20. (a) Show that a graph is planar if and only if it is embeddable on a sphere.

Or

(b) Show that a graph G is planar if and only if each of its blocks is planar.

SECTION C — $(3 \times 10 = 30)$

Answer any THREE questions.

- 21. Let G and G' be simple connected graphs with isomorphic line graphs. Then prove that G and G' are isomorphic unless one of them is $K_{1,3}$ and the other is K_3 .
- 22. Show that every tree has a center consisting of either a single vertex or two adjacent vertices.
- 23. Show that a graph G is Eulerian if and only if each edge e of G belongs to an odd number of cycles of G.
- 24. For any simple graph G, prove that $2\sqrt{n} \le \chi + \chi^c \le n+1$ and $n \le \chi, \chi^c \le \left(\frac{n+1}{2}\right)^2$.
- 25. Show that every planar graph is 5-vertex colorable.

S.No. 6870

S.No. 6870

Time: Three hours

P22 MAE 1 A

Maximum: 75 marks

(For candidates admitted from 2022-2023 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Mathematics — Elective

GRAPH THEORY

SECTION A — (20 marks)

	. 1. Nov.	Answer A	LL ques	tions.		
I.	(A)	Choose the corr	ect ansv	ver.	$(5\times 1=5)$	
1.	A graph is said to be ———————————————————————————————————					
		complete clique	(b) (d)	labeled degree		
2.		aid to be— ends are i	dentified.			
	(a) (c)	contracted complete	(b) (d)	loop degree		
3.	If G	is a simple grap	h with z	n≥3 and a	$\delta \geq \frac{n}{2}$, then	
	G is					
	(a)	traceable	(a)	Eulerian		
	(0)	MAGTANINGA	(4)	LI 0 200 1 1 60 10		

4.	A graph G is said to be k -colorable if G admits a					
	proper vertex coloring using ———.					
	(a) at most $k-1$ colors					
	(b) at least $k-1$ colors (c) at most k colors					
	(d) atleast k colors					
5.	Every plane triangular of order $n \ge 3$ is					
	(a) 3-connected (b) 4-connected (c) 5-connected (d) none					
	(B) Fill in the blanks. $(5 \times 1 = 5)$					
6.	A simple graph G is called ———————————————————————————————————					
7.	The — of a vertex u of T is the maximum number of edges in any branch at u .					
8.	The wheel W_n is Hamiltonian for every ———.					
9.	The — of G is the maximum k for which G has a pseudocomplete k -coloring.					
10.	IF G is a planar graph that contains no triangle, then G is $\overline{}$					
II.	Answer the following questions. $(5 \times 2 = 10)$					
11.	Define complete graph.					
12.	Define centroid vertex.					
13.	Define Hamiltonian and traceable.					
14.	Define chromatic number.					
15.	Show that the Petersen graph P is nonplanar.					
•	2 S.No. 6870					

SECTION B — $(5 \times 5 = 25)$

Answer ALL questions, choosing either (a) or (b).

16. (a) Show that in any group of n persons $(n \ge)$, there are at least two with the same number of friends.

Or

- (b) If the simple graphs G_1 and G_2 are isomorphic, then prove that $L(G_1)$ and $L(G_2)$ are isomorphic.
- 17. (a) Show that an edge e = xy of a connected graph G is a cut edge of G if and only if e belongs to no cycle of G.

Or

- (b) Prove that for a simple connected graph G, L(G) is isomorphic to G if only if G is a cycle.
- 18. (a) Show that for any graph G for which $\delta > 0$, $\alpha' + \beta' = n$.

Or

- (b) Let G be a simple graph with $n \ge 3$ vertices. If $d(u) + d(v) \ge n 1$ for every pair of nonadjacent vertices u and v of G, then prove that G is traceable.
- 19. (a) In a critical graph G prove that no vertex cut is a clique.

Or

(b) If a graph G admits a complete k-coloring and a complete l-coloring, then show that it admits a complete i-coloring for every i between k and l.