(6 pages)

S.No. 6871

P 22 MAE 1 B

(For candidates admitted from 2022-2023 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Mathematics - Elective

DISCRETE MATHEMATICS

Maximum: 75 marks Time: Three hours

PART A — (20 marks)

Answer ALL questions.

- $(5\times 1=5)$ (A) Choose the correct answer: I.
- A relation R in a set X is ———— if, for every x and y in X, whenever xRy and yRx, then x = y.
 - (a) reflexive

- (b) symmetric
- (c) transitive
- (d) antisymmetric
- A product of the variables and their negations in a formula is called -
 - (a) elementary sum
 - (b) elementary product
 - product of elementary sums
 - sum of elementary products

- $GLB\{a,b\} = -$
 - (a) a * b

(b) a+b

(c) $a \otimes b$

- (d) $a \oplus b$
- $(a \otimes b)^1 = -$ 4.
 - (a) $a' \otimes b'$

 $a' \oplus b'$ (b)

(c) a' * b'

- (d) a' + b'
- A _____ grammar contains productions of only the form $\alpha \to \beta$ where $|\alpha| < |\beta|$ and $\alpha \in V_n$.
 - (a) context-sensitive (b) contest-free

(c) regular

- (d) none of these
- (B) Fill in the blanks:

- $(5 \times 1 = 5)$
- If a binary operation * on \times with the identity e is 6. commutative, then any element that is leftinvertible or right-invertible is -
- An atomic formula is a formula.
- The principle of holds for all 8. distributive lattices.

- 9. For any Boolean algebra $< B, *, \oplus,', 0, 1$, the subsets $\{0,1\}$ and the set B are both algebras.
- 10. The rank of a connective O_j is ————, where n is the order of O.

II. Answer the following: $(5 \times 2 = 10)$

- 11. Let $X = \{1, 2, 3, 4\}$ and $R \equiv \langle x, y \rangle \mid x > y$. Draw the graph of R.
- 12. Define a simple statement function of one variable.
- 13. Write the principle of duality of Lattice.
- 14. Define sub-boolean algebra.
- 15. Define a regular grammar.

PART B —
$$(5 \times 5 = 25)$$

Answer the following by choosing (a) or (b).

16. (a) Let $R = \{\langle 1, 2 \rangle, \langle 3, 4 \rangle, \langle 2, 2 \rangle\}$ and $S = \{\langle 4, 2 \rangle, \langle 2, 5 \rangle, \langle 3, 1 \rangle, \langle 1, 3 \rangle\}$. Find $R \circ S$, $S \circ R$, $R \circ (S \circ R), (R \circ S) \circ R, R \circ R, S \circ S$ AND $R \circ R \circ R$.

Or

S.No. 6871

- (b) Let A be a given finite set and $\rho(A)$ its power set. Let \subseteq be the inclusion relation on the elements of $\rho(A)$. Draw Hasse diagrams of $\langle \rho(A), \subseteq \rangle$ for the following sets
 - (i) $A = \{a\}$
 - (ii) $A = \{a, b\}$
 - (iii) $A = \{a, b, c\}$
- 17. (a) Show that $S \vee R$ is tautologically implied by $(P \vee Q) \wedge (P \to R) \wedge (Q \to S)$.

O

- (b) Show that $P \to (Q \to R) \Leftrightarrow P \to$ $(Q \lor R) \Leftrightarrow (P \land Q) \to R$
- 18. (a) Explain some properties of lattices.

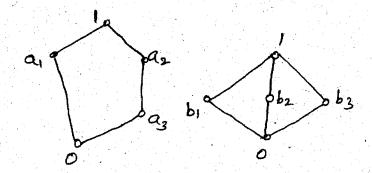
Or

- (b) Prove that every chain is a distributive lattice.
- 19. (a) Explain the sub-boolean algebras with example.

Or

- (b) write the following Boolean expression in an equivalent sum of products canonical form in three variable x_1, x_2, x_3 and x_3 .
 - (i) $x_1 * x_2$
 - (ii) $x_1 \oplus x_2$.
- 20. (a) Explain the Polish notation.

Or


(b) Let the grammar $G_3 = \langle S, B, C, \{a, b, c\}, S, Q \rangle$ where ϕ consists of the productions $S \to aSBC, S \to aBC, CB \to BC,$ $aB \to bb, bC \to bc, cC \to cc$. Find the derivation of the string $a^2b^2c^2$.

PART C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 21. Let $X = \{1, 2, ..., 7\}$ and $R\{\langle x, y \rangle / x y \text{ is divisible by 3}\}$. Show that R is an equivalence relation. Draw the graph of R.
- 22. Show that $((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R)) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$ is a tautology.

23. Explain a distributive lattice with example. Also show that the following lattices given by the diagrams are not distributive.

- 24. Show that the following Boolean expressions are equivalent to one another. Obtain their sum-of-product canonical form
 - (a) $(x \oplus y) * (x' \oplus z) * (y \oplus z)$
 - (b) $(x*z) \oplus (x'*y) \oplus (y*z)$
 - (c) $(x \oplus y) * (x' \oplus z)$
 - (d) $(x*z) \oplus (x'*y)$.
- 25. Explain Notations of Syntax Analysis.