence graphs is characterized. 
The author clarifies these ideas with some outline models. Besides, a use of 
domination for Complete Intuitionistic Fuzzy Incidence Graph (CIFIG) to 
choose the best treatment facility accessible hospital is talked about for the 
delineation. 
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KEYWORDS: Complete Intuitionistic Fuzzy Incidence Graph, Degree 
Cardinality, Strong Intuitionistic Fuzzy Incidence Domination 
Number(SIFIDN), Weak Intuitionistic Fuzzy Incidence Domination 
Number(WIFIDN). 
 

1. Introduction  

Zadeh[28] [30] [31] [32] have initiated fuzzy sets. Parvathi and Karunambigai[13] have 

initiated the idea ofIntuitionistic Fuzzy Graphs (IFGs). Gani and Begum [5] talked 

about the extension of fuzzy graphs. Products in IFGs were discussed by Sahoo & Pal 

[17].Sahoo and Pal [18,19] studied some types of fuzzy graphs. Sahoo et al [21] 

initatied new ideas in intuitionistic fuzzy graphs. Kalaiarasi and Mahalakshmi have 

also expressed fuzzy strong graphs [8].Shanmugavadivu  and Gopinath, suggested non 

homogeneous ternary five degrees equation [24]. Shanmugavadivu and Gopinath, 

have also expressed on the homogeneous five degree equation [25], Bozhenyuk et al[2] 

has talked about dominating set and Mapreduce Methodology for Elliptical Curve 

Discrete Logarithmic Problems [29]. 

Ore and Berge introduced the concept of domination in 1962. Cockayne and 

Hedetniemi have further studied about domination in graphs[6]. Somasundaram and 

Somasundaram have initiated domination in fuzzy graphs by making use of effective 

edges[23]. Xavior et al. [27] has talked about domination in fuzzy graphs but 

differently. Dharmalingam and Nithya have also expressed domination parameters for 

fuzzy graphs[3]. Equitable domination number for fuzzy graphs was introduced by 

Revathi and Harinarayaman in [16]. Sarala and Kavitha have also expressed (1,2)-

domination for fuzzy graphs[22]. Gani and Chandrasekaran have talked about strong 

arcs[12]. Sunitha and Manjusha have also expressed strong domination [26]. Kalaiarasi 

and Mahalakshmi  have also expressedfuzzy inventory EOQ optimization 

mathematical model [9]. Kalaiarasi and Gopinath  suggested fuzzy inventory order 

EOQ model with machine learning [10]. Fuzzy Incidence Graphs (FIGS) discussed by 

Dinesh [4]. Mordeson talked about incidence cuts in FIGS [11].Priyadharshini et 
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al.[18] have also expressed a fuzzy MCDM approach for measuring the business impact 

of employee selection [15]. 

The design of this articlein section 2 provides some preliminary results which are 

required to understand the remaining part of the article. In section 3 CIFIG is 

defined. In section 4 conveys meaning domination in CIFIG. In section 5 we examine 

Strong Intuitionistic Fuzzy Incidence Dominating Set (SIFIDS) and SIFIDN and 

Weak Intuitionistic Fuzzy Incidence Dominating Set (WIFIDS) and WIFIDN. In 

section 6 application of intuitionistic fuzzy incidence domination number is given. 

 

2. Preliminaries 

Definition 2.1[17] 

An intuitionistic fuzzy graph is of the form ),,,( IFIFIFIFIF EVG   where 

),(),,( 2121   IFIF  and 
 nIF xxxxV ,...,, 210

 such that 

 1,0:1 IFV  and  1,0:2 IFV  represent the degree of membership and 

non membership of the vertex ,11 IFVx   respectively and 10 21    for 

each 
),...2,1( niVx IFii 

,   1,0:1  IFIF VV  and 

  ),(;1,0: 221112 xxVV IFIF   and ),( 22112 xx  show the degree of 

membership and non membership of the edge ),( 2211 xx , respectively, such that 

 )(),(min),( 22111122111 xxxx     and 

 ,)(),(max),( 22211222112 xxxx   1),(),(0 2211222111  xxxx   

for every ),( 2211 xx . 

Definition 2.2[4] 

Assume  III EVG ,  is a graph. Then,  IIII IEVG ,,  is named as an 

incidence graph, where III EVI  . 

Definition 2.3[4] 

Assume 
 FSFSFS EVG ,

 is a graph, FS
 is a fuzzy subset of FSV

, and FS
 is a 

fuzzy subset of FSFS VV 
. Let FS

 be a fuzzy subset of FSFS EV 
. If 

 )(),(min),( 221111221111 wwwwww FSFSFS  
 for every 

FSFS EwwVw  221111 ,
, then FS

 is a fuzzy incidence of FSG
. 

Definition 2.4[4] 

Assume IG  is a graph and  II  ,  is a fuzzy sub graph of IG . If I  is a fuzzy 

incidence of IG , then ),,( IIIIG   is named as FIG of IG .                                           

Definition 2.5[7] 

190



DOMINATION IN COMPLETE INTUITIONISTIC FUZZY INCIDENCE.. 

 
 
An intuitionistic fuzzy incidence graph(IFIG) is of the form 

),,,,,( FIFIFIFIFIFIFI IEVG   where 

 212121 ,),,(),,(   FIFIFI  and 

 nFI xxxxV ,...,, 210
 such that  1,0:1 FIV  and  1,0:2 FIV

represent the degree of membership and non membership of the vertex ,11 FIVx   

respectively and 10 21    for each 
),...2,1( niVx FIii 

,  

 1,0:1  FIFI VV  and   ),(;1,0: 221112 xxVV FIFI   and

),( 22112 xx  show the degree of membership and non membership of the edge 

),( 2211 xx , respectively, such that  )(),(min),( 22111122111 xxxx     and 

 ,)(),(max),( 22211222112 xxxx   1),(),(0 2211222111  xxxx   

for every ),( 2211 xx .  1,0:1  FIFI EV  and 

  ),(;1,0: 22111112 xxxEV FIFI   and ),( 2211112 xxx  show the degree 

of membership and non membership of the incidence pair respectively, such that

 )(),(min),( 221111112211111 xxxxxx    and 

 ,)(),(max),( 221121122211112 xxxxxx  

1),(),(0 22111122211111  xxxxxx   for every ),( 221111 xxx . 

 

3. Complete Intuitionistic Fuzzy Incidence Graph 

Definition 3.1 

The support of IFIG  TSRGFI ,,  is supp )( FIG ={supp(R),supp(S),supp(T)} so 

that  supp(R)=  0)(,0)(/ 11211111  xxx   

supp(S)=  0)(,0)(/ 22112221112211  xxxxxx   

               supp(T)=   0),(,0),(/, 22111122211111221111  xxxxxxxxx   
  ,  and 

 are representing support of ,  and   respectively. 

Definition 3.2 

A IFIG is said to be complete intuitionistic fuzzy incidence graphif 

 )(),(min),( 221111112211111 xxxxxx    and 

 ,)(),(max),( 221121122211112 xxxxxx     for each 
 ),(),,( 22111122211111 xxxxxx . 

Remark 3.3 

Every CIFIG is a IFIG but not conversely. 
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Definition 3.4 

Assume ),,( IFIIFIIFIIFIG   is a CIFIG. Then  











 


IFIVxxxx
IFI

xxxxxx
GO

22112211 ,

22111122211111

2

),(),(1
)(



  is called 

order of IFIG  and 











 






2211
2

)()(1
)( 2211222111

xx
IFI

xxxx
GS

 is called 

size of IFIG  

 

4. Domination in CIFIGs 

 

Definition 4.1 

Definition 4.1 

A vertex 11x  in aCIFIG dominates to vertex 22x if 

 )(),(min),( 221111112211111 xxxxxx   and

 )(),(max),( 221121122211112 xxxxxx   . 

 

Remark 4.2 

For any IFIVxx 2211, , if 11x  dominates 22x  then 22x  also dominates 11x . 

Definition 4.3 

A set IFIIFI VM   is a intuitionistic fuzzy incidence dominating set (IFIDS) if each 

nodes in IFIIFI MV   is dominated by atleast one node in IFIM . 

Definition 4.4 

The lowest intuitionistic fuzzy incidence cardinality of a IFIDSis uttered as the 

intuitionistic fuzzy incidence domination number and it is represented by 

)( IFIIFI G  or IFI . 

Definition 4.5 

Consider ),,,,,( IFIIFIIFIIFIIFIIFIIFI IEVG   is an CIFIG and IFIVx 11  

then its degree is expressed by 
 )(),( 112111)( 11

xdxdd
IFIIFIIFI GGxG 

 and 

represented by IFIxxG Ixxxxd
IFI

  ),()( 221111,111 2211 and

   IFIxxG Ixxxxd
IFI

),()( 221111,112 2211  
 

5. Strong and Weak Domination in CIFIGs 

Definition 5.1 

192



DOMINATION IN COMPLETE INTUITIONISTIC FUZZY INCIDENCE.. 

 
 

Let IFIG  be aCIFIG. Then the degree cardinality of 
)( 11xd

IFIG  is representedto be 

2

)()(1
)( 112111

11

xdxd
xd IFIIFI

IFI

GG
G




 . The lowest degree cardinality of 

IFIG  is defined by 
}/)(min{)( 1111 IFIGIFI VxxdG

IFI


 and highest degree 

cardinality of IFIG  is defined by 
}/)(max{)( 1111 IFIGIFI VxxdG

IFI


. 

Definition 5.2 

Assume IFIG is a CIFIG and let 11x and 22x be the nodes of IFIG . Then 11x

strongly  dominates 22x or 22x  weakly dominates 11x if 
)()( 2211 xdxd ii 

 and 

 )(),(min),( 221111112211111 xxxxxx   ,

 )(),(max),( 221121122211112 xxxxxx   . 

We call 22x strongly dominates 11x  or 11x  weakly dominates 22x  if

)()( 1122 xdxd ii 
and  )(),(min),( 221112212211221 xxxxxx   ,

 )(),(max),( 221122222211222 xxxxxx    
Definition 5.3 

A set IFIIFI VS   is a  SIFIDS if every vertex in IFIIFI SV   is strongly fuzzy 

incidence dominated by atleast one vertex in IFIS . Similarly, IFIS  is labeled a 

WIFIDS if every vertex in IFIIFI SV   is weakly fuzzy incidence dominated by at least 

one vertex in IFIS . 

Definition 5.4 

The lowest intuitionistic fuzzy incidence cardinality of a SIFIDS is uttered as the 

SIFIDN and it is represented by 
)( IFISIFI G

 or SIFI
 and the lowest intuitionistic 

fuzzy incidence cardinality of a WIFIDS is uttered as the WIFIDN and it is 

represented by 
)( IFIWIFI G

 or WIFI
 

Example 5.5 
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Fig: 1CIFIG with 
5.0SIFI

 and 
4.0WIFI

 

Assume ),,( IFIIFIIFIIFIG   is anCIFIG given in above figure having   

),,( 332211 xxxVIFI  and 

)5.0,4.0()( 11 x , )3.0,5.0()( 22 x ,
)6.0,3.0()( 33 x

, 

)5.0,4.0(),( 2211 xx ,
)6.0,3.0(),( 3322 xx

,
)6.0,3.0(),( 1133 xx

 

)5.0,4.0(),( 221111 xxx , )5.0,4.0(),( 221122 xxx ,

)6.0,3.0(),( 332222 xxx
,

)6.0,3.0(),( 332233 xxx
,

)6.0,3.0(),( 331111 xxx
,

)6.0,3.0(),( 331133 xxx
 

Assume
 33xDIFI  . We have  2211, xxDV IFIIFI  . Here 33x

 weakly fuzzy 

incidence dominates 2211, xx  because 
2.0)( 33 xd

IFIG is less than the IFIGd
of all 

the remaining vertices. That is 
3.0)( 11 xd

IFIG , 
3.0)( 33 xd

IFIG . There is no 

other weak intuitionistic fuzzy incidence dominating sets. Thus the only weak 

intuitionistic fuzzy incidence dominating set is 
 33xDIFI  . Therefore 

4.0WIFI
. We have strong IFIDS is   11xDIFI   with

5.0SIFI
. 

Theorem 5.6 

For anyCIFIG with  )(),(min),( 221111112211111 xxxxxx    and 

 )(),(max),( 221121122211112 xxxxxx    for all 

IVIIFI ExxVx  221111 ,
, then 
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(i) WIFISIFI  
 

(ii) WIFISIFI  
 

Proof 

Let ),,( IFIIFIIFIIFIG   be a CIFIG with 

 )(),(min),( 221111112211111 xxxxxx    and

 )(),(max),( 221121122211112 xxxxxx   . Assume for all IFIVx 11 ,

 )(),( 112111 xx  have samevalue. Since IFIG  is CIFIG with 

 )(),(min)( 22111122111 xxxx     and 

 )(),(max)( 22211222112 xxxx    for all IFIVxx 2211,  and 

 )(),(min),( 221111112211111 xxxxxx   and

 )(),(max),( 221121122211112 xxxxxx    for all 

IVIIFI ExxVx  221111 ,
. Thus every IFIVx 11  is SIFIDS as well as WIFIDS. 

Therefore SIFIWIFI  
. 

Assume for all IFIVx 11 ,  )(),( 112111 xx   have different value . In a CIFIG 

with 
)()( 2211 xdxd

IFIIFI GG 
 from all the nodes one of them strongly dominates 

all the remaining nodes, if it is smallest among all the nodes then the IFIDS with that 

node is called WIFIDN, that is 
 )(),( 112111 xxWIFI  

 with 

)()( 2211 xdxd
IFIIFI GG 

 for all IFIVxx 2211, and 

 )(),(min),( 221111112211111 xxxxxx   and

 )(),(max),( 221121122211112 xxxxxx    for all 

IVIIFI ExxVx  221111 ,
. Certainly, the strong IFIDS has a node set other than 

the that node set. This implies WIFISIFI  
. 

Theorem 5.7 

For a CIFIG, the below inequalities are true. 

(i) IFIGIFISIFIIFI GofdimumGO
IFI

max)(  
. 

(ii) IFIGIFIWIFIIFI GofdimumGO
IFI

min)(  
.  

Proof 

(i) From definition 5.2, 5.3 and 5.4    we have SIFIIFI  
(1) 

We know )( IFIGO =the sum of the incidence pair ofCIFIG. 
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Also )( IFIGO  not including the maximum IFIGd
ofCIFIG 

 = )()( IFIIFI GGO   (2) 

From equation (1)    and   (2) 

IFIGIFISIFIIFI GofdimumGO
IFI

max)(  
 

(ii) From definition 5.2, 5.3 and 5.4 domination number IFI  ofCIFIG is less than 

or equal to the  WFII
 ofCIFIG, because the vertices of WIFIDS IFIM , it  weakly 

dominates any one of the vertices of  IFIIFI MV  . 

 Therefore
)()( IFIIFIIFIWIFI GG  

(3) 

Also )( IFIGO not including the minimum IFIGd
of CIFIG 

 = )()( IFIIFI GGO   (4) 

From equation (3) and (4), we get  

IFIGIFIWIFIIFI GofdimumGO
IFI

min)(  
. 

 

6. Application 

Here,  incorporate an every day life model. Assume there are five multispeciality 

clinics are working (24 hours) in a city for giving crisis treatment to individuals. Here 

in our examinationwe are not referencing the original names of these clinics in this 

manner think about the clinics 332211 ,, hhh
, 44h  and 55h

. InCIFIGs, the vertices 

show the clinics and edges show the contract conditions between the clinics to share 

the facilities. The incidence pairs show the transferring of patients from one clinic to 

another because of the lack of resources.The vertex )6.0,4.0(11h means that it has 

40% of the necessary facilities for treatment and unfortunately lacks 60% of the 

equipment. The edge )86.0,14.0(2211hh  shows that there is only 14% of the 

interaction and relationship between the two clinics, and due to financial issues, there 

is 86% on the conflict between them.IFIDS ruling arrangements of the graph is the 

arrangement of clinics which give the crisis treatment autonomously. Along these 

lines, we can save the time of patients and conquer the long going of patients by giving 

the couple of offices to the remainder of the clinics. 

Assume ),,,,,( IFIIFIIFIIFIIFIIFIIFI IEVG   is a CIFIG show in figure 

having  
),,,,( 5544332211 hhhhhVIFI  and )6.0,4.0()( 11 h ,

)86.0,14.0()( 22 h ,
)48.0,52.0()( 33 h

, 
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)76.0,24.0()( 44 h
,

)76.0,24.0()( 55 h
, )86.0,14.0(),( 2211 hh ,

)6.0,4.0(),( 3311 hh
, )76.0,24.0(),( 4411 hh , 

)76.0,24.0(),( 4433 hh
,

)76.0,24.0(),( 5544 hh
 

)86.0,14.0(),( 221111 hhh , )86.0,14.0(),( 221122 hhh ,

)6.0,4.0(),( 331111 hhh
,

)6.0,4.0(),( 331133 hhh
,

)76.0,24.0(),( 441111 hhh , )76.0,24.0(),( 441144 hhh ,

)76.0,24.0(),( 443333 hhh
,

)76.0,24.0(),( 443344 hhh
,

)76.0,24.0(),( 554444 hhh
,

)76.0,24.0(),( 554455 hhh
 

Example 6.1 

 

Fig: 2CIFIG with 38.0IFI  

In figure having intuitionistic fuzzy incidence dominating set are  4422,hhDIFI   

and 38.0IFI . 

This shows that patients can visit any one of the clinics from this set. The rest of the 

clinics upgrade their facilities to provide better treatment to the people. 

 

9. Conclusion 

The idea of domination in CIFIGs is imperative from religious just as an applications 

perspective. In this paper, the possibility of complete intuitionistic fuzzy incidence 

graph, strong and weak intuitionistic fuzzy incidence dominating set and strong and 

weak intuitionistic fuzzy incidence domination number is talked about. Further work 

on these thoughts will be accounted for in impending papers. 
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INTRODUCTION 
 
Graph theory has now become a major branch of applied 
mathematics due to its large variety of applications and 
effectiveness. Graph theory is a widely used tool for solving 
combinatorial problems in different areas such as geometry, 
algebra, number theory, topology, optimization and computer 
science. In models, when we have an uncertainty about either 
the set of vertices or the set of edges or both, the models 
becomes a fuzzy graph. Currently, the theory of fuzzy graphs is 
an intense area of research. Fuzzy graphs differ from the 
classical ones in several ways, among them the m
one is connectivity. Distance and central concepts also play 
important roles in applications related with fuzzy graphs.
Rosenfeld (1975) gave a mathematical definition for a fuzzy 
graph in 1975. Bhattacharya (1987) had established some 
connectivity concepts regarding fuzzy cutnodes and fuzzy 
bridges. Bhutani (1989) had studied automorphisms on fuzzy 
graphs and certain properties of complete fuzzy graphs. 
Pathinathan and Jesintha Rosline (2014) defined relationship 
between different types of arcs in both regular 
regular fuzzy graph. Sunil Mathew and Sunitha 
Mathew, 2009; Sunitha, 1999; Sunitha, 2002; 
introduced many connectivity concepts in fuzzy graphs. 
Kalaiarasi (2011) defined Optimization of fuzzy integrated 
vendor-buyer inventory models. 
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ABSTRACT 

In a fuzzy graph, the arcs are mainly classified in to α, β and δ. In this paper, some arc sequences in 
fuzzy graphs are introduced, whose concept are based on the classification of arcs. Besides complete 
in fuzzy graphs, regular in fuzzy graph are obtained. It is shown that 

-one sequence, δ-arc sequence of a regular fuzzy graph is a zero sequence.

This is an open access article distributed under the Creative Commons Att
use, distribution, and reproduction in any medium, provided the original work is properly cited. 
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important roles in applications related with fuzzy graphs.
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In this article, the concept of arc 
discussed. These concepts are derived from the notion of 
connectivity in fuzzy graphs. Also a comparative study is made 
between regular and totally regular fuzzy graphs with reference 
to different types of arc sequence in fuzzy
necessary condition for a graph to be regular or totally regular 
is formulated in terms of arc-sequence
 
2. Preliminaries 
 
Definition 2.1 
 

A fuzzy graph G  is a pair of function 

fuzzy subset of a non empty set 

relation on . The underlying crisp graph of

denoted by ),(: EVG  where

 
Definition 2.2 
 
A fuzzy graph G  is complete if 

Vvu , , where uv  denotes the edge between 

 
Definition 2.3 
 
The strength of connectedness between two nodes 

is defined as the maximum of the strengths of all paths between 
x and y  and is denoted by CONN
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In this article, the concept of arc sequence in fuzzy graphs are 
discussed. These concepts are derived from the notion of 
connectivity in fuzzy graphs. Also a comparative study is made 
between regular and totally regular fuzzy graphs with reference 
to different types of arc sequence in fuzzy graphs. Also a 
necessary condition for a graph to be regular or totally regular 

sequence 

is a pair of function ),(: G  where   is a 

subset of a non empty set V and   is a symmetric fuzzy 
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VVE  . 
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Abstract

The concept of connectivity plays an important role in both theory and
applications of fuzzy graphs. Depending on the strength of an edge, this paper
classifies edge sequence of a fuzzy graph in to different types. We analyze the
relation between different types of edge sequence in both pseudo regular and
totally pseudo regular fuzzy graphs. Also we identify strong edge sequence in
pseudo regular fuzzy graph.

AMS Subject Classification: 05C12, 03E72, 05C72
Key Words and Phrases: Pseudo regular fuzzy graph, Totally pseudo

regular fuzzy graph, α - edge sequence, β - edge sequence, δ - edge sequence,
Strong edge sequence.

1 Introduction

Euler in 1736 first introduced the concept of graph theory. Fuzzy graph theory is finding
numerous application in the fields of information theory, neural network, expert systems,
cluster analysis, medical diagnosis, control theory ect. Fuzzy set theory was first in-
troduced by Zadeh in 1965 [19]. The first definition of fuzzy graph was introduced by
Haufmann in 1973 based on Zadeh’s fuzzy relations in 1971. In 1975, A.Rosenfeld [16]
introduced the concept of fuzzy graphs. Sunil Mathew and Sunitha [10] defined different
types of arcs in fuzzy graphs and using them classified fuzzy graphs. Pathinathan and
Jesintha Rosline [15] defined relationship between different types of arcs in both regular
and totally regular fuzzy graph. Santhi Maheswari and Sekar [17] introduced on pseudo
regular fuzzy graphs. Butani and Rosenfeld [2] have introduced the concept of strong arcs.
Kalaiarasi [8] defined Optimization of fuzzy integrated vendor-buyer inventory models.
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Abstract 

  In this article, the perception of strong domination constant number is introduced by 

using membership values of strong arcs in fuzzy graphs. The strong domination constant number  

sc   of pseudo regular fuzzy graph and complete fuzzy graph is determined. Further the 

relationship between the strong domination constant number of a pseudo regular fuzzy graph and 

complete fuzzy graph are discussed and theorems related to these concepts are stated and proved.  

  

Keywords: 

 Pseudo regular fuzzy graph, Totally pseudo regular fuzzy graph, Complete fuzzy graph, 

Strong arcs, Weight of arcs, Strong domination constant number. 
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Abstract:  In this article, we generalize the concept of strong and weak domination in intuitionistic fuzzy graph and we 

introduced a definition of weight of strong dominating set using strong arcs and weight of weak dominating set using weak arcs of 

intuitionistic fuzzy graphs. We determine the strong domination number )(GSIFG  and weak domination number  )(GWIFG  

for several classes of intuitionistic fuzzy graphs and some theorems are discussed.  

 

 Keywords: Intuitionistic fuzzy graph, Strong arcs, Weak arcs, Weight of arcs, Strong domination  number, Weak domination  

number. 

1.Introduction 

 In 1983 Atanassov [2] introduced the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets [9] . 

Atanassov added a new component (which determines the degree of non-membership) in the definition of fuzzy set. The fuzzy 

sets give the degree of  membership of an element in a given set ( and the non-membership degree equals one minus the 

degree of membership), while intuitionistic fuzzy sets give both a degree of membership and a degree of non-membership 

which are more –or-less independent from each other, the only requirement is that the sum of these two degrees is not greater 

than 1.  Intuitionistic fuzzy sets have been applied in a wide variety of fields including computer science, engineering, 

mathematics, medicine, chemistry and economics[1,3]. 

 Atanassov [1] introduced the concept of intuitionistic fuzzy relations and intuitionistic fuzzy graphs, and further 

studied in [8]. In  this article, we introduce the notion of strong and weak domination in intuitionistic fuzzy graphs. We 

discuss strong domination number and  weak domination number in intuitionistic fuzzy graphs. 

2.Preliminaries 

Definition 2.1 

 An intuitionistic fuzzy graph (IFG) is of the form ),(: EVG  where  

(i) },...,,{ 21 nvvvV   such that ]1,0[:1 V  and ]1,0[:1 V  denote the degree of membership and non 

membership of the element  Vvi   respectively and 1)()(0 11  ii vv   for every 

),....,2,1( niVvi   

(ii) VVE   where ]1,0[:2 VV  and ]1,0[:2 VV  are such that 

      ))(),(min(),( 112 jiji vvvv    

      ))(),(max(),( 112 jiji vvvv    

             and  1),(),(0 22  jiji vvvv   for every  ),...,2,1,(,),( njiEvv ji   

Definition 2.2 

 If  GVvv ji , , the  - strength of connectedness between iv  and jv  is 

},....,2,1\),(sup{),( 22 nkvvvv ji

k

ji    and   - strength of connectedness  between iv  and jv  is 

},....,2,1\),(inf{),( 22 nkvvvv ji

k

ji   . 
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Abstract:   In this article, we introduce the notion of mixed intuitionistic fuzzy graph, square mixed intuitionistic fuzzy  graph and we 

define direct product, semi-strong product and semi product. In addition we investigated many interesting results regarding the concept. 

Finally we define dual strong domination number and some theorems  are discussed. 

 Keyword:  Mixed intuitionistic fuzzy graph, Square mixed intuitionistic fuzzy graph ,Direct product, Semi-strong product, Semi-product, 

Weight of dual strong dominating set, Dual strong domination  number . 

1.Introduction 

 In 1975, Rosenfield [11]discussed the concept of the fuzzy graph, the basic idea of which was 

introduced by Kauffman [8] in 1973. The fuzzy relations between fuzzy sets were also considered by 

Rosenfield, he developed the structure of fuzzy graphs and obtained analogues of several graphs theoretical 

concepts. The first definition of intuitionistic fuzzy relations and intuitionistic fuzzy graphs were introduced 

by Atanassov (1999), and further studied in (2009). Different types of intuitionistic fuzzy graphs and their 

applications can be found in several papers. Parvathi and Thamizhendhi (2010) introduced the concept of 

domination number in intuitionistic fuzzy graphs. 

 In this paper, direct product of two mixed intuitionistic fuzzy graphs, semi-strong product and semi 

product of two square mixed intuitionistic fuzzy graphs are defined, and many interesting results involving 

these concepts are investigated. Moreover, we defined dual strong domination number and investigated their 

many interesting results.  

2.Preliminaries 

Definition 2.1 

 An intuitionistic fuzzy graph (IFG) is of the form ),(: EVG  where  

(i) },...,,{ 21 nvvvV =  such that ]1,0[:1 →V  and ]1,0[:1 →V  denote the degree of membership and 

non membership of the element Vvi  respectively and 1)()(0 11 + ii vv   for every 

),....,2,1( niVvi =  

(ii) VVE   where ]1,0[:2 →VV  and ]1,0[:2 →VV  are such that 
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Abstract 

In this paper we study different concepts like vertex squared interval-valued fuzzy graph, 

vertex squared cardinality, vertex squared independent set, n-split dominating set, n-split 

domination number. We likewise, investigate a relationship between n-split dominating set and 

vertex squared independent set for vertex squared interval-valued fuzzy graphs. 

1. Introduction 

Fuzzy graphs differ from the classical ones in several ways, among them 

the most prominent one is connectivity. Distance and central concepts 

additionally assume important parts in applications related to fuzzy graphs. 

In 1965 Lotfi. A. Zadeh initiated fuzzy sets and later in 1983 Krassimir T. 

Bhattacharya [3] has discussed fuzzy graphs. Kalaiarasi and Mahalakshmi 

have also expressed fuzzy strong graphs [10]. 
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