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ABSTRACT 

 Number theory, known as queen of Mathematics has got many interesting topics.  

Thought number theory deals with integers in the beginning, it has branched into the field 

of rational numbers.  Some of the fractal sequences in number theory are Sterm – Brocot 

sequence and Farey sequences.   

 In Real Analysis Cantor sets are unique in nature.  It is probably, the best known 

example of a perfect nowhere-dense set in the real line. The Cantor set plays a very 

important role in many branches of mathematics. It has many definitions and many 

different constructions. Although Cantor originally provided a purely abstract definition, 

the most accessible is the Cantor “middle-thirds” or ternary set construction beginning with 

the closed real interval [0, 1].   In general, The Cantor Middle (2𝑚 −  1)𝑡ℎ set 𝐶2𝑚−1, 

where    𝑚 ≥  2 contains the endpoints of all 2𝑛 intervals, each of length 
(𝑚−1)𝑛

(2𝑚−1)𝑛  .    

 The Farey sequence of order 𝑛 is the sequence of completely reduced fractions 

between 0 and 1 whose lowest terms have denominators less than or equal to 𝑛, arranged 

in order of increasing size. The Farey fractions are irreducible fractions, reduced fractions 

or fractions in lowest terms between 0 and 1 with denominators less than or equal to some 

given value. When these fractions are arranged in increasing order the result is the Farey 

sequence. The maximum denominator is called the order of the sequence 𝐹𝑛, where 𝑛 

denotes its order. Depending on how the sequence is to be used, one or the other or both 

of the end points 
0

1
 and 

1

1
 may be excluded. Unless noted otherwise, we will always include 

both the end points. 

 The study of measures and their application to integration is called measure theory. 

Measure concept may be a stronger assumption of countable additivity. Measure concept 

involves 𝜎-algebras, measures, measurable features and integrals. Integration inside the 



context of measure theory entails analogous sums and is based on capabilities consistent 

on sets of a few 𝜎-algebras.  

 Extraction of Cantor sets from Farey sequences are already studied. 

 This thesis entitled “An Analysis of Various Measures of Farey and Cantor 

Sets” consists of six chapters. 

CHAPTER I 

 This chapter provides the historical background and necessary literature survey for 

Farey sequences and Cantor set of odd order. Also measures like Lebesgue measure and 

Probability measure have a brief introduction. 

CHAPTER II 

 This chapter has four sections. In section 2.1 Cantor Hexnary Sets, in section 2.2 

Cantor Deca Sets, in section 2.3 Cantor Octanary Sets and in section 2.4 Cantor Dodeca 

Sets are developed. 

 Various patterns of removal of intervals are analyzed here. 

CHAPTER III 

 A subsequence of Farey sequence, 𝐹𝑁̃ ,Farey 𝑁 – subsequence has been established 

as a topological space and a Hausdorff space by appropriately defining basis and open 

sets. Also the 𝑇1axiom has been discussed with an illustration. Here sequences are 

considered as sets. 

 This chapter provides two sections. In section 3.1 Farey sequence has been proved 

as a  Topological Space and in section 3.2 Farey sequence with a slight change in the 

basis has been developed as a Hausdorff space . 

  



CHAPTER IV 

 A Non Reduced Farey 𝑁-subsequence, a subsequence of Farey sequence consists 

of rational numbers with same denominator in [0, 1]. By reconstructing the non reduced 

Farey 𝑁 – subsequence it can be established as a 𝜎- algebra and its Lebegue Measure has 

been found. Non –Reduced Farey 𝑁 - subsequence of even order has been studied. 

CHAPTER V 

 This chapter is divided into two sections.Section 5.1 gives Probability Measure of 

Generalized   Non - Reduced Farey 𝑁- Subsequence  and the other section 5.2 is on 

Invariant Measure of Generalized Non - Reduced Farey 𝑁- Subsequence. An attempt has 

been to provide a  theorem on the Probability measure of the Generalized Non reduced 

Farey 𝑁 – subsequence.  

CHAPTER VI 

 This chapter deals with the Box Measure of Modified even ordered Cantor 

sets.While calculating box measure, boxes without dimensions are used in general but 

here, boxes are replaced by isosceles triangles and their areas are considred as measures. 

This chapter is divided into four sections.  

 Section 6.1 deals with Measure of Cantor Hexnary Sets and   Section 6.2 is on 

Measure of Cantor Deca Sets.Varying from the previous section, section 6.3 provides a 

measure for  Cantor Octanary Sets and  following the similar lines Section 6.4  gives a 

measure of Cantor Dodeca Sets.  
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CHAPTER - I 

INTRODUCTION 

 

 Number theory is one of the oldest branches of Mathematics. Numbers were used 

for keeping records and for commercial transactions for over 5000 years before anyone 

thought of studying numbers themselves in a systematic way. Dickson always said 

“Mathematics is the queen of science and that the theory of numbers is the Queen of 

Mathematics” [30].  

 The theory of numbers is concerned with properties of   integers and more 

particularly with positive integers 1, 2, 3, 4, …The number theory is nothing but study of 

the whole numbers and integer-valued functions. The origin of this misnomer harks back 

to the early Greeks when the word “number” meant positive integer and nothing else.   The 

number theory has always occupied unique position within the planet of 

Mathematics. The more established term for number theory is arithmetic.  By the early 

twentieth century, it had been superseded by “number theory” [40].This is often because 

of the unquestioned historical importance of the subject. Like Dickson German 

Mathematician Carl Friedrich Gauss also said, “Mathematics is the queen of the sciences 

and number theory is the queen of Mathematics” [31].  

 Number theory analyses the properties of integer systems in spite of their 

apparent complexity. Integers are often considered either in themselves or as solutions 

to equations. The natural numbers have been known to us for so long that the mathematician 

Kronecker once remarked, “God created the natural numbers, and all the rest is the work of 

man”.  Far from being a gift from Heaven, number theory has a long and sometimes painful 
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evolution [12,13,20]. In number theory concepts are often best understood through study 

of analytical objects that encode properties of the whole numbers, primes or other 

number-theoretic objects in some fashion. Real numbers may be studied in reference to 

rational numbers. 

 Number theory has many subdivisions such as Algebraic number theory, 

Analytic number theory, Probabilistic number theory, Computational number theory, 

etc.   

 The theory of numbers has always occupied unique position in the world of 

mathematics. It is especially entitled to a separate history on account of the greatness 

attached to it, continuously through the centuries, from the time of Pythagoras [4, 5]. 

Regarding the true origin of the theory of numbers: It seems probable that the Greeks were 

largely indebted to the Babylonians and ancient Egyptians for a core of information about 

the properties of the natural numbers, the first rudiments of an actual theory are generally 

credited by Pythagoras and his disciples.  The Pythagoreans believed that the key to an 

explanation of the universe lay in number and form their general thesis that “Everything is 

number”. [6,7,11,15,23]. 

 As the mathematician Sierpinski once said, “The progress of our knowledge of 

numbers is advanced not only by what we already know about them, but also by realizing 

what we yet to not know about them”.  It is a fact that the natural numbers 1,2,3,4,5, … are 

closed under addition and multiplication, and that the integers 

… , −5, −4, −3, −2, −1,0,1,2,3,4,5, … are closed under addition, multiplication and 

subtraction  but  neiither of these sets is closed under division.   The entire collection of such 
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fractions constitutes the rational numbers.  Thus a rational number a number which can be 

put in the form  
𝑎

𝑏
, where ′𝑎′ and ′𝑏′ are integers and ′𝑏′  is not zero [9,19,21,22].                                                                                                              

 The Egyptians worked only with unit fractions, fractions with numerator equal to 

one, known also as Egyptian fractions .Their problem was to write any given common 

fraction as a sum of different unit fractions. 

 In algebraic number theory an irrational number is any complex quantity that is 

an answer to some polynomial equation 𝑓(𝑥)  =  0 with rational co-efficients.  Algebraic 

number theory studies irrational number fields [35]. Number fields are often studied as 

extensions of smaller number fields, a field 𝐿 is claimed to be an extension of a field 𝐾 

if 𝐿 contains𝐾. 

 In analytic number theory, the number theory problem has brought light and 

elegance to this field, especially to the problem of the distribution of prime numbers. 

Through the centuries, an outsized sort of tools has been developed to understand a better 

understanding of this particular problem [8, 41].   

 In Probabilistic number theory, the study of variables that are almost mutually 

independent is often seen as a crucial special case [45].         

 Computational number theory, also referred to as algorithmic number theory, is 

the study of computational methods to analyze and solve problems in number theory. 

The theory of   Computational number has cryptography applications and is used in 

number theory to research conjectures and open problems, including the Riemann 

hypothesis [45]. 
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 Number theory is not a systematic study of mathematics but also a popular 

diversion, it is part of recreational mathematics, including numerical curiosities and 

puzzle solving [22].  The dimension of number theory is not emphasized, unless the 

questions are related to general propositions. A comprehensive analysis of the theory is 

definitely beneficial for someone looking into recreational mathematics problems [22, 

10].   

 Proofs within the principle of numbers rely on many exclusive thoughts and 

methods.  Of these, special attention may be given to principle of mathematical induction 

[44]. If the important numbers are necessary for the study of rational numbers from the 

standpoint of their size, the 𝑝-adic numbers play a totally analogous role in question 

connected with divisibility by powers of the prime 𝑝 [44]. The analogy between real and 

𝑝-adic numbers is often developed in other ways. The 𝑝-adic numbers are 

often constructed ranging from the rational numbers, in just an equivalent way that the 

important numbers are constructed by adjoining the bounds of Cauchy sequences [44]. 

  The most rudimentary class of polygonal numbers described by the early 

Pythagoreans was that of the oblong numbers.  The 𝑛𝑡ℎ oblong number, denoted by 𝑂𝑛, is 

given by 𝑛 (𝑛 + 1) and represents the number of focuses in a rectangular array having 𝑛 +

 1 row and 𝑛 columns [29]. 

 Number theory has long been a favourite subject for students and teachers of 

mathematics. It is a classical subject and has a reputation for being the "purest" part of 

Mathematics, yet recent developments in cryptology and software engineering depend on 

basic elementary number theory. Number theory, from general perspective, is the 

investigation of numbers and their properties [29].  The fundamental theorem of arithmetic 
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is that each positive integer can be written uniquely as the product of primes. One of the 

most significant uses of number theory to computer science is in the zone of cryptography. 

Congruences can be utilized to create various types of ciphers. Recently, another new type 

of cipher system, called a public-key cipher system, has been devised. When a public-key 

cipher is utilized, every individual has a public enciphering key and a private deciphering 

key [29]. Messages are enciphered utilizing the public key of the receiver. Moreover, only 

the receiver can decipher the message, since a mind-boggling measure of computer time is 

required to decipher when just the enciphering key is known. The most widely utilized 

public-key cipher system relies on the difference in computer time required to discover large 

primes and to factor huge integers [29].  

        We describe two applications of  Number theory in cryptography to computer 

science. The Chinese remainder theorem is utilized in two applications. The first application 

includes the enciphering of a data base [29]. A database is a collection of computer 

documents or records. In [29] it is shown   how to encipher an entire database so that 

individual files may be deciphered without jeopardizing the security of other files in the 

database [29]. 

1.1  Significance of Number Theory: 

 Number theory was classified as a discipline without direct application and it only 

demonstrated the basic properties of Mathematics. With the great and profound scientific 

and technological transformation brought by the emergence and development of computer, 

number theory has been widely used, and is no longer just a pure mathematics, but a 

mathematical discipline with practical application value. At present, number theory is 
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widely and fully applied in many fields, such as computing, cryptography, physics, 

chemistry, biology, acoustics, electronics, communication, graphics and even musicology.  

 This also proves the significance of number theory that it can be widely and fully 

applied to many other fields involving mathematics, and has developed into a new applied 

mathematics discipline - applied number theory. Therefore, number theory is no longer just 

a pure discipline, but a veritable applied discipline. Judged from the current development 

trend and applications of number theory, this ancient discipline is bound to be vigorous [43].  

1.1.1  Development of Number Theory: 

 Many questions in number theory have been proposed and then solved, which 

attracts more and more people to focus on number theory. In the long history, techniques 

and methods to solve problems have emerged, and some theories have been formed. 

Algebraic number theory has been advanced with the expansion of number field and 

practical applications. Bacon, the famous philosopher, said that history makes people smart, 

so it is necessary to explore the development of early algebraic number theory. Domestic 

researches on algebraic number theory are mainly comprehensive discussions on the 

progress of algebraic number theory [26, 42].  

 a) The discovery of irrational numbers: The followers of Pythagorean school 

discovered the first irrational number, shocking the leaders of the school at that time. It was 

proposed that all numbers could be expressed as ratios of integers that later led to the first 

mathematical crisis. b) Creation of arithmetic operators and solution to irrational equations: 

In India, the mathematician Brahmagupta introduced a group of symbols used to express 

concepts and describe operations in the 7𝑡ℎ century, and Posgallo later put forward the 

concept of negative square root, the solution to irrational equations and the algorithm of 
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irrational numbers in the 12𝑡ℎ century, which fostered the study of algebra to a new stage. 

c) Establishment of imaginary number theory: Cardano was the first mathematician to 

formulate the square root of a negative integer. Now it has been developed to find negative 

Jacobsthal numbers.  

1.1.2  Other Basic Fields 

 Number theory also plays a surprising role in other theories. In quantum theory, 

Hermite operator is one of the most basic concepts. Apart from that, number theory is also 

widely used in  non-mathematical disciplines, such as information science, theoretical 

physics, quantum chemistry and so on [29].  

1.2  Applications of Number Theory: 

1.2.1  Cryptography: 

 With the development of network encryption technology, number theory has found 

its own place in cryptography. Professor Wang Xiaoyun who cracked the 𝑀𝐷5 code a few 

years ago is from the number theory school of Shandong University. Because of the irregular 

appearance of prime factors in composite numbers, it is very difficult to decompose 

composite numbers into product of prime numbers. At the same time, it is this difficulty that 

enlightens people to use it to design difficult codes. When studying number theory, 

especially cryptography, we pursue deterministic algorithm rather than probabilistic 

algorithm, and we will only lower our requirements and apply probabilistic algorithm if 

there is no deterministic algorithm [29].  

1.3  Cantor Middle Set: 

 George Cantor (1845-1918) was the originator of quite a bit of a modern set theory. 

Among his commitments to mathematics was the thought of the Cantor set, which comprises 
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points along a line segment, and has various interesting properties. The Cantor middle 

1

3
 ,

1

5
 ,

1

7
 ,

1

9
 , … sets, in general, the Cantor middle {

1

2𝑚−1
 ,    2 ≤ 𝑚 < ∞} set is called 

generalized Cantor sets and it is denoted by 𝐶1 (2𝑚−1)⁄  [16,33].  

 In 2008, Gerald Edgar introduced different properties of Cantor sets using an iterated 

function system. Moreover, many other general Cantor sets were built by eliminating 

various parts of various lengths from the initiator and likewise introduced a few properties 

utilizing an iterated function system [32].  

 The Cantor set has numerous definitions and a wide range of developments. Despite 

the fact that Cantor initially gave an absolutely dynamic definition, the most available is 

Cantor's  "middle - third" or ternary set in which the development starts with the closed real 

interval [0,1] and partitions it into three equivalent open subintervals. The methodology is 

to remove the central open interval.           

 𝐼1 = (
1

3
,

2

3
) such that 𝐾1 = [0,1] − 𝐼1 = [0,

1

3
] ∪ [

2

3
, 1] 

 Next, subdivide each one of these two remaining intervals into three equivalent open 

subintervals, and from each remove the central third. Let 𝐼2 the removed set, at that point is 

𝐼2 = (
1

32 ,
2

32) ∪ (
7

32 ,
8

32)   and 𝐾2 = [0,1] − (𝐼1 ∪ 𝐼2) = [0,
1

32] ∪ [
2

32 ,
3

32] ∪ [
6

32 ,
7

32] ∪ [
8

32 , 1] 

 We can subdivide every one of the intervals that involve [0, 1]  −  (𝐼1 ∪ 𝐼2) into 

three subintervals, eliminating their middle thirds, and proceed in a past way. The sequence 

of open sets is then disjoint, and we traditionally define the Cantor set 𝐶3 as the closed 

interval with the union of these  𝐼𝑛
′s subtracted out [11, 14, 36].  

𝐶3 = [0,1] −∪ 𝐼𝑛 
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The graphical representation is given as  
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 In general, The Cantor Middle (2𝑚 − 1)th Cantor's set 𝐶(2m−1), where 𝑚 ≥ 2 

contains the endpoints of every 2n intervals, every one of length 
(𝑚−1)𝑛

(2𝑚−1)𝑛  [18, 33].  

1.3.1  Self – Similarity: 

 Generally, a self-similar object is one that is comparable, or approximately 

comparable, to part of itself. That will be, that the object can be scaled and translated on top 

of a portion of the original object. In spite of the fact that self-similarity is difficult to define 

generally, much study has been done on self-similar objects. 

 A fractal is defined freely as a geometric shape that is exceptionally self-similar. A 

traditional illustration of a fractal is the Cantor middle thirds set. The Cantor set is developed 

by starting with the unit interval [0, 1] and at each progression removing the middle third of 

the remaining intervals. The following are the few iterations of the process used to make the 

Cantor middle third set. We study the Cantor sets all the more for the most generally later 

as developments outside of Euclidean space [25].  
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1.3.2  Fractal Dimension and the Cantor Set: 

 An altogether different definition is shown up when we consider covering the object 

with copies of itself at a smaller scale and count the number of such copies needed.  

Righteousness of this definition is that it permits us to construct objects with a 'fractional 

dimension'. Such items are called fractals, and the Cantor set is one of the earliest 

illustrations of such an object [38].  

  The Cantor set is the model of a fractal. It is an object that seems self-similar under 

fluctuating levels of amplification. One of the typical highlights of the fractal is its fractal 

dimension, which is basically a measure of self-similarity. It is sometimes alluded to as the 

similarity dimension. There are various non-identical methods of characterizing fractal 

dimensions. Quite possibly the most well-known method of computing the dimension of a 

set is to find the box-counting dimension of it [17].  

1.4  Farey Sequence: 

 Aside from including 
0

1
 and  

1

1
 , Charles Haros had formulated 𝐹99. To do this he used 

the mediant property to find the fractions with higher denominators and even provided a 

sketch proof that it worked. Also noted that if two numbers 
𝑎

𝑏
 and 

𝑐

𝑑
 are neighbours in the 

table then |𝑏𝑐 − 𝑎𝑑|  =  1. From here the history of the Farey sequence travels to Britain, 

and to a man called Henry Goodwyn. Henry Goodwyn ran and owned a brewery and made 

mathematical tables in his spare time. In his retirement he set out to create a table of fractions 

and decimal equivalents. However, Goodwyn's tables were to contain every irreducible 

fraction with denominators between 1 and 1024. The First Centenary of a Series of concise 

and useful Tables of all the complete decimal Quotients which can arise from dividing a 

Unit or any whole Number less than each Divisor by all Integers from 1 to 1024" [27].  
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 Farey sequence is widely applied both in engineering and combinatorics, some of 

which are presented below: 

 Employing the Farey sequence of Fibonacci numbers for a circuit constructed from 

𝑛 equal resistors combined in series and in parallel, strict upper and lower bounds for the 

order of the set of equivalent resistances have been established in [37].  

 Generalized Fibonacci word is used in the study of combinatorics of sturmian words, 

while Farey codes and Languages associated with Farey sequence are discussed in [Arturo 

Carpi and Aldo de Luca, Farey codes and languages, European Journal of Combinatorics 

2007].  The Mandelbrot set is one of the most elegant, interms of aesthetic appeal and 

complicated structure, yet complex objects in all of mathematics.  This set has been the area 

of intense research since the first pictures of it were drawn in 1978, due to the hard work of 

Benoit Mandelbrot and others who created awareness about this branch of mathematics.  

The Farey sequence is used in determining the rotation number of any bulb in the 

Mandelbrot set [27].  

 When the process of constructing Farey sequence is extended to the whole real line 

we get the   Stern- Brocot tree is arrived, which is used in the construction of clocks [28].  

 The link between Riemann-Hypothesis and Farey sequence has been established in 

[28].  

 An algorithm for boundary based shape decomposition has been proposed in [37]. 

This algorithm uses Farey sequence for determining several measures such as slopes of 

edges and turn types at vertices of the polygonal cover corresponding to the concerned 

shape.                                                                        
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 The study of the topological properties of the Julia sets of rational maps is a central 

problem in complex dynamics.  A family of rational maps whose Julia’s sets is a Cantor set 

of circles must topologically conjugate to one map in this family on their corresponding 

Julia’s set [12]. 

1.5  Measure: 

 One of the most fundamental concepts in Euclidean geometry is that of the measure 

𝑚(𝐸) of a solid body 𝐸 in one or more dimensions. In one, two, and three dimensions, we 

refer to this measure as the length, area, or volume of 𝐸 respectively. In the classical 

approach to geometry, the measure of a body was often computed by partitioning that body 

into finitely many components, moving around each component by a rigid motion and then 

reassembling those components to form a simpler body which presumably has the same 

area. One could also obtain lower and upper bounds on the measure of a body by computing 

the measure of some inscribed or circumscribed body; this ancient idea goes all the way 

back to the work of Archimedes at least. Such arguments can be justified by an appeal to 

geometric intuition, or simply by postulating the existence of a measure 𝑚(𝐸) that can be 

assigned to all solid bodies 𝐸, and which obeys a collection of geometrically reasonable 

axioms. One can also justify the concept of measure on “physical” or “reductionistic” 

grounds, viewing the measure of a macroscopic body as the sum of the measures of its 

microscopic components [18, 50]. 

 The physical intuition of defining the measure of a body 𝐸 to be the sum of the 

measure of its component “atoms” runs into an immediate problem: a typical solid body 

would consist of an infinite (and uncountable) number of points, each of which has a 

measure of zero; and the product ∞· 0 is indeterminate. To make matters worse, two bodies 
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that have exactly the same number of points need not have the same measure. For instance, 

in one dimension, the intervals 𝐴 =  [0, 1] and 𝐵 =  [0, 2] are in one-to-one 

correspondence using the bijection 𝑥 →  2𝑥 from 𝐴 to 𝐵, but of course 𝐵 is twice as long 

as 𝐴. So 𝐴 can be rearranged into a set of uncountable number of points and reassemble 

them to form a set of twice the length. 

 Here, the problem is that the pieces used in this decomposition are highly 

pathological in nature; among other things, their construction requires use of the axiom of 

choice. Such pathological sets almost never come up in practical applications of 

mathematics. Because of this, the standard solution to the problem of measure has been to 

abandon the goal of measuring every subset 𝐸 of  𝑅𝑑 , and instead to settle for only 

measuring a certain subclass of “non-pathological” subsets of 𝑅𝑑 , which are then referred 

to as the measurable sets 

 The class of measurable sets can be expanded at the expense of losing one or more 

nice properties of measure namely, finite or countable additivity, translation invariance, or 

rotation invariance in the process.  However, there are two basic concepts that are sufficient 

for most applications. The first is the concept of Jordan measure of a Jordan measurable set, 

which is a concept closely related to that of the Riemann integral [46].  

 This concept is elementary enough to be systematically studied in an undergraduate 

analysis course, and suffices for measuring most of the “ordinary” sets in many branches of 

mathematics. But , when the type of sets that arise in analysis are  considered , and in 

particular those sets that arise as limits of other sets,  the Jordan concept of measurability is 

not quite adequate, and must be extended to the more general notion of Lebesgue 

measurability, with the corresponding notion of Lebesgue measure that extends Jordan 
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measure. With the Lebesgue theory , one keeps almost all of the desirable properties of 

Jordan measure, but with the crucial additional property that many features of the Lebesgue 

theory are preserved under limits (as exemplified in the fundamental convergence theorems 

of the Lebesgue theory, such as the monotone convergence theorem and the dominated 

convergence theorem which do not hold in the Jordan-Darboux-Riemann setting). As such, 

they are particularly well suited for applications in analysis, where limits of functions or sets 

arise all the time [46]. 

1.5.1  Elementary measure:  

 Simpler notion of elementary measure, which allows one to measure a very simple 

class of sets, namely the elementary sets   

1.5.2  Jordan measure:  

 We now have a satisfactory notion of measure for elementary sets. But of course, 

the elementary sets are a very restrictive class of sets, far too small for most applications. 

For instance, a solid triangle or disk in the plane will not be elementary, or even a rotated 

box. On the other hand, as essentially observed long ago by Archimedes, such sets 𝐸 can be 

approximated from within and without by elementary sets 𝐴 ⊂  𝐸 ⊂  𝐵, and the inscribing 

elementary set 𝐴 and the circumscribing elementary set 𝐵 can be used to give lower and 

upper bounds on the putative measure of 𝐸. As one makes the approximating sets 𝐴, 𝐵 

increasingly fine, one can hope that these two bounds eventually match. 

1.5.3  Lebesgue measure: 

 The classical theory of Jordan measure on Euclidean spaces Rd. This theory 

proceeded in the following stages:  
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 First, one defined the notion of a box B and its volume |𝐵|.Using this, one defined 

the notion of an elementary set 𝐸, a finite union of boxes, and defines the elementary 

measure 𝑚(𝐸) of such sets. Even exist bounded open sets, or compact sets, which are not 

Jordan measurable, so the Jordan theory does not cover many classes of sets of interest. 

Another class that it fails to cover is countable unions or intersections of sets that are already 

known to be measurable. Lebesgue outer measure zero, in contrast to Jordan outer measure.  

Lebesgue outer measure  is a special case of a more general concept known as an outer 

measure. 

 To define a concept of “Lebesgue inner measure” to complement that of outer 

measure. Here, there is an asymmetry which ultimately arises from the fact that elementary 

measure is subadditive rather than superadditive. one does not gain any increase in power 

in the Jordan inner measure by replacing finite unions of boxes with countable ones. But 

one can get a sort of Lebesgue inner measure by taking complements.  This leads to one 

possible definition for Lebesgue measurability, namely the Caratheodory criterion for 

Lebesgue measurability, However, this is not the most intuitive formulation of this concept 

to work with, and we will instead use a different but logically equivalent definition of 

Lebesgue measurability. The starting point is the observation that Jordan measurable sets 

can be efficiently contained in elementary sets, with an error that has small Jordan outer 

measure. In a similar way, we will define Lebesgue measurable sets to be sets that can be 

efficiently contained in open sets, with an error that has small Lebesgue outer measure. 

 The Lebesgue integral and Lebesgue measure can be viewed as completions of the 

Riemann integral and Jordan measure respectively. This means three things. Firstly, the 

Lebesgue theory extends the Riemann theory: every Jordan measurable set is Lebesgue 
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measurable, and every Riemann integrable function is Lebesgue measurable, with the 

measures and integrals from the two theories being compatible. Conversely, the Lebesgue 

theory can be approximated by the Riemann theory, every Lebesgue measurable set can be 

approximated by simpler sets, such as open sets or elementary sets, and in a similar fashion, 

Lebesgue measurable functions can be approximated by nicer functions, such as Riemann 

integrable or continuous functions. 

1.6  Measurable functions: 

 Constant integral can be completed to the Riemann integral, the unsigned simple 

integral can be completed to the unsigned Lebesgue integral, by extending the class of 

unsigned simple functions to the larger class of unsigned Lebesgue measurable functions 

[47, 48]. 

1.6.1  Outer measures, pre-measures, and product measures: 

 One specific example of a countable additive measure is Lebesgue measure. This 

measure was constructed from a more primitive concept of Lebesgue outer measure, which 

in turn was constructed from the even more primitive concept of elementary measure. This 

generalizes the construction of Lebesgue measure from Lebesgue outer measure. One can 

in turn construct outer measures from another concept known as a pre-measure. One can 

start constructing many more measures, such as Lebesgue-Stieltjes measures, product 

measures, and Hausdorff measures.   

 To construct a variety of measures on infinite-dimensional spaces, and is of 

particular importance in the foundations of probability theory, as it allows one to set up 

probability spaces associated to both discrete and continuous random processes, even if they 

have infinite length. The most important result about product measure, beyond the fact that 
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it exists, is that one can use it to evaluate iterated integrals, and to interchange their order, 

provided that the integrand is either unsigned or absolutely integrable. This fact is known 

as the Fubini-Tonelli theorem, and is an absolutely indispensable tool for computing 

integrals, and for deducing higher-dimensional results from lower-dimensional ones. In this 

section we will however omit a very important way to construct measures, namely the Riesz 

representation theorem 

1.6.2  Outer measures: 

 Lebesgue outer measure 𝑚∗ is an outer measure. On the other hand, Jordan outer 

measure 𝑚∗,(𝐽) is only finitely subadditive rather than countably subadditive and thus is not, 

strictly speaking, an outer measure, for this reason this concept is often referred to as Jordan 

outer content rather than Jordan outer measure. Outer measures are weaker than measures 

in that they are merely countably subadditive, rather than countably additive. On the other 

hand, they are able to measure all subsets of 𝑋, whereas measures can only measure a  

𝜎 - algebra of measurable sets [46]. 

1.7  Objectives and Scope of research work: 

 The Problem discussed in the thesis is finding various measures of fractal sequences. 

Here the fractal sequences considered are Farey sequences and Cantor sets.  The Cantor 

ternary set is a good example of an elementary fractal set [51].  The extraction of Cantor 

sets from Farey sequence of points is done elaborately in [1]. So Farey sequence is slightly 

modified into Farey sets and various measures are calculated for both the sets.   
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1.8  Organization of the thesis: 

 The thesis consists of six chapters. 

CHAPTER I 

 This chapter provides the historical background and necessary literature survey for 

Farey sequences and Cantor set of odd order. Also measures like Lebesgue measure and 

Probability measure have a brief introduction. 

CHAPTER II 

 This chapter has four sections. In section 2.1 Cantor Hexnary Sets, in section 2.2 

Cantor Deca Sets, in section 2.3 Cantor Octanary Sets and in section 2.4 Cantor Dodeca 

Sets are developed. Various patterns of removal of intervals are analyzed here. 

CHAPTER III 

 A subsequence of Farey sequence, 𝐹𝑁̃ ,Farey 𝑁 – subsequence has been established 

as a topological space and a Hausdorff space by appropriately defining basis and open sets. 

Also the 𝑇1axiom has been discussed with an illustration. Here sequences are considered as 

sets. 

 This chapter provides two sections. In section 3.1 Farey sequence has been proved 

as a  Topological Space and in section 3.2 Farey sequence with a slight change in the basis 

has been developed as a Hausdorff space . 

CHAPTER IV 

 A Non Reduced Farey 𝑁-subsequence, a subsequence of Farey sequence consists of 

rational numbers with same denominator in [0, 1]. By reconstructing the non reduced Farey                                  
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𝑁 – subsequence it can be established as a 𝜎- algebra and its Lebegue Measure has been 

found. Non –Reduced Farey 𝑁 - subsequence of even order has been studied. 

CHAPTER V 

 This chapter is divided into two sections.Section 5.1 gives Probability Measure of 

Generalized   Non - Reduced Farey 𝑁- Subsequence  and the other section 5.2 is on Invariant 

Measure of Generalized Non - Reduced Farey 𝑁- Subsequence. An attempt has been to 

provide a  theorem on the Probability measure of the Generalized Non reduced Farey  

𝑁 – subsequence.  

CHAPTER VI 

 This chapter deals with the Box  Measure of Modified even ordered Cantor 

sets.While calculating box measure , boxes without dimensions are used in general but here, 

boxes are replaced by isosceles triangles and their areas are considered as measures. This 

chapter is divided into four sections.  

 Section 6.1 deals with Measure of Cantor Hexnary Sets and Section 6.2 is on  

Measure of Cantor Deca Sets. Varying from the previous sections, section 6.3 provides a 

measure for  Cantor Octanary Sets and  following the similar lines Section 6.4  gives a 

measure of Cantor Dodeca Sets.  
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CHAPTER – II 

MODIFIED EVEN ORDERED CANTOR SETS 
 

 In this chapter throughout we study the modified Cantor even ordered sets.  In Cantor 

ternary sets middle third is removed and the pattern of removal continues indefinitely.  

Taking the number of divisions as order here, even ordered Cantor sets are considered.  

Unlike normal Cantor sets, here lengths of unequal intervals are removed.  In this pattern of 

removal middle interval in successive        iteration follows a geometric sequence of powers 

of two. The intervals equally spaced from the middle to the left and right follows different 

nature as the iteration increases.  Its characteristics are studied. Also, the diagrammatic 

representation of modified even ordered Cantor sets has been exhibited. 

 Unlike Cantor ternary sets, in even ordered sets the intervals of lengths one, two, 

four, eight etc., are removed successively.  Again, if intervals of lengths two are taken away 

the formulas for retaining terms are given. In this chapter Cantor sets of even numbers are 

considered.  Contrary to the procedure followed by Cantor, intervals of various lengths are 

removed in different patterns.  These various patterns of removals of intervals are also 

analyzed here.  

 This chapter deals with four sections. In section 2.1 Cantor Hexnary Sets, in section 

2.2 Cantor Deca Sets, in section 2.3 Cantor Octanary Sets and in section 2.4 Cantor Dodeca 

Sets are analyzed. 
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2.1  Cantor Hexnary Sets:   

Definition 2.1.1: Cantor Hexnary Set  

 Divide the closed interval [0,1] into six equal intervals. Remove the second and fifth 

intervals (
1

6
,

2

6
) and (

4

6
,

5

6
). The intervals retained are [

0

6
= 0,

1

6
] , [

2

6
,

4

6
] and [

5

6
,

6

6
= 1] .  Now 

for these intervals continue the procedure indefinitely. The set obtained is known as Cantor 

Hexnary Set and is denoted by 𝐶
(

1

6
)
.   

Theorem 2.1.1: 

 In the Cantor Hexnary set the middle most interval is given by  [
𝑘

6𝑛
,

𝑘+2𝑛

6𝑛
] ,  

𝑛 =  1,2,3, … where k is represented by the series 2 ∑ 6𝑛−1𝑛
𝑖=1 2𝑖−1 . 

Proof: 

 Proof follows by induction. 

 The closed interval [0,1] is divided into six equal parts.  Following the theory of 

Cantor Hexnary set, the open intervals (
1

6
,

2

6
) and (

4

6
,

5

6
) are removed. The remaining parts  

[
0

6
= 0,

1

6
] , [

2

6
,

4

6
] and [

5

6
,

6

6
= 1] are again subdivided as follows. The length of the 

middlemost part is 2/6.  For the 2nd iteration, the parts [
0

6
= 0,

1

6
] and [

5

6
,

6

6
] are each  

divided into six equal parts thereby giving six parts  

 [
0

36
= 0,

1

36
], [

1

36
,

2

36
] [

2

36
,

3

36
] , [

3

36
,

4

36
] , [

4

36
,

5

36
] , [

5

36
,

6

36
] and 

[
30

36
,

31

36
] , [

31

36
,

32

36
] , [

32

36
,

33

36
] , [

33

36
,

34

36
] , [

34

36
,

35

36
]  [

35

36
,

36

36
] respectively. 

 The open intervals (
1

36
,

2

36
) and (

4

36
,

5

36
) are removed for the left of 

1

2
 . The same 

procedure continues to the right of  
1

2
. Applying the removal pattern for the middle part [

𝟐

𝟔
,

𝟒

𝟔
] 
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again give rise to [
12

36
,

14

36
], [

14

36
,

16

36
],[

𝟏𝟔

𝟑𝟔
,

𝟐𝟎

𝟑𝟔
], [

20

36
,

22

36
] , [

22

36
,

24

36
]. The open intervals (

14

36
,

16

36
) and 

(
20

36
,

22

36
) are removed. The length of the middlemost part is 4/36. Continue the process 

indefinitely. 

 When 𝑛 =  1,           

  𝑘 = 2. 60. 20 = 2 

                             𝑘 + 21 = 2. 60. 20 + 2 = 4 

 Therefore  the middlemost interval in the first iteration is [
2

6
,

4

6
] 

 When 𝑛 =  2,        

                                   𝑘 = 2. 62−1. 20 + 2. 62−2. 22−1 = 16 

                           𝑘 + 2𝑛 = 𝑘 + 22 = 16 + 4 = 20 

 Therefore the middlemost interval in the second iteration is [
16

62 ,
20

62] 

 Assume for 𝑛 =  𝑟 

                 𝑘 = 2. 6𝑟−1. 20 + 2. 6𝑟−2. 22−1 + 2. 6𝑟−3. 23−1 + ⋯ ⋯ ⋯ + 2. 6𝑟−𝑟 . 2𝑟−1  

 𝑘 + 2𝑟 = (2. 6𝑟−1. 20 + 2. 6𝑟−2. 22−1 + 2. 6𝑟−3. 23−1 + ⋯ ⋯ ⋯ + 2. 6𝑟−𝑟 . 2𝑟−1) + 2𝑟 

 Therefore the middlemost parts are [
𝑘

6𝑟
,

𝑘+2𝑟

6𝑟
]   

 We prove the result for 𝑛 = 𝑟 + 1 

 The above interval can be divided into 6 equal parts as 

[
6𝑘

6𝑟+1 ,
6𝑘+2𝑟

6𝑟+1 ] , [
6𝑘+2𝑟

6𝑟+1 ,
6𝑘+2.2𝑟

6𝑟+1 ] , [
6𝑘+2.2𝑟

6𝑟+1 ,
6𝑘+3.2𝑟

6𝑟+1 ] , [
6𝑘+3.2𝑟

6𝑟+1  ,
6𝑘+4.2𝑟

6𝑟+1 ] , [
6𝑘+4.2𝑟

6𝑟+1 ,
6𝑘+5.2𝑟

6𝑟+1 ] , [
6𝑘+5.2𝑟

6𝑟+1 ,
6𝑘+6.2𝑟

6𝑟+1 ]  

 The middlemost part is [
6𝑘+2.2𝑟

6𝑟+1  ,
6𝑘+4.2𝑟

6𝑟+1 ]. 
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6𝑘 + 2. 2𝑟 = 6 [2. 6𝑟−1. 20 + 2. 6𝑟−2. 22−1 + 2. 6𝑟−3. 23−1 + ⋯ ⋯ ⋯ + 2. 6𝑟−𝑟 . 2𝑟−1] + 2. 2𝑟  

                = 2. 6𝑟 . 20 + 2. 6𝑟−1. 21 + 2. 6𝑟−2. 22 + ⋯ ⋯ ⋯ + 2. 61. 2𝑟−1 + 2. 60. 2𝑟 

  Let 6𝑘 + 2. 2𝑟 = 𝑙 (say) 

                  6𝑘 + 4. 2𝑟 = (6𝑘 + 2. 2𝑟) + 2. 2𝑟 

  = 𝑙 + 2. 2𝑟 = 𝑙 + 2𝑟+1 

        [
𝑙

6𝑟+1  ,
𝑙+2𝑟+1

6𝑟+1 ]  result is true for 𝑛 = 𝑟 + 1 and hence for all positive integers . 

        Hence the theorem is proved by induction method. 

 The Following Figure 2.1.1 shows the graphical representation of Cantor Hexnary 

sets.              

First iteration:                                                                                                                                                        

 The closed interval [0,1]  is subdivided into 6 equal sub- intervals                                                                       

             [
0

6
= 0,

1

6
], [

1

6
,

2

6
] , [

2

6
,

3

6
] , [

3

6
,

4

6
] , [

4

6
,

5

6
] , [

5

6
,

6

6
= 1]   

                 ____________________________________________________    

   
0

6
= 0       

1

6
                 

2

6
                 

3

6
                 

4

6
                    

5

6
                 

6

6
 

Figure 2.1.1: Cantor Hexnary sets 

 

The intervals removed are (
1

6
,

2

6
), (

4

6
,

5

6
)  .   

 The remaining intervals are [
0

6
= 0,

1

6
] , [

2

6
,

4

6
] , [

5

6
,

6

6
= 1]      

 Therefore                        𝐶
(

1

6
)

1 = [
0

6
= 0,

1

6
] ∪ [

2

6
,

4

6
] ∪ [

5

6
,

6

6
= 1]               (2.1.1) 
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Second iteration:  

         ________________                                                                   ________________   

      
0

36
   

1

36
   

2

36
  

3

36
 

4

36
 

5

36
 

6

36
=

1

6
      

12

36
  

14

36
  

16

36
  

18  

36
 
20

36
  

22

36
   

24

36
=

4

6
    

30

36
  

31

36
  

32

36
 
33

36
 
34

36
  

35

36
  

36

36
= 1   

               Figure 2.1.2: Second iteration – Cantor Hexnary sets 

The intervals removed are (
1

36
,

2

36
) , (

4

36
,

5

36
) , (

14

36
,

16

36
) , (

20

36
,

22

36
) , (

31

36
,

32

36
) , (

34

36
,

35

36
) 

from each of the subintervals will result in modified cantor set. 

 Therefore  

           𝐶
(

1

6
)

2 = [
0

36
= 0,

1

36
] ∪ [

2

36
,

4

36
] ∪ [

5

36
,

6

36
] ∪ [

12

36
,

14

36
] ∪ [

16

36
,

20

36
] ∪ [

22

36
,

24

36
] ∪ [

30

36
,

31

36
] ∪

[
32

36
,

34

36
] ∪ [

35

36
,

36

36
= 1]                                 (2.1.2) 

Third Iteration: 

         ________________                                                                   ________________   

      
0

63    
1

63    
2

63   
3

63  
4

63  
5

63   
6

63 =
1

62      
12

63   
14

63   
16

63   
18  

63  
20

63   
22

63    
24

63 =
4

62    
30

63   
31

63   
32

63  
33

63  
34

63   
35

63   
36

63 =
1

6
   

         ________________                                                                   ________________   

     
72

63    
74

63    
76

63   
78

63  
80

63  
82

63  
84

63 =
14

62      
96

63  
100

63  
104

63  
108  

63

112

63  
116

63  
120

63     
132

63  
134

63  
136

63  
138

63  
140

63  
142

63  
144

63     

         ________________                                                                   ________________   

   
180

63  
181

63  
182

63  
183

63  
184

63

185

63  
186

63         
192

63  
194

63  
196

63  
198 

63  
200

63  
202

63  
204

63      
210

63  
211

63  
212

63  
213

63

214

63  
215

63  
216

63    

Figure 2.1.3: Third iteration – Cantor Hexnary sets 
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The intervals removed are 

(
1

216
,

2

216
) , (

4

216
,

5

216
) , (

14

216
,

16

216
) , (

20

216
,

22

216
) , (

31

216
,

32

216
) , (

34

216
,

35

216
) , (

74

216
,

76

216
) , (

80

216
,

82

216
) , (

100

216
,

104

216
), 

(
112

216
,

116

216
) , (

134

216
,

136

216
) , (

140

216
,

142

216
) , (

181

216
,

182

216
) , (

184

216
,

185

216
) , (

194

216
,

196

216
) , (

200

216
,

204

216
) , (

211

216
,

212

216
) , (

214

216
,

215

216
)  

   from each of the subintervals will result in modified cantor set. 

Therefore  

𝐶
(

1

6
)

3 = [
0

216
= 0,

1

216
] ∪ [

2

216
,

4

216
] ∪ [

5

216
,

6

216
] ∪ [

12

216
,

14

216
] ∪ [

16

216
,

20

216
] ∪ [

22

216
,

24

216
] ∪ [

30

216
,

31

216
] ∪

               [
32

216
,

34

216
] ∪ [

35

216
,

36

216
]  ∪  [

72

216
,

74

216
]  ∪ [

76

216
,

80

216
] ∪ [

82

216
,

84

216
] ∪ [

96

216
,

100

216
] ∪ [

104

216
,

112

216
] ∪

               [
116

216
,

120

216
] ∪ [

132

216
,

134

216
] ∪ [

136

216
,

140

216
]  ∪  [

142

216
,

144

216
]  ∪ [

180

216
,

181

216
] ∪ [

182

216
,

184

216
] ∪ [

185

216
,

186

216
] ∪

               [
192

216
,

194

216
] ∪ [

196

216
,

200

216
] ∪ [

202

216
,

204

216
]  ∪  [

210

216
,

211

216
]  ∪ [

212

216
,

214

216
] ∪  [

215

216
,

216

216
]        (2.1.3) 

  This procedure proceeds in every iteration to get the entire Cantor Hexnary set. 

 The iteration procedure for the middlemost part and the general procedure are shown 

in the following tree diagrams Figure 2.1.4 and Figure 2.1.5. 
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Figure 2.1.4: Middlemost part of  Cantor Hexnary sets 

  

                                                                              [
𝟐

𝟔
,

𝟒

𝟔
]  

                  

 

                   [
12

36
,

14

36
]                                      [

𝟏𝟔

𝟑𝟔
,

𝟐𝟎

𝟑𝟔
]                                     [

22

36
,

24

36
] 

 

 

     [
72

216
,

74

216
] [

𝟕𝟔

𝟐𝟏𝟔
,

𝟖𝟎

𝟐𝟏𝟔
]  [

82

216
,

84

216
]  [

96

216
,

100

216
] [

𝟏𝟎𝟒

𝟐𝟏𝟔
,

𝟏𝟏𝟐

𝟐𝟏𝟔
] [

116

216
,

120

216
]  [

132

216
,

134

216
] [

𝟏𝟑𝟔

𝟐𝟏𝟔
,

𝟏𝟒𝟎

𝟐𝟏𝟔
] [

142

216
,

144

216
]                                                                        

 

[
456

1296
,

460

1296
] [

𝟒𝟔𝟒

𝟏𝟐𝟗𝟔
,

𝟒𝟕𝟐

𝟏𝟐𝟗𝟔
] [

476

1296
,

480

1296
] [

624

1296
,

632

1296
] [

𝟔𝟒𝟎

𝟏𝟐𝟗𝟔
,

𝟔𝟓𝟔

𝟏𝟐𝟗𝟔
] [

664

1296
,

672

1296
] [

816

1296
,

820

1296
] [

𝟖𝟐𝟒

𝟏𝟐𝟗𝟔
,

𝟖𝟑𝟐

𝟏𝟐𝟗𝟔
] [

836

1296
,

840

1296
]  
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Figure 2.1.5: General form of middlemost part of Cantor Hexnary sets

                                                                           [
𝒌

𝟔𝒏 ,
𝒌+𝟐

𝟔𝒏 ]  

                  

 

                     [
6𝑘

6𝑛
,

6𝑘+2

6𝑛
]                          [

𝟔𝒌+𝟒

𝟔𝒏
,

𝟔𝒌+𝟖

𝟔𝒏
]                         [

6𝑘+10

6𝑛
,

6𝑘+12

6𝑛
] 

 

    [
36𝑘

6𝑛
,

36𝑘+2

6𝑛
] [

36𝑘+24

6𝑛
,

36𝑘+28

6𝑛
]  [

36𝑘+60

6𝑛
,

36𝑘+62

6𝑛
] 

[
𝟑𝟔𝒌+𝟒

𝟔𝒏
,

𝟑𝟔𝒌+𝟖

𝟔𝒏
]  [

𝟑𝟔𝒌+𝟑𝟐

𝟔𝒏
,

𝟑𝟔𝒌+𝟒𝟎

𝟔𝒏
]                [

𝟑𝟔𝒌+𝟔𝟒

𝟔𝒏
,

𝟑𝟔𝒌+𝟔𝟖

𝟔𝒏
]  

[
36𝑘+10

6𝑛
,

36𝑘+12

6𝑛
]  [

36𝑘+44

6𝑛
,

36𝑘+48

6𝑛
]                 [

36𝑘+70

6𝑛
,

36𝑘+72

6𝑛
] 
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2.2  Cantor Deca Sets: 

Definition 2.2.1: Cantor Deca Set  

 Divide the closed interval [0,1] into ten equal intervals. Remove the second, fourth, 

seventh and ninth intervals (
1

10
,

2

10
), (

3

10
,

4

10
) , (

6

10
,

7

10
) and (

8

10
,

9

10
). The intervals 

retained are  [
0

10
= 0,

1

10
] , [

2

10
,

3

10
] , [

𝟒

𝟏𝟎
,

𝟔

𝟏𝟎
] , [

7

10
,

8

10
]  and [

9

10
 ,

10

10
= 1].  Now for these 

intervals continue the procedure indefinitely. The set obtained is known as Cantor Deca 

Set and is denoted by  𝐶
(

1

10
)
.   

 The Cantor Hexnary set pattern followed in Cantor Deca sets. 

First iteration:                                                                                                                                                                         

            The closed interval [0,1]  is subdivided into 10 equal sub- intervals                                                              

  [
0

10
= 0,

1

10
], [

1

10
,

2

10
] , [

2

10
,

3

10
] , [

3

10
,

4

10
] , [

4

10
,

5

10
] , [

5

10
,

6

10
] , [

7

10
,

8

10
] , [

9

10
,

10

10
]   

                 _____________________________________________________    

   
0

10
= 0 

1

10
     

2

10
      

3

10
        

4

10
       

5

10
      

6

10
         

7

10
          

8

10
        

9

10
      

10

10
= 1 

                            Figure 2.2.1: Cantor Deca sets 

The intervals removed are (
1

10
,

2

10
), (

3

10
,

4

10
) , (

6

10
,

7

10
) , (

8

10
,

9

10
)  .   

The remaining intervals are [
0

10
= 0,

1

10
] , [

2

10
,

3

10
] , [

𝟒

𝟏𝟎
,

𝟔

𝟏𝟎
] , [

7

10
,

8

10
] , [

9

10
 ,

10

10
= 1]      

 Therefore  𝐶
(

1

10
)

1 = [
0

10
= 0,

1

10
] ∪ [

2

10
,

3

10
] ∪ [

𝟒

𝟏𝟎
,

𝟔

𝟏𝟎
] ∪ [

7

10
,

8

10
] ∪ [

9

10
 ,

10

10
= 1]   (2.2.1)

  

Second iteration: 

 

Figure 2.2.2: Second iteration- Cantor Deca sets 
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The intervals removed are 

(
1

100
,

2

100
) , (

3

100
,

4

100
) , (

6

100
,

7

100
) , (

8

100
,

9

100
) , (

21

100
,

22

100
) , (

23

100
,

24

100
), 

 (
26

100
,

27

100
) , (

28

100
,

29

100
) , (

42

100
,

44

100
), (

46

100
,

48

100
) , (

52

100
,

54

100
) , (

56

100
,

58

100
) , (

71

100
,

72

100
), 

(
73

100
,

74

100
) , (

76

100
,

77

100
) , (

78

100
,

79

100
) , (

91

100
,

92

100
), (

93

100
,

94

100
) , (

96

100
,

97

100
) , (

98

100
,

99

100
)  .   

from each of the subintervals will result in modified cantor set. 

Therefore  

𝐶
(

1

10
)

2 = [
0

100
,

1

100
] ∪ [

2

100
,

3

100
] ∪ [

4

100
,

6

100
] ∪ [

7

100
,

8

100
] ∪ [

9

100
,

10

100
] ∪ [

20

100
,

21

100
] ∪ [

22

100
,

23

100
] ∪

                [
24

100
,

26

100
] ∪ [

27

100
,

28

100
] ∪ [

29

100
,

30

100
] ∪ [

40

100
,

42

100
] ∪ [

44

100
,

46

100
] ∪ [

48

100
,

52

100
] ∪ [

54

100
,

56

100
] ∪

                [
58

100
,

60

100
] ∪ [

70

100
,

71

100
] ∪ [

72

100
,

73

100
] ∪ [

74

100
,

76

100
] ∪ [

77

100
,

78

100
] ∪ [

79

100
,

80

100
] ∪ [

90

100
,

91

100
] ∪

                [
92

100
,

93

100
] ∪ [

94

100
,

96

100
] ∪ [

97

100
,

98

100
] ∪ [

99

100
,

100

100
]                                                    (2.2.2) 

  This procedure proceeds in every iteration to get the entire Cantor Deca set. 

 

2.3  Cantor Octanary Sets: 

Definition 2.3.1: Cantor Octanary Set  

 The closed interval [0, 1] is divided into eight equal parts. By removing the second 

part, last but one part and middlemost part, the open intervals  (
1

8
,

2

8
) , (

3

8
,

5

8
) and (

6

8
,

7

8
) are 

removed. The middlemost removable interval is of length (
2

8
). Other retained intervals are 

of length (
1

8
). Continue the process indefinitely and the set obtained is known as the Cantor 

Octanary Set and is denoted by 𝐶
(

1

8
)
.    
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Graphical Representation:                                                                                                                                     

 The Following Figure 2.3.1 shows the graphical representation of Cantor Octanary 

sets.               

First iteration:                                                                                                                                                            

 The closed interval [0,1]  is subdivided into 8 equal sub- intervals                                    

     [
0

8
= 0,

1

8
], [

1

8
,

2

8
] , [

2

8
,

3

8
] , [

3

8
,

4

8
] , [

4

8
,

5

8
] , [

5

8
,

6

8
] , [

6

8
,

7

8
] , [

7

8
,

8

8
= 1]   

    ____________________________________________________   

 
0

8
= 0    

1

8
               

2

8
                 

3

8
                 

4

8
                 

5

8
                  

6

8
                  

7

8
           

8

8
 = 1                                                       

              Figure 2.3.1: Cantor Octanary sets 

 The intervals removed are (
1

8
,

2

8
) , (

3

8
,

5

8
) , (

6

8
,

7

8
).    

 The remaining intervals are [
0

8
= 0,

1

8
] , [

2

8
,

3

8
] , [

5

8
,

6

8
] and [

7

8
,

8

8
= 1] 

     Therefore 

   𝐶
(

1

8
)

1 =  [
0

8
= 0,

1

8
] ∪ [

2

8
,

3

8
] ∪ [

5

8
,

6

8
] ∪ [

7

8
,

8

8
= 1]                                          (2.3.1)   

Second iteration:   

                 _____________________________________________________    

               
0

64
              

1

64
               

2

64
               

3

64
               

4

64
                  

5

64
                 

6

64
                

7

64
              

8

64
   

               _____________________________________________________ 

               
16

64
          

17

64
                 

18

64
                

19

64
               

20

64
                  

21

64
                 

22

64
             

23

64
              

24

64
                                                                     

                  ____________________________________________________  

                
40

64
            

41

64
                

42

64
                

43

64
              

44

64
                  

45

64
               

46

64
               

47

64
              

48

64
     

                  _____________________________________________________     

                
56

64
            

57

64
               

58

64
                

59

64
               

60

64
                   

61

64
               

62

64
             

63

64
                

64

64
     

            Figure 2.3.2: Second iteration – Cantor Octanary sets 
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The intervals removed are (
1

64
,

2

64
) , (

3

64
,

5

64
) , (

6

64
,

7

64
) , (

17

64
,

18

64
) , (

19

64
,

21

64
) , (

22

64
,

23

64
) , (

41

64
,

42

64
),   

(
46

64
,

47

64
) , (

57

64
,

58

64
) , (

59

64
,

61

64
) , (

62

64
,

63

64
)  

 For each of the remaining subintervals apply the same above procedure and the 

resultant set is will result in Cantor Octanary set. 

  Therefore 

𝐶
(

1

8
)

2 = [
0

64
,

1

64
]  ∪ [

2

64
,

3

64
] ∪ [

5

64
,

6

64
] ∪ [

7

64
,

8

64
] ∪ [

16

64
,

17

64
] ∪ [

18

64
,

19

64
] ∪ [

21

64
,

22

64
] ∪ [

23

64
,

24

64
] ∪

[
40

64
,

41

64
] ∪  [

42

64
,

43

64
]  ∪ [

45

64
,

46

64
] ∪ [

47

64
,

48

64
]                                    (2.3.2) 

  This procedure proceeds in every iteration to get the entire Cantor Octanary set 

Theorem 2.3.1:        

 In Cantor Octanary set each retained interval is represented as [
𝑘

8𝑛 ,
𝑘+1

8𝑛 ], 

𝑛 =  1,2,3, …  where 𝑘 =  8𝑛−1𝛼 + 8𝑛−2𝛾 + ⋯ ⋯ ⋯ ⋯ ⋯ + 8𝛾 + 𝛾  ; 𝑛 =  1, 2, 3, ….; 

𝛼, 𝛾 = 0,2,5,7                                                                                                                                                           

Proof: 

 The proof of the theorem follows by induction 

 The closed interval [0,1] is divided into eight equal parts.   

 The open intervals  (
1

8
,

2

8
) , (

3

8
,

5

8
) and (

6

8
,

7

8
) are removed.  

 The remaining parts [
0

8
= 0,

1

8
] , [

2

8
,

3

8
] , [

5

8
,

6

8
] and [

7

8
,

8

8
= 1] are again subdivided as 

follows for the 2nd iteration. The part [
0

8
= 0,

1

8
] is subdivided into eight equal parts thereby 

giving eight parts [
0

64
= 0,

1

64
], [

1

64
,

2

64
],[

2

64
,

3

64
] [

3

64
,

4

64
] , [

4

64
,

5

64
] , [

5

64
,

6

64
] , [

6

64
,

7

64
] [

7

64
,

8

64
] . 
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 The open intervals (
1

64
,

2

64
) , (

3

64
,

5

64
) and(

6

64
,

7

64
) are removed.   

 Now the part [
2

8
,

3

8
] is subdivided into eight equal parts thereby giving eight parts 

[
𝟏𝟔

𝟔𝟒
,

𝟏𝟕

𝟔𝟒
] , [

17

64
,

18

64
] , [

𝟏𝟖

𝟔𝟒
,

𝟏𝟗

𝟔𝟒
] , [

19

64
,

20

64
] , [

𝟐𝟎

𝟔𝟒
,

𝟐𝟏

𝟔𝟒
] , [

21

64
,

22

64
], [

22

64
,

23

64
] , [

𝟐𝟑

𝟔𝟒
,

𝟐𝟒

𝟔𝟒
]  and  the open intervals 

(
17

64
,

18

64
) , (

19

64
,

21

64
) and (

22

64
,

23

64
) are removed.                         

  Next [
5

8
,

6

8
] is divided into eight equal parts namely 

[
𝟒𝟎

𝟔𝟒
,

𝟒𝟏

𝟔𝟒
] , [

41

64
,

42

64
] , [

𝟒𝟐

𝟔𝟒
,

𝟒𝟑

𝟔𝟒
] , [

43

64
,

44

64
] , [

44

64
,

45

64
] , [

𝟒𝟓

𝟔𝟒
,

𝟒𝟔

𝟔𝟒
] , [

46

64
,

47

64
], [

𝟒𝟕

𝟔𝟒
,

𝟒𝟖

𝟔𝟒
] and the open intervals 

(
41

64
,

42

64
) , (

43

64
,

45

64
) , (

46

64
,

47

64
) are removed.   

 Last part [
7

8
,

8

8
= 1] is again subdivided into eight equal parts 

namely [
56

64
,

57

64
] , [

57

64
,

58

64
], [

58

64
,

59

64
] , [

59

64
,

60

64
] , [

60

64
,

61

64
] , [

61

64
,

62

64
], [

62

64
,

63

64
] , [

63

64
,

64

64
], the open 

intervals (
57

64
,

58

64
) , (

59

64
,

61

64
) and(

62

64
,

63

64
) are removed.  

 Here it is noted that in the successive iterations the lengths of each of the retained 

intervals follow a Geometric progression  
1

81
,

1

82
,

1

83
,

1

84
, ⋯ ⋯ .  

 When 𝑛 = 1;              𝑘 = 𝛼 + 𝛾           

 Therefore the result is true for 𝑛 = 1 

 When 𝑛 = 2;              𝑘 = 8𝛼 + 𝛾           

 Therefore the result is true for 𝑛 = 2 

 Assume the result for 𝑛 = 𝑝 ; 

           𝑘 =  8𝑝−1𝛼 + 8𝑝−2𝛾 + ⋯ ⋯ ⋯ ⋯ ⋯ + 8𝛾 + 𝛾     

 We prove the result for 𝑛 = 𝑝 + 1  
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The retained intervals are of the form [
𝑘

8𝑛 ,
𝑘+1

8𝑛 ]  where 𝑘 is given by                                 

8𝑝−1𝛼 + 8𝑝−2𝛾 + ⋯ ⋯ ⋯ ⋯ ⋯ + 8𝛾 + 𝛾  ; 𝛼, 𝛾 = 0,2,5,7   

 After subdivision  𝑘 is multiplied  by 8 and 𝛾 = 0,2,5,7  is added and the resulting 

intervals are retained.  

 Here when  𝑛 = 𝑝 + 1   

 if retained intervals of the form    

                            [
𝑙

8𝑛
,

𝑙+1

8𝑛
],                                                                                                                                          

where  𝑙 = 8𝑘 + 𝛾 = 8( 8𝑝−1𝛼 + 8𝑝−2𝛾 + ⋯ ⋯ ⋯ ⋯ ⋯ + 8𝛾 + 𝛾) + 𝛾 

           =  8𝑝𝛼 + 8𝑝−1𝛾 + ⋯ ⋯ ⋯ ⋯ ⋯ + 82𝛾 + 8𝛾 + 𝛾  

 Hence the theorem is proved by induction.     

      The retained part and its general procedure are shown in the following tree diagrams 

Figure 2.3.3 and Figure 2.3.4. 
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Figure 2.3.3:  Retained part of Cantor Octanary sets. 

                                                                              [
𝟎

𝟖
,

𝟏

𝟖
]  

                  

 

                   [
0

64
,

1

64
]                   [

2

64
,

3

64
]                 [

5

64
,

6

64
]                  [

7

64
,

8

64
] 

 

    [
0

512
,

1

512
] [

16

512
,

17

512
] [

40

512
,

41

512
]            [

56

512
,

57

512
] 

    [
2

512
,

3

512
]           [

18

512
,

19

512
]           [

42

512
,

43

512
]             [

58

512
,

59

512
] 

   [
5

512
,

6

512
]  [

21

512
,

22

512
]           [

45

512
,

46

512
]             [

61

512
,

62

512
]  

   [
7

512
,

8

512
]                       [

23

512
,

24

512
]              [

47

512
,

48

512
]             [

63

512
,

648

512
] 
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               Figure 2.3.4: General form of Retained part of Cantor Octanary sets. 

                                                                            [
𝒌

𝟖𝒏
,

𝒌+𝟏

𝟖𝒏
]  

                  

 

         [
𝑘

8𝑛 ,
𝑘+1

8𝑛 ]                    [
𝑘+2

8𝑛 ,
𝑘+3

8𝑛 ]                 [
𝑘+5

8𝑛 ,
𝑘+6

8𝑛 ]                             [
𝑘+7

8𝑛 ,
𝑘+8

8𝑛 ] 

  [
𝑘

8𝑛 ,
𝑘+1

8𝑛 ]                 [
8𝑘+16

8𝑛 ,
8𝑘+17

8𝑛 ]  [
8𝑘+40

8𝑛 ,
8𝑘+41

8𝑛 ]           [
8𝑘+56

8𝑛 ,
8𝑘+57

8𝑛 ] 

  [
𝑘+2

8𝑛 ,
𝑘+3

8𝑛 ]               [
8𝑘+18

8𝑛 ,
8𝑘+19

8𝑛 ]      [
8𝑘+42

8𝑛 ,
8𝑘+43

8𝑛 ]                  [
8𝑘+58

8𝑛 ,
8𝑘+59

8𝑛 ] 

  [
𝑘+5

8𝑛 ,
𝑘+6

8𝑛 ]  [
8𝑘+21

8𝑛 ,
8𝑘+22

8𝑛 ]      [
8𝑘+45

8𝑛 ,
8𝑘+46

8𝑛 ]                  [
8𝑘+61

8𝑛 ,
8𝑘+62

8𝑛 ]  

  [
𝑘+7

8𝑛 ,
𝑘+8

8𝑛 ]             [
8𝑘+23

8𝑛 ,
8𝑘+24

8𝑛 ]            [
8𝑘+47

8𝑛 ,
8𝑘+48

8𝑛 ]                  [
8𝑘+63

8𝑛 ,
8𝑘+64

8𝑛 ] 
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2.4  Cantor Dodeca Set: 

Definition 2.4.1: Cantor Dodeca Set 

 The closed interval [0, 1] is divided into twelve equal parts. By removing the second 

part, fourth part, ninth part, last but one part and middlemost part, the open intervals 

(
1

12
,

2

12
), (

3

12
,

4

12
) , (

5

12
,

7

12
) , (

8

12
,

9

12
) and(

10

12
,

11

12
) are removed. The middlemost 

removable interval is of length (
2

12
). Other retained intervals are of length (

1

12
). Continue 

the process indefinitely and the set obtained is known as the Cantor Dodeca Set and is 

denoted by 𝐶
(

1

12
)
.    

 The Cantor Octanary set pattern is followed by Cantor Dodeca sets. 

First iteration:  

       

         
0

12
= 0     

1

12
      

2

12
     

3

12
      

4

12
       

5

12
     

6

12
     

7

12
      

8

12
      

9

12
      

10

12
         

11

12
       

12

12
= 1   

Figure 2.4.1: Cantor Dodeca sets 

The intervals removed are (
1

12
,

2

12
), (

3

12
,

4

12
) , (

5

12
,

7

12
) , (

8

12
,

9

12
) , (

10

12
,

11

12
)  .   

The remaining intervals are [
0

12
= 0,

1

12
] , [

2

12
,

3

12
] , [

4

12
,

5

12
] , [

7

12
,

8

12
] , [

9

12
 ,

10

12
] , [

11

12
 ,

12

12
= 1]      

Therefore  𝐶
(

1

12
)

1 = [
0

12
= 0,

1

12
] ∪ [

2

12
,

3

12
] ∪ [

4

12
,

5

12
] ∪ [

7

12
,

8

12
] ∪ [

9

12
 ,

10

12
] ∪ [

11

12
 ,

12

12
= 1]              

           (2.4.1) 

Second  iteration:  

  

  

Figure 2.4.2: Second iteration -  Cantor Dodeca sets 
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The intervals removed are (
1

144
,

2

144
), (

3

144
,

4

144
) , (

5

144
,

7

144
) , (

8

144
,

9

144
) , (

10

144
,

11

144
) , (

25

144
,

26

144
), 

(
27

144
,

28

144
) , (

29

144
,

31

144
) , (

32

144
,

33

144
) , (

34

144
,

35

144
) , (

49

144
,

50

144
) , (

51

144
,

52

144
) ,

(
53

144
,

55

144
) , (

56

144
,

57

144
) , (

58

144
,

59

144
) , (

85

144
,

86

144
) , (

87

144
,

88

144
) , (

89

144
,

91

144
),  

(
92

144
,

93

144
) , (

94

144
,

95

144
) , (

109

144
,

110

144
) , (

111

144
,

112

144
) , (

113

144
,

115

144
) , (

116

144
,

117

144
),  

(
118

144
,

119

144
) , (

133

144
,

134

144
) , (

135

144
,

136

144
) , (

137

144
,

139

144
) , (

140

144
,

141

144
) , (

142

144
,

143

144
)  

 

 Therefore  𝐶
(

1

12
)

2 = [
0

144
= 0,

1

144
] ∪ [

2

144
,

3

144
] ∪ [

4

144
,

5

144
] ∪ [

7

144
,

8

144
] ∪ [

9

144
 ,

10

144
] ∪ [

11

144
 ,

12

144
] ∪

                                       [
24

144
,

25

144
] ∪ [

26

144
,

27

144
] ∪ [

28

144
,

29

144
] ∪ [

31

144
,

32

144
] ∪ [

33

144
 ,

34

144
] ∪ [

35

144
 ,

36

144
] ∪

                                       [
48

144
,

49

144
] ∪ [

50

144
,

51

144
] ∪ [

52

144
,

53

144
] ∪ [

55

144
,

56

144
] ∪ [

57

144
 ,

58

144
] ∪ [

59

144
 ,

60

144
] ∪

                                       [
84

144
,

85

144
] ∪ [

86

144
,

87

144
] ∪ [

88

144
,

89

144
] ∪ [

91

144
,

92

144
] ∪ [

93

144
 ,

94

144
] ∪ [

95

144
 ,

96

144
] ∪

                                       [
108

144
,

109

144
] ∪ [

110

144
,

111

144
] ∪ [

112

144
,

113

144
] ∪ [

115

144
,

116

144
] ∪ [

117

144
 ,

118

144
] ∪ [

119

144
 ,

120

144
] ∪

                                       [
132

144
,

133

144
] ∪ [

134

144
,

135

144
] ∪ [

136

144
,

137

144
] ∪ [

139

144
,

140

144
] ∪ [

141

144
 ,

142

144
] ∪ [

143

144
 ,

144

144
]        

           (2.4.2) 

 This procedure proceeds in every iteration to get the entire Cantor Dodeca set. 

Remark: 

         Another way of forming Cantor modified set may be given as follows for Cantor 

Octanary Set. 

 

        
0

8
= 0               

1

8
                 

2

8
                

3

8
               

4

8
                 

5

8
                 

6

8
                

7

8
         

8

8
 = 1                                                       

Figure 2.4.2: Another way of Cantor Octanary sets.  
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 The closed interval [0, 1] is divided into eight equal parts. Here in this pattern the 

intervals of lengths 
2

8
 are removed and retained intervals are of two types. In the successive 

iterations the same pattern is followed. 

 It is to be noted that in one pattern in the middlemost point 
𝟏

𝟐
 is retained and in 

the other 
𝟏

𝟐
 is removed. 
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CHAPTER –III 

 A SUBSEQUENCE OF FAREY SEQUENCE –

TOPOLOGICAL SPACE 
 

 In this chapter a subsequence of Farey sequence, 𝐹𝑁̃, Farey 𝑁 – subsequence has 

been developed as a topological space and a Hausdorff space by appropriately defining basis 

and open sets. Also the 𝑇1axiom has been discussed with an illustration.  

 Having identified the terms of 𝐹𝑁, 𝐹𝑁+1 is written by writing the mediant of all the 

successive terms of 𝐹𝑁.With slight modification, sequence whose terms are Farey sequences 

has been established as various spaces namely topological space, Hausdorff space and 𝑇1 

space. A Hausdorff space is basically a topological space. To form a topology a nonempty 

set with basis elements should be defined clearly. 

 This chapter provides two sections. In section 3.1 Topological Space and section 3.2 

Hausdorff space has been analyzed. Here each sequence is treated as an element. 

3.1  Topological Space:  

Definition3.1.1: Farey sequence [1,49] 

 A Sequence of rational numbers 
𝑝

𝑞
 with (𝑝, 𝑞) = 1 in [0, 1] and 𝑞 ≤ 𝑛 is called a 

Farey Sequence of order 𝑛, denoted by 𝐹𝑛. 

Example 3.1.1: 

                     𝐹1 =  {
0

1
 ,

1

1
} 

                     𝐹2 =  {
0

1
 ,

1

2

1

1
} 

                     𝐹3 =  {
0

1
 ,

1

3
,

1

2
 ,

2

3
,

1

1
} 
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Definition 3.1.2: Farey 𝑵 – subsequence [1,2] 

 In a Farey sequence 𝐹𝑁 the elements with denominators precisely 𝑁 are classified as 

Farey   𝑁 – subsequence and denoted by  〈𝐹𝑁
′ 〉 . 

  〈𝐹𝑁
′ 〉 =  {

𝑢𝑖

𝑁
/ 0 ≤ 𝑢𝑖 ≤ 𝑁, 0 ≤ 𝑖 ≤ 𝑁} 

Example 3.1.2: 

 The Farey 𝑁 – Sequence of order 4 is 

                       〈𝐹4
′〉 =  {

0

1
=

0

4
<

1

4
<

3

4
<

4

4
=

1

1
} 

Definition 3.1.3: Non - Reducible Farey Sequence [1] 

 A subsequence of the Farey sequence 𝐹𝑁 whose denominators not exceeding 𝑁, 

listed in order of their size, is taken as Non – Reducible Farey Sequence.  It is denoted by 𝐹𝑁̃.  

Example 3.1.3: 

 The quaternary Non - Reducible Farey Sequence of order 4 is 

𝐹̃4 =  {
0

1
=

0

4
,

1

4
,

1

3
,

1

2
=

2

4
,

2

3
 ,

3

4
 ,

4

4
=

1

1
}  

Definition 3.1.4: Non - Reducible Farey 𝑵 – Subsequence [1, 3] 

 For 𝐹𝑁, the element of the sequence with denominator 𝑁 is taken as Non –Reducible 

Farey 𝑁 - subsequence. It is denoted by 𝐹̃𝑁 . 

Example 3.1.4: 

 The Non- Reducible Farey 𝑁 - Subsequence of order 4 is 

𝐹̃4 =  {
0

4
= 0,

1

4
,
2

4
,
3

4
 ,

4

4
=

1

1
} 

  



41 

Definition 3.1.5: Topological Space [24] 

 A topology on a set 𝑋 is a collection 𝜏 of subsets of 𝑋 having the following 

properties. 

(i)  𝜑 and 𝑋 belong to 𝜏. 

(ii)  The union of the elements of 𝜏 is included in 𝜏. 

(iii) The intersection of the elements is at 𝜏. 

A set 𝑋 with the given topology 𝜏 is called a topological space. 

Definition 3.1.6: Basis [24]  

 If 𝑋 is a set, a basis for a topology on 𝑋is a collection Ɓ of subsets of 𝑋 called basis 

elements such that  

(i) For each 𝑥 ∈ 𝑋, there ia at least one basis element 𝐵 containing 𝑥. 

(ii) If 𝑥 belongs to the intersection of two basis element 𝐵1 and 𝐵2, then there is 

a basis element 𝐵3 containing 𝑥 such that 𝐵3 ⊂ 𝐵1 ∩ 𝐵2. 

Example 3.1.5: 

 Let Ɓ be the collection of all circular regions (interiors of circles) in the plane. Then 

Ɓ satisfies both conditions for a basis. 

Theorem 3.1.1:  

 For any integer 𝑁 ≥ 3 a subsequence of Farey sequence, Farey 𝑁 – subsequence 

denoted by 𝐹̃𝑁𝑘 is a topological space. 

Proof: 

 To define a topology on a set first a basis and hence open sets should be described 

clearly. Here the basis is defined as follows. 
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Consider  𝑋 =  {
𝑖

𝑁𝑘  /   
𝑖=0,1,2,3,….
𝑘=1,2,3,4…..

𝑁=3,4,5,……
} 

Take 𝐵 =  {𝐹̃𝑁𝑘 , 𝑘 = 1,2,3, … } 

 Here every element of 𝐵 is a sequence of real numbers. 

Claim: 

 𝐵 constitute a basis for 𝑋  

Take 𝐹 =  ⋂ 𝐹̃𝑁𝑘  , 𝑘 = 1,2,3, … ∞ 

Case (i): 

 If 𝑥 ∈ 𝐹 then choose basis 𝐵 element as any one of 𝐹̃𝑁𝑘 , 𝑘 ≥ 2 

Case (ii): 

 Suppose that 𝑥 is not in 𝐹. 𝑥 may be any one of the following forms.  

𝑥 =  
𝑖

𝑁𝑘+1  ; 0≤𝑖≤𝑁𝑘−1
𝑁𝑘+1≤𝑖≤𝑗∗𝑁𝑘−1  

/  𝑗 = 1,2,3, … 𝑁  𝑓𝑜𝑟 𝑘 = 1,2,3, … ∞  

Choose basis elements as any one of 𝐹̃𝑁𝑘 , 𝑘 = 2,3, … ∞ 

 Then clearly 𝐵𝑖 ∩ 𝐵𝑗contains a basis element in which 𝑥 is a member. 

 The open sets 𝑈 may be taken as a sequence of union of members of 𝐵.  

 Then for every element 𝑥 ∈ 𝐹  there exists a member in 𝐵 and a set 𝑈 such that 

𝑥 ∈ 𝐵 ⊆ 𝑈 
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Illustration 3.1.1 :  

 Consider 𝑋 =  {
𝑖

𝑁𝑘  ,   
𝑖=0,1,2,3,….
𝑘=1,2,3,4…..

𝑁=3,4,5,……
} 

𝐵 =  {𝐹̃𝑁𝑘 , 𝑘 = 1,2,3, … } 

Take 𝑁 = 4 ; 𝑘 = 1,2,3, …  

 𝐵 = {𝐹̃41 , 𝐹̃42 , 𝐹̃43 , … . } 

Consider higher ordered Farey sequences 

𝐹̃41 =  {
0

4
,

1

4
,

2

4
,

3

4
 ,

4

4
= 1}  

𝐹̃42 =  {
0

16
,

1

16
,

2

16
,

3

16
 ,

4

16
,

5

16
,

6

16
,

7

16
,

8

16
,

9

16
,

10

16
,

11

16
,

12

16
,

13

16
,

14

16
,

15

16
,

16

16
= 1}   

𝐹̃43 =  {
0

64
,

1

64
,

2

64
,

3

64
 ,

4

64
,

5

64
,

6

64
,

7

64
,

8

64
,

9

64
,

10

64
, … … … … … … … … . ,

64

64
= 1}  

          ⋮ 

                       ⋮ 

𝑈 = 𝐹̃42 ∪ 𝐹̃43  

              Take the element 𝑥 =
3

42
  Clearly 𝑥 ∈ 𝐹̃42 ⊆ 𝑈 

Let 𝜏 =  {𝐹̃41 , 𝐹̃42 , 𝐹̃43 , … . } 

Consider  𝜏1 = 𝐹̃41 

                             =  {0,
1

4
,

2

4
,

3

4
, 1} 

and  𝜏2 =  𝐹̃42 

                            = {0,
1

16
,

2

16
,

3

16
, … …

15

16
, 1} 
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Then 

                         𝜏1 ∪ 𝜏2 = 𝐹̃41 ∪ 𝐹̃42 

                            = {0,
1

4
,

2

4
,

3

4
, 1} ∪ {0,

1

16
,

2

16
,

3

16
, … …

15

16
, 1} 

                           = {0,
1

16
,

2

16
,

3

16
, … …

15

16
, 1} ∈ 𝜏 

Therefore the union of the elements of subsets of 𝜏 is in 𝜏. 

Consider 𝜏1 = 𝐹̃43  

               = {0,
1

64
,

2

64
,

3

64
, … …

63

64
, 1} 

            and 𝜏2  =  𝐹̃44 

               = {0,
1

256
,

2

256
,

3

256
, … …

255

256
, 1}  

Then 

             𝜏1 ∩ 𝜏2 = 𝐹̃43 ∩ 𝐹̃44 

                          = {0,
1

64
,

2

64
,

3

64
, … …

63

64
, 1} ∩ {0,

1

256
,

2

256
,

3

256
, … …

255

256
, 1} 

              = {0,
1

64
,

2

64
,

3

64
, … …

63

64
, 1} ∈ 𝜏  

                 Therefore the intersection of the elements of any finite sub-collection of 𝜏 is in 𝜏. 

It is well known that in a Hausdorff space every pair of elements is separated by open sets. 

The following is the theorem of Farey 𝑁 – subsequence as Hausdorff space.   

3.2  Hausdorff space: 

Definition 3.2.1: Hausdorff space [24] 

 A topological space 𝑆 =  [0, 1] is said to be a Hausdorff space if for each pair of 

elements  𝑠1 and 𝑠2  in 𝑆 their exist neighbours 𝑊1and 𝑊2 respectively of points   𝑠1 and 𝑠2 

that do not intersect. 
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Theorem 3.2.1:  

 For a set consisting of rational numbers of the form 
𝑖

𝑁𝑘 the basis defined in the 

above theorem forms a Hausdorff space. 

Proof: 

 A Hausdroff space is in fact a topological space. To define a topology a basis 

should be described in the basis for the topology defined as above. Here an open set is 

taken in the form 

                         𝑊̃𝑁𝑘 = 𝑋 −  ⋃ 𝐹̃𝑁𝑗
𝑘−1
𝑗=1  where 𝑘 = 1,2,3, … ; 𝑁 = 3,4,5, … …   

 Consider the points 𝑥1 =
𝑖

𝑁𝑟 and 𝑥2 =
𝑖

𝑁𝑡 ; 𝑟, 𝑡 = 1,2,3, … …  .Clearly 
𝑖

𝑁𝑟 ∈ 𝐹̃𝑁𝑟and 

𝑖

𝑁𝑡 ∈ 𝐹̃𝑁𝑡  Then the sets 𝑊̃𝑁𝑟 𝑊̃𝑁𝑡 constitute disjoint  disjoint neighbourhoods of the 

points 𝑥1 and  𝑥2 respectively. Hence  𝑋 is a Hausdorff space.     

Illustration 3.2.1: 

           𝑊̃𝑁𝑘 = 𝑋 − ⋃ 𝐹̃𝑁𝑗
𝑘−1
𝑗=1  where 𝑘 = 1,2,3, … ; 𝑁 = 3,4,5, … …   

           Take 𝑁 = 4, 𝑘 = 1,2,3, …  

            Consider 𝑆 = {𝑊̃41 , 𝑊̃42 , 𝑊̃43 , … } 

           Let   𝑠1 =
61

43  and 𝑠2 =
251

44   be two distinct points of 𝑆. 

 Then there exist neighbourhoods 𝐷1 = 𝑊̃43  and 𝐷2 = 𝑊̃44  of 𝑠1 and 𝑠2 that are also 

disjoint. 

 Therefore the topological space S is  a Hausdorff space 
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Definition 3.2.2: 𝑻𝟏 axiom [24] 

 A topological space (𝑋, 𝑇) is said to be  𝑇1 given two points 𝑝1 , 𝑝2 of 𝑋, there exist 

open sets, 𝑂1and 𝑂2 such that  𝑝1 is an element of 𝑂1 and 𝑝2 is not an element of 𝑂1 and 𝑝2 

is an element of 𝑂2 and 𝑝1 is not an element of 𝑂2. 

Corollary 3.2.1: 

          On the same construction above the topological space 𝑋 also satisfies 𝑇1 axioms. 

Illustration 3.2.2: 

𝑊̃𝑁𝑘 = 𝑋 −  ⋃ 𝐹̃𝑁𝑗
𝑘−1
𝑗=1  where 𝑘 = 1,2,3, … ; 𝑁 = 3,4,5, … …    

            Take 𝑁 = 4, 𝑘 = 1,2,3, …  

       Consider 𝑇 =  𝑊̃41 , 𝑊̃42 , 𝑊̃43 , … 

Given two points 𝑞1 =  
15

42  and 𝑞2 =
517

45  of  𝑇 

 There exist an open set 𝐼1 = 𝑊̃42 and 𝐼2 = 𝑊̃45  of   𝑇 such that 𝑞1 ∈ 𝑊̃42  and   

𝑞1 ∉ 𝑊̃45  

  Again 𝑞2 ∈ 𝑊̃45  and 𝑞2 ∉ 𝑊̃42. 

Theorem 3.2.2: 

 𝐹 = ⋃ 𝐹𝑁 , 𝐹𝑁 is a Farey sequence  bounded by 0 and 1. The subsequence 𝑉 =

⋃ 𝐹̃𝑁𝑘  of 𝐹 has convergent subsequence. 

Proof: 

 Consider the Farey sequence 𝐹𝑁, where 𝑁 =  1, 2, 3, . ..for all positive integers 

𝑁, 𝐹𝑁 is a bounded sequence and is bounded by 0 and 1.The set 𝐹 is defined above is also 

bounded by 0 and 1. Now the subsequence of 𝑉 namely {
𝑘

𝑁𝑘  /𝑘 = 1,2,3, … } it is a 
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convergence sequence and converges to 0. This is because 
1

𝑁𝑘
→ 0 as 𝑘 → ∞ and for all 

positive integers 𝑁. 

        The Farey 𝑁 subsequence of order 4 can be depicted in the graph as follows : 

 

Figure 3.2.1: Farey N subsequence of order 4 

 From the above graph, it is clear that the curve resembles inverse exponential curve. 
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CHAPTER – IV 

𝝈  ALGEBRA AND BOREL SET OF SUBSEQUENCE OF 

GENERALIZED FAREY SEQUENCE 
 

 In this chapter, Construction of measurable sets from Non reduced Farey                                       

 𝑁 – subsequence is discussed in detail. For the construction of measurable sets the Non 

reduced Farey 𝑁 - subsequence has been considered as union of intervals, half- open, closed 

(or) open sets as the case may be with a sequential points as end points.  Also we have 

analysed a few points on  𝜎 algebra and Borel Set of Subsequence of Generalized Farey 

Sequence. We derive theorem on the Lebesgue measure of the Generalized Non reduced 

Farey 𝑁 - subsequence . 

Definition 4.1: 𝝈 – algebra [34] 

Let 𝑋 be a set and 𝒜 ⊆ 𝑃(𝑋) is called a 𝜎 – algebra if 

(i) 𝜑, 𝑋 ∈  𝒜 

(ii) 𝐴 ⊂ 𝒜 ⇒ 𝐴∁ = 𝑋/𝐴 ∈ 𝒜 

(iii) 𝐴𝑖 ∈ 𝒜 ,  𝑖 ∈ 𝑁 ⇒  ⋃ 𝐴𝑖 ∈ 𝒜∞
𝑖=1  

Example 4.1: 

 If 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑}, one possible 𝜎 – algebra on 𝑋 is 𝛴 =

{∅, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐, 𝑑}}, where ∅ is the empty set. In general, a finite algebra is always 

a  𝜎 – algebra. 
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Definition 4.2: Borel Set [34] 

 A Borel set is any set in topological space that can be formed from open sets (or) 

equivalently from closed sets through the operations of countable union, countable 

intersection and relative complement.  

Definition 4.3: Lebesgue Measure [34] 

 A set 𝐴 ⊂ 𝐸 is Lebesgue measurable or measurable if 𝜆∗(𝐴) = 𝜆∗(𝐴). The measure 

of 𝐴 is denoted by 𝜆(𝐴) and is given by 𝜆(𝐴) = 𝜆∗(𝐴) = 𝜆∗(𝐴) 

Theorem 4.1: 

 The Lebesgue measure of the Generalized Non reduced Farey 𝑁 – subsequence of 

order 𝑚 is zero. 

Proof: 

 Construction of measurable sets from Non reduced Farey 𝑁 - subsequence. 

 By definition, a Non reduced Farey 𝑁 - subsequence is given by 

 𝐹̃(𝑚)1 = {
0

(𝑚)1  ,
1

(𝑚)1 ,
2

(𝑚)1 , ⋯ ⋯ ,
(𝑚)1−3

(𝑚)1 ,
(𝑚)1−2

(𝑚)1 ,
(𝑚)1−1

(𝑚)1 ,
(𝑚)1

(𝑚)1} ; where 1 ≤ 𝑚 ≤ 𝑁                                              

From this sequence construct sets as follows:  

 𝐶 𝐹̃(𝑚)1 = {
0

(𝑚)1  ,
1

(𝑚)1 ,
2

(𝑚)1 , ⋯ ⋯ ,
(𝑚)1−3

(𝑚)1 ,
(𝑚)1−2

(𝑚)1 ,
(𝑚)1−1

(𝑚)1 ,
(𝑚)1

(𝑚)1} ; where 1 ≤ 𝑚 ≤ 𝑁  

                              = [
0

(𝑚)1  ,
1

(𝑚)1] ∪ [
1

(𝑚)1 ,
2

(𝑚)1] ∪ ⋯ ⋯ ∪ [
(𝑚)1−3

(𝑚)1 ,
(𝑚)1−2

(𝑚)1 ] ∪ [
(𝑚)1−2

(𝑚)1 ,
(𝑚)1−1

(𝑚)1 ] ∪ [
(𝑚)1−1

(𝑚)1 ,
(𝑚)1

(𝑚)1]      

                = 𝐷(𝑚)1 1  ∪ 𝐷(𝑚)1 2 ∪ 𝐷(𝑚)1 3 ∪ ⋯ ⋯ ∪ 𝐷(𝑚)1 𝑟 

 In the next iteration the sequence is given by 
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             𝐶𝐹̃(𝑚)2 = {
0

(𝑚)2  ,
1

(𝑚)2 ,
2

(𝑚)2 , ⋯ ⋯ ,
(𝑚)2−3

(𝑚)2 ,
(𝑚)2−2

(𝑚)2 ,
(𝑚)2−1

(𝑚)2 ,
(𝑚)2

(𝑚)2} ; where 1 ≤ 𝑚 ≤ 𝑁 

Again writing in a set format we have 

𝐶𝐹̃(𝑚)2 = [
0

(𝑚)2
 ,

1

(𝑚)2
] ∪ [

1

(𝑚)2
,

2

(𝑚)2
] ∪ ⋯ ⋯ ∪ [

(𝑚)2 − 3

(𝑚)2
,
(𝑚)2 − 2

(𝑚)2
] ∪ [

(𝑚)2 − 2

(𝑚)2
,
(𝑚)2 − 1

(𝑚)2
] ∪ [

(𝑚)2 − 1

(𝑚)2
,
(𝑚)2

(𝑚)2
] 

 = 𝐷(𝑚)2 1  ∪ 𝐷(𝑚)2 2 ∪ 𝐷(𝑚)2 3 ∪ ⋯ ⋯ ∪ 𝐷(𝑚)2 𝑟 

  the nth  term is  

 𝐶𝐹̃(𝑚)𝑛 = {
0

(𝑚)𝑛
 ,

1

(𝑚)𝑛
,

2

(𝑚)𝑛
, ⋯ ⋯ ,

(𝑚)𝑛−3

(𝑚)𝑛
,

(𝑚)𝑛−2

(𝑚)𝑛
,

(𝑚)𝑛−1

(𝑚)𝑛
,

(𝑚)𝑛

(𝑚)𝑛
} ; where 1 ≤ 𝑚 ≤ 𝑁 

    = [
0

(𝑚)𝑛
 ,

1

(𝑚)𝑛
] ∪ [

1

(𝑚)𝑛
,

2

(𝑚)𝑛
] ∪ ⋯ ⋯ ∪ [

(𝑚)𝑛 − 3

(𝑚)𝑛
,
(𝑚)𝑛 − 2

(𝑚)𝑛
] ∪ [

(𝑚)𝑛 − 2

(𝑚)𝑛
,
(𝑚)𝑛 − 1

(𝑚)𝑛
] ∪ [

(𝑚)𝑛 − 1

(𝑚)𝑛
,
(𝑚)𝑛

(𝑚)𝑛
] 

    = 𝐷(𝑚)𝑛1  ∪ 𝐷(𝑚)𝑛2 ∪ 𝐷(𝑚)𝑛3 ∪ ⋯ ⋯ ∪ 𝐷(𝑚)𝑛𝑟 

Let 

𝐸(𝑚)𝑛1 = Set of all possible union of two elements. 

𝐸(𝑚)𝑛2 = Set of all possible union of three elements. 

And so on , the rth  term is 

𝐸(𝑚)𝑛 𝑟 = Set of all possible union of (𝑟 + 1) elements. 

         Take 𝑋 =  {𝐶 𝐹̃(𝑚)1 , 𝐶𝐹̃(𝑚)2 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝐶𝐹̃(𝑚)𝑛 } 

             𝑃(𝑋)  =  {𝐷(𝑚)1 1 , 𝐷(𝑚)1 2, 𝐷(𝑚)1 3, ⋯ ⋯ , 𝐷(𝑚)1 𝑟 , 𝐸(𝑚)1 1, 𝐸(𝑚)1 2, 

                              𝐸(𝑚)1 3, ⋯ ⋯ , 𝐸(𝑚)1 𝑟 ⋯ ⋯ ⋯ 𝐷(𝑚)𝑛1 , 𝐷(𝑚)𝑛2, 𝐷(𝑚)𝑛3   

                             , ⋯ ⋯ , 𝐷(𝑚)𝑛𝑟 , 𝐸(𝑚)𝑛 1, 𝐸(𝑚)𝑛 2, ⋯ ⋯ 𝐸(𝑚)𝑛 𝑟 } 
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Claim 4.1: 

 The Set 𝑃(𝑋) is a 𝜎 – algebra 

(i) Empty set 𝜑, 𝑃(𝑋)  ∈ 𝒜. 

(ii) Now (𝐷(𝑚)12)
∁

= 𝑃(𝑋)/𝐷(𝑚)12   

                                       = 𝐸(𝑚)1 1 = Set of all possible union of two elements 

(iii)  Consider the elements 𝐷(𝑚)𝑛1, 𝐷(𝑚)𝑛2, 𝐷(𝑚)𝑛3, ⋯ ⋯ , 𝐷(𝑚)𝑛𝑟 ∈ 𝒜 

Then 𝐷(𝑚)𝑛1 ∪ 𝐷(𝑚)𝑛2 ∪ ⋯ ∪ 𝐷(𝑚)𝑛𝑟 = 𝐸(𝑚)𝑛𝑟 

 = Set of all possible union of ( 𝑚)𝑛 of elements∈ 𝒜                                               

Therefore 

𝑃(𝑋) is a 𝜎 – algebra. 

Claim 4.2: 

𝑃(𝑋) is a Borel set 

Consider the elements 𝐷(𝑚)𝑛1, 𝐷(𝑚)𝑛2, 𝐷(𝑚)𝑛3, ⋯ 𝐷(𝑚)𝑛𝑟 , 𝐸(𝑚)𝑛 1, 𝐸(𝑚)𝑛2, 𝐸(𝑚)𝑛3 ⋯ ⋯ 𝐸(𝑚)𝑛𝑟 ∈ 𝒜 

Then  𝐷(𝑚)𝑛1 ∩ 𝐷(𝑚)𝑛2 ∩ ⋯ ∩ 𝐷(𝑚)𝑛𝑟 ∩ 𝐸(𝑚)𝑛 1 ∩ 𝐸(𝑚)𝑛2 ⋯ ∩ 𝐸(𝑚)𝑛𝑟 = 𝐷(𝑚)𝑛1  ∈ 𝒜 

The Set 𝑃(𝑋) satisfies all the conditions together with claim 4.1 

So the set 𝑃(𝑋) is 𝜎 – algebra and Borel set and hence a measurable set.                                 

Now, the Lebesgue Measure of 𝑃(𝑋) is calculated. 

Since measure of an interval is its length, we have  

   𝜆( 𝐶𝐹̃(𝑚)𝑛 ) =  lim
𝑛→∞

𝜆( 𝐶𝐹̃(𝑚)𝑛 ) 
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= lim
𝑛→∞

𝜆 {
[

0

(𝑚)𝑛  ,
1

(𝑚)𝑛] ∪ [
1

(𝑚)𝑛 ,
2

(𝑚)𝑛] ∪ ⋯ ⋯ ∪ [
(𝑚)𝑛−3

(𝑚)𝑛 ,
(𝑚)𝑛−2

(𝑚)𝑛 ] ∪ [
(𝑚)𝑛−2

(𝑚)𝑛 ,
(𝑚)𝑛−1

(𝑚)𝑛 ] ∪

[
(𝑚)𝑛−1

(𝑚)𝑛 ,
(𝑚)𝑛

(𝑚)𝑛]
}  

= lim
𝑛→∞

{𝜆 [
0

(𝑚)𝑛  ,
1

(𝑚)𝑛] + 𝜆 [
1

(𝑚)𝑛 ,
2

(𝑚)𝑛] + ⋯ + 𝜆 [
(𝑚)𝑛−3

(𝑚)𝑛 ,
(𝑚)𝑛−2

(𝑚)𝑛 ] + 𝜆 [
(𝑚)𝑛−2

(𝑚)𝑛 ,
(𝑚)𝑛−1

(𝑚)𝑛 ] +  𝜆 [
(𝑚)𝑛−1

(𝑚)𝑛 ,
(𝑚)𝑛

(𝑚)𝑛]}     

= lim
𝑛→∞

{
(

1

(𝑚)𝑛 −
0

(𝑚)𝑛) + (
2

(𝑚)𝑛 −
1

(𝑚)𝑛) + ⋯ + (
(𝑚)𝑛−2

(𝑚)𝑛 −
(𝑚)𝑛−3

(𝑚)𝑛 ) +

(
(𝑚)𝑛−1

(𝑚)𝑛 −
(𝑚)𝑛−2

(𝑚)𝑛 ) + (
(𝑚)𝑛

(𝑚)𝑛 −
(𝑚)𝑛−1

(𝑚)𝑛 ) 
}  

= lim
𝑛→∞

{
1

(𝑚)𝑛
+

1

(𝑚)𝑛
+

1

(𝑚)𝑛
+ ⋯ ⋯ +

1

(𝑚)𝑛
+

1

(𝑚)𝑛
+

1

(𝑚)𝑛} 

= 0 

 Therefore  𝜆( 𝐶𝐹̃(𝑚)𝑛 ) = 0.  Hence 𝐶 𝐹̃(𝑚)𝑛 has Lebesgue measure zero. Hence the 

Lebesgue measure of the Non reduced Farey 𝑁 – subsequence of order 𝑚 is zero. 

 Illustration 4.1:  

𝐶𝐹 ̃(𝑚)𝑛 = {
0

(𝑚)𝑛  ,
1

(𝑚)𝑛 ,
2

(𝑚)𝑛 , ⋯ ,
(𝑚)𝑛−3

(𝑚)𝑛 ,
(𝑚)𝑛−2

(𝑚)𝑛 ,
(𝑚)𝑛−1

(𝑚)𝑛 ,
(𝑚)𝑛

(𝑚)𝑛}; where 1 ≤ 𝑚 ≤ 𝑁 

Put 𝑚 =  4 

Non – Reduce to Farey 𝑁 – Subsequence of order 4 is 

           𝐶𝐹̃41 =  {
0

4
 ,

1

4
,

2

4
,

3

4
,

4

4
} = [

0

4
 ,

1

4
] ∪ [

1

4
,

2

4
] ∪ [

2

4
,

3

4
] ∪ [

3

4
,

4

4
]  

            = 𝐷411 ∪ 𝐷412 ∪ 𝐷413 ∪ 𝐷414 

            C𝐹̃42 = {
0

16
 ,

1

16
 ,

2

16
 , … …

16

16
 } = [

0

16
,

1

16
] ∪ [

1

16
,

2

16
] ∪ [

2

16
,

3

16
] ∪ [

3

16
,

4

16
] ∪ … … ∪ [

15

16
,

16

16
]  

         = 𝐷421 ∪ 𝐷422 ∪ 𝐷423 ∪ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ∪ 𝐷42(15) ∪ 𝐷42(16) 
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For 𝑛th term  

            𝐶𝐹̃4𝑛 = {
0

4𝑛  ,
1

4𝑛 ,
2

4𝑛 ,
3

4𝑛 , ⋯ ⋯ 
4𝑛−3

4𝑛 ,
4𝑛−2

4𝑛 ,
4𝑛−1

4𝑛 ,
4𝑛

4𝑛} 

                      = [
0

4𝑛  ,
1

4𝑛] ∪ [
1

4𝑛 ,
2

4𝑛] ∪ [
2

4𝑛 ,
3

4𝑛] ∪ ⋯ ⋯ ∪ [
4𝑛−3

4𝑛 ,
4𝑛−2

4𝑛 ] ∪ [
4𝑛−2

4𝑛 ,
4𝑛−1

4𝑛 ] ∪ [
4𝑛−1

4𝑛 ,
4𝑛

4𝑛]  

                      = 𝐷4𝑛1 ∪ 𝐷4𝑛2 ∪ 𝐷4𝑛3 ∪ ⋯ ⋯ ⋯ ∪ 𝐷4𝑛𝑚 

Let 

             𝐸4𝑛1 = Set of all possible union of two elements. 

             𝐸4𝑛2 = Set of all possible union of three elements. 

             𝑙𝑙𝑙𝑙𝑦 for 𝑚th term  

            𝐸4𝑛𝑚 = Set of all possible union of (𝑚 + 1) elements. 

            𝐸4𝑛𝑚 = ⋃ (m + 14𝑛−1
𝑚=1 )  

Take 𝑋 =  {𝐹̃41 , 𝐹̃42 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝐹̃4𝑛 } 

     𝑃(𝑋)  = {𝐷411, 𝐷412, 𝐷413, 𝐷414, 𝐸411, 𝐸412, 𝐸413, ⋯ 𝐷4𝑛1, 𝐷4𝑛2, 𝐷4𝑛3, ⋯ , 𝐷4𝑛𝑚, 𝐸4𝑛1, 𝐸4𝑛2 ⋯ 𝐸4𝑛𝑚} 

The Set 𝑃(𝑋) is a 𝜎 – algebra  

(i) Empty set 𝜑, 𝑃(𝑋)  ∈ 𝐴. 

(ii) Take (𝐷412)∁ = 𝑃(𝑋)/𝐷412   

                           = 𝐸411 = Set of all possible union of two elements 

(iii)  Consider the elements 𝐷4𝑛1, 𝐷4𝑛2, 𝐷4𝑛3, ⋯ , 𝐷4𝑛𝑚 ∈ 𝒜 

Then 𝐷4𝑛1 ∪ 𝐷4𝑛2 ∪ ⋯ ∪ 𝐷4𝑛𝑚 = 𝐸4𝑛𝑚 (Set of all possible union of 4𝑛 elements) ∈ 𝒜 

Therefore 𝑃(𝑋) is a 𝜎 – algebra. 

The Set 𝑃(𝑋) is Borel set  
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(iv)  The Set 𝑃(𝑋) satisfies the countable intersection 

Consider the elements 𝐷411, 𝐷412, ⋯ ⋯ , 𝐷41𝑛, 𝐸411𝐸412 ⋯ ⋯ 𝐸41𝑛 ∈ 𝒜 

Then 𝐷411 ∩ 𝐷412 ∩ ⋯ ∩ 𝐷41𝑛 ∩ 𝐸411 ∩ 𝐸412 ∩ ⋯ ⋯ ∩ 𝐸41𝑛 = 𝐷411 ∈ 𝒜 

 𝑃(𝑋) is a Borel set. 

Therefore 𝑃( 𝑋) is a 𝜎  Algebra as well as Borel Set. 

Lebesgue Measure: 

𝜆(𝐶𝐹̃4𝑛 ) =  lim
𝑛→∞

𝜆(𝐶𝐹̃4𝑛 )  

                 = lim
𝑛→∞

𝜆 {[
0

4𝑛  ,
1

4𝑛] ∪ [
1

4𝑛 ,
2

4𝑛] ∪ [
2

4𝑛 ,
3

4𝑛] ∪ ⋯ ⋯ ∪ [
4𝑛−3

4𝑛 ,
4𝑛−2

4𝑛 ] ∪ [
4𝑛−2

4𝑛 ,
4𝑛−1

4𝑛 ] ∪ [
4𝑛−1

4𝑛 ,
4𝑛

4𝑛]} 

                 =  lim
𝑛→∞

{𝜆 [
0

4𝑛  ,
1

4𝑛] + 𝜆 [
1

4𝑛 ,
2

4𝑛] + 𝜆 [
2

4𝑛 ,
3

4𝑛] + ⋯ + 𝜆 [
4𝑛−3

4𝑛 ,
4𝑛−2

4𝑛 ] + 𝜆 [
4𝑛−2

4𝑛 ,
4𝑛−1

4𝑛 ] + 𝜆 [
4𝑛−1

4𝑛 ,
4𝑛

4𝑛]} 

    =  lim
𝑛→∞

{(
1

4𝑛 −
0

4𝑛) + (
2

4𝑛 −
1

4𝑛) + (
3

4𝑛 −
2

4𝑛) + ⋯ + (
4𝑛−2

4𝑛 −
4𝑛−3

4𝑛 ) + (
4𝑛−1

4𝑛 −
4𝑛−2

4𝑛 ) + (
4𝑛

4𝑛 −
4𝑛−1

4𝑛 )}  

   = 0 

 Therefore 𝜆(𝐶𝐹̃4𝑛 ) = 0.  Hence 𝐶𝐹̃4𝑛 has Lebesgue measure zero. 

 Since Cantor sets may be extracted from Farey sequence consider as sets.  Here 

theorem on measures of even ordered Cantor sets discussed in chapter I are presented.  

Theorem 4.2: 

 The Lebesgue measure of Cantor Hexnary set and Cantor Deca set are  zero. 

Proof:  

 Considering Cantor Hexnary set and Cantor Decaset defined in Chapter I.           
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  The lengths of intervals retained in Cantor Hexnary sets in each of the iterations are 

given below: 

 First iteration: 2 (
1

6
) + (

2

6
) = (

1

6
) [2 + 2] = (

1

6
) [21 + 21] 

            Second iteration: 4 (
1

62) + 4 (
2

62) + 1 (
4

62) = (
1

62) (22 + 2(22) + 22) 

 Third iteration:  8 (
1

63
) + 12 (

2

63
) + 6 (

4

63
) + 1 (

8

63
) = (

1

63
) (23 + 3(23) + 3(23)+23) 

 Therefore 

  The 𝑛𝑡ℎ iteration: (
1

6𝑛) (2𝑛 + 𝑛𝑐12𝑛 + 𝑛𝑐22𝑛 + ⋯ ⋯ + 𝑛𝑐𝑛−12𝑛+2𝑛) 

   Lebesgue measure =  𝜆 (𝐶
(

1

6
)

𝑛) 

                                           = lim
𝑛→∞

{
1

6𝑛
(2𝑛 + 𝑛𝑐12𝑛 + 𝑛𝑐22𝑛 + ⋯ ⋯ ⋯ + 𝑛𝑐𝑛−12𝑛 + 2𝑛)} 

                                           = lim
𝑛→∞

(
2

3
)

𝑛

→ 0 

Cantor Deca set 

First iteration: 1(
1

10
) + (

1

10
) + (

2

10
) + (

1

10
) + (

1

10
) = (

1

10
) [4 + 2] = (

1

10
) 2[21 + 20] 

Second iteration: 16(
1

102
) + 8 (

2

102
) + (

4

102
) = (

1

102
) (24 + 2(23) + 22) 

                                                                         = (
1

102) 22(22 + 2(21) + 20) 

Third iteration:  64(
1

103
) + 48 (

2

103
) + 12 (

4

103
) + 1 (

8

103
) = (

1

103
) (26 + 3(25) + 3(24)+23) 

                                                                                            =  (
1

103) 23 (23 + 3(22) + 3(21)+20)  
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Therefore 

The 𝑛𝑡ℎ iteration: (
1

10𝑛
) 2𝑛(2𝑛 + 𝑛𝑐12𝑛−1 + 𝑛𝑐22𝑛−2 + ⋯ ⋯ + 𝑛𝑐𝑛−121+20) 

Lebesgue measure =  𝜆 (𝐶
(

1

10
)

𝑛) 

= lim
𝑛→∞

{
1

10𝑛
2𝑛(2𝑛 + 𝑛𝑐12𝑛−1 + 𝑛𝑐22𝑛−2 + ⋯ ⋯ + 𝑛𝑐𝑛−121+20)} 

      = lim
𝑛→∞

(
2

5
)

𝑛

→ 0 

Theorem 4.3: 

 If [0,1] is subdivided into 8 + 4𝑘, 𝑘 = 0,1,2 … parts Cantor sets of order 8,12,16, … 

are developed and the Lebesgue measure of each of the sets is zero 

Proof 

 Referring to the diagrams of Cantor Octanary set and Cantor Dodeca sets we have 

calculated the Lebesgue measures: 

For Cantor Octanary sets 

Lengths of retained intervals of first iteration:  (
1

8
) + (

1

8
) + (

1

8
) + (

1

8
) = (

1

8
)  4 

Lengths of retained intervals of second iteration: (
1

82) (16) = (
1

82) 42 

Lengths of retained intervals of third iteration: (
1

83
) (64) = (

1

83
) 43  

Therefore  

  Lengths of retained intervals of 𝑛𝑡ℎ iteration:  (
1

8𝑛
) 4𝑛 

  Lebesgue measure = 𝜆 (𝐶
(

1

8
)

𝑛) 

                                                 = lim
𝑛→∞

{(
1

8𝑛
) 4𝑛} 

                                       = lim
𝑛→∞

(
1

2
)

𝑛

→ 0 
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           For Cantor Dodeca Sets 

Lengths of retained intervals of first iteration:  (
1

12
) + (

1

12
) + (

1

12
) + (

1

12
) + (

1

12
) + (

1

12
) = (

1

12
)  6 

Lengths of retained intervals of second iteration: (
1

122) (36) = (
1

82) 62 

Lengths of retained intervals of third iteration: (
1

123) (216) = (
1

123) 63  

Therefore 

 Lengths of retained intervals of 𝑛𝑡ℎ iteration:  (
1

12𝑛) 6𝑛 

     Lebesgue measure  = 𝜆 (𝐶
(

1

12
)

𝑛) 

= lim
𝑛→∞

{(
1

12𝑛
) 6𝑛} 

                                    = lim
𝑛→∞

(
1

2
)

𝑛

→ 0 

It is observed that in the 𝑛𝑡ℎ iteration sum of the length of the retained intervals is (
1

2
)

𝑛

.  
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CHAPTER -V 

 PROBABILITY MEASURE OF GENERALIZED NON - 

REDUCED FAREY 𝑵- SUBSEQUENCE  

 

 This chapter is divided into two sections. Section 5.1 is on Probability Measure of 

Generalized     Non - Reduced Farey 𝑁- Subsequence and section 5.2 is on Invariant Measure 

of Generalized Non - Reduced Farey 𝑁- Subsequence. We derive the Probability measure 

of the Generalized Non reduced Farey 𝑁 – subsequence. 

 For the construction of measurable sets the Farey sequence has been considered as 

union of intervals, half- open, closed (or) open sets as the case may be with a sequential 

points as end points.  For the same above construction Probability measure has also been 

calculated. 

5.1  Probability Measure: 

           By a slight modification, writing Non reduced Farey N – subsequence as a 

measurable set the sequence is written as union of closed and semi – open intervals. 

Definition 5.1.1: Probability Measures [34] 

 A Probability measure on 𝛺 is a function 𝑃 from subsets of 𝛺 to the real numbers 

that satisfies the following axioms 

(i) 𝑃(𝛺)  =  1 

(ii) If 𝐴 ⊂ 𝛺, then 𝑃(𝐴) ≥ 0 

(iii) If 𝐴1 and 𝐴2 are disjoint, then 𝑃(𝐴1 ∪ 𝐴2) = 𝑃(𝐴1) + 𝑃(𝐴2) more generally, If 

𝐴1, 𝐴2, ⋯ ⋯ , 𝐴𝑛  are mutually disjoint, then 𝑃(⋃ 𝐴𝑖
𝑛
𝑖=1 ) =  ∑ 𝑃(𝐴𝑖)

𝑛
𝑖=1  
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Theorem 5.1.1:  

 The Probability measure of the Non reduced Farey 𝑁 – subsequence of even order 

is one. 

Proof: 

       Construction of measurable sets from Farey 𝑁 – subsequence even order                                           

 𝐹̃(2𝑚)𝑛
 

= {
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛 , ⋯ ⋯ ,
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛}  

    = [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛] ∪ [
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛] ∪ ⋯ ∪ [
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ] ∪ [
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛 ] ∪

          [
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛]  

𝐻𝐶 𝐹̃(2𝑚)𝑛 = {
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛 , ⋯ ⋯ ,
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛}  

      = [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛) , [
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛) , ⋯ , [
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ) , [
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛 ) , [
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛]  

Here Probability of an event in 𝐻𝐶 𝐹̃(2𝑚)𝑛  is taken as follows 

𝑃 ([
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛)) = Length of the interval [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛) 

         ≅
1

(2𝑚)𝑛  

𝑃 ([
1

(2𝑚)𝑛  ,
2

(2𝑚)𝑛)) = Length of the interval [
1

(2𝑚)𝑛  ,
2

(2𝑚)𝑛) 

         ≅
1

(2𝑚)𝑛 

𝑃 ([
2

(2𝑚)𝑛
 ,

3

(2𝑚)𝑛
)) = Length of the interval [

2

(2𝑚)𝑛
 ,

3

(2𝑚)𝑛
) 

         ≅
1

(2𝑚)𝑛 
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For the 𝑛th term  

𝑃 ([
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛]) = Length of the intervals [
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛] 

          ≅
1

(2𝑚)𝑛 

 For union of intervals consider only consecutive points in      

      [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛) , [
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛) , ⋯ , [
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ) , [
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛 ) , [
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛] 

     Take any two elements say, 𝐴1 = [
3

(2𝑚)𝑛
 ,

4

(2𝑚)𝑛
)  and 𝐴2 = [

4

(2𝑚)𝑛
 ,

5

(2𝑚)𝑛
)   

     𝑃(𝐴1 ∪ 𝐴2) = 𝑃 ([
3

(2𝑚)𝑛  ,
4

(2𝑚)𝑛) ∪ [
4

(2𝑚)𝑛  ,
5

(2𝑚)𝑛))  

              = 𝑃 ([
3

(2𝑚)𝑛  ,
5

(2𝑚)𝑛)) 

              =
2

(2𝑚)𝑛 

𝑃(𝐴1) + 𝑃(𝐴2) = 𝑃 ([
3

(2𝑚)𝑛  ,
4

(2𝑚)𝑛)) + 𝑃 ([
4

(2𝑚)𝑛  ,
5

(2𝑚)𝑛))  

     =
2

(2𝑚)𝑛 

Therefore   𝑃(𝐴1 ∪ 𝐴2) = 𝑃(𝐴1) + 𝑃(𝐴2)  

Now we prove                     𝑃(⋃ 𝐴𝑖
𝑛
𝑖=1 ) =  ∑ 𝑃(𝐴𝑖)

𝑛
𝑖=1   

        𝑃(⋃ 𝐴𝑖
𝑛
𝑖=1 ) =  𝑃(𝐴1 ∪  𝐴2 ∪ ⋯ ⋯ ∪ 𝐴𝑛) 

                           = 𝑃 ([
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛) ∪ [
1

(2𝑚)𝑛  ,
2

(2𝑚)𝑛) ∪ ⋯ ⋯ ∪ [
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛]) 

     = 𝑃 ([
0

(2𝑚)𝑛
,

(2𝑚)𝑛

(2𝑚)𝑛
]) =

(2𝑚)𝑛

(2𝑚)𝑛
= 1 

     ∑ 𝑃(𝐴𝑖)
𝑛
𝑖=1 = 𝑃(𝐴1) + 𝑃(𝐴2) + ⋯ + 𝑃(𝐴𝑛)  

= 𝑃 ([
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛)) + 𝑃 ([
1

(2𝑚)𝑛  ,
2

(2𝑚)𝑛)) + ⋯ + 𝑃 ([
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛])  
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≅
1

(2𝑚)𝑛
+

1

(2𝑚)𝑛
+

1

(2𝑚)𝑛
+ ⋯ ⋯ +

1

(2𝑚)𝑛
  

≅
1

(2𝑚)𝑛
 (1 + 1 + 1 + 1 + ⋯ ⋯ ⋯ + (2𝑚)𝑛 𝑡𝑖𝑚𝑒𝑠)  

≅
(2𝑚)𝑛

(2𝑚)𝑛
= 1                  

 Therefore the Probability Measure of Non - Reduced Farey 𝑁- Subsequence of order 

(2𝑚) is one, where 𝑚 is a positive integer. 

Illustration 5.1.1: 𝒎 is even  

𝐻𝐶 𝐹̃(2𝑚)𝑛      = {
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛 , ⋯ ⋯ ,
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛}  

= [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛) ∪ [
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛) ∪ ⋯ ⋯ ∪ [
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ) ∪

     [
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛 ) ∪ [
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛]  

Put 𝑚 =  2 , 𝑛 = 1, 𝑙 = 4 

 𝐻𝐶 𝐹̃4 =  {
0

4
 ,

1

4
,

2

4
,

3

4
,

4

4
}  

                          = [ 
0

4
 ,

1

4
) ∪ [

1

4
,

2

4
) ∪ [

2

4
,

3

4
) ∪ [

3

4
,

4

4
] 

Now  

 𝑃(⋃ 𝐴𝑖
𝑙
𝑖=1 ) =  ∑ 𝑃(𝐴𝑖)

𝑙
𝑖=1   

 𝑃(⋃ 𝐴𝑖
4
𝑖=1 ) =  ∑ 𝑃(𝐴𝑖)

4
𝑖=1   

𝑃(⋃ 𝐴𝑖
4
𝑖=1 ) = 𝑃(𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4)  

= 𝑃 ([ 
0

4
 ,

1

4
) ∪ [

1

4
,

2

4
) ∪ [

2

4
,

3

4
) ∪ [

3

4
,

4

4
])  

= 𝑃 ([
0

4
,

4

4
]) = 1  
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 ∑ 𝑃(𝐴𝑖)
4
𝑖=1 = 𝑃(𝐴1) + 𝑃(𝐴2) + 𝑃(𝐴3) + 𝑃(𝐴4) 

         = 𝑃 ([ 
0

4
 ,

1

4
)) + 𝑃 ([

1

4
,

2

4
)) + 𝑃 ([

2

4
,

3

4
)) + 𝑃 ([

3

4
,

4

4
]) 

          ≅
1

4
+

1

4
+

1

4
+

1

4
= 1 

Probability Measure of 𝐻𝐶 𝐹̃4  = 1                                          

 Therefore  

 The probability measure of  Non - Reduced Farey 𝑁- Subsequence of order 4 is one. 

Theorem 5.1.2:  

 The Probability measure of the Generalized Non reduced Farey N – subsequence of 

odd order is one. 

Proof: 

 Construction of measurable sets from Non reduced Farey 𝑁 – subsequence odd order 

is 

𝐹̃(2𝑚−1)𝑛  
       = {

0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛 ,
2

(2𝑚−1)𝑛 , ⋯ ⋯ ,
(2𝑚−1)𝑛−3

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛}  

             =  [
0

(2𝑚−1)𝑛
 ,

1

(2𝑚−1)𝑛
] ∪ [

1

(2𝑚−1)𝑛
,

2

(2𝑚−1)𝑛
] ∪ ⋯ ⋯ ∪ [

(2𝑚−1)𝑛−3

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛−2

(2𝑚−1)𝑛
] ∪ 

                                    [
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛−1

(2𝑚−1)𝑛
] ∪ [

(2𝑚−1)𝑛−1

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛

(2𝑚−1)𝑛
]     

𝐻𝐶 𝐹̃(2𝑚−1)𝑛 = {
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛 ,
2

(2𝑚−1)𝑛 , ⋯ ,
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛}  

            = [
0

(2𝑚−1)𝑛
 ,

1

(2𝑚−1)𝑛
) ∪ [

1

(2𝑚−1)𝑛
,

2

(2𝑚−1)𝑛
) ∪ ⋯ ⋯ ∪ [

(2𝑚−1)𝑛−3

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛−2

(2𝑚−1)𝑛
) ∪ 

                              [
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛−1

(2𝑚−1)𝑛
) ∪ [

(2𝑚−1)𝑛−1

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛

(2𝑚−1)𝑛
]  

        Here Probability of an event in 𝐻𝐶 𝐹̃(2𝑚−1)𝑛 is taken as follows 
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𝑃 ([
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛)) = Length of the interval [
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛) 

                ≅
1

(2𝑚−1)𝑛
  

𝑃 ([
1

(2𝑚−1)𝑛  ,
2

(2𝑚−1)𝑛)) = Length of the interval [
1

(2𝑚−1)𝑛  ,
2

(2𝑚−1)𝑛) 

                ≅
1

(2𝑚−1)𝑛
 

𝑃 ([
2

(2𝑚−1)𝑛  ,
3

(2𝑚−1)𝑛)) = Length of the interval [
2

(2𝑚−1)𝑛  ,
3

(2𝑚−1)𝑛) 

                 ≅
1

(2𝑚−1)𝑛 

For the 𝑛th term    

𝑃 ([
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛]) = Length of the intervals [
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛] 

                    ≅
1

(2𝑚−1)𝑛 

 For union of intervals consider only consecutive points in 

       [
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛) , [
1

(2𝑚−1)𝑛 ,
2

(2𝑚−1)𝑛) , ⋯ , [
(2𝑚−1)𝑛−3

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛 ) , [
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ), 

       [
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛

(2𝑚−1)𝑛
]  

Take any two elements say, 𝐴1 = [
6

(2𝑚−1)𝑛  ,
7

(2𝑚−1)𝑛)  and 𝐴2 = [
7

(2𝑚−1)𝑛  ,
8

(2𝑚−1)𝑛)   

𝑃(𝐴1 ∪ 𝐴2) = 𝑃 ([
6

(2𝑚−1)𝑛  ,
7

(2𝑚−1)𝑛) ∪ [
7

(2𝑚−1)𝑛  ,
8

(2𝑚−1)𝑛))  

       = 𝑃 ([
6

(2𝑚−1)𝑛  ,
8

(2𝑚−1)𝑛)) 

       ≅
2

(2𝑚−1)𝑛
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𝑃(𝐴1) + 𝑃(𝐴2) = 𝑃 ([
6

(2𝑚−1)𝑛  ,
7

(2𝑚−1)𝑛)) + 𝑃 ([
7

(2𝑚−1)𝑛  ,
8

(2𝑚−1)𝑛))  

      ≅
2

(2𝑚−1)𝑛
 

Therefore  𝑃(𝐴1 ∪ 𝐴2) = 𝑃(𝐴1) + 𝑃(𝐴2)     

Now  

Probability Measure 𝐻𝐶 𝐹̃(2𝑚)𝑛   

𝑃(⋃ 𝐴𝑖
𝑛
𝑖=1 ) =  ∑ 𝑃(𝐴𝑖)

𝑛
𝑖=1   

𝑃(⋃ 𝐴𝑖
𝑛
𝑖=1 )      = 𝑃(𝐴1 ∪ 𝐴2 ∪ ⋯ ⋯ ∪ 𝐴𝑛)  

    = 𝑃 ([
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛) ∪ [
1

(2𝑚−1)𝑛  ,
2

(2𝑚−1)𝑛) ∪ ⋯ ∪ [
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛]) 

                    = 𝑃 ([
0

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛]) = 1 

   ∑ 𝑃(𝐴𝑖)
𝑛
𝑖=1  = 𝑃(𝐴1) + 𝑃(𝐴2) + ⋯ + 𝑃(𝐴𝑛) 

=  𝑃 [[
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛)] + 𝑃 ([
1

(2𝑚−1)𝑛  ,
2

(2𝑚−1)𝑛)) + ⋯ + 𝑃 ([
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛])    

≅  
1

(2𝑚−1)𝑛 +
1

(2𝑚−1)𝑛 +
1

(2𝑚−1)𝑛 + ⋯ ⋯ +
1

(2𝑚−1)𝑛 

≅
1

(2𝑚−1)𝑛  (1 + 1 + 1 + ⋯ ⋯ + (2𝑚 − 1)𝑛 𝑡𝑖𝑚𝑒𝑠)  

≅
(2𝑚−1)𝑛

(2𝑚−1)𝑛 = 1                                    

Therefore 

    Probability Measure of Non - Reduced Farey 𝑁- Subsequence of order (2𝑚 − 1) is 

one. 
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Illustration 5.1.2: 𝒎 is odd  

        𝐹̃(2𝑚−1)𝑛 = {
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛 ,
2

(2𝑚−1)𝑛 , ⋯ ,
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛}  

𝐻𝐶 𝐹̃(2𝑚−1)𝑛 = [
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛) ∪ [
1

(2𝑚−1)𝑛 ,
2

(2𝑚−1)𝑛) ∪ ⋯ ⋯ ∪ [
(2𝑚−1)𝑛−3

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛 ) ∪  

   [
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛]  

Put 𝑚 =  2 , 𝑛 =  1, 𝑙 = 3 

 𝐻𝐶 𝐹̃3 =  {
0

3
 ,

1

3
,

2

3
,

3

3
}  

                           = [ 
0

3
 ,

1

3
) ∪ [

1

3
,

2

3
) ∪ [

2

3
,

3

3
] 

Now  

 𝑃(⋃ 𝐴𝑖
𝑙
𝑖=1 ) =  ∑ 𝑃(𝐴𝑖)

𝑙
𝑖=1   

 𝑃(⋃ 𝐴𝑖
3
𝑖=1 ) =  ∑ 𝑃(𝐴𝑖)

3
𝑖=1   

   𝑃(⋃ 𝐴𝑖
3
𝑖=1 ) =  𝑃(𝐴1 ∪ 𝐴2 ∪ 𝐴3) 

         = 𝑃 ([ 
0

3
 ,

1

3
) ∪ [

1

3
,

2

3
) ∪ [

2

3
,

3

3
]) 

          = 𝑃 ([
0

3
,

3

3
]) = 1 

 ∑ 𝑃(𝐴𝑖)
𝑙
𝑖=1 = 𝑃(𝐴1) + 𝑃(𝐴2) + 𝑃(𝐴3)  

                    = 𝑃 ([ 
0

3
 ,

1

3
)) + 𝑃 ([

1

3
,

2

3
)) + 𝑃 ([

2

3
,

3

3
]) ≅

3

3
= 1  

Probability Measure 𝐻𝐶 𝐹̃3  = 1               

          Therefore the probability measure of Non - Reduced Farey 𝑁- Subsequence of order 

3  is one. 
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5.2  Invariant Measure of Generalized Non - Reduced Farey 𝑵- Subsequence: 

Definition 5.2.1: Invariant Measure [48] 

 Let ( [0, 1] , 𝐹̃𝑚𝑛  ) be a measurable space and let 𝑔 ∶  [0,1]  → [0,1]  be a measurable 

function from [0,1] to itself. A measure 𝜇 on ([0, 1] , 𝐹̃𝑚𝑛) is said to be invariant under 𝑔, 

if for every measurable set 𝐴 in 𝐹̃𝑚𝑛 .  

𝜇(𝑔−1(𝐴)) = 𝜇(𝐴) 

Theorem 5.2.1:  

 The invariant measure of the Generalized Non reduced Farey 𝑁 – subsequence of 

even order is one. 

Proof: 

 Define the  function  𝑔  as  𝑔 (𝐹̃(2𝑚)𝑛) = 𝐶𝐹̃(2𝑚)𝑛 

where 𝐶𝐹̃(2𝑚)𝑛  is nothing but  Non – Reduced Farey 𝑁 – Subsequence taken as union of 

closed sets. 

 Construction of measurable sets from Non reduced Farey 𝑁 – subsequence even 

order Non – Reduce Farey 𝑁 – Subsequence of even order is 

𝐹̃(2𝑚)𝑛 = {
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛 , ⋯ ⋯ ,
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛} ; where 1 ≤ 𝑚 ≤ 𝑁 

𝐶𝐹̃(2𝑚)𝑛 =  [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛] ∪ [
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛] ∪ ⋯ ⋯ ∪ [
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ] ∪

[
(2𝑚)𝑛−2

(2𝑚)𝑛
,

(2𝑚)𝑛−1

(2𝑚)𝑛
] ∪ [

(2𝑚)𝑛−1

(2𝑚)𝑛
,

(2𝑚)𝑛

(2𝑚)𝑛
]  
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Let 𝐴 be taken as union of any two intervals 

 𝐴 =  [
0

(2m)n+1 ,
1

(2m)n+1] ∪ [
2

(2m)n+1 ,
3

(2m)n+1]    

Then, 

 𝜇(𝐴) =  𝜇 ([
0

(2m)n+1 ,
1

(2m)n+1]) + 𝜇 ([
2

(2m)n+1 ,
3

(2m)n+1])  

               =  ∫
(2m)n+1

2
 𝑑𝜇 +

1

(2m)n+1

0

(2m)n+1

∫
(2m)n+1

2
 𝑑𝜇

3

(2m)n+1

2

(2m)n+1

  

                      =  
(2m)n+1

2
 [

1

(2m)n+1 −
0

(2m)n+1] +
(2m)n+1

2
 [

3

(2m)n+1 −
2

(2m)n+1]  

                    =  
(2m)n+1

2
 [

1

(2m)n+1] +
(2m)n+1

2
 [

1

(2m)n+1] = 1     

     Let 𝐴 =  [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛] 

 𝜇(𝑔−1(𝐴)) =  𝜇 [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛]  

                               =  ∫
(2m)n

1

1

(2𝑚)𝑛

0

(2𝑚)𝑛

𝑑𝜇 

                            =  (2m)n [
1

(2𝑚)𝑛 −
0

(2𝑚)𝑛] 

                               = (2m)n [
1

(2𝑚)𝑛
] = 1  

           Therefore   

𝜇(𝐴) =  𝜇(𝑔−1(𝐴)) 

 Where 𝜇 is an invariant Measure for Non – Reduce to Farey 𝑁 – Sub sequence of 

even order 𝑚 with  respect to 𝑔. 

  Invariant Measure for Non – Reduce to Farey 𝑁 – Sub sequence of even order is 

one. 
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Illustration 5.2.1: 

              Non – Reduce to Farey 𝑁 – Subsequence of even order is 

𝐹̃(2𝑚)𝑛 = {
0

(2𝑚)𝑛
 ,

1

(2𝑚)𝑛
,

2

(2𝑚)𝑛
, ⋯ ⋯ ,

(2𝑚)𝑛−3

(2𝑚)𝑛
,

(2𝑚)𝑛−2

(2𝑚)𝑛
,

(2𝑚)𝑛−1

(2𝑚)𝑛
,

(2𝑚)𝑛

(2𝑚)𝑛
} ; where 1 ≤ 𝑚 ≤ 𝑁 

𝐶𝐹̃(2𝑚)𝑛 =  [
0

(2𝑚)𝑛
 ,

1

(2𝑚)𝑛
] ∪ [

1

(2𝑚)𝑛
,

2

(2𝑚)𝑛
] ∪ ⋯ ⋯ ∪ [

(2𝑚)𝑛−3

(2𝑚)𝑛
,

(2𝑚)𝑛−2

(2𝑚)𝑛
]         

         ∪ [
(2𝑚)𝑛−2

(2𝑚)𝑛
,

(2𝑚)𝑛−1

(2𝑚)𝑛
] ∪ [

(2𝑚)𝑛−1

(2𝑚)𝑛
,

(2𝑚)𝑛

(2𝑚)𝑛
]                                        

Let 𝐴 =  [
0

(2m)n+1 ,
1

(2m)n+1] ∪ [
2

(2m)n+1 ,
3

(2m)n+1]    

 Take 𝑚 =  2, 𝑛 =  1;  

 𝐴 =  [
0

(4)1+1 ,
1

(4)1+1] ∪ [
2

(4)1+1 ,
3

(4)1+1]   

                  =  [
0

(4)2 ,
1

(4)2] ∪ [
2

(4)2 ,
3

(4)2]    

Then, 

 𝜇(𝐴) =  𝜇 ([
0

(4)2 ,
1

(4)2]) + 𝜇 ([
2

(4)2 ,
3

(4)2])    

                     =  ∫
(4)2

2
 𝑑𝜇 +

1

(4)2

0

(4)2

∫
(4)2

2
 𝑑𝜇

3

(4)2

2

(4)2

  

                     =  
(4)2

2
 [

1

(4)2 −
0

(4)2] +
(4)2

2
 [

3

(4)2 −
2

(4)2]  

                      =  
(4)2

2
 [

1

(4)2
] +

(4)2

2
 [

1

(4)2
] = 1         

 Let  𝐴 =  [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛]  
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Take 𝑚 =  2 , 𝑛 =  1 

 𝜇(𝑔−1(𝐴)) =  𝜇 [
0

(4)1  ,
1

(4)1]  

                               =  ∫
(4)1

1

1

(4)1

0

(4)1

𝑑𝜇 = 1          

 Therefore 

𝜇(𝐴) =  𝜇(𝑔−1(𝐴)) 

where 𝜇 is an invariant Measure for Non – Reduce to Farey 𝑁 – Sub sequence of even order 

𝑚 with respect to 𝑔. 

          Invariant Measure for Non – Reduce to Farey 𝑁 – Sub sequence of order 4 is one. 

Theorem 5. 2.2:  

          The invariant measure of the Generalized Non reduced Farey 𝑁 – subsequence of odd 

order is one. 

Proof: 

 Define a function 𝑔 (𝐹̃(2𝑚−1)𝑛) = 𝐶𝐹̃(2𝑚−1)𝑛  

where 𝐶𝐹̃(2𝑚−1)𝑛 – Non – Reduced Farey 𝑁 – Subsequence as union of closed set. 

Construction of measurable sets from Non reduced Farey 𝑁 – subsequence odd order 

 Non – Reduce to Farey 𝑁 – Subsequence of odd order is 

𝐹̃(2𝑚−1)𝑛 = {
0

(2𝑚−1)𝑛
 ,

1

(2𝑚−1)𝑛
,

2

(2𝑚−1)𝑛
, ⋯ ,

(2𝑚−1)𝑛−3

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛−2

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛−1

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛

(2𝑚−1)𝑛
} ;  

where 1 ≤ 𝑚 ≤ 𝑁 
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   𝐶𝐹̃(2𝑚−1)𝑛 = [
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛] ∪ [
1

(2𝑚−1)𝑛 ,
2

(2𝑚−1)𝑛] ∪ ⋯ ⋯ ∪                                                          

                             [
(2𝑚−1)𝑛−3

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛 ] ∪ [
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ] ∪ [
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛] 

Let  𝐴 =  [
0

(2m−1)n+1 ,
1

(2m−1)n+1] ∪ [
2

(2m−1)n+1 ,
3

(2m−1)n+1]       

Then, 

 𝜇(𝐴) =  𝜇 ([
0

(2m−1)n+1 ,
1

(2m−1)n+1]) + 𝜇 ([
2

(2m−1)n+1 ,
3

(2m−1)n+1])  

                      =  ∫
(2m−1)n+1

2
 𝑑𝜇 +

1

(2m−1)n+1

0

(2m−1)n+1

∫
(2m−1)n+1

2
 𝑑𝜇

3

(2m−1)n+1

2

(2m−1)n+1

  

                     =  
(2m−1)n+1

2
 [

1

(2m−1)n+1 −
0

(2m−1)n+1] +
(2m−1)n+1

2
 [

3

(2m−1)n+1 −
2

(2m−1)n+1]  

                     =  
(2m−1)n+1

2
 [

1

(2m−1)n+1] +
(2m−1)n+1

2
 [

1

(2m−1)n+1] = 1      

    Let  𝐴 = [
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛] 

 𝜇(𝑔−1(𝐴)) =  𝜇 [
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛]  

                               =  ∫
(2m−1)n

1

1

(2𝑚−1)𝑛

0

(2𝑚−1)𝑛

𝑑𝜇 

                     =  (2m − 1)n [
1

(2𝑚−1)𝑛 −
0

(2𝑚−1)𝑛] 

                               = (2m − 1)n [
1

(2𝑚−1)𝑛] = 1                    

Therefore 

𝜇(𝐴) =  𝜇(𝑔−1(𝐴)) 

where 𝜇 is an invariant Measure for Non – Reduce to Farey 𝑁 – Sub sequence of odd order 

𝑚 with respect to 𝑔. 

 Invariant Measure for Non – Reduce to Farey 𝑁 – Sub sequence of odd order is one. 
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Illustration 5.2.2: 

Non – Reduce to Farey 𝑁 – Subsequence of odd order is 

𝐹̃(2𝑚−1)𝑛 = {
0

(2𝑚−1)𝑛
 ,

1

(2𝑚−1)𝑛
,

2

(2𝑚−1)𝑛
, ⋯ ,

(2𝑚−1)𝑛−3

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛−2

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛−1

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛

(2𝑚−1)𝑛
} ;                                  

where  1 ≤ 𝑚 ≤ 𝑁 

𝐶𝐹̃(2𝑚−1)𝑛 = [
0

(2𝑚−1)𝑛
 ,

1

(2𝑚−1)𝑛
] ∪ [

1

(2𝑚−1)𝑛
,

2

(2𝑚−1)𝑛
] ∪ ⋯ ⋯ ∪ [

(2𝑚−1)𝑛−3

(2𝑚−1)𝑛
,

(2𝑚−1)𝑛−2

(2𝑚−1)𝑛
] ∪                            

               [
(2𝑚−1)𝑛−2

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ] ∪ [
(2𝑚−1)𝑛−1

(2𝑚−1)𝑛 ,
(2𝑚−1)𝑛

(2𝑚−1)𝑛] 

Let 𝐴 =  [
0

(2m−1)n+1 ,
1

(2m−1)n+1] ∪ [
2

(2m−1)n+1 ,
3

(2m−1)n+1]    

 Take 𝑚 =  2, 𝑛 =  1; By the equation  𝜇(𝑔−1(𝐴)) = 𝜇(𝐴)    

          𝐴 =  [
0

(3)1+1 ,
1

(3)1+1] ∪ [
2

(3)1+1 ,
3

(3)1+1]   

                =  [
0

(3)2 ,
1

(3)2] ∪ [
2

(3)2 ,
3

(3)2]    

Then, 

 𝜇(𝐴) =  𝜇 ([
0

(3)2 ,
1

(3)2]) + 𝜇 ([
2

(3)2 ,
3

(3)2])    

                     =  ∫
(3)2

2
 𝑑𝜇 +

1

(3)2

0

(3)2

∫
(3)2

2
 𝑑𝜇

3

(3)2

2

(3)2

  

                      =  
(3)2

2
 [

1

(3)2 −
0

(3)2] +
(3)2

2
 [

3

(3)2 −
2

(3)2]  

                     =  
(3)2

2
 [

1

(3)2] +
(3)2

2
 [

1

(3)2] = 1         

 Let 𝐴 =  [
0

(2𝑚−1)𝑛  ,
1

(2𝑚−1)𝑛]  
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Take 𝑚 =  2 , 𝑛 =  1 

            𝜇(𝑔−1(𝐴)) =  𝜇 [
0

(3)1  ,
1

(3)1]  

                               =  ∫
(3)1

1

1

(3)1

0

(3)1

𝑑𝜇 = 1          

 Therefore 

𝜇(𝐴) =  𝜇(𝑔−1(𝐴)) 

 where 𝜇 is an invariant Measure for Non – Reduce to Farey 𝑁 – Sub sequence of    

odd order 𝑚 with respect to 𝑔. 

 Hence, invariant Measure for Non – Reduce to Farey 𝑁 – Sub sequence of order 3 

is one. 
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CHAPTER –VI 

MEASURE OF MODIFIED EVEN ORDERED  

CANTOR SETS 

 

 This chapter deals with the Box  Measure of Modified even ordered Cantor sets. 

While calculating box measure, boxes without dimensions are used in general but here, 

boxes are replaced by isosceles triangles and their areas are considred as measures. This 

chapter is divided into four sections.  

 Section 6.1 deals with Measure of Cantor Hexnary Sets and   Section 6.2 is on  

Measure of Cantor Deca Sets.Varying from the previous sections,  section 6.3 provides a 

measure for  Cantor Octanary Sets and  following the similar lines Section 6.4  gives a 

measure of Cantor Dodeca Sets.  

6.1  Measure of Cantor Hexnary Sets: 

Definition 6.1.1: Triangular Measure of Cantor Hexnary Sets  

 The closed interval [0, 1] is divided into six equal parts ,second and fifth intervals 

are removed. The left and right intervals of length (
1

6
) and middle interval of length (

2

6
) is 

retained. Draw a smaller triangle of retained intervals and calculate he area of triangle. This 

is known as Triangular Measure of Cantor Hexnary Sets and it is denoted by  𝑇𝑀𝐶
(

1

6
)
 . 

Theorem 6.1.1:  

 The Box measure of Cantor sets can be converted into triangular measure and it is 

given by  
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𝑇𝑀𝐶
(

1

6
)

𝑛  =  (
1

2
) (

1

6𝑛)
2

[2𝑛 + 𝑛𝑐12𝑛−1 + 𝑛𝑐22𝑛−2 + ⋯ ⋯ + 𝑛𝑐𝑟2𝑛−𝑟 + ⋯ ⋯ + 𝑛𝑐𝑛−122𝑛−1 + 22𝑛] .     

 The areas follows Geometric Progression with common ratio (
1

6
).  

Proof: 

 Proof of the theorem follows by induction method. 

 The closed interval [0,1] is divided into six equal intervals.  Following the theory of 

Cantor Hexnary set, the open intervals (
1

6
,

2

6
) and (

4

6
,

5

6
) are removed. The remaining parts 

[
0

6
= 0,

1

6
] , [

2

6
,

4

6
] and [

5

6
,

6

6
= 1] are again subdivided as follows. The length of the 

middlemost part is 2/6.  For the 2nd iteration, the parts [
0

6
= 0,

1

6
] and [

5

6
,

6

6
] are each divided 

into six equal intervals there by giving six intervals 

 [
0

36
= 0,

1

36
], [

1

36
,

2

36
], [

2

36
,

3

36
] , [

3

36
,

4

36
] , [

4

36
,

5

36
], [

5

36
,

6

36
]  

and [
30

36
,

31

36
] , [

31

36
,

32

36
] , [

32

36
,

33

36
] , [

33

36
,

34

36
] , [

34

36
,

35

36
] , [

35

36
,

36

36
]  

respectively. The open intervals (
1

36
,

2

36
) and (

4

36
,

5

36
) are removed. Draw a smaller 

triangular of retained intervals and calculate area of triangle. 

When 𝑛 =  1, 

𝑇𝑀𝐶
(

1

6
)

𝑛 =   (
1

2
) (

1

6𝑛)
2

[2𝑛 + 𝑛𝑐12𝑛−1 + 𝑛𝑐22𝑛−2 + ⋯ ⋯ + 𝑛𝑐𝑟2𝑛−𝑟 + ⋯ ⋯ + 𝑛𝑐𝑛−122𝑛−1 + 22𝑛]  

𝑇𝑀𝐶
(

1

6
)

1 = (
1

2
) (

1

61
)

2

[21 + 22(1)] = (
1

2
) (

1

6
)  

Therefore the area of triangle is (
1

2
) (

1

6
) 
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When 𝑛 =  2, 

𝑇𝑀𝐶
(

1

6
)

𝑛 =   (
1

2
) (

1

6𝑛)
2

[2𝑛 + 𝑛𝑐12𝑛−1 + 𝑛𝑐22𝑛−2 + ⋯ ⋯ + 𝑛𝑐𝑟2𝑛−𝑟 + ⋯ ⋯ + 𝑛𝑐𝑛−122𝑛−1 + 22𝑛]  

𝑇𝑀𝐶
(

1

6
)

2 = (
1

2
) (

1

62
)

2

[22 + 2𝑐124−1 + 22(2)]  

                  = [22 + 2. 23 + 24] = (
1

2
) (

1

62)  

 The area of triangle is (
1

2
) (

1

62
) 

 Assume the result for 𝑛 =  𝑒 

𝑇𝑀𝐶
(

1

6
)

𝑛 =   (
1

2
) (

1

6𝑛)
2

[2𝑛 + 𝑛𝑐12𝑛−1 + 𝑛𝑐22𝑛−2 + ⋯ ⋯ + 𝑛𝑐𝑟2𝑛−𝑟 + ⋯ ⋯ + 𝑛𝑐𝑛−122𝑛−1 + 22𝑛]  

𝑇𝑀𝐶
(

1

6
)

𝑒 = (
1

2
) (

1

6𝑒)
2

[2𝑒 + 𝑒𝑐𝑒−122𝑒−1 + 22(𝑒)]  

               = (
1

2
) (

1

6𝑒)
2

[6𝑒] = (
1

2
) (

1

6𝑒)  

We prove the result for 𝑛 =  𝑒 + 1 

Now  

𝑇𝑀𝐶
(

1

6
)

𝑛 =   (
1

2
) (

1

6𝑛)
2

[2𝑛 + 𝑛𝑐12𝑛−1 + 𝑛𝑐22𝑛−2 + ⋯ ⋯ + 𝑛𝑐𝑟2𝑛−𝑟 + ⋯ ⋯ + 𝑛𝑐𝑛−122𝑛−1 + 22𝑛]  

𝑇𝑀𝐶
(

1

6
)

𝑒+1 = (
1

2
) (

1

6𝑒+1)
2

[2(𝑒+1) + (𝑒+1)𝑐𝑒+1−122(𝑒+1)−1 + 22(𝑒+1)]  

                   = (
1

2
) (

1

6𝑒+1)
2

[6𝑒+1] = (
1

2
) (

1

6𝑒+1)  

 Hence the result is true for all positive integers 
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Graphical Representation: 

 The Following Figure 6.1.1 shows the graphical representation of Triangular 

Measure of Cantor Hexnary Sets. 

First iteration:                                                                                                                                                        

 The closed interval [0,1]  is subdivided into 6 equal sub- intervals [
0

6
= 0,

1

6
], 

[
1

6
,

2

6
] , [

2

6
,

3

6
] , [

3

6
,

4

6
] , [

4

6
,

5

6
],    

               [
5

6
,

6

6
= 1]   

  

                 _____________________________________________________      

   
0

6
= 0       

1

6
                 

2

6
                 

3

6
                 

4

6
                    

5

6
                   

6

6
 

Figure 6.1.1: Triangular Measure of Cantor Hexnary Sets 

The intervals removed are (
1

6
,

2

6
), (

4

6
,

5

6
)  .   

Length No.of Triangle 

(
1

6
) 2 

(
2

6
) 1 

Table 6.1.1 

The above table 6.1.1 shows the number of triangle appear in the first iteration. 
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Second iteration:  

       

      
0

36
   

1

36
  

2

36
  

3

36
 

4

36
 

5

36

6

36
=

1

6
     

12

36
  

14

36
 
16

36
  

18  

36
 
20

36
  

22

36
   

24

36
=

4

6
       

30

36
   

31

36
  

32

36
 
33

36
 
34

36
  

35

36
  

36

36
= 1   

Figure 6.1.2: Second iteration – Triangular Measure of Cantor Hexnary Sets 

 The intervals removed are (
1

36
,

2

36
) , (

5

36
,

6

36
) , (

14

36
,

16

36
) , (

20

36
,

22

36
) , (

31

36
,

32

36
) , (

34

36
,

35

36
) 

 

  

 

 

Table 6.1.2 

 The above table 6.1.2 shows the number of triangle appear in the second iteration. 

6.2  Measure of Cantor Deca Sets: 

Definition 6.2.1: Triangular Measure of Cantor Deca Sets: 

 The closed interval [0, 1] is divided into ten equal parts. Second, fourth, seventh and 

ninth intervals are removed. The left and right intervals of length (
1

10
) and middle interval 

of length (
2

10
) is retained. Draw a smaller triangle of retained intervals and calculating the 

area of triangle. This is known as Triangular Measure of Cantor Deca Sets and it is 

denoted by  𝑇𝑀𝐶
(

1

10
) 

. 

  

Length No.of Triangle 

(
1

36
) 4 

(
2

36
) 4 

(
4

36
) 1 
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Graphical Representation: 

       The Following Figure 6.2.1 shows the graphical representation of Triangular 

Measure of Cantor Deca Sets. 

First iteration:                                                                                                                                                                                     

           The closed interval [0,1]  is subdivided into 10 equal sub- intervals                                                                                 

               [
0

10
= 0,

1

10
], [

1

10
,

2

10
] , [

2

10
,

3

10
] , [

3

10
,

4

10
] , [

4

10
,

5

10
] , [

5

10
,

6

10
] , [

7

10
,

8

10
] , [

9

10
,

10

10
]   

 

                 _____________________________________________________    

   
0

10
= 0 

1

10
     

2

10
      

3

10
        

4

10
       

5

10
      

6

10
         

7

10
          

8

10
        

9

10
      

10

10
= 1 

Figure 6.2.1: Triangular Measure of Cantor Deca Sets 

 The intervals removed are (
1

10
,

2

10
), (

3

10
,

4

10
) , (

6

10
,

7

10
) , (

8

10
,

9

10
)  .   

 The remaining intervals are [
0

10
= 0,

1

10
] ∪ [

2

10
,

3

10
] ∪ [

𝟒

𝟏𝟎
,

𝟔

𝟏𝟎
] ∪ [

7

10
,

8

10
] ∪ [

9

10
 ,

10

10
= 1]      

 

 

 

Table 6.2.1 

 The above table 6.2.1 shows the number of triangle appear in the first iteration. 

  

Length No.of Triangle 

(
1

10
) 4 

(
2

10
) 1 
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Second iteration:                                                                                                                                                                           

         The retained intervals are [
0

10
= 0,

1

10
] , [

2

10
,

3

10
] , [

𝟒

𝟏𝟎
,

𝟔

𝟏𝟎
] , [

7

10
,

8

10
] [

9

10
 ,

10

10
= 1] each 

closed interval is subdivided into 10 equal sub- intervals      

 

     

Figure 6.2.2: Second iteration -Triangular Measure of Cantor Deca Sets 

The intervals removed are (
1

100
,

2

100
), (

3

100
,

4

100
) , (

6

100
,

7

100
) , (

8

100
,

9

100
) , (

21

100
,

22

100
),  

(
23

100
,

24

100
) , (

26

100
,

27

100
) , (

28

100
,

29

100
) , (

42

100
,

44

100
), (

46

100
,

48

100
) , (

52

100
,

54

100
) , (

56

100
,

58

100
) , 

(
71

100
,

72

100
), (

73

100
,

74

100
) , (

76

100
,

77

100
) , (

78

100
,

79

100
) , (

91

100
,

92

100
), (

93

100
,

94

100
) , (

96

100
,

97

100
) ,

(
98

100
,

99

100
)  .   

 

 

 

 

Table 6.2.2 

 The above table 6.2.2 shows the number of triangle appear in the second iteration. 

Theorem 6.2.1: 

 The Triangular Measure of Cantor Deca Sets it is given by  

Length No.of Triangle 

(
1

100
) 16 

(
2

100
) 8 

(
4

100
) 1 
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𝑇𝑀𝐶
(

1

10
)

𝑛
 

= (
1

2
) (

1

10𝑛)
2

[22𝑛 + 𝑛𝑐122𝑛 + 𝑛𝑐222𝑛 + ⋯ + 𝑛𝑐𝑟22𝑛 + ⋯ ⋯ + 𝑛𝑐𝑛−122𝑛 + 22𝑛] .  

 The areas follows Geometric Progression with common ratio (
1

10
).  

Proof: 

 The theorem is proved by induction method. 

When 𝑛 =  1, 

𝑇𝑀𝐶
(

1

10
)

𝑛
 

=  (
1

2
) (

1

10𝑛
)

2
[22𝑛 + 𝑛𝑐122𝑛 + 𝑛𝑐222𝑛 + ⋯ + 𝑛𝑐𝑟22𝑛 + ⋯ ⋯ + 𝑛𝑐𝑛−122𝑛 + 22𝑛]  

𝑇𝑀𝐶
(

1

10
)

1
 

= (
1

2
) (

1

101)
2

[22 + 22(1)] = (
1

10
)

2

22  

Therefore 

The area of triangle is (
1

10
)

2

22 

𝑛 = 1 is true. 

When 𝑛 =  2, 

𝑇𝑀𝐶
(

1

10
)

𝑛
 

=  (
1

2
) (

1

10𝑛)
2

[22𝑛 + 𝑛𝑐122𝑛 + 𝑛𝑐222𝑛 + ⋯ + 𝑛𝑐𝑟22𝑛 + ⋯ ⋯ + 𝑛𝑐𝑛−122𝑛 + 22𝑛]  

𝑇𝑀𝐶
(

1

10
)

2
 

= (
1

2
) (

1

102)
2

[24 + 2𝑐124−1 + 22(2)]  

                 = (
1

2
) (

1

102
)

2
[24 + 2. 23 + 24] = (

1

102
)

2

 25  

Therefore 

The area of triangle is (
1

102)
2

25 
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Assume the result for 𝑛 =  𝑒 

𝑇𝑀𝐶
(

1

10
)

𝑛
 

=  (
1

2
) (

1

10𝑛)
2

[22𝑛 + 𝑛𝑐122𝑛 + 𝑛𝑐222𝑛 + ⋯ + 𝑛𝑐𝑟22𝑛 + ⋯ ⋯ + 𝑛𝑐𝑛−122𝑛 + 22𝑛]  

𝑇𝑀𝐶
(

1

10
)

𝑒
 

= (
1

2
) (

1

10𝑒
)

2

[22𝑒 + 𝑒𝑐𝑒−122𝑒 + 22(𝑒)] = (
1

10𝑒
)

2

23𝑒−1     

Therefore 

  The area of triangle is (
1

10𝑒
)

2

23𝑒−1 

 We prove the result for 𝑛 =  𝑒 + 1 

𝑇𝑀𝐶
(

1

10
)

𝑛
 

=  (
1

2
) (

1

10𝑛)
2

[22𝑛 + 𝑛𝑐122𝑛 + 𝑛𝑐222𝑛 + ⋯ + 𝑛𝑐𝑟22𝑛 + ⋯ ⋯ + 𝑛𝑐𝑛−122𝑛 + 22𝑛]  

𝑇𝑀𝐶
(

1

10
)

𝑒+1
 

= (
1

2
) (

1

10𝑒+1)
2

[22(𝑒+1) + (𝑒 + 1)𝑐𝑒22(𝑒+1) + 22(𝑒+1)] = (
1

10𝑒+1)
2

23𝑒+2  

 Therefore the area of triangle is (
1

10𝑒+1)
2

23𝑒+2 

           Therefore the triangular measure of  𝑇𝑀𝐶
(

1

10
)

𝑛
 

= (
1

10𝑛)
2

23𝑛−1   

6.3  Measure of Cantor Octanary Sets: 

Definition 6.3.1: Triangular Measure of Cantor Octanary Sets: 

 The closed interval [0, 1] is divided into eight equal parts. By removing the second 

part, last but one part and middlemost part, the open intervals  (
1

8
,

2

8
) , (

3

8
,

5

8
) and (

6

8
,

7

8
) are 

removed. The middlemost removable interval is of length (
2

8
). Each retained intervals are 

of length (
1

8
). Continue the process indefinitely. Draw a smaller triangle of retained intervals 

and calculating the area of triangle the set obtained is known as the Triangular Measure 

of Cantor Octanary Sets and is denoted by 𝑇𝑀𝐶
(

1

8
) 

.    
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Graphical Representation: 

 The Following Figure 6.3.1 shows the graphical representation of Triangular 

Measure of Cantor Octanary sets.  

First iteration:                                                                                                                                                                             

           The closed interval [0,1]  is subdivided into 8 equal sub- intervals                                                                                     

  [
0

8
= 0,

1

8
], [

1

8
,

2

8
] , [

2

8
,

3

8
] , [

3

8
,

4

8
] , [

4

8
,

5

8
] , [

5

8
,

6

8
] , [

6

8
,

7

8
] , [

7

8
,

8

8
= 1]   

 

                ____________________________________________________   

 
0

8
= 0    

1

8
               

2

8
                 

3

8
                 

4

8
                 

5

8
                  

6

8
                  

7

8
           

8

8
 = 1                                                       

                           Figure 6.3.1: Triangular Measure of Cantor Octanary sets 

 The intervals removed are (
1

8
,

2

8
) , (

3

8
,

5

8
) , (

6

8
,

7

8
).    

 The remaining intervals are [
0

8
= 0,

1

8
] , [

2

8
,

3

8
] , [

5

8
,

6

8
] and [

7

8
,

8

8
= 1] 

 

 

 

Table 6.3.1 

 The above table 6.3.1 shows the number of triangle appear in the first iteration. 

  

Length No.of Triangle 

(
1

8
) 4 



83 

Second iteration: 

 The remaining intervals are [
0

8
= 0,

1

8
] , [

2

8
,

3

8
] , [

5

8
,

6

8
] and [

7

8
,

8

8
= 1] subdivided into 8 

equal sub- intervals. 

 

     

Figure 6.3.2: Second iteration - Triangular Measure of Cantor Octanary sets 

 

 

 

Table 6.3.2 

 The above table 6.3.2 shows the number of triangle appear in the second iteration. 

First iterations:  

 The area of triangle is 𝑇𝑀𝐶
(

1

8
)

1
 

= (
1

2
) (

1

81)
2

(4)1 

Second iteration: 

 The area of triangle is 𝑇𝑀𝐶
(

1

8
)

2
 

= (
1

2
) (

1

82)
2

(4)2 

  Therefore the triangular measure of 𝑇𝑀𝐶
(

1

8
)

𝑛
 

= (
1

2
) (

1

8𝑛
)

2
(4)𝑛 

6.4  Measure of Cantor Dodeca Sets: 

 The same procedure follows by the Triangular Measure of Cantor Dodeca Set. 

Definition 6.4.1: Triangular Measure of Cantor Dodeca Sets: 

 The closed interval [0, 1] is divided into twelve equal parts. By removing the second 

part, fourth part, ninth part, last but one part and middlemost part, the open intervals 

Length No.of Triangle 

(
1

64
) 16 
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(
1

12
,

2

12
),   (

3

12
,

4

12
) , (

5

12
,

7

12
) , (

8

12
,

9

12
) and  (

10

12
,

11

12
) are removed. The middlemost 

removable interval is of length (
2

12
). Other retained intervals are of length (

1

12
). Continue 

the process indefinitely. Draw a smaller triangle of retained intervals and calculating the 

area of triangle the set obtained is known as the Triangular Measure of Cantor Dodeca 

Sets and is denoted by  𝑇𝑀𝐶
(

1

12
) 

.    

Graphical Representation: 

 The Following Figure 6.4.1 shows the graphical representation of Triangular 

Measure of Cantor Dodeca sets.  

First iteration:      

 

       

         
0

12
= 0     

1

12
      

2

12
     

3

12
      

4

12
       

5

12
     

6

12
     

7

12
      

8

12
      

9

12
      

10

12
         

11

12
       

12

12
= 1   

Figure 6.4.1: Triangular Measure Cantor Dodeca sets 

The intervals removed are (
1

12
,

2

12
), (

3

12
,

4

12
) , (

5

12
,

7

12
) , (

8

12
,

9

12
) , (

10

12
,

11

12
)  .   

The remaining intervals are [
0

12
= 0,

1

12
] ∪ [

2

12
,

3

12
] ∪ [

4

12
,

5

12
] ∪ [

7

12
,

8

12
] , [

9

12
 ,

10

12
] ∪ [

11

12
 ,

12

12
= 1] .     

 

      

                                                                                         

 

Table 6.4.1 

Length No.of Triangle 

(
1

12
) 6 
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 The above table 6.4.1 shows the number of triangle appear in the first iteration. 

Second iteration:  

 The remaining intervals are  

 [
0

12
= 0,

1

12
] , [

2

12
,

3

12
] , [

4

12
,

5

12
] , [

7

12
,

8

12
] , [

9

12
 ,

10

12
] , [

11

12
 ,

12

12
= 1] subdivided into  

 12 equal sub- intervals. 

 

   

  

Figure 6.4.2: Second iteration- Triangular Measure Cantor Dodeca sets 

 

 

 

Table 6.4.2 

 The above table 6.4.2 shows the number of triangle appear in the second iteration. 

First iteration:  

 The area of triangle is 𝑇𝑀𝐶
(

1

12
)

1
 

= (
1

2
) (

1

121)
2

(6)1 

Second iteration: 

 The area of triangle is 𝑇𝑀𝐶
(

1

12
)

2
 

= (
1

2
) (

1

122)
2

(6)2 

 Therefore the triangular measure of   𝑇𝑀𝐶
(

1

12
)

𝑛
 

= (
1

2
) (

1

12𝑛)
2

(6)𝑛            

        

Length No.of Triangle 

(
1

144
) 36 
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CONCLUSION 

 

 We have established modified Cantor (
1

6
) and (

1

8
) sets and corresponding sequential 

sets namely Cantor sets of order 6 + 4𝑘 and 8 + 4𝑘 ,  𝑘 = 0,1,2,3, ⋯ . Unlike Cantor ternary 

sets here removal of sets in various patterns are considered. One is usual away of removing 

intervals of lengths 1/2𝑛 and the middle most intervals of lengths 2/2𝑛. The process is 

continued successively, so that the general portion of removable intervals can be identified.  

 In this pattern of removal middle most interval in successive iteration follows a 

geometric sequence of powers of two. The intervals equally spaced from the middle to the 

left and right follows different nature as the iteration increases.  Its characteristics are 

studied.  Also, the diagrammatic representation of modified even ordered Cantor sets has 

been exhibited.  

 In analyzing Cantor sets of even order it is obtained that more than one pattern of 

removal of intervals can be considered.  Also it is noted that starting with six and eight every 

increment of four gives the same mode of removal of sets.  The general formulas for the 

existing intervals have been given for the middle most intervals.  

 Farey 𝑁 – subsequence has been developed as a topological space Hausdorff space 

and 𝑇1 space.  

 The Non Reduced Farey 𝑁 – subsequence has been established as a 𝜎- algebra and 

Borel set.  By reconstructing the sequence of elements also the Lebegue Measure and 

Probability Measure have been calculated for this 𝜎- algebra. Also the Probability measure 
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of the Generalized Non reduced Farey 𝑁 – subsequence has been evaluated. Measure of 

Modified Even ordered Cantor Sets are analyzed.  

 In finding box measure rectangles without dimensions are used. Here isosceles 

triangles are constructed and triangular measures are calculated.  
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  MODIFIED EVEN ORDERED CANTOR SETS  

S. SUDHA*1, A. GNANAM2  

 
Abstract: In Cantor ternary sets middle third is removed and the 
pattern of removal continues indefinitely.  Taking the number of 
divisions as order here, even ordered Cantor sets are considered.  
Unlike Cantor sets here lengths of unequal intervals are removed.  
In this pattern of removal middle interval in successive iteration 
follows a geometric sequence of powers of two. The intervals 
equally spaced from the middle to the left and right follows 
different nature as the iteration increases.  Its characteristics are 
studied in this paper.  Also, the diagrammatic representation of 

modified even ordered Cantor sets has been exhibited.  
 
2010 AMS Classification: 26A30 
 
Keywords: Cantor set   

 
 
1. Introduction 

               The Cantor ternary set is a set of rational numbers in the closed 
interval [0, 1] obtained by dividing the interval into 3 parts successfully after 
removing the middle third. There are many publications describing various 
properties of Cantor middle sets. The Cantor middle sets are considered only 
for odd integers. The analysis is done only for 𝐶2𝑚−1 middle sets              
(2 ≤ 𝑚 < ∞). Cantor sets for even integers are not so far studied in detail. 

         Unlike Cantor ternary sets, in even ordered sets the intervals of lengths 
one and two are removed successively.  Again, if intervals of lengths two are 
taken away the formulas for retaining terms are given. In this paper Cantor 
sets of even numbers are considered.  Contrary to the procedure followed by 
Cantor, intervals of various lengths are removed in different patterns.  These 
various patterns of removal of intervals are analyzed here.  

2. Preliminaries 
     Throughout this paper we study the modified Cantor even ordered sets.            
Definition 1: Cantor Hexnary Set  
        Divide the closed interval [0,1] into six equal intervals. Remove the 
second and last but one of  

the six intervals of length (
1

6
). The middle interval of length (

2

6
) is only 

retained.  Now for the first,  
last and middle intervals continue the procedure indefinitely. The set 
obtained is known as Cantor Hexnary Set.   
Definition 2: Cantor Octanary Set  
         The closed interval [0, 1] is divided into eight equal parts. By removing 
the second part, last but one part and middlemost part, the open intervals  

(
1

8
,

2

8
) , (

3

8
,

5

8
) and (

6

8
,

7

8
) are removed. The middlemost removable interval is 

of length (
2

8
). Each retained intervals are of length (

1

8
).  

_________________________ 
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MODIFIED EVEN ORDERED CANTOR SETS 

Continue the process indefinitely and the set obtained is known as the 
Cantor Octanary Set. 
 

3. Modified Cantor (
𝟏

𝟔
) Sets   

Theorem 3.1: 

            In  𝐶6 , if the middle interval of length 2 6⁄   is retained and subdivided 

successfully as in Cantor then in the successive iterations the middlemost 

interval is retained that follow a series of the form 2 6⁄ , (2
6⁄ )

2
, (2

6⁄ )
3

, …. for 

all these intervals. The general term of the middlemost interval is given by 

[
𝑘

6𝑛
,

𝑘+2𝑛

6𝑛 ] were k can be represented by the series 2(6)𝑛−1(2)0 +

2(6)𝑛−2(2)1 + 2(6)𝑛−3(2)2 + ⋯ + 2(6)0(2)𝑛−1             
Proof: 
         The closed interval [0,1] is divided into six equal parts.  Following the 

theory of Cantor set, the open intervals (
1

6
,

2

6
) and (

4

6
,

5

6
) are removed. In first 

iteration the number of parts removed is 2*30.The remaining parts [
0

6
=

0,
1

6
] , [

2

6
,

4

6
] and [

5

6
,

6

6
= 1] are again subdivided as follows. The length of the 

middlemost part is 2/6.  For the 2nd iteration, the parts [
0

6
= 0,

1

6
] and [

5

6
,

6

6
] 

are each divided into six equal parts thereby giving six parts                       

[
0

36
= 0,

1

36
], [

1

36
,

2

36
],[

2

36
,

3

36
] , [

3

36
,

4

36
] , [

4

36
,

5

36
], [

5

36
,

6

36
]. The open intervals 

(
1

36
,

2

36
) and (

4

36
,

5

36
) are removed.  Applying the removal pattern of the 

middle part [
𝟐

𝟔
,

𝟒

𝟔
] again give rise to [

12

36
,

14

36
], [

14

36
,

16

36
],[

𝟏𝟔

𝟑𝟔
,

𝟐𝟎

𝟑𝟔
], [

20

36
,

22

36
] , [

22

36
,

24

36
]. 

The open intervals (
14

36
,

16

36
) and (

20

36
,

22

36
) are removed. The length of the 

middlemost part is 4/36. In second iteration the number of parts removed is 

2*31.  The third iteration the middle part [
𝟏𝟔

𝟑𝟔
,

𝟐𝟎

𝟑𝟔
] is again subdivided into six 

equal parts are [
96

216
,

100

216
],[

100

216
,

104

216
],[

104

216
,

108

216
], [

108

216
,

112

216
] , [

112

216
,

116

216
],[

116

216
,

120

36
]. 

The intervals (
100

216
,

104

216
) and (

112

36
,

116

36
) are removed. The retained intervals are 

[
96

216
,

100

216
],[

100

216
,

104

216
] , [

𝟏𝟎𝟒

𝟐𝟏𝟔
,

𝟏𝟏𝟐

𝟐𝟏𝟔
] , [

112

216
,

116

216
] , [

116

216
,

120

36
]. The length of the 

middlemost part is 8/216. In third iteration the number of parts removed is 
2*32. 
 
          Here it is noted that in the successive iterations every interval which are 
equally spaced from the middle interval are subdivided into six equal parts 

whose length 
1

61
,

1

62
,

1

63
,

1

64
, ⋯ ⋯. The middlemost part when subdivided into 

six equal parts are of length is 
2

61
,

22

62
,

23

63
,

24

64
, ⋯ ⋯. In each iteration the 

number of parts removed are (2*30), (2*31), (2*32), (2*33) ... (2*3𝑛) 
successively.  

        Therefore in  𝐶6 , if the middle interval of length 2 6⁄   is retained and 

subdivided successfully as in Cantor then in successive iterations the 
middlemost intervals retained follow a series of the form 

2
6⁄ , (2

6⁄ )
2
, (2

6⁄ )
3
, … for all these intervals.  The general representation of 

the middlemost term at the nth iteration is given by [
𝑘

6𝑛
,

𝑘+2𝑛

6𝑛 ] where               

k = 2(6)𝑛−1(2)0 + 2(6)𝑛−2(2)1 + 2(6)𝑛−3(2)2 + ⋯ + 2(6)0(2)𝑛−1         
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           The Following Figure 1 shows the graphical representation of modified 

Cantor (
1

6
) sets and Figure 3 shows the tree representation of middlemost 

part of modified Cantor (
1

6
) sets.      

First iteration:                                                                                                                                                       
The closed interval [0,1]  is subdivided into 6 equal sub- intervals                                                              

 [
0

6
= 0,

1

6
], [

1

6
,

2

6
] , [

2

6
,

3

6
] , [

3

6
,

4

6
] , [

4

6
,

5

6
] , [

5

6
,

6

6
= 1]   

 

                        Figure 1: Modified Cantor (
1

6
) sets 

The Removed intervals are (
1

6
,

2

6
), (

4

6
,

5

6
)  .   

The remaining intervals are [
0

6
= 0,

1

6
] ∪ [

2

6
,

4

6
] ∪ [

5

6
,

6

6
= 1]      

   ∴  𝐶61 =  {
0

6
= 0,

1

6
,

2

6
,

4

6
,

5

6
,

6

6
= 1  }                                                        (3.1)                                                                                                                                    

Second iteration:  
  

 

               Figure 2: Second iteration - Modified Cantor (
1

6
) sets 

The Removable intervals are 

(
1

36
,

2

36
) , (

5

36
,

6

36
) , (

14

36
,

16

36
) , (

20

36
,

22

36
) , (

31

36
,

32

36
) , (

34

36
,

35

36
) from each of the 

subintervals will result in modified cantor set. 

∴  𝐶62 = {
0

36
,

1

36
,

2

36
,

4

36
,

5

36
,

6

36
,

12

36
,

14

36
,

16

36
,

20

36
,

22

36
,

24

36
,

30

36
,

31

36
,

32

36
,

34

36
,

35

36
,

36

36
}  (3.2) 

This procedure proceeds in every iteration to get the entire modified cantor 
set.                                                                

                           Figure 3: Middlemost part of modified Cantor (
1

6
) sets 

 
    Figure 4: General form of middlemost part of modified Cantor (

1

6
) sets 
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3.1 MODIFIED CANTOR (
𝟏

𝟏𝟎
) SETS: 

      The above (Theorem 3.1) same pattern followed by modified Cantor (
1

10
) 

sets. 
First iteration:                                                                                                                                                                   
The closed interval [0,1]  is subdivided into 10 equal sub- intervals                                                              

 [
0

10
= 0,

1

10
], [

1

10
,

2

10
] , [

2

10
,

3

10
] , [

3

10
,

4

10
] , [

4

10
,

5

10
] , [

5

10
,

6

10
] , [

7

10
,

8

10
] , [

9

10
,

10

10
]   

        

                        Figure 5: Modified Cantor (
1

10
) sets 

The Removed intervals are (
1

10
,

2

10
), (

3

10
,

4

10
) , (

6

10
,

7

10
) , (

8

10
,

9

10
)  .   

The remaining intervals are [
0

10
= 0,

1

10
] ∪ [

2

10
,

3

10
] ∪ [

𝟒

𝟏𝟎
,

𝟔

𝟏𝟎
] ∪

[
7

10
,

8

10
] , [

9

10
 ,

10

10
= 1]      

     ∴  𝐶101 =  {
0

10
= 0,

1

10
,

2

10
,

3

10
,

4

10
,

6

10

7

10
,

8

10
,

9

10
,

10

10
= 1  }              (3.3) 

 This procedure proceeds in every iteration to get the entire modified cantor 
set. 

4. Modified Cantor (
𝟏

𝟖
) Sets 

Theorem 4.1:                                                                                                                                                                     

        In 𝐶8 , the intervals of lengths 
1

8𝑛
 ,

2

8𝑛
 ,

1

8𝑛
 are successively removed and 

only 4 ∗ 4𝑛−1 intervals of length each 1 8⁄   is retained.  For each interval                                                                                         

[
𝑘

6𝑛
,

𝑘+1

6𝑛 ] = (
1

(2𝑠)𝑛
[(𝑘 − 1)(2𝑠)𝑛−1 + (8)𝑛−1]) , (

1

(2𝑠)𝑛
[(𝑘 − 1)(2𝑠)𝑛−1 +

(8)𝑛−1 + 1]).  

 
Proof: 
          The closed interval [0,1] is divided into eight equal parts.  The open 

interval  (
1

8
,

2

8
) , (

3

8
,

5

8
) and (

6

8
,

7

8
) are removed. In first iteration the number 

of parts removed is 4*40.The length of the first iteration is 1/8. The 

remaining parts [
0

8
= 0,

1

8
] , [

2

8
,

3

8
] , [

5

8
,

6

8
] and [

7

8
,

8

8
= 1] are again subdivided as 

follows for the 2nd iteration. The part [
0

8
= 0,

1

8
] are subdivided into eight 

equal parts thereby giving eight parts[
0

64
=

0,
1

64
], [

1

64
,

2

64
],[

2

64
,

3

64
] [

3

64
,

4

64
] , [

4

64
,

5

64
] , [

5

64
,

6

64
] , [

6

64
,

7

64
] [

7

64
,

8

64
] , the open 

intervals (
1

64
,

2

64
) , (

3

64
,

5

64
) and(

6

64
,

7

64
) are removed. Now the part [

2

8
,

3

8
] are 

subdivided into eight equal parts thereby giving eight parts 

[
16

64
,

17

64
] , [

17

64
,

18

64
] , [

18

64
,

19

64
] , [

19

64
,

20

64
] , [

20

64
,

21

64
] , [

21

64
,

22

64
], [

22

64
,

23

64
] , [

23

64
,

24

64
], the open 

intervals (
17

64
,

18

64
) , (

19

64
,

21

64
) and(

22

64
,

23

64
) are removed. Next parts[

5

8
,

6

8
] are 

divided into eight equal parts 

namely [
40

64
,

41

64
] , [

41

64
,

42

64
] , [

42

64
,

43

64
] , [

43

64
,

44

64
] , [

44

64
,

45

64
] , [

45

64
,

46

64
] , [

46

64
,

47

64
], [

47

64
,

48

64
], 

the open intervals (
41

64
,

42

64
) , (

43

64
,

45

64
) and(

46

64
,

47

64
) are removed.  Last part 

[
7

8
,

8

8
= 1] is again subdivided into eight equal parts namely [

56

64
,

57

64
] , [

57

64
,

58

64
], 

[
58

64
,

59

64
] , [

59

64
,

60

64
] , [

60

64
,

61

64
] , [

61

64
,

62

64
], [

62

64
,

63

64
] , [

63

64
,

64

64
], the open intervals 

(
57

64
,

58

64
) , (

59

64
,

61

64
) and(

62

64
,

63

64
) are removed.  
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          Here it is noted that in the successive iterations every interval which are 
equally spaced.  Left out parts for partitioned into eight equal parts whose 

length 
1

81
,

1

82
,

1

83
,

1

84
, ⋯ ⋯ . In every cycle the number of parts eliminated 

(4*40), (4*41), (4*42), (4*43) ... The nth iteration is (4*4𝑛).  

           If any part is of the form [
𝐾

8𝑛
,

𝐾+1

8𝑛 ]. When the nth iteration the end 

parts of the iteration are of the form  (
1

(2𝑠)𝑛
[(𝑘 − 1)(2𝑠)𝑛−1 +

8𝑛−1]) , (
1

(2𝑠)𝑛
[(𝑘 − 1)(2𝑠)𝑛−1 + 8𝑛−1]) + 1 .  

          The Following Figure 6 shows the graphical representation of modified 

Cantor (
1

8
) sets and Figure 8 shows the tree representation of interval of 

length is 1 8⁄    retained part of modified Cantor (
1

8
) sets.      

First iteration:                                                                                                                                                       
The closed interval [0,1]  is subdivided into 8 equal sub- intervals                                                              

 [
0

8
= 0,

1

8
], [

1

8
,

2

8
] , [

2

8
,

3

8
] , [

3

8
,

4

8
] , [

4

8
,

5

8
] , [

5

8
,

6

8
] , [

6

8
,

7

8
] , [

7

8
,

8

8
= 1]   

                                  

                     
Figure 6: Modified Cantor (

1

8
) sets 

The Removed intervals are  (
1

8
,

2

8
) , (

3

8
,

5

8
) , (

6

8
,

7

8
).    

The remaining intervals are [
0

8
= 0,

1

8
] , [

2

8
,

3

8
] , [

5

8
,

6

8
] and [

7

8
,

8

8
= 1] 

     ∴  𝐶81 =  {
0

8
= 0,

1

8
,

2

8
,

3

8
,

5

8
,

6

8
,

7

8
,

8

8
= 1  }                                        (4.1)                                                                                                                                    

Second iteration:  

 
Figure 7: Second iteration - Modified Cantor (

1

8
) sets 

 
       The Removable intervals are 

(
1

64
,

2

64
) , (

3

64
,

5

64
) , (

6

64
,

7

64
) , (

17

64
,

18

64
) , (

19

64
,

21

64
) , (

22

64
,

23

64
) , (

41

64
,

42

64
)  

(
43

64
,

45

64
) , (

46

64
,

47

64
) , (

57

64
,

58

64
) , (

59

64
,

61

64
) , (

62

64
,

63

64
) from each of the subintervals 

will result in modified cantor set. 
 Therefore 

 𝐶82 = {

0

64
= 0,

1

64
,

2

64
,

3

64
,

5

64
,

6

64
,

7

64
,

8

64
,

16

64
,

17

64
,

18

64
,

19

64
,

21

64
,

22

64
,

23

64
,

24

64
,

40

64
,

41

64
,

42

64
,

43

64
 ,

45

64
,

46

64
,

47

64
,

48

64

}    (4.2) 

This procedure proceeds in every iteration to get the entire modified cantor set. 
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                    Figure 8:  Retained part of modified Cantor (

1

8
) sets. 

           
 Figure 9: General form of Retained part of modified Cantor (

1

8
) sets. 

4.1 MODIFIED CANTOR (
𝟏

𝟏𝟐
) SETS: 

      The above (Theorem 4.1) same pattern followed by modified Cantor (
1

12
) 

sets. 
First iteration:                                                                                                                                                                   
The closed interval [0,1]  is subdivided into 12 equal sub- intervals                                                              

[
0

12
= 0,

1

12
], [

1

12
,

2

12
] , [

2

12
,

3

12
] , [

3

12
,

4

12
] , [

4

12
,

5

12
] , [

5

12
,

6

12
] , [

7

12
,

8

12
], 

[
9

12
,

10

12
] , [

11

12
,

12

12
= 1]   

 
                      Figure 10: Modified Cantor (

1

12
) sets 

The Removed intervals are (
1

12
,

2

12
), (

3

12
,

4

12
) , (

5

12
,

7

12
) , (

8

12
,

9

12
) , (

10

12
,

11

12
)  .   

The remaining intervals are [
0

12
= 0,

1

12
] ∪ [

2

12
,

3

12
] ∪ [

4

12
,

5

12
] ∪

[
7

12
,

8

12
] , [

9

12
 ,

10

12
] , [

11

12
 ,

12

12
= 1]      

     ∴  𝐶121 =  {
0

12
= 0,

1

12
,

2

12
,

3

12
,

4

12
,

5

12
,

7

12
,

8

12
,

9

12
,

10

12
,

11

12
,

12

12
= 1  }       (4.3) 

 This procedure proceeds in every iteration to get the entire modified cantor 
set. 
 
5. Conclusion 

         We have established modified cantor (
1

6
) and (

1

8
) sets. Unlike usual Cantor 

sets having removal sets of equal lengths here two cases are considered. One is 
usual away of removing intervals of lengths 1/2n and the middle most intervals of 
lengths 2/2n. The process is continued successively, so that the general portion of 
removable intervals can be identified.  
         In analyzing Cantor sets of even order it is obtained that more than one 
pattern of removal intervals can be considered.  Also it is noted that starting with 
six and eight every increment of four gives the same mode of removal exists 
respectively.  In this paper the general formula for the existing intervals have been 
given. The other modes may be considered for future work.   
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Remark: 
       Another way of forming Cantor modified set may be given as follows for 
Cantor Octanary Set. 

       

                                                
Figure 11: Another way of Cantor (

1

8
) sets.  
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VARIOUS MEASURES OF NON - REDUCED FAREY N- SUBSEQUENCE 
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    Abstract 

         A Non Reduced Farey N-subsequence, a subsequence of Farey sequence consists of rational 

numbers with same denominator in [0, 1]. By reconstructing the non reduced Farey N – subsequence 

it can be established as a 𝜎- algebra. For this measurable space Lebegue Measure and Probability 

Measure have been calculated. Also it has been established as a Borel set. In this paper Farey 

subsequence of even order has been studied. Similarly the odd order Farey subsequence may be 

studied separately.  

2010 Mathematics Subject Classification: : 11B57 

Keywords:- 

Farey N – Subsequence, 𝜎- algebra, Borel set, Lebesgue measure, Probability Measure. 

 

Notations: 

1. 𝐹̃𝑁 - Non- Reduced Farey N – Subsequence. 

2. 𝐶 𝐹̃𝑁 - Non- Reduced Farey N – Subsequence as union of closed set. 

3. 𝐻𝐶 𝐹̃𝑁 - Non- Reduced Farey N – Subsequence as union of half closed set.  

 

1. INTRODUCTION 

          The Farey sequence of order n is the sequence of completely reduced fractions, either between 

o and 1, or without this restriction, which when in lowest terms have denominators less than or equal 

to n, arranged in order of increasing size [1,8]. Farey sequences are very useful to find rational 

approximations of irrational numbers. 

            The Farey sequence, sometimes called the Farey series, is a series of sequences in which each 

sequence consists of rational numbers ranging in value from 0 to 1. A non reduced Farey                         

N – subsequence satisfies the conditions of Lebesgue measure [8].  

For the construction of measurable sets the Farey sequence has been consider as union of 

intervals, half- open, closed (or) open sets as the case may be with a sequential points as a end points.  

For the same above construction Probability measure has also been calculated.   

2. PRELIMINARIES 

Definition1: Farey sequence [1] 

     A Sequence of rational numbers 
𝑝

𝑞
 with (𝑝, 𝑞) = 1 in [0, 1] and 𝑞 ≤ 𝑛 is called a Farey Sequence 

of order n, denoted by 𝐹𝑛. 

Example1: 

                     𝐹1 =  {
0

1
 ,

1

1
} 

                     𝐹2 =  {
0

1
 ,

1

2

1

1
} 
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                     𝐹3 =  {
0

1
 ,

1

3
,

1

2
 ,

2

3
,

1

1
} 

Definition 2:Farey N – subsequence [1] 

      In a Farey sequence 𝐹𝑁 the elements with denominators precisely N are classified as Farey           

N – subsequence and denoted by  〈𝐹𝑁
′ 〉 . 

 〈𝐹𝑁
′ 〉 =  {

𝑢𝑖

𝑁
/ 0 ≤ 𝑢𝑖 ≤ 𝑁, 0 ≤ 𝑖 ≤ 𝑁} 

Example 2: 

      The FareyN – Sequence of order 4 is 

                       〈𝐹4
′〉 =  {

0

1
=

0

4
<

1

4
<

3

4
<

4

4
=

1

1
} 

Definition 3: Non - Reducible Farey N – Subsequence [1] 

       For 𝐹𝑁, the element of the sequence with denominator N is taken as Non –Reducible Farey        

N - subsequence. It is denoted by 𝐹̃𝑁. 

Example 3: 

      The Non- Reducible Farey N - Subsequence of order 2 is 

                    𝐹̃2 =  {
0

2
,

1

2
,

2

2
=

1

1
} 

Definition 4: 𝝈 – algebra [8] 

      𝒜 ⊆ 𝑃(𝑋) is called a 𝜎 – algebra 

(i) 𝜑, 𝑋 ∈  𝒜 

(ii) A⊂ 𝒜 ⇒ 𝐴∁ = 𝑋/𝐴 ∈ 𝒜 

(iii) 𝐴𝑖 ∈ 𝒜 ,  𝑖 ∈ 𝑁 ⇒  ⋃ 𝐴𝑖 ∈ 𝒜∞
𝑖=1  

A∈ 𝒜 is called a 𝒜 – measurable set. 

Definition 5: Borel Set [8] 

       A Borel set is any set in topological space that can be formed from open sets (or) equivalently 

from closed sets through the operations of countable union, countable intersection and relative 

complement.  

Definition 6: Probability Measures [8] 

      A Probability measure on 𝛺 is a function P from subsets of 𝛺 to the real numbers that satisfies the 

following axioms 

(i) P(𝛺) = 1 

(ii) If A⊂ 𝛺, then P(A)≥ 0 

(iii) If 𝐴1 and 𝐴2 are disjoint, then P(𝐴1) + 𝑃(𝐴2) more generally, If 𝐴1, 𝐴2, ⋯ ⋯ , 𝐴𝑛 are 

mutually disjoint, then 𝑃(⋃ 𝐴𝑖
∞
𝑖=1 ) =  ∑ 𝑃(𝐴𝑖)

∞
𝑖=1  

 

Definition 7: Lebesgue Measure [8] 

    A set A⊂ 𝐸 is Lebesgue measurable or measurable if 𝜆∗(𝐴) = 𝜆∗(𝐴). The measure of A is 

denoted by 𝜆(𝐴) and is given by 𝜆(𝐴) = 𝜆∗(𝐴) = 𝜆∗(𝐴) 
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3. A SUBSEQUENCE OF FAREY SEQUENCE – 𝝈  ALGEBRA AND BOREL SET 

 

Theorem 1: 

    The Lebesgue measure of the Non reduced Farey N – subsequence of even order n is zero. 

Proof: 

  Construction of measurable sets from Farey N – subsequence. 

By definition, a Non reduced Farey N – subsequence of even order is given by 

𝐹̃(2𝑚)1 = {
0

(2𝑚)1  ,
1

(2𝑚)1 ,
2

(2𝑚)1 , ⋯ ⋯ ,
(2𝑚)1−3

(2𝑚)1 ,
(2𝑚)1−2

(2𝑚)1 ,
(2𝑚)1−1

(2𝑚)1 ,
(2𝑚)1

(2𝑚)1
} ; Where 1≤ 𝑚 ≤ 𝑁  

          From this sequence construct set as follows:  

𝐶 𝐹̃(2𝑚)1 = {
0

(2𝑚)1  ,
1

(2𝑚)1 ,
2

(2𝑚)1 , ⋯ ⋯ ,
(2𝑚)1−3

(2𝑚)1 ,
(2𝑚)1−2

(2𝑚)1 ,
(2𝑚)1−1

(2𝑚)1 ,
(2𝑚)1

(2𝑚)1
} ; Where 1≤ 𝑚 ≤ 𝑁  

              = [
0

(2𝑚)1  ,
1

(2𝑚)1
] ∪ [

1

(2𝑚)1 ,
2

(2𝑚)1
] ∪ ⋯ ⋯ ∪ [

(2𝑚)1−3

(2𝑚)1 ,
(2𝑚)1−2

(2𝑚)1
] ∪ [

(2𝑚)1−2

(2𝑚)1 ,
(2𝑚)1−1

(2𝑚)1
] ∪

                   [
(2𝑚)1−1

(2𝑚)1 ,
(2𝑚)1

(2𝑚)1
]  

 = 𝐷(2𝑚)1 1  ∪ 𝐷(2𝑚)1 2 ∪ 𝐷(2𝑚)1 3 ∪ ⋯ ⋯ ∪ 𝐷(2𝑚)1 𝑟 

In the next iteration the sequence is given by 

 𝐶𝐹̃(2𝑚)2 = {
0

(2𝑚)2  ,
1

(2𝑚)2 ,
2

(2𝑚)2 , ⋯ ⋯ ,
(2𝑚)2−3

(2𝑚)2 ,
(2𝑚)2−2

(2𝑚)2 ,
(2𝑚)2−1

(2𝑚)2 ,
(2𝑚)2

(2𝑚)2
} ; Where 1≤ 𝑚 ≤ 𝑁 

Again writing in a set format we have 

  = [
0

(2𝑚)2  ,
1

(2𝑚)2
] ∪ [

1

(2𝑚)2 ,
2

(2𝑚)2
] ∪ ⋯ ⋯ ∪ [

(2𝑚)2−3

(2𝑚)2 ,
(2𝑚)2−2

(2𝑚)2
] ∪ [

(2𝑚)2−2

(2𝑚)2 ,
(2𝑚)2−1

(2𝑚)2
] ∪

                    [
(2𝑚)2−1

(2𝑚)2 ,
(2𝑚)2

(2𝑚)2
] 

  = 𝐷(2𝑚)2 1  ∪ 𝐷(2𝑚)2 2 ∪ 𝐷(2𝑚)2 3 ∪ ⋯ ⋯ ∪ 𝐷(2𝑚)2 𝑟 

𝑙𝑙𝑙𝑙𝑦for the nth  term is  

 𝐶𝐹̃(2𝑚)𝑛 = {
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛 , ⋯ ⋯ ,
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛
} ; Where 1≤ 𝑚 ≤ 𝑁 

  = [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛
] ∪ [

1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛
] ∪ ⋯ ⋯ ∪ [

(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛
] ∪ [

(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛
] ∪

                   [
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛
] 

  = 𝐷(2𝑚)𝑛1  ∪ 𝐷(2𝑚)𝑛2 ∪ 𝐷(2𝑚)𝑛3 ∪ ⋯ ⋯ ∪ 𝐷(2𝑚)𝑛𝑟 

 

Let 

𝐸(2𝑚)𝑛1 = Set of all possible union of two elements. 

𝐸(2𝑚)𝑛2 = Set of all possible union of three elements. 

for the rth  term is 

𝐸(2𝑚)𝑛 𝑟 = Set of all possible union of (r +1) elements. 
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ie., 𝐸(2𝑚)𝑛 𝑟 = ⋃ (𝑟 + 1)
(2𝑚)𝑛−1
𝑟=1  

Take X = {𝐶 𝐹̃(2𝑚)1 , 𝐶𝐹̃(2𝑚)2 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝐶𝐹̃(2𝑚)𝑛 } 

P(X) = {𝐷(2𝑚)1 1 , 𝐷(2𝑚)1 2, 𝐷(2𝑚)1 3, ⋯ ⋯ , 𝐷(2𝑚)1 𝑟 , 𝐸(2𝑚)1 1 , 𝐸(2𝑚)1 2, 𝐸(2𝑚)1 3, ⋯ ⋯ , 𝐸(2𝑚)1 𝑟  

              ⋯ ⋯ ⋯ 𝐷(2𝑚)𝑛1 , 𝐷(2𝑚)𝑛2, 𝐷(2𝑚)𝑛3, ⋯ ⋯ , 𝐷(2𝑚)𝑛𝑟 , 𝐸(2𝑚)𝑛 1, 

 𝐸(2𝑚)𝑛 2, ⋯ ⋯ 𝐸(2𝑚)𝑛 𝑟 } 

Claim 1: 

The Set P(X) is a 𝜎 – algebra 

By the definition of 𝜎 – algebra.  

(i) Empty set 𝜑, P(X) ∈ 𝒜. 

(ii) Take (𝐷(2𝑚)12)
∁

= 𝑃(𝑋)/𝐷(2𝑚)12   

                                  = 𝐸(2𝑚)1 1 = Set of all possible union of two elements 

     ( iii) Consider the elements 𝐷(2𝑚)𝑛1, 𝐷(2𝑚)𝑛2, 𝐷(2𝑚)𝑛3, ⋯ ⋯ , 𝐷(2𝑚)𝑛𝑟 ∈ 𝒜 

Then 

 𝐷(2𝑚)𝑛1 ∪ 𝐷(2𝑚)𝑛2 ∪ ⋯ ∪ 𝐷(2𝑚)𝑛𝑟 = 𝐸(2𝑚)𝑛𝑟(Set of all possible union of 4𝑛elements) ∈ 𝒜 

∴ P(X) is a 𝜎 – algebra. 

Claim 2: 

The Set P(X) is a Borel set 

By the definition of Borel set 

Consider the elements 𝐷(2𝑚)𝑛1, 𝐸(2𝑚)𝑛 1 ∈ 𝒜 

𝐷(2𝑚)𝑛1 ∩  𝐸(2𝑚)𝑛 1 = 𝐷(2𝑚)𝑛1  ∈ 𝒜 

The Set P(X) satisfies all the conditions. 

Hence the set P(X) is 𝜎 – algebra and Borel set. Also the set P(X) is measurable sets. 

Now, the Lebesgue Measure of P(X) is calculated.  

 𝜆( 𝐶𝐹̃(2𝑚)𝑛 ) =  lim
𝑛→∞

𝜆( 𝐶𝐹̃(2𝑚)𝑛 ) 

     = lim
𝑛→∞

𝜆 {[
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛
] ∪ [

1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛
] ∪ ⋯ ⋯ ∪ [

(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛
] ∪ [

(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛
] ∪

                          [
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛
]}  

           =    lim
𝑛→∞

{𝜆 [
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛
] + 𝜆 [

1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛
] + ⋯ ⋯ + 𝜆 [

(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛
] +

                            𝜆 [
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛
] + 𝜆 [

(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛
]}  

   = lim
𝑛→∞

{(
1

(2𝑚)𝑛 −
0

(2𝑚)𝑛) + (
2

(2𝑚)𝑛 −
1

(2𝑚)𝑛) + ⋯ ⋯ + (
(2𝑚)𝑛−2

(2𝑚)𝑛 −
(2𝑚)𝑛−3

(2𝑚)𝑛 ) + (
(2𝑚)𝑛−1

(2𝑚)𝑛 −

(2𝑚)𝑛−2

(2𝑚)𝑛 ) + (
(2𝑚)𝑛

(2𝑚)𝑛 −
(2𝑚)𝑛−1

(2𝑚)𝑛 ) } 

 = lim
𝑛→∞

{
1

(2𝑚)𝑛 +
1

(2𝑚)𝑛 +
1

(2𝑚)𝑛 + ⋯ ⋯ +
1

(2𝑚)𝑛 +
1

(2𝑚)𝑛 +
1

(2𝑚)𝑛
} 

 = 0 

Therefore 𝜆( 𝐶𝐹̃(2𝑚)𝑛 ) = 0.  Hence 𝐶 𝐹̃(2𝑚)𝑛 has Lebesgue measure zero. 

Hence the Lebesgue measure of the Non reduced Farey N – subsequence of even order is zero. 
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Illustration: 1 

 𝐶𝐹 ̃(2𝑚)𝑛 = {
0

(2𝑚)𝑛  ,
1

(2𝑚)𝑛 ,
2

(2𝑚)𝑛 , ⋯ ⋯ ,
(2𝑚)𝑛−3

(2𝑚)𝑛 ,
(2𝑚)𝑛−2

(2𝑚)𝑛 ,
(2𝑚)𝑛−1

(2𝑚)𝑛 ,
(2𝑚)𝑛

(2𝑚)𝑛
} ; Where 1≤ 𝑚 ≤ 𝑁 

Put m = 2 

Non – Reduce to Farey N – Subsequence of order 4 is 

𝐶𝐹̃41 =  {
0

4
 ,

1

4
,

2

4
,

3

4
,

4

4
} = [

0

4
 ,

1

4
] ∪ [

1

4
,

2

4
] ∪ [

2

4
,

3

4
] ∪ [

3

4
,

4

4
]  

  = 𝐷41 ∪ 𝐷42 ∪ 𝐷43 ∪ 𝐷44 

C𝐹̃42 = {
0

16
 ,

1

16
 ,

2

16
 , … …

16

16
 } = [

0

16
,

1

16
] ∪ [

1

16
,

2

16
] ∪ [

2

16
,

3

16
] ∪ [

3

16
,

4

16
] ∪ … … ∪ [

15

16
,

16

16
]  

 = 𝐷421 ∪ 𝐷422 ∪ 𝐷423 ∪ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ∪ 𝐷42(15) ∪ 𝐷42(16) 

For nth term is  

𝐶𝐹̃4𝑛  = {
0

4𝑛
 ,

1

4𝑛
,

2

4𝑛
,

3

4𝑛
, ⋯ ⋯ 

4𝑛 − 3

4𝑛
,
4𝑛 − 2

4𝑛
,
4𝑛 − 1

4𝑛
,
4𝑛

4𝑛
} 

       = [
0

4𝑛  ,
1

4𝑛
] ∪ [

1

4𝑛 ,
2

4𝑛
] ∪ [

2

4𝑛 ,
3

4𝑛
] ∪ ⋯ ⋯ ∪ [

4𝑛−3

4𝑛 ,
4𝑛−2

4𝑛
] ∪ [

4𝑛−2

4𝑛 ,
4𝑛−1

4𝑛
] ∪ [

4𝑛−1

4𝑛 ,
4𝑛

4𝑛
]  

        = 𝐷4𝑛1 ∪ 𝐷4𝑛 2 ∪ 𝐷4𝑛3 ∪ ⋯ ⋯ ⋯ ∪ 𝐷4𝑛𝑚 

Let 

𝐸4𝑛1 = Set of all possible union of two elements. 

𝐸4𝑛2 = Set of all possible union of three elements. 

lllly for mth term is 

𝐸4𝑛𝑚 = Set of all possible union of (m+1) elements. 

ie., 𝐸4𝑛𝑚 = ⋃ (m + 14𝑛−1
𝑚=1 ) 

Take X = {𝐹̃41 , 𝐹̃42 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝐹̃4𝑛  } 

P(X) = {𝐷41, 𝐷42, 𝐷43, 𝐷44, 𝐸41, 𝐸42 , 𝐸43 , ⋯ 𝐷4𝑛1, 𝐷4𝑛2, 𝐷4𝑛 3, ⋯ , 𝐷4𝑛𝑚 , 𝐸4𝑛1, 𝐸4𝑛2 ⋯ 𝐸4𝑛𝑚} 

By the definition of 𝜎 – algebra. The Set P(X) satisfies all the conditions. 

Also the set P(X) is 𝜎 – algebra and Borel set .  

(i) Empty set 𝜑, P(X) ∈ 𝒜. 

(ii) Take (𝐷42)∁ = 𝑃(𝑋)/𝐷42   

                          = 𝐸41 = Set of all possible union of two elements 

   ( iii) Consider the elements 𝐷4𝑛1, 𝐷4𝑛2, 𝐷4𝑛3, ⋯ , 𝐷4𝑛𝑚 ∈ 𝒜 

Then 𝐷4𝑛1 ∪ 𝐷4𝑛2 ∪ 𝐷4𝑛3 ∪ ⋯ ∪ 𝐷4𝑛𝑚 = 𝐸4𝑛𝑚(Set of all possible union of 4𝑛elements)  ∈ 𝒜 

∴ P(X) is a 𝜎 – algebra. 

iv) The Set P(X) satisfies the countable intersection 

Consider the elements 𝐷43 ∩ 𝐸43 = 𝜑 ∈ 𝒜 

∴ P(X) is a Borel set. 

Therefore P( X) is a 𝜎  Algebra as well as Borel Set. 

Lebesgue Measure: 

𝜆(𝐶𝐹̃4𝑛  ) =  lim
𝑛→∞

𝜆(𝐶𝐹̃4𝑛  ) 

                 = lim
𝑛→∞

𝜆 {[
0

4𝑛  ,
1

4𝑛
] ∪ [

1

4𝑛 ,
2

4𝑛
] ∪ [

2

4𝑛 ,
3

4𝑛
] ∪ ⋯ ⋯ ∪ [

4𝑛−3

4𝑛 ,
4𝑛−2

4𝑛
] ∪ [

4𝑛−2

4𝑛 ,
4𝑛−1

4𝑛
] ∪ [

4𝑛−1

4𝑛 ,
4𝑛

4𝑛
]} 
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       =  lim
𝑛→∞

{𝜆 [
0

4𝑛  ,
1

4𝑛
] + 𝜆 [

1

4𝑛 ,
2

4𝑛
] + 𝜆 [

2

4𝑛 ,
3

4𝑛
] + ⋯ ⋯ + 𝜆 [

4𝑛−3

4𝑛 ,
4𝑛−2

4𝑛
] + 𝜆 [

4𝑛−2

4𝑛 ,
4𝑛−1

4𝑛
] +

                      𝜆 [
4𝑛−1

4𝑛 ,
4𝑛

4𝑛
]} 

   =  lim
𝑛→∞

{(
1

4𝑛 −
0

4𝑛) + (
2

4𝑛 −
1

4𝑛) + (
3

4𝑛 −
2

4𝑛) +  ⋯ + (
4𝑛−2

4𝑛 −
4𝑛−3

4𝑛 ) + (
4𝑛−1

4𝑛 −  
4𝑛−2

4𝑛 ) +

                     (
4𝑛

4𝑛 −
4𝑛−1

4𝑛 )}  

  =  lim
𝑛→∞

{
1

4𝑛 +
1

4𝑛 +
1

4𝑛 + ⋯ ⋯ +
1

4𝑛 +
1

4𝑛 +
1

4𝑛
}  

 = 0 

Therefore 𝜆(𝐶𝐹̃4𝑛  ) = 0.  Hence 𝐶𝐹̃4𝑛  has Lebesgue measure zero. 

      By a slight modification in writing non reduced Farey N – subsequence as a measurable set. The 

sequence is written union of closed and semi – open intervals of Probability. 

 

4. PROBABILITY MEASURE OF GENERALIZED NON - REDUCE TO FAREY 

N- SUBSEQUENCE OF EVEN ORDER  

Theorem: 2 

The Probability measure of the Non reduced Farey N – subsequence of even order n is one. 

Proof: 

Construction of measurable sets from Farey N – subsequence 

𝐻𝐶 𝐹̃(2𝑚)  
= {

0

(2𝑚)
 ,

1

(2𝑚)
,

2

(2𝑚)
, ⋯ ⋯ ,

(2𝑚)−3

(2𝑚)
,

(2𝑚)−2

(2𝑚)
,

(2𝑚)−1

(2𝑚)
,

(2𝑚)

(2𝑚)
}  

= [
0

(2𝑚)
 ,

1

(2𝑚)
] ∪ [

1

(2𝑚)
,

2

(2𝑚)
] ∪ ⋯ ⋯ ∪ [

(2𝑚)−3

(2𝑚)
,

(2𝑚)−2

(2𝑚)
] ∪ [

(2𝑚)−2

(2𝑚)
,

(2𝑚)−1

(2𝑚)
] ∪ [

(2𝑚)−1

(2𝑚)
,

(2𝑚)

(2𝑚)
]  

ie., HC  𝐹̃(2𝑚) = {
0

(2𝑚)
 ,

1

(2𝑚)
,

2

(2𝑚)
, ⋯ ⋯ ,

(2𝑚)−3

(2𝑚)
,

(2𝑚)−2

(2𝑚)
,

(2𝑚)−1

(2𝑚)
,

(2𝑚)

(2𝑚)
}  

                          = [
0

(2𝑚)
 ,

1

(2𝑚)
) ∪ [

1

(2𝑚)
,

2

(2𝑚)
) ∪ ⋯ ⋯ ∪ [

(2𝑚)−3

(2𝑚)
,

(2𝑚)−2

(2𝑚)
) ∪ [

(2𝑚)−2

(2𝑚)
,

(2𝑚)−1

(2𝑚)
) ∪

                              [
(2𝑚)−1

(2𝑚)
,

(2𝑚)

(2𝑚)
]  

By the definition of Probability Measure P (A)≥ 0 and If 𝐴1 and 𝐴2 are disjoint, then P(𝐴1) +

𝑃(𝐴2)  

More generally,if 𝐴1, 𝐴2, ⋯ ⋯ , 𝐴𝑛 are mutually disjoint, then 𝑃(⋃ 𝐴𝑖
∞
𝑖=1 ) =  ∑ 𝑃(𝐴𝑖)

∞
𝑖=1  

Now  

Probability Measure HC  𝐹̃(2𝑚)  = (
1

(2𝑚)
−

0

(2𝑚)
) + (

2

(2𝑚)
−

1

(2𝑚)
) + ⋯ + (

(2𝑚)

(2𝑚)
−

(2𝑚)−1

(2𝑚)
 ) 

                   =  
1

(2𝑚)
+

1

(2𝑚)
+

1

(2𝑚)
+ ⋯ ⋯ +

1

(2𝑚)
 

                                   =
1

(2𝑚)
 (1 + 1 + 1 + 1 + ⋯ ⋯ ⋯ + (2𝑚) 𝑡𝑖𝑚𝑒𝑠) 

                                                       =
2𝑚

2𝑚
 

                       = 1 

∴   Probability Measure of Non - Reduced Farey N- Subsequence of order (2m) is one. 

Illustration: 2 
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HC 𝐹̃(2𝑚) = {
0

(2𝑚)
 ,

1

(2𝑚)
,

2

(2𝑚)
, ⋯ ⋯ ,

(2𝑚)−3

(2𝑚)
,

(2𝑚)−2

(2𝑚)
,

(2𝑚)−1

(2𝑚)
,

(2𝑚)

(2𝑚)
}  

                          = [
0

(2𝑚)
 ,

1

(2𝑚)
) ∪ [

1

(2𝑚)
,

2

(2𝑚)
) ∪ ⋯ ⋯ ∪ [

(2𝑚)−3

(2𝑚)
,

(2𝑚)−2

(2𝑚)
) ∪ [

(2𝑚)−2

(2𝑚)
,

(2𝑚)−1

(2𝑚)
) ∪

                              [
(2𝑚)−1

(2𝑚)
,

(2𝑚)

(2𝑚)
]  

Put m = 2 

HC 𝐹̃4 =  {
0

4
 ,

1

4
,

2

4
,

3

4
,

4

4
} 

               = [ 
0

4
 ,

1

4
) ∪ [

1

4
,

2

4
) ∪ [

2

4
,

3

4
) ∪ [

3

4
,

4

4
] 

By the definition of Probability Measure P (A)≥ 0 

Now  

Probability Measure HC 𝐹̃4  = (
1

4
−

0

4
) + (

2

4
−

1

4
) + (

3

4
−

2

4
 ) + (

4

4
−

3

4
)    

            =  
1

4
+

1

4
+

1

4
+

1

4
 

                             = 1 

∴ Non - Reduce to Farey N- Subsequence of order 4 of Probability Measure is one. 

In this paper m may be taken as a positive integer. 

 

5. CONCLUSION 

      In this paper the Non reduced Farey N – subsequence has been established as a 𝜎- algebra and 

Borel set.  By reconstructing the sequence of elements also the Lebegue Measure and Probability 

Measure have been calculated for this 𝜎- algebra. Here only Farey N- subsequence of even order has 

been studied. In future work, we have established the even order of Cantor sets also.   
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Abstract 

Farey sequence in [0, 1] is a sequence of real numbers generated using median properties. 

A subsequence of Farey sequence, NF  Farey N-subsequence has been established as a 

topological space and a Hausdorff space by appropriately defining basis and open sets. Also the 

axiom has been discussed with an illustration. A Lebesgue measure of Farey sequence of both 

odd and even order has been presented in this paper.  

1. Introduction 

The Farey Sequence usually referred to as the Farey series, maybe a 

chain of sequences during which every series includes rational numbers that 

move in estimate from zero to one [2].  

In “Extraction of Cantor Middle 






 
7

3
,

5

2
 from Non-Reducible Farey 
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Subsequence” -Cantor ternary sets and some higher ordered Cantor sets have 

been extracted from Farey sequences of like order. There are many properties 

observed on the Farey sequence in “Farey to Cantor” [1]. In “Farey Triangle 

Graphs and Farey Triangle Matrices” [4] the terms of a Farey sequence have 

been considered as ordered pairs and a pattern of matrices and graphs have 

been identified.  

It is mentioned in “https://ncatlab.org/nlab” that Cantor sets may be 

developed into topological space and Hausdorff space. Having identified the 

terms of 1, NN FF  is written by writing the mediant of all the successive 

terms of .NF  With slight modification, sequence whose terms are Farey 

sequences has been establishedas various spaces namely topological space, 

Hausdorff space and 1T  space. A Hausdorff space is basically a topological 

space. To form a topology a nonempty set with basis elements should be 

defined clearly.  

2. Preliminaries 

Definition 1. Farey sequence [1] A Sequence of rational numbers 
q

p
 

with   1, qp  in  1,0  and nq   is called a Farey Sequence of order n, 

denoted by .nF   

Example 1.  









1

1
,

1

0
1F  









1

1

2

1
,

1

0
2F  









1

1
,

3

2
,

2

1
,

3

1
,

1

0
3F  

Definition 2. Farey N-subsequence [1] In a Farey sequence NF   the 

elements with denominators precisely N are classified as Farey N-

subsequence and denoted by .NF  
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







 NiNu
N

u
F i

i
N 0,0  

Example 2. The Farey N-Sequence of order 4 is 







 

1

1

4

4

4

3

4

1

4

0

1

0
NF  

Definition 3. Non - Reducible Farey Sequence [1] A subset of the 

Farey sequence NF   whose denominator not exceeding N is taken as Non – 

Reducible Farey Sequence. It is denoted by .NF   

Example 3. The quaternary Non - Reducible Farey Sequence of order 4 is  







 

1

1

4

4
,

4

3
,

3

2
,

4

2

2

1
,

3

1
,

4

1
,

4

0

1

0~
4F  

Definition 4. Non-Reducible Farey N-Subsequence [1] For ,NF  the 

element of the sequence with denominator N is taken as Non-Reducible Farey 

N-subsequence. It is denoted by .
~

NF  

Example 4. The Non- Reducible Farey N-Subsequence of order 4 is  







 

1

1

4

4
,

4

3
,

4

2
,

4

1
,

4

0~
4F  

Non-Reducible Farey N-subsequenceoforder 4
~
F  and its higher powers 

have been given below. 







  1

4

4
,

4

3
,

4

2
,

4

1
,

4

0~
14

F  (2.1) 

24

~
F  







  1

16

16
,

16

15
,

16

14
,

16

13
,

16

12
,

16

11
,

16

10
,

16

9
,

16

8
,

16

7
,

16

6
,

16

5
,

16

4
,

16

3
,

16

2
,

16

1
,

16

0

(2.2) 







  1

64

64
,,

64

10
,

64

9
,

64

8
,

64

7
,

64

6
,

64

5
,

64

4
,

64

3
,

64

2
,

64

1
,

64

0~
34

F  (2.3) 
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3. A Subsequence of Farey Sequence-Topological Space 

Theorem 1. For any integer 3N  a subsequence of Farey sequence, 

Farey N-subsequence denoted by kN
F
~

 is a topological space.  

Proof. To define a topology on a set first a basis and hence open sets 

should be described clearly. Here the basis is defined as follows.  

Consider 





























,5,4,3

,4,3,2,1,

,3,2,1,0

N

k
N

i
i

X
k

   

Take  ,3,2,1,
~

 kFB kN
  

Here every element of B is a sequence of real numbers.  

Claim. B constitute a basis for X  

Clearly 






 1,

4

3
,

4

2
,

4

1
,0,3,2,1,

~
 kFF kN

  

Case (i). If Fx   then choose basis elements as any one of 2,
~

kF kn
  

Case (ii). Suppose that x is not in F. X may be any one of the following 

forms.  

NjNjiN
N

i
X

kNi
kk

k
,,3,2,111;

10

1





 for .,,3,2,1  k  

Choose basis elements as any one of  ,,3,2,
~

kF kN
 

Then clearly ji BB   contains a basis element in which x is a members.  

The open sets may taken as a sequence of union of members of B. Then 

for every elements in U there exists a member in B such that .UBx   

Illustration 1. Consider 





























,5,4,3

,4,3,2,1,

,3,2,1,0

N

k
N

i
i

X
k
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 ,3,2,1,
~

 kFB kN
  

Take ,3,2,1,4  kN  

 ,
~

,
~

,
~

321 444
FFFB   

Consider higher ordered Farey sequence  







  1

4

4
,

4

3
,

4

2
,

4

1
,

4

0~
14

F  

24

~
F  







  1

16

16
,

16

15
,

16

14
,

16

13
,

16

12
,

16

11
,

16

10
,

16

9
,

16

8
,

16

7
,

16

6
,

16

5
,

16

4
,

16

3
,

16

2
,

16

1
,

16

0
 







  1

64

64
,,

64

10
,

64

9
,

64

8
,

64

7
,

64

6
,

64

5
,

64

4
,

64

3
,

64

2
,

64

1
,

64

0~
34

F  

  

  

32 44

~~
FFU   

Such that 
24

3
x  and UFx  24

~
  

Let  ,
~

,
~

,
~

321 444
FFF   

Consider 141
~
F   







 1,

4

3
,

4

2
,

4

1
,0  

and 241
~
F  







 1,

16

15
,,

16

3
,

16

2
,

16

1
,0   

Then  
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21 4421
~~
FF    















 1,

16

15
,,

16

3
,

16

2
,

16

1
,01,

4

3
,

4

2
,

4

1
,0   








 1,

16

15
,,

16

3
,

16

2
,

16

1
,0   

 Therefore the union of the elements of a subset of  is in .  

Consider 341
~
F   







 1,

64

63
,,

64

3
,

64

2
,

64

1
,0   

and 441
~
F   







 1,

256

255
,,

256

3
,

256

2
,

256

1
,0   

Then  

43 4421
~~
FF    















 1,

256

255
,,

256

3
,

256

2
,

256

1
,01,

64

63
,,

64

3
,

64

2
,

64

1
,0   








 1,

64

63
,,

64

3
,

64

2
,

64

1
,0   

Therefore the intersection of the elements of any finite subcollection of  

is in . In well known that in a Hausdorff space every pair of elements is 

separated by open sets the following is the theorem of Farey N-subsequenceas 

Hausdorff space.  

Theorem 2. For set consisting of rational numbers of 
kN

i
 the form the 

basis defined in the above theorem forms a Hausdorff space.  

Proof. A Hausdroff space is in fact a topological space. To define a 

topology a basis should be describe in the basis for the topology is defined as 

above. Here an open set is taken in the form 
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
1

1

~~ 




k

j NN jk FXW  where 




,5,4,3

,3,2,1





N

k
 

Consider the points 
rN

i
x 1  and ,3,2,1,,2  tr

N

i
x

t
 clearly 

rNr
F

N

i ~
  and tNt

F
N

i ~
  which are disjoint by their construction. 

Therefore any two disjoint points of X have disjoint neighbourhoods. 

Therefore X is a Hausdorff space.  

Illustration 2. 
1

1

~~ 




k

j NN jk FXW  where 




,5,4,3

,3,2,1





N

k
  

Take ,3,2,1,4  kN  

Consider ,
~

,
~

,
~

321 444
WWWS   

31
4

61
s  and 

42
4

251
s  are distinct points of S.  

Then there exist neighborhoods 

341
~

WD   and 442
~

WD   of 1s  and 2s  that are also disjoint. 

Therefore the topological space S is called a Hausdorff space.  

Corollary 1. On the same construction above the topological space X also 

satisfies 1T  axioms. 

Illustration 3. 
1

1

~~ 




k

j NN jk FXW  where 




,5,4,3

,3,2,1





N

k
 

Take ,3,2,1,4  kN   

Consider ,
~

,
~

,
~

321 444
WWWT   

Given two points 
21

4

15
q  and 

52
4

517
q  of T  

There exist an open set 241
~

WI   and 542
~

WI   of T  
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Therefore 241
~

Wq   and 541
~

Wq   

542
~

Wq   and .
~

242 Wq   

Theorem 3. NN FFF ,  is a Farey sequence is bounded by 0 and 1. 

The subsequence kN
FV   of F it has convergent subsequence.  

Proof. Consider the Farey sequence ,NF  where ,3,2,1N  for all 

positive integers NFN,  is a bounded sequence and is bounded by 0 and 1.  

The set F is defined above is also bounded by 0 and 1.  

Now the subsequence of V namely 








 ,3,2,1k
N

k
k

 it is a 

convergence sequence and converges to 0. This is because 0
1


kN

 as 

k  and for all positive integers N.  

The Farey N subsequence of order 4 can be depicted in the graph as 

follows X axis = Farey N-subsequence  

Y axis Y axis = Integer 
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Figure 1. 

From the above graph, it is clear that the curve resembles inverse 

exponential curve. 

5. Conclusion 

We have established the Farey N-Subsequence and also we have shown 

their topology space, Hausdorff space and space. 
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Complex Method on Octagonal Number 
S. Sudha, A. Gnanam 

 
Abstract: In Number theory Study of polygonal numbers is 

rich in varity. In this paper we establish a Complex Octagonal 

Number using Continued Fraction algorithm. 

 

Keywords:  Algorithm, Continuedfraction, complex Number. 

Octagonal Number. 

I. INTRODUCTION 

A Simple continued fraction [1] is an expression of the 

form  

𝑎0 +
𝑏0

𝑎1 +
𝑏1

𝑎2 +
𝑏2

⋱

 

Where the 𝑎𝑖  are a possibly infinite sequence of integers 

such that 𝑎1 is non-negative and the rest of the sequence is 

positive. We write  𝑎1; 𝑎2 , 𝑎3 ……   . The above fraction 
also calls them Regular continued fractions. 

II.  CONTINUED FRACTION ALGORITHM 

Suppose we wish to find continued fraction expansion 2  
of 𝑥 ∈ 𝑅. 
Let 𝑥0 ∈ 𝑥 and set 𝑎0 =  𝑥0 , 

Define 𝑥1 =
1

𝑥0− 𝑥0  
 and set 𝑎1 =  𝑥1  and 𝑥2 =

1

𝑥1− 𝑥1 
 ⇒

𝑎2 =  𝑥2 … . 𝑥𝑘 =
1

𝑥𝑘−1−[𝑥𝑘−1]
⇒ 𝑎𝑘 =  𝑥𝑘  … 

This process is continued infinitely or to some finite stage till      

an 𝑥𝑖 ∈ 𝑁 exists such that 𝑎𝑖 =  𝑥𝑖 . 

III.  OCTAGONAL NUMBER 

A. Definition: Centered Octagonal Number 3  
The Number 1,9,25,49,81,121,…….. are called centered 

octagonal numbers. The number that represents associate 

in nursing polygonal shape with a dot within the center 

and every one dots different dots encompassing the middle 

dot in associate in nursing polygonal shape lattice . 

         The 𝑛𝑡ℎ  centered octagonal number is given by the 
formula 

𝑂𝑛 = 4𝑛 𝑛 − 1 + 1 
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B. Theorem: 

      For 𝑛 ≥ 3,  
𝑂𝑛

𝑂𝑛+1
+ 𝑖

𝑂𝑛+2

𝑂𝑛+3

=   
 0; 1,  

𝑛

2
 , 8𝑛 + 𝑖  0; 1,  

𝑛 + 1

2
 , 8(𝑛 + 2)    𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑

 0; 1,
𝑛

2
− 1,1,1,2𝑛 − 1,2  + 𝑖  0; 1,

(𝑛 + 2)

2
− 1,1,1,2(𝑛 + 2) − 1,2   𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 

  

Proof: 

Case (i):- n is odd  

    Let n = 2k-1, Where 3≤ 𝑘 ≤ 𝑛 

Then  
𝑂2𝑘−1

𝑂2𝑘

+ 𝑖
𝑂2𝑘+1

𝑂2𝑘+2

=  0; 1,  
2𝑘 − 1

2
 , 8(2𝑘 − 1) 

+ 𝑖 0; 1,  𝑘 , 8(2𝑘 + 1)  
Next we have to prove that n = 2k+1 

To find the continued fraction of 
𝑂2𝑘+1

𝑂2𝑘+2

+ 𝑖
𝑂2𝑘+3

𝑂2𝑘+4

 

A. Real Part:-[3] 

𝑂2𝑘+1

𝑂2𝑘+2

=  
4 2𝑘 + 1  2𝑘 + 1 − 1 + 1

4 2𝑘 + 2  2𝑘 + 2 − 1 + 1
 

           =
16𝑘2+8𝑘+1

16𝑘2+2𝑘+9
 

𝑥0 =
16𝑘2+8𝑘+1

16𝑘2+2𝑘+9
 , 𝑎0 = 0   

𝑥1 ⇒ 1 +
16𝑘+8

16𝑘2+8𝑘+1
⇒ 𝑎1 = 1    

𝑥2 ⇒ 𝑘 +
1

16𝑘 + 8
⇒ 𝑎2 = 𝑘 

𝑥3 ⇒ 16𝑘 + 8 ⇒ 𝑎3 = 16𝑘 + 8 

       =8(2k+1) 

∴
𝑂2𝑘+1

𝑂2𝑘+2

=  0; 1, 𝑘, 8(2𝑘 + 1)   

B. Imaginary part:- 

𝑂2𝑘+3

𝑂2𝑘+4

⇒
4 2𝑘 + 3  2𝑘 + 3 − 1 + 1

4 2𝑘 + 4  2𝑘 + 4 − 1 + 1
 

= 
4[4𝑘2+6𝑘−2𝑘+6𝑘+9−3]+1

4[4𝑘2+8𝑘−2𝑘+8𝑘+16−4]+1
 

= 
4[4𝑘2+4𝑘+6𝑘+6]+1

4[4𝑘2+14𝑘+12]+1
 

= 
4[4𝑘2+10𝑘+6]+1

4[4𝑘2+14𝑘+12]+1
 

= 
16𝑘2+40𝑘+24+1

16𝑘2+56𝑘+48+1
 

𝑂2𝑘+3

𝑂2𝑘+4

⇒
16𝑘2 + 40𝑘 + 25

16𝑘2 + 56𝑘 + 49
  

𝑥0 =
16𝑘2+40𝑘+25

16𝑘2+56𝑘+49
 ;  𝑎0 = 0    

Then 

𝑥1 ⇒
16𝑘2+56𝑘+49

16𝑘2+40𝑘+25
= 1 +

16𝑘+24

16𝑘2+40𝑘+25
⇒ 𝑎1 = 1    
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Notations:- 

1.  𝑎0; 𝑎1, 𝑎2, …… . 𝑎𝑛       : Continued fraction Expansion 

2.  
𝑛

2
                                   : Integer part of the rational number n/2. 

3. 𝑂𝑛 = 4𝑛 𝑛 − 1 + 1     : n
th

centered octagonal number. 

 

I. Introduction 

A continued fraction refers to all expressions of the form  

𝑎0 +
𝑏0

𝑎1 +
𝑏1

𝑎2+
𝑏2
⋱

 

Where 𝑎1 , 𝑎2 , 𝑎3 …….and 𝑏1 , 𝑏2 , 𝑏3 …….are either real or complex values. The number of terms can be either 

finite or infinite 7 . 

  A Simple Continued fraction is a continued fraction 7  in which the value of 𝑏𝑛 = 1 for all n.  

𝑎0 +
1

𝑎1 +
1

𝑎2+
1

⋱

 

The value of 𝑎𝑛 is a positive integer for all n ≥ 1. 𝑎1can be any integer value, including 0. The above fraction is 

sometimes represented by  𝑎1; 𝑎2 , 𝑎3 ……  

 

II. Continued Fraction Algorithm 

To find continued fraction expansion of 𝑥 ∈ 𝑅.  

Let 𝑥 ∈ 𝑅 and we write  2  

𝑥 =  𝑎0 + 𝑡0 

With 𝑎0 ∈ 𝑍and 0 ≤ 𝑡0 < 1 

If𝑡0 ≠ 0, then we write 
1

𝑡0
= 𝑎1 + 𝑡1with 𝑎1 ∈ 𝑁 and 0 ≤ 𝑡1 < 1 

Thus we can write  

𝑡0 =  
1

𝑎1 + 𝑡1
=   0; 𝑎1 + 𝑡1  

This is a continued fraction expansion of𝑡0. Continue in this process 𝑡𝑛 ≠ 0  

We write 

 
1

𝑡𝑛
= 𝑎𝑛+1 + 𝑡𝑛+1   
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I. Introduction  

The Farey sequence is an example that has its inception for all intents and common numbers.  The 

Farey sequence was so named after the British born geologist, John Farey   (1766-1826).  Given a sequence 𝐹𝑁  

where 𝑏, 𝑑 and 𝑏 + 𝑑 are all less than 𝑁, what Farey noticed is that if two fractions 
𝑎

𝑏
 and 

𝑐

𝑑
 were combined in 

the way 
𝑎+𝑐

𝑏+𝑑
, the resulting fraction was also in the series. Farey was not able to prove this but prolific French 

mathematician Augustin Cauchy (1789-1857) had the option to give a proof in 1816 and published in Exerices 

de mathematiques [1,3,5,6,8,9].  

                 This paper is organized as follows: Section 2 Basic definitions with example.    Section 3 iterated 

function system of Non – Reducible Farey N – subsequence of order 4. Section 4 Research formulates iterated 

function system of Non – Reducible Farey                      N – subsequence of order 6. Section 5 the researcher 

shows the iterated function system of     Non – Reducible Farey   N – subsequence of order (2m-2).  

 

II. Preliminaries 
Throughout this paper we study the Non – Reducible Farey N – subsequence of order (4, 6,...) 
 

Definition 2.1:  Farey sequence [2] 

A Farey sequence 𝐹𝑛  is the set of rational numbers 
𝑝

𝑞
 with 𝑝 and q coprime, with 0 < 𝑝 < 𝑞 < 𝑛, ordered by 

size. 

 

Example 2.1.1: 

              𝐹1 =   
0

1
 ,

1

1
  

   𝐹2 =   
0

1
 ,

1

2
 
1

1
  

              𝐹3 =   
0

1
 ,

1

3
,

1

2
 ,

2

3
,

1

1
  

 

Definition 2.2: Farey N – subsequence [2] 

The subsequence of farey sequence of order N whose denominators is equal to N is named as Farey  

N – subsequence and denoted by    𝐹𝑁
′    .   

     𝐹𝑁
′   =   

𝑢𝑖

𝑁
/ 0 ≤ 𝑢𝑖 ≤ 𝑁, 0 ≤ 𝑖 ≤  𝑁  

Definition 2.3: Non - Reducible Farey Sequence [2] 

The Sequence of non-reduced fractions with denominators not exceeding N listed in order of their size is called 

Non - Reducible Farey Sequence of order N. It is denoted by 𝐹𝑁  . 
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