(6 pages)

S.No. 7333

RNENS 3

(For candidates admitted from 2006-2007 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Mathematics

COMPLEX ANALYSIS

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

Subdivision (a), (b) and (c) in each question carry 4, 6 and 10 marks respectively.

- 1. (a) Prove that on a compact set every continuous function is uniformly continuous.
 - (b) (i) Prove that every set has a unique decomposition into components.

Or

(ii) If a linear transformation carries a circle C_1 into a circle C_2 , then prove that it transforms any pair of symmetric points with respect to C_1 into a pair of symmetric points with respect to C_2 .

(c) (i) Prove that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or on a straight line.

Or

- (ii) Prove that a nonempty open set in the plane is connected if and only if any two of its points can be joined by a polygon which lies in the set.
- 2. (a) State and prove the maximum principle.
 - (b) (i) Let f(z) be analytic on the set R' obtained from a rectangle R by omitting a finite number of interior points ζ_j If it is true that $\lim_{z \to \zeta_j} (z \zeta_j) f(z) = 0 \text{ for all } j \text{ then prove}$ that $\int_{\partial R} f(z) dz = 0$.

Or

- (ii) Prove that the line integral $\int_{\gamma} p dx + q dy, \text{ defined in } \Omega \text{ depends only}$ on the end points of γ if and only if there exists a function U(x,y) in Ω with the partial derivatives $\frac{\partial U}{\partial x} = p$, $\frac{\partial U}{\partial y} = q.$
- (c) (i) Suppose that $\phi(\zeta)$ is continuous on the arc γ . Then prove that the function $F_n(z) = \int_{\gamma} \frac{\phi(\zeta)g\zeta}{(\zeta-z)^n}$ is analytic in each of the regions determined by γ and its derivative is $F_n'(z) = nF_{n+1}(z)$.

 \mathbf{Or}

(ii) If the function f(z) is analytic on R then prove that $\int_{\partial R} f(z)dz = 0$.

- 3. (a) Find the poles and residue of the following function: $\frac{1}{(z^2-1)^2}$.
 - (b) (i) Derive Poissons formula.

Or

- (ii) Let γ be homologous to zero in Ω and such that $n(\gamma, z)$ is either 0 or 1 for any point z not on γ . Suppose that f(z) and g(z) are analytic in Ω , and satisfy the inequality |f(z) g(z)| < |f(z)| on γ . Then prove that f(z) and g(z) have the same number of zeros enclosed by γ .
- (c) (i) Let Ω^+ be the part in the upper half plane of a symmetric region Ω , and let σ be the real axis in Ω . Suppose that v(x) is continuous in $\Omega^+ \cup \sigma$, harmonic in Ω^+ , and zero on σ . Then prove that v has a harmonic extension to Ω which satisfies the symmetry relation $v(\overline{z}) = -v(z)$. In the same situation, if v is the imaginary part of an analytic function f(z) in Ω^+ , then prove that f(z) has an analytic extension which satisfies $f(z) = \overline{f(\overline{z})}$.

Or

4

- Prove that the function $P_U(z)$ is for |z| < 1harmonic and $\lim_{z o e^{i heta_0}} P_U(z) = U(heta_0)$ provided that U is continuous at θ_0 .
- Define normal. (i) (a) 4.
 - Define equi continuous, (ii)
 - Derive Jensen's formula. (b) (i)

Or

- Prove that a family F of analytic functions is normal with respect to C if and only if the functions in F are uniformly bounded on every compact set.
- Prove that the genus and the order of (c) an entire function satisfy the double inequality $h \le \lambda \le h + 1$.

Or

- Derive Laurent series.
- Prove that the sum of the residues of an 5. elliptic function is zero.
 - (i) Prove that the zeros $a_1, \dots a_n$ and poles (b) b_1, \ldots, b_n of an elliptic function satisfy $a_1 + \ldots + a_n \equiv b_1 + \ldots + b_n \pmod{M}.$

Or.

- Suppose that the boundary of a simply (ii) connected region Ω contains a line segment γ as a one-sided free boundary arc. Then prove that the function f(z) which maps Ω onto the unit disk can be extended to a function which is analytic and one to one on $\Omega \cup \gamma$. Prove that the image of γ is an arc γ' on the unit circle.
- Prove that a discrete module consists (i) either of zero alone, of the integral multiples nw of a single complex number $w \neq 0$, or of all linear combinations $n_1w_1 + n_2w_2$ with integral coefficients of two numbers w_1, w_2 with nonreal ratio w_2 / w_1 .

Or

6

Prove that every point r in the upper half plane is equivalent under the congruence subgroup mod 2 to exactly one point in $\overline{\Omega} \cup \Omega'$.