S.No. 7332

RNENS 2

(For candidates admitted from 2006-2007 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Mathematics

REAL ANALYSIS

Time: Three hours Maximum: 100 marks

Answer ALL the questions.

Subdivisions (a), (b) and (c) in each questions carries 4, 6 and 10 marks respectively.

- (a) (i) Prove that every neighbourhood is an open set.
 - (ii) Prove that e is irrational.
 - (b) (i) Suppose $K \subset Y \subset X$. Then prove that K is compact relative to X iff K is compact relative to Y.

Or

- (ii) State and prove Weierstrass theorem.
- (c) (i) Prove that compact subsets of metric spaces are closed.

Or

- (ii) Suppose s_n , t_n , are complex sequences and $\lim_{n\to\infty} s_n = s$, $\lim_{n\to\infty} t_n = t$. Then prove that
 - $(1) \quad \lim_{n\to\infty} (s_n + t_n) = s + t$
 - $(2) \quad \lim_{n\to\infty} (s_n t_n) = st$
 - (3) $\lim_{n\to\infty}(cs_n)=cs$ for any number c.
- 2. (a) (i) Define a continuous function.
 - (ii) Define local maximum of a function.
 - (b) (i) Suppose f is continuous on [a, b], f'(x) exists at some point $x \in [a, b]$, g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If h(t) = g(f(t)), $(a \le t \le b)$ then prove that h is differentiable at x, and h'(x) = g'(f(x))f'(x).

Or

(ii) Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$. Then prove that there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.

(c) (i) Let f be a continuous mapping of a compact metric space X into a metric space Y. Then prove that f is uniformly continuous on a compact metric space X.

Or

- (ii) State and prove Taylor's theorem.
- 3. (a) (i) Write the integration by parts formula.
 - (ii) Define common refinement.
 - (b) (i) Prove that $\int_{\overline{a}}^{b} f d\alpha \le \int_{a}^{\overline{b}} f d\alpha$.

Or

- (ii) State and prove the fundamental theorem of calculus.
- (c) (i) Prove that $\mathscr{R}(\alpha)$ on [a,b] iff for every $\epsilon > 0$ there exists a partition P such that $U(P,f,\alpha)-L(P,f,a)<\epsilon$.

Or

- (ii) Let $f \in \mathcal{R}(\alpha)$ on [a, b]. For $a \le x \le b$, put $F(x) = \int_a^x f(t)dt$. Then prove that F is continuous on [a, b]; Furthermore, if f is continuous at a point x_0 of [a, b], then also prove that F is differentiable at x_0 , and $F'(x_0) = f(x_0)$.
- . (a) (i) Define pointwise convergence with an example.
 - (ii) Define pointwise bounded with an example.
 - (b) (i) Let a be monotonically increasing on [a, b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a, b], for $n = 1, 2, 3, \ldots$ and suppose $f_n \to f$ uniformly on [a, b]. Then prove that $f \in \mathcal{R}(\alpha)$ on [a, b], and $\int_{n \to \infty}^{b} f d\alpha = \lim_{n \to \infty} f_n d\alpha$.

Or

(ii) If K is a compact metric space, if $f_n \in C(K)$ for n = 1, 2, 3, ..., and if $\{f_n\}$ converges uniformly on K, then prove that $\{f_n\}$ is equicontinuous on K.

(c) (i) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and suppose that $\lim_{t \to x} f_n(t) = A_n$, (n = 1, 2, 3, ...). Then prove that $\{A_n\}$ converges and $\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$.

Or

- (ii) State and prove the Stone-Weierstrass theorem.
- 5. (a) (i) State Lebesgue's monotone convergence theorem.
 - (ii) Define outer measure.
 - (b) (i) Suppose $f = f_1 + f_2$, where $f_i \in \mathcal{L}(\mu)$ on E(i=1,2). Then prove that $f \in \mathcal{L}(\mu)$ on E, and $\int_E f d\mu = \int_E f_1 d\mu + \int_E f_2 d\mu$.

Or

(ii) State and prove fatou's theorem.

- (c) (i) (1) Let f and g be a measurable real-valued functions defined on X, let F be real and continuous on R^2 , and put h(x) = F(f(x), g(x)) where $x \in X$. Then prove that h is measurable.
 - (2) If f is measurable then prove that |f| is measurable.

Or

(ii) State and prove Lebesgue's dominated convergence theorem.