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Abstract 
 

The construction of this research work has been mainly focused on evolving the 

new concept of algebraic structure, namely GK algebra. The newly constructed algebraic 

structure is named from the first letters of the authors’ name. In this work, the 

characteristics of GK algebra are studied and showed that GK algebra is different from all 

other algebraic structures such as BCK / BCI / BM / C / BE / TM / BG / Z / AB / B / BRK 

/ KUS / KU / Q / QS / PS / SP, etc. with suitable illustrations. The GK sub algebra,          

GK ideal, self-distributivity, commutativity, and associativity of GK algebra are defined 

and their respective properties are expounded. Homomorphism and anti-homomorphism of 

GK algebra are introduced and discussed the relationship between homomorphism, anti-

homomorphism, ideal, and kernel of GK algebra in detail. The theory of multipliers and 

kernel of multipliers of GK algebra are introduced and investigated their properties. The 

concept of the direct product of GK algebra is studied. The theory of derivation in            

GK algebra is initiated and particularly (left-right) and (right-left) derivation respectively 

are investigated. The concept of the symmetric bi derivation of GK algebra is deliberated. 

The newly constructed algebraic structure, GK algebra is fuzzified and investigated their 

aspects. The fuzzy GK sub algebra, fuzzy GK ideal, fuzzy GK homomorphism, and fuzzy 

GK anti-homomorphism, fuzzy GK anti-ideal are developed and explored their properties. 

The Cartesian product along with fuzzy GK algebra is examined and in continuation, few 

interesting results relevant to these are obtained.  
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CHAPTER 1 

INTRODUCTION 

1.1 Algebraic structure 

 

         The term “algebra” has been coined only in the 19th Century. The word algebra 

was used first time in the book entitled Hisab al-JabrW’al-muqabala”                         

a Mathematician, who lived in the city of Baghdad, knowingly, Jafar Muhammad 

I.M. Al-Khwaizmi. His area of interest was solving the algebraic equation, particularly 

quadratic equations. His method of finding the solution for an equation was quite 

different. He applied a transformation to the given equation and substituted it in a 

standard form and attained the method of solution to that equation.  In connection 

with this, through the 19th Century the meaning of “algebra” was only solving the 

equations, on which, mainly focused on the 4th degree or less than that. In this regard, 

the method of finding the solution to an equation is known as Classical algebra. It was 

first developed by Babylonian. They were distinctly known for efficient “algebraists”. 

In the early decennium of the 20th Century, algebra had progressed in the 

axiomatic approach. This approach is known as modern or abstract algebra. At the 

end of the 19th Century, the transformation from Classical algebra to modern algebra 

was developed. The axiomatic approach is used while learning abstract mathematics. 

This leads to taking a group of ℕ objects and presuming some conditions about their 
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structure. These conditions are named axioms. Using this, we shall derive other 

formats about ℕ by using logical statements. 

The algebraic structure is a structure that can arise in the problem of 

Mathematics. It is defined through distinct order of axioms. In the field of 

Mathematics, the algebraic structure takes a part in an indispensable role with 

comprehensive application in several areas namely Engineering, Physics, Information 

Technology and Computer Science etc. 

1.2 Fuzzy Structure 

In 1965, the fuzzy set theory was coined by Zadeh [74]. In the observation of 

fuzzy sets, the word fuzzy generally represents the word, formless or unclear. He has 

initiated an analytical technique of decision making with fuzzy elucidation of some 

kind of information became possible. The concept of fuzzy set theory offered a 

gradient to perceive and explore the relationship between the sets and the 

corresponding elements in the set. Fuzzy set theory was followed by the presumption 

that classical sets were not realistic, applicable, or useful concepts in exploring real-

life problems because everything confronted in this world carries a degree of 

fuzziness. Further, the concept of grade of membership is not a probabilistic concept. 

It is very difficult to describe the concept of vagueness. At that time, the grade 

of membership has introduced. A fuzzy set is characteristics by a membership 

function that assigns to each object a degree of membership ranging from zero and 

one. Basically, fuzzy logic is a multi-valued logic that allows intermediate values to 

be defined between conventional evaluations like true or false, yes or no, high or low 
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etc. Hence fuzzy set has become a wide area of research in Engineering, Medical 

science, Social science, Graph theory etc. 

The fuzzy subgroups are introduced in a seminal paper which was delivered 

by Rosenfeld, in 1971[64]. This paper is one of the initiatives of attaining the new 

content in abstract algebra and also in fuzzy mathematics. In continuation of that, 

many researchers have come forward to do their research work with fuzzy concepts. 

Fuzzy algebraic structures, fuzzy topological spaces, and fuzzy graphs are some fuzzy 

extensions of the vital theories in the field of mathematics such as Algebra, Topology, 

and Graph theory respectively. 

1.3 Literature Review 

A review of the literature provides the fundamental facts, a clear graph of the 

subject under investigation, the research gaps that remain, and the path forward. This 

section provides the Chronological facts of the researches state of the art. 

BCK-algebras and BCI-algebras are abridged to two B-algebras. The         

BCK algebra has been coined in 1966 by the Japanese mathematicians, Y. Imai and 

K. Iseki [24]. Two B-algebras have been created from two different provenances. One 

of the instigations is gleaned from set theory. The necessary and rudimentary 

operations on set theory are the union, intersection, and set difference. In addition 

that, the Boolean algebra is attained from these three operations and their aspects, and 

also their generalization. Considering the union and intersection both together then as 

an algebra, the concept of distributive lattices is attained. In addition, the observation 

of any one of the operations such as either union or intersection alone, the concept of 

upper semi-lattices is attained,  otherwise, lower semi-lattices has appeared. Despite 
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this, the set difference along with its aspects have not been observed as methodically 

before Iseki [24]. 

Later, in 1980, another class of algebraic structure was initiated by Iseki [25] 

named as BCI algebra and analyzed some of its aspects. It is shown that the          

BCK algebra is a proper subclass of the BCI-algebra. These two algebras are the 

paramount classes of logical- based algebras. In 1983, a wide range of abstract 

algebra named as, BCH- algebras was initiated by Hu and Li [23] and which is shown 

that the class of BCI algebras is a proper subclass of the class of BCH-algebras. 

In 1990, the concept of BCC algebra has explored by Dudek [17]. Meanwhile, 

in 1998, the new idea which is called as BH algebra introduced by Jun Y.B,             

Roh, E. H, Kim, H. S. [27] as a generalization of BCH / BCI/BCK- algebras. In 1999, 

the new algebraic structure, which is named as d algebra has initiated by Neggers and 

Kim [53], which is another generalization of BCK-algebras and studied the relation 

between d algebra and BCK algebra. 

At the same period of time, in 1999, one more new algebraic structure namely      

QS algebra which is also a generalization of BCK/BCI algebras, was explored by          

Ahn and Kim [6] and derived various results in terms of subalgebras, ideals, 

implicative, etc. In 2001, Q- algebras which is a generalization of BCH / BCI / BCK-

algebras, and analyzed several theorems on BCI algebras, by Neggers, J, Ahn, S.S and 

Kim, H.S [52]. Then after, in 2002, the new notion called B algebra was introduced 

by Neggers and Kim [50] which is another generalization of the class of 

BCK/BCI/BCH –algebras.  



CHAPTER 1   INTRODUCTION               5     

 

During the same period of time, in 2002, a new concept which is called as              

𝛽-algebras established by Neggers and Kim [51], where two operations are combined 

in this way as to reflect the logical reasoning which exists between the typical group 

operation and its associated B-algebra which is interpreted by it. 

In 2006, the notion of BM algebra was introduced by Kim C. B and Kim H. S 

[30] which is a special class of B-algebras. They established that the class of            

BM algebras is a proper subclass of B-algebras and also derived that 0 commutative        

B-algebra is equivalent to BM algebra. 

In 2006, the concept of theory of BE algebra was introduced by H. S. Kim and      

Y. H. Kim [32] as a generalization of a BCK-algebra which is intensely analyzed by          

S. S. Ahn and Y. H. Kim and K. S. So[7] and A. Walendziak [71]. In 2007, the new 

algebraic structure which is said to be BF algebra, was explored by Andrze J 

Walendziak [70] which is a generalization of BCI/BCK/B-algebras. In 2008, the 

generalization of B algebra called as BG algebra was initiated by Kim and Kim [31].  

In 2009, Meng [40] has initiated the CI algebra in which the generalization of        

BG algebra and dual BCK/BCH/BCI are investigated and also discussed the relation 

between CI algebra and BE algebras. It is proved that the transitive BE algebra, the 

notion of ideals is equivalent to one of the filters. In the same year of 2009,               

KU algebra was introduced by Prabayak and Leerawat [54] which also a 

generalization of BCK / BCI / BCC –algebras and analysed its characteristics by 

using ideals and congruences. In 2010, TM algebra was explored by Megalai and 

Tamilarasi [37,38], and also, they showed that the TM algebra is a generalization of Q 

/ BCK / BCI / BCH algebras and they derived that the TM-algebra fulfilled the 

several conditions framed in the Q / BCH / BCI /BCK / BCC algebras.  
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In 2012, the new concept which is called as BRK algebra, which is a 

generalization of BCK/BCI/BCH/Q/QS/BM algebras, was explored by Bandaru [12]. 

In 2013, a new notion KUS algebra was introduced by Samy M Mostafa, Naby, 

M.A.A and Elgendy, O.R [46], which is a generalization of BCK / BCI / BCH / BCC / 

Q / KU-algebras and explored related aspects. In 2014, a new algebraic structure, 

namely PS algebra initiated by Priya and Ramachandran [63], as a generalization of 

BCK / BCI / d / Q / KU algebras and studied its characteristics. Recently, in 2017, the 

notion which is called as Z algebra established by M. Chandramouleeswaran,            

P. Muralikrishna, K.Sujatha and S. Sabarinathan [15] and studied its characteristics.  

Fuzzification of abstract algebras, which are useful to the successful progress 

of this thesis are analysed and listed the review of published works. 

In 1991, the fuzzification of BCK algebras was introduced by O.G.Xi [72] 

discussed its characteristics and its properties. In 1993, the concept of Fuzzy          

BCI algebra was introduced by B. Ahamed [3], in this study he explored the 

properties of Fuzzy BCI algebras. In 2004, Ahn and Hu.lee [5] have been classified 

the sub algebra by their family of level sets in BG algebra. In 2010, R. Muthuraj, 

M.Sridharan, M.S. Muthuraman, and    P. M. SitharSelvam [49] have initiated the 

notion of the anti-Q fuzzy BG ideal of BG algebra. The lower-level cuts and upper-

level cuts are introduced and proved some results. In 2014, the characterization of 

anti-fuzzy PS ideals was introduced and discussed along with ideal and 

homomorphism by Priya. T and Ramachandran. T [61]. 

  



CHAPTER 1   INTRODUCTION               7     

 

Recently, many researchers have initiated the algebras with subalgebras, 

ideals, Filter, G-part, medial, implicative ideals, derivation, symmetric bi derivation, 

multipliers, hyper structure, homomorphism, and relations, etc. and also investigated 

the fuzzification of algebras. In this more enthrallingly, they studied pseudo, 

Intuitionistic, bipolar, Neutrosophic structure, Smarandache structure, and cubic 

structures of the algebras and also their aspects. These are all induced us to study the 

new algebraic structure which is different from all other algebraic structures. 

1.4 Organisation of the Thesis 

This section deals with the arrangement of the research work which is to be needed 

for this thesis. 

Chapter I deals with the introduction of research, literature review, basic definitions 

of both algebraic structure and fuzzy structure that are used to motivate the study of 

this thesis. 

Chapter II deals with the introduction of a new class of algebraic structure, named as       

GK algebra. It is studied about the properties of GK algebra through GK sub algebra,         

self-distributive, associative law, ideal, Homomorphism, Kernel of GK algebra, and 

also, anti-homomorphism and investigated some of its aspects. Some of the 

paramount results in this chapter are 

 In GK algebra left cancellation law and right cancellation law holds. 

(i) Right cancellation law:  if 𝑖 ⊛ 𝑗 = 𝑘 ⊛ 𝑗   𝑡ℎ𝑒𝑛   𝑖 = 𝑘. 

(ii) Left cancellation law:  if 𝑘 ⊛ 𝑖 = 𝑘 ⊛ 𝑗  𝑡ℎ𝑒𝑛 𝑖 = 𝑗. 

 Let T be a GK algebra. A relation ≤ on T is defined as 𝑖 ≤ 𝑗 if  
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 𝑖 ⊛ 𝑗 = 1. 𝑇ℎ𝑒𝑛 (𝑇, ≤)is a partially ordered set. 

 Let (T,⊛𝑇 , 1) and (P,⊛𝑃, 1′) be a GK algebra and the mapping 𝜎: 𝑇 → 𝑃 is a 

GK homomorphism. Let M be a GK ideal of B then 𝜎−1(𝑀)is a GK ideal of T. 

Chapter III establishes the concept of multipliers of GK algebra and the direct 

product of GK algebra. The right and left multipliers of GK algebra are defined and 

attained some interesting results and also, studied about its direct product. Some of 

the obtained results are given here, 

 Let 𝑇 be a GK algebra and 𝛩 be a regular multiplier. Then the self-mapping 𝛩 

is an identity mapping if it satisfies the multiplier (left) is equal to the 

multiplier (right) that is  𝛩(𝑖) ⊛ 𝑗 = 𝑖 ⊛ 𝛩(𝑗) ∀ 𝑖, 𝑗 ∈ 𝑇. 

 Direct product of any two GK algebras is again a GK algebra. 

Chapter IV expresses the concept of the derivation of newly defined GK algebra and 

expounded about GK-LR derivation, GK-RL derivation, and regular in the derivation 

of GK algebra.  Some of the interesting outcomes are, 

 Let  (𝑇,⊛ ,1) 𝑏𝑒  a GK-algebra and 𝜉 be a (GK-LR) derivation of T. Then the 

following hold  ∀ 𝑖, 𝑗 ∈ 𝑇 

(i) 𝜉(𝑖 ⊛ 𝑗) = 𝜉(𝑖) ⊛ 𝑗 

(ii) If 𝜉 is regular then  𝜉(𝑖) ≤ 𝑖 

 Let   ξ: T→T be a derivation of T. Then ξ is a regular derivation if ξ is either a 

(GK-LR) derivation or a (GK-RL) derivation. 

Chapter V exhibits the concept of the symmetric bi derivation of GK algebra and 

some of the properties are studied and obtained enthralling results. Some emerged 

results are, 
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 Let (𝑇,⊛ ,1) be a GK algebra. Let 𝛺 be a GK-RL symmetric bi derivation on 

T. Then the following holds 

(i) 𝛺(𝑖, 𝑗) = 𝛺(𝑖, 𝑗) ⋏ (𝑖 ⊛ 𝛺(1, 𝑗)) 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖, 𝑗 ∈ 𝑇. 

(ii) 𝛺(𝑖, 1) = 𝛿(𝑖) ⊛ 𝑖 where 𝛿 is the trace of 𝛺. 

(iii) 𝛺(1, 𝑗) = 𝛺(𝑖, 𝑗) ⊛ 𝑖  ∀  𝑖, 𝑗 ∈ 𝑇. 

(iv) 𝛺(𝑗, 1) = 𝛺(𝑗, 1) ⋏ 𝑗 ∀ 𝑗 𝑖𝑛 𝑇 𝑖𝑓  𝛺  𝑖𝑠 𝛿 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 . 

(v) 𝛺(𝑗, 1) = 1   ∀ 𝑗 𝑖𝑛 𝑇 𝑖𝑓  𝛺  𝑖𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑤𝑖𝑠𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟. 

 Let T be the GK algebra and 𝛿 be the trace of the GK-RL symmetric bi 

derivation on T. Then 

(i) 𝛿(1) = 𝛺(1, 𝑖) ⊛ 𝑖. 

(ii) 𝛿(𝑖) = 𝛿(𝑖) ⋏ (𝑖 ⊛ 𝛺(𝑖, 1)) 

(iii)  𝐼𝑓 𝛺(1, 𝑖) = 𝛺(1, 𝑗)   ∀  𝑖, 𝑗 ∈ 𝑇  𝑡ℎ𝑒𝑛  𝛿 𝑖𝑠 1 − 1. 

(iv) 𝛿 is regular iff 𝛺(1, 𝑖) = 𝑖. 

Chapter VI explicates the concept of the fuzzification of GK algebra and discussed 

the terms, fuzzy GK algebra, fuzzy GK sub algebra, fuzzy GK ideal, Fuzzy 

homomorphism, anti- fuzzy Homomorphism, anti-fuzzy GK ideals and attained 

enthralling results such as, 

 Every fuzzy GK ideal of a GK-algebra T is order overturn. 

 In GK-algebra, the intersection of family of sets on fuzzy GK-ideals is also a 

fuzzy GK-ideal. 

 Let 𝜌𝑔𝑘  𝑎𝑛𝑑  𝜎𝑔𝑘 be fuzzy GK ideals of GK algebra X. Then 𝜌𝑔𝑘 × 𝜎𝑔𝑘 is a 

fuzzy GK ideal of 𝑇 × 𝑇. 

 A fuzzy set 𝜌𝑔𝑘 in GK algebra is an anti-fuzzy sub algebra iff for every q in 

[0,1], Γ(𝜌𝑔𝑘, 𝑞) is either ∅ or a sub algebra of T.  
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1.5 Preliminaries 

This section deals with the basic and necessary definitions of this current work 

that have been expressed. Particularly, basic definitions of BCK, BCI, BCH, BM, BG, 

BRK, d, BI, BE CI, BF, BH, QS, Q, KU, KUS, TM, BRK, KUS, and PS algebras, etc. 

presented by the researchers are listed and described their works which are already 

done related to derivation, symmetric bi derivation, multipliers, Cartesian product, 

anti-homomorphism, fuzzy sub algebra, fuzzy ideals, fuzzy homomorphism, anti-

fuzzy sub algebra, and Anti fuzzy ideals, which are to be needed to the progress of 

this current work has emerged from a survey of the literature. 

Definition 1.5.1 [41]  

An algebra is called BCK algebra (ℳ,∗, 0) of type (2,0) satisfying the following 

axioms 

(i) (𝑝1 ∗  𝑞1)  ∗  (𝑝1 ∗  𝑟1)  ≤  (𝑟1 ∗  𝑞1) 

(ii) 𝑝1  ∗  (𝑝1  ∗  𝑞1) ≤ 𝑞1 

(iii) 𝑝1 ≤ 𝑝1 

(iv) 𝑝1 ≤ 𝑞1 𝑎𝑛𝑑 𝑦 ≤ 𝑝1 ⟹ 𝑝1  =  𝑞1 

(v)  0 ≤ 𝑝1 ⟹ 𝑝1 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑝1 ≤ 𝑞1 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑝1 ∗  𝑞1 =

 0, ∀ 𝑝1, 𝑞1, 𝑟1 ∈ ℳ. 

Definition 1.5.2 [41] 

Let (ℳ,∗, 0) be a BCK algebra. A non-empty subset I of ℳ is called an ideal of 

ℳ if it satisfies the following conditions 
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(i)  0 ∈  𝐼 

(ii)  𝑝1  ∗  𝑞1 ∈  𝐼 𝑎𝑛𝑑 𝑞1 ∈  𝐼 ⟹ 𝑝1 ∈  𝐼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1 , 𝑞1 ∈ ℳ. 

Definition 1.5.3 [25] 

A BCI-algebra is an algebra (ℳ, *, 0) of type (2, 0) satisfying the following 

conditions: 

(i) ((𝑝1   ∗  𝑞1) ∗ (𝑝1   ∗  𝑟1)) ∗ (𝑟1  ∗  𝑞1) = 0 

(ii) (𝑝1   ∗  (𝑝1   ∗  𝑞1)) ∗ 𝑞1 = 0 

(iii) 𝑝1 ∗ 𝑝1 = 0 

(iv)  𝑝1 ∗ 𝑞1 = 0 𝑎𝑛𝑑 𝑞1 ∗ 𝑝1   ⟹  𝑝1  = 𝑞1∀ 𝑝1 , 𝑞1, 𝑟1  ∈  ℳ. 

Definition 1.5.4 [1, 23] 

A BCH - algebra is an algebra (ℳ,∗, 0) of type (2, 0) satisfying the following 

axioms 

(i) 𝑝1  ∗  𝑝1  =  0 

(ii) 𝑝1  ∗  𝑞1  =  0 𝑎𝑛𝑑 𝑞1  ∗  𝑝1 =  0 ⟹ 𝑝1  =  𝑞1 

(iii)  (𝑝1  ∗  𝑞1) ∗  𝑟1  =  (𝑝1  ∗  𝑧) ∗  𝑞1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1, 𝑟1 ∈ ℳ. 

Definition 1.5.5 [27] 

A BH-algebra is an algebra(ℳ,∗, 0), where ℳ is a nonempty set, ∗ is a binary 

operation and 0 is a constant, satisfying the following axioms 

(i)  𝑝1  ∗  𝑝1  =  0 

(ii)  𝑝1  ∗  𝑞1  =  0 𝑎𝑛𝑑 𝑞1  ∗ 𝑝1  =  0 ⟹  𝑝1  =  𝑞1 

(iii) 𝑝1  ∗  0 = 𝑝1 , ∀𝑝1, 𝑞1 ∈ ℳ. 
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Definition 1.5.6 [53] 

A d-algebra is an algebra (ℳ,∗, 0) of type (2, 0) satisfying the following 

conditions 

(i) 𝑝1  ∗  𝑝1  =  0 

(ii) 0 ∗  𝑝1 = 0 

(iii) 𝑝1  ∗  𝑞1  =  0 𝑎𝑛𝑑 𝑞1  ∗  𝑝1  =  0 ⟹  𝑝1  =  𝑞1 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1  ∈  ℳ. 

Definition 1.5.7[53]  

Let (ℳ,∗, 0) be a d – algebra. A non-empty subset I of ℳ is called a d ideal of ℳ 

if it satisfies the following conditions 

(i)  0 ∈  𝐼 

(ii) 𝑝1  ∈  𝐼 𝑎𝑛𝑑 𝑞1  ∈  ℳ ⟹  𝑝1  ∗  𝑞1  ∈  𝐼 , 𝑡ℎ𝑎𝑡 𝑖𝑠 , 𝐼 ∗  ℳ ⊆  𝐼. 

Definition 1.5.8 [52] 

A Q - algebra is an algebra (ℳ,∗, 0) of type (2, 0) satisfying the following 

conditions 

(i) 𝑝1  ∗  𝑝1 =  0 

(ii) 𝑝1  ∗  0 =  𝑝1 

(iii) (𝑝1 ∗ 𝑞1) ∗ 𝑟1  =  (𝑝1 ∗ 𝑟1) ∗ 𝑞1, 𝑤ℎ𝑒𝑟𝑒 𝑝1  ≤  𝑞1 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 

𝑝1 ∗ 𝑞1 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1, 𝑟1 ∈ ℳ. 

Definition 1.5.9 [52] 

Let (ℳ,∗, 0) be a Q – algebra. A non-empty subset I of ℳ is called a Q- ideal of 

ℳ if it satisfies the following conditions: 

(i)  0 ∈  𝐼 

(ii) (𝑝1  ∗  𝑞1) ∗  𝑟1  ∈  𝐼 𝑎𝑛𝑑 𝑞1  ∈ 𝐼 ⟹ 𝑝1  ∗  𝑟1  ∈  𝐼 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1 , 𝑞1, 𝑟1  ∈  ℳ. 
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Definition 1.5.10 [50] 

A B-algebra is a non-empty set ℳ with a constant 0 and a binary operation ∗

 satisfying the following axioms 

(i)    𝑝1  ∗  𝑝1  =  0 

(ii)    𝑝1  ∗  0 =  𝑝1 

(iii) (𝑝1  ∗  𝑞1)  ∗  𝑟1  =  𝑝1  ∗  (𝑟1  ∗  (0 ∗ 𝑞1)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1, 𝑟1 ∈ ℳ. 

Definition 1.5.11 [51] 

A 𝛽-algebra is a non-empty set ℳ with constant 0 and two binary operations + 

and − satisfying the following axioms 

(i)    𝑝1  −  0 = 𝑝1 

(ii)   (0 −  𝑝1) + 𝑝1  = 0 

(iii) (𝑝1  − 𝑞1) −  𝑟1  =  𝑝1 − (𝑟1  + 𝑞1), 𝑓𝑜𝑟 𝑎𝑙𝑙𝑝1, 𝑞1, 𝑟1 𝑖𝑛 ℳ. 

Definition 1.5.12 [51] 

A non-empty set I of analgebra is called a β −ideal of ℳ, if it satisfies the 

following conditions 

(i)    0 ∈  𝐼, 

(ii)    𝑝1  +  𝑞1 ∈  𝐼, ∀𝑝1, 𝑞1 ∈  𝐼, 𝑎𝑛𝑑 

(iii) 𝑖𝑓 𝑝1  −  𝑞1𝑎𝑛𝑑 𝑞1 ∈  𝐼 𝑡ℎ𝑒𝑛 𝑝1 ∈  𝐼 ∀ 𝑝1, 𝑞1 ∈ ℳ. 

Definition 1.5.13 [30] 

An algebra is said to be a BM-algebra with a non-empty set ℳ and a constant 0,          

a binary operation  ∗  satisfying the following axioms 
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(i)  𝑝1 ∗  0 =  𝑝1 

(ii)  (𝑟1 ∗ 𝑝1)  ∗  (𝑟1 ∗ 𝑞1)  =  𝑞1 ∗ 𝑝1, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝1 , 𝑞1 , 𝑟1 ∈ ℳ. 

Note 1.5.14 [30] 

(i) Every BM-algebra is a B-algebra. 

(ii) If (ℳ,∗, 0) is a BM-algebra, then it is a 0-commutative B-algebra. 

Definition 1.5.15 [32] 

An algebra (ℳ,∗, 1) of type (2, 0) is called a BE-algebra if it satisfiesthe 

following conditions: 

(i)    𝑝1 ∗  𝑝1  =  1 𝑓𝑜𝑟 𝑎𝑙𝑙𝑝1  ∈ ℳ 

(ii)    𝑝1  ∗  1 =  1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1  ∈  ℳ 

(iii) 1 ∗  𝑝1  =  𝑝1 𝑓𝑜𝑟 𝑎𝑙𝑙𝑝1  ∈ ℳ 

 (iv)  𝑝1  ∗  (𝑞1  ∗  𝑟1)  =  𝑞1  ∗  (𝑝1  ∗  𝑟1) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1, 𝑟1  ∈ ℳ 

      Here the relation ≤ on ℳ is defined by 𝑝1  ≤  𝑞1 if and only if 𝑝1  ∗ 𝑞1  =  1. 

Definition 1.5.16 [32] 

Let (ℳ,∗, 1) be a BE-algebra and let F be a non-empty subset of ℳ. Then F is 

said to be a filter of ℳ if 

(i)  1 ∈  𝐹 

(ii)  𝑝1  ∗  𝑞1  ∈  𝐹 𝑎𝑛𝑑 𝑝1 ∈  𝐹 𝑖𝑚𝑝𝑙𝑦 𝑞1  ∈  𝐹. 

Definition 1.5.17 [70] 

A non-empty set ℳ with a constant 0 and a single binary operation ∗, is said to be 

a BF-algebra if it satisfies the following 
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(i)    𝑝1 ∗ 𝑝1 =  0 

(ii)    𝑝1 ∗  0 =  𝑝1 

(iii)  0 ∗ (𝑝1 ∗ 𝑞1) =  𝑞1 ∗ 𝑝1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1 ∈ ℳ. 

Definition 1.5.18[31] 

A BG-algebra is a non-empty set ℳ with a constant 0 and a binary operation ∗  

satisfying the following axioms: 

(i)    𝑝1  ∗ 𝑝1  =  0 

(ii)    𝑝1  ∗  0 =  𝑝1 

(iii) (𝑝1  ∗  𝑞1) ∗  (0 ∗  𝑞1) = 𝑝1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1 ∈ ℳ. 

Definition 1.5.19 [29,40] 

An algebraic system (ℳ,∗, 1) of type (2, 0) is called a CI -algebra if itsatisfies the 

following axioms. 

(i)   𝑝1  ∗  𝑝1 =  1 

(ii)   1 ∗  𝑝1  = 𝑝1 

(iii)  𝑝1  ∗  (𝑞1  ∗ 𝑟1) =  𝑞1  ∗  (𝑝1 ∗ 𝑟1), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1 , 𝑟1  ∈  ℳ. 

In ℳ, we define a binary operation ≤ by 𝑝1 ≤  𝑞1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓       

𝑝1 ∗ 𝑞1 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1  ∈  ℳ.      

Definition 1.5.20 [54] 

A KU - algebra is an algebra (ℳ,∗, 0) of type (2,0) satisfying the following 

conditions 

(i) (𝑝1  ∗  𝑞1)  ∗  ((𝑞1  ∗  𝑟1)  ∗  (𝑝1  ∗  𝑟1))  =  0 
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(ii) 𝑝1  ∗  0 =  0 

(iii) 0 ∗ 𝑝1  =  𝑝1 

(iv) 𝑝1  ∗  𝑞1 =  0 𝑎𝑛𝑑 𝑞1  ∗ 𝑝1  =  0 𝑖𝑚𝑝𝑙𝑦 𝑝1  =  𝑞1 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1, 𝑟1  ∈  ℳ. 

Definition 1.5.21 [54] 

Let (ℳ,∗, 0) be a KU-algebra. A non-empty subset I of ℳ is called KU ideal of 

ℳ if it satisfies the following conditions 

(i)  0 ∈ 𝐼. 

(ii)  𝑝1  ∗  (𝑞1  ∗  𝑟1) ∈ 𝐼 𝑎𝑛𝑑 𝑞1  ∈  𝐼 ⟹  𝑝1  ∗ 𝑟1  ∈  𝐼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1 , 𝑞1, 𝑟1  ∈ ℳ. 

Definition 1.5.22 [37,38] 

A non-empty set ℳ with a constant 0 and a binary operation ∗ is calleda TM - 

algebra if it satisfies the following axioms. 

(i)  𝑝1  ∗  0 =  𝑝1 

(ii)  (𝑝1  ∗  𝑞1 )  ∗  (𝑝1  ∗ 𝑟1 )  =  𝑧 ∗  𝑞1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1 , 𝑟1  ∈  ℳ 

In ℳ we can define a binary operation ≤ by 𝑝1  ≤ 𝑞1 if and only if 𝑝1  ∗  𝑞1  =  0. 

Definition 1.5.23 [12] 

A BRK-algebra is a nonempty set ℳ with a constant 0 and a binaryoperation ∗ 

satisfying axioms 

(i)  𝑝1 ∗  0 =  𝑝1, 

(ii)  (𝑝1 ∗ 𝑞1)  ∗ 𝑝1  =  0 ∗ 𝑞1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝1, 𝑞1 ∈  𝐴. 

In  ℳ, we can define a binary relation ≤ by 𝑝1  ≤  𝑞1 if and only if 𝑝1  ∗  𝑞1  =  0. 
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Definition 1.5.24 [46] 

Let (ℳ,∗, 0) be an algebra of type (2,0) with a binary Operation ∗ is called KUS-

algebra if it satisfies the following axioms 

(i)  (𝑟1 ∗  𝑞1)  ∗  (𝑟1 ∗  𝑝1)  =  (𝑞1 ∗  𝑝1) 

(ii)  0 ∗  𝑝1  =  𝑝1 

(iii)  𝑝1 ∗  𝑝1 =  0 

(iv)  𝑝1 ∗  (𝑞1 ∗ 𝑟1)  =  𝑞1 ∗  (𝑝1 ∗  𝑟1) , 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝1 , 𝑞1 , 𝑟1  ∈ ℳ , 

In ℳ, we define a binary relation ≤ by 𝑝1  ≤  𝑞1 if and only if 𝑞1  ∗  𝑝1  =  0. 

Definition 1.5.25 [46] 

 A nonempty subset I of a KUS-algebra ℳ is called a KUS-ideal of ℳ if it 

satisfies: 

(i)  0 ∈ 𝐼 

(ii)  𝑟1 ∗ 𝑞1  ∈  𝐼 𝑎𝑛𝑑 𝑞1 ∗ 𝑝1  ∈  𝐼 𝑖𝑚𝑝𝑙𝑦 𝑟1 ∗  𝑝1 ∈ 𝐼, 𝑓𝑜𝑟 𝑝1, 𝑞1, 𝑟1  ∈ ℳ. 

Definition 1.5.26 [63] 

A non-empty set ℳ with a constant 0 and a binary operation  ∗ is called PS–

algebra if it satisfies the following axioms 

(i)   𝑝1 ∗  𝑝1  =  0 

(ii)   𝑝1  ∗  0 = 0 

(iii)  𝑝1  ∗ 𝑞1  =  0 𝑎𝑛𝑑 𝑞1  ∗  𝑝1 =  0 ⟹ 𝑝1 =  𝑞1 , ∀ 𝑝1 , 𝑞1  ∈ ℳ. 

In ℳ, we define a binary relation ≤ by 𝑝1 ≤  𝑞1 if and only if 𝑞1  ∗  𝑝1  =  0. 
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Definition 1.5.27 [63] 

Let ℳ be a PS-algebra and I be a subset of ℳ, then I is called a PS -ideal of ℳ if 

it satisfies the following conditions: 

(i)  0 ∈  𝐼 

(ii)  𝑞1  ∗  𝑝1  ∈  𝐼 𝑎𝑛𝑑 𝑞1  ∈ 𝐼 ⟹ 𝑝1 ∈  𝐼, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝1, 𝑞1   ∈ ℳ. 

Definition 1.5.28 [1] 

Let ℳ be a BCH-algebra and I be an ideal of  ℳ. Then I is called a closed 

ideal with respect to an element 𝛽 ∈ ℳ (denoted a-closed ideal) if  𝛽 ∗ (0 ∗ 𝑝1) ∈

𝐼 ∀ 𝑝1 ∈ 𝐼. 

Definition 1.5.29 [5] 

In QS-algebra ℳ, the set ℬ(ℳ) = {𝑝1 ∈ ℳ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ∗ 𝑝1 = 0} is called a       

p-radical of ℳ. A QS-algebra ℳ is said to be p-semi simple if ℬ (ℳ) = {0}. 

Definition 1.5.30 [5] 

 Let ℳ be a QS-algebra. For any subset ℚ of ℳ, we define                                      

𝐺(ℚ) = {𝑝1 ∈ ℚ 0 ∗ 𝑝1 = 𝑝1}⁄ . In particular, if ℚ = ℳ then we say that G(ℳ) is the      

G-part of a QS -algebra ℳ. The following property is obvious. G(ℳ)∩B(ℳ) = {0}. 

Definition 1.5.31 [5] 

A QS-algebra X satisfying (𝑥 ∗ 𝑦) ∗ (𝑧 ∗ 𝑢) = (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑢) for any                  

x, y, z, u ∈ X is called a medial QS-algebra. 
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Definition 1.5.32 [11] 

Let X be a B-algebra. By a (𝑙, 𝑟 )derivation of X, we mean a self-map d of 𝑋 

satisfying the identity 𝑑(𝑥 ∗ 𝑦) = (𝑑(𝑥) ∗ 𝑦) ∧ (𝑥 ∗ 𝑑(𝑦)) for all 𝑥, 𝑦  ∈ 𝑋 . If X 

satisfies the identity 𝑑(𝑥 ∗ 𝑦) = (𝑥 ∗ 𝑑(𝑦)) ∧ (𝑑(𝑥) ∗ 𝑦)  for all 𝑥, 𝑦 ∈ 𝑋 then we say 

that d is a (𝑟, 𝑙 ) - derivation of X . Moreover, if d is both a (𝑙 , 𝑟 ) 𝑎𝑛𝑑 𝑎 (𝑟, 𝑙) - 

derivation, we say that d is a derivation of X.  

Definition 1.5.33 [47] 

Let X be a BCI-algebra. Then for any 𝑡 ∈  𝑋, a self map 𝑑𝑡 ∶  𝑋 →  𝑋 is 

called a left-right t-derivation or (𝑙, 𝑟) t-derivation of X if it satisfies the identity                      

𝑑𝑡(𝑥 ∗ 𝑦) = (𝑑𝑡(𝑥) ∗ 𝑦) ∧ (𝑥 ∗ 𝑑𝑡(𝑦))  for all 𝑥, 𝑦 ∈  𝑋. 

Definition 1.5.34 [65] 

Let X be a BCI-algebra and 𝐷(. , . ) ∶  𝑋 ×  𝑋 →  𝑋 be a symmetric mapping. 

If D satisfies the identity 𝐷(𝑥 ∗  𝑦, 𝑧)  = (𝐷(𝑥, 𝑧)  ∗  𝑦)  ∧ ( 𝑥 ∗  𝐷(𝑦, 𝑧)) for all 

𝑥, 𝑦, 𝑧 ∈  𝑋, then D is called left − right symmetric bi − derivation (briefly (l, 

r)−symmetric bi−derivation). If D satisfies the identity 

𝐷(𝑥 ∗  𝑦, 𝑧)  = (𝑥 ∗  𝐷(𝑦, 𝑧))  ∧ (𝐷(𝑥, 𝑧)  ∗  𝑦) for all 𝑥, 𝑦, 𝑧 ∈  𝑋,  

then we say that D is right − left symmetric bi − derivation (briefly (r, l) − symmetric 

bi − derivation). Moreover if d is both an (r, l) − and a (l, r) − symmetric bi − 

derivation, it is said that D is symmetric bi − derivation.  



CHAPTER 1   INTRODUCTION               20     

 

Definition 1.5.35 [74,75] 

 Let D be a non-empty set (to be called the universe of discourse or domain or 

universal set). A classical set on D is a mapping whose co -domain is 0 and 1. (i.e.)            

f: D ⟶ {0, 1}.  

Definition 1.5.36 [74] 

Let 𝑋 be a non-empty set. A fuzzy set A in 𝑋 is characterized by its 

membership function 𝜇𝐴: 𝑋 →  [0, 1] and 𝜇𝐴(𝑥) is interpreted as the degree of 

membership of element 𝑥 in fuzzy set A for each 𝑥 ∈  𝑋. It is clear that A is 

completely determined by the set of tuples 𝐴 =  {(𝑥, 𝜇(𝑥)) / 𝑥 ∈ 𝑋}. 

Definition 1.5.37 [74,75] 

The membership function of the intersection of two fuzzy sets A and B is 

defined as 𝜇𝐴∩𝐵 (𝑥)  =  𝑚𝑖𝑛 {𝜇𝐴 (𝑥), 𝜇𝐵 (𝑥)}. 

Definition 1.5.38 [9] 

A fuzzy set µ in d-algebra X is called a fuzzy subalgebra of X if it satisfies             

µ(x ∗ y) ≥ min {µ(x), µ(y)}, for all x, y ∈ X. 

Definition 1.5.39 [74,75] 

The membership function of union of two fuzzy sets A and B is defined as  

𝜇𝐴∪𝐵 (𝑥)  =  𝑚𝑎𝑥 {𝜇𝐴 (𝑥), 𝜇𝐵 (𝑥)}. 
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Definition 1.5.40 [74,75] 

Let 𝜇 be a fuzzy set in D. Then the complement of 𝜇 is the fuzzysubset of D, 

which is given by 𝜇𝑐 (𝑥)  =  1 −  𝜇(𝑥). 

Definition 1.5.41 [74,75]  

Let A and B be two fuzzy sets in D. Then A is said to be equal to B, denoted 

by 𝐴 =  𝐵 if 𝜇𝐴 (𝑥)  =  𝜇𝐵 (𝑥) for every 𝑥 in D. 

Definition 1.5.42 [74,75] 

The set of elements that belong to the fuzzy set 𝜇 at least to the degree 𝛼 is 

called the 𝛼 - level set. It is represented by 𝜇𝛼 =  {𝑥 ∈ 𝑋 / 𝜇 (𝑥)  ≥  𝛼}. 

Definition 1.5.43 [72] 

A fuzzy set 𝜇 in a BCK-algebra 𝑋 is called a fuzzy subalgebra of 𝑋 if 

𝜇(𝑥 ∗  𝑦)  ≥  𝑚𝑖𝑛 {𝜇(𝑥), 𝜇(𝑦)}, for all 𝑥, 𝑦 ∈ 𝑋. 

Definition 1.5.44 [72] 

Let 𝑋 be a BCK-algebra. A fuzzy subset 𝜇 in 𝑋 is called a fuzzy ideal of 𝑋 if it 

satisfies the following conditions: 

(i)  𝜇(0)  ≥  𝜇(𝑥) 

(ii)  𝜇(𝑥) ≥ min{𝜇(𝑥 ∗  𝑦), 𝜇(𝑦)} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑋. 
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Definition 1.5.45 [74] 

The set of elements that belong to the fuzzy set μ at least to the degree t is 

called the t-level set. It is represented by 𝜇𝑡  =  { 𝑥 ∈ 𝑋 / 𝜇 (𝑥)  ≥  𝑡 }. 

Definition 1.5.46 [38, 42] 

A fuzzy set 𝜇 in a TM-algebra 𝑋 is called an anti-fuzzy sub algebra of X if 

𝜇(𝑥 ∗  𝑦)  ≤  𝑚𝑎𝑥 {𝜇(𝑥), 𝜇(𝑦)}, for all 𝑥, 𝑦 ∈ 𝑋. 

Definition 1.5.47 [43] 

A fuzzy subset 𝜇 of a TM-algebra 𝑋 is called an anti-fuzzy ideal of  𝑋,If 

(i)   𝜇(0)  ≤  𝜇(𝑥) 

(ii)   𝜇(𝑥 ) ≤ max{ 𝜇 (𝑥 ∗  𝑦), 𝜇(𝑦)} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋. 

Definition 1.5.48 [43] 

Let (𝑋,∗, 0) and ( 𝑌 , ∆ ,0`) be TM-algebras. A mapping 𝑓: 𝑋 ⟶ 𝑌 is said to 

be an anti-homomorphism if 𝑓(𝑥 ∗  𝑦)  =  𝑓(𝑦) ∆ 𝑓(𝑥) for all 𝑥, 𝑦 ∈  𝑋. 

Definition 1.5.49[6] 

 A fuzzy set µ in X is called a fuzzy BE-algebra of X if it satisfies for all x, y ∈ X.  

𝜇(𝑥 ∗ 𝑦) ≥ min{(𝜇(𝑥), 𝜇(𝑦)} . 

 A fuzzy set µ in X is a function µ : X → [0, 1]. We note that x ∗ x = 1 for all  

x ∈ X and so if µ is a fuzzy BE-algebra of X, then µ(1) ≥ µ(x) for all x ∈ X. 
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Definition 1.5.50[6] 

A fuzzy BE-algebra µ of X is said to be normal if there exists x ∈ X such that           

µ(x) = 1. 

 

Definition 1.5.51 [71]   

 

A fuzzy set µ in X is called fuzzy BCK-ideal of X if it satisfies the following 

inequalities 

(i) 𝜇(0) ≥ 𝜇(𝑥).  

(ii) 𝜇(𝑥) ≥ min{ 𝜇(𝑥 ∗ 𝑦), 𝜇(𝑦)} for all x, y ∈ X. 

Definition 1.5.52 [18] 

A fuzzy set µ in a BCC-algebra X is called a fuzzy sub algebra of X if  

𝜇(𝑥 ∗ 𝑦) ≥ min{𝜇(𝑥), 𝜇(𝑦)} ∀𝑥, 𝑦 ∈ 𝑋. 

Definition 1.5.53 [7] 

A fuzzy set 𝜇 in 𝑋is called a fuzzy BE-algebra of 𝑋 if it satisfies: for all 𝑥, 𝑦 ∈

 𝑋. 

𝜇(𝑥 ∗  𝑦)  ≥  𝑚𝑖𝑛{𝜇 (𝑥), 𝜇(𝑦)}. 

A fuzzy set 𝜇 in 𝑋 is a function 𝜇 ∶  𝑋 →  [0, 1], we note that 𝑥 ∗  𝑥 =  1 for 

all 𝑥 ∈  𝑋 and so if 𝜇 is a fuzzy BE-algebra of 𝑋, then 𝜇(1)  ≥  𝜇(𝑥) for all 𝑥 𝑖𝑛 𝑋. 
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CHAPTER 2 

THE STRUCTURE OF GK ALGEBRA 

In this chapter, a new algebraic structure which is called as GK algebra is 

introduced and analyzed its properties. It is expressed that the newly introduced 

notion of GK algebra is fully different from the previously defined algebraic structure 

such as BCK / BCI / BE / CI / BG / K / QS / PMS / KUS / KU / TM / PS / Q / KUS / 

SP / Z algebras etc. The basic concepts in which commutativity, associativity and 

distributivity of GK algebra are defined and investigated their properties. GK sub 

algebra, GK ideal, homomorphism and anti-homomorphism of GK algebra are 

initiated and discussed its aspects. 

2.1  The structure of GK algebra 

In this section, the new algebraic structure, namely GK algebra is introduced 

and investigated its properties and also, discussed GK sub algebra and GK ideals with 

necessary illustrations. 

Definition 2.1.1 

 A non-empty set T with fixed constant 1 and a binary operation ⊛ is called 

GK algebra if it satisfying the following axioms 

(i)  𝑖 ⊛ 𝑖 = 1 

(ii)  𝑖 ⊛ 1 = 𝑖 

(iii)  𝑖 ⊛ 𝑗 = 1 𝑎𝑛𝑑  𝑗 ⊛ 𝑖 = 1 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑖 = 𝑗 

(iv)  (𝑗 ⊛ 𝑘) ⊛ (𝑖 ⊛ 𝑘) =  𝑗 ⊛ 𝑖 

(v) (𝑖 ⊛ 𝑗) ⊛ (1 ⊛ 𝑗) = 𝑖    ∀  𝑖, 𝑗, 𝑘 ∈ 𝑇.  
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Example 2.1.2 

Consider the set T= {1,2,3}. The binary operation ⊛ is defined as follows 

 

⊛ 
 

1 2 3 

1 1 3 2 

2 2 1 3 

3 3 2 1 

 

Table 2.1 

Hence (T, ⊛ ,1) is a GK algebra. 

Note 2.1.3 

1. A GK algebra need not be a BE algebra for 2⊛ 1 = 2 ≠ 1  𝑎𝑛𝑑  3 ⊛ 1 = 3 ≠ 1. 

2. GK algebra need not be a CI algebra for 1 ⊛ 3 = 2 ≠ 1, 1 ⊛ 2 = 3 ≠ 2. 

Example 2.1.4 

Let us consider T = {1, l, m, n} be the set, then the following table, 

 

⊛ 1 l  m n 

1 1 l m n 

l l  1 n m 

m m n 1 l 

n n m l 1 

 

Table 2.2 

Hence (T, ⊛ ,1) is a GK algebra. 

Example 2.1.5 

Consider the set T= {1,2,3,4,5} be set with the following table  
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⊛ 1 2 3 4 5 

1 1 5 4 3 2 

2 2 1 5 4 3 

3 3 2 1 5 4 

4 4 3 2 1 5 

5 5 4 3 2 1 

 

Table 2.3 

Hence (T, ⊛ ,1) is a GK algebra. 

Example 2.1.6 

Consider the set T= {1,2,0}. The binary operation ⊛ is defined as follows 

 

⊛ 
 

1 2 0 

1 1 0 2 

2 2 1 0 

0 0 2 1 

 

Table 2.4 

Hence (T, ⊛ ,1) is a GK algebra. 

Note 2.1.7 

1. A GK algebra is said to be a CI algebra if   

1 ⊛ 𝑖 = 𝑖  𝑎𝑛𝑑  𝑖 ⊛ (𝑗 ⊛ 𝑘) = 𝑗 ⊛ (𝑖 ⊛ 𝑘). 

2. A GK algebra is said to be a BE algebra if  

i ⊛ 1 = 1,1 ⊛ 𝑖 = 𝑖  𝑎𝑛𝑑  𝑖 ⊛ (𝑗 ⊛ 𝑘) = 𝑗 ⊛ (𝑖 ⊛ 𝑘). 
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Definition 2.1.8 

Let T be a GK algebra and D be a subset of T, then D is called a GK ideal of T if 

it satisfying the following conditions 

(i)   1 ∈ 𝐷 

(ii)  𝑗 ⊛ 𝑘 ∈ 𝐷  𝑎𝑛𝑑  𝑖 ⊛ 𝑘 ∈ 𝐷 ⇒  𝑗 ⊛ 𝑖 ∈ 𝐷  ∀  𝑖, 𝑗, 𝑘 ∈ 𝑇. 

Example 2.1.9 

Consider the Example 2.1.4 in that D = {1, l, m} is a GK ideal. 

Proposition 2.1.10 

In GK algebra (T, ⊛ ,1) with 𝑖 ≤ 𝑗, the following holds for all  𝑖, 𝑗, 𝑘 ∈ 𝑇. 

(i)    1 ⊛ (1 ⊛ 𝑖) = 𝑖 

(ii)    (𝑖 ⊛ 𝑗) ⊛ 1 = (𝑖 ⊛ 1) ⊛ (𝑗 ⊛ 1) 

(iii)  𝑗 ⊛ (1 ⊛ (1 ⊛ 𝑗) = 1 

Proof 

We know that   (𝑖 ⊛ 𝑗) ⊛ (1 ⊛ 𝑗) = 𝑖    in axiom V of definition 

 Replacing  𝑗  𝑏𝑦   𝑖 

(i)  We have    (𝑖 ⊛ 𝑖) ⊛ (1 ⊛ 𝑖) = 𝑖 

         1 ⊛ (1 ⊛ 𝑖) = 𝑖 by axiom (I) of definition. 

(ii) We know that       𝑖 ⊛ 1 = 𝑖 by axiom (I)  

   Similarly,   (𝑖 ⊛ 𝑗) ⊛ 1 = 𝑖 ⊛ 𝑗 

         = (𝑖 ⊛ 1) ⊛ (𝑗 ⊛ 1) 

  Therefore   (𝑖 ⊛ 𝑗) ⊛ 1 = (𝑖 ⊛ 1) ⊛ (𝑗 ⊛ 1) 

(iii)  By (i) of proposition 2.1.10 

  We have 1 ⊛ (1 ⊛ 𝑗) = 𝑗  

       Now, 𝑗 ⊛ (1 ⊛ (1 ⊛ 𝑗)) = 𝑗 ⊛ 𝑗 

     𝑗 ⊛ (1 ⊛ (1 ⊛ 𝑗)) = 1 
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  𝐻𝑒𝑛𝑐𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑜𝑓. 

Proposition 2.1.11 

In GK algebra (T, ⊛ ,1), the following holds for all 𝑖, 𝑗, 𝑘 ∈ 𝑇, 

(i)    If   1 ⊛ 𝑖 = 1 ⊛ 𝑗   𝑡ℎ𝑒𝑛  𝑖 = 𝑗 

(ii)     (𝑖 ⊛ (1 ⊛ 𝑖)) ⊛ 𝑖 = 𝑖 

(iii)  𝑖 ⊛ (𝑖 ⊛ 𝑗) = 𝑖 = 𝑗 = 𝑗 ⊛ (𝑖 ⊛ 𝑖) 

(iv)  𝑖 ⊛ (𝑗 ⊛ 𝑖) = 𝑖 = 𝑗 = 𝑗 ⊛ (𝑖 ⊛ 𝑖) 

Proof 

(i) Let us consider 1 ⊛ 𝑖 = 1 ⊛ 𝑗    

  Now  𝑖 = 1 ⊛ (1 ⊛ 𝑖) 

   = 1 ⊛ (1 ⊛ 𝑗)  ∵ 1 ⊛ 𝑖 = 1 ⊛ 𝑗 

              =  𝑗    by proposition 2.1.10 

(ii)  Now (𝑖 ⊛ (1 ⊛ 𝑖)) ⊛ 𝑖 

   =  (𝑖 ⊛ (1 ⊛ 𝑖)) ⊛ (1 ⊛ (1 ⊛ 𝑖)) 

      =  𝑖 ⊛ 1   by axiom (IV) 

   =  𝑖 

(iii)  Consider 𝑖 ⊛ (𝑖 ⊛ 𝑗) = 𝑖 ⊛ 1  by axiom (III)  

        = 𝑖   by axiom (III)  

        = 𝑗   by axiom (III)  

        = 𝑗 ⊛ 1  by axiom (I)  

        = 𝑗 ⊛ (𝑖 ⊛ 𝑖) 

(iv) The proof of (iv) is similar to the proof of (iii). 

Proposition 2.1.12 

In GK algebra (T, ⊛ ,1), the following holds 

(i)  1 ⊛ (𝑖 ⊛ 𝑗) = 𝑗 ⊛ 𝑖  
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(ii)  If  1 ⊛ 𝑖 = 𝑖 ⊛ 1 = 1 then 𝑖 = 1 for any 𝑖, 𝑗 ∈T. 

Proof 

(i)  We know that(𝑗 ⊛ 𝑘) ⊛ (𝑖 ⊛ 𝑘) = 𝑗 ⊛ 𝑖  

Replacing 𝑘  𝑏𝑦  𝑗 

We have,  (𝑗 ⊛ 𝑗) ⊛ (𝑖 ⊛ 𝑗) = 𝑗 ⊛ 𝑖 

        1 ⊛ (𝑖 ⊛ 𝑗) = 𝑗 ⊛ 𝑖. 

    Hence the result. 

(ii)   Let 1 ⊛ 𝑖 = 𝑖 ⊛ 1 = 1 

when  𝑖 = 1,  1 ⊛ 𝑖 = 𝑖 ⊛ 1 = 1.  

 Hence the result.  

Theorem 2.1.13 

If every GK algebra T satisfies 𝑖 ⊛ (𝑗 ⊛ 𝑖) = 𝑖 ⊛ 𝑗  ∀ 𝑖, 𝑗 ∈ 𝑇  is a trivial 

algebra. 

Proof 

Let  (𝑇,⊛ ,1) be a GK algebra. 

Put 𝑗 = 𝑖   𝑖𝑛     𝑖 ⊛ (𝑗 ⊛ 𝑖) = 𝑖 ⊛ 𝑗   

  ⟹  𝑖 ⊛ (𝑖 ⊛ 𝑖) = 𝑖 ⊛ 𝑖   

  ⟹  𝑖 ⊛ 1 = 1   

  ⟹  𝑖 = 1   

This shows that T is a trivial algebra. 

Theorem 2.1.14 

In GK algebra left cancellation law and right cancellation law holds. 

(i) Right cancellation law:  if  𝑖 ⊛ 𝑗 = 𝑘 ⊛ 𝑗   𝑡ℎ𝑒𝑛   𝑖 = 𝑘. 

(ii) Left cancellation law:  if 𝑘 ⊛ 𝑖 = 𝑘 ⊛ 𝑗  𝑡ℎ𝑒𝑛 𝑖 = 𝑗. 
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Proof 

(i) Let us consider  𝑖 ⊛ 𝑗 = 𝑘 ⊛ 𝑗 

From the definition, we know that  

 𝑖 = (𝑖 ⊛ 𝑗) ⊛ (1 ⊛ 𝑗) 

 𝑖 = (𝑘 ⊛ 𝑗) ⊛ (1 ⊛ 𝑗) 

 𝑖 = 𝑘 ⊛ 1 

𝑖 = 𝑘. 

(ii) Assume that 𝑘 ⊛ 𝑖 = 𝑘 ⊛ 𝑗 

Now 𝑘 ⊛ (𝑘 ⊛ 𝑖) = 𝑖 ⊛ (𝑘 ⊛ 𝑘) 

           = 𝑖 ⊛ 1  =𝑖 

  and 𝑘 ⊛ (𝑘 ⊛ 𝑗)   = 𝑗 ⊛ (𝑘 ⊛ 𝑘) 

           = 𝑗 ⊛ 1 = j 

  From this 𝑘 ⊛ 𝑖 = 𝑘 ⊛ 𝑗 ⟹ 𝑖 = 𝑗. 

  Hence the proof. 

Definition 2.1.15 

A GK algebra (T, ⊛, 1) is said to be associative if it satisfies  

(𝑖 ⊛ 𝑗) ⊛ 𝑘 = 𝑖 ⊛ (𝑗 ⊛ 𝑘) ∀  𝑖, 𝑗, 𝑘 ∈ 𝑇 

Theorem 2.1.16 

Every GK algebra (T, ⊛ ,1) satisfying the associative law 

(𝑖 ⊛ 𝑗) ⊛ 𝑘 = 𝑖 ⊛ (𝑗 ⊛ 𝑘) is a group under ⊛. 

Proof 

Let (T, ⊛, 1) be a GK-algebra 

Put 𝑖 = 𝑗 = 𝑘 in associative law, 

      (𝑖 ⊛ 𝑗) ⊛ 𝑘 = 𝑖 ⊛ (𝑗 ⊛ 𝑘) 

⟹ (𝑖 ⊛ 𝑖) ⊛ 𝑖 = 𝑖 ⊛ (𝑖 ⊛ 𝑖) 
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⟹ 1 ⊛ 𝑖 = 𝑖 ⊛ 1 = 𝑖 

This exhibits that 1 is the identity element of T. 

By the definition, we get 𝑖 ⊛ 𝑖 = 1. 

This shows that every element 𝑖 𝑜𝑓 𝑇 has its own inverse. 

Now, 

(𝑗 ⊛ 𝑘) ⊛ (𝑖 ⊛ 𝑘) = 𝑗 ⊛ (𝑘 ⊛ (𝑖 ⊛ 𝑘)) 

            = 𝑗 ⊛ (𝑖 ⊛ (𝑘 ⊛ 𝑘)) 

            = 𝑗 ⊛ (𝑖 ⊛ 1) 

(𝑗 ⊛ 𝑘) ⊛ (𝑖 ⊛ 𝑘) = 𝑗 ⊛ 𝑖. 

and      (𝑖 ⊛ 𝑗) ⊛ (1 ⊛ 𝑗) = 𝑖 ⊛ (𝑗 ⊛ (1 ⊛ 𝑗)) 

            = 𝑖 ⊛ 1   =  𝑖 

Therefore (T, ⊛ ,1) is a group. 

Theorem 2.1.17 

Let T be a GK algebra. A relation ≤ on T is defined as 𝑖 ≤ 𝑗 if 

𝑖 ⊛ 𝑗 = 1. 𝑇ℎ𝑒𝑛 (𝑇, ≤)  is a partially ordered set. 

Proof 

Let T be a GK algebra and let 𝑖, 𝑗, 𝑘 ∈ 𝑇. 

By definition of GK algebra, we know that 𝑖 ⊛ 𝑖 = 1 

⟹ 𝑖 ≤ 𝑖 

∴  ≤ is reflexive. 

Suppose if  𝑖 ≤ 𝑗  𝑎𝑛𝑑  𝑗 ≤ 𝑖 , then  𝑖 ⊛ 𝑗 = 1  and   𝑗 ⊛ 𝑖 = 1. 

By definition of GK algebra 

𝑖 ⊛ 𝑗 = 1 and 𝑗 ⊛ 𝑖 = 1 ⟹ 𝑖 = 𝑗 

∴ ≤ is anti-symmetric. 

Suppose  𝑖 ≤ 𝑗  𝑎𝑛𝑑  𝑗 ≤ 𝑘 , then  𝑖 ⊛ 𝑗 = 1  and   𝑗 ⊛ 𝑘 = 1. 
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Now, 𝑖 ⊛ 𝑘 = (𝑖 ⊛ 𝑘) ⊛ 1 

          = (𝑖 ⊛ 𝑘) ⊛ (𝑗 ⊛ 𝑘) 

          = 𝑖 ⊛ 𝑗 

𝑖 ⊛ 𝑘 = 1  

        ⟹   𝑖 ≤ 𝑘. 

∴ ≤ is transitive. 

𝐻𝑒𝑛𝑐𝑒  (𝑇, ≤) is a partially ordered set. 

Theorem 2.1.18  

Let (T, ⊛ ,1) be a GK algebra with identity  

(𝑖 ⊛ 𝑗) ⊛ 𝑘 = 𝑖 ⊛ (1 ⊛ ((1 ⊛ 𝑗) ⊛ 𝑘)) ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑇.  

Then (T, ⊛, 1) is a group derived. 

Proof 

Define a binary operation ⋄ on T by 𝑖 ⋄ 𝑗 = 𝑖 ⊛ (1 ⊛ 𝑗) 

Then    𝑖 ⋄ 1 =  𝑖 ⊛ (1 ⊛ 1) = 𝑖 ⊛ 1 = 𝑖 

1 ⋄ 𝑖 =  1 ⊛ (1 ⊛ 𝑖) = 𝑖 by proposition 2.1.10 

Therefore 1 acts as an identity. 

Also  𝑖 ⋄ (1 ⊛ 𝑖) = 𝑖 ⊛ (1 ⊛ (1 ⊛ 𝑖)) 

    = 𝑖 ⊛ 𝑖 = 1 

and  (1 ⊛ 𝑖)⋄ 𝑖 = (1 ⊛ 𝑖) ⊛ (1 ⊛ 𝑖) = 1 

Here 1 ⊛ 𝑖 acts like a multiplicative inverse. 

Therefore (T, ⋄) is a semi group. 

Now, 𝑖 ⋄ (𝑗 ⋄ 𝑘) =𝑖 ⊛ (1 ⊛ (𝑗 ⊛ (1 ⊛ 𝑘))) 

   = 𝑖 ⊛ (1 ⊛ (1 ⊛ (1 ⊛ 𝑗)) ⊛ (1 ⊛ 𝑘)) 

   = (𝑖 ⊛ (1 ⊛ 𝑗)) ⊛ (1 ⊛ 𝑘) 
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   = (i ⋄ 𝑗) ⋄ 𝑘 

Therefore it satisfies the associative law. 

Theorem 2.1.19 

If  𝑖 ⊛ 𝑗 = 1 𝑎𝑛𝑑  𝑗 ⊛ 𝑖 = 1  𝑡ℎ𝑒𝑛 𝑖 = 𝑗. 

Proof 

Let  𝑖 ⊛ 𝑗 = 1 𝑎𝑛𝑑  𝑗 ⊛ 𝑖 = 1   

Now,  𝑖 ⊛ 1 = 𝑖 

⟹ 𝑖 ⊛ (𝑗 ⊛ 𝑖) = 𝑖 

⟹ 𝑗 ⊛ (𝑖 ⊛ 𝑖) = 𝑖 

⟹ 𝑗 ⊛ 1 = 𝑖 

⟹ 𝑗 = 𝑖 

Now,  𝑗 ⊛ 1 = 𝑗 

⟹ 𝑗 ⊛ (𝑖 ⊛ 𝑗) = 𝑗 

⟹ 𝑖 ⊛ (𝑗 ⊛ 𝑗) = 𝑗 

⟹ 𝑖 ⊛ 1 = 𝑗 

⟹ 𝑖 = 𝑗 

Hence the theorem. 

Theorem 2.1.20 

Let (T, ⊛ ,1) be a group with respect to 𝑖 ⊛ 𝑗 = 𝑖𝑗−1, then T is a GK algebra. 

Proof 

Let us consider 𝑖 ⊛ 𝑗 = 𝑖𝑗−1 

Now, 𝑖 ⊛ 𝑖 = 𝑖𝑖−1 = 1and  𝑖 ⊛ 1 = 𝑖1−1 = 𝑖 

For any  𝑖, 𝑗 ∈ 𝑇, then we have 𝑖 ⊛ 𝑗 = 𝑖𝑗−1 

Put  𝑖 = 𝑗 𝑖𝑛 𝑅𝐻𝑆 

𝑖 ⊛ 𝑗   = 𝑖𝑗−1 
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   = 𝑖𝑖−1 

   = 1 ---------------------- (1) 

   𝑗 ⊛ 𝑖 = 𝑗𝑖−1 

   = 𝑗𝑖−1 

        = 1  --------------------------(2) 

From (1) and (2)  𝑖 ⊛ 𝑗 =  𝑗 ⊛ 𝑖   

For any  𝑖, 𝑗, 𝑘 ∈ 𝑇, then we have 𝑖 ⊛ 𝑗 = 𝑖𝑗−1 

(𝑗 ⊛ 𝑘) ⊛ (𝑖 ⊛ 𝑘)     = (𝑗𝑘−1)(𝑖𝑘−1)−1 

    = (𝑗𝑘−1)(𝑘𝑖−1) 

    = 𝑗(𝑘−1𝑘)𝑖−1 

    = 𝑗𝑖−1 

    = 𝑗 ⊛ 𝑖 

For any  𝑖, 𝑗 ∈ 𝑇 

(𝑖 ⊛ 𝑗) ⊛ (1 ⊛ 𝑗)      = (𝑖𝑗−1)(1𝑗−1)−1 

    = (𝑖𝑗−1)(𝑗1−1) 

    = 𝑖(𝑗−1𝑗)1−1 

        = 𝑖1−1 

 = 𝑖 ⊛ 1 = 𝑖. 

Hence (T, ⊛ ,1) is a GK algebra. 

Definition 2.1.21 

A GK algebra (T, ⊛ ,1) is a self-distributive if the operation ⊛ satisfies 

(i) Right distributive law: (𝑖 ⊛ 𝑗) ⊛ 𝑘 = (𝑖 ⊛ 𝑘) ⊛ (𝑗 ⊛ 𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 ∈  𝑇. 

(ii) Left distributive law:  𝑖 ⊛ (𝑗 ⊛ 𝑘) = (𝑖 ⊛ 𝑗) ⊛ (𝑖 ⊛ 𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 ∈ 𝑇. 

Definition 2.1.22 

  In a GK-algebra, an element 𝑖 ∈ 𝑇 is said to commute if 
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 (𝑖 ⊛ 𝑗) ⊛ 𝑗 = (𝑗 ⊛ 𝑖) ⊛ 𝑖 , ∀ 𝑖, 𝑗 ∈ 𝑇. If this condition is true for all 𝑖, 𝑗, ∈ 𝑇, then 

(T, ⊛ ,1) is said to be a commutative GK-algebra. 

Theorem 2.1.23 

In GK algebra, for any 𝑖, 𝑗, 𝑘 ∈ 𝑇 if associativity holds then the following are 

equivalent 

(i) 𝑖 ⊛ (𝑗 ⊛ 𝑘) = (𝑖 ⊛ 𝑘) ⊛ 𝑗  

(ii) (𝑗 ⊛ 𝑘) ⊛ (𝑖 ⊛ 𝑘) = 𝑗 ⊛ 𝑖 

Proof 

 (𝑖)  ⟹ (𝑖𝑖) 

 Let us assume 𝑖 ⊛ (𝑗 ⊛ 𝑘) = (𝑖 ⊛ 𝑘) ⊛ 𝑗 

 Now, (𝑗 ⊛ 𝑘) ⊛ (𝑖 ⊛ 𝑘)   = ((𝑗 ⊛ 𝑘) ⊛ 𝑘) ⊛ 𝑖 

     = (𝑗 ⊛ (𝑘 ⊛ 𝑘)) ⊛ 𝑖 

     = (𝑗 ⊛ 1) ⊛ 𝑖 

     = 𝑗 ⊛ 𝑖 

 (𝑖𝑖)  ⟹ (𝑖) 

 Assume  (𝑗 ⊛ 𝑘) ⊛ (𝑖 ⊛ 𝑘) = 𝑗 ⊛ 𝑖 

 𝑖 ⊛ (𝑗 ⊛ 𝑘) = (𝑖 ⊛ 𝑘) ⊛ ((𝑗 ⊛ 𝑘) ⊛ 𝑘) 

     = (𝑖 ⊛ 𝑘) ⊛ (𝑗 ⊛ (𝑘 ⊛ 𝑘)) 

     = (𝑖 ⊛ 𝑘) ⊛ (𝑗 ⊛ 1) 

     = (𝑖 ⊛ 𝑘) ⊛ 𝑗 

Proposition 2.1.24 

 Let T be a GK algebra. If  𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖 ⊛ 𝑗 = 1  𝑡ℎ𝑒𝑛  𝑗 ⊛ 𝑖 ≠ 1 

Proposition 2.1.25 

Let (T, ⊛ ,1) be a GK algebra. Then for any 𝑖, 𝑗, 𝑘 ∈ 𝑇, 

(i)  𝑖 ⊛ (𝑖 ⊛ (𝑗 ⊛ 𝑖)) = 1 



CHAPTER 2   THE STRUCTURE OF GK ALGEBRA  36      

(ii)  𝑗 ⊛ (𝑗 ⊛ (𝑖 ⊛ 𝑗)) = 1 

(iii)  (𝑖 ⊛ 𝑗) ⊛ 𝑖 = (𝑗 ⊛ 𝑖) ⊛ 𝑗 

(iv) (𝑖 ⊛ 𝑗) ⊛ 𝑗 = (𝑗 ⊛ 𝑖) ⊛ 𝑖 

(v) (𝑖 ⊛ 𝑗) ⊛ 𝑖 = (𝑖 ⊛ 𝑖) ⊛ 𝑗 

(vi)  (𝑖 ⊛ 𝑗) ⊛ 𝑗 = (𝑗 ⊛ 𝑗) ⊛ 𝑖 

Proof 

(i) Let us consider  𝑖 ⊛ (𝑖 ⊛ (𝑗 ⊛ 𝑖)) 

    =𝑖 ⊛ (𝑖 ⊛ 1)by axiom (iii) of GK algebra 

    = 𝑖 ⊛ 𝑖 

    = 1 

(ii) This proof is similar as of (i) 

(iii) Consider  (𝑖 ⊛ 𝑗) ⊛ 𝑖 

   = 1 ⊛ 𝑖 

   = 1 ⊛ 𝑗 

   = (𝑖 ⊛ 𝑗) ⊛ 𝑗  (or)  (𝑗 ⊛ 𝑖) ⊛ 𝑗 

(iv) Consider  (𝑖 ⊛ 𝑗) ⊛ 𝑗 

   = 1 ⊛ 𝑗 

   = 1 ⊛ 𝑖 

   = (𝑖 ⊛ 𝑗) ⊛ 𝑖  (or)  (𝑗 ⊛ 𝑖) ⊛ 𝑖 

 This proof shows that the commutativity of GK algebra. 

(v) Consider(𝑖 ⊛ 𝑗) ⊛ 𝑖 = 1 ⊛ 𝑖 

      = 1 ⊛ 𝑗 

      = (𝑖 ⊛ 𝑖) ⊛ 𝑗 

(vi) The proof of this is similar to (v). 
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Definition 2.1.26 

Let (T, ⊛ ,1)  be a GK algebra. A non-empty subset P of T is called a sub 

algebra of T if  𝑖 ⊛ 𝑗 ∈ 𝑃  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖, 𝑗 ∈ 𝑃. 

Theorem 2.1.27 

Let (T, ⊛ ,1)  be a GK algebra and 𝑃 ≠ ∅ , 𝑃 ⊆ 𝑇  then the following are 

equivalent 

(i) P is a sub algebra. 

(ii) 𝑖 ⊛ (1 ⊛ 𝑗), 1 ⊛ 𝑗 ∈ 𝑃  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖, 𝑗 ∈ 𝑃. 

Proof 

 (𝑖)  ⟹ (𝑖𝑖) 

 Let P be a sub algebra of T. Since P is a subset of T, ∃ an element  

 𝑖 ∈ 𝑃  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑖 ⊛ 𝑖 = 1 ∈ 𝑃. 

 Since T is closed under  ⊛, 𝑗 ∈ 𝑃, 1 ⊛ 𝑗 ∈ 𝑃 ⇒ 𝑖 ⊛ (1 ⊛ 𝑗) ∈ 𝑃. 

 (𝑖𝑖)  ⟹ (𝑖) 

 We know that, 𝑖 ⊛ 𝑗 = 𝑖 ⊛ (1 ⊛ (1 ⊛ 𝑗)) by proposition 2.1.9. 

 ⟹ 𝑖 ⊛ 𝑗 ∈ 𝑃  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖, 𝑗 ∈ 𝑃. 

 ∴ 𝑃 is a sub algebra of T. 

Theorem 2.1.28 

Every GK ideal of GK algebra (T, ⊛ ,1) is a GK sub algebra. 

Proof 

Let D be a GK ideal of GK algebra T such that,  

 𝑖, 𝑗 ∈ 𝑇, 𝑡ℎ𝑒𝑛 𝑖 ⊛ 1 ∈ 𝐷, 𝑗 ⊛ 1 ∈ 𝐷 ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑇. 

By definition of GK algebra, 

(𝑖 ⊛ 1) ⊛ (𝑗 ⊛ 1) = 𝑖 ⊛ 𝑗 ∈ 𝐷 

Hence D is the GK sub algebra. 
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Theorem 2.1.29 

Let T be a GK algebra and D be a non-empty subset of T containing 1. Then D 

is a GK ideal of T if and only if   

𝑗 ⊛ 𝑘 ∈ 𝐷  𝑎𝑛𝑑 𝑗 ⊛ 𝑖 ∉ 𝐷, ⟹ 𝑖 ⊛ 𝑘 ∉  𝐷 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖, 𝑗, 𝑘 ∈ 𝑇. 

Proof 

Let D be a GK ideal of T and 𝑗 ⊛ 𝑘 ∈ 𝐷  𝑎𝑛𝑑 𝑗 ⊛ 𝑖 ∉ 𝐷. 

Let us consider  𝑖 ⊛ 𝑘 ∈ 𝐷 

Since D is a GK algebra,  𝑗 ⊛ 𝑖 ∈ 𝐷 , which leads the contradiction. 

Conversely, 

Let us assume that   

𝑗 ⊛ 𝑘 ∈ 𝐷 𝑎𝑛𝑑 𝑗 ⊛ 𝑖 ∉ 𝐷 ⇒ 𝑖 ⊛ 𝑘 ∉ 𝐷 ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑇. 

If 𝑗 ⊛ 𝑘 ∈ 𝐷, 𝑖 ⊛ 𝑘 ∈ 𝐷, it is obvious that 𝑗 ⊛ 𝑖 ∈ 𝐷. 

Therefore, D is a GK ideal of T. 

Theorem 2.1.30 

The intersection of family of GK- ideals on GK algebra T is again GK ideal. 

Proof 

Let us assume that {𝐷𝑛/𝑛 ∈ 𝑇} be a family of GK ideals on GK algebra T. 

Then, 

(i)  1 ∈ 𝐷𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑇 ⇒ 1 ∈ ⋂𝐷𝑛∀ 𝑛 ∈ 𝑇. 

(ii)  For any 𝑖, 𝑗, 𝑘 ∈ 𝑇, 𝑠𝑢𝑝𝑝𝑜𝑠𝑒 𝑗 ⊛ 𝑘 ∈ 𝐷𝑛 𝑎𝑛𝑑 𝑖 ⊛ 𝑘 ∈ 𝐷𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑇. 

 Since  𝐷𝑛 is a GK ideal of T ∀ 𝑛 ∈ 𝑇 𝑡ℎ𝑒𝑛 𝑗 ⊛ 𝑖 ∈ 𝐷𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑇. 

   This implies that 𝑗 ⊛ 𝑖 ∈∩ 𝐷𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑇. 

 Therefore ∩𝑛∈𝑇 𝐷𝑛 is a GK ideal. 

Corollary 2.1.31 

 Let T be a GK algebra and D be a non-empty subset of T then , 
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 D is a GK ideal of T if  𝑗 ⊛ 𝑘 ∈ 𝐷 𝑎𝑛𝑑 𝑖 ⊛ 𝑘 ∉ 𝐷 ⟹ 𝑗 ⊛ 𝑖 ∉ 𝐷 ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑇. 

 D is a GK ideal of T if  𝑗 ⊛ 𝑘 ∈ 𝐷 𝑎𝑛𝑑 𝑗 ⊛ 𝑖 ∈ 𝐷 ⟹ 𝑖 ⊛ 𝑘 ∈ 𝐷 ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑇. 

 D is a GK ideal of T if  𝑖 ⊛ 𝑘 ∈ 𝐷 𝑎𝑛𝑑 𝑗 ⊛ 𝑖 ∈ 𝐷 ⟹ 𝑗 ⊛ 𝑘 ∈ 𝐷 ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑇. 

2.2   Homomorphism and Anti-homomorphism of GK algebra 

In this section, homomorphism and anti-homomorphism of GK algebra are 

discussed and important results of kernel of GK algebra are explored. 

Definition 2.2.1 

Let (T,⊛𝑇 , 1) and (P,⊛𝑃, 1′) be a GK algebra. Then the mapping 𝜎: 𝑇 → 𝑃 of 

GK algebra is called homomorphism if 

 𝜎(𝑖 ⊛𝑇  𝑗) = 𝜎(𝑖) ⊛𝑃 𝜎(𝑗) ∀ 𝑖, 𝑗 ∈ 𝑇. 

Theorem 2.2.2 

If 𝜎: 𝑇 → 𝑃 is a GK homomorphism of GK algebra then  

(i)  𝜎(1) = 1′ 

(ii)  𝐼𝑓 𝑖 ≤ 𝑗 𝑡ℎ𝑒𝑛 𝜎(𝑖) ≤ 𝜎(𝑗) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖, 𝑗 ∈ 𝑇 

                         (or)  

 If  𝑖 ⊛ 𝑗 = 1 ∀ 𝑖, 𝑗 ∈ 𝑇 𝑡ℎ𝑒𝑛 𝜎(𝑖) ⊛𝑃 𝜎(𝑗) = 1′ 

Proof 

(i) Let 𝜎 be GK homomorphism. 

  We know that 1 ⊛ 1 = 1. 

 This implies that  𝜎(1) = 𝜎(1 ⊛𝑇 1) = 𝜎(1) ⊛𝑃 𝜎(1) = 1′. 

(ii) If 𝑖 ≤ 𝑗 then 𝑖 ⊛ 𝑗 = 1. 

 𝜎(𝑖) ⊛𝑃 𝜎(𝑗) =  𝜎(𝑖 ⊛𝑇 𝑗) = 𝜎(1) = 1 

 ⟹  𝜎(𝑖) ⊛𝑃 𝜎(𝑗) = 1. 

 Then, we can write it as 𝜎(𝑖) ≤ 𝜎(𝑗). 
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Theorem 2.2.3 

Let (T,⊛𝑇 , 1) and (P,⊛𝑃, 1′) be a GK algebra and the mapping 𝜎: 𝑇 → 𝑃 is a       

GK homomorphism. Let M be a GK ideal of B then 𝜎−1(𝑀)is a GK ideal of T. 

Proof 

The definition of  𝜎−1(𝑀) is 𝜎−1(𝑀) = {𝑖 ∈ 𝑇/ 𝜎(𝑖) = 𝑗 𝑓𝑜𝑟 𝑗 ∈ 𝑀} 

Since M is a GK ideal of P, then 1′ ∈ 𝑀 𝑎𝑛𝑑 𝜎(1) = 1′ ⇒ 1 ∈ 𝜎−1(𝑀). 

Assume that 𝑗 ⊛ 𝑘 ∈ 𝜎−1(𝑀) 𝑎𝑛𝑑 𝑖 ⊛ 𝑘 ∈ 𝜎−1(𝑀) 𝑡ℎ𝑒𝑛  

𝜎(𝑗 ⊛ 𝑘) ∈ 𝑀 𝑎𝑛𝑑 𝜎( 𝑖 ⊛ 𝑘) ∈ 𝑀 

Since 𝜎 is a homomorphism,  𝜎(𝑗 ⊛𝑇 𝑘) = 𝜎(𝑗) ⊛𝑃 𝜎(𝑘) ∈ 𝑀. 

Since M is a GK ideal of P, 𝜎( 𝑗 ⊛ 𝑖) ∈ 𝑀 

⟹  𝑗 ⊛ 𝑖 ∈ 𝜎−1(𝑀). 

∴ 𝜎−1(𝑀) is a GK ideal of T. 

Definition 2.2.4 

Let (T,⊛𝑇 , 1) and (P,⊛𝑃, 1′) be a GK algebra. Then the mapping 𝜎: 𝑇 → 𝑃 of 

GK algebra is called anti- homomorphism if 

  𝜎(𝑖 ⊛𝑇  𝑗) = 𝜎(𝑗) ⊛𝑃 𝜎(𝑖) ∀ 𝑖, 𝑗 ∈ 𝑇.  

Definition 2.2.5 

Let (T,⊛𝑇 , 1) and (P,⊛𝑃, 1′) be a GK algebra and the mapping 𝜔: 𝑇 → 𝑃 be a 

GK homomorphism. Then the subset 𝑘𝑒𝑟𝜔 = {𝑖 ∈ 𝑇/𝜔(𝑖) = 1′} of T is called the 

kernel of 𝜔. 

Theorem 2.2.6 

If 𝜎: 𝑇 → 𝑃 is an anti- homomorphism of GK algebra then ker 𝜎 is a GK ideal 

of T. 

Proof 

It is clear that 1 ∈ ker 𝜎 
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 ⇒ 𝜎(1) = 1′ 

Let if  𝑗 ⊛ 𝑘 ∈ 𝑘𝑒𝑟 𝜎 𝑎𝑛𝑑 𝑖 ⊛ 𝑘 ∈ 𝑘𝑒𝑟 𝜎 

This implies that 𝜎(𝑗 ⊛ 𝑘) = 1′ 𝑎𝑛𝑑  𝜎(𝑖 ⊛ 𝑘) ∈ 1′ 

⇒ 𝜎(𝑗 ⊛ 𝑖) = 𝜎((𝑗 ⊛ 𝑘) ⊛𝑇 (𝑖 ⊛ 𝑘))   𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝐾 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 

⇒ (𝜎(𝑖 ⊛ 𝑘)) ⊛𝑃 (𝜎(𝑗 ⊛ 𝑘)) 

⇒ 1 ⊛𝑃 1 

⇒ 1 

⟹ 𝑗 ⊛ 𝑖 ∈ 𝑘𝑒𝑟 𝜎 

Hence 𝑘𝑒𝑟 𝜎 is a GK ideal of T.  

 

2.3 Summary 

This chapter has been elaborated the content of newly defined GK algebra. 

The GK algebra and GK subalgebra with their adequate illustrations are explored. It is 

shown that this algebraic structure, GK algebra is different from BE algebra and CI 

algebra. The GK algebra satisfied the associativity, self-distributivity law, 

Commutativity law and also its properties are investigated. GK ideal, the kernel of 

GK algebra, anti-homomorphism of GK algebra are defined and attained remarkable 

results such as every GK ideal is a GK sub algebra, the intersection of the family of 

GK- ideals on GK algebra T is again GK ideal. 

 



_______________________________ 
† 

 The first section of this chapter has been published in Journal of Xi'an University of 

Architecture &Technology, Vol 12 (4), (2020) 1935-1941, entitled “A note on Multipliers in 

GK algebra”. 

 

 The second of this chapter has been published in Indian Journal of Science and Technology , 

Vol. 14(35), (2021), 2802-2805, entitled “Direct product of GK algebra”. 
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CHAPTER 3 

MULTIPLIERS AND THE DIRECT PRODUCT OF GK 

ALGEBRA 

This Chapter is separated into two sections. In the first section, the theory of 

Multipliers in GK algebra is introduced. In that, the left multipliers, the right 

multipliers, and regular multipliers of GK algebra are initiated, and also, some of the 

interesting properties of the regular multiplier and kernel of multipliers in GK algebra 

are discussed. In the second section, the concept of the direct product of GK algebra is 

explored and derived some paramount results. 

3.1 Multipliers in GK algebra  

This section deals with the concept of Multipliers of GK algebra. The right 

multipliers, the left multipliers are explained with the necessary illustrations, and also 

in this section, the results of composition of multipliers, regular multipliers and kernel 

of multipliers of GK algebra are obtained. 

Definition 3.1.1 

Let (T,⊛ ,1) be a GK algebra. A self-map Θ is said to be a multiplier (right) 

of T if  Θ(i ⊛ j) = i ⊛ Θ(j)   for all   i, j ∈   T. 

Example 3.1.2 

Consider 𝑇 = {1, 2, 3}  in which ‘⊛’ is defined by 

 

 

 

Table 3.1 

⊛ 1 2 3 

1 1 3 2 

2 2 1 3 

3 3 2 1 
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Then 𝑇 is a GK algebra. 

Define a mapping Θ: T → T by 

 Θ(i) = {

1         𝑖𝑓 𝑖 = 1
2         𝑖𝑓 𝑖 = 2
3         𝑖𝑓 𝑖 = 3

 

It is clearly shown that Θ is a multiplier (right) of GK algebra. 

Definition 3.1.3 

Let (T,⊛ ,1) be a GK algebra. A self-map Θ is called a multiplier (left) of T if 

 Θ(i ⊛ j) = Θ(i) ⊛ j  for all   i, j ∈   T. 

Note 3.1.4 

The above said Example 3.1.2 is also an example of the multiplier (left) of               

GK algebra. In this example, the surjectiveness (onto) is exists and also the defined 

mapping is identity mapping ( one-one and onto). If the surjectiveness (onto) does not 

exists in the self-mapping which is defined in the above example, then it will affect 

the regularity condition in GK algebra. 

Definition 3.1.5 

A map Θ of a GK algebra T is called regular if Θ(1) = 1. 

Proposition 3.1.6 

 Let Θ be a multiplier (left) of 𝑇, then 

(i) For every 𝑖 in 𝑇,   𝛩(1) = 𝛩(𝑖) ⊛ 𝑖. 

(ii) Θ is 1-1. 

Proof 

(i) Let  𝑖 ∈ 𝑇.  Then 𝑖 ⊛ 𝑖 = 1. 

   We have Θ(1) = Θ(i ⊛ i) = 𝛩(𝑖) ⊛ 𝑖  𝑓𝑜𝑟𝑎𝑙𝑙  𝑖 ∈ 𝑇. 

(ii) Let  𝑖, 𝑗 ∈ 𝑇  such that 𝛩(𝑖) = 𝛩(𝑗) 

           Then by (i), we have  Θ(1) = Θ(i ⊛ i) 
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               = 𝛩(𝑖) ⊛ 𝑖  and  

     Θ(1) = Θ(j ⊛ j) = 𝛩(𝑗) ⊛ 𝑗. 

     Then 𝛩(𝑖) ⊛ 𝑖 = 𝛩(𝑗) ⊛ 𝑗. 

   By cancellation law, 𝑖 = 𝑗. 

 ∴   𝛩 𝑖𝑠 1 − 1 

Proposition 3.1.7 

 Let Θ be a multiplier (right) of𝑇, then 

(i) For every i in 𝑇,   𝛩 (1) = 𝑖 ⊛ 𝛩 (𝑖 ). 

(ii) Θ is 1-1. 

Proof 

(i) Let i ∈ 𝑇.  Then 𝑖 ⊛ 𝑖 = 1. 

   We have Θ (1) = Θ (i ⊛ i) 

       = 𝑖 ⊛ 𝛩 (𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 ∈ 𝑇. 

(ii)  Let  𝑖, 𝑗 ∈ 𝑇  such that 𝛩(𝑖) = 𝛩(𝑗). 

              Then by (i), 

    we have  Θ(1) = Θ(i ⊛ i) 

        = 𝑖 ⊛ 𝛩(𝑖)  and                              

         Θ(1) = Θ(j ⊛ j) 

        = 𝑗 ⊛ 𝛩(𝑗).  

           Then   𝑖 ⊛ 𝛩(𝑖) = 𝑗 ⊛ 𝛩(𝑗). 

           By cancellation law, 𝑖 = 𝑗.  

 ∴   𝛩  𝑖𝑠 1 − 1. 

Example 3.1.8 

 Let us consider T = {1,2,3,4} in which ⊛ is defined by 
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⊛ 1 2 3 4 

1 1 2 3 4 

2 2 1 4 3 

3 3 4 1 2 

4 4 3 2 1 

Table 3.2 

 It can be checked that T is a GK algebra. 

Now define a mapping  Θ: T → T by 

 Θ(i) = {

2         𝑖𝑓 𝑖 = 1
1         𝑖𝑓 𝑖 = 2
4        𝑖𝑓 𝑖 = 3
3       𝑖𝑓 𝑖 = 4

 

It is clear that Θ is a multiplier of GK algebra. 

This example shows that Θ is one-to-one and onto. But it is not regular,  

since Θ(1) ≠ 1. Even surjectiveness exists here, it is not regular. 

Consider the another mapping Θ: T → T by 

Θ(i) = {

3        𝑖𝑓 𝑖 = 1
1         𝑖𝑓 𝑖 = 2
3         𝑖𝑓 𝑖 = 3

 

in GK algebra example 3.1.2. Here Θ is one-to-one but not surjective (onto). Hence Θ 

is not multiplier of GK algebra and also not regular. 

Hence, in GK algebra  Θ should be an identity mapping (which means one-to-one and 

surjective (onto)).Then only Θ is regular. If surjectiveness does not exists, the 

regularity condition of GK algebra may be affected. 

Theorem 3.1.9 

Let Θ  be a multiplier (left) of 𝑇. Then 𝛩(𝑖) = 𝑖  if and only if  𝛩  is regular. 
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Proof 

Let  Θ  is regular. Since  𝛩(1) = 1. 

Then we have  Θ(1) = Θ(i ⊛ i) = 𝛩(𝑖) ⊛ 𝑖 =1. 

By definition of GK algebra, 𝛩(𝑖) = 𝑖. 

Conversely, let 𝛩(𝑖) = 𝑖 𝑓𝑜𝑟 𝑖  𝑖𝑛  𝑇. 

It is clear that 𝛩(1) = 1. 

Hence 𝛩 is regular. 

Proposition 3.1.10 

Let 𝑇 be GK algebra and  𝛩 be a multiplier (left) of  𝑇.  

If  𝛩(𝑖) ⊛ 𝑖 = 1  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑇, then 𝛩 is regular. 

Proof 

Let  𝛩(𝑖) ⊛ 𝑖 = 1 and  𝛩 be a multiplier (left) of 𝑇. 

By definition of GK algebra, 

We have Θ(1) = Θ(i ⊛ i) = 𝛩(𝑖) ⊛ 𝑖 =1. 

Hence Θ is regular. 

Proposition 3.1.11  

Let Θ be a multiplier (left) of 𝑇. Then the following holds 

(i) If ∃ an element 𝑖 ∈ 𝑇 ∋: 𝛩(𝑖) = 𝑖, 𝛩 is the identity. 

(ii) If ∃ an element 𝑖 ∈ 𝑇 ∋: 𝛩(𝑗) ⊛ 𝑖 = 1 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  𝑗 ∈ 𝑇 then 𝛩(𝑗) = 𝑖. 

Proof 

(i) Let  𝛩(𝑖) = 𝑖 for some 𝑖 ∈ 𝑇. 

   Then 𝛩(𝑖) ⊛ 𝑖 = 𝑖 ⊛ 𝑖 

    ⇒ 𝛩(𝑖) ⊛ 𝑖 = 1 . 

   𝐻𝑒𝑛𝑐𝑒  𝛩(1) = 1 by the proposition 3.1.10  which implies that 𝛩 is regular. 

(ii) By the definition of GK algebra, 
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Θ(i ⊛ j) = Θ(j ⊛ i) = Θ(1) 

⇒ 𝛩(𝑖) ⊛ 𝑗 = 𝛩(𝑗) ⊛ 𝑖 = 𝛩(1) 

⇒ 𝛩(𝑖) ⊛ 𝑗 = 1 

⇒ 𝛩(𝑖) = 𝑗. 

Proposition 3.1.12 

Let 𝑇 be GK algebra and 𝛩 be a multiplier (left) of 𝑇. Then 𝛩(𝛩(𝑖) ⊛ 𝑖) = 1 ∀ 𝑖 ∈ 𝑇 

Proof 

 Let 𝑖 ∈ 𝑇. Then we have  𝛩(𝛩(𝑖) ⊛ 𝑖) = 𝛩(𝑖) ⊛ 𝛩(𝑖) = 1. 

Proposition 3.1.13 

Let 𝑇 be a GK algebra and 𝛩 be a regular multiplier. Then the self-mapping 𝛩 

is an identity mapping if it satisfies multiplier (left) is equal to the multiplier (right) 

that is 𝛩(𝑖) ⊛ 𝑗 = 𝑖 ⊛ 𝛩(𝑗) ∀ 𝑖, 𝑗 ∈ 𝑇. 

Proof 

 Since 𝛩 is regular, we have 𝛩(1) = 1. 

 Let  𝛩(𝑖) ⊛ 𝑗 = 𝑖 ⊛ 𝛩(𝑗) ∀ 𝑖, 𝑗 ∈ 𝑇 

 Then 𝛩(𝑖) = 𝛩(𝑖 ⊛ 1) = 𝛩(𝑖) ⊛ 1 = 𝑖 ⊛ 𝛩(1) = 𝑖 ⊛ 1 = 𝑖.  

 Hence 𝛩 is an identity map. 

Theorem 3.1.14 

Let (𝑇,⊛ ,1) be a GK-algebra and  𝛩  be a multiplier. Then  

(i) i ≤ 𝛩(𝑖), for all  𝑖 ∈ 𝑇.  

(ii) 𝑖 ≤  𝑗 ⟹ 𝑖 ≤ 𝛩(𝑗) , for all  𝑖, 𝑗 ∈ 𝑇 

Proof 

(i) We have i ⊛ i = 1, for all  𝑖 ∈ 𝑇. So, Θ(i ⊛ i) = Θ(1) 

  𝑖 ⊛ 𝛩(𝑖) =  Θ(1) 

    ⟹   𝑖 ⊛ 𝛩(𝑖) =  1 
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   ⟹ 𝑖 ≤ 𝛩(𝑖) 

(ii) We have 𝑖 ≤  𝑗, i ⊛ j = 1 

  𝑖 ⊛ 𝛩(𝑖) =  Θ(1) 

             ⟹   𝑖 ⊛ 𝛩(𝑗) =  1 

  ⟹ 𝑖 ≤ 𝛩(𝑗) 

 Definition 3.1.15 

 Let Θ be a multiplier of GK algebra. A set  ℋΘ(T) , the set of all invariant 

points of T, is defined by 

  ℋΘ(T) = {i ∈ T Θ(i)⁄ = i  ∀ i ∈ T. }  

 Proposition 3.1.16 

Let 𝑇 be a GK algebra and  𝛩 be a multiplier (left) on 𝑇.If 𝑗 ∈ ℋ𝛩(𝑇), we have 

𝑖 ⋏ 𝑗 ∈ ℋ𝛩(𝑇) ∀ 𝑖, 𝑗 ∈ 𝑇.  

Proof 

Let 𝛩  be a left multiplier on 𝑇 and let 𝑗 ∈ ℋ𝛩(𝑇). 

Now 𝛩(𝑖 ⋏ 𝑗)  = 𝛩(𝑗 ⊛ (𝑗 ⊛ 𝑖)) 

    = 𝛩(𝑗) ⊛ (𝑗 ⊛ 𝑖) 

    = 𝑗 ⊛ (𝑗 ⊛ 𝑖) 

    = 𝑖 ⋏ 𝑗. 

Hence  𝑖 ⋏ 𝑗 ∈ ℋ𝛩(𝑇). 

Proposition 3.1.17 

Let 𝑇 be a GK algebra and 𝛩 be a multiplier (right) on 𝑇.If 𝑗 ∈ ℋ𝛩(𝑇), we 

have 𝑖 ⋏ 𝑗 ∈ ℋ𝛩(𝑇) ∀ 𝑖, 𝑗 ∈ 𝑇.  

Proof 

Let 𝛩  be a multiplier (right) on 𝑇 and let 𝑗 ∈ ℋ𝛩(𝑇). 

Now, 𝛩(𝑖 ⋏ 𝑗) = 𝛩(𝑗 ⊛ (𝑗 ⊛ 𝑖)) 
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   = 𝑗 ⊛ 𝛩(𝑗 ⊛ 𝑖) 

   = 𝑗 ⊛ (𝑗 ⊛ 𝛩(𝑖)) 

   = 𝑗 ⊛ (𝑗 ⊛ 𝑖) 

   = 𝑖 ⋏ 𝑗. 

Hence 𝑖 ⋏ 𝑗 ∈ ℋ𝛩(𝑇). 

Definition 3.1.18 

Let T be a GK algebra and Θ1, Θ2 two self maps. We define a mapping  

Θ1 ∘ Θ2: T → T by (Θ
1

∘ Θ2)(i) = Θ1(Θ2(i))  ∀ i ∈ T. 

Proposition 3.1.19 

Let 𝑇 be a GK algebra and 𝛩1, 𝛩2 two multipliers [right (left)] of   𝑇. 

The    𝛩1 ∘ 𝛩2 is also multiplier [right (left)] of  𝑇. 

Proof 

Let 𝑇 be a GK algebra and 𝛩1, 𝛩2  two multipliers (right) of  𝑇. Then we have 

                    (𝛩1 ∘ 𝛩2)(𝑖 ⊛ 𝑗) = 𝛩1(𝛩2(𝑖 ⊛ 𝑗)) 

    = 𝛩1(𝑖 ⊛ 𝛩2(𝑗)) 

    = 𝑖 ⊛ 𝛩1(𝛩2(𝑗)) 

    = 𝑖 ⊛ (𝛩1 ∘ 𝛩2)(𝑗) 

Let 𝑇 be an GK algebra and 𝛩1, 𝛩2  two multipliers (left) of 𝑇. Then we have 

            (𝛩1 ∘ 𝛩2)(𝑖 ⊛ 𝑗)         = 𝛩1(𝛩2(𝑖 ⊛ 𝑗)) 

    = 𝛩1(𝛩2(𝑖)) ⊛ 𝑗 

    = (𝛩1 ∘ 𝛩2)(𝑖) ⊛ 𝑗. 

Definition 3.1.20 

 Let T be a GK algebra and Θ1, Θ2 two self maps. We define (Θ1 ⋏ Θ2): T → T 

by (Θ1 ⋏ Θ2)(i) = Θ1(i) ⋏ Θ2(i). 
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Proposition 3.1.21 

Let 𝑇 be a GK algebra and 𝛩1, 𝛩2 two multipliers (left) of 𝑇. Then 𝛩1 ⋏ 𝛩2 is 

also multiplier (left) of 𝑇. 

Proof 

Let 𝑇 be a GK algebra and 𝛩1, 𝛩2 two multipliers (left) of  𝑇. 

(𝛩1 ⋏ 𝛩2)(𝑖 ⊛ 𝑗) = 𝛩1(𝑖 ⊛ 𝑗) ⋏ 𝛩2(𝑖 ⊛ 𝑗) 

   = (𝛩1(𝑖) ⊛ 𝑗) ⋏ (𝛩2(𝑖) ⊛ 𝑗) 

   = (𝛩2(𝑖) ⊛ 𝑗) ⊛ ((𝛩2(𝑖) ⊛ 𝑗) ⊛ (𝛩1(𝑖) ⊛ 𝑗)) 

   = 𝛩1(𝑖) ⊛ 𝑗   ……………….(1) 

       (𝛩1 ⋏ 𝛩2)(𝑖) ⊛ 𝑗 = (𝛩1(𝑖) ⋏ 𝛩2(𝑖)) ⊛ 𝑗 

   = (𝛩2(𝑖) ⊛ (𝛩2(𝑖)  ⊛  𝛩1(𝑖))) ⊛ 𝑗   

   = 𝛩1(𝑖) ⊛ 𝑗 ………………..(2) 

 From (1) and (2) 

(𝛩1 ⋏ 𝛩2)(𝑖 ⊛ 𝑗) = (𝛩1 ⋏ 𝛩2)(𝑖) ⊛ 𝑗. 

 Hence 𝛩1 ⋏ 𝛩2 is a multiplier (left) . 

Definition 3.1.22 

 Consider the set of multipliers 𝒬(𝑇),  for any 𝜔 ∈ 𝒬(𝑇), the Kernel of 𝜔  is as 

follows 𝒦𝜔 = {𝑖 ∈ 𝑇/𝜔(𝑖) = 1}. 

Proposition 3.1.23  

Let 𝜔 be a multiplier 𝑎𝑛𝑑 1 − 1.Then 𝒦𝜔 is {1}  

Proof 

Let  𝜔 be one-to-one. 

Let  𝑖 ∈ 𝒦𝜔. So 𝜔(𝑖) = 1 =𝜔(1). Thus  𝑖 = 1.  

So, ker (𝜔) = {1}. 
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3.2 Direct product of GK algebra 

This section deals with the concept of the direct product of GK algebra. Some 

important results in which direct product of two GK algebra is again GK algebra as a 

particular case are derived, and also, the general case of the same is explored then 

after investigated the direct product of kernel of GK algebra. 

Definition 3.2.1 

Let (M,⊛, 1𝑀) and (N,⊛, 1𝑁) be GK algebras. Direct product 𝑀 × 𝑁  is 

defined as a structure  𝑀 × 𝑁 = (𝑀 × 𝑁;⨂ ;(1𝑀; 1𝑁)), where 𝑀 × 𝑁 is the set 

{(𝑚, 𝑛)/𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁}  and ⨂  is given by  

(𝑚1, 𝑛1)⨂(𝑚2, 𝑛2) = (𝑚1 ⊛ 𝑚2, 𝑛1 ⊛ 𝑛2) 

 This shows that the direct product of two sets of GK algebra M and N is 

denoted by 𝑀 × 𝑁, which each (𝑚, 𝑛) is an ordered pair.  

Theorem 3.2.2 

The direct product of any two GK algebras is again a GK algebra. 

Proof 

 Let M and N be GK algebras, let 𝑚1, 𝑚2 ∈ 𝑀 𝑎𝑛𝑑 𝑛1, 𝑛2 ∈ 𝑁 

We know that  𝑀 × 𝑁 = (𝑀 × 𝑁;⨂ ;(1𝑀; 1𝑁)) 

Since 1𝑀 ∈ 𝑀, 1𝑁 ∈ 𝑁 

This implies that (1𝑀, 1𝑁) ∈ 𝑀 × 𝑁 

∴   𝑀 × 𝑁  𝑖𝑠 𝑛𝑜𝑛 − 𝑒𝑚𝑝𝑡𝑦. 

Now let us prove it is GK algebra. 

Let 𝑚1, 𝑚2 ∈ 𝑀 𝑎𝑛𝑑 𝑛1, 𝑛2 ∈ 𝑁 

(i) (𝑚1, 𝑛1)⨂(𝑚1, 𝑛1)    = (𝑚1 ⊛ 𝑚1, 𝑛1 ⊛ 𝑛1)  

      = (1𝑀, 1𝑁)by definition of GK algebra 

(ii) (𝑚1, 𝑛1)⨂(1𝑀, 1𝑁)    = (𝑚1 ⊛ 1𝑀 , 𝑛1 ⊛ 1𝑁) 
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      = (𝑚1, 𝑛1)by definition of GK algebra 

(iii)  If (𝑚1, 𝑛1)⨂(𝑚2, 𝑛2) = (1𝑀 , 1𝑁) and 

 (𝑚2, 𝑛2)⨂(𝑚1, 𝑛1) = (1𝑀, 1𝑁) 

            then (𝑚1 ⊛ 𝑚2, 𝑛1 ⊛ 𝑛2) = (1𝑀, 1𝑁) 

   ⟹  𝑚1 ⊛ 𝑚2 = 1𝑀  𝑎𝑛𝑑  𝑛1 ⊛ 𝑛2 = 1𝑁 

   ⟹  𝑚1 = 𝑚2   𝑎𝑛𝑑  𝑛1 = 𝑛2 by definition GK algebra.  

(iv) [((𝑚2, 𝑛2)⨂(𝑚3, 𝑛3)]⨂[(𝑚1, 𝑛1)⨂(𝑚3, 𝑛3)]  

   ⟹ (𝑚2 ⊛ 𝑚3, 𝑛2 ⊛ 𝑛3)⨂(𝑚1 ⊛ 𝑚3, 𝑛1 ⊛ 𝑛3) 

   ⟹ {[(𝑚2 ⊛ 𝑚3) ⊛ (𝑚1 ⊛ 𝑚3)] ⊛ [(𝑛2 ⊛ 𝑛3) ⊛ (𝑛1 ⊛ 𝑛3)]} 

   ⟹ (𝑚2 ⊛ 𝑚1, 𝑛2 ⊛ 𝑛1) 

   ⟹ (𝑚2, 𝑛2)⨂(𝑚1, 𝑛1). 

(v) [(𝑚1, 𝑛1)⨂(𝑚2, 𝑛2)]⨂[(1𝑀, 1𝑁)⨂(𝑚2, 𝑛2)] 

   ⟹ [(𝑚1 ⊛ 𝑚2), (𝑛1 ⊛ 𝑛2)]⨂[(1𝑀 ⊛ 𝑚2), (1𝑁 ⊛ 𝑛2)] 

   ⟹ [(𝑚1 ⊛ 𝑚2) ⊛ (1𝑀 ⊛ 𝑚2)], [(𝑛1 ⊛ 𝑛2) ⊛ (1𝑁 ⊛ 𝑛2)] 

   ⟹   (𝑚1 ⊛ 1𝑀 , 𝑛1 ⊛ 1𝑁) 

   ⟹   (𝑚1, 𝑛1) 

 Hence  𝑀 × 𝑁  is a GK algebra. 

Theorem 3.2.3 

Let {𝑀𝑖  /(𝑀𝑖;⊛; 1) ∶ 𝑖 = 1,2,3 … . 𝑛}  𝑎𝑛𝑑  {𝑁𝑖 /(𝑁𝑖;⊛; 1) ∶ 𝑖 = 1,2,3 … . 𝑛} 

be the family of GK algebras and let 𝜁𝑖: 𝑀𝑖 ⟶ 𝑁𝑖, 𝑖 = 1,2,3 … . . 𝑛 be the set of                    

isomorphism. If   𝜁 𝑓𝑟𝑜𝑚 ∏ 𝑀𝑖 ⟶ ∏ 𝑁𝑖  
𝑛
1

𝑛
1 given by (𝑚𝑖) = 𝜁𝑖(𝑚𝑖), 𝑖 = 1,2, … . . 𝑛, 

then  𝜁 is also an isomorphism. 
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Proof 

Let {𝑀𝑖  /(𝑀𝑖;⊛; 1) ∶ 𝑖 = 1,2,3 … . 𝑛}  𝑎𝑛𝑑  {𝑁𝑖 /(𝑁𝑖;⊛; 1) ∶ 𝑖 = 1,2,3 … . 𝑛} 

be the family of GK algebras and let 𝜁𝑖: 𝑀𝑖 ⟶ 𝑁𝑖, 𝑖 = 1,2,3 … . . 𝑛 be the set of 

isomorphism. 

Let 𝜁 𝑓𝑟𝑜𝑚 ∏ 𝑀𝑖 ⟶ ∏ 𝑁𝑖
𝑛
1

𝑛
1  given by 𝜁(𝑚𝑖), (𝑖 = 1,2,3 … 𝑛) = 𝜁𝑖(𝑚𝑖), 𝑖 =

1,2,3 … 𝑛. 

We have to prove 𝜁 is an isomorphism. 

If (𝑚𝑖, 𝑛𝑖) ∈ ∏ 𝑀𝑖
𝑛
1  then  𝜁[(𝑚1, 𝑚2, … . . 𝑚𝑛)⨂(𝑛1, 𝑛2, … … 𝑛𝑛)] 

  = 𝜁[𝑚1 ⊛ 𝑛1, 𝑚2 ⊛ 𝑛2 … … 𝑚𝑛 ⊛ 𝑛𝑛] 

  = (𝜁1(𝑚1 ⊛ 𝑛1), 𝜁2(𝑚2 ⊛ 𝑛2) … … 𝜁𝑛(𝑚𝑛 ⊛ 𝑛𝑛)) 

  = ((𝜁1(𝑚1) ⊛ 𝜁1(𝑛1)), (𝜁2(𝑚2) ⊛ 𝜁2(𝑛2)) … … (𝜁𝑛(𝑚𝑛) ⊛ 𝜁𝑛(𝑛𝑛)) 

  = [𝜁1(𝑚1), 𝜁2(𝑚2), … … . 𝜁𝑛(𝑚𝑛)]⨂  [𝜁1(𝑛1), 𝜁2(𝑛2), … … . 𝜁𝑛(𝑛𝑛)] 

  = 𝜁(𝑚1, 𝑚2, … . . 𝑚𝑛)   ⨂   𝜁(𝑛1, 𝑛2, … … 𝑛𝑛) 

 This implies that 𝜁 is a homomorphism. 

We have to prove 𝜁 is onto, we have 𝜁𝑖 is onto, where i=1,2,3….n. 

Let (𝑛1, 𝑛2, … … 𝑛𝑛) ∈ 𝑁1 × 𝑁2 × … .× 𝑁𝑛 

⟹ 𝑆𝑖𝑛𝑐𝑒 𝜁 𝑖𝑠 𝑜𝑛𝑡𝑜, 𝑛𝑖 ∈ 𝑁𝑖 , 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑚𝑖 ∈ 𝑀𝑖  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝜁𝑖(𝑚𝑖) = 𝑛𝑖  𝑓𝑜𝑟 𝑖 = 1,2,3 … 𝑛  

⟹ (𝑛1, 𝑛2, … … 𝑛𝑛) = [𝜁1(𝑚1), 𝜁2(𝑚2), … … . 𝜁𝑛(𝑚𝑛)] =  𝜁(𝑚1, 𝑚2, … . . 𝑚𝑛) 

⟹  𝜁 𝑖𝑠 𝑜𝑛𝑡𝑜. 

Now, to prove 𝜁 𝑖𝑠 1 − 1. 

𝜁(𝑚1, 𝑚2, … . . 𝑚𝑛) =  𝜁(𝑛1, 𝑛2, … … 𝑛𝑛) 

[𝜁1(𝑚1), 𝜁2(𝑚2), … … . 𝜁𝑛(𝑚𝑛)]  =  [𝜁1(𝑛1), 𝜁2(𝑛2), … … . 𝜁𝑛(𝑛𝑛)] 

⟹  𝜁𝑖(𝑚𝑖) = 𝜁𝑖(𝑛𝑖) 

⟹  𝑚𝑖 = 𝑛𝑖  , where i=1,2,3….n , since 𝜁𝑖 is 1-1. 

⟹ (𝑚1, 𝑚2, … . . 𝑚𝑛) = ( 𝑛1, 𝑛2, … … 𝑛𝑛) 
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⟹  𝜁 𝑖𝑠 1 − 1. 

Hence  𝜁 is an isomorphism. 

Theorem 3.2.4 

Let 𝑀𝑖 , 𝑁𝑖, 𝑖 = 1,2 be GK algebras. Consider the mapping 𝜁1: 𝑀1 ⟶ 𝑁1 𝑎𝑛𝑑  

𝜁2: 𝑀2 ⟶ 𝑁2where 𝜁1, 𝜁2 are homomorphisms. If the map 𝜁: 𝑀1 × 𝑀2 ⟶ 𝑁1 × 𝑁2 

given by  𝜁(𝑚1, 𝑚2) = 𝜁1(𝑚1), 𝜁2(𝑚2), then  

(i) 𝜁is a homomorphism. 

(ii) ker 𝜁 = ker 𝜁1 × ker 𝜁2. 

Proof 

Let us consider the mapping 𝜁1: 𝑀1 ⟶ 𝑁1𝑎𝑛𝑑𝜁2: 𝑀2 ⟶ 𝑁2 where 𝜁1, 𝜁2 are 

homomorphisms. 

 If the map 𝜁: 𝑀1 × 𝑀2 ⟶ 𝑁1 × 𝑁2 given by 𝜁(𝑚1, 𝑛1) = (𝜁1(𝑚1), 𝜁2(𝑛1)), 

for 𝑚1, 𝑚2 ∈ 𝑀1 𝑎𝑛𝑑 𝑛1, 𝑛2 ∈ 𝑀2  then  

(i) 𝜁[(𝑚1, 𝑛1)⨂(𝑚2, 𝑛2)]          = 𝜁(𝑚1 ⊛ 𝑚2, 𝑛1 ⊛ 𝑛2) 

     = (𝜁1(𝑚1 ⊛ 𝑚2), 𝜁2(𝑛1 ⊛ 𝑛2)) 

     = (𝜁1(𝑚1) ⊛ 𝜁1(𝑚2), 𝜁2(𝑛1) ⊛ 𝜁2(𝑛2)) 

     = (𝜁1(𝑚1), 𝜁2(𝑛1)) ⨂  (𝜁1(𝑚2), 𝜁2(𝑛2))  

     = 𝜁1(𝑚1, 𝑛1)⨂𝜁2(𝑚2, 𝑛2) 

 Therefore 𝜁 is a homomorphism.  

(ii) Let  (𝑚, 𝑛) ∈ 𝑘𝑒𝑟𝜁  ⟺   𝜁(𝑚, 𝑛) = (1𝑀1
, 1𝑀2

) 

    ⟺ ( 𝜁1(𝑚), 𝜁2(𝑛)) = (1𝑀1
, 1𝑀2

) 

      ⟺ 𝜁1(𝑚) = 1𝑀1
, 𝜁2(𝑛) = 1𝑀2

 

    ⟺ 𝑚 ∈ ker 𝜁1 ,  𝑛 ∈ ker 𝜁2 

    ⟺   (𝑚, 𝑛)  ∈   ker 𝜁1 × ker 𝜁2. 

                 Hence ker 𝜁 = ker 𝜁1 × ker 𝜁2. 
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3.3 Summary 

 The study of multipliers (left and right) on GK algebra had been explored. It is 

derived that the composition of two multipliers is again a multiplier of GK algebra. In 

the second part of this chapter, the direct of GK algebras is introduced. In that, some 

important theorem such as the direct product of any two GK algebras is again a GK 

algebra and ker 𝜁 = ker 𝜁1 × ker 𝜁2 where 𝜁1, 𝜁2 𝑎𝑟𝑒 homomorphism is obtained. 

 



________________________________ 
† 

 This chapter has been published in Infokara Research, Vol 8 (11), (2019) 1720-1726, entitled 

“Derivations on GK algebra”. 
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CHAPTER 4 

DERIVATIONS IN GK ALGEBRA 

 The theory of derivations in GK algebra is initiated in this Chapter.  This new 

concept deals with some interesting properties of derivations in GK algebra and also, 

investigated the (GK-LR) (left-right) and (GK-RL) (Right left) derivations 

respectively, regular of GK derivations in GK algebra with necessary examples. It is 

showed that the set all GK-LR derivations is associative and also brought that few 

adequate results. 

4.1 Derivations in GK algebra 

This section explained about the concept of derivation in GK algebra. The 

concept of GK derivations, GK-LR derivation, GK-RL derivation are explained with 

the examples. The properties of GK (LR and RL) are scrutinized and obtained 

interesting results. 

Definition 4.1.1 

Let (T,⊛,1) be a GK algebra. A map 𝜉: 𝑇 → 𝑇 is called a left-right derivation 

(Simply (GK-LR) derivation) of T if  

𝜉(𝑖 ⊛ 𝑗) = (𝜉(𝑖) ⊛ 𝑗) ⋏ (𝑖 ⊛ 𝜉(𝑗)) ∀ 𝑖, 𝑗 ∈ 𝑇. 

Definition 4.1.2 

Let  (𝑇,⊛ ,1) be a GK-algebra. A map  𝜉: 𝑇 → 𝑇 is called a right-left 

derivation (Simply (GK-RL) derivation) of T if 

𝜉(𝑖 ⊛ 𝑗) = (𝑖 ⊛ 𝜉(𝑗)) ⋏ (𝜉(𝑖) ⊛ 𝑗) ∀ 𝑖, 𝑗 ∈ 𝑇. 
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Remark 4.1.3 

A map  𝜉: 𝑇 → 𝑇 is said to be a derivation of T if 𝜉 is both a (GK-LR) 

derivation and a (GK-RL) derivation of T. 

Note 4.1.4 

Let   (𝑇,⊛ ,1) be a GK-algebra T, 𝑖, 𝑗 ∈T. We denote 𝑖 ⋏ 𝑗 = 𝑗 ⊛ (𝑗 ⊛ 𝑖). 

Example 4.1.5 

Let  𝑇 = {1,2,3} be a GK-algebra. The operation ⊛  is defined as follows 

 

Table 4.1 

Define a map  𝜉: 𝑇 → 𝑇 by  

𝜉(𝑖) = {

1         𝑖𝑓  𝑖 = 1
2         𝑖𝑓 𝑖 = 2
3          𝑖𝑓 𝑖 = 3

 

Then it is so clear that 𝜉 is a derivation of T. 

Definition 4.1.6 

Let  (𝑇,⊛ ,1)  be a GK-algebra and  𝜉: 𝑇 → 𝑇  be a map of a GK-algebra, then 

𝜉 is called regular if 𝜉(1) =1. 

Note 4.1.7 

In GK-algebra, we can observe that 𝑖 ⋏ 𝑗 = 𝑗 ⊛ (𝑗 ⊛ 𝑖)= 𝑖 ∀ 𝑖, 𝑗 ∈ 𝑇.   

  

⊛ 1 2 3 

1 1 3 2 

2 2 1 3 

3 3 2 1 
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Proposition 4.1.8 

Let 𝜉 be a self-map of GK algebra T, then  

(i) If  𝜉 is regular (GK-LR) derivation of T, then 𝜉(𝑖) = 𝜉(𝑖) ⋏ 𝑖   ∀  𝑖 ∈ 𝑇 

(ii) If  𝜉 is regular (GK-RL) derivation of T, then  𝜉(𝑖) = 𝑖 ⋏ 𝜉(𝑖)   ∀ 𝑖 ∈ 𝑇 

Proof 

(i) Let   𝜉  be a regular (GK-LR) derivation of T. Then 

      𝜉(𝑖) = 𝜉(𝑖 ⊛ 1) 

   = (𝜉(𝑖) ⊛ 1) ⋏ (𝑖 ⊛ 𝜉(1)) 

   = 𝜉(𝑖) ⋏ (𝑖 ⊛ 𝜉(1)) 

   = 𝜉(𝑖) ⋏ (𝑖 ⊛ 1) 

   = 𝜉(𝑖) ⋏ 𝑖 

(ii) Let   𝜉 be a regular (GK-RL) derivation of T, then  

     𝜉(𝑖)  = 𝜉(𝑖 ⊛ 1) 

   = (𝑖 ⊛ 𝜉(1)) ⋏ (𝜉(𝑖) ⊛ 1) 

   = (𝑖 ⊛ 1) ⋏ (𝜉(𝑖) ⊛ 1) 

   = 𝑖 ⋏ 𝜉(𝑖) 

         Conversely, 

         Let  𝜉 be a (GK-RL) derivation of T and 𝜉(𝑖) = 𝑖 ⋏ 𝜉(𝑖) ∀ 𝑖 ∈ 𝑇, then       

         we get,  𝜉(1)    =  1 ⋏ 𝜉(1) 

   = 𝜉(1) ⊛ (𝜉(1) ⊛ 1)                   ∵ 𝑖 ⋏ 𝑗 = 𝑗 ⊛ (𝑗 ⊛ 𝑖) 

   = 𝜉(1) ⊛ 𝜉(1) 

   = 1. 

           Hence  𝜉 is regular. 
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Lemma 4.1.9 

Let  (𝑇,⊛ ,1) 𝑏𝑒 a GK-algebra and 𝜉 be a (GK-LR) derivation of T. Then the 

following hold  ∀ 𝑖, 𝑗 ∈ 𝑇 

(i) 𝜉(𝑖 ⊛ 𝑗) = 𝜉(𝑖) ⊛ 𝑗. 

(ii) If 𝜉 is regular then  𝜉(𝑖) ≤ 𝑖. 

Proof 

(i) Let  (𝑇,⊛ ,1)  be a GK algebra and   𝜉  be a (GK-LR) derivation of T. 

Then, 𝜉(𝑖 ⊛ 𝑗) = (𝜉(𝑖) ⊛ 𝑗)  ⋏ (𝑖 ⊛ 𝜉(𝑗)) 

      = (𝑖 ⊛ 𝜉(𝑗)) ⊛ ((𝑖 ⊛ 𝜉(𝑗)) ⊛ (𝜉(𝑖) ⊛ 𝑗)) 

     = 𝜉(𝑖) ⊛ 𝑗 

              ∴ 𝜉(𝑖 ⊛ 𝑗)  = 𝜉(𝑖) ⊛ 𝑗.  

(ii) Let  𝜉  be a regular derivation of T. 

  Then  𝜉 (1) =1. 

   Now  𝜉(𝑖 ⊛ 𝑖) = 𝜉(1) 

   𝜉(𝑖) ⊛ 𝑖 = 1 

   ∴ 𝜉(𝑖) ≤ 𝑖. 

Lemma 4.1.10 

    Let  (𝑇,⊛ ,1)  be a GK algebra and  ξ  be a (GK-RL) derivation of T.                                                            

     Then, 

(i) 𝜉(𝑖 ⊛ 𝑗) = 𝑖 ⊛ 𝜉(𝑗) 

(ii) If 𝜉 is regular then  𝑖 ≤ 𝜉(𝑖) 

   Proof 

(i) Let  (𝑇,⊛ ,1)  be a GK algebra and  𝜉   be a (GK-RL) derivation of T. 

    Then,  𝜉(𝑖 ⊛ 𝑗) = (𝑖 ⊛ 𝜉(𝑗) ) ⋏ (𝜉(𝑖) ⊛ 𝑗) 
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       = (𝜉(𝑖) ⊛ 𝑗) ⊛ ((𝜉(𝑖) ⊛ 𝑗) ⊛ (𝑖 ⊛ 𝜉(𝑗))) 

       = 𝑖 ⊛ 𝜉(𝑗) 

          ∴ 𝜉(𝑖 ⊛ 𝑗) = 𝑖 ⊛ 𝜉(𝑗). 

(ii) Let   𝜉  be a regular derivation of T. 

    Then 𝜉 (1) =1. 

                  Now,  𝜉(𝑖 ⊛ 𝑖) = 𝜉(1) 

       𝑖 ⊛ 𝜉(𝑖) = 1 

 Therefore, 𝑖 ≤ 𝜉(𝑖). 

Note 4.1.11 

(i)  From the above lemma 4.1.10 

  𝜉(𝑖 ⊛ 𝑗) = 𝜉(𝑖) ⊛ 𝑗 

     and  𝜉(𝑖 ⊛ 𝑗) = 𝑖 ⊛ 𝜉(𝑗) 

     ⇒  𝜉(𝑖 ⊛ 𝑗) = 𝜉(𝑖) ⊛ 𝑗 =  𝑖 ⊛ 𝜉(𝑗) 

(ii) Let  𝜉  be  the regular derivation then by lemma 4.1.10 

   𝜉(𝑖) ≤ 𝑖 and  𝑖 ≤ 𝜉(𝑖) 

   ⇒   𝑖 = 𝜉(𝑖). 

Remark 4.1.12 

 A map  𝜉: 𝑇 → 𝑇  is regular derivation of T then  𝜉(𝑖) = 𝑖  ∀  𝑖 ∈ 𝑇. 

Lemma 4.1.13 

 Let 𝜉: 𝑇 → 𝑇  be a derivation of T. Then  𝜉 is a regular derivation if  𝜉 is either 

a (GK-LR) derivation or a (GK-RL) derivation. 

Proof 

Let  𝜉  is (GK-LR) derivation, then for all 𝑖 ∈ 𝑇, 𝜉(𝑖) ⊛ 𝑖 = 1 

     Now  𝜉(1) = 𝜉(𝑖 ⊛ 𝑖) 

    = 𝜉(𝑖) ⊛ 𝑖 
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   ∴ 𝜉(1) = 1. 

∴ 𝜉 is regular. 

Now if  𝜉  is (GK-RL) derivation, then for all 𝑖 ∈ 𝑇,  

  𝑖 ⊛ 𝜉(𝑖) = 1 

Now,       𝜉(1) = 𝜉(𝑖 ⊛ 𝑖) 

   = 𝑖 ⊛ 𝜉(𝑖) 

  ∴ 𝜉(1) = 1. 

 ∴ 𝜉is regular. 

Theorem 4.1.14 

Let  (𝑇,⊛ ,1)  be a GK algebra and  𝜉 be a regular (GK-RL) derivation of T.  

Then the following hold,  ∀ 𝑖, 𝑗 ∈ 𝑇. 

(i)   𝜉(𝑖) = 𝑖 

(ii)   𝜉(𝑖) ⊛ 𝑗 = 𝑖 ⊛ 𝜉(𝑗) 

(iii) 𝜉(𝑖 ⊛ 𝑗) = 𝜉(𝑖) ⊛ 𝑗 = 𝑖 ⊛ 𝜉(𝑗) = 𝜉(𝑖) ⊛ 𝜉(𝑗) 

Proof 

(i) Since  𝜉  is  regular (GK-RL) derivation of T, we have   

      𝜉(𝑖) = 𝜉(𝑖 ⊛ 1) 

   = 𝑖 ⊛ 𝜉(1) 

   = 𝑖 ⊛ 1 

   = 𝑖 

  ∴ 𝜉(𝑖) = 𝑖. 

(ii) Since  𝜉 is regular (GK-RL) derivation of T, then we have 

  𝜉(𝑖 ⊛ 𝑗) = 𝑖 ⊛ 𝜉(𝑗) 

       𝑖 ⊛ 𝑗 = 𝑖 ⊛ 𝜉(𝑗)                    → (1) 

 and in (GK-LR) derivation 
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                         𝜉(𝑖 ⊛ 𝑗) = 𝜉(𝑖) ⊛ 𝑗 

                               𝑖 ⊛ 𝑗 = 𝜉(𝑖) ⊛ 𝑗                    → (2) 

                  From (1) & (2) 

   𝜉(𝑖) ⊛ 𝑗 = 𝑖 ⊛ 𝑗 = 𝑖 ⊛ 𝜉(𝑗). 

(iii) Since  𝜉(𝑖) = 𝑖  ∀  𝑖 ∈ 𝑇 

  𝜉(𝑖 ⊛ 𝑗) = 𝜉(𝑖) ⊛ 𝑗 = 𝜉(𝑖) ⊛ 𝜉(𝑗) 

  𝜉(𝑖 ⊛ 𝑗) = 𝑖 ⊛ 𝜉(𝑗) = 𝜉(𝑖) ⊛ 𝜉(𝑗) 

  ⇒ 𝜉(𝑖 ⊛ 𝑗) = 𝜉(𝑖) ⊛ 𝑗 = 𝑖 ⊛ 𝜉(𝑗) = 𝜉(𝑖) ⊛ 𝜉(𝑗). 

Lemma 4.1.15 

  Let  (𝑇,⊛ ,1)  be a GK   algebra and  𝜉 be a derivation on T.  If                   

𝑖 ≤ 𝑗  ∀  𝑖, 𝑗 ∈  𝑇 then 𝜉 (i) = 𝜉 (j). 

Proof 

In GK algebra, 𝑖 ⊛ 𝑗 = 𝑗 ⊛ 𝑖 = 1 ⇔ 𝑖 ≤ 𝑗. 

Then        𝜉(𝑗) = 𝜉(𝑗 ⊛ 1) 

   = 𝜉(𝑗 ⊛ (𝑗 ⊛ 𝑖)) 

   = 𝜉(𝑖). 

Proposition 4.1.16 

 Let 𝜉 be a derivation on GK algebra and let 𝑖 ∈ 𝑇, then 

𝑖 ⊛ (𝑖 ⊛ 𝜉(𝑖)) = 𝜉(𝑖) ⊛ (𝜉(𝑖) ⊛ 𝑖). 

Proof 

 We know that 𝜉(𝑖) = 𝜉(𝑖) ⋏ 𝑖 

     𝑖 ⊛ 𝜉(𝑖)  = 𝑖 ⊛ (𝜉(𝑖) ⋏ 𝑖) 

         = 𝑖 ⊛ (𝑖 ⊛ 𝜉(𝑖)))                       ∵ 𝑖 ⋏ 𝑗 = 𝑗 ⊛ (𝑗 ⊛ 𝑖) 

        and 𝑖 ⊛ 𝜉(𝑖)  = 𝑖 ⊛ (𝑖 ⋏ 𝜉(𝑖)) 

          = 𝑖 ⊛ (𝜉(𝑖) ⊛ (𝜉(𝑖) ⊛ 𝑖))        ∵ 𝑖 ⋏ 𝑗 = 𝑗 ⊛ (𝑗 ⊛ 𝑖) 
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⇒ 𝑖 ⊛ (𝑖 ⊛ (𝑖 ⊛ 𝜉(𝑖))) = 𝑖 ⊛ (𝜉(𝑖) ⊛ (𝜉(𝑖) ⊛ 𝑖)) 

By cancellation law, 

𝑖 ⊛ (𝑖 ⊛ 𝜉(𝑖)) = 𝜉(𝑖) ⊛ (𝜉(𝑖) ⊛ 𝑖). 

Lemma 4.1.17 

If   𝜉  is a regular (GK-RL) derivation on GK algebra, then 𝜉(𝑖 ⊛ 𝜉(𝑖)) = 1. 

Proof 

Since  𝜉  is a regular (GK-RL) derivation on GK algebra,  𝑖 ⊛ 𝜉(𝑖)=1. 

 ∴ 𝜉(𝑖 ⊛ 𝜉(𝑖)) = 𝜉(1) = 1 

∴ 𝜉(𝑖 ⊛ 𝜉(𝑖)) = 1. 

Lemma 4.1.18 

 If 𝜉 is a regular (GK-LR) derivation on GK algebra, then  (𝜉(𝑖) ⊛ 𝑖) = 1. 

Proof 

Since 𝜉  is a regular (GK-LR) derivation on GK algebra,  𝜉(𝑖) ⊛ 𝑖=1. 

 ∴ 𝜉(𝜉(𝑖) ⊛ 𝑖) = 𝜉(1) = 1 

∴ 𝜉(𝜉(𝑖) ⊛ 𝑖) = 1. 

Definition 4.1.19 

Let  𝜉1, 𝜉2 be a self-map on GK algebra T. We define   𝜉1°𝜉2  as follows 

(𝜉1°𝜉2)(𝑖) = 𝜉2(𝜉1(𝑖)) 

Lemma 4.1.20 

Let  𝜉1, 𝜉2  be self-maps on a GK algebra. Let  𝜉1, 𝜉2 be two (GK-LR) 

derivations on T. Then  𝜉1°𝜉2 is also a (GK-LR) derivation on T. 

Proof 

Given  𝜉1, 𝜉2  is two (GK-LR) derivations on T. 

By lemma 4.1.9, we know that 
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𝜉1(𝑖 ⊛ 𝑗) = 𝜉1(𝑖) ⊛ 𝑗 and 𝜉2(𝑖 ⊛ 𝑗) = 𝜉2(𝑖) ⊛ 𝑗  

Now,  (𝜉1°𝜉2)(𝑖 ⊛ 𝑗) = 𝜉2(𝜉1(𝑖 ⊛ 𝑗)) 

   = 𝜉2(𝜉1(𝑖) ⊛ 𝑗) 

   =  𝜉2(𝜉1(𝑖)) ⊛ 𝑗 

   = (𝜉1°𝜉2)(𝑖) ⊛ 𝑗 

Hence  𝜉1°𝜉2  is a (GK-LR) derivation on GK algebra. 

Lemma 4.1.21  

 Let  𝜉1, 𝜉2  be self-maps on a GK algebra. Let  𝜉1, 𝜉2 be two (GK-RL) 

derivations on T. Then  𝜉1°𝜉2 is also a (GK-RL) derivation on T. 

Proof 

Given  𝜉1, 𝜉2  is two (GK-RL) derivations on T. 

Now,  (𝜉1°𝜉2)(𝑖 ⊛ 𝑗) = 𝜉2(𝜉1(𝑖 ⊛ 𝑗)) 

   = 𝜉2(𝑖 ⊛ 𝜉1(𝑗)) 

   =  𝑖 ⊛ 𝜉2(𝜉1(𝑗)) 

   = 𝑖 ⊛ (𝜉1°𝜉2)(𝑗). 

Hence  𝜉1°𝜉2  is a (GK-RL) derivation on GK algebra. 

By the above two lemmas 4.1.20 and 4.1.21, we get the following theorem. 

Theorem 4.1.22 

 Let  (𝑇,⊛ ,1)  be a GK algebra and  𝜉1, 𝜉2   be two derivations on T, then  

𝜉1°𝜉2 = 𝜉2°𝜉1. 

Proof 

Since  𝜉1, 𝜉2 be two derivations on T,  𝜉1, 𝜉2 are both (GK-LR) and (GK-RL) 

derivations on T. 

Now,  (𝜉1°𝜉2)(𝑖 ⊛ 𝑗) = 𝜉2(𝜉1(𝑖 ⊛ 𝑗)) 

    = 𝜉2(𝜉1(𝑖) ⊛ 𝑗) 
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    = 𝜉1(𝑖) ⊛ 𝜉2(𝑗). ___________(1) 

Also,  (𝜉2°𝜉1)(𝑖 ⊛ 𝑗) = 𝜉1(𝜉2(𝑖 ⊛ 𝑗)) 

    = 𝜉1(𝑖 ⊛ 𝜉2(𝑗)) 

    =𝜉1(𝑖) ⊛ 𝜉2(𝑗).____________(2) 

From (1) & (2)  (𝜉1°𝜉2)(𝑖 ⊛ 𝑗)=(𝜉2°𝜉1)(𝑖 ⊛ 𝑗) 

This gives that (𝜉1°𝜉2)=(𝜉2°𝜉1). 

Definition 4.1.23 

 Let 𝜉1, 𝜉2be a self-map on a GK algebra T. We define 𝜉1 ⊛ 𝜉2: 𝑇 → 𝑇 as 

follows (𝜉1 ⊛ 𝜉2)(𝑖) = 𝜉2(𝑖) ⊛ 𝜉1(𝑖)∀𝑖 ∈ 𝑇. 

Theorem 4.1.24   

Let  (𝑇,⊛ ,1)  be a GK algebra and 𝜉1, 𝜉2be two derivations of T, then 

𝜉1 ⊛ 𝜉2=𝜉2 ⊛ 𝜉1. 

Proof 

(𝜉1°𝜉2)(𝑖 ⊛ 𝑗) = 𝜉2(𝜉1(𝑖 ⊛ 𝑗)) 

   = 𝜉2(𝜉1(𝑖) ⊛ 𝑗) 

   = 𝜉1(𝑖) ⊛ 𝜉2(𝑗). ___________(1) 

(𝜉1°𝜉2)(𝑖 ⊛ 𝑗) = 𝜉2(𝜉1(𝑖 ⊛ 𝑗)) 

   = 𝜉2(𝑖 ⊛ 𝜉1(𝑗)) 

   = 𝜉2(𝑖) ⊛ 𝜉1(𝑗). ___________(2) 

From the above  

𝜉1(𝑖) ⊛ 𝜉2(𝑗)=𝜉2(𝑖) ⊛ 𝜉1(𝑗)._____________(3) 

Substituting j = i in (3) 

𝜉1(𝑖) ⊛ 𝜉2(𝑖)=𝜉2(𝑖) ⊛ 𝜉1(𝑖) 

By definition 4.1.23, 

(𝜉2 ⊛ 𝜉1)(𝑖) =  (𝜉1 ⊛ 𝜉2)(𝑖) 
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This gives (𝜉1 ⊛ 𝜉2) = (𝜉2 ⊛ 𝜉1). 

Definition 4.1.25  

Let LD (ξ) denotes the set of all (GK-LR) derivations on 𝑇. Define the 

operation ⋏ on LD (ξ) as follows. For 𝜉1, 𝜉2 ∈ LD (ξ), define 

 (𝜉1 ⋏ 𝜉2)(i) = 𝜉1 (i) ⋏ 𝜉2 (i) for all i ∈  𝑇. 

Lemma 4.1.26 

 If 𝜉1 and 𝜉2 are (GK-LR) derivations on T, then 𝜉1⋏𝜉2 is also a (GK-LR) derivation on T. 

Proof 

 To Prove: (𝜉1⋏𝜉2) (𝑖 ⊛ 𝑗)= (𝜉1⋏𝜉2)(i) ⊛ 𝑗 

 (𝜉1⋏𝜉2)(𝑖 ⊛ 𝑗) = 𝜉1(𝑖 ⊛ 𝑗)⋏𝜉2(𝑖 ⊛ 𝑗) 

   = (𝜉1(𝑖) ⊛ 𝑗)⋏(𝜉2(𝑖) ⊛ 𝑗) 

   = (𝜉2(𝑖) ⊛ 𝑗) ⊛ ((𝜉2(𝑖) ⊛ 𝑗) ⊛ (𝜉1(𝑖) ⊛ 𝑗)) 

   = 𝜉1(𝑖) ⊛ 𝑗----------------(1) 

(𝜉1⋏𝜉2)(i) ⊛ 𝑗 = (𝜉1 (i) ⋏ 𝜉2 (i)) ⊛ 𝑗 

   = (𝜉2 (i) ⊛ (𝜉2 (i) ⊛ 𝜉1 (i))) ⊛j 

   = 𝜉1 (i)  ⊛j --------------(2) 

From (1) and (2), (𝜉1⋏𝜉2)(𝑖 ⊛ 𝑗)= (𝜉1⋏𝜉2)(i) ⊛ 𝑗. 

Hence, 𝜉1 and 𝜉2 are (GK-LR) derivations on T, then 𝜉1⋏𝜉2 is also a (GK-LR) 

derivation on T. 

Lemma 4.1.27 

 The operator ⋏ defined on LD (ξ) is associative. 

Proof 

Let T be a GK algebra. 

Let 𝜉1, 𝜉2, 𝜉3 are (GK-LR) derivations in GK algebra. 

To Prove: (𝜉1⋏𝜉2) ⋏𝜉3 = 𝜉1⋏ (𝜉2⋏𝜉3) 
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Now,    ((𝜉1⋏𝜉2) ⋏𝜉3)( 𝑖 ⊛ 𝑗) = (𝜉1⋏𝜉2)( 𝑖 ⊛ 𝑗) ⋏𝜉3 (𝑖 ⊛ 𝑗) 

    = (𝜉1(𝑖) ⊛ 𝑗)⋏ (𝜉3(𝑖) ⊛ 𝑗) 

    = (𝜉3(𝑖) ⊛ 𝑗) ⊛ ((𝜉3(𝑖) ⊛ 𝑗) ⊛ (𝜉1(𝑖) ⊛ 𝑗)) 

= 𝜉1(𝑖) ⊛ 𝑗 -------------- (1) 

Now,   (𝜉1⋏ (𝜉2⋏𝜉3)) ( 𝑖 ⊛ 𝑗) = 𝜉1 (𝑖 ⊛ 𝑗) ⋏ ((𝜉2⋏𝜉3)( 𝑖 ⊛ 𝑗)) 

    = (𝜉1(𝑖) ⊛ 𝑗) ⋏ (𝜉2(𝑖) ⊛ 𝑗) 

    = (𝜉2(𝑖) ⊛ 𝑗) ⊛ ((𝜉2(𝑖) ⊛ 𝑗) ⊛ (𝜉𝑖(𝑖) ⊛ 𝑗)) 

    = 𝜉1(𝑖) ⊛ 𝑗 -------------- (2) 

From (1) and (2), (𝜉1⋏𝜉2) ⋏𝜉3= 𝜉1⋏ (𝜉2⋏𝜉3).  

4.2 Summary 

In the algebraic structure, derivation always takes a part of very enthralling 

and paramount topic of research in the field of Mathematics. In this Chapter, the 

notion of (GK-LR) (GK-RL) respectively) derivations of a GK algebra initiated and 

attained some remarkable results such as 𝜉1, 𝜉2  are self-maps on a GK algebra, 𝜉1, 𝜉2 

two (GK-RL and GK- LR) derivations on T. Then  𝜉1°𝜉2 is also a (GK-RL and GK-

LR) derivation on T. 

 



____________________________ 
† 

 This chapter has been published in Compliance Engineering Journal, Vol 11 (3), (2020) 125-130, 

entitled “Symmetric bi derivations in GK algebra”. 
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CHAPTER 5 

SYMMETRIC BI DERIVATION OF GK ALGEBRA 

In this Chapter, the concept of symmetric bi derivation (GK-LR derivation and         

GK-RL derivation) of GK algebra is initiated and also the trace of GK algebra and 

regular, component wise regular in GK algebra are investigated and obtained some of 

its interesting properties which is related to them. 

5.1 Symmetric bi derivation of GK algebra 

This section explored about the concept of symmetric bi derivation of GK 

algebra. It is scrutinized about the left and right symmetric bi derivation of GK 

algebra and attained enthralling results of them.  

Definition 5.1.1 

 Let  (𝑇,⊛ ,1) be a GK algebra. A mapping Ω:T×T→T is said to be a left 

right symmetric bi derivation (simply GK- LR symmetric bi derivation) of T, if it is 

satisfying the following identity 𝛺(𝑖 ⊛ 𝑗, 𝑘) = (𝛺(𝑖, 𝑘) ⊛ 𝑗) ⋏ (𝑖 ⊛ 𝛺(𝑗, 𝑘)) for, i, j, 

k ∈ 𝑇. 

Definition 5.1.2 

Let  (𝑇,⊛ ,1) be a GK algebra. A mapping  𝛺:TxT→T is said to be a right left 

symmetric bi derivation (simply GK- RL symmetric bi derivation) of T, if it is 

satisfying the following identity 

𝛺(𝑖, 𝑗 ⊛ 𝑘) = (𝛺(𝑖, 𝑗) ⊛ 𝑘) ⋏ (𝑗 ⊛ 𝛺(𝑖, 𝑘)) for i, j, k ∈ 𝑇. 

In general, if 𝛺 is both GK-LR and GK-RL symmetric bi derivation then it is called as 

𝛺 is symmetric bi derivation.  
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Definition 5.1.3  

 Let T be a GK algebra. A map 𝛺:T×T→T is said to be symmetric if 

 𝛺(𝑖, 𝑗) = 𝛺(𝑗, 𝑖)  ∀ pairs of i, j∈ 𝑇. 

Definition 5.1.4 

 Let T be a GK algebra and the mapping 𝛺:T×T→T be a symmetric mapping.  

A map 𝛿: 𝑇 → 𝑇  be defined as 𝛿(𝑖) = 𝛺(𝑖, 𝑖) is called trace of 𝛺. 

Example 5.1.5 

Consider the following Cayley’s table for GK algebra 

 

 

 

 

 

 

 

Table 5.1 

Define a mapping  𝛺:T×T→T by 

𝛺(𝑖, 𝑗) =

{
 

 
1, (𝑖, 𝑗) = (1,1), (2,2), (3,3), (4,4)

2, (𝑖, 𝑗) = (1,2), (2,1), (3,4), (4,3)

3, (𝑖, 𝑗) = (1,3), (2,4), (3,1), (4,2)

4, (𝑖, 𝑗) = (1,4), (2,3), (3,2), (4,1)

 

From this  𝛺 is symmetric bi derivation of T. 

Remark 5.1.6 

 In above example, 𝛺(𝑖, 𝑖) = {1}   𝑤ℎ𝑒𝑛   𝑖 = 1,2,3,4  is called trace of 𝛺. 

  

⊛ 1 2 3 4 

1 1 2 3 4 

2 2 1 4 3 

3 3 4 1 2 

4 4 3 2 1 
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Definition 5.1.7 

 Let T be a GK algebra. The map  𝛺:T×T→T be a symmetric mapping. 𝛺 is 

called component wise regular if 𝛺(𝑖, 1) = 𝛺(1, 𝑖) = 1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ∈ 𝑇. In specific if          

𝛺(1,1) = 𝛿(1) = 1 then 𝛺 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑  𝛿 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟. 

Proposition 5.1.8 

 Let (𝑇,⊛ ,1) be a GK algebra. Let 𝛺 be an GK-LR symmetric bi derivation on 

T. Then the following holds 

(i) 𝛺(𝑖, 𝑗) = 𝛺(𝑖, 𝑗) ⋏ (𝑖 ⊛ 𝛺(1, 𝑗)) 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖, 𝑗 ∈ 𝑇. 

(ii) 𝛺(1, 𝑖) = 𝛿(𝑖) ⊛ 𝑖 where 𝛿 is the trace of 𝛺. 

(iii) 𝛺(1, 𝑗) = 𝛺(𝑖, 𝑗) ⊛ 𝑖  ∀  𝑖, 𝑗 ∈ 𝑇. 

(iv) 𝛺(𝑗, 1) = 𝛺(𝑗, 1) ⋏ 𝑗 ∀ 𝑗 𝑖𝑛 𝑇 𝑖𝑓  𝛺  𝑖𝑠 𝛿 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 . 

(v) 𝛺(𝑗, 1) = 1   ∀ 𝑗 𝑖𝑛 𝑇 𝑖𝑓  𝛺  𝑖𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑤𝑖𝑠𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟  

 Proof 

(i) Let us consider  𝑖, 𝑗 in T. 

By the definition of GK-LR symmetric bi derivation,  

we have,        𝛺(𝑖, j) = Ω(𝑖 ⊛ 1, 𝑗) 

   = (Ω(𝑖, 𝑗) ⊛ 1) ⋏ (𝑖 ⊛Ω(1, 𝑗)) 

      By axiom (ii) of GK algebra 

    = (Ω(𝑖, 𝑗)) ⋏ (𝑖 ⊛ Ω(1, 𝑗)) 

(ii) Let i, j in T 

Now,        𝛺(1, 𝑖) = Ω(𝑖 ⊛ 𝑖, 𝑖) 

    = (Ω(𝑖, 𝑖) ⊛ 𝑖) ⋏ (𝑖 ⊛ Ω(i, 𝑖)) 

    = (𝛿(𝑖) ⊛ 𝑖) ⋏ (𝑖 ⊛ 𝛿(𝑖)) 

    = (𝑖 ⊛ 𝛿(𝑖))⊛ ((𝑖 ⊛ 𝛿(𝑖))⊛ (𝛿(𝑖) ⊛ 𝑖)) 

    = (𝛿(𝑖) ⊛ 𝑖) 
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(iii) Let i, j in T. 

We have,  𝛺(1, 𝑗) = Ω(𝑖 ⊛ 𝑖, 𝑗) 

    = (Ω(𝑖, 𝑗) ⊛ 𝑖) ⋏ (𝑖 ⊛ Ω(i, 𝑗)) 

    = (𝑖 ⊛ Ω(i, 𝑗)) ⊛ ((𝑖 ⊛ Ω(i, 𝑗) ⊛ (Ω(i, 𝑗) ⊛ 𝑖)) 

       = Ω(i, 𝑗) ⊛ 𝑖 

(iv) Let  i, j in T. 

   Now,   𝛺(𝑗, 1) = Ω(𝑗 ⊛ 1,1) 

      = (Ω(𝑗, 1) ⊛ 1) ⋏ (𝑗 ⊛ Ω(1,1)) 

     = (Ω(j, 1)) ⋏ (𝑗 ⊛ 𝛿(1)) 

     = Ω(j, 1) ⋏ (𝑗 ⊛ 1) 

      = Ω(j, 1) ⋏ 𝑗 

(v) Let i, j in T 

  Now,             𝛺(𝑗, 1) = Ω(𝑗 ⊛ 1,1) 

    = (Ω(𝑗, 1) ⊛ 1) ⋏ (𝑗 ⊛ Ω(1,1)) 

    = (Ω(j, 1)) ⋏ (𝑗 ⊛ 𝛿(1)) 

    = Ω(j, 1) ⋏ (𝑗 ⊛ 1) 

    = Ω(j, 1) ⋏ 𝑗 

    = 1⋏ 𝑗 

    = 1    since  𝑖 ⋏ 𝑗 = 𝑖. 

Proposition 5.1.9 

 Let (𝑇,⊛ ,1) be a GK algebra. Let 𝛺 be an GK-RL symmetric bi derivation on T. 

Then the following holds 

(i) 𝛺(𝑖, 𝑗) = 𝛺(𝑖, 𝑗) ⋏ (𝑖 ⊛ 𝛺(1, 𝑗)) 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖, 𝑗 ∈ 𝑇. 

(ii) 𝛺(𝑖, 1) = 𝛿(𝑖) ⊛ 𝑖 where 𝛿 is the trace of 𝛺. 

(iii) 𝛺(1, 𝑗) = 𝛺(𝑖, 𝑗) ⊛ 𝑖  ∀  𝑖, 𝑗 ∈ 𝑇. 
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(iv) 𝛺 (𝑗, 1) = 𝛺(𝑗, 1) ⋏ 𝑗 ∀ 𝑗 𝑖𝑛 𝑇 𝑖𝑓  𝛺  𝑖𝑠 𝛿 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 . 

(v) 𝛺(𝑗, 1) = 1   ∀ 𝑗 𝑖𝑛 𝑇 𝑖𝑓  𝛺  𝑖𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑤𝑖𝑠𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 

Proof 

(i) Let us consider i, j in T. 

By the definition of GK-RL symmetric bi derivation,  

We have,   𝛺(𝑖, 𝑗) = Ω(𝑖, 𝑗 ⊛ 1) 

    = (Ω(𝑖, 𝑗) ⊛ 1) ⋏ (𝑗 ⊛Ω(i, 1)) 

     By axiom (ii) of GK algebra 

    = (Ω(𝑖, 𝑗)) ⋏ (𝑗 ⊛ Ω(i, 1)) 

    =  Ω(𝑖, 𝑗) ⋏ (𝑗 ⊛ 1) 

    =  Ω(i, j) ⋏ j 

(ii) Let i, j in T 

Now,        𝛺(𝑖, 1) = Ω(𝑖, 𝑖 ⊛ 𝑖) 

    = (Ω(𝑖, 𝑖) ⊛ 𝑖) ⋏ (𝑖 ⊛ Ω(i, 𝑖)) 

    = (𝛿(𝑖) ⊛ 𝑖) ⋏ (𝑖 ⊛ 𝛿(𝑖)) 

    = (𝑖 ⊛ 𝛿(𝑖))⊛ ((𝑖 ⊛ 𝛿(𝑖))⊛ (𝛿(𝑖) ⊛ 𝑖)) 

    = (𝛿(𝑖) ⊛ 𝑖) 

(iii) Let i, j in T 

We have,      𝛺(𝑗, 1) = Ω(𝑗, 𝑖 ⊛ 𝑖) 

    = (Ω(𝑗, 𝑖) ⊛ 𝑖) ⋏ (𝑖 ⊛ Ω(j, i)) 

    = (𝑖 ⊛ Ω(j, i)) ⊛ ((𝑖 ⊛ Ω(j, i) ⊛ (Ω(j, i) ⊛ 𝑖)) 

    = Ω(j, i) ⊛ 𝑖 

(iv) Let i, j in T. 

             𝛺(1, 𝑗) = Ω(1, 𝑗 ⊛ 1) 

    = (Ω(1, 𝑗) ⊛ 1) ⋏ (𝑗 ⊛ Ω(1,1)) 



CHAPTER 5   SYMMETRIC BI DERIVATION OF GK ALGEBRA 73 
 

     = (Ω(1, j)) ⋏ (𝑗 ⊛ 𝛿(1)) 

    = Ω(1, j) ⋏ (𝑗 ⊛ 1) 

    = Ω(1, j) ⋏ 𝑗 

(v) Let i, j in T 

             𝛺(𝑗, 1) = Ω(𝑗 ⊛ 1,1) 

    = (Ω(𝑗, 1) ⊛ 1) ⋏ (𝑗 ⊛ Ω(1,1)) 

    = (Ω(j, 1)) ⋏ (𝑗 ⊛ 𝛿(1)) 

    = Ω(j, 1) ⋏ (𝑗 ⊛ 1) 

    =  Ω(j, 1) ⋏ 𝑗 

    = 1⋏ 𝑗 = j⊛ (𝑗 ⊛ 1)=1. 

Proposition 5.1.10 

 Let T be the GK algebra and 𝛿 be the trace of the GK- LR symmetric bi 

derivation on T. Then 

(i) 𝛿(1) = 𝛺(𝑖, 1) ⊛ 𝑖. 

(ii)  𝐼𝑓 𝛺(𝑖, 1) = 𝛺(𝑗, 1)   ∀  𝑖, 𝑗 ∈ 𝑇  𝑡ℎ𝑒𝑛  𝛿 𝑖𝑠 1 − 1. 

(iii) 𝛿 is regular if and only if 𝛺(𝑖, 1) = 𝑖. 

Proof 

(i) Let  𝑖 ∈ 𝑇.  We  know that  𝑖 ⊛ 𝑖 = 1 

We have,     𝛿(1) = 𝛺(1,1) 

    = 𝛺(𝑖 ⊛ 𝑖, 1) 

    = (𝛺(𝑖, 1) ⊛ 𝑖) ⋏ (𝑖 ⊛ 𝛺(𝑖, 1)) 

    = (𝛺(𝑖, 1) ⊛ 𝑖) 

(ii) Let i, j ∈ T such that  𝛿(𝑖) = 𝛿(𝑗). 

We have, 𝛿(1) = 𝛺(𝑖, 1) ⊛ 𝑖 

and 𝛿(1) = 𝛺(𝑗, 1) ⊛ 𝑗. 
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This implies that  𝛺(𝑖, 1) ⊛ 𝑖 = 𝛺(𝑗, 1) ⊛ 𝑗. 

Since  𝛺(𝑖, 1) = 𝛺(𝑗, 1) and by using cancellation law, we get i=j. 

Hence, we get 𝛿 is 1-1. 

(iii) Let 𝛿 be regular. 

We have 𝛿(1) = 𝛺(𝑖, 1) ⊛ 𝑖 

Since 𝛿 is regular, 𝛿(1) = 1  𝑖𝑚𝑝𝑙𝑖𝑒𝑠  𝛺(𝑖, 1) ⊛ 𝑖 = 1. 

By axiom (iii) of GK algebra we have  𝛺(𝑖, 1) = 𝑖 

Conversely, Let 𝛺(𝑖, 1) = 𝑖  for some i in T. 

⇒   𝛺(𝑖, 1) ⊛ 𝑖 = 𝑖 ⊛ 𝑖 

⇒  𝛺(𝑖, 1) ⊛ 𝑖 = 1 

⇒  𝛿(1) = 1 

  𝐻𝑒𝑛𝑐𝑒  𝛿  𝑖𝑠  𝑟𝑒𝑔𝑢𝑙𝑎𝑟. 

Proposition 5.1.11 

 Let T be the GK algebra and 𝛿 be the trace of the GK-RL symmetric bi derivation 

on T. Then 

(i) 𝛿(1) = 𝛺(1, 𝑖) ⊛ 𝑖. 

(ii) 𝛿(𝑖) = 𝛿(𝑖) ⋏ (𝑖 ⊛ 𝛺(𝑖, 1)) 

(iii)  𝐼𝑓 𝛺(1, 𝑖) = 𝛺(1, 𝑗)   ∀  𝑖, 𝑗 ∈ 𝑇  𝑡ℎ𝑒𝑛  𝛿 𝑖𝑠 1 − 1. 

(iv) 𝛿 is regular if and only if  𝛺(1, 𝑖) = 𝑖. 

Proof 

(i) Let  𝑖 ∈ 𝑇.  We  know that  𝑖 ⊛ 𝑖 = 1 

we have,       𝛿(1) = 𝛺(1,1) 

    = 𝛺(1, 𝑖 ⊛ 𝑖) 

      = (𝛺(1, 𝑖) ⊛ 𝑖) ⋏ (𝑖 ⊛ 𝛺(1, 𝑖)) 

       = (𝛺(1, 𝑖) ⊛ 𝑖) 
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(ii) Let i in T. 

  𝛿(𝑖)     = 𝛺(𝑖, 𝑖) 

   = 𝛺(𝑖, 𝑖 ⊛ 1) 

   = (𝛺(𝑖, 𝑖) ⊛ 1) ⋏ (𝑖 ⊛ 𝛺(𝑖, 1)) 

   = (𝛿(𝑖) ⊛ 1) ⋏ (𝑖 ⊛ 𝛺(𝑖, 1)) 

   = 𝛿(𝑖) ⋏ (𝑖 ⊛ 𝛺(𝑖, 1)) 

                If it is component wise regular, we get  𝛿(𝑖) ⋏ 𝑖. 

(iii) Let i, j ∈ T such that  𝛿(𝑖) = 𝛿(𝑗). 

We have,𝛿(1) = 𝛺(1, 𝑖) ⊛ 𝑖 

  and   𝛿(1) = 𝛺(1, 𝑗) ⊛ 𝑗. 

  This implies that 𝛺(1, 𝑖) ⊛ 𝑖 = 𝛺(1, 𝑗) ⊛ 𝑗. 

 Since  𝛺(1, 𝑖) = 𝛺(1, 𝑗) and by using cancellation law, we get i=j. 

 Hence, we get 𝛿 is 1-1. 

(iv) Let 𝛿 be regular. 

We have 𝛿(1) = 𝛺(1, 𝑖) ⊛ 𝑖 

Since 𝛿 is regular, 𝛿(1) = 1  𝑖𝑚𝑝𝑙𝑖𝑒𝑠  𝛺(1, 𝑖) ⊛ 𝑖 = 1. 

By axiom (iii) of GK algebra we have  𝛺(1, 𝑖) = 𝑖 

Conversely, 

Let 𝛺(1, 𝑖) = 𝑖  for some i in T. 

 ⇒   𝛺(1, 𝑖) ⊛ 𝑖 = 𝑖 ⊛ 𝑖 

        ⇒  𝛺(1, 𝑖) ⊛ 𝑖 = 1 

         ⇒  𝛿(1) = 1 

  𝐻𝑒𝑛𝑐𝑒  𝛿  𝑖𝑠  𝑟𝑒𝑔𝑢𝑙𝑎𝑟. 
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5.2 Summary 

In this Chapter, the concept of symmetric bi derivation (GK-LR derivation and   

GK-RL derivation) of GK algebra is established and also, brought some important 

and at the same time interesting results about the trace of GK algebra and regular, 

component wise regular in GK algebra. Some theorems which is to be needed for 

further studies are derived. 

 



_______________________________ 
† 

 The first section of this chapter has been published in Journal of Shanghai Jiaotong  

University, Vol 16 (7), (2020) 919-927, entitled “Fuzzy sub algebra and fuzzy ideals of GK 

algebra”. 

 

 The second section of this chapter has been published in Stochastic Modeling and applications, 

Vol.25(1), (2021), 241-243, entitled “Study of anti-fuzzy GK sub algebra and anti-fuzzy GK 

ideal”. 
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CHAPTER 6 

FUZZY SUB ALGEBRA AND ANTI-FUZZY SUB ALGEBRA OF 

GK ALGEBRA 

This Chapter is separated into three sections. 

In the first section, the newly defined algebraic structure GK-algebra is 

fuzzified and fuzzy GK subalgebra of GK algebra is defined, and by using this, some 

of its features are investigated and attained captivating results. 

In the second section, fuzzy GK ideal is established and discussed roughly 

about its features and also, explored the Cartesian product of fuzzy GK algebra.  

In the third section, initiated the concept of Anti-fuzzy GK sub algebra, Anti-

fuzzy GK ideals. The properties of anti-fuzzy GK algebra is discussed and obtained 

some enthralling results.   

6.1 Fuzzy sub algebra of GK algebra 

This section explored the concept of fuzzified newly initiated algebraic structure of 

GK algebra.   

Definition 6.1.1 

  A fuzzy subset 𝜌𝑔𝑘 of a GK algebra (𝑇,⊛ ,1) is called a fuzzy GK sub 

algebra of T, if the following conditions are satisfied 

𝜌𝑔𝑘(𝑖 ⊛ 𝑗) ≥ 𝑚𝑖𝑛{𝜌𝑔𝑘(𝑖), 𝜌𝑔𝑘(𝑗)} for all i,j in T. 
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Example 6.1.2 

Consider T= {1, 2, 3, 4} is a GK algebra  

 

 

 

 

 

 

Table 6.1 

Define a mapping 𝜌𝑔𝑘: 𝑇 → [0,1] by  

𝜌𝑔𝑘(𝑖) = {

0.9     𝑖𝑓  𝑖 = 1,2

0.5  𝑖𝑓   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Then 𝜌𝑔𝑘 is a fuzzy GK sub algebra of T. 

Theorem 6.1.3   

 Intersection of any two fuzzy GK sub algebras of T is again a fuzzy GK 

algebra. 

Proof 

Let 𝜌𝑔𝑘 and 𝜎𝑔𝑘 be any two fuzzy GK sub algebras of T. Then, 

(𝜌𝑔𝑘⨅𝜎𝑔𝑘)(𝑖 ⊛ 𝑗) = min {𝜌𝑔𝑘(𝑖 ⊛ 𝑗), 𝜎𝑔𝑘(𝑖 ⊛ 𝑗)} 

  ≥ min {𝑚𝑖𝑛{𝜌𝑔𝑘(𝑖), 𝜌𝑔𝑘(𝑗)}, min{𝜎𝑔𝑘(i), 𝜎𝑔𝑘(j)}} 

  = min {min{𝜌𝑔𝑘(𝑖), 𝜎𝑔𝑘(𝑖)} , min{𝜌𝑔𝑘(j), 𝜎𝑔𝑘(j)}} 

  = min {(𝜌𝑔𝑘⨅𝜎𝑔𝑘)(i), (𝜌𝑔𝑘⨅𝜎𝑔𝑘)(𝑗)} 

(𝜌𝑔𝑘⨅𝜎𝑔𝑘)(𝑖 ⊛ 𝑗) ≥ min{(𝜌𝑔𝑘⨅𝜎𝑔𝑘)(i), (𝜌𝑔𝑘⨅𝜎𝑔𝑘)(𝑗)} ∀ i, j ∈ T. 

Hence  𝜌𝑔𝑘⨅𝜎𝑔𝑘 is fuzzy sub algebra of T.   

⊛ 1 2 3 4 

1 1 2 3 4 

2 2 1 4 3 

3 3 4 1 2 

4 4 3 2 1 
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Definition 6.1.4 

Let 𝜌𝑔𝑘  be any fuzzy subset of a GK algebra and let  𝑦 ∈ [0,1]. The set  

Γ(𝜌𝑔𝑘, 𝑦) = {𝑖 ∈ 𝑇: 𝜌𝑔𝑘(𝑖) ≥ 𝑦} is called a level subset of 𝜌𝑔𝑘 in T. 

Lemma 6.1.5 

Let   (𝑇,⊛ ,1)  be a GK algebra. Let  𝜌𝑔𝑘  be a fuzzy GK sub algebra of T.  Let  

𝜏 ∈ [0,1]. Then, 

(i) if and only if  Γ(𝜌𝑔𝑘, 𝜏)  is either ∅ or a GK sub algebra of T. 

(ii) 𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖)    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑖 ∈ 𝑇. 

Proof 

(i) For any 𝜏 ∈ [0,1], assume that  𝛤(𝜌𝑔𝑘 , 𝜏)  is non-empty. 

Let  𝑖, 𝑗 ∈   𝛤(𝜌𝑔𝑘, 𝜏). Then  𝜌𝑔𝑘(𝑖) ≥ 𝜏   and  𝜌𝑔𝑘(𝑗) ≥ 𝜏 . 

We need to prove    𝛤(𝜌𝑔𝑘 , 𝜏)  is a GK sub algebra, for that we have to prove 

𝑖 ⊛ 𝑗 ∈   𝛤(𝜌𝑔𝑘, 𝜏). 

i.e., we need to prove 𝜌𝑔𝑘(𝑖 ⊛ 𝑗) ≥ 𝜏 . 

Now , 𝜌𝑔𝑘(𝑖 ⊛ 𝑗) ≥ 𝑚𝑖𝑛{𝜌𝑔𝑘(𝑖), 𝜌𝑔𝑘(𝑗)} 

          ≥ min{𝜏, 𝜏} = 𝜏 

         ∴ 𝜌𝑔𝑘(𝑖 ⊛ 𝑗) ≥ 𝜏 

 Hence 𝛤(𝜌𝑔𝑘 , 𝜏)  is a GK sub algebra. 

 Conversely, assume that 𝛤(𝜌𝑔𝑘, 𝜏) is a GK sub algebra of T. 

 Let  𝑖, 𝑗 ∈ 𝑇. Take 𝜏 = min {𝜌𝑔𝑘(𝑖),  𝜌𝑔𝑘(𝑗)} 

 Then by assumption 𝛤(𝜌𝑔𝑘, 𝜏) is a GK sub algebra of T, (𝑖 ⊛ 𝑗) ∈ 𝛤(𝜌𝑔𝑘 , 𝜏) 

  𝜌𝑔𝑘(𝑖 ⊛ 𝑗) ≥ 𝜏 = min {𝜌𝑔𝑘(𝑖), 𝜌𝑔𝑘(𝑗)} 

 Hence 𝛤(𝜌𝑔𝑘 , 𝜏) is a fuzzy GK Sub algebra of T. 
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(ii) To prove  𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖) 

 𝜌𝑔𝑘(1) = 𝜌𝑔𝑘(𝑖 ⊛ 𝑖) 

  ≥ min{𝜌𝑔𝑘(𝑖), 𝜌𝑔𝑘(𝑖)} =  𝜌𝑔𝑘(𝑖) 

𝐻𝑒𝑛𝑐𝑒 𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑇. 

 𝐻𝑒𝑛𝑐𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑜𝑓. 

Theorem 6.1.6 

 If  𝜌𝑔𝑘1
 and 𝜌𝑔𝑘2

  are fuzzy GK sub algebras of T, then 𝜌𝑔𝑘1
× 𝜌𝑔𝑘2

  is a 

fuzzy GK algebra of  𝑇 × 𝑇. 

Proof 

For any (𝑖1, 𝑖2) and (𝑗𝑖, 𝑗2)   ∈  𝑇 × 𝑇. 

Now,𝜌𝑔𝑘((𝑖1, 𝑖2) ⊛ (𝑗1, 𝑗2))  = 𝜌𝑔𝑘(𝑖1 ⊛ 𝑗1, 𝑖2 ⊛ 𝑗2) 

    = (𝜌𝑔𝑘1
× 𝜌𝑔𝑘2

) (𝑖1 ⊛ 𝑗1, 𝑖2 ⊛ 𝑗2) 

    = min {𝜌𝑔𝑘1
(𝑖1 ⊛ 𝑗1), 𝜌𝑔𝑘2

 (𝑖2 ⊛ 𝑗2)} 

             ≥ 𝑚𝑖𝑛 {𝑚𝑖𝑛(𝜌𝑔𝑘1
(𝑖1), 𝜌𝑔𝑘1

(𝑗1)), 𝑚𝑖𝑛(𝜌𝑔𝑘2
(𝑖2), 𝜌𝑔𝑘2

(𝑗2)} 

             = 𝑚𝑖𝑛 {𝑚𝑖𝑛(𝜌𝑔𝑘1
(𝑖1), 𝜌𝑔𝑘2

(𝑖2)), 𝑚𝑖𝑛(𝜌𝑔𝑘1
(𝑗1), 𝜌𝑔𝑘2

(𝑗2)} 

    = min { ((𝜌𝑔𝑘1
× 𝜌𝑔𝑘2

)  (𝑖1 ⊛ 𝑖2), (𝜌𝑔𝑘1
× 𝜌𝑔𝑘2

)(𝑗1 ⊛ 𝑗2)} 

    = min {𝜌𝑔𝑘 (𝑖1 ⊛ 𝑖2), 𝜌𝑔𝑘(𝑗1 ⊛ 𝑗2)} 

Hence  𝜌𝑔𝑘 is a fuzzy GK sub algebra of   𝑇 × 𝑇. 

Theorem 6.1.7 

Let 𝛤(𝜌𝑔𝑘, 𝑝)𝑎𝑛𝑑 𝛤(𝜌𝑔𝑘 , 𝑞)be level sub algebras in fuzzy GK algebras are 

equal if and only if there is no 𝑖 ∈ 𝑇 such that 𝑝 ≤ 𝜌𝑔𝑘(𝑖) < 𝑞. 

Proof 

 Let 𝛤(𝜌𝑔𝑘, 𝑝) = 𝛤(𝜌𝑔𝑘 , 𝑞)for  𝑝 < 𝑞. 
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 If there exist 𝑖 ∈ 𝑇 such that 𝑝 ≤ 𝜌𝑔𝑘(𝑖) < 𝑞, then 𝛤(𝜌𝑔𝑘, 𝑝) ⊂ 𝛤(𝜌𝑔𝑘 , 𝑞), 

which tends to contradiction. 

Conversely,  

Let us assume, there is no 𝑖 ∈ 𝑇 such that 𝑝 ≤ 𝜌𝑔𝑘(𝑖) < 𝑞, since 

 𝑝 < 𝑞, 𝛤(𝜌𝑔𝑘, 𝑝) ⊂ 𝛤(𝜌𝑔𝑘 , 𝑞) 

If i ∈ 𝛤(𝜌𝑔𝑘 , 𝑞) then 𝜌𝑔𝑘(𝑖) ≥ 𝑞  and so 𝜌𝑔𝑘(𝑖) ≥ 𝑝  , because 𝜌𝑔𝑘(𝑖) ∉ (𝑝, 𝑞) 

Hence i ∈ 𝛤(𝜌𝑔𝑘, 𝑝), this implies 𝛤(𝜌𝑔𝑘, 𝑞) ⊆ 𝛤(𝜌𝑔𝑘 , 𝑝).  

Hence the proof. 

6.2   Fuzzy ideals of GK algebra 

This section explained about the Fuzzy GK ideal with necessary illustration 

and talked over about its characteristics and attained some fascinating results of the 

same. 

Definition 6.2.1     

Let T be a GK algebra. A fuzzy set 𝜌𝑔𝑘  𝑖𝑛  𝑇  is called fuzzy GK ideal of T if it 

satisfies the following conditions. 

(i) 𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖) 

(ii) 𝜌𝑔𝑘(𝑖 ⊛ 𝑘) ≥ min{𝜌𝑔𝑘(𝑗 ⊛ 𝑘), 𝜌𝑔𝑘(𝑗 ⊛ 𝑖)}  ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑇. 

Example 6.2.2 

 Consider the above Example (6.1.2). This is an example of fuzzy GK ideal. 

Theorem 6.2.3 

In GK-algebra, the intersection of family of sets on fuzzy GK-ideals is also a 

fuzzy GK-ideal. 

Proof 

Let {𝜌𝑔𝑘𝑖
 } be a set of all fuzzy GK ideals of GK algebras T. 
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Then for any , 𝑗, 𝑘 ∈ 𝑇 , 

(  ⨅𝜌𝑔𝑘𝑖
 ) (1) = Inf (𝜌𝑔𝑘𝑖

 (1)) 

  ≥ Inf (𝜌𝑔𝑘𝑖
 (i)) 

                        = (⨅𝜌𝑔𝑘𝑖
 ) (i) 

 (⨅𝜌𝑔𝑘𝑖
) (𝑖 ⊛ 𝑘) = Inf ((⨅𝜌𝑔𝑘𝑖

 (𝑖 ⊛ 𝑘)) 

     ≥ Inf {min {(⨅𝜌𝑔𝑘𝑖
 (𝑗 ⊛ 𝑘), (⨅𝜌𝑔𝑘𝑖

 (𝑗 ⊛ 𝑖)} 

    = min {Inf (⨅𝜌𝑔𝑘𝑖
 (𝑗 ⊛ 𝑘)),  Inf (⨅𝜌𝑔𝑘𝑖

 (𝑗 ⊛ 𝑖))} 

     = min {(⨅𝜌𝑔𝑘𝑖
 (𝑗 ⊛ 𝑘 ) ),  (⨅𝜌𝑔𝑘𝑖

 (𝑗 ⊛ 𝑖))} 

Hence the proof. 

Theorem 6.2.4 

Every fuzzy GK ideal of a GK-algebra T is order overturn. 

Proof 

Let 𝜌𝑔𝑘 be a fuzzy GK ideal of a GK algebra T. 

Let i, j ∈ 𝑇 be such that 𝑖 ≤ 𝑗 then  𝑖 ⊛ 𝑗 = 𝑗 ⊛ 𝑖 = 1. 

Now, we know that  𝑖 ⊛ 1 = 𝑖. 

𝜌𝑔𝑘(𝑖) = 𝜌𝑔𝑘(𝑖 ⊛ 1) ≥ min{𝜌𝑔𝑘(𝑗 ⊛ 1), 𝜌𝑔𝑘(𝑗 ⊛ 𝑖)} 

   ≥ min {𝜌𝑔𝑘(𝑗), 𝜌𝑔𝑘(1)} 

   ≥ 𝜌𝑔𝑘(𝑗) 

Therefore  𝜌𝑔𝑘 is order overturn. 

Theorem 6.2.5 

If  𝜌𝑔𝑘 is a fuzzy ideal of GK algebra (𝑇,⊛ 1)𝑎𝑛𝑑𝜌𝑔𝑘𝜏
(𝑖) = min{𝜏, 𝜌𝑔𝑘(𝑖)} ∀  𝑖 ∈ 𝑇 

and 𝜏 ∈ [0,1]  then  𝜌𝑔𝑘𝜏
(𝑖) is fuzzy GK ideal of T. 

  



CHAPTER 6   FUZZY SUB ALGEBRA AND ANTI-FUZZY SUB ALGEBRA OF GK ALGEBRA  83  

 

Proof 

Let 𝜌𝑔𝑘 be a fuzzy ideal of GK algebra and 𝜏 ∈ [0,1]. 

Therefore   𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖)  ∀  𝑖 ∈ 𝑇. 

Now, 𝜌𝑔𝑘𝜏
(1) = min{𝜏, 𝜌𝑔𝑘(1)} ≥ min{𝜏, 𝜌𝑔𝑘(𝑖)} = 𝜌𝑔𝑘𝜏

(𝑖)   ∀ 𝑖 ∈ 𝑇. 

and we know that 

𝜌𝑔𝑘(𝑖 ⊛ 𝑘) ≥ min {𝜌𝑔𝑘(𝑗 ⊛ 𝑘), 𝜌𝑔𝑘(𝑗 ⊛ 𝑖)} 

𝑁𝑜𝑤 , 

𝜌𝑔𝑘𝜏
(𝑖 ⊛ 𝑘)   = min{𝜏, 𝜌𝑔𝑘(𝑖 ⊛ 𝑘)} 

  ≥ min { 𝜏, min ( 𝜌𝑔𝑘(𝑗 ⊛ 𝑘), 𝜌𝑔𝑘(𝑗 ⊛ 𝑖))} 

  = min { min (𝜏, 𝜌𝑔𝑘(𝑗 ⊛ 𝑘)) , min (𝜏, 𝜌𝑔𝑘(𝑗 ⊛ 𝑖))} 

  = min {𝜌𝑔𝑘𝜏
(𝑗 ⊛ 𝑘), 𝜌𝑔𝑘𝜏

(𝑗 ⊛ 𝑖)} 

Hence  𝜌𝑔𝑘𝜏
(𝑖) is fuzzy GK ideal of T. 

Proposition 6.2.6 

Let 𝜌𝑔𝑘 be fuzzy GK ideal of GK algebra. If the inequality 𝑗 ⊛ 𝑖 ≤ 𝑘 holds in 

T, then 𝜌𝑔𝑘(𝑖) ≥ min{𝜌𝑔𝑘(𝑗), 𝜌𝑔𝑘(𝑘)} ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑇. 

Proof 

Assume that the inequality  𝑗 ⊛ 𝑖 ≤ 𝑘 holds in T,  

Then by theorem ,𝜌𝑔𝑘(𝑗 ⊛ 𝑖) ≥ 𝜌𝑔𝑘(𝑘)------------- (1) 

By the definition fuzzy GK ideal 

𝜌𝑔𝑘(𝑖 ⊛ 𝑘) ≥ min {𝜌𝑔𝑘(𝑗 ⊛ 𝑘), 𝜌𝑔𝑘(𝑗 ⊛ 𝑖)} 

Put k=1 

Then 𝜌𝑔𝑘(𝑖 ⊛ 1) ≥ min {𝜌𝑔𝑘(𝑗 ⊛ 1), 𝜌𝑔𝑘(𝑗 ⊛ 𝑖)} 

𝜌𝑔𝑘(𝑖) ≥ min {𝜌𝑔𝑘(𝑗), 𝜌𝑔𝑘(𝑗 ⊛ 𝑖)} ------------ (2) 

From (1) and (2), 
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𝜌𝑔𝑘(𝑖) ≥ min{𝜌𝑔𝑘(𝑗), 𝜌𝑔𝑘(𝑘)}. 

Definition 6.2.7 

Let 𝜌𝑔𝑘  𝑎𝑛𝑑  𝜎𝑔𝑘 be fuzzy subsets of a set T. The Cartesian product of 

𝜌𝑔𝑘 𝑎𝑛𝑑  𝜎𝑔𝑘 is defined by  

(𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑖, 𝑗) = min{𝜌𝑔𝑘(𝑖), 𝜎𝑔𝑘(𝑗)} ∀ 𝑖, 𝑗 ∈ 𝑇 

Theorem 6.2.8 

Let 𝜌𝑔𝑘  𝑎𝑛𝑑  𝜎𝑔𝑘 be fuzzy GK ideals of GK algebra X. Then 𝜌𝑔𝑘 × 𝜎𝑔𝑘 is a 

fuzzy GK ideal of 𝑇 × 𝑇. 

Proof 

 Let us consider(𝑖, 𝑗) ∈ 𝑇 × 𝑇 

 (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(1,1) = min{𝜌𝑔𝑘(1), 𝜎𝑔𝑘(1)} 

         ≥ min{𝜌𝑔𝑘(𝑖), 𝜎𝑔𝑘(𝑗)} = (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑖, 𝑗) 

Now let (𝑖1, 𝑖2), (𝑗1, 𝑗2), (𝑘1, 𝑘2) ∈ 𝑇 × 𝑇 

(𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑖1 ⊛ 𝑘1, 𝑖2 ⊛ 𝑘2) = min {𝜌𝑔𝑘(𝑖1 ⊛  𝑘1), 𝜎𝑔𝑘(𝑖2 ⊛  𝑘2)} 

≥ min{min {𝜌𝑔𝑘 (𝑗1 ⊛  𝑘1), 𝜌𝑔𝑘(𝑗1 ⊛ 𝑖1)}, min {𝜎𝑔𝑘(𝑗2 ⊛  𝑘2), 𝜎𝑔𝑘(𝑗2 ⊛ 𝑖2)}} 

    = min{min {𝜌𝑔𝑘 (𝑗1 ⊛  𝑘1), 𝜎𝑔𝑘(𝑗2 ⊛  𝑘2)}, min {𝜌𝑔𝑘(𝑗1 ⊛ 𝑖1), 𝜎𝑔𝑘(𝑗2 ⊛ 𝑖2)}} 

               = min{(𝜌𝑔𝑘 × 𝜎𝑔𝑘) (𝑗1 ⊛  𝑘1, 𝑗2 ⊛  𝑘2), (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑗1 ⊛ 𝑖1, 𝑗2 ⊛ 𝑖2)} 

Therefore 𝜌𝑔𝑘 × 𝜎𝑔𝑘 is a fuzzy GK ideal of  𝑇 × 𝑇. 

Theorem 6.2.9 

Let  𝜌𝑔𝑘  𝑎𝑛𝑑  𝜎𝑔𝑘 be fuzzy subsets of GK algebra T such that  𝜌𝑔𝑘 × 𝜎𝑔𝑘 is a 

fuzzy GK ideal of 𝑇 × 𝑇. Then for all 𝑖 ∈ 𝑇, 

(i) either 𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖)  𝑜𝑟 𝜎𝑔𝑘(1) ≥ 𝜎𝑔𝑘(𝑖) 

(ii) 𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖) ∀ 𝑖 ∈ 𝑇   𝑡ℎ𝑒𝑛 𝑒𝑖𝑡ℎ𝑒𝑟 𝜎𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖) 𝑜𝑟  𝜎𝑔𝑘(1) ≥

𝜎𝑔𝑘(𝑖). 
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(iii) 𝐼𝑓 𝜎𝑔𝑘(1) ≥ 𝜎𝑔𝑘(𝑖) ∀ 𝑖 ∈ 𝑇, 𝑡ℎ𝑒𝑛 𝑒𝑖𝑡ℎ𝑒𝑟  𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖) 𝑜𝑟 𝜌𝑔𝑘(1) ≥ 𝜎𝑔𝑘(𝑖). 

(iv) 𝑒𝑖𝑡ℎ𝑒𝑟 𝜌𝑔𝑘 𝑜𝑟 𝜎𝑔𝑘 is a fuzzy GK ideal of T. 

Proof 

(i) Suppose that 𝜌𝑔𝑘(𝑖) > 𝜌𝑔𝑘(1)𝑎𝑛𝑑𝜎𝑔𝑘(𝑗) > 𝜎𝑔𝑘(1) for some 𝑗 ∈ 𝑇. 

Then (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑖, 𝑗) = min{𝜌𝑔𝑘(𝑖), 𝜎𝑔𝑘(𝑗)} 

       > min{ 𝜌𝑔𝑘(1), 𝜎𝑔𝑘(1)} = (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(1,1) 

   This is a contradiction, since 𝜌𝑔𝑘 × 𝜎𝑔𝑘 is a fuzzy GK ideal of  𝑇 × 𝑇. 

   Hence, we obtain (i). 

(ii) Assume that 𝑖, 𝑗 ∈ 𝑇  

𝜌𝑔𝑘(𝑖) > 𝜎𝑔𝑘(1)  𝑎𝑛𝑑 𝜎𝑔𝑘(𝑗) > 𝜎𝑔𝑘(1) 

Then we have, (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(1,1) = min {𝜌𝑔𝑘(1), 𝜎𝑔𝑘(1)} 

              > min{𝜎𝑔𝑘(1), 𝜎𝑔𝑘(1)} = 𝜎𝑔𝑘(1) 

 This implies that (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑖, 𝑗) = min {𝜌𝑔𝑘(𝑖), 𝜎𝑔𝑘(𝑗)} 

              > min  {𝜎𝑔𝑘(1), 𝜎𝑔𝑘(1)} = 𝜎𝑔𝑘(1) 

              > (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(1,1) 

 This is a contradiction. 

 Hence, we obtain (ii) 

(iii) By the similar way to part (ii) 

(iv) In (i) we have  

Either  𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖)  𝑜𝑟 𝜎𝑔𝑘(1) ≥ 𝜎𝑔𝑘(𝑖) ∀ 𝑖 ∈ 𝑇 . 

We assume that 𝜎𝑔𝑘(1) ≥ 𝜎𝑔𝑘(𝑖), without loss of generality, 

It is from (iii) such that   

Either  𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖) 𝑜𝑟  𝜌𝑔𝑘(1) ≥ 𝜎𝑔𝑘(𝑖) 
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If    𝜌𝑔𝑘(1) ≥ 𝜎𝑔𝑘(𝑖) for any 𝑖 ∈ 𝑇, then  

 (  𝜌𝑔𝑘 × 𝜎𝑔𝑘)(1, 𝑖) = min{  𝜌𝑔𝑘(1), 𝜎𝑔𝑘(𝑖)} = 𝜎𝑔𝑘(𝑖)------------ (1) 

Now we have to prove 𝜎𝑔𝑘 is a fuzzy GK ideal. 

For that, let us consider  (𝑖1, 𝑖2), (𝑗1, 𝑗2), ( 𝑘1,  𝑘2) ∈ 𝑇 × 𝑇, 𝑤𝑒 ℎ𝑎𝑣𝑒 

Since   𝜌𝑔𝑘 × 𝜎𝑔𝑘 is a fuzzy GK ideal of 𝑇 × 𝑇, we have 

 (  𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑖1 ⊛  𝑘1, 𝑖2 ⊛  𝑘2) 

  ≥ min{(  𝜌𝑔𝑘 × 𝜎𝑔𝑘) (𝑗1 ⊛  𝑘1, 𝑗2 ⊛  𝑘2), (  𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑗1 ⊛ 𝑖1, 𝑗2 ⊛ 𝑖2)} 

 Now, if we take 𝑖1 = 𝑗1 =  𝑘1 = 1, then 

 (  𝜌𝑔𝑘 × 𝜎𝑔𝑘)(1, 𝑖2 ⊛  𝑘2) 

 ≥ min{(  𝜌𝑔𝑘 × 𝜎𝑔𝑘) (1, 𝑗2 ⊛  𝑘2), (  𝜌𝑔𝑘 × 𝜎𝑔𝑘)(1, 𝑗2 ⊛ 𝑖2)} 

 𝑆𝑖𝑛𝑐𝑒 by (1), LHS becomes, 

  𝜎𝑔𝑘(𝑖2 ⊛  𝑘2) 

   ≥ min{(  𝜌𝑔𝑘 × 𝜎𝑔𝑘) (1, 𝑗2 ⊛  𝑘2), (  𝜌𝑔𝑘 × 𝜎𝑔𝑘)(1, 𝑗2 ⊛ 𝑖2)} 

   ≥ min{min {  𝜌𝑔𝑘(1), 𝜎𝑔𝑘( 𝑗2 ⊛  𝑘2)}, min {  𝜌𝑔𝑘(1), 𝜎𝑔𝑘(𝑗2 ⊛ 𝑖2)} 

   ≥ min{𝜎𝑔𝑘(𝑗2 ⊛  𝑘2), 𝜎𝑔𝑘(𝑗2 ⊛ 𝑖2)} 

 𝜎𝑔𝑘(𝑖2 ⊛  𝑘2) ≥ min {𝜎𝑔𝑘(𝑗2 ⊛  𝑘2), 𝜎𝑔𝑘(𝑗2 ⊛ 𝑖2)} 

This proves that 𝜎𝑔𝑘 is a fuzzy GK ideal of T. 

Now we consider  𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖). 

Suppose let us consider 

 𝜌𝑔𝑘(1) < 𝜌𝑔𝑘(𝑗)for some 𝑗 ∈ 𝑇 

Then 𝜎𝑔𝑘(1) ≥ 𝜎𝑔𝑘(𝑗) > 𝜌𝑔𝑘(1) 

Since𝜌𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖) ∀ 𝑖 ∈ 𝑇, 𝑡ℎ𝑒𝑛𝜎𝑔𝑘(1) ≥ 𝜌𝑔𝑘(𝑖) 

Hence (𝜌𝑔𝑘 × 𝛽)(𝑖, 1) = min{𝜌𝑔𝑘(𝑖), 𝛽(1)} = 𝜌𝑔𝑘(𝑖)--------- (2) 

Taking 𝑖2 = 𝑗2 = 𝑘2 = 1 in (1) 
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 (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑖1 ⊛ 𝑘1, 1) 

 ≥ min{(𝜌𝑔𝑘 × 𝜎𝑔𝑘) (𝑗1 ⊛ 𝑘1, 1), (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑗1 ⊛ 𝑖1, 1)} 

By (2) 

𝜌𝑔𝑘(𝑖1 ⊛ 𝑘1) ≥ min{(𝜌𝑔𝑘 × 𝜎𝑔𝑘) (𝑗1 ⊛ 𝑘1, 1), (𝜌𝑔𝑘 × 𝜎𝑔𝑘)(𝑗1 ⊛ 𝑖1, 1)} 

≥ min{min {𝜌𝑔𝑘((𝑗1 ⊛ 𝑘1), 𝜎𝑔𝑘( 1)}, min {𝜌𝑔𝑘(𝑗1 ⊛ 𝑖1), 𝜎𝑔𝑘(1)} 

  ≥ min{𝜌𝑔𝑘((𝑗1 ⊛ 𝑘1), 𝜌𝑔𝑘(𝑗1 ⊛ 𝑖1)} 

𝜌𝑔𝑘(𝑖1 ⊛ 𝑘1) ≥ min {𝜌𝑔𝑘((𝑗1 ⊛ 𝑘1), 𝜌𝑔𝑘(𝑗1 ⊛ 𝑖1)} 

This proves that  𝜌𝑔𝑘 is a fuzzy GK ideal of GK algebra. 

Therefore 𝑒𝑖𝑡ℎ𝑒𝑟𝜌𝑔𝑘𝑜𝑟𝜎𝑔𝑘 is a fuzzy GK ideal of GK algebra T. 

6.3 Anti-fuzzy GK sub algebra and anti-fuzzy GK ideal  

In this section, the theory of Anti-fuzzy GK sub algebra and anti-fuzzy GK 

ideal are established and analyzed its properties. The lower-level set of GK algebra is 

initiated and discussed some of its aspects in this section. 

Definition 6.3.1 

A fuzzy set   𝜌𝑔𝑘in GK algebra T is said to be an anti-fuzzy sub algebra of T if 

  𝜌𝑔𝑘(𝑖 ⊛ 𝑗) ≤ max {  𝜌𝑔𝑘 (i),   𝜌𝑔𝑘 (j)}, for all i, j∈T. 

Theorem 6.3.2 

Let   𝜌𝑔𝑘is an anti-fuzzy sub algebra of GK algebra. Prove that 

𝜌𝑔𝑘(1) ≤   𝜌𝑔𝑘(𝑖) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖 𝑖𝑛 𝑇. 

Proof 

We know that ,𝑖 ⊛ 𝑖 = 1 𝑓𝑟𝑜𝑚 the definition of GK algebra 

Now, 𝜌𝑔𝑘(1) =  𝜌𝑔𝑘(𝑖 ⊛ 𝑖)  

  ≤ max{𝜌𝑔𝑘 (𝑖), 𝜌𝑔𝑘(𝑖) }  

  ≤ 𝜌𝑔𝑘(𝑖). 
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Therefore 𝜌𝑔𝑘(1) ≤   𝜌𝑔𝑘(𝑖). 

Definition 6.3.3 

Let 𝜌𝑔𝑘  be any fuzzy subset of a GK algebra and let  𝑞 ∈ [0,1]. The set  

Γ(𝜌𝑔𝑘, 𝑞) = {𝑖 ∈ 𝑇: 𝜌𝑔𝑘(𝑖) ≤ 𝑞} is called a lower-level subset of 𝜌𝑔𝑘 in T. 

Theorem 6.3.4 

A fuzzy set 𝜌𝑔𝑘 in GK algebra is an anti-fuzzy sub algebra if and only if for 

every q in [0,1], Γ(𝜌𝑔𝑘 , 𝑞) is either ∅ or a sub algebra of T. 

Proof 

Let us assume 𝜌𝑔𝑘 is an anti -fuzzy sub algebra of T and also lower level 

subset is non-empty. Then for any 𝑖, 𝑗 ∈ Γ(𝜌𝑔𝑘, 𝑞) 

we have, 𝜌𝑔𝑘(𝑖 ⊛ 𝑗) ≤ max {  𝜌𝑔𝑘 (i),  𝜌𝑔𝑘 (j)} ≤ 𝑞 

Therefore 𝑖 ⊛ 𝑗 ∈ Γ(𝜌𝑔𝑘 , 𝑞). 

Hence Γ(𝜌𝑔𝑘, 𝑞) is a sub algebra. 

Conversely, Now consider 𝑖, 𝑗 ∈ 𝑇 

Take q = max { 𝜌𝑔𝑘 (i), 𝜌𝑔𝑘 (j)}.  

Since Γ(𝜌𝑔𝑘, 𝑞) is a sub algebra of T, 

⟹ 𝑖 ⊛ 𝑗 ∈ Γ(𝜌𝑔𝑘, 𝑞). 

Therefore  𝜌𝑔𝑘(𝑖 ⊛ 𝑗) ≤  𝑞 =max {  𝜌𝑔𝑘 (i),  𝜌𝑔𝑘 (j)} 

Hence 𝜌𝑔𝑘 is an anti-fuzzy sub algebra. 

Definition 6.3.5 

Let T be a GK algebra. A fuzzy set 𝜌𝑔𝑘  𝑖𝑛  𝑇  is called anti-fuzzy GK ideal of T if it 

satisfies the following conditions. 

( i)  𝜌𝑔𝑘(1) ≤ 𝜌𝑔𝑘(𝑖) 

(ii) 𝜌𝑔𝑘(𝑖 ⊛ 𝑘) ≤ max {𝜌𝑔𝑘(𝑗 ⊛ 𝑘), 𝜌𝑔𝑘(𝑗 ⊛ 𝑖)}  ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑇.  
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Definition 6.3.6 

 Let (T,⊛𝑇 , 1) and (P,⊛𝑃, 1′) be a GK algebra. Then the mapping 𝜎: 𝑇 → 𝑃 of 

GK algebra is called anti- homomorphism if 𝜎(𝑖 ⊛𝑇  𝑗) = 𝜎(𝑗) ⊛𝑃 𝜎(𝑖) ∀ 𝑖, 𝑗 ∈ 𝑇. 

Definition 6.3.7 

 Let 𝜎: 𝑇 ⟶ 𝑇  be an endomorphism and 𝜌𝑔𝑘  be a fuzzy set in 𝑇. We define 

fuzzy set in 𝑇 by  (𝜌𝑔𝑘)𝜎 in 𝑇   as   (𝜌𝑔𝑘)
𝜎

(𝑖) =  (𝜌𝑔𝑘)(𝜎(𝑖))  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 ∈ 𝑇 . 

Theorem 6.3.8 

Let 𝜌𝑔𝑘 be an anti-fuzzy GK ideal of GK algebra of 𝑇 and if ≤  𝑗 , then  

𝜌𝑔𝑘(𝑖)  ≤ 𝜌𝑔𝑘(𝑗) , for all 𝑖, 𝑗 𝑇. 

Proof 

Let us consider  𝑖 ≤  𝑗 , then  𝑖 ⊛ 𝑗 =  1 = 𝑗 ⊛ 𝑖 ,  

and 𝜌𝑔𝑘(𝑖 ⊛ 1) = 𝜌𝑔𝑘(1)  ≤  𝑚𝑎𝑥 {𝜌𝑔𝑘(𝑗 ⊛  1), 𝜌𝑔𝑘(𝑗 ⊛  𝑖)} 

            =  𝑚𝑎𝑥 {𝜌𝑔𝑘(𝑗), 𝜌𝑔𝑘(1)} = 𝜌𝑔𝑘(𝑗). 

            Hence  𝜌𝑔𝑘(𝑥)  ≤ 𝜌𝑔𝑘(𝑦). 

Theorem 6.3.9 

Let 𝜌𝑔𝑘 be an anti-fuzzy GK-ideal of GK algebra 𝑇. If the inequality                    

𝑗 ⊛ 𝑖 ≤ 𝑘 carry in 𝑇, then   𝜌𝑔𝑘 (𝑖)  𝑚𝑎𝑥 {𝜌𝑔𝑘 (𝑗), 𝜌𝑔𝑘 (𝑘)}. 

Proof 

          Let us consider the inequality𝑗 ⊛  𝑖 ≤ 𝑘  carry in 𝑇. 

By theorem 6.3.8   𝜌𝑔𝑘(𝑗 ⊛  𝑖)  ≤ 𝜌𝑔𝑘(𝑘)  ------------- (1) 

By definition of anti-fuzzy ideal of GK algebra 

𝜌𝑔𝑘(𝑖 ⊛ 𝑘)  ≤  𝑚𝑎𝑥 {𝜌𝑔𝑘(𝑗 ⊛ 𝑘), 𝜌𝑔𝑘(𝑗 ⊛  𝑖)} 

Put 𝑘 =  1, 

then 𝜌𝑔𝑘(𝑖 ⊛ 1) =  𝜌𝑔𝑘(𝑖) ≤ max{𝜌𝑔𝑘(𝑗 ⊛ 1), 𝜌𝑔𝑘(𝑗 ⊛  𝑖)} 
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   =  𝑚𝑎𝑥 {𝜌𝑔𝑘(𝑗), 𝜌𝑔𝑘(𝑗 ⊛  𝑖)}  ------------ (2)  

 From (1) and (2), we get  

𝜌𝑔𝑘(𝑖)  ≤  𝑚𝑎𝑥 {𝜌𝑔𝑘(𝑗), 𝜌𝑔𝑘(𝑘)},for all 𝑖, 𝑗, 𝑘 ∈ 𝑇 

6.4 Summary 

 The fuzzification of GK algebra was introduced in this chapter. The 

properties of fuzzy GK algebra are analyzed and attained some results which are very 

interesting. The content of fuzzy GK ideal was explored and derived the results which 

are related to their aspects.  Finally, anti-fuzzy GK algebra, anti-fuzzy GK ideal are 

introduced and attained the paramount results about its aspects.     
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CONCLUSION 

 

 In this research work, the content of newly constructed algebraic structure namely 

GK algebra has been introduced. It has been explored that this algebraic structure, GK 

algebra is different from all other algebraic structures that are already defined. 

Especially it is shown that GK algebra is totally different from BE algebra and CI 

algebra, with sufficient illustrations. It is proved that the GK algebra is satisfied the 

associative law, self-distributive law, Commutativity law and also investigated its 

properties. The GK ideal, kernel of GK algebra, anti-homomorphism are defined and 

attained remarkable results. The study of multipliers (left and right) on GK algebra 

have been explored. The direct product of GK algebras is initiated and investigated its 

nature.   In this the notion of (GK-LR) (GK-RL) respectively) derivations of a GK 

algebra initiated and attained some remarkable results such as Let  𝜉1, 𝜉2  be self-maps 

on a GK algebra. Let  𝜉1, 𝜉2 be two (GK-RL) derivations on T. Then  𝜉1°𝜉2 is also a 

(GK-RL) derivation on T. The concept of symmetric bi derivation (GK-LR derivation 

and GK-RL derivation) of GK algebra has been developed. The fuzzification of GK 

algebra has been introduced. The properties of fuzzy GK algebra are analyzed and 

attained some results which are very interesting. Finally, anti-fuzzy GK algebra, anti-

fuzzy GK ideal are introduced and attained the paramount results about its aspects.     
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FUTURE SCOPE 

 The new algebraic structure GK algebra and its characteristics have been 

explored in this thesis and also fuzzy structure of GK algebra and its aspects are 

exhibited. Hope that this work would be a point of departure for further study of the 

theory of GK algebra. 

This work can be ensued in the following way: 

 In this study, the derivation of GK algebra and its properties have been 

discussed. In connection with, concentrate on the concept of derivations such 

as Jordan derivation in GK algebra, T- derivation in GK algebra, (𝛼, 𝛽) 

derivations in GK algebra and anti-symmetric bi derivation in GK algebra etc., 

to get more results. 

 The fuzzy structure of GK algebra can be developed in the concept of the 

intuitionistic fuzzy GK algebra, multi fuzzy sub algebra and multi fuzzy ideals 

of GK algebra and analyzed its related aspects.  

 The theory of Pseudo GK algebra, Soft GK algebra and Neutrosophic structure 

in GK algebra can be studied. 

 This work can be carried on the topological spaces in GK algebra and their 

properties can be expounded. 
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Abstract: In this paper, the new notion which is called GK algebra from a non-empty set is introduced. The basic properties of 
GK algebra are analyzed. 
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I. INTRODUCTION 
In 1966, the concept of BCK and BCI algebras are introduced by Iseki [3]. Since  Kim  and  Yon  [8] studied on  dual  BCK 
algebras  and  MV algebra, it  is  known that  BCK algebras is a proper subclass of  BCI algebras. The  concept of  BE  algebra 
which is  a  generalization dual  BCK  was  introduced  by  Kim  and  Y.H. Kim [7].  Meng [9]  introduced  the  concept  of  CI  
algebra as  a  generalization  of  BE  algebra  and  also discussed about  some of  its  properties  and  relations  with BE algebras. 

II. PRELIMINARIES 
A. Definition:2.1 [7]    An algebra  (X,∗,1) of  type (2,0) is  said  to  be  a  BE-algebra  if  it  satisfies  the  following 
1) x∗x=1    
2) x∗1=1  
3) 1∗x=x     
4) x∗(y∗z)=y∗(x∗z)  for all x,y,z∈X 

 
B. Definition:2.2 [9]   A  CI-algebra is an  algebra (X,∗,1) of  type (2,0)  satisfying the  following axioms 
1) x∗x=1     
2) 1∗x=x     
3) x ∗(y ∗z) = y∗(x∗z) for all x,y,z ∈X 

 
C. Proposition:2.3 [7]  If (X,∗,1) is a  BE-algebra, then x ∗(y∗x) = 1   
D. Definition:2.4 [7]   A BE-algebra  (X,∗,1)  is  said to be  self distributive if  x∗ (y ∗ z)=(x ∗ y)∗ (x ∗ z)   for all  x, y ,z ∈X. 
E. Proposition:2.5 [9]  Any  CI algebra  X  satisfies   the condition   y∗((y∗x)∗x)=1   for  any x, y ∈X,       

   
III. THE NOTION AND ELEMENTARY PROPERTIES OF GK ALGEBRA. 

A. Definition:3.1   
A non-empty  set  X  with fixed  constant  1  and  a  binary operation  ∗ is called  GK-algebra if it satisfying the following axioms 
x ∗ x =1  
    (ii)  x ∗ 1 =x  
    (iii)  x ∗ y =1  and y ∗ x =1 implies x = y  
    (iv)  (y ∗ z) ∗(x ∗ z) = y∗ x  
    (v)  (x ∗ y) ∗ (1 ∗ y) = x  for all x ,y ,z ∈X  

B. Example:3.2   
 Consider the  set  X={1,2,3}. The  binary  operation  ∗  is  defined  as  follows 

Table:1 
 

     ∴(X,∗,1)  is a  GK-algebra. 

 

* 1 2 3 
1 1 3 2 
2 2 1 3 
3 3 2 1 
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C.  Remark:3.3 
1) A  GK  algebra  need not be a BE algebra, for  2∗1=2≠1,3∗1=3≠1.  
2)  A  GK algebra  need  not  be a  CI algebra , for  1∗3=2≠3,1∗2=3≠2.     
3)  A GK  algebra is  said to be a  CI  algebra if it  satisfies the additional  relations, 

 1∗x = x and x∗(y∗z)=y∗(x∗z) 
4) A GK algebra is said to be a BE algebra if it satisfies the additional relations, 

  x∗1 = 1,  1∗x = x  and x∗(y∗z) = y∗(x∗z). 
 

D. Theorem:3.4     Let (X,∗,1) be a  GK-algebra. Then  
1) 1∗(1∗x) = x  
2) (x∗y)∗1 = (x∗1)∗(y∗1)  
3) y∗(1∗(1∗y) ) = 1  
4) If 1∗x = 1∗y then x = y  for any  x,y∈X  
5) x∗(1∗x) )∗x = x for  any x∈X  
6)  x∗(x∗y) =  x = y =  y∗(x∗x) for  any  x,y∈X  
7)    x ∗ (y∗x)  = x  = y  = y∗(x∗x)  for any  x,y∈X  
8)   1∗(x∗y)=y∗x   

Proof:   
a) In axiom (v)  (x∗y)∗(1∗y)=x   of   GK-algebra,  
       replacing  y by x , 
   we have (x∗x)∗(1∗x) = x    
                  ⇒1∗(1∗x) = x          by axiom (i)  of definition:3.1  
b) By  axiom  (ii)  x∗1=1  of  GK algebra   
         we have   (x∗y)∗1 = x∗y  
                                       =(x∗1)∗(y∗1)   by axiom(ii)  of definition:3.1 
c) In theorem  3.4 (i), we have 1∗(1∗ x )= x  
           Now  y∗ (1∗(1∗y) ) = y∗y = 1   by  axiom (i)  of  definition:3.1 
d) Let  1∗x = 1∗y       
         Now  x = 1∗(1∗x)         by theorem 3.4 (i)  
                    =1∗(1∗y)         since    1∗x = 1∗y          
                      =y                     by theorem 3.4 (i) 
e) (x∗(1∗x) )∗x  = (x∗(1∗x) )∗(1∗(1∗x) )         by theorem 3.4 (i)  
                                =x       by  axiom (v)  of   definition 3.1 
f) x∗(x∗y) = x ∗1   by axiom (iii)  of  definition  3.1  
                          = x        by axiom (ii)  of  definition  3.1   
                          = y         by axiom (iii)  of  definition  3.1   
                          = y ∗1    by axiom (i)  of  definition  3.1  
                          = y ∗ (x ∗ x)    by axiom (i) of  definition  3.1   
g) The  proof is similar to previous proof of (vi). 
h) In  axiom (iv)  (y∗z)∗(x∗z)=y∗x  of  GK  algebra,  
          replacing z  by  y  , we  have   (y∗y)∗(x∗y)=y∗x  
          ⇒1∗(x∗y)=y∗x    by axiom (i) of  definition  3.1 .      

E. Theorem:3.5    
Left  and Right  cancellation law holds in GK-algebra  
1) Right  cancellation law : if x∗y = z∗y  then x = z 
2) Left cancellation  law : if  z∗x  =z∗y  then x = y 
Proof:  
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a) Let us assume that x∗y =z∗y  
        Then, x = (x∗y)∗(1∗y)     by axiom (v)  of  definition 3.1  
                     = (z∗y)∗(1∗y)  
                     =z            by axiom (v) of definit ion 3.1 
b) Assume that z∗x =z∗y  
         Now,   z∗(z∗x) = x∗(z∗z)     by theorem 3.4 (vi)  
                                  =x∗1   by axiom (i)  of  definition  3.1   
                                   =x       by axiom (ii)  of  definition 3.1  
            and,  z∗(z∗y) = y∗(z∗z)       by theorem 3.4  (vi) 
                                  =y∗1   by axiom (i)  of  definition  3.1 
                                    =y       by axiom (ii)  of  definition 3.1  
       Since z∗x = z∗y implies x = y. 

F. Theorem:3.6   
Let  (X,∗,1)  be  a  group  with  respect  to  x∗y = xy⁻¹, then (X,∗,1)  is  a  GK algebra.  
    Proof:  
     We  see that x∗x = xx⁻¹=1  
           and  x∗1 = x1⁻¹ = x  
    For  any  x,y ∈X, we  have x∗y = xy⁻¹  
    when x = y, then  x∗y= xy⁻¹ =xx⁻¹ =1 =yy⁻¹ =yx⁻¹ = y∗x.  
    For any x,y,z ∈X,we  have (y∗z)∗(x∗z) = (yz⁻¹) (xz⁻¹)⁻¹  
                               =(yz⁻¹) (zx⁻¹)  
                               =y(zz⁻¹)x⁻¹  
                               =yx⁻¹  
                               =y∗x  
    For  any x,y ∈X,  (x∗y)∗(1∗y) = (xy⁻¹) (1y⁻¹)⁻¹  
                         =(xy⁻¹) (y)  
                         =x (y⁻¹y)  
                         =x  
    Hence (X,∗,1) is  a GK-algebra. 

G. Definition:3.7    
A  GK  algebra  X is said  to be associative  if it  satisfies (x∗y)∗z = x∗(y∗z) for  all  x,y,z ∈X.  Theorem:3.8    Every  Gk  algebra 
(X,∗,1)  satisfying the  associative law  is  group  under the  operation  "∗".   
  Proof:   
    Putting x = y = z in  the associative law (x∗y)∗z = x∗(y∗z)  
    we have (x∗x)∗x = x∗(x∗x)  
                   ⇒ 1∗x = x∗1     by axiom (i)  of  definition 3.1  
                              =x   by axiom (ii)  of  definition 3.1  
             ⇒ 1∗x=x∗1=x  
    This means that 1  acts  as the identity element in X.  By axiom (i) of  definition 3.1, every element  x  of X  has  its own inverse.  
    Now, (y∗z)∗(x∗z) = y∗(z∗(x∗z) )   
                   = y∗(x∗(z∗z))  
                   = y∗x  
    and   (x∗y)∗(1∗y) = x ∗(y∗(1∗y))  
                   = x∗((y∗1)∗y)   
                   = x∗(y∗y)  
                   =x∗1  
                   = x. 
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    Therefore (X,∗,1) is a group. 

H. Definition:3.9     
A  GK-algebra (X,∗,1) is  a  self-distributive if the  operation ∗ is  
1) Right distributive law     (x∗y)∗z = (x∗z)∗(y∗z) for  all  x,y,z ∈X . 
2) Left distributive law       x∗(y∗z) = (x∗y)∗(x∗z) for all x,y,z ∈X. 

 
I. Definition:3.10    
A  GK  algebra X  is said  to  be commutative if it satisfies for all x,y ∈X , (x∗y)∗y = (y∗x)∗x. 

J. Proposition:3.11    
Let  X  be  a  GK algebra.  If x ≠y  and x ∗ y = 1  then  y∗x ≠1. 

K. Proposition:3.12    
Let (X,∗,1) be a GK algebra. Then for any x,y,z ∈X,   
1) x∗(x∗(y∗x) ) = 1  
2) y∗(y∗(x∗y) ) = 1  
3) (x∗y)∗x = (y∗x)∗y       
4)  (x∗y)∗y = (y∗x)∗x         
5)  (x∗y)∗x = (x∗x)∗y        
6)  (x∗y)∗y = (y∗y)∗x  
     Proof: 
a) Let   us  consider x∗(x∗(y∗x) )  
                    = x∗(x∗1)   by  axiom (iii)  of  definition 3.1  
                    = x∗x         by axiom (ii)  of  definition 3.1  
                      = 1            by axiom (i)  of  definition 3.1.  
b) The  proof  is  similar to proof (i) in proposition 3.12 . 
c) Consider   (x∗y)∗x  
                =1∗x  
                =1∗y                              by axiom (iii) of  definition 3.1  
                =(x∗y)∗y                        by axiom (iii) of  definition 3.1  
                =(y∗x)∗y                        by axiom (iii) of  definition 3.1  
d) Consider (x∗y)∗y  
                =1∗y  
                =1∗x                              by axiom (iii)  of  definition 3.1  
                =(x∗y)∗x                        by axiom (iii)  of  definition 3.1  
                =(y∗x)∗x                        by axiom (iii)  of  definition 3.1  
       This  proof shows that  the commutativity of  GK algebra.  
    (v)  Consider  (x∗y)∗x = 1∗x = 1∗y = (x∗x)∗y  by axiom(i) & (iii) of  definition 3.1   
    (vi)   Proof   is  similar  to  (v) in proposition 3.12. 

L. Theorem:3.13   
In GK algebra X, for any x,y,z ∈X   if   associativity  holds  then  the  following  are  equivalent  
1) x∗(y∗z) = (x∗z)∗y  
2)  (y∗z)∗(x∗z) = y∗x  
 Proof  
     (i)⇒(ii)   Assume  x∗(y∗z) = (x∗z)∗y  
          Then    (y∗z)∗(x∗z) = ((y∗z)∗z)∗x  
                                          =(y∗(z∗z))∗x  
                                          =(y∗1)∗x   by axiom (i) of  definition 3.1  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

   Volume 6 Issue IV, April 2018- Available at www.ijraset.com 
     

1212 
 ©IJRASET (UGC Approved Journal): All Rights are Reserved 1212 

                                          =y∗x      by axiom (ii) of  definition 3.1 
     (ii)⇒(i)   Assume  (y∗z)∗(x∗z) =y∗x  
          Then      x∗(y∗z) = (x∗z)∗((y∗z)∗z)  
                                     = (x∗z)∗(y∗(z∗z))  
                                     = (x∗z)∗(y∗1)     by axiom (i) of  definition 3.1  
                                     = (x∗z)∗y.       by axiom (ii) of  definition 3.1 

M. Definition:3.14    
 Let  (X,∗,1)  be a  GK-algebra. A non-empty  subset A  of  X  is  called a  subalgebra  of X  if   
                                x∗y ∈A  for any  x,y∈A. 

N. Theorem:3.15    
Let (X,∗,1) be  a  GK algebra  and  A≠ φ, A⊆X   then the following  are  equivalent  
1) A is a  subalgebra of X  
2) x∗(1∗y),  1∗y ∈A  for  any x,y ∈A  
 Proof:  
     (i)⇒(ii)    Let  A  be  a  subalgebra  of  X. Since A is  a  subset of  X  which is  non-empty there exists  an  element  x∈A  such 
that x∗x =1∈A . 
 Since  X is closed under '∗', y∈A, 1∗y ∈A⇒  x∗(1∗y)∈A.  
     (ii)⇒(i)    Since  x∗y = x∗(1∗(1∗y))    by  theorem 3.4 (i) 
                      which   implies  x∗y ∈A  for any x,y∈A. 
                   ∴  A  is  a  subalgebra  of  X. 

IV. CONCLUSION 
In  this paper  the  notion of GK  algebra  is  introduced  and  studied about  some  of  their  properties. It  may  lead  our future 
study  of  GK  algebra such  as   homomorphism  of  GK algebra, filter of  GK algebra  and  Ideal theory  on  GK algebra. 
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A b s t r a c t :  I n  t h i s  p a p e r ,  w e  i n t r o d u c e  t h e  c o n c e p t  o f  d e r i v a t i o n  o f  G K  a l g e b r a  

a n d  a l s o  o b t a i n  s o m e  p r o p e r t i e s  a b o u t  t h i s  c o n c e p t .  

I .  I N T R O D U C T I O N  

T h e  s t r u c t u r e  o f  G K  a l g e b r a  w a s  i n t r o d u c e d  b y  u s  i n  2 0 1 8 [ 4 ] . A  G K  a l g e b r a  

i s  a n  a l g e b r a  o f  n o n - e m p t y  s e t  X  t o g e t h e r  w i t h  a  b i n a r y  o p e r a t i o n  *  a n d  a  

c o n s t a n t  1 , s a t i s f y i n g  t h e  f o l l o w i n g  a x i o m s  

( i )   x * x = 1  

( i i )  x * 1 = x  

( i i i )  x * y = 1  a n d  y * x = 1  i m p l i e s  x = y  

( i v )  ( y * z ) * ( x * z ) = y * x  

( v )  ( x * y ) * ( 1 * y ) = x  f o r  a l l  x , y , z  i n  X .  

L e t   t h e  c o m m u t a t i v e  r i n g  R  w i t h  i d e n t i t y . L e t  X  b e  a n  a l g e b r a  o v e r  R .  A n  

R  l i n e a r  m a p p i n g  f : X → X  i s  c a l l e d  a  d e r i v a t i o n  i f  f ( x y ) = f ( x ) y + x f ( y )  f o r  

a l l  x , y  i n  X . T h e  d e r i v a t i o n  o f  r i n g  i s  w i d e  a r e a ,  m a n y  r e s e a r c h e r s  s t a r t e d  

t h e i r  w o r k  i n  t h i s  c o n c e p t [ 1 ] , [ 2 ] , [ 3 ] .  I n s p i r e d  b y  t h e s e  w o r k s ,  i n  a  s a m e  

w a y ,  w e  i n t r o d u c e  t h e  c o n c e p t  o f  d e r i v a t i o n  o n  G K  a l g e b r a  a n d  d i s c u s s  

s o m e  p r o p e r t i e s  i n  t h i s  p a p e r .  

  

I I . P R E L I M I N A R I E S  

A .  D e f i n i t i o n : 2 . 1 [ 4 ]  

A  n o n - e m p t y  s e t  X  w i t h  f i x e d  c o n s t a n t  1 a n d  a  b i n a r y  o p e r a t i o n  * i s  c a l l e d  

G K  a l g e b r a  i f  i t  s a t i s f y i n g  t h e  f o l l o w i n g  a x i o m s  

( i )   x * x = 1  

( i i )  x * 1 = x  

( i i i )  x * y = 1  a n d  y * x = 1  i m p l i e s  x = y  

( i v )  ( y * z ) * ( x * z ) = y * x  

( v )  ( x * y ) * ( 1 * y ) = x  f o r  a l l  x , y , z  i n  X .  

 

B .  D e f i n i t i o n : 2 . 2 [ 4 ]  

G K  a l g e b r a  X  i s  s a i d  t o  b e  c o m m u t a t i v e  i f  i t  s a t i s f i e s  f o r  a l l  x , y  i n  X ,  

( x * y ) * y = ( y * x ) * x .  

 

C .  D e f i n i t i o n : 2 . 3 [ 3 ]  

L e t  X  b e  a  d - a l g e b r a .  A  m a p  θ : X → X  i s  a  l e f t - r i g h t  d e r i v a t i o n  ( l , r ) -  d e r i v a t i o n  

o f  X  i t  s a t i s f i e s  t h e  i d e n t i t y  θ ( x * y ) = ( θ ( x ) * y ) ˄ ( x * θ ( y ) )  f o r  a l l  x ,  y  i n  X .  I f  

θ  s a t i s f i e s  t h e  i d e n t i t y  θ ( x * y ) = ( x * θ ( y ) ) ˄ ( θ ( x ) * y )  f o r  a l l  x , y  i n  X  t h e n  θ  i s  a  

r i g h t - l e f t  d e r i v a t i o n  ( r , l )  d e r i v a t i o n  o f  X .  

 

D .  D e f i n i t i o n : 2 . 4 [ 2 ]  

L e t  ( X , * , 0 )  b e  a  T M  a l g e b r a . A  s e l f  m a p  d : X → X  i s  s a i d  t o  b e  a  ( l , r )  d e r i v a t i o n  

o f  X  i f  d ( x * y ) = ( d ( x ) * y ) ˄ ( x * d ( y ) ) . A  s e l f  m a p  d : X → X  i s  s a i d  t o  b e  ( r , l )  

d e r i v a t i o n  o n  X  i f  d ( x * y ) = ( x * d ( y ) ) ˄ ( d ( x ) * y ) .  
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I I I . D E R I V A T I O N S  O F  G K  A L G E B R A .  

A .  D e f i n i t i o n : 3 . 1  

L e t  ( X , ∗, 1 )  b e  a  G K  a l g e b r a .  A  m a p  𝜂: 𝑋 → 𝑋 i s  c a l l e d  a  l e f t - r i g h t  d e r i v a t i o n  

( b r i e f l y  ( L R )  d e r i v a t i o n )  o f  X  i f  𝜂(𝑥 ∗ 𝑦) = (𝜂(𝑥) ∗ 𝑦)⋀(𝑥 ∗ 𝜂(𝑦))∀𝑥, 𝑦 ∈ 𝑋.  

 

B .  D e f i n i t i o n : 3 . 2  

L e t   (𝑋,∗ ,1) b e  a  G K - a l g e b r a .  A  m a p   𝜂: 𝑋 → 𝑋 i s  c a l l e d  a  r i g h t - l e f t   d e r i v a t i o n  

( b r i e f l y  ( R L  )  d e r i v a t i o n )  o f  X  i f  𝜂(𝑥 ∗ 𝑦) = (𝑥 ∗ 𝜂(𝑦))⋀(𝜂(𝑥) ∗ 𝑦)∀𝑥, 𝑦 ∈ 𝑋.  

 

C .  R e m a r k : 3 . 3  

A  m a p   𝜂: 𝑋 → 𝑋 i s  c a l l e d  a  d e r i v a t i o n  o f  X  i f  𝜂 i s  b o t h   a  ( L R )  d e r i v a t i o n  a n d  

a  ( R L )  d e r i v a t i o n  o f  X .  

 

D .  N o t e : 3 . 4  

L e t    (𝑋,∗ ,1) b e  a  G K - a l g e b r a  , x , y ∈X .  W e  d e n o t e   𝑥 ∧ 𝑦 = 𝑦 ∗ (𝑦 ∗ 𝑥).  

 

E .  E x a m p l e : 3 . 5  

L e t   𝑋 = {1,2,3} b e  a  G K - a l g e b r a .  T h e  o p e r a t i o n  ∗  i s  d e f i n e d  a s  f o l l o w s  

∗ 1  2  3  

1  1  3  2  

2  2  1  3  

3  3  2  1  

D e f i n e   a   m a p   𝜂: 𝑋 → 𝑋 b y   

𝜂(𝑥) = {

1         𝑖𝑓   𝑥 = 1
2          𝑖𝑓 𝑥 = 2

3          𝑖𝑓 𝑥 = 3
 

T h e n   i t   i s   c l e a r  t h a t   𝜂 i s   a  d e r i v a t i o n   o f   x .  

 

F .  D e f i n i t i o n : 3 . 6  

L e t   (𝑋,∗ ,1)  b e   a  G K - a l g e b r a  a n d   𝜂: 𝑋 → 𝑋  b e  a   m a p   o f  a  G K - a l g e b r a ,   t h e n    

𝜂 i s   c a l l e d  r e g u l a r   i f   𝜂 ( 1 ) = 1 .  

 

G .  N o t e : 3 . 7   

I n  G K - a l g e b r a [ 4 ] ,  w e  c a n  o b s e r v e   t h a t   𝑥 ∧ 𝑦 = 𝑦 ∗ (𝑦 ∗ 𝑥)=  𝑥 ∀𝑥, 𝑦 ∈ 𝑋.    

 

H .  P r o p o s i t i o n : 3 . 8  

       L e t    𝜂 b e   a   s e l f - m a p  o f  G K  a l g e b r a  X , t h e n   

( a )   I f     𝜂 i s   r e g u l a r   ( L R )  d e r i v a t i o n   o f   X ,  t h e n  𝜂(𝑥) = 𝜂(𝑥) ∧ 𝑥   ∀  𝑥 ∈ 𝑋 

( b )  I f     𝜂 i s  r e g u l a r   ( R L )   d e r i v a t i o n   o f  X ,   t h e n   𝜂(𝑥) = 𝑥 ∧ 𝜂(𝑥)   ∀ 𝑥 ∈ 𝑋 

    P r o o f :  

( a )   L e t    𝜂  b e   a   r e g u l a r   ( L R )   d e r i v a t i o n   o f   X .  T h e n  𝜂(𝑥) = 𝜂(𝑥 ∗ 1) 

     = (𝜂(𝑥) ∗ 1) ∧ (𝑥 ∗ 𝜂(1)) 

 = 𝜂(𝑥) ∧ (𝑥 ∗ 𝜂(1)) 

           = 𝜂(𝑥) ∧ (𝑥 ∗ 1) 

           = 𝜂(𝑥) ∧ 𝑥 

(b) Let   𝜂 be a regular (RL) derivation of X, then  

         𝜂(𝑥) = 𝜂(𝑥 ∗ 1) 

     = (𝑥 ∗ 𝜂(1)) ∧ (𝜂(𝑥) ∗ 1) 

 = (𝑥 ∗ 1) ∧ (𝜂(𝑥) ∗ 1) 
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            = 𝑥 ∧ 𝜂(𝑥) 

               Conversely , 

                    Let  𝜂 be a (RL) derivation of X and 𝜂(𝑥) = 𝑥 ∧ 𝜂(𝑥)∀𝑥 ∈ 𝑋,then we get 

                         𝜂(1) = 1 ∧ 𝜂(1) 

                                  = 𝜂(1) ∗ (𝜂(1) ∗ 1)                   ∵ 𝑥 ∧ 𝑦 = 𝑦 ∗ (𝑦 ∗ 𝑥) 

                                   = 𝜂(1) ∗ 𝜂(1) 

                                    = 1. 

Hence  𝜂 is regular. 

 

I. Lemma:3.9 

             Let  (𝑋,∗ ,1) 𝑏𝑒  a GK-algebra and 𝜂 be a (LR)  derivation  of X. Then the following hold  ∀ 𝑥, 𝑦 ∈ 𝑋 

(a) 𝜂(𝑥 ∗ 𝑦) = 𝜂(𝑥) ∗ 𝑦 

(b) If 𝜂 is regular then  𝜂(𝑥) ≤ 𝑥 

Proof: 

(a)   Let  (𝑋,∗ ,1)  be  a  GK  algebra  and   𝜂  be  a  (LR)  derivation  of  X. 

Then 

   𝜂(𝑥 ∗ 𝑦) = (𝜂(𝑥) ∗ 𝑦) ⋀(𝑥 ∗ 𝜂(𝑦)) 

          = (𝑥 ∗ 𝜂(𝑦)) ∗ ((𝑥 ∗ 𝜂(𝑦)) ∗ (𝜂(𝑥) ∗ 𝑦)) 

          = 𝜂(𝑥) ∗ 𝑦 

                               ∴ 𝜂(𝑥 ∗ 𝑦) = 𝜂(𝑥) ∗ 𝑦. 

(b) Let  𝜂   be  a  regular  derivation  of  X. 

Then  𝜂 (1)=1. 

Now   

𝜂(𝑥 ∗ 𝑥) = 𝜂(1) 

𝜂(𝑥) ∗ 𝑥 = 1 

𝜂(𝑥) ≤ 𝑥. 

 

 

J.  Lemma:3.10 

           Let  (𝑋,∗ ,1)  be  a  GK algebra  and  𝜂  be  a  (RL)  derivation  of  X.  Then 

(a) 𝜂(𝑥 ∗ 𝑦) = 𝑥 ∗ 𝜂(𝑦) 

(b) If 𝜂 is regular then  𝑥 ≤ 𝜂(𝑥) 

Proof: 

(a) Let  (𝑋,∗ ,1)  be  a  GK  algebra  and  𝜂   be  a  (RL)  derivation  of  X. 

Then 

   𝜂(𝑥 ∗ 𝑦) = (𝑥 ∗ 𝜂(𝑦) )⋀(𝜂(𝑥) ∗ 𝑦) 

          = (𝜂(𝑥) ∗ 𝑦) ∗ ((𝜂(𝑥) ∗ 𝑦) ∗ (𝑥 ∗ 𝜂(𝑦))) 

          = 𝑥 ∗ 𝜂(𝑦) 

                               ∴ 𝜂(𝑥 ∗ 𝑦) = 𝑥 ∗ 𝜂(𝑦). 

(b) Let   𝜂  be  a  regular  derivation  of  X. 

Then 𝜂 (1)=1. 

Now   

𝜂(𝑥 ∗ 𝑥) = 𝜂(1) 

𝑥 ∗ 𝜂(𝑥) = 1 

𝑥 ≤ 𝜂(𝑥). 

K.  Note:3.11 

(a)  From  the  above  lemma:3.9 

        𝜂(𝑥 ∗ 𝑦) = 𝜂(𝑥) ∗ 𝑦 

And  𝜂(𝑥 ∗ 𝑦) = 𝑥 ∗ 𝜂(𝑦) 

⇒  𝜂(𝑥 ∗ 𝑦) = 𝜂(𝑥) ∗ 𝑦 =  𝑥 ∗ 𝜂(𝑦) 

(b) Let  𝜂  be  the  regular  derivation   then by  lemma 
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𝜂(𝑥) ≤ 𝑥  and   𝑥 ≤ 𝜂(𝑥)  

⇒   𝑥 = 𝜂(𝑥). 

 

L. Remark:3.12     A map  𝜂: 𝑋 → 𝑋  is  regular  derivation  of  X  then  𝜂(𝑥) = 𝑥  ∀  𝑥 ∈ 𝑋 

 

M. Lemma:3.13 

Let     𝜂: 𝑋 → 𝑋     be  a derivation  of   X.  Then  𝜂 is  a  regular  derivation  if  𝜂 is either a  (LR) derivation or  a  

(RL)  derivation. 

Proof: 

Let  𝜂  is  (LR)  derivation, then  for  all  𝑥 ∈ 𝑋,   𝜂(𝑥) ∗ 𝑥 = 1 

Now  𝜂(1) = 𝜂(𝑥 ∗ 𝑥) 

                  = 𝜂(𝑥) ∗ 𝑥 

          ∴ 𝜂(1) = 1. 

∴  𝜂  is  regular. 

Now  if  𝜂  is  (RL)  derivation, then  for  all  𝑥 ∈ 𝑋,   𝑥 ∗ 𝜂(𝑥) = 1 

Now  𝜂(1) = 𝜂(𝑥 ∗ 𝑥) 

                  = 𝑥 ∗ 𝜂(𝑥) 

          ∴ 𝜂(1) = 1. 

∴  𝜂  is  regular. 

 

N. Theorem:3.14 

     Let  (𝑋,∗ ,1)  be  a  GK  algebra  and   𝜂  be  a  regular  (RL)  derivation  of  X.  Then  the  following hold  ,  

∀ 𝑥, 𝑦 ∈ 𝑋. 

(a) 𝜂(𝑥) = 𝑥 

(b) 𝜂(𝑥) ∗ 𝑦 = 𝑥 ∗ 𝜂(𝑦) 

(c) 𝜂(𝑥 ∗ 𝑦) = 𝜂(𝑥) ∗ 𝑦 = 𝑥 ∗ 𝜂(𝑦) = 𝜂(𝑥) ∗ 𝜂(𝑦) 

Proof:- 

(a)  Since  𝜂  is  regular  (RL)  derivation  of  X  ,  we  have   

𝜂(𝑥) = 𝜂(𝑥 ∗ 1) 

         = 𝑥 ∗ 𝜂(1) 

          = 𝑥 ∗ 1 

           = 𝑥 

∴ 𝜂(𝑥) = 𝑥. 

 

(b) Since  𝜂  is  regular  (RL)  derivation  of  X,  then  we  have 

 

𝜂(𝑥 ∗ 𝑦) = 𝑥 ∗ 𝜂(𝑦) 

 

       𝑥 ∗ 𝑦 = 𝑥 ∗ 𝜂(𝑦)              → (1) 

 

And  in (LR)  derivation 

 

𝜂(𝑥 ∗ 𝑦) = 𝜂(𝑥) ∗ 𝑦 

 

       𝑥 ∗ 𝑦 = 𝜂(𝑥) ∗ 𝑦               → (2) 

 

From  (1) & (2) 

 

𝜂(𝑥) ∗ 𝑦 = 𝑥 ∗ 𝑦 = 𝑥 ∗ 𝜂(𝑦). 

 

(c)       Since  𝜂(𝑥) = 𝑥  ∀  𝑥 ∈ 𝑋 
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 𝜂(𝑥 ∗ 𝑦) = 𝜂(𝑥) ∗ 𝑦 = 𝜂(𝑥) ∗ 𝜂(𝑦) 

 

𝜂(𝑥 ∗ 𝑦) = 𝑥 ∗ 𝜂(𝑦) = 𝜂(𝑥) ∗ 𝜂(𝑦) 

 

⇒ 𝜂(𝑥 ∗ 𝑦) = 𝜂(𝑥) ∗ 𝑦 = 𝑥 ∗ 𝜂(𝑦) = 𝜂(𝑥) ∗ 𝜂(𝑦). 

 

O. Lemma:3.15 

  Let  (𝑋,∗ ,1)  be  a  GK   algebra  and  𝜂 be  a  derivation  on  X.  If  𝑥 ≤ 𝑦  ∀  𝑥, 𝑦 ∈   𝑋  then  

 𝜂 (x)= 𝜂 (y). 

Proof: 

   In  GK  algebra , 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 = 1 ⇔ 𝑥 ≤ 𝑦. 

Then  𝜂 (𝑦) = 𝜂 (𝑦 ∗ 1) 

                    = 𝜂 (𝑦 ∗ (𝑦 ∗ 𝑥)) 

                     = 𝜂 (𝑥). 

 

P. Proposition:3.16 

    Let  𝜂    be  a  derivation   on  GK  algebra  and   let  𝑥 ∈ 𝑋,  then 

  𝑥 ∗ (𝑥 ∗ 𝜂  (𝑥)) = 𝜂  (𝑥) ∗ (𝜂  (𝑥) ∗ 𝑥). 

Proof: 

We  know that    𝜂 (𝑥) = 𝜂 (𝑥) ∧ 𝑥 

     𝑥 ∗ 𝜂 (𝑥)  =𝑥 ∗ (𝜂 (𝑥) ∧ 𝑥) 

                = 𝑥 ∗ (𝑥 ∗ 𝜂  (𝑥)))                    ∵ 𝑥 ∧ 𝑦 = 𝑦 ∗ (𝑦 ∗ 𝑥)       

and            

  𝑥 ∗ 𝜂  (𝑥)  =𝑥 ∗ (𝑥 ∧ 𝜂  (𝑥)) 

                = 𝑥 ∗ (𝜂  (𝑥) ∗ (𝜂  (𝑥) ∗ 𝑥))                    ∵ 𝑥 ∧ 𝑦 = 𝑦 ∗ (𝑦 ∗ 𝑥)       

 

⇒ 𝑥 ∗ (𝑥 ∗ (𝑥 ∗ 𝜂  (𝑥))) = 𝑥 ∗ (𝜂  (𝑥) ∗ (𝜂  (𝑥) ∗ 𝑥))     

By cancellation law, 

𝑥 ∗ (𝑥 ∗ 𝜂  (𝑥)) = 𝜂  (𝑥) ∗ (𝜂  (𝑥) ∗ 𝑥). 

 

Q. Lemma:3.16 

If   𝜂  is a regular  (RL) derivation  on GK  algebra, then  𝜂  (𝑥 ∗ 𝜂  (𝑥)) = 1. 

Proof: 

Since  𝜂  is a regular  (RL) derivation on GK algebra,  𝑥 ∗ 𝜂  (𝑥)=1. 

∴ 𝜂  (𝑥 ∗ 𝑑(𝑥)) = 𝜂  (1) = 1 

∴ 𝜂  (𝑥 ∗ 𝜂  (𝑥)) = 1. 

 

R. Lemma:3.17  

 If   𝜂 is  a  regular  (LR)  derivation on  GK  algebra,  then 𝜂 (𝜂 (𝑥) ∗ 𝑥) = 1. 

Proof: 

Since 𝜂  is a regular  (LR) derivation on GK algebra,  𝜂 (𝑥) ∗ 𝑥=1. 

∴ 𝜂 (𝜂 (𝑥) ∗ 𝑥) = 𝜂 (1) = 1 

∴ 𝜂 (𝜂 (𝑥) ∗ 𝑥) = 1. 

 

S. Definition:3.18 

Let  𝜂1, 𝜂2  be  a  self  maps on a  GK algebra X . We define   𝜂1°𝜂2  as  follows 

      (𝜂1°𝜂 2)(𝑥) = 𝜂 2(𝜂 1(𝑥)) 

 

T. Lemma:3.19 

Let  𝜂 1, 𝜂 2  be  self  maps on  a  GK  algebra. Let  𝜂 1, 𝜂 2 be two (LR) derivations  on X. Then  𝜂 1°𝜂 2 is  also  a 

(LR)  derivation  on X. 
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Proof: 

Given  𝜂 1, 𝜂 2  is  two  (LR)  derivations  on  X. 

By  lemma (3.1), 

We  know  that 

𝜂 1(𝑥 ∗ 𝑦) = 𝜂 1(𝑥) ∗ 𝑦  

And   

𝜂 2(𝑥 ∗ 𝑦) = 𝜂 2(𝑥) ∗ 𝑦  

Now   

(𝜂 1°𝜂 2)(𝑥 ∗ 𝑦) = 𝜂 2(𝜂 1(𝑥 ∗ 𝑦)) 

                          = 𝜂 2(𝜂 1(𝑥) ∗ 𝑦) 

                          =  𝜂 2(𝜂 1(𝑥)) ∗ 𝑦 

                           = (𝜂 1°𝜂 2)(𝑥) ∗ 𝑦 

Hence  𝜂 1°𝜂 2  is  a  (LR)  derivation  on  GK  algebra. 

 

U. Lemma:3.20 

 Let  𝜂 1, 𝜂 2  be  self  maps on  a  GK  algebra. Let  𝜂 1, 𝜂 2 be two (RL) derivations  on X. Then  𝜂 1°𝜂 2 is  also  

a (RL)  derivation  on X. 

Proof: 

Given  𝜂 1, 𝜂 2  is  two  (RL)  derivations  on X. 

Now   

(𝜂 1°𝜂 2)(𝑥 ∗ 𝑦) = 𝜂 2(𝜂 1(𝑥 ∗ 𝑦)) 

                          = 𝜂 2(𝑥 ∗ 𝜂 1(𝑦)) 

                          =  𝑥 ∗ 𝜂 2(𝜂 1(𝑦)) 

                           = 𝑥 ∗ (𝜂 1°𝜂 2)(𝑦). 

Hence  𝜂 1°𝜂 2  is  a  (RL)  derivation  on  GK  algebra. 

By  the above two lemmas   3.7   and 3.8  ,   we  get  the following  theorem. 

 

V. Theorem:3.21 

   Let  (𝑋,∗ ,1)  be  a  GK  algebra  and  𝜂 1, 𝜂 2   be  two  derivations  on  X,  then  𝜂 1°𝜂 2 = 𝜂 2°𝜂 1. 

Proof: 

Since  𝜂 1, 𝜂 2  be  two  derivations  on  X,  𝜂 1, 𝜂 2  are  both  (LR)  and  (RL)  derivations  on  X. 

Now 

(𝜂 1°𝜂 2)(𝑥 ∗ 𝑦) = 𝜂 2(𝜂 1(𝑥 ∗ 𝑦)) 

                          = 𝜂 2(𝜂 1(𝑥) ∗ 𝑦) 

                          = 𝜂 1(𝑥) ∗ 𝜂 2(𝑦). ___________(1) 

Also 

(𝜂 2°𝜂 1)(𝑥 ∗ 𝑦) = 𝜂 1(𝜂 2(𝑥 ∗ 𝑦)) 

                          = 𝜂 1(𝑥 ∗ 𝜂 2(𝑦)) 

                          = 𝜂 1(𝑥) ∗ 𝜂 2(𝑦).____________(2) 

From (1) & (2) 

(𝜂 1°𝜂 2)(𝑥 ∗ 𝑦)=(𝜂 2°𝜂 1)(𝑥 ∗ 𝑦) 

This gives  that  (𝜂 1°𝜂 2)=(𝜂 2°𝜂 1). 

 

W. Definition:3.22 

Let  𝜂 1, 𝜂 2  be  a  self  maps on a  GK algebra X . We define   𝜂 1 ∗ 𝜂 2: 𝑋 → 𝑋  as  follows 

      (𝜂 1 ∗ 𝜂 2)(𝑥) = 𝜂 2(𝑥) ∗ 𝜂 1(𝑥)∀𝑥 ∈ 𝑋. 

 

X. Theorem:3.23 

Let  (𝑋,∗ ,1)  be a  GK  algebra  and  𝜂 1, 𝜂 2  be two  derivations  of  X, then  𝜂 1 ∗ 𝜂 2 = 𝜂 2 ∗ 𝜂 1. 

Proof: 

(𝜂 1°𝜂 2)(𝑥 ∗ 𝑦) = 𝜂 2(𝜂 1(𝑥 ∗ 𝑦)) 
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                          = 𝜂 2(𝜂 1(𝑥) ∗ 𝑦) 

                          = 𝜂 1(𝑥) ∗ 𝜂 2(𝑦). ___________(1) 

(𝜂 1°𝜂 2)(𝑥 ∗ 𝑦) = 𝜂 2(𝜂 1(𝑥 ∗ 𝑦)) 

                          = 𝜂 2(𝑥 ∗ 𝜂 1(𝑦)) 

                          = 𝜂 2(𝑥) ∗ 𝜂 1(𝑦). ___________(2) 

From  the  above  

𝜂 1(𝑥) ∗ 𝜂 2(𝑦) =𝜂  2(𝑥) ∗ 𝜂 1(𝑦)._____________(3) 

Substituting  y = x in (3) 

𝜂 1(𝑥) ∗ 𝜂 2(𝑥) =𝜂  2(𝑥) ∗ 𝜂 1(𝑥) 

By definition    

  (𝜂 2 ∗ 𝜂 1)(𝑥) =  (𝜂 1 ∗ 𝜂 2)(𝑥) 

This  gives  (𝜂 1 ∗ 𝜂 2) = (𝜂 2 ∗ 𝜂 1). 

 

IV. CONCLUSION 

In this paper, the concept of derivation on GK algebra discussed and also studied about some related interesting 

properties of derivation on GK algebra. In future we plan to study about fuzziness in the GK algebra. 
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A b s t r a c t :  I n  t h i s  p a p e r ,  w e  i n t r o d u c e  t h e  c o n c e p t  o f  m u l t i p l i e r s  i n  G K  

a l g e b r a  a n d  a l s o  w e  d i s c u s s  a b o u t  t h e  p r o p e r t i e s  o f  t h e  r e g u l a r  m u l t i p l i e r  

o f  G K  a l g e b r a .  W e  a l s o  i n t r o d u c e  t h e  k e r n e l  o f  m u l t i p l i e r s  o f  G K  a l g e b r a .  

I . I N T R O D U C T I O N  

I n  1 9 7 1 ,  R . L a r s e n  [ 3 ]  i n t r o d u c e d  t h e  t h e o r y  o f  m u l t i p l i e r s .  I n  c o n t i n u a t i o n  

o f  t h i s ,  i n  1 9 8 0  W . H . C o r n i s h [ 5 ]  i n t r o d u c e d  t h e  c o n c e p t  o f  m u l t i p l i e r s  i n  

i m p l i c a t i v e  B C K  a l g e b r a s .  A f t e r  t h a t  m a n y  r e s e a r c h e r s  h a v e  a p p l i e d  t h i s  

c o n c e p t  i n  t h e i r  a l g e b r a i c  s t r u c t u r e  a n d  b r o u g h t  s o m e  i n t e r e s t i n g  

p r o p e r t i e s  o f  m u l t i p l i e r s .  M o t i v a t e d  b y  t h e i r  w o r k  , i n  t h i s  p a p e r  w e   

d i s c u s s  a b o u t  m u l t i p l i e r  i n  G K  a l g e b r a [ 2 ]  a n d  K e r n e l  o f  m u l t i p l i e r  i n  G K  

a l g e b r a  a n d  a l s o  d i s c u s s  s o m e  p r o p e r t i e s  o f  r e g u l a r  m u l t i p l i e r  o f  G K  

a l g e b r a .  

I I . M U L T I P L I E R S  I N  G K  A L G E B R A  

2 . 1  D e f i n i t i o n  

      L e t  (𝒳,∗ ,1) b e  a n  G K  a l g e b r a .  A  s e l f  m a p  𝛥 i s  c a l l e d  a  r i g h t  m u l t i p l i e r s  o f  𝒳 i f  

𝛥(𝑚 ∗ 𝑛) = 𝑚 ∗ ∆(𝑛)   𝑓𝑜𝑟 𝑎𝑙𝑙   𝑚, 𝑛 ∈   𝒳. 

2 . 2  E x a m p l e  

C o n s i d e r  𝒳 = {1,2,3}  i n  w h i c h  ‘ ∗’  i s  d e f i n e d  b y  

∗ 1  2  3  

1  1  3  2  

2  2  1  3  

3  3  2  1  
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T h e n  𝒳 i s  a n  G K  a l g e b r a .  

D e f i n e  a  m a p p i n g  Δ: 𝒳 → 𝒳 b y  

Δ(m) = {

1         𝑖𝑓   𝑥 = 1
2          𝑖𝑓 𝑥 = 2

3          𝑖𝑓 𝑥 = 3
 

I t  i s  c l e a r l y  k n o w n  t h a t  Δ i s   a  r i g h t  m u l t i p l i e r  o f  G K  a l g e b r a .  

2 . 3  D e f i n i t i o n  

L e t  (𝒳,∗ ,1) b e  a n  G K  a l g e b r a .  A  s e l f  m a p  𝛥 i s  c a l l e d  a  l e f t  m u l t i p l i e r s  o f  𝒳 i f  𝛥(𝑚 ∗ 𝑛) =

𝛥(𝑚) ∗ 𝑛   𝑓𝑜𝑟 𝑎𝑙𝑙   𝑚, 𝑛 ∈   𝒳. 

N o t e :   T h e  a b o v e  s a i d  e x a m p l e  i s  a l s o  a n  e x a m p l e  o f  t h e  l e f t  m u l t i p l i e r  o f  G K  

a l g e b r a .  

2 . 4  D e f i n i t i o n :  

A  m a p  𝛥 o f  a n  G K  a l g e b r a  𝒳 i s  s a i d  t o  b e  r e g u l a r  i f  𝛥(1) = 1. 

2 . 5  P r o p o s i t i o n  

L e t  Δ b e  a  l e f t  m u l t i p l i e r  o f  𝒳,  t h e n  

( i )  F o r  e v e r y  m  i n  𝒳,   ∆(1) = ∆(𝑚) ∗ 𝑚. 

( i i )  Δ i s  1 - 1 .  

P r o o f :  

( i )  L e t   m ∈ 𝒳.  T h e n  𝑚 ∗ 𝑚 = 1. 

W e  h a v e  Δ(1) = Δ(m ∗ m) =  ∆(𝑚) ∗ 𝑚  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑚 ∈ 𝒳. 

( i i )  L e t   𝑚, 𝑛 ∈ 𝒳  s u c h  t h a t  ∆(𝑚) = ∆(𝑛). 

T h e n  b y  ( i ) ,  w e  h a v e   Δ(1) = Δ(m ∗ m) =  ∆(𝑚) ∗ 𝑚  a n d   Δ(1) = Δ(n ∗ n) =  ∆(𝑛) ∗ 𝑛.  

T h e n  ∆(𝑚) ∗ 𝑚 = ∆(𝑛) ∗ 𝑛.  

B y  c a n c e l l a t i o n  l a w ,  𝑚 = 𝑛. 

∴   ∆  𝑖𝑠 1 − 1 

2 . 6  P r o p o s i t i o n  

L e t  Δ b e  a  r i g h t  m u l t i p l i e r  o f  𝒳,  t h e n  

( i )  F o r  e v e r y  m  i n  𝒳,   ∆(1) = 𝑚 ∗ ∆(𝑚). 

( i i )  Δ i s  1 - 1 .  

P r o o f :  

( i )  L e t   m ∈ 𝒳.  T h e n  𝑚 ∗ 𝑚 = 1. 
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W e  h a v e  Δ(1) = Δ(m ∗ m) =  𝑚 ∗ ∆(𝑚) 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑚 ∈ 𝒳. 

( i i )  L e t   𝑚, 𝑛 ∈ 𝒳  s u c h  t h a t  ∆(𝑚) = ∆(𝑛). 

         T h e n  b y  ( i ) ,  w e  h a v e   Δ(1) = Δ(m ∗ m) =  𝑚 ∗ ∆(𝑚)  a n d                               

               Δ(1) = Δ(n ∗ n) =  𝑛 ∗ ∆(𝑛).  T h e n  𝑚 ∗ ∆(𝑚) = 𝑛 ∗ ∆(𝑛).  

                B y  c a n c e l l a t i o n  l a w ,  𝑚 = 𝑛. 

   ∴   ∆  𝑖𝑠 1 − 1.  

2 . 7  T h e o r e m :  

L e t  Δ  b e  a  l e f t  m u l t i p l i e r  o f   𝒳.  T h e n  ∆(𝑚) = 𝑚  i f f  ∆  i s  r e g u l a r .  

P r o o f :  

    L e t   Δ  i s  r e g u l a r .  S i n c e   ∆(1) = 1. 

T h e n  w e  h a v e   Δ(1) = Δ(m ∗ m) =  ∆(𝑚) ∗ 𝑚 = 1 .  

B y  d e f i n i t i o n  o f  G K  a l g e b r a ,  ∆(𝑚) = 𝑚. 

C o n v e r s e l y ,  l e t  ∆(𝑚) = 𝑚 𝑓𝑜𝑟 𝑚 𝑖𝑛 𝒳.  

I t  i s  c l e a r  t h a t  ∆(1) = 1. 

H e n c e  ∆ i s  r e g u l a r .  

2 . 8  P r o p o s i t i o n  

L e t  𝒳 b e  G K  a l g e b r a  a n d  l e t  ∆ b e  a  l e f t  m u l t i p l i e r  o f  𝒳.  

 I f  ∆(𝑚) ∗ 𝑚 = 1  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝒳 ,  t h e n  ∆ i s  r e g u l a r .  

P r o o f :  

L e t   ∆(𝑚) ∗ 𝑚 = 1 a n d  l e t  ∆ b e  a  l e f t  m u l t i p l i e r  o f  𝒳. 

B y  d e f i n i t i o n  o f  G K  a l g e b r a ,  

W e  h a v e  Δ(1) = Δ(m ∗ m) =  ∆(𝑚) ∗ 𝑚 = 1 .  

H e n c e  Δ i s  r e g u l a r .  

2 . 9  P r o p o s i t i o n   

L e t  Δ b e  a  l e f t  m u l t i p l i e r  o f  𝒳. T h e n  t h e  f o l l o w i n g  h o l d s  

( i )  I f  ∃ a n  e l e m e n t  𝑚 ∈ 𝒳 ∋:  ∆(𝑚) = 𝑚, ∆ i s  t h e  i d e n t i t y .  

( i i )  I f  ∃ a n  e l e m e n t  𝑚 ∈ 𝒳 ∋:  ∆(𝑛) ∗ 𝑚 = 1 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  𝑛 ∈ 𝒳 t h e n  ∆(𝑛) = 𝑚.  
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P r o o f :  

( i )  L e t   ∆(𝑚) = 𝑚 f o r  s o m e  𝑚 ∈ 𝒳.  

T h e n  ∆(𝑚) ∗ 𝑚 = 𝑚 ∗ 𝑚 

⇒ ∆(𝑚) ∗ 𝑚 = 1 .  

𝐻𝑒𝑛𝑐𝑒  ∆(1) = 1 b y  t h e  p r o p o s i t i o n ( 2 . 7 )  

W h i c h  i m p l i e s  t h a t  ∆ i s  r e g u l a r .  

( i i )  B y  t h e  d e f i n i t i o n  o f  G K  a l g e b r a ,  

Δ(m ∗ n) = Δ(n ∗ m) = Δ(1) 

⇒ ∆(𝑚) ∗ 𝑛 = ∆(𝑛) ∗ 𝑚 = ∆(1) 

⇒ ∆(𝑚) ∗ 𝑛 = 1 

⇒ ∆(𝑚) = 𝑛.  

2 . 1 0  P r o p o s i t i o n  

L e t  𝒳 b e  a  G K  a l g e b r a  a n d  ∆ b e  a  l e f t  m u l t i p l i e r  o f  𝒳.  T h e n  

 ∆(∆(𝑚) ∗ 𝑚) = 1 ∀ 𝑚 ∈ 𝒳 

P r o o f :  

L e t   𝑚 ∈ 𝒳.  T h e n  w e  h a v e   ∆(∆(𝑚) ∗ 𝑚) = ∆(𝑚) ∗ ∆(𝑚) = 1. 

2 . 1 1  P r o p o s i t i o n  

L e t  𝒳 b e  a  G K  a l g e b r a  a n d  l e t  ∆ b e  a  r e g u l a r  m u l t i p l i e r .  T h e n  t h e  s e l f  m a p  ∆ i s  a n  

i d e n t i t y  m a p  i f  i t  s a t i s f i e s  l e f t  m u l t i p l i e r  i s  e q u a l  t o  r i g h t  m u l t i p l i e r  t h a t  i s        

∆(𝑚) ∗ 𝑛 = 𝑚 ∗ ∆(𝑛) ∀ 𝑚, 𝑛 ∈ 𝒳.  

P r o o f :  

S i n c e  ∆ i s  r e g u l a r ,  w e  h a v e  ∆(1) = 1. 

L e t   ∆(𝑚) ∗ 𝑛 = 𝑚 ∗ ∆(𝑛) ∀ 𝑚, 𝑛 ∈ 𝒳 

T h e n  ∆(𝑚) = ∆(𝑚 ∗ 1) = ∆(𝑚) ∗ 1 = 𝑚 ∗ ∆(1) = 𝑚 ∗ 1 = 𝑚. 

H e n c e  ∆ i s  a n  i d e n t i t y  m a p .  

2 . 1 2  D e f i n i t i o n  

L e t  ∆ b e  a  m u l t i p l i e r  o f  G K  a l g e b r a .  A  s e t  d e f i n e d  b y  ℋ∆(𝒳) b y  

  ℋ∆(𝒳) = {𝑚 ∈ 𝒳 ∕ ∆(𝑚) = 𝑚} ∀ 𝑚 ∈ 𝒳. 

2 . 1 3  P r o p o s i t i o n  

L e t  𝒳 b e  a  G K  a l g e b r a  a n d  l e t  ∆ b e  a  l e f t  m u l t i p l i e r  o n  𝒳. I f  𝑛 ∈ ℋ∆(𝒳), w e  h a v e  𝑚 ∧

𝑛 ∈ ℋ∆(𝒳) ∀ 𝑚, 𝑛 ∈ 𝒳.  
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P r o o f :  

L e t  ∆  b e  a  l e f t  m u l t i p l i e r  o n  𝒳 a n d  l e t  𝑛 ∈ ℋ∆(𝒳). 

N o w  ∆(𝑚 ∧ 𝑛) = ∆(𝑛 ∗ (𝑛 ∗ 𝑚)) 

                  =  ∆(𝑛) ∗ (𝑛 ∗ 𝑚) 

    =  𝑛 ∗ (𝑛 ∗ 𝑚) 

    =  𝑚 ∧ 𝑛.  

H e n c e  𝑚 ∧ 𝑛 ∈ ℋ∆(𝒳).  

2 . 1 4  P r o p o s i t i o n  

L e t  𝒳 b e  a  G K  a l g e b r a  a n d  l e t  ∆ b e  a  r i g h t  m u l t i p l i e r  o n  𝒳. I f  𝑛 ∈ ℋ∆(𝒳), w e  h a v e  

𝑚 ∧ 𝑛 ∈ ℋ∆(𝒳) ∀ 𝑚, 𝑛 ∈ 𝒳.  

P r o o f :  

L e t  ∆  b e  a  r i g h t  m u l t i p l i e r  o n  𝒳 a n d  l e t  𝑛 ∈ ℋ∆(𝒳). 

N o w  ∆(𝑚 ∧ 𝑛) = ∆(𝑛 ∗ (𝑛 ∗ 𝑚)) 

                  =  𝑛 ∗ ∆(𝑛 ∗ 𝑚) 

    =  𝑛 ∗ (𝑛 ∗ ∆(𝑚)) 

    =  𝑛 ∗ (𝑛 ∗ 𝑚) 

    =  𝑚 ∧ 𝑛.  

H e n c e  𝑚 ∧ 𝑛 ∈ ℋ∆(𝒳).  

2 . 1 5  D e f i n i t i o n  

L e t  𝒳 b e  a n  G K  a l g e b r a  a n d  ∆1, ∆2 t w o  s e l f  m a p s .  W e  d e f i n e  a  m a p p i n g   

∆1 ∘ ∆2: 𝒳 → 𝒳  b y  (∆1 ∘ ∆2)(𝑚) = ∆1(∆2(𝑚))  ∀ 𝑚 ∈ 𝒳. 

2 . 1 6  P r o p o s i t i o n  

L e t  𝒳 b e  a n  G K  a l g e b r a  a n d  ∆1, ∆2 t w o  r i g h t  ( l e f t )  m u l t i p l i e r s  o f   𝒳.  T h e     ∆1 ∘ ∆2 i s  

a l s o  r i g h t  ( l e f t )  m u l t i p l i e r  o f   𝒳.  

P r o o f :  

L e t  𝒳 b e  a n  G K  a l g e b r a  a n d  ∆1, ∆2  t w o  r i g h t  m u l t i p l i e r s  o f  𝒳.  T h e n  w e  h a v e  

(∆1 ∘ ∆2)(𝑚 ∗ 𝑛) = ∆1(∆2(𝑚 ∗ 𝑛)) 

    =  ∆1(𝑚 ∗ ∆2(𝑛)) 
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    =  𝑚 ∗ ∆1(∆2(𝑛)) 

   =  𝑚 ∗ (∆1 ∘ ∆2)(𝑛) 

L e t  𝒳 b e  a n  G K  a l g e b r a  a n d  ∆1, ∆2  t w o  l e f t   m u l t i p l i e r s  o f  𝒳.  T h e n  w e  h a v e  

(∆1 ∘ ∆2)(𝑚 ∗ 𝑛) = ∆1(∆2(𝑚 ∗ 𝑛)) 

 

    =  ∆1(∆2(𝑚)) ∗ 𝑛 

    =  (∆1 ∘ ∆2)(𝑚) ∗ 𝑛.  

2 . 1 7  D e f i n i t i o n  

L e t  𝒳 b e  a n  G K  a l g e b r a  a n d  ∆1, ∆2 t w o  s e l f  m a p s .  W e  d e f i n e  (∆1 ∧ ∆2): 𝒳 → 𝒳 b y  

(∆1 ∧ ∆2)(𝑚) = ∆1(𝑚) ∧ ∆2(𝑚).  

2 . 1 8  P r o p o s i t i o n  

L e t  𝒳 b e  a n  G K  a l g e b r a  a n d  ∆1, ∆2 t w o  l e f t  m u l t i p l i e r  o f  𝒳. T h e n  ∆1 ∧ ∆2 i s  a l s o  l e f t  

m u l t i p l i e r  o f  𝒳. 

P r o o f :  

L e t  𝒳 b e  a n  G K  a l g e b r a  a n d  ∆1, ∆2 t w o  m u l t i p l i e r  o f   𝒳. 

(∆1 ∧ ∆2)(𝑚 ∗ 𝑛) = ∆1(𝑚 ∗ 𝑛) ∧ ∆2(𝑚 ∗ 𝑛) 

     =  (∆1(𝑚) ∗ 𝑛) ∧ (∆2(𝑚) ∗ 𝑛) 

     =  (∆2(𝑚) ∗ 𝑛) ∗ ((∆2(𝑚) ∗ 𝑛) ∗ (∆1(𝑚) ∗ 𝑛)) 

     =  ∆1(𝑚) ∗ 𝑛   … … … … … … . ( 1 )  

(∆1 ∧ ∆2)(𝑚) ∗ 𝑛  =  (∆1(𝑚) ∧ ∆2(𝑚)) ∗ 𝑛 

      =  ∆1(𝑚) ∗ 𝑛 … … … … … … . . ( 2 )  

F r o m  ( 1 ) a n d  ( 2 )  

(∆1 ∧ ∆2)(𝑚 ∗ 𝑛) = (∆1 ∧ ∆2)(𝑚) ∗ 𝑛.  

H e n c e  ∆1 ∧ ∆2 i s  l e f t  m u l t i p l i e r .  

2 . 1 9  D e f i n i t i o n  

F o r  a n y  𝜔 ∈ 𝒬(𝒳),  t h e  s e t  o f  a l l  m u l t i p l i e r s  , w e  d e f i n e  t h e  K e r n e l  o f  𝜔 a s  f o l l o w s  

𝒦𝜔 = {𝑚 ∈ 𝒳/𝜔(𝑚) = 1}.  

2 . 2 0  P r o p o s i t i o n   

L e t  𝜔 b e  a  m u l t i p l i e r  o f  𝒳 𝑎𝑛𝑑 1 − 1. T h e n  𝒦𝜔 i s  { 1 }  
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P r o o f :  

Let  𝜔 be one-to-one. 

 Let  𝑚 ∈ 𝒦𝜔. So 𝜔(𝑚) = 1 = 𝜔(1). Thus  𝑚 = 1.  

So Ker(𝜔) = {1}. 
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S y mme t r i c  b i  d e r i v a t io ns  i n  G K  a l g e b ra  

R . G o w r i 1 ,  J . k a v i t h a 2  

1 A s s i s t a n t  P r o f e s s o r ,  D e p a r t m e n t  o f  M a t h e m a t i c s ,  G o v e r n m e n t  c o l l e g e  f o r  

w o m e n  ( A u t o n o m o u s ) , K u m b a k o n a m , I n d i a .  

2 A s s i s t a n t  P r o f e s s o r ,  D e p a r t m e n t  o f  M a t h e m a t i c s , D . G . V a i s h n a v  

c o l l e g e ( A u t o n o m o u s ) , C h e n n a i , I n d i a  

 

A b s t r a c t :  I n  t h i s  p a p e r ,  w e  i n t r o d u c e  t h e  c o n c e p t  o f  s y m m e t r i c  b i  d e r i v a t i o n  

o f  G K  a l g e b r a  a n d  a l s o  o b t a i n  s o m e  p r o p e r t i e s  a b o u t  t h i s  c o n c e p t .  

I . I N T R O D U C T I O N  

G y . M a s k a [ 2 ]  w a s  i n t r o d u c e d  t h e  c o n c e p t  o f  s y m m e t r i c  b i d e r i v a t i o n , a n d  

l a t e r  J . V u k m a n [ 4 ]  w a s  p r o v e d  f e w  r e s u l t s  o f  s y m m e t r i c  b i - d e r i v a t i o n  o n  

p r i m e  a n d  s e m i  p r i m e  r i n g s .  I n  2 0 1 1 [ 3 ] ,  s a b a h a t t  i n  I l b i r a . A l e v  F i r a t  a n d  

y o u n g  B a e  J u n  w a s  i n t r o d u c e d  t h e  n o t i o n  o f  s y m m e t r i c  b i  d e r i v a t i o n  o f  

B C I  a l g e b r a .  T h e  a u t h o r s [ 1 ]  T . G a n e s h k u m a r  a n d  M . c h a n d r a m o u l e e s w a r a n  

h a v e  i n t r o d u c e d  t h e  c o n c e p t  o f  s y m m e t r i c  b i  d e r i v a t i o n  o f  T M  a l g e b r a .  

A f t e r w a r d s  f e w  a u t h o r s  h a v e  a p p l i e d  t h e  c o n c e p t  o f  s y m m e t r i c  b i  

d e r i v a t i o n  i n  t h e i r  p a p e r s . I n d u c e d  b y  t h e s e  w o r k s ,  i n  o u r  p a p e r ,  w e  

i n t r o d u c e  t h e  c o n c e p t  o f  s y m m e t r i c  b i  d e r i v a t i o n  o n  G K  a l g e b r a  a n d  a l s o  

d i s c u s s  a b o u t  s o m e  i n t e r e s t i n g  p r o p e r t i e s .   

I I . S Y M M E T R I C  B I  D E R I V A T I O N  O F  G K  A L G E B R A  

Definition:2.1  Let  (�,∗ ,1) b e  a  G K  a l g e b r a .  A  m a p p i n g   ℕ: X x X→X  i s  s a i d  t o  b e  

a  l e f t  r i g h t  s y m m e t r i c  b i  d e r i v a t i o n ( s i m p l y  L R  s y m m e t r i c  b i  d e r i v a t i o n )  

o f  X ,  i f  i t  i s  s a t i s f y i n g  t h e  f o l l o w i n g  i d e n t i t y  

ℕ(	 ∗ 
, �) = (ℕ(	, �) ∗ 
) ∧ (	 ∗ ℕ(
, �)) f o r  x , y , z ∈ �.  

D e f i n i t i o n : 2 . 2  Let  (�,∗ ,1) b e  a  G K  a l g e b r a .  A  m a p p i n g   ℕ: X x X→X  i s  s a i d  

t o  b e  a  r i g h t  l e f t  s y m m e t r i c  b i  d e r i v a t i o n ( s i m p l y  R L  s y m m e t r i c  b i  

d e r i v a t i o n )  o f  X ,  i f  i t  i s  s a t i s f y i n g  t h e  f o l l o w i n g  i d e n t i t y  

ℕ(	, 
 ∗ �) = (ℕ(	, 
) ∗ �) ∧ (
 ∗ ℕ(	, �)) f o r  x , y , z ∈ �.  

  I n  g e n e r a l  ,  i f  ℕ i s  b o t h  L R  a n d  R L  s y m m e t r i c  b i  d e r i v a t i o n  t h e n  i t  i s  

c a l l e d  a s  ℕ i s  s y m m e t r i c  b i  d e r i v a t i o n .  

D e f i n i t i o n : 2 . 3  L e t  X  b e  a  G K  a l g e b r a .  A  m a p  ℕ: X x X→X  i s  s a i d  t o  b e  

s y m m e t r i c  i f  ℕ(	, 
) = ℕ(
, 	)  ∀ p a i r s  o f  x , y ∈ �.  

D e f i n i t i o n : 2 . 4  L e t  X  b e  a  G K  a l g e b r a  a n d  t h e  m a p p i n g  ℕ: X x X→X  b e  a  

s y m m e t r i c  m a p p i n g .  A  m a p  �: � → �  b e  d e f i n e d  a s  �(	) = ℕ(	, 	) i s  c a l l e d  

t r a c e  o f  ℕ.  
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E x a m p l e : 2 . 5  C o n s i d e r  t h e  f o l l o w i n g  c a y l e y ’ s  t a b l e  f o r  G K  a l g e b r a  

      

 

 

 

 

 

 

 

Define a  mapping   ℕ: X x X→X   b y  

ℕ(	, 
) =
⎩⎨
⎧ 1, (	, 
) = (1,1), (2,2), (3,3), (4,4)

2,   (	, 
) = (1,2), (2,1), (3,4), (4,3)
3 ,   (	, 
) = (1,3), (2,4), (3,1), (4,2)
4,   (	, 
) = (1,4), (2,3), (3,2), (4,1)

  

From this  ℕ i s  s y m m e t r i c  b i  d e r i v a t i o n  o f  X .  

R e m a r k : 2 . 6  I n  a b o v e  e x a m p l e ,  ℕ(	, 	) = �1   �ℎ��   	 = 1,2,3,4  i s  c a l l e d  t r a c e  

o f  ℕ.  

D e f i n i t i o n : 2 . 7  L e t  X  b e  a  G K  a l g e b r a .  T h e  m a p   ℕ: X x X→X  b e  a  

s y m m e t r i c  m a p p i n g .  ℕ i s  c a l l e d  c o m p o n e n t  w i s e  r e g u l a r  i f  ℕ(	, 1) = ℕ(1, 	) =1 ��  !�"� 	 ∈ �.  I n  s p e c i f i c  i f  ℕ(1,1) = �(1) = 1 t h e n  ℕ #! $%&&�'  � −  �)*&% . 
 

P r o p o s i t i o n : 2 . 8  

  L e t  (�,∗ ,1)  b e  a  G K  a l g e b r a .  L e t  ℕ b e  a n  L R  s y m m e t r i c  b i  d e r i v a t i o n  o n  

X .  T h e n  t h e  f o l l o w i n g  h o l d s  

(i) ℕ(	, 
) = ℕ(	, 
) ∧ ,	 ∗ ℕ(1, 
)- ��  %&&  	, 
 ∈ �.  

(ii) ℕ(1, 	) = �(	) ∗ 	 w h e r e  � i s  t h e  t r a c e  o f  ℕ. 
(iii) ℕ(1, 
) = ℕ(	, 
) ∗ 	  ∀  	, 
 ∈ �. 
(iv) ℕ(
, 1) = ℕ(
, 1) ∧ 
 ∀ 
 #� � #�  ℕ  #! � −  �)*&%  .  

(v) ℕ(
, 1) = 1   ∀ 
 #� � #�  ℕ  #! $�".����/ �#!�  �)*&%   
  Proof: 

(i) Let us consider  x,y in X 

By the definition of LR bi symmetric bi derivation,  

We have, ℕ(0, 1) = ℕ(	 ∗ 1, 
) 

         =(ℕ(	, 
) ∗ 1) ∧ (	 ∗ ℕ(1, 
)) 

∗ 1  2  3  4  

1  1  2  3  4  

2  2  1  4  3  

3  3  4  1  2  

4  4  3  2  1  
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    By axiom (ii) of GK algebra 

                = (ℕ(	, 
)) ∧ (	 ∗ ℕ(1, 
)) 

(ii) Let x, y in X 

Now, 

  ℕ(2, 0) = ℕ(	 ∗ 	, 	)  

               = (ℕ(	, 	) ∗ 	) ∧ (	 ∗ ℕ(x, 	)) 

                = (�(	) ∗ 	) ∧ ,	 ∗ �(	)- 

          =,	 ∗ �(	)- ∗ (,	 ∗ �(	)- ∗ (�(	) ∗ 	)) 

          = (�(	) ∗ 	) 

(iii) Let x, y in X 

We have,  ℕ(2, 1) = ℕ(	 ∗ 	, 
) 

               = (ℕ(	, 
) ∗ 	) ∧ (	 ∗ ℕ(x, 
)) 

               = (	 ∗ ℕ(x, 
)) ∗ ((	 ∗ ℕ(x, 
) ∗ (ℕ(x, 
) ∗ 	)) 

               = ℕ(x, 
) ∗ 	 

(iv) Let  x, y in X 

                ℕ(1, 2) = ℕ(
 ∗ 1,1) 

                                   = (ℕ(
, 1) ∗ 1) ∧ (
 ∗ ℕ(1,1)) 

               = (ℕ(y, 1)) ∧ (
 ∗ η(1)) 

               = ℕ(y, 1) ∧ (
 ∗ 1) 

               = ℕ(y, 1) ∧ 
 

(v) Let  x, y in X 

                ℕ(1, 2) = ℕ(
 ∗ 1,1) 

                                   = (ℕ(
, 1) ∗ 1) ∧ (
 ∗ ℕ(1,1)) 

               = (ℕ(y, 1)) ∧ (
 ∗ η(1)) 

               = ℕ(y, 1) ∧ (
 ∗ 1) 

               = ℕ(y, 1) ∧ 
 

               = 1∧ 
 

               = 1    since  	 ∧ 
 = 	. 

Proposition:2.9 L e t  (�,∗ ,1)  b e  a  G K  a l g e b r a .  L e t  ℕ b e  a n  R L  s y m m e t r i c  b i  

d e r i v a t i o n  o n  X .  T h e n  t h e  f o l l o w i n g  h o l d s  

(i) ℕ(	, 
) = ℕ(	, 
) ∧ ,	 ∗ ℕ(1, 
)- ��  %&&  	, 
 ∈ �.  

(ii) ℕ(1, 	) = �(	) ∗ 	 w h e r e  � i s  t h e  t r a c e  o f  ℕ. 
(iii) ℕ(1, 
) = ℕ(	, 
) ∗ 	  ∀  	, 
 ∈ �. 
(iv) ℕ(
, 1) = ℕ(
, 1) ∧ 
 ∀ 
 #� � #�  ℕ  #! � −  �)*&%  .  

(v) ℕ(
, 1) = 1   ∀ 
 #� � #�  ℕ  #! $�".����/ �#!�  �)*&%  

P r o o f :  

(i) Let us consider  x,y in X 

By the definition of RL bi symmetric bi derivation,  

We have, ℕ(0, 1) = ℕ(	, 
 ∗ 1) 
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         =(ℕ(	, 
) ∗ 1) ∧ (
 ∗ ℕ(x, 1)) 

    By axiom (ii) of GK algebra 

                = (ℕ(	, 
)) ∧ (
 ∗ ℕ(x, 1)) 

                =  ℕ(	, 
) ∧ (
 ∗ 1) 

                =  ℕ(x, y) ∧ y 

(ii) Let x, y in X 

Now, 

  ℕ(2, 0) = ℕ(	, 	 ∗ 	)  

               = (ℕ(	, 	) ∗ 	) ∧ (	 ∗ ℕ(x, 	)) 

                = (�(	) ∗ 	) ∧ ,	 ∗ �(	)- 

          =,	 ∗ �(	)- ∗ (,	 ∗ �(	)- ∗ (�(	) ∗ 	)) 

          = (�(	) ∗ 	) 

(iii) Let x, y in X 

We have,  ℕ(1, 2) = ℕ(
, 	 ∗ 	) 

               = (ℕ(
, 	) ∗ 	) ∧ (	 ∗ ℕ(y, x)) 

               = (	 ∗ ℕ(y, x)) ∗ ((	 ∗ ℕ(y, x) ∗ (ℕ(y, x) ∗ 	)) 

               = ℕ(y, x) ∗ 	 

(iv) Let  x, y in X 

                ℕ(2, 1) = ℕ(1, 
 ∗ 1) 

                                   = (ℕ(1, 
) ∗ 1) ∧ (
 ∗ ℕ(1,1)) 

               = (ℕ(1, y)) ∧ (
 ∗ η(1)) 

               = ℕ(1, y) ∧ (
 ∗ 1) 

               = ℕ(1, y) ∧ 
 

(v) Let  x, y in X 

                ℕ(1, 2) = ℕ(
 ∗ 1,1) 

                                   = (ℕ(
, 1) ∗ 1) ∧ (
 ∗ ℕ(1,1)) 

               = (ℕ(y, 1)) ∧ (
 ∗ η(1)) 

               = ℕ(y, 1) ∧ (
 ∗ 1) 

               = ℕ(y, 1) ∧ 
 

               = 1∧ 
 

               = y∗ (
 ∗ 1)   

         =1. 

P r o p o s i t i o n : 2 . 1 0  L e t  X  b e  t h e  G K  a l g e b r a  a n d  � b e  t h e  t r a c e  o f  t h e  L R  

s y m m e t r i c  b i  d e r i v a t i o n  o n  X .  T h e n  

( i )  �(1) = ℕ(	, 1) ∗ 	.  

( i i )   6� ℕ(	, 1) = ℕ(
, 1)   ∀  	, 
 ∈ �  /ℎ��  � #! 1 − 1. 
( i i i )  � i s  r e g u l a r  i f f  ℕ(	, 1) = 	. 

Proof: 

(i) Let  	 ∈ �.  We  know  that  	 ∗ 	 = 1 

We have, 
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7(2) = ℕ(1,1)           = ℕ(0 ∗ 0, 2) 

          = (ℕ(0, 2) ∗ 0) ∧ (0 ∗ ℕ(0, 2)) 

          = (ℕ(0, 2) ∗ 0) 

 

(ii) Let  x, y ∈ X  such that  �(	) = �(
). 
We have, �(1) = ℕ(	, 1) ∗ 	 

a n d   �(1) = ℕ(
, 1) ∗ 
.  

T h i s  i m p l i e s  t h a t  ℕ(	, 1) ∗ 	 = ℕ(
, 1) ∗ 
.  

Since  ℕ(	, 1) = ℕ(
, 1) a n d  b y  u s i n g  c a n c e l l a t i o n  l a w ,  w e  g e t  

  x = y .  

H e n c e  w e  g e t  � i s  1 - 1 .  

 

(iii) L e t  � b e  r e g u l a r .  

W e  h a v e   �(1) = ℕ(	, 1) ∗ 	 

S i n c e  � i s  r e g u l a r  �(1) = 1  #".&#�!  ℕ(	, 1) ∗ 	 = 1.  

By axiom (iii) of GK algebra  we have  ℕ(	, 1) = 	 

C o n v e r s e l y  ,  

 

L e t  ℕ(	, 1) = 	  f o r  s o m e  x  i n  X .  ⇒   ℕ(	, 1) ∗ 	 = 	 ∗ 	 ⇒  ℕ(	, 1) ∗ 	 = 1 ⇒  �(1) = 1 9��$�  �  #!   �)*&% . 
 

P r o p o s i t i o n : 2 . 1 1  L e t  X  b e  t h e  G K  a l g e b r a  a n d  � b e  t h e  t r a c e  o f  t h e  R L  

s y m m e t r i c  b i  d e r i v a t i o n  o n  X .  T h e n  

( i )  �(1) = ℕ(1, 	) ∗ 	.  

( i i )  �(	) = �(	) ∧ (	 ∗ ℕ(	, 1)) 

( i i i )   6� ℕ(1, 	) = ℕ(1, 
)   ∀  	, 
 ∈ �  /ℎ��  � #! 1 − 1. 
( i v )  � i s  r e g u l a r  i f f  ℕ(1, 	) = 	. 

Proof: 

(i) Let  	 ∈ �.  We  know  that  	 ∗ 	 = 1 

We have, 7(2) = ℕ(1,1)           = ℕ(2, 0 ∗ 0) 

          = (ℕ(2, 0) ∗ 0) ∧ (0 ∗ ℕ(2, 0)) 

          = (ℕ(2, 0) ∗ 0) 

(ii) Let x in X 

                      7(0) = ℕ(	, 	) 
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                         = ℕ(0, 0 ∗ 2) 

                         = (ℕ(0, 0) ∗ 2) ∧ (0 ∗ ℕ(0, 2)) 

                         = (�(	) ∗ 2) ∧ (0 ∗ ℕ(0, 2)) 

            = �(	) ∧ (0 ∗ ℕ(0, 2)) 

If it is component wise regular , we get  �(	) ∧ 	. 
 

(iii) Let  x, y ∈ X  such that  �(	) = �(
). 
We have, �(1) = ℕ(1, 	) ∗ 	 
a n d   �(1) = ℕ(1, 
) ∗ 
.  

T h i s  i m p l i e s  t h a t  ℕ(1, 	) ∗ 	 = ℕ(1, 
) ∗ 
.  

Since  ℕ(1, 	) = ℕ(1, 
) a n d  b y  u s i n g  c a n c e l l a t i o n  l a w ,  w e  g e t  

  x = y .  

H e n c e  w e  g e t  � i s  1 - 1 .  

 

(iv) L e t  � b e  r e g u l a r .  

W e  h a v e   �(1) = ℕ(1, 	) ∗ 	 

S i n c e  � i s  r e g u l a r  �(1) = 1  #".&#�!  ℕ(1, 	) ∗ 	 = 1.  

By axiom (iii) of GK algebra  we have  ℕ(1, 	) = 	 

 

C o n v e r s e l y  ,  

L e t  ℕ(1, 	) = 	  f o r  s o m e  x  i n  X .  ⇒   ℕ(1, 	) ∗ 	 = 	 ∗ 	 ⇒  ℕ(1, 	) ∗ 	 = 1 ⇒  �(1) = 1 9��$�  �  #!   �)*&% . 
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C o r r e s p o n d i n g  A u t h o r  E m a i l  i d : p r o f j k d g v c @ g m a i l . c o m  

 

Abstract: In this paper we introduce the fuzzification of GK algebra. We discuss about the fuzzy sub algebra of GK 

algebra and also fuzzy GK ideals of GK algebra and then we discuss about fuzzy Cartesian product of Fuzzy GK algebra 

and some interesting theorems. 

I.INTRODUCTION 

The notion of fuzzy sets was introduced by L.A.Zadeh [5] and the notion of fuzzy group was introduced by 

Rosenfeld[3]. Later inspired by their results, O.G.Xi [4] introduced the notion of fuzzy BCK algebras. Afterwards 

Y.B.Jun  and J.Meng [2] was studied fuzzy BCK algebra. Nowadays many authors have introduced the fuzzification 

of their work. In this paper we introduce the concept of fuzzy GK algebra. 

II.FUZZY SUBALGERA OF GK ALGEBRA 

Definition:2.1   A fuzzy subset � of a GK algebra (�,∗ ,1) is called a fuzzy GK subalgebra of X, if the following 

conditions are satisfied 

�(� ∗ �) ≥ ���{�(�), �(�)}   for all x,y in X. 

Example:2.2 

Consider X={1,2,3,4} is a GK algebra 

 

 

 

 

 

∗ 1 2 3 4 

1 1 2 3 4 

2 2 1 4 3 

3 3 4 1 2 

4 4 3 2 1 
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Define a mapping �: � → [0,1] by  

                �(�) = �

0.9     ��  � = 1,2

0.5  ��   ��ℎ������
 

Then � is a fuzzy GK subalgebra of X. 

Theorem:2.3   Intersection of any two fuzzy GK subalgebras of X is again a fuzzy GK algebra. 

Proof: 

Let � and � be any two fuzzy GK subalgebras of X.Then, 

(� ∩ �)(� ∗ �) = min {�(� ∗ �), �(� ∗ �)} 

  ≥ min {min{�(�), �(�)} , min{δ(x), δ(y)}} 

  = min {min{�(�), �(�)} , min{μ(y), δ(y)}} 

  = min {(μ ∩ δ)(x), (� ∩ �)(�)} 

(� ∩ �)(� ∗ �) ≥ min{(μ ∩ δ)(x), (� ∩ �)(�)} ∀x, y ∈ X. 

Hence  � ∩ � is fuzzy subalgebra of X. 

Definition:2.4 

Let   �  be any fuzzy subset of a GK algebra  and let � ∈ [0,1]. The set �(�, �) = {� ∈ �: �(�) > �} is called a level 

subset of � in X. 

Lemma:2.5 

Let   (�,∗ ,1)  be a GK algebra.Let  �  be a fuzzy GK subalgebra of X.  Let  � ∈ [0,1].Then, 

(i) �(�, �)  is either ∅ or a GK subalgebra of X 

(ii) �(1) ≥ �(�)    ��� ���   � ∈ �. 

Proof: 
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(i) For any � ∈ [0,1], assume that �(�, �)  is non-empty. 

Let  �, � ∈  �(�, �). Then  �(�) ≥ �   and   �(�) ≥ � . 

We need to prove   �(�, �)  is a GK subalgebra , for that we have to prove  � ∗ � ∈  �(�, �). 

i.e., we need to prove    �(� ∗ �) ≥ � . 

Now   

�(� ∗ �) ≥ ���{�(�), �(�)} 

               ≥ min{�, �} = � 

∴  �(� ∗ �) ≥ � 

(ii) To prove  �(1) ≥ �(�)     

  �(1) = �(� ∗ �)     

           ≥ min{�(�), �(�)} =   �(�)  

�����   �(1) ≥ �(�)    ��� ���   � ∈ �. 

Theorem:2.6    If   �� and   ��  are fuzzy GK subalgebras of X, then �� × ��  is a fuzzy GK algebra of  � × �. 

Proof: 

For any (x1,x2) and (y1,y2)   ∈  � × �. 

Now, 

�((��, ��) ∗ (��, ��)) = �(�� ∗ ��, �� ∗ ��) 

          = (�� × ��) (�� ∗ ��, �� ∗ ��) 

          = min  {(��(�� ∗ ��), �� (�� ∗ ��)} 

                                           ≥ ��� {���(��(��), ��(��)),  ���(��(��), ��(��))} 

                        

                                           = ��� {���(��(��), ��(��)),  ���(��(��), ��(��))} 
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   = min { (�� × ��) (��, ��),  (�� × ��)(�� ∗ ��)} 

                            = min {� (��, ��), �(�� ∗ ��)} 

Hence  � is  a fuzzy GK subalgebras of   � × �. 

III.FUZZY GK IDEALS 

Definition:3.1    Let X be a GK algebra.A fuzzy set � ��  �  is called fuzzy GK ideal of X if it satisfies the following 

conditions. 

(i) �(1) ≥ �(�) 

(ii) �(� ∗ �) ≥ min{�(� ∗ �), �(� ∗ �)}  ∀ �, �, � ∈ �. 

 

Example:3.2  Consider the above example (2.2). This is an example of fuzzy GK ideal. 

Theorem:3.3 

Every fuzzy GK ideal of a GK-algebra X is order reversing. 

Proof: 

Let � be a fuzzy GK ideal of a GK algebra X. 

Let  x, y∈ � be such that � ≤ � then  � ∗ � = � ∗ � = 1. 

Now, we know that � ∗ 1 = �. 

�(�) = �(� ∗ 1) ≥ min{�(� ∗ 1), �(� ∗ �)} 

                             ≥ min {�(�), �(1)} 

     ≥ �(�) 

Therefore  � is order reversing. 

Theorem:3.4    If  � is a fuzzy ideal of GK algebra (�,∗ 1)  ���  ��(�) = min{�, �(�)} ∀� ∈ � and � ∈ [0,1] then 

��(�) is fuzzy GK ideal of X. 
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Proof: 

Let  � be a fuzzy ideal of GK algebra and � ∈ [0,1]. 

Therefore   �(1) ≥ �(�) ∀ � ∈ �. 

Now, ��(1) = min{�, �(1)} ≥ min{�, �(�)} = ��(�)   ∀� ∈ �. 

And we know that 

�(� ∗ �) ≥ min {�(� ∗ �), �(� ∗ �)} 

���  

��(� ∗ �) = min {�, �(� ∗ �)} 

              ≥ min { �, min ( �(� ∗ �), �(� ∗ �))} 

   = min { min��, �(� ∗ �)� , min (�, �(� ∗ �))} 

   = min{��(� ∗ �), ��(� ∗ �)} 

Hence  ��(�) is fuzzy GK ideal of X. 

Proposition:3.5 

Let � be fuzzy GK ideal of GK algebra. If the inequality � ∗ � ≤ � holds in X, then 

 �(�) ≥ min{�(�), �(�)} ∀ �, �, � ∈ �. 

Proof: 

Assume that the inequality  � ∗ � ≤ � holds in X,  

Then by theorem 3.3 

�(� ∗ �) ≥ �(�)-------------(1) 

By the definition fuzzy GK ideal 

�(� ∗ �) ≥ min {�(� ∗ �), �(� ∗ �)} 

Put z=1 
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Then �(� ∗ 1) ≥ min {�(� ∗ 1), �(� ∗ �)} 

          �(�) ≥ min {�(�), �(� ∗ �)} ------------(2) 

From (1) and (2), 

�(�) ≥ min{�(�), �(�)}. 

Definition:3.6 

Let � ���  � be fuzzy subsets of a set S. The Cartesian product of � ���  � is defined by  

(� × �)(�, �) = min{�(�), �(�)} ∀�, � ∈ � 

Theorem:3.7 

Let � ���  � be fuzzy GK ideals of GK algebra X. Then � × � is a fuzzy GK ideal of � × �. 

Proof: 

Let us consider 

(�, �) ∈ � × � 

(� × �)(1,1) = min{�(1), �(1)} 

           ≥ min{�(�), �(�)} = (� × �)(�, �) 

Now let (��, ��), (��, ��), (��, ��) ∈ � × � 

(� × �)(�� ∗ ��, �� ∗ ��) = min {�(�� ∗ ��), �(�� ∗ ��)} 

   ≥ min{min {� (�� ∗ ��), �(�� ∗ ��)}, min {�(�� ∗ ��), �(�� ∗ ��)}} 

   = min{min {� (�� ∗ ��), �(�� ∗ ��)}, min {�(�� ∗ ��), �(�� ∗ ��)}} 

   = min{(� × �) (�� ∗ ��, �� ∗ ��), (� × �)(�� ∗ ��, �� ∗ ��)} 

Therefore � × � is a fuzzy GK ideal of  � × �. 

 

Journal of Shanghai Jiaotong University

Volume 16, Issue7, July - 2020

ISSN:1007-1172

https://shjtdxxb-e.cn/   Page No: 924



Theorem:3.8 

Let  � ���  � be fuzzy subsets of GK algebra X such that  � × � is a fuzzy GK ideal of  � × �.Then for all � ∈ �, 

(i) Either �(1) ≥ �(�)  �� �(1) ≥ �(�) 

(ii) �(1) ≥ �(�)∀� ∈ �   �ℎ�� ���ℎ�� �(1) ≥ �(�) �� �(1) ≥ �(�). 

(iii) �� �(1) ≥ �(�)∀� ∈ �, �ℎ�� ���ℎ��  �(1) ≥ �(�) �� �(1) ≥ �(�). 

(iv) ���ℎ�� � �� � is a fuzzy GK ideal of X. 

Proof: 

(i) Suppose that �(�) > �(1)  ���  �(�) > �(1) for some � ∈ �. 

Then 

(� × �)(�, �) = min{�(�), �(�)} 

      > min{  �(1), �(1)} = (� × � )(1,1) 

This is a contradiction ,since � × � is a fuzzy GK ideal of  � × �. 

Hence we obtain (i). 

(ii) Assume that �, � ∈ �  

�(�) > �(1)  ���  �(�) > �(1) 

Then we have 

(� × �)(1,1) = min {�(1), �(1)} 

        > min{�(1), �(1)} = �(1) 

This implies that 

                      

(� × �)(�, �) = min {�(�), �(�)} 

        > min{�(1), �(1)} = �(1) 

                                          > (� × �)(1,1)  

This is a contradiction. 
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Hence we obtain (ii) 

(iii) By the similar way to part (ii) 

(iv) In (i) we have  

  Either (1) ≥ �(�)  �� �(1) ≥ �(�)∀� ∈ � . 

We assume that �(1) ≥ �(�), without loss of  generality, 

It is from (iii) such that   

Either  �(1) ≥ �(�) �� �(1) ≥ �(�) 

If  �(1) ≥ �(�) for any � ∈ �, then  

(� × �)(1, �) = min{�(1), �(�)} = �(�) − − − − − −(1) 

Now we have to prove � is a fuzzy GK ideal . 

For that, let us consider  (��, ��), (��, ��), (��, ��) ∈ � × �, �� ℎ��� 

Since � × � is a fuzzy GK ideal of  � × �, we have 

(� × �)(�� ∗ ��, �� ∗ ��) ≥ min{(� × �) (�� ∗ ��, �� ∗ ��), (� × �)(�� ∗ ��, �� ∗ ��)} 

Now,if we take �� = �� = �� = 1, then 

(� × �)(1, �� ∗ ��) ≥ min{(� × �) (1, �� ∗ ��), (� × �)(1, �� ∗ ��)} 

����� by (1), LHS becomes 

�(�� ∗ ��) ≥ min{(� × �) (1, �� ∗ ��), (� × �)(1, �� ∗ ��)} 

              ≥ min{ min {�(1), �( �� ∗ ��)}, min {�(1), �(�� ∗ ��)} 

  ≥ min {�(�� ∗ ��), �(�� ∗ ��)} 

�(�� ∗ ��) ≥  min {�(�� ∗ ��), �(�� ∗ ��)} 

This proves that � is a fuzzy GK ideal of X. 

Now we consider  �(1) ≥ �(�). 

Suppose let us consider 

�(1) < �(�) for some y∈ � 

Then �(1) ≥ �(�) > �(1) 

Since �(1) ≥ �(�)∀� ∈ �, �ℎ�� �(1) ≥ �(�) 

Hence (� × �)(�, 1) = min{�(�), �(1)} = �(�)-------------(3) 
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Taking �� = �� = �� = 1 in (2) 

(� × �)(�� ∗ ��, 1) ≥ min{(� × �) (�� ∗ ��, 1), (� × �)(�� ∗ ��, 1)} 

�� (3) 

�(�� ∗ ��) ≥ min{(� × �) (�� ∗ ��, 1), (� × �)(�� ∗ ��, 1)} 

                   ≥ min{ min {�((�� ∗ ��), �( 1)}, min {�(�� ∗ ��), �(1)} 

  ≥ min {�((�� ∗ ��), �(�� ∗ ��)} 

�(�� ∗ ��) ≥  min {�((�� ∗ ��), �(�� ∗ ��)} 

This proves that  � is a fuzzy GK ideal of GK algebra. 

Therefore ���ℎ�� � �� � is a fuzzy GK ideal of  GK algebra X. 

IV.CONCLUSION 

In this paper we introduced the concept of fuzzy GK sub algebras of GK algebra. We discussed about 

fuzzy GK ideal and concept of Cartesian product of fuzzy GK algebra and some of the interesting 

results were also discussed. 
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STUDY OF ANTI-FUZZY GK SUB ALGEBRA AND

ANTI-FUZZY GK IDEAL

J.KAVITHA AND R.GOWRI

Abstract. In this paper, we establish the theory of Anti-fuzzy GK

sub algebra and Anti-fuzzy GK ideals. We defined lower-level set of GK

algebra and discussed some of its aspects in this paper.

1. INTRODUCTION

In 1991, the fuzzification of BCK algebras was introduced by O.G. Xi [10]
discussed its characteristics and its properties. In 1993, the concept of Fuzzy BCI
algebra was introduced by B. Ahamed [1], in this study he explored the properties
of Fuzzy BCI algebras. In 2003, Ahn and Bang [2] introduced fuzzified B algebra
and in this article, they classified the sub algebras by their family of level sets.
Many authors [3-7] have introduced new algebraic structures and fuzzified the
same and obtained many interesting results and also derived new concepts of that
new algebraic structure. Inspiring by these kinds of articles, we introduced new
algebraic structure namely GK algebra [8]and fuzzified [9] it. In this paper we
discuss about Anti-fuzzy GK sub algebra and Anti-fuzzy GK ideal and brought
very interesting results.

2. ANTI-FUZZY GK SUB ALGEBRA AND ANTI-FUZZY GK
IDEAL

Definition 2.1. A fuzzy set ρgk in GK algebra T is said to be an anti-fuzzy sub
algebra of T if

ρgk(i~ j) ≤ max{ρgk(i), ρgk(j)}, for all i, j ∈ T .

Theorem 2.2. Let ρgk is an anti-fuzzy sub algebra of GK algebra. Prove that
ρgk(1) ≤ ρgk(i), for any i in T .

Proof. We know that i~ j = 1 from the definition of GK algebra
Now, ρgk(1) = ρgk(i~ j)

≤ max{ρgk(i), ρgk(j)} ≤ ρgk(i)
Therefore ρgk(1) ≤ ρgk(i). �

Definition 2.3. Let ρgk be any fuzzy subset of a GK algebra and let q ∈ [0, 1].
The set Γ(ρgk, q) = {i ∈ T : ρgk ≤ q} is called a lower-level subset of ρgk in T .
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Theorem 2.4. A fuzzy set ρgk in GK algebra is an anti-fuzzy sub algebra if and
only if for every q in [0, 1], Γ(ρgk, q) is either φ or a sub algebra of T .

Proof. Let us assume ρgk is an anti-fuzzy sub algebra of T and also lower-level
subset is non-empty. Then for any i, j ∈ Γ(ρgk, q)
we have, ρgk(i~ j) ≤ max{ρgk(i), ρgk(j)} ≤ q.
Therefore, i~ j ∈ Γ(ρgk, q).
Hence Γ(ρgk is a sub algebra.
Conversely,
Now,Consider i, j ∈ T .
Take q = max{ρgk(i), ρgk(j)}.
Since Γ(ρgk, q) is a sub algebra of T ,
⇒ i~ j ∈ Γ(ρgk, q)
Therefore ρgk(i~ j) ≤ q = max{ρgk(i), ρgk(j)}
Hence ρgk is an anti-fuzzy sub algebra. �

Definition 2.5. Let T be a GK algebra. A fuzzy set ρgk in T is called anti-fuzzy
GK ideal of T if it satisfies the following conditions.

(i) ρgk(1) ≤ ρgk(i)

(ii) ρgk(i~ k) ≤ max{ρgk(j ~ k), ρgk(j ~ i)}
for all i, j, k ∈ T .

Definition 2.6. Let (T,~T , 1) and (P,~P , 1′) be a GK algebra. Then the
mapping σ : T → P of GK algebra is called anti-homomorphism if
σ(i~T j) = σ(j)~P σ(i) for all i, j ∈ T .

Definition 2.7. Let σ : T → T be an endomorphism and ρgk be a fuzzy set in T .
We define fuzzy set in T by (ρgk)σ in T as (ρgk)σ(i) = (ρgk)(σ(i)) for every i ∈ T .

Theorem 2.8. Let ρgk be an anti-fuzzy GK ideal of GK algebra of T and if i ≤ j,
then ρgk(i) ≤ ρgk(j), for all i, j ∈ T .

Proof. Let us consider i ≤ j, then i~ j = 1 = j ~ i,
and ρgk(i~ 1) = ρgk(1) ≤ max{ρgk(j ~ 1), ρgk(j ~ i)}

= max{ρgk(j), ρgk(1)} = ρgk(j).
Hence ρgk(x) ≤ ρgk(y). �

Theorem 2.9. Let ρgk be an anti-fuzzy GK-ideal of GK algebra T . If the
inequality j ~ i ≤ k carry in T , then ρgk(i) ≤ max{ρgk(j), ρgk(k)}.

Proof. Let us consider the inequality j ~ i ≤ k carry in T .
By theorem 2.8, ρgk(j ~ i) ≤ ρgk(k) ......................................................(1)
By definition of anti-fuzzy ideal of GK algebra
ρgk(i~ k) ≤ max{ρgk(j ~ k), ρgk(j ~ i)}
Put k = 1, then ρgk(i~ 1) = ρgk(i) ≤ max{ρgk(j ~ 1), ρgk(j ~ i)}

= max{ρgk(j), ρgk(j ~ i)}..............(2)
From (1) and (2), we get
ρgk(i) ≤ max{ρgk(j), ρgk(k)}, for all i, j, k ∈ T . �
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Conclusion. In this article, we defined and discussed about Anti-fuzzy GK sub
algebra and Anti-fuzzy GK ideal and also derived some important results. In
future we planned to work the concept of algebraic structure of GK algebra with
soft set, Neutrosophic set for obtaining new kind of results.
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Abstract
Objectives: To find the direct product of an algebraic structure namely as GK
algebra.Methods/Findings: We derive some important results in which direct
product of two GK algebra is again GK algebra as a particular case and also,
derive the general case of the same then after investigate the direct product of
kernel of GK algebra.

Keywords: Direct Product; Kernel; isomorphism; Homomorphism; GK algebra

1 Introduction
BCK-algebras and BCI-algebras are abridged to two B-algebras. The BCK algebra was
coined in 1966 by the Japanese mathematicians, Y. Imai and K. Iseki (1). Two B-algebras
are created from twodifferent provenances. In 2007, the new algebraic structurewhich is
said to be BF algebra, was explored by Andrze J Walendziak (2) which is a generalization
of BCI/BCK/B-algebras. In 2008, the generalization of B algebra called as BG algebra
initiated by Kim & Kim (3). In 2009, another algebra which is generalization of BE
algebra and dual BCK/BCI/BCH algebras, namely CI algebra was initiated by Biao long
Meng (4).

Direct product plays an important role in algebraic structures. In 2019, Slamet
Widianto, Sri Gemawati, Kartini (5–7) were discussed about the Direct product of BG
algebra. Likewise, many authors have discussed this topic in their work. Motivated
by these, in this paper we discuss about direct product of GK algebra and obtain its
some interesting results. In 2018, we introduced the new algebraic structure namely GK
algebra (8) and discussed about its characteristics and investigated some results. In this
paper we discuss about the direct product of GK algebra and investigate its properties.

2 Direct product of GK algebra

2.1 Definition

Let (M,⊛,1M) and (N,⊛,1N) be GK algebras. Direct product M × N is defined as a
structure M×N = (M×N;⊗ ;(1M ; 1N)), where M×N is the set {(m,n)/m ∈ M,n ∈ N}
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and ⊗ is given by

(m1,n1)⊗ (m2,n2) = (m1 ⊛m2,n1 ⊛n2)

This shows that the direct product of two sets of GK algebra M and N is denoted by M×N, which each (m,n) is an ordered pair.

2.2 Theorem

Direct product of any two GK algebras is again a GK algebra.
Proof:
Let M and N be GK algebras, let m1,m2 ∈ M and n1,n2 ∈ N
We know that M×N = (M×N; ⊗ ;(1M ; 1N))
Since 1M ∈ M,1N ∈ N
This implies that (1M,1N) ∈ M×N
∴ M×N is non− empty.
Now let us prove it is GK algebra.
Let m1,m2 ∈ M and n1,n2 ∈ N

1. (m1,n1)⊗ (m1,n1) = (m1 ⊛m1,n1 ⊛n1)
= (1M,1N) by definition of GK algebra

2. (m1,n1)⊗ (1M,1N) = (m1 ⊛1M,n1 ⊛1N)
= (m1,n1) by definition GK algebra

3. If (m1,n1)⊗ (m2,n2) = (1M,1N) and (m2,n2)⊗ (m1,n1) = (1M,1N)
then (m1 ⊛m2,n1 ⊛n2) = (1M,1N)
=⇒ m1 ⊛m2 = 1M and n1 ⊛n2 = 1N
=⇒ m1 = m2 and n1 = n2 by definition GK algebra.

4. [(m2,n2)⊗ (m3,n3)]⊗ [(m1,n1)⊗ (m3,n3)]
=⇒ (m2 ⊛m3,n2 ⊛n3)⊗ (m1 ⊛m3,n1 ⊛n3)
=⇒{[(m2 ⊛m3)⊛ (m1 ⊛m3)]⊛ [(n2 ⊛n3)⊛ (n1 ⊛n3)]}
=⇒ (m2 ⊛m1,n2 ⊛n1)
=⇒ (m2,n2)⊗ (m1,n1).

5. [(m1,n1)⊗ (m2,n2)]⊗ [(1M,1N)⊗ (m2,n2)]
=⇒ [(m1 ⊛m2) ,(n1 ⊛n2)]⊗ [(1M ⊛m2) ,(1N ⊛n2)]
=⇒ ((m1 ⊛m2)⊛ (1M ⊛m2)] , [(n1 ⊛n2)⊛ (1N ⊛n2)]
=⇒ (m1 ⊛1M,n1 ⊛1N)
=⇒ (m1,n1)

Hence M×N is a GK algebra.

2.3 Theorem

Let {Mi /(Mi;⊛;1) : i = 1,2,3 . . . .n} and {Ni /(Ni;⊛;1) : i = 1,2,3 . . . .n} be the family of GK algebras and let ζi : Mi −→
Ni, i = 1,2,3 . . . ..n be the set of isomorphism.

If ζ f rom ∏n
1 Mi −→ ∏n

1 Ni given by ζ (mi),(i = 1,2,3 . . .n) = ζi (mi) , i = 1,2,3 . . .n, then ζ is also an isomorphism.
Proof :
Let {Mi /(Mi;⊛;1) : i = 1,2,3 . . . .n} and {Ni /(Ni;⊛;1) : i = 1,2,3 . . . .n} be the family of GK algebras and let

ζi : Mi −→ Ni, i = 1,2,3 . . . ..n be the set of isomorphism.
Let ζ f rom ∏n

1 Mi −→ ∏n
1 Ni given by ζ (mi),(i = 1,2,3 . . .n) = ζi (mi) , i = 1,2,3 . . .n.

We have to prove ζ is an isomorphism.
If (mi,ni) ∈ ∏n

1 Mi then ζ [(m1,m2, . . . ..mn)⊗ (n1,n2, . . . . . .nn)]
= ζ [m1 ⊛n1,m2 ⊛n2 . . . . . .mn ⊛nn]
= (ζ1(m1 ⊛n1),ζ2(m2 ⊛n2) . . . . . .ζn(mn ⊛nn))
= ((ζ1(m1)⊛ζ1(n1)), (ζ2(m2)⊛ζ2(n2)) . . . . . .(ζ n(mn)⊛ζn(nn))
= (ζ1(m1) , ζ2(m2), . . . . . . . ζn(mn)] ⊗ (ζ1(n1) , ζ2(n2), . . . . . . . ζn(nn)]

= ζ (m1,m2, . . . ..mn) ⊗ ζ (n1,n2, . . . . . .nn)
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This implies that ζ is a homomorphism.
We have to prove ζ is onto, we have ζi is onto, where i=1,2,3….n.
Let (n1,n2, . . . . . .nn) ∈ N1 ×N2 × . . . .×Nn
=⇒ Since ζ is onto, ni ∈ Ni, there exists mi ∈ Mi such that ζi (mi) = ni f or i = 1,2,3 . . .n
=⇒ (n1,n2, . . . . . .nn) = [(ζ1(m1) , ζ2(m2), . . . . . . . ζn(mn)] = ζ (m1,m2, . . . ..mn)
=⇒ ζ is onto.
Now, to prove ζ is 1−1.
ζ (m1,m2, . . . ..mn) = ζ (n1,n2, . . . . . .nn)
[(ζ1(m1) , ζ2(m2), . . . . . . . ζn(mn)] = [(ζ1(n1) , ζ2(n2), . . . . . . . ζn(nn)]
=⇒ ζi (mi) = ζi(ni)
=⇒ mi = ni , where i=1,2,3….n , since ζi is 1-1.
=⇒ (m1,m2, . . . ..mn) = ( n1,n2, . . . . . .nn)
=⇒ ζ is 1−1.
Hence ζ is an isomorphism.

2.4 Theorem

Let Mi,Ni, i = 1,2 be GK algebras. consider the mapping ζ1 : M1 −→ N1 and
ζ2 : M2 −→ N2 where ζ1,ζ2 are homomorphisms. If the map ζ : M1 ×M2 −→ N1 ×N2 given by
ζ (m1,m2) = (ζ 1 (m1) ,ζ2(m2)), then

1. ζ is a homomorphism.
2. Ker ζ = kerζ1 × kerζ2.

Proof:
Let us consider the mapping ζ1 : M1 −→ N1 and ζ2 : M2 −→ N2 where ζ1,ζ2 are homomorphisms.
If the map ζ : M1 ×M2 −→ N1 ×N2 given by ζ (m1,n1) = (ζ1 (m1) ,ζ2 (n1)),
for m1,m2 ∈ M1 and n1,n2 ∈ M2 then

• ζ [(m1,n1)⊗ (m2,n2)] = ζ (m1 ⊛m2,n1 ⊛n2)
= (ζ1 (m1 ⊛m2) ,ζ2 (n1 ⊛n2))
= (ζ1 (m1)⊛ζ1(m2) ,ζ2 (n1)⊛ζ2(n2))
= (ζ1 (m1) ,ζ2 (n1)) ⊗ (ζ1 (m2) ,ζ2 (n2))
= ζ1(m1,n1)⊗ζ2(m2,n2)

Therefore ζ is a homomorphism.

• Let (m,n) ∈ kerζ ⇔ ζ (m,n) = (1M1 ,1M2)
⇐⇒ ( ζ1 (m),ζ2(n)) = (1M1 ,1M2)
⇐⇒ ζ1 (m) = 1M1 ,ζ2(n) = 1M2
⇐⇒m ∈ kerζ1 , n ∈ kerζ2
⇐⇒ (m,n) ∈ kerζ1×kerζ2.

Hence Ker ζ = kerζ1 × kerζ2.

3 Conclusion
In this article we discussed about the concept of the direct product of GK algebra. We derived the finite form of direct product
of GK algebra is isomorphism and also, we investigated and applied the concept of direct product of GK algebra in GK
homomorphism and GK kernel, then obtained interesting results.
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