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ABSTRACT

Number theory, known as queen of Mathematics has got many interesting topics.
Thought number theory deals with integers in the beginning, it has branched into the field
of rational numbers. Some of the fractal sequences in number theory are Sterm — Brocot

sequence and Farey sequences.

In Real Analysis Cantor sets are unique in nature. It is probably, the best known
example of a perfect nowhere-dense set in the real line. The Cantor set plays a very
important role in many branches of mathematics. It has many definitions and many
different constructions. Although Cantor originally provided a purely abstract definition,
the most accessible is the Cantor “middle-thirds” or ternaryset construction beginning with

the closed real interval [0,1]. In general, The Cantor Middle (2m — 1)t set Cyp_1,

(m-n"

where m > 2 contains the endpoints of all 2™ intervals, each of length el

The Farey sequence of order n is the sequence of completely reduced fractions
between 0 and 1 whose lowest terms have denominators less than or equal to n, arranged
in order of increasing size. The Farey fractions are irreducible fractions, reduced fractions
or fractions in lowest terms between 0 and 1 with denominators less than or equal to some
given value. When these fractions are arranged in increasing order the result is the Farey
sequence. The maximum denominator is called the order of the sequence E,, where n

denotes its order. Depending on how the sequence is to be used, one or the other or both
of the end points g and % may be excluded. Unless noted otherwise, we will always include

both the end points.

The study of measures and their application to integration is called measure theory.
Measure concept may be a stronger assumption of countable additivity. Measure concept

involves o-algebras, measures, measurable features and integrals. Integration inside the



context of measure theory entails analogous sums and is based on capabilities consistent

on sets of a few g-algebras.
Extraction of Cantor sets from Farey sequences are already studied.

This thesis entitled “An Analysis of Various Measures of Farey and Cantor

Sets” consists of six chapters.

CHAPTER I
This chapter provides the historical background and necessary literature survey for
Farey sequences and Cantor set of odd order. Also measures like Lebesgue measure and

Probability measure have a brief introduction.

CHAPTER Il

This chapter has four sections. In section 2.1 Cantor Hexnary Sets, in section 2.2
Cantor Deca Sets, in section 2.3 Cantor Octanary Sets and in section 2.4 Cantor Dodeca
Sets are developed.

Various patterns of removal of intervals are analyzed here.

CHAPTER I11

A subsequence of Farey sequence, Fy ,Farey N — subsequence has been established
as a topological space and a Hausdorff space by appropriately defining basis and open
sets. Also the T;axiom has been discussed with an illustration. Here sequences are

considered as sets.

This chapter provides two sections. In section 3.1 Farey sequence has been proved
as a Topological Space and in section 3.2 Farey sequence with a slight change in the

basis has been developed as a Hausdorff space .



CHAPTER IV

A Non Reduced Farey N-subsequence, a subsequence of Farey sequence consists
of rational numbers with same denominator in [0, 1]. By reconstructing the non reduced
Farey N — subsequence it can be established as a o- algebra and its Lebegue Measure has

been found. Non —Reduced Farey N - subsequence of even order has been studied.

CHAPTER V

This chapter is divided into two sections.Section 5.1 gives Probability Measure of
Generalized Non - Reduced Farey N- Subsequence and the other section 5.2 is on
Invariant Measure of Generalized Non - Reduced Farey N- Subsequence. An attempt has
been to provide a theorem on the Probability measure of the Generalized Non reduced

Farey N — subsequence.

CHAPTER VI

This chapter deals with the Box Measure of Modified even ordered Cantor
sets.While calculating box measure, boxes without dimensions are used in general but
here, boxes are replaced by isosceles triangles and their areas are considred as measures.

This chapter is divided into four sections.

Section 6.1 deals with Measure of Cantor Hexnary Sets and Section 6.2 is on
Measure of Cantor Deca Sets.Varying from the previous section, section 6.3 provides a
measure for Cantor Octanary Sets and following the similar lines Section 6.4 gives a

measure of Cantor Dodeca Sets.
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CHAPTER - |

INTRODUCTION

Number theory is one of the oldest branches of Mathematics. Numbers were used
for keeping records and for commercial transactions for over 5000 years before anyone
thought of studying numbers themselves in a systematic way. Dickson always said
“Mathematics is the queen of science and that the theory of numbers is the Queen of

Mathematics” [30].

The theory of numbers is concerned with properties of  integers and more
particularly with positive integers 1, 2, 3, 4, ...The number theory is nothing but study of
the whole numbers and integer-valued functions. The origin of this misnomer harks back
to the early Greeks when the word “number” meant positive integer and nothing else. The
number theory has always occupied unique position within the planet of
Mathematics. The more established term for number theory is arithmetic. By the early
twentieth century, it had been superseded by “number theory” [40].This is often because
of the unquestioned historical importance of the subject. Like Dickson German
Mathematician Carl Friedrich Gauss also said, “Mathematics is the queen of the sciences

and number theory is the queen of Mathematics” [31].

Number theory analyses the properties of integer systems in spite of their
apparent complexity. Integers are often considered either in themselves or as solutions
to equations. The natural numbers have been known to us for so long that the mathematician
Kronecker once remarked, “God created the natural numbers, and all the rest is the work of

man”. Far from being a gift from Heaven, number theory has a long and sometimes painful



evolution [12,13,20]. In number theory concepts are often best understood through study
of analytical objects that encode properties of the whole numbers, primes or other
number-theoretic objects in some fashion. Real numbers may be studied in reference to

rational numbers.

Number theory has many subdivisions such as Algebraic number theory,
Analytic number theory, Probabilistic number theory, Computational number theory,

etc.

The theory of numbers has always occupied unique position in the world of
mathematics. It is especially entitled to a separate history on account of the greatness
attached to it, continuously through the centuries, from the time of Pythagoras [4, 5].
Regarding the true origin of the theory of numbers: It seems probable that the Greeks were
largely indebted to the Babylonians and ancient Egyptians for a core of information about
the properties of the natural numbers, the first rudiments of an actual theory are generally
credited by Pythagoras and his disciples. The Pythagoreans believed that the key to an
explanation of the universe lay in number and form their general thesis that “Everything is

number”. [6,7,11,15,23].

As the mathematician Sierpinski once said, “The progress of our knowledge of
numbers is advanced not only by what we already know about them, but also by realizing
what we yet to not know about them”. It is a fact that the natural numbers 1,2,3,4,5, ... are
closed under addition and  multiplication, and that the integers
w,—5,—4,-3,-2,-1,0,1,2,3,4,5,... are closed under addition, multiplication and

subtraction but neiither of these sets is closed under division. The entire collection of such



fractions constitutes the rational numbers. Thus a rational number a number which can be

put in the form %, where ‘a’and ‘b’ are integers and 'b’ is not zero [9,19,21,22].

The Egyptians worked only with unit fractions, fractions with numerator equal to
one, known also as Egyptian fractions .Their problem was to write any given common

fraction as a sum of different unit fractions.

In algebraic number theory an irrational number is any complex quantity that is
an answer to some polynomial equation f(x) = 0 with rational co-efficients. Algebraic
number theory studies irrational number fields [35]. Number fields are often studied as
extensions of smaller number fields, a field L is claimed to be an extension of a field K

if L containsK.

In analytic number theory, the number theory problem has brought light and
elegance to this field, especially to the problem of the distribution of prime numbers.
Through the centuries, an outsized sort of tools has been developed to understand a better

understanding of this particular problem [8, 41].

In Probabilistic number theory, the study of variables that are almost mutually

independent is often seen as a crucial special case [45].

Computational number theory, also referred to as algorithmic number theory, is
the study of computational methods to analyze and solve problems in number theory.
The theory of Computational number has cryptography applications and is used in
number theory to research conjectures and open problems, including the Riemann

hypothesis [45].



Number theory is not a systematic study of mathematics but also a popular
diversion, it is part of recreational mathematics, including numerical curiosities and
puzzle solving [22]. The dimension of number theory is not emphasized, unless the
questions are related to general propositions. A comprehensive analysis of the theory is
definitely beneficial for someone looking into recreational mathematics problems [22,

10].

Proofs within the principle of numbers rely on many exclusive thoughts and
methods. Of these, special attention may be given to principle of mathematical induction
[44]. If the important numbers are necessary for the study of rational numbers from the
standpoint of their size, the p-adic numbers play a totally analogous role in question
connected with divisibility by powers of the prime p [44]. The analogy between real and
p-adic numbers is often developed in other ways. The p-adic numbers are
often constructed ranging from the rational numbers, in just an equivalent way that the

important numbers are constructed by adjoining the bounds of Cauchy sequences [44].

The most rudimentary class of polygonal numbers described by the early
Pythagoreans was that of the oblong numbers. The nt* oblong number, denoted by 0,,, is
given by n (n + 1) and represents the number of focuses in a rectangular array having n +

1 row and n columns [29].

Number theory has long been a favourite subject for students and teachers of
mathematics. It is a classical subject and has a reputation for being the "purest™ part of
Mathematics, yet recent developments in cryptology and software engineering depend on
basic elementary number theory. Number theory, from general perspective, is the

investigation of numbers and their properties [29]. The fundamental theorem of arithmetic



is that each positive integer can be written uniquely as the product of primes. One of the
most significant uses of number theory to computer science is in the zone of cryptography.
Congruences can be utilized to create various types of ciphers. Recently, another new type
of cipher system, called a public-key cipher system, has been devised. When a public-key
cipher is utilized, every individual has a public enciphering key and a private deciphering
key [29]. Messages are enciphered utilizing the public key of the receiver. Moreover, only
the receiver can decipher the message, since a mind-boggling measure of computer time is
required to decipher when just the enciphering key is known. The most widely utilized
public-key cipher system relies on the difference in computer time required to discover large

primes and to factor huge integers [29].

We describe two applications of Number theory in cryptography to computer
science. The Chinese remainder theorem is utilized in two applications. The first application
includes the enciphering of a data base [29]. A database is a collection of computer
documents or records. In [29] it is shown how to encipher an entire database so that
individual files may be deciphered without jeopardizing the security of other files in the

database [29].

1.1 Significance of Number Theory:

Number theory was classified as a discipline without direct application and it only
demonstrated the basic properties of Mathematics. With the great and profound scientific
and technological transformation brought by the emergence and development of computer,
number theory has been widely used, and is no longer just a pure mathematics, but a

mathematical discipline with practical application value. At present, number theory is



widely and fully applied in many fields, such as computing, cryptography, physics,

chemistry, biology, acoustics, electronics, communication, graphics and even musicology.

This also proves the significance of number theory that it can be widely and fully
applied to many other fields involving mathematics, and has developed into a new applied
mathematics discipline - applied number theory. Therefore, number theory is no longer just
a pure discipline, but a veritable applied discipline. Judged from the current development

trend and applications of number theory, this ancient discipline is bound to be vigorous [43].

1.1.1 Development of Number Theory:

Many questions in number theory have been proposed and then solved, which
attracts more and more people to focus on number theory. In the long history, techniques
and methods to solve problems have emerged, and some theories have been formed.
Algebraic number theory has been advanced with the expansion of number field and
practical applications. Bacon, the famous philosopher, said that history makes people smart,
so it is necessary to explore the development of early algebraic number theory. Domestic
researches on algebraic number theory are mainly comprehensive discussions on the

progress of algebraic number theory [26, 42].

a) The discovery of irrational numbers: The followers of Pythagorean school
discovered the first irrational number, shocking the leaders of the school at that time. It was
proposed that all numbers could be expressed as ratios of integers that later led to the first
mathematical crisis. b) Creation of arithmetic operators and solution to irrational equations:
In India, the mathematician Brahmagupta introduced a group of symbols used to express
concepts and describe operations in the 7" century, and Posgallo later put forward the

concept of negative square root, the solution to irrational equations and the algorithm of



irrational numbers in the 12" century, which fostered the study of algebra to a new stage.
c) Establishment of imaginary number theory: Cardano was the first mathematician to
formulate the square root of a negative integer. Now it has been developed to find negative

Jacobsthal numbers.

1.1.2 Other Basic Fields

Number theory also plays a surprising role in other theories. In quantum theory,
Hermite operator is one of the most basic concepts. Apart from that, number theory is also
widely used in non-mathematical disciplines, such as information science, theoretical

physics, quantum chemistry and so on [29].

1.2 Applications of Number Theory:
1.2.1 Cryptography:

With the development of network encryption technology, number theory has found
its own place in cryptography. Professor Wang Xiaoyun who cracked the MD5 code a few
years ago is from the number theory school of Shandong University. Because of the irregular
appearance of prime factors in composite numbers, it is very difficult to decompose
composite numbers into product of prime numbers. At the same time, it is this difficulty that
enlightens people to use it to design difficult codes. When studying number theory,
especially cryptography, we pursue deterministic algorithm rather than probabilistic
algorithm, and we will only lower our requirements and apply probabilistic algorithm if

there is no deterministic algorithm [29].

1.3 Cantor Middle Set:
George Cantor (1845-1918) was the originator of quite a bit of a modern set theory.

Among his commitments to mathematics was the thought of the Cantor set, which comprises



points along a line segment, and has various interesting properties. The Cantor middle

[ T

1
’s

-
N

l sets, in general, the Cantor middle {; 2<m< oo} set is called
9 2m-—1

generalized Cantor sets and it is denoted by C; /(2m-1) [16,33].

In 2008, Gerald Edgar introduced different properties of Cantor sets using an iterated
function system. Moreover, many other general Cantor sets were built by eliminating
various parts of various lengths from the initiator and likewise introduced a few properties

utilizing an iterated function system [32].

The Cantor set has numerous definitions and a wide range of developments. Despite
the fact that Cantor initially gave an absolutely dynamic definition, the most available is
Cantor's "middle - third" or ternary set in which the development starts with the closed real
interval [0,1] and partitions it into three equivalent open subintervals. The methodology is

to remove the central open interval.
11=(§ —)suchthatKl—[Ol -1, = [ ] [ 1]

Next, subdivide each one of these two remaining intervals into three equivalent open

subintervals, and from each remove the central third. Let I, the removed set, at that point is
1 2 7 8 1 2 3 6 7 8
L=(55) V() mdk=01-0un =[oz|u[zglu]gEv]E

We can subdivide every one of the intervals that involve [0,1] — (I; U ;) into
three subintervals, eliminating their middle thirds, and proceed in a past way. The sequence
of open sets is then disjoint, and we traditionally define the Cantor set C; as the closed
interval with the union of these 1,,'s subtracted out [11, 14, 36].

C; =1[0,1]-U1I,



The graphical representation is given as

0 1
1 2
0 E- 1
3 3
0 12 1 2 78 1
99 3 3 99 3
0 12 1 2 78 1
99 3 3 99 3

In general, The Cantor Middle (2m — 1) Cantor's set Cizm-1), Where m =2

(m-1)"
(2m-1)"

contains the endpoints of every 2" intervals, every one of length [18, 33].

1.3.1 Self — Similarity:

Generally, a self-similar object is one that is comparable, or approximately
comparable, to part of itself. That will be, that the object can be scaled and translated on top
of a portion of the original object. In spite of the fact that self-similarity is difficult to define

generally, much study has been done on self-similar objects.

A fractal is defined freely as a geometric shape that is exceptionally self-similar. A
traditional illustration of a fractal is the Cantor middle thirds set. The Cantor set is developed
by starting with the unit interval [0, 1] and at each progression removing the middle third of
the remaining intervals. The following are the few iterations of the process used to make the
Cantor middle third set. We study the Cantor sets all the more for the most generally later

as developments outside of Euclidean space [25].



1.3.2 Fractal Dimension and the Cantor Set:

An altogether different definition is shown up when we consider covering the object
with copies of itself at a smaller scale and count the number of such copies needed.
Righteousness of this definition is that it permits us to construct objects with a fractional
dimension'. Such items are called fractals, and the Cantor set is one of the earliest

illustrations of such an object [38].

The Cantor set is the model of a fractal. It is an object that seems self-similar under
fluctuating levels of amplification. One of the typical highlights of the fractal is its fractal
dimension, which is basically a measure of self-similarity. It is sometimes alluded to as the
similarity dimension. There are various non-identical methods of characterizing fractal
dimensions. Quite possibly the most well-known method of computing the dimension of a

set is to find the box-counting dimension of it [17].

14 Farey Sequence:

Aside from including % and % , Charles Haros had formulated Fyq9. To do this he used
the mediant property to find the fractions with higher denominators and even provided a
sketch proof that it worked. Also noted that if two numbers % and g are neighbours in the
table then |bc — ad| = 1. From here the history of the Farey sequence travels to Britain,
and to a man called Henry Goodwyn. Henry Goodwyn ran and owned a brewery and made
mathematical tables in his spare time. In his retirement he set out to create a table of fractions
and decimal equivalents. However, Goodwyn's tables were to contain every irreducible
fraction with denominators between 1 and 1024. The First Centenary of a Series of concise
and useful Tables of all the complete decimal Quotients which can arise from dividing a

Unit or any whole Number less than each Divisor by all Integers from 1 to 1024" [27].

10



Farey sequence is widely applied both in engineering and combinatorics, some of

which are presented below:

Employing the Farey sequence of Fibonacci numbers for a circuit constructed from
n equal resistors combined in series and in parallel, strict upper and lower bounds for the

order of the set of equivalent resistances have been established in [37].

Generalized Fibonacci word is used in the study of combinatorics of sturmian words,
while Farey codes and Languages associated with Farey sequence are discussed in [Arturo
Carpi and Aldo de Luca, Farey codes and languages, European Journal of Combinatorics
2007]. The Mandelbrot set is one of the most elegant, interms of aesthetic appeal and
complicated structure, yet complex objects in all of mathematics. This set has been the area
of intense research since the first pictures of it were drawn in 1978, due to the hard work of
Benoit Mandelbrot and others who created awareness about this branch of mathematics.
The Farey sequence is used in determining the rotation number of any bulb in the

Mandelbrot set [27].

When the process of constructing Farey sequence is extended to the whole real line

we get the Stern- Brocot tree is arrived, which is used in the construction of clocks [28].

The link between Riemann-Hypothesis and Farey sequence has been established in

[28].

An algorithm for boundary based shape decomposition has been proposed in [37].
This algorithm uses Farey sequence for determining several measures such as slopes of
edges and turn types at vertices of the polygonal cover corresponding to the concerned

shape.

11



The study of the topological properties of the Julia sets of rational maps is a central
problem in complex dynamics. A family of rational maps whose Julia’s sets is a Cantor set
of circles must topologically conjugate to one map in this family on their corresponding

Julia’s set [12].

15 Measure:

One of the most fundamental concepts in Euclidean geometry is that of the measure
m(E) of a solid body E in one or more dimensions. In one, two, and three dimensions, we
refer to this measure as the length, area, or volume of E respectively. In the classical
approach to geometry, the measure of a body was often computed by partitioning that body
into finitely many components, moving around each component by a rigid motion and then
reassembling those components to form a simpler body which presumably has the same
area. One could also obtain lower and upper bounds on the measure of a body by computing
the measure of some inscribed or circumscribed body; this ancient idea goes all the way
back to the work of Archimedes at least. Such arguments can be justified by an appeal to
geometric intuition, or simply by postulating the existence of a measure m(E) that can be
assigned to all solid bodies E, and which obeys a collection of geometrically reasonable
axioms. One can also justify the concept of measure on “physical” or “reductionistic”
grounds, viewing the measure of a macroscopic body as the sum of the measures of its

microscopic components [18, 50].

The physical intuition of defining the measure of a body E to be the sum of the
measure of its component “atoms” runs into an immediate problem: a typical solid body
would consist of an infinite (and uncountable) number of points, each of which has a

measure of zero; and the product co- 0 is indeterminate. To make matters worse, two bodies

12



that have exactly the same number of points need not have the same measure. For instance,
in one dimension, the intervals A = [0,1]and B = [0,2]are in one-to-one
correspondence using the bijection x — 2x from A to B, but of course B is twice as long
as A. So A can be rearranged into a set of uncountable number of points and reassemble

them to form a set of twice the length.

Here, the problem is that the pieces used in this decomposition are highly
pathological in nature; among other things, their construction requires use of the axiom of
choice. Such pathological sets almost never come up in practical applications of
mathematics. Because of this, the standard solution to the problem of measure has been to
abandon the goal of measuring every subset E of R¢ , and instead to settle for only
measuring a certain subclass of “non-pathological” subsets of R¢ , which are then referred

to as the measurable sets

The class of measurable sets can be expanded at the expense of losing one or more
nice properties of measure namely, finite or countable additivity, translation invariance, or
rotation invariance in the process. However, there are two basic concepts that are sufficient
for most applications. The first is the concept of Jordan measure of a Jordan measurable set,

which is a concept closely related to that of the Riemann integral [46].

This concept is elementary enough to be systematically studied in an undergraduate
analysis course, and suffices for measuring most of the “ordinary” sets in many branches of
mathematics. But , when the type of sets that arise in analysis are considered , and in
particular those sets that arise as limits of other sets, the Jordan concept of measurability is
not quite adequate, and must be extended to the more general notion of Lebesgue

measurability, with the corresponding notion of Lebesgue measure that extends Jordan
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measure. With the Lebesgue theory , one keeps almost all of the desirable properties of
Jordan measure, but with the crucial additional property that many features of the Lebesgue
theory are preserved under limits (as exemplified in the fundamental convergence theorems
of the Lebesgue theory, such as the monotone convergence theorem and the dominated
convergence theorem which do not hold in the Jordan-Darboux-Riemann setting). As such,
they are particularly well suited for applications in analysis, where limits of functions or sets

arise all the time [46].

1.5.1 Elementary measure:
Simpler notion of elementary measure, which allows one to measure a very simple

class of sets, namely the elementary sets

1.5.2 Jordan measure:

We now have a satisfactory notion of measure for elementary sets. But of course,
the elementary sets are a very restrictive class of sets, far too small for most applications.
For instance, a solid triangle or disk in the plane will not be elementary, or even a rotated
box. On the other hand, as essentially observed long ago by Archimedes, such sets E can be
approximated from within and without by elementary sets A ¢ E < B, and the inscribing
elementary set A and the circumscribing elementary set B can be used to give lower and
upper bounds on the putative measure of E. As one makes the approximating sets A, B

increasingly fine, one can hope that these two bounds eventually match.

1.5.3 Lebesgue measure:
The classical theory of Jordan measure on Euclidean spaces RY. This theory

proceeded in the following stages:
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First, one defined the notion of a box B and its volume |B|.Using this, one defined
the notion of an elementary set E, a finite union of boxes, and defines the elementary
measure m(E") of such sets. Even exist bounded open sets, or compact sets, which are not
Jordan measurable, so the Jordan theory does not cover many classes of sets of interest.
Another class that it fails to cover is countable unions or intersections of sets that are already
known to be measurable. Lebesgue outer measure zero, in contrast to Jordan outer measure.
Lebesgue outer measure is a special case of a more general concept known as an outer

measure.

To define a concept of “Lebesgue inner measure” to complement that of outer
measure. Here, there is an asymmetry which ultimately arises from the fact that elementary
measure is subadditive rather than superadditive. one does not gain any increase in power
in the Jordan inner measure by replacing finite unions of boxes with countable ones. But
one can get a sort of Lebesgue inner measure by taking complements. This leads to one
possible definition for Lebesgue measurability, namely the Caratheodory criterion for
Lebesgue measurability, However, this is not the most intuitive formulation of this concept
to work with, and we will instead use a different but logically equivalent definition of
Lebesgue measurability. The starting point is the observation that Jordan measurable sets
can be efficiently contained in elementary sets, with an error that has small Jordan outer
measure. In a similar way, we will define Lebesgue measurable sets to be sets that can be

efficiently contained in open sets, with an error that has small Lebesgue outer measure.

The Lebesgue integral and Lebesgue measure can be viewed as completions of the
Riemann integral and Jordan measure respectively. This means three things. Firstly, the

Lebesgue theory extends the Riemann theory: every Jordan measurable set is Lebesgue

15



measurable, and every Riemann integrable function is Lebesgue measurable, with the
measures and integrals from the two theories being compatible. Conversely, the Lebesgue
theory can be approximated by the Riemann theory, every Lebesgue measurable set can be
approximated by simpler sets, such as open sets or elementary sets, and in a similar fashion,
Lebesgue measurable functions can be approximated by nicer functions, such as Riemann

integrable or continuous functions.

1.6 Measurable functions:

Constant integral can be completed to the Riemann integral, the unsigned simple
integral can be completed to the unsigned Lebesgue integral, by extending the class of
unsigned simple functions to the larger class of unsigned Lebesgue measurable functions

[47, 48].

1.6.1 Outer measures, pre-measures, and product measures:

One specific example of a countable additive measure is Lebesgue measure. This
measure was constructed from a more primitive concept of Lebesgue outer measure, which
in turn was constructed from the even more primitive concept of elementary measure. This
generalizes the construction of Lebesgue measure from Lebesgue outer measure. One can
in turn construct outer measures from another concept known as a pre-measure. One can
start constructing many more measures, such as Lebesgue-Stieltjes measures, product

measures, and Hausdorff measures.

To construct a variety of measures on infinite-dimensional spaces, and is of
particular importance in the foundations of probability theory, as it allows one to set up
probability spaces associated to both discrete and continuous random processes, even if they

have infinite length. The most important result about product measure, beyond the fact that
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it exists, is that one can use it to evaluate iterated integrals, and to interchange their order,
provided that the integrand is either unsigned or absolutely integrable. This fact is known
as the Fubini-Tonelli theorem, and is an absolutely indispensable tool for computing
integrals, and for deducing higher-dimensional results from lower-dimensional ones. In this
section we will however omit a very important way to construct measures, namely the Riesz

representation theorem

1.6.2 Outer measures:

Lebesgue outer measure m* is an outer measure. On the other hand, Jordan outer
measure m, ¢y is only finitely subadditive rather than countably subadditive and thus is not,
strictly speaking, an outer measure, for this reason this concept is often referred to as Jordan
outer content rather than Jordan outer measure. Outer measures are weaker than measures
in that they are merely countably subadditive, rather than countably additive. On the other
hand, they are able to measure all subsets of X, whereas measures can only measure a

o - algebra of measurable sets [46].

1.7  Objectives and Scope of research work:

The Problem discussed in the thesis is finding various measures of fractal sequences.
Here the fractal sequences considered are Farey sequences and Cantor sets. The Cantor
ternary set is a good example of an elementary fractal set [51]. The extraction of Cantor
sets from Farey sequence of points is done elaborately in [1]. So Farey sequence is slightly

modified into Farey sets and various measures are calculated for both the sets.
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1.8  Organization of the thesis:

The thesis consists of six chapters.

CHAPTER I
This chapter provides the historical background and necessary literature survey for
Farey sequences and Cantor set of odd order. Also measures like Lebesgue measure and

Probability measure have a brief introduction.

CHAPTER |1
This chapter has four sections. In section 2.1 Cantor Hexnary Sets, in section 2.2
Cantor Deca Sets, in section 2.3 Cantor Octanary Sets and in section 2.4 Cantor Dodeca

Sets are developed. Various patterns of removal of intervals are analyzed here.

CHAPTER I11

A subsequence of Farey sequence, Fy ,Farey N — subsequence has been established
as a topological space and a Hausdorff space by appropriately defining basis and open sets.
Also the T;axiom has been discussed with an illustration. Here sequences are considered as

sets.

This chapter provides two sections. In section 3.1 Farey sequence has been proved
asa Topological Space and in section 3.2 Farey sequence with a slight change in the basis

has been developed as a Hausdorff space .

CHAPTER IV
A Non Reduced Farey N-subsequence, a subsequence of Farey sequence consists of

rational numbers with same denominator in [0, 1]. By reconstructing the non reduced Farey
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N — subsequence it can be established as a o- algebra and its Lebegue Measure has been

found. Non —Reduced Farey N - subsequence of even order has been studied.

CHAPTER V

This chapter is divided into two sections.Section 5.1 gives Probability Measure of
Generalized Non - Reduced Farey N- Subsequence and the other section 5.2 is on Invariant
Measure of Generalized Non - Reduced Farey N- Subsequence. An attempt has been to
provide a theorem on the Probability measure of the Generalized Non reduced Farey

N — subsequence.

CHAPTER VI

This chapter deals with the Box Measure of Modified even ordered Cantor
sets.While calculating box measure , boxes without dimensions are used in general but here,
boxes are replaced by isosceles triangles and their areas are considered as measures. This

chapter is divided into four sections.

Section 6.1 deals with Measure of Cantor Hexnary Sets and Section 6.2 is on
Measure of Cantor Deca Sets. Varying from the previous sections, section 6.3 provides a
measure for Cantor Octanary Sets and following the similar lines Section 6.4 gives a

measure of Cantor Dodeca Sets.
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CHAPTER-1I

MODIFIED EVEN ORDERED CANTOR SETS

In this chapter throughout we study the modified Cantor even ordered sets. In Cantor
ternary sets middle third is removed and the pattern of removal continues indefinitely.
Taking the number of divisions as order here, even ordered Cantor sets are considered.
Unlike normal Cantor sets, here lengths of unequal intervals are removed. In this pattern of
removal middle interval in successive iteration follows a geometric sequence of powers
of two. The intervals equally spaced from the middle to the left and right follows different
nature as the iteration increases. Its characteristics are studied. Also, the diagrammatic

representation of modified even ordered Cantor sets has been exhibited.

Unlike Cantor ternary sets, in even ordered sets the intervals of lengths one, two,
four, eight etc., are removed successively. Again, if intervals of lengths two are taken away
the formulas for retaining terms are given. In this chapter Cantor sets of even numbers are
considered. Contrary to the procedure followed by Cantor, intervals of various lengths are
removed in different patterns. These various patterns of removals of intervals are also

analyzed here.

This chapter deals with four sections. In section 2.1 Cantor Hexnary Sets, in section
2.2 Cantor Deca Sets, in section 2.3 Cantor Octanary Sets and in section 2.4 Cantor Dodeca

Sets are analyzed.
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2.1 Cantor Hexnary Sets:
Definition 2.1.1: Cantor Hexnary Set

Divide the closed interval [0,1] into six equal intervals. Remove the second and fifth
intervals (— —) and (— —) The intervals retained are [ =0, ] [ ] and [— -= 1] Now

for these intervals continue the procedure indefinitely. The set obtained is known as Cantor

Hexnary Set and is denoted by C(l).
6

Theorem 2.1.1:

k k+2n
6nl )

In the Cantor Hexnary set the middle most interval is given by [
n = 1,2,3,... where k is represented by the series 2 ¥\, 671 271
Proof:

Proof follows by induction.

The closed interval [0,1] is divided into six equal parts. Following the theory of

Cantor Hexnary set, the open intervals (%g) and (gg) are removed. The remaining parts
[9= 0,1],[3,f] and [5,9= 1] are again subdivided as follows. The length of the
6 6 6°6 6°6

middlemost part is 2/6. For the 2" iteration, the parts [% = 0%] and Eg] are each

divided into six equal parts thereby giving six parts
56 = 05al. 5o 5el e sel - s el s el L5l and
5o el 156 5el 156 56 56 56l 55 5l 5 5 respectivy.
The open intervals (%:—6) and (i%) are removed for the left of - . The same

procedure continues to the right of % Applying the removal pattern for the middle part E,%]
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. . - 12 14 14 16] [16 20 20 22 22 24 . 14 16
again give rise to [—,—], —,—], —,—], [—,—] , [—,—]. The open intervals (—,—) and
36" 36 36°361'L36° 36 36" 36 36" 36 36 36

(gg) are removed. The length of the middlemost part is 4/36. Continue the process

indefinitely.

Whenn = 1,
k=26%°20=2

k+21=2.6%204+2=14

Therefore the middlemost interval in the first iteration is E%]

Whenn = 2,

k=2.6%120426%2221=16

k+2"=k+22=164+4=20

Therefore the middlemost interval in the second iteration is [? 20

2762

Assume forn = r

k=26""1204+26""22%1 42673237 4o +2.6" .21
k+2" = (267120 +2.6"2.2%71 + 2,673,237 +2.677. 27 ) + 27
Therefore the middlemost parts are [5 k;“f T]

We prove the result forn =r + 1

The above interval can be divided into 6 equal parts as

6k 6k+27 6k+2" 6k+2.2" 6k+2.2" 6k+3.2" 6k+3.2" 6k+4.2" 6k+4.2" 6k+5.2" 6k+5.2" 6k+6.2"
7l er+1 7 gr+l 4 6T+l ' g@gr+i 4 er+1 7 ogr+l 4 ertl1 7 gr+i 4 e+l 7 gr+i

er+t1’ gr+i1

6k+2.2" 6k+4.2"
6T +1 4 6T +1

The middlemost part is [
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6k +2.2" =6[2.6"1.20+2.6"72.2271 + 2,673,237 4 eennn +2.67T. 2171 + 2.2

=2.6".2042.6"1.21 +2.6772.22 4 oo +2.6%.2"1+2.60.27

Let 6k + 2.2" = [ (say)

6k + 4.27 = (6k +2.27) + 2.27

=1422"=[42""1

1 1427t . i
[em e’ ] result is true for n = r + 1 and hence for all positive integers .

Hence the theorem is proved by induction method.

The Following Figure 2.1.1 shows the graphical representation of Cantor Hexnary

sets.

First iteration:

The closed interval [0,1] is subdivided into 6 equal sub- intervals

s 2 L e B M o B il

I [
| | 'l | | 'l

0 1 2 3 4
Z=0 Z z d i
6 6 6 6 6

alu
alo

Figure 2.1.1: Cantor Hexnary sets

. 1 2 4 5
The intervals removed are (g' g)' (g' g)

The remaining intervals are [g =0, ﬂ , E %] , E Z = 1]

Therefore C(%)l = [g = 0%] U E%] U EZ = 1] (2.1.1)
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Second iteration:

T T [T T T T 1T T T T

0 1 23456 _1 12 14 16 18 20 22 24- 4 30 31 32 33 34 35 36

36 36 36 36 36 36 36 6 36 36 36 36 36 36 36 6 36 36 36 36 36 36 36_
Figure 2.1.2: Second iteration — Cantor Hexnary sets
. 1 2 4 5 14 16 20 22 31 32 34 35
The intervals removed are (—,—),(—,—),(—,—),(—,—),(—,—),(—,—)
36" 36 36" 36 36" 36 36 36 36" 36 36" 36
from each of the subintervals will result in modified cantor set.
Therefore
12 14 16 20 22 24 30 31
e e U K00 2 [ Eoer (O o IV - (O e M e
(g) 36’ 36 36’ 36 36’ 36 36’36 36’ 36 36’ 36
32 34 35 36
2.2 u [E,2=1] (2.1.2)
36" 36 36’ 36

Third Iteration:

0 1 2 3 45 6 1 12 14 16 18 20 22 24 4 30 31 32 33 34 35 36 1

63 63 63 636363 65 62 63 63 63 63 63 63 63 62 63 63 63 63 63 63 63 6

T T 1T T T T 11 T T T T

72 74 76 78 80 82 84 14 96 100 104 108 112 116 120 132 134 136 138 140 142 144

63 63 63 63 63 63 63_62 63 63 63 63 63 63 63 63 63 63 63 63 63 63

> > — —

RN B NN
180 181 182 183 184 185 186 192 194 196 198 200 202 204 210 211 212 213 214 215 216
6 63 63 63 63 63 63 63 68 63 63 63 63 63 63 68 68 6 63 6 63

Figure 2.1.3: Third iteration — Cantor Hexnary sets
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The intervals removed are
(22, (5 2), (22, 29), (22 22) (3L 2 (34 35 (74 76) (80 62 (100 10v)
216’216/ ' \216° 216/’ \216° 216/’ \216’ 216/’ \216’ 216/ " \ 216’ 216/’ \216°’ 216/’ \216°’ 216/’ \ 216’ 216/’
216’216/ " \216’ 216/’ \216° 216/’ \216’ 216/’ \216’ 216/ " \ 216’ 216/ * \216’ 216/’ \216’ 216/’ \ 216’ 216
from each of the subintervals will result in modified cantor set.

Therefore

[ 0 1 2 4
C(13 =|—=0,—|U|—,—
E) 216 216 216’ 216 216’ 216 216’ 216 216’ 216 216’ 216 216’ 216

[32 34 U [ 35 36 ] 72 74] [76 80 [82 84 ] 96 100] [104 112
216’ 216 216’ 216 216’ 216 216’ 216 216’ 216 216’ 216 216’ 216
[116 120'LJ'132 134] 136 140] [142 144 [180 181] 182 184] [185 186
216’ 216 216’ 216 216’ 216 216’ 216 216’ 216 216’ 216 216’ 216
[192 194] 196 200] 202 204 210 211 [212 214] 215 216

_!_ U _)_ _F_ _F_ _I_ _’_ (2'1'3)
216’ 216 216’ 216 216’ 216 216’ 216 216’ 216 216’ 216

This procedure proceeds in every iteration to get the entire Cantor Hexnary set.

The iteration procedure for the middlemost part and the general procedure are shown

in the following tree diagrams Figure 2.1.4 and Figure 2.1.5.
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B

12 14 [16 20 [22 24
36 36 36’ 36 36’36

N AN N

96 100 104 112][116 120 132 134 136 140 142 144
216 216 216 216 216 216 216 216 216 216 [216’ 216 216 216 216 216 216 216

624 632 640 656 664 672

456 460 464 472 476 480 816 820 824 832 836 840

1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296 1296

Figure 2.1.4: Middlemost part of Cantor Hexnary sets
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36k 36k+2]
6n ' 6"

36k+4 36k+8]
| 6n ' 6n

[36k+10 36k+12

en ' e

|

6k 6k+2
6"’ 6N

Figure 2.1.5:

[36k+24 36k+28]

[36k+32 36k+40]

en ' 6n |

k k+2
6n’ 6n

67’1

)

[36k+44 36k+48]

en ' en |

6n ' e

[6k+4 6k+8

6".

|

[6k+10 6k+12

[36k+60 36k+62]
6n ' en

36k+64 36k+68]

en ' en |

36k+70 36k+72
6n ' en

General form of middlemost part of Cantor Hexnary sets
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2.2 Cantor Deca Sets:
Definition 2.2.1: Cantor Deca Set

Divide the closed interval [0,1] into ten equal intervals. Remove the second, fourth,

seventh and ninth mtervals( 2), (i, i),(i —) and ( %) The intervals

10’ 10 10° 10 10° 10

retained are [10—0= 0%] [

10’ 130 [10 10] [10 10] and [10 ST 1] Now for these

intervals continue the procedure indefinitely. The set obtained is known as Cantor Deca

Set and is denoted by C(i).
10

The Cantor Hexnary set pattern followed in Cantor Deca sets.

First iteration:

The closed interval [0,1] is subdivided into 10 equal sub- intervals

[0 -0 1] [1 2] [2 3] [3 4] [4 5] [5 6] [7 8] [9 10]
10 ’10)" l10’ 10)” 110’ 10]’ L10” 10]’ L10’ 10]’ 1107 10]’ L10’ 10)’ 10’ 10

©-%% 1 W 1 W W 1w 1 10 10 >
Figure 2.2.1: Cantor Deca sets
mheimenals removed v (5, 2), (3. 5). (5 2). (5. 2)
The remaining intervals are |5 = 0,51, |55, 55). 5535 553 55 -3 = 1
meeor €, =[5 =0.2] o[22 & 5] [ 2 v [3 2 =1] @2

Second iteration:

PP TPTPTIOIP r e T T TP I e T (TP T

Figure 2.2.2: Second iteration- Cantor Deca sets
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The intervals removed are
(E,2).(2,5) (&, 0) . (&,2) (2 ,2), (2,2
100’100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’

(26 27) (28 29) (42 44) (46 48) (52 54) (56 58) (71 72)
100’100/’ \100’ 100/ " \100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’

(73 74) (76 77) (78 79) (91 92) (93 94) (96 97) (98 99)
100’ 100/’ \100’100/’\100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/ °

from each of the subintervals will result in modified cantor set.

Therefore

C 0 1

[ 24 26 [ 27 28] [ 29 30 ] [ 40 42 ]

_l_ U _)_ U _l_ U _l_

1100 ° 1004 1100 " 100 1100 " 100 1100 1004 100 100 100 100
[ 58 60 | [ 70 71 [ 72 73] [ 74 76 ] 77

_l_ U _)_ U _l_ U _l_

1100 1004 1100 " 100 1100 " 100 1100 1004 100 100 100 100
[ 92 93] [ 94 96 ] [ 97 98] [ 99 100]

) U ) U ) U )
1100 ° 1004 1100 " 100 1100 " 100 1100 1004

This procedure proceeds in every iteration to get the entire Cantor Deca set.

2.3  Cantor Octanary Sets:

Definition 2.3.1: Cantor Octanary Set

9 10
2 = |—,—
(%) 100’100] [100 100] [100 100] [100 100 [100 100] 100 100] [100 100

100 100

100 100

(2.2.2)

The closed interval [0, 1] is divided into eight equal parts. By removing the second

1 2

part, last but one part and middlemost part, the open intervals (—,—) (3 5) and ( ;) are

8°8 8’8

removed. The middlemost removable interval is of length (g) Other retained intervals are

of length (%) Continue the process indefinitely and the set obtained is known as the Cantor

Octanary Set and is denoted by C(l).
8
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Graphical Representation:

The Following Figure 2.3.1 shows the graphical representation of Cantor Octanary

sets.
First iteration:

The closed interval [0,1] is subdivided into 8 equal sub- intervals

5= 03k (531 -3 5.3 2 15 ) 53] 55 =1

0| 1| tl 3| 4| 'Sl 6r ;| 8 |
-=0 = - - - - - - - =1
8 8 8 8 8 8 8 8 8
Figure 2.3.1: Cantor Octanary sets
. 1 2 3 5 6 7
The intervals removed are (—, —),(—, —),(—, —).
8" 8 8 8 8" 8
.. . 0 1 2 3 5 6 7 8
The remaining intervals are [— =0, —] , [—,—], [—,—] and [—,— = 1]
8 8 8° 8 8° 8 8° 8
Therefore
0 1 2 3 56 7 8
oy = =odlo BB G- =
(_) 8 8 8’8 8’8 8’8
8
Second iteration:
| | i i 1
2 1 “ 2 2 = 5 i s
64 64 64 64 64 64 64 64 64
16 H 18 v 20 21 22 23 24
64 64 64 64 64 64 64 64 64
40 4 42 43 44 45 46 47 48
64 64 64 64 64 64 64 64 64
56 57 58 59 60 61 62 63 o4
64 64 64 64 64 64 64 64 64

Figure 2.3.2: Second iteration — Cantor Octanary sets
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2 3 5 6 7 17 18 19 21 22 23 41 42
The intervals removed are( ) ( ,—),(—,—),(—,—),(—,—),(—,—),(—,—),
64’ 64 64" 64 64" 64 64 64 64 64 64 64 64" 64
e Gn) Ga) Ga)
64’64/’ \64’ 64/’ \64’ 64/’ \64’ 64
For each of the remaining subintervals apply the same above procedure and the

resultant set is will result in Cantor Octanary set.

Therefore
C(%) - [64 64] [64 64] [64 64] [64 64] [zi’g] U [g'g] u [%’Zﬂ [Zz Zﬂ
Pt KO e R P R i (232)

This procedure proceeds in every iteration to get the entire Cantor Octanary set

Theorem 2.3.1:

In Cantor Octanary set each retained interval is represented as [Sﬁn%
n = 123,.. where k= 8"1lq+8" 2y + ccoeeeveneeee 48y +y  n = 1,2,3,..;
a,vy=0,2,5,7
Proof:

The proof of the theorem follows by induction

The closed interval [0,1] is divided into eight equal parts.

35

The open intervals (%g) (8 P

) and ( ) are removed.
8l’ls’s

The remaining parts [g =0, ﬂ , Ei] _5,9] and Eg = 1] are again subdivided as

follows for the 2" iteration. The part [g =0,

o et

is subdivided into eight equal parts thereby

giving eight parts [i = O,i : [i,i ,[3,1 i,i [ [ ] [ ] [
64 64 64 641 164 641164 64 64’ 64— 64’ 64 64’ 64] le4’ 64
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The open intervals (a é) (634 654) ”d(a a) are removed.

Now the part E%] is subdivided into eight equal parts thereby giving eight parts

[E,ﬂ ,[ﬂ,E],[E,g],[E,Q],[Q E],[E 2][2 E],[E,ﬁ] and the open intervals

64’ 64]’ l64’ 64]’ 164’ 641’ l64’ 641’ 164" 641’ l64’ 641’ l64’ 641’ l64’ 64
17 18 19 21 22 23

—,—),(=,=)and (=,=) are removed.

64" 64 64 64 64 64

Next [g g] IS divided into eight equal parts namely

[ﬂ’ﬂ],[ﬂ,ﬂ]’[ﬂ E],[E ﬂ],[ﬂ 4—5],[ﬁ E],[ﬁ ﬂ] [47 48] and the open intervals

64’ 64]’ l64’ 64]’ 164’ 641’ l64’ 641’ l64’ 641’ l64’ 641’ l64’ 641’ L64’ 64
41 42 43 45 46 47

— =), [=,= are removed.

64’ 64 64’ 64 64’ 64

Last part E,§=1] is again subdivided into eight equal parts
vy [22,2][2,2] [22] [2. 2] [2.2],[2.], [2,9][2.5] ne open

57 58 59 61 62 63
intervals ( ) ( ) and( ) are removed.
64’ 64 64’ 64 64’ 64

Here it is noted that in the successive iterations the lengths of each of the retained

1

intervals follow a Geometric progression —

1 1 1
gl’g2’ g3’ g4’

Whenn = 1; k=a+y

Therefore the result is true forn = 1

When n = 2; k=8a+y

Therefore the result is true for n = 2

Assume the result forn =p;

k=8P lag+8P 2y 4 e nn+ 8y +y

We prove the resultforn =p + 1
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The retained intervals are of the form [k ﬂ] where k is given by

gn’ gn

8P lg +8P 2y 4o+ 8y +y a,y = 0,2,5,7

After subdivision k is multiplied by 8 and y = 0,2,5,7 is added and the resulting
intervals are retained.

Herewhen n=p+1

if retained intervals of the form
&%)

where [ =8k +y =8(8°"1la+8P 2y + - eveveeee e+ 8y +y) +y
= 8Pa+8Ply 4+ i+ 82y + 8y +y
Hence the theorem is proved by induction.
The retained part and its general procedure are shown in the following tree diagrams

Figure 2.3.3 and Figure 2.3.4.

33



|

0 1

64’ 64

(16 17 ]
512" 512

(18 19 ]
5127 512

(21 227
512’ 512

[ 23 24 ]

Figure 2.3.3: Retained part of Cantor Octanary sets.

512’ 512 ]

2

34

23]

64’ 64

[0 1
8’8

(40 41 ]
512" 512

(42 43 ]
1512’ 512

[ 45 46 ]
1512’ 512

[ 47 48 ]

|

(56 57
1512 " 512

[ 58 59 ]
5127 512

[61 62 ]
5127 512

[ 63 648

1512’ 512




Tk k+1
gn’ gn

[k+2 k+3]
| gn ' gn |

[k+5 k+6]
| gn ’ gn |

[k+7 k+8]

| gn ’ gn |

k k+1 k+2 k+3
gn’ gn gn ’ gn
[8k+16 8k+17] 8k+40 8k+41]
gn ' gn gn ' gn |
<«— [8k+18 8k+19] — [8k+42 8k+43]
gn ' gn gn ’ gn
) [8k+21 8k+22] 8k+45 8k+46]
| gn ' gn | gn ' gn
8k+23 8k+24 8k+47 8k+48]
< gn '’ gn |4—— gn ' gn

[k k+

1

gn’ gn

T

1

[k+5 k+6
| gn ’

87‘L

|

8k +56 8k+57
gn ’ gn

[8k+58 8k+59]

gn ’

<4+—

gn ' gn

[8k+61 8k+62]
gn ’ gn

[8k+63 8k+64]

gn ' gn

Figure 2.3.4: General form of Retained part of Cantor Octanary sets.
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2.4  Cantor Dodeca Set:
Definition 2.4.1: Cantor Dodeca Set
The closed interval [0, 1] is divided into twelve equal parts. By removing the second

part, fourth part, ninth part, last but one part and middlemost part, the open intervals
1 2 3 4 5 7 8 9
(E' E)’ (E' E)' (E’ E)’(E' E)

removable interval is of length ( ) Other retained intervals are of length ( ) Continue

nd(ﬂ, E) are removed. The middlemost
12° 12

the process indefinitely and the set obtained is known as the Cantor Dodeca Set and is

denoted by C(L).

The Cantor Octanary set pattern is followed by Cantor Dodeca sets.

First iteration:

T T T T T 1T 1 T 17 1T T 1
=0 % % u u w B v w ow o 1 n!
Figure 2.4.1: Cantor Dodeca sets
The intervals removed are (1—12 12—2) (13—2 14—2)(% 1—72)(% 1%)(% %) )
The remaining intervals are [% = ] [12 12 [12 12 [12 12] [12 12] [11 12 ]
Therefore C(%)l - [_ =0, _] [12 12] [12 12] [12 12] [ ] % % - 1]
(2.4.1)

Second iteration:
T T T oI T T T o e

T T T PTOTT] T eTr T erem (T e T e e

Figure 2.4.2: Second iteration - Cantor Dodeca sets
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. 1 2 3 4 5 7 8 9 10 11 25 26
The intervals removed are (— —) (— —)(— —)(— —)(— —)(— —)
144’ 144/’ \144’ 144 144’ 144 144’ 144 144’ 144 144’ 14
(27 28) (29 31) (32 33) (34 35) (49 5 ) (51 52)
144’ 144)’\144° 144)’ \144’ 144/’ \144’ 144/’ \144’ 144/’ \144’ 144/’
(53 55) (56 57) (58 59) (85 86) (87 88) (89 91)
144’ 144/’ \144° 144/’ \144’ 144/’ \144’ 144/’ \144’ 144/’ \144’ 144/’
(92 93) (94 95) (109 110) (111 112) (113 115) (116 117)
144’ 144/’ \144° 144/’ \144’ 144/’ \144’ 144/’ \144’ 144/’ \144’ 144)’
(118 119) (133 134) (135 136) (137 139) (140 141) (142 143)
144’ 144)’\144’ 144)’ \144’ 144/’ \144’ 144/’ \144’ 144/’ \144’ 144
0 1] 2 4 5] 7 8] 9 101 11 12
Therefore C,,\2 = [—= 0,—| U [—— —,—|U|—=,—=|VU|—= ,—=|V|—= —]
(_) 144 144] 144’ 144 144’ 144] 144’ 144] 144 ’ 144] 144 ’ 144
[ 24 25 ] 26 27 [28 297 [31 327 . [33 347 [35 36]
—,=|VU|—=,—=|u|—=,—=|Uu|[=,=|u|—= ,—|u|= ,—=|u
(1447 144] 7 [144° 144] 7 [1447 144] 7 144’ 144] = 1144 ’ 144] 7 144 ’ 144]
(48 497 [50 517, [52 537, .[55 56]. .[57 581 [59 60]
—,—|VU|—=,=|u|=,=|u|[=,—=|U|=— ,—=|u|= ,—|u
(1447 144] 7 [144° 144] 7 [1447 144] 7 144’ 144] = 1144 ’ 144] 7 144 ’ 144]
(84 85]. [8 871 [8 897,  [91 927 .[93 941 [95 96]
—,—|VU|—=,—|U|—,—=|U|[—=,—=|U|—= ,—|u|—= ,—|u
[144” 144] 7 [144° 144] 7 [1447 144] 7 144’ 144] 7 1144 ’ 144] 7 144 ’ 144]
108 109] . [110 1117 . [112 1137, [115 116]  , [117 118]  [119 120]
—, —|U|=,=|u|=,=|u|[=,=|u|= ,—=|u|= ,=|u
(1447 144] 7 [144° 144] 7 [1447 144] 7 144’ 144] = 1144 ’ 144] 7 144 ’ 144]
(132 133] . [134 135] . [136 137] . [139 1401  [141 142] [143 144]
_F_ U _)_ U _I_ U _F_ U - I_ U - I_
[144” 144] ~ [144’ 144] ~ [1447 144] ~ 144’ 144] = 1144 ’ 144] = 144 ’ 144]
(2.4.2)
This procedure proceeds in every iteration to get the entire Cantor Dodeca set.
Remark:
Another way of forming Cantor modified set may be given as follows for Cantor
Octanary Set.
| T T = T | T > |
0 1 2 3 4 5 6 7 8
-=0 - - - - - - — - =1
8 8 8 8 8 8 8 8 8
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The closed interval [0, 1] is divided into eight equal parts. Here in this pattern the
intervals of lengths g are removed and retained intervals are of two types. In the successive

iterations the same pattern is followed.

It is to be noted that in one pattern in the middlemost point% is retained and in

the other % is removed.
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CHAPTER -I11

A SUBSEQUENCE OF FAREY SEQUENCE -
TOPOLOGICAL SPACE

In this chapter a subsequence of Farey sequence, Fy, Farey N — subsequence has
been developed as a topological space and a Hausdorff space by appropriately defining basis

and open sets. Also the T;axiom has been discussed with an illustration.

Having identified the terms of Fy, Fy,, IS written by writing the mediant of all the
successive terms of Fy.With slight modification, sequence whose terms are Farey sequences
has been established as various spaces namely topological space, Hausdorff space and T;
space. A Hausdorff space is basically a topological space. To form a topology a nonempty

set with basis elements should be defined clearly.

This chapter provides two sections. In section 3.1 Topological Space and section 3.2

Hausdorff space has been analyzed. Here each sequence is treated as an element.

3.1  Topological Space:

Definition3.1.1: Farey sequence [1,49]

A Sequence of rational numbers s with (p,q) =1in [0,1] and g < n is called a

Farey Sequence of order n, denoted by E,.

Example 3.1.1:
s )
e 22
= {aa5d
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Definition 3.1.2: Farey N — subsequence [1,2]

In a Farey sequence F the elements with denominators precisely N are classified as

Farey N —subsequence and denoted by (Fy) .

(Fy)={2/0<u; <N,0<i <N}

Example 3.1.2:
The Farey N — Sequence of order 4 is

n_ (0_o0_1_3_4_1
(F4>_{1_4<4<4<4 1}

Definition 3.1.3: Non - Reducible Farey Sequence [1]

A subsequence of the Farey sequence Fy whose denominators not exceeding N,

listed in order of their size, is taken as Non — Reducible Farey Sequence. It is denoted by Fy.
Example 3.1.3:
The quaternary Non - Reducible Farey Sequence of order 4 is

~ 0 o0
F = {—:—
4 1 4’

Definition 3.1.4: Non - Reducible Farey N — Subsequence [1, 3]

For Fy, the element of the sequence with denominator N is taken as Non —Reducible

Farey N - subsequence. It is denoted by Fy.

Example 3.1.4:

The Non- Reducible Farey N - Subsequence of order 4 is
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Definition 3.1.5: Topological Space [24]

A topology on a set X is a collection T of subsets of X having the following
properties.

Q) @ and X belong to 7.

(i) The union of the elements of 7 is included in 7.

(iti)  The intersection of the elements is at .
A set X with the given topology t is called a topological space.

Definition 3.1.6: Basis [24]

If X is a set, a basis for a topology on Xis a collection B of subsets of X called basis
elements such that

Q) For each x € X, there ia at least one basis element B containing x.

(i) If x belongs to the intersection of two basis element B; and B,, then there is

a basis element B5 containing x such that B; € B; N B,.

Example 3.1.5:
Let B be the collection of all circular regions (interiors of circles) in the plane. Then

‘B satisfies both conditions for a basis.

Theorem 3.1.1:

For any integer N > 3 a subsequence of Farey sequence, Farey N — subsequence

denoted by F« is a topological space.

Proof:
To define a topology on a set first a basis and hence open sets should be described

clearly. Here the basis is defined as follows.
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d i ’i=0,1,2,3,....
_ i =123 4....
Consider X {Nk / N=3,4,5,......}

Take B = {Fyr,k=123,..}

Here every element of B is a sequence of real numbers.

Claim:
B constitute a basis for X

Take F = NFye,k=123,..0

Case (i):

If x € F then choose basis B element as any one of Fx, k = 2

Case (ii):

Suppose that x is not in F. x may be any one of the following forms.

x = L. osisNk-1 /j=123,..N fork=1,23,..0

Nk+1 7 Nk+1<i<jxNk-1

Choose basis elements as any one of Fyk, k = 2,3, ...

Then clearly B; n Bjcontains a basis element in which x is a member.

The open sets U may be taken as a sequence of union of members of B.

Then for every element x € F there exists a member in B and a set U such that

XEBCU
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Illustration 3.1.1 :

Consider X = {i

B = {Fyk=123,..}

Take N =4:k =123, ...

B={Fu:,FpFp;, ...}

~ 0123 4

o= B3 4-1)
4 4’4’44 "4

P {01234567891011121314—1516
2 = _—————_—— — — — — — — — — — — — — — =
4 16’16’ 16’16 16’16’16’ 16”16”16’ 16’ 16’ 16’ 16’ 16’ 16’ 16

P {012345678910
3= N, T, T, T, T, T, T, T, T, T, . ..
4 64’64’64’ 64 "64’ 64" 64" 64" 64" 64’ 64’ !
U=F;2UF,s

Take the element x = 32 Clearly x € F,2 € U
4

Lett = {ﬁ41, ~42,13'43, }

Consider T, =Fp
= {02,221}
44 4
and 1, = Fj2
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Then

T1UT2 :ﬁ41 Uﬁ42

12 3 1 2 3 15
={0,—,—,—,1}u{0,—,—,—, ...... —,1}
4’4’4 16’16’ 16 16
1 2 3 15
=30,—,—,—, ... ... — 1}61’

{ "16’ 16" 16’ 16’

Therefore the union of the elements of subsets of T isin t.

Consider 7, = F,3

Then

1 2 3 63 1 2 3 255
={o,—,—,—, ...... —,1}n{0,—,—,—, ...... —,1}
64" 64 64 64 256 256 256 256
1 2 3 63
= {o,—,—,—, ...... —,1} €1
64" 64 64 64

Therefore the intersection of the elements of any finite sub-collection of T is in 7.
It is well known that in a Hausdorff space every pair of elements is separated by open sets.

The following is the theorem of Farey N — subsequence as Hausdorff space.

3.2  Hausdorff space:
Definition 3.2.1: Hausdorff space [24]

A topological space S = [0, 1] is said to be a Hausdorff space if for each pair of
elements s; and s, in S their exist neighbours W,and W, respectively of points s; and s,

that do not intersect.
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Theorem 3.2.1:
For a set consisting of rational numbers of the form ﬁ the basis defined in the

above theorem forms a Hausdorff space.

Proof:
A Hausdroff space is in fact a topological space. To define a topology a basis
should be described in the basis for the topology defined as above. Here an open set is

taken in the form

Wy =X — UKZ1 Fyjwhere k =1,2,3,...;N = 34,5, ... ..

Consider the points x; = # and x, = # 1t =123, ...... .Clearly # € Fyrand

it € Fy¢ Then the sets Wyr W, constitute disjoint disjoint neighbourhoods of the
N

points x; and x, respectively. Hence X is a Hausdorff space.

Illustration 3.2.1:
Wy =X — UKZ1 Fyjwhere k = 1,2,3,...;N = 34,5, ......
Take N =4,k =1,2,3, ...
Consider S = {W1, W2, W3, ...}
2

Let s; = % and s, = % be two distinct points of S.

Then there exist neighbourhoods D; = W,s and D, = W« of s; and s, that are also

disjoint.

Therefore the topological space S is a Hausdorff space
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Definition 3.2.2: T, axiom [24]
A topological space (X, T) is said to be T; given two points p, , p, of X, there exist
open sets, 0;and O, such that p, is an element of O, and p, is not an element of 0, and p,

is an element of 0, and p, is not an element of 0,.
Corollary 3.2.1:
On the same construction above the topological space X also satisfies T; axioms.

lllustration 3.2.2:
Wye =X — USZI Fyjwhere k = 1,2,3,...;N = 34,5, ... ..
Take N =4,k =1,2,3, ...

Consider T = W41,W42,W43,

Given two points g; = i—j and g, = % of T
There exist an opensetl; = W,z and I, = W,s of T suchthatq, € W,. and
q1 € W45

Again q, € W,s and q, & W,2.

Theorem 3.2.2:
F = UFy,Fy is a Farey sequence bounded by 0 and 1. The subsequence V =

U F« of F has convergent subsequence.

Proof:
Consider the Farey sequence Fy, where N = 1,2,3,...for all positive integers

N, Fy is a bounded sequence and is bounded by 0 and 1.The set F is defined above is also

bounded by 0 and 1. Now the subsequence of V namely {% /k = 1,2,3,...} it is a
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.. 1
convergence sequence and converges to 0. This is because T 0as k — o and for all

positive integers N.

The Farey N subsequence of order 4 can be depicted in the graph as follows :

X axis = Farey N - subsequence

Y axis Y axis = Integer

16 64 " 256
1024

192
1024

128
* —
1024
4
* —
1024
1
—@- ] ] P () @1024 >
) 0 o ) o0 0
4 16 64 256 1024
Fau Fy2 Fyps Fpa Fys wov o X axis

Figure 3.2.1: Farey N subsequence of order 4

From the above graph, it is clear that the curve resembles inverse exponential curve.
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CHAPTER - IV

o ALGEBRA AND BOREL SET OF SUBSEQUENCE OF
GENERALIZED FAREY SEQUENCE

In this chapter, Construction of measurable sets from Non reduced Farey
N — subsequence is discussed in detail. For the construction of measurable sets the Non
reduced Farey N - subsequence has been considered as union of intervals, half- open, closed
(or) open sets as the case may be with a sequential points as end points. Also we have
analysed a few points on ¢ algebra and Borel Set of Subsequence of Generalized Farey
Sequence. We derive theorem on the Lebesgue measure of the Generalized Non reduced

Farey N - subsequence .

Definition 4.1: o — algebra [34]

Let X beasetand A < P(X) is called a o — algebra if
(i) p,X€e A
(i) AcA=2>A=X/A €A

(iii) A, €EA,i€N = U2, A EA

Example 4.1:
If X={ab,cd}, one possible o- alggbra on X is 2X=
{(b, {a,b},{c,d},{a,b,c, d}}, where @ is the empty set. In general, a finite algebra is always

a o —algebra.
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Definition 4.2: Borel Set [34]
A Borel set is any set in topological space that can be formed from open sets (or)
equivalently from closed sets through the operations of countable union, countable

intersection and relative complement.

Definition 4.3: Lebesgue Measure [34]
A set A c E is Lebesgue measurable or measurable if 1*(4) = A,(A4). The measure

of A is denoted by A(A) and is given by A(4) = 1*(4) = A.(4)

Theorem 4.1:
The Lebesgue measure of the Generalized Non reduced Farey N — subsequence of

order m is zero.

Proof:
Construction of measurable sets from Non reduced Farey N - subsequence.

By definition, a Non reduced Farey N - subsequence is given by

~ 1_ 1_ 1_ 1
F(m)lz{o R (m) =3 n) -2 (m) 1("l)};wherelsmSN

(m?t’ m’ (mr’ Tmr T mr " myt T (m)t

From this sequence construct sets as follows:

€ Py = e, (03 iz it
m" = lmmm T m ot mt )t

};wherelSmSN

:[ 0 1 ] [ 1 2 ]U U (m)1-3 (m)l—z]U (m)l-2 (m)1—1]u [(m)1—1 (m)l]

mrmrl 7 Lyl T mr ' m)t m ’ mt m ’mt
:D(m)11 UD(m)12UD(m)13U """ UD(m)lT

In the next iteration the sequence is given by
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~ 0 1 2 m)?-3 (m)?>-2 (m)?-1 (m)?) .
CPany ={—s s oy oo }iwhere1<m <N

m? ’ (m)?’ (m)?’ Tm2 T m? T m? T (m)?

Again writing in a set format we have

Cﬁ(m)z ! 2 ] ...... U [(m)z -3 (m)z - 2] g [(m)z -2 (m)2 — 1] y [(m)z -1 (m)z

0 1
- [(m>2 '(m)z] v [(m)2'<m>2 v mZ " (m)? mZ " (m)? m)2 ' (m)?
= D(m)21 UD(m)ZZ UD(m)23 U """ UD(m)ZT

the n™™ term is

= 0 1 2 (mn"-3 (m"-2 mM)"-1 (m)™) .
T L A <m<
CFom) {(m)n “myn T myn T T (m)n ’(m)n}’\"’here1 sms=N
10 1 1 2 mm" -3 (m)" -2 mmt-2 mm"-1 mm" -1 (m)"
‘[(m>n'(m)"]“[(m)n'(m)n]“ """ o myr ) [v] myr ()" Ju] myr "

= D(m)nl V) D(m)nZ V) D(m)n3 U eeeee V) D(m)nr

Let

Emyn1 = Set of all possible union of two elements.

E myn, = Set of all possible union of three elements.

And so on , the r'" term is

Emyn» = Set of all possible union of (r + 1) elements.

Take X = {C ﬁ(m)l,Cﬁ(m)Z,'""‘""“""“"'Cﬁ(m)"}

P(X) = {Demy11,Damyr 20 Dmyr 3077 Dyt o Emyt 10 Em)t 25

) E(m)1 e Dmyn1 » Dmynzs Dmyns

Jere e , D(m)nr' E(m)n 1 E(m)n PTRREREE E(m)n r }
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Claim 4.1:

The Set P(X) is a o — algebra

Q) Empty set ¢, P(X) € A.

(ll) Now (D(m)lz)c = P(X)/D(m)lz

= Em1, = Set of all possible union of two elements
(iii)  Consider the elements D,ynq, Dnyna, Damyns, =+ -+ ,Dimynr € A

Then D(m)"l V) D(m)nz U--u D(m)nr = E(m)nr

= Set of all possible union of ( m)™ of elementse A

Therefore

P(X) isa o — algebra.

Claim 4.2:
P(X) is a Borel set
Consider the elements Dy, Dnynz, Danynss = Damynrs Ecmyn 1, E gmynas E@myna =+ Emyny € A
Then Dgpyng N Dmynz N -+ N Digyyny N Egyn 1 N Eguyng - N Egyny = Dmyny € A
The Set P (X) satisfies all the conditions together with claim 4.1
So the set P(X) is o — algebra and Borel set and hence a measurable set.
Now, the Lebesgue Measure of P(X) is calculated.

Since measure of an interval is its length, we have
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n—-oo

guafr B oo e o oy )

(mm"-1 (m)"]

mm ’ myr

[ 1 2 ]+”_+/1[(m)”—3 (m)"—z]_l_l[(m)"—z (m)n—1]+ A[(m)n_l (m)n]}

mm’ (mn mm mm ’ (mn mm ’ myr

=lim{A |55 ol 2

((n:)" N (n?)n) + ((T:)n (m)") ot ((T;:;;Z - (Trgf) +

= lim
n—oo m"-1_  (m"-2 m"  m"-1
( (m)n (m)n )+ ((m)” (m)n )
—1{1 1+1+ +1+1+1}
=S G T T Gy mr " mr | ()"
=0

Therefore A( CFymyn ) = 0. Hence C Fyyn has Lebesgue measure zero. Hence the

Lebesgue measure of the Non reduced Farey N — subsequence of order m is zero.

Illustration 4.1:

CF _ { 0o 1 2 (m"3 m'2 m"-1 (m"
MW" = Ly " mn’ myn’ @y C mr ’ mn  (mn

};WherelsmSN

Non — Reduce to Farey N — Subsequence of order 4 is

che = {3239 - AuBAvE o

=Dy1; UDy1, UDy13UDyay

= 0 1 2 15 16
o ={2 L 2 1) [0 LG [L 2] y[2 22 4]y [ e
16 "16 16 16’ 16 16’ 16 16’ 16 16" 16 16° 16

= D421 UDy2, UDyzg Uweeoeevenve v oo U Dy 169 U D246
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For n" term

0
an

2 3
— e

1
P_n)4nﬁ4

~ 4M_3 4M_2 4M—_1 4"
ch = | }
4

4n ’ an 7 o4m gn

= D47’l1 U D4Tl2 U D4n3 U ......... U D4nm

Let
E,n, = Set of all possible union of two elements.
E,n, = Set of all possible union of three elements.
1Y for m™ term
E n,, = Set of all possible union of (m + 1) elements.
Egnp = Ub - (m+ 1)

Take X = {Fpu,Fpz,veeeveeereeeeien Fyn }

4
0 1 1 2 2 3 4M_3 4n_2
=[4—n'4—n]u[4—n'4—n]u[4—n'4—n]u """ U[4n'4n]u[

4" -2 4-”—1] [4-”—1 4-"]

4n ’ ogn 4m ’an

P(X) = {D411'D412'D413'D414'E411'E412'E413'"'D4“1'D4"2'D4"3'"':D4"m:E4"1'E4n2 "'E4"m}

The Set P(X) is a o — algebra
Q) Empty set ¢, P(X) € A.

(iiy  Take (D,1,)¢ = P(X)/D,1,

= E,1, = Set of all possible union of two elements

(iii)  Consider the elements Dyny, Dyny, Dyng, -+, Dynyy € A

Then Dynqy U Dyny U ++- U Dyn,,, = E4nyy, (Set of all possible union of 4™ elements) € A

Therefore P(X) is a o — algebra.

The Set P(X) is Borel set
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(iv)  The Set P(X) satisfies the countable intersection

Consider the elements Dy1,, Dy1,, -+ y D1y, Egi Eqigy ooe e Ep, €A
Then Dy N Dyiy NN Dy NEgiy N Egay N e e NEgu, =Dy, €A
P(X) is a Borel set.

Therefore P( X) is a o Algebra as well as Borel Set.
Lebesgue Measure:

A(CFyn ) = lim A(CFyn)

1 1 2 2 3 4M-3 4M-2 4M—2 41 4M—1 4T
i%l{[w '4"] U [4_"'4_"] U [4_"'4_"] U U [ 4’ o4n ]U[ 4n ’ gn ]U[ 4n ’4_"]}

im (2 5 i+ ] + Al + 2 [ S R Sl )

. 1 0 2 1 3 2 4M—2  4"-3 4n—1 4" 4™ 4"
= lm (-2 + (G- G- o+ () (G -+ G-

Therefore )l(CF4n) = 0. Hence CF,» has Lebesgue measure zero.

Since Cantor sets may be extracted from Farey sequence consider as sets. Here

theorem on measures of even ordered Cantor sets discussed in chapter | are presented.

Theorem 4.2:

The Lebesgue measure of Cantor Hexnary set and Cantor Deca set are zero.

Proof:

Considering Cantor Hexnary set and Cantor Decaset defined in Chapter 1.
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The lengths of intervals retained in Cantor Hexnary sets in each of the iterations are

given below:

First iteration: 2 (%) + (3) = (%) [2+2] = (%) [21 + 21]

6

Second iteration: 4 (6%) + 4 (62—2) +1 (;iz) = (6%) (22 +2(2%) + 29)
Third iteration: 8 (%) +12(%) + 6 () + 1(2) = (&) (2 +3(2%) +3(2%)+2%)
Therefore

The n'" iteration: (6%) (2" + nc 2™ + ney2™ 4 e e + nc,_12"+2")

Lebesgue measure = A <C (l)n>

6
= lim {ein (2" + nc 2™ + ney 2™ 4 e eee e +nc,_12" + 2”)}
n—-o0o
. 2\
=lim (%) ~0
Cantor Deca set

First iteration: 1(%) + (110) + (130) + (110) + (110) (10) [4+2] = (10) 2[21 + 2°]

4
102

Second iteration: 16( ) + 8 (102) ( ) = (102) (2% + 2(2%) + 2?)
= () 22(@% +2(21) + 29

Third iteration: 64(—) +48 (25) + 12 (5) + 1(Z5) = (o) (2° +3(2°) + 3(29)+2%)

= () 28 (2 +3(2) +3(2)+29)
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Therefore

The n'" iteration: (10%) 22" + ncy 2" + 2™ 4 e e + nc,_121+29)

Lebesgue measure = A(C 1 n)
()

1
= 7111—{?0 {W 22" + ne 2+ ne 2 4 + ncn_121+2°)}

= lim (E)n -0

n—-oo \5

Theorem 4.3:
If [0,1] is subdivided into 8 + 4k, k = 0,1,2 ... parts Cantor sets of order 8,12,16, ...

are developed and the Lebesgue measure of each of the sets is zero

Proof
Referring to the diagrams of Cantor Octanary set and Cantor Dodeca sets we have
calculated the Lebesgue measures:

For Cantor Octanary sets

Lengths of retained intervals of first iteration: (é) + (é) + (%) + (%) = (%) 4
Lengths of retained intervals of second iteration: (812) (16) = (812) 42

Lengths of retained intervals of third iteration: (813) (64) = (813) 43

Therefore

Lengths of retained intervals of nt" iteration: (8%) 4m

Lebesgue measure = A4 <C(1)n>

8

= Jim {(5) 4"}

= lim G)n -0

n—-oo
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For Cantor Dodeca Sets
Lengths of retained intervals of first iteration: (%) + (1—12) + (1—12) + (%) + (1—12) + (%) = (%) 6
Lengths of retained intervals of second iteration: (1—;) (36) = (812) 62

Lengths of retained intervals of third iteration: (%) (216) = (%) 63

Therefore

Lengths of retained intervals of nt" iteration: (12%) 6"

n
It is observed that in the nt" iteration sum of the length of the retained intervals is G) .
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CHAPTER -V

PROBABILITY MEASURE OF GENERALIZED NON -
REDUCED FAREY N- SUBSEQUENCE

This chapter is divided into two sections. Section 5.1 is on Probability Measure of
Generalized Non - Reduced Farey N- Subsequence and section 5.2 is on Invariant Measure
of Generalized Non - Reduced Farey N- Subsequence. We derive the Probability measure

of the Generalized Non reduced Farey N — subsequence.

For the construction of measurable sets the Farey sequence has been considered as
union of intervals, half- open, closed (or) open sets as the case may be with a sequential
points as end points. For the same above construction Probability measure has also been

calculated.

5.1 Probability Measure:
By a slight modification, writing Non reduced Farey N — subsequence as a

measurable set the sequence is written as union of closed and semi — open intervals.

Definition 5.1.1: Probability Measures [34]
A Probability measure on 2 is a function P from subsets of 2 to the real numbers
that satisfies the following axioms
i PW) =1
(i) IfAc,thenP(A) >0
(iii)  If A; and A, are disjoint, then P(A; U A,) = P(A,) + P(A,) more generally, If

A Ay, e , A, are mutually disjoint, then P(U7L; 4;) = X~ P(4))
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Theorem 5.1.1:
The Probability measure of the Non reduced Farey N — subsequence of even order

is one.

Proof:

Construction of measurable sets from Farey N — subsequence even order

J _{ 0 1 2 2m)™-3 2m)"-2 2m)"-1 (Zm)”}
em™ = lemm ' @mr’ @mn’ emn  @mn T @Emt  (2m)r
[ o 1 1 2 o [em-3 emn-2 emm-2 2m)"-1
- [(Zm)” '(Zm)n] U [(Zm)n'(Zm)"] U[ cm)™ ' @2m)n ]U cmm 7 @2m)n ]
[(Zm)”—l (Zm)"]
cem)™ ' 2m)n
~ _ 0 1 2 m)"-3 2m)"-2 2m"-1 2m"
HC Famyn _{(Zm)n ‘emn’ 2m)n’ Temr T emr ’ em)n '(2m)n}

- [(27(:1)71 ’ (z;)n)’ [(z;)n ’ (z;)n) v [(2(7;33:1 %, (2(7;1;;2)’ [(2(7:3:;2 ’ (Z(Tzn;:;l)’ [(2(72123; -, E;Z;:]

Here Probability of an event in HC F(Zm)n is taken as follows

0 1 . 0 1
P <[ g W)) = Length of the interval [ - W)

1
emn

IR

P< : 2 )) = Length of the interval [ : L)

em)™ ’ (2m)n em)™ ’ (2m)™

1
emn

2 3 . 2 3
P <[(2m)n W)) = Length of the interval [W W)

1
(2m)m

IR

IR
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For the nterm

(2m)™-1 (Zm)"]

p ([(zm)"—l (Zm)n]) = Length of the intervals [ 2 @m)yn

(m)™ ' (2m)"

1
em)n

IR

For union of intervals consider only consecutive points in

[ 0 1 ) [ 1 2 ) [(2m)"—3 (2m)"—2) 2m)™-2 (Zm)”—l) (2m)"-1 (Zm)”]
em ’emn/)’ Lemn’ emyn/” 'L em® 7 (emn /7L em)n T em® /7L (2m)t T 2m)"

Take any two elements say, A; = [ﬁ (;%)n) and A, = [ﬁ %)

P(A v A) =P <[(2:1)" ’ (2:1)") v [(2:1)’1 '(251)“))

=P <[(2;)n ’(Zjl)n)>

_ 2
T (2m)n

3 4 4 5
P(Al) + P(AZ) =P <[(2m)n ’ (2m)")> + P( (2m)n ’(2m)”)>

_ 2
T em)n

Therefore P(A, U A,) = P(4;) + P(4,)

Now we prove P(UiL14) = XL, P(4)

P(U%,A4;) = P(A U Ay U - oo UA,)

= ([ ) © [ ) vV [ o)

=P ([(z:onggz]) = EEZ;Z -

i=1P(A;) = P(A)) + P(Ay) + -+ P(4,)

=l o)) (e o)) o+ 2 (5
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1 1 1 1

= Temr Tamr T t

O e T T T TR nti

= o Q1+1+1+1+ + (2m)™ times)
~ m)" _

= 1

Therefore the Probability Measure of Non - Reduced Farey N- Subsequence of order

(2m) is one, where m is a positive integer.

lllustration 5.1.1: m is even

= _ 0 1 2. em)"-3 2m)™-2 2m)"-1 (2m)"
HCF myn _{(Zm)n ’em)n’ 2m)n’ T emn T emn T 2m)n '(Zm)n}
_ 0 1 1 2 Ny (em)*-3 (2m)"-2

- [(Zm)" '(Zm)n) U [(Zm)n’(Zm)n) U U em)m ’ @em)n )U

[(Zm)"—z (2m)"—1) U [(2m)"—1 (Zm)n]
emr ' 2em)n (m)r ' 2m)n

Putm = 2,n =1,l=4

HC ﬁ'4 = {9 ’E,Z’E’i}

=[F v
Now
P(Ui14i) = Zioi P(4)
P(Uf14) = T P(A)

P(U?=1Ai) = P(Al V) AZ V) A3 V) A4)

LEEM SN E)
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L1P(4) = P(A)) + P(Az) + P(43) + P(4,)

=e([3 )+ (B2 + (B (4D

=1

R

i

+-+-+

i
i
i

Probability Measure of HC F, =1
Therefore

The probability measure of Non - Reduced Farey N- Subsequence of order 4 is one.

Theorem 5.1.2:

The Probability measure of the Generalized Non reduced Farey N — subsequence of

odd order is one.

Proof:
Construction of measurable sets from Non reduced Farey N —subsequence odd order
is
3 _{ 0 1 2 @em-1)"-3 2m-1)"-2 2m-1)"-1 (Zm—l)”}
(m-1)" ~ lem-n" ' em-D)"’ 2m-1)"’ " 2m-n" ’ @2em-1)" ' @Em-1)" ' @m-1)"
_ [ 0 1 ]U[ 1 2 ] ...... (2m-1)"-3 (2m—1)n—2]
— lem-nr ’ em-nn (2m-1)"’ 2m-1)" em-D)" ’ @em-1)n
[(Zm—l)"—z (Zm—l)"—l] U [(Zm—l)"—l (2m—1)n]
@m-n)" ' 2m-1)n @m-n)" ' 2m-1)n
~ _ 0 1 2 em-n)"-2 2m-1)"-1 2m-1)"
HC Fm-1yn _{(Zm—l)" ‘em-D)"’ 2m-D)"’ ’ (2m-D" ' (@2m-1)" ’(2m—1)"}
_ 0 1 1 2\ (2m-1)"-3 (2m-1)"-2
- [(Zm—l)” '(Zm—l)”) U [(Zm—l)"'(Zm—l)n) U U em-)" ' (2m-1)n ) U

(2m-1)"-2 (Zm—l)n—l) U (2m-1)"-1 (2m—1)”]
@em-n)n ' 2m-1)n @m-n)" ' 2m-1)"

Here Probability of an event in HC F(Zm_l)n is taken as follows
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0 1 . 0 1
P <[ a7’ (2m—1)n)) = Length of the interval [ el (2m—1)”)

1
(2m-1)"

IR

1 2 . 1 2
P <[ a7’ (2m—1)n)) = Length of the interval [ el (2m—1)”)

1
(2m-1)n

IR

2 3 . 2 3
P <[ a7’ (2m—1)n)) = Length of the interval [ el (2m—1)”)

1
@m-1"

IR

For the n!"term

([(Zm—l)”—l 2m-1)"

2m-1D)"-1 (2m-— 1)“]
em-1)" ' (@2m-1)n

D = Length of the intervals [ em-1m ’ 2m-1)n

1
(2m-1)"

For union of intervals consider only consecutive points in

[ 0 1 ) [ 1
m-1)" ' 2m-D"/)’ lem-D"’ 2m-1)"

2 ) (2m-1)"-3 (2m—1)”—2) (2m-1)"-2 (Zm—l)"—l)
L em-)n ? em-1n /L m-D" 7 @m-1)n )’

[(2m—1)"—1 (2m—1)"]
@em-D)" ' @2m-1)n

_[ 6 7
“ Llem-0n ’ 2m-D)n

) and A,

Take any two elements say, A, = [(2m7_ ok (Zm:)n)

P(A; UA,) =P ([(2m6—1)” ’ (2m7_1)n) U [(2m7—1)n ’ (2m8—1)")>

=P ([(2m6—1)n ! (stil)n)>

2
22m-1)n

IR
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6 7 7 8
P(A) +P(42) =P ([(Zm—l)n ’(2m—1)”)> +P ([(Zm—l)” ’(Zm—l)“)>

2
2m-1)n

Therefore P(A; U A,) = P(A;) + P(4,)
Now

Probability Measure HC F (,,yn
P(UiZ14;) = Xt P(4A)

P(Uiz14;) =P(A;U Ay U UA,)

_ 0 1 1 2 em-1)"-1 (2m-1)"
=P ([(2m—1)n ’ (Zm—l)") U [(Zm—l)” ’ (Zm—l)”) U-u @em-nn ’ (Zm—l)”])
_ P( 0 (Zm—l)n]) _
- em-O"’ em-0nl)

L1P(A;) =P(A) +P(Ay) + -+ P(4,)

= p| )| 2 ([ ) ) + -+ ([t )

1 1 1 1

= Gmoon T amenn T Gmenn Tt (2m-1)n
~ L 14141 e — n ¢

e ——— Q1+1+1+ + (2m — 1)" times)
. em-n"

= em-nn 1

Therefore
Probability Measure of Non - Reduced Farey N- Subsequence of order (2m — 1) is

one.
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IHlustration 5.1.2: m is odd

ﬁ' _{ 0 1 2 2m-1)"-2 2m-1)"-1 (Zm—l)"}
em-D" = (gm-nn ’ @m-Dr’ @m-Dn’ ’ @m-1n ' @m-Dt ' @m-1n

~ . 0 1 1 2\ (2m-1)"-3 (2m-1)"-2
HC F(zm_l)n - [(2m—1)n '(Zm—l)n) U [(Zm—l)n'(Zm—l)n) U U (2m-1)" ' (2m-1)" ) U

[(Zm—l)"—l (2m—1)"]
em-Dn ' 2m-1)n

Putm = 2,n=1,1=3

He = 222

=13 vl3) v
Now
P(Ui-14:) = Zi-1 P(4)

P(U?=1Ai) = i3=1P(Ai)

P(Uj-1 4;) = P(A; U A, U A3)
=r(|35) v vz
=r([53) =1

i-1P(A)) = P(A1) + P(4,) + P(43)
=r([59)+r () +r (3D =5=1
Probability Measure HC F; =1

Therefore the probability measure of Non - Reduced Farey N- Subsequence of order

3 isone.
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5.2 Invariant Measure of Generalized Non - Reduced Farey N- Subsequence:
Definition 5.2.1: Invariant Measure [48]

Let ([0,1], F,,» ) be ameasurable spaceand letg : [0,1] — [0,1] be a measurable

function from [0,1] to itself. A measure u on ([0, 1], F,,,») Is said to be invariant under g,

if for every measurable set A in Fn.

u(g™ Q) = u4)

Theorem 5.2.1:
The invariant measure of the Generalized Non reduced Farey N — subsequence of

even order is one.

Proof:
Define the function g as g (Fmyn) = CFamyn
where CF"(Zm)n is nothing but Non — Reduced Farey N — Subsequence taken as union of

closed sets.

Construction of measurable sets from Non reduced Farey N — subsequence even

order Non — Reduce Farey N — Subsequence of even order is

~ _ 0 1 2 ecm)*-3 2m)"-2 2m)"-1 2m™) .
Famyn = {(2m)n Y2mn’ 2mn’ Temnr 7 em)r T 2m)n '(Zm)”} ;where1l <m < N

~ _ (2m)"-3 (2m)"-2
CF(Zm)n = |—— —JU|—— — Y e U [ ]

[ 0 1 ]U[ 1 2 ]
(em) ’ 2m)n (2m)n’ (2m)" (em)n ' (2m)"

[(Zm)"—z (2m)”—1] U [(Zm)”—1 (2m)”]
(emm ’ 2m)" (em)r ’ (2m)"
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Let A be taken as union of any two intervals

A = [ 0 1 ]U [ 2 3 ]
- (2m)n+1’ (2m)n+1 (2m)n+1’ (2m)n+1

Then,

w4 = M([(Zm(;n+1'(2m§“+1]) +'u([(2m2)n+1’(2m3;n+1])

1 3
_ (@mpFI (2m)"*t (mn+T (2m)"*1
= 7% du+ [ d
(Zm)n+1 (Zm)n+1
_ (2m)“+1[ 1 _ 0 ] (2m)n+1[ 3 _ 2 ]
- 2 (2m)N+1  (2m)n+1 2 (2m)N+1  (2m)n+1

=1

- (2m2)n+1 [(2m1)“+1] (2m2)n+1 [(Zm;“'l]

LetA=[0 1]

(emm ' 2m)n
— 0 1
K™ @) = # [ ]

1
femrEm_ g,

(2m™

= (2m)" [(z;)n N (z:z)n]

1
(Zm)™ [(Zm)"] =1
Therefore

ud) = u(g™'Aa)

Where u is an invariant Measure for Non — Reduce to Farey N — Sub sequence of

even order m with respect to g.

Invariant Measure for Non — Reduce to Farey N — Sub sequence of even order is

one.
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Illustration 5.2.1:

Non — Reduce to Farey N — Subsequence of even order is

~ _ 0 1 2 em)*-3 2m)"-2 2m)"-1 2m™) .

Famyn = {(Zm)” P em)n’ 2m)n’ emr ' em)t T em)n '(Zm)"} ;where 1 <m < N
~ [ o 2 1. . (em)"-3 (2m)"-2

CFamyn = [(Zm)" '(2m)n] v [(Zm)n'(Zm)n] U [ emr ' em)n ]

[(Zm)n—z (Zm)n—l] U [(Zm)"—l (Zm)"]
(cm ’ (2m)" (em)n ’ (2m)n

Let4A = [(Zm)““ ’ (2m)n+1] U [(Zm)r“'l ’ (2m§n+1]

Takem = 2,n = 1;

A = [ ] Y aw m)
= [oearl v ool
Then,
@ = (5 ) + 1 (G al)
- f<4>2 @ gy 4 [ @ ay

@2 @2

2

(4)2 0 (4)2

[(4)2 (4)2 [(4)2 )?

(4)2 [(4)2] (4)2 [(4)2] =1

Let A= [(2:1)” ’(2;1)71]
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Takem = 2,n=1

u(g™' (@) = u [% T

1
-7 1

— f(g)l(‘l) du =1
@1 !

Therefore

u(A) = u(g™(4)

where u is an invariant Measure for Non — Reduce to Farey N — Sub sequence of even order

m with respect to g.
Invariant Measure for Non — Reduce to Farey N — Sub sequence of order 4 is one.

Theorem 5. 2.2:
The invariant measure of the Generalized Non reduced Farey N — subsequence of odd

order is one.

Proof:

Define a function g (Fzm-1y2) = CFam-1yn
where CF(Zm_l)n — Non — Reduced Farey N — Subsequence as union of closed set.

Construction of measurable sets from Non reduced Farey N — subsequence odd order

Non — Reduce to Farey N — Subsequence of odd order is

0 1 2 . @em-p"-3 2m-D"-2 2m-1)"-1 (2m-1)n}

Fam-nn ={(2m—1)" ‘em-)n’ 2m-D"’ 7 @m-D)" ’ @em-1)" ’ (2m-1)" ' (2m-1)"

wherel<m<N
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Cﬁ(zm—1)n = [(2m0—1)n , (Zml—l)n] U [(Zml—l)”’(2m2—1)n] U oo oo U

[(2m—1)"—3 (2m—1)"—2] U [(2m—1)"—2 (Zm—l)”—l] U [(2m—1)”—1 (Zm—l)”]
@em-Dn ' 2m-1)n @m-n)n ' 2m-1)n @em-1)" ' (2m-1)n

0 1 2 3
Let A = [(2m—1)“+1'(2m—1)“+1] [(2m—1)n+1'(2m—1)n+1]

Then,

u(d) = p ([(Zm_ol)n+1 ’ (zm_ll)n+1]) tu ([(Zm—zl)n"'1 ’ (Zm—31)n+1])

1 3
_ [@m-pntI (2m-1)"*? @m-pn+I 2m-1)"*!
= [ — — du + — —du
(zm-1)n+1 (zm-1)n+1
_ (2m-1pnt? [ 1 _ 0 ] (2m-1)"+1 [ 3 _ 2 ]
- 2 (2m-1)1+1  (2m-1)n+1 2 (2m-1)P+1  (2m—1)n+1

- (Zm_zl)n+1 [(Zm—ll)n"'l] (Zm_zl)n+1 [(2m—11)“+1] =1

Let A= [(Zmo_l)n ’(2m1—1)"]

_ 0 1
,u(g I(A)) - H [(Zm—l)n ’(2m—1)n]

1
2m—17 2m-1)"
= [em @m-H7 4

(2m-1)

= 2m- D" |- —]|

(m-1)"  (2m-1)"

= m-1" |55 =1

Therefore

u(d) = p(g™(A)
where u is an invariant Measure for Non — Reduce to Farey N — Sub sequence of odd order

m with respect to g.

Invariant Measure for Non — Reduce to Farey N — Sub sequence of odd order is one.
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Illustration 5.2.2:

Non — Reduce to Farey N — Subsequence of odd order is

P _{ 0 1 2 2m-1)"-3 2m-1)"-2 2m-1)"-1 (Zm—l)"} .
Cm-1D" T\ om-1)" ’ Zm-D"’ Zm-D*’ ' @m-1D" ' em-1" ’ (@m-1)" ' (2m-1)n :

where 1<m<N

~ . 1 1 2 1. (2m-1)"-3 (2m-1)"-2
CFam-1yn = (2m-1)n ’(zm—l)n] [(zm—l)n’(Zm—l)n] [ em-nn ' (2m-1)" ]

[(Zm—l)n—z (2m—1)"—1] 2m-1)"-1 (2m—1)"]
em-Dn ’ 2m-1)n @m-D" ’(@2m-1)n

0 1 2 3
Letd = [(2m—1)n+1’(2m—1)n+1] U [(2m—1)n+1’ (2m—1)“+1]

Takem = 2,n = 1; By the equation p(g=1(4)) = u(A)

A = g ) Y g @]
- [ererlvler &
Then,
k@ = (55 55l) e (e o)

f(3)2 (3) du +f(3)2 (3) du
3)2 3)2

(3)2 (3)2

[(3)2 (3)2] [(3)2 (3)2

(3)2 [(3)2] (3)2 [(3)2] =1

Letd = |— —]

@m-1)" ' 2m-1)n
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Takem = 2,n=1

u(g™' (@) = u [& o

1
ER
= [P du=1

@

Therefore

u(A) = u(g™(4)

where u is an invariant Measure for Non — Reduce to Farey N — Sub sequence of

odd order m with respect to g.

Hence, invariant Measure for Non — Reduce to Farey N — Sub sequence of order 3

is one.
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CHAPTER -VI

MEASURE OF MODIFIED EVEN ORDERED
CANTOR SETS

This chapter deals with the Box Measure of Modified even ordered Cantor sets.
While calculating box measure, boxes without dimensions are used in general but here,
boxes are replaced by isosceles triangles and their areas are considred as measures. This

chapter is divided into four sections.

Section 6.1 deals with Measure of Cantor Hexnary Sets and Section 6.2 is on
Measure of Cantor Deca Sets.Varying from the previous sections, section 6.3 provides a
measure for Cantor Octanary Sets and following the similar lines Section 6.4 gives a

measure of Cantor Dodeca Sets.

6.1 Measure of Cantor Hexnary Sets:
Definition 6.1.1: Triangular Measure of Cantor Hexnary Sets

The closed interval [0, 1] is divided into six equal parts ,second and fifth intervals

are removed. The left and right intervals of length (%) and middle interval of length (E) is
retained. Draw a smaller triangle of retained intervals and calculate he area of triangle. This

is known as Triangular Measure of Cantor Hexnary Sets and it is denoted by TMC(l) :
6

Theorem 6.1.1:
The Box measure of Cantor sets can be converted into triangular measure and it is

given by

73



_ (1 1)2 n n-1 n-2 n-r 2n—-1 2n
TMC(l)n = (E) (6_") [2" + nc 2™ + e 2™ e +nc, 2" 4 e +nc,_12 + 251,
6

. R . . 1
The areas follows Geometric Progression with common ratio (E)

Proof:

Proof of the theorem follows by induction method.

The closed interval [0,1] is divided into six equal intervals. Following the theory of

Cantor Hexnary set, the open intervals (%2) and (gg) are removed. The remaining parts

[9= 0,1],[3,f] and [E,E: 1] are again subdivided as follows. The length of the
6 6 6°6 6°6

middlemost part is 2/6. For the 2" iteration, the parts [g = 0%] and Eg] are each divided

into six equal intervals there by giving six intervals

[g 0 ] 316 36] 36 36] [36 36 [36 36] [36 36

and [30 31] [31 32] [32 g] [ﬁ ﬁ] [34 35] [35 36
36’361’ 1367361’ 1367 361" 367361’ 1367 36]1° 1367 36

. f 1 2 4 5
respectively. The open intervals (;g) and (%E) are removed. Draw a smaller

triangular of retained intervals and calculate area of triangle.

Whenn = 1,

1\ (1) on n-1 n-2 n-r 2n-1 2n
TMC oy = (3) (&) 120+ ney2™ 4 nep2m 2 e kG 20T v iy 2277 4 227
6

ey = () @) 2 01= () ()

Therefore the area of triangle is G) (%)
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Whenn = 2,

1 1

TMC(E)n = (—) (—)2 [2" + nc12”‘1 + nczzn—z +
6

2/ \e"

) (612)2 [22 + 2¢,2%1 + 22@)

=G

T™MC

= [22+2.23 +2%] = (1)(1)

2) \62

The area of triangle is G) (i)

62

Assume the result forn = e

1 1

TMC( )n = (_) (_)2 [2™ + ne, 2"t + nc, 2" 2 +

1 2/ \en
6

=(3) () 161=) ()

We prove the resultforn = e +1

TMC(l)e = (l) (é)z [Ze + ece_lzze—l + 22(6)]
6

Now

2/ \e"

TMC oy = () (i)2 [27 + nc 271 + ne, 2" 2 +

6

T™MC

2 eetl

= (5) (=) 161= () ()

5

Hence the result is true for all positive integers
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Graphical Representation:

The Following Figure 6.1.1 shows the graphical representation of Triangular

Measure of Cantor Hexnary Sets.

First iteration:

The closed interval [0,1] is subdivided into 6 equal sub- intervals EI Oé]

1 2 2 3 3 4 4 5
g;g;g;g;g;g;g;g;

[N
N
o lw
(e I
o lu
[0 o)}

Figure 6.1.1: Triangular Measure of Cantor Hexnary Sets

. 1 2 4 5
The intervals removed are (—, —), (—, —) .
6" 6 6" 6

Length No.of Triangle
6 2
6
G
6

Table 6.1.1

The above table 6.1.1 shows the number of triangle appear in the first iteration.
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Second iteration:

P%$}*¢§ BMPFT$§ N

12 14- 16 18 20 22 31 32 33 34 35 36

2 222250 2 2 =1

36 36 36 36 36 3636 6 36 36 36 36 36 36 36 6 36 36 36 36 36 36

Figure 6.1.2: Second iteration — Triangular Measure of Cantor Hexnary Sets

Length No.of Triangle
(5 :
36
(5 :
36
(56) 1
36

Table 6.1.2

The above table 6.1.2 shows the number of triangle appear in the second iteration.

6.2 Measure of Cantor Deca Sets:
Definition 6.2.1: Triangular Measure of Cantor Deca Sets:

The closed interval [0, 1] is divided into ten equal parts. Second, fourth, seventh and

ninth intervals are removed. The left and right intervals of length ( ) and middle interval

of length ( ) is retained. Draw a smaller triangle of retained intervals and calculating the

area of triangle. This is known as Triangular Measure of Cantor Deca Sets and it is

denoted by TM C(L) .
10
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Graphical Representation:

The Following Figure 6.2.1 shows the graphical representation of Triangular

Measure of Cantor Deca Sets.

First iteration:

The closed interval [0,1] is subdivided into 10 equal sub- intervals

Pl A etk B e B et B bt B e Bt B et
10 10’ 10]’ [10”10) 7 110’ 0]’ 10’ 10] 7 110’ 101" 110’ 10] ” [107 10

N N AN

0 _o2 2 3 4 5 6 7 8 9 10
10 10 10 10 10 10 10 10 10 10 10

Figure 6.2.1: Triangular Measure of Cantor Deca Sets

. 1 2 3 4 6 7 8 9
The intervals removed are (—, —), (—, —),(—, —),(—. —) .
10° 10 10" 10 10" 10 10" 10

. . 0 1 2 3 4 6 8 9 10
The remaining intervals are [— =0,—|u [—,—] V) [—,—] U [i,—] Ul=,—= 1]
10 10 10° 10 10° 10 10° 10 10 " 10

Length No.of Triangle
@ |
10
@ |
10

Table 6.2.1

The above table 6.2.1 shows the number of triangle appear in the first iteration.
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Second iteration:

910

The retained intervals are [__ 0, 10] [10 10] [10 10] [10 10] 10’10

] each

closed interval is subdivided into 10 equal sub- intervals

AR B AD MAE A M B

Figure 6.2.2: Second iteration -Triangular Measure of Cantor Deca Sets

The intervals removed are( 2 ) (i i) (i L) (i i) (2 ﬁ)

100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’
(23 24) (26 27) (28 29) (42 4-4) (46 48) (52 54) (56 58)
100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’ \100” 100/’ \100’ 100/’
(71 72) (73 74) (76 77) (78 79) (91 92) (93 94) (96 97)
100’ 100/’ \100’ 100/’ \100’ 100/’\100’ 100/’ \100’ 100/’ \100’ 100/’ \100’ 100/’

(98 99)
100’ 100/ °

Length No.of Triangle

() |*
() |®
() |*

Table 6.2.2

The above table 6.2.2 shows the number of triangle appear in the second iteration.

Theorem 6.2.1:

The Triangular Measure of Cantor Deca Sets it is given by
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1 1)? 2n 2n 2n 2n 2n 2n
TMC(L)n = (5) (W) [2°" + ncy 2°™ + ey 2™ + -+ e 27 e e +ncy_12°" + 241
10

. R . . 1
The areas follows Geometric Progression with common ratio (E)

Proof:

The theorem is proved by induction method.

Whenn = 1,

1 1\? 2n 2n 2n 2n 2n 2n
TMC(L)n = (5) (w_n) [2°7 + Ny 2°™ + ey 2™ + -+ e 27 4 e e + nc,_12°" + 271
10

e, = () () (224220 = ()

10

Therefore

. . [ 1)?
The area of triangle is (R) 22

n = 11s true.

Whenn = 2,

1 1 2 2n 2n 2n 2n 2n 2n
TMC(i)n = (E) (1on) [2°" + ey 2°™ 4+ ney 2™ + o+ e 25 A e e + nc,_12°™ + 247]
10

= (9)(2) [2* + 212+ + 220)]

2/ \102

= () () 12 w2220 = () 2

T™MC

()

Therefore

. . 1)?
The area of triangle is (F) 25
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Assume the result forn = e

_ (1 1\? 2n 2n 2n 2n 2n 2n
TMC(L)n = (5) (m_n) [2°" + ncy2°™ 4+ ney 2™ + - e 25T 4 e e + nc,_12°" + 2°"]
10

s = () [ e+ 270 - () 2

2 10¢€ 10¢
10

Therefore

. ERY
The area of triangle is (F) 23e-1

We prove theresultforn = e +1

1 1\? 2n 2n 2n 2n 2n 2n
TMC(L)n = (5) (w_n) [2°7 + Ny 2°™ + ey 2™ + -+ e 27 A e e + nc,_12°" + 271
10

2 2
TMC(%O)eH = (%) (10;1) [22(+D) 4 (e + 1)¢, 224D + 22(e+D)] = (TlJrl) p3e+2

2
Therefore the area of triangle is (10;1) 23¢+2

2
Therefore the triangular measure of TMC(L)n = (i) 23n-1

1om
10

6.3 Measure of Cantor Octanary Sets:
Definition 6.3.1: Triangular Measure of Cantor Octanary Sets:

The closed interval [0, 1] is divided into eight equal parts. By removing the second
part, last but one part and middlemost part, the open intervals (%g) : (Zg) and (gg) are
removed. The middlemost removable interval is of length (g) Each retained intervals are

of length (%) Continue the process indefinitely. Draw a smaller triangle of retained intervals

and calculating the area of triangle the set obtained is known as the Triangular Measure

of Cantor Octanary Sets and is denoted by TM C(l) .

8
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Graphical Representation:

The Following Figure 6.3.1 shows the graphical representation of Triangular
Measure of Cantor Octanary sets.

First iteration:

The closed interval [0,1] is subdivided into 8 equal sub- intervals

5= 03k (53l -3 5.5 2 15 ) 53] 55 =1
! |

| | 2 Eﬁ Z!\E_l
8 8 8

0
Figure 6.3.1: Triangular Measure of Cantor Octanary sets

[N BT

ol w

8

SRS
SRS 4

. 1 2
The intervals removed are (5,

)G 3G o)

8’ 8

The remaining intervals are [g =0, %] , E%] Eg] and Eg = 1]

Length No.of Triangle
G |
8
Table 6.3.1

The above table 6.3.1 shows the number of triangle appear in the first iteration.
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Second iteration:
The remaining intervals are [g =0, %] , Eg] , Eg] and Eg = 1] subdivided into 8

8

equal sub- intervals.

PP B B B

Figure 6.3.2: Second iteration - Triangular Measure of Cantor Octanary sets

Length No.of Triangle

@ |

Table 6.3.2

The above table 6.3.2 shows the number of triangle appear in the second iteration.

First iterations:

The area of triangle is TMC(l)l = (%) (8_11)2 (4!

8

Second iteration:
2
The area of triangle is TMC(%)z = G) (812) (4)?

. 1\ (12
Therefore the triangular measure of TM C(l)n = (5) (S—n) "

8

6.4 Measure of Cantor Dodeca Sets:

The same procedure follows by the Triangular Measure of Cantor Dodeca Set.

Definition 6.4.1: Triangular Measure of Cantor Dodeca Sets:
The closed interval [0, 1] is divided into twelve equal parts. By removing the second

part, fourth part, ninth part, last but one part and middlemost part, the open intervals
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(i i) (i i) (i l) (3 i) and (E, E) are removed. The middlemost

12" 12/’ 127 12/’ \12’ 12/’ \12’ 12 127 12
removable interval is of length ( ) Other retained intervals are of length ( ) Continue

the process indefinitely. Draw a smaller triangle of retained intervals and calculating the
area of triangle the set obtained is known as the Triangular Measure of Cantor Dodeca

Sets and is denoted by TM C(L) .

Graphical Representation:
The Following Figure 6.4.1 shows the graphical representation of Triangular

Measure of Cantor Dodeca sets.

First iteration:

| " " ﬁﬁ_rkf T '|I\T
noz_y
12 12

Figure 6.4.1: Triangular Measure Cantor Dodeca sets

The intervals removed are (1—12 i), (i i),(i l),(E i),(E E).

12 12’ 12 12’ 12 12’ 12 127 12

.. . 0 1 11 12
The remaining intervals are [— =0,—|U [ ] [ [ ] [ ] [ ]
12 12 12712 12’ 12 12712 12 "12 12 12

Length No.of Triangle
1
(@) ¢
12
Table 6.4.1
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The above table 6.4.1 shows the number of triangle appear in the first iteration.
Second iteration:

The remaining intervals are

S=0=| 53 53l 55 |5 5l |5 5 = 1] subdivided into

12~ ’12)’ [z’ 1207 1127 1207 1127 12 7 12 7 12] 7 [12 712 —

12 equal sub- intervals.

AR BAADDD BB
N N N N N N NTNTAy NI NN NN

Figure 6.4.2: Second iteration- Triangular Measure Cantor Dodeca sets

Length No.of Triangle

(L) 36
144

Table 6.4.2

The above table 6.4.2 shows the number of triangle appear in the second iteration.

First iteration:

The area of triangle is TMC(%)l = (%) (1—;)2 (6)t

Second iteration:

2
The area of triangle is TMC(i)z = G) (1—;) (6)?

12

2
Therefore the triangular measure of TMC,,\n = (< (6)™
=0 6)

2 12n
12
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CONCLUSION

We have established modified Cantor (%) and (g) sets and corresponding sequential
sets namely Cantor sets of order 6 + 4k and 8 + 4k, k = 0,1,2,3,---. Unlike Cantor ternary
sets here removal of sets in various patterns are considered. One is usual away of removing

intervals of lengths 1/2n and the middle most intervals of lengths 2/2n. The process is

continued successively, so that the general portion of removable intervals can be identified.

In this pattern of removal middle most interval in successive iteration follows a
geometric sequence of powers of two. The intervals equally spaced from the middle to the
left and right follows different nature as the iteration increases. Its characteristics are
studied. Also, the diagrammatic representation of modified even ordered Cantor sets has

been exhibited.

In analyzing Cantor sets of even order it is obtained that more than one pattern of
removal of intervals can be considered. Also it is noted that starting with six and eight every
increment of four gives the same mode of removal of sets. The general formulas for the

existing intervals have been given for the middle most intervals.

Farey N — subsequence has been developed as a topological space Hausdorff space

and T; space.

The Non Reduced Farey N — subsequence has been established as a - algebra and
Borel set. By reconstructing the sequence of elements also the Lebegue Measure and

Probability Measure have been calculated for this o- algebra. Also the Probability measure
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of the Generalized Non reduced Farey N — subsequence has been evaluated. Measure of

Modified Even ordered Cantor Sets are analyzed.

In finding box measure rectangles without dimensions are used. Here isosceles

triangles are constructed and triangular measures are calculated.
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MODIFIED EVEN ORDERED CANTOR SETS

S.SUDHA', A. GNANAM?

Abstract: In Cantor ternary sets middle third is removed and the
pattern of removal continues indefinitely. Taking the number of
divisions as order here, even ordered Cantor sets are considered.
Unlike Cantor sets here lengths of unequal intervals are removed.
In this pattern of removal middle interval in successive iteration
follows a geometric sequence of powers of two. The intervals
equally spaced from the middle to the left and right follows
different nature as the iteration increases. Its characteristics are
studied in this paper. Also, the diagrammatic representation of

modified even ordered Cantor sets has been exhibited.
2010 AMS Classification: 26A30

Keywords: Cantor set

1. Introduction
The Cantor ternary set is a set of rational numbers in the closed
interval [0, 1] obtained by dividing the interval into 3 parts successfully after
removing the middle third. There are many publications describing various
properties of Cantor middle sets. The Cantor middle sets are considered only
for odd integers. The analysis is done only for C,,,_; middle sets

(2 < m < ). Cantor sets for even integers are not so far studied in detail.

Unlike Cantor ternary sets, in even ordered sets the intervals of lengths
one and two are removed successively. Again, if intervals of lengths two are
taken away the formulas for retaining terms are given. In this paper Cantor
sets of even numbers are considered. Contrary to the procedure followed by
Cantor, intervals of various lengths are removed in different patterns. These

various patterns of removal of intervals are analyzed here.

2. Preliminaries
Throughout this paper we study the modified Cantor even ordered sets.
Definition 1: Cantor Hexnary Set
Divide the closed interval [0,1] into six equal intervals. Remove the

second and last but one of
the six intervals of length (%) The middle interval of length (2) is only

retained. Now for the first,
last and middle intervals continue the procedure indefinitely. The set
obtained is known as Cantor Hexnary Set.
Definition 2: Cantor Octanary Set
The closed interval [0, 1] is divided into eight equal parts. By removing

the second part, last but one part and middlemost part, the open intervals

12\ (35 6 7 . . .
(5,5) , (5,5) and (5'5) are removed. The middlemost removable interval is

of length (g) Each retained intervals are of length (é)

*Corresponding author: ssudha3679@gmail.com
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MODIFIED EVEN ORDERED CANTOR SETS

Continue the process indefinitely and the set obtained is known as the

Cantor Octanary Set.

3. Modified Cantor ( ) Sets
Theorem 3.1:

In Cg , if the middle interval of length 2/ ¢ is retained and subdivided
successfully as in Cantor then in the successive iterations the middlemost
interval is retained that follow a series of the form 2/6 k (2/6)2’ (2/6)3’
all these intervals. The general term of the middlemost interval is given by
[:n, k+2n] were k can be represented by the series 2(6)"1(2)° +
26" 22 +2(6)" ()2 + -+ 2(6)°(2)"

Proof:
The closed interval [0,1] is divided into six equal parts. Following the

theory of Cantor set, the open intervals (é,z) and (g, Z) are removed. In first
iteration the number of parts removed is 2*3°. The remaining parts [9 =
0, ] [ ] and [— -= 1] are again subdivided as follows. The length of the

middlemost part is 2/6. For the 2™ iteration, the parts [g =0, g] and [E' E]

are each divided into six equal parts thereby giving six parts

[%: 0 316] [36 36] [36 36] [36 36] [36 36] [36 36] The open intervals

1 2 4 5
(g,g) and (g g) are removed. Applying the removal pattern of the

) 12 14] [14 16][16 20] [20 22] [22 24
middle part again give rise to —,—], ==, 1=,=I
36’ 36)’ 136 361’136 36)" 136" 36)" 36" 36

The open intervals (—4,2) and (E,E) are removed. The length of the
36”36 36”36

middlemost part is 4/36. In second iteration the number of parts removed is
1. . . 16 207 . . R, .
2*3'. The third iteration the middle part [;,;] is again subdivided into six

96 1007 [100 104] [104 108] [108 112] [112 116] [116 120
equal parts are[ ] [ ] [ ] [ ] [ ] [

216’ 2161’1216° 2161’ [216° 216’ [216” 216] " 1216’ 2161’1 216" 36 I’
100 104 112 116

The intervals ( ) an ( ) are removed. The retained intervals are
216’ 216 36’ 36

96 100] [100 104] [104 112] [112 116] [11l6 120
—,— ==, == =, |—,— . The length of the
216’ 216)'[216” 2161’ 12167 216] ’ [ 216” 216" 1216’ 36

middlemost part is 8/216. In third iteration the number of parts removed is
2%3%

Here it is noted that in the successive iterations every interval which are

equally spaced from the middle interval are subdivided into six equal parts

11 . - .
whose length S, o, e . The middlemost part when subdivided into
61 62 63’ 6%
22 23 2% . .
six equal parts are of length is =, =, =, =, -+ . In each iteration the

61762’ 63" 64’
number of parts removed are (2*3°), (2*31), (2*32), (2*3%) ... (2*3™)

successively.

Therefore in Cg , if the middle interval of length 2 / 6 is retained and
subdivided successfully as in Cantor then in successive iterations the
middlemost intervals retained follow a series of the form

2 / 6’ (2 / 6)2 (2 / 6)3 . for all these intervals. The general representation of
k+27"

st ] where

k=2(6)""1(2)°+2(6)" 22+ 2(6)" ()% + -+ 2(6) @)1

the middlemost term at the n™ iteration is given by [
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The Following Figure 1 shows the graphical representation of modified
Cantor (%) sets and Figure 3 shows the tree representation of middlemost
part of modified Cantor (%) sets.

First iteration:

The closed interval [0,1] is subdivided into 6 equal sub- intervals

PR P H o e H R

alo

Il

o

I
ol
olw
o lh—]
oln,
olo—

Figure 1: Modified Cantor (é) sets

The Removed intervals are (2 2) (i E) .

The remaining intervals are [ 0, ] [6 6] U E,Z = 1]
R Py @
Second iteration:

01;31:4_111111£L44 30 31 323334 35 3

6 12 20 _ -1
36 36 36 36363636 6 36 3636 36 36 36 36 6 36 36 3636 36 36 36

Sl

. . . . 1
Figure 2: Second iteration - Modified Cantor (g) sets
The Removable intervals are
1 2 5 6 14 16\ (20 22\ (31 32\ (34 35
(—,—), (—,—), (—,—), (—,—), (—,—), ( ) from each of the
36736/’ \36’36/ " \36”36/ " \36” 36/’ \36” 36/’ \36" 36

subintervals will result in modified cantor set.
0 1 2 4 5 6 12 14 16 20 22 24 30 31 32 34 35 36
Cor = {er30 336735756 3056736 307207 36 307587 30 36750 3d). (3D)
This procedure proceeds in every iteration to get the entire modified cantor
set.

12 1:] 16 20 22
36’3 36’36 36"

/IN

72 7745] 76 Buﬁ][ 94 96 102][104 112][115 120 132 134][136 140] [g 144

216" 21 216" 216l l216’ 215 216 216l l216" 216] L2167 21 216’216 216" 216) l216" 216.
[4;6 -1-60 464 472 476 4-805][624- 632][6 [554 5726] 816 9206] 824 Bazﬁ] 336 s-wJ
1296’ 129 1296° 129 1296 12981 | 1296 12081 1129 1296" 1296] 11296’ 12961 11296”1296 11296”1259,

Figure 3: Middlemost part of modified Cantor (%) sets

2

—— 2w

k k+2
" 6" ]
6k 6k+2 6k+4 6k+8 6k+10 6k+12
5’5"] [6"’6"] [e"’sﬂ]
36k 36k+2 36k+24 36k+28 3ek+50 36k+62
[5_'*’ &7 ] [ en " gn [ ]
36k+4 36k+8]4— 36k+32 36k+40 36k+64 36k+68 -+
e e o= 2]
36k+10 36k+12 36k+dd 36k+4E 3ek+70 3ek+72
[ en " g™ ] [ - 1 ] [ ]

Figure 4: General form of middlemost part of modified Cantor (é) sets
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MODIFIED EVEN ORDERED CANTOR SETS

3.1 MODIFIED CANTOR (=) SETS:
The above (Theorem 3.1) same pattern followed by modified Cantor (i)

sets.
First iteration:

The closed interval [0,1] is subdivided into 10 equal sub- intervals

[110 [10 10] [10 10] [10 10] [10 10] [10 10] [10 10] [190'%
wuguum

il L I 2
10 10 10 10 10 10 10

Figure 5: Modified Cantor (%0) sets
The Removed intervals are (1 , 2) (3 4) (i L) (i i) .

10" 10 10° 10 10° 10

The remaining intervals are[ ] [ ] [
10’ 10 10’10

Al 2
10’10]’ 10 " 10
0
Yo = —- =0 - = = - — - - —_ = — 1 } .
C1ot {10 0, 10”10”10°10” 1010”10’ 10”10 (3:3)
This procedure proceeds in every iteration to get the entire modified cantor
set.
4. Modified Cantor ( ) Sets
Theorem 4.1:
2 1
In Cg, the intervals of lengths o 1gn g ATe successively removed and
gn ’gn

only 4 * 4™ 1 intervals of length each 1/8 is retained. For each interval
[ 5] = (G [ = D)™ + @) 1) (G0 - D@ +
@™ +1]).

@s)n

Proof:
The closed interval [0,1] is divided into eight equal parts. The open

2\ (35 7 _ )
interval (8 8) (8 8) and ( 8) are removed. In first iteration the number

of parts removed is 4*4°. The length of the first iteration is 1/8. The

remaining parts [9 =0, l] , [E,ﬁ] , [E’ﬁ] and [Z,E = 1] are again subdivided as
8 8]’ ls’sl’ [’ 8’8

follows for the 2" iteration. The part [g =0, %] are subdivided into eight

equal parts thereby giving eight parts [i =

S 3 e e i e B e e R

intervals ( 2 ) (3 ) ancl(64 64) are removed. Now the part [— —] are

64’64/’ \64’ 64
subdivided into eight equal parts thereby giving eight parts

16 17] [17 18] [18 19] [19 20] [20 21] [21 22] [22 23] [23 24
Pyr s Nl i VN i o P, the open
64’641 l6a’64]" l6a’ 641’ l6a’ 64]" |64’ 641’ 64’ 64)" l64” 64]" L64” 64)°
17 18\ (19 21 3
intervals ( ) ( ,—) and(— —) are removed. Next parts[g,g] are

64’64/’ \64’ 64 64’ 64
divided into eight equal parts

40 41 41 42 42 43 43 44 4-4- 4-5 45 46 46 47 47 48
n’lmely P PR PN D ieus N D s PR B v A e B
64’ 64 64" 64 64" 64 64" 64 64’ 64 64" 64 64" 64 64" 64

1 42\ (43 45 47
the open intervals (— —) ( —) and(— ) are removed. Last part
64’ 64/’ \64’ 64 64’ 64

7 6 57] [57 58
[5 - = 1] is again subdivided into eight equal parts namely [64 64] [a, b

58 59] [59 60] [60 61] [61 62] [62 63] [63 64
==, |=,— -, = , the open intervals
64’ 64]" l6a’64l’ l6a’ 64’ l64’ 64)’ l64’ 641’ [64” 64

57 58\ (59 61 63
=, =), =,= and(2 are removed.
64’64/’ \64’ 64 64’ 64
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Here it is noted that in the successive iterations every interval which are

equally spaced. Left out parts for partitioned into eight equal parts whose
length S5 813 , 814 JRTERTE . In every cycle the number of parts eliminated
(4*49), (4*4Y), (4*42), (4*43) ... The n" iteration is (4*4™).

KH] When the n™ iteration the end

[(k—1D(@s)" 1+

If any part is of the form [:

parts of the iteration are of the form ((2 o

8"71) ,(Goe [k — D@5 +8"71]) +1.

The Following Figure 6 shows the graphical representation of modified

1 . . )
Cantor (E) sets and Figure 8 shows the tree representation of interval of

length is 1/ 8 retained part of modified Cantor (%) sets.

First iteration:

The closed interval [0,1] is subdivided into 8 equal sub- intervals

=03 3l Bal Al 53 Boal 3L 55 =1

[ ] |
o _4 2 ] d 1 s s t sl
a a8 a =] a 8 a a a
. . 1
Figure 6: Modified Cantor (E) sets
) 1 2\ (3 5\ (6 7
The Removed intervals are (—, —),(—, —),(—, —).
8’ 8/'\8’ 8/’ \8’ 8
L 0 11 12 3] [5 6 7 8
The remaining intervals are [— =0, —] k [—,—] k [—,—] and [—,— = 1]
8 8|’ s8]’ 8’8 8’8
0 12 3 5678
Cu={3=0232232272-1} 4.1
8 8 > 8’8’ 8’ 8’8’8’8 (4.1
Second iteration:
[ [ [ T |
o 1 2 3 2 3 s z 8
64 64 64 64 64 64 64 64 64
\ | | | | \ | |
6w 12 LR 2 2 3 s 3
64 64 64 64 64 64 64 64 64 8
©  w s 8w s s e s s
64 64 64 64 64 64 64 64 64 - 8
6 57 e 59 &0 & 2 e e e
64 64 64 64 64 64 64 64 64 - 8

Figure 7: Second iteration - Modified Cantor (%) sets

The Removable intervals are
(1 2) (3 5) (6 7) (17 18) (19 21) (22 23) (41 42)
64’64/’ \64’ 64/’ \64" 64/’ \64’ 64/’ \64’ 64/’ \64’ 64/’ \64’ 64

(ﬁ 4_5), (E ﬂ), (z E)’ (2 E), (62 63) from each of the subintervals

64’ 64 64’ 64 64’ 64 64’ 64 64’ 64
will result in modified cantor set.

Therefore
0 1 2 3 5 6 7 8 16 17 18 19 21 22 23 24
C = 6% ’64’ 64" 64" 64" 64" 64" 64" 64" 64’ 64" 64’ 64’ 64’ 64 64’ (42)
82 = 40 41 42 43 45 46 47 48 :

64’64’ 64’64 ' 64’ 64" 64" 64

This procedure proceeds in every iteration to get the entire modified cantor set.
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0 1] [2 3] [5 s] [7 53]

647 64. 64 64 64’ 64 64" 64
[ o 16 17 [4-0 41 56 57]
5127 ;12 512”512 512" 512 512”512
[ 2 12 1% 42 43 58 59
5127 _112 512° 512 512" 512 512”512
[ 5 ] 21 22 45 46] 61 sz]
512" 512 312 _112 512" 512 512°512
7 8 ] [ 47 48 63 549]
512" 512 512'512 512" 512 512512

Figure 8: Retained part of modified Cantor (é) sets.

[k B+l

g g
R4 k+2 k3 k+5 k+6 k+7 k+8
an’ an an 1 an an " an gn ' an

ko R+ 2k+16 8k+17 Blk+40 Bk+41 Bk+56 8k+57

an’ gn gn 7 gn sn 7 agn "

E+2 k+3 [sk+1s ak+19] [sk++2 sk+43 [Bk+as sk+;9]

an ' an an an an 7 gn .

k+5 k+6 2k+21 28k+22 Bi+45 Bk+46 BEk+61 Bk+62

sn " gn an 7 gn an 7 agn

E+7 k+8 [9k+23 shk+24 [sk++7 Skt+ag [9k+53 sk+s4]

gn " gn gn *  gn an an

Figure 9: General form of Retained part of modified Cantor (%) sets.
4.1 MODIFIED CANTOR () SETS:
The above (Theorem 4.1) same pattern followed by modified Cantor (11—2)
sets.

First iteration:

The closed interval [0,1] is subdivided into 12 equal sub- intervals

[ = 0sab [l [ il el ) 1 [ 3

9 10 11 12
e Nl e e 1
12712 12712

\ et s e |
9_g 1 2 3 & 5 & 7 8 3 10 1 1z,
12 12 12 12 12 12 12 12 12 12 12 12 12

Figure 10: Modified Cantor (%) sets

1 2 3 4 5 7 8 9 10 11
The Removed intervals qre( ) ( , —) (—, —),(—, —),(—, —) .
12’ 12 12’ 12/’ \12” 12/’ \12’ 12

The remaining intervals qre[ ] [ ] —,—| U
12”12 12”12
[7 [ ] [11 12 _ ]
127120 |12 7 120" 12 12
3 4 5 7 8 9 10 11 12
Cn={5=022122 122202 =1} @3
12 12 ’ 127127127127 12”127 12” 127127127 12 (43)

This procedure proceeds in every iteration to get the entire modified cantor
set.

5. Conclusion

We have established modified cantor (6) and (s) sets. Unlike usual Cantor

sets having removal sets of equal lengths here two cases are considered. One is
usual away of removing intervals of lengths 1/2n and the middle most intervals of
lengths 2/2n. The process is continued successively, so that the general portion of
removable intervals can be identified.

In analyzing Cantor sets of even order it is obtained that more than one
pattern of removal intervals can be considered. Also it is noted that starting with
six and eight every increment of four gives the same mode of removal exists
respectively. In this paper the general formula for the existing intervals have been

given. The other modes may be considered for future work.
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Remark:
Another way of forming Cantor modified set may be given as follows for
Cantor Octanary Set.

E
3

[ T T T T T 1
TSR S R T T B A
. 1
Figure 11: Another way of Cantor (g) sets.
REFERENCES

[1] Ashish, Mamta Rani and Renu Chugh, Study of Variants of Cantor Sets
Using Iterated Function System, Gen. Math. Notes, 23 (1) (2014), 45 - 58. URL:

http://www.geman.in

[2] Benjamin Hoffman, Iterated functions and the Cantor set in one dimension,
Rose — Hulman Undergraduate Mathematics Journal, 14 (2) (2013), 79 - 90. URL:
https://scholar.rose-hulman.edu/rhumj/vol14/iss2/5

[3] Carlos A. Cabrelli, Kathryn E. Hare and Ursula M. Molter, Sum of Cantor
Sets Yielding an Interval, Journal of the Australian Mathematical Society, 73 (3)
(2002), 405 - 418. DOI: https://doi.org/10.1017/S1446788700009058.

[4] Gnanam A and Dinesh C, Extraction of Cantor Middle (a) = E , %) from

Non - Reducible Farey Subsequence, International Journal of Scientific Engineering
and Research (IJSER), 4 (2) (2016), 18 - 20. URL: https://www.ijser.in.

[5] Gnanam A and Dinesh C, Farey to Cantor, International Journal of Science and
Research (IJSR), 4 (11) (2015), 1219 - 1220. URL:
https://www.ijst.net/archive/v4i12/NOV152170.pdf.

[6] Islam M.] and Islam M.S, Generalized Cantor Set and its Fractal Dimension,
Bangladesh Journal of Scientific and Industrial Research, 46 (4) (2011), 499 - 506.
DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9598

[7] Ken W. Lee The Midpoint Set of a Cantor Set Internat. J. Math. & Math. Sci.1
(1978), 541-546. URL:
https://downloads.hindawi.com/journals/ijmms/1978,/529303.pdf

[8] Long, Calvin T. Elementary Introduction to Number Theory, Lexington, VA: D.C. Heath and
Company, 2™ Ed, 1972.

URL:
https://openlibrary.org/books/0O14584253M/Elementary_introduction_to_number_theory

[9] Palis ] and Yoccoz J.C, On the arithmetic sum of regular Cantor Sets,
Ann.Inst.Henri Poincare, 4 (4) (1997), 439 - 456.

URL: http://www.numdam.org/itemid=AIHPC 1997 14 4 439 0

[10] Randolph J.F, Distances Between Points of the Cantor Set, American Math,
47 (1940), 549-551. DOI: 10.2307/2303836

[11] Rosen. K. H., Elementary Number Theory and Its Applications, Addison-
Wesley, 4™ Ed, 2000.

[12] Shaniful Islam Khan Md. and Shahidul Ialam Md., An Exporation of the
Generalized Cantor Set, International Journal of Scientific & Technology Research, 2
(7) (2013), 50 - 54.URL: https://www.ijstr.org

S.SUDHA™!, A. GNANAM*

'Research Scholar, Department of Mathematics, Government Arts College,
Affiliated to Bharathidasan University, Trichy-22, India

Email: ssudha3679@gmail.com

?Assistant Professor, Department of Mathematics, Government Arts College,
Affiliated to Bharathidasan University, Trichy- 22, India (gnaanam@yahoo.com)

259


http://www.geman.in/
https://scholar.rose-hulman.edu/rhumj/vol14/iss2/5
https://doi.org/10.1017/S1446788700009058
https://www.ijser.in/
https://www.ijsr.net/archive/v4i12/NOV152170.pdf
http://dx.doi.org/10.3329/bjsir.v46i4.9598
https://downloads.hindawi.com/journals/ijmms/1978/529303.pdf
https://openlibrary.org/books/OL4584253M/Elementary_introduction_to_number_theory
http://www.numdam.org/itemid=AIHPC_1997__14_4_439_0
https://www.ijstr.org/
mailto:ssudha3679@gmail.com
mailto:gnaanam@yahoo.com

Consortium for Acadern X | Consortium for Acader X 8 Searchlist Web of Science Master X Consortium for Acader X ‘Web of Science Master X | +

& c 8 ugccare.unipune.ac.in/Apps1/User/WebA/SearchList

= T - 1
TR UGC-CARE List

UGC-CARE List

You searched for "0972-3641". Total Joumals - 1

Search: |
Journal Title
1 Stochastic Modeling and Applications MUK Publications and Distributions 0072-3641 NA View
Showing 1 to 1 of 1 entries Previous 1 Next

.

Copyright © 2022 Savitribai Phule Pune University. All rights reserved. | Disclaimer

A e . 22:00
o Lol Al TR




Consortium for Ac X | Consortium for Ac X | & Searchlist LA i ViewDetails Web of Science M X Consortium for Ac X Web of Science M X | +

C & ugccareunipune.acin/Apps1/User/WebA/ViewDetails?Journalld=1010021978&flag=Search = ¥ O ° :

SAVITRIBAI PHULE = [TGC-CARE LiSt

PUNE UNIVERSITY

Journal Details

Home
O UGC Journal Title (in English Language) Stochastic Modeling and Applications

Q Search Publication Language English
Publisher MUK Publications and Distributions
ISSN 0972-3641
E-ISSN NA
Discipline Science
Subject Mathematics (all) . Chemmistry (all) , Physics and Astronomy (all)
Focus Subject General Mathematics , General Chemistry | General Physics and Astronomy

Copyright © 2022 Savitribai Phule Pune University. All rights reserved. | Disclaimer

2201

~ il "5 ) il ENG 22-03-2022




Stochastic Modeling & Applications

Vol. 26 No. 3 (Special Issue 2022, Special Issue 2022 Part-3) ISSN: 0972-3641
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VARIOUS MEASURES OF NON - REDUCED FAREY N- SUBSEQUENCE

S.Sudha®”, A.Gnanam?and P.Balamurugan®

Abstract

A Non Reduced Farey N-subsequence, a subsequence of Farey sequence consists of rational
numbers with same denominator in [0, 1]. By reconstructing the non reduced Farey N — subsequence
it can be established as a o- algebra. For this measurable space Lebegue Measure and Probability
Measure have been calculated. Also it has been established as a Borel set. In this paper Farey
subsequence of even order has been studied. Similarly the odd order Farey subsequence may be
studied separately.

2010 Mathematics Subject Classification: : 11B57
Keywords:-
Farey N — Subsequence, o- algebra, Borel set, Lebesgue measure, Probability Measure.

Notations:
1. Fy - Non- Reduced Farey N — Subsequence.
2. C Fy - Non- Reduced Farey N — Subsequence as union of closed set.
3. HC Fy - Non- Reduced Farey N — Subsequence as union of half closed set.

1. INTRODUCTION

The Farey sequence of order n is the sequence of completely reduced fractions, either between
o and 1, or without this restriction, which when in lowest terms have denominators less than or equal
to n, arranged in order of increasing size [1,8]. Farey sequences are very useful to find rational
approximations of irrational numbers.

The Farey sequence, sometimes called the Farey series, is a series of sequences in which each

sequence consists of rational numbers ranging in value from 0 to 1. A non reduced Farey
N — subsequence satisfies the conditions of Lebesgue measure [8].

For the construction of measurable sets the Farey sequence has been consider as union of
intervals, half- open, closed (or) open sets as the case may be with a sequential points as a end points.
For the same above construction Probability measure has also been calculated.

2. PRELIMINARIES

Definition1: Farey sequence [1]
A Sequence of rational numbers S with (p,q) = 1in [0, 1] and g < n is called a Farey Sequence

of order n, denoted by E,.
Examplel:

A=

S
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Definition 2:Farey N — subsequence [1]
In a Farey sequence Fy the elements with denominators precisely N are classified as Farey
N — subsequence and denoted by (Fy) .

(FL) = {%/OSuiSN,OSiSN}

Example 2:

The FareyN — Sequence of order 4 is

N {0_0_1_3_4_1
(Fy) = {1_4<4<4<4_1}
Definition 3: Non - Reducible Farey N — Subsequence [1]

For Fy, the element of the sequence with denominator N is taken as Non —Reducible Farey
N - subsequence. It is denoted by Fy.

Example 3:
The Non- Reducible Farey N - Subsequence of order 2 is
B={30=1
Definition 4: o — algebra [8]
A < P(X) is called a o — algebra

() p,XE A

(i) AcA=>A=X/A €A

(i) A;eA,i€eN = U2,A €A

A€ A is called a A — measurable set.

Definition 5: Borel Set [8]

A Borel set is any set in topological space that can be formed from open sets (or) equivalently
from closed sets through the operations of countable union, countable intersection and relative
complement.

Definition 6: Probability Measures [8]

A Probability measure on 2 is a function P from subsets of 2 to the real numbers that satisfies the

following axioms

i P@)=1
(i) If Ac 2, then P(A)= 0
(iii)  If A; and A, are disjoint, then P(A;) + P(A;) more generally, If A;, A,, -+ - A, are

mutually disjoint, then P(U2, 4;) = Y72, P(4))

Definition 7: Lebesgue Measure [8]
A set Ac E is Lebesgue measurable or measurable if *(4) = A,(A). The measure of A is
denoted by A(A) and is given by A(4) = 1" (4) = A.(4)
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3. ASUBSEQUENCE OF FAREY SEQUENCE -0 ALGEBRA AND BOREL SET

Theorem 1:
The Lebesgue measure of the Non reduced Farey N — subsequence of even order n is zero.
Proof:
Construction of measurable sets from Farey N — subsequence.

By definition, a Non reduced Farey N — subsequence of even order is given by

=~ 0 1 2 (2m)1-3 2m)'-2 2m)'-1 2m)!) .
F(Zm)1 = {(2m)1 eml em)t’ " em)t T em)t ’ (em)? ’(2m)1} ; Where 1< m < N
From this sequence construct set as follows:
= 0 1 2 (em)l-3 2m)l-2 2m)l-1 2m)!) .
CF(Zm)1 - {(2m)1 ‘emt emt’ " em)t T em)t T (@em)?t ‘(2m)1} . Where 1= m < N
=[ 0 1 ] [ 1 2 ] ..... U [(2m)1—3 (2m)1—2] [(2m)1—2 (2m)1—1]
(em)* ’ 2m)* (em)*’ 2m)* (em)* 7 (2m)* (em)* ' (m)?

[(2m)1—1 (2m)1]
(em) 7 (2m)!

=Domr1 YUDemr2UDamyrz U UDemtr
In the next iteration the sequence is given by

~ 0 1 2 2m)?-3 (2m)%?-2 (2m)%2-1 (2m)?
CF(Zm)2 - {(Zm)2 "om?’ em)z’ ’((2721)2 ’((2721)2 ’ ( (Zr)n)z ! EZm;Z} ; Where 1= m < N
Again writing in a set format we have
_ [ 0 1 ] [ 1 2 ] ...... U (2m)?-3 (Zm)Z—Z] U (2m)?-2 (2m)2—1]
(2m)? ’ (2m)? (2m)?’ (2m)? (2m)z ’ (2m)? (2m)z ’ (2m)?

[(Zm)2 -1 (Zm)z]
(2m)2 ' (2m)?

= D(Zm)Z 1 V) D(Zm)Z 2 V) D(Zm)z 3 (URERREN V) D(Zm)Z r

11Yfor the n term is

=~ _ 0 1 2. m)*-3 2m)"-2 2m)"-1 2m)™) .
CFamyr = {(Zm)n Y 2m)n’ 2m)n’ emn T emr T (2m)n ’(Zm)"} ; Where 1< m < N
_ 0 1 1 2 1., 2m)"-3 (2m)"-2 2m)"-2 (2m)"-1
- [(Zm)" '(Zm)n] [(Zm)n'(Zm)n] U ecm)™ ' @em)n ]U em)™ ' em)n ]

2m)"-1 (Zm)”]
(em)™ ’ (2m)"

= Dimyn1 U Dmynz U Dgmyng U === U D zmynyr

Let
E 2myn1 = Set of all possible union of two elements.

E 2myn, = Set of all possible union of three elements.

for the r' term is
Eamyn » = Set of all possible union of (r +1) elements.
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ie., Egmynr = Uﬁ"ll)n_l(r +1)

Take X = {C Famy1, CF gz, +vv e vee e voeoee CFgpmn }

P(X) ={Demyt 1, Damyt 2 Damyr s+ - DemytrEemyt 1, Eemyt2 Eemyts  Eamytr
......... D 2myr1 > D 2myn2, Damynzs =+, D amynrs E2myn 10
E(Zm)" PURIIREE E(Zm)nr}

Claim 1:
The Set P(X) is a o — algebra
By the definition of o — algebra.
(1) Empty set ¢, P(X) € A.
(il) Take (Dzmyr2)” = POO/D iy
= Eom)r 1 = Set of all possible union of two elements
(iii) Consider the elements D ;myn1, D (2myn2, D 2myns, =+ =+ ,Diomynr € A

Then

D zmyn1 U Damyna U ++- U D amyny = E(3myny-(Set of all possible union of 4™elements) € A
~ P(X) isa o — algebra.

Claim 2:

The Set P(X) is a Borel set

By the definition of Borel set

Consider the elements D ;pynq, Eamyn1 € A

Daomym1 N Emyr1 = Demymn € A

The Set P(X) satisfies all the conditions.

Hence the set P(X) is o — algebra and Borel set. Also the set P(X) is measurable sets.

Now, the Lebesgue Measure of P(X) is calculated.

=1im 2 {|

lim 0 1 ] [ 1 2 ] (2m)"-3 (Zm)"—Z] 2m)"-2 (Zm)"—l]

em)™ ’ 2m)* emr’ emyrl 7T (m)® ' 2m)n m)® ' (2m)n
[(2m)”—1 (Zm)n]}
(m)™ ’ (2m)"

_ lim{l[ﬁ, e e

n—oo 2m)n m)™’ 2m)n
2m)"-2 2m)"-1 2m)*-1 2m)"
[ @m)™ ' @em)n ]+/1 (2m)n '(Zm)"]}

RT 1 0 2 1 N (2m)"-2 . (2m)™-3 (2m)"-1 .
- %l—r& {((Zm)n (Zm)n) T ((Zm)n (Zm)") T + ( (zm)" (zm)n ) + ( 2m)n

e« (2525

. 1 1 1 1 1 1
= lim {(Zm)n + cm)n + (cm)n Foe + (zm)n + (zm)n + (Zm)"}
=0

Therefore /1( CF"(Zm)n ) = 0. Hence C F(Zm)n has Lebesgue measure zero.

(2m)"-3 (Zm)"—Z]

em)® ' (2m)n +

Hence the Lebesgue measure of the Non reduced Farey N — subsequence of even order is zero.
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Illustration: 1

= _ 0 1 2 m)*-3 2m)"-2 (2m)"-1 2m)™)
CF @myn = {(Zm)" Y emn’ zmyr’ Temyn T emn ’ (2mn ’(Zm)n} ; Where 1< m < N
Putm=2

Non — Reduce to Farey N — Subsequence of order 4 is

=~ 0 1 2 3 4 0 1 1 2 2 3 3 4
CFp = {z'z'z'z'z}— [z'z]u[z'z]u[z'z]u[z’ﬂ

=Dy UDy UDy3 U Dy,

oY CI S WO TN VY RS O S 91 ENEY IO
16 *16 ' 16 16 16’ 16 16’ 16 16’ 16 16’ 16 16’ 16
= D42, UDy2y UDy2g U eeeeeenveinnnnn U D42(15) U D42(16)
For n term is
- 1 2 3 4" — 3 A" — 2 4" — 1 4"
o =g amogmge ™ )
0 1 1 2 2 3 4M—-3 4" 4M_2 4M—1 4M—1 4"
ol Pl LV P [ e [ Y e (U e es [ e
=Dynq UDyny UDyng U-eeeenees U Dyn,,
Let

E,n, = Set of all possible union of two elements.
E,n, = Set of all possible union of three elements.
Y for m" term is
En,, = Set of all possible union of (m+1) elements.
ie., Egnyy = US 2 (m + 1)
Take X = {j;"41 ’j;"42 T ...ﬁ'4n }
P(X) = {D41» D2, D43, Dysy Esqy Eszy Egs, o Dyng, Dyng, Dyng, o+, Dynyp, Eqnq, Egny -+ E4”m}
By the definition of o — algebra. The Set P(X) satisfies all the conditions.
Also the set P(X) is o — algebra and Borel set .

() Empty set ¢, P(X) € A.

(ii) Take (D42)¢ = P(X)/Dy,

= E,; = Set of all possible union of two elements
(iii) Consider the elements Dyny, Dyny, Dyns, -, Dynyyy € A

Then Dyny U Dyny U Dyng U ++- U Dynyy, = Eyng, (Set of all possible union of 4"elements) € A
~ P(X) isa g — algebra.
iv) The Set P(X) satisfies the countable intersection
Consider the elements D, NE,;3 = @ € A
~ P(X) is a Borel set.
Therefore P( X) isa o Algebra as well as Borel Set.
Lebesgue Measure:
A(CFgn) = lim A(CFyn)
_ lim/l{[i 1 U [i'i] U 2 3] TR U [4”—3 4”—2] U [4"—2 4"—1] U [4"—1 4m }

n—oo 4n ' gn 4n’ 4n 4n’ 4 4m ’ogn 4m 7 og4n 4n ' an
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= h_r,lgo{ [471 '4n]+/1 4_n'4_n]+/1 47,4%]4— ...... +/1[4:;3,4n 2] /1[4:;2’471—1]_*_
;[4"—1 ﬁ}
4n ’g4n

- (-2 (oD G- o (SRR (R )

4" 4"
an 4m

= lim{ﬁ+4in+4in+ ...... _|___|___|__}

n—oo

=0

Therefore A(CF4n ) = 0. Hence CF,n has Lebesgue measure zero.

By a slight modification in writing non reduced Farey N — subsequence as a measurable set. The
sequence is written union of closed and semi — open intervals of Probability.

4. PROBABILITY MEASURE OF GENERALIZED NON - REDUCE TO FAREY
N- SUBSEQUENCE OF EVEN ORDER

Theorem: 2

The Probability measure of the Non reduced Farey N — subsequence of even order n is one.

Proof:

Construction of measurable sets from Farey N — subsequence

~ _ 0 1 2 2m)-3 (2m)-2 (2m)-1 (2m)
HC Fem) _{(Zm) ’(2m)’ (2m)’ *em) ' @em) ' (2m) ‘(2m)}
_ 0 1 1 2 | (2m)-3 (2m)-2 (2m)-2 (2m)-1 2m)-1 (2m)
- [(Zm) '(Zm)] [(Zm)'(Zm)] v U[ 2m) ' (2m) ]U[ 2m) ’ (2m) ]U[ 2m) ' (2m)
. ~ _ 0 1 2 (2m)-3 (2m)-2 (2m)-1 (2m)
le., HC Fiom) = {(Zm) ’(2m)’ (2m)’ Y em) ' @em) ’ (2m) '(Zm)}

- [(Z?n) ! (27171)) U [(Zin)' (an)) Ui u [(2(127:»):;3’ (2(1272;2) U [(2(7271731;2 ’ (2(7271731;1) U

[(Zm)— 1 (2m)

(2m) ’(2m)
By the definition of Probability Measure P (A)> 0 and If A, and A, are disjoint, then P(4,) +
P(A;)
More generally,if A;, A,, -+ - , A, are mutually disjoint, then P(U{2, 4;) = %72, P(4)
Now
- ~ _ 1 0 2 1 (2m) (2m)-1
Probability Measure HC F(z,y = ((Zm) — (Zm)) + ((Zm) — (Zm)) + 4 (@ ~am )
=1 1 Lo 1
(2m)  (2m)  (2m) (2m)
—E(1+1+1+1+ --------- + (2m) times)
— 2m
T 2m
=1

Probability Measure of Non - Reduced Farey N- Subsequence of order (2m) is one.
Illustration: 2
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= _ 0 1 2 (2m)-3 (2m)-2 (2m)-1 (2m)
HC Fom) = {(Zm) ' (2m)’ (2m)’ ' 2m) ' (2m) ' (2m) ’(Zm)}
_J o 1 1 2 Ny (2m)-3 (2m)-2 (2m)-2 (2m)-1
- [(Zrn) '(Zrn)) U [(an)'(zrn)) u v (2m) ’ (2m) ) U (2m) ’ (2m) )
[(Zm)—l (2m)
(2m) ’(2m)
Putm=2
= 0 12 3 4
HeR = {73233

=[3 ) uEDvEDvE
By the definition of Probability Measure P (A)= 0
Now
0

Probability Measure HC F,, = G — —) + (Z — 3) + (3 - 3) + (i - E)

4 4 4 4 4 4 4
SAEAEAE
=1
~ Non - Reduce to Farey N- Subsequence of order 4 of Probability Measure is one.
In this paper m may be taken as a positive integer.

5. CONCLUSION

In this paper the Non reduced Farey N — subsequence has been established as a o- algebra and
Borel set. By reconstructing the sequence of elements also the Lebegue Measure and Probability
Measure have been calculated for this o- algebra. Here only Farey N- subsequence of even order has
been studied. In future work, we have established the even order of Cantor sets also.
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Abstract

Farey sequence in [0, 1] is a sequence of real numbers generated using median properties.
A subsequence of Farey sequence, FE Farey N-subsequence has been established as a

topological space and a Hausdorff space by appropriately defining basis and open sets. Also the
axiom has been discussed with an illustration. A Lebesgue measure of Farey sequence of both
odd and even order has been presented in this paper.

1. Introduction

The Farey Sequence usually referred to as the Farey series, maybe a
chain of sequences during which every series includes rational numbers that
move in estimate from zero to one [2].

3

In “Extraction of Cantor Middle (0) - % a

j from Non-Reducible Farey
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Subsequence” -Cantor ternary sets and some higher ordered Cantor sets have
been extracted from Farey sequences of like order. There are many properties
observed on the Farey sequence in “Farey to Cantor” [1]. In “Farey Triangle
Graphs and Farey Triangle Matrices” [4] the terms of a Farey sequence have
been considered as ordered pairs and a pattern of matrices and graphs have

been identified.

It is mentioned in “https:/ncatlab.org/nlab” that Cantor sets may be
developed into topological space and Hausdorff space. Having identified the

terms of Fpy, Fp,; 1s written by writing the mediant of all the successive
terms of Fp. With slight modification, sequence whose terms are Farey

sequences has been establishedas various spaces namely topological space,
Hausdorff space and 77 space. A Hausdorff space is basically a topological

space. To form a topology a nonempty set with basis elements should be

defined clearly.

2. Preliminaries

Definition 1. Farey sequence [1] A Sequence of rational numbers g

with (p, @) =1 in [0,1] and ¢ < n is called a Farey Sequence of order n,
denoted by F),.

Example 1.

Definition 2. Farey N-subsequence [1] In a Farey sequence Fj the

elements with denominators precisely N are classified as Farey N-
subsequence and denoted by (Fy ).

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022
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(Fj\,):{%/OSuisN,OsigN}

Example 2. The Farey N-Sequence of order 4 is

\_[0_0_1_3_4_1
<FN>‘{1‘4<4<4<4‘1}

Definition 3. Non - Reducible Farey Sequence [1] A subset of the
Farey sequence Fpy whose denominator not exceeding N is taken as Non —

Reducible Farey Sequence. It is denoted by [:*'E .

Example 3. The quaternary Non - Reducible Farey Sequence of order 4 is

Fo-J0_0111_ 223 4_1
4711 424322~ B

Definition 4. Non-Reducible Farey N-Subsequence [1] For Fj;, the
element of the sequence with denominator N is taken as Non-Reducible Farey

N-subsequence. It is denoted by F’N.

Example 4. The Non- Reducible Farey N-Subsequence of order 4 is

Fo-J01 234 1
171441404 1
Non-Reducible Farey N-subsequenceoforder F~'4 and its higher powers

have been given below.

F, ={9 123 é=1} (2.1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 _
16°16°16°16°16°16°16°16°16°16°16°16°16°16°16°16° 16
(2.2)

Fy -

I T A e

6464 64764 64 64°64°64 64 64°64 7 64
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3. A Subsequence of Farey Sequence-Topological Space

Theorem 1. For any integer N >3 a subsequence of Farey sequence,

Farey N-subsequence denoted by F Wk is a topological space.

Proof. To define a topology on a set first a basis and hence open sets
should be described clearly. Here the basis is defined as follows.

i=0123, ..
Consider X = /- k=123 4,
Nk
N =3,4,5, ...

ﬁmeBz{Ew,k:LZ3V}

Here every element of B is a sequence of real numbers.

Claim. B constitute a basis for X

= 1 2 3
Clearl = = = = &2 2
earyF ﬂFNk7k 17 27 3’00 {O’ 47 47 471}

Case (i). If x € F then choose basis elements as any one of FN’nk, k=2

Case (ii). Suppose that x is not in F. X may be any one of the following

forms.
0<i<NF-1
Xz;;Nngigj*Nk_1/j=1,2,3,_,,,Nfork:1,2,3,...,oo.
Nk+1
Choose basis elements as any one of ﬁNk’ kR=23,.., 0

Then clearly B; N B i contains a basis element in which x is a members.

The open sets may taken as a sequence of union of members of B. Then

for every elements in U there exists a member in B such that x € B < U.

1=0,1,23,...
Illustration 1. Consider X = Lk’ k=123, 4,
N
N =34,5,..

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022
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B={F, k=123, ..

Take N=4,k=1,23, ...

U=F3UF;
Suchthatxei2 andxeﬁ'g cU
4 4

Letr—{Fl, F43,...}

425

Consider 1, = F A

and 1 = F42

1 2 3 15
_{0_6_6_6 ’E’l}

Then

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022
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T]_U’E2=ﬁ41 UF‘42

1 2 3 1 2 3 15
_{07 Z7 Z9 Z;l}u{05 E; Ey Ey R} E’l}
1 2 3 15
—{O,E,E,E, ,E,l} eT

Therefore the union of the elements of a subset of t1s in 7.

Consider 1; = F 43

and T = F44

_fo L 2 3 255
~ 1" 256° 256 256 " 256

Then

‘[31U‘52=F~'43 Uﬁ44

:{O,LE 3 63 1}U{0 1 2 3 255 1}

64°64°64° " 64° ’ 256’ 256° 256 ° " 256°

={0 12 3 .8 1}“
6476464777 64°

Therefore the intersection of the elements of any finite subcollection of t
is in 1. In well known that in a Hausdorff space every pair of elements is
separated by open sets the following is the theorem of Farey N-subsequenceas
Hausdorff space.

Theorem 2. For set consisting of rational numbers of ﬁ the form the

basis defined in the above theorem forms a Hausdorff space.

Proof. A Hausdroff space is in fact a topological space. To define a
topology a basis should be describe in the basis for the topology is defined as
above. Here an open set is taken in the form

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022
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N g k=1,23, ..
Wk = X_Uj:IFNj where N=345 ..

Consider the points x; = L and X9 = L, r,t=1,2,3,... clearly
N’ Nt

# € ﬁN, and # € ﬁNt which are disjoint by their construction.

Therefore any two disjoint points of X have disjoint neighbourhoods.

Therefore X is a Hausdorff space.

k=123, ..

. o~ k-1
Hlustration 2. W) = X - Uj:l Fj where N-345 ..

Take N=4,k=1,2, 3, ...

Consider S = VV41, W42, VV43,
8 = 6—; and sy = % are distinct points of S.
4 4

Then there exist neighborhoods
=W 3 and Dy = W 4 of s; and s, that are also disjoint.
4 b =W, 1 2

Therefore the topological space S is called a Hausdorff space.

Corollary 1. On the same construction above the topological space X also

satisfies T} axioms.

k=123 ..

. = Rl
Hlustration 3. W), = X — Uj=1 F j where N-345 ..

Take N=4,k=1,2 3, ...

Consider T = VT/;Q’ W42, VV43,

Given two points g = 411_ and g = 5:57 of T

There exist an open set I] = VT/42 and Iy = W45 of T

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022
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Therefore ¢ VT/42 and ¢; ¢ @5

q9 € ‘;1745 and qs & VT/42.

Theorem 3. F = UFy, Fiy is a Farey sequence is bounded by 0 and 1.

The subsequence V = UFNk of F'it has convergent subsequence.

Proof. Consider the Farey sequence Fjp, where N =1, 2, 3, ... for all

positive integers N, Fj; is a bounded sequence and is bounded by 0 and 1.

The set F'is defined above is also bounded by 0 and 1.

Now the subsequence of V namely {%/k =1, 2, 3, } it 1s a

convergence sequence and converges to 0. This is because ﬁ —> 0 as
k — oo and for all positive integers NN.

The Farey N subsequence of order 4 can be depicted in the graph as
follows X axis = Farey N-subsequence

Y axis Y axis = Integer

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022
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Figure 1.

From the above graph, it is clear that the curve resembles inverse

5. Conclusion

their topology space, Hausdorff space and space.

We have established the Farey N-Subsequence and also we have shown
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Abstract: In Number theory Study of polygonal numbers is
rich in varity. In this paper we establish a Complex Octagonal
Number using Continued Fraction algorithm.
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I INTRODUCTION

A Simple continued fraction [1] is an expression of the
form

b
a, + 0

a; + by 5

a; + _2
Where the a; are a possibly infinite sequence of integers
such that a, is non-negative and the rest of the sequence is
positive. We write {a;; a, as ... ... ) . The above fraction
also calls them Regular continued fractions.

1. CONTINUED FRACTION ALGORITHM

Suppose we wish to find continued fraction expansion[2]
of x €R.
Let x, € x and set ay = [x,],

Define x; = and seta; = [x;]and x, =

xp—[xo] x1
a, = [XZ] e X = x_— = aq = [xk]

: . k-1 =Dxie] - :
This process is continued infinitely or to some finite stage till
an x; € N exists such that a; = [x;].

=
—[x1]

1. OCTAGONAL NUMBER

A. Definition: Centered Octagonal Number|[3]
The Number 1,9,25,49,81,121,........ are called centered
octagonal numbers. The number that represents associate
in nursing polygonal shape with a dot within the center
and every one dots different dots encompassing the middle
dot in associate in nursing polygonal shape lattice .

The nt" centered octagonal number is given by the
formula
0,=4n(n—-1)+1
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B. Theorem:
Forn = 3,

0, o
n +i n+2

0n+3
n n+1
0;1, [E],Sn) +i(0;1, [—2 ],B(n +2)) whennis odd
n+2)
2

{(0; 1,; -1,1,1,2n—1,2) +i(0; 1, -1,1,1,2(n+2) — 1,2) when n is even
Proof:
Case (i):- nis odd

Letn=2k-1, Where3<k <n
Then
Ozk-1
O,

2k—1
—| 82k -1y
+i(0; 1, [k],8(2k + 1))
Next we have to prove that n = 2k+1
To find the continued fraction of
02k+1 i02k+3

Ozkc+1
+i——=(0;1, [
Ozkc+2

02k+2 02k+4—

A. Real Part:-[3]

Oy _ 42k + D@k +1-1)+1
Osisz  4Qk+2)Rk+2-1)+1
_ 16k2+8k+1
T 16k2+2k+9
_ 16k%+8k+1 —0
0 ™ 16k2+2k+9 * 0
16k+8
xn =1+ Tok2igkrr M = 1
1
Sk+——=2a, =k
2=t ekvs @
x; = 16k + 8 = a; = 16k + 8
=8(2k+1)
0
=2 — (01, k, 8(2k + 1))
Oz 42

B. Imaginary part:-

42k +3)2k+3-1) +1

4k +4)2k+4-1) +1

_ 4[4k%+6k—2k+6k+9—-3]+1
" 4[4k2+8k -2k +8k+16—4]+1
_ 4[4k +4k+6k+6]+1

T 4[4k2+14k+12]+1

_ 4[4k%+10k+6]+1

T 4[4k2+14k+12]+1

_ 16k%+40k+24+1

T 16k2+56k+48+1
16k% + 40k + 25

Ozi+s  16k? + 56k + 49
_ 16k2+40k+25

02k+3

02k+4—

02k+3

= ;ag =0
0 ™ 16k2+56k+49 * O
Then
X 16k2+56k+49 _ 6kt24 o _ 4
17 16k2+40k+25 16k 2+40k+25 1=

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication




The International journal of analytical and experimental modal analysis ISSN NO: 0886-9367

Algebraic Approach onOctagonal Numbers

Gnanam*, S. Sudha®
!Department of Mathematics, Government Arts College, Trichy- 22.

Department of Mathematics, Nazareth College of Arts and Science, Chennai — 62.
gnaanam@yahoo.com

sudha@ncas.in

Abstract--In number theory study of polygonal number. In this paper we have to find centered octagonal number of continued
fractions. Next we have to prove monoidunder multiplication of centered octagonal number and square number.
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Notations:-
1. (ay;a4,ay,......a,) :Continued fraction Expansion
2. B] . Integer part of the rational number n/2.
3. 0,=4n(n—1)+1 :n"centered octagonal number.

l. Introduction

A continued fraction refers to all expressions of the form

a2+T
Where aq,a;,as ... ... and by, by, b3 ... ... are either real or complex values. The number of terms can be either
finite or infinite[7].
A Simple Continued fraction is a continued fraction[7] in which the value of b,, = 1 for all n.

1
ag + ————
aq + a2+%
The value of a,is a positive integer for all n = 1.a;can be any integer value, including 0. The above fraction is

sometimes represented by (a;; a,, as ... ... )

Il. Continued Fraction Algorithm

To find continued fraction expansion of x € R.
Let x € R and we write [2]
x= ag+t
Withay, € Zand 0 < t, < 1
Ift, # 0, then we write% =a; +tywitha; e Nand0 <t; <1

Thus we can write

1
to= ——= (0;a; +t
0= g = et
This is a continued fraction expansion oft,. Continue in this process t,, # 0
We write
1
; =dp41 + tn+1
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Abstract:-

This paper establishes Non - Reducible Farey N - Subsequence of order (4, 6,...). This research formulates
iterated function systems by using HB Operator and additionally shows the generalized Non - Reducible Farey
N - Subsequence of order (4, 6,...).

Keywords:-

Arithmetic Mediant, Farey ‘N’ subsequence, Hausdorff dimension, Invariant Measure, Iterated Function
System, Markov Operator, Non - Reducible Farey Sequence.

Date of Submission: 05-07-2020 Date of Acceptance: 21-07-2020

I. Introduction

The Farey sequence is an example that has its inception for all intents and common numbers. The
Farey sequence was so named after the British born geologist, John Farey (1766-1826). Given a sequence Fy

where b,d and b + d are all less than N, what Farey noticed is that if two fractions % and 2 were combined in

the way %, the resulting fraction was also in the series. Farey was not able to prove this but prolific French
mathematician Augustin Cauchy (1789-1857) had the option to give a proof in 1816 and published in Exerices
de mathematiques [1,3,5,6,8,9].

This paper is organized as follows: Section 2 Basic definitions with example.  Section 3 iterated
function system of Non — Reducible Farey N — subsequence of order 4. Section 4 Research formulates iterated
function system of Non — Reducible Farey N — subsequence of order 6. Section 5 the researcher
shows the iterated function system of ~ Non — Reducible Farey N — subsequence of order (2m-2).

Il. Preliminaries
Throughout this paper we study the Non — Reducible Farey N — subsequence of order (4, 6,...)

Definition 2.1: Farey sequence [2]
A Farey sequence F, is the set of rational numbers s with p and g coprime, with 0 < p < q < n, ordered by

size.

Example 2.1.1:
F = {0 1}
Re 1l
Fo= 3z 3l

Definition 2.2: Farey N — subsequence [2]
The subsequence of farey sequence of order N whose denominators is equal to N is named as Farey
N — subsequence and denoted by (Fy) .

(Fu) = {5/0<u, <N0<i<N)
Definition 2.3: Non - Reducible Farey Sequence [2]
The Sequence of non-reduced fractions with denominators not exceeding N listed in order of their size is called
Non - Reducible Farey Sequence of order N. It is denoted by Fy .
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