(6 pages)

S.No. 7335

RNENS 5

(For candidates admitted from 2006-2007 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Mathematics

ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

Subdivisions (a), (b) and (c) in each questions carry 4, 6 and 10 marks respectively.

- 1. (a) (i) Show that e^x and e^{-x} are linearly independent solutions of y'' y = 0 on any interval.
 - (ii) Find a particular solution of $y'' y' 6y = e^{-x}$.

(b) (i) If $y_1(x)$ and $y_2(x)$ are any two solutions of y'' + P(x)y' + Q(x)y = 0 on [a,b], then show that their Wronskian $W = W(y_1, y_2)$ is either identically zero or never zero on [a,b].

Or

- (ii) Obtain a power series solution of the form $\sum a_n x^n$ for the difference equation y' = 2xy.
- (c) (i) Derive hypergeometric series.

Or

- (ii) Find the general solution of Legendre's equation in terms of power series in x.
- 2. (a) (i) Prove that $\Gamma(p+1) = p\Gamma(p)$.
 - (ii) Write the Bessel function of the second kind.
 - (b) (i) Prove that for the n^{th} Legendre polynomial $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$.

Or

(ii) Prove that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.

Or

(ii) Find the general solution of the system

$$\begin{cases} \frac{dx}{dt} = 3x - 4y \\ \frac{dy}{dt} = x - y \end{cases}$$

- 3. (a) (i) Determine whether the function $x^2 xy y^2$ is positive definite, negative definite, or neither.
 - (ii) Find the critical points of the nonlinear system

3

$$\begin{cases} \frac{dx}{dt} = -x \\ \frac{dy}{dt} = 2x^2 y^3 \end{cases}$$

(b) (i) Show that (0, 0) is an asymptotically stable critical point for the following system

$$\begin{cases} \frac{dx}{dt} = -3x^3 - y\\ \frac{dy}{dt} = x^5 - 2y^3 \end{cases}$$

Or

- (ii) Find the exact solution of the initial value problem y' = x + y, y(0) = 1.
- (c) (i) State and prove Picard's theorem.

Or

- (ii) Describe geometrically about the four main types of critical points.
- 4. (a) (i) Find the complete integral of the partial differential equation $z = px + qy + \log pq$.
 - (ii) State the necessary and sufficient conditions for the integrebility of the equation $dz = \phi(x, y, z)dx + \psi(x, y, z)dy$
 - (b) (i) Find the general solution of $x(y^2-z^2)p-y(z^2+x^2)q=(x^2+y^2)z.$ Or

(ii) Find a complete integral of the partial differential equation

$$f = x^2 p^2 + y^2 q^2 - 4 = 0.$$

S.No. 7335

- (c) (i) State and prove necessary and sufficient condition that the Pfaffian differential equation $\vec{X} \cdot d\vec{r} = P(x, y, z) dx + Q(x, y, z)$
 - dy + R(x, y, z)dz = 0 be integrable.

Or

- (ii) Find the complete integral of the equation $(p^2 + q^2)x = pz$ and the integral surface containing the curve $C: x_0 = 0, y_0 = s^2, z_0 = 2s$.
- 5. (a) (i) Write the solution describing the vibrations of a semi-infinite string.
 - (ii) Classify the partial differential equation $xu_{xx} + 2\sqrt{xy}u_{xy} + yu_{yy} u_x = 0.$
 - (b) (i) Reduce the equation

$$y^{2}u_{xx} - 2xyu_{xy} + x^{2}u_{yy} = \frac{y^{2}}{x}u_{x} + \frac{x^{2}}{y}u_{y}$$
 to a canonical form and solve it.

Or

(ii) Obtain the d'Alembert's solution which describes the vibrations of an infinite string.

(c) (i) Reduce the following equations to the canonical form:

$$(1) \quad u_{xx} + x^2 u_{yy} = 0$$

(2)
$$(n-1)^2 u_{xx} - y^{2n} u_{yy} = n y^{2n-1} u_y$$

Or

(ii) Describe about the properties of characteristics.