S.No. 6869

P 22 MACC 1 B

(For candidates admitted from 2022-2023 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Mathematics - Core Choice Course

AUTOMATA THEORY

Time: Three hours Maximum: 75 marks

PART A — (20 marks)
Answer ALL questions.

- I. (A) Choose the correct answer:
- $(5\times 1=5)$
- 1. Let L_1 and L_2 be the sets of strings, then the concatenation of L_1 and L_2 is denoted by ———.
 - (a) L_1L2
- (b) $L_1 + L_2$
- (c) $L_1 L_2$
- (d) $L_1 * L_2$
- 2. In $G = \{V, T, P, S\}$ representation of context-free grammar, V stands for ————.
 - (a) A finite set of terminals
 - (b) A finite set of non-terminals
 - (c) A finite set of productions
 - (d) Is the start symbol

- - (a) top
 - (b) bottom
 - (c) right
 - (d) left
- 4. A acts as an interface between the source program and the rest of the phases of compiler
 - (a) semantic analyzer
 - (b) parser
 - (c) lexical analyzer
 - (d) syntax analyzer
- 5. Top-down parsing is a technique to find
 - (a) Leftmost derivation
 - (b) Rightmost derivation
 - (c) Leftmost derivation in reverse
 - (d) Rightmost derivation in reverse

	(B) Fill in the blanks: $(5 \times 1 = 5)$
6.	In regular expression * has higher precedence than ————.
7 .	Which grammar is also known as Backus-Naur form ————.
8.	The empty stack is denoted by ———.
9.	A tool for automatically generating a lexical analyzer for a language is defined as———.
10.	Which parsing technique is a kind of bottom-up parsing ————.
II.	Answer the following questions: $(5 \times 2 = 10)$
11.	Define Finite Automaton.
12.	What are the advantages of context-free grammar?
13.	Define deterministic PDA.
14.	Define Lexeme.
15.	Define recursive predictive parsing.

3

PART B — $(5 \times 5 = 25)$

Answer ALL questions.

(a) Explain deterministic finite automata.

Or

- (b) If L is accepted by a DFA, then prove that Lis denoted by a regular expression.
- (a) Write a grammar to generate a palindrome. 17.

Or

- What are the capabilities of CFG?
- Define pushdown automaton. 18.

Or

- (b) Prove that if L is in $N(M_1)$ for some PDA M_1 , then L is $L(M_2)$ for some PDA M_2 .
- (a) What is the role of a lexical analyzer?

Or

(b) What are strings and languages in lexical analysis? What are the operations performed on the languages?

20. (a) Define parsing. What is the role of a parser?

Or

(b) Write down the algorithm for recursivedescent parsing. Explain with an example.

PART C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 21. Let L be a set accepted by a nondeterministic finite automaton. Then prove that there exists a deterministic finite automaton that accepts L.
- 22. What is an ambiguous grammar? Specify the demerits of ambiguous grammar. Explain with the help of an example how ambiguity can be removed.
- 23. If L is a context-free language, then prove that there exists a Push Down Automata M such that L = N(M).

- 24. What do you understand by the terms tokens, patterns, and lexemes?
- 25. Explain operator precedence parsing method of shift-reduce parsing.